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EXISTENCE OF CYLINDRICALLY SYMMETRIC GROUND STATES TO A
NONLINEAR CURL-CURL EQUATION WITH NON-CONSTANT COEFFICIE NTS

ANDREAS HIRSCH AND WOLFGANG REICHEL

Abstract. We consider the nonlinear curl-curl problem∇×∇×U +V(x)U = f (x, |U |2)U in R3 related
to the nonlinear Maxwell equations with Kerr-type nonlinear material laws. We prove the existence of
a symmetric ground-state type solution for a bounded, cylindrically symmetric coefficientV and sub-
critical cylindrically symmetric nonlinearityf . The new existence result extends the class of problems
for which ground-state type solutions are known. It is basedon compactness properties of symmet-
ric functions [11, 12], new rearrangement type inequalities from [6] and the recent extension of the
Nehari-manifold technique from [18].

1. Introduction

We consider the system

∇ × ∇ × U + V(x)U = f (x, |U |2)U in R3(1.1)

whereV ∈ L∞(R3) and f : R3 × [0,∞) → [0,∞) is a non-negative Carathéodory function growing at
infinity with a power at mostp−1

2 for p ∈ (1, 5). The particular feature of (1.1) is the curl-curl opera-
tor. It arises in specific models for standing waves in Maxwell’s equations with Kerr-type nonlinear
material laws wheref (x, |U |2)U = Γ(x)|U |2U. For a detailed physical motivation of (1.1) see [2].

We look for R3-valued weak solutionsU in a coneK4,1 of functions with suitable symmetries
and U ∈ L2(R3) ∩ Lp+1(R3), ∇ × U ∈ L2(R3). The condition that 0 lies below the spectrum of
curl curl+V(x) allows us to find ground-state type critical points of a functional J(u) = 1

2‖u‖
2 − I (u),

cf. (1.4), restricted to the so-called Nehari-manifold. The basic idea of applying symmetrizations to
minimizing sequences on the Nehari-manifold goes back to Stuart [17] in the context of the stationary
nonlinear Schrödinger equation. Compared to [17] the assumptions on the nonlinearityf can be
substantially weakened beyond the classical Ambrosetti-Rabinowitz condition. This is based on three
important ingredients:

• the recent extension of the Nehari-manifold method due to Szulkin and Weth [18],
• the weak sequential continuity of functionalsI (u) and I ′(u)[u] on K4,1 due to compactness

properties of symmetric functions by Lions [11, 12],
• new rearrangement inequalities for general nonlinearities due to Brock [6].

Using the combination of these ingredients our main result of Theorem 1 substantially extends the
know results on the existence of ground-state type solutions for (1.1).

Benci, Fortunato [5] and Azzollini, Benci, D’Aprile, Fortunato in [1] were among the first to
consider the constant coefficient case of (1.1) withV ≡ 0. Their method was based on cylindri-
cal symmetries of the vector-fieldsU, cf. [8] for a different class of symmetries. The case where

Date: June 15, 2016.
2000Mathematics Subject Classification.Primary: 35J20, 58E15; Secondary: 47J30, 35Q60.
Key words and phrases.curl-curl problem, nonlinear elliptic equations, cylindrical symmetry, variational methods.

1

http://arxiv.org/abs/1606.04415v1


2 ANDREAS HIRSCH AND WOLFGANG REICHEL

f (x, |U |2)U = Γ(x) |U |p−1 U with periodic coefficientsV andΓ has been treated in [2]. In [14] Meder-
ski considered (1.1) wheref (x, |U |2)U is replaced by, e.g.,Γ(x)g(U) with Γ > 0 periodic and bounded,

V ≤ 0, V ∈ L
p+1
p−1 (R3) ∩ L

q+1
q−1 (R3) andg(U) ∼ |u|p−1U if |U | ≫ 1 andg(U) ∼ |U |q−1u if |U | ≪ 1 for

1 < p < 5 < q. A remarkable feature of Mederski’s work is that (1.1) can betreated without assum-
ing special symmetries of the fieldU. The nonlinear curl-curl problem on bounded domains with the
boundary conditionν × U = 0 has been elaborated in [3, 4].

An important feature of [1] is the use of cylindrically symmetric ansatz functions forU. Here we
make a slightly different ansatz of the form

U(x) = u(r, z)



















−x2

x1

0



















wherer =
√

x2
1 + x2

2, z= x3.(1.2)

Moreover, we assume cylindrically symmetric coefficientsV(x) = V(r, z), f (x, |U |2) = f (r, z, |U |2).
ForU of the form (1.2) we see that divU = 0, and hence (1.1) reduces to the scalar equation

−
1
r3

∂

∂r

(

r3∂u
∂r

)

−
∂2u
∂z2
+ V(r, z)u = f (r, z, r2u2)u for (r, z) ∈ Ω ≔ (0,∞) × R.(1.3)

It turns out that a suitable space to consider (1.3) is given by

H1
cyl(r

3drdz) ≔

{

v: (0,∞) × R→ R : v,
∂v
∂r
,
∂v
∂z
∈ L2

cyl(r
3drdz)

}

,

L2
cyl(r

3drdz) ≔

{

v: (0,∞) × R→ R :
∫

Ω

v(r, z)2r3d(r, z) < ∞
}

,

cf. Section 2 for more details on these spaces. Weak solutions of (1.3) arise as critical points of the
functional

J(u) =
1
2

∫

Ω

(

|∇r,zu|2 + V(r, z)u2
)

r3d(r, z) −
∫

Ω

1
2r2

F(r, z, r2u2)r3d(r, z), u ∈ H1
cyl(r

3drdz),(1.4)

whereF(r, z, t) ≔
∫ t

0
f (r, z, s) dsand∇r,z ≔

(

∂
∂r ,

∂
∂z

)

