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Introduction

The superconducting condensate might be the most fascinating state of matter and the
investigation of superconducting materials has given important insights into the quantum
nature of condensed matter systems. When cooling a superconductor below its transition
temperature Tc it shows two unique properties. Firstly, superconductors are capable of
carrying a dissipationless current, which was first discovered by Kamerlingh Onnes in 1911 [1,
2]. Secondly, a superconductor expels any magnetic field from its interior. This perfect
diamagnetism1 is known as the Meissner-Ochsenfeld effect [3]. The possible applications
of superconductors are diverse: lossless electrical networks for energy transportation [4],
high magnetic field coils for particle accelerators, materials research and medical uses,
etc. Although experimental verification for superconductivity has been found for various
different materials, a coherent theoretical description has been lacking for almost half a
century. Early phenomenological approaches by the London brothers [5], W. Ginsburg and
L Landau [6] could successfully describe the macroscopic properties of superconductors.
However, a rigorous microscopic description known as the famous BCS theory [7, 8] has
finally been developed by J. Bardeen, R. Schrieffer and L. Cooper in 1957. They realized
that the interaction of the electrons with phonons, that describe the collective oscillations
of the positively charged atomic lattice, can lead to an effective attraction between the
otherwise repulsive electrons. This leads to a bound state of two electrons with opposite
momenta and spin called a Cooper pair. The Cooper pairs then condense to the BSC
ground state, where the bounded electrons open a gap at the Fermi surface and give rise to
long-range phase coherence, that naturally explains the observed phenomena.

Soon, extensions of the BCS theory like the Eliashberg-Migdal theory [9, 10] have been
formulated, which added realistic electron-phonon interaction and phonon dispersions to
the BCS theory. This particular theory is also capable of describing systems with strong-
coupling between the electrons and the lattice vibrations such as Pb. For conventional
superconductors, which are defined in the following as materials where the superconductivity
is mediated by electron-phonon interaction (e.g. Al, Pb and MgB2), such an extended BCS
theory was extremely successful in describing a large variety of experimental observations.
These include specific heat experiments, transition temperatures, critical magnetic fields,
optical conductivity measurements, etc [11, 12]. A huge contribution to the quantitative
understanding of conventional superconductivity have been the intensive studies of su-
perconducting tunneling junctions starting in the early 1960s. The underlying concept is
called Elastic Electron Tunneling Spectroscopy (EETS). Applying a finite bias between the

1Actually, a superconductor is not just a perfect diamagnet, because the superconducting state is ther-
modynamic. Therefore, a static magnetic field is also expelled when starting in the normal state and
cooling below Tc.



two electrodes of a tunneling junction allows to extract important information about the
electronic spectrum of the materials. Effectively, one probes the number of electrons at the
Fermi surface that can tunnel elastically to the opposite electrode. For a Superconductor-
Isolator-Normalconductor (SIN) junction the conductance σ(V ) = dI(V )/dV of such a
device is, under some assumptions, proportional to the electronic density of states (DOS)
of the superconductor [13, 14]. In the pioneering work of Rowell and McMillan detailed
information about the electron-phonon interaction and phonon spectrum in Pb could
be gained from the fine structure of the tunneling conductance [15]. The quantitative
agreement between the experimental tunneling data and the predictions of the Eliashberg
theory in this particular case as well as for various other conventional superconductors [16]
counts as a hallmark of condensed matter physics.

However, the elastic tunneling picture is incomplete as additional inelastic tunneling
processes alter the interpretation of the tunneling conductance as the DOS of the investigated
metal. Inelastic transitions in tunneling junctions, where an electron emits a bosonic
excitation during the tunneling process, has been observed first by Lambe and Jaklevic [17,
18]. The so-called Inelastic Electron Tunneling Spectroscopy (IETS) can be used as an
alternative way to determine phonon [19, 20] and magnon spectra [21–23]. Usually, the
IETS experiments are performed in the normal state and the second derivative d2I(V )/dV 2

of the tunneling current with respect to the bias voltage is, within some rather general
assumptions, proportional to the bosonic spectrum of the material. This is a more direct
way to extract the dynamics of the relevant bosonic excitations of a system than the
comparison of the tunneling conductance with the predictions of the Eliashberg theory. In
Ref. [19] it has been shown that using a Scanning Tunneling Microscope (STM) instead of a
planar junction, inelastic processes may be enhanced by one order of magnitude. In the case
of Pb tunneling, the inelastic features in the conductance are then of the same order as the
strong-coupling features predicted by the Eliashberg theory. This implies, that the inclusion
of inelastic events for the interpretation of tunneling data in conventional(phonon-mediated)
superconductors is essential and one has to use a generalized analysis combining elastic
and inelastic tunneling processes. The feasibility of such an analysis has been explicitly
shown in Ref. [24] for STM on Pb.

This poses the question if one also has to use such a combined tunneling theory including
elastic and inelastic processes for the accurate interpretation of tunneling data in uncon-
ventional superconductors. In unconventional superconductors, such as the cuprates and
iron-pnictides, the Cooper pairing is believed to be mediated by an electronic pairing glue
made of collective particle-hole spin fluctuations. Importantly, due to the electronic origin
of the collective spin fluctuations, the bosonic spectrum undergoes a significant change
when entering the superconducting state. In contrast to conventional superconductors,
where the inelastic conductance is only slightly changed below Tc, the inelastic spectrum
for unconventional superconductors is expected to differ strongly between the normal and
superconducting state. On the one hand, this complicates the analysis, because one first has
to separate elastic from inelastic contributions as the measured conductance is the sum of
both channels. On the other hand, this opens up the possibility for a direct determination
of the spectrum of the superconducting pairing glue in the high-Tc materials using IETS.
Thus, such a combined analysis can be used to verify the nature of the superconducting
pairing in the unconventional superconductors, a question that remains open at least for
many of the more recently discovered iron-based superconductors.

This main part of this thesis captures the theoretical description of tunneling and its



application to both conventional and unconventional superconductors. Besides the formal
derivation of the elastic and inelastic tunneling currents, it is shown that the inelastic
transitions come from processes that are not captured in the low-energy description of the
BCS theory of superconductivity. Another focus of this work is the actual interpretation of
real tunneling data, which is performed explicitly for the example of the phonon-mediated
superconductor Pb. For unconventional superconductors the attention is concentrated on
materials that show a pronounced V-shaped background conductance up to high energies,
which is demonstrated to originate from inelastic tunneling events involving spin fluctuations
and not from the electronic DOS.

Furthermore, a closely related topic is covered. Inelastic optical transitions in a semi-
conducting p-n junction that is coupled to superconducting leads are studied. Such a
Superconducting Light Emitting Diode (SLED) can be described by a theoretical model
very similar to that of inelastic tunneling. The main motivation for the investigation of
superconductor-semiconductor heterostructures is to combine the unique properties of
the two kinds of materials: (i) The capabilities of semiconductors to serve as elements
for electrical circuits, e.g. as diodes and transistors, (ii) The phase coherence of the su-
perconducting condensate and the quantum-entanglement of the Cooper pairs. The light
of such an SLED may show promising properties such as an squeezing and an enhanced
luminescence.

The dissertation is structured in the following way:

The first two chapters introduce the fundamentals for the remainder of the thesis. In Chap-
ter 1 the basic concept of tunneling is introduced as well as the distinction between elastic
and inelastic tunneling processes. The main focus of this chapter lies on superconductor
tunneling. Important tunneling experiments in both conventional and unconventional
superconductors on planar junctions and STM are presented. In Chapter 2 the BCS
theory is summarized. Furthermore, an overview over important extensions of the BCS
theory is presented. The Eliashberg-Migdal theory of strong-coupling superconductivity is
derived in detail from a microscopic model involving general electron-phonon interactions.
It is then applied to a simple model of a single phonon mode to understand the features in
the electronic DOS expected for more realistic phonon spectra. Hereafter, the Eliashberg
theory is generalized to systems with electronic pairing glues, e.g. spin fluctuations, and the
spin-fermion model is introduced as a phenomenological theory for unconventional super-
conductors. Finally, motivated by the cuprates the special case of strong-coupling d-wave
superconductivity is discussed. In Chapter 3 a tunneling Hamiltonian that involves both
elastic and inelastic tunneling processes is explicitly derived. It is shown that inelastic pro-
cesses naturally occur for the low-energy theory when integrating out high-energy electronic
states far away from the Fermi surface of the superconductor. Thus, when also considering
inelastic tunneling processes the low-energy Eliashberg theory can still be used to calculate
the electronic DOS for superconducting tunneling. The effective low-energy Hamiltonian is
then used to determine explicit expressions for the elastic and inelastic tunneling current,
followed by a normal state analysis of the theory of IETS. Subsequently, Chapter 4 and
5 are dedicated to the experimental interpretation of tunneling data in conventional and
unconventional superconductors. In Chapter 4 it is shown that the inelastic tunneling
theory is capable of explaining the phonon spectra seen in the d2I(V )/dV 2 spectra of
planar junction and STM experiments of conventional superconductors in the normal state.
Based on the example of a single phonon mode, typical features that arise from elastic and
inelastic tunneling in the spectra of conventional superconductors are discussed. Finally, a



combined analysis of elastic and inelastic tunneling is applied to recent data from STM
experiments on Pb [24]. The agreement between theory and experiment demonstrates
the potential of the tunneling formalism developed in Chapter 3 for the investigation
of experimental tunneling data. The application of the extended tunneling theory to
unconventional superconductors is then presented in Chapter 5. The striking similarities
between the theoretical predictions of the spin-fermion model [25] and spectra of various
different cuprate and iron-pnictide superconductors motivate for a common physical pairing
mechanism via spin fluctuations. In particular, the occurring peak-dip-hump features
in the tunneling spectra for YBa2Cu3O7−δ (YBCO) and LiFeAs are traced back to the
change of the spin excitation spectrum when entering the superconducting state. The
position of this mode is consistent with the spin fluctuation model of superconductivity,
indicating a non-conventional pairing state in this material. The final Chapter 6 covers
the theoretical analysis of the SLED. In particular, the feedback on the emitted light
from the superconducting quasiparticles is calculated for the SLED in the steady state.
The differences in the electro luminescence in the normal and superconducting state are
considered, as well as the squeezing and entanglement character of the emitted photons.

Basic information about the used notation and acronyms are given on page 113 and 115.
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1. Fundamentals I: History of electronic
tunneling into superconductors

In this chapter we introduce the concept of electron tunneling into superconductors, which
serves as a starting point for the theoretical analysis in the subsequent chapters. We begin
with the early experiments in the 1960’s into conventional superconductors and end with
the modern Scanning Tunneling Microscopy (STM) experiments on correlated materials,
such as the high-temperature superconductors. We discuss the theoretical interpretation
based on elastic tunneling processes from one electrode to the other, which can be captured
by the concept of the transfer or tunneling Hamiltonian. Consequently, we present a
short discussion about the groundbreaking work by Rowell and McMillan, which used the
fine structure in superconductor tunneling data to extract detailed information about the
spectrum of the bosonic pairing glue of the investigated superconductors. After giving a
short description of STM, we will consider the possibility of inelastic tunneling including
the emission of a collective boson and discuss the current experimental situation. Finally,
a short summary of the unconventional cuprate and iron pnictide superconductors is given
followed by an experimental survey of tunneling data in these systems.

1.1. Elastic Electron Tunneling Spectroscopy

Figure 1.1.: Conductance dI/dV for
the Pb-Al2O3-Al junction (SIN) for T =
1.6K > Tc,Al normalized to the conduc-
tance measured for normal conducting
Pb. Taken from [26].

The success of the BCS theory1, which explains most
of the thermodynamic and macroscopic properties of
weakly coupled superconductors (e.g. specific heat,
Meissner effect, zero resistance), was followed in 1960
by a striking experiment by Giaever [26]. He showed
that the derivative of the current-voltage charac-
teristic of an SIN junction reflects the BCS DOS,
see Figure 1.1. In this way, planar junction exper-
iments were discovered as a tool to directly probe
the electronic excitation spectra of materials. Soon
theoretical models were found that could explain
this behavior by Bardeen [13] and Cohen et al. [14],
who introduced the so-called transfer Hamiltonian
approach for electron tunneling, see the following
discussion below. Let us start by giving a short
phenomenological approach to Elastic Electron Tun-
1For a brief introduction see Section 2.1.

1



2 Inelastic Tunneling in Superconducting Junctions

neling Spectroscopy (EETS) into solids. Consider the elastic tunneling from electronic
states | l 〉 of a left electrode to states | r 〉 in a right electrode with applied bias voltage V .
One can use Fermi’s Golden Rule to write down the expected tunneling current from the
left to the right electrode as [27]

Ie(V ) = 2e · 2π
∑
l,r

|〈 l | T̂ | r〉|2 δ(εl − eV − εr)
{
nF (εl)

[
1− nF (εr)

]
−
[
1− nF (εl)

]
nF (εr)

}

= 4π |te|2 e
∫
dε νl(ε)νr(ε− V )

{
nF (ε)− nF (ε− eV )

}
. (1.1)

Here, T̂ is the Hamiltonian describing the isolator/tunneling region, εl/r are the quasiparticle
energies of the states | l/r 〉 and νl/r the DOS in the left and right electrodes. One has
to multiply the result with 2e because of the charge and spin of the electrons and also
that all matrix elements are equal. We note that the time interval between two tunneling
events has to be much smaller than the typical relaxation times in the materials, such
that the electronic distributions of the electrodes stay unaffected by the tunneling current.
Let us now consider the case where the left electrode is superconducting and the right
electrode a normal conductor with a flat DOS νr(ε) = ν0

r around the Fermi surface. The
(differential) conductance σ(V ) = dI/dV is for the low temperature limit then proportional
to the superconducting DOS:

σe(V ) = −4πν0
r |te|

2 e2
∫
dε νl(ε)n′F (ε− eV ) T=0= 4πν0

r |te|
2 e2νl(eV ) . (1.2)

In Figure 1.2 a sketch of the elastic tunneling is shown including the expected I-V and
conductance curves. The net current comes from occupied right states that can tunnel
through the barrier to the left electrode and find an empty state with equal energy there.
If the electronic spectra of the electrodes are flat for the applied bias, the current is
expected to behave ohmic I ∼ V . Deviations from this behavior are expected if e.g. the
electronic DOS of the left electrode has some structure, as is indicated in Figure 1.2. If
we increase the voltage from V → V + dV the change dI of the current is proportional
to the additional empty states dNl in the left electrode, thus the conductance is given
by dI/dV ∼ dNl/d(eV ) = νl(eV ). The SIN planar junction experiment in Figure 1.1 is
exactly such a system since the Al-electrode has a constant DOS for the small applied bias
range eV ∼ ∆.

1.1.1. Transfer Hamiltonian

After Bardeen [13] introduced the transfer Hamiltonian to describe tunneling phenomena
in (interacting) many-body systems, Cohen et al. [14] used a second-quantized version to
derive the formula (1.1). The starting point for the derivation of the transfer Hamiltonian
is the independent electron assumption where one separates the initial system into three
regions: The left electrode (Hl for x < −a), the barrier (HB for −a < x < a) and the right
electrode (Hr for x > a). Thus, the total system is described by H = Hl +HB +Hr. The
corresponding wavefunctions are defined as ψl/rn for the left and right subsystem 2 as the
eigenstates

(Hl/r +HB)︸ ︷︷ ︸
H̃l/r

| ψl/rn 〉 = εl/rn | ψl/rn 〉 . (1.3)

2Note that the two electrodes do form two sets of non-orthogonal states and are therefore not independent.
However, it was shown by Prange [28] that the assumptions made in the derivation of the transfer
Hamiltonian are controlled when performing a perturbation theory in the tunneling amplitude.
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Figure 1.2.: Sketch of elastic tunneling and the expected current and conductance if the
spectrum of the right electrode is flat. The conductance is a measure of the additional
empty states dNl in which the electrons of the right electrode can tunnel to if we increase
the voltage by d(eV ), thus σ ∼ dNl/d(eV ) = νl(eV ).

Here, n are the quantum numbers of the left and right systems. Let us now look at the
influence of the right Hamiltonian Hr for the left states | ψln 〉.The corresponding matrix
element for the transition | ψln 〉 →| ψrm 〉 is given by

tem,n = 〈ψrm | Hr | ψln〉 =
∫ ∞
a

dx [ψrm(x)]∗ Hr︸︷︷︸
H−H̃l

ψln(x) =
∫ ∞
a

dx [ψrm(x)]∗
[
H− εln

]
ψln(x) .

In order to bring this to a more convenient form, we add a zero via

0 = −
∫ ∞
a

dxψln(x)Hl[ψrm(x)]∗ = −
∫ ∞
a

dxψln(x)
(
H− H̃r

)
[ψrm(x)]∗

=
∫ ∞
a

dx [ψrm(x)]∗εrmψln(x)−
∫ ∞
a

dxψln(x)H[ψrm(x)]∗ ,

where we used the fact that Hl is restricted to the region x < −a. If we consider only
elastic transitions with εln = εrm, the matrix element reads

tem,n =
∫ ∞
a

dx [ψrm(x)]∗
[
H− εln + εrm

]
ψln(x)−

∫ ∞
a

dxψln(x)H[ψrm(x)]∗

=
∫ ∞
a

dx

(
[ψrm(x)]∗Hψln(x)− ψln(x)H[ψrm(x)]∗

)
. (1.4)

Using the usual form H = p̂2/2m + U(x̂) for the Hamiltonian and Green’s theorem one
can link this expression to the current density operator. The inverse process where an
electron tunnels from the right to the left electrode corresponds to the complex conjugate
of this expression. There are several different approaches to calculate the tunneling matrix
element for realistic systems, for example using the Wentzel-Kramers-Brillouin (WKB)
approximation or boundary conditions, which can be found in the rich literature [27, 29].
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Figure 1.3.: Scheme of the iterative steps of the McMillan gap inversion algo-
rithm for the determination of the Eliashberg function α2F (ω): Shown are the
experimental data for the tunneling DOS (left) from Giaever et al. [30] and the Eliashberg
function (bottom) obtained from Rowell and McMillan for Pb [11, 15].

To leading order in the tunneling element tem,n the Hamiltonian can be written in second
quantized form as the transfer Hamiltonian

H ≈
∑
n

εln l̂
†
n l̂n +

∑
m

εrmr̂
†
mr̂m +

∑
n,m

[
tem,nr̂

†
m l̂n + h.c.

]
= H̃l + H̃r +He

t . (1.5)

Here, l̂, r̂ are the annihilation operators of the left and right states defined above. In
Chapter 3 we show that a perturbative calculation of this transfer Hamiltonian yields the
expression (1.1) originally derived from the phenomenological approach.

1.1.2. Rowell-McMillan Inversion and phonon spectrum

Many important conventional superconductors, e.g. lead and niobium, have strong electron-
phonon couplings and show strong deviations from the predictions of the weak-coupling
BCS theory. The first sign of this strong-coupling nature in superconductor tunneling
experiments was seen by Giaever et al. [30] in 1962 as peak-dip features in the tunneling
DOS of Pb. Later, Rowell and Anderson [31] showed that these features occur at the typical
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transversal and longitudinal phonon frequencies ωt/l shifted by the superconducting gap
∆0. The experimental data were taken at low temperatures T = 1K and are shown in the
left frame of Figure 1.3. The theory that describes strong-coupling superconductors is the
Eliashberg theory [9, 10] that was developed in 1960 as an extension of the BCS theory to
realistic phonon spectra. In Chapter 2 we present both the BCS theory and the Eliashberg
theory in detail. The Eliashberg theory requires only two dimensionless quantities for the
calculation the superconducting spectra and properties: The Eliashberg function α2F (ω)
describing an effective, weighted phonon DOS to which the electrons at the Fermi surface
couple to and the Coulomb pseudopotential µ∗ taking care of the repulsive interaction
between the electrons. Typically, α2F (ω) turns out to be very similar to the phonon DOS
and µ∗ has a rather universal value for most of the simple metals and alloys [16].

In the beautiful work of Rowell and McMillan [15] it was shown how to extract both
α2F and µ∗ from tunneling experiments for a Pb-I-Pb junction (Superconductor-Isolator-
Superconductor/SIS). The principle idea of the so-called McMillan gap inversion algorithm
is shown in Figure 1.3. One starts from a guessed α2F0(ω) function, which is normally
based on the phonon DOS from calculations or neutron-scattering experiments. The value
of the Coulomb pseudopotential is then chosen in such a way that the Eliashberg theory
gives the correct gap value ∆0 [11]. Using the obtained DOS and the formula (1.1) one can
now compute the expected tunneling spectrum and compare it to the experimental data.
With a functional derivative method δν = δν

δ(α2F )δ(α
2F ) the necessary change δ(α2F ) for

the Eliashberg function to improve the agreement between theory and experiment can be
calculated in linear response. Next, one uses the updated α2F1 = α2F0 + δ(α2F ) and solves
the Eliashberg theory again and repeats this steps iteratively until the algorithm converges.
For the Pb junction the calculated DOS agrees within ±0.001 with the measured DOS.
The obtained α2F for Pb is shown in the bottom picture and agrees qualitatively well
with the measured and calculated phonon spectrum in Pb [32–34]. Similarly, many other
conventional superconductors show such a remarkable agreement [16], indicating that the
BCS ground state indeed gives the correct predictions for strong-coupling superconductors.

1.1.3. Scanning Tunneling Microscopy

piezo

tip

sample

Figure 1.4.: Schematics of an
STM.

After the success of tunneling experiments for the determi-
nation of the electronic an bosonic spectra of materials, a
huge step forward was achieved by Binnig and Rohrer [35]
with the invention of the Scanning Tunneling Microscope
(STM). In STM one uses a thin metallic tip that is attached
to a piezoelectric element which allows to move the tip
with sub-Å precision in all three dimensions over a surface.
Following the Tersoff-Hamann theory [36], the tunneling
current I is given by

I ∼ e−2κd ,with κ =
√

2mφ/~ . (1.6)

Here, d is the tip-sample distance, m the free electron mass
and φ the average of the work functions (typically several
eV) of the tip and sample. In Section 5.3.3 we discuss this model in more detail. From
expression (1.6) it follows that the current decreases by one order of magnitude if the
tip-sample distance is increased by only 1Å. This allows for sub-Å height resolution of
the surface topography when using the topographic mode, where the tip-sample distance
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is varied and I, V are fixed while scanning the probe in x, y-direction. Alternatively, one
can probe the electronic structure3 of the sample by fixing d and recording the I − V
characteristics similar to the planar junction experiments.

A major advantages of the STM is the high spatial resolution that allows the characterization
of nanomaterials. Another improvement is the lack of the insulating barrier of planar
junctions, as the vacuum barrier does not influence the behavior of the investigated sample
on the surface. Furthermore, the technique of quasiparticle interference (QPI), where a
real-space STM picture is recorded in an area around impurities, allows one to obtain
detailed momentum-space information of the electronic spectrum, especially in correlated
materials [37–39].

1.2. Inelastic Electron Tunneling Spectroscopy

Inelastic Electron Tunneling Spectroscopy (IETS) is for example well known from molecular
junction experiment, where a molecule (or a molecular adsorbate in the insulating metal
oxides) connects the left and right electrodes of the tunneling junction. When an electron
tunnels through the junction it can also excite or absorb a phonon or other collective bosonic
mode with energy Ω. This opens up a new inelastic tunneling channel, see Figure 1.5, and
increases the current.

Figure 1.5.: Sketch of inelastic tunneling processes: (left) An electron tunnels
between two normal metals through an insulating barrier via the emission of an Einstein
phonon with frequency Ω. (right) Also shown are the expected current I, conductance
dI/dV and d2I/dV 2. The latter is for small temperature proportional to the phonon
spectrum.

Let us now discuss the expected tunneling spectrum if we include such inelastic events.
We consider a simple model consisting of two electrodes with constant DOS and a single
bosonic mode with frequency Ω at zero temperature, as shown in Figure 1.5. Following
Section 1.1 the elastic current is Ie = σe · V at voltages eV < Ω. At voltages eV > Ω,
3Also the bosonic spectrum can be proves by inelastic tunneling as we will see in the following section.
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also the tunneling of an electron with the emission of a boson can occur, which opens the
inelastic channel with Ie = σi · (V − Ω/e)Θ(eV − Ω). The expected total current and
its derivatives are shown in Figure 1.5. The opening of the inelastic tunneling channel
appears as a step-like increase of the conductance at eV = ±Ω, resulting in a valley-like
shape of the conductance. Furthermore, a sharp δ-like peak in the second derivative at
the boson energy Ω arises. Thus, the second derivative gives some indication about the
bosonic spectrum and using IETS the vibrational spectra of various molecules have been
intensively studied in planar junctions [40] and using STM [41–44].

The concept of inelastic tunneling also was not new in the 1960’s. In indirect semiconducting
p-n junctions it was known that the transition of electrons from the conduction to the
valence band was accompanied by the emission of a phonon to account for momentum
conservation. It was shown that in such indirect diodes the phonon spectrum is clearly
visible [45–48] in the I-V characteristics. Later, Lambe and Jaklevic [17, 18] showed that
such inelastic tunneling can also occur between the interfaces of two metallic contacts.
They could resolve the vibrational spectra of molecules contained in the barrier region, see
Figure 1.6. In 1969, Leger and Klein [49] saw first signs of inelastic tunneling of Al-bulk
phonons in the current characteristics of Al-Al-junctions. They showed that above Tc
the second derivative d2I/dV 2 shows a good agreement with the phonon DOS obtained
in neutron scattering experiment [33]. In another experiment [50], the normal-state I-V
characteristics of several Pb, Al, In and Sn junctions were investigated, see right picture in
Figure 1.6. The authors concluded that the second derivative is “a crude measurement of
the phonon density on the normal metal”. This is not very surprising as for these tunneling
events there exists not only a coupling of electrons to the phonons in the barrier (which
consists of the isolating oxide) but also to vibrational modes in the surface regions of the
normal metals. Therefore, it is possible to excite/absorb bulk phonons during the tunneling
process which adds a second, inelastic contribution to the elastic tunneling current given in
Eq. (1.1). The actual physical process will be discussed in detail in Chapter 3, where we show
how to derive an inelastic transfer Hamiltonian that yields the result d2I/dV 2 ∼ α2F (ω)
in the normal state.

Figure 1.6.: Normal state data of d2I/dV 2 for: (left) three Al-Al oxide-Pb junctions
taken at 4.2K. The two lower curves show junctions exposed to CH3(CH2)COOH and
CH3COOH with characteristic vibration frequencies of the acid molecules [17]. (right)
a Pb-PbO-Pb junction that shows the phonon spectrum of Pb (< 10meV) and of the
Pb-oxide interface (> 10meV) [50].

For planar junctions experiments on conventional superconductors these inelastic contribu-
tions are weak. The increase of the conductance, hence the depth of the “valley” in the
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conductance of Figure 1.5, from 0 to eV = ωD is only about 1% for the Pb junction [50].
Thus, the superconducting strong-coupling features are at least one order of magnitude
larger in Pb. In Ref. [51], Rowell discusses this issue and shows that inelastic effects can
be significantly absorbed by normalizing the superconducting spectrum by the one in the
normal state σnorm(V ) = σsc(V )/σnc(V ), see also Section 4.2.2. Using such a normalization
procedure the elastic electron tunneling theory is able to explain the SIN and SIS spectra
for these junctions. However, as we will see in Chapter 4 and 5, this normalization method
will not work for strong inelastic tunneling contributions and for systems in which the
superconducting pairing glue is of electronic nature.

In a more recent work, Schackert et al. [19] demonstrated that they could gain direct
access to the Eliashberg function/phonon spectrum of Pb thin films using IETS with a
Scanning Tunneling Microscope (STM). Interestingly, for a tungsten tip on Pb the inelastic
contributions were about one order of magnitude larger compared to the spectra seen in
the planar junction experiments of Ref. [50]. This is of particular interest since now the
strong-coupling features calculated from the Eliashberg theory are of the same amplitude
as the inelastic features in the normal state. Since one expects the inelastic contributions to
be of the same order also in the superconducting state, the question arises if it is required
to incorporate inelastic tunneling processes for the interpretation of the observed tunneling
spectra [24]. In Chapter 4 this issue will be discussed in detail for Pb and we show that
one can explain the observed STM data in the superconducting state consistently by using
the phonon spectrum observed in IETS in the normal state.

For completeness, we also remark that inelastic tunneling is of course not only restricted to
phonons and photons, but can also occur for other collective excitations as magnons [21–23]
or spin fluctuations (see Chapter 5). Another method to measure the phonon spectrum in
metals is point-contact spectroscopy [52, 53], which uses metallic contacts and is therefore
not in the tunneling limit discussed in the following.

1.3. Experiments in unconventional superconductors

In this section we give a short overview of experiments in unconventional superconductors.
We start with the phenomenology of unconventional superconductors motivated by a
common phase diagram upon charge doping and mention several additional phases realized
in the cuprate and iron pnictide systems. The focus will lie on the dynamics of the collective
spin fluctuations in this system, which are likely responsible for the Cooper pairing in these
compounds. Finally, we present an overview of experimental tunneling spectra seen on
unconventional superconductors.

1.3.1. Properties of unconventional superconductors

The discovery of superconductivity in the cuprates [54] was not only surprising because of
their exceptionally high transition temperatures (up to Tc = 133K in a HBCCO system [55]),
but also because the parent compound has an antiferromagnetic ground state. As can be
seen in Figure 1.7(a), the superconducting dome emerges from this antiferromagnetic phase
with antiferromagnetic ordering vector (AFV) Q when doping the system inducing holes or
electrons. For a long time superconductivity and magnetic order have been thought to be
antagonistic since scattering off magnetic moments breaks up the singlet Cooper pairs [56].
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AFM
SC x

T (a)
(b)

Figure 1.7.: (a) Generic phase diagram for high-temperature superconductors with the
antiferromagnetic parent compound and the superconducting dome that appear upon
doping x. (b) Spin spectrum from neutron scattering experiments in the normal and
superconducting state for optimally doped BaFe1.85Co0.15As2 clearly showing the neutron
resonance below Tc (adapted from [59]).

However, in 2008 a second group of high-temperature superconductors was discovered: The
iron pnictides. In these compounds the magnetic iron atoms are combined with elements
from the pnictogen group. The first iron pnictide superconductor was LaO1−xFxFeAs [57],
which has transition temperatures up to Tc = 55K when substituting La with rare earth
elements [58]. In both groups of high-temperature superconductors the superconducting
dome is, apart from some rare exceptions, accompanied by an antiferromagnetic dome4.
This indicates that spin-fluctuations could serve as the “pairing glue” for the Cooper pairs
in these materials.

The spin excitation spectrum can be experimentally accessed by inelastic neutron scattering
experiments. Early measurements for YBa2Cu3O7−δ (YBCO) [60] showed that when enter-
ing the superconducting state, the spin spectrum undergoes a drastic change. First, a spin
gap develops as the spin fluctuations are collective modes made of fermionic quasiparticles
that are gapped by the superconducting gap ∆ (which is momentum-dependent such that
the spin gap also depends on the position in the reciprocal space). The more surprising
finding was a sharp peak in the spectrum around the antiferromagnetic vector Q , but at
an energy ωres clearly below 2∆. Such a feature was seen in many cuprate [60–62] and iron
pnictide systems [59, 63–65] as well as heavy fermion superconductors as CeCoI5 [66, 67]
and is usually referred to as the neutron resonance mode. Such a spin resonance mode
is expected if the superconducting gap obeys an unconventional gap symmetry (as d- or
s±-wave) where the the order parameter changes sign for the electronic states that are
connected by the AFV Q [68]. This issue is related to the coherence factors occurring in
the calculation of the particle-hole polarization operator and will be discussed in more
detail in Section 2.3.

The temperature evolution of the neutron resonance mode is not the only hint of uncon-
ventional pairing (symmetries) in the high-Tc compounds. Angle-Resolved Photoemission
Spectroscopy (ARPES) [69, 70] and interference experiments [71, 72] demonstrated the
d-wave nature of the ordering parameter in the cuprates. However, there is still an ongoing
debate about the pairing symmetry in the iron pnictide superconductors for the different
4In these strongly correlated materials a diverse phase diagram appears for many systems including charge-
and spin-order, structural transitions (e.g. nematic/orthorhombic), pseudogap states, strange-metal
behavior and more. For a detailed discussion of these issue we refer to the rich literature.
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compounds. The most prominent candidates vary from conventional s- to gapped or nodal
s±-wave. Tunneling experiments into these materials can give a detailed insight into the
nature of the superconducting state as will be shown in Chapter 5.

1.3.2. Tunneling spectra of unconventional superconductors

Due to the success of tunneling experiments in the determination of the phononic pairing
glue in conventional superconductors, EETS experiments were performed soon after the
discovery of superconductivity in the cuprate superconductors in the hope to unravel the
underlying physics. However, obtaining reproducible tunneling spectra in these doped
systems has been challenging for a long time. A novel feature in many spectra was the
V-shaped background conductance present in both the normal and the superconducting
spectra, first seen in YBCO and in bismuth oxide superconductors [73–75]. Here and in
the following, the V-shape refers to the linear background conductance in the normal state
(and in the superconducting state for higher biases) and not to the typical V-shaped form
between the superconducting coherence peaks as seen in the cuprates, which originates
from the d-wave symmetry of the superconducting gap, see also Sec. 2.3.2. In Ref. [73] it
was pointed out that the linear background in the bismuth superconductors scales with
Tc, thus the origin of the superconducting pairing seems to be related to the background
conductance seen in these strongly-correlated systems. In Figure 1.8 experimental spec-
tra displaying such a clear V-shape for YBCO and bismuth oxide superconductors are
shown, as well as similar curves that were observed for various other CuO2 compounds,
e.g. NdBa2Cu3O7−δ (NBCO) [76], electron-doped Pr1−xLaCexCuO4 (PLCCO) [77], opti-
mally doped La2−xSrxCuO4 (LSCO) [78], Ca2−xNaxCuO2Cl2 [79] and Sr0.9La0.1CuO2 [80].
Further, in a recent work superconducting features on top of a V-shaped background have
been found in K-doped Sr2IrO4 [81], a compound isostructural to La2CuO4.

However, there are different high-Tc materials that show no clear V-shapes spectrum for
high-energies, e.g. Bi2Sr2CaCu2O8+δ(BSCCO) [82, 83] shown in Figure 1.9(a),(d). The
conductance here only shows a d-wave DOS and a dip feature above the coherence peaks.
On the other side, other tunneling experiments as shown in Figure 1.9(b) still show a
clear sign of a V-shaped linear background. Further, STM spectra for BSCCO can differ
for different conductances (which means tip-sample distance) [83], probably due to the
different distance dependences of the tunneling matrix elements to the orbitals of the BiO
and CuO2 planes. An explanation for the observed diversity of the spectra could be given
by Misra et al. [84], who showed in a STM experiment that the differential conductance
measured on the BiO layer differs significantly from the spectra obtained on the CuO2
planes, see Figure 1.9(c). The conductance in the superconducting CuO2 sheet again shows
a clear background conductance that is absent for the BiO layer spectrum.

Also for the iron pnictide superconductors a variety of different spectra have been reported.
The electronic spectrum for the different iron compounds can be quite diverse as the mixing
of the five 3d orbitals in general leads to several (hole and electron) bands crossing the
Fermi energy. In contrast, the cuprate superconductors usually only have one band at the
Fermi edge. In many iron pnictides one observes Γ-centered hole pockets and M-centered
electron pockets and also here spin flip quasiparticle excitations between these pockets are
believed to cause superconductivity with the possibility of multiple gaps on the different
Fermi sheets. Also for the iron pnictide superconductors there exists a variety of different
observed spectra, sometimes even for the same compound. In the case of BaFe1.8Co0.2As2
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there is data showing a flat background and clear strong-coupling or double-gap features
(Figure 1.10(b)) as well as spectra with a clear background conductance (see Figure 1.10(d)).
As can be seen in Figure 1.10 many of the observed spectra have strong similarities with
the ones seen in the cuprate superconductors, indicating a common underlying pairing
mechanism.

In Chapter 5 we will discuss the state-of-the-art theoretical interpretation of tunneling
spectra in unconventional superconductors in detail. We will focus on the question how
the inclusion of inelastic tunneling changes the picture drawn in many publications so far.

(a) (b) (c)

(e)
(d) (f)

(g)

(h) (i)

(j)

Figure 1.8.: Cuprate tunneling spectroscopy experiments showing V-shape background:
(a) Measured differential conductance dI/dV for YBCO planar junction experiment [73],
(b) Normalized conductance (σsc/σnc) for YBCO planar junction [74], (c) YBCO con-
ductance for STM experiment [85] , (d) normal state conductance for various bismuth
oxide superconductors [73], (e) STM on electron-doped PLCCO [77], (f) Conductance
spectra for NCBO [76], (g) STM on optimally doped LSCO for different positions on
the surface [78], (h) Conductance for Ca2−xNaxCuO2Cl2 [79], (i) STM conductance on
Sr0.9La0.1CuO2 [80], (j) spatially averaged dI/dV for K-doped Sr2IrO4 (isostructural to
the cuprate superconductor La2CuO4) [81].
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(b)

(c)
(d)

(a)

Figure 1.9.: Differential conductance for experiments on BSCCO: (a) Spectra taken on
BiO surface without background conductance showing a clear dip above the coherence
peak [82], (b) Averages STM spectra taken from Ref. [86], (c) STM across a step edge
of CuO2 and BiO surface layers showing different characteristic spectra [84], (d) STM
spectra for different tip-sample distances [83].
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(a) (b)

(c)
(d)

(e)

(f)

(g)

(h)

Figure 1.10.: Differential conductance for experiments on iron-based superconductors:
(a) STM on single crystalline Fe(Se,Te) [87], (b) Conductance and normalized Conduc-
tance (σsc/σnc) for Ba0.6K0.4 Fe2As2 from Ref. [88], (c) Conductance forBaFe1.8Co0.2As2
[89] (d) Different spectra for Ba0.6K0.4 Fe2As2 showing a V-shape background conduc-
tance for higher energies [90], (e) STM on LifeAs [91], (f) Differential conductance for
varying with distance to a Cu-impurity in Na(Fe0.96Co0.03Cu0.01)As [92],(g) dI/dV for
Na(Fe0.975Co0.025)As [90],(h) Conductance and normalized conductance from STM for
SmFeAsO1−xFx [93].





2. Fundamentals II: Theory of
strong-coupling superconductivity

In this chapter a summary of different models for the theoretical description of superconduct-
ing systems is presented. We start with some basics about the theoretical understanding
of superconductivity introducing the well-known Bardeen-Cooper-Schrieffer (BCS) theory.
Then, we discuss the Eliashberg-Migdal theory of strong-coupling, phonon-mediated su-
perconductivity in conventional superconductors as well as extended models for studying
superconductivity where the pairing glue is of electronic nature.

2.1. The Theory of Bardeen, Cooper and Schrieffer

Superconductivity is without debate one of the most fascinating manifestations of quantum
mechanics in our macroscopic world. In 1911, Heike Kammerlingh Onnes [1, 2] studied the
low-temperature resistance of mercury and surprisingly found a sudden drop of the electrical
resistance at a critical temperature Tc = 4.2 K. It soon became clear that the resistance in
this new state was absolute zero, thus the system is able to carry a dissipationless current.
Another extraordinary property is the Meissner-Ochsenfeld effect [3], which describes the
expulsion of the magnetic field smaller than the critical field Hc from a superconductor
and which can be used to levitate a superconductor in a magnetic field1.

Even though the experimental detection of superconductivity is fairly simple it took nearly
50 years for a microscopic theoretical explanation2, which was given by Bardeen, Cooper
and Schrieffer in their famous papers “(Microscopic) Theory of Superconductivity” [7, 8].
Their theory had been preceded by three major insights:

1. The discovery of the isotope effect which showed a suppression of Tc for mercury
isotopes with increasing masses in 1950 in two independent experimental groups [94,
95].

2. In 1950 Fröhlich showed that the scattering between two electrons with (quasi)momenta
k and k + q via the exchange of a virtual phonon with momentum q , whose energy
difference |εk+q − εk | < ωq is smaller than the corresponding phonon energy ωq , is
attractive [96]. The physical origin behind this effect is as follows: Consider a Bloch

1For a detailed discussion about the difference between type-I and type-II superconductors we refer to the
literature.

2Here, we do not want to discuss other phenomenological approaches to the topic, e.g. the London
equations [5] or the Ginzburg-Landau theory [6].

15
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electron propagating through a static lattice potential of a crystal. When it comes by
a positively charged ion, this ion will be displaced towards the path of the electron
and will locally create a positively charged potential at the former position of the
electron. Since the electron is much faster than the ion (since M � m and therefore
vF /c� 1), it will rapidly move away from the atomic position, whereas the ion only
slowly relaxes to its equilibrium position. During the relaxation time another electron
can be attracted by the positive charge of the displaced ion and is thereby effectively
attracted to the initial electron. Thus, we are dealing with a retarded interaction
mechanism in phonon-mediated superconductors. Later, Bardeen and Pines could
demonstrate that this attractive interaction can also survive near the Fermi surface
of a metal if one includes the Coulomb repulsion3 between the electrons [97].

