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® Motivation of Direct Numerical Simulations (DNS) for interface resolving

® Phase field method and phaseFieldFoam in OpenFOAM

® Validation for droplet or bubble interacting with solid surface

® DNS for interface-resolving of gas-liquid flows in sponge structure

® Summary & outlooks
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® Direct numerical simulation for understanding hydrodynamic interaction of gas-liquid
interfacial flows with solid surface
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® Direct numerical simulation for understanding hydrodynamic interaction of gas-liquid
interfacial flows with solid surface

For sharp-interface method, classical paradox between:
» motion of contact line
* no-slip boundary condition

Volume fraction equation in VOF:

OF
 (uV)F =0
5 T@v)

Solid u=0 on wall

dynamics of
moving contact line

® Common remedy is to allow for slip at wall by Navier slip BC

® Another strategy is to abandon “sharp-interface” and embrace “diffuse-interface”
concept
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Phase Field Method

® Phase field (C ) as phase indictor
® Smooth transition from -1 to 1 — diffuse interface

® Phase field evolution governed by Cahn-Hilliard equation
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® Wetting boundary condition for static contact angle 6, X
A -V(C= Q cos 6, y - C?) @ = chemical potential [J/m?3]
: 2 & A = mixing energy [J/m]
_ _ _ _ ¢ = diffuse interface thickness [m]
® Single-field Navier-Stokes equation: k = mobility [m3s/kg]
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Method implementation and verification

® Close cooperation with Dr. Holger Marschall (TU Darmstadt, Germany)

® Phase field method implemented in OpenFOAM (foam-extend-1.6 & 3.2)
® A novel OpenFOAM solver phaseFieldFoam*

® Verification by extensive test cases against analytical solutions™*

® Validation by a series of test case for dynamics of droplet or bubble
interacting with solid surfaces, such as ...

* H. Marschall, X. Cai and M. Wérner. Conservative finite volume discretization of the two-phase Navier Stokes
Cahn-Hilliard and Allen-Cahn equations on general grids with applications to dynamic wetting, 2016, in preparation

** X. Cai, H. Marschall, M. Worner and O. Deutschmann, Chem. Eng. Technol. 2015, 38: 1985-1992
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® Experiment by Zosel 1993 Droplet base radius (r ) over time
® Diameter = 3 mm T T P
® PIB solution y = 25 pa's

® smooth PTFE surface (6, = 58°)

time

3D phase-field simulation with
adaptive mesh refinement near interface
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Droplet wetting on chemically-patterned surface ﬂ(".
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® Experiment by Jansen et al. 2013
® Glycerin droplet volume = 3 uL
® Alternating stripes made of:

PFDTS, 6,=106° Jansen et al. 2013

time

EM ms Edms !_?mi _-‘F

dimensionless T: 20.0

Lattice-Boltzmann
Simulation
Jansen et al. 2013

i | k i
Phase-field
Simulation
Cai et al. 2015

Reference: X. Cai, H. Marschall, M. Wérner and O. Deutschmann, Chem. Eng. Technol. 2015, 38: 1985-1992




Validation on cylinder-induced bubble breakup ﬂ(".
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Phase-field
Simulation
Cai et al. 2016

* Diameter of cylinder = 3.1 mm
* Diameter of bubble =9.1 mm

Reference: X. Cai, M. Wérner, H. Marschall and O. Deutschmann, Catalysis Today, 2016, in press
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® DNS for interface-resolving of gas-liquid flows in sponge structure

® Summary & outlooks
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® Total Sponge structure
® Height: 25 -100 mm
® Diameter: 100 mm

® Individual liquid jets
® Approx. 1—10 mm

i L
Representative Elementary

Volume (REV)

MCT & Reconstruction
S. Meinicke, KIT-TVT

® Local gas-liquid interface
® Approx.0.1—1 mm

® Disparity of length
scale up to 102 or 103!

Source: Wallenstein et al. 2015 STL geometry for CFD
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Computational mesh for sponge geometry

® OpenFOAM’s mesh generator snappyHexMesh

Karlsruhe In:

stitute of Technology
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2D cross-cutting view
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® Apply the solver for gas flow through sponge structure
® Compare our simulation results with experiment* and simpleFoam simulation™*

pressure drop VS. gas velocity
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Gas flow shown by velocity vector (yellow)

: o ) _ * U, superficial gas velocity
in a Al,O5 sponge, 80% porosity, 20 ppi

* Ap /Ax: pressure drop per unit length
* Dietrich et al. Chem. Eng. Sci. 64 (16), 3633-3640. 2009
** Meinicke et al., 11t Int. Conf. on CFD in the Minerals & Proc. Industries 2015
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® Representative Elementary Volume — difficult to get inlet liquid distribution from exp.
® Mirroring geometry + periodic boundary conditions

SiSiC foam, 20 ppi, 85% porosity
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® Representative Elementary Volume — difficult to get inlet liquid distribution from exp.
® Mirroring geometry + periodic boundary conditions

SiSiC foam, 20 ppi, 85% porosity
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Interface-resolving for Two-phase Flow in Sponge .\\J(IT
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® Conventionally (in experiment):

inlet flow rate — pressure drop //

® In current periodic domain:
pressure drop — inlet/domain

flow rate
p=P- Po” P, -x=P-f -x
~-Vp=-VP+f,
v
® Input to DNS: Y
—

® liquid saturation 8
(Vliquid) / (Vliquid + Vgas)
®  Pressure drop Ap/Ax

SiSiC foam, 20 ppi, 85% porosity
B=0.2
Ap/Ax = 200 Pa/m
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Interface-resolving for Two-phase Flow in Sponge

® Liquid saturation 8 = 0.2 and Ap/Ax = 200 Pa/m
® Equilibrium contact angle = 90°

AIT

stitute of Technology
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Interface-resolving for Two-phase Flow in Sponge

W Effect of equilibrium contact angle 6, (i.e. solid surface wettability)

6, = 40°

6, = 80°

KIT

Karlsruhe Institute o f Technol logy



Interface-resolving for Two-phase Flow in Sponge

Effect of contact angle
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for different liquid saturation 13
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Effect of gas-liquid surface tension
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Summary and Outlook 'ﬁ‘(".

® Phase Field Method and phaseFieldFoam in OpenFOAM
® Validation for droplet or bubble interacting with solid surface
® DNS for interface-resolving of gas-liquid flows in sponge structure

® Providing clear evidence that interfacial area can be increased by
tuning surface wettability or interfacial tension

® Outlook for future work:

® Further investigations on other
initialization strategy

® Derive closure relation for Euler-
Euler modeling and simulation

® Experimental study on local interface ¥

distribution is highly needed —
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