. A ground stateu of (1.3) is defined as a weak
solution of (1.3) in the Nehari-manifold

M ≔

{

v ∈ H1
cyl(r

3drdz) \ {0} :
∫

Ω

(

|∇r,zv|2 + V(r, z)v2
)

r3d(r, z) =
∫

Ω

f (r, z, r2v2)v2r3d(r, z)

}

such that

J(u) = inf
v∈M

J(v),

see the classical papers [15], [16]. We find ground states of (1.3) under additional assumptions on
V and f . To state these assumptions we need the notion of Steiner-symmetrization, cf. Chapter 3 in
[10]. The Steiner-symmetrization (also called symmetric-deacreasing rearrangement) of a cylindrical
functiong = g(r, z) with respect toz is denoted byg⋆. We say thatg isSteiner-symmetricif g coincides
with its Steiner-symmetrization with respect toz, keeping ther-variable fixed. A functionh ∈ L∞(Ω)
is reversed Steiner-symmetricif

(

ess suph− h
)⋆
= ess suph− h holds true.

Now we can state our assumptions onf .

(i) f : Ω × [0,∞)→ R is a Carathéodory function with 0≤ f (r, z, s) ≤ c(1+ s
p−1
2 ) for somec > 0

andp ∈ (1, 5),
(ii) f (r, z, s) = o(1) ass→ 0 uniformly in r, z ∈ [0,∞) × R,

(iii) f (r, z, s) strictly increasing ins ∈ [0,∞),
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(iv) F(r,z,s)
s → ∞ ass→ ∞ uniformly in r, z∈ [0,∞) × R,

(v) for all r ∈ [0,∞), s≥ 0 andσ > 0 the function

ϕσ(r, z, s) ≔ f (r, z, (s+ σ)2)(s+ σ)2 − f (r, z, s2)s2

is symmetrically nonincreasing inz.

Conditions (ii)–(iv) are inspired by the work of Szulkin andWeth [18]. Namely, if we translate (ii)–
(iv) into conditions for f̃ (r, z, s) := f (r, z, r2s2)s then they become identical to (ii)–(iv) of Theorem 20
from [18]. Condition (v) is used to prove the rearrangement inequality of Lemma 9 and it is due to
Brock [6].

Next we state our main result.

Theorem 1. Let V ∈ L∞(Ω) be reversed Steiner-symmetric such that the map

‖·‖ : H1
cyl(r

3drdz)→ R; u 7→
(∫

Ω

(

|∇r,zu|2 + V(r, z)u2
)

r3d(r, z)

)
1
2

(1.5)

is an equivalent norm to‖·‖H1
cyl(r

3drdz). Additionally, let f satsify the assumptions (i)-(v). Then(1.3)

has a ground state u∈ H1
cyl(r

3drdz) which is symmetric about{z= 0}.

Remarks: (1) The assumption of norm-equivalence is for instance satisfied ifV ≥ 0 and infBc
R
V > 0

for someR> 0, whereBc
R≔ {(r, z) ∈ Ω : r2

+z2 > R2}. For the reader’s convenience the proof based on
Poincaré’s inequality is given in the Appendix. Since Poincaré’s inequality is applicable for domains
bounded in one direction we can weaken infBc

R
V > 0 to infSc V > 0 for stripsS = [0,∞) × [0, ρ] with

ρ > 0 orS = [r0, r1] × [0,∞) with 0 ≤ r0 < r1 < ∞.
(2) The conditions onf are satisfied if for instancef (r, z, s) = Γ(r, z)|s|

p−2
2 s whereΓ ∈ L∞(Ω)

is Steiner-symmetric, ess infΩ Γ > 0 andp ∈ (1, 5). This choice off corresponds to the equation
∇ × ∇ × U + V(r, z)U = Γ(r, z) |U |p−1 U in R3. Another possible choice isf (r, z, s) = Γ(r, z) log(1+ s)
where againΓ ∈ L∞(Ω) is Steiner-symmetric and ess infΩ Γ > 0. This nonlinearity appeared for
instance in [13] and it does not satisfy the classical Ambrosetti-Rabinowitz condition.

The paper is structured as follows: In Section 2 we give details on the variational formulation of
problem (1.3) and prove pointwise decay estimates of Steiner-symmetric functions inH1

cyl(r
3drdz). In

Section 3 we give the proof of Theorem 1, and in the Appendix weshow an example for the potential
V satisfying the equivalent-norm-assumption of Theorem 1.

2. Variational formulation, decay estimates, rearrangements

Let us consider some properties of the spaceH1
cyl(r

3drdz). First, forU of the form (1.2) we have
thatU ∈ H1(R3) if and only if u ∈ H1

cyl(r
3drdz). A norm onH1

cyl(r
3drdz) is given by

‖u‖H1
cyl(r

3drdz) ≔

(∫

Ω

(

|∇r,zu|2 + u2
)

r3d(r, z)

)
1
2

.

Notice that the spaceH1
cyl(r

3drdz) behaves like a Sobolev-space in dimension 5. Next we show a
useful embedding property. For this we need the following Sobolev and Lebesgue spaces in dimension
3 together with their canonical norms:

H1
cyl(rdrdz) ≔

{

v: (0,∞) × R→ R : v,
∂v
∂r
,
∂v
∂z
∈ L2

cyl(rdrdz)

}

,
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Lq
cyl(rdrdz) ≔

{

v: (0,∞) × R→ R :
∫

Ω

|v(r, z)|qrd(r, z) < ∞
}

for q ∈ [1,∞).