3. Cooper demonstrated that an attractive interaction between the quasiparticles near
the Fermi surface of an electron gas could cause electrons with opposite momentum
and spin | k , ↑ 〉⊗ | −k , ↓ 〉 to form stable pairs [98]. The new ground state of the
system has a lower energy than the Fermi surface below a critical temperature Tc,
which is known as the Cooper instability.

The so-called BCS Hamiltonian is obtained by only keeping the interactions between Cooper
pairs with opposite momentum and spin, and by replacing the in general momentum (and
energy) dependent phonon-induced interaction by a constant

Vk ,k ′ = −λ/νFΘ(ωD − |εk |)Θ(ωD − |εk ′ |) .

Here, we introduced the dimensionless electron-phonon coupling constant λ and νF is the
normal state electron DOS at the Fermi surface. The positive interaction is only present
for electrons that have energies within the range of the Debye frequency ωD of the phonons
and the BCS Hamiltonian reads

ĤBCS =
∑
k ,σ

εk c
†
k ,σck ,σ +

∑
k ,k ′

Vk ,k ′c
†
k ,↑c

†
−k ,↓c−k ′,↓ck ′,↑ . (2.1)

Within the BCS theory the interaction is decoupled using a mean-field theory. Therefore,
we introduce the superconducting mean-field parameter ∆k = −∑k ′ Vk ,k ′〈 c−k ′,↓ck ′,↑ 〉
describing the condensation of two electrons into a Cooper pair and write down the BCS
mean-field Hamiltonian as4

ĤMF
BCS =

∑
k ,σ

εk c
†
k ,σck ,σ −

∑
k

∆k c
†
k ,↑c

†
−k ,↓ −

∑
k

∆∗k c−k ,↓ck ,↑ . (2.2)

This quadratic mean-field theory can easily be diagonalized via a unitary Bogoliubov
transformation mixing particle and hole states with opposite momenta and spin orientation

(
ak ,↑
a†−k ,↓

)
=
(
uk vk
−vk uk

)(
ck ,↑
c−k ,↓

)
, (2.3)

3When we discuss the strong coupling theory, we will discuss this issue in more detail.
4Here, we absorbed the constant term arising in the mean-field approach in the chemical potential.
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Figure 2.1.: (a) Superconducting coherence factors u2
k , v

2
k of the BCS theory, (b) Super-

conducting dispersion Ek (black curve) of the Bogoliubov quasiparticles in comparison
to the normal conducting dispersion εk (blue curve) near the Fermi surface for an s-wave
superconductor ∆k = ∆ = const.. The intensity of the black curve indicates the spectral
weight of the quasiparticle dispersion given by the coherence factors u2

k (v2
k ) for the

particle (hole) band.

with the superconducting dispersion and coherence factors

Ek =
√
ε2k + |∆k |2 ,

u2
k = 1

2

(
1 + εk

Ek

)
,

v2
k = 1

2

(
1− εk

Ek

)
.

(2.4)

These coherence factors describe the particle and hole contribution of an excitation in the
superconductor, see also Figure 2.1, which becomes clear when one calculates the particle
Green’s function in a superconductor on the imaginary axis

G
(p)
k (iΩn) = − 1√

βV

∫ β

0
dτ〈Tτ ĉ↑(r , τ)ĉ†↑(0, 0) 〉eiωnτ−ik ·r = u2

k

iΩn − Ek
+ v2

k

iΩn + Ek
.

(2.5)

Here, we defined V as the volume of the solid, (ĉ, ĉ†) are the electronic field operators of
the system in the Heisenberg picture and Tτ is the time-ordering operator in Matsubara
imaginary time. The diagonalized mean-field Hamiltonian can be written as

ĤMF
BCS =

∑
k ,σ

Ek a
†
k ,σak ,σ . (2.6)

Obviously, the superconducting system acquires an excitation gap of |∆k | that covers the
whole Fermi surface, which can be calculated using the relation (2.4) between the electronic
and Bogoliubov quasiparticles. This leads to the BCS-self-consistency equation

∆k = −
∑
k ′

Vk ,k ′
∆k ′

2Ek ′
tanh

(
Ek
2T

)
, (2.7)

which will be derived later as the BCS limit of the Eliashberg equations. For the BCS
model the leading instability is the s-wave state with isotopic superconducting gap ∆k =
∆ = const. and we only want to list the most important conclusions that can be made from
the weak-coupling result (2.7):
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Figure 2.2.: Left: Temperature dependence of the superconducting gap ∆(T ) in the
BCS theory as calculated from relation (2.7). Right: Superconducting (red) and normal
conducting (blue) density of states close to the Fermi surface.

(a) At T = 0 the superconducting gap is given by |∆(T = 0)| = 2ωDe−
1
λ and is thus

exponentially small in the electron-phonon coupling λ. Note: The non-analytic structure
∼ 1/λ of the result in the interaction strength does not allow for the usual perturbative
approach via a Taylor expansion starting from a non-interacting Fermi gas.

(b) The ratio between the transition temperature Tc and the zero temperature gap is given
by 2|∆(T=0)|

Tc
= 3.53.

(c) Close to the transition temperature the superconducting gap vanishes as |∆(T → Tc)| =
3.2Tc

√
1− T

Tc
as can be seen in Figure 2.2(a) indicating a second order phase transition

also seen as a jump in the specific heat.

(d) The DOS of the fermionic quasiparticles in the BCS state can be calculated to be

νBCS(ε) = 1
V

∑
k

δ(|ε| − Ek ) = νF

∫ ∞
−∞

dωδ(|ε| −
√
ω2 −∆2) = Re

[
νF |ε|√
ε2 −∆2

]
.

(2.8)

It shows the characteristic van-Hove square-root singularity at the superconducting
band edges ε = ±∆ and the gapped region without fermionic states for ε ∈ [−∆,∆],
see Figure 2.2(b). For energies above the gap ε� ∆ the DOS approaches quickly the
normal state value indicating its low-energy character.

2.2. Migdal-Eliashberg theory of superconductivity

The BCS theory presented in the previous section is a weak-coupling theory only valid
for small electron-phonon interactions5 λ. Its simplifications, e.g. the constant phonon-
induced interaction between the electron within the Debye energy range, works well for
weak-coupling materials like aluminum or tin, but fails for other materials as lead or
niobium with strong electron-phonon interaction. Based on the work of Migdal [99] about
the electron-phonon interaction in normal metals, Eliashberg [9, 10] successfully extended
the BCS theory to the strong-coupling regime using the Green’s function technique. In
this section, we will first discuss the role of the Migdal theorem in the normal state and
5We will later see about how exactly the electron-phonon coupling constant λ can be related to the
microscopic details of the electronic and phononic systems.
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then give a derivation of the strong-coupling Eliashberg equations including a discussion
about the superconducting properties of system with a single phonon mode.

2.2.1. Electron-phonon interaction and Migdal theorem

The Migdal theorem [99] is an alternative way of expressing the Born-Oppenheimer theorem
in the Green’s function framework. Thus, to first order the electrons can be approximated
to see only the static ion potential and one can separate the electronic and ionic system.
Corrections come from the interaction of collective lattice vibrations (phonons) with the
electrons that can be described via the Fröhlich Hamiltonian [100]

Ĥel-ph = 1√
V

∑
k ,q
σ,λ

αλq ĉ
†
k+q ĉk ,σ

(
b̂q ,λ + b̂†−q ,λ

)
, (2.9)

where the b̂q ,λ, b̂†q ,λ are the creation/annihilation operators of a phonon with momentum q

and of the branch λ with the electron-phonon coupling element αλq . Applying perturbation
theory the original vertex αλk ,k ′,q is renormalized and can be described by the infinite series

= + + . . . (2.10)

Let us quickly recast Migdal’s argument: As the electron in the first vertex correction
is scattered from k to k + q , the corresponding time scale on which the phonon can
interact with the electron to scatter it is t ∼ 1

vF q
. Since the phonons respond on the typical

frequency ωD, the corresponding displacement of the lattice due to the interaction with
the electrons is proportional to ωD

vF q
∼ ωD

EF
if we take the typical values |q | ≈ kF for the

electron scattering near the Fermi surface. Only for very small momentum transfers q
vertex corrections can be of order unity, but these contributions usually have a highly
restricted phase space. Let us also sketch the diagrammatic argumentation: Consider the
leading order vertex correction seen in Eq. (2.10) in the normal state for zero temperature
on the imaginary axis

δΓk,q = αq ×
∫
q′
|αq ′ |2Dq′Gk0+q′0Gk0+q0+q′0 , (2.11)

where Dq = 2ωq

(iq0)2−ω2
q

is the phonon propagator, Gk = 1
iΩm−εk the electron propagator

and we neglected spin and phonon degrees of freedom to simplify the expressions. Since
ωq < ωD we have the Debye frequency as a natural frequency cutoff for the integration.
Furthermore both the bosonic spectrum ωq and the coupling αq are only slowly momentum
dependent, such that we can replace |αq ′ |2Dq′ ≈ |α

2|
ωD

Θ(ωD − |q0|) by an effective average6,
yielding

δΓk,q ∼ αq ×
|α2|
ωD
×
∫ ωD

−ωD

dq0
2π

∫
d3q ′

(2π)3
1

ik0 + iq′0 − εk+q ′

1
ik0 + iq0 + iq′0 − εk+q+q ′

.

(2.12)

6This average will later be introduced as the dimensionless coupling constant λ ≈ |α|
2νF
ωD

.
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Since q ∼ k F is typically of order of the Fermi momentum, one can separate the two
integrations

∫ d3q ′

(2π)3 ∼ pF
v2
F

∫
dεk+q ′

∫
dεk+q ′ . The remaining integrations then yield

δΓk,q ∼ αq ×
|α2|
ωD
× νF

ωD
EF
∼
√
m

M
. (2.13)

Thus, vertex corrections always come with a factor ωD/EF ∼
√

m
M , where m is the electron

effective mass and M is the ion mass of the system. Note, that there is no Migdal theorem
for the interaction induced by spin-fluctuations, nevertheless using a hot spot theory one
can still neglect vertex corrections for the important contributions around the AFV Q [101].

In what follows, we will proceed in the language of path integral methods on the imaginary
axis or on the Keldysh contour, such that we switch to an action-based description of
the many-body system [102, 103]. When integrating out the phonons, see also picture
below, an effective phonon-induced electron-electron interaction appears for the fermionic
Grassmann fields ψ, ψ̄

Sph-ind.
el-el =

∫
k,k′,q

∑
σ,σ′
λ

|αλq |
2
Dq,λψ̄k+q ,σψ̄k ′−q ,σ′ψk ′,σ′ψk ,σ . (2.14)

For frequencies ω < ωq ∼ ωD this interaction becomes
attractive, as was already pointed out in Section 2.1.

On the other hand one could ask why one should bother
with a rather small phonon-induced attraction if there also
exists a strong Coulomb repulsion in metals. The answer to
this questions shows in a beautiful way how renormalization
group (RG) arguments enter in the properties of real mate-
rials. As was initially derived by Morel and Anderson [104]
using an RG approach, the dimensionless Coulomb inter-
action µ = U · νF becomes renormalized in the low-energy
theory of the electrons near the Fermi surface in such a way that the effective, dressed
interaction µ∗ on energy scales below the Debye frequency ωD behaves as

µ∗ = Ueff · νF = µ

1 + µ log(EF /ωD) . (2.15)

In the limit ωD/EF � 1 and for µ of order unity it then follows that the effective Coulomb
interaction is given by

µ∗ ' 1
log(EF /ωD) � µ . (2.16)

Hence, the Coulomb interaction is reduced for processes as slow as 1/ωD typical for ionic
relaxations. Physically, this reduction is associated with the fact that scatterings far from
the Fermi surface lead to a smaller probability for two electrons being within the range of
the screened Coulomb potential. Therefore, for electrons close to the Fermi surface, the
matrix elements µ∗ are much smaller than the usual screened Coulomb interaction of the
plane-wave quasiparticles. Since the ratio of the Debye frequency and the Fermi energy in
most metals is pretty much universal, one expects that the effective Coulomb interaction is
small and comparable in most of the conventional superconducting systems. Indeed it was
found that for most materials the so-called Coulomb pseudopotential has values of order
µ∗ ≈ 0.1-0.2 [16].



Chapter 2. Fundamentals II: Theory of strong-coupling superconductivity 21

2.2.2. Eliashberg equations

In this section, we will derive the Eliashberg equations [9, 10, 105] describing strong-coupling
superconductivity starting from the pure electronic action

S = −
∑
σ

∫
k
ψ̄k,σ(iΩn − εk )ψk,σ

+ 1
2
∑
σ,σ′

∫
k,k′,q

[
V C
q,eff +

∑
λ

|αλq |
2
Dq,λ

]
︸ ︷︷ ︸

Vq

ψ̄k+q ,σψ̄k ′−q ,σ′ψk ′,σ′ψk ,σ . (2.17)

Here, V C
q,eff and |αλq |

2
Dq,λ are the screened (by particle-hole excitations) and renormalized

(by high-energy fluctuations) Coulomb repulsion and phonon-induced interactions [100].
As we wish to describe the superconducting properties including its transition into the
condensed state, we will use the Gor’kov-Nambu spinors [106]

Ψ̂k =
(
ψk,↑
ψk,↓

)
(2.18)

in order to describe both the information about the particle-hole as well as the particle-
particle fluctuations of the system. In this basis, the free propagator of the system can be
conveniently written as Ĝ−1

k,0 = iΩnτ̂0 − εk τ̂z. The action (2.17) becomes

S = −
∫
k

Ψ̂†kĜ
−1
k,0Ψ̂k + 1

2

∫
k,k′,q

Vq
(
Ψ̂†k+q τ̂zΨ̂k

)(
Ψ̂†k′−q τ̂zΨ̂k′

)
. (2.19)

The action has the usual form of an effective electron-electron interaction Vq with the vertex
τ̂z in the Gor’kov-Nambu space, such that we can directly write down the corresponding
Dyson equation

Ĝk = Ĝk,0 + Ĝk,0
(
−
∫
q
Vq τ̂zĜk−q τ̂z

)
Ĝk +O(

√
m/M) ,

= + +O(
√
m/M) , (2.20)

where we neglected vertex corrections due to Migdal’s theorem7 and we introduced Ĝk as
the dressed matrix Green’s function including normal Gk and anomalous Fk propagators

Ĝk = −〈Tτ Ψ̂kΨ̂†k 〉 = −
(
〈ψk,↑ψ̄k,↑ 〉 〈ψk,↑ψ−k,↓ 〉
〈 ψ̄−k,↓ψ̄k,↑ 〉 〈 ψ̄−k,↓ψ−k,↓ 〉

)
:=
(
Gk Fk
F̄k −G−k

)
. (2.21)

The anomalous propagators Fk describe the condensation of two electrons into a Cooper pair
as well as the possible break-up of a Cooper pair into two quasiparticles with momentum
and spin | k , ↑ 〉⊗ | −k , ↓ 〉 in the superconducting state. The interaction with the
phonons results in two self-energies Σk and Φk involving the normal and anomalous electron
propagators, which contain the information about the attraction between the electrons
resulting in the superconducting transition at Tc. In what follows we use the electromagnetic
7In Ref. [107] it was explicitly shown for the example of Pb that vertex corrections only lead to corrections
to the superconducting DOS of the order of 1%.
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gauge freedom to choose Fk = F̄k (and thus Φk = Φ̄k). The self-energy in Eq. (2.20) can
be written conveniently as a matrix

Σ̂k = −
∫
q
Vq τ̂zĜk−q τ̂z =

(
Σk Φk

Φ̄k −Σ−k

)
, (2.22)

with the entries

Σk = −
∫
q
VqGk−q = ,

Φk =
∫
q
VqFk−q = ,

(2.23)

that renormalize the Green’s function to Ĝ−1
k = Ĝ−1

k,0 − Σ̂k = Zkiωnτ̂0 − ε̃k τ̂z −Φkτ̂x. Here,
we defined Zk = 1− Σk−Σ−k/2iωn as the renormalization factor and ε̃k = εk + Σk+Σ−k/2 as
the dispersion change of the electronic quasiparticles due to the coupling to the phonons.
In particle-hole symmetric systems also the self-energy Σk = −Σ−k obeys this symmetry,
thus the change of the dispersion can be neglected and Zk = 1− Σk/iωn. For the electronic
propagator follows

Ĝk = Zkiωnτ̂0 + εk τ̂z + φkτ̂x[
Zkiωn

]2 − [ε2k + φ2
k

] = 1
Zk

iωnτ̂0 + εk/Zkτ̂z + φk/Zkτ̂x

(iωn)2 −
[
(εk/Zk)2 + (φk/Zk)2] . (2.24)

From this representation we can directly read off the spectrum from the poles of the
Green’s function at iωn =

√
(εk/Zk)2 + (φk/Zk)2 and we find a frequency (and in general

also momentum dependent) superconducting gap ∆k = Φk/Zk as well as a renormalized
dispersion εk /Zk. Inserting equation (2.24) into the expression for the self-energy in (2.22)
results in

Σ̂k (iωn) = −T
V

∑
k ′,ωm

Vk−k ′(iωn − iωm) · Zk
′iωmτ̂0 + εk ′ τ̂z − Φk′ τ̂x

[Zk′iωm]2 − [ε2k ′ + Φ2
k′ ]

. (2.25)

For isotropic s-wave superconductors the wave vector dependence is unimportant for the
self-energy, because superconductivity is a low-energy phenomenon and everything occurs
at the Fermi surface |k | ≈ kF . Thus, one averages the slowly varying functions on the
Fermi surface via

Σ̂(iωn) := 1
νF

1
V

∑
k

δ(εk )Σ̂k (iωn)

≈ − T

V 2νF

∑
k ,k ′,ωm

δ(εk )Vk−k ′(iωn − iωm) · Z(iωm)iωmτ̂0 + εk ′ τ̂z − Φ(iωm)τ̂x
[Z(iωm)iωm]2 − [ε2k ′ + Φ(iωm)2] .

(2.26)

SF

The next step is to split up the momentum integration
in k ′ near the Fermi surface into components k′⊥ and
k ′‖ that are perpendicular and parallel to the Fermi sur-
face:

1
V

∑
k ′

≈
∫
εk ′≈0

d3k′

(2π)3 ≈
1

(2π)3

∫
dSFk′

∫
dk′⊥
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= 1
(2π)3

∫
dSFk′

∫
dεk ′

|dεk ′/dk′⊥|
= 1

(2π)3

∫
dSFk′

vFk′︸ ︷︷ ︸
1
V

∑
k ′ δ(εk ′ )

∫
dεk ′

= 1
V

∑
k ′

δ(εk ′)
∫
dεk ′ .

The dominant contributions for the perpendicular integration comes from the electronic
dispersion εk ′ ≈ vF · k′⊥ in the fermionic propagator since the bosonic part from Vk−k ′ has
the typical slow momentum dependence of the phonon spectrum ωq ∼ c · k′⊥. The errors
that we make are therefore again of the order of c/vF ∼

√
m/M � 1 and can be neglected

like the vertex corrections. In the end, we can write down the self-consistent equations

Σ̂(iωn) = − T

V 2νF

∑
k ,k ′,ωm

δ(εk )δ(εk ′)Vk−k ′(iωn − iωm) ·
∫
dεk ′

Z(iωm)iωmτ̂0 − Φ(iωm)τ̂x
[Z(iωm)iωm]2 − [ε2k ′ + Φ(iωm)2]

= −T
∑
ωm

[
−
∫ ∞

0
dω

2ω · α2F (ω)
(ωn − ωm)2 + ω2 + µ∗

] ∫
dεk ′

Z(iωm)iωmτ̂0 − Φ(iωm)τ̂x
[Z(iωm)iωm]2 − [ε2k ′ + Φ(iωm)2] ,

(2.27)

with the following definitions of the Coulomb pseudopotential and Eliashberg function

µ∗ = 1
V 2νF

∑
k ,k ′

δ(εk )δ(εk ′)V C
q,eff ,

α2F (ω) = 1
V 2νF

∑
k ,k ′,λ

δ(εk )δ(εk ′) |αλq |
2 −ImDR

k−k ′,λ(ω)Θ(ω)
π

.

(2.28)

SF

Note that for unperturbed phonons in a single-particle picture
we have −ImDR

k−k ′,λ(ω)/π = δ(ω−ωk−k ′,λ). The Eliashberg
function α2F (ω) can be seen as an effective, weighted phonon
DOS for the electrons that scatter inelastically between differ-
ent states on the Fermi surface via the emission/absorption
of a phonon, see figure on the right. Since both Φ and Z are
even functions on the imaginary axis and the self-energy can
be written as Σ̂(iωn) = iωn[1− Z(iωn)]τ̂0 + Φ(iωn)τ̂z, we can
separate Eq. (2.27) to

Z(iωn) = 1 + T

ωn

∫ ∞
0

dω
2ω · α2F (ω)

(ωn − ωm)2 + ω2

∫
dεk ′

Z(iωm)ωm
[Z(iωm) · ωm]2 + ε2k ′ + Φ(iωm)2 ,

(2.29)

Φ(iωn) = T
∑
ωm

[∫ ∞
0

dω
2ω · α2F (ω)

(ωn − ωm)2 + ω2 − µ
∗
] ∫

dεk ′
Φ(iωm)

[Z(iωm) · ωm]2 + ε2k ′ + Φ(iωm)2 .

Eliashberg equations on imaginary axis

These are the famous Eliashberg equations that have been used to study conventional
superconductivity with strong electron-phonon interaction, see also Chapter 1. The
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enormous success of the Rowell-McMillan inversion algorithm8 for Pb [15] and other strong-
coupling materials [16] is a hallmark of how the theoretical interpretation of experimental
data can lead to a quantitative understanding of solid state systems. To end our discussion
of the Eliashberg equations on the imaginary axis, let us consider the BCS approximation
of (2.29). This is the weak-coupling and static limit without Coulomb repulsion:

• Z(iωn) ≈ 1

• Φ(iωn) ≈ Φ

•
∫∞

0 dω 2ω·α2F (ω)
(ωn−ωm)2+ω2 ≈ 2

∫∞
0 dωα

2F (ω)
ω

:= λ

• µ∗ = 0

Here, λ is the dimensionless electron-phonon coupling constant (also called the mass
enhancement parameter), which gives the correction of the electrons effective mass m∗/m =
1 + λ in the normal state. For strong coupling superconductors λ is typically of order
unity, which is the reason that BCS theory does not work for these materials and strong
deviations from the conclusions made in Section 2.1 occur. In the BCS limit λ� 1, we
find the usual self-consistency equation for the superconducting gap

∆ = Φ = T
∑
ωm

λ ·
∫
dεk ′

∆
ω2
m + ε2k ′ + ∆2 = λ

∫
dεk

∆
2Ek

tanh
(Ek

2T
)
. (2.30)

Thus, one can directly link the electron-phonon coupling constant λ to the phenomenological
parameter introduced in the BCS theory.

2.2.3. Strong-coupling superconductivity for single phonon mode

In order to investigate further the implications of the Eliashberg theory, let us give the
corresponding equations forZR(ω) = Z(ω+i0) and ∆R(ω) = ∆(ω+i0) = Φ(ω+i0)/Z(ω+i0)
on the real axis after the usual analytical continuation iωn → ω + i0 [12]

ZR(ω) = 1− 1
ω

∫ Λ

0
dω1Re

[
ω1√

ω2
1 − [∆R(ω1)]2

][
K+(ω, ω1) +K+(ω,−ω1)

]
,

(2.31)

ZR(ω)∆R(ω) =
∫ Λ

0
dω1Re

[ ∆R(ω1)√
ω2

1 − [∆R(ω1)]2

][
K−(ω, ω1)−K−(ω,−ω1)− µ∗

[
1− 2nF (ω1)

]]
.

Eliashberg equations on real axis

8see Section 1.1.2
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Here, the integral kernel is defined as

K±(ω, ω1) =
∫ Λ

0
dω2 α

2F (ω2)
[
nB(ω2) + nF (−ω1)

]( 1
ω + ω1 + ω2 + i0 ±

1
ω − ω1 − ω2 + i0

)
.

(2.32)

It contains the information about the spectrum α2F (ω) and the thermal occupation of the
phonons. Importantly, the (formally divergent) integrals are cutoff not by the Fermi energy
EF or some fermionic band edge, but by a low-energy cutoff Λ ∼ ωD that is typically
chosen as a multiple of the Debye frequency. This is why we use the effective low-energy
parameters α2F and µ∗, see the discussion in the previous Section 2.2.1. We have to consider
the Eliashberg equations on the real axis, because most of the experimentally accessible
observables are related to the real-frequency functions. For example, the superconducting
DOS (per spin degree of freedom) can be computed via

ν(ε) = 1
V

∑
k

ImGRk (ε)
−π

= νF
−π

Im
∫
dεk

ZR(ε)ε+ εk[
ZR(ε)ε

]2 − ε2k − [ΦR(ε)
]2

= Re
[

νF |ε|√
ε2 −

[
∆R(ε)

]2
]
. (2.33)

Note that the expression is similar to Eq. (2.8) of the BCS theory, apart from the energy-
dependent gap function ∆R(ω) which mirrors the dynamical and retarded nature of the
electron-phonon interaction and of the phonon spectrum. We also want to emphasize that
even for the case of strong electron-phonon coupling, where a significant renormalization
of the bare electronic mass and dispersion takes place, the electronic DOS in the normal
state stays unaffected. This can be seen directly by considering Eq. (2.33) in the limit
∆R(ω) ∼ ΦR(ω) = 0.

γ=ωph/5

γ=ωph/10
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0.0
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1.0
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2
F
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Figure 2.3.: Eliashberg function
for single phonon mode at fre-
quency ωph and with different half-
width γ.

To get a feeling for the impact of the phonon spec-
trum on the fermionic spectra, we follow Scalapino
et al. [11] and discuss the strong-coupling features of
a single phonon mode. The phonon spectral function
is shown on the right and characterized by

α2F (ω) = A0 ·
ω2

ω2 + ω2
0
· γ

(ω − ωph)2 + γ2 . (2.34)

Here, A0 is a normalization factor which will be
fixed by our choice of λ, ωph is the characteristic
phonon energy, ω0 � ωph is some low-energy cutoff
for small phonon energies and γ is the half-width at
half-maximum (HWHM) of the phonon mode. The
dimensionless electron-phonon coupling constant is
chosen to be λ = 1.5 and the Coulomb pseudopo-
tential as µ∗ = 0.1. These parameters are close to the values in Pb [11] and are in
the strong-coupling regime. Note that for our calculations of the spin-fermion model
we do not solve the Eliashberg equations (2.31) directly, but we follow Ref. [108] and
perform the analytical continuation in a different manner using the properties of Laplace
transformations.

In Figure 2.4 we show the computed gap function ∆R(ω) and the electron DOS ν(ω)
calculated from Eq. (2.33) in the zero temperature limit. The gap value ∆0 is defined
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Figure 2.4.: Real (solid lines) and imaginary parts (dashed lines) of the superconducting
gap function ∆R(ω), corresponding electronic DOS (and derivative) compared to the BCS
DOS (black) for T = 0.

as the point where the van-Hove singularity of (2.33) occurs, which yields the condition
∆0 = Re [∆R(∆0)]. From Figure 2.4 we see that the real part of the gap function is
positive and has its maximum at ωph + ∆0, followed by a strong decrease and a sign change.
Thus, Re∆R(ω) follows the effective phonon-induced electron-electron interaction as for
energies9 ω < ωph + ∆0 the electron interacts with the cores at energies smaller than their
characteristic oscillation frequency ωph and creates an in-phase response of the positive
background. This creates the attractive interaction discussed earlier in Section 2.2.1,
followed by a net repulsive interaction for ω > ωph + ∆0 as the ions now oscillate out-
of-phase. The imaginary part of the gap gives the information about the possible decay
mechanisms in the system. It is therefore zero for energies smaller than ωph + ∆0, which is
the minimal energy where a Bogoliubov quasiparticle can emit a phonon and still ends up
in an allowed electronic state with energy larger than ∆0. Due to the van-Hove singularity
in the electronic spectrum there are peaks present at ω = ωph + ∆0 and ω = 2ωph + ∆0,
the latter coming from higher order processes where two phonons are involved. For very
small phonon line-widths γ the peaks and features become more prominent and even third
order features at ω = 3ωph + ∆0 are present. The structures visible in the gap function
transfer to the electronic DOS (also often called tunneling DOS due to the elastic tunneling

9Note that the energy that can be emitted by a fermionic quasiparticle with energy ω in the superconductor
is ω −∆0 since there are no states inside the gap.
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picture described in Chapter 1). The Van-Hove singularity at ω = ∆0 follows the typical
square-root behavior and dominates the BCS DOS, but for frequencies comparable to
ωph + ∆0 deviations are clearly visible. Below ω < ωph + ∆0 the strong-coupling DOS
becomes larger than the BCS DOS as the attractive interaction between the electrons for
energies smaller than the phonon frequency increases the pairing amplitude, whereas the
repulsive interaction and the possible decay of quasiparticles via phonon-scattering reduced
the DOS for energies higher than ωph. The result is a characteristic peak-dip feature around
ωph + ∆0 in the tunneling DOS. Further, in the derivative of the DOS a pronounced dip
occurs at ω = ∆0 + ωph. The effect of changing the Coulomb pseudopotential is not shown
in Figure 2.4, but is obvious if one looks at the the real part of the gap which becomes
negative for higher energies ω � ωph due to the repulsive nature of the Coulomb interaction
between the electrons. Further, increasing µ∗ leads to a reduction of ∆0 and Tc as one
would naturally expect.

2.3. Superconductivity from electronic pairing

In this section, we present analytical models that extend the BCS theory to non-phononic
pairing mechanisms. A prominent example is the spin-fermion model, where spin fluctu-
ations are responsible for the Cooper pairing. Such an electronic pairing can also lead
to non-isotropic gap symmetries and we explicitly discuss an extension of the Eliashberg
theory to interactions with d-wave form factors.

2.3.1. Spin-fermion model

Let us introduce the spin-fermion model as a minimal low-energy theory describing the
antiferromagnetic and superconducting phase in unconventional superconductors. It is
motivated by the closeness of superconducting phase to the antiferromagnetic quantum
critical point in the phase diagrams of many cuprate and iron pnictide superconductors,
see Figure 1.7. The microscopic justification of the spin-fermion model starts with the
Hubbard-model including on-site interactions [109]. When integrating out the high-energies
degrees of freedom it is assumed that the spin-spin channel of the fermion-fermion inter-
action dominates and a collective spin mode is introduced via a Hubbard–Stratonovich
transformation. The bare spin susceptibility is assumed to be of the regular Ornstein-Zernike
form centered around the antiferromagnetic ordering vector Q

χ0(q , ω) = χ0
ξ−2 + (q −Q )2 − ω2/v2

s

. (2.35)

Here, ξ is the spin correlation length (note that we are in the non-magnetically ordered
state), vs ∼ vF the spin velocity and the term quadratic in energy comes from the dynamics
of the high-energy fermions. It is purely real as damping in the low-energy theory can
only come from fermions near the Fermi edge. This dynamic part is then neglected as the
frequency-dependent part that originates from the interaction with the low-energy fermions
will dominate this expression (due to the separation of energy scales). This results in the
approximation χ−1

q ,0 = r + cs(q −Q )2 and the effective action

S =
∫
k

∑
σ

ψ̄k,σ(iωn − εk )ψk,σ + 1
2

∫
q
S qS −qχ

−1
q ,0 + g

∫
k,q

∑
σ,σ′

ψ̄k+q,σ(τ σ,σ′ · S q)ψk,σ′ .

(2.36)
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Here, S q is the collective spin mode, g the spin-fermion coupling constant of the theory
and the momentum sums are restricted to the two-dimensional Brillouin zone that model
the superconducting planes. Starting from this model one can derive the self-consistent
coupled integral equations (see Appendix A) as

Σp = 3g2
∫
q
χqG

(p)
p−q ,

Φp = 3g2
∫
q
χqFp−q ,

Πq = 2g2
∫
k

[
G

(p)
k G

(p)
k+q + FkFk+q

]
.

(2.37)

The dressed propagators read (Zk = 1− Σk/iωn):

G(p)
p = Zpiωn + εp

[Zpiωn]2 − ε2p − Φ2
p

,

Fp = Φp

[Zpiωn]2 − ε2p − Φ2
p

,

χq = 1
χ−1
q,0 −Πq

.

(2.38)

In the derivation of these equations vertex-corrections have been neglected following
Ref. [110], where it was shown that the spin fluctuations for q ≈ Q are slow modes
compared to the fermionic quasiparticles such that we can apply the Migdal theorem.
There are two main differences compared to the conventional Eliashberg theory for phonon-
mediated superconductivity:

1. In the definition of Φp there is a relative + sign compared to Σp in contrast to the
conventional Eliashberg theory. Thus, the points connected by the interaction χq need
to have a relative sign-change for the order parameter, giving rise to unconventional
pairing symmetries.

2. The renormalization of the bosonic spin spectrum via the self-energy Πq is important
for the spin-fermion theory. In contrast to phonons, whose dynamics can to first order
be treated as independent degrees of freedom (Born-Oppenheimer approximation),
the dynamics of the collective spin degrees of freedom is determined by the coupling
to the low-energy fermions. The reason is that this collective mode is made out of
fermions and therefore must be considered in a self-consistent way together with the
fermionic quasiparticles, as described by Eqs. (2.37,2.38).

Solving the set of coupled equations in (2.37) for a general fermionic dispersion is an
expensive computational task, see e.g. Ref.[108]. Instead, we follow Ref. [110] and employ a
hot spot approximation to get a principle idea of the underlying physics of the problem. The
main motivation behind the hot-spot theory is the fact that the spin-fermion model is only
valid for quasiparticles close to the Fermi edge and the interaction is peaked around Q , such
that the most interesting parts of the fermionic Brillouin zone are the so called “hot-spots”.
These are defined as regions on the Fermi surface that are connected by the AFV Q , see
Figure 2.5. Thus, to make the problem analytically treatable it makes sense to restrict
oneself to these regions and to expand the above equations around the hot-spots k h. The
general procedure of this expansion is described in detail in Appendix A. In the following
we define Πm = ΠQ (iΩm), Σn = Σk h(iωn) = Σk h+Q (iωn), Zn = Zk h(iωn) = Zk h+Q (iωn)
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Q

QQ

Q

Figure 2.5.: Generic (unfolded) Fermi surface of the cuprate and iron pnictide super-
conductors including their antiferromagnetic ordering vectors Q . The hot spots are the
points/regions on the Fermi surface that are connected by Q .

and Φn = Φk h(iωn) = −Φk h+Q (iωn). The sign-change in the latter is necessary to find an
attractive pairing channel for the spin-mediated superconductivity as was already mentioned
earlier. The resulting equations are summarized as

Σn = 3g2

(2π)2T
∑
Ωm

∫
dq‖

1
r + csq2

‖ −Πm

∫
dq⊥

Zn−m(iωn − iΩm)
[Zn−m(iωn − iΩm)]2 − (vF q⊥)2 − Φ2

n−m
,

Φn = − 3g2

(2π)2T
∑
Ωm

∫
dq‖

1
r + csq2

‖ −Πm

∫
dq⊥

Φn−m
[Zn−m(iωn − iΩm)]2 − (vF q⊥)2 − Φ2

n−m
,

Πm = g2N

2π2v2
F

T
∑
ωn

∫
dεdε′

ZnZn+miωn(iωn + iΩm)− ΦnΦn+m(
[Zniωn]2 − ε2 − Φ2

n

)(
[Zn+m(iωn + iΩm)]2 − ε′2 − Φ2

n+m

) ,
where vF is the Fermi velocity of the N hot-spots of the Fermi surface. The parameters
contained in this equations can be reduced to a dimensionless coupling constant λ = 3g2

4πvF
√
csr

and a characteristic bosonic energy scale ωsf = r/γ, where we defined γ = g2N
2πv2

F
. The

self-consistency equations can then be written in the compact form

Σn = λT

π

∑
Ωm

∫
dx

1
1 + x2 − Π̃m/ωsf

∫
dε

Zn−m(iωn − iΩm)
[Zn−m(iωn − iΩm)]2 − ε2 − Φ2

n−m

Φn = −λT
π

∑
Ωm

∫
dx

1
1 + x2 − Π̃m/ωsf

∫
dε

Φn−m
[Zn−m(iωn − iΩm)]2 − ε2 − Φ2

n−m
(2.39)

Π̃m = Πm/γ = T

π

∑
ωn

∫
dεdε′

ZnZn+miωn(iωn + iΩm)− ΦnΦn+m(
[Zniωn]2 − ε2 − Φ2

n

)(
[Zn+m(iωn + iΩm)]2 − ε′2 − Φ2

n+m

)
Before solving these equations in the superconducting state, let us quickly recast the prop-
erties of the spin-fermion model in the normal state following the conventions of Ref. [111].
The bosonic self-energy can be calculated as Πm = γ |Ωm|, which translates to a pure Landau
damping term ΠR(Ω) = iγΩ on the real axis. Thus, the spin mode is overdamped in the nor-
mal state, which originates from the gapless fermionic quasiparticles at the hot-spots. This
overdamped boson gives rise to a a self-energy Σn = −i λ√ωsf sign(ω)

[√
ωsf + |ωn| −

√
ωsf
]
,
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Figure 2.6.: Electron and spin spectrum for the hot-spot theory of the spin-
fermion model for different values of the dimensionless coupling parameter
λ in the superconducting (red curves) and in the normal state (blue curve):
(a) Fermionic DOS including the coherence peak and the strong-coupling features at
∆+ωres, (b) Fermionic DOS convoluted with Gaussian distribution with standard deviation
σ = 0.2ωsf to simulate broadening effects, (c) Effective Eliashberg function for the spin-
fermion model that changes significantly when entering the superconducting state, (d)
Spin spectrum at the antiferromagnetic ordering vector Q showing a clear resonance
peak.

which displays a Fermi-liquid behavior for |ωn| � ωsf, whereas for ω � ωsf it possesses an
unusual self-energy Σn = iλsign(ω)

√
|ωn| that exhibits a non-Fermi liquid behavior with

ImΣR(ω) ∼
√
|ω| on the real axis. Nevertheless, the normal state electron DOS remains

constant also with the inclusion of the self-energy term due to the same arguments as in
Eq. (2.33). Only if one allows for a momentum-dependence of the fermion self-energy, the
normal state electronic spectrum shows a weak renormalization.

Next, we solve equations (2.39) numerically in the superconducting state for low tempera-
tures T = 0.1ωsf using the method of Laplace transformations described in Ref. [108]. The
calculated electronic and bosonic spectra are shown in Figure 2.6. Below the transition
temperature Tc a spin gap evolves in the bosonic spectrum as the energy of 2∆ is needed
to break up a Cooper pair and to create a particle-hole excitation, where ∆ := |∆k h |
is the absolute value of the superconducting gap at the hot spot. Thus, spin spectral
weight is shifted to higher energies due to the opening of the superconducting gap ∆
for the fermionic quasiparticles. For a sign-changing gap symmetry ∆k h = −∆k h+Q
a sharp resonance peak occurs near the AFV Q and the energy ωres < 2∆ [112] , as
can be seen in Figure 2.6(d)). This peak can explain the resonance mode seen in the
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neutron scattering experiments discussed in Section 1.3.1. Note that for an s-wave gap
symmetry the spin spectrum would be fully gapped by 2∆, which comes from the different
coherence factors ΦnΦn+m → −ΦnΦn+m in the expression for the bosonic self-energy
Πm. The effective Eliashberg function for the spin-fermion model is obviously given by
g2χ(ω) = Im

∫
dx 1

1+x2−Π̃R(ω)/ωsf
= Im 1√

1−Π̃R(ω)/ωsf
and is shown in Figure 2.6(d). Also

g2χ(ω) displays a sharp feature at ωres, which in turn affects the superconducting spectrum
of the fermions. For the fermionic degrees of freedom a superconducting gap ∆ appears and
a sharp strong-coupling feature in the fermionic DOS ν(ω) evolves at ∆ + ωres due to the
coupling to the spin resonance mode, see red curves of Figure 2.6(a). When convoluted with
a Gaussian distribution to simulate the effect of disorder or experimental broadening, typical
peak-dip strong-coupling features as known from conventional Eliashberg theory arise as
can be seen in Figure 2.6(b). We note that this theory is only valid for the regions around
the hot-spots and can therefore not capture the correct physics of the whole Brillouin zone
and features arising from angular dependencies of the gap function. It is therefore mainly
suitable for explaining the resonance mode occurring in the unconventional superconductors
(for which only the hot-spot regions are important) and for the iron pnictide compounds
with nodeless s± pairing symmetry.

