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EXISTENCE OF CYLINDRICALLY SYMMETRIC GROUND STATES TO A
NONLINEAR CURL-CURL EQUATION WITH NON-CONSTANT COEFFICIE NTS

ANDREAS HIRSCH AND WOLFGANG REICHEL

AgstracT. We consider the nonlinear curl-curl probl&hx V x U + V(X)U = f(x, |U]?)U in R3 related

to the nonlinear Maxwell equations with Kerr-type nonlinezaterial laws. We prove the existence of
a symmetric ground-state type solution for a bounded, dyidlly symmetric cofficientV and sub-
critical cylindrically symmetric nonlinearity. The new existence result extends the class of problems
for which ground-state type solutions are known. It is basedompactness properties of symmet-
ric functions [11/12], new rearrangement type inequalifiem [€] and the recent extension of the
Nehari-manifold technique frori [18].

1. INTRODUCTION
We consider the system
(1.1) VxVxU+VXU = f(x,|UPU inR?

whereV € L*(R3) andf : R3 x [0, ) — [0, ) is a non-negative Carathéodory function growing at
infinity with a power at most’;—l for p € (1,5). The particular feature of (1.1) is the curl-curl opera-
tor. It arises in specific models for standing waves in MaXaeluations with Kerr-type nonlinear
material laws wherd (x, |U|?)U = I'(X)|UJ?U. For a detailed physical motivation ¢f (1..1) seg [2].

We look for R3-valued weak solutiont) in a coneK,; of functions with suitable symmetries
andU € L%(R®) n LP(R3), V x U € L2(R3). The condition that O lies below the spectrum of
curl curl+V(x) allows us to find ground-state type critical points of a fiimeal J(u) = %llull2 —I(u),
cf. (1.4), restricted to the so-called Nehari-manifold.eTasic idea of applying symmetrizations to
minimizing sequences on the Nehari-manifold goes backuarS[L7] in the context of the stationary
nonlinear Schrédinger equation. Compared(td [17] the aptions on the nonlinearity can be
substantially weakened beyond the classical Ambrosetiitkwitz condition. This is based on three
important ingredients:

e the recent extension of the Nehari-manifold method due tdk8zand Weth[[18],

¢ the weak sequential continuity of functiondl@) and1’(u)[u] on K,; due to compactness
properties of symmetric functions by Lions [11, 12],

e new rearrangement inequalities for general nonlineardiee to Brock([6].

Using the combination of these ingredients our main redultheoren]l substantially extends the
know results on the existence of ground-state type solsifion{I.1).

Benci, Fortunato[[5] and Azzollini, Benci, D’Aprile, Fomato in [1] were among the first to
consider the constant cieient case of[(1]1) with/ = 0. Their method was based on cylindri-
cal symmetries of the vector-fields, cf. [8] for a different class of symmetries. The case where
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f(x, U]V = I'(x) |U|P"t U with periodic codicientsV andI has been treated inl[2]. In[14] Meder-
ski considered{1]11) wherx, |U|?)U is replaced by, e.gl;(x)g(U) with " > 0 periodic and bounded,

V <0,V e LFI(R3) n L&1(R3) andg(U) ~ [uPtU if |U] > 1 andg(U) ~ |U|*tuif |U] < 1 for

1 < p <5< qg. Aremarkable feature of Mederski's work is that {1.1) cartrieated without assum-

ing special symmetries of the field. The nonlinear curl-curl problem on bounded domains with th
boundary conditiow x U = 0 has been elaborated I [3, 4].

An important feature of [1] is the use of cylindrically symirie ansatz functions fod. Here we
make a slightly dferent ansatz of the form

—Xo
(1.2) UX) =u(r,2)| x ) wherer = /3¢ + X3, Z= Xs.
0

Moreover, we assume cylindrically symmetric fo@entsV(x) = V(r,2), f(x, |U]?) = f(r,z|U]?).
For U of the form [1.2) we see that div = 0, and hencd (1l.1) reduces to the scalar equation

10 (,0u) &u ,
(1.3) _EE( ar) 52 +V(r,u=f(r,zrv?)u for (r,2) € Q:= (0, 0) x R.
It turns out that a suitable space to considerl(1.3) is given b
HL, (r*drd2) _{v (0,00) XR >R :V, Z" g" Cyl(r3drdz)}

L2, (r¥drd2) = {v (0,00) xR > R : fv(r, 2%r3d(r, 2) < oo},
Q

cf. Sectior 2 for more details on these spaces. Weak sotutibfl.3) arise as critical points of the
functional