Lemma 2. For u ∈ H1
cyl(r

3drdz) Hardy’s inequality holds

∫

Ω

u2

r2
r3d(r, z) ≤ CH

∫

Ω













(

∂u
∂r

)2

+

(

∂u
∂z

)2










r3d(r, z).(2.1)

Moreover, if u ∈ H1
cyl(r

3drdz) then ru ∈ H1
cyl(rdrdz) and there is a constant C> 0 such that for

2 ≤ q ≤ 6

(2.2) ‖ru‖H1
cyl(rdrdz) , ‖ru‖Lq

cyl(rdrdz) ≤ C ‖u‖H1
cyl(r

3drdz)

Proof. Hardy’s inequality (2.1) is given in Lemma 9 (i) in [2]. Foru ∈ H1
cyl(r

3drdz) we haveru, ∂
∂z (ru),

r ∂u
∂r ∈ L2

cyl(rdrdz) and by (2.1) alsou ∈ L2
cyl(rdrdz). Since ∂

∂r (ru) = r ∂u
∂r + u we conclude altogether

ru ∈ H1
cyl(rdrdz). By the Sobolev embedding in three dimensions this impliesru ∈ Lq(rdrdz) for

q ∈ [2, 6] and (2.1) yields

‖ru‖2
H1

cyl(rdrdz) =

∫

Ω

(

|∇r,z(ru)|2 + r2u2
)

rd(r, z)

≤ 2
∫

Ω













(

r
∂u
∂z

)2

+

(

r
∂u
∂r

)2

+ u2
+ r2u2













rd(r, z) ≤ C̃ ‖u‖2
H1

cyl(r
3drdz) .

(2.3)

�

Next we show that the functionalJ from the introduction as well as the functional in the defintion
of the Nehari-manifold are well-defined.

Lemma 3. There is a constant C> 0 such that
∫

Ω

f (r, z, r2u2)u2r3 drdz,
∫

Ω

1
2r2

F(r, z, r2u2)r3d(r, z) ≤ C
(

‖u‖2H1
cyl(r

3drdz) + ‖u‖
p+1

H1
cyl(r

3drdz)

)

(2.4)

for all u ∈ H1
cyl(r

3drdz).

Proof. Clearly assumption (i) and (ii) show that for everyǫ > 0 there isCǫ > 0 such that

0 ≤ f (r, z, s) ≤ ǫ +Cǫs
p−1
2 .

Hence

0 ≤ f (r, z, r2u2)u2r3 ≤
(

ǫr2u2
+Cǫ |ru|p+1)

)

r,(2.5)

0 ≤
1

2r2
F(r, z, r2u2)r3 ≤

(

ǫr2u2
+ C̃ǫ |ru|p+1

)

r.(2.6)

Due to (2.2) this implies the claim. �

In order to find critical points ofJ we need uniform decay estimates of Steiner-symmetric func-
tions in H1

cyl(r
3drdz). These estimates are given in [12] in much more generality but for the sake of

completeness we give them here together with the simple proof. We start with a well-known fact
concerning radially symmetric functions and afterwards extend the result to cylindrically symmetric
functions. Let

H1
rad(R

n) ≔
{

u ∈ H1(Rn) : u is radially symmetric
}

.
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Lemma 4. (see[12]) Let n≥ 2. Then there is a constant C> 0 such that

|u(x)| ≤ C ‖∇u‖1/2
L2(Rn)

‖u‖1/2
L2(Rn)

|x|−(n−1)/2 for almost all x∈ Rn and all u∈ H1
rad(R

n).

Proof. By density it is sufficient to prove the estimate foru ∈ H1
rad(R

n) ∩C∞c (Rn). Let r ≔ |x|. Then

d
dr

(

rn−1 |u|2
)

= (n− 1)rn−2 |u|2 + rn−12u
∂u
∂r
≥ −2 |u|

∣

∣

∣

∣

∣

∂u
∂r

∣

∣

∣

∣

∣

rn−1.

Integrating fromr to∞ and expanding the domain of integration to all ofRn yields

rn−1 |u(x)|2 ≤ C
∫

Rn

|u| |∇u| dy≤ C ‖∇u‖L2(Rn) ‖u‖L2(Rn) .�

Now we give an extension of Lemma 4 to cylindrically symmetric functions which are Steiner-
symmetric in the non-radial component. We make use of the following notation: Lett ∈ N≥2 and
s ∈ N such thatn = t + s. We write points inRn as (x, y) with x ∈ Rt andy = (y1, . . . , ys) ∈ Rs.
Furthermore, let

Kt,s ≔















u ∈ H1(Rn) s.t.















u(·, y) is a radially symmetric function for everyy ∈ Rs and

u(x, ·) is Steiner-symmetric w.r.t.yi , i = 1, . . . , s, for everyx ∈ Rt















.

In particular, ifu ∈ Kt,s then necessarilyu ≥ 0. In this setting we have the following extension of
Lemma 4.

Lemma 5. (see[12]) There is a constant C> 0 such that

0 ≤ u(x, y) ≤ C ‖∇xu‖1/2L2(Rn)
‖u‖1/2

L2(Rn)
|x|−(t−1)/2 |y1 · · · ys|−1/2 for almost all(x, y) ∈ Rn and all u∈ Kt,s.

Proof. Let u ∈ Kt,s and fixy ∈ Rs. W.l.o.g. letyi > 0 for all i = 1, . . . , s. We define

v(x) ≔
∫ y1

0
· · ·

∫ ys

0
u(x, z)dzfor x ∈ Rt.

