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Abstract

This thesis deals with the development of constitutive models for the mechanical behavior

of amorphous thermoplastic polymers at large strains. A special emphasis lies on the

temperature dependency so that the altered material behavior at high temperatures can

be considered. The material exhibits a ductile behavior above the so-called glass transition

temperature and is easy to form while it is stiff and brittle at low temperatures. Based

on an existing model for glassy polymers below the glass transition temperature, this

complex material behavior is modeled by introducing additional constitutive equations

accounting for the temperature dependent stiffness, flow strength and hardening at large

strains. Two different models to describe the temperature dependent hardening are

investigated for this purpose. These models are fitted to own experimental data and the

general ability to simulate complex thermomechanical loading conditions realistically

is investigated. It is shown that only one of the two models is suited for this purpose

which is then used for thermoforming simulations. The results of these simulations are

compared to experimental data and it is found that the modeled deformation behavior is

quantitatively and qualitatively in good agreement with the experiments.

The good formability of thermoplastic polymers at elevated temperatures is utilized

in manufacturing processes in which the material is heated above the glass transition

temperature and is easily formed to the desired shape. A rapid cooling may give rise

to a "frozen-in" molecular orientation which leads to an altered mechanical behavior in

subsequent deformations. This possible initial molecular orientation in a component

is also considered in the constitutive model so that the mechanical behavior of a pre-

stretched polymer can be described qualitatively. The deformation behavior at heating

above the glass transition temperature of two injection molded components is investigated

and serves as a computational example. An initial molecular orientation is assumed and

mapped to the computational model. The deformation behavior of the real parts is

qualitatively well reproduced in the simulations. In a further computational example, the

influence of the amount of initial molecular stretch on the behavior in thermoforming

simulations is investigated. It is shown that the influence is pronounced and, hence, the

molecular pre-orientation should not be neglected in thermoforming simulations.



II Abstract

To implement the developed constitutive models the software tool AceGen is used by

which program code is generated and optimized as well as derivatives are calculated auto-

matically. A methodology is developed to automatically derive the algorithmic consistent

tangent, for example. This approach is verified by means of simple, exemplary material

models with analytical and approximated solutions of the computed derivatives.



Kurzfassung

In der vorliegenden Arbeit werden kontinuumsmechanische Konstitutivmodelle für das

mechanische Verhalten von amorphen thermoplastischen Polymeren bei großen Defor-

mationen entwickelt. Dabei wird speziell auf das stark temperaturabhängige Verhalten

eingegangen, womit das veränderte Materialverhalten bei hohen Temperaturen berück-

sichtigt werden kann. Oberhalb der sogenannten Glasübergangstemperatur ist das Ma-

terialverhalten duktil und das Polymer ist gut verformbar, wobei es unterhalb dieser

Temperatur steif und ggf. spröde ist. Dieses komplexe Materialverhalten wird aufbauend

auf einem für Temperaturen unterhalb des Glasübergangs existierenden Materialmodell

modelliert, indem zusätzliche konstitutiven Gleichungen eingeführt werden, um die tem-

peraturabhängige elastische Steifigkeit, Fließspannung sowie die Verfestigung bei großen

Dehnungen realistisch zu beschreiben. Zwei verschiedene Modelle zur Beschreibung der

Verfestigung werden dazu untersucht. Die Modelle werden an eigenen experimentellen

Versuchsdaten angepasst und die generelle Eignung zur realistischen Simulation von

komplizierten thermomechanischen Belastungen, die z.B. beim Thermoformen auftreten,

untersucht. Es wird gezeigt, dass nur eines der Modelle dazu geeignet ist, welches danach

in Thermoformsimulationen verwendet wird. Die Ergebnisse dieser Simulationen werden

mit experimentellen Daten verglichen, wobei das Deformationsverhalten qualitativ sowie

quantitativ gut abgebildet werden kann.

Die gute Verformbarkeit von thermoplastischen Polymeren bei hohen Temperaturen wird

in verschiedenen Herstellungsverfahren genutzt, wobei das Material überhalb der Glas-

übergangstemperatur erwärmt wird und dann leicht in die gewünschte Form gebracht

werden kann. Ein schnelles Abkühlen kann jedoch zu einer „eingefrorenen“ Molekülorien-

tierung führen, die zu einem veränderten Materialverhalten führt. Diese mögliche initiale

Molekülorientierung im Bauteil wird zusätzlich im konstitutiven Modell berücksichtigt, wo-

durch das Materialverhalten eines vorgestreckten Polymers qualitativ abgebildet werden

kann. Das Deformationsverhalten bei Erwärmung überhalb der Glasübergangstemperatur

zweier spritzgegossener Bauteile wird untersucht und dient als Berechnungsbeispiel.

Dazu wird eine angenommene initiale Molekülorientierung auf das Berechnungsmodel



IV Kurzfassung

aufgebracht. In den Simulationen kann das Deformationsverhalten der real verform-

ten Teile qualitativ gut wiedergegeben werden. Als weiteres Berechnungsbeispiel dient

wiederum das Thermoformen, wobei der Einfluss der Vorstreckung im Polymer auf das

Umformverhalten untersucht wird. Es kann dabei gezeigt werden, dass der Einfluss

der Vorstreckung sehr ausgeprägt ist und somit eine mögliche Molekülorientierung in

Thermoformsimulationen nicht vernachlässigt werden sollte.

Zur Implementierung der entwickelten Materialmodelle wird das Programm AceGen

verwendet, mit welchem Programmcode generiert und optimiert werden kann sowie

automatisch Ableitungen gebildet werden können. Es wird eine Methode entwickelt, um

z.B. die algorithmisch konsistente Tangente automatisch zu bestimmen. Dieses Vorgehen

wird anhand von einfacheren, beispielhaften Materialmodellen mit analytischen und

approximierten Lösungen der berechneten Ableitungen verifiziert.
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1. Introduction

1.1. Motivation

Nowadays, products made of polymers are ubiquitous in everyday life. The manifold and

outstanding properties display polymers as popular engineering materials. In its neat

state, modified with particles or reinforced with fibres various components are realized in

virtually every industry. To produce components made of neat amorphous thermoplastic

polymers, the raw material or semi-finished parts are typically processed at elevated

temperatures due to their easy formability in this temperature region. To improve these

manufacturing processes by predicting the relationship between process parameters and

the quality of the final part with the aim to design optimal products, modern simulation

techniques may be utilized. For this purpose it is necessary to describe the complicated

mechanical behavior by realistic constitutive models. The large strain mechanical behavior

of amorphous thermoplastic polymers is strongly temperature and strain rate dependent.

The behavior drastically alters in the temperature region where the material changes from

a glassy to a rubbery state: the so called glass transition temperature Tg. In the glassy

state (at low temperatures) thermoplastic polymers exhibit a stiff (and eventually brittle)

response while they are highly ductile and easily deformable in the rubbery state. This

behavior can be demonstrated by applying a bending load at a test specimen, as shown

in Fig. 1.1. At room temperature brittle fracture at small strains without any plastic

deformation takes place. At elevated temperatures large plastic deformations could be

applied without fracture.
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Figure 1.1.: Temperature dependence of mechanical behavior amorphous thermoplastic polymers (PMMA).
Brittle fracture at room temperature (top), large plastic deformation at elevated temperatures.

This property of the material is utilized in forming processes like injection molding,

extrusion or thermoforming. However, process temperatures above the glass transition

temperature and subsequent rapid cooling give rise to incidentally or deliberately frozen-

in stretch and orientation of the molecular network in manufactured components. The

pre-deformed network in the material affects the mechanical properties, e.g. flow strength,

hardening and limiting extensibility. Also the thermomechanical behavior is affected:

after heating near or above the glass transition the polymer chains are able to relax to

a random state since the flow strength is reduced and consequently the part deforms.

This phenomenon can be observed, for example, with the injection molded tensile test

specimen made of PMMA shown in Fig. 1.2a. It is clearly observable that after annealing

the highest deformation occurred near to the gate where the melt flew into the mold during

the injection process (Fig. 1.2b). This indicates that in this region the molecular network

is highly stretched. This molecular stretch is then "frozen-in" after rapid cooling.

a) b)

Figure 1.2.: Injection molded tensile test specimen. Initial state and the indicated gate and flow direction
(left) and the deformed part after heating (right).

The molecular chain orientations can be made visible with polarized light due to the

effect of birefringence. The tensile test specimen is lighted from behind by a polarized

light source and photographed through a polarization filter (Fig. 1.3a). In the region at

the gate the brightest color is present and with increasing distance from the gate the color
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changes to a darker one. The bright colors indicate a high level of molecular orientation

(frozen-in stretch) which correlates with the deformation seen in Fig. 1.2b. No stretch is

visible anymore after heating above Tg because the molecules are relaxed to a random

state (Fig. 1.3b) and the initially anisotropic molecular network changed to an isotropic

microstructure.

a) b)

Figure 1.3.: Molecular stretch and orientation in the injection molded test specimen made visible due to
birefringence under polarized light (left). No orientation is visible after heating above glass
transition temperature (right).

Many constitutive models were developed over the last decades accounting for the large

strain, rate and temperature dependent behavior of glassy amorphous thermoplastic

polymers. The pioneering works of Boyce et al. (1988), Boyce et al. (1989a) are based

on the double-kink model (Argon, 1973) to model yielding of the polymer and on the

theory of an underlying molecular network to describe the post-yield strain hardening

behavior which was originally developed for rubber elasticity (e.g. Wang and Guth (1952),

Treloar (1974), Arruda and Boyce (1993), Wu and van der Giessen (1993), Reese (2003),

Miehe et al. (2004)). Several groups followed this approach and similar and improved

models were developed to describe the deformation behavior of glassy polymers with

respect to different loading situations or rates, e.g. Wu and van der Giessen (1994),

Hasan and Boyce (1995), Arruda et al. (1995), Tomita and Tanaka (1995), Tervoort

et al. (1997), Anand and Gurtin (2003), Govaert and Tervoort (2004), Polanco-Loria

et al. (2010), van Breemen et al. (2011), Miehe et al. (2011), Holopainen and Wallin

(2013). In the recent years, a couple of new models were developed to capture the

change in the mechanical behavior around the glass transition temperature. However,

most of these models are only able to reproduce the behavior around or above Tg but

not in the glassy state. These models introduce additional equations to describe the

change in the plastic flow resistance and micromechanisms thought to be responsible for

the temperature dependent hardening at large strains. Two of these micromechanisms

at elevated temperatures are "dissociation" of entanglements in the molecular network

(Richeton et al., 2007a) and molecular relaxation by "reptation" of chains (e.g. Boyce et al.

(2000), Dooling et al. (2002a), Makradi et al. (2005), Palm and Dupaix (2006), Dupaix

and Boyce (2007)). Ames et al. (2009) and Srivastava et al. (2010) proposed a rather
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complex thermomechanical coupled model which is able to reproduce the mechanical

behavior from room temperature till above Tg. They also argued with the micromechanism

of reptation but introduced a large number of material parameters which makes the model

hardly applicable. However, the response of their model is in very good agreement with

experimental results (uniaxial compression tests).

The influence of an initial molecular stretch on the material behavior is discussed and

modeled in Boyce et al. (1989a) and Arruda et al. (1993) who introduced an initial stretch

tensor to incorporate a network pre-stretch into the model. De Focatiis and Buckley (2011)

developed a hybrid glass-melt model which combines a molecularly-based melt model

with a glassy polymer model. With this model it is possible to consider molecular stretch

from the melt phase in the glassy state after cooling below Tg.

An aim of this work is to extend an existing constitutive model (Boyce et al., 1988) to

be suitable over a wide temperature range (from room temperature till above the glass

transition) while keeping the model as simple as possible with respect to the number of

material parameters needed to describe the mechanical behavior sufficiently correct. With

the developed model it should be possible to simulate complicated thermomechanical

processes such as thermoforming including all process steps. Furthermore, the model

should include the possibility of taking a pre-stretch due to preceding processing into

account. A mapping of an initial stretch and molecular orientation on the finite element

model of a component could save a lot of time in the product development process because

the simulation of the whole process chain can be avoided in that case. A model including

all these features is not yet available in the literature.

1.2. Outline

The basic continuum mechanics equations needed in this work are given in Chapter

2. Starting with the kinematics and stresses, time derivatives and objective rates are

discussed as well as the basic principal laws. In addition, the solution of the balance of

the linear momentum with the finite element method is explained in Sec. 2.5.

Due to the necessity to understand the mechanical behavior prior to the constitutive

modeling the mechanical behavior of amorphous thermoplastic polymers is presented

in Chapter 3. The microstructure of the polymer and the underlying molecular network

as the origin of the mechanical behavior is discussed within a review of experimental

results. Special emphasis lies on the strong temperature dependence of the material

with the change from a glassy to a rubbery state in the region of the glass transition
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temperature and on the influence of a pre-stretch on the mechanical behavior. Since many

large strain experimental data reported in literature are from compression tests while the

main loading condition in forming processes is dominated by tensile strains and in order

to obtain experimental data, uniaxial tensile tests on PMMA and PC are conducted with

the results presented in Sec. 3.2. The considered temperature range thereby varies from

room temperature till above the glass transition temperature. To measure the local strain

field a digital image correlation tool is used which is briefly described in Sec. 3.2.2.

Chapter 4 deals with the modeling of the mechanical behavior of amorphous thermo-

plastic polymers. It starts with a detailed description of the basic model adopted from

Boyce et al. (1988). The kinematics and the constitutive equations are established and

the thermodynamic consistency of the model is shown. This basic model is extended to

be applicable till above the glass transition temperature and to capture the change in

the mechanical behavior of the polymer when it converts from the glassy to the rubbery

state. Two different models accounting for the above mentioned micromechanisms of

"entanglement dissociation" and "reptation" to describe changes in the molecular entan-

glement network at elevated temperatures are discussed in this context. To compare

these models a fictitious thermomechanical loading history is applied and the response

of both models in terms of stresses and strains is analyzed. At the end of the chapter a

further extension of the model is introduced in which an initial stretch of the material,

e.g. due to a manufacturing process, can be accounted for. As computational examples,

two injection molded components with an initially applied stretch are investigated with

the extended model.

Chapter 5 is related to the validation of the developed material model. For this purpose,

a micro-thermoforming process is simulated and the results are compared to experimental

results. To investigate the dependence of the initial anisotropy in the polymer film on the

forming behavior a thermoforming process of a blister like part is simulated additionally.

Programming of the developed constitutive models is a further part in this work. For

this purpose, in Chapter 6 the implementation of user material models into the finite

element program Abaqus using the the automatic differentiation, code generation and

optimization tool AceGen is presented. AceGen helps to program the equations very

fast and to perform derivatives automatically. Thus, it accelerates the developing and

implementation process because the material model developer can focus on essential parts

of the work and not on coding or forming complicated derivatives. For the verification

of AceGen a hyperelastic and an elastic-plastic material model with a similar structure

like the models of Ch. 4 are programmed with AceGen. The automatically computed
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algorithmic tangent is then compared to the Jacobian derived by two different numerical

approximation methods.

Finally, conclusions and an outlook are given in Chapter 7.



2. Basics of continuum mechanics

In this chapter the basic equations of non-linear continuum mechanics of solid bodies needed

for this work will be given. The formulation of a mechanical (initial) boundary value problem

(BVP) with boundary conditions will be defined. The kinematics of a solid body, balance and

constitutive principles are formulated. The strong form can be transformed to the weak form

of the momentum equation which may be solved with the finite element method (FEM). This

procedure will be described briefly in this section, too. More details may be found, e.g., in

the textbooks by Belytschko et al. (2000), Parisch (2003), Holzapfel (2007), Gurtin et al.

(2010), Wriggers (2008) and Neto et al. (2008).

2.1. Kinematics and strain tensors

The kinematics is the geometrical description of the motion of a body without regarding

the cause of the motion. It is necessary to quantify the amount of displacements or

deformations of a body. The basic concept of kinematics in the framework of non-linear

continuum mechanics is described below and is schematically depicted in Fig. 2.1. In

the continuum mechanical theory, a solid body B is assumed to be a continuous set of

material points or particles in the Euclidean space �3. A body at a certain time t is

called a configuration of that body B. At time t = 0 the configuration is called the initial

configuration and at a fixed reference time the reference configuration. In this work,

both configurations coincide with each other and are named reference configuration B0.

The position of a material point in this configuration is defined with the position vector

X from the fixed origin of the rectangular coordinate axes. The position vector of the

same material point at the time t > 0 to the current configuration Bt is indicated with

x . The components of the vector X are called the reference or material coordinates and

the components of x are the current or spatial coordinates. In the following upper case

letters refer mostly to tensor quantities with respect to the reference configuration and

to material coordinates. This is called the material or Lagrangian description wherein

the motion of a material point is observed. Lower case letters refer to quantities with
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respect to the current configuration and denote the spatial or Eulerian description where

variations in time at a fixed point in space are observed.

Figure 2.1.: Configurations of a body

The motion of the body can be described as a sequence of configurations in time. With

the motion vector field χ the position of a point in the current configuration may be

identified with

x = χ(X , t) (2.1)

which is assumed to be invertible

X = χ−1(x , t) . (2.2)

The difference between the positions of a material point in the current and the refer-

ence configuration is the material displacement field u(X , t) as a function of material

coordinates

u(X , t) = χ(X , t)− X = x (X , t)− X . (2.3)

A central deformation measure is the deformation gradient F . It linearly maps a tangent

vector dX of a material curve (a line of particles) at the point X in B0 to a tangent vector

dx at the point x in Bt

dx = F dX with F =
∂ χ(X , t)
∂ X

=
∂ x (X , t)
∂ X

. (2.4)
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The tangent vector is also called line element: in the reference configuration the material

line element dX , respectively, in the current configuration the spatial line element dx .

The inversion of the mapping is given by F−1 while the determinant J = det[F] of the

deformation gradient must be non zero at all time. Physically, the determinant must be

positive to prevent self intersection of the body. A further transformation of a differential

quantity from the reference to the current configuration is given by Nanson’s formula

da n = da = J F−T dA= J F−T dA N (2.5)

with the surface elements dA and da and the unit normal vectors Nand n in the respective

configurations. A volume element is transformed by the determinant of the deformation

gradient which is the volume ratio

dv = J dV . (2.6)

For material modeling it is sometimes useful to use an isochoric deformation gradient F̌ so

that det[F̌] = 1 holds. With this requirement one may calculate the isochoric deformation

gradient from the total deformation gradient (2.4) as

F̌ = c F −→ det[F̌] = det[c F] = c3 det[F] = 1 . (2.7)

So, it is c = J−1/3 and the isochoric deformation gradient reads

F̌ = J−1/3 F . (2.8)

The above equation represents a multiplicative split of the total deformation into a volume

changing and a volume preserving part. Furthermore, the deformation gradient may be

polar decomposed into a pure stretch and a pure rotation

F = RU = VR (2.9)

with the symmetric stretch tensors:

• the right stretch tensor U defined in the reference configuration

• the left stretch tensor V defined in the current configuration
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and the orthogonal rotation tensor R. The spectral decomposition of the stretch tensors

U =
3∑

a=1

λa Na ⊗ Na (2.10)

V =
3∑

a=1

λa na ⊗ na (2.11)

gives the principal stretches λa which are the eigenvalues and are equal for both tensors.

Only the eigenvectors differ in the rotation tensor

na = RNa . (2.12)

In the principal directions of the stretch tensors, the principal stretches are given by the

current length l of a line element with respect to the initial length l0

λ=
l
l0

. (2.13)

It is necessary to exclude the rotation to measure the strain because a rigid body motion

induces no stress. For this purpose, the rotation free strain measures, i.e. the right

Cauchy-Green tensor C and the left Cauchy-Green tensor b are defined as

C = F T F = URT RU = U2 =
3∑

a=1

λ2
a Na ⊗ Na (2.14)

b = F F T = VRRT V = V2 =
3∑

a=1

λ2
a na ⊗ na . (2.15)

To get zero strain when no deformation of the body occurred, two strain tensors are

defined: the Green-Lagrange tensor with respect to the reference configuration

E =
1
2
(C − 1) (2.16)

and the spatial Euler-Almansi strain tensor

e =
1
2
(1− b−1) . (2.17)
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With the stretch tensors (2.14) and (2.15) generalized strain tensors may be defined in

the reference and the current configuration

Eα =
1
α
(Uα − 1) , α ∈ � (2.18)

eα =
1
α
(Vα − 1) , α ∈ � . (2.19)

For example, the tensors (2.16) and (2.17) results from (2.18) for α = 2 and from (2.19)

for α = −2, respectively. For α = 0 the logarithmic strain tensors, named as Hencky strain

tensors, are defined as

EH = ln U =
3∑

a=1

lnλa Na ⊗ Na (2.20)

eH = ln V =
3∑

a=1

lnλa na ⊗ na . (2.21)

2.2. Stress measures

In this section, stress tensors are introduced. Various stress tensors may be defined but

only the most important ones are presented in the following.

The Cauchy or true stress vector t is defined by the resultant internal force d f acting on

a surface element da which lies on a cut through the body in the current configuration

d f = t da . (2.22)

The stress vector depends on the position x , the time t and the normal vector n pointing

outwards from the surface element da and consequently on the orientation of the cut

through the body (Cauchy’s postulate)

t = t (x , t,n) . (2.23)

Cauchy’s theorem states that the stress vector t may be written as a linear function of the

Cauchy stress tensor σ and the normal vector n

t (x , t,n) = σ(x , t) n . (2.24)

Note, the Cauchy stress is independent of the normal vector n and is only a function

of x and t. It is also called the true stress because the actual force is referred to the
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current surface. If the force is related to a surface in the reference configuration the first

Piola-Kirchhoff or nominal stress vector T is defined as

d f = T (X , t, N) dA (2.25)

with the normal vector N pointing outwards from the surface element dA in the reference

configuration. Analogous to (2.24) the two-point first Piola-Kirchhoff stress tensor P

T = PN (2.26)

may be defined and is in general not symmetric while the Cauchy stress tensor is symmetric

(cf. (2.73)). Using (2.5) one gets the relation between P and σ

P = J σF−T . (2.27)

To obtain a stress tensor defined purely in the reference configuration the symmetric

second Piola-Kirchhoff stress tensor S is defined but has no physical meaning. The

definition follows from a pull-back of the Cauchy stress tensor: the transformation from

the current to the reference configuration

S = J F−1σ F−T (2.28)

by using the inverse of the deformation gradient. According to the push-forward -the

transformation from the reference to the current configuration- of the second Piola-

Kirchhoff stress tensor the Kirchhoff stress tensor τ is obtained

τ = F S F T = J σ . (2.29)

A stress tensor may be additively decomposed into a hydrostatic and deviatoric part.

Exemplary, the Cauchy stress tensor reads

σ = σ′ − p1 ⇔ σ′ = σ + p1 (2.30)

wherein p = −1
3

tr[σ] is the hydrostatic pressure and σ′ is the deviatoric stress tensor.
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2.3. Time derivatives and objective rates

Time derivatives of tensor fields are needed, e.g. to describe time- and/or history depen-

dent material behavior. Because of the time independence of the material coordinates

X the material time derivative of material tensor fields like the material displacement

field (2.3) is a derivative with respect to the time only. It yields the material velocity field

v(X , t)
d
dt

u(X , t) =
∂ u
∂ t
= u̇ = v (2.31)

and analogously the material acceleration field a(X , t)

d
dt

v(X , t) =
∂ 2u
∂ t2

= ü = a . (2.32)

The material time derivative of a spatial tensor field, for example the spatial velocity field

v(x , t) (x is time dependent) is the spatial acceleration field a(x , t) and is given by

d
dt

v(x , t) =
∂ v
∂ t
+
∂ v
∂ x
∂ x
∂ t
=
∂ v
∂ t
+ grad[v] v = a(x , t) (2.33)

with the relation grad[v] =
∂ v
∂ x

and the spatial velocity field itself

v(x , t) =
∂ x
∂ t
= ẋ . (2.34)

The material time derivative of the deformation gradient results from (2.4) and (2.31)

d
dt

F(X , t) = Ḟ =
∂

∂ t

�
∂ x
∂ X

�
=
∂

∂ X

�
∂ x
∂ t

�
= Grad[v(X , t)] (2.35)

with the material velocity gradient

Grad[v(X , t)] =
∂ v(X , t)
∂ X

(2.36)

in which the relation v(X , t) = v(x , t) is used. The spatial velocity gradient is denoted as

l(x , t) and is defined by (cf. (2.33))

l(x , t) =
∂ v(x , t)
∂ x

= grad[v] (2.37)
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and may be additively split into a symmetric and a skew-symmetric part

l = d + w (2.38)

d =
1
2
(l + lT ) (2.39)

w =
1
2
(l − lT ) , (2.40)

which provides the rate of deformation tensor d and the spin tensor w . The connection

between the material and spatial velocity gradient may be computed via the chain rule

l =
∂ ẋ
∂ X
∂ X
∂ x
=
∂

∂ t

�
∂ x
∂ X

�
F−1 = Ḟ F−1 (2.41)

and it follows the important differential equation

Ḟ = lF . (2.42)

Another important time derivative is that of the Green-Lagrange strain tensor (2.16)

Ė =
1
2

Ċ =
1
2
(Ḟ T

F + F T Ḟ) =
1
2
(F T lT F + F T lF) = F T dF . (2.43)

which gives is the pull-back of the rate of deformation tensor d.

The time derivative of stress tensors must be performed carefully according to their

definition. While the material time derivative of a material stress tensor is defined by

(2.31) and is for example for the second Piola-Kirchhoff stress tensor (2.28)

Ṡ =
∂ S(X , t)
∂ t

(2.44)

the material time derivative of spatial stress tensors is not objective. The objectivity,

i.e. the invariance under the change of an observer, must be provided for example for

constitutive modeling reasons. For this purpose, objective material time derivatives may

be constructed making use of the so called Lie derivative. In this derivative a spatial stress

field is pulled-back to the reference configuration where the time derivative is performed

and the result is pushed-forward to the current configuration. Doing so for the stress
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tensors in the current configuration one obtains the Lie time derivative of the Cauchy

stress tensor as

L(σ) = F
d(F−1σF−T )

dt
F T = F

d(J−1S)
dt

F T

= F(− J̇
J2

S+ J−1Ṡ)F T = − J̇
J2
τ+ J−1FṠF T (2.45)

and of the Kirchhoff stress tensor

L(τ) = F
d(F−1τF−T )

dt
F T = F

dS
dt

F T = FṠF T . (2.46)

The definition of the objective Oldroyd stress rate of the Cauchy stress

�
σ = σ̇ − lσ −σlT (2.47)

follows directly from the first term of (2.45) by applying the product rule

L(σ) = F
d(F−1σF−T )

dt
F T = F

�
˙F−1σF−T + F−1σ̇F−T + F−1σ ˙F−T

�
F T (2.48)

and using the relations (2.41), ˙F−1 = −F−1l and ˙F−T = −lT F−T . In the same manner,

the Oldroyd stress rate of the Kirchhoff stress

�
τ = τ̇− lτ−τlT (2.49)

may be found. According to (2.46) the push-forward of the time derivative of the second

Piola-Kirchhoff stress tensor is equal to the Oldroyd stress rate of the Kirchhoff stress

tensor
�
τ = FṠF T . (2.50)

To express the above equation in spatial quantities only, the incremental constitutive

law

Ṡ =
1
2
� : Ċ (2.51)

with the reference tangent modulus � = 2
∂ S
∂ C

is used in combination with (2.43). It

follows the relation for the Oldroyd stress

�
τ = � : d (2.52)
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where the spatial tangent modulus � is obtained by the push-forward of �

�i jkl = FiI FjJ FkK Fl L�I JK L . (2.53)

Another important objective stress rate is the Jaumann-Zaremba stress rate of the Cauchy

stress
◦
σ. It is defined by setting the rate of deformation to zero (d = 0⇒ l = w) in the

Lie time derivative (2.48) from which it follows

L(σ)d=0 =
◦
σ = σ̇ − wσ +σw . (2.54)

2.4. Basic balance principles

In this section the basic balance principles of classical continuum mechanics and thermody-

namics are presented which in addition to the kinematics are necessary to mathematically

formulate an initial boundary value problem of the continuum. These balance equations

are independent of the material and are axioms. The mechanical balance equations are

the balance of mass, of linear momentum and angular momentum. The thermodynamical

balance equations are the energy balance and the entropy balance. The energy balance is

also known as first law of thermodynamics. The second law of thermodynamics states

that the entropy production is non-negative. The equations may be expressed in integral

form for the whole body or in local form for a differential volume element.