(1.4)  Ju) = f(lVrzul +V(r, z)u) r3d(r, z) - f SF(r,z r2w)r’d(r, 2), u e Hy, (r¥drd2),

whereF(r,zt) = fo f(r.zs)dsandV,, = (2
solution of [1.3B) in the Nehari-manifold

M = {ve HE,(r3drd2) \ {0} : f (1Vev? + V(. 2V) rPd(r, 2) = f f(r,z,rzvz)v2r3d(r,z)}
Q Q

such that

e 6—2) A ground stateu of (1.3) is defined as a weak

J(u) = inf I(V),

see the classical papefs [15], [16]. We find ground state§.8j (inder additional assumptions on
V and f. To state these assumptions we need the notion of Steinansyrization, cf. Chapter 3 in
[10]. The Steiner-symmetrization (also called symmetiéacreasing rearrangement) of a cylindrical
functiong = g(r, 2) with respect tais denoted byg*. We say thag is Steiner-symmetrii€ g coincides
with its Steiner-symmetrization with respectzdkeeping the -variable fixed. A functiorh € L*(Q)

is reversed Steiner-symmetifoless suf — h)* = ess sujh — h holds true.

Now we can state our assumptionsfn
(i) f:Qx][0,0) — Risa Carathéodory function with® f(r,z s) < c¢(1 + sp%l) for somec > 0
andp € (1,5),
(i) f(r,z s) =0(1) ass — O uniformlyinr,z e [0, o) X R,
(i) f(r,z 9) strictly increasing irs € [0, ),
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(iv) F(r—sz’s) — 00 ass — oo uniformly inr,z € [0, o) X R,
(v) forallr € [0, ), s> 0 ando > 0 the function

0. (r.29) = f(r,z (s+ 0)’)(s+ 0)* - f(r,2 5)&°

is symmetrically nonincreasing in
Conditions (ii)—(iv) are inspired by the work of Szulkin aWéeth [18]. Namely, if we translate (ii)—
(iv) into conditions forf(r, z s) := f(r, z r?s?)sthen they become identical to (ii)—(iv) of Theorem 20
from [18]. Condition (v) is used to prove the rearrangemaetjuality of Lemmal9 and it is due to
Brock [6].

Next we state our main result.

Theorem 1. Let V € L*(Q) be reversed Steiner-symmetric such that the map

(1.5) Il : CyI(r3drdz) S Riue (f (|Vr,zu|2 + V(r, z)u2) r3d(r, z))z

is an equivalent norm tg- ||Hgy|(r3drdz)- Additionally, let f satsify the assumptions (i)-(v). TH&®)
has a ground state & Hcy,(r3drdz) which is symmetric aboyt = 0}.

Remarks: (1) The assumption of norm-equivalence is for instanceed ifV > 0 and infe V > 0
for someR > 0, whereBS = {(r, 2) € Q : r>+2* > R?}. For the reader’s convenience the proof based on
Poincaré’s inequality is given in the Appendix. Since Panés inequality is applicable for domains
bounded in one direction we can weakensif > 0 to infsc V > 0 for stripsS = [0, o) x [0, p] with
p>00rS =[rg,rq x[0,c0) With 0O <rg < r; < o0.

(2) The conditions orf are satisfied if for instancé(r,z s) = I(r,2)|s'z > s wherel € L*(Q)
is Steiner-symmetric, ess mf’ > 0 andp € (1,5). This choice off corresponds to the equation
VxVxU+V(r,2U =I(r,2) U U in R3. Another possible choice if(r, z s) = I'(r, 2) log(1+ s)
where agail” € L*(Q) is Steiner-symmetric and essgif > 0. This nonlinearity appeared for
instance in[[1B] and it does not satisfy the classical AméttdfRabinowitz condition.

The paper is structured as follows: In Sectidn 2 we give tetai the variational formulation of
problem [1.B) and prove pointwise decay estimates of Steiymmmetric functions i3 |(r3drdz) In
Sectior B we give the proof of Theorémn 1, and in the Appendisha@v an example for the potential
V satisfying the equivalent-norm-assumption of Theokém 1.

2. VARIATIONAL FORMULATION, DECAY ESTIMATES, REARRANGEMENTS

Let us consider some properties of the splalé;?(rf*drdz) First, forU of the form [1.2) we have
thatU e HY(R®) if and only if u € Hg,(r*drd2). A norm onH, (r*drd2) is given by

1
2
Ul saras = ( f (172U + u?) r3d(r, z)) :

Notice that the spackl? I(r3drdz) behaves like a Sobolev-space in dimension 5. Next we show a
useful embedding property For this we need the followingdev and Lebesgue spaces in dimension
3 together with their canonical norms:

HZ, (rdrd2) _{v (0,0) xR > R:V, g g € Lﬁy,(rdrdz)},
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Cyl(rdrdz) = {v (0,0) xR > R: f Iv(r, 2)|%rd(r, 2) < oo} for q € [1, ).

Lemma 2. Forue Hf:Ly|

2.1) L—r3d(r z)<ch((‘;‘rJ) +(g‘;)) r3d(r, 2).