2.3.2. Eliashberg formalism for d-wave superconductivity

When dealing with true d-wave superconductivity, the hot-spot theory obviously fails to
describe the nodal parts of the Fermi surface. Before proceeding with a strong-coupling
analysis of a d-wave superconductor, let us quickly consider the mean-field DOS of a
superconductor with pairing gap ∆k = ∆0 cos(2φ) and isotropic dispersion εk . Here,
φ = arctan(ky/kx) is the angle relative to the positive kx direction. The corresponding
electronic mean-field spectrum per spin can be calculated as

νd(ω) = 1
V

∑
k ,σ

δ(|ω| −
√
ε2k + ∆2

k ) = νF

∫
dε

∫ 2π

0

dφ

2πδ
(
|ω| −

√
ε2 + ∆2

0 cos(2φ)2)
= νF Re

∫ 2π

0

dφ

2π
|ω|√

ω2 −∆2
0 cos(2φ)2

. (2.40)

d-wave

s-wave

Δ0

1

ω/Δ0

ν (ω)

νF

The plot of the mean-field d-wave DOS is shown on the
right side. For energies ω � ∆0 much smaller than the
maximum gap on the Fermi surface, the DOS scales
linear and displays a logarithmic divergence at ω = ∆0.
Therefore, there is still a clear superconducting coher-
ence peak for a d-wave superconductor besides the fact
that it has nodal contributions. However, the nature of
the singularity at the coherence peak is strongly sup-
pressed compared to the s-wave case.

The extension of the Eliashberg framework described in
Section 2.2 to more general pairing symmetries can be done in the following way. Let us
again consider a two dimensional Fermi-liquid and a pairing interaction α2F that cannot be
treated as isotropic. Instead, we assume that the interaction possesses both s- and d-wave
contributions. Thus, when performing the momentum-average over the Fermi surface as in
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Eq. (2.28) this results in the angle-dependent Eliashberg function

α2F (ω, φ− φ′) = α2F (ω)
[
cs + cd · cos

[
2(φ− φ′)

]]
. (2.41)

Here, φ and φ′ are the angles of the two interacting electrons as defined above. Further,
cs/d are the amplitudes of the s- and d-wave pairing channels, respectively. Due to
this non-isotropic form of the interaction both the renormalization function ZR(ω, φ) =
ZRs (ω) + ZRd (ω) cos(2φ) and the gap function ∆R(ω, φ) = ∆R

s (ω) + ∆R
d (ω) cos(2φ) obtain

an s- and d-wave part. However, the authors of Ref. [113] showed that the d-wave part of
the renormalization function ZR(Ω) is rather exotic and small. When assuming a purely
isotropic ZR(ω, φ) = ZR(ω) and a pure d-wave gap ∆R(ω, φ) = ∆R(ω) cos(2φ) the coupled
Eliashberg equations have the form [114]:

ZR(ω) = 1− 1
ω

∫ 2π

0

dφ

2π

∫ Λ

0
dω1Re

[
csω1√

ω2
1 −∆2(ω1) cos2(φ)

][
K+(ω, ω1) +K+(ω,−ω1)

]
,

ZR(ω)∆R(ω) =
∫ 2π

0

dφ

2π

∫ Λ

0
dω1Re

[
cd∆(ω1) cos2(φ)√
ω2

1 −∆2(ω1) cos2(φ)

][
K−(ω, ω1)−K−(ω,−ω1)

]]
,

(2.42)

with the same kernels defined in Eq.(2.32). The Coulomb pseudopotential is not included
here as we assume that the pairing interaction originates from the electronic interactions
between the particles as described in the previous section. The above equations were used
by Refs. [114, 115] to explain the strong dip feature seen on the BiO layers of BSCCO. Let
us quickly point out the important differences between the s-wave and d-wave equations by
comparing the results for a single boson mode. We use a Lorentzian with characteristic
energy ω0 ' 36.5meV and full width at half maximum (FWHM) Γ = 8meV, which was found
in Ref. [115] as best fit10 of the bosonic spectral function for the tunneling spectra in BSCCO,
see inset in Figure 2.7. As can be seen in the blue curve of Figure 2.7, the superconducting
(maximum) d-wave gap ∆0 resulting from the fit is given by ∆ = 32meV. The coherence peak
follows the mean-field log-behavior as was described above and additional strong-coupling
features arise for higher energies. Also for the d-wave case, typical peak-dip strong-coupling
features arise, but the dip is much stronger pronounced due to the logarithmic nature of the
coherence peak. Additionally, at the energy ∆0 + ω0 a strong dip occurs, which is followed
by a weak hump feature. Such characteristic have also been seen in momentum-resolved
Eliashberg calculations [108, 116].

In Figure 2.7 we also show the curve of the corresponding s-wave DOS with the same
gap amplitude ∆0

11 in red. In contrast to the d-wave case, for the s-wave superconductor
∆0 +ω0 is the position of the maximal slope of the strong-coupling features. In comparison
with the s-wave plots in Section 2.2.3, we here considered a bosonic mode with characteristic
energy ω0 ≈ ∆ comparable to the superconducting gap. Therefore, the peak position of
the strong-coupling peak-dip feature is very close to the coherence peak such that the
additional electronic spectral weight from to the peak at ω ≈ ∆0 + ω0 has to be equated
by a strong dip that occurs for energies ω � ∆0 + ω0.

10The authors of Ref. [115] only considered the fit to a Lorentzian function.
11Note, that we needed to increase the amplitude of the Eliashberg function for the s-wave case to obtain

the same gap value ∆0 = 32meV as for the d-wave solutions. The reason for this is, that the average gap
value 〈∆ 〉 =

∫
0π/4

dφ
π/4 ∆0 cos(2φ) = 2/π ·∆0 for the d-wave case is of course smaller than the maximum

gap ∆0.
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Figure 2.7.: Comparison of strong-coupling DOS for an s-wave and d-wave supercon-
ductor with gap ∆0 = 32meV for single boson mode with ω0 = 36.5meV and FWHM
Γ = 8meV (see inset).





3. Theoretical description of elastic &
inelastic electron tunneling

In this chapter the theoretical framework for inelastic tunneling is presented. It is shown that
the effective low-energy theory of a tunneling junction naturally possesses two contributions:
(i) An elastic transition where the initial and final energy of the electron on the left and
on the right electrode is conserved, and (ii) the inelastic tunneling process involving
the emission/absorption of a collective bosonic mode. We derive this effective theory
by integrating out high-energy fermions and show that this inelastic tunneling events
correspond to transitions involving a virtual off-shell state far away from the Fermi surface
of the investigated material. Employing the Keldysh perturbation theory, we derive the
explicit forms for the elastic and inelastic tunneling currents, which will then be interpreted
in terms of distinct physical tunneling processes. Finally, we discuss the implications of
inelastic tunneling processes for normal-state measurements and how temperature and
experimental recording techniques set limits for the resolution of IETS.

3.1. Derivation of the effective tunneling Hamiltonian

In Chapter 1 we already discussed the transfer Hamiltonian approach that describes the
elastic transition of an electron from one electrode to the other assuming two initially
separated electrodes. We now want to start with a purely elastic high-energy tunnel model
and derive the corresponding low-energy theory by integrating out high-energy degrees of
freedom [25]. The high-energy Hamiltonian has the form

Ĥ =
∑
k ,σ

[
εsk ŝ
†
k ,σ ŝk + εtk t̂

†
k ,σ t̂k

]
+ ĤΦ +

∑
k ,k ′
σ,σ′

∑
n

αnk ,σ,k ′,σ′ ŝ
†
k ,σ ŝk ′,σ′Φ̂

n
k−k ′

+
∑
k ,k ′
σ

[
tek ,k ′ ŝ

†
k ,σ t̂k ′,σ′ + (tek ′,k )∗︸ ︷︷ ︸

t̄e
k ,k ′

t̂†k ,σ ŝk ′,σ
]
. (3.1)

Here, ŝ†k ,σ and t̂†k ,σ are the creation operator1 of an electron in the sample s and tip t,
respectively, and the momentum sums cover the whole Brillouin zone. The electrons in the
sample s interact with the collective bosonic degree of freedom Φn

q , where n numerates the
1We restrict ourselves to the case of one band in both electrodes here to simplify the derivation, however
the implementation of multiple bands is straightforward and can be done later in the effective action. If
one wishes, we can see σ not only as spin index, but as a multitude of other possible quantum numbers
as band indices. Also, we omit the normalization of the momentum sums with the volume Vs/t of the
tip and superconductor in the following, which is implicitly incorporated.

35
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different branches of the boson and αnk ,σ,k ′,σ′ stands for the corresponding electron-boson
coupling. The unperturbed dynamics of the boson is described by the part Ĥ0

Φ. The elastic
tunneling amplitude is defined as tek ,k ′ . We note that we do not consider the Coulomb
interaction between the electrons as they will not give rise to inelastic tunneling events. We
will however include the electronic repulsion later in the effective action via the Coulomb
pseudopotential. Deriving the low-energy action is most transparent in the path integral
formalism, thus we write down the action of the Hamiltonian (3.1)

S = −
∫
k,k′

Ψ̂†k
[
Ĝ−1
k,0δk,k′ + Λ̂k,k′

]
Ψ̂k′ + SΦ , (3.2)

where we defined the spinor Ψ̂T
k = (sk, tk) and combined energy, momentum and spin in

the index k. In this basis, the bare electronic propagator and the vertex can be written
down as

Ĝ−1
k,0 =

(
G−1
k,s,0 0
0 G−1

k,t,0

)
with G−1

k,s/t,0 = iωn − εs/tk ,

Λ̂k,k′ =
(∑

n α
n
k,k′Φn

k,k′ tek,k′
t̄ek,k′ 0

)
with tek,k′ = tek ,k ′δk0,k′0

.

(3.3)

We now divide the fermionic fields into low-energy modes and high-energy modes with
respect to the momentum cutoff kEM of the low-energy Eliashberg theory,

Ψ̂k =
{

Ψ̂<
k for |k − k F | < kEM ,

Ψ̂>
k for |k − k F | > kEM .

(3.4)

Note, that here we assume the momentum cutoff for the tip and sample to be the same. We
could easily assume different momentum cutoffs, but as we will see later the high-energy
states of the tip will have no influence on the low-energy theory. The action (3.2) can be
rewritten as

S = −
∫
k,k′

(
Ψ̂<
k

Ψ̂>
k

)†([Ĝ�k,k′ ]−1 Λ̂k,k′
Λ̂k,k′ [̂G�k,k′ ]−1

)(
Ψ̂<
k′

Ψ̂>
k′

)
+ SΦ , (3.5)

where the bare dynamics of the low-energy and high-energy sectors are governed by the
propagators

[Ĝ�/�k,k′ ]−1 = [Ĝ</>k,0 ]−1δk,k′ + Λ̂k,k′ (3.6)

with the free low- and high-energy propagators

[Ĝ<k,0]−1 = Ĝ−1
k,0 ·Θ(kEM − |k − k F |) ,

[Ĝ>k,0]−1 = Ĝ−1
k,0 ·Θ(|k − k F | − kEM) .

(3.7)

The formal solution of the propagators of Eq. (3.6) is for the high-energy field

Ĝ�k,k′ = Ĝ>k,0δk,k′ −
∫
p
Ĝ>k,0Λ̂k,pĜ�p,k′ (3.8)

and similarly for the low-energy sector. The non-diagonal elements Λ̂k,k′ couple the high-
and low-energy sector and will give rise to additional inelastic vertices for the tunneling.
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We are now in the position to integrate out the high-energy fields ψ̂> and using the
identity [102] for Grassmann fields ψ, η

∫
D(ψ̄, ψ)e

−

(
ψ̄
η̄

)T(
â b̂

b̂ d̂

)(
ψ
η

)
= det (â)e−η̄(d̂−b̂â−1b̂)η . (3.9)

we end up with the effective low-energy action

e−Seff =
∫
D(Ψ̂>, [Ψ̂>]†)e−S

Seff = SΦ − tr ln
[
Ĝ�]︸ ︷︷ ︸

SeffΦ

−
∫
k,k′

[Ψ̂<
k ]†
(

[Ĝ�k,k′ ]−1 −
∫
p,p′

Λ̂k,pĜ�p,p′Λ̂p′,k′
)

Ψ̂<
k′ . (3.10)

Let us now interpret the resulting action. The first two terms summarized in Seff
Φ describe

the renormalization of the boson mode and of the electron-boson coupling due to the
coupling to the high-energetic particle-hole excitations of the system, see Figure 3.1(e).
Thus, the bosonic spectra that have to be considered in the following represent the effective
low-energy collective modes. Importantly, the polarization operator does not depend on
the elastic tunneling elements te, which only occur in higher-order terms. Therefore, the
screening to leading order is not affected by the presence of the tunneling term in the
Hamiltonian. The second part involving the Ĝ�k,k′ propagator describes the low-energy
theory of the uncoupled t and s fermions as well as the coupling of the s electrons to the
boson as becomes apparent when inserting expressions (3.3) and (3.6). The last term of
(3.10) gives rise to additional interaction vertices in the effective low-energy theory. This
becomes apparent when we write down all terms via∫
p,p′

Λ̂k,pĜ�p,p′Λ̂p′,k′ =
(∑

n α
n
k,pΦn

k,p tek,p
t̄ek,p 0

)(
[Gssp,p′ ]� [Gstp,p′ ]�
[Gtsp,p′ ]� [Gttp,p′ ]�

)(∑
m α

m
p′,k′Φm

p′,k′ tep′,k′
t̄ep′,k′ 0

)

=
(∑

n,m α
n
k,pΦn

k,p[Gssp,p′ ]�αmp′,k′Φm
p′,k′

∑
n α

n
k,pΦn

k,p[Gssp,p′ ]�tep′,k′
tek,p[Gssp,p′ ]�

∑
m α

m
p′,k′Φm

p′,k′ 0

)
+O([te]2) . (3.11)

Here, we used the fact that Gst, Gts ∼ te which can be directly read off from Eq. (3.8).
Terms of higher order than te in the tunneling action can be neglected as they will appear
in the tunneling action only in higher order. The additional vertices are presented in
Figure 3.1(a)-(c). The (1,1) component of (3.11) described the scattering of a low-energy
electron to an off-shell state via the scattering off a boson followed by another boson-
scattering back to a state near the Fermi surface. These vertices will give rise to new
contributions to the self-energy such as

(3.12)

and

=

=
(3.13)
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=

=

+

(a) (b)

(c) (d)

+
(e)

Figure 3.1.: Interaction vertices generated by integrating out the high-energy
fermions for the effective low-energy theory: Solid lines represent the low-energy
fermions and dashed lines the high-energy fermions that were integrated out. The Feynman
diagram shown in (a) show the two-boson scattering vertex involving an off-shell state.
The diagrams (b) and (c) describe the additional inelastic tunneling matrix element
that emerge in the low-energy theory. The graph (d) represents the dressed high-energy
electron propagators and (e) the renormalization of the bosons in the superconductor due
to the high-energy fermionic quasiparticles. Taken from Ref. [25].

where the solid lines represent the low-energy electrons, the dashed lines the high-energy
electrons, the wavy lines the bosonic propagator χ, and the curly lines a composite bosonic
propagator χ̃ consisting of two bosonic interactions with an intermediate high-energy off-
shell electronic state G� [117]. Since the off-shell state is far away from the Fermi surface,
we can neglect the dynamics of the propagator and approximate G� ∼ 1/Eoff, where Eoff is
the characteristic energy scale of the electronic off-shell states. Therefore, the self-energy in
(3.12) has no dynamics and can be absorbed into the chemical potential to give rise to the
effective low-energy dispersion of the electronic quasiparticles. In contrast, the composite
propagator in (3.13) gives rise to a dynamical self-energy. The corresponding imaginary
part (and thus the effective spectral weight) of the retarded composite propagator at T = 0
is given by [117]

Im χ̃Rq (ω) = 1
E2
off

1
V

∑
q ′

∫
dΩ
2π |αq

′ |2 ImχRq ′(Ω) |αq−q ′ |2 ImχRq−q ′(ω − Ω)

∼ 1
V E2

off

α4

ω0
∼ V

(
νFα

2

ω0

)2
ω0 ∼ V · λ2 · ω0 . (3.14)

Here, we considered for simplicity only one bosonic mode, approximated the bosonic
propagator to be inversely proportional to the characteristic bosonic energy scale ω0 (in
the case of phonons this would correspond to the Debye frequency) as well as Eoff ∼ EF ∼
(V νF )−1. We also introduced the dimensionless coupling constant λ ∼ α2νF /ω0 similar to
Section 2.2. In comparison to the bare bosonic interaction between the fermions that is
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governed by

α2
q Imχq (ω) ∼ α2

ω0
= V

(
α2

EFV ω0

)
EF ∼ V · λ · EF . (3.15)

We see that the composite propagator is suppressed by a small fraction ω0/EF � 1. Thus,
we can neglect the (1,1) part of the matrix in Eq. (3.11) as it will only give rise to interactions
that are small compared to the bare electron-boson interaction of the low-energy theory.
Furthermore, if the above estimate were not valid (e.g. for ω0 ∼ EF ) one would formally
combine the phonon and composite propagator to a new effective phonon propagator that
describes the coupling of the low-energy electrons to the phonons.

Let us now have a closer look at the off-diagonal parts of the matrix in Eq. (3.11). These
give rise to new inelastic tunneling channels that are sketched in Figure 3.1(b) and (c).
Since we are only interested in tunnel vertices of order te it is sufficient to expand the
off-shell propagator (3.8) to zeroth order in te:

[Gssk,k′ ]� = G>k,s,0δk,k′ −
∫
p
G>k,s,0

∑
n

αnk,pΦn
k,p[Gssp,k′ ]� +O(te)

= G>k,s,0δk,k′ −G
>
k,s,0

∑
n

αnk,k′Φn
k,k′G

>
k′,s,0

+
∫
p
G>k,s,0

∑
n

αnk,pΦn
k,pG

>
p,s,0

∑
m

αmp,k′Φm
p,k′G

>
k′,s,0 + . . . (3.16)

Inserting this into Eq. (3.11) we find a new kind of vertex that appears in the low-energy
action of the form

δSeff =
∫ <

k,k′
s̄<k

∫ >

p,p′
αnk,pΦn

k,p[Gssp,p′ ]�tep′,k′t<k′ (3.17)

=
∫ <

k,k′
s̄<k

(∫ >

p

∑
n

αnk,pΦn
k,pG

>
p,s,0t

e
p,k′

)
t<k′ (i)

−
∫ <

k,k′
s̄<k

(∫ >

p,p′

∑
n

αnk,pΦn
k,pG

>
p,s,0

∑
m

αmp,p′Φm
p,p′G

>
p′,s,0t

e
p′,k′

)
t<k′ (ii)

+ . . .

The physical processes behind these terms are the following: (i) We start with a state k ′ in
the tip and tunnel elastically to an off-shell state p far away from the Fermi surface (with
the probability tep,k), which is then scattered inelastically via the excitation/absorption
of a boson Φ to a state k which again lies close to the Fermi surface2, see Figure 3.2.
(ii) The same process as (i), but after the tunneling process the off-shell electron is first
scattered inelastically via a boson to another high-energy state and then again scattered
to the low-energy state k . There are also inelastic tunneling processes that involve three
or more inelastic scatterings, but let us first focus on the leading-order term (i). Similar
to the estimate above, we approximate the off-shell propagator as non-dynamical object
G>p,s,0 = (iω − εsp )−1 ≈ −1/Eoff, where Eoff is the typical energy scale of the high-energy
electrons. In this case, the vertex reads

δS
(i)
eff ≈

∫ <

k,k′
s̄<k

(∫ >

p

∑
n α

n
k,pΦn

k,pt
e
p,k′

−Eoff

)
t<k′ , (3.18)

2A similar inelastic tunneling process involving an intermediate high-energy state has been described in
Ref. [118], where IETS was used to detect phonon-modes in graphene sheets on Si-oxide.
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Figure 3.2.: Sketch of elastic and inelastic tunneling: The elastic tunneling process
describes a tip electron that tunnels directly to a state near the Fermi surface of the
superconductor. In contrast, inelastic tunneling involves the tunneling to an intermediate
off-shell state followed by the emission/absorption of a boson that scatters the electron to
a state near the Fermi surface. Taken from Ref. [25].

where the k ,k ′ momenta are restricted to low-energy states and the p momentum to high
energies. In general, the momenta q = p − k that connect the low- and high-energy states
cover most of the Brillouin zone, so we approximate the corresponding integrals as

δS
(i)
eff ≈

∫ <

k,k′
s̄<k

(∫
q

αnqΦn
q t

e
k+q,k′

−Eoff

)
t<k′ . (3.19)

We are now in the position to rewrite the resulting low-energy action to an effective transfer
Hamiltonian

Ĥeff = ĤEM
0 + Ĥtun (3.20)

where HEM
0 described the dynamics of uncoupled low-energy systems of the tip and

the superconductor (via the Eliashberg-Migdal theory) and the tunneling part of the
Hamiltonian3

Ĥtun =
∑
k ,k ′
σ

[
tek ,k ′ ŝ

†
k ,σ t̂k ′,σ +

∑
q ,n,σ′

ti(k ,σ),(k ′,σ′),q ,nŝ
†
k ,σ t̂k ′,σ′Φ̂

n
q

]
+ h.c. (3.23)

now consists of an elastic and an inelastic part. The inelastic tunneling amplitude reads

ti(k ,σ),(k ′,σ′),q ,n =
tek+q ,k ′α

n
q ,σ,σ′

−Eoff
. (3.24)

Such an inelastic tunneling term has been phenomenologically proposed in the litera-
ture [119] to explain phonon signatures seen in tunneling spectra through barriers, see also
Section 1.2. Our theory would also work for such a case, see discussion below, however
3Higher-order inelastic contributions involving the interaction with j bosons have the structure:

Ĥi,(j)
tun =

∑
k ,k ′
σ

∑
q 1,...,q j
n1,...,nj

ti(k ,σ),(k ′,σ′),q 1,n1,...q j ,nj ŝ
†
k ,σ t̂k ′,σ′Φ̂

n1
q 1 . . . Φ̂

nj
q j + h.c. (3.21)

with inelastic tunneling matrix element

ti(k ,σ),(k ′,σ′),q 1,n1,...q j ,nj =
tek +q 1+...q j ,k ′α

n1
q 1,σj−1,σ′

. . . α
nj
q j ,σ,σ1

(−Eoff)j . (3.22)
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our results imply an even more interesting aspect: STM into metals in general consists of
elastic contributions that describe the electronic DOS, but also of inelastic contributions
which can give direct informations about the bosonic spectrum in the metal!

In the next section, we will calculate the corresponding tunneling currents that can be
derived from the effective tunneling Hamiltonian (3.20), but before let us briefly summarize
the main conclusion of this section:

1. When using an effective low-energy theory for describing the properties of a solid state
system (e.g. the BCS or Eliashberg-Migdal theory for describing superconductivity),
there will be both elastic and inelastic contributions to the electron tunneling process.
The elastic tunneling process describes the transition of an electron from the tip to
a state near the Fermi surface, whereas for the inelastic process the electron first
tunnels to an off-shell high-energy state followed by the inelastic scattering to a state
near the Fermi surface via the excitation or absorption of a boson, see Figure 3.2.

2. The tunneling amplitude of the inelastic process is linked to the one of the elastic
process. For the elastic tunneling amplitude te, the inelastic process has the amplitude
teα/Eoff, where α is the electron-boson coupling and Eoff is the typical energy scale
of the off-shell electrons.

3. The presence of tunneling does not affect the dynamics of neither the electronic nor
the bosonic particles for the current in leading order to the tunneling amplitude te.

Let us conclude this section by remarking that the presented inelastic transfer Hamiltonian
is not only valid for STM junctions. Our derivation was based on the assumption that
the elastic electron tunneling occurs directly from the tip t to the sample s. However,
we could also consider the case that there is an intermediate oxide junction or surface
impurity atoms [120], which naturally contain high-energy electronic states and low-energy
bosonic excitations like phonons. When integrating out the high-energy degrees of freedom
there can now also be transitions where the oxide off-shell states serve as the intermediate
virtual states for the inelastic tunneling process as is depicted in Figure 3.3. This opens an
additional inelastic channel, which can easily be captured in our theory by adding another
barrier boson spectrum in the inelastic tunneling expression that is derived in the next
section.

left 
electrode

right
electrode

insulating
barrier

high-energy states

Figure 3.3.: Sketch of inelastic tunneling in the barrier: The inelastic transition
is mediated by an intermediate high-energy state of the insulator, from where it can
inelastically scatter to the right electrode.
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3.2. Elastic and inelastic tunneling currents

In this section we will summarize the important steps in the derivation of the elastic and
inelastic currents from the effective low-energy tunneling Hamiltonian (3.21) of the previous
section and discuss the physical elastic and inelastic tunneling processes that can occur for
an STM setup. We will perform a perturbation theory in the tunneling amplitude te, based
on Ref. [24], using the Keldysh technique, which is briefly summarized in Appendix C. For
a STM setup, the tunneling current4 is given by the elementary charge times the change of
the number of electrons n̂s = ∑

k ,σ ŝ
†
k ,σ ŝk ,σ in the superconductor

I(t) = e
d

dt
〈 n̂s(t) 〉 = e

d

dt

tr
(
ρ̂(t)n̂s

)
tr
(
ρ̂(t)

) = e
d

dt

tr
(
ρ̂(t)n̂s

)
tr
(
ρ̂0
) = e

d

dt
tr
(
ρ̂(t)n̂s

)
, (3.25)

where ρ̂(t) = Û(t,−∞)ρ̂0Û
†(t,−∞) is the time-dependent density matrix in the Heisenberg

picture with the time-evolution operator Û and the (normalized) density matrix ρ̂0 =
e−βĤ/tr(e−βĤ) of the system in thermal equilibrium. Here, we assume that the tunneling
current is sufficiently small such that the steady state of the connected system does not
affect the thermal equilibrium of the tip and sample subsystems and therefore the tunneling
current is not time-dependent I(t) = I(0). Using the Heisenberg equation of motion it is
possible to express the current I = 〈 Î(0) 〉 as the expectation value of the current operator

Î(t) = e

i

∑
k ,k ′
σ,σ′

[
T(k ,σ),(k ′,σ′)(t)ŝ†k ,σ(t)t̂k ′,σ′(t)− [T(k ,σ),(k ′,σ′)(t)]∗t̂†k ′,σ′(t)ŝk ,σ(t)

]
, (3.26)

with T(k ,σ),(k ′,σ′)(t) = tek ,k ′δσ,σ′ +∑
q ,n t

i
(k ,σ),(k ′,σ′),q ,nΦ̂n

q (t). In Appendix B, the detailed
calculation of this expectation value using the Keldysh formalism is shown. When applying
a voltage V between the tip and the sample, we can separate the elastic and inelastic
contribution to the tunneling current as

Ie(V ) = 2πe
∫ ∞
−∞

dε
∑

k ,k ′,σ

|tek ,k ′ |
2
As,k ,σ(ε)At,k ′,σ(ε− eV )

[
nF (ε− eV )− nF (ε)

]
(3.27)

I i(V ) = 2πe
∫ ∞
−∞

dεdω
∑

k ,k ′,q
σ,σ′,n

|ti(k ,σ),(k ′,σ′),q ,n|
2× (3.28)

(
Aq ,n(ω)As,k ,σ(ε)At,k ′,σ′(ε− ω − eV )nF (ε− ω − eV )nB(ω)

[
1− nF (ε)

]
−Aq ,n(ω)As,k ,σ(ε)At,k ′,σ′(ε− ω − eV )nF (ε)

[
1 + nB(ω)

][
1− nF (ε− ω − eV )

]
+Aq ,n(ω)As,k ,σ(ε)At,k ′,σ′(ε+ ω − eV )nF (ε+ ω − eV )

[
1 + nB(ω)

][
1− nF (ε)

]
−Aq ,n(ω)As,k ,σ(ε)At,k ′,σ′(ε+ ω − eV )nF (ε)nB(ω)

[
1− nF (ε+ ω − eV )

])
.

Here, the spectral weight functions are defined in the usual way via

As/t,k ,σ(ω) = − 1
π
ImGRs/t,k ,σ(ω) ,

Aq ,n(ω) = − 1
π
ImDR

q ,n(ω) ·Θ(ω) ,
(3.29)

4as measured from the tip to the superconductor
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with the electronic and bosonic retarded Green’s functions

GRs,k ,σ(τ) = −i〈 [ŝk ,σ(τ), ŝ†k ,σ(0)] 〉Θ(τ)
DR
q ,n(τ) = −i〈 [Φ̂q ,n(τ), Φ̂−q ,n(0)] 〉Θ(τ) .

(3.30)

Note that the bosonic spectral function is confined to positive energies as the information
of the negative energies is redundant for the boson spectrum. Such negative energies
correspond to the absorption of a boson that is automatically captured by the Bose
functions in the expression (3.28) of the inelastic tunneling current. Before we discuss the
different physical processes described by (3.27,3.28), we apply the usual approximation
that the elastic tunneling amplitude is basically constant tek ,k ′ ≈ te. In general the
tunneling amplitude depends on both the energy and the wavevector of the tunneling
quasiparticle [121, 122]. However, as the the applied biases (of the order of the Debye
frequency for conventional superconductors) are usually small compared to the band width
and work function of the system, the approximation that there is no energy dependence
for the tunneling matrix element holds well. Furthermore, for the case of an STM there is
no quasimomentum conservation (see also Section 4.1.1) and since the wave-vectors are
mostly of the order of the Fermi momentum, also the dependency on the in- and outgoing
momenta may be insignificant. We can also reformulate this approximation: We assume
that the energy and momentum dependencies of the corresponding spectral functions A(ω)
defined in (3.29) are much stronger than the variations of the tunneling matrix elements in
the energy range of interest. Within this picture, the inelastic tunneling element becomes
ti(k ,σ),(k ′,σ′),q ,n = −teαn

q ,σ,σ′/Eoff and we define the spin-resolved density of states of the
sample/tip and weighted bosonic spectrum

νs/t,σ(ω) =
∑
k

As/t,k ,σ(ω) ,

Bσ,σ′(ω) =
∑
q ,n

|αnq ,σ,σ′ |
2Aq ,n(ω) .

(3.31)

The corresponding elastic and inelastic currents can then be conveniently expressed as

Ie(V ) = 2πe |te|2
∫ ∞
−∞

dε
∑
σ

νs,σ(ε)νt,σ(ε− eV )
(
nF (ε− eV )[1− nF (ε)]− [1− nF (ε− eV )]nF (ε)

)
I i(V ) = 2πe |te|2

∫ ∞
−∞

dε dω
∑
σ,σ′

× (3.32)

(
Bσ,σ′(ω)νs,σ(ε)νt,σ′(ε− ω − eV )nF (ε− ω − eV )nB(ω)

[
1− nF (ε)

]
−Bσ,σ′(ω)νs,σ(ε)νt,σ′(ε− ω − eV )nF (ε)

[
1 + nB(ω)

][
1− nF (ε− ω − eV )

]
+Bσ,σ′(ω)νs,σ(ε)νt,σ′(ε+ ω − eV )nF (ε+ ω − eV )

[
1 + nB(ω)

][
1− nF (ε)

]
−Bσ,σ′(ω)νs,σ(ε)νt,σ′(ε+ ω − eV )nF (ε)nB(ω)

[
1− nF (ε+ ω − eV )

])
.

This is the most general formula for the expression of the elastic and inelastic tunneling
current and is also valid for systems with broken time-reversal symmetry where the spin-
degeneracy is broken. However, in what follows, we will only consider the case where the
fermionic spectra νs/t,σ(ω) = νs/t(ω) have no spin dependency and define the normalized
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electronic DOS ν̃s/t and the dimensionless bosonic tunnel spectrum5 α2Ftun

ν̃s/t(ω) =
νs/t(ω)
ν
s/t
F

,

α2Ftun(ω) = νsF
2
∑
q ,n
σ,σ′

|αnq ,σ,σ′ |
2Aq ,n(ω) ,

(3.33)

where νs/tF is the normal state sample/tip DOS at the Fermi surface. The corresponding
currents are given by

Ie(V ) = σ0

e

∫ ∞
−∞

dε ν̃s(ε)ν̃t(ε− eV )
(
nF (ε− eV )[1− nF (ε)]− [1− nF (ε− eV )]nF (ε)

)
I i(V ) = σ0

e

1
E2
offν

s
F

∫ ∞
−∞

dε dω× (3.34)(
α2Ftun(ω)ν̃s(ε)ν̃t(ε− ω − eV )nF (ε− ω − eV )nB(ω)

[
1− nF (ε)

]
(i)

− α2Ftun(ω)ν̃s(ε)ν̃t(ε− ω − eV )nF (ε)
[
1 + nB(ω)

][
1− nF (ε− ω − eV )

]
(ii)

+ α2Ftun(ω)ν̃s(ε)ν̃t(ε+ ω − eV )nF (ε+ ω − eV )
[
1 + nB(ω)

][
1− nF (ε)

]
(iii)

− α2Ftun(ω)ν̃s(ε)ν̃t(ε+ ω − eV )nF (ε)nB(ω)
[
1− nF (ε+ ω − eV )

])
. (iv)

Here, we defined the conductance constant σ0 = 4πe2ν0
t ν

0
s |te|

2, which is the purely elastic
conductance for a flat sample and tip DOS. Expressions very similar to (3.34) have
been derived for (barrier-)phonon IETS [119, 123, 124] and for normal-state cuprate
tunneling [125] of planar junction. The result also agrees well with studies on inelastic
tunneling in Josephson-contacts consisting of an SIS junctions [126], but we will only focus
on SIN junctions in the following. Since the expressions in Eq. (3.34) for the elastic and
inelastic current are one of the main results of this thesis, let us take a deep breath and
investigate the contributions for the elastic and inelastic currents in more detail.

3.2.1. Elastic tunneling

The term for the elastic tunneling in Eq. (3.34)
is of the usual form (1.1) that could be derived
using Fermi’s Golden Rule. It simply counts the
number of occupied states in the tip electrode
whose energies lie above the chemical potential
µS of the sample and multiplies this with the
quantized conductance e2/~, see also Figure 1.2.
When we assume the tip DOS ν̃t(ω) = 1 to be
constant in the energy range of interest, we can
5In Section 4.1.2 we discuss the relation between the Eliashberg function α2F (ω) and the tunneling
spectrum α2Ftun(ω) and show for a specific example that they coincide qualitatively.
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easily calculate the corresponding differential conductance

σe(V ) = dIe(V )
dV

= −σ0

∫ ∞
−∞

dε ν̃s(ε)n′F (ε− eV )

T=0= σ0 · ν̃s(eV ) , (3.35)

The elastic conductance is therefore proportional to the thermally smeared DOS6 of the
sample, see also the introductory Chapter 1. In the case of conventional elastic SIN
tunneling the BSC DOS is measured by the conductance, see picture above.

3.2.2. Inelastic tunneling

The inelastic contribution to the tunneling current in (3.34) have been written down in such
a way that the different physical processes are separated. In Figure 3.4 the four different
inelastic transitions are depicted7:

(i) An electron tunnels from the tip to the sample via the absorption of a boson in the
sample.

(ii) An electron tunnels from the sample to the tip via the (spontaneous and stimulated)
emission of a boson in the sample.

(iii) An electron tunnels from the tip to the sample via the (spontaneous and stimulated)
emission of a boson in the sample .

(iv) An electron tunnels from the sample to the tip via the absorption of a boson in the
sample.

We emphasize that one could of course also imagine the same inelastic process with the
absorption/emission of a boson in the tip. In order to prevent this from happening, in IETS
one usually uses a very simple metal such as tin or gold that has no significant coupling
to any collective bosonic mode as phonons, magnons, spin excitations, etc.. In the zero
temperature limit only the spontaneous emission of a boson via the process (2) or (3) is
allowed because there are no excited bosons.

3.3. IETS in the normal state

Before proceeding with the general consequences of inelastic processes for tunneling experi-
ments into superconducting samples, let us first consider STM tunneling in the normal-state
of an investigated metal with the assumption that the normal-state DOS ν̃s/t(ω) = 1 of the
sample and the tip are flat. In the T = 0 case the inelastic tunneling current in Eq. (3.34)
can then be simplified to

I i(V ) = σ0

e

1
E2
offν

s
F

∫ ∞
−∞

dε dω α2Ftun(ω)
(
nF (ε+ ω − eV )

[
1− nF (ε)

]
− nF (ε)

[
1− nF (ε− ω − eV )

])
(3.36)

and the corresponding second derivative is
6The FWHM of the thermal smearing function n′F (x) is given by 3.5T .
7We remind the reader that the bosonic spectrum α2Ftun(ω) ∼ Θ(ω) is defined only on the positive branch.
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Figure 3.4.: Basic inelastic tunneling processes involving the excitation and the absorp-
tion of a collective bosonic excitation, e.g. a phonon in the investigated substrate. Taken
from Ref. [24].

d2I i(V )
dV 2 = e

E2
offν

s
F

σ0sign(V )α2Ftun(e |V |) . (3.37)

Since the second derivative of the elastic tunneling current d2Ie(V )/dV 2 ∼ ν ′s(eV ) = 0
vanishes above Tc as is apparent from Eq. (3.35), the total d2I(V )/dV 2 = d2I i(V )/dV 2

spectrum that is seen in the normal state consists only of the inelastic contribution. It
is directly proportional to the bosonic tunnel spectrum α2Ftun , thus normal-state STM
tunneling can be used to directly access the DOS of the dominant bosonic degrees of
freedom of a system. We emphasize, that for the case of phonons the tunnel spectrum
α2Ftun 6= α2F does not coincide with the Eliashberg function, as defined in (2.28), due
to a different kind of momentum average. However, in general, it should capture the
main features of the Eliashberg functions and we will discuss this issue later for the case
of a realistic phonon spectrum in Section 4.1.2, which has also been confirmed by the
experimental STM spectra seen on Pb [19, 20, 24]. Furthermore, the bosonic spectra
of molecules and barrier phonons seen in planar junctions of metals [17, 18, 49, 50] can
be understood from Eq. (3.37) because, as explained earlier, our inelastic theory is also
applicable to tunnel junctions with an insulating barrier, where the intermediate off-shell
state sits in the barrier.

Let us proceed our investigation of the normal-state properties of IETS by having a closer
look at the temperature dependence of the inelastic tunneling current. When allowing for
finite temperatures T ∼ ω0 of the order of the characteristic bosonic energy, not only the
spontaneous emission of bosons, but also the absorption and stimulated emission is an
allowed process during the tunneling transition. Also for finite temperatures, the elastic
conductance σe(V ) = σ0 is constant in the normal state (for flat electronic DOSs), thus
any variations of the differential conductance originates from inelastic tunneling processes.
Using the inherent symmetry properties nF (ε) + nF (−ε) = 1 of the Fermi function, we can
derive the following expression for inelastic tunneling conductance

σi(V ) = σ0
E2
offν

s
F

∫ ∞
0

dω α2Ftun(ω)K i(ω, V ) (3.38)

with the integral kernel

K i(ω, V ) =
∫ ∞
−∞

dε
[
n′F (ε− ω − eV ) + n′F (ε− ω + eV )

]
·
[
nB(ω) + nF (ε)

]
= nB(ω)− nB(ω + eV ) + ω + eV

4T sinh2(ω+eV
2T

) +
{
V → −V

}
(3.39)
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Figure 3.5.: Convolution kernels for inelastic tunneling spectrum d2I i(V )/dV 2 due to
temperature (left) and the lock-in technique (right).

As we have seen in Eq. (3.37), the most convenient quantity to look at for IETS is the
second derivative of the tunneling current, which is then given by

d2I i(V )
dV 2 = eσ0

E2
offν

s
F

∫ ∞
0

dω α2Ftun(ω)dK
i(ω, V )
dV

(3.40)

In comparison with Eq. (3.37) we see that for finite temperatures the bosonic tunneling
spectrum has to be convoluted with the kernel dK(ω, V )/dV , which is shown in Figure 3.5.
This kernel is the generalization of the kernel defined in Ref. [123] for the case where the
temperature T is not small compared to the bosonic frequencies ω0 and the occupation of
bosonic quasiparticles is allowed. The function is linear for energies ω � T and for applied
voltages eV � T it corresponds to a thermal function with FWHM= 5.4T . In the limit
T → 0, the kernel becomes a δ-function and we recover the expression (3.37). Therefore,
the temperature gives an upper limit for the energy resolution of IETS.

However, this is not the only reason for a finite experimental resolution. Another con-
tribution to the broadening of the inelastic tunneling spectra is the lock-in technique
often used in tunneling experiments. For obtaining the d2I(V )/dV 2 curve one can in
principle record the I-V curve and from this calculate the second derivative numerically.
In reality the experimental data is noisy, which can lead to large errors when performing
the numerical derivative. Alternatively, one usually uses a lock-in technique to gain direct
access to the d2I(V )/dV 2 spectrum, which works as following: Mixing a small AC modu-
lation voltage Vω cos(ωt) to the constant tunneling voltage V0, the experimental current
I(V ) = I

(
V0 + Vω cos(ωt)

)
is recorded. Using a lock-in amplifier, the second harmonic of

the signal is recorded

I2h(V0) = 2
T0

∫ T0/2

0
dt I

(
V0 + Vω cos(ωt)

)
cos(2ωt) , T0 = 2π

ω

= Vω ·
∫ Vω

−Vω
dε
d2I(V )
dV 2

∣∣∣∣
V=V0+ε

·
2
[
1− (ε/Vω)2]3/2

3π , (3.41)

which is obviously a convolution of the second derivative d2I(V )/dV 2 of the tunneling
current and an instrumental function, which is shown normalized in Figure 3.5 on the
right. The instrumental function has a typical FWHM= 1.22eVω and one could come to
the conclusion that in order to maximize the experimental resolution, one should choose
the modulation voltage to be very small, but then one has the complication that due to
the Vω factor in front of the integral the recorded signal will also be reduced. Therefore, in
experiments one has to carefully fine-tune the modulation voltage to get a signal that is
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sufficiently pronounced, but also small enough that the desired experimental resolution
of the measurement is maintained. 8 Hereafter, we will model the broadening due to
the lock-in technique by a Gaussian distribution with FWHM= 1.22eVω. This will be of
importance for the IETS of phonons in conventional superconductors in the next chapter,
where we exploit our formalism for elastic and inelastic tunneling and find an excellent
agreement between theory and experiment for STM on Pb thin films.