2.4.1. Balance of mass

The scalar valued mass m of a continuum body B, a closed system, is given by the integral

of the mass density over the body in the respective configuration of the body

m=

∫

B0

ρ0(X) dV =

∫

Bt

ρ(x , t) dv (2.55)

and must be constant at all times such that

ṁ=
d
dt

∫

Bt

ρ(x , t) dv = 0 (2.56)

must hold. From the integral forms (2.55) and (2.56) the local forms for the differential

volume element may be found because of the validness for all volumes. Using the volume
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transformation (2.6) to change the variable of the integral on the right hand side in (2.55)

leads to ∫

B0

(ρ0(X)−ρ(x , t) J(X , t)) dV = 0 (2.57)

which gives the local form of the continuity equation

ρ0 = ρJ . (2.58)

Analogously, a local form of (2.56) may be obtained by applying the time derivative in

the reference configuration and transform the result back to the current configuration

ṁ=
d
dt

∫

B0

ρJ dV =

∫

B0

(ρ̇J +ρJ̇) dV =

∫

Bt

(ρ̇ +ρ div[v]) dv = 0 (2.59)

with the material time derivative of J

J̇ = J div[v] . (2.60)

Thus, the local rate form of continuity equation is

ρ̇ +ρ div[v] = 0 . (2.61)

If a material is incompressible then the density is constant and it follows from (2.61) that

the motion must be isochoric

div[v] = tr[d] = 0 . (2.62)

2.4.2. Balance of linear momentum

The linear momentum of a material body is defined by the integral of the product of the

mass density and the velocity over the body in the reference or in the current configuration,

respectively

I(t) =

∫

B0

ρ0(X) v(X , t) dV =

∫

Bt

ρ(x ) v(x , t) dv . (2.63)

Based on Newton’s second law of motion, the time derivative of (2.63) is equal to the sum

of all forces f (t) acting on the body. In spatial coordinates, these forces are separated in

forces acting on the surface of the body ∂ B, summarized by the Cauchy stress vector t
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and forces acting on the volume of the body, summarized by the body force vector field b

per unit current volume (e.g. gravity load per unit volume)

f (t) =

∫

Bt

b dv +

∫

∂Bt

t da . (2.64)

The linear momentum balance equation in the current configuration reads as

İ =
d
dt

∫

Bt

ρv dv = f . (2.65)

To perform the time derivative, the integral may be transformed to the reference configu-

ration and by using (2.60) and (2.61) it yields

d
dt

∫

Bt

ρv dv =
d
dt

∫

B0

ρvJ dV =

∫

B0

(ρ̇vJ +ρ v̇J +ρv J̇) dV =

∫

Bt

ρ v̇ dv . (2.66)

Hence, the balance equation may be rewritten by additionally using the divergence

theorem as ∫

Bt

ρ v̇ dv =

∫

Bt

b dv +

∫

Bt

div[σ] dv (2.67)

which is the equation of motion and must hold for all volumes. This leads to the local

form

div[σ] + b = ρ v̇ ,
∂ σi j

∂ x j
+ bi = ρ v̇i (2.68)

with the inertia term on the right hand side. If this term vanishes because of negligible

accelerations then the special case of statics is obtained.

2.4.3. Balance of angular momentum

Besides the mass and the linear momentum balance, also the balance of the angular

momentum must be satisfied for the continuum body for all times. The angular momentum

is defined relative to a fixed point in space x 0 as

L=

∫

B0

r ×ρ0(X , t) v(X , t) dV =

∫

Bt

r ×ρ(x , t) v(x , t) dv . (2.69)
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with the position vector r (x ) = x − x 0. Analogously to the balance of the linear momen-

tum, the change in time of the angular momentum is equal to the sum of all moments

acting on the body. These moments result from the forces acting on the body with respect

to x 0. The angular moment balance in the current configuration reads as

L̇=
d
dt

∫

Bt

r ×ρv dv =

∫

Bt

r ×ρ v̇ dv =

∫

Bt

r × b dv +

∫

∂Bt

r × t da (2.70)

by evaluating the time derivative as in (2.66). Using the divergence theorem and the

permutation tensor E, the second term on the right hand side of (2.70) may be rewritten

as an integral over the volume

∫

∂Bt

r × t da =

∫

Bt

(r × div[σ] + E : σT ) dv . (2.71)

Inserting this result in (2.70) and rearranging, it yields

∫

Bt

r × (ρ v̇ − b− div[σ]) dv =

∫

Bt

E : σT dv . (2.72)

With (2.68) it follows the double contraction of the permutation tensor and the transpose

of the Cauchy stress tensor must be equal to zero

E : σT = 0 (2.73)

which only can be true if the Cauchy stress tensor is symmetric.

2.4.4. First law of thermodynamics

The first law of thermodynamics postulates the existence of an internal energy and the

energy balance equation. In the general form, all kinds of energy may be considered but

for this work only mechanical work and heat as sources of energy are accounted for in

the balance equation. The energy balance equation states that the rate of the total energy

Ptot is equal to the sum of the rate of external mechanical work Pex t done by forces acting

on the body and of the flux of non-mechanical energy Pth due to heat or other sources

Ptot = Pex t +Pth . (2.74)
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The rate of the total energy is additively composed of the rate of the kinetic energy K and

of the rate of the internal energy E

Ptot =
d
dt

K+ d
dt

E = Pkin +Pint (2.75)

so that the balance equation reads

Pkin +Pint = Pth +Pex t . (2.76)

The respective terms in the spatial description are as follows

Pkin =
d
dt

K = d
dt

∫

Bt

1
2
ρv · v dv =

∫

Bt

ρ v̇ · v dv (2.77)

Pint =
d
dt

E = d
dt

∫

Bt

ρe dv =

∫

Bt

ρ ė dv (2.78)

Pth =

∫

Bt

ρr dv −
∫

∂Bt

q · n da =

∫

Bt

(ρr − div[q]) dv (2.79)

Pex t =

∫

Bt

b · v dv +

∫

∂Bt

t · v da . (2.80)

In (2.78), ė is the rate of internal energy per unit mass and in (2.79) r = r(x , t) are heat

sources per unit mass and q = q(x , t) is the heat flux per unit area. The second term

of (2.80) may be reformulated by using the divergence theorem, the product rule and

(2.24) which gives ∫

∂Bt

t · v da =

∫

Bt

(div[σ] · v +σ : d) dv (2.81)

where the relation σ : l = σ : d +σ : w = σ : d is used and holds because of the skew

symmetry of w . Inserting all above relations in (2.76) one gets

∫

Bt

([ρ v̇ − div[σ]− b] · v +ρ ė) dv =

∫

Bt

(σ : d +ρr − div[q]) dv (2.82)
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whereat the term in square brackets is identified as the linear momentum equation (2.68)

and hence vanishes. Since the above equation must hold for all volumes the local form of

the energy balance is given by

ρ ė = σ : d +ρr − div[q] . (2.83)

For a purely mechanical isothermal problem, that means without heat flux (q = 0) and

heat sources (r = 0), it follows that the stress power σ : d is equal to the rate of internal

energy

ρ ė = σ : d . (2.84)

The stress power term is denoted as a power conjugate pair. That indicates that the stress

is power conjugate to the rate of deformation. Further power conjugate pairs may be

found by applying the pull-back operation which gives

Jσ : d = τ : d = P : Ḟ = S : Ė . (2.85)

2.4.5. Second law of thermodynamics

Since the first law of thermodynamics gives no information about the direction of energy

transfer another principle is needed. For this purpose the intensive state variable entropy

s per unit mass is introduced. The second law of thermodynamics postulates that the rate

of change of the entropy is equal or greater than the rate of entropy input into the body.

Or in other words, that the total production of entropy is greater than or equal to zero at

all times. Mathematically, this is formulated by the Clausius-Duhem inequality in which

T is the absolute temperature

∫

Bt

ρṡ dv +

∫

∂Bt

q
T
· n da−

∫

Bt

ρ
r
T

dv ≥ 0 . (2.86)

It may be transformed into a local form by using the divergence theorem

Tρṡ+ div[q]−ρr − 1
T

q · grad[T]≥ 0 . (2.87)

With the local energy balance (2.83) one may rewrite the above equation as

σ : d −ρ(ė− T ṡ)− 1
T

q · grad[T]≥ 0 (2.88)
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where the last term is identified as the heat conduction inequality

− 1
T

q · grad[T]≥ 0 (2.89)

which implies that heat flows against a temperature gradient. The first two terms of

(2.88) represent the internal dissipation Dint and must be non-negative at all times as

well. It is known as the Clausius-Planck inequality

Dint = σ : d −ρ(ė− T ṡ)≥ 0 . (2.90)

By applying the Legendre transformation it is possible to change the independent variables.

The internal energy may be replaced by the Helmholtz free energy per unit mass Ψ as

Ψ = e− Ts . (2.91)

Applying the material time derivative of the free energy Ψ and inserting the result into

(2.90) one gets the Clausius-Planck inequality in differential form with respect to the

deformed unit volume

Dint = σ : d −ρ(Ψ̇ + Ṫ s)≥ 0 (2.92)

and with (2.58) the inequality can be expressed with respect to the reference unit vol-

ume

Dint = τ : d −ρ0(Ψ̇ + Ṫ s)≥ 0 . (2.93)

In case of a purely isothermal process this inequality reduces to

Dint = τ : d −ρ0Ψ̇ ≥ 0 . (2.94)

2.5. Solution of the linear momentum balance with
the finite element method

The finite element method (FEM) is a main tool in this work. Since the FEM gives the

solution of an initial boundary value problem (BVP) of the momentum balance (2.68) it

is possible to consider complex geometries in the computation. Developed constitutive

models after implementation in a finite element code can be used for simulations. Thus,

complicated material behavior may be analyzed and full processes are possible to compute,

for instance the process chain of a particular product. The finite element method is briefly

summarized in this section with both: the implicit and explicit solution strategy. For this
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purpose the initial BVP must be defined from which the weak form of the equation of

motion is derived. This weak form is then discretized in space and linearized for using

the Newton scheme as solution procedure. In the case of a dynamic problems the weak

form must also be discretized in time.

2.5.1. Initial boundary value problem

An initial boundary value problem is defined by the equation of motion (2.68) and by

boundary and initial conditions where the unknown displacement field is to be computed.

This is in general not possible analytically and for this reason the FEM is used.

Two different boundary conditions are considered namely the displacement (Dirichlet)

and the traction boundary condition (Neumann). For this purpose, the boundary is

separated in two regions

∂ B = ∂ Bu ∪ ∂ Bσ , ∂ Bu ∩ ∂ Bσ =  (2.95)

with the boundary surface ∂ Bu corresponding to the displacement boundary condition

and the boundary surface ∂ Bσ with respect to the traction boundary condition.

The initial boundary value problem with the respective boundary and initial conditions at

t = 0 is given by
div[σ] + b = ρü

u = u on ∂ Bu

t = t on ∂ Bσ
u(x , t)|t=0 = u0(X)

u̇(x , t)|t=0 = u̇0(X) .

(2.96)

2.5.2. Weak form

The weak form of the equation of motion is obtained by multiplying the strong form of

the equation of motion (2.68) with an arbitrary test function δu = δu(x ) which satisfies

the geometric boundary conditions and integrating over the body

g(u,δu) =

∫

Bt

(div[σ]− b+ρü) ·δu dv = 0 . (2.97)

This approach is called the principle of virtual displacements by interpreting the function

δu as a virtual displacement field. The only requirement is that this function must vanish



24 2. Basics of continuum mechanics

at all points on the displacement boundary ∂ Bu. This requirement in combination with the

divergence theorem and the product rule and inserting the traction boundary condition,

the weak form results in

g(u,δu) =

∫

Bt

[σ : grad[δu]− (b−ρü) ·δu] dv −
∫

∂Bσt

t ·δu da = 0 . (2.98)

The above equation is interpreted as the virtual work δW done by the virtual displacement

where the integral

δW int =

∫

Bt

σ : grad[δu] dv (2.99)

is identified as the internal virtual work. The integrals with the external loads

δW ex t =

∫

Bt

b ·δu dv +

∫

∂Bσt

t ·δu da (2.100)

is the external virtual work and the integral of the inertia term times the virtual displace-

ment

δW kin =

∫

Bt

ρü ·δu dv (2.101)

the kinetic virtual work.

2.5.3. Linearization

In case of a static analysis the inertia term in (2.98) is neglected so that the weak form of

the equation of motion reduces to

g(u,δu) =

∫

Bt

[σ : grad[δu]− b ·δu] dv −
∫

∂Bσt

t ·δu da = 0 . (2.102)

In general, this equation is non-linear due to material properties and the description

of the geometry. An often used solution procedure is Newton’s method to solve this

kind of equation iteratively. Therefore, a first-order Taylor expansion at a known state is

deployed.
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However, the first-order Taylor expansion of (2.102) at the known displacement field

state u yields

g(u +Δu,δu) = g(u,δu) +Δg(u,δu) = 0 (2.103)

and is known as the linearization of the weak form of the equation of motion where Δg

is the directional derivative of g in the direction of the increment of the displacement Δu.

To perform this derivative the integral and the spatial quantities must be transformed

to the reference configuration where the directional derivative of G - the corresponding

quantity in the reference configuration - may be carried out as follows:

ΔG(u +Δu) =
d
dε
[G(u + εΔu)]

����
ε=0

= DG ·Δu (2.104)

Assuming dead loads for b and t , the internal virtual work must be linearized only which

gives rise to the following directional derivative

D δW int ·Δu = D
	∫

Bt

σ : grad[δu] dv


·Δu = D

	∫

B0

τ : grad[δu] dV


·Δu

=

∫

B0

�
Dτ ·Δu : grad[δu] +τ : D grad[δu] ·Δu

�
dV .

(2.105)

In (2.105) two directional derivatives must be performed: that of the Kirchhoff stress and

that of the gradient of virtual displacement. Applying (2.104) for the Kirchhoff stress,

first it is pulled-back to the reference configuration and the product rule is adopted which

gives
Dτ ·Δu = D(FSF T ) ·Δu

= DF ·ΔuSF T + F DS ·ΔuF T + FSDF T ·Δu .
(2.106)

For a compact notation the incremental spatial velocity gradient Δl in terms of Δu is

introduced as

Δl = DF ·ΔuF−1 = grad[Δu] = Grad[Δu]F−1 =ΔF F−1 (2.107)

from which the symmetric and skew-symmetric incremental tensors follow

Δd =
1
2
(Δl +ΔlT ) , Δw =

1
2
(Δl −ΔlT ) . (2.108)
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Furthermore, the directional derivative of S may be rewritten in terms of Δd (cf. 2.43

and 2.51) which leads to

DS ·Δu =
∂ S
∂ C

: DC ·Δu =� : F TΔdF . (2.109)

Inserting the relations (2.107) and (2.109) in (2.106), the linearization of the Kirchhoff

stress is given in terms of spatial quantities by

Dτ ·Δu =Δτ = � :Δd +Δlτ+τΔlT . (2.110)

where the push-forward (2.53) of the material tangent modulus tensor � to the spatial

tangent modulus tensor � has been employed.

The second directional derivative of (2.105), is that of the gradient of the virtual displace-

ment and must be pulled-back first as well. By doing so and using the relation

ΔF−1 = DF−1 ·Δu = −F−1grad[Δu] (2.111)

and (2.107) to get the result in desired spatial terms, the directional derivative reads

Dgrad[δu] ·Δu = D(Grad[δu]F−1) ·Δu = Grad[δu] DF−1 ·Δu

= −Grad[δu]F−1grad[Δu] = −grad[δu]Δl .
(2.112)

Inserting the results (2.110) and (2.112) in (2.105) and transforming the integral to the

current configuration, the directional derivative needed for the linearization of (2.102) is

completed and reads as follows

DδW int ·Δu =

∫

Bt

(
1
J
� :Δd +Δlσ) : grad[δu] dv . (2.113)

2.5.4. Discretization in space

To solve the weak form of the equation of motion (2.98) the finite element method is used.

Thereby, the body in the reference configuration B0 is subdivided in ne non overlapping

parts, the finite elements Be
0. The so-discretized body Be

h serves as an approximation of

the real body and consists of all finite elements

B0 ≈ Bh
0 =

ne⋃
e=1

Be
0 . (2.114)
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A finite element is arranged by discrete nodes with specific degrees of freedom u I , here

the displacements. The position of the I-th node is specified by the position vector X I

in the reference configuration or by x I in the current configuration. The displacement

and the geometry must be interpolated to solve for the new displacements. Within the

framework of the isoparametric concept the same appropriate shape functions NI are

used for the approximation of the displacements and geometry. For an element with n

nodes this approximation is given by summing over the product of the shape function at

node I and the I-th nodal displacement or position vector, respectively:

u ≈ uh
e =

n∑
I=1

NI u I , Xh
e =

n∑
I=1

NI X I , x h
e =

n∑
I=1

NI x I . (2.115)

The virtual displacements are interpolated in the same manner and their gradient is given

by the partial derivative of NI only

δuh =
n∑

I=1

NIδu I , grad[δuh] =
n∑

I=1

BIδu I (2.116)

where the matrix B includes the derivatives of the shape functions with respect to the

spatial coordinates. Inserting these approximations in (2.98) ,the semi-discrete equation

of motion is obtained

δuT (Mü + f int − f ex t) = 0 . (2.117)

In this equation, the mass matrix M , the nodal accelerations ü and the internal and

external nodal forces f int and f ex t are already assembled. In detail, the respective terms

are

δuT Mü =
ne

A
e=1

n∑
I=1

n∑
K=1

δuT
I M IK üK with M IK = 1

∫

Be
t

ρeNI NK dve (2.118)

δuT f int =
ne

A
e=1

n∑
I=1

δuT
I f int

I with f int
I =

∫

Be
t

BT
I σ

e dve (2.119)

δuT f ex t =
ne

A
e=1

n∑
I=1

δuT
I f ex t

I with f ex t
I =

∫

Be
t

NI b dve +

∫

∂Bσe
t

NI t dae .(2.120)

where A is the assembling operator which sorts the contribution of each element to the

global system of equations to the right position in this system. Due to the arbitrariness of
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the virtual nodal displacements, (2.117) reduces to a system of non-linear differential

equations

Mü + f int = f ex t . (2.121)

In the static case, the inertia term in (2.121) is neglected and the resulting non-linear

algebraic system of equations is solved with Newton’s method. Therefore, the linearization

of the variation of the internal work (2.103) must be discretized, too. Inserting the above

approximations in (2.113) the discretized directional derivative for the linearization of

(2.103)

DδW int ·Δu =
ne

A
e=1

n∑
I=1

n∑
K=1

δuT
I K IKΔuK (2.122)

is obtained. The element tangent stiffness matrix is given by

K IK =

∫

Be
t

	
∇N T

I σ
e∇NK + BT

I DBK



dve (2.123)

with the matrix form D of the spatial tangent moduli tensor � introduced in (2.110) and

the unknown incremental nodal displacements Δu I . These displacements are computed

by arranging the resulting linear system of equations from (2.103) and by inserting the

internal and external nodal forces and the global tangent matrix K . This leads to

KΔu = f ex t − f int (2.124)

where use is made of the arbitrariness of the virtual nodal displacements again. The

nodal displacements are then updated un+1 = un +Δu I once the iterative scheme has

converged.

The integrals appearing above are evaluated in a parametric space of a reference element

(isoparametric concept). The necessary transformation of the integrals into the parametric

space leads to a rational function. Thus, the integral is integrated numerically, for example

by a Gaussian quadrature rule.

2.5.5. Discretization in time

The semi-discrete equation of motion (2.121) is discrete in space but continuous in time.

To integrate this system of differential equations over time it is necessary to discretize it

in time as well. Hence, a function is evaluated and solved at discrete times tn. The time

between two time points is the time step size Δt. The equations of motion discretized



2.5. Solution of the linear momentum balance with the finite element method 29

in space and time with the unknown displacements, velocities and accelerations at time

tn+1 = tn +Δtn+1/2 read

Mün+1 + f int
n+1 = f ex t

n+1 (2.125)

assuming that all quantities are known at tn. It is sometimes appropriate to introduce a

damping matrix C to incorporate some amount of artificial energy dissipation proportional

to the velocity. Then, the above equation reads

Mün+1 + Cu̇n+1 + f int
n+1 = f ex t

n+1 (2.126)

and may be integrated by an implicit or explicit scheme.

A popular explicit time integration scheme is the central difference method. Applying

this rule for the acceleration at time tn with Δtn = tn+1/2 − tn−1/2

ün =
u̇n+1/2 − u̇n−1/2

Δtn
(2.127)

the velocity may be computed at time tn+1/2

u̇n+1/2 = u̇n−1/2 +Δtnün . (2.128)

By applying the central difference approximation for the velocity, the unknown displace-

ment at the time tn+1 is obtained

u̇n+1 =
un+1 − un

Δtn+1/2

, un+1 = un +Δtn+1/2u̇n+1/2 . (2.129)

The acceleration at time tn appearing in (2.128) is given by the equation of motion

(2.126) at time tn

ün = M−1( f ex t
n − f int

n − Cu̇n−1/2) (2.130)

where the inverse of the mass matrix has to be computed. This is much more efficient

if this matrix is lumped. So, only vector operations must be performed. At this point,

all other unknowns, like the nodal force vectors and the stresses at the time tn+1 are

computable. Since this integration scheme is explicit -all unknown quantities at the end

of the time step depend on known quantities at the beginning of the step- it is subjected

to requirements on the size of the time step to ensure stability of the scheme. This

so-called critical time step Δtcri t may be estimated by the maximum eigenfrequency of

all elements

Δtcri t =
2

max
e
ωe
=min

e

l e

ce
d

(2.131)
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with the characteristic element dimension l e and the dilatational wave speed ce
d of the

material specified for an element.



3. Mechanical behavior of
amorphous thermoplastic
polymers

In the previous chapter, the continuum mechanical basics and the solution of an initial bound-

ary value problem were depicted without giving a constitutive relation between deformation

and stress. The present chapter deals with the physics of amorphous thermoplastic polymers

relevant for this work and the resulting mechanical behavior. Additionally, uniaxial tensile

tests will be presented which are performed in the range from room temperature till above

the glass transition at different strain rates. Two amorphous thermoplastic polymers, the

common and widely used PMMA (polymethyl methacrylate) and PC (polycarbonate) are

examined. The literature along with own experimental findings give indications for a "feature

list" for the constitutive model which will be deployed in the next chapter.

3.1. Amorphous thermoplastic polymers -
general foundations

In this section, the molecular structure of amorphous thermoplastic polymers is described

briefly at first. Following this, the mechanical behavior is depicted deploying the example

of uniaxial tensile tests. Especially, the characteristics of yielding and the large strain

behavior is discussed, both in the context of applied strain rate and temperature. The

above mentioned polymer physics may be found in the works of Haward and Young

(1997), Strobl (2007), Ward and Sweeney (2005), Rösler et al. (2003), Treloar (1974),

G’Sell et al. (1992), Boyce et al. (1988) are used for this section particularly.
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3.1.1. Molecular structure and entanglement network

Polymers consist of long macromolecular chains with thousands of repeating identical

units (monomers) linked by covalent bonds. For example, the monomers of PMMA and

PC are displayed in Fig. 3.1. The degree of polymerization n, defined as the average

number of monomers, as well as the structure of the monomer itself highly influences the

mechanical behavior of the polymer due to different possibilities of molecular motions.

CH2 C

CH3

C

n

O

O CH3

(a) polymethyl methacrylate
(PMMA)

C

CH3
n

CH3

C

O

O O

(b) polycarbonate (PC)

Figure 3.1.: Chemical structure of commonly used amorphous thermoplastic polymers

Polymers are distinguished by the amount of chemical cross-links which strongly influences

the mechanical response. While thermoplastics are not chemically cross-linked at all,

elastomers consist of a few and thermosets of a high amount of chemical cross-links.

Both thermoplastic polymers, PMMA and PC, are almost completely amorphous due

to their irregular chemical structure, caused by the large side groups attached to the

backbone of the chain. In contrast to that, if the monomer consists of a regular structure

the polymer tends to crystallize in certain regions but still contains amorphous parts. The

polymer is then called semicrystalline; typical examples of semicrystalline thermoplastics

are polypropylene (PP) and polyethylene (PE).

However, the microstructure of amorphous thermoplastics is understood as a network

of randomly coiled macromolecules connected by physical cross-links (entanglements).

This network is illustrated in Fig. 3.2a. The magnification illustrates the conformation of

the chain due to random rotations of rigid chain segments about covalent bonds between

atoms under the restriction of the valence bond angle. These intramolecular bonds inside

the chain may be considered as rigid compared to the much weaker intermolecular van

der Waals interactions between the molecular chains.
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conformations

entanglements

intermolecular
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(a) below Tg (b) around Tg

Figure 3.2.: Network of entangled polymer chains

Thermal energy leads to an increased motion and mobility of chain segments and thus to

a higher distance of the chains to each other. With further increasing temperature there

is a rapid change in the distance, respectively, the specific volume v = ρ−1 at which the

volume increases more rapidly than at lower temperatures (Fig. 3.3). This is explained

with the concept of free volume. The free volume is the empty space between polymer

chains and increases at a specific temperature. This temperature at which this rapid

change occurs is called the glass transition temperature Tg because the polymer changes

from the glassy to the rubbery state 1.
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Figure 3.3.: Change of stiffness and specific volume at glass transition

1 According to the measurement technique of the glass transition temperature an precise temperature is
not measurable. Rather a glass transition region is identified.
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In Fig. 3.2b, the molecular network at Tg is sketched. Obviously, the mass density ρ

of the polymer is lower than below Tg (Fig. 3.2a) and more free volume is available.

Furthermore, larger segments of the polymer chain become mobile at Tg. This gives rise

to a relaxation process and is called the α-relaxation2.

In the glassy state, i.e. at temperatures below Tg, the molecular chains are frozen in a

state which is essentially a supercooled liquid. This microstructure is either isotropic due

to a random orientation of the coiled chains or may be anisotropic due to processing or

mechanical straining from which the chains orient and stretch. In Fig. 3.4 a molecular

network stretched in the direction of applied stretch or stress is depicted. Based on this, it

is obvious that the extensibility at high strains is dependent on the entanglement density

since the entanglements prevent a further stretch of the chains.

Figure 3.4.: Stretched and oriented polymer chains

The concept of an underlying entangled network of macromolecular chains was motivated

by the observation that amorphous thermoplastics stretched in the glassy state tend to

deform to their original shape if the temperature is raised above Tg (Haward and Young,

1997). This suggests that a number of permanent entanglements between the chains

exist which are responsible for the shape memory effect. The experiment shown in Fig.

3.5 illustrates this phenomenon. An injection molded tensile test specimen made of

PMMA (Fig. 3.5a) is heated at approximately glass transition temperature and is then

twisted (Fig. 3.5b) before it is cooled to room temperature3. The annealing above Tg at

120 °C for 20 minutes leads to a complete redeformation to the original shape as well

as a shrinkage of the specimen (Fig. 3.5c). Thereby, the deformation of the specimen

takes place due to coiling of the chains to a preferred random isotropic state between

the still existing entanglements. The additional shrinkage which becomes obvious when

Figs. 3.5a and 3.5c are compared, results from the earlier molding process at which the

2 With decreasing temperature the relaxation processes after the α-relaxation at Tg are called β -relaxation,
at which in general side group motions occur, then γ-relaxation and so on.

3 In Struik (1990) a far more detailed discussion about twisted cylindrical rods and the resulting force at
deformation above Tg to the original shape may be found.
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polymer chains were oriented and stretched before rapid cooling led to the anisotropic

frozen-in microstructure.