By Hölder’s inequality we obtainv2(x) ≤ y1 · · · ys

∫ y1

0
· · ·

∫ ys

0
u2(x, z)dz, i.e.,

‖v‖L2(Rt) ≤ (y1 · · · ys)
1/2 ‖u‖L2(Rn) .(2.7)

In the same manner we receive

‖∇v‖L2(Rt) ≤ (y1 · · · ys)
1/2 ‖∇xu‖L2(Rn) .(2.8)

Sincev: Rt → R is radially symmetric we can apply Lemma 4 and get from (2.7) and (2.8)

0 ≤ v(x) ≤ C ‖∇v‖1/2
L2(Rt)
‖v‖1/2

L2(Rt)
|x|−(t−1)/2 ≤ C(y1 · · · ys)

1/2 ‖∇xu‖1/2L2(Rn)
‖u‖1/2

L2(Rn)
|x|−(t−1)/2 .(2.9)

Due to the monotonicity-property iny-direction we also havev(x) ≥ y1 · · · ysu(x, y) and thus (2.9)
gives the desired inequality. �

We prove three additional lemmas which are used in the next section.

Lemma 6. The set Kt,s is a weakly closed cone in H1(Rn).

Proof. Take a sequence(uk)k∈N ⊂ Kt,s such thatuk ⇀ u ∈ H1(Rn) as k → ∞. By the Sobolev
embedding on bounded domains we deduce that a subsequence ofuk converges pointwise almost
everywhere onRn to u. Since everyuk enjoys the radial symmetry in the first component and the
non-increasing property in the second variable, the pointwise convergence implies that alsou enjoys
these properties, i.e.,u ∈ Kt,s. �
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Lemma 7. The functionals

I (v) =
∫

Ω

1
2r2

F(r, z, r2v2)r3 d(r, z), I ′(v)[v] =
∫

Ω

f (r, z, r2v2)v2r3 d(r, z)

are weakly sequentially continuous on the set K4,1 ⊂ H1
cyl(r

3drdz).

Remark: In the proof we use twice the following principle: ifS ⊂ Rm is a set of finite measure and
wk : S → R a sequence of measurable functions such that‖wk‖Lr (S) ≤ C andwk → w pointwise a.e.
ask→ ∞ then‖wk −w‖Lq(S) → 0 ask→∞ for 1 ≤ q < r. The proof is as follows: Egorov’s theorem
allows to chooseΣ ⊂ S such thatwk → w uniformly onΣ and|S \Σ| ≤ ǫ arbitrary small. By Hölder’s
inequality the remaining integral is estimated by

∫

S\Σ |wk − w|q dx≤ ǫ1−
q
r ‖wk − w‖qLr (S).

Proof. Let us take a weakly convergent sequence (vk)k∈N in K4,1 such thatvk ⇀ v in H1
cyl(r

3drdz) and
vk → v pointwise a.e. inΩ. By Lemma 6 one getsv ∈ K4,1 and using Lemma 5 there exists a constant
C > 0 such that

(2.10) 0≤ vk(r, z), v(r, z) ≤ Cr−
3
2 |z|− 1

2 for all k ∈ N and almost all (r, z) ∈ Ω.
Our goal is now to show at least for a subsequence

(2.11)
∫

Ω

1
r2

F(r, z, r2v2
k)r

3d(r, z)→
∫

Ω

1
r2

F(r, z, r2v2)r3d(r, z) ask→ ∞

and

(2.12)
∫

Ω

f (r, z, r2v2
k)v

2
kr

3d(r, z)→
∫

Ω

f (r, z, r2v2)v2r3d(r, z) ask→ ∞.

By (2.6) we find
1
r2

∣

∣

∣F(r, z, r2v2
k) − F(r, z, r2v2)

∣

∣

∣ r3 ≤ ǫr2(v2
k + v2)r +Cǫ

(

|rvk|p+1
+ |rv|p+1

)

r

and hence

(2.13)
(

|F(r, z, r2v2
k) − F(r, z, r2v2)| − ǫr2(v2

k + v2)
)+

r ≤ Cǫ
(

|rvk|p+1
+ |rv|p+1

)

r.

Inspired by [11] and [12] the idea is to show

rvk → rv in Lp+1(rdrdz) ask→ ∞.(2.14)

Once (2.14) is established we obtain a majorant|rvk|, |rv| ≤ w ∈ Lp+1(r drdz) (cf. Lemma A.1 in [19]).
Together with (2.13) this majorant allows to apply Lebesgue’s dominated convergence theorem and
yields

(2.15) lim
k→∞

∫

Ω

(

|F(r, z, r2v2
k) − F(r, z, r2v2)| − ǫr2(v2

k + v2)
)+

r drdz= 2ǫ‖v‖2L2(r3drdz).

If we set

ak :=
∫

Ω

|F(r, z, r2v2
k) − F(r, z, r2v2)|r drdz

and
bk := ǫ‖r2(v2

k + v2)‖L1(rdrdz) = ǫ(‖vk‖2L2(r3drdz) + ‖v‖
2
L2(r3drdz)) ≤ Cǫ

then

lim sup
k∈N

ak ≤ lim sup
k∈N

bk + lim sup
k∈N

(ak − bk)
+

≤ Cǫ + lim sup
k∈N

(∫

Ω

(

|F(r, z, r2v2
k) − F(r, z, r2v2)| − ǫr2(v2

k + v2)
)

rdrdz

)+
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≤ Cǫ + lim sup
k∈N

∫

Ω

(

|F(r, z, r2v2
k) − F(r, z, r2v2)| − ǫr2(v2

k + v2)
)+

rdrdz

≤ ǫ(C + 2‖v‖2L2(r3drdz)) by (2.15).

Sinceǫ > 0 was arbitrary this shows that limk→∞ ak = 0 and therefore (2.11) holds. The proof of
(2.12) is similar since

(

f (r, z, r2v2
k)r

2v2
k − f (r, z, r2v2)r2v2 − ǫr2(v2

k + v2)
)+

r satisfies an estimate just
like (2.13) if we use (2.5) instead of (2.6).