Moreover, if ue Hg,(r*drd2) then ru € Hg,(rdrdz) and there is a constant G 0 such that for
2<q<6

(2.2) Irulliz araz » IMUILE garay < C Ul (saraz

(r3drd2) Hardy’s inequality holds

Proof. Hardy's inequality[(Z.11) is given in Lemma 9 (i) inl[2]. Fore HZ I(r3drdz) we haveu, 2 = (ru),
r— € Lgyl(rdrdz) and by [2.1) alsw € Lcy,(rdrdz) Slnce - (ru) = r -+ uwe conclude altogether
ru e Hl /(rdrd2). By the Sobolev embedding in three dlmenS|ons this implies L9 rdrdz) for

gel2, 6] and [21) yields
||ru||H1 (rdrdz) f (lVI‘,Z(ru)|2 + r2u2) rd(r’ Z)
Q

<2 o\ (), ey 2 d <C
<2 =) +(r50) +u +r2u? [rd(r, 2) ||U||H1|(r3drdz)

Next we show that the functiondlfrom the introduction as well as the functional in the deinti
of the Nehari-manifold are well-defined.

(2.3)

O

Lemma 3. There is a constant G 0 such that

1
(2.4) ff(r Z r2u?)ulr drdz,f > F(r, z,r2ud)r3d(r, 2) < C(||u||Hl (3drdz + ||u||E|+gyl|(r3drdz))
for all u € HY, (r*drd2).

Proof. Clearly assumption (i) and (ii) show that for every 0 there isC, > 0 such that

0< f(r,z9 < e+C€sp%l.

Hence
(2.5) 0< f(r,zr2ud)urd < (erzu2 + C5|ru|p+1)) r,
1 o
(2.6) 0< > —F(r,zraw)r < (erzu2 + C5|ru|p+1) r.
Due to [2.2) this implies the claim. O

In order to find critical points ofl we need uniform decay estimates of Steiner-symmetric func-
tions in Hgyl(r3drdz). These estimates are given in[12] in much more generalitydr the sake of

completeness we give them here together with the simplefpMMe start with a well-known fact
concerning radially symmetric functions and afterward®ed the result to cylindrically symmetric

functions. Let
R") := {u e HY(R") : uis radially symmetrit.

rad
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Lemma 4. (se€]12]) Let n> 2. Then there is a constant € 0 such that

u)| < CIVUIMZ M2 X~ Y72 for almost all xe R™ and all ue H: (R").
L2(RM) L2(RM) rad

Proof. By density it is sifficient to prove the estimate fare H: (R") N CX(R"). Letr := |x|. Then

rad

d ou
5 (r"tui?) = (n= )" up + r”‘12u5 .

Integrating fronr to co and expanding the domain of integration to allR3fyields

ou
> —2|ul’§

O M u)I? < Cf JulIVuldy < CIIVUll 2y [1Ull 2y -
Rn

Now we give an extension of Lemni& 4 to cylindrically symneftinctions which are Steiner-
symmetric in the non-radial component. We make use of tHevimhg notation: Lett € N, and
s € N such thatn = t + s. We write points inR" as ,y) with x € Rt andy = (y1,...,Ys) € RS
Furthermore, let

1n u(-,y) is aradially symmetric function for evegye R® and
Kt S = U E H (R ) S-t- . . . . t .
’ u(x,-) is Steiner-symmetric w.r.g;, i =1,...,s, foreveryxe R

In particular, ifu € Ks then necessarily > 0. In this setting we have the following extension of
Lemmd4.

Lemma 5. (se€[12]) There is a constant G 0 such that

1/2 1/2

LZ(RH) ”u”LZ(Rn)

0 < u(x,y) < C|IVyull X" D2 |y, ..y H2 for almost all(x,y) € R" and all ue Kqs.

Proof. Letu € K; s and fixy e R%. W.l.o.g. lety; > Oforalli =1,...,s We define

Y1 s
V(X) = f f u(x, Z)dzfor x e R".
0 0

By Hélder’s inequality we obtain?(X) < Vi - - - Vs 0y1 - [ W(xDdz e,

(2.7) IMl2ty < (Y1 - Vo) 72 Ull 2geny -
In the same manner we receive
(2.8) IVVilL2@y < (Y1 -+ - Vo) Y2 IV Ul L2y -

Sincev: R! — R is radially symmetric we can apply Lemina 4 and get from] (200) @&.8)

2 2 —(t- 1/2 1/2 —(t-
(2.9) 0= V(X) < ClIVVI ey Moy X2 < Clya -+ Ys) 2 VU gy U gy 172

Due to the monotonicity-property ip-direction we also have(x) > vy ---ysu(x,y) and thus[(219)
gives the desired inequality. O

We prove three additional lemmas which are used in the nexbse
Lemma 6. The set K is a weakly closed cone iniR").