(a) initial state after processing (injection molding)

(b) twisting of locally heated region near glass transition temperature

(c) deformation after annealing at 120 °C (Tg=105 °C) for 20 minutes

Figure 3.5.: Shrinkage and shape memory effect of an injection molded and twisted test specimen made of
PMMA

3.1.2. Mechanical characteristics

The strain response of a glassy polymer subjected to small stresses is practically indepen-

dent of the loading rate, reversible and proportional to the stress. When it is stressed

further to few percent of strains it shows a pronounced viscoelastic behavior where the

loading rate as well as the temperature have strong influences on the mechanical behavior.

Thereby, a high strain rate corresponds to a low temperature and vice versa (Williams

et al., 1955). The elastic mechanical behavior in the glassy state is mainly determined by

the weak intermolecular interactions between the molecular chains. The intramolecular

covalent bonds inside the chain are much stronger than the intermolecular interactions

and thus less important for the mechanical response at small strains and may be consid-

ered as rigid. For example, this results in the typical low Young’s modulus of thermoplastic

polymers which is approximately hundred times lower than that of metals. During the

loading, the atoms move from an energetic preferred state of equilibrium which is at-

tained again at unloading; this is called energy elasticity. Different relaxation processes



36 3. Mechanical behavior of amorphous thermoplastic polymers

(rearrangement of molecules) take place with different relaxation times and activation

energies. This determines the viscoelasticity of the material. Around the glass transition

temperature the polymer enters the rubbery state which comes along with a drop of the

stiffness (Fig. 3.3) and a more pronounced viscoelastic behavior. Above Tg, the molecules

get stretched between the entanglements during the loading and relax to the original

unstretched state after unloading. So, the elasticity in the rubbery state is determined by

the entropy of the conformation of the macromolecule (entropy elasticity).

If the stress is further increased and the temperature is below the glass transition temper-

ature the behavior becomes more non-linear and large plastic deformations may occur by

shear yielding (in absence of brittle failure or crazing). The plastic deformation takes

place essentially at constant volume and is characterized by a stress peak followed by

intrinsic strain softening. The latter typically results in inhomogeneous deformation such

as shear banding. In the subsequent plastic deformation process progressive hardening

with increasing strain is observable till a limit stretch is reached and no further plastic

deformation takes place. The material becomes elastic again until the specimen fails by

rupture of covalent bonds. As stated before, the plastic deformation is reversible and the

material returns to the original shape when the temperature is raised above the glass

transition temperature. Thus, it is not a true plastic deformation of the material but rather

a highly nonlinear viscoelastic behavior. The mechanical behavior of PC is depicted in

Fig. 3.6 where tensile true stress-log. strain curves at different temperatures and strain

rates are plotted (G’Sell et al., 1992) 4.

The onset of yielding is temperature, strain rate as well as pressure dependent, where

the latter results in a higher yield stress in compression than in tension. The yield point

is raised at lower temperatures and higher loading rates and respectively, reduced at

higher temperatures and lower rates. A variation of strain rate causes a shifting of the

whole curve while different temperatures not only shift the curves but also results in a

decreasing hardening modulus with increasing temperatures (Fig. 3.6a,b). Thus, the

plastic deformation behavior is strongly viscoplastic in nature. The origin of this behavior

is associated with the mechanism of molecular chain segment rotations taking place once

the applied stress is high enough to overcome the resistance of the intermolecular bonds.

This is a thermally activated process and is time-dependent due to specific relaxation

times. In the rubbery state5 a difference between the elastic and plastic deformation is

not specifiable and a yield point is not observable anymore (Fig. 3.6b). This suggests a

4 The viscoelastic response is not observable due to the large strain scale plotted and due to the monotonic
process (no hysteresis).

5 The glass transition temperature of PC is around 145 °C.
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Figure 3.6.: Mechanical behavior of PC in a uniaxial tensile test (G’Sell et al., 1992)



38 3. Mechanical behavior of amorphous thermoplastic polymers

change from a solid to a liquid-like behavior at small strains. The resistance against chain

segment rotations is strongly reduced due to a higher free volume available.

Instantly after the onset of yielding the stress drops and the polymer softens to a lower

stress level (Fig. 3.6a). The amount of stress drop depends on the temperature and the

strain rate as well (Fig. 3.6b,c). Furthermore, there is a dependence on the mechanical

and thermal loading history:

• the softening vanishes at cyclic loading; a lower yield stress at reverse and re-loading

is observed. Thus, thermoplastics exhibit a strong Bauschinger effect.

• the stress peak a the onset of yield is significantly higher for an annealed material

than for a quenched material, yet the strain level after softening is the same in both

cases.

Physical aging leads to a recovery of the initial yield stress (Boyce et al., 1988). The

mechanism of softening on the microscale is still not very well understood and is assumed

to be a result of an average restructuring of the molecular chains (Boyce et al., 1988).

Around Tg a stress drop (softening) is not longer observable which, e.g. in tensile

specimens, results in a much more homogeneous deformation.

During a loading beyond 10-20 % of strain the material begins to harden progressively

with increasing strain. The hardening modulus decreases with increasing temperature

(Fig. 3.6b) and shows a rate dependence at temperatures around Tg (see Sec. 3.2). Below

Tg, the hardening results from the large stretching and orientation of the molecular chains

between the entanglements in the direction of loading (Fig. 3.4). When the chains are

fully stretched the limit stretch is reached and the covalent bonds are loaded elastically.

This leads to local hardening and overcompensates the necking. Thus, the necking area

propagates over the whole specimen due to stretching the neighboring unstretched chains

which exhibit a lower resistance against plastic deformation. The complete deformation

behavior of a tensile test in the glassy state is depicted in Fig. 3.7 in which the shear band

formation and the subsequent development and growth of the neck is observable.

The assumption of a pure entropic origin of the hardening as in the theory of rubber

elasticity is in contrast to the wrong trend in temperature (decreasing hardening modulus

at increasing temperature). Rather, it shows a viscoelastic behavior. The true origin is

still an open question and is discussed in literature in the recent years from the side

of experimental studies (Govaert and Tervoort (2004), Wendlandt et al. (2005), Chen

and Schweizer (2009), Senden et al. (2010), Senden et al. (2012)) as well as from

molecular dynamic simulations (Hoy and Robbins (2006), Hoy and Robbins (2008)). At

temperatures around and above Tg the molecules are more and more able to slip at each
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other due to the higher free volume; the material behaves like a viscous fluid. A theory to

explain the mechanism of viscous flow is the reptation of molecular chains (de Gennes

(1983), Doi and Edwards (1978), de Gennes (1971)). It is assumed that at loading the

chains may be pulled out of the network through a tube formed by entanglements of

surrounding chains. The tube size may increase with increasing temperature due to

increased free volume. In contrast to these high temperatures it is expected that the tube

diffusion does not takes place in the glassy state.

The local strain rate and temperature increase in the necking area. In detail, a portion

of the plastic work is stored in the stretch of the chains and a portion is dissipated and

converted into heat as a result of molecular motions which alleviates further plastic

deformation. For example, this leads to a local temperature rise of a maximum of 20 °C

at a strain rate of ε̇ = 0.1s−1 applied on PMMA (Arruda et al., 1995).

Figure 3.7.: Deformation behavior of PC in a uniaxial tensile test below Tg

The effect of aligned molecular chains due to stretching the material or due to processing

such as injection molding on the mechanical behavior is mainly observable in the plastic

region. It is negligible for the elastic behavior (Arruda et al., 1993). The most important

influences of molecular pre-orientation on the plastic response are the appearance of

anisotropic yielding, the vanishing of softening and the raised hardening modulus and

limited extensibility if loaded in the direction of the pre-stretch. In Fig. 3.8 true stress-

log. strain curves of compression tests are depicted which show these effects for PC

compressed to a certain amount of strain and reloaded in the direction of the pre-stretch

and perpendicular to that direction (Arruda et al., 1993). Note, the direction of pre-stretch

is not the loading direction at compression rather it is the direction perpendicular to the

pre-stretch. When the material is reloaded in that direction the molecular network first

deorients and then orients in the direction perpendicular of the loading direction which

results in a lower yield stress. A reload of the material in direction of pre-stretch results
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in a higher yield stress because the network is already stretched in that direction and no

further large stretch is possible.
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Figure 3.8.: Effect of pre-stretched PC on the inelastic behavior (uniaxial compression true stress - log.
strain curves at strain rate of ε̇ = 0.001s−1 and room temperature, pre-stretched to eH = −0.75)
(Arruda et al., 1993)

3.2. Experimental study

In order to obtain consistent material data for the mechanical behavior below and above

the glass transition, in the present work uniaxial tensile tests are performed on PMMA and

PC at three different strain rates and temperatures from room temperature till beyond

the glass transition temperature of the specific material. To measure the local strain

field, a video extensometer is used with a subsequent evaluation utilizing a digital image

correlation (DIC) tool. The experimental setup, the evaluation procedure and the findings

are presented in the following sections.

3.2.1. Test setup

The experimental setup consists of a testing machine, an oven, a load cell and a video

extensometer with the recording and evaluating software.

The servohydraulic Instron 1342 testing machine was upgraded with the digital electronic

controller Fasttrack 8800, the software Wavematrix by Instron (2012) and a 10 kN
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strain gauge load cell. The camera of the video extensometer for a non-contact optical

measurement is placed close to the clamped test specimen to record it as planar as possible

and is supported by diffuse light. This system, namely Q-400, of the company Limess

works with a ccd gray scale image sensor, with a resolution of 2 MP and a maximum

recording frequency of 15 Hz, to record the deformation of a test specimen. The recorded

images are saved on a PC to evaluate the strain field afterwards with the correlation

and sensor controlling software Istra 4D by Dantec Dynamics A/S (2012). The sensor

is controlled with a PC and the timing hub TU-4XB which triggers the recording and

synchronizes the images with the incoming force signal of the load cell. The test specimens

are fixed in a self constructed clamping. In Fig. 3.9 the setup without the oven is shown.

(a) Testing machine in the laboratory (b) Clamping of spec-
imen

Figure 3.9.: Servohydraulic testing machine with measurement system

For the experiments at higher temperatures, an oven is installed around the extended

crosshead (see Fig. 3.10). The maximum temperature is 350 °C which is adjusted by a

controller of the company Eurotherm. To use the video extensometer in the case of these

experiments as well, the test specimens are filmed through a glass window in the oven

which is lighted from inside.

The specimens made of PMMA were injection molded and kindly provided by the Institute

of Microstructure Technology (IMT), KIT. The sketch with all dimensions is given in

Fig. 3.11a. Due to the molding, the surface is very smooth so that no further specimen

treatment is necessary (Fig. 3.11b). Since the geometry of the PMMA test specimens is

not optimal for clamping, the geometry for the PC test specimens is adopted from the
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(a) Testing machine with oven
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(b) schematical experimental setup with oven

Figure 3.10.: Built-on oven at testing machine

work of Becker (2009) and is shown in Fig. 3.12a. These specimens are made by waterjet

cutting from injection molded plates (Lexan by Sabic) and are kindly provided by the

Deutsches Kunststoff Institut (DKI). After the cutting, the surface is very rough and a

specimen preparation is necessary (Fig. 3.12b). The specimens are burred by hand with

sand paper which gives a relative smooth surface (Fig. 3.12c). A rough surface would

result in an early failure of the specimen due to scratches.

For the DIC based deformation measurement system explained in Sec. 3.2.2, the test

specimens must have a random speckle pattern on its surface. Therefore, one surface of

the test specimen is painted white followed by spraying black points on it which gives a

random speckle pattern, see Fig. 3.11c and Fig. 3.12d.

3.2.2. Evaluation

The recorded images of the test specimen during the experiment are processed with the

DIC software Istra 4D. The very basics of the digital image correlation method are briefly

summarized in the following. A fundamental description may be found in Sutton et al.

(2009) and Pan et al. (2009).

The idea of DIC is to compute the displacement and the strain field by comparing the

recorded images of the incremental deformation steps by taking many points spread

over the whole specimen into account and not, as in the method of G’Sell et al. (1992),

only few in a row in the middle of the specimen which is less accurate. For this purpose,
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(a) sketch of specimen (b) specimen after moulding

(c) speckle pattern

Figure 3.11.: Test specimen of PMMA (thickness 1mm)

(a) sketch of specimen (b) specimen after cutting

(c) specimen after burring (d) speckle pattern

Figure 3.12.: Test specimen of PC (thickness 2.5mm)
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a region in the reference image must be defined where the correlation process should

take place. This region is then subdivided in a grid where in the following at each point

the displacement is computed. Around the grid points, a squared reference subset of

(2M + 1)× (2M + 1) pixels is defined with the reference center point P(x0, y0) of the

specific subset. Instead of a single pixel, a subset is chosen for a better matching of

the reference center point P and the point P ′(x ′0, y ′0) in the deformed or target subset.

This works best if the gray scale pixel are randomly distributed like the speckle pattern

described above. Increasing the size of the subset increases the accuracy of the method

but increases the numerical effort as well.

The main task is now to find the center point P ′ of the deformed subset corresponding

to the reference center point P. If this point is found, the displacement vector u can be

computed as the differences of the positions of the reference center point and the center

point of the deformed subsets as depicted in Fig. 3.13.

Figure 3.13.: Deformation of a reference subset (left) to the target subset (right) due to translation, rotation,
stretch, shear and the corresponding displacement u of the subset center point P to P ′

For this matching procedure of the points, it is necessary to consider the deformation

of the subset, i.e. all points inside this subset. With the assumption that neighboring

points in the reference subset remain neighbors in the deformed subset, an arbitrary point

Q(xi, yj) in the reference subset may be mapped to the point Q′(x ′i , y ′j) in the deformed

subset as
x ′i = xi + ξ(xi, yj)
y ′i = yi +η(xi, yj)

�
i, j = −M , ..., M (3.1)



3.2. Experimental study 45

with the shape functions ξ and η. For example, first-order shape functions may consider

translation, rotation, stretch and shear of the subset and yield

ξ1(xi, yj) = u+
du
dx
(xi − x0) +

du
dy
(yj − y0) (3.2)

η1(xi, yj) = v +
dv
dx
(xi − x0) +

dv
dy
(yj − y0) (3.3)

with the center point displacement u and v in the x- and y- direction. While zero-

order shape functions would result in mapping of rigid body motions only, second-order

functions are able to consider the curvature of the subset boundaries. Exemplary, the

deformation of a subset for first-order shape functions is shown in Fig. 3.13. In a uniaxial

tensile test, basically translation and stretch of a subset takes place. This situation is

depicted in Fig. 3.14. Compared to translation and stretch, a small amount of local

rotation and shear occur as well in case of shear banding or anisotropic materials.

Figure 3.14.: Deformation of a subset in a tensile test: translation and stretch

The similarity of the gray scale values in the reference subset and the deformed target

subset may be computed with different correlation criteria. The simplest one is the sum

of squared differences (SSD)

C(u, v,
du
dx

,
du
dy

,
dv
dx

,
dv
dy
) =

M∑
i=−M

M∑
j=−M

[ f (xi, yj)− g(x ′i , y ′j)]2 (3.4)
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with the gray scale value f (xi, yj) at point (xi, yj) of the reference subset and the gray

scale value g(x ′i , y ′j) at point (x ′i , y ′j) of the target subset, respectively. The value of the

correlation criterion C would be never equal to zero in reality. Therefore, a critical limit

value must be set at which the calculation is stopped if the maximum of similarity is

found. At this point the displacement vector can be computed. Several algorithms exist

to enhance this computation. One of them is the photometric mapping which considers

influences of light changes during the recording and hence improves the correlation

accuracy.

If the displacement vector of all grid points is known, the strain field may be calculated.

For this purpose a function for the displacement is needed to calculate the strain by

differentiation of the displacement. For example, this can be done by a point wise fitting

technique using a polynomial function. The assumption of a linear displacement field

yields

u(i, j) = u0 + u1x + u2 y (3.5)

v(i, j) = v0 + v1x + v2 y (3.6)

with the unknown coefficients ui=0,1,2 and vi=0,1,2 and the known displacements u(i, j)
and v(i, j) obtained by the DIC. The indices i, j = −m, .., m are local coordinates in a

strain calculation area of (2m+ 1)× (2m+ 1) discrete points where the displacement is

known. The polynomial coefficients may be determined by a least-square method and

the desired strain field is simply gained by differentiation of (3.5) and (3.6) with respect

to the coordinates x and y. For example, the x x-component of the Green-Lagrange

strain tensor (2.16) is given by Ex x = u1 +
1
2(u

2
1 + v2

1). This strain tensor is computed by

the software Istra 4D. In Fig. 3.15, the Ex x (loading direction) strain field at different

states of deformation is shown for the PC specimen. In Fig. 3.15a, the region which

is used for the correlation is indicated. It is sufficient to restrict the evaluation to the

rectangular center region of the specimen where the largest deformation takes place.

This is clearly observable in Fig. 3.15b-d. It is noted that an out-of-plane displacement

of the specimens is to be avoided to guarantee the best possible accuracy of the strain

measurement system.

The aim of this experimental work is to measure the local strain field needed to compute

the true cross section of the specimen to obtain the real mechanical material behavior

in terms of stress-strain response. Thus, the strain is taken from a small region only,

analogously to a small strain gauge. In this gauge, the strain field obtained from the DIC

is averaged. The question is how to choose the size of the strain averaging region in order
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(a) (b)

(c) (d)

Figure 3.15.: Strain field in loading direction at different deformation states of PC
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to get the most accurate response. To answer this question, different sizes of rectangular

strain gauges are used in the region where maximum strains occur. The size differs from

1 pixel up to 30 pixel in loading direction. Perpendicular to the loading direction, almost

the whole width of the specimen is chosen. In Fig. 3.16, these regions are sketched on

top of the strain field of Fig. 3.15b.

Figure 3.16.: Different sizes of strain gauges

The selection of the size of the gauge strongly influences the results of the strain mea-

surement (Fig. 3.17). Clear differences are observable if the size is larger than 5 pixel.

Almost no difference can be seen between a size of 5 pixel and 1 pixel. The larger the

size the more an averaged strain field is obtained and the less accurate the measurement

is. On the basis of this result, in the present work a size of about 5 pixel for the gauge is

used in the evaluations to accurately capture the local strain field. In the work of Kotlik

(2011), the same size was found to be appropriate.
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Figure 3.17.: Influence of the size of the "strain gauge" on the evaluation of uniaxial tensile tests of PC
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As mentioned above, the strain provided by the correlation software Istra 4D is the Green-

Lagrange strain tensor (2.16). However, in this work the logarithmic strain tensor eH

(2.21) is used. To obtain this tensor from the measured data, the Green-Lagrange strain

tensor is reformulated in terms of the right stretch tensor U

U =
�

2E + 1 (3.7)

and with (2.20) the logarithmic strain in the reference configuration is

EH = ln
�

2E + 1 . (3.8)

In case of a uniaxial tensile test, the loading direction is a principal direction and no

rotation occurs (R = 1) so that with (2.12) it follows the identity of eH = EH with

eH = ln V defined in (2.21). In a 2D DIC the components of E in loading direction (1-dir)

and perpendicular to that direction (2-dir) are obtained only. The components of eH in

these directions are

eH
1 = ln


2E1 + 1 , eH

2 = ln


2E2 + 1 . (3.9)

The true stress in loading direction is computed from the force f1 measured by the load

cell and the current area of the cross section of the specimen as

σ1 =
f1

A
. (3.10)

In a 2D DIC the thickness t of the specimen is not measurable at the same time as the

length l and width w; this would require a 3D DIC system with two cameras. Therefore,

the assumption of the equal transverse strains eH
2 = eH

3 which holds for isotropic materials

is used with which the current cross section is then given by

A= w · t = w0 · t0 · exp[2eH
2 ] (3.11)

where w= w0eH
2 and t = t0eH

3 .

Since the experiments are conducted at different strain rates it is necessary to determine

the crosshead velocity vch for each desired strain rate before the tests. The strain rate is

defined in the general form as

ε̇ =
dε
dt

(3.12)
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where ε is a strain measure. With the nominal strain εN = (l − l0)/l0, the nominal strain

rate ε̇N reads as

ε̇N =
d(l − l0)/l0)

dt
=

1
l0

dl
dt

(3.13)

where l0 is the initial length and l the current length of the parallel region of the respective

tensile test specimen. The crosshead velocity is then given by

vch =
dl
dt
= ε̇N l0 (3.14)

and is constant over the total experimental time. The nominal strain rate differs from the

log. strain rate

ε̇H =
deH

1

dt
=

d ln[l∗/l∗0]
dt

=
1
l∗

dl∗
dt

(3.15)

due to the varying length l∗ of the evaluation regions, for example these of Fig. 3.16.

Depending on this length (l∗ =̂ amount of pixel), the difference between the log. strain

rates of the different strain gauges and the nominal strain rate is plotted in Fig. 3.18.

While for constant velocity the nominal strain rate remains constant by virtue of (3.14),

the log. strain rate is strongly dependent on the gauge length due to strain concentrations

such as necking.
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Figure 3.18.: The log. strain rate behavior of the PC test specimen subjected to different strain gauge sizes
at a nominal strain rate of ε̇N = 0.001s−1 and a temperature of 20 °C

The true strain rates for PMMA at temperatures of 60 °C and 80 °C and a nominal

strain rate of ε̇N = 0.1s−1 are shown in Fig. 3.19. It is observable that the true strain

rate approaches the nominal strain rate with increasing temperature due to a more
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homogeneous deformation behavior over the total length of the test specimen at higher

temperatures.
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Figure 3.19.: The log. strain rate behavior of the PMMA test specimen at temperatures of 60 °C and 80 °C
and a nominal strain rate of ε̇N = 0.1s−1

Fig. 3.18 and Fig. 3.19 show a maximum deviation of a factor of five between the true

strain rate and the nominal strain rate at a temperature of 20 °C. The difference between

the nominal and the log. strain rate is thus neglected in the following experiments where

the strain rates are varied over two orders of magnitude (0.001 ... 0.1s−1).

3.2.3. Experimental findings for PMMA and PC

In the following experiments, three different constant nominal strain rates are applied on

both materials: 0.1 s−1, 0.01 s−1 and 0.001 s−1. Since the materials differ in their glass

transition temperature, different temperature ranges are considered in the experiments

(Tab. 3.1). All experiments are repeated three times but only one representative curve is

shown in the following since the amount of scatter was rather small. While both materials

are investigated under monotonic loading, the behavior of PMMA is additionally studied

under cyclic loading conditions.
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Table 3.1.: Temperatures uniaxial tensile tests on PMMA and PC at different strain rates
(• =̂ experiment conducted, ◦ =̂ no experimental data obtained)

PMMA (Tg ≈ 105 °C) PC (Tg ≈ 140 °C)

temperature [°C] strain rate [s−1]

ε̇ = 0.001 ε̇ = 0.01 ε̇ = 0.1 ε̇ = 0.001 ε̇ = 0.01 ε̇ = 0.1

20 • • • • • •
60 • • •
80 • • • • • •
100 • • •
105 ◦ • •
110 ◦ • •
120 ◦ • • • • •
140 • • •
150 • • •

Monotonic tests

The true stress-log. strain curves for the three different strain rates are presented for

PMMA in Fig. 3.20, and for PC in Fig. 3.21. All tests are performed until the test specimen

fails or in case of higher temperatures the material yields in the clamped region. It is

noted that at the lowest strain rate above 100 °C no valid experimental data is obtained

for PMMA due to the very soft material response.

The temperature dependency is clearly observable for both materials and the glassy and

rubbery state can be identified. Furthermore, not only the yield stress is temperature

dependent but also the hardening modulus at higher strains decreases with increasing

temperature. The failure strain is temperature dependent as well. The higher the temper-

ature the higher the failure strain. It is noteworthy that in case of PMMA at a temperature

of 20 °C brittle fracture in the elastic region occurs for the medium and high strain rate

while at the lower strain rate the material behaves ductile. In contrast, PC behaves ductile

at room temperature even for the highest strain rate considered (Senden et al., 2012).
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Figure 3.20.: Uniaxial tensile true stress-log. strain curves of PMMA at three different strain rates and
various temperatures
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Figure 3.21.: Uniaxial tensile true stress-log. strain curves of PC at three different strain rates and various
temperatures
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In Fig. 3.22, the comparison of the true stress-log. strain curves at high and low strain

rates for both materials is shown. Of course, the materials exhibit a strong strain rate

dependency which is much more pronounced for PMMA than for PC. The strain rate

affects not only the onset of yielding but also the hardening of the material at higher

strains which can be seen clearly at temperatures below the glass transition. At higher

strain rates adiabatic heating of the specimen occurs that reduces the hardening slope6

(Arruda et al., 1995). At lower strain rates less heating emerges and may be conducted

due to a longer time period. This more isothermal deformation process yields a more

pronounced hardening and in case of PC the stress-strain curves are even crossing each

other. Furthermore, it can be observed by means of the yield stress that at a temperature

of 100 °C PMMA at the low strain rate is in the rubbery state already while at the higher

strain rate it is still in the glassy state. This clearly indicates that the glass transition

temperature is rate dependent as well which is well-known from dynamical mechanical

thermal analyses (DMTA) experiments.

The strain rate dependency of the hardening behavior is most significant at temperatures

around the glass transition as shown in Fig. 3.23. It can be observed that the hardening

modulus decreases with increasing temperature and increasing strain rate.

A more detailed dependence of PMMA on the strain rate and temperature in the small

strain region is depicted in Fig. 3.247. The amount of softening (Fig. 3.24c) is defined as

the ratio σ0/σp of the yield peak stress σ0 to the stress minimum (plateau) σp before

hardening occurs. Young’s modulus shows the viscoelasticity of the material as well as the

typical drop in the region of the glass transition (cf. Fig. 3.3). The yield stress, taken here

as the minimum stress after softening, decreases approximately linearly with increasing

temperature till the glass transition is reached and the material enters the rubbery state.

In Fig. 3.24c, the strain rate and temperature dependency of the softening is clearly

observable. It tends to vanish for all strain rates when the temperature reaches the glass

transition temperature.

6 The effect of a reduced hardening modulus at higher strain rates complicates the usage of these data for
modeling and fitting unless one models this effect as well by computing the temperature increase by
virtue the energy balance and consider the plastic work generating heat (Arruda et al., 1995). For this
reason, even lower strain rates may be preferred, but this would increase the time for the experiments
enormously.

7 Note, the measurement of the DIC is rather inaccurate in the small strain response.
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Figure 3.22.: Tensile true stress - log. strain curves at higher and lower strain rate at different temperatures
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Figure 3.24.: Strain rate and temperature dependency of PMMA in small strain region
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Cyclic tests on PMMA

The cyclic uniaxial tensile tests on PMMA are conducted by applying the same histories

of overall specimen displacement for all temperatures and strain rates. This leads to

different strain values where the unloading takes place because the deformation is more

homogeneous at elevated temperatures and thus the local strain concentration is smaller.

The unloading displacement is driven to the point where the force is equal to zero.

Hence, no compressive stress is measured. In Tab. 3.2 the series of experimental tests is

summarized.

Table 3.2.: Temperatures and strain rates of the cyclic uniaxial tensile tests on PMMA
(• =̂ experiment conducted, ◦ =̂ no experimental data obtained)

temperature [°C] strain rate [s−1]

ε̇ = 0.001 ε̇ = 0.01 ε̇ = 0.1

60 • • •
80 • • •

100 • • •
105 ◦ • •
110 ◦ ◦ •

In Fig. 3.25 the stress-strain curves of the cyclic tensile tests on PMMA are shown for three

different strain rates and various temperatures. For increasing strain the material behaves

like in the monotonic tensile test but during unloading a clear hysteresis is observable.

The area of the hysteresis increases with increasing temperature and decreases with

increasing strain rate due to the viscous response of the material. Furthermore, the

hysteresis area increases at larger strains and the unloading-reloading path is much more

non-linear than for smaller strains. This effect is hardly reported in the literature and is

not understood yet.
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Figure 3.25.: Cyclic true stress-log. strain curves of PMMA at three different strain rates and various
temperatures



4. Modeling the mechanical
behavior of amorphous
thermoplastic polymers

In this chapter constitutive models for the class of amorphous thermoplastic polymers will be

established in order to capture the mechanical behavior characterized in the previous chapter.