8Since this work is focused on the theoretical understanding of experimental tunneling spectra of conven-
tional and especially unconventional superconductors, we do not wish to go into greater detail about the
difficulties of recording techniques of tunneling experiments such as phase shifts between the current
and the modulation voltage due to capacitive and inductive elements in the circuit.



4. Inelastic tunneling in conventional
superconductors

In this chapter, we will discuss the consequences of inelastic tunneling processes for STM
measurements of conventional, phonon-mediated superconductors. As was discussed in
Chapter 1, the elastic picture of tunneling (conductance is proportional to the DOS of the
investigated superconductor) was extremely insightful for planar tunnel junctions, where
inelastic tunneling is significantly suppressed compared to STM experiments. Here, we will
use our extended tunneling formalism developed in the previous chapter, which combines
EETS and IETS on the same footing, to get a coherent picture of the STM spectra on
conventional superconductors in both the normal- and the superconducting state.
We start with interpretations of normal-state IETS experiments on conventional supercon-
ductors as lead and niobium and show that the observed magnitude of the inelastic current
is consistent with the predictions of our theory. Hereafter, the toy model of a conventional
superconductor coupled to a single phonon mode with energy ωph is discussed and we
show how inelastic tunneling changes the picture drawn by the purely elastic tunneling
interpretation. Finally, we apply our tunneling theory to experimental STM data on thin
Pb films [24], which shows excellent agreement of theory and experiment and serves as a
proof of principle for our formalism.

4.1. Normal-state IETS with phonons

In the introductory Chapter 1 we already presented several early tunneling experiments on
metals which saw phonon signatures of barrier oxides [49, 50] or molecules absorbed into
the oxide interfaces of tunnel junctions [17, 18] in d2I(V )/dV 2, see also Figure 1.5. Also
in STM on graphene clear phonon features have been seen [118]. As shown in Chapter 3,
inelastic tunneling processes can be understood in the following way: An electron tunnels
from the left electrode to some intermediate high-energy off-shell state (which can lie either
in the insulating barrier region, e.g. in oxide junctions, or in the right electrode) and from
here it scatters inelastically to a state near the Fermi surface of the right electrode. Our
theory predicts that for low-temperature tunneling the d2I(V )/dV 2 curve in the normal
state is proportional to the (thermally smeared) bosonic excitation spectrum α2Ftun. As we
will see in the following section 4.2, such inelastic processes involving phonons will typically
lead to a valley-like structure of the conductance around zero bias. In case of junction
tunneling on Pb-PbO-Pb junctions both the Pb-oxide barrier and the Pb phonons were
observed in agreement with our inelastic theory [11, 50]. However, for such planar junctions
the inelastic signal has been reported to be very weak: The increase of the conductance due
to Pb and Pb-oxide phonons in the whole energy range from 0 to ±70meV was only about

49
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Figure 4.1.: Comparison of normal-state Pb tunneling data of planar junctions
and STM showing valley-like structure coming from inelastic transitions: (left)
Tunneling conductance measured on Pb-PbO-Pb planar junctions showing only weak
inelastic features within ±70meV coming from Pb and Pb-oxide phonons [50], (right)
Symmetrized conductance for STM experiment with tungsten tip on Pb thin films showing
a much stronger inelastic signal from the Pb-phonons (data from Ref. [24]).

10%. In contrast, more recent STM experiments on Pb thin films [19, 24, 127] showed an
increase of 10% solely due to the Pb phonons in the energy window [0,±10meV] as can be
seen in Figure 4.1. In Section 4.2 we will show for the simple example of a single phonon
mode, that for such strong inelastic features as seen in the STM experiments, the inelastic
tunneling features are of the same order as the strong-coupling Eliashberg features that
arise in the elastic conductance below Tc. Hence, we conclude that a combined analysis
has to be performed, which is presented in Section 4.3.

Since the thermal smearing σ = 5.4T increases with temperature leading to a decrease in
energy resolution, the usual method of choice for forcing the metals to the normal state is
applying a strong magnetic field. However, in Type-II superconductors and especially the
unconventional superconductors the critical magnetic fields often exceed the experimental
capabilities and one can only use STM of vortices1 to gain information about the normal
state inelastic spectrum [85, 89, 128].

4.1.1. Estimate of the inelastic contribution for phonons

Let us start our quantitative investigations of the elastic and inelastic tunnel equations (3.34)
by estimating the typical inelastic contribution that we expect for the inelastic STM in
a usual metal with electron-phonon coupling. For a regular metal we expect the DOS at
the Fermi edge to be of order νF ∼ 1/EF , where EF is the Fermi energy of the material2.
The Debye frequency of a metal is typically ωD ≈ EF/100 and the low-energy cutoff of the
Eliashberg theory is usually chosen to be Λeff ≈ 5ωD. The typical inverse energy scale
1/Eoff introduced in the previous section can be estimated via the average over the off-shell

1We note that vortex tunneling has the additional difficulty that the pair potential ∆(r) inside the vortex
can lead to bound states similar to a 2d potential well [85].

2In the following we will use νF instead of νsF as the normal-state Fermi edge DOS of the superconductor
since the information about the trivial tip spectrum is not important for our analysis. Also, we will
denote εk as the normal-state spectrum of the superconductor.
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energies from Λeff up to the band width D ≈ EF

1
Eoff

≈ 1
EF − Λeff

∫ EF

Λeff

dε

ε
≈

log
(
EF/Λeff

)
EF

. (4.1)

Following Eq. (3.37) the change of the conductance due to inelastic tunneling from zero
bias to eV = ωD at zero temperature in a normal conductor with constant DOS can be
calculated as

δσi

σ0
= 1
E2
offνF

∫ ωD

0
dω α2Ftun(ω) ≈

ωD log2(EF/Λeff
)

2EF

∫ ωD

0
dω

2α2Ftun(ω)
ωD

≈
ωD log2(EF/Λeff

)
λ

2EF
≈ 0.045λ . (4.2)

We used
∫∞

0 dω 2α2Ftun(ω)/ωD ≈
∫∞

0 dω 2α2F (ω)/ωD ≈ λ
since the Eliashberg function and the tunnel spectrum are
expected to be very similar, see the discussion in Section 4.1.2.
For weak-coupling materials like aluminum inelastic contri-
butions are therefore expected to very small, whereas for the
case of Pb with λ = 1.5 we would expect an increase of the
conductance of δσi/σ0 ≈ 7% from 0 to 10meV, which comes
close to the value of 10-12% determined in recent STM experi-
ments [19, 24]. Similar results have been reported for Niobium,
where the increase is about 4% [129], which is exactly the
value we would expect from our estimation.

We note, that this estimate is only valid for STM geometries.
For planar junctions the momentum conservation for the wave-
vectors parallel to the junction surface restricts the phase space
for the inelastic events drastically. In order to see that, let
us follow Ref. [130] and consider the form of the tunneling
amplitude in real space. For an STM tip at the position
R l the amplitude for a quasiparticle at r l tunneling to the left position r r has a form
tr l,r r = t(r r) · δR l,r l , where t(r r) is a rapidly decaying function around the position
r r = 0 of the right electrode directly opposite the STM tip. In what follows we assume
this “tunneling cone” [36] to be so thin, that t(r r) ≈ δ(r r). In contrast, for a perfect
planar junction the transition can only occur when the electron tunnels from one surface
to the nearest point on the opposite surface. Therefore, the tunnel matrix elements reads
tr l,r r = tδ(xl −Xl)δ(xr −Xr)δ(r r,‖ − r l,‖), where r r/l,‖ give the position of the particle
in the yz-direction. Fourier transforming these expressions one arrives at

tk ,k ′ =

t for STM junction
t δk ‖,k ′‖

for planar junction (4.3)

This is of course just a mathematical formulation for the fact that while the planar junction
conserves the translational symmetry and therefore also the momentum parallel to the
surface, the STM breaks translational symmetry in all direction and has therefore no
momentum restrictions for the transition.

This momentum restrictions for the planar junction will reduce the allowed inelastic
tunneling processes considerably. To see this, let us first consider the case of an inelastic
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tunneling event for the STM junction with applied bias V : We start with an arbitrary
state at the Fermi surface (low-energy momentum (k l)<) in the STM tip and tunnel
to an high-energy off-shell state with energy-momentum [eV, (k r)>] in the metal under
consideration. The electron is now scattered via the emission of a boson with [eV, q ] to
a low-energy state [0, (k r − q )<]. As there is no momentum restriction for the boson
and the high-energy momentum (k r)> there are plenty of possible inelastic processes
allowed. Now, let us have a look at the same situation in the planar junction: Again
we start with a state at the Fermi surface in the left electrode [0, (k l)<] and tunnel to
the right in a state [eV, (k ⊥r + k

‖
l )>] with the same momentum parallel to the junction

surface. From there we scatter with a boson with energy-momentum [eV, q ] and have
to end up in a state [0, (k ⊥r + k

‖
l − q )<] at the Fermi surface of the right electrode. In

contrast to the STM there is a strong restriction in the phase space of the off-shell state
(k ⊥r + k ‖l )> with only one free momentum direction k ⊥r and therefore also for the boson
momentum q (with corresponding energy eV ) as we have to end up in a state near the right
electrodes Fermi surface. From this phase-space arguments we can understand the observed
reduction of inelastic contributions in the Pb-junctions for planar junctions compared
to STM experiments. However, the exact ratio of elastic and inelastic events depends
strongly on the topology of the two Fermi surfaces of the electrodes and the bosonic
dispersion as well as on the junctions geometry. Further, there can also be deviations for
systems containing several bands crossing the Fermi surface, as the overlap of the different
wavefunctions of the tip and superconductor bands may be different. Note that due to the
orbital character of bands, states from different parts of the Brillouin zone will in general
have a different tip-sample distance dependence [83] which can lead to varying elastic and
inelastic contributions when changing the average conductance/distance is experiments.
As before, we will restrict ourselves to the case of a constant tunneling amplitude tk ,k ′ = t
in the following, which is most suitable for the STM geometry.

4.1.2. Comparison of α2Ftun and α2F

For systems where the electron-phonon interaction is the dominant interaction of the
electrons with collective bosonic modes, e.g. in many regular metals, the IETS signal
d2I(V )/dV 2 is not directly proportional to the Eliashberg function α2F given in Eq. (2.28),
as was discussed in Chapter 3. Instead, the normal state IETS spectrum gives direct access
to the bosonic tunneling spectrum α2Ftun, which is defined in Eq. (3.33). For a better
comparison, let us present both of the two definitions side by side

α2F (ω) = 1
νF

∑
k ,k ′,λ

δ(εk )δ(εk ′) |αλk−k ′ |
2
Ak−k ′,λ(ω) ,

α2Ftun(ω) = νF
∑
q ,λ

|αλq |
2
Aq ,λ(ω) .

(4.4)

Here, Aq ,λ(ω) = −ImDR
q ,λ(ω)Θ(ω)/π is the spectral weight function of a phonon with

momentum q of the phonon branch λ. The obvious difference lies in the way the momentum
average is performed. Let us now consider the example of perfect phonon quasiparticles
Aq ,λ = δ(ω−ωq ,λ) with realistic phonon dispersions in a cubic material that has a spherical
Fermi surface, which should serve as a simple model for Pb phonons. As usual, we start
from the ansatz Mnü

α
in = −∑j,m,β Φαβ

in,jmu
β
jm of coupled harmonic oscillators in order to

describe the collective dynamics of the phonons. Here, α and β enumerate Cartesian axes,
i and j enumerate the positions r i of the Bravais lattice of the system, n and m indicate
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the atoms of the basis of the crystal, Φ is the second derivative of the potential energy
Φα,β
i,j = δ2U

δuαi δu
β
j

, Mn is the mass and uαin the displacement of the n-th atom of the basis at
the position i in the Bravais lattice. If we assume a harmonic movement of the atoms we
can use the ansatz uαin(t) = vαn√

Mn
exp[i(q r i − ωt)] for solving the equation of motion

√
Mnω

2vαn =
∑
j,m,β

Φαβ
in,jm√
Mm

vβme
iq (r j−r i) ,

0 =
∑
m,β

[
ω2δm,nδα,β −

∑
j

Φαβ
in,jm√
MnMm

eiq (r j−r i)
]
vβm . (4.5)

Because of translational invariance of the crystal, Φαβ
in,jm = Φαβ

n,m(r i − r j) can only depend
on the relative distance between the Bravais lattice points r i. Therefore, we can write

0 =
∑
m,β

[
ω2δm,nδα,β −

∑
j

Φαβ
n,m(r i − r j)√
MnMm

e−iq (r i−r j)
]
vβm ,

0 =
∑
m,β

[
ω2δm,nδα,β −

∑
j

Φαβ
n,m(r j)√
MnMm

e−iq r j
]
vβm . (4.6)

If we define the matrix M̂(q ) with coefficients

Mnα,mβ(q ) =
∑
j

Φαβ
n,m(r j)√
MnMm

e−iq r j (4.7)

the dispersions ωλ(q ) of the phonons can be derived by solving

det
[
ω21− M̂(q )

]
= 0 . (4.8)

In the case of Pb, the crystal has an fcc(face centered cubic)-structure with a single-atomic
basis, such that we can write

M̂(q ) =

Mxx(q ) Mxy(q ) Mxzq )
Mxy(q ) Myy(q ) Myz(q )
Mxz(q ) Myz(q ) Mzz(q )

 , (4.9)

to obtain the two transversal modes and the one longitudinal mode. In the next-nearest
neighbor approximation with spring constant k1 between nearest neighbors and k2 between
next-nearest neighbors one finds with the lattice spacing a (the other matrix elements are
symmetry related)

Mxx(q ) = 1
M

(
2k1

[
1− cos(qxa)

]
+ 2k2

[
2− cos(qya)− cos(qza)

])
, (4.10)

Mxy(q ) = 2k2
M

sin(qxa) sin(qya) . (4.11)

This spring model is of course far to simple to capture the detailed DOS of Pb. Nevertheless,
there are prominent features arising from the transversal and longitudinal modes similar to
the known Pb phonon spectra, as can be seen in Figure 4.2 with parameters k2 = k1/2. In
order to compare the Eliashberg function and the phonon tunneling spectrum we assume
that the electron-phonon coupling αλq ≈ α is constant in the energy range of interest,
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Figure 4.2.: Comparison of α2F (ω) and α2Ftun(ω) for phonons in a simple cubic
crystal.

see also the extensive discussion of Scalapino [11]. Thus, the dynamics of the spectrum
is determined by the bosonic dispersion and not by the momentum dependence of the
electron-phonon matrix element. For the calculation of the Eliashberg-function we assume
a simple quadratic dispersion relation εk = k 2−k2

F
2m with kF = π.3 This model yields the

normal state DOS

νF =
∑
k

δ(εk ) =
∫
dkdΩ k2

(2π)3 δ
(kF
m

(k − kF )
)

= kFm

2π2 , (4.12)

and we are able to rewrite the momentum integral in (4.4) as

α2F (ω) = νF |α|2

24π2

∑
λ

∫
dΩdΩ′Ak F−k ′F ,λ(ω) ,

α2Ftun(ω) = νF |α|2

(2π)3

∑
λ

∫
d3qAq ,λ(ω) ,

(4.13)

The numerical results are shown in Figure 4.2: Obviously, both spectra show striking
similarities and they only differ slightly in the fine-structure of the spectrum. This confirms
our conclusion, that the different momentum averages are rather unimportant and that
both α2F (ω) and α2Ftun(ω) are mostly determined by the phonon dispersion, i.e. the
Van-Hove singularities at the border of the Brillouin zone. We note that our simple model
probably overestimates the contributions from very low energies as the electron-phonon
coupling vanishes in the limit of small momenta q for acoustic phonons. Furthermore,
depending on the actual band structure of the metal the momentum sum in α2Ftun(ω) is
constrained in such a way that q are restricted to momenta that connect high-energy and
low-energy electronic states and we also approximated the electronic off-shell energy to be
constant in the whole Brillouin zone. Nevertheless, we just have shown that the bosonic
dispersion gives the dominant contribution to the bosonic tunneling spectrum and that we
can safely set α2Ftun(ω) ≈ α2F (ω) for phonon-mediated systems in the remainder of this
chapter.
3We set the interatomic distance to a = 1 such that the momenta are restricted to qx,y,z ∈ [−π, π).
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4.2. Elastic and inelastic STM for single phonon mode

In order to understand the implication of the inelastic channel for the interpretation of
tunneling data in the superconducting state, we here discuss the expected features that arise
in the tunneling current for a conventional, phonon-mediated superconductor with a single
phonon mode with energy ωph = 5meV in the zero temperature limit. The corresponding
phonon-spectrum is modeled similar to Section 2.2.3 via

α2Ftun(ω) ' α2F (ω) = A0 ·
ω2

ω2 + ω2
0
· γ

(ω − ωph)2 + γ2 Θ(ω) (4.14)

ωph=5meV
0.0

0.5

1.0

1.5

2.0

2.5

ω

α
2
F
(ω

)

where γ = ωph/10 is the phonon half-width and the func-
tion in front of the Lorentzian ensures the proper low-
frequency behavior of the acoustic phonon branch that
rapidly approaches unity for ω ≈ ω0 = 1meV� ωph. The
normalization factor A0 is chosen such that λ = 1.5 lies
in the strong coupling regime of Pb and we use a charac-
teristic pseudopotential µ∗ = 0.1 that yields a gap value
of ∆ ' 1meV. Furthermore, the inelastic tunneling magni-
tude is chosen to be of the same order as seen in the lead
experiments [19, 24], meaning that

δσ = σ(ωD)− σ(0) = σ0
E2
offνF

∫ ωD

0
dω α2Ftun(ω) ≈ 10%σ0 , (4.15)

where we chose ωD = 2ωph as the Debye frequency of the phonon. This will fix the prefactor
and the yet unknown off-shell energy Eoff. When the sample s is in the superconducting
state at zero temperature, the inelastic contribution can be written as

σi(V ) = σ0
E2
offνF

∫ ∞
−∞

dε νs(ε)
[
α2Ftun(ε− eV )Θ(−ε) + α2F (−ε+ eV )Θ(ε)

]]
p.h.
sym.= σ0

E2
offνF

∫ 0

−∞
dε νs(ε)α2Ftun(ε+ e |V |) (4.16)

which is just a convolution of the electronic and bosonic spectrum of the superconductor [123].
In Figure 4.3 the elastic, inelastic and total conductance σ(V ) = dI(V )/dV and its derivative
dσ(V )/dV = d2I(V )/dV 2 are shown for the normal- and superconducting state. In the
following paragraph we will discuss them in detail.

Normal state

Let us start our investigation with the normal state tunneling spectra that are shown as
the blue curves in Figure 4.3. The elastic conductance is proportional to the electron DOS,
which is constant and therefore σe(V ) = σ0 and dσe(V )/dV = 0 as shown in Figure 4.3(a)
and (b). The IETS spectrum d2I i(V )/dV 2 shown in Figure 4.3(d) is proportional to
the phonon spectrum α2Ftun as becomes apparent from Eq. (3.37). For the inelastic
conductance σe(V ) plotted in Figure 4.3(c) this results in a valley-like structure with
maximum increase at eV = ±ωph and a saturation at ωD with σi(ωD) = 0.1σ0. The total
conductance (Figure 4.3(e)) therefore also increases when moving away from zero bias due
to the possibility of inelastic tunneling processes and saturates at 1.1σ0 for the voltage
eV = ωD where all inelastic tunneling channels are open. The total second derivative
d2I(V )/dV 2 of the tunneling current, as shown in Figure 4.3(f), is exactly the same as the
pure inelastic contribution since in the normal state the elastic conductance is trivial.
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Figure 4.3.: Elastic, inelastic and total tunneling spectra for single-phonon
mode. Shown in blue (normal state) and red (superconducting state) are the σ(V ) =
dI(V )/dV and dσ(V )/dV = d2I(V )/dV 2 curves that are calculated for a single-phonon
mode with characteristic energy ωph. The inelastic tunneling amplitude was chosen such
that in the normal state the increase of the conductance from the inelastic contributions
is δσ = 0.1σ0, where σ0 is the purely elastic conductance above Tc.

Superconducting state

In the superconducting state the picture changes and not only the inelastic processes
but also the elastic processes give dynamical contributions for the conductance, see the
red curves in Figure 4.3(a) and (b). The elastic conductance in Figure 4.3(a) shows the
typical strong-coupling DOS of the Eliashberg theory, see also Section 2.2.3, with the main
fine-structure around eV = ∆+ωph, where d2Ie(V )/dV 2 has a clear dip (see Figure 4.4(b)).
Interestingly, the inelastic conductance σi(V ) now shows a peak close above eV = ∆ + ωph
and then decreases to the normal state value for higher voltages. In the d2I i(V )/dV 2

spectrum (Figure 4.3(d)) this manifests as a pronounced peak just below ∆ + ωph with a
following small dip feature. Such features have been seen in IETS spectroscopy of molecules,
which we will discuss in Section 4.2.1. In Figure 4.3(e) the total conductance σ(V ) in the
superconducting state has changed significantly compared to the pure elastic tunneling
conductance σe(V ) in Figure 4.3(a). The peak-dip feature of the strong-coupling theory at
eV = ∆ + ωph has become a more pronounced peak-feature and σ(V ) is larger than σ0 for
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Figure 4.4.: Tunneling d2I(V )/dV 2 spectrum for single-phonon mode and dif-
ferent inelastic tunneling amplitudes: (blue) σi(ωD) = 0, (orange) σi(ωD) = 0.1σ0,
(green) σi(ωD) = 0.3σ0.

biases eV > ∆ + ωph. In dσ(V )/dV the clear dip of the elastic tunneling (Figure 4.3(b)) is
replaced by a pronounced antisymmetric peak-dip feature relative to the zero-axis centered
around ∆+ωph. In Ref. [24] such antisymmetric peak-dip features in the IETS spectrum for
STM tunneling into Pb thin films have been observed and we will discuss this experiment
in great detail in Section 4.3.

Note that the exact shape of the IETS spectrum can differ depending on the parameters of
the system. For large inelastic contributions or when the phonon energy is much larger than
the superconducting gap ωph � ∆ the peak will be more pronounced and vice versa. This
is illustrated in Figure 4.4, where we vary the inelastic tunneling amplitude. Thus, the nice
antisymmetry of the peak-dip feature in Figure 4.3(f) is actually a result of a certain ratio
of the input parameters similar to the ones observed in the Pb STM experiment [19, 24].

4.2.1. IETS of barrier molecules for superconducting junctions

The first phonon signatures, seen in IETS experiments on planar junction, originated
from molecules that contaminated the barrier oxide during the fabrication process [17, 18].
These molecules typically contained hydrogen such that OH or CH bending and stretching
modes could be detected via IETS with typical frequencies of ωph ∼100meV far larger
than the superconducting gap ∆ ∼ 1meV of conventional superconductors. One could
think that the phonon line-shapes in the IETS spectra should not change when entering
the superconducting state due to this separation of energy scales. As was first pointed
out by Klein [123] there are small but clear changes of the inelastic signal below Tc, see
Figure 4.5, similar to the changes seen in Figure 4.3(d). In contrast to the previous section,
where we assumed a phonon mode with frequency comparable to the superconducting gap,
we can here neglect the elastic contribution to d2I/dV 2 as we are interested in energies
eV ≈ ωph � ∆ where the electronic DOS is constant again. Therefore, we find for zero
temperature

d2I(V )
dV 2 = d2I i(V )

dV 2
(4.16)∼

∫ 0

−∞
dε sign(V )νs(ε)α2F ′tun(ε+ e |V |) , (4.17)
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Figure 4.5.: IETS of oxygen-deuterium stretching mode on Mg-MgO-Pb junc-
tions taken from Ref. [123]: (a) Data with Pb forced to normal state via magnetic
field, (b) IETS with superconducting Pb electrode, (c) Comparison of normal state (black)
and superconducting (blue) IETS spectra calculated using Eq. (4.17).

The peak of the IETS curve occurs for voltages V , where the overlap of the electronic
and bosonic DOS in the convolution is maximized. For a very sharp phonon mode, this
happens for the conditions4 ε+ e |V | = ωph and ε = −∆, yielding that the IETS phonon
peak is shifted to higher energies at e |V | = ∆ + ωph in the superconducting state. We
emphasize that for the inelastic spectrum in Eq. (4.17) it is sufficient to consider only a
simple mean-field BCS DOS since the important contributions of the integral come from
the coherence peak and not from the Eliashberg features. In Section 4.3 we will show how
this can be used to unravel the elastic and inelastic contributions of the measured STM
spectra.

In Figure 4.5 the experimental d2I(V )/dV 2 spectrum in the normal and superconducting
state for a Mg-MgO-Pb planar junction is shown [123]. When forcing the Pb to the normal
state by applying a magnetic field, the IETS curve displays the oxygen-deuterium (OD)
stretching mode, see Figure 4.5(a). For the spectrum with the superconducting Pb in
Figure 4.5(b) small changes of the line-shape are clearly visible: The maximum is enhanced
and shifted to higher energies and a small dip occurs at the tail of the OD mode. These
three features can be captured very well by using Eq. (4.17) with a BCS DOS of gap
magnitude ∆ = 1.3meV as is shown in Figure 4.5(c), which serves as a strong argument
that the derived tunneling theory works for both the normal as well as the superconducting
state.

4.2.2. Normalization procedure of Rowell and McMillan

Tunneling experiments on conventional superconductors in the normal state often show
deviations from a flat tunnel spectrum, two examples are shown in Figure 4.1. As is
pointed out in the review of McMillan and Rowell in Ref. [11] one usually normalizes the
superconducting conductance by the normal state conductance at each voltage

σnorm(V ) = σsc(V )
σnc(V ) . (4.18)

4Note, that in Eq. (4.17) the derivative of the bosonic tunnel spectrum has to be convoluted. Thus for
broader phonon modes, the maximum in α2F ′tun will occur just below ωph. The phonon peak in the
IETS spectrum will therefore occur below e |V | = ∆ + ωph.
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Figure 4.6.: Conventional normalization of superconducting tunneling spectra:
Shown are the total tunneling spectrum (red) in the superconducting state, the normalized
conductance σnorm(V ) (black) and the purely elastic conductance (green) that represents
the electronic DOS.

This normalization procedure is expected to work well in the case where the non-constant
DOS originates from a varying normal state electron DOS, i.e. for purely elastic tunneling.
However, when inelastic tunneling is present the above normalization will not cause the
inelastic conductance to vanish, because the inelastic tunneling spectrum changes when
entering the superconducting state, see Figure 4.3. Let us apply the normalization (4.18)
for our single-phonon model and compare the obtained spectrum with the actual electronic
DOS. This is shown in Figure 4.6, where the total superconducting tunneling conductance
is plotted in red and the normalized conductance is plotted in black. For small inelastic
contributions σi(ωD) = 0.02σ0, typical for the planar tunneling junctions [11, 50], the
normalization works well and we see that the deviations of the normalized conductance
and the actual electronic DOS (green) are very small compared to the magnitude of the
strong-coupling features. For strong inelastic amplitudes, e.g. σi(ωD) = 0.1σ0 as in the Pb
STM experiment [19, 24], the deviations of the normalized conductance and the electronic
DOS are strong as seen in the right plot of Figure 4.6. In the normalized curve the
peak-feature is significantly more pronounced and the following dip feature is reduced
compared to the pure electronic spectrum.

Hence, we conclude that for conventional superconductors the normalization procedure (4.18)
only works for small inelastic tunneling contributions, e.g. for the planar junction experi-
ments on Pb [50]. When dealing with stronger inelastic tunneling amplitudes however, e.g.
in the case of STM tunneling [19, 24], the conventional normalization will not lead to a
spectrum that can be directly compared to the electronic DOS. In the next section, we will
explicitly show that using the tunneling formalism presented in Section 3.2 it is still possible
to separate the elastic and inelastic contributions of the measured conductance, which will
give direct access to both the electronic and the bosonic spectrum of the investigated metal.

4.3. STM on normal- and superconducting Pb films

In the past, fine structure of the tunneling spectra of superconductors have been widely used
to identify fingerprints of the mechanism responsible for Cooper pairing. In this section,
we show that for STM experiments on Pb thin films the inclusion of inelastic tunneling
processes as described in the previous Chapter 3 is essential for the proper interpretation
of these fine structures. Hence, we demonstrate that the McMillan inversion algorithm can
be an incomplete description and has, in general, to be modified to account for additional



60 Inelastic Tunneling in Superconducting Junctions

inelastic tunneling processes. We have chosen Pb films as a perfect trial candidate for
studying the role of elastic and inelastic tunneling for STM of superconductors, since the
electron and phonon spectra are known from various experiments [15, 32–34, 131] and
we can thus easily compare the STM spectra to the calculated curves of our theory. The
following analysis is based on Ref. [24] and the STM experiments were performed by Jasmin
Jandke and Wulf Wulfhekel at the KIT.

4.3.1. Normal state

Let us start by describing the experimental setup of the Pb STM tunneling experiment.
The measurements were performed with a home-build Joule-Thomson low-temperature
STM [132] at a temperature of about T = 0.8K. The Joule-Thomson cryostat is accompanied
by a coil made of superconducting NbTi that is able to produce magnetic fields up to 5T
that can be used to force the Pb film to the normal state [133]. A tungsten tip, known to
have a very weak electron-phonon coupling [16], is used to avoid inelastic contributions
from tip phonons. The Pb film was grown in-situ on top of a highly n-doped Si(111)
crystal and immediately transferred to the cryogenic STM. In Figure 4.7 the topography
of the surface is shown with large extended 3D islands5 of about 30 Pb monolayers (with
their 〈111〉 axis perpendicular to the substrate) on top of the wetting layer, as previously
reported by Refs. [134–138]. The measurements of the first and second derivative of the
tunneling current I(V ) have been performed using a lock-in amplifier with modulation
voltage Vω = 621µV6. The modulation voltage leads to an experimental broadening
with FWHM= 1.2eVω = 745µeV, see Section 3.3. As the temperature is much smaller
than the typical phonon frequencies, we can use the zero temperature expressions for the
tunneling currents and model the combined experimental broadening due to temperature
and lock-in by a convolution of the theoretical spectra with a Gaussian distribution of
FWHM=

√
(5.4T )2 + (1.2eVω)2 = 832µeV [123], which corresponds to a standard deviation

σ = FWHM/
√

8 ln 2 = 353µeV.

Figure 4.7.: STM topography of Pb/Si(111) recorded with 1V, 1nA: On top of
the wetting layer (WL) extended Pb islands of typically x = 30 monolayers (ML) appear.
Taken from Ref. [24].

Due to the finite number (≈ 30) of monolayers, the bosonic and electronic states have
quantized momenta kz in z-direction perpendicular to the surface. Nevertheless, first
principle calculations [139, 140] show that in a 4 monolayer system the phonon spectrum
displays a clear resemblance to the bulk spectrum and that for a 10 monolayer system
it is already very close to the bulk spectrum. The experiments were performed for 30
5The extension of the islands are larger than 400 nm in diameter excluding Coulomb blockage physics.
6The modulation voltage Vω = 439µV given in Ref. [24] is defined as the root mean square value of the
AC voltage, however we wish to work with the maximum voltage similar to Ref. [123].
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monolayers and we expect that differences between this system and the bulk are therefore
negligible. As a more quantitative analysis let us consider the phonon model for cubic
systems of Section 4.1.2 and compare the bulk phonon spectrum and the thin film spectrum
(N monolayers) with quantized qz = π

a·N (−N,N ], where a is the lattice spacing. In
Figure 4.8 we see that the 5 monolayer spectrum has additional peaks that come from
the strong quantization of the z-direction, but the 30 monolayer phonon DOS is basically
indistinguishable from the bulk phonon spectrum. This behavior originates from the fact,
that the phonon peaks in the DOS are caused by van Hove singularities at the Brillouin zone
boundary with characteristic wave length λ ∼ a� 30a. Therefore, the relevant wavelength
of the phonons is small compared to the system size. Further, the high energy phonons of
the lead film have a substantially different dispersion than those of the Si substrate, such
that phonons in the Pb films are expected to be reflected at the interface, i.e. they are
basically localized in the film and do not couple to the Si phonons.

Fbulk

F30 MLF5 ML

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ω[ k1 /M ]

Figure 4.8.: Phonon spectrum for cubic systems as defined in Section 4.1.2:
(green) Thin film phonon spectrum with 5 ML, (red) thin film phonon spectrum with 30
ML, (blue) bulk phonon spectrum.

Hence, when performing STM IETS on the 30 monolayer Pb thin films in the normal state
we expect to see the bosonic tunneling spectrum α2Ftun(ω) of the bulk phonons. Since
the electron spectrum of Pb is known to be flat for energies comparable to the Debye
frequency ωD = 10meV of Pb7, only inelastic contributions will lead to variations in the
normal state conductance σ(V ) = σe(V ) + σi(V ) = σ0 + σe(V ). In Figure 4.9 the first
and second symmetrized derivative of the tunneling current is shown. The first derivative
shows a valley-like structure with an increase of about 12% from 0mV to 10mV as expected
from the inelastic tunneling theory just like in Figure 4.3(e) for a single phonon mode.
This behavior originates from more and more inelastic tunnel channels that open when
increasing the bias voltage up to the Debye frequency ωD ≈ 10meV of Pb. The maximum
slope of the conductance occurs at the positions of the Van-Hove singularities of the phonon
spectrum. The phonon features can be seen more clearly when looking at the measured
second derivative, shown as the blue curve in Figure 4.9(b). Features well known from
complementary experiments like tunneling inversion [11, 15] and neutron scattering [32–34]
can be identified in the IETS spectrum, i.e. the typical peaks of the transversal and
longitudinal phonon modes at ωt = 4.4meV and ωl = 8.5meV. A zero bias anomaly, maybe
due to a quantum well state close to the Fermi surface [19], leads to a clear deviation of
7Renormalization effects by virtual phonons will not affect the electronic DOS in the normal state as
explained in Section 2.2.3.
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d2I(V )/dV 2 from the Eliashberg function for very small biases. Earlier STM experiment
on 13 monolayer Pb films [19] have shown similar results, see the green curve in Figure 4.9,
but they were able to better reproduce α2F (ω) in the region between the phonon peaks
that is significantly reduced for the bosonic tunneling spectrum of this experiment. The
rapid fluctuations on top of the measured spectrum come from small mechanical vibrations
of the STM apparatus. Additionally, a clear third peak at eV ≈ ωt + ωl is seen in the
d2I/dV 2 spectrum that coincides with the sum of the transversal and longitudinal phonon
frequencies, which suggests to interpret this feature with two-phonon inelastic tunneling.
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Figure 4.9.: Normal state STM on thin Pb films: (a) Eliashberg function deter-
mined via tunneling inversion from Ref. [11], (b) Conductance σ(V ) for Pb STM in normal
state at T = 0.8K [24], (c) IETS spectrum from: (blue) 30 monolayer Pb thin film from
Ref. [24], (green) 13 monolayer Pb thin film from Ref. [19], (orange) theoretical d2I/dV 2

curve including multiple-phonon excitations.

In the following paragraph, we will interpret the normal state IETS data in more detail.
Let us first consider the one-phonon inelastic contributions in the normal state. The actual
amplitude seen in the experiment can be used to determine the value of the typical off-shell
energy states via the observed increase of the conductance due to inelastic processes8

σ(10meV)− σ(0meV) (4.16)= σ0
E2
offνF

∫ 10meV

0
dω α2Ftun(ω) ≈ 0.12σ0 . (4.19)

When approximating the tunnel spectrum by the Eliashberg function α2Ftun ≈ α2F , see
8We can use the zero temperature limit here as the typical phonon frequencies are much higher than
the experimental temperature T = 0.8K. In the end, we will include the experimental broadening by
convoluting the spectrum with a Gaussian distribution of FWHM=5.4T as described in Section 3.3.
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also the discussion in Section 4.1.2, this yields

Eoff ≈

√∫ 10meV
0 dω α2F (ω)

0.12νF
= 313meV , (4.20)

where we used the Eliashberg function for Pb from Ref. [11] and the Pb DOS νF ≈ 0.3/eV
determined from de Haas-van Alphen [131] and specific heat measurements [141]. This
is a reasonable value, as averaging over all inverse energies from the low-energy cutoff
ωc ≈ 10ωD ≈ 100meV up to EF ≈ 1eV agrees well with the above estimate from the
experiment

1
Eoff

≈ 1
EF − ωc

∫ EF

ωc
dε

1
ε
≈ 1

400meV . (4.21)

We can also use Eq. (4.19) to directly determine the prefactor E2
offνF = 29.5meV. Let us

now consider the two-phonon inelastic events that are included in the inelastic transfer
Hamiltonian derived in Section 3.1. It is straightforward to write down the corresponding
tunneling current and conductance in the zero temperature limit for the STM setup similar
to Eq. (3.34)

I i,(2)(V ) = σ0
e

( 1
E2
offν

s
F

)2 ∫ ∞
−∞

dε dω dω′ α2Ftun(ω)α2Ftun(ω′)ν̃s(ε)[
nF (ε+ ω + ω′ − eV )

[
1− nF (ε)

]
− nF (ε)

[
1− nF (ε− ω − ω′ − eV )

]]
,

σi,(2)(V ) = σ0

( 1
E2
offν

s
F

)2 ∫ ∞
−∞

dε νs(ε)α4F 2
tun(ε+ e |V |) ,

(4.22)

where we assumed particle-hole symmetry and defined the convolution of two tunneling
spectra as

α4F 2
tun(x) =

∫ ∞
−∞

dy α2Ftun(x− y)α2Ftun(y) . (4.23)

Note the striking similarity between the relation for one- and two-phonon inelastic tunneling
in Eqs. (4.16) and (4.22). Generalizing these expressions we can write down the IETS
spectrum including multiple-phonon inelastic processes

d2I i

dV 2 = sign(V ) · σ0
e

[
α2Ftun(e |V |)

E2
offν

s
F

+ α4F 2
tun(e |V |)

(E2
offν

s
F )2 + α6F 3

tun(e |V |)
(E2

offν
s
F )3 + . . .

]
(4.24)

where α2nFntun is the convolution over n bosonic tunneling spectra similar to (4.23). The
total contribution of the n-th order for the IETS spectrum can be calculated by integrating∫

d(eV )α
2nFntun(e |V |)
(E2

offν
s
F )n =

(∫∞
−∞ dωα

2F (ω)
E2
offν

s
F

)n (4.19)= (0.12)n (4.25)

Therefore, each n+ 1-phonon tunneling process is roughly suppresses by n orders of magni-
tude compared to the leading one-phonon tunneling process9. In Figure 4.9 we compare the
measured d2I(V )/dV 2 with the theoretical spectrum (orange curve) of Eq. (4.24). Shown in
9This smallness of higher-order inelastic processes serves retrospectively as a justification for the use of
the leading order when normalizing the spectra in (4.19), as two-phonon processes can already take
place at voltages eV = 2ωt ≈ 8 smaller than the Debye frequency.
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Figure 4.10.: Evolution of coherence peaks for thin Pb films: STM tunneling
data for the investigation of the coherence peak on Pb nanoparticles of different heights,
taken from Ref. [142].

blue (30 monolayers) are the normal state IETS data from Ref. [24] and in green the older
data (13 monolayers) from Ref. [19]. Both spectra show similar features10 with the typical
phonon peaks at ωt/l of the theoretical curve. However, the 13 monolayer data shows a
better agreement with the model of Eq. (4.24), especially the amplitude of the two-phonon
process at ωt + ωl. Nevertheless, the similarities between the Eliashberg function and
the IETS spectrum are apparent for both experiments, supporting the inelastic tunneling
formalism presented in Chapter 3.

4.3.2. Superconducting state

When turning off the magnetic field, the Pb sample is superconducting. The diameter
(≈ 400nm) of the Pb island is far greater than the bulk coherence length (ξ0 = 83nm) of
Pb [143], but the thickness of the Pb films is only about 30 monolayer ≈ 10nm, which
is significantly smaller than the latter. Therefore, the gap cannot fully develop and the
spectral weight of the coherence peaks is reduced, see Figure 4.10. This issue has been
intensively investigated in Refs [127, 134, 135, 142, 144, 145].