Proof. Take a sequenc@l); C Kis such thatuy, — u € HY(R") ask — . By the Sobolev
embedding on bounded domains we deduce that a subsequengceariverges pointwise almost
everywhere oR" to u. Since every enjoys the radial symmetry in the first component and the
non-increasing property in the second variable, the paggwonvergence implies that als@njoys
these properties, i.au,€ K. O
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Lemma 7. The functionals
I(V) = f %F(r, Z r22)réd(r, 2, I’(W[V] = f f(r,z rA?)WVrid(r, 2)
Q Q
are weakly sequentially continuous on the sgt K Hgy,(r3drdz).

Remark: In the proof we use twice the following principle: & c R™ is a set of finite measure and
W : S — R a sequence of measurable functions such|ivgl sy < C andw, — w pointwise a.e.
ask — co then|lwi — W|Las) — 0 ask — oo for 1 < g < r. The proof is as follows: Egorov’s theorem
allows to choos& c S such thaivg — w uniformly onX and|S \ X| < € arbitrary small. By Holder’s

inequality the remaining integral is estimated@/z Wi — W0 dX < €27 |jwi — wllﬁ,(s).

Proof. Let us take a weakly convergent sequeng®dy in K41 such thaty, — vin Hgy,(r3drdz) and

Vi — V pointwise a.e. if). By Lemmd® one getg e K4, and using Lemmi@l5 there exists a constant
C > 0 such that

(2.10) 0< Vi(r, 2),W(r, 2) < Cr 2|77 for all k € N and almost alli( 2) € Q.
Our goal is now to show at least for a subsequence

(2.11) fgr—le(r,z, rAa)rd(r, 2 — fgr—le(r,z, r22)r3d(r, 2) ask — oo
and

(2.12) f f(r,z rA2)Ver3d(r, ) — f f(r,z rA?)Vrid(r, 2) ask — .
By (2.8) we find ’ ’

1
> IF(r.zr2%) - F(r,z r32)|r® < er®(VZ + VA)r + C, (|rvk|IO+1 + |rv|'°+1)r

and hence

(2.13) (|F(r, Zr22) — F(r, 2 r™V?)| — er®(V2 + vz))+ r <C. (|rvk|p+l + |rv|p+1) r.
Inspired by [11] and [12] the idea is to show

(2.14) rvi — rvin LP*(rdrdz) ask — oo.

Once [2.14) is established we obtain a majofaat, |rv| < w € LP*(r drd2) (cf. Lemma A.1in[[19]).
Together with[(Z.13) this majorant allows to apply Lebesgideminated convergence theorem and
yields

(2.15) lim fg (IF(r.zrAd) - F(r, r32)| - er(Z +\A) rdrdz = 2€lMs g,

If we set
a = le(r,z,rsz) — F(r,z r2A)|rdrdz
Q
and
b := €llr?(Vg + V)liLsgaras = €0VKIE2agraz + IVl agsaray) < Ce
then

lim supay < lim supby + lim sup(ax — by)*
keN keN keN

< Ce +lim sup(f (IF(r. 2 r2) - F(r.z 13| - er®(V% + V7)) rdrdz)
Q

keN
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< Ce+limsup | (IF(r.zr2g) - F(r,.z V%) - er®(} + vz))+ rdrdz

keN Q
<eC+ 2||V||ﬁz(r3drdz)) by (2.15)
Sincee > 0 was arbitrary this shows that lim., ax = 0 and therefore[(2.11) holds. The proof of
(2.12) is similar sin&%f (r,Z rAAraE — f(r, z rav?)riv? — erd(V2 + v2))+r satisfies an estimate just
like (Z.13) if we use[(2)5) instead df (2.6).

It remains to provel(Z.14). For this, we split our dom&innto four partsQq, ..., Q4 and show
(Z2.13) on each of these parts separately. The definitiof of ., Q4 are as follows: FoR > 0 let
Q={r22eQ:r<R|Z<R}, Q={r2eQ:r>R|Z>R],
Qy={(r,22eQ:r<R|Z=2R}, Q:={(r,22eQ:r>R|Z <R}
Convergence of2;: Follows fromrv, — rvin L9K; r drdz) for every compact subsgt c [0, co) X
R and everyg € [1, 6). This step works independently of the choicdof 0.
Convergence of;: Let e > 0. With the help of[(Z.T0) we calculate

f Irvic — rv[Prd(r, 2) < 2'°+1f rp+l (|vk|'°+l + |v|'°+1) rd(r, 2)
Qo Q)
-1 -1
< 2PHicPt f 7 1477 (Ivic(r. 27 + (r. 2P r°dl(r. 2)
Q)

2 2 ~(p-1) ~(p-1)
< Ca (1M e + IV oaran) R © 2 < CR

which is less or equa if we chooseRr > 0 large enough.
Convergence of2;: Due to symmetry irz-direction it is enough to focus dd; == {(r,2) € Q : r <
R,z> R}. Leta > 0 be arbitrary. Again by (2.10) we obtain
{(r,2) € Qs Vi(r,2) > a} c{(r,2) € Qs 73 < C,} = S,,

whereC, = (C/a)%? andC is the constant froni(2.10). The st has finite measure since