It remains to prove (2.14). For this, we split our domainΩ into four partsΩ1, . . . ,Ω4 and show
(2.14) on each of these parts separately. The definitions ofΩ1, . . . ,Ω4 are as follows: ForR> 0 let

Ω1 ≔ {(r, z) ∈ Ω : r < R, |z| < R}, Ω2 ≔ {(r, z) ∈ Ω : r ≥ R, |z| ≥ R},
Ω3 ≔ {(r, z) ∈ Ω : r < R, |z| ≥ R}, Ω4 ≔ {(r, z) ∈ Ω : r ≥ R, |z| < R}.

Convergence onΩ1: Follows fromrvk → rv in Lq(K; r drdz) for every compact subsetK ⊂ [0,∞)×
R and everyq ∈ [1, 6). This step works independently of the choice ofR> 0.

Convergence onΩ2: Let ε > 0. With the help of (2.10) we calculate
∫

Ω2

|rvk − rv|p+1 rd(r, z) ≤ 2p+1

∫

Ω2

r p+1
(

|vk|p+1
+ |v|p+1

)

rd(r, z)

≤ 2p+1Cp−1

∫

Ω2

r−
p−1
2 |z|−

p−1
2

(

|vk(r, z)|2 + |v(r, z)|2
)

r3d(r, z)

≤ C1

(

‖vk‖2H1
cyl(r

3drdz) + ‖v‖
2
H1

cyl(r
3drdz)

)

R−(p−1) ≤ C2R
−(p−1)

which is less or equalε if we chooseR> 0 large enough.

Convergence onΩ3: Due to symmetry inz-direction it is enough to focus oñΩ3 ≔ {(r, z) ∈ Ω : r <
R, z≥ R}. Letα > 0 be arbitrary. Again by (2.10) we obtain

{(r, z) ∈ Ω̃3 : vk(r, z) > α} ⊂ {(r, z) ∈ Ω̃3 : r z
1
3 ≤ Cα} ≕ Sα,

whereCα = (C/α)2/3 andC is the constant from (2.10). The setSα has finite measure since

|Sα| ≤
∫ ∞

R

∫ Cαz−1/3

0
r3dr dz=

C4
α

4

∫ ∞

R
z−

4
3 dz=

3
4

C4
αR
− 1

3 < ∞.

By the convergence principle from the remark above and sinceby (2.3)‖rvk‖L6(rdrdz) ≤ ‖vk‖H1
cyl(r

3drdz)

is bounded we obtain
∫

Sα
r p−1|vk − v|p+1r3d(r, z)→ 0 ask→ ∞ for 1 ≤ p < 5. It remains to prove the

convergence oñΩ3 \ Sα. For allmost all (r, z) ∈ Ω̃3 \ Sα we have thatv(r, z) = limk→∞ vk(r, z) ≤ α.
Hence,

∫

Ω̃3\Sα
r p−1|vk − v|p+1r3d(r, z) ≤ Rp−1(2α)p−1

∫

Ω

|vk − v|2r3d(r, z) ≤ Cαp−1.

In summary, sinceα > 0 is arbitrary this shows (2.14) onΩ3.

Convergence onΩ4: Again it is enough to focus oñΩ4 ≔ {(r, z) ∈ Ω : r ≥ R, 0 ≤ z < R}. Fix
z ∈ (0,R). Let us first show that

(2.16)
∫

{r≥R}
r p−1|vk(r, z) − v(r, z)|p+1r3dr → 0 ask→∞.
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Sincevk(r, ·) is nonincreasing in its last component we deduce

(2.17)
∫ ∞

0
rqvq

k(r, z)r dr ≤ 1
z

∫ z

0

∫ ∞

0
rqvq

k(r, ζ)r drdζ ≤ 1
z

∫

Ω

rqvq
k(r, ζ)rd(r, ζ) ≤ C

z

for all q ∈ [2, 6] by (2.3). Thus forq ∈ [2, 6] the sequence‖ · vk(·, z)‖Lq((0,∞),rdr) is uniformly bounded
in k ∈ N. Moreover, (2.10) impliesvk(r, z) ≤ C(z)r−

3
2 uniformly in k ∈ N. Hence forR̃> R

∫ ∞

R̃
r p−1|vk(r, z) − v(r, z)|p+1r3dr ≤ (2C(z))p−1

∫ ∞

R̃
r−

p−1
2 |vk(r, z) − v(r, z)|2r3dr

≤ (2C(z))p−1R̃
1−p

2
C
z

by (2.17).

The last term can be made arbitrarily small providedR̃ is chosen big enough. To finish the proof

of (2.16) it remains to prove
∫ R̃

R
r p−1|vk(r, z) − v(r, z)|p+1r3dr → 0 ask → ∞. Since for almost all

z ∈ (0,R) we havevk(·, z)→ v(·, z) pointwise almost everywhere on (R, R̃) as well as the boundedness
of ‖ · vk(·, z)‖L6((0,∞),rdr) by (2.17) we can apply the convergence principle from the remark above and
deduce

∫ R̃

R
r p−1|vk(r, z) − v(r, z)|p+1r3dr → 0 ask→ ∞.

Hence (2.16) is accomplished for almost allz ∈ (0,R).

Definingϕk(z) ≔
∫

{r≥R} r
p−1|vk(r, z) − v(r, z)|p+1r3dr we haveϕk → 0 ask → ∞ pointwise almost

everywhere in [0,R). The sequence(ϕk)k∈N is bounded inL1([0,R), dz) since by (2.2)
∫ R

0

∫

{r≥R}
r p−1|vk(r, z) − v(r, z)|p+1r3drdz≤ C

∫

Ω

r p−1
(

|vk|p+1
+ |v|p+1

)

r3d(r, z) ≤ C̃.