In Figure 4.12(a) the measured conductance in the superconducting state is plotted together
with a Dynes-fit [146]

νDynes(ω) = Re
[

ω + iΓ√
(ω + iΓ)2 −∆2

]
, (4.26)

that yields the parameters Γ = 0.61meV for the quasiparticle broadening and ∆ = 1.05
for the gap value11. This is significantly smaller than the bulk value ∆ = 1.36meV [143].
In contrast, the maximum of the coherence peaks is at ≈ 1.65meV. The confinement of
10Note that the STM spectra seen on the same Pb films already show some variation when moving the

STM tip. This may come due to local impurities or vacancies, that can also be located below the surface
and may therefore not be visible directly in the STM topography image. Also, comparing STM data
from different experiments can be difficult, because usually the tip geometry and therefore the tunneling
matrix element may be totally different enhancing the contributions of certain areas of the Brillouin
zone of the superconductor.

11For the Dynes-fit we only used the region around the superconducting coherence peak, because for higher
biases inelastic tunneling occurs and the Dynes model is based on the purely elastic picture. We also do



Chapter 4. Inelastic tunneling in conventional superconductors 65

(a)

NC

SC

-10 -5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

meV

d
Iin

(V
)

d
V

[σ
0
]

(b)

NC

SC

0 2 4 6 8 10 12 14

0.00

0.01

0.02

0.03

meV

d
2
Iin

(V
)

d
V

2
[σ

0
/m

e
V
]

Figure 4.11.: Inelastic Pb spectra calculated for the superconducting state.
Inelastic conductance (a) and its derivative (b) for the normal (gray) and superconducting
state (red) using the normal state phononic tunneling spectrum and a Dynes-fit for the
electron DOS.

the electrons in the z-direction and our energy resolution make it impossible to resolve the
two-gap feature reported in Ref. [149]. The observed shape in the gap and coherence peak
region of the conductance is in good agreement with other experiments [127, 134, 135, 144]
on Pb thin films. However, when looking at energies comparable to ∆ + ωt ≈ 5.5meV a
clear increase of conductance takes place because now inelastic tunneling via the emission
of a transversal phonon is allowed. Exactly such features have also been seen in tunneling
experiments on Niobium [129]. Obviously, such a behavior cannot be described by the
purely elastic theory and we have to include inelastic tunneling processes to understand
the experimental data.

In the following, we will present a quantitative analysis of the superconducting tunneling
spectra using our extended tunneling formalism. For calculating the inelastic contributions
in the superconducting state, we will use Eq. (4.16) and the following electronic and bosonic
spectrum:

• The electronic spectrum ν(ω) will be modeled by the Dynes-fit given in Eq. (4.26).
Strong-coupling features on top of this broadened BSC DOS can be safely neglected,
as they are suppressed due to the finite film size and furthermore give no significant
contributions to the calculated d2I/dV 2 spectrum as was discussed in Section 4.2.1.

• The phonon tunneling spectrum α2Ftun(ω) is chosen as the bosonic tunneling spectrum
d2I/dV 2 ∼ α2Ftun(eV ) from the normal state measurements. However, we will cut-off
the negative contributions of the zero-bias anomaly as this feature cannot arise from
inelastic tunneling. We emphasize that the use of the measured phonon spectrum
naturally includes higher-order inelastic processes described by Eq. (4.24) for the
calculated superconducting tunneling spectra. Further, we should not broaden the
calculated inelastic curves as such a broadening is already included using the measured
bosonic spectrum [24].

In Figure 4.11 the calculated inelastic conductance and its derivative are plotted together
with the curves in the normal state. In a fully gapped superconductor with gap ∆, inelastic
tunneling processes can only occur for biases eV > ∆ + ωph, however for the thin film

not wish to discuss extensively the question about the validity of the Dynes formula in this work [147].
As pointed out by Ref. [148] the strong superconducting fluctuations around the mean-field gap in
superconducting thin films can often be conveniently modeled via the proposed Dynes-fit.
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there is a significant electronic spectral weight below the coherence peak as can be seen in
Figure 4.12(a). Therefore, the sharp IETS spectrum calculated in the previous Section 4.2
will be less pronounced in the experiment here. The inelastic conductance dI i(V )/dV
shows a clear valley-like structure similar to the normal state curve, but slightly shifted
to higher biases. The same is also visible in the d2I i(V )/dV 2 curve12, which bears a clear
resemblance to the bosonic tunneling spectrum of the normal state shifted to some higher
energies. This originates from shifted electronic spectral weight from the gap region to
higher energies when entering the superconducting state as becomes apparent from the
Dynes-fitted electron DOS, see Figure 4.12(a).

The calculated inelastic curves can now be used to divide the experimental spectra in
the superconducting state into elastic and inelastic contributions. In Figure 4.12(b) we
plot the pure elastic conductance σe(V ) = σ(V ) − σi(V ) by subtracting the inelastic
contribution shown in Figure 4.11(a) from the measured total conductance. Suddenly, clear
strong-coupling features become visible with inflection points at the positions ∆ + ωt/l,
with the gap ∆ = 1.05meV determined in the Dynes-fit. In Figure 4.12(b) we also plotted
a strong-coupling Dynes-fit, which we define in the following way

νstrong-couplingDynes (ω) = Re
[

ω + iΓ√
(ω + iΓ)2 − [β∆(ω)]2

]
, (4.27)

with the gap function ∆(ω) calculated from the self-consistent solution of the Eliashberg
equation with the known Eliashberg function and pseudopotential for Pb from Ref. [11].
We choose β = 0.79 which yields a gap value of ∆ = 1.05 and Γ = 0.61 as used in the
conventional Dynes-fit (4.26). This phenomenological strong-coupling DOS displays the
same peak-dip features as the measured elastic conductance13, in the experiment however
there is an additional suppression of electronic spectral weight above the coherence peak
which is shifted into the gap region.

Let us now compare the measured second derivative of the current, which is shown as the red
curve in Figure 4.12(c), with the calculated total spectrum shown in black. For the elastic
contributions we are using the strong-coupling Dynes-fit and for the inelastic contributions
the spectra shown in Figure 4.11. Both the experimental and the theoretical IETS curve
show two clear symmetric peak-dip features around the zero-axis at eV ≈ ∆ + ωt/l, which
is exactly what we found for the single phonon mode of Section 4.2. This is not surprising
since for the single phonon model we used parameters that were chosen to be similar to
Pb. The agreement between the experiment and theory is good, especially the positions of
the peak and dip positions are captured well and only the magnitude is reduced, probably
due to the decoherence physics of the thin film confinement. Similar to the conductance
we can also calculate the pure elastic d2Ie(V )/dV 2 curve by subtracting the inelastic
contributions from the experimental data, which is shown as the red curve in Figure 4.12(d).
The elastic second derivative shows two clear dip features at ∆ + ωt/l as expected from
Eliashberg-theory, see e.g. Figure 4.3(f). For comparison, we also plotted in black the bulk

12Here, we applied a small Gaussian filter to the inelastic curve in the superconducting state to get rid of
the mechanical oscillations of the experimental phonon tunneling spectrum in the normal state.

13Note that the strong-coupling features are shifted to slightly higher energies since the Eliashberg solution
of ∆(ω) was solved using the original bulk gap value ∆0 = 1.37meV. However, there is no clear theory
how to describe the electronic spectrum of a superconductor for films much thinner than the coherence
length and we will use our strong-coupling Dynes-fit in the following for the electron DOS. Actually, an
STM experiment with bulk Pb would be preferable for more quantitative interpretation of the elastic
and inelastic contributions.
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Figure 4.12.: STM on thin Pb films in the superconducting state: (a) Shown are
the measured conductance (red) and a Dynes fit (black) with the parameter Γ = 0.61meV
and ∆ = 1.05meV, (b) Pure elastic conductance (red), that is proportional to the electron
DOS, obtained by subtracting the calculated inelastic conductance from the experimental
data σe(V ) = σexp(V ) − σi(V ). Comparison with BCS Dynes fit (black) and strong-
coupling Dynes-fit (gray) using the Eliashberg function by Rowell and McMillan [11]
shows strong-coupling features at characteristic energies ∆ + ωt/l with gap value of
Dynes-fit ∆ = 1.05meV, (c) d2I(V )/dV 2 from experiment (red) compared to calculated
spectrum (black) using the strong-coupling Dynes-fit for the electronic spectrum (gray),
(d) Purely elastic IETS spectrum calculated by subtracting the inelastic contribution
from the measured d2I(V )/dV 2. Shown in black is the curve for a bulk Pb electron DOS
using the parameters of Rowell and McMillan [11].

Pb DOS calculated using the Eliashberg function determined by Rowell and McMillan [11],
which shows a larger superconducting gap as was already discussed earlier.

In summary, we demonstrated that one can only understand Pb thin film STM data in both
the normal- and superconducting state by considering the possibility of both elastic and
inelastic tunneling paths as described by the tunneling theory presented in Chapter 3. The
normal state d2I(V )/dV 2 spectrum is indeed proportional to the bosonic tunneling spectrum
α2Ftun(ω) that is very similar to the Eliashberg function determined in earlier tunneling
experiments [11, 15]. Thus, IETS in the normal state can serve as a complementary tool for
the determination of the phononic pairing glue in conventional superconductors 14. In the
superconducting state there is a clear deviation from the conventional elastic picture that
the conductance is proportional to the superconducting DOS σ(V ) ∼ ν(eV ) as inelastic
contributions lead to an increase of the conductance when eV ≈ ∆ + ωph. When including
those inelastic contributions we can understand the observed spectra and are even able to
separate elastic and inelastic contributions to get access to the pure elastic conductance

14At this point, we also wish to refer to the great work of Ref. [150], which gives another alternative for
detecting the Eliashberg function. The authors could resolve the dispersion in the normal state and
thereby got direct access to the real part of the self-energy Re ΣR(ω), which was then used to determine
α2F (ω).
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and thereby the electronic spectrum. Therefore, the neglect of inelastic processes in the
interpretation of STM data is in general not justified and one has to carefully subtract
the inelastic spectrum before analyzing the tunnel conductance via the Rowell-McMillan
inversion algorithm15.

The experience gained from the STM experiment into the conventional superconductor Pb
can now be used to reinterpret tunneling data of unconventional superconductors to gain
insights into the pairing mechanisms in the cuprate and iron-based systems, which will be
discussed in the following Chapter 5.

15see Section 1.1.2



5. Tunneling in unconventional
superconductors

In this chapter the extended tunneling formalism combining elastic and inelastic transitions
that was developed in Chapter 3 is applied to the cuprate and iron-based superconductors. In
contrast to tunneling into conventional superconductors, where the Cooper-pairs binding is
supported by phonons that are only slightly affected by the occurrence of superconductivity,
the electronic pairing glue in high-Tc superconductors is changed significantly and obtains
a spin gap below Tc. We demonstrate that this leads to a drastic change in the inelastic
tunneling spectrum when entering the superconducting state and show that we can explain
the experimental tunneling spectra of various unconventional superconductors. Explicitly
we show that the extended tunneling formalism developed in the previous chapters can
be used to understand the tunneling conductances of YBCO and LiFeAs naturally by the
coupling to collective spin fluctuations. The majority of this Chapter is based on Ref. [25].

5.1. Nature of the background conductance in the normal
state

In Section 1.3.2 a short review about the variety of tunneling spectra into the cuprate
and iron pnictide superconductors has been given. A feature constantly reappearing
is a pronounced V-shaped background conductance in the normal state leading to a
minimum in the dI(V )/dV curve at zero bias, see Figs. 1.8 and 1.10. Such background
conductances have been observed also in the normal state for tunneling spectra of various
superconductors, see Figure 5.1, and have been proposed to originate from inelastic tunneling
processes [125, 151, 152].

When following the conventional elastic tunneling theory such a symmetric increase around
V = 0 in the tunneling spectra would correspond to a minimum in the electronic DOS
at the Fermi energy, which is not expected in most of these systems, especially not in
the “one-band” cuprate systems. In case of the iron pnictide materials [153–155], the
superposition of the hole and electron bands (with band-edges close to the Fermi energy)
can in principle lead to a local minimum, but even then fine-tuning is needed to fix the
position of this minimum to the Fermi edge. The reduction of electron spectral weight at
the Fermi surface above Tc could also originate from additional gaps, e.g. from charge or
spin order. Indeed, for the cuprate superconductors there is more and more evidence that
spin and/or charge order occurs in the pseudogap region above Tc of the phase diagram [156–
162]. For BSCCO [128, 163] a clear evolution of the superconducting gap to a pseudogap
that persists up to the pseudogap temperature T ∗ seen in ARPES [69, 164–166] has been
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Figure 5.1.: Background conductance in the normal state for a variety of
systems taken from Ref. [73, 125].

observed, supporting the picture that the pseudogap comes from preformed Cooper pairs.
Also in Ref. [167, 168] clear gap-features have been seen in tunneling data above Tc at
similar energies on different sheets of BSCCO. Besides the ARPES experiments also
optical conductivity measurements [169–171] indicate that the amplitude of the pseudogap,
i.e. the region where the depletion of electronic states occurs, is of the order of the
superconducting gap. If however the quasilinear background conductance persists far above
the superconducting coherence peaks, as shown for the spectra in Figure 1.8, originated
from pseudogap physics, the corresponding pseudogap would have to be much bigger than
the superconducting gap. Therefore, we believe that the pseudogap is not responsible for
the linear background conductance seen in the unconventional superconductors. Another
proposed origin is the marginal Fermi liquid state of cuprate superconductors [172], however
to explain the linear conductance one has to assume a special tunnel matrix element that
serves as a band-filter for high-energy states.

Here, we instead want to propose that the background conductance in high-Tc supercon-
ductors emerges from inelastic tunneling processes involving collective spin fluctuations
as pointed out in Refs. [25, 125]. Similar to the tunneling analysis in Pb of the previous
Chapter 4, we show that the inclusion of inelastic processes is not only necessary for the
theoretical interpretation of tunneling data, but it also allows for a direct investigation of
the collective bosonic degrees of freedom beyond the indirect strong-coupling signatures in
the electronic spectrum. As pointed out first by Kirtley and Scalapino [125] the coupling to
an overdamped particle-hole spectrum, i.e. spin fluctuations, leads to a V-shaped inelastic
conductance in the normal state. This can be seen easily by assuming a Ornstein-Zernike
form centered around the AFV Q with Landau-damping due to the coupling to ungapped
quasiparticles at the Fermi surface [109, 111] for the spin susceptibility

χR(q , ω) = ξ2χ0
1 + ξ2(q −Q )2 − iω/ωsf

. (5.1)

Here ωsf is the typical energy scale1 and ξ the correlation length of the overdamped
spin fluctuations as introduced in the spin-fermion model, see also Section 2.3.1 and
Figure 5.2(a). When integrating over the whole two-dimensional Brillouin zone of the

1which is in general temperature dependent
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layered superconducting plane, the bosonic tunneling spectrum is given by

g2χtun(ω) = νF
∑
q

|g|2 ImχR(q , ω)
−π

= νF |g|2 χ0
2π arctan

(
ω/ωsf

)
, (5.2)

which is a linear spectrum for low energies ω � ωsf and saturates for higher energies
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Figure 5.2.: Normal state spin spectrum in unconventional superconductors:
(a) Spin spectrum at the antiferromagnetic wave vectorQ , (b) Bosonic tunneling spectrum
given by the momentum summation of the spin fluctuation spectrum weighted by the
electron-spin coupling g.

to a constant value, see Figure 5.2(b). At T = 0 and in the normal state the inelastic
conductance is just given by the integral over the bosonic tunneling spectrum g2χtun, see
Eq. (3.37), yielding

dI i(V )
dV

∼
∫ eV

0
dω g2χtun(ω) ∼ eV

ωsf
arctan

(
eV/ωsf

)
−

ln
[
1 +

(
eV/ωsf

)2]
2

∼
{

(eV )2 for eV � ωsf

eV for eV � ωsf
. (5.3)

For energies smaller than ωsf we have a parabolic conductance which evolves into a linear
background conductance for ω � ωsf coming from the emission of spin fluctuations in the
tunneling process. Thus, the so-called V-shaped background conductance is actually an U-
shape for small energies. When increasing the temperature also the absorption of bosons is
allowed2 leading to an increase of inelastic tunneling for all energies, especially also for zero
bias. This can be seen in the right picture of Figure 5.3. Such a model has successfully been
used to fit tunneling data3 of optimally doped LSCO (La1.85Sr0.15CuO4)-In junctions [125]
quantitatively, see Figure 5.3. The slight tilting of the experimental spectra can be easily
modeled by assuming a non-constant DOS, see the later discussion in Section 5.3.1. Hence,
inelastic tunneling gives a natural explanation for the background conductance in these
systems, since strong spin-fluctuations are known to be present in most of the unconventional
superconductors [173–178]. Furthermore, it has been shown that in the unconventional
bismuth-oxide superconductors the slope of the background conductance and therefore the
electron-boson coupling g increases with the transition temperature Tc [179], which is a
strong argument for an electronic pairing by spin fluctuations in these systems. Depending
2Note that in the normal state the overdamped spectrum has no gap and therefore allows for low-energy
excitations.

3Note that the presented data shows no sign of superconductivity, probably because of a non-
superconducting surface layer. However, using transport measurements bulk superconductivity up
to Tc = 36K has been observed in the sample.
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on the actual system the amplitude of inelastic tunneling can further be very different, e.g.
due to tunneling matrix elements selecting certain bands or from isolating barriers/surface
impurities with high-energy excitations that can serve as virtual intermediate states for
the tunneling process.

T=0.7ωsf

T=0

ωsf0-ωsf

0

eV

dI(V)

dV

Figure 5.3.: Comparison of experimental and theoretical background conduc-
tance: (left) Experimental data for La1.85Sr0.15CuO4-In junctions taken from Ref. [125]
for various temperatures (Tc = 36K) on a nonsuperconducting surface layer, (right) Theo-
retical conductance with strong inelastic background calculated from the overdamped
spin spectrum in Eq. (5.2).

5.2. Tunneling spectra in the spin-fermion model

So far, we considered the effect of inelastic tunneling via overdamped spin fluctuations in the
normal state [125]. In the following section, we will consider the effect of the combination
of elastic and inelastic processes for tunneling spectroscopy in the superconducting state of
unconventional superconductors based on the description of the spin-fermion model4 and
compare it to the normal state tunneling spectra based on Ref. [25].

5.2.1. Inelastic tunneling as the origin of the peak-dip-hump feature in
unconventional superconductors

As discussed in Section 2.3.1, a spin gap evolves for the originally overdamped spin
fluctuations below the superconducting transition temperature T < Tc since the electronic
quasiparticles are gapped and we therefore need a finite energy to create a particle-hole
excitation. This is in contrast to conventional superconductors, where the phonon modes
are only slightly renormalized when entering the superconducting state [180]. Thus, for an
electronic pairing glue like spin fluctuations it is essential to solve the Eliashberg equations
for the electrons and bosons self-consistently, e.g. using the coupled integral Eqs. (2.39). As
was pointed out in Section 2.3.1, a spin resonance develops below Tc at energies ωres < 2∆
at the AFV Q for a sign-changing superconducting gap, see red curve in Figure 5.4(b).
The coupling of this resonance mode to the electrons gives rise to moderate strong-coupling
features at ∆ + ωres in the electronic DOS shown in red in Figure 5.4(a). The total
integrated bosonic tunnel spectrum g2χtun(ω) in the superconducting state is presented
in Figure 5.4(c) and deviates strongly from the spectrum in the normal state. In general,
the characteristic energy scale ωsf of the antiferromagnetic fluctuations is temperature
4see Section 2.3.1
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dependent and thus the integrated spectra will differ from the ones calculated here, where it
holds that the integrated susceptibility

∫
dωd2q ImχR(q , ω) is the same for the considered

energy range ω = [0, 5∆] in the normal- and superconducting state. However, the important
feature that is captured well by our spin spectrum is that spin spectral weight is shifted
from low energies ω < ωres towards higher energies leading to a spin gap ∆s = ωres as has
been seen in neutron scattering experiments [59, 60, 181–184]. Note that the presented
hot-spot theory is not capable of describing the linear behavior of the electronic DOS in
the gap region for nodal superconductors like the cuprates, however in this section we will
focus on tunneling features above the superconducting coherence peak or on fully gapped
systems like some iron-pnictide compounds.
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Figure 5.4.: Calculated spectra for the spin-fermion model in the normal
(blue) and superconducting state (red): (a) Electronic density of states, (b) Spin
spectrum ImχRQ (ω) at the antiferromagnetic ordering vector Q with the resonance mode
occurring at ωres below Tc, (c) spin spectrum g2χ integrated over the 2-dimensional
Brillouin zone.

In the following analysis, we have chosen our input parameter λ and ωsf of the theory in
such a way that the observed gap amplitude5 ∆ and spin spectrum including the spin
resonance at ωres agrees well with the experimental observations ωsf ' ∆ [59, 181, 183] and
ωres/2∆ ≈ 0.7 [62]. The calculated spectra presented in Figure 5.4 are now used to calculate
the elastic and inelastic conductance using Eqs. (3.34), where we choose T = 0.1∆ for the
superconducting and T = 0.5∆ for the normal state spectra. The corresponding tunneling
spectra are shown in Figure 5.5.

Let us start with the elastic conductance in Figure 5.5(a): In the normal state the elastic
conductance σe(V ) = σ0 is just constant as we assume a constant electron DOS. The
elastic conductance in the superconducting state reflects the BCS DOS including the
strong-coupling features at ∆ +ωres, which is thermally smeared due to the small but finite
temperature. Note that the strong-coupling features do not display a pronounced dip, but
a rather moderate peak-dip feature. The reason for the weakness of the strong-coupling
features is that the contribution of the resonance mode to the actual pairing glue is in
general small [101, 185], i.e. small compared to the overdamped spin fluctuations at higher
energies ω > 2∆. Also, the resonance mode itself cannot be the origin of the high Tc since
it only develops deep inside the superconducting state T � Tc and is therefore not present
when the superconducting transition occurs.

The inelastic conductance σi(V ) is shown in Figure 5.5(b). In the normal state it is the
same as the spectra presented in the previous Section 5.1, meaning that a pronounced
V-shape with parabolic behavior at low biases eV < ωsf appears on top of the constant
elastic conductance. We emphasize that the inelastic conductance shows no interesting
fine-structure due to the overdamped nature of the normal-state spin fluctuations and is
5Here, ∆ = |∆k h | is the gap magnitude at the hot-spots of the Fermi surface.
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finite at zero bias because of to the finite temperature T = 0.5∆. This has already been
seen in the previous Section 5.1 and a proper normalization procedure has to be developed
when comparing theory and experiment, which will be discussed in the following paragraph.
In the superconducting state the inelastic conductance changes drastically: Due to the gap
in both the electronic (superconducting gap ∆) and the bosonic spectrum (spin gap ωres)
the inelastic conductance vanishes up to ∆+ωres, where it shows a sharp increase. However,
it does not approach the normal state value due to the lower temperature assumed in
the calculation. Importantly, the spin gap and the shift of spin spectral weight to higher
energies that occurs below Tc can be directly seen by the suppression of inelastic tunneling
contributions for the red curve of Figure 5.5(b) in the energy range from ∆ to ∆ + ωres.
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Figure 5.5.: Calculated conductance spectra for the spin-fermion model in the
normal (cyan/blue) and superconducting state (yellow/orange/red): (a) Elastic
conductance σe(V ) displaying the smeared electronic DOS, (b) Inelastic conductance
σi(V ) showing a V-shaped background conductance for large biases eV and a suppression
for eV < ∆ + ωres below Tc, (c) Total conductance σ(V ) = σe(V ) + σi(V ) for different
inelastic tunneling amplitudes (increasing cutoff energy Eoff lowers inelastic contributions),
(d) Tunneling spectrum for YBCO planar junctions normalized to the conductance at
100meV [73], (e) Conductance for STM on LiFeAs with normalization to I(50meV) [91].
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Naturally, only the sum σ(V ) = σe(V ) + σi(V ) of the elastic and inelastic processes can be
directly observed by tunneling experiments, which is shown in Figure 5.5(c) for different
inelastic tunneling amplitudes. In contrast to the Pb experiments of Section 4.3, where the
normal state could be accessed at the same low-temperature T � ∆, ωD via the application
of an external magnetic field, the information about the normal state in unconventional
superconductor tunneling is usually determined for high temperatures T > Tc, as the
critical magnetic fields are generally very high. This poses a normalization issue for the
STM experiments since the usual way of normalizing STM data for different temperatures
is by adjusting the tip-sample distance such that the current-voltage curves I(V ) or the
conductance curves σ(V ) coincide at high bias voltages. This way of fixing the tip-sample
distance (and therefore the elastic tunneling amplitude te) is necessary, because the sample
and tip materials thermally expand when increasing the temperature and thereby enhance
the tunneling rate significantly (remember that the STM current typically increases by
one order of magnitude when lowering the distance by only 1Å). Interestingly, the same
normalization procedure is usually applied to planar-junction experiments, where the
thermal expansion of the barrier thickness is not expected to have a reasonable effect
on the tunneling spectrum. Here, the most probable reason why the curves for different
temperatures do not meet for high biases is the increase of inelastic contributions for
higher energies as can clearly be seen in Figure 5.3. In what follows, we normalized the
total conductances such that the current I at eV = 10∆ is the same in the normal and
superconducting state similar to Ref. [91].

Let us now discuss the changes in the expected conductance when increasing the inelastic
tunneling amplitude gte/Eoff in Eq. (3.34). Without inelastic tunneling we just see a
constant conductance σe(V ) = σ0 in the normal state and the electronic DOS with
Eliashberg features at ∆ +ωres in the superconducting state as shown in the yellow curve of
Figure 5.5(c). When increasing the inelastic tunneling a pronounced V-shaped background
conductance develops in the normal state and the Eliashberg features below Tc are washed
out by the sharp increase of the inelastic conductance as seen in the second curve from
below. For a strong inelastic contribution, see the upper two curves in Figure 5.5(c),
the Eliashberg features from the elastic transitions are completely overshadowed by the
strong increase in the inelastic conductance leading to an effective peak-dip-hump feature
in the superconducting state. Interestingly, the superconducting curve has a significant
dip below the normal state curve around eV ≈ 2∆, which originates from the spin gap
below Tc. We emphasize that the dip of the peak-dip-hump feature does not originate from
Eliashberg-like strong-coupling physics, therefore not from a renormalization of electronic
quasiparticles due to the coupling to virtual bosons, but from inelastic events via the
emission6 of spin fluctuations. Exactly such peak-dip-hump characteristics have been
seen in many unconventional superconductors showing a background conductance as was
discussed in Section 1.3.2. In Figure 5.5(d) and (e) experimental tunneling conductances
for YBCO planar junctions [73] and STM on LiFeAs [91] are shown in comparison to
our calculated tunneling spectrum σ(V ) and striking similarities can be observed. In
both experiments one can observe a general background conductance and also a clear dip
below the the normal state above the coherence peak of the tunneling conductance in the
superconducting state, leading to the peak-dip-hump feature discussed in the literature.
We also note that as we normalized our tunneling spectra with the current-voltage I(V )
characteristics, the superconducting curve exceeds the normal state conductance for higher
biases as was seen in the LiFeAs data, which used the same way of normalization for
6In the superconducting state, there are basically no excited spin fluctuations as T � ωres and therefore
absorption processes are suppressed.
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their experiments. In contrast to the nodeless superconducting pairing state in LiFeAs,
where we expect the hot-spot theory to work well, its validity to give quantitatively correct
strong-coupling features for d-wave superconductors like the cuprates is questionable.
Obviously, we cannot reproduce the linear gap-region in Figure 5.5(d) typical for nodal
superconductors. Also, it was shown by Zasadinski [114, 115] that a peaked mode at ωres
can give rise to a single pronounced dip feature in the electron DOS at ∆+ωres, see also the
discussion in Section 2.3.2. Nevertheless, the d-wave physics is not capable of explaining
the background conductance and the additional dip in the electron DOS would only lead
to a more pronounced dip feature in Figure 5.5(c).

5.2.2. Normalized conductance

Of course, in many unconventional superconductors the electronic DOS in the normal state is
already non-flat. Therefore, already the normal-state elastic spectra shows a clear deviation
from a constant conductance σe(V ) 6= σ0 and is energy-dependent. We can include this in
two ways: (i) We can use a non-flat normal-state DOS for the calculation of the tunneling
spectra, which will be done in the following Section 5.3 for a more quantitative interpretation
of the STM data in LiFeAs. (ii) We normalize our superconducting conductance by the
one in the normal-state. In this paragraph, we will employ the second option and use the
normalized conductance proposed in Refs. [91, 186]

σnorm(V ) = σsc(V )
σnc(

√
V 2 −∆2/e2)

, (5.4)

which is very similar to the normalized conductance by Rowell and McMillan in Eq. (4.18)
and reduces the effect of a non-flat electron DOS significantly.

The normalized conductance σnorm(V ) and its derivative for the spin-fermion model are
shown and compared to LiFeAs data from Ref. [91] in Figure 5.6. Our model and the
experiment show an excellent agreement assuming strong inelastic tunneling. Let us start
with the normalized conductance: Inside the gap region there are clear deviations between
the two curves since LifeAs is a multiband superconductor with three hole-like bands
centered around the Γ-point and two electron-like bands centered around the M -point of
the Brillouin zone [187–189], which show two distinct superconducting gaps. However, the
dominant gap is the larger gap ∆ := ∆1 and we will neglect the second gap ∆2 < ∆1 in our
ongoing analysis. Above the coherence peak at ∆ the experimental and theoretical curves
both show a clear dip visible around eV ≈ 2∆ in σnorm, followed by a strong increase with
a small peak that saturates above 1 due to the normalization procedure explained above.

Also for the derivative σnorm(V )/dV of the normalized conductance, shown in the lower
pictures of Figure 5.6, the experimental and theoretical spectra share the same features for
eV > ∆ when assuming a strong inelastic tunneling contribution. The most important fine-
structure is the clear peak that occurs at energies between 2∆ and 3∆ in the experimental
curve, which has been seen in many unconventional superconductors [74, 77, 91, 190].
Such a clear peak is only expected when the inelastic contributions dominate and occurs
at ∆ + ωres (red curve), while the pure elastic curve would have a dip at this position
(yellow curve). Therefore, when the conductance shows a clear V-shaped background
conductance and inelastic tunneling is important, the peak in dσnorm(V )/dV can be used
to deduce a spin gap and therefore a possible resonance mode7 in the spin spectrum of
7In Ref. [77] even a second smaller peak was found at eV ≈ ∆ + 2ωres that probably originates from
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Figure 5.6.: Comparison of theoretical and experimental normalized tunneling
conductances: Normalized conductance σnorm(V ) and dσnorm(V )/dV calculated from
the spin-fermion model (left) and comparison with normalized data from LiFeAs (right)
adapted from Ref. [91].

unconventional superconductors. Let us remark at this point that this shift of spin spectral
weight, which leads to the features explained above in the tunneling spectra, has been seen
also in inelastic neutron scattering of LiFeAs [184, 191]. However, LiFeAs is a rather unique
iron-pnictide because the stoichiometric parent compound is already superconducting and
not magnetically ordered [192]. This poses the question if spin fluctuations are responsible
for the moderate Tc ∼ 18K and what the underlying superconducting pairing state looks
like. The excellent agreement of the tunneling data with the presented theory leads us
to the conclusion that the spin fluctuations are the dominant interaction channel, which
gives evidence for an electronic pairing with an unconventional s± gap symmetry in LiFeAs.
Further support for this picture comes from recent QPI studies [193] that could determine
the real part of the self-energy that is consistent with the coupling to a collective spin mode
at energy ≈ 6− 7meV.

Further, we conclude that the interpretation of earlier publications [77, 86, 91, 190], who
used the peak in the second derivative to deduce the resonance energy in cuprate and iron-

two-boson inelastic tunneling that has been neglected here as it will not be of importance for the bias
ranges discussed here.
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based superconductors, is indeed correct. Also the d2I/dV 2 curves of Na(Fe0.975Co0.025)As
from Ref. [90] look very similar to the calculated curve in Figure 5.6 and a clear peak
feature is seen around 2.3∆, however the authors followed the conventional elastic picture
and searched for a dip in the d2I(V )/dV 2 spectrum. Since there is no dip present, they
misinterpret the right tail of the peak feature as the dip and thereby overestimate the
energy of the resonance mode. Obviously, the similarity of the presented tunneling spectra
in the normal and superconducting state with many curves in the cuprate and iron-based
superconductors showing background conductances is remarkable, which becomes apparent
in the comparison of the theoretical predictions in Figure 5.5 with the experimental curves
presented in Figs. 1.8 and 1.10. In the following, we will use the lessons learned from the
calculation of the tunneling spectra in the spin-fermion model to improve the theoretical
interpretation of tunneling data for selected high-Tc superconductors.

5.3. Revisiting tunnel experiments in unconventional super-
conductors

In this section, we will show for how to quantitatively interpret tunneling experiments
in unconventional superconductors which show a pronounced background conductance
using our extended tunneling formalism. We will explicitly revisit experiments performed
on LiFeAs as well as YBCO and show that we can naturally reproduce the observed
experimental conductances combining EETS and IETS.

5.3.1. LiFeAs: A particle-hole asymmetric superconductor

In Figure 5.5(e) the experimental tunneling data of Ref. [91] for STM on LiFeAs single
crystals is shown. The spectrum is obviously not symmetric, calling for a non-constant
normal-state electron DOS. Indeed, ARPES measurements [187–189] and Density Func-
tional Theory (DFT) calculations [154, 194] indicate that the upper edge of a hole-band lies
very close to the Fermi energy, giving rise to a clear energy-dependency for the electronic
spectrum that breaks particle-hole symmetry on the energy scale of the superconducting
order parameter. However, the normalized conductance and its derivative showed striking
similarities to the tunneling spectra calculated using the rather simplistic spectra from the
spin-fermion model. This gives us confidence that the main ingredients for understanding
the tunneling spectra are the opening of a gap in the electronic and bosonic spectrum,
which is well captured by the spin-fermion model. Details about actual electronic band
structure and more realistic spin spectra can then be used to make a more quantitative
fit to the experiments. In the case of LiFeAs, the spectrum shows a clear tilting and in
the following we will show that this is consistent with a linear electronic DOS around the
Fermi energy.

The typical tunneling spectrum for a linear electron spectrum (see Figure 5.7(a)) interacting
with collective spin fluctuations is presented in Figure 5.7(c). The electronic spectrum in
the superconducting state is modeled by a Dynes-fit with gap ∆ = 5.5meV and quasiparticle
broadening of Γ = 0.25meV [91]. For the spin spectrum we use a form similar to the one of
the spin-fermion model in Section 5.2, with overdamped fluctuations in the normal state
and a gapped spectrum with spin gap ωres = 1.3∆ [62] in the superconducting state as
shown in Figure 5.7(b). The total conductance below Tc shows the typical features seen in
the previous Section 5.2 with a V-shaped background conductance and a clear dip below
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the normal state curve around eV = 2∆, followed by a sharp increase around ∆ + ωres.
This curve agrees well with the conductance spectra in the normal and superconducting
state of LiFeAs shown in Figure 5.5(e), but the dip for negative biases is less pronounced in
experiments. This has been seen also in other experiments on iron-based superconductors,
see e.g. Figure 1.10, and cannot be captured by our model. The origin of this effect may
lie in a bias dependence of the inelastic tunneling matrix element, which will be discussed
later in Section 5.3.3. We also neglected possible strong-coupling features here, because for
a fully gapped system like LiFeAs they are not expected to give rise to such a pronounced
dip and there is no sign of the typical peak-dip features of Eliashberg theory.
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Figure 5.7.: Tunneling for broken particle-hole symmetry in the normal- (blue)
and superconducting state (red):(a) Electronic spectrum with significant linear
increase around the Fermi-surface, (b) Overdamped bosonic tunneling spectrum in the
normal state and corresponding gapped spectrum below Tc, (c) Typical total tunneling
spectrum including elastic and inelastic processes for unconventional superconductors
with broken particle-hole symmetry.

5.3.2. YBCO

The tunneling data in YBCO already show an astonishing agreement with the calculated
spectra from the spin-fermion model for the region outside the gap. This is particularly
interesting because YBCO is established to be a d-wave superconductor and the features
above the gap, especially the clear dip (see Figure 5.8(d) have been frequently interpreted
as strong-coupling feature that arise from the coupling to virtual spin fluctuations similar
to the strong-coupling features in conventional superconductors [9, 10, 15]. In Figure 5.8 we
improved our model for YBCO by assuming a d-wave electronic DOS shown in Figure 5.8(a),
which is substantially broadened similar to the experiments. Assuming a reasonable spin
spectrum for the normal- and superconducting state [182], see Figure 5.8(b), we again find a
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striking similarity of the tunneling conductance and the normalized tunneling conductance
when comparing the calculated spectra with the experiment.
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Figure 5.8.: Spectra for YBCO tunneling in the normal- (blue, T = 100K) and
superconducting state (red, T = 10K):(a) d-wave superconducting DOS with maxi-
mum gap ∆ = 30meV including quasiparticle broadening of Γ = 7.5meV , (b) Overdamped
bosonic tunneling spectrum in the normal state and gapped spectrum below Tc motivated
by neutron scattering experiments [182], (c) Calculated tunneling conductance normalized
to σ(100meV) using an inelastic tunneling amplitude to fit the experimental data in the
normal state, (d) Experimental conductance for an YBa2Cu4O7/Pb junction normalized
to σ(100meV) [73], (e) Calculated normalized conductance using Formula (4.18), (f)
Experimental normalized conductance for YBa2Cu4O7/Pb junction [74].

Let us quickly discuss the possibility of other mechanisms which could generate such features
that have been observed in the YBCO tunneling conductance and why we think that they
can be excluded here. In Section 2.3.2 we have presented an extended Eliashberg formalism
for d-wave superconductors [113], which is capable of explaining a clear dip in the electronic
spectrum at ∆+ω0 when assuming a sharply peaked bosonic mode at ω0 in the pairing glue.
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The authors of Refs. [114, 115] were able to explain tunneling data in BSCCO qualitatively
by such a sharp mode with an energy8 close to the spin resonance frequency seen in neutron
scattering. Note that for BSCCO inelastic tunneling seems to be mostly absent as there
is no clear background conductance visible in the majority of the experiments, see also
Figure 1.9. Nevertheless, depending on the the surface sheets and tunneling direction also
spectra showing a clear background conductance and/or pseudogaps have been observed
above Tc [167, 168], and even a phonon mode has been detected using IETS [86, 198, 199].
The reason for the absence of a background conductance for many BSCCO spectra could
originate from the different shape of the Fermi surface or from enhanced tunneling through
an insulating oxide in YBCO. The explanation of the dip due to a sharp resonance mode in
YBCO is however unlikely, because the position of the dip relative to the superconducting
coherence peak is significantly below the value of the resonance mode as seen in neutron
scattering experiments [60, 181]. Furthermore, the strong broadening seen for the coherence
peak should also reduce the magnitude of possible strong coupling effects significantly.
Therefore, the clear background conductance and the nice agreement of the dip position
below ∆ + ωres is a strong argument for the inelastic tunneling theory in YBCO. Also the
pseudogap in the cuprates can be ruled out as the origin of the background conductance,
because the magnitude of the pseudogap is of the order of the superconducting gap as has
been seen by ARPES and tunneling experiments, see also Section 5.1.

5.3.3. Asymmetric matrix element for inelastic tunneling

One feature that is seen in various experiments, e.g. in LiFeAs or FeSe/STO, is that
the inelastic features seem to be weaker on the negative bias side. In Ref. [200] such an
asymmetry has been explained by a voltage dependence of the tunneling matrix elements.
Let us quickly sketch the main idea to show that this mechanism is probably not sufficient
to explain the observed magnitude of the suppression of the inelastic tunneling. Following
Wolf [29] we approximate the elastic amplitude for the tunneling of an electron through a
barrier by the WKB expression

te(E, eV ) ∼ exp
[
−
∫ d

0
dx

√
m[U(x, V )− E]

2~2

]
, (5.5)

where U(x, V ) is the barrier potential. In the case of vacuum tunneling like STM the
barrier potential is essentially the work function of the materials9, see also Figure 5.9 where
the corresponding energy band structure is shown. In the following we denote with φt and
φm the work functions of the tip and the metal, which are extrapolated linearly in between
because the vacuum is an insulator. Consequently, a linear barrier potential between the
tip and the metal develops. In the following, we always measure the particle energy E with
respect to the Fermi energy of the metal. When applying a finite voltage V , the barrier
potential reads

U(x) = eV + φt + φm − (φt + eV )
d

· x . (5.6)

8Other attempts to explain the tunneling data in BSCCO involves Van-Hove singularities and the not
self-consistent coupling to a bosonic mode in the superconductors [116, 195, 196]. Similar to Ref. [197]
we think that their analysis lacks of a self-consistent evaluation of the corresponding self-energies and is
therefore not capable of explaining the dip feature in these systems.