0 czfl/s C4 (o) 3
1Sel < f fc r3drdz= —“f z3dz= 2C*'R3 < .
R 0 4 R 4

By the convergence principle from the remark above and $gdq&.3)|Irvill sraray < ||Vk||Hgy|(r3drdz)
is bounded we obtai!fg rPvie — viP*r3d(r, z2) — 0 ask — oo for 1 < p < 5. It remains to prove the

convergence of; \ S,. For allmost all (,2) € Q3 \ S, we have that(r, 2) = limy_« Vi(r, 2) < a.
Hence,

f rP v — viPHr3d(r, 2) < Rp‘l(Za)p‘lf Vi — Vi2r3d(r, 2) < Ce ™.
Q3\S, Q

In summary, since > 0 is arbitrary this show$ (2.14) aps.

Convergence of,: Again it is enough to focus o€, = {(r,2) € Q : r > R0 < z < R}. Fix
z€ (0,R). Let us first show that

(2.16) f rPvi(r, 2 — v(r, 2)|Pr3dr — 0 ask — co.
{r>R}
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Sincev(r, -) is nonincreasing in its last component we deduce

(2.17) fw rvi(r,2rdr < }fsz rvi(r, Qrdrdg < }frqvﬂ(r,g)rd(r,g) < c
0 ZJo Jo ZJa z

for all g € [2, 6] by (2.3). Thus forg € [2, 6] the sequenck- Vi(-, 2)|lLa(0.c0).rar) iS Uniformly bounded
in k € N. Moreover, [Z.I0) impliesi(r, ) < C(2)r~2 uniformly ink € N. Hence forR > R

f rPvi(r, 2) — (r. 2) " rdr < (2C(2)" f T ML 2) - V(T 2)Prdr
R R
< (2C(2) P—lﬁel%"g by 2.17)

The last term can be made arbitrarily small provideds chosen big enough. To finish the proof

of (2.18) it remains to proquRrp‘Hvk(r, 2) — V(r,2)|P*'r3dr — 0 ask — oo. Since for almost all

z € (0, R) we havev(-, 2) — V(-, 2) pointwise almost everywhere oR,[R) as well as the boundedness
of || - Vi(-, 2llLs(o.0).rary BY (Z.17) we can apply the convergence principle from thearérabove and
deduce

R
f rP2vi(r, 2 — v(r, 2|Pr3dr — 0 ask — co.
R

Hence [2.16) is accomplished for almostzad (0, R).
Defining ¢y(2) = f{rzR} rPvi(r, 2) — v(r, 2)P*1ridr we havep, — 0 ask — oo pointwise almost
everywhere in [OR). The sequencepy),. is bounded ifl.*([0, R), d2) since by [2.)

R
f f rPYvi(r, 2) = v(r, )P ridrdz < Cf rP (P + P réd(r, 2) < C.
0 J{r>R Q

Moreover, forp € (1, 3], the sequencépy),.; is bounded inV*1([0, R), d2) since

Hasok (f f (p+ 1P v — VP | == 6Vk il 3drdz)
L1([0,R],d2)
( f (p+ 1)r° Yy, — v | 2k avk g" r3d(r, z))
(20~ 2 aVk (3
<C P=2|\y — v|%Pr red(r, 2
= ClIr(w — v)IILZp(rdrdz) f o a r3d(r,2) < C.

Hence, by the compact embeddiwg-1([0, R), d2 — L([0, R), d2) we conclude that at least a sub-
sequence ofg ) is converging inLY([0, R), d2) to a limit function, which must be 0 since we have
already asserted the pointwise a.e. convergence to 0 &).[This shows[(Z.14) o, for p € (1, 3].
For p € (3,5) we make use of Holder’s interpolation, namely,

p+1

_ _ l16-6)
lIrv = rv IILE;ll(Q rdrdg) S lIrvic — FV||L4 (© rdrdz) ITVk rVIILG (Qardrdg = < Clirvc - FV||L4 (©Qardrdg -0
ask — oo, whered € (0, 1) is chosen such thg@t+ 1 = 49 + 6(1—0), i.e.,0 = 5%
The combination of convergences 94, . .., Q, finally proves[(Z.14). m

For our last lemma we need the notion of cylindri€gl-functions which we introduce now.
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Definition 8. A function u= u(r, z) belongs to €' ([0, o) xR) if and only if ue C*([0, c0) xR), suppu
is compact if0, o) x R and %(O, 2) = O for all odd integers jg 2N — 1.
Remark: Sinceu € C([0, o) x R) is equivalent taue C(R®) with T(X) := u(|(Xs, .. ., X4)l, Xs) We
see thaC([0, ) x R) is dense ingy,(r?’drdz).
Lemma 9. Foru € Hgy,(r3drdz) we have|u*|| < ||ull wherex denotes Steiner-symmetrization with
respect to z angl - || is the equivalent norm from Theoréin 1. Moreover

l(u) < I and TF@)u] < I'(U)[u*].