Moreover, forp ∈ (1, 3], the sequence(ϕk)k∈N is bounded inW1,1([0,R), dz) since
∥

∥

∥

∥

∥

∂ϕk

∂z

∥

∥

∥

∥

∥

2

L1([0,R],dz)
≤

(∫ R

0

∫ ∞

R
(p+ 1)r p−1|vk − v|p

∣

∣

∣

∣

∣

∂vk

∂z
− ∂v
∂z

∣

∣

∣

∣

∣

r3drdz

)2

≤
(∫

Ω

(p+ 1)r p−1|vk − v|p
∣

∣

∣

∣

∣

∂vk

∂z
− ∂v
∂z

∣

∣

∣

∣

∣

r3d(r, z)

)2

≤ C
∫

Ω

r2p−2|vk − v|2pr3d(r, z)
∫

Ω

∣

∣

∣

∣

∣

∂vk

∂z
−
∂v
∂z

∣

∣

∣

∣

∣

2

r3d(r, z)

= C‖r(vk − v)‖2p
L2p(rdrdz)

∫

Ω

∣

∣

∣

∣

∣

∂vk

∂z
− ∂v
∂z

∣

∣

∣

∣

∣

2

r3d(r, z) ≤ C.

Hence, by the compact embeddingW1,1([0,R), dz) ֒→ L1([0,R), dz) we conclude that at least a sub-
sequence of (ϕk)k∈N is converging inL1([0,R), dz) to a limit function, which must be 0 since we have
already asserted the pointwise a.e. convergence to 0 on [0,R). This shows (2.14) onΩ4 for p ∈ (1, 3].
For p ∈ (3, 5) we make use of Hölder’s interpolation, namely,

‖rvk − rv‖p+1

Lp+1
cyl (Ω4,rdrdz)

≤ ‖rvk − rv‖4θ
L4

cyl(Ω4,rdrdz)
‖rvk − rv‖6(1−θ)

L6
cyl(Ω4,rdrdz)

≤ C̃ ‖rvk − rv‖4θ
L4

cyl(Ω4,rdrdz)
→ 0

ask→ ∞, whereθ ∈ (0, 1) is chosen such thatp+ 1 = 4θ + 6(1− θ), i.e.,θ = 5−p
2 .

The combination of convergences onΩ1, . . . ,Ω4 finally proves (2.14). �

For our last lemma we need the notion of cylindricalC∞c -functions which we introduce now.
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Definition 8. A function u= u(r, z) belongs to C∞c ([0,∞)×R) if and only if u∈ C∞([0,∞)×R), suppu
is compact in[0,∞) × R and ∂

ju
∂r j (0, z) = 0 for all odd integers j∈ 2N − 1.

Remark: Sinceu ∈ C∞c ([0,∞) × R) is equivalent to ˜u ∈ C∞c (R5) with ũ(x) := u(|(x1, . . . , x4)|, x5) we
see thatC∞c ([0,∞) × R) is dense inH1

cyl(r
3drdz).

Lemma 9. For u ∈ H1
cyl(r

3drdz) we have‖u⋆‖ ≤ ‖u‖ where⋆ denotes Steiner-symmetrization with
respect to z and‖ · ‖ is the equivalent norm from Theorem 1. Moreover

I (u) ≤ I (u⋆) and I′(u)[u] ≤ I ′(u⋆)[u⋆].

Proof. We begin by recalling several classical rearrangement inequalities from [9], [10]. Recall first
the Pólya-Szegö inequality

(2.18)
∫

Rn
|∇ f ⊛|2dx≤

∫

Rn
|∇ f |2dx

for f ∈ H1(Rn) and⊛ denoting Schwarz-symmetrization (also called symmetrically decreasing re-
arrangement). Furthermore we have for 0≤ f , g ∈ L2(Rn) the classical rearrangement inequality

(2.19)
∫

R

f gdx≤
∫

R

f ⊛g⊛dx

and the nonexpansivity of rearrangement

(2.20)
∫

Rn
| f ⊛ − g⊛|2dx≤

∫

Rn
| f − g|2 dx.

From (2.18) we immediately receive foru ∈ H1
cyl(r

3drdz) that

(2.21)
∫

R

|∇zu
⋆|2dz≤

∫

R

|∇zu|2dz.

Next we want to establish a similar inequality for∇ru. We do this first foru ∈ C∞c ([0,∞) × R). With
the help of (2.20) we find that

∫

R

∣

∣

∣

∣

∣

u⋆(r + t, z) − u⋆(r, z)
t

∣

∣

∣

∣

∣

2

dz≤
∫

R

∣

∣

∣

∣

∣

u(r + t, z) − u(r, z)
t

∣

∣

∣

∣

∣

2

dz

for almost allr, t ∈ [0,∞). Sendingt → 0 and using Fatou’s lemma on the left side of the inequality
yields

∫

R

|∇ru
⋆|2dz≤

∫

R

|∇ru|2dz(2.22)

for u ∈ C∞c ([0,∞) × R) and almost allr ∈ [0,∞). Since Steiner Symmetrization is continuous inH1

(see Theorem 1 in [7]) we obtain by approximation that (2.22)is indeed valid for allu ∈ H1
cyl(r

3drdz).