9The work function for tunnel barrier should in general be larger than 1eV for good tunneling junctions,
otherwise one already expects a U-shaped background conductance from the tunnel matrix element [27].
For STM experiments one therefore should use a metal with a high work functions, e.g. tungsten as in
the Pb experiments of Refs. [19, 24].
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Figure 5.9.: Barrier potential U(x, V ) in a vacuum tunneling junction for dif-
ferent applied voltages V .

Here, x = 0 corresponds to the tip position and x = d is the surface of the probe. The
average potential of the barrier is then

Ū = 1
d

∫ d

0
dxU(x) = φt + φm

2 + eV

2 = φ̄+ eV

2 , (5.7)

where we defined φ̄ = φt+φm
2 as the mean work function of the two electrodes. Using this

average barrier height, we can approximate

te(E, eV ) ∼ exp
[
−
∫ d

0
dx

√
m[U(x, V )− E]

2~2

]
≈ exp

[
−

√
m[Ū − E]

2~2 · d
]

= exp
[
−

√
m[φ̄+ eV

2 − E]
2~2 · d

]
.

For the inelastic tunneling channel this bias dependency of the tunneling amplitude gives rise
to different inelastic tunneling probability for the tip-to-metal and metal-to-tip transitions.
Let us first consider the tip-to-metal tunneling process for a bosonic mode with energy
Ωbos, where we need the threshold voltage eV ≈ Ωbos for inelastic processes. The tunneling
occurs first elastically with energy E ≈ Ωbos, followed by an inelastic boson-scattering to a
state near the Fermi surface of the metal. Thus, the typical inelastic tunneling amplitude
of Eq. (3.24) for the tip-to-metal transition reads

tim→t ≈
te(Ωbos,Ωbos) · α

Eoff
. (5.8)

In contrast, for the reverse process an electron near the Fermi surface of the metal first
scatters inelastically and thereby loses energy. With the energy E ≈ −Ωbos it occupies the
off-shell state and can then tunnel elastically for voltages eV ≈ −Ωbos, see Figure 5.10.
Hence, for the metal-to-tip tunneling the inelastic amplitude reads

tit→m ≈
te(−Ωbos,−Ωbos) · α

Eoff
. (5.9)

For typical values d ≈ 6Å, φ̄ = 4eV (e.g. the tungsten tip) and Ωbos = 10meV (spin mode
in iron pnictides), we get that

|tim→t|
2

|tit→m|
2 ≈ 1.02 . (5.10)
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Figure 5.10.: Sketch of inelastic tunneling processes in different directions.

We therefore can conclude that the energy and bias dependency of the matrix element is
probably not the origin of the observed asymmetry of the inelastic contributions in the
tunneling spectra. However we emphasize, that the WKB expression for the tunneling
matrix element is just a rough estimate of the electron tunnel probability, such that final
conclusions cannot be drawn from this simple picture.

5.4. Conclusion of Chapter 5

In this chapter we have successfully applied our extended tunneling formalism that combines
EETS and IETS to understand various tunneling spectra of unconventional superconductors
showing a background conductance. In the normal state we can explain the V-shaped
background conductance by inelastic scattering off overdamped spin-fluctuations during the
tunneling process [125]. In the superconducting state the phenomenological spin-fermion
model already gives the key ingredients to capture the important features seen in the
experimental tunneling conductances: A gap in both the electronic and the bosonic spin
spectrum below Tc. The peak-dip-hump feature could be traced back to the shift of
inelastic tunneling contributions to higher energies when entering the superconducting
state, which overshadows the strong-coupling Eliashberg features that occur at exactly
the same position in energy. Indeed, when looking at iron-pnictide tunneling experiments
without background conductance, where we expect the fine-structure to originate from the
coupling to virtual bosons, the features in the electronic spectrum are often very weak
(see e.g. Figure 1.10(a),(b)). Future works with the extended tunneling theory should also
involve a more detailed modeling of the pure electronic spectrum, including possible effects
from multiband physics [201].

The agreement of our theoretical conductances and tunneling spectra seen in LiFeAs and
YBCO is excellent and we could even improve the fitting by assuming a non-constant normal
state DOS and a d-wave superconducting spectrum, respectively. This demonstrates the
capability of IETS as an experimental tool for accessing the bosonic spectrum of correlated
materials in the superconducting state. Of course, IETS is only present in unconventional
superconductors when a clear background conductance can be seen in the normal and
superconducting state and one has to be sure that the minimum of the conductance at
zero bias does not originate from additional gaps, e.g. from charge- or spin-density waves.
Additionally, the different inelastic tunneling amplitudes seen in various experiments, which
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could originate from momentum-selective matrix-elements or oxide-layer/impurity-assisted
tunneling, have to be further investigated. Also the reduction of inelastic tunneling on the
negative bias side seen in some materials is an issue that has to be further investigated,
possible origins might be band-structure or matrix-element physics.



6. Superconducting Light Emitting Diode

In this chapter we investigate theoretically the properties of the emitted light of a semicon-
ducting p− n junction with proximity-effect-induced superconducting order. The following
analysis is based on Ref. [202] and we call this setup a superconducting light emitting diode
(SLED). We show that the presence of a superconducting gap ∆ in the particle and hole
bands can lead to an increase of the electro-luminescence in a sharp frequency window and
that an additional luminescence peak from Cooper pair tunneling occurs on resonance. We
also demonstrate that the emitted light can be squeezed and that the squeezing amplitude
can be controlled by changing the relative phase of the superconducting order parameter
between the junction, revealing how the macroscopic coherence of a superconductor can be
used to produce non-classical light.

6.1. Modeling the SLED

The main motivation for investigating the SLED is the question: “Is it possible to transfer
the macroscopic quantum coherence of Cooper pairs to light?” A simple solid state device
that efficiently produces entangled and/or squeezed photon pairs [203] is desired in many
research fields, e.g. for the quantum information processing and communication [204–206].
Such an on-demand production of entangled photon pairs due to the recombination of
Cooper pairs has been investigated theoretically [202, 207–213] for various different setups.
The fabrication of superconductor-semiconductor hybrid nanostructures has turned out
to be challenging and some promising candidates are quantum dots [214], semiconducting
quantum wells [215–218] and self-organizing semiconductor-superconductor-heterostructures
of unconventional superconductors [219]. In the p-n junctions [215, 218, 220] as well as
for InAs quantum dots [217], where the semiconducting heterostructure is combined with
a superconducting Niobium lead on the n side of the junction, a strong increase of the
electro-luminescence has been observed below the superconducting transition temperature
Tc. Thus, the n-side of the junction has been superconducting, whereas the p-side is the
normal state.

6.1.1. SLED Hamiltonian

Here, we consider a semiconducting p-n junction sandwiched between two superconducting
leads1 as first proposed in Ref. [211], which is also sketched in Figure 6.1. The system
1 So far, the realization of such a system has not been achieved, because the superconducting materials
that can be grown on the p-side have a lattice mismatch and have to be hole superconductors. However,
this is just an engineering issue and not a fundamental problem of the proposed setup.

85
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Figure 6.1.: Schematic setup of superconducting light emitting diode with p-n junction
coupled to superconducting (sc) leads operated under forward bias voltage V0. Basic recom-
bination processes at low temperature T < |∆c|, |∆v|: (i) recombination of conduction par-
ticle and valence hole upon radiation of a photon (red) with energy ωq ≤ eV0−|∆c|−|∆v|,
(ii) absorption of a photon (blue) with energy ωq ≥ eV0 + |∆c|+ |∆v| upon transfer of an
electron from valence to conduction band, and (iii) Cooper pair tunneling upon emission
or absorption of two photons (green) with energy ωq = eV0. The superconducting gaps
are denoted ∆v (∆c) for valence (conduction) band. Taken from Ref. [202].

will be biased by a voltage eV = µc − µv, where µc/v are the chemical potential of the
conduction/valence bands on the n/p-side of the junction. Due to the proximity effect [221]
Cooper pairs can tunnel into the active region of the light emitting diode (LED), where the
recombination of the particle and holes occur. The Hamiltonian of the entire system reads

H = Hc +Hv +Hph +Hel-ph +Hbath
ph . (6.1)

Let us describe the different parts of the Hamiltonian in detail: Hc/v depict the isolated
physics of the conduction and valence bands and takes the form

Hα − µαNα =
∑

k ,σ=↑,↓
(εα(k )− µα)α̂†k σα̂k σ +

∑
k

(
∆αα̂

†
k ↑α̂

†
−k ↓ + h.c.

)
, (6.2)

where α̂†k σ is the creation operator for an electron in the conduction/valence band (α = (c, v))
with momentum k and spin σ. The band dispersion is assumed as a simple quadratic
dispersion εα(k ) = k 2/2mα with the effective masses mc > 0 and mv < 0 describing
electron- and hole-like quasiparticles centered around the Γ-point, supporting direct radiative
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electron-hole-recombinations . The proximity-induced superconducting gaps are denoted
by ∆α. So far, we have not applied the bias V to the system, which will be done later when
switching to an action-based description of the model. The next part of the Hamiltonian
describes the bare photonic system via

Hph =
∑
q

ωq b̂
†
q b̂q (6.3)

with linear photon-dispersion ωq = c·|q | and photon creation operator b̂†q . We only consider
one photon polarization here and restrict ourselves to spin-conserving recombinations,
however the extension of our model to circularly polarized photons in straightforward
and does not alter the conclusions drawn in the remainder of the chapter. The radiative
recombination of electrons and holes is described by

Hel-ph = −
∑
k ,k ′,σ

(g0 b̂k−k ′ ĉ
†
k ,σv̂k ′,σ + h.c.) , (6.4)

where g0 is the electron-photon coupling constant between the valence and conductance
electrons, which is assumed to be momentum independent for the electrons and holes at the
Fermi edges. When operating the junction under forward bias, photons will be constantly
produced by the LED and the need for an external absorption mechanism becomes apparent.
Hence, we add a bath Hamiltonian [222, 223]

Hbath
ph =

∑
q

νq â
†
q âq −

∑
q ,q ′

(
λq q ′ b̂

†
q âq ′ + h.c.

)
. (6.5)

The photon operator â†q creates a bath photon with frequency q and the coupling between
the external bath and the photon system in the LED is denoted by λq ,q ′ . The bath can
effectively absorb generated photons and thus effectively models the emission of light of
the LED.

Let us note the close relationship between the Hamiltonian (6.1) and the inelastic tunneling
Hamiltonian for superconducting tunneling. Besides the external bath, the main difference
lies in the energy scale of the applied bias V and therefore of the bosons that are involved
in the inelastic tunneling process. For superconductor tunneling experiments on metals the
applied bias is usually of order 10 − 100mV (e.g. phonons, magnons, spin fluctuations),
whereas in semiconductors the forward bias usually operates at ∼ 1V (optical photons).

6.1.2. Energy scales of the system

Before proceeding with the calculations, let us quickly summarize the important energy scales
of the system. For the following estimates we use realistic values of GaAs semiconductors.
There are five important energy scales in the system:

(1) The applied voltage V that is of the order of the semiconducting band gap D 1eV ,
which is by far the largest energy scale of the system. The energy ωq ≈ eV as well as
the photon momentum |q | = eV/c of the emitted photons is set by the applied voltage
or the band gap respectively.
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(2) The semiconducting Fermi-energy EF , measured relative to the band-edges of the
conduction and valence bands, which is typically of the order EF ∼ 10−2 eV−10−1 eV.
With the typical effective masses mc/v ∼ 0.05me − 0.1me the Fermi velocity can be
estimated to be vF =

√
2EF /m ∼ 10−3c.

(3) The proximity induced gap ∆c/v, which will be assumed to be |∆c/v| = 1meV typical
for conventional superconductors.

(4) The electron-photon coupling energy |g0|2 νF ∼ 10−5 eV−10−6 eV [211], where νF is
the DOS of the fermionic quasiparticles.

(5) The coupling to the external bath, which will give rise to a bath decay rate η, see
Section 6.2.3. The steady-state condition implies that the bath decay rate η has to be
larger than the photon production rate.

6.2. Effective photon action

6.2.1. Derivation of effective photon action

Since we are interested in the feedback of the superconducting electrons and holes on the
emitted photons, we will employ a Keldysh path-integral formalism to integrate out the
electronic quasiparticles that leads to an effective action for the photons. This effective
action contain detailed information about the electro-luminescence and squeezing properties
of the emitted light. The small parameter that controls our perturbative approach is the
electron-photon coupling energy |g0|2 νF � |∆| , EF for the superconducting and normal
state. We also require the system to be in a steady state and will discuss the lasing
conditions later in Section 6.4.

The Keldysh action2 of the Hamiltonian (6.1) reads

S =
∫
C
dt
[∑
k ,σ

(
c̄k ,σi∂tck ,σ + v̄k ,σi∂tvk ,σ

)
+
∑
q

(
b̄q i∂tbq + āq i∂taq

)
−H

]
. (6.6)

Here, the ck ,σ, vk ,σ are Grassmann fields and aq , bq are complex fields that arise when
using the path-integral formalism. It is convenient to apply the bias eV = µc − µv at this
stage, which can be done by performing the gauge transformation αk ,σ → eiµαtαk ,σ, see
also Appendix B. After this transformation the dispersions εα(k )→ ξα(k ) = εα(k )− µα
are measured relative to the respective chemical potential and the electron-photon coupling
acquires a time-dependent phase g0 → g(t) = g0e

ieV t. However, we can reabsorb this phase
by introducing the new photon fields Bq = bq e

ieV t with dispersion ω̄q = ωq − eV and
Aq = aq e

ieV t with dispersion ν̄q = νq − eV . Let us now introduce the following electronic
and photonic spinors

∆
Ψζ
k =


vζk ,↑
cζk ,↑
v̄ζ−k ,↓
c̄ζ−k ,↓

 Φ̊ζ
q =

(
Bζ
q

B̄ζ
−q

)
, (6.7)

2See also the introduction to Keldysh theory in Appendix C.
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with ζ = cl, q for the fermionic and ζ = 1, 2 for the bosonic case. We also defined the
corresponding Keldysh vectors

Ψ̂k =

∆
Ψcl
k

∆
Ψq
k

 Φ̂q =
(

Φ̊cl
q

Φ̊q
q

)
, (6.8)

where the ∧-superscript denotes the Keldysh-space, the ∆-superscript the extended
conductance-valence Nambu-spinor and the ◦-superscript the particle-hole photon space.
In terms of the defined spinors, the Keldysh action can be written in a compact form

S =
∫ ∞
−∞

dtdt′
{∑
k

Ψ̂k
†(t)Ĝ−1

0,k (t, t′)Ψ̂k (t′) + 1
2
∑
q

Φ̂q T (t)D̂−1
0,q (t, t′)Φ̂−q (t′)

+
∑
k ,k ′

Ψ̂k (t)Vk−k ′(t)Ψ̂k
′(t′)δ(t− t′)

}
+ Sbath

ph . (6.9)

The factor 1/2 in front of the bosonic propagators comes from the “real” choice of the
photon spinor Φ̊. The bare electronic propagator is given by

Ĝ0,k (t, t′) = −i〈 Ψ̂k (t)Ψ̂†k (t′) 〉0 =
(∆
G
R
0,k (t, t′)

∆
G
K
0,k (t, t′)

0
∆
G
A
0,k (t, t′)

)
(6.10)

∆
G
R/A
0,k (t− t′) = −i〈

∆
Ψ1/2
k (t)[

∆
Ψ2/1
k (t′)]† 〉0 =


G

(p),R/A
0,k ,v 0 F

R/A
0,k ,v 0

0 G
(p),R/A
0,k ,c 0 F

R/A
0,k ,c

F̄
R/A
0,k ,v 0 G

(h),R/A
0,k ,v 0

0 F̄
R/A
0,k ,c 0 G

(h),R/A
0,k ,c


t,t′

where 〈 〉0 is the average with respect to the free, uncoupled action S(g0 = 0). The
particle and hole propagators of the conduction/valence band are denoted by G(p)

c/v,G
(h)
c/v

and the anomalous propagators that arise in the superconducting state by F and F̄ . The
energy-momentum representation, as derived via a Fourier-transformation, takes the usual
form for the retarded and advanced propagators(

G
(p)
0,α F0,α

F̄0,α G
(h)
0,α

)R/A
ω,k

= (ω + i0) · 1+ ξα(k ) · σz −∆α · σ+ −∆∗α · σ−
(ω ± i0)2 − ξα(k )2 − |∆α|2

, (6.11)

where σ± = 1
2(σx ± iσy). We assume the electrons to be in thermal equilibrium, therefore

their equilibration time is much shorter than the typical recombination rate of the LED
and we can express the Keldysh component of the Green’s function as

∆
G
K
0,k (ω) = F (ω)

[∆
G
R
0,k (ω)−

∆
G
A
0,k (ω)

]
(6.12)

with the fermionic distribution function F (ω) = 1 − 2nF (ω) = tanh(ω/2TF ) and the
fermionic temperature TF . For the photonic system, the propagator is given by

D̂0,q (t, t′) = −i〈 Φ̂q (t)Φ̂T
−q (t′) 〉0 =

(
D̊K

0,q (t, t′) D̊R
0,q (t, t′)

D̊A
0,q (t, t′) 0

)
. (6.13)
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with the retarded and advanced blocks

D̊
R/A
0,q (t− t′) = −i〈 Φ̊cl/q

q (t)
[
Φ̊q/cl
−q (t′)

]T 〉0
=
(

0 d
R/A
0,q (t− t′)

d
A/R
0,q (t′ − t) 0

)
. (6.14)

Here, the bare photon propagator reads [dR/A0,q (ω)]−1 = ω− ω̄q ± i0. Similar to the fermionic
system, the photon system is for the uncoupled case in thermal equilibrium and thus the
Keldysh component reads

D̊K
0,q (ω) = B0(ω)

[
D̊R

0,q (ω)− D̊A
0,q (ω)

]
(6.15)

with the bosonic distribution function B0(ω) = 1 + 2nB(ω) with the initial photon temper-
ature TB. However, as we will see soon this initial bosonic distribution function will not be
of importance for the following analysis in the steady-state. The actual photon distribution
function will rather be determined by the interplay between the photon distribution of the
bath and the radiative processes of the LED.

The electron-photon part of the action can be written down as

Vk−k ′(t) =
∑
α=cl,q

∑
i=1,2

γ̂α
∆
g i[Φ̊α

k−k ′(t)]i (6.16)

with the vertex matrices γ̂cl = 1̂ and γ̂q = σ̂x in Keldysh space and the coupling matrices

∆
g 1 = g0√

2


0 0 0 0
1 0 0 0
0 0 0 −1
0 0 0 0

 ,

∆
g 2 = ḡ0√

2


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 .

(6.17)

Finally, let us also give the part of the action that describes the photon bath and its
coupling to the LED

Sbath
ph =

∫
C
dt

[∑
q

A†q (i∂t − ν̄q )Aq +
∑
q ,q ′

(
λq q ′B

†
q Aq ′ + c.c.

)]
. (6.18)

Let us now derive the effective action for the SLED photons by integrating over the
fermionic degrees of freedom and the external bath photons. As explained in Appendix D
such an integration gives rise to two contributions for the photon propagators in terms of
the self-energies Π̊el

q (t, t′) from the electron-hole recombinations and Π̊bath
q (t, t′) from the

absorption of photons into the bath, yielding an action of the form

Seff
ph = 1

2
∑
q

∫ ∞
−∞

dtdt′ Φ̂T
q (t)

[
D̂−1

0,q (t, t′)− Π̂el
q (t, t′)− Π̂bath

q (t, t′)
]
Φ̂−q (t′) . (6.19)
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The bath self-energy can be treated exactly, whereas the electron-induced self-energy has to
be handled within some approximations. We will continue by first calculating the Π̊el

q (t, t′)
self-energy within the random-phase approximation (RPA) and show how the presence of
superconductivity gives rise to correlated photon pairs. Hereafter, we discuss the role of
the photon bath for the evolution of a steady-state of the SLED.

6.2.2. Electronic feedback

The effect of radiative electron-hole recombination can be described in our theory by the
self-energy Π̊el

q (t, t′), which contains the information about photon absorption and emission
processes that involve transitions of electrons between the conduction and valence band.
Our gauge for the photon fields is chosen such that the structure of the self-energy

Π̊el
q (t, t′) =

(
eiφ0Π̃el

11,q (t− t′) Πel
12,q (t− t′)

Πel
21,q (t− t′) e−iφ0Π̃el

22,q (t− t′)

)
, (6.20)

is time-translational invariant, which is in contrast to the definition in Ref. [202]. This
choice has the advantage, that the inversion of the Dyson equation is trivial, because the
convolutions that occur can be easily Fourier-transformed and there is no need for a Wigner
transformation. The phase φ0 = φv − φc + 2φg is dependent on the phase φc/v = arg(∆c/v)
of the superconducting order parameters and of the coupling constant φg = arg(g0). We
treat this self-energies in the RPA-approximation, which means that we take into account
only the leading order one-loop diagrams shown in Figure 6.1, and can write them down
explicitly as

Πel,αβ
ij,q (t, t′) = −i

∑
k

tr
[
γ̂α

∆
g iĜ0,k (t, t′)γ̂β

∆
g jĜ0,k+q (t′, t)

]
. (6.21)

In the following, we will summarize the resulting self-energies in the normal- and super-
conducting state and interpret the physical processes behind the observed features. The
actual calculations of the self-energies are performed in the T = 0 limit and are given in
detail in Appendix D.

6.2.2.1. Normal conducting leads

Let us start by assuming that the external superconducting leads are forced to the normal
state, e.g. by an external magnetic field or by increasing the temperature above Tc. In
this case the superconducting order parameters ∆v = ∆c = 0 vanish and also the diagonal
elements of the self-energy matrix in Eq. (6.20) are zero. For an analytic evaluation of the
occurring momentum sums we make additional assumptions about the band-structure: We
demand symmetric but mirrored dispersions with mc = −mv (and equal gap amplitudes
|∆c| = |∆v| = ∆ later in the superconducting state) for the conduction and valence
bands. As a result, the electronic dispersions fulfill ξc(k ) = −ξv(k ). The electronic DOS
is furthermore only weakly energy-depend in an energy range |ω| � EF with νc(ω) =
νv(−ω) ≡ ν(ω), with ν(0) = νF . In Figure 6.3 the situation is sketched and we emphasize
that assuming more general dispersion do not alter the main conclusions drawn in the
following analysis and can in principle be included via numerical integrations. The retarded
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Figure 6.2.: Feynman graphs of the one-loop bosonic self-energy Πel
ij,q due to the

coupling to conduction (c) and valence (v) electrons, see Eq. (6.21). External photon
propagators (wiggly lines) are not part of the self-energy. Each vertex is associated
with a coupling constant |g0|. Wiggly lines denote photons, solid (dashed) lines denote
conduction (valence) electron propagators. The anomalous contributions Π̃el

11, Π̃el
22 appear

only for superconducting leads ∆c,∆v 6= 0. Adapted from Ref. [202].

self-energies in the normal state can be easily calculated for TF = 0 and are given by

Πel,R
21,q (ω) = −iπ |g0|2 ν

(
ω

2

)
ω

vF |q | for |ω| < vF |q |
sign(ω) for |ω| > vF |q |

Πel,R
12,q (ω) = Πel,A

12,q (−ω) , (6.22)

and are shown in Figure 6.4(a). We neglected the real part, because it only depends weakly
on frequency and because we are in the weak-coupling limit the renormalization of the
photon dispersion can be neglected in the normal state. Since the fermions are assumed to
be in thermal equilibrium, the Keldysh components of the self-energies just reads

Πel,K
ij,q (ω) = coth

( ω

2TF

)[
Πel,R
ij,q (ω)−Πel,A

ij,q (ω)
]
. (6.23)

The imaginary part of the self-energy describes the production and decay rate of the
photons from the recombination and creation of particle-hole excitations. In Figure 6.3 we
see that for TF = 0 there are only two possible transitions: (i) the emission of photons with
energy ωq < eV via the recombination of an electron from the valence band and a hole in
the conduction band, (ii) the absorption of photons, which creates a particle-hole excitation
for photon energies ωq > eV . Note that due to our chosen gauge of the photon fields
Bq = bq e

ieV t, the Π12 self-energy defined here is measured with respect to the applied bias
voltage eV . Thus, the absorption/emission of photons is associated with a negative/positive
imaginary part in the retarded photonic self-energy Πel,R

21,q (ω) as can be seen from the blue
curve in Figure 6.4(a). The linear region for |ω| < vFq originates from a restricted phase
space and the saturation to a constant value comes from the linearization around the Fermi
energies.
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Figure 6.3.: Schematic of the symmetric electronic band dispersion model for normal
conducting leads. Conduction and valence band dispersion obey ξc(k ) = −ξv(k ), vF
denotes the Fermi velocity, kF the Fermi momentum, EF is the Fermi energy and
thus the filling factor of the bands and eV is the applied bias voltage. Electronic
transitions involving photon emission (absorption) are possible at photon energies ωq < eV
(ωq > eV ). Photon momentum q � k F is properly taken into account and results
in electronic transitions that are not vertical. In the presence of superconductivity the
electrons at the Fermi edges are gapped out by the superconducting gap ∆, resulting in
allowed transitions only for |ωq − eV | > 2∆. Taken from Ref. [202].

Note, that the production of photons is described by a positive imaginary part in the Πel,R
21,q (ω)

self-energy that occurs at frequencies ω < 0. If there were no additional contributions
to the photon self-energy, this positive imaginary part would lead to a violation of the
analytic structure of the theory, because the retarded self-energy has to have a negative
imaginary part for all energies ω > −eV for bosonic particles3. Physically, this indicates
an instability of the system and tells us that a steady state cannot evolve if there is no
absorption mechanism for the produced photons of the LED. Hence, the photon number
would grow without bound, resulting in a LASER state (Light Amplification by Stimulated
Emission of Radiation). For this reason, we had to include the coupling to the external
bath that leads in total to a negative imaginary part for all energies. Later, we will also
discuss the LASER conditions for our model.

6.2.2.2. Superconducting leads

When the system is in the superconducting state, there exist non-zero anomalous fermionic
Green’s functions F, F̄ . These lead to the anomalous terms in the diagonal of the bosonic self-
energy Π̊el

q (t, t′), which induce anomalous photon expectation values such as 〈 b†q (t)b†−q (t) 〉.
As we will see later, this can lead to non-classical, squeezed states of the emitted light.
As shown in Appendix D the one-loop self-energies in the energy representation can be
written down as

Π̃el,R
11,q (ω) = 2 |g2

0|
∑
k

[
uk ,vvk ,vuk+q ,cvk+q ,c

ω − Ev(k )− Ec(k + q ) + i0 −
uk ,vvk ,vuk+q ,cvk+q ,c

ω + Ev(k ) + Ec(k + q ) + i0

]
,

Πel,R
21,q (ω) = 2 |g2

0|
∑
k

[ v2
k ,vu

2
k+q ,c

ω − Ev(k )− Ec(k + q ) + i0 −
u2
k ,vv

2
k+q ,c

ω + Ev(k ) + Ec(k + q ) + i0

]
.

3Remember that we measure our bosonic energy relative to eV > 0. Usually, the imaginary part of the
bosonic self-energy has a sign-change from positive to negative at ω = 0, hence for our self-energy this
should occur at ω = −eV .
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Figure 6.4.: Self-energies in the normal (blue=ImΠel,R) and superconducting
(red=ImΠel,R, gray=ReΠel,R) state: (a) Particle self-energy Πel,R

21,q (ω) at fixed mo-
mentum q as function of frequency ω. Positive/negative sign of the imaginary parts
corresponds to photon emission and absorption, (b) Anomalous self-energy Π̃el,R

11,q (ω) in
the superconducting state showing similar structures as the particle self-energy. Adapted
from Ref. [202].

Πel,R
12,q (ω) = Πel,A

21,q (−ω) ,
Π̃el,R

22,q (ω) = Π̃el,R
11,q (ω) . (6.24)

Here, uk ,α =
√

1
2
(
1 + ξk ,α

Eα(k )
)
and vk ,α =

√
1
2
(
1− ξk ,α

Eα(k )
)
are the superconducting coherence

factors and Eα(k ) =
√
ξα(k )2 + |∆α|2 the superconducting quasiparticle dispersion of

the conduction and valence band. The corresponding Keldysh propagators are related by
Eq. (6.23). The explicit form of the retarded normal and anomalous self-energies in the
superconducting state in Eq. (6.24) are given in Appendix D for the realistic parameter
choice vF |q | � 2∆ and symmetric bands. In Figure 6.4 they are shown for the important
region ω ≈ 0, which corresponds to ωq ≈ eV , and obviously both the normal and anomalous
self-energy show a very similar behavior. Their imaginary part vanishes for |ω| < 2∆. At
the border of these regions the functions exhibit a jump in the imaginary part of size

lim
δ→0+

|ImΠel,R
21,q (eV0 + 2∆ + δ)| = π2

2 |g0|2 νF
∆

vF |q |
, (6.25)

then they remain constant over a frequency window of the order of v2
F |q |2/∆. This plateau

comes from the finite momentum q 6= 0 that cuts off the squareroot divergence4 that
would occur for zero momentum [211]. The imaginary part finally decays towards the result
for normal conducting leads, see Eq. (6.22), further away from the gapped region. The
Kramers-Kronig-relations [224] directly tell us that a jump in the imaginary part is related
to a logarithmic divergence in the real part. Since the electron-photon coupling νF |g0|2 � ∆
is the smallest energy scale of the system, see also Section 6.1.2, this logarithmic divergence
is only of importance very close to |ω| = 2∆.
4Note, that it is absolutely essential to take into account a finite momentum, since otherwise we could
never realize a steady-state in our model as we will see later.
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As in the normal state, the imaginary part is proportional to the absorption/emission rate
of the LED. Thus, the vanishing of the imaginary part for |ω| < 2∆ can be understood since
there can be no photons absorbed or emitted for photons with energy ωq ∈ [eV−2∆, eV+2∆]
for zero temperature, which is easily seen in Figure 6.3. However, the coherence peaks
in the fermionic DOS at ±∆ lead to an enhanced emission and absorption of photons
for photon energies that couple the quasiparticles at the superconducting band edges,
which explains the enhancement of the imaginary part in comparison to the normal state
at energies |ω| > 2∆. For these energies the divergence of the real part indicates the
strong renormalization of the photon dispersion due to the coupling to the Bogoliubov
quasiparticles at the coherence peaks.

6.2.3. Role of the photon bath

In Section 6.2.2.1 the issue of a LASER instability has been mentioned and here we will
show how the external bath can serve as an absorption reservoir for achieving a steady
state for our model. The coupling to the bath system gives rise to the self-energy Π̂bath

with the retarded component

Π̊bath,R
q (ω) =

(
0 −Πbath,R

q (−ω + eV )
Πbath,R
q (ω + eV ) 0

)
(6.26)

and

Πbath,R
q (ω) = −iπ |λ(ω)|2 ρbath(ω) . (6.27)

For the derivation we used the usual assumptions [222, 223] that the coupling λp ,p ′ = λ(ωp )
is only depending on the photon energy and defined ρbath(ω) as the bath photon DOS.
Since the microscopic details of the external bath are in general unknown, we assume an
Ohmic bath

π |λ(ω)|2 ρbath(ω) = η θ(ω) ω2

ω2 + Λ2 (6.28)

with low-energy cutoff Λ � eV that quickly saturates at the constant absorption rate5
η for ω > Λ. We neglect any real part, which is assumed to be basically featureless and
unimportant for our following analysis. The vanishing of the imaginary part of the retarded
self-energy in Eq. (6.27) for ω → 0 is of crucial importance for the proper structure of the
Keldysh self-energy6

Π̊bath,K
q (ω, T ) =

(
0 Πbath,K

q (−ω + eV )
Πbath,K
q (ω + eV ) 0

)
(6.29)

with component

Πbath,K
q (ω) = coth

( ω

2TB

)[
Πbath,R
q (ω)−Πbath,A

q (ω)
]
, (6.30)

that would otherwise diverge for particle propagator for ω → −eV .
5The bath self-energy corresponds to a absorption channel for the photons, because the imaginary part is
negative.

6We assume the external bath to be at thermal equilibrium with temperature TB , however general
distribution functions can be easily incorporated.
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6.2.4. Photon propagators

The photon propagators can be easily calculated by solving[
D̂−1

0,q − Π̂q
]
D̂q = 1̊ , (6.31)

where we Fourier-transformed our effective action (6.19) and use the usual convention
q = (ω, q ). Note that in contrast to Ref. [202] we do not have to perform a more complicated
Wigner-transformation to obtain the photon propagator due to the gauge transformation
of our photon fields. We can separate the Keldysh and retarded/advanced component of
Eq. (6.31) as (

[D̊R/A
0,q ]−1 − Π̊R/A

q

)
D̊R/A
q = 1̊ , (6.32)(

[D̊R
0,q]−1 − Π̊R

q

)
D̊K
q = Π̊K

q D̊
A
q . (6.33)

Solving these equations for the dressed retarded and Keldysh photon propagators yields

D̊R
q (ω) =

Π̃R
11,q (ω) ·

[
cos(φ0) · 1̊− i sin(φ0) · σ̊z

]
+
[
ω + ω̄q + ΠR

12,q (ω)
]
· σ̊+ −

[
ω − ω̄q −ΠR

21,q (ω)
]
· σ̊−[

ω − ω̄q −ΠR
21,q (ω)

][
ω + ω̄q + ΠR

12,q (ω)
]

+
[
Π̃R

11,q (ω)
]2 ,

D̊K
q (ω) = D̊R

q (ω)Π̊K
q (ω)D̊A

q (ω) .
(6.34)

By inverting the Dyson equation we have summed up the complete RPA series of bubble
diagrams from the electronic particle-hole processes and the absorption contributions of the
bath. The imaginary part of the retarded propagator determines the excitation spectrum
of the photon. When looking at energies |ω| & 2∆, which corresponds to photons with
frequency ≈ eV ± 2∆, one can observe an enhanced spectral weight for these energies.
This corresponds to photon-exciton bound states or polaritons, where a photon creates
a particle-hole pair that decays into a photon that creates a particle-hole pair and so on.
Since the DOS of the two superconducting bands diverge at ±|∆| (measured from the the
Fermi energy), only scattering processes with a photon matching the energy difference
≈ eV0± 2∆ give rise to a large effective coupling between photons and electrons and to the
formation of polaritons.

6.3. Luminescence and Squeezing of the SLED

In this section, we discuss the properties of the light that is emitted by the SLED, both
in the normal and superconducting state. Therefore, we use the photon propagators that
contain all the information about the luminescence and squeezing properties.

6.3.1. Luminescence

We define the luminescence as the expectation value of the number of photons in a state
with momentum q

L(ωq ) = 〈 b†q (t)bq (t) 〉 = 〈B†q (t)Bq (t) 〉 = i

∫ ∞
−∞

dω

2πD
<
12,q (ω) (6.35)
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with the lesser propagator D<
12,q (t, t′) = −i〈 b+q (t)b̄−q (t′) 〉, that can be expressed via a linear

combination D<
12,q = 1

2(DK
12,q −DR

12,q +DA
12,q ) of retarded, advanced and Keldysh Green’s

functions. For the numerical evaluation of the luminescence we used parameters that are
consistent with our discussion in Section 6.1.2. The superconducting gap, which is of the
order ∆ ∼ 1meV, is used to express all other parameters in the following. We explicitly
set |g0|2 νF = ∆/50, vF /c = 10−3 and eV = 1000∆. Further, we assume an electronic
normal state DOS ν(ε) = νF

√
1 + ε/EF of a three dimensional electron gas with Fermi

energy EF = V/10 = 100∆. The bath decay rate η has to be chosen in such a way that
the analytic structure of our theory remains intact, therefore it has to be larger than the
maximum of ImΠel,R

21,q (ω), see Section 6.4. This corresponds to a minimum

ηmin = π2 |g0|2 νF∆
2(vF /c)ωq

. (6.36)

We choose η = 1.5ηmin here since even larger decay rates will result in a larger linewidth
for the photons, which will smear out the features of the SLED with the energy scale ∼ ∆.
For smaller η < ηmin our steady state is unstable and the system exhibits lasing.
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Figure 6.5.: Luminescence L(ωq ) = 〈 b†q bq 〉 in the superconducting (red) and
normal conducting state (blue) as a function of photon frequency ωq = c|q |:
(a) Bath temperature TB = 0. In the superconducting state an enhanced luminescence
around ωq = eV0 − 2|∆| is found due to quasi-particle transitions from the band-edges of
the superconducting dispersion. In the inset also shows an additional peak at resonance
ωq = eV0 from Cooper pair tunneling. (b) High bath temperature TB = V/2 which
induces thermal photons in the LED. These thermal photons can now also be absorbed
via the creation of particle-hole pairs for ωq > eV (normal state) or ωq > eV + 2∆
(superconductor), which can be clearly seen in the inset. Adapted from Ref. [202].

In Figure 6.5 we present the luminescence for different external bath temperatures, which
models different initial distribution functions when the LED is turned off (V = 0). Let us
first consider the case TB = 0 in Figure 6.5(a), where no background photons are present.
When biasing the LED in the normal state (blue curve) we see that it only produces
photons with energy ωq < eV , which becomes clear because electronic transitions from the
conduction to the valence band are only allowed for this energy at TF = 0, see Figure 6.3.
Similar to the normal state self-energy (6.22) the frequency scale of the increase of the
luminescence seen is given by vF |q | here, where |q | = eV/c is a small momentum. When
the external leads are superconducting a clear peak in the luminescence at ωq = eV − 2∆
is observed, which comes from the large number of electrons and holes that are pushed out
of the gap region to the superconducting band edges and recombine via the emission of a
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Figure 6.6.: Contribution to the luminescence in the superconducting state in
next-to-leading order g4

0: (a) Normal contribution from the Bogoliubov quasi-particle
contributing to the peak at ωq = eV − 2∆, (b) Anomalous contribution giving rise to the
Cooper pair peak in the luminescence. Taken from Ref. [202].

photon, see red transitions in Figure 6.1. An enhancement of the photon excitations for
this energy has been seen in the experiments of Ref. [214], however they looked at a system
where only the n-doped side was coupled to a superconducting lead7. A second interesting
feature in the superconducting state is the occurrence of a Cooper pair peak at resonance ωq ,
which stems from the recombination of electronic Cooper pairs with hole Cooper pairs as
shown as the green transitions in Figure 6.1. This peaks comes from second order processes
shown in Figure 6.6(b) involving the anomalous self-energies Π11,Π22. These contributions
of higher order are taken into account automatically in our calculation via the self-consistent
RPA summation and is a feature the leading order analysis of Ref. [211] misses. The peaks
in the luminescence are characterized by a linewidth δω = max

[
η,
(vF |q |

2∆
)2|∆|].

We also considered the possibility of thermal photons in the LED, which can be incorporated
easily by the assumption of a finite bath temperature TB = eV/2. In the normal state,
photons can not only be created by the LED for photon frequencies ωq < eV , but
also the possible absorption of the thermal photons for ωq > eV can be seen clearly in
Figure 6.5(b) when comparing the normal state photon distribution with the vacuum. In
the superconducting state, this absorption is forbidden up to frequencies ωq > eV + 2∆
because of the superconducting order parameters in the conduction and valence bands. In
addition, one can clearly observe an additional absorption dip at ωq = eV + 2∆ in the
presence of superconductivity.

6.3.2. Photon squeezing

One of the main motivations for the SLED setup discussed in this chapter has been the
question if it is possible to transfer the coherence and entanglement of Cooper pairs to the
emitted light. In this section, we will investigate the statistical properties of the photons
and show that the SLED can in principle produces two-mode squeezed light. This can be
traced back to the occurrence of anomalous photon expectation values 〈 b†q b†−q 〉 induced by
the superconducting state of the electrons, which can push the uncertainty of one two-mode
quadrature operator8 below the value of coherent light. In contrast to Ref. [211], where
the light-squeezing at resonance ωq = eV was only determined in leading order (where the
photon number vanishes), we here also incorporate self-consistently a finite photon number
7We also performed some calculations based on our formalism with only one superconducting lead. Here,
we could only observe such an enhancement at ωq = eV −∆ when one of the two bands is significantly
heavier than the other band.

8For a detailed introduction into quantum optics see e.g. the book by Scully [225].
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〈 b†q bq 〉 for the squeezed photon modes. This allows for a quantitative description of the
squeezing properties for our theoretical model.