Proof. We begin by recalling several classical rearrangementiaées from [9], [10]. Recall first
the Pdélya-Szeg0 inequality

(2.18) f|Vf®|2dxsf|Vf|2dx
Rn Rn

for f € HY(R") and® denoting Schwarz-symmetrization (also called symmétyickecreasing re-
arrangement). Furthermore we have fot @, g € L2(R") the classical rearrangement inequality

(2.19) ffgdxsff%@dx
R R

and the nonexpansivity of rearrangement

(2.20) f|f®—g®|2dxsf|f—g|2dx
RN RN

From [2.18) we immediately receive fare Hgyl(r3drdz) that

(2.21) f IV, u*]2dz < f |V,ul’dz
R R
Next we want to establish a similar inequality /@ru. We do this first foru € CZ([0, o) x R). With

the help of [2.2D) we find that
* o 2 _ 2
f ur(r +t,2 —u*(r,2 dzsf u(r +t,2 —u(r, 2
R t R t

for almost allr, t € [0, ). Sending — 0 and using Fatou’s lemma on the left side of the inequality
yields

(2.22) f IV.u*|?dz < f IV.ul’dz
R R

for u € C([0, ) x R) and almost alf € [0, ). Since Steiner Symmetrization is continuoug-ih
(see Theorem 1 i [7]) we obtain by approximation that (i@ ¥)deed valid for alu € Hgyl(r3drdz).
Together with[(Z.21) we obtaiﬁ{ |V, U 2dz < fR |V, ;ul?dzfor almost allr > 0 and integration leads

to

(2.23) f f IV, u*[r3drdz < f f IV, ul’r3drdz
R JO R JO

Fixingr € [0, o) and applying[(2.119) td (-) = ess supy — V(r, -) andg(-) = u(r, -) gives
f(ess supy — V(r, ) u?(r, )dz < f(ess supy — V(r,-))* (U®)*(r,-)dz

dz

- f (ess suy — V(1. )) (U (1, )dz
R
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Usingllu(r, )l 2w = IU*(r, )llL2w) this results in

- *x\2 .3 - 2.3
(2.24) LL V(r,2) (u*)“r drdzszf; V(r,2u“r>drdz

The combination of{2.23) anf (Z2]24) yields the claimed iradity ||u*||* < ||u]l®.
Assumption (v) onf allows to apply Theorem 5.1 in[6] and to deduce

(2.25) I"(u)[u] = fg f(r,z r2u?)u’rid(r, 2) < fg f(r,z r2u*?)u*?rdd(r, 2) = I'(u)[u*].

Moroever, using (v) withs = 0 shows that for alt € [0, ), o > 0 the functionz — f(r,z o) is
symmetrically nonincreasing imand hence

r2(s+o)?

O,(r,z ) = F(r,zr¥(s+ o)) - F(r,zr?s) = f f(r,zt)dt

r2s?

is symmetrically nonincreasing in Applying once more Theorem 5.1 inl [6] yields

|(u):f%F(r,z,rzuz)r:"d(r,z)sfz—izF(r,z,rzu*Z)r:"d(r,z):I(u*).
Q Q

This finishes the proof of the lemma. O

3. Proor oF THEOREM [1]

Proof. Recall from Lemmad7 the definitioh(u) := [ 5%F(r,z rau?)rid(r, 2) for u € HZ, (r*drd2).

We show that the assumptions (i)-(iii) of Theorem 12[in| [18} aatisfied. Let > 0. The growth
assumptions (i) and (ii) ori imply that for everye > 0 there exist$C, > 0 such that the global

estimate < f(r,zs) < e+ C./s= holds. Together witH (212) we obtain
IHOWIE 'f f(r, z r2v?)uvrdd(r, z)'
Q
< sf [rulrvird(r, 2) + Cfflru|p|rv|rd(r, 2)
Q Q

< Cllnz rsara IV sarag + Ce U5 sery Il oenay
Taking the supremum over alle Hgyl(r3drdz) with ||v||H01y|(,3d,dz) =1 we see that
(3.1) I”(u) = o(]jul]) asu — O.
Moreover, due to assumption (iii) anthe map

3.2) se (s

;J)[U] _ f f(r, z Sr2u?)u?rid(r, 2) is strictly increasing for ali # 0 ands > 0.
Q

Next we claim that
I(su)

(3.3) —g T eass— e uniformly for u on weakly compact subsetg of HZ ,(r*drd2) \ {0}.