Together with (2.21) we obtain
∫

R
|∇r,zu⋆|2dz≤

∫

R
|∇r,zu|2dz for almost allr ≥ 0 and integration leads

to
∫

R

∫ ∞

0
|∇r,zu

⋆|2r3drdz≤
∫

R

∫ ∞

0
|∇r,zu|2r3drdz.(2.23)

Fixing r ∈ [0,∞) and applying (2.19) tof (·) = ess supV − V(r, ·) andg(·) = u2(r, ·) gives
∫

R

(

ess supV − V(r, ·)
)

u2(r, ·)dz≤
∫

R

(

ess supV − V(r, ·)
)⋆ (

u2)⋆(r, ·)dz

=

∫

R

(

ess supV − V(r, ·)
) (

u⋆
)2 (r, ·)dz.
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Using‖u(r, ·)‖L2(R) = ‖u⋆(r, ·)‖L2(R) this results in
∫

R

∫ ∞

0
V(r, z)

(

u⋆
)2 r3drdz≤

∫

R

∫ ∞

0
V(r, z)u2r3drdz.(2.24)

The combination of (2.23) and (2.24) yields the claimed inequality ‖u⋆‖2 ≤ ‖u‖2.
Assumption (v) onf allows to apply Theorem 5.1 in [6] and to deduce

I ′(u)[u] =
∫

Ω

f (r, z, r2u2)u2r3d(r, z) ≤
∫

Ω

f (r, z, r2u⋆2)u⋆2r3d(r, z) = I ′(u⋆)[u⋆].(2.25)

Moroever, using (v) withs = 0 shows that for allr ∈ [0,∞), σ ≥ 0 the functionz 7→ f (r, z, σ2) is
symmetrically nonincreasing inzand hence

Φσ(r, z, s) := F(r, z, r2(s+ σ)2) − F(r, z, r2s2) =
∫ r2(s+σ)2

r2s2
f (r, z, t) dt

is symmetrically nonincreasing inz. Applying once more Theorem 5.1 in [6] yields

I (u) =
∫

Ω

1
2r2

F(r, z, r2u2)r3d(r, z) ≤
∫

Ω

1
2r2

F(r, z, r2u⋆2)r3d(r, z) = I (u⋆).

This finishes the proof of the lemma. �

3. Proof of Theorem 1

Proof. Recall from Lemma 7 the definitionI (u) ≔
∫

Ω

1
2r2 F(r, z, r2u2)r3d(r, z) for u ∈ H1

cyl(r
3drdz).

We show that the assumptions (i)-(iii) of Theorem 12 in [18] are satisfied. Letε > 0. The growth
assumptions (i) and (ii) onf imply that for everyǫ > 0 there existsCǫ > 0 such that the global
estimate 0≤ f (r, z, s) ≤ ǫ +Cǫ |s|

p−1
2 holds. Together with (2.2) we obtain

|I ′(u)[v]| =
∣

∣

∣

∣

∣

∫

Ω

f (r, z, r2u2)uvr3d(r, z)
∣

∣

∣

∣

∣

≤ ε
∫

Ω

|ru||rv|rd(r, z) +Cǫ

∫

Ω

|ru|p|rv|rd(r, z)

≤ εC ‖u‖H1
cyl(r

3drdz) ‖v‖H1
cyl(r

3drdz) + C̃ǫ ‖u‖pH1
cyl(r

3drdz)
‖v‖H1

cyl(r
3drdz)

Taking the supremum over allv ∈ H1
cyl(r

3drdz) with ‖v‖H1
cyl(r

3drdz) = 1 we see that

(3.1) I ′(u) = o(‖u‖) asu→ 0.

Moreover, due to assumption (iii) onf the map

(3.2) s 7→ I ′(su)[u]
s

=

∫

Ω

f (r, z, s2r2u2)u2r3d(r, z) is strictly increasing for allu , 0 ands> 0.

Next we claim that

(3.3)
I (su)

s2
→ ∞ ass→ ∞ uniformly for u on weakly compact subsetsW of H1

cyl(r
3drdz) \ {0}.

Suppose not. Then there are (uk)k∈N ⊂W andsk→ ∞ ask→ ∞ such thatI(skuk)
s2
k

is bounded ask→∞.

But along a subsequence we haveuk ⇀ u , 0 anduk(x) → u(x) pointwise almost everywhere. Let
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Ω
♯ := {(r, z) ∈ Ω : u(r, z) , 0}. Then|Ω♯| > 0 and onΩ♯ we have|skuk(r, z)| → ∞ ask→ ∞. Fatou’s

lemma and assumption (iv) onF imply

I (skuk)

s2
k

=

∫

Ω

F(r, z, s2
kr

2u2
k)

2s2
kr

2
r3d(r, z) ≥

∫

Ω♯

F(r, z, s2
kr

2u2
k)

2s2
kr

2u2
k

u2
kr

3d(r, z)→∞ ask→ ∞,

a contradiction. In summary, (3.1), (3.2), (3.3) imply that(i)-(iii) of Theorem 12 in [18] are satisfied.

Now we take a sequence (uk)k∈N ⊂ M such thatJ(uk) → inf M J ask → ∞. Since‖∇r,z |uk| ‖L2 =

‖∇r,zuk‖L2 we can assume thatuk ≥ 0 for all k ∈ N. Then Theorem 12 in [18] guarantees that for every
k there is a uniquetk > 0 such thatvk := tku⋆k ∈ M. We show next thattk ≤ 1 for all k ∈ N. Assume
tk > 1. Then

∫

Ω

f (r, z, r2u⋆2
k )u⋆2

k r3d(r, z) <
∫

Ω

f (r, z, t2
kr

2u⋆2
k )u⋆2

k r3d(r, z) by assumption (iii)

= ‖u⋆k ‖2 sincetku
⋆
k ∈ M

≤ ‖uk‖2 by Lemma 9

=

∫

Ω

f (r, z, r2u2
k)u

2
kr

3d(r, z) sinceuk ∈ M.