In a first step, it will be shown that the classical model for glassy polymers by Boyce et al.

(1988) is insufficient for temperatures near or and above the glass transition. Based on these

results, the model will be enhanced in several regards to be valid at elevated temperatures as

well. This is done aiming at a minimum number of material parameters necessary to describe

the thermomechanical behavior sufficiently. The ability of two different models accounting

for the temperature-dependent molecular network, and thus the hardening behavior at large

strains, will be investigated. The models are fitted to the experimental data of PMMA given

in the previous chapter and are analyzed by subjecting them to a fictitious thermomechanical

loading history. Additionally, the models will be further modified by incorporating an initial

plastic stretch tensor representing a processing induced microstructure in terms of a "frozen-in"

pre-stretch of the molecular network.

4.1. Three dimensional finite strain
model for glassy polymers

The experimental findings of the previous chapter determine the features of the model

required to reproduce the mechanical behavior. In detail, the model shall display isotropic

elasticity, temperature and strain rate-dependent yield and hardening at large strains.

In the domain of large strains the small strain viscoelasticity is not important and can

be neglected. The intrinsic softening at the onset of yield depends on thermal loading

history and is not present at elevated temperatures anymore (cf. Ch. 3). Thus, it is not

that important in simulations where a thermomechanical load is applied. Due to this
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reason modeling of the intrinsic softening is not considered in this work1. The strain

rate dependence of the glass transition is not considered as well since it is expected to be

insignificant in the regarded strain rate region.

The well established and widely used constitutive model for glassy polymers proposed

by Boyce et al. (1988) is adopted to provide a basic model. Yet, it does not reproduce

all of the desired properties as shown in this section. The model accounts for two

resistances against plastic deformation (Sec. 3.1.2); the intermolecular resistance against

molecular chain segment rotations and the entropic intramolecular resistance against

molecular chain alignment. Originally, both resistances have been modeled by Haward

and Thackray (1968) in 1D. They utilized an Eyring dashpot to describe the initiation

of flow and a highly non-linear Langevin spring for the resistance against the stretching

of the chains derived from the non-Gaussian statistical mechanics of rubber elasticity

(Treloar, 1974). In order to improve the description of the rate dependency of yielding

the micromechanically motivated "double-kink model" has been developed by Argon

(1973). This double-kink model is used by Boyce et al. (1988) in combination with

the rubber elastic three-chain model (Wang and Guth, 1952) for the entropic network

deformation resistance in a 3D continuum mechanical framework. The overall model

includes the effects of rate-, temperature- and pressure-dependent plastic flow, softening

and a fairly realistic hardening behavior at large strains well below the glass transition

temperature. Arruda and Boyce (1993) developed the rubber elastic eight-chain model

and incorporated it in their model for glassy polymers to capture the hardening behavior

more realistically (Arruda et al., 1993).

The rheological model in Fig. 4.1 illustrates the components of the basic model of this

work. It consists of an elastic and a visco-plastic part. The elastic behavior of the material

is modeled by a non-linear (hyperelastic) spring. The visco-plastic part is given by a

dashpot representing the rate- and temperature-dependent intermolecular resistance

against plastic flow and a second, likewise non-linear spring for the resistance against

the molecular network deformation. As a result of the dashpot, the model is a non-

linear viscoelastic model but describes plastic deformations due to a strong non-linear

formulation. The decomposition in an elastic and a plastic part is only admissible for

temperatures far below the glass transition, since the permanent stretch and orientation of

the molecular network is reversible if the polymer is heated up above the glass transition.

However, the split into an elastic and an inelastic part remains valid for all temperatures.

1 Approaches to model the intrinsic softening can be found for example in Boyce et al. (1988), Hasan et al.
(1993) or Klompen et al. (2005).
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Figure 4.1.: Rheological model

The constitutive equations are formulated in a three dimensional non-linear continuum

mechanical framework obeying the standard requirements of requirements of frame-

indifference and thermodynamic consistency (Holzapfel, 2007). The kinematics and the

constitutive equations are presented in detail in the following sections.

4.1.1. Kinematics

As shown in Sec. 2.1, the kinematics is generally described by the deformation gradient F

(2.4). Now, it is necessary to distinguish between elastic and inelastic deformation. For this

purpose, it is assumed that the deformation gradient may be decomposed multiplicatively

as (Lee, 1969)

F = F eF p (4.1)

with the elastic F e and the inelastic F p parts. This implies an existence of a local stress free

intermediate configuration B̂ obtained after elastically unloading by F e−1. In the context

of polymers, F p physically represents the permanent molecular orientation and stretch in

the material. This is schematically shown in Fig. 4.2 where the state of the molecular

network in each configuration is sketched. While the network is initially isotropic in the

reference configuration, it is oriented and stretched in the loaded current configuration

as well as in the intermediate configuration. The latter two configurations differ only in

the amount of the elastic deformation.

With the above decomposition of the deformation gradient, the spatial velocity gradient

(2.41) is written as

l = Ḟ F−1 = Ḟ eF e−1 + F e Ḟ pF p−1F e−1 = Ḟ eF e−1 + F e l̂ pF e−1 = l e + l p (4.2)

where l̂ p = Ḟ pF p−1 is the inelastic velocity gradient in the intermediate configuration

and l p = F e l̂ pF e−1 that in the current configuration, respectively. Analogous to the
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Figure 4.2.: Split of the deformation gradient and the resulting intermediate configuration B̂

additive split of the velocity gradient (2.41) into a symmetric and skew-symmetric part,

the inelastic velocity gradient is split into

l̂ p = d̂ p + ŵ p (4.3)

with the symmetric inelastic rate of deformation tensor d̂ p and the skew-symmetric

inelastic spin tensor ŵ p, both belong to the intermediate configuration. While d̂ p has

to be constitutively prescribed by a flow rule, the inelastic spin can be either prescribed

or be computed. The latter can be done by imposing a restriction on the undetermined

elastic and inelastic rotation tensors in the polar decomposition (Boyce et al., 1989b)

F = F eF p = V eReRpU p = V eRU p . (4.4)

Assigning all rotations to the intermediate configuration with R = Rp and Re = 1 results

in a symmetric elastic deformation gradient

F e = ReU e = U e = V eRe = V e = F eT (4.5)

F p = RpU p = V pRp = RU p = V pR . (4.6)

In order to algebraically prescribe ŵ p, the result of (4.5) is utilized, i.e. an equation in

terms of F e must be found first (Boyce et al., 1989b). Using (2.38), (4.2) and (4.3) and

rearranging in terms of Ḟ e
and Ḟ eT

we get

Ḟ e = (d + w )F e − F e(d̂ p + ŵ p) , Ḟ eT = F eT (d − w )− (d̂ p − ŵ p)F eT . (4.7)
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With (4.5) it is also Ḟ e = Ḟ eT
, which gives

(d + w )F e − F e(d̂ p + ŵ p) = F e(d − w )− (d̂ p − ŵ p)F e (4.8)

and with resorting

(d̂ p + d)F e − F e(d̂ p + d) = F e(ŵ p − w ) + (ŵ p − w )F e . (4.9)

The solution of the above algebraic equation for ŵ p in terms of the other kinematic

quantities is given in Agah-Tehrani et al. (1987) as

ŵ p = w + tr[z] g − (g z + zg ) (4.10)

with g = (d̂ p + d)F e − F e(d̂ p + d) (4.11)

and z = (tr[F e]1− F e)−1 . (4.12)

As mentioned previously, the second possibility to determine the inelastic spin is to

prescribe it. The simplest choice is a non spinning intermediate configuration, i.e.

ŵ p = 0 . (4.13)

Both representations of the inelastic spin, (4.10) and (4.13), result in an equivalent

model response2 (Boyce et al., 1989b). However, the numerical treatment of the model

is different, since the update of the symmetric elastic deformation gradient yields only six

equations. However, the constraint Re = 1 then is not enforced exactly by the integration

algorithm so that further equations must be introduced to solve this problem accurately

(Holopainen and Wallin, 2013). To overcome this drawback and for a simpler set of

equations, the choice (4.13) is made for the inelastic spin in the following.

4.1.2. Constitutive equations

In this section the overall structure of the constitutive model consistent with the second

law of thermodynamics is worked out first. This implies for thermodynamic consistency

that the internal dissipation (2.92) must be non-negative at all times. For this purpose, the

Helmholtz free energy Ψ per unit mass, i.e. the stored energy in the material, is additively

split into an elastic Ψ e and an inelastic part Ψp (e.g. Kamlah (1994), Holzapfel (2007),

2 This was shown by comparing the stress-strain response of the model using the two different representa-
tions of the inelastic spin in a computational example (Boyce et al., 1989b).
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Neto et al. (2008)). Besides the total deformation F , it is assumed that the state of the

material and thus the elastic stored energy depends on the elastic right Ĉ e = F eT F e, the

inelastic left Cauchy-Green tensor b̂p = F pF pT in the intermediate configuration and the

temperature T . The free energy per unit mass with respect to tensors in the intermediate

configuration than writes

Ψ = Ψ†(Ĉ e, b̂p, T ) = Ψ e(Ĉ e, T ) +Ψp(b̂p, T ) (4.14)

and comprises the stored elastic energy Ψ e and the inelastic energy Ψp due to stretching

the molecular chains. Performing the time derivative of the free energy

Ψ̇ =
∂Ψ e

∂ Ĉ e
: ˙̂C e +

∂Ψ e

∂ T
Ṫ +
∂Ψp

∂ b̂p
: ˙̂bp +

∂Ψp

∂ T
Ṫ (4.15)

by using the relations ˙̂C e = 2F eT d eF e and ˙̂bp = l̂ p b̂p + b̂p l̂ pT and additionally exploiting

the tensor algebra rules for symmetric tensors 3 we get

Ψ̇ = 2F e ∂Ψ
e

∂ Ĉ e
F eT : d e + 2b̂p ∂Ψ

p

∂ b̂p
: d̂ p + (

∂Ψ e

∂ T
+
∂Ψ p

∂ T
)Ṫ . (4.16)

Inserting this result in (2.93) and making use of d = d e + d p with d p = s ym[F e l̂ pF e−1]
leads to

(τ− 2ρ0F e ∂Ψ
e

∂ Ĉ e
F eT ) : d + (2ρ0F eT F e ∂Ψ

e

∂ Ĉ e
F eT F e−T − 2ρ0 b̂p ∂Ψ

p

∂ b̂p
) : d̂ p

−(∂Ψ e

∂ T
+
∂Ψp

∂ T
+ s)ρ0 Ṫ ≥ 0 . (4.17)

The above equation must be true for all feasible thermomechanical processes, for example

a pure elastic process (d̂ p = 0) at which the internal dissipation vanishes identically. This

implies potential relations for the entropy s = −(∂Ψ e

∂ T
+
∂Ψp

∂ T
) and the Kirchhoff stress

(Coleman and Gurtin, 1967)

τ = 2ρ0F e ∂Ψ
e

∂ Ĉ e
F eT = F eŜF eT (4.18)

3 The free energy parts Ψ e and Ψp are assumed to be isotropic functions of Ĉ e and b̂p, respectively. A

consequence of this assumption is the coaxiality of
∂Ψ e

∂ Ĉ e
and Ĉ e and of

∂Ψp

∂ b̂p
and b̂p. Performing the

tensor products in (4.16) and (4.17) results in symmetric tensors. In this special case, the Mandel stress
tensor is symmetric as well which must not be true in general.
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with the second Piola-Kirchhoff stress tensor in the intermediate configuration Ŝ. By

defining the Mandel stress tensor

Σ = Ĉ eŜ = F eTτF e−T (4.19)

and the backstress tensor

τ̂b = 2ρ0 b̂p ∂Ψ
p

∂ b̂p
(4.20)

we get the driving stress tensor

Σ∗ = Σ− τ̂b (4.21)

With these quantities, the remaining inequality (4.17), the internal dissipation, may be

rewritten in a reduced form as

Dint = Σ
∗ : d̂ p ≥ 0 (4.22)

which provides a restriction for the constitutive equations.

In the following the elastic and inelastic parts of the free energy as well as a flow rule for

the inelastic rate of deformation tensor consistent with (4.22) is specified to model both,

the intermolecular and the network resistance.

Intermolecular resistance

The origin of the elastic stiffness and the yield strength of the polymer is caused by the

intermolecular resistance as discussed in Sec. 3.1.2. The elasticity is modeled with a

compressible Neo-Hooke model with a strain energy function W e = ρ0Ψ
e that depends on

the invariants of the elastic right Cauchy-Green tensor in the intermediate configuration

W e =
μ

2

�
IĈ e − 3

�− μ
2

ln
�
IIIĈ e

�
+
λ

2

��
IIIĈ e − 1

�2
(4.23)

where μ and λ are the Lamé parameters4. While Boyce et al. (1988) focused only on

glassy polymers and thus considered small elastic strains, in this work a more general

approach is followed to capture large elastic strains at temperatures beyond the glass

transition temperature.

4 The Lamé parameters are given in terms of Young’s modulus E and Poisson’s ratio ν as λ =
ν E

(1+ ν)(1− 2ν)

and μ=
E

2(1+ ν)
.
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According to (4.18) the second Piola-Kirchhoff stress tensor with respect to the interme-

diate configuration is given by

Ŝ = 2
∂W e

∂ Ĉ e
= μ(1− Ĉ e− T ) +λ(J e − 1) J eĈ e− T (4.24)

so that the Mandel stress tensor - likewise in the intermediate configuration - can be

written as

Σ = Ĉ eŜ = μ(Ĉ e − 1) +λ(J e − 1) J e1 (4.25)

and the Kirchhoff stress tensor in the current configuration as

τ = μ(be − 1) +λ(J e − 1) J e1 . (4.26)

Inelastic deformations are described through a flow rule for the inelastic rate of deforma-

tion tensor d̂ p with the deviatoric driving stress Σ∗′ and the inelastic shear strain rate γ̇p

as

d̂ p = γ̇p Σ
∗′

‖Σ∗′‖ (4.27)

where ‖Σ∗′‖ = (tr[Σ∗′Σ∗′])1/2. Due to the deviatoric stress, this type of flow rule provides

the inelastic incompressibility as experimentally observed for shear yielding in amorphous

polymers. Inserting that flow rule in the dissipation inequality (4.22)

Dint = Σ
∗ : γ̇p Σ

∗′
‖Σ∗′‖ = γ̇

p‖Σ∗′‖ ≥ 0 (4.28)

yields the restriction for the inelastic shear strain rate γ̇p ≥ 0 for thermodynamic consis-

tency. Note that this model does not contain a flow function as conventionally used for

e.g. metal plasticity.

As discussed in Sec. 3.1.2 the viscoinelastic flow of amorphous glassy polymers is a

thermally activated process. This is typically described by an Arrhenius-type equation for

γ̇p as

γ̇p = γ̇p
0 exp[

−ΔG
k T

] (4.29)

where γ̇p
0 is a reference inelastic strain rate, ΔG the stress-dependent activation energy, k

the Boltzmann constant 5 and T the absolute temperature (Haward and Young, 1997).

According to the "double-kink model" by Argon (1973) the activation energy is given by

ΔG =
3πμω2a3

16(1− ν)
�

1−
�‖Σ∗′‖

s0

�5/6�
(4.30)

5 The value of the Boltzmann constant is k = 1.380648 · 10−23J/K
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and describes the required energy for chain segment rotations against the elastic stiffness

of surrounding chains. In (4.30) ω is the angle of rotation, a the mean radius of a

molecular chain and s0 = 0.077μ/(1− ν) with the shear modulus μ and Poisson’s ratio

ν. The pre-factor is summarized to be one material parameter as A= 39πω2a3/16k. In

this work the exponent of 5/6 in (4.30) is neglected in view of its small influence and

the resulting simplification of the equation. Furthermore, the so-called "athermal shear

strength" s0 is taken to be an independent material constant6 and not to be dependent on

the shear modulus μ as originally suggested by Argon (1973).

Due to the exponential function in (4.29), the condition of γ̇p(Σ = 0) = 0 is not fulfilled

exactly when (4.30) in combination with (4.29) is used with no further modifications.

Thus, the function of (4.29) with (4.30) is subtracted for a zero stress state (‖Σ∗′‖= 0).

This leads to the following expression for the inelastic shear strain rate

γ̇p = γ̇p
0

�
exp

	
A
T
(‖Σ∗′‖ − s)



− exp

	
− A

T
s

�

(4.31)

which fulfills the restriction of (4.28) if γ̇p
0 ≥ 0 holds. In the above equation the pressure

dependence of the yield stress typically observed in polymers, e.g. Kinloch and Young

(1983), is incorporated by s = s0 +αp where α is a material parameter controlling the

tensile-compression asymmetry and p = −1
3

tr[Σ] is the hydrostatic pressure.

Molecular network resistance

The inelastic part of the free energy Ψp with (4.20) determines the backstress and thus the

kinematic hardening. As described in detail in Ch. 3 the finite strain post-yield behavior

of thermoplastic polymers suggests to model the resistance against the orientation and

stretch of molecular chains by the statistical network models of entropic rubber elasticity

as originally proposed by Haward and Thackray (1968). Phenomena such as a pronounced

Bauschinger effect or the recovery of a plastically deformed specimen to its original shape

when heated up above the glass transition temperature gives rise to the assumption

of aligned polymer chains in principal deformation directions in an entangled chain

network.

6 The dependence of s0 on μ would lead to a complicated relation between the temperature-dependent
Young’s modulus, respectively, the shear modulus and the inelastic shear strain rate, especially when the
material enters the rubbery state. Thus, the athermal shear strength is assumed to be constant for all
temperatures.
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In this work the affine stretch7, non-Gaussian statistical mechanics eight-chain network

model by Arruda and Boyce (1993) is used since it yields good approximations of the

strain hardening in uniaxial as well as plane strain tension states (Wu and van der Giessen,

1993). The idea behind this model is to consider eight chains of equal length in a unit

cube along the diagonal directions representing an initially isotropic molecular network

(Fig. 4.4). To compute the configurational entropy of the Langevin statistics and the

resulting strain energy proportional to the change of entropy (Kuhn and Grün, 1942) it is

assumed that these eight chains stretch affinely in the principal directions. The strain

energy function W p = ρ0Ψ
p of the eight-chain model in terms of some mean chain stretch

λC (defined later on) reads

W p = CRλL

�
βλC −λL ln

	
sinhβ
β


�
(4.32)

with the rubber modulus CR, the inverse of the Langevin function β = L−1[λC L] and

λC L =
λC

λL
the ratio of the mean chain stretch and the limit stretch λL of a chain. The

inverse Langevin function provides a highly non-linear force response of a chain at

stretching. In Fig. 4.3 the inverse Langevin function β is plotted against the mean chain

stretch. For increasing chain stretches β increases rapidly and tends to infinity when λC

approaches the limit stretch ( lim
λC L→1

β =∞). This corresponds to the finite extensibility

of a chain. Since the inverse Langevin function cannot be represented in a closed-form it

is appropriate to use the well performing Padé approximation (Cohen, 1991)

β = λC L

3−λ2
C L

1−λ2
C L

. (4.33)

7 Affine stretch implies the direct connection between applied macroscopic deformation and the resulting
molecular alignment in direction of the deformation.
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Figure 4.3.: Inverse Langevin function against mean chain stretch

In the eight-chain model, the mean chain stretch is defined by the ratio of the lengths of

the end-to-end vectors R =
�

3
2

a of an undeformed chain and r =
a
2
(λp2

1 +λ
p2
2 +λ

p2
3 )

1
2 of

a deformed chain in the unit cell of Fig. 4.4 of undeformed size a and deformed size λp
i a,

respectively. Thus, the mean chain stretch is given by

λc =
r
R
=

1�
3
(λp2

1 +λ
p2
2 +λ

p2
3 )

1
2 =

�
1
3

tr[b̂p]
� 1

2

. (4.34)

Figure 4.4.: Undeformed and deformed network in unit cube of eight-chain model
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The limit stretch λL is derived from the freely jointed chain (FJC) model by defining a

meaningful measure for the length of a chain (Ward and Sweeney, 2005). In modeling

the molecular network of glassy polymers a "chain" is defined as the strand between two

entanglements. It consists of an average number N of monomers, defined by rigid links of

length l, so that the end-to-end vector of the chain is RFJC =
N∑

i=1
l i where l i is the vector

of each rigid link (Fig. 4.5).

Figure 4.5.: Freely jointed chain

Since 〈RFJC〉=
N∑

i=1
〈l i〉= 0 holds for the mean end-to-end vector due to free fluctuation

it is not suited as a measure for the mean chain length8. The mean squared end-to-end

length 〈R2
FJC〉= 〈RFJC ·RFJC〉 is used instead which yields

〈RFJC
2〉=

N∑
i=1

N∑
j=1

〈l i · l j〉=
N∑

i=1

〈l i · l i〉+ 2
N∑

i=1

N∑
j>i

〈l i · l j〉=
N∑

i=1

l2 = Nl2 . (4.35)

In the above equation, the relations 〈l i · l i〉 = l2 and 〈l i · l j〉 = l2〈cosαi j〉 = 0 are used.

The latter one holds because for any possible angle in the range of −π ≤ αi j ≤ π with

equal probability we have 〈cosαi j〉= 0. Hence, the mean end-to-end length of a freely

jointed chain results in

RFJC =
�〈R2

FJC〉=
�

Nl . (4.36)

8 〈...〉 denotes the expectation value.
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The length of a completely extended chain (strand between two entanglements) is
rFJC = Nl. The ratio of the lengths of the fully stretched and unstretched chain hence

provides the limit stretch of a chain segment

λL =
rFJC

RFJC
=
�

N . (4.37)

In the theory of rubber elasticity, the modulus in (4.32) is determined by CR = nkT

where n is the number of chains (i.e. strands between entanglements) per volume,

k the Boltzmann constant and T the absolute temperature. Since the thus predicted

increasing stiffness with increasing temperature is in contrast to experimental findings

for the hardening behavior of amorphous thermoplastic polymers, CR is taken here to be

a temperature-independent material parameter. With the above definitions at hand, the

deviatoric backstress tensor for the eight-chain model reads

τ̂b =
CRβ

3λC L
b̂p′ . (4.38)

in terms of the deviatoric part of the inelastic left Cauchy-Green tensor. Due to the

behavior of the inverse Langevin function the backstress increases dramatically if λC

approaches λL. Otherwise, for a mean chain stretch much smaller than the limit stretch

the eight-chain model approximates a neo-Hookean material model.

Parameter fit

The material parameters are fitted to the experimental results of Ch. 3 for PMMA by

using the optimization tool LS-OPT (LSTC, 2013a). For this purpose, the curve mapping

procedure (LSTC, 2013b) is used which is basically an enhanced version of the commonly

used mean squared error formulation. It leads to a much more stable computation of

the error between the target (experimental) and the simulated curve especially when

the target curve consists of steep, hysteretic or redundant parts (LSTC, 2013b). The

main idea of this procedure is to map the points of the computed curve onto the target

curve and then compute the resulting area between the two curves. This area serves as

the mismatch, respectively, the error of the fitting which is to be minimized during the

iterative optimization process. To get a much more precise error computation and thus a

better fit, the mapping is done over a number of segmented parts of the two curves. For a

much more detailed description it is referred to the manual of LS-OPT (LSTC, 2013b). The

material parameter values resulting from the identification process are listed in Tab. 4.1.

The Young’s modulus as well as the strain hardening parameters of the eight-chain model
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CR and N are identified at room temperature (RT). The corresponding true stress-log.

strain curves are presented in Fig. 4.6 in comparison with the experimental data. The

model performs very well below the glass transition temperature; the onset of yielding

and the hardening behavior are in good agreement with the experiments. However, for

temperatures of 80 °C and above the yield stress and the hardening behavior are highly

overestimated by the model.

Table 4.1.: Material parameter values for PMMA in the basic model for PMMA

intermolecular resistance molecular network

E [MPa] 2500 N(T = 293.15 K) = NRT [−] 2
ν [−] 0.4 CR(T = 293.15 K) = CR

RT [MPa] 5
γ̇

p
0 [s

−1] 1.707 · 1025

A [MPa K−1] 131
s0 [MPa] 180
α [−] 0.2

4.2. Model extension beyond the glass
transition temperature

In order to enhance the basic model to be able to capture the strong temperature de-

pendency of amorphous polymers the inter- and intramolecular resistances against de-

formation are modified in the following. In case of the intermolecular resistance, the

model is modified in terms of Young’s modulus and the yield strength as discussed below,

while two different extensions of the intramolecular resistance are separately analyzed in

sections Sec. 4.2.1 and Sec. 4.2.2.

Firstly, Young’s modulus is taken to be temperature-dependent9 according to the experi-

mental results in Fig. 3.24a. In the glassy state the modulus decreases linearly until the

glass transition region begins. The onset of this region is indicated by Tr = Tg −ΔTg/2

9 Here, Young’s modulus is temperature-dependent only. Poisson’s ratio is taken to be constant for simplicity.
In contrast to that, Dupaix and Boyce (2007) modeled Poisson’s ratio to be temperature-dependent; the
polymer is compressible (ν = 0.33) in the glassy state below the glass transition temperature Tg and
incompressible (ν= 0.5) in the rubbery state above Tg.
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Figure 4.6.: Comparison of experimental data for PMMA and model response
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where ΔTg gives the size of the glass transition region in which the drop of the stiffness

takes place. This drop is determined by a hyperbolic tangent function (cf. Fig. 4.7, Dupaix

and Boyce (2007)) at temperatures above Tr . Accordingly, Young’s modulus is given by

E(T ) =

⎧⎨
⎩

Eg1 − Eg2T , if T < Tr

1
2
(Egr + Er1)− 1

2
(Egr − Er1) tanh

	
5
ΔTg

(T − Tg)


− Er2(T − Tg) , if T ≥ Tr

(4.39)

with the material parameters Eg1, Eg2, Er1, Er2 and Egr = Eg1− Eg2Tr . Er2 represents the

remaining stiffness per temperature after the drop which further decreases linearly for

increasing temperatures10. This temperature-dependent Young’s modulus is incorporated

into the model through the Lamé parameters appearing in the strain energy function

(4.23).
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Figure 4.7.: Modelling of temperature-dependent Young’s modulus

Secondly, the resistance against the onset of yield, namely the inelastic shear strain rate

is modified as well. Although the temperature dependency is already included by the

Arrhenius-type equation (4.29) this is not sufficient to capture the variation of the yield

strength at temperatures around Tg (Fig. 4.6). For this reason (4.31) is modified to

γ̇p = γ̇p
0

�
exp

�
Ã(T ) (‖Σ∗′‖ − s)

�− exp
�−Ã(T ) s

��
. (4.40)

10 The constraint of E(T )> 0 must be enforced by the material parameters and the regarded temperature
range, respectively.
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The temperature-dependent function Ã(T ) is introduced in a phenomenological manner

and reads as

Ã(T ) = A0 exp(−AT T ) (4.41)

with the material parameters A0 and AT . This additional function may be interpreted to

capture a second relaxation process (α relaxation at Tg) to account for the transition to

the rubbery state of the material without introducing explicit constitutive equations for

this additional relaxation. With more complex functions for the inelastic shear rate this

was also done by Dooling et al. (2002b), Richeton et al. (2007b), Srivastava et al. (2010),

for example.

The above introduced material parameters for the intermolecular resistance are deter-

mined from a parameter fit (see Sec. 4.1.2) in the region of small strains (eH ≤ 0.05).

These parameter values are given in Tab. 4.2 and are used in the following.

Table 4.2.: Material parameter values of intermolecular resistance modification for PMMA

Young’s modulus shear yielding

Tg [K] 378.15 γ̇
p
0[s

−1] 1 · 1026

ΔTg [K] 15 s0 [MPa] 180
Eg1 [MPa] 9096 A0 [MPa−1] 1.213

Eg2 [MPa −1] 22.5 AT [K−1] 0.00323
Er1 [MPa] 100 α [−] 0.2

Er2 [MPa K−1] 4.15

To incorporate a temperature dependence of the molecular network at large strains, two

different molecular network models are presented in the following two sections.