Since the recombination of Cooper pairs with net momentum zero can only lead to the
emission of two entangled photons with momenta q and −q , the interesting two-mode
quadrature operator is

Â+
q = 1

23/2
[
b̃†q + b̃†−q + h.c

]
,

Â−q = 1
23/2i

[
b̃†q + b̃†−q − h.c

]
,

(6.37)

where we defined the photon operators in the rotating frame b̃q = b̂q e
iωq t. The fluctuations

of the operators can be easily calculated for our model as

(∆Â±q )2 = 〈 (∆Â±q )2 〉 = 〈 (Â±q − 〈 Â±q 〉)2 〉 = 1 + 2〈 b̃†q b̃q 〉 ± 2Re 〈 b̃q b̃−q 〉
4 . (6.38)

The Heisenberg uncertainty principle tells us that (∆Â+
q )(∆Â−q ) ≥ 1

2 |〈 [Â+
q , A

−
q ] 〉| = 1

4 .
The state is then called squeezed if for one of the quadrature operators the fluctuations fall
below 1

4 . From Eq. (6.40) we can see that squeezing can only occur if the luminescence
L(ωq ) = 〈 b̃†q b̃q 〉 is smaller than the magnitude of the anomalous luminescence, which we
define as

LA(ωq ) = ei2(eV−ωq )teiφ0〈 b̃q (t)b̃−q (t) 〉 = eiφ0〈Bq (t)B−q (t) 〉

= eiφ0

∫ ∞
−∞

dω

2π D
<
12,q (ω) (6.39)

Therefore, we restrict ourselves to small bath temperatures to reduce the number of thermal
photons in the SLED. For the photons on resonance ωq = eV the electro-luminescence is
of order g4

0, whereas the anomalous luminescence is already of order g2
0. When separating

the amplitude and the phase of the anomalous luminescence we can express the quadrature
amplitude as

(∆Â±q )2 =
1 + 2L(ωq )± 2 |LA(ωq )| cos

[
2(ωq − eV )t− φ0 + arg[LA(ωq )]

]
4 . (6.40)

From this expression it becomes clear that squeezing can only occur if |LA(ωq )| > L(ωq ),
which is the case for the photons on resonance that show a peak at ωq = eV in the
anomalous luminescence, see Figure 6.7(a). The origin of the strong squeezing and therefore
entanglement of the photon pairs on resonance comes from the coherent recombination
of Cooper electron pairs of the conduction band with Cooper hole pairs of the valence
band, as is depicted in Figure 6.1. We emphasize, that it is not necessary that the two
photons emerge from a single cooper pair since different pairs are phase coherent. Thus,
even photons that emerge from two different cooper pairs will be entangled (for momenta
q and −q ), because the emission is from a condensate of Cooper pairs and not due to
isolated Cooper pairs as it would be in a small quantum dot. There is also a second
strong peak in the anomalous luminescence at ωq = eV − 2∆ coming from the Bogoliubov
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Figure 6.7.: Squeezing properties of the SLED for superconducting leads: (a)
Normal and anomalous luminescence for the parameters defined in Section 6.3.1, (b)
Quadrature amplitude ∆A±q for photons on resonance ωq = eV showing a squeezed light
state that can fall below the symmetric Heisenberg uncertainty limit 1/4. The inset shows
how the (initial) squeezing angle can be tuned by changing the relative phase φc − φv
between the two superconducting leads. Adapted from Ref. [202].

quasiparticle recombination9, however for these photons there is no squeezing because the
normal luminescence dominates for these energies.

In Figure 6.7(b) the fluctuation of the quadrature amplitudes ∆A±q are plotted over the
difference of the phases of the superconducting order parameters in the conduction and
valence band. For our realistic choice of parameters one of the two fluctuations fall below
the Heisenberg uncertainty limit for a broad range of relative phases. In an experiment
we can control the relative phase φc − φv by inducing a magnetic flux into a parallel
configuration of SLED, which is effectively a Superconducting Quantum Interference Device
(SQUID). Therefore, the squeezing properties of the SLED can be conveniently controlled
by an external magnetic field.

6.4. Steady state and LASER condition

In Section 6.2.2 and 6.3.1 we already discussed shortly the possibility of our setup to
generate a lasing state if the external absorption mechanism of the bath is to small to
absorb the number of photons emitted by the SLED. Here, we will discuss this issue in
more detail for our model and show two distinct ways to understand the steady state
conditions for our parameters.

6.4.1. Lasing condition from effective action

Let us follow Ref. [226] and derive the lasing condition from the properties of our non-
equilibrium Green’s functions. We discuss first the normal state and can generalize the
result to the case of superconducting leads. As stated before the luminescence can be
expressed in terms of the retarded, advanced and Keldysh propagators. Their inverse can

9The third peak at ωq = eV + 2∆ is really small and is only due to the finite photon lifetime, because for
TF = TB = 0 there are never any photons or fermions present at this energy.
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be conveniently parametrized via

[DR/A
12,q (ω)]−1 = Aq (ω)± iBq (ω)

[DK
12,q (ω)]−1 = iCq (ω) ,

(6.41)

where Aq (ω), Bq (ω) and Cq (ω) are defined as real functions. Aq (ω) is the real part of
the inverse retarded propagator and describes the excitation spectrum of the photons,
whereas the imaginary part Bq (ω) contains the information about the decay/emission of
the LED photons and the Keldysh component knows the details about the occupation of
the mode. It is necessary that if the real part has a resonance at ω∗q , thus Aq (ω∗q ) = 0,
the corresponding imaginary part Bq (ω∗q ) > 0 has to be positive to ensure the proper
analytical structure of the retarded propagator with the poles lying in the lower complex
plane.

Inverting the Keldysh matrix in Eq. (6.13) we obtain the usual results for the Green’s
functions

D
R/A
12,q (ω) =

[
Aq (ω)± iBq (ω)

]−1

DK
12,q (ω) = −

[DK
12,q (ω)]−1

[DR
12,q (ω)]−1[DA

12,q (ω)]−1 .
(6.42)

In the normal state, we can explicitly write down

Aq (ω) = ω − ω̄q = ω − ωq + eV

Bq (ω) = −ImΠel,R
21,q (ω)− ImΠbath,R

21,q (ω) ,
(6.43)

where we neglected the real parts of the self-energies because they only give an unimportant
shift for the photon dispersion. We can also express the lesser propagator

D<
12,q (ω) = − i2

Cq (ω)− 2Bq (ω)[
Aq (ω)

]2 +
[
Bq (ω)

]2 . (6.44)

and thereby the luminescence via the above defined functions. We can explicity calculate
the luminescence for a given q and ω̄q under the assumption that the change in the
imaginary part is sub-dominant compared to the real part

L(ωq ) = 1
2

∫ ∞
−∞

dω

2π
Cq (ω)− 2Bq (ω)[
Aq (ω)

]2 +
[
Bq (ω)

]2 ≈ 1
2

∫ ∞
−∞

dω

2π
Cq (ω̄q )− 2Bq (ω̄q )[
ω − ω̄q

]2 +
[
Bq (ω̄q )

]2
= Cq (ω̄q )− 2Bq (ω̄q )

4 |Bq (ω̄q )| = Cq (ω̄q )
4 |Bq (ω̄q )| −

sign
[
Bq (ω̄q )

]
2 (6.45)

We can directly see that a zero in the imaginary part Bq (ω̄q ) leads to a diverging photon
number for a certain mode if the Keldysh component Cq (ω̄q ) is not able to compen-
sate for this. For us, the imaginary part Bq (ω) consists of two contributions as can be
seen in Eq. (6.43): The electronic feedback ImΠel,R

21,q (ω) and the photon bath self-energy
ImΠbath,R

21,q (ω). In the interesting region ωq ≈ eV and thus ω̄q ≈ 0 the bath decay rate is
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constant ImΠbath,R
21,q (0) = −η < 0, see Section 6.2.3. The electron-induced self-energy has

a sign-change for ω = 0, such that the imaginary part reads for ω ≈ 0

Bq (ω) = π |g0|2 νF sign(ω) min
[ |ω|
vF |q |

, 1
]

+ η (6.46)

and the Keldysh component is for TB � eV given by

Cq (ω) = π |g0|2 νF min
[ |ω|
vF |q |

, 1
]

+ η . (6.47)

Obviously, the Keldysh component will not be zero. Therefore, if

π |g0|2 νF = ηmin > η (6.48)

we expect a diverging photon number for photons with energy

π |g0|2 νF
ω̄q
vF |q |

+ η < 0 → ωq < eV − ηvF |q |
π |g0|2 νF

(6.49)

Thus, whenever we have simultaneous zero of Aq (ω∗) and Bq (ω∗) the mode with the
momentum q will be macroscopically occupied, which characterizes the lasing regime for
the system. A similar approach also works in the superconducting state, where the lasing
threshold reads

ηmin = π2

2 |g0|2 νF
∆

vF |q |
. (6.50)

for the photons at ωq ≈ eV − 2∆. This implies, that in the superconducting state the
SLED it is easier to get a LASER due to the increased photon emission for these energies.
Let us also note that the sign-change in the imaginary part can also be understood as a
shift of the “chemical potential” for the photons to higher energies. The divergence of the
luminescence then appears at this position of the new chemical potential.

6.4.2. Rate equation approach

An alternative way to obtain the lasing conditions is to derive the rate equations for
the photon occupation number. Thus, we look at the change of the photon number
n̂ph = ∑

q b
†
q bq , that is given using the Heisenberg equation of motion

Γph = d

dt
〈 n̂ph(t) 〉 = −i〈 [n̂ph(t), Ĥ(t)] 〉 , (6.51)

The calculation of the expectation value can be done in analogy to the derivation of the
elastic and inelastic tunneling currents in Chapter 3 using the Keldysh technique. The
corresponding diagrams that occur in leading order of the electron-photon coupling g0 are
shown in Figure 6.8(a) and (d). The (a) diagram describes the emission/absorption of
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g λ

(a) (b) (c) (d)

Figure 6.8.: Feynman graphs of the rate equation: Solid (dashed) lines denote conduction
(valence) electron propagators, solid wiggly lines denote the free photon propagators and
the curly lines denote bath photon propagators. The first three diagrams represent the
contribution to the rate from emission and absorption of photons involving electronic
transitions in the superconducting LED. The fourth graph describes the photon exchange
with the external bath. Adapted from Ref. [202].

photons due to the recombination of electron-hole excitations of the Bogoliubov quasiparti-
cles. Diagram (d) describes the exchange of photons of the SLED with the external bath.
Further, the additional contributions (b) and (c) can occur in the superconducting state.
Since they involve anomalous electronic and photonic propagators, thus they describe the
decay and absorptions of Cooper pairs along the junction. The diagrams can be compactly
written down using the propagators and self-energies evaluated in the previous parts of
this chapter as Γ = Γbath + ΓSLED with

Γbath = −2
∑
q

∫
dω

π
ImΠbath,R

21,q (ω − eV )ImDA
12,q (ω − eV )

[
nbath(ω)− nq (ω)

]
(6.52)

ΓSLED = 2
∑
q

∫
dω

π
ImΠel,R

21,q (ω − eV )ImDA
12,q (ω − eV )×

([
1 + nq (ω)

]
θ(eV − ω) + nq (ω)θ(ω − eV )

)
− 1
π

∑
q

∫
dω

π
Re

[
Π̃el,R

11,q (ω)DA
11,q (ω)

]
, (6.53)

where nq (ω) and nbath(ω) are the occupation function for the SLED photons and the
bath photons respectively. The bath contribution to the rate equation Γbath drives the
SLED occupation number towards the bath photon distribution nq (ω)→ nbath(ω). The
electronic contributions ΓSLED produces photons via spontaneous and stimulated emission
for energies ω < eV and absorbs photons for ω > eV , which is apparent from Figure 6.3.
The last contribution mainly contributes to the tunneling of the Cooper pairs on resonance,
which is a process of order g4

0.

Let us continue by analyzing the leading order contribution in g0. Here, it is sufficient to
use the bare photon propagators ImDR

12,q (ω) ≈ −πδ(ω + eV − ω) and ImDR
1,q (ω) ≈ 0,

because the occurring self-energies are already of order g2
0. As a result, we obtain the

leading order rate equation

Γ = −2
∑
q

[
ImΠbath,R

21,q (ωq − eV )
[
nbath(ωq )− n(ωq )

]
+ ImΠel,R

21,q (ωq − eV )
([

1 + n(ωq )
]
θ(eV − ωq ) + n(ωq )θ(ωq − eV )

)]
=
∑
q

Γq , (6.54)
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Figure 6.9.: Photon occupation for the SLED in leading order g0 in the normal
(blue), superconducting (red) and vacuum state (green): (a) Photon number for
η > ηmin in the steady state without thermal photons in the system, (b) SLED with
η < ηmin, where a lasing instability occurs for the frequencies in the grey shaded area,
(c) Photon number for η > ηmin, but with thermal photons, which can be absorbed for
ωq > eV in the normal and ωq > eV + 2∆ in the superconducting state.

where the SLED photon number now only depends on the photon energy ωq . In the regime
of interest ωq ≈ eV the bath self-energy ImΠbath,R

21,q (ωq − eV ) ' −η < 0 is constant and
positive and the electron-induced self-energy has a sign change like sign

[
ImΠel,R

21,q (ω)
]

=
−sign(ω). In the steady state, the photon emission and absorptions rates Γq for each mode
q have to be balanced. Therefore we can demand Γq = 0 in the steady state, resulting in
the SLED occupation factor

n(ωq ) =
|ImΠel,R

21,q (ωq − eV )| θ(eV0 − ωq ) + |ImΠbath,R
q (ωq − eV )|nbath(ωq )

−ImΠbath,R
q (ωq − eV )− ImΠel,R

21,q (ωq − eV )
. (6.55)

For ωq > eV the distribution function is always positive and finite, whereas for ωq < eV
the denominator with the imaginary part of the total photon self-energy ΠR

21,q (ω) =
Πbath,R
q (ω)− Πel,R

21,q (ω) may become zero. At this point the photon number diverges, which
indicates the lasing instability of the system and is similar to the conditions η < ηmin
derived in the previous section 6.4.1. The advantage of the rate approach is its physical
transparency as we can see that the lasing frequency is the one where the photon production
of the LED and the photon absorption of the bath are equal.

In Figure 6.9 we plotted the photon occupation number, which is proportional to the
luminescence in leading order in g0. In Figure 6.9(a) and (c) we can clearly see again
the enhanced luminescence in the superconducting state for photon with ωq ≈ eV as
well as the possible absorption of thermal photons for energies ωq > eV for the steady
state. In Figure 6.9(b) the bath absorption rate is chosen as η < ηmin, such that a lasing
instability occurs at energies ωq < ω∗q < eV . At this point the photon number diverges
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as n(ωq ) ∼ (ωq − ω∗q )−1, indicating the lasing instability. For the grey shaded area the
photon number is negative, however the above rate equations do only hold for the steady
state and therefore the curves are unphysical for this frequencies. Instead, one would have
to use a coherent LASER state to investigate the physics of these modes [226], which is an
interesting open question for the future.

6.5. Conclusion of Chapter 6

We have shown that the proposed SLED setup, with a semiconducting p-n-junction coupled
to superconducting leads, is capable of transferring the superconducting coherence to
the emitted photons. The recombination of Cooper pairs from the conduction to the
valence bands lead to entangled photon pairs on resonance ωq = eV with net momentum
zero, whose squeezing properties can be controlled by changing the relative phase between
the superconducting order parameters. For realistic parameters the emitted light can be
truly squeezed, thus the fluctuations of one of the two-mode quadrature operators falls
below the Heisenberg uncertainty limit. Further, the photons emitted via the particle-hole
recombination of Bogoliubov quasiparticles leads to an enhanced luminescence in a frequency
window of the order of the superconducting order parameter ∆ for photons with energy
ωq = eV − 2∆. Such an effect has also been observed in superconductor-semiconductor
experiments with only one superconducting lead, however our setup does not describe
exactly this setup. This demonstrates that the SLED would be an ideal device for the
on-demand of non-classical light and entangled photon pairs motivating the ongoing search
for its experimental realization.

For the future two main questions remain open: (i) Can we invert the ideas, thus is it
possible to induce or enhance superconductivity via squeezed light? Similar ideas for
squeezed phonons [227] could then be generalized to squeezed microwaves. (ii) Is the model
realistic enough to describe the strongly enhanced luminescence seen in p-semiconductor-
n-superconductor junctions [215, 218, 220] and quantum dots [217] or do we have to
incorporate more details like indirect transitions via phonons here?





Conclusion

In this thesis we have investigated the role of inelastic tunneling transitions in supercon-
ducting junctions. The main focus of the work concentrated on SIN junctions for both
planar and STM setups in conventional superconductors and unconventional superconduc-
tors. An additional project covered the entanglement and luminescence properties of a
Superconducting Light Emitting Diode (SLED). Here, we wish to summarize the main
results and conclusions of the dissertation.

In Chapter 3 it has been demonstrated that inelastic tunneling naturally occurs when
describing superconductivity in a low-energy model like the BCS or Eliashberg theory.
Besides the elastic tunneling processes, where an electron travels from one electrode to
the other without energy loss, also inelastic tunneling events can happen. Here, the
electron excites or absorbs a collective boson (e.g. phonon, magnon, spin fluctuation)
during the transition. The actual process behind these inelastic transitions has been
demonstrated to be as follows: An electron first tunnels elastically from the left electrode
to an high-energy state of the right electrode. From this virtual off-shell state, the electron
then scatters inelastically via the excitation/absorption of a boson and finally ends up in
a final low-energy state near the Fermi surface of the right electrode. Explicit forms for
the elastic and inelastic tunneling current have been derived from an effective low-energy
transfer Hamiltonian and the occurring terms have been traced back to different physical
tunneling processes. The main results of this analysis are the following: In the normal state,
the IETS spectrum d2I(V )/dV 2 ∼ α2Ftun(eV ) is proportional to the (coupling-element
weighted) boson DOS, which naturally explains the phonon spectra seen in normal state
planar junctions [17, 18, 50] and STM experiments [19, 20]. For an SIN experiment this
picture changes and the bias dependence of the conductance has to be determined using the
developed extended tunneling theory that combines both elastic and inelastic contributions.
The elastic conductance is given by a thermally smeared electron DOS, whereas the inelastic
conductance can be calculated by a convolution of both the electronic and bosonic spectrum.

The explicit application of the developed extended tunneling theory to conventional super-
conductors, where the dominant interaction10 is the one between electrons and phonons, has
been demonstrated in Chapter 4. The approximate equivalence of the phonon tunneling
spectrum and the Eliashberg function has been explicitly proven for a realistic phonon
spectrum of a cubic system. Furthermore, it has been shown that for a phonon mode with
energy ωph in the superconducting state, inelastic processes lead to pronounced peaks in
d2I(V )/dV 2 just below eV = ∆ + ωph. In contrast, the elastic contributions create a dip
at this position. For STM experiments on Pb [24], this leads to antisymmetric peak-dip

10besides the Coulomb interaction
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features around the zero-axis in the d2I(V )/dV 2 spectra at energies11 eV = ∆ + ωt/l.
The agreement between the theoretical prediction and the experimental tunneling data
demonstrates the potential of the extended tunneling theory for describing both elastic
and inelastic tunneling on equal footing.

The implications of the presented tunneling theory for the interpretation of unconventional
superconductors, where the superconducting pairing glue is presumably of electronic nature,
is an even more interesting question. It is covered in Chapter 5 based on the spin-
fermion model. The importance of inelastic processes in tunneling experiments becomes
apparent from the pronounced background conductance seen in various different high-Tc
compounds. The extended tunneling theory can naturally explain the linear increase of
the conductance by inelastic scattering off overdamped spin fluctuations for the tunneling
electrons [125]. When entering the superconducting state, the inelastic tunneling spectrum
changes significantly since both the electronic and the bosonic spin spectra are now gapped
by ∆ and ωres, respectively. This results in a threshold for the inelastic conductance of
eV = ∆+ωres, followed by a strong increase for higher biases. The total tunneling spectrum,
consisting of the elastic and inelastic conductance, shows a peak-dip-hump feature for biases
eV ∼ ∆ as well as a linear background conductance for higher-biases in the superconducting
state. We emphasize that the dip does not originate from strong-coupling physics, but from
the additional inelastic contributions to the tunneling current. The similarities between
our theory and the experimental data of many cuprate and iron pnictide superconductors
indicate that the spin-fermion model and the extended tunneling theory already contain the
essential physics necessary for the interpretation of the tunneling spectra in unconventional
superconductors [25].

In addition, a more quantitative analysis of tunneling data has been explicitly performed
for the high-temperature superconductors YBCO and LiFeAs. It could be shown that using
more realistic inputs for the electronic and bosonic spectrum, we can understand additional
aspects of tunneling spectra like particle-hole asymmetry, d-wave gap structures, and
additional isolated peaks12 far above the superconducting coherence peaks. The analysis of
Chapter 5 explicitly demonstrates the need of the extended tunneling theory when dealing
with tunneling spectra that show a clear valley-like background conductance.

In the final Chapter 6, the light properties of the SLED have been investigated on the
basis of an optical transfer Hamiltonian [202]. The SLED consists of a semiconducting
p− n junction, where the gap ∆ in the conduction and valence band is proximity-induced
by externally coupled superconducting leads. Under forward bias V > 0, an enhanced
luminescence for photons with energy ωq = eV − 2∆ is predicted below Tc. These
photons are emitted from particle-hole recombinations of Bogoliubov quasiparticles at the
superconducting band-edges. An additional suppressed luminescence peak appears on
resonance ωq = eV due to the recombination of Cooper pairs of the conduction and valence
band. The photon pairs emitted via the latter transitions show a strong entanglement,
which can result in a squeezed light state. When arranging two SLEDs in a SQUID setup,
the squeezing angle of the quadrature ellipse can be conveniently controlled by an external
magnetic field. This proves that one may transfer the macroscopic coherence of an electronic
superconducting condensate to photon pairs in the proposed SLED setup.

11With the energies of the van-Hove singularities ωt/l of the transversal and longitudinal phonon branch
and the superconducting gap ∆.

12without a following dip
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In conclusion, we showed that the inclusion of elastic and inelastic processes is essential for
the correct interpretation of tunneling experiments in both conventional and unconventional
superconductors. The feasibility and applicability of the developed extended tunneling
theory has been explicitly demonstrated for various systems. The analysis of tunneling
data could be further improved by including more realistic theoretical models for the
electronic and bosonic excitations of the system, e.g. by using ab-initio or multiband
calculations, which is however beyond the scope of this thesis. Another interesting proposal
for future work is the development of inelastic QPI, where the elastic QPI theory is
extended using the inelastic tunneling Hamiltonian of Chapter 3. Inelastic QPI is a
promising candidate for the energy- and momentum-resolved determination of bosonic
excitations in condensed matter systems. The ultimate goal is to use the insights gained
from tunneling data and complementary experiments to better understand the underlying
physics of the unconventional superconductors. This might finally unravel the origin of the
high transition temperatures and the other interesting properties of the cuprate and iron
pnictide superconductors.
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Notation

In this thesis, we are working with the following definitions and notations:

• We use ~ = kB = 1 unless stated otherwise.

• If not stated otherwise we are using the Einstein summation notation.

• We define β = 1/T as the inverse of the physical temperature T in the investigated
system.

• We will fluently switch between the 4-vector notation and the energy-momentum
notation k = (iωn,k ).

• Capital Ωm = 2πmT indicate bosonic and small ωn = (2n+1)πT fermionic Matsubara
frequencies.

• We abbreviate T
V

∑
k ,Ωm =

∫
k.

• σ̂i and τ̂i both describe the usual Pauli matrices:

σ̂x =
(

0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(6.56)

Also, we define σ̂0 = 12 and σ± = σx ± iσy.

• nB/F (x) =
[
exp(−βx)∓ 1

]−1 denotes the Bose-Einstein and Fermi-Dirac distribution.

• Θ(x) =
{

1 , x ≥ 0
0 , x < 0

denotes the Heaviside function.

• The Fourier-transform connecting the time-space representation and the energy-
momentum representation is defined via

f(t,x ) =
∫
k
f(ω,k )ei(k ·x−ω·t)

f(ω,k ) =
∫
dx dt f(t,x )e−i(k ·x−ω·t)

(6.57)

• Â⊗ B̂ denotes the Kronecker product of two matrices or operators.
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• List of physical constants:

– Boltzmann constant kB

– Free electron mass me

– Reduced Planck constant ~

– Electron charge e

– Vacuum speed of light c



Acronyms

AC Alternating Current

AFV Antiferromagnetic Ordering Vector

ARPES Angle-Resolved Photoemission Spectroscopy

BCS Bardeen-Cooper-Schrieffer

BSCCO Bi2Sr2CaCu2O8+δ

DFT Density Functional Theory

DOS Density of States

EETS Elastic Electron Tunneling Spectroscopy

fcc face centered cubic

FWHM full-width at half-maximum

HBCCO Hg-Ba-Ca-Cu-O

HWHM half-width at half-maximum

IETS Inelastic Electron Tunneling Spectroscopy

KIT Karlsruhe Institute of Technology

LASER Light Amplification by Stimulated Emission of Radiation

LED Light Emitting Diode

LSCO La2−xSrxCuO4

NBCO NdBa2Cu3O7−δ

OD oxygen-deuterium
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PLCCO Pr1−xLaCexCuO4

QPI Quasiparticle Interference

RG Renormalization Group

RPA Random-Phase Approximation

SIN Superconductor-Isolator-Normalconductor

SIS Superconductor-Isolator-Superconductor

SLED Superconducting Light Emitting Diode

spEELS spin-polarized Electron Energy Loss Spectroscopy

SQUID Superconducting Quantum Interference Device

STM Scanning Tunneling Microscopy

STO SrTiO3

UHV Ultra High Vacuum

WKB Wentzel-Kramers-Brillouin

YBCO YBa2Cu3O7−δ



Appendix

A. Hot-spot theory

A.1. Derivation of Eliashberg equations for spin-mediated superconduc-
tivity

Here, we derive the Eliashberg equations for the spin-fermion model starting with the
introduction of the extended Nambu spinor

Ψk =


ψk,↑
ψk,↓
ψ̄−k,↑
ψ̄−k,↓

 , Ψ̄k =
(
ψ̄k,↑ ψ̄k,↓ ψ−k,↑ ψ−k,↓

)
. (A.1)

We are now able to rewrite the spin-fermion action (2.36) in this new basis

S = −1
2

∫
k

Ψ̄kĜ
−1
k Ψk + 1

2

∫
q
χ−1
q,0S qS −q + g

2

∫
k,q

(Ψ̄k+qαΨk)S q , (A.2)

where we defined the free fermion propagator matrix Ĝk,0 and the α matrices as

Ĝk,0 =


G

(p)
k,0 0 0 0
0 G

(p)
k,0 0 0

0 0 G
(h)
k,0 0

0 0 0 G
(h)
k,0


α̂x =

(
σx 0
0 −σx

)

α̂y =
(
σy 0
0 σy

)

α̂z =
(
σz 0
0 −σz

) . (A.3)

Here, the electron and hole propagators is defined in the usual way as G(p)/(h)
k,0 = iωn ∓

εk . The spin-fermion coupling gives rise to an effective attractive spin-spin interaction
between the quasiparticles, thereby the fermions can form Cooper pairs and we expect a
superconducting phase transition below a critical temperature Tc. Thus, we introduce the
dressed propagator matrix for the extended spinor via

〈ΨkΨ̄k 〉 = −Ĝk = −


G

(p)
k 0 0 Fk

0 G
(p)
k −Fk 0

0 −F ∗k G
(h)
k 0

F ∗k 0 0 G
(h)
k

 , (A.4)
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with the anomalous Green’s functions Fk, F ∗k that appear only in the superconducting
phase. Performing a perturbation theory (neglecting vertex corrections [110]) we find the
coupled integral equations

Ĝp = Ĝp,0 + g2
∫
q

∑
i

Ĝp,0α̂
i(χqĜp−q)α̂iĜp ,

χq = χq,0 + g2

2

∫
p

∑
i

χq,0tr(Ĝp,0α̂zĜp,0α̂z)χq ,

=

=

+

+

(A.5)

Note that in contrast to the conventional Eliashberg theory, we here also have to consider
the renormalization of the bosonic spectrum as the dynamics of the spin spectrum is
generated by the coupling to the fermionic quasiparticles. Using a real choice F = F ∗ of the
gap and reducing the above matrix equations we end up with a set of scalar self-consistent
equations

G(p)
p = G

(p)
p,0
(
1 + ΦpF

∗
p + ΣpG

(p)
p

)
,

Fp = G
(p)
−p,0

(
Σ−pFp − ΦpG

(p)
p

)
,

χq = χq,0 + χq,0Πqχq ,

(A.6)

We introduced the self-energies:

Σp = 3g2
∫
q
χqG

(p)
p−q ,

Φp = 3g2
∫
q
χqFp−q ,

Πq = 2g2
∫
k

[
G

(p)
k G

(p)
k+q + FkFk+q

]
.

(A.7)

Note the different definition of Φp compared to the phonon-mediated pairing in (2.22),
which has a relative + sign compared to the normal self-energy. This will give rise to
unconventional pairing, because the order parameter must have a sign change between
different states on the Fermi surface connected by the interaction potential χq. If we again
assume particle-hole symmetry we find the same expressions as in (2.24).

G(p)
p = Zpiωn + εp

[Zpiωn]2 − ε2p − Φ2
p

,

Fp = Φp

[Zpiωn]2 − ε2p − Φ2
p

,

χq = 1
χ−1
q,0 −Πq

.

(A.8)

with the usual definition of the renormalization factor Zk = 1− Σk
iωn

.
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A.2. Linearization at the hot-spots

In order to calculate the momentum sum over particles which are connected by the AVF
Q we consider in general a term of the form

1
L2

∑
k

f(εk , εk+Q ,∆k ,∆k+Q ) =
∫

d2k

(2π)2 f(εk , εk+Q ,∆k ,∆k+Q ) . (A.9)

Since Q only connects the hot spots and no other points on the
Fermi surface, the important contributions will come from k h.
The dispersion on the Fermi surface is assumed to be described
as a free fermion with effective mass m. We let Q show in the
y-direction and thus can parameterize:

k h = kF

(
cos θ
sin θ

)
, k h +Q = kF

(
cos θ
− sin θ

)
,

where kF is the Fermi momentum. Now we expand k = k h +q
with |q | � kF and obtain for the dispersions

θ
Q

q

kh

εk = εk h+q ≈
k 2
h

2m − µ+ k h · q
m

= kF
m

cos θ q⊥ + kF
m

sin θ q‖ = v⊥q⊥ + v‖q‖ ,

εk+Q = v⊥q⊥ − v‖q‖ ,
(A.10)

where q‖ is the projection of q on the direction of Q and q⊥ the perpendicular component.
A rotation in the momentum space(

ε
ε′

)
=
(
v⊥ v‖
v⊥ −v‖

)(
q⊥
q‖

)
︸ ︷︷ ︸

J

(A.11)

yields the Jacobian determinant |J | = 2v⊥v‖. We further assume that the parallel and
perpendicular Fermi velocities relative to Q are equal v⊥ = v‖ = vF/

√
2 (as seen e.g. in

BSCCO) in order to simplify the occurring terms. We note that we do not need to use this
assumptions about v⊥ and v‖ and that this scheme works as long as the Fermi velocities at
connected hot-spots are not parallel to each other. We are now able to write the integral
(A.9) as

1
L2

∑
k

f(εk , εk+Q ,∆k ,∆k+Q ) = N

4π2v2
F

∫
dε dε′ f(ε, ε′,∆,±∆). (A.12)

Here, we used a sign-changing gap symmetry for the hot spots ∆k h+Q = ±∆k h = ±∆
connected by the AFV. Finally the factor N appears, because we have the contributions of
the N hot spots on the Fermi surface, which are the same due to the tetragonal symmetry
of the system.

For a sum of the form
1
L2

∑
q

χq f(εk h−q ) = 1
L2

∑
δq

χQ+δq f(εk h−Q−δq ) (A.13)

it is clear that the contributions will come from momenta q ≈ Q , such that we expand
q ≈ Q + δq . Next, the integration is split in a component δq ‖ parallel and δq ⊥
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perpendicular to the Fermi surface at the hot spot k ′h = k h −Q . With the assumption of
slow bosonic modes we can then separate the two integrations similar to the approach in
Section 2.2 and get

1
L2

∑
q

χq f(εk h−q ) ≈ 1
(2π)2

∫
dq‖ χQ+δq ‖

∫
dq⊥f(εk h−Q−δq ‖) . (A.14)
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B. Derivation of elastic and inelastic tunneling currents

In this chapter, we present the detailed derivation of the elastic and inelastic tunnel-
ing currents from Section 3.2. We will start from the effective low-energy tunneling
Hamiltonian (3.21) that was derived in Section 3.1. For an STM setup the tunneling
current13 is given by the elementary charge times the change of the number of electrons
n̂s = ∑

k ,σ ŝ
†
k ,σ ŝk ,σ in the superconductor

I(t) = e
d

dt
〈 n̂s(t) 〉 = e

d

dt

tr
(
ρ̂(t)n̂s

)
tr
(
ρ̂(t)

) = e
d

dt

tr
(
ρ̂n̂s(t)

)
tr
(
ρ̂0
) = e

d

dt
tr
(
ρ̂n̂s(t)

)
. (B.1)

Here, ρ̂(t) = Û(t,−∞)ρ̂0Û
†(t,−∞) is the time-dependent density matrix in the Heisenberg

picture with the time-evolution operator Û and ρ̂0 = e−βH/tr(e−βH) the (normalized)
density matrix of the system in thermal equilibrium14. Using the invariance under cyclic
permutation of the trace and the Heisenberg equation of motion dÂ(t)/dt = −i

[
Â(t),H(t)

]
,

we can express the tunneling current as

I(t) = e
d

dt
tr
(
ρ̂0n̂s(t)

)
= −ie tr

(
ρ̂0[n̂s(t),H(t)]

)
= −ie〈 [n̂s(t),H(t)] 〉 . (B.2)

We denote 〈 . . . 〉 = tr
(
ρ̂0 · . . .) as the expectation value in thermal equilibrium. Using

the transfer Hamiltonian (3.23) as well as the usual fermionic anticommutator relations
{ŝk ,σ, ŝ†k ′,σ′} = {t̂k ,σ, t̂†k ′,σ′} = δk ,k ′δσ,σ′ (all other anticommutators of fermionic field
operators vanish), the commutator in (B.2) can easily be calculated as

[n̂s(t),H(t)] = [n̂s(t),Htun(t)] (B.3)

=
∑
k ,k ′
σ,σ′

[
T(k ,σ),(k ′,σ′)(t)ŝ†k ,σ(t)t̂k ′,σ′(t)− [T(k ,σ),(k ′,σ′)(t)]∗t̂†k ′,σ′(t)ŝk ,σ(t)

]
.

Here, we defined T(k ,σ),(k ′,σ′)(t) = tek ,k ′δσ,σ′ +
∑
q ,n t

i
(k ,σ),(k ′,σ′),q ,nΦ̂n

q (t). When using the
Keldysh technique we can calculate the expectation value (B.2) for the current as

I(t) = −ie〈
∑
k ,k ′
σ,σ′

[
T(k ,σ),(k ′,σ′)(t)ŝ†k ,σ(t)t̂k ′,σ′(t)− [T(k ,σ),(k ′,σ′)(t)]∗t̂†k ′,σ′(t)ŝk ,σ(t)

]
〉

= −ie〈
∑
k ,k ′
σ,σ′

[
T−(k ,σ),(k ′,σ′)(t)s̄

−
k ,σ(t)t+k ′,σ′(t)− [T+

(k ,σ),(k ′,σ′)(t)]
∗t̄−k ′,σ′(t)s

+
k ,σ(t)

]
〉

= −ie〈
∑
k ,k ′
σ,σ′

(
s̄−k ,σ(t)
t̄−k ,σ(t)

)†( 0 T−(k ,σ),(k ′,σ′)(t)
−[T+

(k ′,σ′),(k ,σ)(t)]
∗ 0

)
︸ ︷︷ ︸

Â(k ,σ),(k ′,σ′)(t)

(
s+
k ′,σ′(t)
t+k ′,σ′(t)

)
︸ ︷︷ ︸

Ψ̂+
k ′,σ′ (t)

〉 (B.4)

with the redefinition T±(k ,σ),(k ′,σ′)(t) = tek ,k ′δσ,σ′ +
∑
q ,n t

i
(k ,σ),(k ′,σ′),q ,nΦ±,nq (t). Note that

we switched our notation from the operator basis to the Keldysh-path integral formalism
(for a short introduction to the Keldysh formalism see Appendix C), which is indicated by
the fact that the electronic operators ŝ, t̂→ s±, t± have to be replaced by Grassmann fields
13as measured from the tip to the superconductor
14We assume that the tunneling current is so small that the steady state of the connected system does not

affect the thermal equilibrium of the tip and sample subsystems.
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that lie on the upper or lower Keldysh contour and similarly for the complex bosonic field
Φ̂→ Φ±. In order to conserve the correct ordering we had to pin the annihilation operators
on the upper and the creation operators on the lower Keldysh contour. This formal way to
deal with the ordering of operators can also be understood in a more physical picture: Of
course an electron first has to be “destroyed” on the one electrode before it can be “created”
on the other electrode during this transition. Moreover, the bosonic field Φ has to lie at
the same contour as the s fields, because the scattering will only take place in the sample
and not in the tip. When using the Keldysh technique we can calculate an expectation
value like in Eq. (B.2) via

〈 . . . 〉 =
∫
D[Ψ, Ψ̄] . . . eiS , (B.5)

where S is the corresponding action of the fields Ψ = (s, t,Φ) that occur in the theory. For
us, the Keldysh action reads S = S0 + Stun with the uncoupled action S0 = St + Ss that
describes the electrons in the tip and the electronic and bosonic degrees of freedom in the
investigated sample. The tunneling action is then given by

Stun = −
∫
C
dt
∑
k ,k ′
σ,σ′

[
T(k ,σ),(k ′,σ′)(t)s̄k ,σ(t)tk ′,σ′(t) + [T(k ,σ),(k ′,σ′)(t)]∗t̄k ′,σ′(t)sk ,σ(t)

]

= −
∫ ∞
−∞

dt
∑
α=±

α ·
∑
k ,k ′
σ,σ′

[
Tα(k ,σ),(k ′,σ′)(t)s̄αk ,σ(t)tαk ′,σ′(t) + [Tα(k ,σ),(k ′,σ′)(t)]∗t̄αk ′,σ′(t)sαk ,σ(t)

]

= −
∫ ∞
−∞

dt
∑
α=±

α ·
∑
k ,k ′
σ,σ′

(
s̄αk ,σ(t)
t̄αk ,σ(t)

)†( 0 Tα(k ,σ),(k ′,σ′)(t)
[Tα(k ′,σ′),(k ,σ)(t)]∗ 0

)
︸ ︷︷ ︸

B̂α(k ,σ),(k ′,σ′)(t)

(
sαk ′,σ′(t)
tαk ′,σ′(t)

)
.

(B.6)

The introduction of a finite voltage between the tip and the sample is done by performing
two different gauge transformations sk ′,σ′(t) → sk ′,σ′(t)e−iµst, tk ′,σ′(t) → tk ′,σ′(t)e−iµtt
with the condition eV = µT − µS for the tunneling term in the Hamiltonian15. This
transforms the tunnel matrix element to

T±(k ,σ),(k ′,σ′)(t) =
[
tek ,k ′δσ,σ′ +

∑
q ,n

ti(k ,σ),(k ′,σ′),q ,nΦ±,nq (t)
]
e−ieV t . (B.7)

A closer look at Eq. (B.4) shows that the tunneling current in leading order of the tunneling
matrix element te vanishes, because for the uncoupled system with expectation value
〈 . . . 〉0 =

∫
D[Ψ, Ψ̄] . . . eiS0 it holds 〈 st̄ 〉|0 = 〈 ts̄ 〉0. Therefore, we perform a perturbative

expansion in leading order te of the tunneling action via

I(t) = −ie〈
∑
k ,k ′
σ,σ′

[Ψ̂−k ,σ(t)]†Â(k ,σ),(k ′,σ′)(t)Ψ̂+
k ′,σ′(t) 〉

= −ie〈
∑
k ,k ′
σ,σ′

[Ψ̂−k ,σ(t)]†Â(k ,σ),(k ′,σ′)(t)Ψ̂+
k ′,σ′(t)e

iStun 〉0

= e〈
∑
k ,k ′
σ,σ′

[Ψ̂−k ,σ(t)]†Â(k ,σ),(k ′,σ′)(t)Ψ̂+
k ′,σ′(t)Stun 〉0 +O([te]4)

15We should not do this for the S0 part of the action since this would change our chemical potentials in the
bands (so the dispersion for the tip and sample), which will not be the case as both are assumed to be
metals and the total voltage will drop in the insulating vacuum region between the tip and the sample.
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≈ −e
∫ ∞
−∞

dt′
∑

k ,k ′,p ,p ′,
σ,σ′,λ,λ′

∑
α=±

α×

〈 [Ψ̂−k ,σ(t)]†Â(k ,σ),(k ′,σ′)(t)Ψ̂+
k ′,σ′(t)[Ψ̂

α
p ,λ(t′)]†B̂α

(p ,λ),(p ′,λ′)(t′)Ψ̂α
p ′,λ′(t′) 〉0 . (B.8)

Since the expectation value is evaluated under the uncoupled system and only the sample
s can be superconducting (the tip t is always in the trivial normal conducting state), there
is only one way to contract the occuring electronic and bosonic fields via

〈 Ψ̂α
k ,σ(t)[Ψ̂α

k ′,σ′(t′)]† 〉0 = i

(
Gα,βs,k ,σ(t− t′) 0

0 Gα,βt,k ,σ(t− t′)

)
︸ ︷︷ ︸

Ĝk ,σ(t−t′)

δk ,k ′δσ,σ′ ,

〈Φα,n
q (t)Φβ,m

−q ′(t
′) 〉0 = 〈Φα,n

q (t)[Φβ,m
q ′ (t′)]∗ 〉0 = iDα,β

q ,n(t− t′)δq ,q ′δm,n

(B.9)

where Gs/t,k ,σ(t− t′) are the equilibrium particle Green’s functions (te = 0) of the sample
and tip electrons and Dq ,n(t− t′) the bosonic propagator of the real field [Φα,n

q ]∗ = Φα,n
−q ,n.