This contradicts the inequalityI ′(uk)[uk] ≤ I ′(u⋆k )[u⋆k ] from Lemma 9 and thustk ≤ 1 for all k ∈ N.

Next notice that for fixed (r, z, s) ∈ [0,∞) × R × [0,∞) andt ∈ (0, 1] one has

d
dt

(

t2 f (r, z, s2)s2 − F(r, z, t2s2)
)

= 2ts2
(

f (r, z, s2) − f (r, z, t2s2)
)

> 0

since f is strictly increasing in its last variable by assumption (iii). This shows that the mapt 7→
t2 f (r, z, s2)s2−F(r, z, t2s2) is strictly increasing fort ∈ [0, 1]. From this monotonicity and the inequal-
ity I (tkuk) ≤ I (tku⋆k ) from Lemma 9 we conclude

2J(vk) =
∫

Ω

(

t2
k|∇r,zu

⋆
k |

2
+ V(r, z)t2

ku
⋆2
k −

1
r2

F(r, z, r2t2
ku
⋆2
k )

)

r3d(r, z)

≤
∫

Ω

(

t2
k|∇r,zuk|2 + V(r, z)t2

ku
2
k −

1
r2

F(r, z, r2t2
ku

2
k)

)

r3d(r, z)

=

∫

Ω

1
r2

(

f (r, z, r2u2
k)t

2
kr

2u2
k − F(r, z, r2t2

ku
2
k)
)

r3d(r, z)(3.4)

≤
∫

Ω

1
r2

(

f (r, z, r2u2
k)r

2u2
k − F(r, z, r2u2

k)
)

r3d(r, z)

= 2J(uk).

So (vk)k∈N ⊂ M is also a minimizing sequence forJ which belongs toK4,1. The boundedness of
(vk)k∈N is established in Proposition 14 in [18]. Hence, we findv∞ ∈ H1

cyl(r
3drdz) such thatvk ⇀ v∞

in H1
cyl(r

3drdz) along a subsequence ask→ ∞. In addition,v∞ ∈ K4,1 due to Lemma 6 andv∞ , 0 by
Proposition 14 in [18] where instead of the weak sequential continuity of I on all of H1

cyl(r
3drdz) we

use it only onK4,1 as stated in Lemma 7.

Let us show thatv∞ ∈ M. Sincev∞ , 0 we can chooset∞ > 0 such thatt∞v∞ ∈ M. In the same
manner as before for the sequencetk we can show thatt∞ ≤ 1. Assumet∞ < 1. Then as in (3.4) and
using the weak sequential continuity onK4,1 as shown in Lemma 7 we find

2J(t∞v∞) <
∫

Ω

1
r2

(

f (r, z, r2v2
∞)r2v2

∞ − F(r, z, r2v2
∞)

)

r3d(r, z)
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= lim
k→∞

∫

Ω

1
r2

(

f (r, z, r2v2
k)r

2v2
k − F(r, z, r2v2

k)
)

r3d(r, z)

= 2 inf
M

J ≤ 2J(t∞v∞)

which is a contradiction. Sot∞ = 1 and thusv∞ ∈ M. Then by the weak lower semi-continuity of‖·‖
and once again the weak sequential continuity ofI we conclude

J(v∞) ≤ lim inf
k→∞

J(vk) = inf
M

J ≤ J(v∞).

Hence,v∞ ∈ K4,1 is a minimizer ofJ on M, i.e., a ground state of (1.3) which is Steiner symmetric in
z with respect to{z= 0}. �

Appendix

Here we prove that the conditionV ≥ 0 and infBc
R
V > 0 for someR> 0 implies that onH1

cyl(r
3drdz)

the expression
(∫

Ω

(

|∇r,zu|2 + V(r, z)u2
)

r3d(r, z)
)

1
2 is an equivalent norm. Suppose not. Then there is

a sequence (uk)k∈N such that‖uk‖L2(r3drdz) = 1 and
∫

Ω

(

|∇r,zuk|2 + V(r, z)u2
k

)

r3d(r, z) → 0 ask→ ∞. In
particular,

∫

Ω

|∇r,zuk|2r3d(r, z)→ 0 and
∫

Bc
R

u2
kr

3d(r, z)→ 0 ask→ ∞.(3.5)

Let χ denote a smooth cut-off function such thatχ(r, z) = 1 for 0 ≤
√

r2 + z2 < R andχ(r, z) = 0 for√
r2 + z2 ≥ R+ 1. Thenvk ≔ χuk ∈ H1

0,cyl(BR+1, r3drdz) and

|∇r,zvk|2 = χ2|∇r,zuk|2 + |∇r,zχ|2u2
k + 2ukχ∇r,zuk · ∇r,zχ.

Hence, by (3.5)
∫

Ω

|∇r,zvk|2r3d(r, z) ≤ 2
∫

Ω

χ2|∇r,zuk|2r3d(r, z) + 2
∫

Ω

u2
k|∇r,zχ|2r3d(r, z)(3.6)

≤ 2
∫

Ω

|∇r,zuk|2r3d(r, z) + 2‖∇r,zχ‖2∞
∫

BR+1\BR

u2
kr

3d(r, z)→ 0 ask→ ∞.

In particular,
∫

BR+1
|∇r,zvk|2r3d(r, z)→ 0 ask→ ∞. By Poincaré’s inequality,‖uk‖L2(r3drdz) = 1 and (3.5)

we see

CP

∫

BR+1

|∇r,zvk|2r3d(r, z) ≥
∫

BR+1

v2
kr

3d(r, z) ≥
∫

BR

u2
kr

3d(r, z) = 1− o(1),

contradicting (3.6). �
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