4.2.1. Entanglement dissociation model of Raha and Bowden

In this section the resistance of the molecular network against deformation, hence the

eight-chain model for the backstress, is taken to be temperature-dependent by incorporat-

ing the "entanglement dissociation model" of Raha and Bowden (1972). In their work

they studied the evolution of birefringence in PMMA samples under inelastic deformation.

Based on the results they proposed a model for a temperature-dependent variation of the

chain or entanglement density, respectively, where a chain is defined as a segment between

two entanglements. The idea of their model is that the physically entangled molecular
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network evolves with increasing temperature such that secondary valence bonds (weak

entanglements) dissociate with increasing temperature. The proposed relation for the

decreasing chain density with increasing temperature was slightly modified by Arruda

et al. (1995) and reads

n(T ) = B − D exp
	
− Ea

R T



(4.42)

where B describes the strong, temperature-independent network consisting of permanent

entanglements. The second term in (4.42) represents with D the weak, temperature-

dependent portion of the network which dissociates with increasing temperature. R is

the universal gas constant11 and Ea is the thermal dissociation energy.

Arruda et al. (1995) incorporated the relation for the chain density (4.42) into the

eight-chain model to capture the temperature-dependent strain hardening.With a de-

creasing number of entanglements in the network, the number of rigid links N between

entanglements must increase due to the conservation of mass. Thus, the relation

N(T ) n(T ) = const. (4.43)

must hold. The consequence of (4.43) is a temperature dependence of the number of rigid

links N(T ) and according to that the relation N(T )n(T ) = NRT nRT must hold where the

index RT indicates the "room temperature". Hence, the temperature-dependent average

number of rigid links between entanglements is given by

N(T ) = NRT
nRT

n(T )
. (4.44)

Thus, the limit stretch λL(T ) =


N(T ) of a chain between entanglements increases with

increasing temperature. This temperature-dependent limit stretch is directly incorporated

in the eight-chain model (4.38) so that the strain hardening decreases with increasing

temperature. By incorporating the temperature-dependent chain density n(T ) as defined

in (4.42) with fitted values for the material parameters B, D and Ea at elevated temper-

atures into the rubbery modulus CR = n(T )kT , it yields CR
RT �= nRT kTRT , where CR

RT is

gained from the fitting procedure of Sec. 4.1.2. Therefore, in this work a scaled rubbery

modulus CR∗ is introduced which is gained as

CR∗(T ) = CR(T )
CR

RT

nRT kTRT
= n(T )kT

CR
RT

nRT kTRT
= CR

RT
n(T )T
nRT TRT

(4.45)

so that CR∗(T = RT ) = CR
RT holds.

11 The value of the universal gas constant is R= 0.001695 kcal/mol K
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Parameter fit

A material parameter fit (see Sec. 4.1.2) for PMMA yields the values given in Tab. 4.3. The

uniaxial tensile true stress-log. strain response of the model compared to the experimental

data is shown in Fig. 4.8. A very good agreement with the experiments is achieved for

all temperatures and strain rates. However, since the model bases on the thermoelastic

relation (4.42) it does not capture the irreversibility of entanglement dissociation.

Table 4.3.: Material parameter values for PMMA in entanglement dissociation model

entanglement dissociation model

B [mm−3] 2.9547 · 1018

D [mm−3] 1.20087 · 1022

Ea [kcal mol−1] 6.543
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Figure 4.8.: Comparison of experimental data for PMMA and response of entanglement dissociation model
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4.2.2. Molecular relaxation by reptation

In this section the basic model of Sec. 4.1.2 is enhanced to overcome the drawbacks

of the model discussed in the previous section. For this purpose, the part of the model

representing the molecular network is extended to be temperature- and strain rate-

dependent. Again, a rheological model serves as an illustration of the constitutive model

(Fig. 4.9). In contrast to Fig. 4.1 an additional dashpot is incorporated into the molecular

network part (N) in order to represent the temperature- and strain rate-dependent

relaxation mechanism.

non - linear
viscous flow

network 
resistance

hyper-
elasticity

reptation

intermolecular
resistance

molecular 
network (N)

Figure 4.9.: Rheological model including molecular relaxation by reptation

The mechanism of polymer chain relaxation due to reptation is responsible for the time

and temperature dependence of hardening. Reptation denotes the sliding of chains in an

entangled network under load at elevated temperatures through a tube-like path which

is formed by entanglements of surrounding chains (de Gennes (1971), de Gennes (1979),

Doi and Edwards (1978)). This mechanism is the background of previous works modeling

the strain rate-dependent behavior of elastomers (Bergström and Boyce, 1998) or the

temperature and strain rate dependence of the strain hardening at elevated temperatures

of thermoplastic polymers, e.g. Dooling et al. (2002b), Dupaix and Boyce (2007), Boyce

et al. (2000).

Kinematics

Based on the kinematics of the basic model (Sec. 4.1.1), the kinematics of the present

model is extended to account for the additional relaxation mechanism. Therefore, the
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formerly inelastic part of the deformation gradient F p is split in two parts representing

the network deformation and relaxation as

F p = F N = F e
N F p

N (4.46)

with the elastic network part F e
N which describes the alignment of the molecular chains.

The inelastic network part F p
N represents the molecular reptation12. This is equivalent to

introducing a second intermediate configuration B̃. To clarify this concept of two virtual

intermediate configurations the situation is sketched in Fig. 4.10.

Figure 4.10.: Additional split of the inelastic deformation gradient resulting in a second intermediate
configuration B̃

With these definitions at hand, the spatial velocity gradient may be written as

l = Ḟ F−1 = Ḟ eF e−1 + F e Ḟ e
N F e−1

N F e−1 + F eF e
N Ḟ p

N F p−1
N F e−1

N F e−1

= l e + Ḟ e l̂ e
N F e−1 + F eF e

N l̃ p
N F e−1

N F e−1 (4.47)

= l e + l e
N + F e l̂ p

N F e−1 = l e + l e
N + l p

N = l e + l p (4.48)

where l̃ p
N is the inelastic network velocity gradient in the intermediate configuration B̃

and l̂ e
N denotes the elastic network velocity gradient in the intermediate configuration B̂.

Utilizing the same arguments as in Sec. 4.1.1 the inelastic spin tensors ŵ p and w̃ p
N are

12 Quantities describing the molecular network are indicated by the subscript N.
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set to zero while the inelastic rate of deformation tensors d̂ p and d̃ p
N are constitutively

prescribed. This will be done in the next section by introducing additional constitutive

equations for the relaxation of molecular chains.

Constitutive equations

As in Sec. 4.1.2, a structure for the constitutive equations in line with the second law

of thermodynamics is given first. The free energy density is additively split into an

elastic intermolecular resistance part Ψ e and a network resistance part Ψ e
N . The stored

elastic energy than depends on the elastic right Cauchy-Green tensor Ĉ e = F eT F e, the

left Cauchy-Green tensor b̂e
N = F e

N F eT
N in the intermediate configuration B̂ related to

the elastic network deformation and the temperature T. Hence, the free energy density

reads

Ψ = Ψ†(Ĉ e, b̂e
N , T ) = Ψ e(Ĉ e, T ) +Ψ e

N (b̂
e
N , T ) (4.49)

and its time derivative is given by

Ψ̇ =
∂Ψ e

∂ Ĉ e
: ˙̂C e +

∂Ψ e

∂ T
Ṫ +
∂Ψ e

N

∂ b̂e
N

: ˙̂be
N +
∂Ψ e

N

∂ Ṫ
T . (4.50)

Applying kinematic relations as in Sec. 4.1.2 and using additionally ˙̂be
N = l̂ e

N b̂e
N + b̂e

N l̂ eT
N ,

d̂ p = d̂ e
N + d̂ p

N with d̂ p
N = s ym[F e

N l̃ p
N F e−1

N ] and inserting these into (2.93) one gets

(τ− 2ρ0F e ∂Ψ
e

∂ Ĉ e
F eT ) : d + (2ρ0F eT F e ∂Ψ

e

∂ Ĉ e
F eT F e−T − 2ρ0 b̂e

N

∂Ψ e
N

∂ b̂e
N

) : d̂ p

+2ρ0F eT
N b̂e

N

∂Ψ e
N

∂ b̂e
N

F e−T
N : d̃ p

N − (∂Ψ
e

∂ T
+
∂Ψ e

N

∂ T
+ s)ρ0 Ṫ ≥ 0 .

(4.51)

Again, this yields the potential relation for the entropy s = −(∂Ψ e

∂ T
+
∂Ψ e

N

∂ T
) and the

Kirchhoff stress tensor τ as defined before in (4.18). The driving stress tensor Σ∗ defined

in (4.21) is given through the Mandel stress tensor Σ (4.19) and the backstress tensor in

the intermediate configuration B̂

τ̂b = 2ρ0 b̂e
N

∂Ψ e
N

∂ b̂e
N

. (4.52)

The backstress tensor τ̃b = F eT
N τ̂

bF e−T
N with regards to the intermediate configuration B̃ is

obtained by a pull-back operation and is work conjugated to the inelastic network rate of
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deformation tensor d̃ p
N . Hence, the remaining inequality (4.51) and internal dissipation

reads

Dint = Σ
∗ : d̂ p + τ̃b : d̃ p

N ≥ 0 . (4.53)

The inelastic rate of deformation tensor d̂ p is defined through the flow rule (4.27) with

the inelastic shear strain rate γ̇p defined in (4.40). As shown before, this fulfills the

restriction of positive internal dissipation, cf. (4.28). So, the second term in (4.53) must

be equal or greater than zero as well. For this reason, an evolution equation similar to

the flow rule (4.27) is chosen for the inelastic network rate of deformation

d̃ p
N = γ̇

p
N
τ̃b′

‖τ̃b‖ (4.54)

which depends on the rate of molecular relaxation γ̇p
N and the deviatoric backstress τ̃b. A

result of inserting this equation in the internal dissipation (4.53) is that the requirement

γ̇
p
N ≥ 0 must hold. Same strain energy functions W e = ρ0Ψ

e (see (4.23)) and W e
N = ρ0Ψ

e
N

(see (4.32)) are applied as in Sec. 4.1.2 so that the Kirchhoff stress is determined by the

hyperelastic neo-Hooke model and the deviatoric backstress by the eight-chain model

which depends on the deviatoric elastic network left Cauchy-Green tensor

τ̂b =
CRβ

3λC L
b̂e′

N (4.55)

with the ratio λC L =
λC

λL
of the the mean chain stretch

λC =
�

1
3

tr[b̂e
N]
� 1

2

(4.56)

and the limit stretch λL.

The only remaining undetermined quantity is the rate of relaxation γ̇p
N for which a

phenomenological relation is suggested. It is therefore obvious to choose a function

which depends on the temperature. It is also necessary to consider the network stress

(backstress) to include the rate dependency and furthermore the network deformation

state must be taken into account to control the cessation of the relaxation process at large

strains. In total, the rate of relaxation is taken to consist of three functions

γ̇
p
N = fT (T ) fτ̃b(τ̃b) fλN

(λN ) (4.57)
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where λN =
�

1
3tr[b̂p]

� 1
2

is the total network stretch. To capture the temperature depen-

dency of the relaxation an Arrhenius type exponential relation is chosen as proposed by

Bergström and Boyce (1998)

fT (T ) = γ̇
p
N0 exp

	
− AN T

T − 273.15



(4.58)

with two material parameters γ̇p
N0 and AN T . The rate dependency is included via the

power-law

fτ̃b(τ̃b) =

�‖τ̃b‖
τ̃b

0

�κ
(4.59)

with the material parameters κ and τ̃b
0. The cessation of the relaxation process is described

by the function

fλN
(λN ) =

⎧⎪⎨
⎪⎩

�
λN −λL

N

1−λL
N

�ξ
, if λN ≤ λL

N

0 , if λN > λ
L
N

(4.60)

which is similar to those proposed by Adams et al. (2000) or Dupaix and Boyce (2007).

The parameter λL
N represents the relaxation limit stretch of the network at which the

relaxation is completely finished. This type of function requires the usage of the total

network stretch λN as the controlling measure for the cessation of relaxation. If the chain

stretch is chosen instead only, the stress relaxes to zero at high temperatures because no

chain stretch is present at the beginning and could not be developed at further deformation

due to the continuing relaxation. While the dependency of (4.60) gives good results at

very high temperatures, the hardening at lower temperatures is overestimated. For this

reason, the relaxation limit stretch λL
N is taken to be temperature-dependent as well with

the exponential function

λL
N (T ) = 1+λL

N0 exp[λL
N T T] (4.61)

where λL
N0 and λL

N T are material parameters. These parameters are chosen in a manner

so that for the function λL
N (T ) the relation

λL
N (T ) =

⎧⎨
⎩
≈ 1 if T < Tg

> 1 if T ≥ Tg

(4.62)

holds and the influence below Tg vanishes.
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All together, the rate of relaxation is given by

γ̇
p
N =

⎧⎪⎨
⎪⎩
γ̇

p
N0 exp

	
−AN T

T


�
λN −λL

N

1−λL
N

�ξ�‖τ̃b‖
τ̃b

0

�κ
, if λN ≤ λL

N

0 , if λN > λ
L
N

(4.63)

and is characterized by seven material parameters. The form of this function ensures that

γ̇
p
N ≥ 0 holds for thermodynamic consistency if γ̇p

N0 is positive.

Parameter fit

The parameter fitting is done analogously to Sec. 4.1.2. As before the parameters for the

intermolecular resistance determined from the small strain regime are used (Tab. 4.2).

The additional parameters for PMMA introduced here are listed in Tab. 4.4. Note, that

no modifications in the eight-chain model are done and the parameters N and CR are

used as obtained at room temperature. Dupaix and Boyce (2007) in contrast, fitted N

and CR at temperatures close to Tg to capture the reduced hardening. A complete list of

all used parameters is given in the App. A.1.

The response of the in the present section extended model is shown in terms of true

stress-log. strain curves in Fig. 4.11 and is in good agreement with the experimental data.

At moderate temperatures and higher strain rates the model somewhat overestimates the

strain hardening of the experiment. This behavior can be explained by adiabatic heating

occurring in tests at higher strain rates which is not considered in the model.

Table 4.4.: Material parameter values for PMMA in molecular relaxation model

molecular network reptation model

γ̇
p
N0 [s

−1] 3.3 · 1023

AN T [K] 20541
κ [−] 6.756
λL

N0 [−] 3.9 · 10−11

λL
N T [K

−1] 0.06306
ξ [−] 55
τ̃b

0 [MPa] 1
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Figure 4.11.: Comparison of experimental data for PMMA and response of molecular relaxation model
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4.2.3. Comparison of models for thermomechanical
loading history

In order to analyze the response of the "basic" model (Sec. 4.1.2), the "entanglement

dissociation" model (Sec. 4.2.1) and the "molecular relaxation by reptation" model (Sec.

4.2.2) under thermomechanical loading, the different material models are subjected to a

fictitious deformation-temperature cycle. The applied thermomechanical loading history

is similar to a forming process with an additional subsequent reheating. In the first step,

the material is stretched uniformly up to eH
11 = 0.7 at a constant temperature of 110 °C

during a time interval of 1000 s. In the second step, the deformation is held constant

at the same constant temperature and time period. In the third step the temperature

is decreased linearly to 20 °C over a time period of 2000 s at fixed deformation. In the

fourth step a stress free state is attained; again at a constant temperature of 20 °C and a

duration of 1000 s. In the fifth step the material is reheated to 110 °C in 1000 s and the

temperature is held constant for 500 s. The deformation is still unconstrained in this step.

The "process" steps of the thermomechanical loading are summarized in Tab. 4.5. The

three model responses are shown in Fig. 4.12. For each case the Cauchy stress, backstress

(both scaled by 3 s0), log. strain and temperature (scaled by 110 °C) are plotted.

Table 4.5.: Steps of thermomechanical loading

# process step duration [s] temperature [◦C]
1. uniform deformation at 1000 110

constant temperature
2. constrained deformation at 1000 110

constant temperature
3. constrained deformation at 2000 110− 20

decreasing temperature
4. release to zero stress 1000 20
5. reheating at 1500 20− 110

unconstrained deformation

In Fig. 4.12a, the response of the basic model is presented. Due to the missing temperature

dependence of the strain hardening the stress response after the first step is far too high,

cf. Fig. 4.6. In step 2 and 3, the stress remains constant since thermoelasticity is not

considered in the model. In step 4 the material is released so that the Cauchy stress
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vanishes; the backstress is still present at the end of this step. At increasing temperature

in the fifth step the relaxing backstress causes a re-deformation to zero strain (and zero

backstress) which starts at approximately 50 °C.

The response of the "entanglement dissociation" model is shown in Fig. 4.12b. The

reached Cauchy stress and backstress are much lower than in the basic model due to the

temperature dependence of Young’s modulus and the hardening behavior and due to the

modified resistance against the onset of yield. In the second step no change of the load

parameters occurred so that no stress change is present. In the third step the Cauchy

stress as well as the backstress increase at constrained deformation. With decreasing

temperature the Cauchy stress increases due to the increasing backstress and Young’s

modulus. The rise of the backstress is caused by the "stiffening spring" of the thermoelastic

(enhanced) eight-chain model with the relation for the increasing chain density n(T )
(4.42) at decreasing temperature. In terms of the model, this is equivalent to formations

of new entanglements. But in the constraint deformation state, the molecular network

is still stretched and the formation of new entanglements in this configuration is not

realistic. The model does not capture the irreversibility of the entanglement dissociation

and thus predicts a far too high backstress stored in the material when the deformation is

constrained and the temperature is decreased. For this reason the model is not suitable

for a complex thermomechanical loading histories.

The response of the "molecular relaxation by reptation" model is shown in Fig. 4.12c.

It is clearly observable that the Cauchy and the backstress in the first step are much

lower than in the "entanglement dissociation" model due to the rate dependence of the

hardening behavior. In the second step a small portion of the stresses relax already due to

the molecular relaxation. The Cauchy stress increases in the third step due to increasing

Young’s modulus while the backstress remains constant which is true for the fourth step as

well. This is a major difference to the entanglement dissociation model which predicts an

unrealistic backstress raise in the third step due to the temperature-dependent eight-chain

model discussed above. In the reheating (fifth) step the backstress relaxes and deforms

the material but much less compared to the both previously discussed models. This is

due to the much lower backstress stored in the material when stretching takes place at

low rates and high temperatures.



90 4. Modeling the mechanical behavior of amorphous thermoplastic polymers

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

time [s]

1 2 4 53

(a) basic model

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

time [s]

1 2 4 53

(b) entanglement dissociation model

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

0.8

1.0

time [s]

1 2 4 53

(c) molecular relaxation model

Figure 4.12.: Comparison of model responses to a thermomechanical loading history according Tab.4.5



4.3. Model extension to account for initial orientation 91

This example shows that the "molecular relaxation by reptation" model is much more

suitable for using in simulations of applications where such a thermomechanical load

is involved, e.g. thermoforming. For this reason this model is used for thermoforming

simulations of Ch. 5.

4.3. Model extension to account
for initial orientation

Owing to preceding manufacturing processes such as injection molding or extrusion,

thermoplastic polymer materials may exhibit a "frozen-in" pre-stretch one orientation

of the molecular network (cf. Sec. 3.1.2). This pre-orientation may strongly affect the

mechanical behavior in a subsequent deformation process, e.g. thermoforming, and -

in order to avoid consideration of the entire thermomechanical history starting from a

virgin material - needs to be accounted for in corresponding numerical simulations. The

molecular pre-orientation is correlated to the measurable birefringence of the material

(e.g. Kahar et al. (1978), De Focatiis and Buckley (2011)) and thus can be used as an

available input quantity in a material model. For this purpose, the constitutive model is

extended to account for an initial pre-stretch and orientation of the molecular network.

In the model description the assumption is made that the pre-stretched network affects

only the inelastic (hardening) mechanical behavior while the influence on the small strain

elastic behavior can be neglected. Therefore the molecular network is modified through

the backstress tensor introduced in (4.38) which originally depends on the network stretch

with respect to an initial isotropic network. The incorporation of the initial material state

through a pre-stretch tensor is discussed in the following section.

4.3.1. Incorporation of molecular pre-stretch tensor

To model a pre-stretched network Boyce et al. (1989a) introduced an initial network

stretch tensor V i
N which contains information about the pre-deformation history of the

network. The eigenvalues λi
Nα(α = 1, 2, 3) of V i

N represent the pre-stretch of the molecular

network with the constraint det[V i
N ] = 1 according to the isochoric network deformation.

Thus, the initial stretch as well as the following current deformation must be considered

in the computation of the backstress. For this purpose a network state deformation gradient

F p
S is introduced

F p
S = F pV i

N (4.64)
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consisting of the current inelastic part of the deformation gradient and the initial network

stretch tensor. For an initially isotropic molecular network, this tensor reduces to the

inelastic deformation gradient only (λi
N1 = λ

i
N2 = λ

i
N3 = 1). In Fig. 4.13 the different

portions of the deformation with a pre-stretched network in the reference configuration

B0 is schematically depicted. Starting from an initially isotropic ("virgin") material

configuration, the network is stretched and oriented (e.g. due to a manufacturing process)

as represented by V i
N . The reference configuration B0 with respect to the subsequent

deformation through F hence contains a frozen-in anisotropic molecular orientation.

manufacturing
process

current
deformation process 

isotropic "virgin" network

Figure 4.13.: Effect of initially anisotropic molecular network due to a preceding manufacturing process

The backstress is taken to be a function of F p
S through the network state left Cauchy-Green

tensor

b̂p
S = F p

S F pT
S . (4.65)

Since the kinematics of the "basic" and "entanglement dissociation" models are different to

that of the "molecular relaxation by reptation" model the backstress depends on different

kinematic tensors. In case of the "basic" model (Sec. 4.1.2) and its extension by the

"entanglement dissociation" model (Sec. 4.2.1) the deviatoric backstress tensor is written

as

τ̂b =
CRλLβ

3λC
b̂p′

S (4.66)
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where the mean chain stretch is given by λC =
�

1
3

tr[b̂p
S]
� 1

2

. In case of the "molecular

relaxation" model (Sec. 4.2.2) the backstress depends on the network state left Cauchy-

Green tensor obtained from

F e
NS = F e

N Vi
N , b̂e

NS = F e
NS F eT

NS (4.67)

with the mean stretch λC =
�

1
3

tr[b̂e
NS]

� 1
2

. For the total network stretch λL
N used in (4.60)

the initial network stretch must be considered as well since it occurs in the left inelastic

Cauchy-Green tensor

b̂p = F pF pT = F e
N V i

N F p
N (F

e
N V i

N F p
N )

T = F e
NS b̃p

N F eT
NS . (4.68)

4.3.2. Model response

In this section the response of the model is evaluated for different amounts of the initial

stretch at room temperature and under uniaxial tension. In Tab. 4.6 the applied initial

stretch values are summarized along with the corresponding (initial) mean chain stretch

λC .

Table 4.6.: Max. applied pre-stretch λi
N1, corresponding stretch in perpendicular directions (λi

N2 =
λi

N3) and mean chain stretch λC . The limit chain stretch of the material is again set to
λL =

�
2= 1.414

λi
N1 λi

N2 = λ
i
N3 λC

1 1 1
1.2 0.9129 1.0176
1.4 0.8452 1.0628
1.6 0.7906 1.1269
1.8 0.7454 1.2043
2 0.7071 1.2910

In Fig. 4.14 the true stress-log. strain response of the model in the direction of the

max. prescribed pre-stretch (max. eigenvalue λi
N1 ≥ 1) and perpendicular to that

direction (λi
N2 = λ

i
N3 ≤ 1) is shown. The response is qualitatively in agreement with

the experimental data by Arruda et al. (1993) shown in Fig. 3.8. In the direction of

the applied max. pre-stretch, the yield stress and the subsequent hardening strongly
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increase with increasing initial stretch. Perpendicular to that direction the opposite trend

is observed: the higher the initial stretch the lower are the yield stress and the hardening.

The extended material model is thus able to reproduce the material behavior in presence

of a molecular pre-stretch, at least qualitatively.
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Figure 4.14.: Comparison of model response at different amounts of pre-stretch in direction and normal
direction of max. pre-stretch (λi

N1 ≥ 1)
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4.3.3. Simulation of pre-stretch induced
dimensional instabilities

Manufacturing processes on amorphous thermoplastic polymers at elevated temperatures

(e.g. injection molding) and subsequent rapid cooling may result in an anisotropic

microstructure due to "frozen-in" molecular orientation (cf. Ch. 1). This state of pre-

orientation in the solid material may give rise to stress-free deformations of a component

during re-heating (Struik, 1990). This "memory-effect" can be observed at the injection

molded plate shown in Fig. 4.15. After uniformly heating above the glass transition

temperature the plate buckles due to the pre-oriented microstructure (Fig. 4.16a,b).

Figure 4.15.: Injection molded plate with assumed flow direction of melt

a) b)

Figure 4.16.: Deformation of the plate after heating to 120 °C

As a computational example the injection molded plate is investigated. It is assumed

that the highly stretched polymer melt flows radially into the mold and that the pre-

stretch decreases linearly with increasing distance to the gate (filling point) according to a

radial symmetric isochoric plane flow field (Fig. 4.15). A corresponding distribution and

orientation of the maximum principal stretch λi
N1 with five sections of different constant
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values of λi
N1 (with λi

N2 = λ
i
N3 = 1/

�
λi

N1) is considered in the FE-model (Fig. 4.18a).

The plate is subjected to a temperature which is taken spatially uniform and increases

with time (Fig. 4.17). In addition, traction-free boundary conditions are imposed.

0 80
0

20

160 240 320 400

time [s]

40

60

80

100

120

140

te
m

pe
ra

tu
re

 [°
C

]

Figure 4.17.: Temperature variation over time

With increasing temperature the material flow resistance decreases and enables the "frozen-

in" molecular stretch and backstress to relax. This spatially non-uniform re-deformation

causes buckling of the plate. The deformed FE-model is presented in Fig. 4.18b,c which

shows a qualitative good agreement with the deformed shape of the real component

(Fig. 4.16a,b).
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a)

b)

c)

Figure 4.18.: FE analysis of the injection molded plate: a) orientation of initial molecular stretch and distri-

bution of equivalent backstress τb
e =

�
τ̂b : τ̂b (max. value τb

e = 41.1 MPa), b) distribution
of equivalent backstress after annealing (max. value τb

e = 3.3 MPa), c) deformation after
heating to 120 °C
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An injection molded tensile test specimen (Fig. 4.19a) serves as a second example. The

deformed shape of the specimen after annealing is presented in Fig. 4.19b. The same

assumptions as for the plate are applied for the computational model of the tensile

test specimen. The orientation of the initial stretch and the corresponding equivalent

backstress distribution are shown in Fig. 4.20a. The deformed FE-model after heating is

presented in Fig. 4.20b.

a) b)

Figure 4.19.: Injection molded tensile test specimen: a) initial state with indicated gate and flow direction,
b) deformed state after heating to 120 °C

a) b)

Figure 4.20.: FE analysis of injection molded test specimen: a) orientation of initial molecular stretch and
corresponding equivalent backstress distribution (max. value τb

e = 41.1 MPa, same initial
stretch values are used as for the plate), b) deformation to nearly stress free state after heating
to 120 °C (max. value of equivalent backstress τb

e = 7.1 MPa)

The constitutive model is used successfully to simulate a re-heating process of injection

molded components. The resulting deformations of both parts are in good agreement

with those observed in the real experiments. The correlation between the deformations

of the real components and the deformations obtained in the simulations evidences that

the assumed initial molecular orientation and its mapping to the computational models is

reasonable. However, while the flow field in the present case is quite obvious, it is hardly

conceivable that this heuristic method is applicable to more complicated geometries. In

that case, data obtained from mold filling simulations might be used.