Suppose not. Then there atg)(: ¢ W ands, — co ask — oo such thaf% is bounded ak — co.
But along a subsequence we haye— u # 0 anduc(X) — u(X) pointwise almost everywhere. Let
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QF :={(r,2) € Q: u(r,2) # 0. Then|Q¥ > 0 and onQ¥ we havelsu(r, z)] — c ask — co. Fatou’s
lemma and assumption (iv) dnimply
F(r, z Srau? F(r, z Sr2u?
|(seu) _ f ( z,iz .2 > f ( z,szi )
St o 25 o 2r2ul
a contradiction. In summary, (3.1), (8.4), (3.3) imply tfigt(iii) of Theorem 12 in [18] are satisfied.

Now we take a sequencegfkey € M such thatd(uc) — infy J ask — oo. Since||V,,|ud 2 =
IV, zUdl| .2 we can assume that > O for allk € N. Then Theorem 12 in [18] guarantees that for every
k there is a uniqué > 0 such thaty := t,us € M. We show next thati < 1 for allk € N. Assume
tc > 1. Then

ff(r,z,rzugz)u’k*zr3d(r,z)<ff(r,z,tﬁrzu’k*z)ugzr:*d(r,z) by assumption (jii)
Q Q

= luf|>  sincetur € M
< lud> by Lemme®

:ff(r,z,rzuﬁ)uﬁr:*d(r,z) sinceu, € M.
Q

This contradicts the inequality(u)[ud] < I"(uf)[us] from Lemma&9 and thut < 1 for allk € N.
Next notice that for fixedr(z s) € [0, ) X R x [0, o0) andt € (0, 1] one has

u2r3d(r, 2) — oo ask — oo,

dﬂt(tzf(r,z, 9 — F(r,zt?)) = 2 (f(r, 2 &) - f(r. 2 °$)) > 0
sincef is strictly increasing in its last variable by assumptiai).(iThis shows that the map —

t2f(r, z )s* - F(r, z t?%) is strictly increasing fot € [0, 1]. From this monotonicity and the inequal-
ity I(tu) < I(teuy) from Lemmée® we conclude

1
2J(V) = f(tﬁwr,zumz + V(r, )t2ur? - SF(.z rztﬁuﬁz)) r3d(r, 2)
Q
1
< fg(tﬁlvr,zuu2 + V(r, 2t - EF(r, z rztﬁuﬁ)) r3d(r, 2)

1
(3.4) = (f(r, z r2ud)triud - F(r, z, rztﬁuﬁ)) r3d(r, 2)

I
s

IA

fg riz (f(r, z r2udr?u? - F(r,z rzuﬁ)) r3d(r, 2)
= ZJ(UK).

So Wkey € M is also a minimizing sequence fdrwhich belongs tK,;. The boundedness of
(Vi)kew IS established in Proposition 14 in |18]. Hence, we finde H(}y,(r3drdz) such thaty, — v,
in H(}y,(r3drdz) along a subsequencelas~ . In addition,v,, € K4; due to Lemma&l6 and,, # 0 by
Proposition 14 in[[18] where instead of the weak sequentiatinuity of | on all of Hclyl(r3drdz) we
use it only onK,; as stated in Lemnid 7.

Let us show that,, € M. Sincev,, # 0 we can choosg, > 0 such that..v,, € M. In the same
manner as before for the sequemcee can show that, < 1. Assumé,, < 1. Then as in[(3]4) and
using the weak sequential continuity Kp; as shown in Lemmig 7 we find

2J(toVe) < fg r—lz(f(r,z,rzvi)ﬂvfo = F(r.zrA2))r’d(r.2)
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. 1
- lﬂlfg = (f(r, Z A2 — F(r,z, rzvﬁ)) r3d(r, 2)
= 2inf J < 2J(tver)

which is a contradiction. S, = 1 and thus/,, € M. Then by the weak lower semi-continuity [pf
and once again the weak sequential continuity wk conclude

J(Vo) < Iiin inf J(w) = ilr\}lf J < I(Veo)-

Henceyv., € K41 is a minimizer ofJ on M, i.e., a ground state df (1.3) which is Steiner symmetric in
zwith respect tqz = 0}. O

APPENDIX

Here we prove that the conditidh> 0 and inf V > 0 for someR > 0 implies that ongy,(r?’drdz)

1
the expressim(ufQ (|Vr,zu|2 +V(r, z)u2) r3d(r, z))2 is an equivalent norm. Suppose not. Then there is

a sequenceuf)iey such thatugll zgzaray = 1 andfQ (lVr,zuk|2 +V(r, z)uﬁ) r3d(r,z2) — 0 ask — co. In
particular,

(3.5) fgwr,zuklzr:*d(r, 72— 0and [ ulrdd(r,2 — 0ask — co.