Performing the above contraction yields16

I = −e
∫ ∞
−∞

dt′
∑
k ,k ′
σ,σ′

∑
α=±

α · 〈 tr
(
Ĝα,−k ,σ (t′ − t)Â(k ,σ),(k ′,σ′)(t)Ĝ+,α

k ′,σ′(t− t
′)B̂α

(k ′,σ′),(k ,σ)(t′)
)
〉0

= −e
∫ ∞
−∞

dt′
∑
k ,k ′
σ,σ′

∑
α=±

α ·
[
〈T−(k ,σ),(k ′,σ′)(t)[T

α
(k ,σ),(k ′,σ′)(t′)]∗G

α,−
s,k ,σ(t′ − t)G+,α

t,k ′,σ′(t− t
′) 〉0

− 〈 [T+
(k ′,σ′),(k ,σ)(t)]

∗Tα(k ′,σ′),(k ,σ)(t′)G
α,−
t,k ,σ(t′ − t)G+,α

s,k ′,σ′(t− t
′) 〉0

]
= −e

∫ ∞
−∞

dt′
∑
k ,k ′
σ,σ′

∑
α=±

α×

[
e−ieV (t−t′)Gα,−s,k ,σ(t′ − t)G+,α

t,k ′,σ′(t− t
′)
(
|tek ,k ′ |

2 δσ,σ′

+
∑
q ,q ′
n,m

ti(k ,σ),(k ′,σ′),q ,n[ti(k ,σ),(k ′,σ′),q ′,m]∗〈Φ−,nq (t)[Φα,m
q ′ (t′)]∗ 〉0

)

− eieV (t−t′)Gα,−t,k ,σ(t′ − t)G+,α
s,k ′,σ′(t− t

′)
(
|tek ′,k |

2 δσ,σ′

+
∑
q ,q ′
n,m

[ti(k ′,σ′),(k ,σ),q ,n]∗ti(k ′,σ′),(k ,σ),q ′,m〈 [Φ+,n
q (t)]∗Φα,m

q ′ (t′) 〉0
)]

= −e
∫ ∞
−∞

dt′
∑
k ,k ′
σ,σ′

∑
α=±

α×

[
e−ieV (t−t′)Gα,−s,k ,σ(t′ − t)G+,α

t,k ′,σ′(t− t
′)
(
|tek ,k ′ |

2 δσ,σ′ +
∑
q ,n

|ti(k ,σ),(k ′,σ′),q ,n|
2
iD−,αq ,n (t− t′)

)

− eieV (t−t′)Gα,−t,k ,σ(t′ − t)G+,α
s,k ′,σ′(t− t

′)
(
|tek ′,k |

2 δσ,σ′ +
∑
q ,n

|ti(k ′,σ′),(k ,σ),q ,n|
2
iDα,+

q ,n (t′ − t)
)]

16The current I(t) = I is of course not time-dependent as we assume our system to be in a steady state.
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= −e
∫ ∞
−∞

dτe−ieV τ
∑
k ,k ′
σ,σ′

∑
α=±

α ×
[
|tek ,k ′ |

2 δσ,σ′

(
Gα,−s,k ,σ(−τ)G+,α

t,k ′,σ′(τ)−G+,α
s,k ,σ(−τ)Gα,−t,k ′,σ′(τ)

)

+
∑
q ,n

|ti(k ,σ),(k ′,σ′),q ,n|
2
i

(
D−,αq ,n (τ)Gα,−s,k ,σ(−τ)G+,α

t,k ′,σ′(τ)−Dα,+
q ,n (τ)G+,α

s,k ,σ(−τ)Gα,−t,k ′,σ′(τ)
)
.

(B.10)

We can now explicitly perform the sum over α for the elastic
∑
α

α

[
Gα,−s (−τ)G+,α

t (τ)−G+,α
s (−τ)Gα,−t (τ)

]
= G<s G

T
t −GTs G<t − (GT̃s G<t −G<s GT̃t )

= G<s (G<t +GRt )− (G<s +GRs )G<t − (G<s −GAs )G<t +G<s (G<t −GAt )
= G<s (GRt −GAt )− (GRs −GAs )G<t

= −2
(
ImG<s ImGRt − ImGRs ImG<t

)
(B.11)

and inelastic contributions∑
α

α

[
D−,α(τ)Gα,−s (−τ)G+,α

t (τ)−Dα,+(τ)G+,α
s (−τ)Gα,−t (τ)

]
= D>G<s G

T
t −DTGTs G

<
t −

[
DT̃GT̃s G

<
t −D>G<s G

T̃
t

]
= D>G<s (G<t +GRt )−DT (G<s +GRs )G<t −DT̃ (G<s −GAs )G<t +D>G<s (G<t −GAt )

= (2D> − DT︸︷︷︸
D>+DA

− DT̃︸︷︷︸
D>−DR

)G<s G<t +D>G<s (GRt −GAt )− DT︸︷︷︸
D<+DR

GRs G
<
t + DT̃︸︷︷︸

D<−DA
GAs G

<
t

= (DR −DA)G<s G<t +D>G<s (GRt −GAt )−D<(GRs −GAs )G<t

= −2i
[
ImDRImG<s ImG<t − ImD<ImGRs ImG<t + ImD>ImG<s ImGRt

]
. (B.12)

Here, we only used the information about the causal structure of the occurring Green’s
functions GR/A(τ), DR/A(τ) ∼ Θ(±τ). Let us now use the following identities to switch to
energy representation∫ ∞

−∞
dτe−ieV τGs(−τ)Gt(τ) =

∫ ∞
−∞

dε

2πGs(ε)Gt(ε− eV ) ,∫ ∞
−∞

dτe−ieV τD(τ)Gs(−τ)Gt(τ) =
∫ ∞
−∞

dωdε

(2π)2D(ω)Gs(ε)Gt(ε− ω − eV ) .
(B.13)

For the fermionic propagators we have the following relations in energy representation (see
e.g. Eq. (C.20))

ImGRs/t,k ,σ(ω) = −πAs/t,k ,σ(ω) ,
ImG<s/t,k ,σ(ω) = 2πnF (ω)As/t,k ,σ(ω) ,

(B.14)

and for the bosonic propagators

ImDR
q ,n(ω) = −π

[
Aq ,n(ω)−A−q ,n(−ω)

]
,

ImD<
q ,n(ω) = −2πnB(ω)

[
Aq ,n(ω)−A−q ,n(−ω)

]
,

ImD<
q ,n(ω) = −2π[1 + nB(ω)]

[
Aq ,n(ω)−A−q ,n(−ω)

]
.

(B.15)
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The spectral weight functions are defined in the usual way as

As/t,k ,σ(ω) = − 1
π
ImGRs/t,k ,σ(ω) ,

Aq ,n(ω) = − 1
π
ImDR

q ,n(ω) ·Θ(ω) ,
(B.16)

where we confined the bosonic spectral function to positive energies17. When we insert
the expressions (B.13)-(B.4) in our expression (B.12) for the current we find the following
expression for the elastic current

Ie(V ) = 2πe
∫ ∞
−∞

dε
∑
k ,k ′,σ

|tek ,k ′ |
2As,k ,σ(ε)At,k ′,σ′(ε− eV )

[
nF (ε− eV )− nF (ε)

]
. (B.17)

For the inelastic current the expression is given by

I i(V ) = 2πe
∫ ∞
−∞

dεdω
∑

k ,k ′,q
σ,σ′,n

|ti(k ,σ),(k ′,σ),q ,n|
2× (B.18)

[
Aq ,n(ω)As,k ,σ(ε)At,k ′,σ′(ε− ω − eV )·(
nF (ε− ω − eV )nB(ω)

[
1− nF (ε)

]
− nF (ε)

[
1 + nB(ω)

][
1− nF (ε− ω − eV )

])
+Aq ,n(ω)As,k ,σ(ε)At,k ′,σ′(ε+ ω − eV )(
nF (ε+ ω − eV )

[
1 + nB(ω)

][
1− nF (ε)

]
− nF (ε)nB(ω)

[
1− nF (ε+ ω − eV )

])]
.

17Negative energies correspond to the absorption of a boson that is captured by the antisymmetric definition
of the retarded, lesser and greater boson propagator in Eq. (B.15).
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C. Keldysh perturbation theory

In the following paragraph, we wish to give a short introduction to the Keldysh perturbation
theory. For further insights in the Keldysh theory we refer to the literature [102, 103], which
deals e.g. with other non-equilibrium aspects of the perturbation theory (dynamical external
fields, evolution of squeezed systems, Boltzmann transport theory/kinetic equation). Also,
in Chapter 6 the effect of the interactions of fermions with photons in a superconducting
light emitting diode setup is presented for a steady state, which gives insight into the
general structure of calculations using the Keldysh formalism.

C.1. Closed time contour

We consider a quantum system with time-dependent Hamiltonian H(t). For t = −∞ the
system is assumed to be described by a density matrix ρ̂(−∞), which is associated with
the Hamiltonian H(−∞). We shall also assume a non-interacting system for t = −∞, and
the interactions are then switched on adiabatically to reach their actual physical strength
prior the observation time t. The “true” time dependence of the Hamiltonian (e.g. external
fields or boundary conditions) can drive the density matrix away from equilibrium. Let us
write the normalized density matrix for t = −∞ as

ρ̂(−∞) =
∑
n

ρn | n 〉〈n |, (C.1)

where | n 〉 are the many-body eigenstates of H(−∞) and ρn the probability to find the
system in the corresponding state, e.g. in thermal equilibrium ρn = e−β〈n|H(−∞)|n〉/Z with
the partition function Z = tr(e−βH(−∞)). The time evolution of the density matrix is
described by the Von-Neumann equation

∂tρ̂(t) = −i
[
H(t), ρ̂(t)

]
, (C.2)

which can be verified using the time evolution of the states in (C.1) described by the time
dependent Schrödinger equation. Using the time evolution operator that fulfills

i∂tÛt,t′ = H(t)Ût,t′ (C.3)

we can formally write

ρ̂(t) = Ût,−∞ρ̂(−∞)Û−∞,t . (C.4)

Since the Hamiltonian is time-dependent, it holds in general that [H(t),H(t′)] 6= 0 and the
time evolution operator is given by

Ut,t′ = Tt exp
[
−i
∫ t

t′
H(τ)dτ

]
(C.5)

with the time-ordering operator Tt. We are now interested in the time-evolution of the
observable Ô for time t and therefore

〈 Ô(t) 〉 = tr[Ôρ̂(t)]
tr[ρ̂(t)] = tr[ÔÛt,−∞ρ̂(−∞)Û−∞,t]

tr[Ût,−∞ρ̂(−∞)Û−∞,t]
= tr[Û−∞,tÔÛt,−∞ρ̂(−∞)]

tr[ρ̂(−∞)]
=tr[Û−∞,tÔÛt,−∞ρ̂(−∞)] . (C.6)
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t=∞ t=-∞

U∞,t
^

U-∞,∞
^

Ut,-∞
^

O
^

t

ρ(-∞)

Figure C.1.: Keldysh-contour with observable on the forward branch.

The expression in the trace described (read from right to left) an evolution from the initial
density matrix from −∞ to t, then the observable is calculated, and then back to −∞.
Therefore, in order to calculate the time evolution of Ô we have to evolve the initial state
“backward and forward”.

In equilibrium physics for T = 0 one uses a trick to get rid of the backward evolution. Here,
we search for the expectation value 〈GS | Ô | GS〉, where | GS 〉 is the many-body ground
state of the interacting Hamiltonian H = H0 + V̂ . Since we have adiabatically switched on
and off the interaction in the distant past and future, we get

〈GS | Ô | GS〉 = 〈 0 | Û †t,−∞ÔÛt,−∞ | 0〉, (C.7)

with | 0 〉 is the simple many-body ground state of the non-interacting Hamiltonian (in
case of fermions for T = 0 the filled Fermi sea). Now comes the trick: One argues that
Û∞,−∞ | 0 〉 = eiφ | 0 〉 with φ ∈ R. Therefore, the time evolution from −∞ to ∞ of | 0 〉
only gives us a phase, because for t = ±∞ the system has to be in the non-interacting
ground state again, which are connected due to the adiabatic change of the Hamiltonian.
Because of the normalization we can only get a phase and we are able to write

〈GS | Ô | GS〉 = 〈 0 | Û−∞,tÔÛt,−∞ | 0〉 = 〈 0 | Û−∞,∞Û∞,tÔÛt,−∞ | 0〉

= e−iφ〈 0 | Û∞,tÔÛt,−∞ | 0〉 = 〈 0 | Û∞,tÔÛt,−∞ | 0〉
〈 0 | Û∞,−∞ | 0〉

. (C.8)

We have now the evolution from −∞ to t, where the observable Ô is evaluated, and finally
the evolution from t to ∞. Therefore, we have only “forward evolution”. A similar strategy
works also for finite temperatures T in equilibrium, where the Boltzmann factor e−βH
works as an evolution operator in imaginary time τ ∈ [0, β). Nevertheless, the elimination
of the backward evolution comes with a price: The normalization denominator in Eq. (C.8).
In a diagrammatic language it will cancel the disconnected vacuum diagrams.

In non-equilibrium physics the above trick does not work. The non-adiabatic change of H(t)
due to external fields or boundary conditions can drive the system away from equilibrium
and instead of remaining in the ground state during the evolution we might end up with a
superposition of excited states. Even if in the distant future all fields are switched off, the
system can’t relax in the ground state and the “backward evolution” can’t be eliminated,
because in time-dependent problems the energy of processes is not necessarily conserved.
Nevertheless, it is still convenient to extend the evolution of Eq. (C.6) toward t =∞ and
then back to t using Ût,∞Û∞,t = 1. We can write18

〈 Ô(t) 〉 = tr
[
Û−∞,tÔÛt,−∞ρ̂(−∞)

]
= tr

[
Û−∞,∞Û∞,tÔÛt,−∞ρ̂(−∞)

]
18Note that one could equally well put the observable Ô on the backward branch of the contour. The most

convenient choice is to take a half sum of these two equivalent representations.
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= tr
[
T ÛCÔ

∣∣
t
ρ̂(−∞)

]
, (C.9)

where we defined the closed contour evolution operator ÛC
def= Û−∞,∞Û∞,−∞. This evolution

from −∞ to ∞ and backwards in known as the so-called Keldysh contour and is shown in
Figure C.1.

C.2. Keldysh path integral formalism

Let us start by considering the expectation value for a bosonic system that has at t = −∞
the equilibrium density matrix

ρ̂0 = ρ(−∞) = e−βH/Z with Z = tr(e−βH) . (C.10)

The bosons are assumed to be described by the Hamiltonian

H =
∑
q

ωq φ̂
†
q φ̂q︸ ︷︷ ︸

H0

+HI , (C.11)

where the interaction as well as external influences such as external fields are described by
HI. Employing the usual discretization via infinitesimal time steps and inserting coherent
bosonic states φ̂ | φ 〉 = φ | φ 〉, see e.g. Refs. [102, 103], the expectation value of two
bosonic fields can be expressed in terms of the path integral

〈 φ̂q (t)φ̂q ′(t′) 〉 =
∫
D[φ̄, φ]φ−q (t)φ+

q ′(t
′), eiS . (C.12)

Here, the φ± fields are located on the upper/lower Keldysh contour ensuring the correct
order of the bosonic field operators. The non-interacting Keldysh action is given by19

S0 =
∫
C
dt
∑
q

φ̄q (t)(i∂t − ωq )φq (t)︸ ︷︷ ︸
S0

=
∫ ∞
−∞

dt
∑
q

[
φ̄+
q (t)(i∂t − ωq )φ+

q (t)− φ̄−q (t)(i∂t − ωq )φ−q (t)
]
. (C.13)

In the continuum representation it looks as if the two Keldysh branches were uncoupled,
however at t =∞ there is a finite matrix element that connects the + and the − contour.
This coupling leads to the following four Green’s functions for the non-interacting case [103]

G<q (t, t′) = −i〈φ+
q (t)φ̄−q (t′) 〉0 = −inB(ωq )e−iωq (t−t′),

G>q (t, t′) = −i〈φ−q (t)φ̄+
q (t′) 〉0 = −i[nB(ωq ) + 1]e−iωq (t−t′),

GTq (t, t′) = −i〈φ+
q (t)φ̄+

q (t′) 〉0 = G>(t, t′)Θ0(t− t′) +G<(t, t′)Θ(t′ − t),

GT̃q (t, t′) = −i〈φ−q (t)φ̄−q (t′) 〉0 = G>(t, t′)Θ0(t′ − t) +G<(t, t′)Θ(t− t′),

(C.14)

where the bare expectation value is defined as〈 . . . 〉0 =
∫
D[φ̄, φ] . . . eiS0 . This non-trivial

coupling of the upper and lower Keldysh contour is hard to formulate for the continuous
19Interactions are translated straightforward from the Hamiltonian to the action by converting the operators

φ̂ by fields φ and an additional minus sign.
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time-notation in the basis of the φ+ and φ− fields. The task is facilitated by the observation
that not all four Green’s functions defined in (C.14) are independent

GTq (t, t′) +GT̃q (t, t′)−G>q (t, t′)−G<q (t, t′) = 0 . (C.15)

Thus, we can perform a rotation to simplify the relations between the fields by introducing
the new fields (classical and quantum)(

φclq
φqq

)
= Û

(
φ+
q

φ−q

)
, with Û = 1√

2

(
1 1
1 −1

)
. (C.16)

The correlators of these new fields are

〈
(
φclq (t)
φqq (t)

)(
φclq (t′)
φqq (t′)

)†
〉 = Û〈

(
φ+
q (t)
φ−q (t)

)(
φ+
q (t′)
φ−q (t′)

)†
〉Û † = Û〈

(
iGTq (t, t′) iG<q (t, t′)
iG>q (t, t′) iGT̃q (t, t′)

)
〉Û †,

(C.17)

which can be rewritten as

〈φαq (t)φ̄βq (t′) 〉 = iGα,βq (t, t′) =
(
iGKq (t, t′) iGRq (t, t′)
iGAq (t, t′) 0

)
, (C.18)

with the corresponding retarded, advanced and Keldysh propagators20

GKq (t, t′) = Gcl,cl
q (t, t′) = 1

2
[
GTq +GT̃q +G>q +G<q

]
= G>q +G<q ,

GRq (t, t′) = Gcl,q
q (t, t′) = 1

2
[
GTq −GT̃q +G>q −G<q

]
= (G>q −G<q )Θ(t− t′),

GAq (t, t′) = Gq,cl
q (t, t′) = 1

2
[
GTq −GT̃q −G>q +G<q

]
= (G<q −G>q )Θ(t′ − t) .

(C.19)

The new basis is often also referred to as the RAK-basis in contrast to the ±-basis. The
inverse relations read:

G<q (t, t′) = G+,-
q (t, t′) = 1

2
[
GKq −GRq +GAq

]
,

G>q (t, t′) = G-,+
q (t, t′) = 1

2
[
GKq +GRq −GAq

]
,

GTq (t, t′) = G+,+
q (t, t′) = 1

2
[
GKq +GRq +GAq

]
= G<q +GRq = G>q +GAq ,

GT̃q (t, t′) = G-,-
q (t, t′) = 1

2
[
GKq −GRq −GAq

]
= G<q −GAq = G>q −GRq .

(C.20)

For our free bosons the propagators in the RAK-basis are given by

GKq (t, t′) = −i[2nB(ω0) + 1]e−iω0(t−t′),

GRq (t, t′) = −iΘ(t− t′)e−iω0(t−t′),

GAq (t, t′) = iΘ(t′ − t)e−iω0(t−t′),

(C.21)

and performing the Fourier-transform of these quantities we find the usual form of the
RAK-propagators in energy-representation

GRq (ε) (C.19)= −i
∫
d(t− t′)e−iωq (t−t′)Θ(t− t′)ei(ε+i0)(t−t′) = 1

ε− ωq + i0 ,

20These Green’s functions indeed correspond with to the usual definition of the retarded, advanced and
Keldysh propagators in the operator language.
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GAq (ε) (C.19)= i

∫
d(t− t′)e−iωq (t−t′)Θ(t′ − t)ei(ε−i0)(t−t′) = 1

ε− ωq − i0
, (C.22)

GKq (ε) (C.19)= −i
∫
d(t− t′)e−iωq (t−t′)[2nB(ωq ) + 1

]
eiε(t−t

′) = −i
[
2nB(ωq ) + 1

]
2πδ(ε− ωq ).

In the fermionic case, there are only a few minor changes:

1. Instead of complex fields φ one has to use Grassmann fields to account for the
anticommuting nature of the fermions.

2. The Bose-Funktion nB has to be replaced by the Fermi function nF .

3. Instead of quantum and classic fields φcl,q one introduced the ψ1/2 fermionic fields via(
ψ1

ψ2

)
= 1√

2

(
1 1
1 −1

)(
ψ+

ψ−

)
= Û

(
ψ+

ψ−

)
,(

ψ̄1

ψ̄2

)
= 1√

2

(
1 −1
1 1

)(
ψ̄+

ψ̄−

)
= Ū

(
ψ+

ψ−

)
.

(C.23)

This leads to a different structure of the RAK-basis GR = G11, GA = G22 and
GK = G12. However, the relations between the RAK and the ±-basis is still the same
as for the bosonic case, see Eqs. (C.19,C.20).
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D. SLED calculations

The calculations in this appendix are based on Ref. [202].

D.1. Integrating out the electrons and bath

Let us start by integrating out the electronic degrees of freedom of the action (6.9), which
can be achieved using the usual rules of Gaussian integration

∫
D[Ψ, Ψ̄]ei[Sc+Sv+Sint] =

∫
D[Ψ, Ψ̄]e

i
∑

k ,k ′
∫∞
−∞ dtdt′ Ψ̂†

k
(t)

(
Ĝ−1

0,k (t,t′)δk ,k ′+V̂k ,k ′ (t)δ(t−t′)

)
Ψ̂k (t′)

= etr ln
[
1+Ĝ0V̂ ] . (D.1)

We can then expand the trace-log term in our perturbative parameter g and perform the
trace in the time and momentum space

tr ln
[
1 + Ĝ0V̂ ] =

∞∑
n=1

(−1)n+1

n
tr
[
(Ĝ0V̂ )n

]
= −1

2tr
[
(Ĝ0V̂ )2]+ . . .

≈ −1
2

∫
dtdt′

∑
k ,k ′

tr
[
Ĝ0,k (t′, t)V̂k ,k ′(t)Ĝk ′(t, t′)V̂k ′,k (t′)

]
= −1

2

∫
dtdt′

∑
k ,q

tr
[
Ĝ0,k (t′, t)

[ ∑
α=q,cl
i=1,2

γ̂α
∆
g iΦα

q ,i(t)
]
Ĝ0,k−q (t, t′)

[ ∑
β=q,cl
j=1,2

γ̂β
∆
g jΦβ

−q ,j(t′)
]]

= −1
2

∫
dtdt′

∑
q

∑
i,j=1,2
α,β=q,cl

Φα
q ,i(t)

(∑
k

tr
[
Ĝ0,k (t′, t)γ̂α

∆
g iĜ0,k−q (t, t′)γ̂β

∆
g j
])

︸ ︷︷ ︸
:=i[Πel]αβij,q (t,t′)

Φβ
−q ,j(t′)

= − i2

∫
dtdt′

∑
q

Φ̂T
q (t)Π̂el

q (t, t′)Φ̂−q ,j(t′) . (D.2)

With the definition

[Πel]αβij,q (t, t′) = −i
∑
k

tr
[
γ̂α

∆
g iĜ0,k (t, t′)γ̂β

∆
g jĜ0,k+q (t′, t)

]
(D.3)

the occurring photon self-energies that arise from the interaction with the electronic
quasiparticles can be conveniently summarized as

Π̂el
q (t, t′) =

(
0 Π̊el,A

q (t, t′)
Π̊el,R
q (t, t′) Π̊el,K

q (t, t′)

)
,

Π̊el,R
q (t, t′) =

[Πel]q,cl
11,q (t, t′)

[
Πel]q,cl

12,q (t, t′)[
Πel]q,cl

21,q (t, t′)
[
Πel]q,cl

22,q (t, t′)

 ,

Π̊el,A
q (t, t′) =

[Πel]cl,q
11,q (t, t′)

[
Πel]cl,q

12,q (t, t′)[
Πel]cl,q

21,q (t, t′)
[
Πel]cl,q

22,q (t, t′)

 ,

Π̊el,A
q (t, t′) =

[Πel]cl,cl
11,q (t, t′)

[
Πel]cl,cl

12,q (t, t′)[
Πel]cl,cl

21,q (t, t′)
[
Πel]cl,cl

22,q (t, t′)

 .
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In a similar way, the bath photons Aq can be integrated out. First, we define the spinors

Υ̊ζ
q (t) =

(
Aζq
Āζ−q

)
,

Υ̂q =
(

Υ̊cl
q

Υ̊q
q

)
.

(D.4)

The interaction between the path and the LED photons can then be written as

Sbath
ph =

∫ ∞
−∞

dtdt′
[1

2
∑
q

Υ̂q
T (t)D̂−1

0,A,q (t, t′)Υ̂−q (t′) +
∑
q ,q ′

δ(t− t′)Φ̂T
q (t)λ̂q ,q ′Υ̂q ′(t)

]
.

(D.5)

with

λ̂q ,q ′ = (σ̂x ⊗ σ̊x) · λq q ′ . (D.6)

Using the usual identities for Gaussian integration the following bath self-energies occur

Π̂bath
q (t, t′) =

(
0 Π̊bath,A

q (t, t′)
Π̊bath,R
q (t, t′) Π̊bath,K

q (t, t′)

)
,

Π̂bath,R/A/K
q (t, t′) =

∑
p

|λq ,p |2
 0 d

A/R/K
bath,p (t′, t)

d
R/A/K
bath,p (t, t′) 0

 ,

with

d
R/A
bath,q (ω) = 1

ω + eV − νq ± i0
,

dKbath,q (ω) = B0(ω + eV )
[
dRbath,q (ω)− dAbath,q (ω)

]
.,

The assumption of a momentum-independent coupling λp ,p ′ = λ(ωp ′) and an Ohmic bath
leads to the simple expressions for the bath self-energies in Eqs. (6.26)-(6.30).

D.2. Calculation of the Π̂el self-energies

Let us now perform the traces over the Keldysh space for the electron-induced self-energy
in Eq. (D.3)

[Πel]Rij,q (t, t′) =
[
Πel]q,cl

ij,q
(t, t′) = −i

∑
k

tr
[
γ̂q

∆
g iĜ0,k (t, t′)γ̂cl

∆
g jĜk +q (t′, t)

]
= −i

∑
k

tr∆tr∧
[(

0 1
1 0

)
∆
g i

∆
GR0,k (t, t′)

∆
GK0,k (t, t′)

0
∆
GA0,k (t, t′)

×
(

1 0
0 1

)
∆
g j

∆
GR0,k +q (t′, t)

∆
GK0,k +q (t′, t)

0
∆
GA0,k +q (t′, t)

]

= −i
∑

k

tr∆
[∆
g i

∆
G
R
0,k (t, t′)

∆
g j

∆
G
K
0,k +q (t′, t)+

∆
g i

∆
G
K
0,k (t, t′)

∆
g j

∆
G
A
0,k +q (t′, t)

]
,

[Πel]Aij,q (t, t′) = −i
∑

k

tr∆
[∆
g i

∆
G
A
0,k (t, t′)

∆
g j

∆
G
K
0,k +q (t′, t)+

∆
g i

∆
G
K
0,k (t, t′)

∆
g j

∆
G
R
0,k +q (t′, t)

]
,



Appendix 133

[Πel]Kij,q (t, t′) = −i
∑

k

tr∆
[

∆
g i

∆
G
K
0,k (t, t′)

∆
g j

∆
G
K
0,k +q (t′, t) (D.7)

−
∆
g i
[∆
G
R
0,k (t, t′)−

∆
G
A
0,k (t, t′)

] ∆
g j
[∆
G
R
0,k +q (t′, t)−

∆
G
A
0,k +q (t′, t)

]]
.

As next step, we extract the phase of the superconducting order parameters ∆v/c =
|∆v/c| eiφv/c from the anomalous propagators Fc/v and F̄c/v by defining the new propagators

PR0,k ,v/c(ω) = e−iφv/cFR0,k ,v/c(ω) = −
|∆c/v|

(ω ± i0)2 − ξv/c(k )2 − |∆c/v|2
, (D.8)

and similarly for the advanced and Keldysh component. After Fourier-transforming and
performing the remaining trace over the extended Nambu-space, we end up with the
expressions

Π̃el,R/A
11,q (ω) = i |g2

0 |
∑

k

∫ ∞
−∞

dω1

2π

[
|P |R/A0,k ,v (ω1) |P |K0,k +q ,c (ω1 − ω) + |P |K0,k ,v (ω1) |P |A/R0,k +q ,c (ω1 − ω)

]
Πel,R/A

12,q (ω) = −i |g2
0 |
∑

k

∫ ∞
−∞

dω1

2π

[
G

(p),R/A
0,k ,v (ω1)G(p),K

0,k +q ,c(ω1 − ω) +G
(p),K
0,k ,v (ω1)G(p),A/R

0,k +q ,c(ω1 − ω)
]

Πel,R/A
21,q (ω) = −i |g2

0 |
∑

k

∫ ∞
−∞

dω1

2π

[
G

(h),R/A
0,k ,v (ω1)G(h),K

0,k +q ,c(ω1 − ω) +G
(h),K
0,k ,v (ω1)G(h),A/R

0,k +q ,c(ω1 − ω)
]

Π̃el,R/A
22,q (ω) = i |g2

0 |
∑

k

∫ ∞
−∞

dω1

2π

[
|P |R/A0,k ,v (ω1) |P |K0,k +q ,c (ω1 − ω) + |P |K0,k ,v (ω1) |P |A/R0,k +q ,c (ω1 − ω)

]
(D.9)

for the retarded self-energies. Not that we extracted the superconducting phases in the
anomalous self-energies by the definition of the Π̃11 and Π̃22 self-energies as in Eq. (6.20).
The inherent symmetries of the propagators can then be used to relate the self-energies as
shown in Eq. (6.24).

D.2.1. Normal conductor

In the normal state the superconducting gaps vanish as well as the P, P̄ propagators and
the anomalous self-energies Πel

11 = Πel
22 = 0. The remaining particle self-energy is just given

by

Πel,R/A
21,q (ω) = 2 |g2

0|
∑
k

nF
[
ξv(k )

]
− nF

[
ξc(k + q )

]
ω + ξv(k )− ξc(k + q )± i0 . (D.10)

We now choose our particle and hole bands ξc(k ) = −ξv(k ) as well as the superconducting
gaps |∆v| = |∆c| = ∆ to be symmetric. We can then linearize our dispersions around the
Fermi surface

ξc(k ) = vF (|k | − kF ) ,
ξc(k + q ) = vF (|k | − kF ) + v F · q = ξc(k ) + vF q cos(θ) ,

(D.11)

where q = |q | and θ is the angle between the momentum k ‖ v F and the small photon
momentum q . This allows us to execute the momentum summation via the integrals

∑
k

f
[
ξv(k ), ξc(k + q )

]
=
∫ 1

−1

d cos θ
2

∫ ∞
−EF

dξ ν(ξ)f
[
−ξ, ξ + vF q cos(θ)

]
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=
∫ vF q

−vF q

dα

2vF q

∫ ∞
−EF

dξ ν(ξ)f
[
−ξ, ξ + α

]
. (D.12)

Here, EF is the Fermi energy as measured from the band-edge of the conductance band. One
can omit the real part of the self-energy in the weak-coupling limit, because it is featureless
and only gives an negligible correction to the photonic dispersion. The imaginary part can
under the assumption of a only weakly energy-dependent DOS in the zero temperature
limit be calculated as

ImΠel,R/A
21,q (ω) = ∓2π |g2

0|
∫ vF q

−vF q

dα

2vF q

∫ ∞
−EF

dξ ν(ξ)
(
nF
[
−ξ
]
− nF

[
ξ + α

])
δ
[
ω − 2ξ − α

]
= ∓π |g

2
0|

2vF q

∫ vF q

−vF q
dα ν(ω − α2

)
︸ ︷︷ ︸
≈ν(ω/2)

(
nF
[−ω + α

2
]
− nF

[ω + α

2
])

≈ ∓π |g
2
0|

2vF q
ν(ω/2)

∫ vF q

−vF q
dα

[
θ(ω − α)− θ(−ω − α)

]
= ∓π |g2

0| ν(ω/2) sign(ω) min
[
1, |ω|
vF q

]
. (D.13)

D.2.2. Superconductor

In the superconducting state, it is convenient to use the following parametrization of the
normal and anomalous electronic Green’s functions (T = 0)

A
R/A
0,k ,v/c(ω) =

αA,k ,v/c
ω − Ev/c(k )± i0 +

βA,k ,v/c
ω − Ev/c(k )± i0 , (D.14)

AK0,k ,v/c(ω) =
[
1− 2nF (ω)

](
AR0,k ,v/c(ω)−AA0,k ,v/c(ω)

)
= −2πi

(
αA,k ,v/cδ

[
ω − Ev/c(k )

]
+ βA,k ,v/cδ

[
ω + Ev/c(k )

])
.

Here, Ev/c(k ) =
√
ξv/c(k )2 + |∆v/c|2 is the superconducting dispersion and we defined the

coherence factors in the usual way

A G(p) G(h) |P |
αA,k ,v/c u2

k ,c/v v2
k ,c/v −uk ,c/vvk ,c/v

βA,k ,v/c v2
k ,c/v u2

k ,c/v uk ,c/vvk ,c/v

uk ,c/v =
√

1
2

(
1 + ξc/v(k )

Ec/v(k )

)
vk ,c/v =

√
1
2

(
1− ξc/v(k )

Ec/v(k )

) (D.15)

Putting this parametrization into Eqs. (D.9) we arrive at the following expressions

Π̃el,R/A
11,q (ω) = 2 |g2

0|
∑
k

[
uk ,vvk ,vuk+q ,cvk+q ,c

ω − Ev(k )− Ec(k + q )± i0 −
uk ,vvk ,vuk+q ,cvk+q ,c

ω + Ev(k ) + Ec(k + q )± i0

]
,

Πel,R/A
21,q (ω) = 2 |g2

0|
∑
k

[ v2
k ,vu

2
k+q ,c

ω − Ev(k )− Ec(k + q )± i0 −
u2
k ,vv

2
k+q ,c

ω + Ev(k ) + Ec(k + q )± i0

]
.

(D.16)
Let us start by calculating the anomalous self-energy. Using the linearization technique of
Eq. (D.12) and defining the dimensionless frequency ω̃ = ω/∆ we can express it as

Π̃el,R
11,q (ω) = |g

2
0| νF∆
4vF q

vF q/∆∫
−vF q/∆

dα

∞∫
−EF /∆

dx
1√

x2 + 1
√

(x+ α)2 + 1
× (D.17)
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[ 1
ω̃ −
√
x2 + 1−

√
(x+ α)2 + 1 + i0

− 1
ω̃ +
√
x2 + 1 +

√
(x+ α)2 + 1 + i0

]
,

where we approximated the DOS as νF because the self-energy rapidly decays to zero
for ω � ∆. The real part of the self-energy is symmetric and the imaginary part is
antisymmetric in frequency. We can thus restrict ourselves to positive ω > 0. Let us first
calculate the real part given by

Re Π̃el,R
11,q (ω) = |g

2
0| νF∆
4vF q

P
vF q/∆∫
−vF q/∆

dα

∞∫
−EF /∆

dx
1√

x2 + 1
√

(x+ α)2 + 1
× (D.18)

[ 1
ω̃ −
√
x2 + 1−

√
(x+ α)2 + 1

− 1
ω̃ +
√
x2 + 1 +

√
(x+ α)2 + 1

]
.

We see that the integrand will have a singularity if

ω̃ =
√
x2 + 1 +

√
(x+ α)2 + 1 ≥ 2

√
1 + (α/2)2 = ω̃α , for xmin = −α/2 . (D.19)

Thus, the interesting physics seems to occur at ω̃ = 2 (note that α ∈ [−vF q, vF q]). Let us
therefore focus on the region ω ≈ 2∆, where it is convenient to separate the singular region
xmin ≈ −α/2 of the integrand

Re Π̃el,R
11,q (ω ≈ 2∆) = gq (ω) + |g

2
0| νF∆
4vF q

P
vF q/∆∫
−vF q/∆

dα

−α/2+δx∫
−α/2−δx

dx×

1√
x2 + 1

√
(x+ α)2 + 1

1
ω̃ −
√
x2 + 1−

√
(x+ α)2 + 1

x≈−α/2
≈ gq (ω) + |g

2
0| νF∆
4vF q

P
vF q/∆∫
−vF q/∆

dα

−α/2+δx→∞∫
−α/2−δx→−∞

dx
4
ω2
α

1
ω̃ − ω̃α − 8(x+α/2)2

ω̃3
α

= gq (ω)− π |g2
0| νF∆√
2vF q

vF q/∆∫
0

dα
θ(ω̃α − ω̃)√
ω̃α
√
ω̃α − ω̃

≈ gq (ω)− π |g2
0| νF∆
vF q

ln
[√√√√1 +

(vF q
2∆
)2

|2− ω̃| +
vF q
2∆√
|2− ω̃|

]
. (D.20)

Here, gq (ω) stands for some non-singular parts of the integral, which will be neglected
because |g0|2 νF � ∆, EF , eV is the smallest parameter of the theory and therefore gq (ω)
only gives negligible contributions to the photonic dispersion. Hence, we will neglect this
part in the following. Also the imaginary parts can be calculated using the same methods
for ω ≈ 2∆.

Im Π̃el,R
11,q (ω) = −|g

2
0|πνF∆
4vF q

vF q/∆∫
−vF q/∆

dα

∫
dx
δ
[
ω̃ −
√
x2 + 1−

√
(x+ α)2 + 1

]
√
x2 + 1

√
(x+ α)2 + 1

ω≈2∆≈ −|g
2
0|πνF∆
4vF q

vF q/∆∫
−vF q/∆

dα

∫
dx

4
ω̃2
α

δ

[
ω̃ − ω̃α −

8(x+ α/2)2

ω̃3
α

]
θ(ω̃ − 2)

= −|g
2
0|πνF∆

2
√

2vF q

vF q/∆∫
−vF q/∆

dα

∫
dy

1√
ω̃α
δ
[
ω̃ − ω̃α − y2]θ(ω̃ − 2)
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= −|g
2
0|πνF∆

2
√

2vF q

vF q/∆∫
−vF q/∆

dα
θ(ω̃ − ω̃α)√
ω̃α
√
ω̃ − ω̃α

θ(ω̃ − 2)

≈ −|g
2
0|πνF

2
(vF q

2∆
) arcsin

[min
[vF q

2∆ ,
√
ω̃ − 2

]
√
ω̃ − 2

]
θ(ω̃ − 2) (D.21)

As can be seen from this expression, the imaginary part Im Π̃el,R
11,q (ω) ω�∆−−−→ 1

ω2 decays
rapidly for higher energies. It is therefore not of importance for energies |ω| � ∆ and
we can approximate the Im Π̃el,R

11,q (ω) by the expression derived for ω ≈ 2∆ for the whole
energy range.

Using the approximations performed in the just presented calculations, it is easy to show
that near ω ≈ 2∆ the normal self-energies look exactly like the anomalous ones. However,
for energies ω � ∆ much larger than the superconducting gap their behavior is like the
normal conducting self-energies. In between, we may interpolate between these two limits
and can thus write down the two self-energies as

Π̃el,R
11,q (ω) ≈ −π |g

2
0| νF

2
(vF q

2∆
) ln

[√√√√1 +
(vF q

2∆
)2

|2− |ω̃|| +
vF q
2∆√
|2− |ω̃||

]
(D.22)

− i |g
2
0|πνF

2
(vF q

2∆
) arcsin

(min
[vF q

2∆ ,
√
|ω̃| − 2

]√
|ω̃| − 2

)
sign(ω)θ(|ω̃| − 2) ,

Πel,R
21,q (ω) ≈ −π |g

2
0| νF

2
(vF q

2∆
) ln

[√√√√1 +
(vF q

2∆
)2

|2− |ω̃|| +
vF q
2∆√
|2− |ω̃||

]
(D.23)

− imax
[ |g2

0|πνF
2
(vF q

2∆
) arcsin

(min
[vF q

2∆ ,
√
|ω̃| − 2

]√
|ω̃| − 2

)
, π |g0|2 ν(ω/2)

]
sign(ω)θ(|ω̃| − 2) .
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