5. Simulation of thermoforming

In this chapter the simulation of the polymer film thermoforming process is investigated by

applying the constitutive model developed in Sec. 4.2.2 and is implemented through a UMAT

in the finite element software Abaqus. First, thermoforming of micro parts is simulated

and compared to experimental results to validate the constitutive model. Two different

computational models are employed and compared: a simplified 2D (plane strain) model

and a full 3D model. As a second computational example, thermoforming of a blister like

part is performed to investigate the influence of pre-streched films on the forming behavior.

For this purpose, different amounts of pre-stretch in the film material are applied.

Thermoforming is a common method of processing thermoplastic polymers. The range of

products made by thermoforming spans from simple packaging products to complicated

parts, e.g. for the automotive or aircraft industry (Engelmann, 2012). In the general

thermoforming process, polymer sheets or films are formed into a mold under applied

pressure and temperature. In the first process step, the polymer is clamped between

the mold and holding plates followed by the evacuation of the mold. The polymer is

then heated close to the glass transition temperature Tg by thermal contact. In this

temperature range, amorphous thermoplastic polymers are easy to form and large strains

can be applied without any fracture, cf. Ch. 3. Pressurized gas is applied to form the

polymer into the mold. After forming the mold is cooled and the part can be ejected. This

process with the described four steps is depicted in Fig. 5.1.

The most relevant parameters in the thermoforming process affecting the forming and

thus the quality of the final product are the time histories of the applied pressure and

temperature. The mechanical behavior of the final product is mainly influenced by the film

thickness and the polymer molecular network orientation after forming. The simulation

of the whole process may show the correlation between process parameter variations and

the quality of the formed part. The film thickness distribution throughout the part can be

investigated as well as stresses and strains after forming.
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Figure 5.1.: Process steps of thermoforming: (i) A polymer film is clamped between the holding plate
and the mold which is then evacuated. (ii) The tool is heated until the the glass transition
temperature of the polymer film is reached. (iii) Pressurized gas forms the film into the mold.
(iv) The film is cooled and the tool is opened.

Former works of simulating the thermoforming process are limited by either on considering

the temperature dependent viscoplastic behavior of the material or to take all process

steps into account. For example, Carlone and Palazzo (2006), McCool and Martin (2011),

Kouba et al. (1992) and Nam et al. (2000) used hyperelastic models, Warby et al. (2003)

a viscoplastic model, Karamanou et al. (2006) and Kim et al. (2009) viscoelastic models

to simulate thermoforming. In some of these works, the material models are even

independent on the temperature. In contrast, elastic-viscoplastic temperature dependent

models are used by O’Connor et al. (2013) or Makradi et al. (2007). Only the latter

developed a model which is similar to the model in the present work. These works were

able to simulate the thermoforming process quite well, but all authors only considered

the polymer at high temperatures and the inflation step, thus neglecting the cooling step.

In contrast, aus der Wiesche (2004) considered the cooling step but used a small-strain

viscoelastic model only. The consideration of the cooling step is expected to show an

influence of the process parameters on the mechanical behavior of the final product as

well and thus should be considered in the simulation. Thus, in this work the whole process

as discussed above is investigated and simulated using the material model developed

in Sec. 4.2.2 which is implemented in the finite element software Abaqus with a user

material routine (UMAT).

In the next section, the process micro-thermoforming is simulated and the computational

results are compared to experimental findings.



5.1. Micro-thermoforming 101

5.1. Micro-thermoforming

Micro-thermoforming is basically thermoforming at the microscale and was developed

at the Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology

(KIT), e.g. Heilig et al. (2010). It can be combined with nanoimprinting to get a pre-

structured polymer film to produce film microchips which can be used for biological cell

cultivation, for example. This requires the usage of very thin films (<100 μm) and special

techniques for the thermoforming process. However, in this work only unstructured films

are investigated.

Thermoforming experiments were performed at IMT, KIT using a PMMA film (Degalan

G7E) with a thickness of 84 μm. The film was formed into a bottle like mold sketched in

Fig. 5.2. The finished part is shown in Fig. 5.3.

(a) 3D view of mold (b) dimensions of mold (in mm)

Figure 5.2.: The mold used in the experiments performed at IMT, KIT (Heilig, 2012)

The most important process steps and parameters of the experiments are summarized

in the following, see also Tab. 5.1. First, the tool is heated with a temperature rate of

65◦C/min to the final forming temperature. The film is then clamped with a force of 40

kN and the mold is evacuated (approx. 1 bar in 10 s). The forming pressure realized with

pressurized gas is applied with a specific pressure increase rate and is held constant for a

certain holding time afterwards. In the subsequent step, the tool is cooled with a cooling
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Figure 5.3.: The finished part after the thermoforming process

rate of 65◦C/min till the demolding temperature is reached. The pressure is then released

with a specific pressure reduction rate (Heilig et al., 2010). The process parameters of

four representative experiments are given in Tab. 5.1. These four experiments (load

cases) serve as examples for the validation of the simulation. The process parameters

differ clearly and lead to a different forming behavior in the experiments.

Table 5.1.: Process parameters of four different experiments (Heilig, 2012)

load forming pressure forming pressure pressure pressure
case # temp. increase pressure holding release reduction

[◦C] rate [MPa/s] [MPa] time [s] temp. [◦C] rate [MPa/s]

1 110 0.3 2.5 55 75 0.3
2 115 0.4 4 100 90 0.4
3 105 0.4 1 100 90 0.4
4 105 0.4 1 10 90 0.2

The following simplifying assumptions are applied in all simulations. It is assumed that

the deviation of the film temperature from the tool temperature is negligible during

heating and cooling. Thus, a spatially constant temperature distribution is assumed.

Rather, the same temperature is applied uniformly to the film which changes with time

according to the temperature increasing/decreasing rate. Furthermore, the film is not

clamped rather the nodes at the boundary of the film are fixed (Fig. 5.4).

For the tangential contact, the coefficient of friction μ = 0.3 is assumed. Despite the film

used in the thermoforming experiments and the material tested in Ch. 3 are both PMMA,

it is likely that they slightly differ in the mechanical behavior. However, since there are

no experimental data for the film, the results of Ch. 3 are used as input for the material

model developed and calibrated in Sec. 4.2.2.
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Figure 5.4.: 2D finite element model of the film (green) and the mold (gray)

Two different computational models are utilized in the following simulations. In a first

approximation the simulations are done in 2D (plane strain) where the film in the center

of the mold far away from the side walls is considered. In addition, the simulations are

performed in 3D in which the complete mold is considered (Fig. 5.2). All simulations are

conducted using the implicit static solver of Abaqus/Standard (Dassault Systèmes, 2012).

The process steps in both computational models are listed in Tab. 5.2.

Table 5.2.: Process steps considered in the simulations

step step description

1 evacuate mold (applying evacuation pressure)
2 increase pressure
3 hold pressure
4 decrease temperature
5 decrease pressure
6 open mold (release evacuation pressure)

5.1.1. 2D Simulation

The 2D plane strain model of the polymer film is meshed with ≈ 6500 reduced integration

elements with mesh refinement in the region where the film comes into contact with the
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mold wall and the largest deformation is expected (Fig. 5.4). The mold is considered as

rigid and, for imposing contact conditions, is discretized with rigid elements without any

material behavior. The mesh is shown in Fig. 5.4.

The simulated film deformation after each step for the four different load cases is shown

in Fig. 5.5 - Fig. 5.8. The major part of the deformation takes place in the first three

steps (evacuation, increase and hold pressure) at all load cases. The last three steps

(decrease of pressure and temperature, evacuation) have only minor influence on the final

shape of the formed film. In load case #2, the highest forming temperature and pressure

and a long pressure holding time were applied. This leads to the largest deformation

of the film into the mold (Fig. 5.6f) in comparison to the other three simulated load

cases. In load case #1, the residual forming depth is insignificantly lower (Fig. 5.5f).

In this load case, a slightly lower forming temperature and a distinctly lower forming

pressure along with a shorter holding time compared to load case #2 were applied. The

process parameters of load case #3 and load case #4 only differ in the pressure holding

time and the pressure reduction time but both have a much lower forming pressure and

temperature than the load cases #1 and #2. The resulting forming depth of load case #4

compared to load case #3 is significantly lower (Fig. 5.7f and Fig. 5.8f). In summary, the

higher the temperature, forming pressure and the longer the pressure holding time the

more is the film formed into the mold. Since most of the deformation takes place in the

first three steps, it is reasonable to consider only these when the thickness distribution

in the part is of interest, as done in most of the earlier numerical studies mentioned

above. However, if the stress and strain field after forming is of interest - for example for

subsequent structural simulations - the whole process including the final steps must be

considered.

The forming depth strongly correlates with the amount of max. principal strain which

is shown for each load case after the last step in Fig. 5.9. The larger the forming depth

the more the polymer is stretched and the more thinning of the polymer film occurs. For

example, in load case #2, the minimum thickness of the film after the last step is half the

initial thickness. In contrast, the thinning is about 17.5% only in load case #4. The max.

local thinning simulated in each numerical load case is given in Tab. 5.3. The location of

the max. thinning is for all load cases in the region of the mold edge and peak strains,

respectively. The highly deformed elements in that region are shown for load case #2,

for example.
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(a) film after step 1 (b) film after step 2 (c) film after step 3

(d) film after step 4 (e) film after step 5 (f) film after step 6

Figure 5.5.: Deformation of the film after each step of load case #1

(a) film after step 1 (b) film after step 2 (c) film after step 3

(d) film after step 4 (e) film after step 5 (f) film after step 6

Figure 5.6.: Deformation of the film after each step of load case #2
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(a) film after step 1 (b) film after step 2 (c) film after step 3

(d) film after step 4 (e) film after step 5 (f) film after step 6

Figure 5.7.: Deformation of the film after each step of load case #3

(a) film after step 1 (b) film after step 2 (c) film after step 3

(d) film after step 4 (e) film after step 5 (f) film after step 6

Figure 5.8.: Deformation of the film after each step of load case #4
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Table 5.3.: Thinning of film (initial thickness 84μm)

load case # min film thickness [μm] percentage change [%]

1 45.5 45.83
2 41.9 50.11
3 49.0 41.66
4 60.4 28.07

A comparison of the numerical results with real experiments by (Heilig, 2012) for the

four load cases is shown in Fig. 5.10 in terms of the final shapes of the films. The forming

depth is difficult to measure (Heilig, 2012) and the data obtained at the boundary of the

mold are not reliable. Thus a meaningful quantity to compare the real experiments and

the simulations is the maximum forming depth in the center of the mold summarized

in Tab.5.4. For the first three load cases the max. forming depths are in very good

agreement. Only in case #4 the deviation is relatively high. Despite the complex applied

thermomechanical load, these results show that the computational model well captures

the influence of individual process parameters on the forming behavior. Hence, the

developed material model of Sec. 4.2.2 is obviously suitable for process simulations of

amorphous thermoplastic polymers.

Table 5.4.: Comparison of max. forming depth

load case # simulation [mm] experiment [mm]

1 1.05 1.02
2 1.05 1.05
3 1.01 0.9
4 0.54 0.7



108 5. Simulation of thermoforming

(a) loading case # 1

(b) loading case # 2

(c) loading case # 3

(d) loading case # 4

Figure 5.9.: Contour plots of max. principal strain after last step
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Figure 5.10.: Comparison of the resulting film shape in the numerical simulations (left) and the real
experiments (right) measured with a tactile measurement device by Heilig (2012)

To investigate the influence of the coefficient of friction (between film and mold) this

parameter is varied in simulations of load case #4 in which the largest deviation to the

experiment occurred. Three different coefficients of friction (μ = 0, μ = 0.1, μ = 0.2)

are applied in addition to the originally one used (μ = 0.3). In Fig. 5.11 the influence

of friction on the simulated forming depth is shown. For higher values of the friction

coefficient lower resulting forming depths are obtained. However, the influence of the

coefficient of friction on the forming depth is relatively small in the range considered

here. In reality, the coefficient of friction might be higher or rather the film sticks at the

mold wall.
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Figure 5.11.: Influence of friction in the simulation of load case #4
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5.1.2. 3D Simulation

To investigate the influence of the plane strain simplification made in the above 2D

simulations the whole mold (Fig. 5.2) is considered in the following. Symmetry of the

problem is exploited and approximately 150000 reduced integrated solid elements are

used to discretize the film. The same contact and friction behavior is applied as in the 2D

model. The 3D model and the FE-mesh are shown in Fig. 5.12.

(a) 3D model of film is initially placed on the mold

(b) 3D model of mold

(c) FE mesh of the assembled model

Figure 5.12.: Half of 3D model and FE mesh of film and mold

The film deformation simulated with the 3D model is shown in Fig. 5.13 for each load

case. In the comparison of the simulations to the experiments shown in Fig. 5.14 a good

qualitative agreement is observable. In the center of the mold, a similar deformation

behavior as in the 2D model is observed. The simulation of load case #2 again shows the

deepest forming depth while load case #4 exhibits the lowest one.
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load case #1

load case #2

load case #3

load case #4

Figure 5.13.: Forming of the film into the mold



112 5. Simulation of thermoforming

load case #1

load case #2

load case #3

load case #4

Figure 5.14.: Comparison of the forming behavior of the film in the simulations and the experiments

Max. principal strains are shown in Fig. 5.15 for each simulated load case. The largest

values in the center of the parallel part of the mold differ only slightly from those of the

2D simulations (Fig. 5.9). However, the 3D simulations reveal significant differences in

the region where max. strains are found in the final part for the different load cases (Fig.

5.15a and Fig. 5.15b). This cannot be reproduced with the 2D model of course.



5.1. Micro-thermoforming 113

(a) load case # 1

(b) load case # 2

(c) load case # 3

(d) load case # 4

Figure 5.15.: Contour plots of the max. principal log. strain after the last step for the four load cases
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In Fig. 5.16 the shape of the formed film in the center of the mold is shown for the 3D

simulations as well as for the 2D simulations for comparison reasons. It can be observed

that the forming depth is slightly higher in the 3D simulations in all cases. This might

be due to the less constrained film in the center region compared to the 2D simulations.

However, the 2D model is suitable if the forming behavior in the middle of the mold is of

interest only. Also it provides fast results since it consists of ≈ 20 times fewer degrees of

freedom compared to the the 3D model.
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Figure 5.16.: Comparison of the forming depth of the 3D (left) and 2D (right) simulations. The forming
depth of the 3D simulations is evaluated in the middle of the parallel part of the mold.

The results of the 2D and the 3D simulations showed a somewhat too large deformation

of the film compared to the deformation in the experiment. This discrepancy may result

from not clamping the film at the mold boundary so that the material is able to "flow"

around the corner. Furthermore, the temperature may be not distributed uniformly over

the whole film as assumed in the simulations which could lead to a lower deformation.

In addition, it could be that a pre-stretched (and hence less deformable) film was used in

the experiments which is not considered in the simulations. The influence of pre-stretch

on the film deformation is investigated in the next section.
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5.2. Influence of pre-stretch
on thermoforming behavior

In this section, the influence of a pre-stretch on the forming behavior of polymer films is

investigated. For this purpose an axi-symmetric mold (r = 5 mm) with a depth of 4.9

mm is considered in order to mimic the forming process of blisters which are used for

packaging of drugs (Fig. 5.17). The film with a thickness of 0.5 mm initially lies flat on

the top of the cavity. Because of the anisotropy of the pre-stretched film material the

computational model can not be taken axi-symmetric. One-fourth (90° of the mold and

the film is considered and meshed with ≈ 45000 linear hexahedral reduced integration

elements for the film and ≈ 2000 rigid elements for the mold, respectively (Fig. 5.17).

Figure 5.17.: FEM mesh of the film (green) and the mold (gray) giving a blister like form after thermo-
forming. The directions of applied eigenvalues of initial stretch tensor are indicated with red
arrows.

The pre-stretch of the film is accounted for by prescribing the eigenvalues of the initial

network stretch tensor in the constitutive model (see Sec. 4.3). The max. eigenvalue

λi
N1 is applied in the direction of one of the in-plane directions of the film as sketched

in Fig. 5.17. The two other eigenvalues are taken to be equal with the requirement

λi
N1λ

i
N2λ

i
N3 = 1. The values of the applied eigenvalues are given in Tab. 5.5 for six

different amounts of pre-stretch in the film material.



116 5. Simulation of thermoforming

Table 5.5.: Six different initial stretches considered

λi
N1 λi

N2 = λ
i
N3 = 1/

�
λi

N1

1 1
1.2 0.912
1.4 0.845
1.6 0.790
1.8 0.745
2.0 0.707

Between the film and the mold a contact formulation is defined in the computational model.

The simulation is divided into five steps listed in Tab. 5.6 representing a thermoforming

process similar to that of the previous section but with fictitious process parameters. In the

first step, the film (with spatially uniform temperature) is heated from room temperature

up to the forming temperature over a certain period of time. This is necessary here

to prevent a spontaneous relaxation of the backstress associated with the pre-stretch.

The pressure is increased at constant forming temperature in the second step and in the

third step the pressure is hold constant for one second. The temperature is decreased at

constant pressure in the forth step and in the fifth step the pressure is released again at

constant temperature. The process parameters are given in Tab. 5.6.

Table 5.6.: Process parameters

step duration [s] temperature [◦C] pressure [MPa]

1 1 20 - 110 0
2 1 110 0 - 2
3 1 110 2
4 1 110 - 20 2
5 1 20 2 - 0

The simulation for an unstretched film serves as a reference solution. The deformation

behavior of this film is shown in Fig. 5.18 for all five steps. The largest deformation

occurs during step two (pressure increasing) and step three (pressure holding).
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(a) film after step 1 (b) film after step 2

(c) film after step 3 (d) film after step 4

(e) film after film after step 5 (f) film after film after step 5

Figure 5.18.: Deformation of the film without initial pre-stretch after each step
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In Fig. 5.19, the deformation of the differently pre-stretched films after the last step

is shown. It is clearly observable that the forming depth is strongly dependent on the

amount of pre-stretch: the more the film is pre-stretched the lower is the forming depth

and the lower the local peak value of the max. principal strain (Fig. 5.20). Thus, the

thinning of the film is dependent on the pre-stretch as well. The thinning is given in Tab.

5.7 for the differently pre-stretched films.

Table 5.7.: Thinning of each film after last step

film minimum film thickness [mm] percentage change [%]

λi
N1 = 1 0.156 68.8

λi
N1 = 1.2 0.177 64.6
λi

N1 = 1.4 0.204 59.2
λi

N1 = 1.6 0.237 52.6
λi

N1 = 1.8 0.289 42.2
λi

N1 = 2.0 0.336 32.8

Since the max. pre-stretch is applied in one of the in-plane directions of the film (see Fig.

5.17) its deformation behavior is anisotropic. Since the film is not clamped but evenly

fixed at the outer boundary, the film is able to detach from the mold. This can be seen in

Fig. 5.19e and Fig. 5.19f for large values of the pre-stretch. In Fig. 5.19f, the detach point

is indicated by "A" while the film at point "B" is in contact with the mold wall. Due to the

anisotropic material behavior a non-uniformity can be observed in the spatial distribution

of the max. principal strain as well (Fig. 5.20). The max. strains occur at point "A" which

is a direct result of the specified amount and direction of the max. principal pre-stretch

(Fig. 5.20f): the material yield strength in the direction of bending at point "A" is reduced

while at point "B" it has its maximum1. Hence, the resistance against bending around the

particular bending axis at point "A" is reduced and at point "B" increased, respectively. A

more pronounced anisotropic deformation behavior can not be observed due to the high

forming temperatures. However, the results of this investigation show a strong influence

of the pre-stretch on the film deformation behavior which should not be neglected in

computational analyses of thermoforming.

1 The influence of the pre-stretch on the mechanical behavior is discussed in Sec. 3.1.2 and Sec. 4.3
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(a) unstretched film (b) initial stretch of λi
N1 = 1.2

(c) initial stretch of λi
N1 = 1.4 (d) initial stretch of λi

N1 = 1.6

(e) initial stretch of λi
N1 = 1.8 (f) initial stretch of λi

N1 = 2

Figure 5.19.: Deformation of each film after last step
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(a) unstretched film (b) initial stretch of λi
N1 = 1.2

(c) initial stretch of λi
N1 = 1.4 (d) initial stretch of λi

N1 = 1.6

(e) initial stretch of λi
N1 = 1.8 (f) initial stretch of λi

N1 = 2

Figure 5.20.: Contour plot of max. principal log. strain in differently pre-stretched films after the last step
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5.3. Conclusions from thermoforming simulations

From the above investigation of the simulation of thermoforming the following conclusions

can be derived. The influence of various process parameters like temperature, pressure

and holding time on the forming behavior of polymer films is well captured by the

simulations. The numerical and the experimental results are found to be qualitative

and quantitative in a reasonable agreement. This provides a good validation of the

thermomechanical constitutive model developed and calibrated in Sec. 4.2.2.

However, to even improve the computational FE model more realistic boundary conditions

may be applied. For example, one could consider the clamping of the film (apply a clamp

force) or include a non-uniform temperature distribution by computing the heat transfer

in the tool prior to the structural analysis or even perform a thermomechanical coupled

simulation. Furthermore, a large coefficient of friction could have a strong influence on

local deformation behavior and strain distribution of the film, e.g. sticking on the mold

wall at high temperatures. Also, pre-stretched films showed a strong influence on the

forming forming behavior and thus can not be neglected in thermoforming simulations.





6. Symbolic programming of user
material routines

Some part of this work involves the implementation of the constitutive equations described

in Sec.4 for the user material interface of the implicit solver Abaqus/Standard (UMAT). For

this purpose the automatic differentiation, code generation and optimization tool AceGen

(Korelc, 2012) is used to simplify the implementation process as well as to automatically form

required derivatives. These may be the consistent tangent moduli, the Cauchy stress derived

from a strain energy function for hyperelastic models or the Jacobian of a Newton-iteration

scheme.

In this chapter, the application of AceGen will be described with the main functionalities1

used and how it helps in the material modeling and implementation process. Exemplarily,

the implementation of a hyperelastic and an elastic-plastic material model utilizing AceGen

will be presented. The hyperelastic model serves as an introductive example and is useful to

illustrate the usage of AceGen. Furthermore, the computed derivatives can be verified with

this model because they are relatively simple. The numerical treatment of the elastic-plastic

material model is similar to that models of Ch. 4 but the constitutive equations are less

complicated. Thus, it serves as an example where a local Newton-iteration scheme must

be performed to update the internal variables. In this case, the consistent tangent moduli

depends not only on the total deformation but also on the internal variables which leads

to complicated derivatives. For both material models the stress and the consistent tangent

moduli will be derived as needed in Abaqus/Standard. The consistent tangent will be verified

by comparing it to the numerically approximated tangent which is also obtained using

AceGen.

The numerical treatment and implementation of the constitutive models of Ch. 4 using

AceGen is given in App. A.2.

1 The algorithms implemented in AceGen are not described in this work. Rather, AceGen is used as a
"Black Box" and thus a verification is necessary.
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6.1. Introduction to AceGen

The software tool AceGen is a plug-in for the software package Mathematica (Wolfram,

2013). It was developed by Prof. Dr.-Ing. J. Korelc (Korelc, 1996) to automatically

differentiate equations and to generate and -at the same time- optimize program code,

for example FORTRAN (Intel, 2013) code which may be used within the user routines

of Abaqus. So far, AceGen was mainly used for the efficient implementation of finite

elements, e.g. in Korelc and Wriggers (1999), Korelc (2002), Wriggers (2008), Mattern

(2012). In this work, it is used to code constitutive equations and to apply needed

algorithms. This brings big advantages for the implementation and material modeling

process. These advantages are described in the following.

Since AceGen uses the symbolic programming environment of Mathematica, in which

programming is fairly easy compared to a programming language like FORTRAN. The

constitutive equations can be coded as they are "written on paper". An example: pro-

gramming the right Cauchy-Green tensor (2.14) with FORTRAN is done by using loops

and summing the respective products of the components of the deformation gradient or

by coding every sum by hand. Even this small example might be time consuming and

error-prone to implement. Using AceGen the product of the right Cauchy-Green tensor in

Mathematica and the AceGen syntax is simply given by � ����T.� where the symbol ��� is

an AceGen specific operator for the symbolic field � and ”.” is the Mathematica command

for a tensor product, respectively. So, besides using AceGen commands and functions

which begin with SMS (Symbolic Mechanics System) it is possible to use the built-in

Mathematica functions as well. The example above shows that this way of programming

is neither time consuming nor error-prone. It highly minimizes programming errors and

debugging is not necessary in most cases. A second advantage follows directly from this

symbolic way of programming: equations are quickly exchangeable. So, it is possible to

analyze different approaches without re-programming a whole new routine. For example,

if one would test different flow functions the only thing to change is the equation for

that function. The remaining algorithm would be untouched and no new derivatives

need to be computed by hand. The automatic symbolic differentiation of equations is

a further big advantage. Especially performing complicated derivatives by hand might

be a time consuming task. While this functionality is available in many programs, the

advantage of AceGen is the optimization of the generated code which is selectable along

with the choices of the programming languages: C, C++, FORTRAN, Mathematica or

Matlab. In this work, only FORTRAN code is used for the UMAT routines. An optimized

code used for numerical simulations implies a faster computation due to less operations

performed. Particularly, the efficiency of the code is important for an explicit FEM code
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where less operations are important to reduce computation times (Mattern, 2012). It is

also important for implicit FEM code if a large number of degrees of freedom is used. A

conceptual drawback of the code generation is the impossible interpretability of the code

for a reader in sense of debugging because all operations are performed with auxiliary

variables.

Summing up, the tool AceGen in combination with Mathematica accelerates programming

and consequently saves time. It takes care of the time consuming aspects of the material

model implementation by automatically computing derivatives and the flexibility of the

symbolic programming. It automatically generates code which is, at best, more efficient

than code programmed by hand in terms of the needed number of operations.

In the next two sections it will be shown how to use AceGen to generate a UMAT routine

for specific material models and how to verify the result. The used AceGen commands

and functions are briefly explained. For a detailed description it is referred to the manual

(Korelc, 2009).

6.2. Implementation of material models
using AceGen

In this section, the implementation of a hyperelastic and an elastic-plastic material model

using AceGen for a UMAT routine in Abaqus/Standard is presented. The UMAT interface

requires the calculation of the Cauchy stress and the tangent moduli. Note, only the

Cauchy stress is needed for a correct solution if a solution is obtained. The latter depends

on the computed tangent moduli which determines the convergence rate of the Newton-

scheme for solving a mechanical boundary value problem with the finite element method.

If the tangent moduli are computed with respect to the underlying integration algorithm

a quadratic convergence of the Newton scheme is obtained (Hughes and Pister (1978),

Simo and Taylor (1985), Simo and Hughes (1998)). This tangent is called "consistent" or

"algorithmic" tangent because the underlying update algorithm is consistently linearized

and differs from the continuum tangent.

The analytical derivation of the consistent tangent moduli may be a difficult task if

the material model is complicated. To overcome this problem one could use either the

feature of symbolic computation and automatic differentiation in a software package (e.g.

Mathematica (Wolfram, 2013), Matlab (Mathworks, 2013), OpenAD (OpenAD, 2013))

or a numerical approximation method (Miehe (1996), Sagar and Stein (2008), Sun et al.

(2008), Tanaka et al. (2014)). The algorithm needed for an approximation method might
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be very long but gives at best the same convergence rate as the analytical tangent. As

stated before, in this work AceGen is used to compute the Cauchy stress and the consistent

tangent.

6.2.1. Hyperelastic material model

The hyperelastic isotropic neo-Hookean material model (same as the built-in in Abaqus/-
Standard) is chosen in this section to demonstrate and verify the implementation with

AceGen. The tangent moduli are given in (Dassault Systèmes, 2012) and are programmed

with AceGen as well to get an optimized code for comparison reasons. The computation

with AceGen utilizing the automatic differentiation technique should give the same results

as the solution derived "by hand". This is verified with the analytical tangent.