BR

Let y denote a smooth cutfiofunction such thak(r,z) = 1 for 0 < Vr2 + 22 < Randy(r,2) = 0 for
Vr2 + 22> R+ 1. Thenv, := yuy € H&Cy,(BRH, r3drd2) and

Ve l? = X2V 2Ud? + Ve 2 PU2 + 200V Ui - Vi oy

Hence, by[(3.b)

(3.6) flVr,zvk|2r3d(r, z)szf)(2|vr,zuk|2r3d(r, z)+2fu§|Vr,zX|2r3d(r, 2)
Q Q

Q

< Zf IV, ud?r3d(r, 2) + 2||Vr,z)(||fof ur3d(r,z) — 0 ask — co.
Q B

r+1\Br

In particular,fBR . IV il?r3d(r, z2) — 0 ask — oo. By Poincaré’s inequalityiuyl| 2sqray = 1 and [3.5)
we see

Cpf IV, Mf?r3d(r, 2) > verdd(r, 2 > f uzrid(r,2) = 1 - o(1),
Bri1

Br+1 Br

contradicting[(3.6). O

ACKNOWLEDGEMENT

We gratefully acknowledge financial support by the DeutsEbeschungsgemeinschaft (DFG)
through CRC 1173.



CYLINDRICALLY SYMMETRIC GROUND STATES TO A NONLINEAR CURL-CURL EQUATION 13

REFERENCES

[1] Azzollini, A., Benci, V., D'Aprile, T. and Fortunato, D Existence of static solutions of the semilinear Maxwell
equations. Ricerche di matematica, 55(2), 123-137, (2006)
[2] Bartsch, T., Dohnal, T., Plum, M. and Reichel, W.: Growstates of a nonlinear curl-curl problem in cylindrically
symmetric media. arXiv preprint arXiv:1411.7153, (2014).
[3] Bartsch, T. and Mederski, J.: Ground and bound statdisolsiof semilinear time-harmonic Maxwell equations
in a bounded domains. Arch. Ration. Mech. Anal., 215(1) -288, (2015).
[4] Bartsch, T. and Mederski, J.: Nonlinear time-harmoniaXWell equations in an anisotropic bounded medium.
arXiv preprintarXiv:1509.01994, (2015).
[5] Benci, V. and Fortunato, D.: Towards a unified field thefoyclassical electrodynamics. Arch. Ration. Mech.
Anal., 173(3), 379-414, (2004).
[6] Brock, F.: Continuous rearrangement and symmetry aftgmis of elliptic problems. Proceedings of the Indian
Academy of Sciences-Mathematical Sciences. Vol. 110. NSp#inger India, (2000).
[7] Burchard, A.: Steiner symmetrization is continuous\fP. Geometric & Functional Analysis GAFA 7.5: 823-
860, (1997).
[8] D’Aprile, T. and Siciliano, G.: Magnetostatic solutisiior a semilinear perturbation of the Maxwell equations.
Adv. Differential Equations, 16(5-6), 435-466, (2011).
[9] Lieb, E. H.: Existence and unigueness of the minimiziofyison of Choquard’s nonlinear equation. Studies in
Applied Mathematics 57: 93-105, (1977).
[10] Lieb, E. H. and Loss, M.: Analysis, volume 14 of graduatedies in mathematics. American Mathematical
Society, Providence, R, 4, (2001).
[11] Lions, P.-L.: Minimization problems ih*(R%). Journal of Functional Analysis, 41(2), 236-275, (1981).
[12] Lions, P.-L.: Symétrie et compacité dans les espac&otbelev. Journal of Functional Analysis 49.3: 315-334,
(1982).
[13] Liu, S.: On superlinear problems without the Ambroisatd Rabinowitz condition. Nonlinear Analysis: Theory,
Methods & Applications, 73(3), 788-795, (2010).
[14] Mederski, J.: Ground states of time-harmonic semédimdaxwell equations iR with vanishing permittivity.
arXiv preprint arXiv:1406.4535, (2014), to appear in Ar&ation. Mech. Anal.
[15] Nehari, Z.: On a class of nonlinear second-ordéiedéntial equations. Transactions of the American Mathemat
ical Society 95.1: 101-123, (1960).
[16] Nehari, Z.: Characteristic values associated withaslof nonlinear second-ordeftdrential equations. Acta
Mathematica 105.3: 141-175, (1961).
[17] Stuart, C. A.: A variational approach to bifurcationlif on an unbounded symmetrical domain. Mathematische
Annalen, 263(1), 51-59, (1983).
[18] Szulkin, A. and Weth, T.: The method of Nehari manifdtthndbook of nonconvex analysis and applications:
597-632, (2010).
[19] Willem, M.: Minimax theorems. Vol. 24. Springer Scien& Business Media, (1997).

A. HirscH
INSTITUTE FOR ANALYSIS, KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT),
D-76128 KARLSRUHE, GERMANY

E-mail addressandreas.hirsch@kit.edu

W. ReicHEL
INSTITUTE FOR ANALYSIS, KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT),
D-76128 KARLSRUHE, GERMANY

E-mail addresswol fgang.reichel@kit.edu


http://arxiv.org/abs/1411.7153
http://arxiv.org/abs/1509.01994
http://arxiv.org/abs/1406.4535