A hyperelastic material model is defined by a strain energy function which depends on the

deformation, e.g. the right Cauchy-Green tensor W =W †(C). By definition of a perfectly

elastic material the dissipation is zero and the Cauchy stress follows directly from (2.94)

for isothermal conditions as

σ : d = J−1Ẇ = J−1∂W
∂ C

: Ċ = J−12F
∂W
∂ C

F T : d (6.1)

⇒ σ = J−12F
∂W
∂ C

F T = J−1FSF T (6.2)

with the second Piola-Kirchhoff tensor S = 2
∂W (C)
∂ C

.

For the objective stress rate calculation in Abaqus/Standard the Jaumann-Zaremba rate

of the Cauchy stress (2.54) is used (Dassault Systèmes, 2012). The rotational part of the

stress update is done by Abaqus so that the user has to compute the stress update only.

The tangent required by Abaqus for a UMAT routine is given by the linearization of the

Kirchhoff stress τ in terms of the Jaumann-Zaremba stress rate

Δτ = �̃ :Δd +Δwτ−τΔw . (6.3)

Using the relation defined in (2.110) the tangent modulus is found to be

�̃i jkl = �i jkl +
1
2
(δikτ jl +τikδ jl +δilτ jk +τilδ jk) . (6.4)
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The tangent to implement in the UMAT routine must be related to the Cauchy stress and

consequently �̃ must be divided by J = det[F]

�̃
σ = J−1

�̃ . (6.5)

The spatial elasticity tensor � in (6.4) is obtained by the push-forward of the material

elasticity tensor (see (2.109)) which is the second derivative of the strain energy function

with respect to the right Cauchy-Green tensor

� = 2
∂ S
∂ C
= 4
∂ 2W (C)
∂ C∂ C

. (6.6)

The neo-Hookean strain energy function used in the following reads

W (C) = C10( ǏC − 3) +
1
D1
(J − 1)2 (6.7)

with the material parameters C10 and D1 and the relations for the isochoric invariants (cf.

(2.8))

ǏC = det[C−1/3] tr[C] = I I I−1/3
C IC (6.8)

and

J = det[F] = I I I1/2
C . (6.9)

The Cauchy stress follows from (6.2) and reads

σ =
2
J

C10(b̌− 1
3

I b̌1) +
2
D1
(J − 1)1 . (6.10)

The computation of the tangent moduli is given in Box 6.1 and yields in index notation

�̃
σ
i jkl =

2
J

C10

�
1
2
(δik b̌ jl + b̌ikδ jl +δil b̌ jk + b̌ilδ jk)− 2

3
(δi j b̌kl + b̌i jδkl)

+
2
9
δi jδkl b̌mm) +

2
D1
(2J− 1)δi jδkl

�
. (6.11)

In the next sections, the algorithm to compute the stress and the analytical tangent

with AceGen for a general hyperelastic material model is presented. As computational

examples, a single element test and the simulation of a three point bending experiment

of a rubber plate where large deformations occur are used to compare the different

approaches. Within these examples the error with respect to the reference solution, the

computation time, the number of iterations and the convergence rate are investigated.
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Numerical treatment

The computation of the derivative (6.6) may be a time consuming task if the strain

energy function is complicated (e.g. anisotropic) and is carried out by AceGen here. The

algorithm to compute the stress and the consistent tangent is shown in Box 6.1. The items

1-6 are computed by AceGen and it is marked by (AD) where the automatic differentiation

feature is used. The corresponding FORTRAN code is generated as a subroutine. This

subroutine is called by the UMAT routine in which all quantities are declared and the

stress and tangent are given back to the Abaqus main program.

Algorithm to compute the stress and the tangent moduli

input in UMAT: F t+Δt

→ computation with AceGen :

1. right Cauchy-Green tensor: C = F T F

2. strain energy function: W (C)

3. stress tensors (AD): τ = 2F
∂W (C)
∂ C

F T , σ =
1
J
τ

4. referential elasticity tensor (AD): �= 4
∂ 2W (C)
∂ C∂ C

5. push-forward of � to get spatial elasticity tensor: �i jkl = FiI FjJ FkK Fl L�I JK L

6. spatial elasticity tensor related to Jaumann stress rate �̃σ:

�̃i jkl = �i jkl +
1
2
(δikτ jl +τikδ jl +δilτ jk +τilδ jk) , �̃σ =

1
J
�̃

Box 6.1

Application of AceGen

The corresponding AceGen commands are given in Box 6.2 to show the implementation

process. First, the right Cauchy-Green tensor must be computed. In the following the

derivative of the strain energy function with respect to the right Cauchy-Green tensor C

is computed and thus the auxiliary variable � introduced by AceGen is not allowed to

change anymore. The signature of these variables must be "unique" which is accomplished

by the command SMSFreeze. In this function, the tensor product to obtain C from the
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deformation gradient F , represented by the symbolic variable �, is performed as well.

The optional parameter "Symmetric"→True indicates that the "freezed" symbolic tensor

is symmetric which is important for a minimum amount of auxiliary variables. To compute

the Kirchhoff stress the command for the automatic differentiation (AD) is SMSD which is

used for the derivative of W with respect to �. If necessary the AceGen specific operator ���
introduces new auxiliary variables which are optimized with respect to the code generation

process. Then, it is possible to compute the Cauchy stress using the AceGen function

SMSDet for the determinant of a tensor. The elasticity tensor follows directly from the

second derivative with respect to the right Cauchy-Green tensor by using AD. The push-

forward as well as the summation to get the spatial elasticity tensor (items 5 and 6 in

Box 6.1) are performed by do loops in Mathematica syntax which is not depicted in Box

6.2 but is given in App. C.1 within the presentation of the complete code.

AceGen/Mathematica code

Box 6.2

Verification

The neo-Hookean strain energy function (6.7) is used to verify the computation of the

stress and the automatic differentiation. For this purpose, the AceGen generated routine

is used in a single element test and the simulation of a three point bending test. The stress,

number of iterations and the convergence rate are compared with the solution based on

the analytically calculated tangent. This "reference" solution is programmed with AceGen

as well in order to get a comparable code, yet without performing any derivatives. The

size of each routine in bytes is shown in Tab. 6.1.
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Table 6.1.: By AceGen generated routines for a UMAT

analytical tangent reference solution 2938 bytes

tangent by AceGen AD (Box 6.1) 25813 bytes

Single element test In order to verify the AceGen computed tangent a uniaxial tensile

test with one element is performed. In this test high strains (λ1 = 2.5) are applied to the

element which allows to check if the computation of the tangent is correct in a non-linear

computation. The relative error η of the computed tangent with respect to the reference

tangent re f
�̃
σ is evaluated for this purpose using the Frobenius norm

η= |‖�̃σ‖ − ‖re f
�̃
σ‖

‖re f
�̃
σ‖ | . (6.12)

The material parameters in (6.7) are C10 = 19.23 MPa and D1 = 0.024 MPa−1. A large load

step is specified to force the algorithm to iterate more than two times to find a converged

solution. The error is evaluated in the first iteration. The automatic differentiation

method (AD) produces a very small error η≈ 10−16 which is in the region of the machine

precision of a 64bit architecture (2.2 ·10−16). The computation with the reference tangent

and the AD tangent need six iterations to converge. The convergence behavior in terms

of the norm of the largest residual force (largest unequilibrated nodal force) is identical

(Tab. 6.2). The computation of the stress at the end of the simulation gives same values

as well.

Table 6.2.: Norm of largest residual force

iteration # analytical tangent AD tangent

1 4.447 · 104 4.447 · 104

2 1.961 · 104 1.961 · 104

3 7.741 · 103 7.741 · 103

4 815 815
5 7.27 7.27
6 6.554 · 10−4 6.554 · 10−4
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Simulation of three point bending test Additionally to the single element test

a three point bending simulation of a rubber plate serves as a second computational

example with a large number of degree of freedoms. Again, the number of iterations,

convergence rate and the computation times are compared as well as the errors of the

tangent with respect to the reference tangent. Additionally, it serves as an example to

compare the computation time in case of a large number of degrees of freedom. In this

simulation, contact occurs between the plate and a die (pushing the plate down) and

between the plate and the support, respectively. Hence a highly non-linear mechanical

boundary value problem must be solved. The rubber plate is modeled with the dimensions:

length=100mm, depth=50mm, thickness=3mm. The die and the support are modeled as

rigid bodies and the plate is discretized with about 21000 3d hexahedral linear reduced

integration elements with a denser mesh in the region of possible contact (Fig. 6.1a).

The max. displacement of the die is 10 mm (Fig. 6.1b).

(a) undeformed plate (b) deformed plate

Figure 6.1.: FE-model of three point bending simulation

In both simulations, the total number of iterations are the same and a quadratic conver-

gence rate of the norm of the residual force is obtained near the solution (Tab. 6.3). The

convergence behavior shows that the tangent is computed correctly. The computation

time (Tab. 6.3) is slightly higher in case of the AD due to more operations performed per

iteration. This correlates of course with the size of the routines (Tab. 6.1).
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Table 6.3.: Convergence behavior in simulation of three point bending test. The norm of the largest
residual force is given in the third increment.

analytical tangent AD tangent

total no. of iterations 22 22

normalized computation 1.0 1.0278
wall-clock time

iteration #

1 14.9 14.9
2 5.41 5.41
3 1.705 · 10−2 1.705 · 10−2

4 8.687 · 10−6 8.687 · 10−6

6.2.2. Elastic-plastic material model

In this section the implementation of an elastic-plastic material model with AceGen is

presented. As in Sec. 6.2.1 the Cauchy stress and the consistent tangent moduli must be

calculated. In case of plasticity this is much more complicated because a local Newton-

scheme must be performed for the integration of the kinematics and the internal variables.

The algorithmic consistent tangent then depends on the update algorithm (Hughes and

Pister (1978), Simo and Taylor (1985)) and may be calculated by AceGen in a very smart

way.

For simplicity and to show the main features of the implementation a standard isotropic

elastic-plastic model with linear isotropic hardening and isothermal conditions is consid-

ered, e.g. Wriggers (2008), Neto et al. (2008), Lubliner (2008). An exponential map

update scheme for the kinematics is used as in the models in Ch. 4. The constitutive

equations and the numerical treatment is briefly summarized in the following.

As in Ch. 4, the deformation gradient is split into an elastic and a plastic part. The

specific free energy Ψ is formulated in terms of the elastic right Cauchy-Green tensor and

the accumulated plastic strain εp (isotropic hardening), and is assumed to be additively

composed of an elastic and plastic part

Ψ(Ĉ e,εp) = Ψ e(Ĉ e) +Ψp(εp) (6.13)
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with Ĉ
e
= F eT F e. Performing the time derivatives of Ψ

Ψ̇ e =
∂Ψ e

∂ Ĉ e
: ˙̂C e = 2F e ∂Ψ

e

∂ Ĉ e
F eT : d e (6.14)

Ψ̇ p =
∂Ψp

∂ εp
ε̇p = qε̇p (6.15)

with the scalar quantity q =
∂Ψp

∂ εp
and inserting it in (2.94) yields the inequality

(τ− 2ρ0F e ∂Ψ
e

∂ Ĉ e
F eT ) : d + 2ρ0F e ∂Ψ

e

∂ Ĉ e
F eT : d p −ρ0qε̇p ≥ 0 (6.16)

from which the Kirchhoff stress follows as (cf. Ch. 4)

τ = 2ρ0F e ∂Ψ
e

∂ Ĉ e
F eT = F eŜF eT (6.17)

with the second Piola-Kirchhoff stress tensor in the intermediate configuration

Ŝ = 2ρ0
∂Ψ e

∂ Ĉ e
. (6.18)

The reduced form of (6.16) yields the internal dissipation due to plastic deformation

Dint = τ : d p −ρ0qε̇p ≥ 0 . (6.19)

which provides a restriction on the material parameters to ensure the thermodynamic

consistency of the material model. The principle of maximum dissipation gives the flow

rule for the plastic part of the rate of deformation tensor and the evolution equation of

the internal variable εp (Lubliner, 2008)

d p = λn , n =
∂ f
∂ τ

, ε̇p = λh , h= −∂ f
∂ q

(6.20)

with the plastic multiplier λ, the flow function f (τ,q) ≤ 0 and the loading/unloading

(Karush-Kuhn-Tucker) conditions

λ≥ 0 , f ≤ 0 , λ f = 0 . (6.21)



134 6. Symbolic programming of user material routines

In the following, the isotropic von Mises yield criterion is used. Since this criterion was

developed for ductile metals only the deviatoric part of the Kirchhoff stress tensor

τ′ = τ− 1
3

tr[τ]1 (6.22)

is accounted for in the yield function because hydrostatic stresses lead to negligible plastic

deformations. The flow function reads

f (τ,q) = τm −
√√2

3
(τ0 + q) (6.23)

with τm = tr[τ′τ′]1/2 and the initial yield stress τ0. The plastic potential is chosen to be

quadratic

W p =
1
2

k(εp)2 (6.24)

from which with (6.15) the scalar q = kεp is obtained and where k is a material parameter

representing the hardening modulus. The elastic potential is chosen to be the same neo-

Hookean strain energy function as in Sec. 6.2.1 but is formulated as a function of Ĉ
e
.

A further derivation of the second Piola-Kirchhoff stress tensor in the intermediate config-

uration with respect to the elastic right Cauchy-Green tensor leads to the intermediate

elasticity tensor

�̂
e = 2

∂ Ŝ

∂ Ĉ e
. (6.25)

Numerical treatment

In order to compute the stress, the standard elastic-predictor plastic-corrector algorithm

is used (Simo and Ortiz (1985), Wriggers (2008), Neto et al. (2008), Shabana (2008),

Hashiguchi and Yamakawa (2012)). In the predictor (or trial step), the elastic deformation

is set by

F e,t r = F t+Δt F
p−1
t (6.26)

to compute the trial stress with which the flow function is tested whether the deformation

state is elastic or plastic. If the material is still in the elastic regime, the flow function

is less than zero, the new stress is equal to the trial stress and the consistent tangent

is simply the elasticity tensor (see (6.4)). But, if the flow function is greater than zero,

which is actually not admissible, plastic deformation occurres and the corrector step must

be employed with the so-called radial return mapping scheme by projecting the stress
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back on the yield surface so that f (τ,q) = 0 holds. In that case the internal variables

must be integrated. For this purpose, the differential equation

Ḟ p = l̂ pF p (6.27)

which reduces with the assumption of ŵ p = 0 to

Ḟ p = d̂ pF p (6.28)

is approximated by an exponential function, the exponential map, in the time interval

[t, t +Δt] (Simo, 1992)

F p
t+Δt = exp[Δt d̂

p
t+Δt]F

p
t . (6.29)

The above equation may be reformulated in terms of the elastic deformation gradient

and by using (6.20) it yields

F e
t+Δt = exp[−Δλ n t+Δt]F

e,t r (6.30)

with Δλ =Δtλ. The evolution equation for the accumulated plastic strain is integrated

by a backward Euler-scheme

ε
p
t+Δt = ε

p
t +Δt ε̇p = εp

t +Δλ ht+Δt (6.31)

and the Karush-Kuhn-Tucker conditions (6.21) in incremental form read

Δλ≥ 0 , ft+Δt ≤ 0 , Δλ ft+Δt = 0 . (6.32)

This strongly non-linear system of equations is merged in the residual vector R

R = [R1 R2 R3]
T = 0 (6.33)

with

R1 = F e
t+Δt − exp[−Δλ n t+Δt]F

e,t r (6.34)

R2 = ε
p
t+Δt − εp

t −Δλ ht+Δt (6.35)

R3 = f (τt+Δt ,qt+Δt) . (6.36)



136 6. Symbolic programming of user material routines

It can be solved by a Newton-scheme for the vector of unknown variables X = [F p Δλ εp]T .

For this purpose a first-order Taylor series approximation is considered at a certain known

state Ri

Ri+1 = Ri +
∂ Ri

∂ X i
ΔX = 0 (6.37)

which is solved for the increment of the unknowns

ΔX = −J−1 ∗ Ri (6.38)

where J =
�
∂ R
∂ X

�
is the Jacobian. The symbol ∗ denotes the appropriate contraction.

The unknown vector is then updated by

X i+1 = X i +ΔX (6.39)

which is done in an iteration loop until the scheme has converged.

The tangent consistent with the integration scheme is obtained by the derivative (Hughes

and Pister (1978), Simo and Taylor (1985), Simo and Hughes (1998))

�
al g = 2

∂ S
∂ C

(6.40)

and may be pushed forward to get the tangent in terms of quantities in the spatial

configuration (e.g. Holopainen and Wallin (2013))

�
al g
i jkl =

∂ τi j

∂ Fkm
Flm − (τilδ jk +τ jlδik) . (6.41)

With (6.4) one gets the consistent tangent related to the Cauchy stress needed in Abaqus/-
Standard

�̃
al g,σ
i jkl = J−1

�
∂ τi j

∂ Fkm
Flm +

1
2
(δilτ jk +τikδ jl −δikτ jl −τilδ jk)

 
. (6.42)

The implicit derivatives that arise in the tangent may be obtained by extracting them

from the Jacobian of the already performed Newton-scheme (Johansson et al. (2005),

Ekh and Runesson (2001)). Supposing that

R(X(F), F) = 0 ⇒ dR = 0 (6.43)
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holds for a converged state, we have

dR =
�
∂ R
∂ X

∗ ∂ X
∂ F
+
∂ R
∂ F

�
: dF = 0 (6.44)

from which the required derivatives may be obtained by using the inverse of the Jacobian

∂ X
∂ F
= −J−1 ∗ ∂ R

∂ F
. (6.45)

In Box 6.3 the complete algorithm is demonstrated; again all points are marked where
the automatic differentiation (AD) is used. The algorithm is formulated in a general way
that an implementation using AceGen is efficiently applicable. The elastic (W e = ρ0Ψ

e)
and plastic (W p = ρ0Ψ

p) potential as well as the flow function f are not specified so that
the algorithm is flexible in terms of exchanging material models.

Algorithm to compute the stress and the consistent tangent moduli

input in UMAT: F t+Δt , F p
t , εp

t

→ computation with AceGen :

1. trial step:

1.1 trial elastic deformation gradient F e,t r = F t+Δt F
p−1
t

1.2 trial stress (AD): τt r = 2F e,t r ∂W e

∂ Ĉ e, t r
F eT,t r

1.3 check if f (τt r ,q)< 0 with q =
∂W p

∂ ε
p
t

(AD)

if true: convergence, compute new stress and elasticity tensor

τt+Δt = τ
t r , F p

t+Δt = F p
t , ε

p
t+Δt = ε

p
t , �̂

e = 2
∂ Ŝt r

∂ Ĉ e, t r
(AD)

�̃
al g,σ
i jkl = J−1[F e

iI F
e
jJ F e

kK F e
l L�̂e

I JK L +
1
2
(δikτ jl +τikδ jl +δilτ jk +τilδ jk)]

END

else: go to 2

2. radial return mapping scheme:

2.1 Newton iteration loop: i = 0,1, ..., convergence

I. initialization, set: F p
0 = F p

t , Δλ0 = 0, εp
0 = ε

p
t
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II. F e
i = F t+Δt F

p−1
i , τi = 2F e

i

∂W e
i

∂ Ĉ
e
i

F eT
i , n i =

∂ fi

∂ τi
, qi =

∂W p
i

∂ ε
p
i

, hi = −∂ fi

∂ qi

(AD)

III. compute residual vector: Ri = [R1i R2i R3i]
T with

R1i = F e
i − exp[−Δλi n i]F

e,t r , R2i = ε
p
i − εp

t −Δλihi, R3i = fi

IV. solve (AD): ΔX = −
�
∂ Ri

∂ X i

�−1

∗Ri → X i+1 = X i+ΔX = [F p
i+1 Δλi+1 ε

p
i+1]

T

V. check convergence criterion:

‖ΔX‖

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

≥ Tol→ set i = i + 1 and go to II.

< Tol→ convergence : solve (AD) ∂ X i+1
∂ F t+Δt

= −�
∂ Ri+1
∂ X i+1

�−1 ∗ ∂ Ri+1
∂ F t+Δt

set : F p
t+Δt = F p

i+1, εp
t+Δt = ε

p
i+1, END loop and go to 2.2

2.2 compute new stress: F e
t+Δt = F t+Δt F

p−1
t+Δt , τt+Δt = 2F e

t+Δt

∂W e
t+Δt

∂ Ĉ e
t+Δt

F eT
t+Δt (AD)

2.3 compute consistent tangent (AD):

�̃
al g,σ
i jkl = J−1

�
∂ τi j

∂ Fkm
Flm +

1
2
(δilτ jk +τikδ jl −δikτ jl −τilδ jk)

 

Box 6.3

In the next section the application of AceGen is shown. A special treatment is necessary

to obtain the derivatives for the consistent tangent.

Application of AceGen

The realization of the algorithm of Box 6.3 with AceGen is shown in Box 6.4 and Box 6.5

and is described with the crucial functions in the following.

First, in Box 6.4 the trial step is performed by computing the trial stress and evaluating the

flow function. The functions of the potentials We and Wp and the flow function f are kept

empty to indicate that specific and appropriate functions may be inserted. That means, f
must be a function of τ, We a function of �e and Wp of εpt0. The history variables F p

t

and εp
t must be treated carefully by saving them at the beginning in the field Ht0 and
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passing them to the field of the history variables Ht1 at the end of the time step or to the

iteration field X1 depending on the result of the evaluation of the flow function after the

trial step. The former case occurs if the flow function is less than zero. This is checked

by the if-else statement SMSIf[SMSLogical[ ]] and the function producing a logical

expression.

AceGen and Mathematica code of trial step

Box 6.4

If the expression is not true the return-mapping algorithm starts by applying a Newton-

scheme which is depicted in Box 6.5. First, the history field is restored in the field Xi which

includes the variables to solve for and changes during the iteration. This iteration loop is

initialized by SMSDo[ ] in which Xi must be passed in. The components of Xi are saved

to the temporary tensor field �pi and the scalars Δλi and εpi. After the computation of

the stress and the flow function the residual vectors are assembled and (6.30) is coded by

using the AceGen function SMSMatrixExp[ ] for an exponential function of tensors. The

derivative of the residuum with respect to the history variables is obtained by AD and the

unknown vector ΔX is solved by performing a LU-factorization (SMSLUFactor[ ]) with

a subsequent Gauss elimination procedure (SMSLUSolve[ ]). The solution increment is

added to the history variable field with the operator for multi-valued auxiliary variables
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��� and the convergence is checked using a stopping criterion. If the increment of growth

is sufficiently small the iteration is stopped. In that case, the derivative of the history

variables with respect to the deformation gradient is computed for the use in the setup of

the consistent tangent. This is realized by computing first the derivative of the residual

vector with respect to the deformation gradient and additionally by holding the vector

of the converged vector of unknowns fixed by applying the option "Constant"→Xi in

the SMSD command. This is important because the whole iteration scheme would be

considered for the computation of the derivative instead of using the converged state of

the variables only. A further Gauss-elimination procedure gives the desired derivative.

The converged variables are then stored in the field Ht1 and the dependency of the

previously computed derivative (6.45) is stated for the computation of the consistent

tangent moduli. At the end of the time step the plastic deformation gradient is assembled

from which the elastic deformation gradient and the stress is computed in the following

code. The consistent tangent moduli is computed by AD in case of elasticity with item

1.3 and in case of plasticity with item 2.3 of Box 6.3 which is then simply accomplished

by the SMSD function because all implicit derivatives and dependencies are known. The

complete code is given in App. C.2.

Verification

Analogous to the hyperelastic material model in Sec. 6.2.1, the implementation of the

elastic-plastic model is first verified by a single element test. Afterwards, a uniaxial tensile

test of a cylindrical bar is simulated. It should be noted that no analytical closed solution

for the consistent tangent is derived nor is implemented in this work. It will be verified

by making use of a numerically approximated tangent. Two different approximation

methods will be used for this purpose (cf. App. B).

Single element test The aim of the single element test is to compare the convergence

behavior of the tangent obtained with the AD method with numerically approximated

tangents. The finite difference method (FD) and the complex step derivative approxima-

tion method (CSDA) are used for the numerical approximation of the tangent (see. App.

B). The additional material parameters are chosen as τ0 = 300 MPa and k = 20 MPa. The

convergence parameters are adjusted so that the computation needs three increments

with 11 iterations in total to converge to the solution. By comparing the convergence

behavior it is found that the norm of the largest residual force is the same for the AD

computed tangent and the CSDA tangent (Tab. 6.4). See App. B for a detailed discussion

of the two numerical approximation methods.
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AceGen and Mathematica code of return mapping algorithm

Box 6.5



142 6. Symbolic programming of user material routines

Table 6.4.: Norm of largest residual force in the first increment.

iteration # AD FD CSDA

1 1.271 · 103 1.271 · 103 1.271 · 103

2 10.4 10.4 10.4
3 6.787 · 10−4 6.798 · 10−4 6.787 · 10−4

Simulation of a cylindrical bar In order to test the computed tangent in a more

sophisticated computation a uniaxial tensile test of a cylindrical bar is simulated (Simo,

1992). The bar is geometrically imperfect to induce necking. For this purpose, the radius

r0 = 5 mm decreases linear to a radius in the center of the bar of rm = 0.98 · r0 mm.

Because of symmetry only one-eighth of the bar is modeled with 128764 second-order

tetrahedron elements (C3D10, 555504 dof). At one end the bar is fixed while at the

other end a displacement boundary condition is applied with a total displacement of 6

mm at an initial length of 50 mm of the complete bar. Furthermore, symmetry boundary

conditions are considered. In Fig. 6.2 the initial full undeformed model of the bar and

the deformed bar with the neck is shown.

(a) undeformed bar (b) deformed bar

Figure 6.2.: FE-model of the bar

All three methods to compute the tangent (AD, FD, CSDA) result in the same convergence

behavior (Tab. 6.5). They all need the same number of iterations and the convergence

rate of the residual force is the same as well.

6.3. Conclusions

In this chapter, the package AceGen is illustrated as a tool to implement constitutive

equations and their numerical treatment in terms of computing the stress and the algo-

rithmic consistent tangent moduli. This is necessary for the user material model interface
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Table 6.5.: Convergence behavior of the simulation. The norm of the largest residual force is given in
the last increment.

AD tangent (AceGen) FD tangent CSDA tangent

total no. of iterations 227 227 227

iteration #

1 0.430 0.430 0.430
2 0.128 0.128 0.128
3 3.606 · 10−2 3.606 · 10−2 3.606 · 10−2

4 9.177 · 10−3 9.177 · 10−3 9.177 · 10−3

5 1.570 · 10−3 1.569 · 10−3 1.569 · 10−3

(UMAT) of the implicit solver of Abaqus/Standard. In both considered material models,

the hyperelastic and the elastic-plastic model, the derivatives are computed using the

automatic differentiation feature of AceGen. This is verified in case of the hyperelastic

model by the analytical solution for the tangent and in case of the elastic-plastic model

by two different approximation methods of the consistent tangent. The error of the

automatic differentiation method is in the range of the machine precision compared

to the analytical solution of the hyperelastic model and the convergence behavior is

the same. It could be shown that the convergence behavior of simulations using the

elastic-plastic model and the automatic differentiated tangent is identical to the tangents

obtained by the numerical approximation methods. Thus, the tangent generated by

AceGen could be verified and can be used for a UMAT. However, this required a new

approach of implementation using AceGen within the Mathematica environment which

brings a rather long familiarization, respectively, development time. If this barrier is

overcome the implementation is much more easy and not error-prone like in a standard

programming language, for example FORTRAN. If the basic structure is implemented

the constitutive equations are exchangeable and a completely new material behavior

including the consistent tangent is programmed in minutes. This makes AceGen highly

valuable in the process of material modeling because different approaches may be tested

without spending a lot of time for programming and calculation of derivatives.
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7.1. Conclusions

The purpose of the present work was to develop a constitutive model for amorphous

thermoplastic polymers. The main focus laid on the consideration of a wide range of

temperatures - from room temperature till above the glass transition temperature - and

to account for a pre-oriented molecular network as it may arise from manufacturing

processes.

For this purpose, an existing model for glassy polymers by Boyce et al. (1988) was

enhanced to be also suitable at elevated temperatures. The intermolecular and molecular

network resistances against inelastic deformation of this basic model were modified to

capture the strong temperature dependence. The modification of the intermolecular

resistance - particularly Young’s modulus and the shear yield strength - led to a very good

agreement with own experimental results in the small strain regime. For the molecular

network resistance two different models were incorporated into the basic model: the

"entanglement dissociation model" and the "molecular relaxation by reptation" model for

which the formulation of an enhanced kinematics must be performed. Both models were

able to reproduce the temperature dependence of the hardening behavior at large strains

of an amorphous thermoplastic polymer (PMMA) with introducing only a limited number

of additional material parameters. The stress response of the models was compared

to stress-strain curves obtained from own uniaxial tensile tests conducted from room

temperature till above the glass transition temperature at different strain rates. In the

experiments the local strain field (utilized also to calculate the true stress) was successfully

measured using digital image correlation.

In analyzing a fictitious non-monotonic thermomechanical loading process the entan-

glement dissociation model failed and an unrealistic stress response was obtained. In

contrast, the molecular relaxation (reptation) model gave a realistic stress response. Thus,

this model is much more suitable for simulations of thermoforming, for example, where

complicated thermomechanical loading is applied to the material.
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The molecular relaxation (reptation) model was further validated by simulating micro-

thermoforming processes. Experiments with different process parameters were simulated

and the computed deformations were compared to the real formed parts. In the simula-

tions, the cooling and mold opening stages were also considered which is a rare approach

in literature but is important when it comes to further structural simulations with the

final component. In that case the stress and strain distribution in the component are thus

available. Despite several simplifications the computational model captured the influence

of different process parameters quite well and the simulated forming displacements were

in a very good agreement with experimentally obtained forming shapes. This showed

that the developed constitutive model can be successfully used for thermoforming process

simulations.

The incorporation of a pre-orientation of the molecular network into the constitutive

models could be successfully accomplished as well. An initial network stretch tensor was

introduced for this purpose which contains information about the pre-deformation history

of the molecular network, e.g. from processing. This affects the large strain response of the

material and could be qualitatively reproduced by the model. The deformation behavior

of two injection molded components at heating above the glass transition temperature

was investigated and served as computational examples. By mapping an assumed initial

molecular orientation on the finite element model, the extended constitutive model was

successfully used to simulate the re-heating process. The resulting deformation in the

simulations of both parts are in good agreement with that observed in the real experiment.

In a further computational example, a thermoforming process of a blister-like part was

simulated and different amounts of initially applied pre-stretch in the polymer film were

investigated. It could be shown that an initial stretch in the film has a strong influence on

the thermoforming behavior. With increasing pre-stretch the resistance against forming

increased and the forming depth decreased. Thus, the pre-orientation of the molecular

network should be regarded in thermoforming simulations.

The developed material models were implemented into the FE-program Abaqus. For this

purpose the automatic differentiation, code generation and optimization tool AceGen

was utilized. Since Acegen is a plug-in for the computer algebra system Mathematica,

symbolic programming of the constitutive equations could be used for the implementation

which simplifies the code development. However, to use this tool efficiently and to take

full advantage of the capabilities a different programming approach had to be developed,

e.g. in computing the algorithmic tangent. The generated code was verified on two

simpler constitutive models - a hyperelastic and an elastic-plastic model - by comparing

the algorithmic tangents with analytical and numerically approximated tangents. In
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summary, AceGen could be used successfully and efficiently to implement user material

models in Abaqus. By using this tool, it is not necessary anymore to form complicated

derivatives to obtain the algorithmic tangent. Rather, one can implement changes in the

material model very quickly and obtain the tangent automatically.

7.2. Outlook

Although the molecular relaxation (reptation) model proved to be in good agreement

with the experimental results, the model response can be further improved. For instance,

consideration of adiabatic heating at higher strain rates could give a better response

at lower temperatures. This can be easily included into the model as shown in Arruda

et al. (1995), for example. The intrinsic softening of the material at lower ambient

temperatures (deliberately ignored in the present work) could be incorporated as well to

give a better fit to the experiments. However, at higher temperatures the softening effect

vanishes and thus is not important for thermoforming analyses. A further improvement of

the model would be to include the temperature and strain rate dependent viscoelasticity

which is important for the cyclic (unloading) behavior and which was not investigated at

all in this work.

In the simulations of micro-thermoforming processes the boundary conditions could

be refined to be more realistic, for example, to clamp the film accounting for friction

and not to simply fix it at the boundary. In addition, a thermal analysis prior to the

mechanical analysis could be performed so that then the computed temperature distri-

bution could serve as a temperature boundary condition. This could further improve

the quality of the computational model and the results. In a further step, a coupled

temperature-displacement analysis could bring even more improvements. Moreover, easy

to perform experiments that mimic a thermoforming process could be used to validate

the constitutive model without introducing several unknowns. This could be performed

e.g. in uniaxial tensile tests with non-constant displacement and temperature conditions.

Similar experiments on extruded polymer rods with different amounts of applied stretch

were conducted by Kahar et al. (1978). These data could also be used to validate and to

improve a constitutive model.

To obtain realistic values for the pre-stretch in a polymer a methodology should be worked

out, for example, with measurements of the birefringence or an estimation obtained from

melt flow simulations.
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Appendix





A. Notes to the constitutive
models of Ch. 4

A.1. Material parameters

Table A.1.: Material parameter values for PMMA in the basic model for PMMA (Sec. 4.1.2)

E [MPa] 2500 N(T = 293.15K) = NRT [−] 2
ν [−] 0.4 CR(T = 293.15K) = CR

RT [MPa] 5
γ̇

p
0 [s

−1] 1.707 · 1025

A [MPa K−1] 131
s0 [MPa] 180
α [−] 0.2

Table A.2.: Material parameter values for PMMA in the entanglement dissociation model according to
(Raha and Bowden, 1972) (Sec. 4.2.1)

Tg [K] 378.15 AT [K−1] 0.00323
ΔTg [K] 15 s0 [MPa] 180

Eg1 [MPa] 9096 α [−] 0.2
Eg2 [MPa K−1] 22.5 N [−] 2

Er1 [MPa] 100 CR [MPa] 5
Er2 [MPa K−1] 4.15 B [mm−3] 2.9547 · 1018

ν [−] 0.4 D [mm−3] 1.20087 · 1022

γ̇
p
0[s

−1] 1 · 1026 Ea [kcal mol−1] 6.543
A0 [MPa−1] 1.213
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Table A.3.: Material parameter values for PMMA in the molecular relaxation by reptation model (Sec.
4.2.2)

Tg [K] 378.15 α [−] 0.2
ΔTg [K] 15 N [−] 2

Eg1 [MPa] 9096 CR [MPa] 5
Eg2 [MPa K−1] 22.5 γ̇

p
N0 [s

−1] 3.3 · 1023

Er1 [MPa] 100 AN T [K] 20541
Er2 [MPa] 4.15 κ [−] 6.756
ν [−] 0.4 λL

N0 [−] 3.9 · 10−11

γ̇
p
0[s

−1] 1 · 1026 λL
N T [K

−1] 0.06306
A0 [MPa−1] 1.213 ξ [−] 55

AT [K−1] 0.00323 τ̃b
0 [MPa] 1

s0 [MPa] 180

A.2. Numerical treatment of material
models of Ch. 4

In this section the numerical treatment with respect to the implementation using AceGen

of the models of the Ch. 4 is shown. For the implementation using AceGen, especially

the treatment of the Newton iteration scheme and the computation of the algorithmic

tangent, it is referred to App. C.2 where the complete code of the implementation of a

elastic-plastic material model is presented. The implementation of the models of Ch. 4

are very similar to the model presented in App. C.2.

A.2.1. Basic model of Sec. 4.1.2

In contrast to the standard von Mises plasticity model the glassy polymer model is not

formulated with a flow function. Thus, the algorithm to compute the new stress is straight

forward and no elastic-predictor plastic-corrector algorithm is necessary. The kinematics

and the plastic strain are updated with a Newton-scheme in which the plastic deformation

gradient is integrated using the exponential mapping approximation

F p
t+Δt = exp[Δt l̂

p
t+Δt]F

p
t (A.1)
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and the plastic strain with an Euler backward method

γ
p
t+Δt = γ

p
t +Δtγ̇p . (A.2)

Setting the plastic spin to zero (ŵ p = 0) (A.1) yields

F p
t+Δt = exp[Δt d̂ p

t+Δt]F
p
t . (A.3)

The resulting non-linear system of equations is combined in the residual vector R

R = [R1 R2]
T = 0 (A.4)

with

R1 = F p
t+Δt − exp[Δt d̂ p

t+Δt]F
p
t (A.5)

R2 = γ
p
t+Δt − γp

t −Δtγ̇p . (A.6)

This is solved by the Newton-scheme as shown in Sec. 6.2.2 for the unknown variables

vector X = [F p γp]T . The algorithm is shown in Box A.1.
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Algorithm to compute the stress and the consistent tangent moduli for the basic model

input in UMAT: F t+Δt , F p
t , γp

t

→ computation with AceGen :

1 Newton iteration loop: i = 0,1, ..., convergence

I. initialization, set: F p
0 = F p

t , γp
0 = γ

p
t

II. compute (AD): F e
i = F t+Δt F

p−1
i , Σi = 2Ĉ e

i

∂W e
i

∂ Ĉ e
i

, τ̂b
i =

CRβi

3λC Li
b̂p

i , d̂p
i = γ̇

p
i

Σ∗i
′

‖Σ∗i ′‖

III. compute residual vector: Ri = [R1i R2i]
T with

R1i = F p
i − exp[Δt d̂p

i ]F
p
t , R2i = γ

p
i − γp

t −Δtγ̇p
i

IV. solve (AD): ΔX = −
�
∂ Ri

∂ X i

�−1

∗Ri → X i+1 = X i +ΔX = [F p
i+1 γ

p
i+1]

T

V. check convergence criterion:

‖ΔX‖

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

≥ Tol→ set i = i + 1 and go to II.

< Tol→ convergence : solve (AD) ∂ X i+1
∂ F t+Δt

= −�
∂ Ri+1
∂ X i+1

�−1 ∗ ∂ Ri+1
∂ F t+Δt

set : F p
t+Δt = F p

i+1, γp
t+Δt = γ

p
i+1, END loop and go to 2

2 compute new stress (AD): F e
t+Δt = F t+Δt F

p−1
t+Δt , τt+Δt = 2F e

t+Δt

∂W e
t+Δt

∂ Ĉ e
t+Δt

F eT
t+Δt

3 compute consistent tangent (AD):

�̃
al g,σ
i jkl = J−1

�
∂ τi j

∂ Fkm
Flm +

1
2
(δilτ jk +τikδ jl −δikτ jl −τilδ jk)

 

Box A.1
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A.2.2. Molecular relaxation by reptation model of Sec. 4.2.2

Due to the extended kinematics of the basic model of Sec. 4.1.2 the numerical costs

increase in case of the molecular relaxation model. For the Newton-scheme nine additional

equations are to solve. The residual vector then yields

R = [R1 R1 R2]
T = 0 (A.7)

with

R1 = F p
t+Δt − exp[Δt d̂ p

t+Δt]F
p
t (A.8)

R2 = F p
N t+Δt − exp[Δt d̃ p

N t+Δt]F
p
N t (A.9)

R3 = γ
p
t+Δt − γp

t −Δtγ̇p . (A.10)

The overall algorithm is given in Box A.2.
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Algorithm to compute the stress and the consistent tangent moduli

input in UMAT: F t+Δt , F p
t , F p

N t ,γ
p
t

→ computation with AceGen :

1 Newton iteration loop: i = 0,1, ..., convergence

I. initialization, set: F p
0 = F p

t , F p
N0 = F p

N t γ
p
0 = γ

p
t

II. compute (AD): F e
i = F t+Δt F

p−1
i , F e

N i = F p
i F p−1

Ni , Σi = 2Ĉ e
i

∂W e
i

∂ Ĉ e
i

, τ̂b
i =

CRβi

3λC Li
b̂e

N i

d̂p
i = γ̇

p
i

Σ∗i
′

‖Σ∗i ′‖
, d̃p

N i = γ̇
p
N i

τ̃b
i
′

‖τ̃b
i
′‖

III. compute residual vector: Ri = [R1i R2i R3i]
T with

R1i = F p
i − exp[Δt d̂p

i ]F
p
t , R2i = F p

N i − exp[Δt d̃p
N i]F

p
N t , R3i = γ

p
i − γp

t −Δtγ̇p
i

IV. solve (AD): ΔX = −
�
∂ Ri

∂ X i

�−1

∗Ri → X i+1 = X i +ΔX = [F p
i+1 F p

N i+1 γ
p
i+1]

T

V. check convergence criterion:

‖ΔX‖

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

≥ Tol→ set i = i + 1 and go to II.

< Tol→ convergence : solve (AD) ∂ X i+1
∂ F t+Δt

= −�
δRi+1
∂ X i+1

�−1 ∗ ∂ Ri+1
∂ F t+Δt

set : F p
t+Δt = F p

i+1, F p
N t+Δt = F p

N i+1, γp
t+Δt = γ

p
i+1, END loop and go to 2

2 compute new stress (AD): F e
t+Δt = F t+Δt F

p−1
t+Δt , τt+Δt = 2F e

t+Δt

∂W e
t+Δt

∂ Ĉ e
t+Δt

F eT
t+Δt

3 compute consistent tangent (AD):

˜al g,σ
i jkl = J−1

�
∂ τi j

∂ Fkm
Flm +

1
2
(δilτ jk +τikδ jl −δikτ jl −τilδ jk)

 

Box A.2

for the reptation model



B. Numerical approximation
methods of the tangent moduli

In this chapter the numerical approximation of the elasticity tensor and the algorithmic

tangent is discussed. Again, AceGen is used for the programming of these tangents.

The numerical approximation of the consistent tangent was first presented in Miehe

(1996). An application for hyperelastic material models can be found for example in

Sun et al. (2008) and Sagar and Stein (2008). The approximation in their works base

on the forward difference approximation (FD). A furter approximation method is the

complex step derivative approximation (CSDA) and is applied for plasticity regarding

small deformations by Perez-Foguet et al. (2000) and hyperelasticity by Tanaka et al.

(2014). Both approximation methods are briefly described in the following sections.

B.1. Numerical approximation of elasticity tensor

B.1.1. Forward difference approximation

The approximation of a derivative of a function f (x) with the forward difference method

bases on a small perturbation value ε. At a certain evaluation point the function value is

perturbed and the difference to the unperturbed function is calculated. By dividing this

difference by the perturbation value ε, the approximation of the derivative is as follows

d f (x)
dx

≈ f (x + ε)− f (x)
ε

. (B.1)

Applying this method to approximate the derivative necessary for the tangent moduli,

the deformation gradient F must be perturbed in six directions (deformation states). So,

the perturbed deformation gradient F ε(i j) reads

F ε(i j) = F +ΔF ε(i j) (B.2)
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with the perturbation

ΔF ε(i j) =
ε

2

�
e i ⊗ e j F + e j ⊗ e i F

�
(B.3)

and the six choices for e i, j=1,3 with (i, j) = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} (Miehe,

1996). The increment of the Kirchhoff stress is then defined as the difference of the

perturbed Kirchhoff stress τε(i j) = τ(F
ε
(i j)) and the unperturbed one τ = τ(F) determined

by the unperturbed deformation (cf. Box 6.1)

Δτε(i j) = τ
ε
(i j) −τ (B.4)

where the perturbed Kirchhoff stress must be computed six times for the six different

perturbed deformation states. To get the approximated spatial tangent moduli �̃ε(i j)

the linearization of the Kirchhoff stress in terms of the Jaumann-Zaremba stress rate is

expressed in terms of the perturbed deformation gradient

Δτε(i j) = �̃
ε
(i j) :Δdε(i j) +Δw ε(i j)τ−τΔw ε(i j) . (B.5)

From the above equation it is obvious that the choice of only six perturbed deforma-

tion states is sufficient because all tensors are symmetric or antisymmetric, respectively.

Furthermore, Δw ε(i j) andΔdε(i j) depend on the incremental perturbed velocity gradient

Δlε(i j) =ΔF ε(i j)F
−1 (B.6)

and with (B.3) it follows

Δdε(i j) =
1
2
(Δl(i j) +ΔlT

(i j)) =
ε

2
(e i ⊗ e j + e j ⊗ e i) (B.7)

Δw ε(i j) =
1
2
(Δl(i j) −ΔlT

(i j)) = 0 . (B.8)

Inserting (B.4) in (B.5) and using the relations of (B.7) and (B.8) one receives an expres-

sion in terms of the perturbed and unperturbed Kirchhoff stresses and the perturbation

parameter only

τε(i j) −τ = �̃
ε
(i j) :

ε

2
(e i ⊗ e j + e j ⊗ e i) . (B.9)

By make use of the symmetry properties the approximation of the spatial tangent moduli

yields

�̃≈ �̃
ε
(i j) =

1
ε
(τε(i j) −τ) (B.10)
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and the approximated consistent spatial tangent regarding the Cauchy stress is given by

˜ε,σ(i j) =
1
J

˜ε(i j) . (B.11)

This equation results in a symmetric 6× 6 matrix

˜ε,σ(i j) =
1
Jε

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ11(F ε(11))−τ11 . . . τ11(F ε(23))−τ11

τ22(F ε(11))−τ22 . . . τ22(F ε(23))−τ22

τ33(F ε(11))−τ33 . . . τ33(F ε(23))−τ33

τ12(F ε(11))−τ12 . . . τ12(F ε(23))−τ12

τ13(F ε(11))−τ13 . . . τ13(F ε(23))−τ13

τ23(F ε(11))−τ23 . . . τ23(F ε(23))−τ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.12)

where the components are the difference of the six perturbed Cauchy stresses resulting

from the six perturbed deformation gradients and the unperturbed Cauchy stress with

respect to the perturbation parameter ε. So, the numerical approximated tangent strongly

depends on the choice of the perturbation parameter. Theoretically, taking this parameter

very small the numerical tangent would converge to the analytical solution, but round-off

errors of the computer avoid this convergence. Choosing the parameter too large results

in an incorrect approximation. Rather, there must be an optimum of the parameter

depending on the computer architecture and the problem.

As the analytical consistent tangent in Sec. 6.2.1 the numerically approximated tangent

is computed with AceGen, too. The crucial advantage is that seven derivatives must be

computed to get all stresses needed for the numerical tangent and that these derivatives

are automatically computed by AceGen. As said before (cf. Ch. 6), the code will be

optimized so that redundant components of the computed tensors are minimized. The

algorithm to compute the tangent is presented in Box B.1.
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Algorithm to compute the approximated spatial elasticity tensor with the FD method

input in UMAT: F t+Δt

→ computation with AceGen :

1. steps 1-4 of Box 6.1 to get Kirchhoff stress

2. perturbed deformation gradients: F ε(i j) = F +ΔF ε(i j)

3. perturbed right Cauchy-Green tensors: C ε(i j) = F εT(i j)F
ε
(i j)

4. strain energy functions with perturbed quantities: W ε
(i j)(C

ε
(i j))

5. perturbed Kirchhoff stress tensors (AD): τε(i j) = 2F ε(i j)

∂W (C ε(i j))

∂ C ε(i j)

F εT(i j)

6. approximated spatial elasticity tensor: �̃ε,σ(i j) ≈ 1
Jε
(τε(i j) −τ)

Box B.1

B.1.2. Complex step derivative approximation

A further method to numerically approximate the tangent is the complex-step derivative

approximation (CSDA) (Martins et al. (2003), Perez-Foguet et al. (2000)). The complex-

step derivative approximation make use of the imaginary part of the perturbed state of a

function. The perturbation parameter ε is multiplied by the imaginary number i

d f (x)
dx

≈ Im[ f (x + εi)]
ε

(B.13)

and the approximation does not suffer from round-off errors at small step size where the

truncation error is small. Applying this approximation to the above description (e.g. Box

B.1) only small changes must be performed in the algorithm workflow. However, AceGen

is not able to handle complex numbers and is only used to compute the stress. The rest

of the algorithm is performed using FORTRAN (Box B.2). So, the implementation of the

CSDA is more complex and no closed coding with AceGen is possible.
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Algorithm to compute the approximated spatial elasticity tensor with the CSDA method

input in UMAT: F t+Δt

→ computation with AceGen :

1. steps 1-4 of Box 6.1 to get Kirchhoff stress

→ computation with FORTRAN :

2. perturbed deformation gradients: F εi(i j) = F +ΔF ε(i j)i

3. computation with subroutine of steps 1-4 of Box 6.1 to get perturbed Kirchhoff stress:

τεi(i j) = 2F εi(i j)

∂W (C εi(i j))

∂ C εi(i j)

F εiT(i j)

4. approximated spatial elasticity tensor: �̃ε,σ(i j) ≈
Im[τεi(i j)]

Jε

Box B.2

B.1.3. Additional discussion of computations of Sec. 6.2.1

In this section an additional discussion to the verification section of Sec. 6.2.1 regarding

the convergence behavior of the tangent derived by the numerical approximation methods

is given. The same neo-Hookean strain energy function is used and the same computa-

tional models are used. Again, the number of iterations and the convergence rate are

compared with the analytical solution of the tangent.Four different routines are generated

with AceGen: the analytical, AD, FD and CSDA tangent. In Tab. B.1 these routines are

listed with the corresponding size of each routine in bytes. For the approximation of the

tangent using the CSDA method only the stress is computed with AceGen. This gives a

small subroutine but it must be called seven times by the main routine to compute the

unperturbed and perturbed stresses.

Single element test

The relative errors η (6.12) of the computed tangents with respect to the analytic (refer-

ence) solution re f
�̃
σ are evaluated in a single element test as done before in Sec. 6.2.1.

The errors are evaluated in the first iteration and are shown in Fig. B.1. With the automatic
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Table B.1.: By AceGen generated routines for a UMAT

analytical tangent reference solution 2938 bytes

tangent by AceGen AD (Box 6.1) 25813 bytes

numerical tangent by AceGen FD (Box B.1) 16421 bytes

numerical tangent by AceGen (only stress) CSDA (Box B.2) 1959 bytes

differentiation method (AD) a very small error occurs (η ≈ 10−16) which is in the region

of the machine precision of a 64bit architecture (2.2 · 10−16). The error of the numerical

approximation using the forward difference approximation (FD) decreases linearly with

decreasing step size due to decreasing truncation error. At a step size of ε = 10−8 a mini-

mal error occurs and with further decreasing step size the error increases due to round-off

errors. The error of the complex-step derivative approximation (CSDA) of the tangent

converges quadratically to a error near to that of the AD method at a step size of ε = 10−8.

No error is found at a step size of ε = 10−15 − 10−16 where the approximation is equal to

the reference solution. The reference (analytical) solution needs six iterations to converge.
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Figure B.1.: Relative errors of computed tangents in the single element test
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The convergence behavior of the three other methods in terms of the norm of the largest

residual force is shown in Tab. B.2. The tangent derived by the AD method gives the

same convergence as the analytical one which is not surprising because the relative error

is very small. In case of FD approximation the largest residual norm is the same to the

analytical solution in the step size range of ε = 10−6 − 10−12 and in case of the CSDA

good results are achieved even from a step size of ε = 10−4. Remarkable is, that the CSDA

gives the same residual force in the last iteration in contrast to the FD approximation.

The computation of the stress at the end of the simulation gives same values for every

method.

Simulation of three point bending test

Based on the results of the single element test, a step size of εF D = 10−8 for the FD method

and εCSDA = 10−16 for the CSDA method is chosen for the simulation of a three point

bending experiment. The number of iterations are in every simulation the same as well

as a quadratic convergence rate is obtained near the solution in all cases (Tab. B.3).

This behavior shows that the computation of the tangent is in all three cases right or

well enough approximated. Again, evaluating the relative error of the respective three

tangents in the third increment of an element under a complex stress state, nearly the

same behavior as in the single element test is observed (Fig. B.2).
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10- 4
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Figure B.2.: Relative error of computed tangents in the third increment of the three point bending simulation
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Table B.2.: Norm of largest residual force

iteration analytical AD FD CSDA FD CSDA
tangent tangent ε = 10−2 ε = 10−2 ε = 10−4 ε = 10−4

1 4.447 · 104 4.447 · 104 8.355 · 104 4.485 · 104 4.474 · 104 4.447 · 104

2 1.961 · 104 1.961 · 104 3.592 · 104 1.972 · 104 1.972 · 104 1.961 · 104

3 7.741 · 103 7.741 · 103 1.520 · 104 7.772 · 103 7.797 · 103 7.741 · 103

4 815 815 4.386 · 103 807 837 815
5 7.27 7.27 367 8.26 7.96 7.27
6 6.554 · 10−4 6.554 · 10−4 136 9.248 · 10−3 5.586 · 10−3 6.545 · 10−4

7 4.50
8 0.256

FD CSDA FD CSDA FD CSDA
ε = 10−6 ε = 10−6 ε = 10−8 ε = 10−8 ε = 10−10 ε = 10−10

1 4.447 · 104 4.447 · 104 4.447 · 104 4.447 · 104 4.447 · 104 4.447 · 104

2 1.961 · 104 1.961 · 104 1.961 · 104 1.961 · 104 1.961 · 104 1.961 · 104

3 7.741 · 103 7.741 · 103 7.741 · 103 7.741 · 103 7.741 · 103 7.741 · 103

4 815 815 815 815 815 815
5 7.27 7.27 7.27 7.27 7.27 7.27
6 7.173 · 10−4 6.554 · 10−4 6.560 · 10−4 6.554 · 10−4 6.564 · 10−4 6.554 · 10−4

FD CSDA FD CSDA FD CSDA
ε = 10−12 ε = 10−12 ε = 10−14 ε = 10−14 ε = 10−16 ε = 10−16

1 4.447 · 104 4.447 · 104 4.451 · 104 4.447 · 104 3.509 · 104 4.447 · 104

2 1.961 · 104 1.961 · 104 1.964 · 104 1.961 · 104 1.616 · 104 1.961 · 104

3 7.741 · 103 7.741 · 103 7.751 · 103 7.741 · 103 6.000 · 103 7.741 · 103

4 815 815 822 815 837 815
5 7.27 7.27 9.04 7.27 144 7.27
6 7.016 · 10−4 6.554 · 10−4 1.139 · 10−2 6.554 · 10−4 16.7 6.554 · 10−4

7 1.49



B.2. Numerical approximation of algorithmic consistent tangent moduli 175

Table B.3.: Convergence behavior of the simulation. The norm of the largest residual force is given in
the third increment.

analytical AD FD CSDA
tangent tangent (ε = 10−8) (ε = 10−16)

total no. of iterations 22 22 22 22

normalized
computation 1.0 1.0278 1.0085 1.0961

time

iteration #

1 14.9 14.9 14.9 14.9
2 5.41 5.41 5.41 5.41
3 1.705 · 10−2 1.705 · 10−2 1.705 · 10−2 1.705 · 10−2

4 8.687 · 10−6 8.687 · 10−6 8.687 · 10−6 4.835 · 10−8

The computation time (Tab. 6.3) differs from routine to routine and correlates with

the size of the routines (Tab. 6.1). Of course, the fastest routine is the analytical one

because the fewest operations must be performed due to the direct implementation of the

derivatives. The computation time of the numerical approximation with the FD method

are very fast as well. More operations must be performed with the tangent computed by

AceGen and this leads to a longer computation time. The longest computation time is

needed by the routine with the CSDA method because the only optimized code is that of

the computation of the stress. The rest of the code is programmed by hand because of

the inability of AceGen to work with complex numbers.

B.2. Numerical approximation of algorithmic
consistent tangent moduli

The approximation of the algorithmic consistent tangent is similar to the methods of

Sec. B.1 but in case of inelasticity the update algorithm of the internal variables must be

considered (Miehe, 1996). Introducing a set of internal variables H which are updated

through an update algorithm H al g which gives the updated internal variables H t+Δt =
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H al g(F t+Δt , H t) at the end of the time step. In this case the stress depends on these

updated variables and the total deformation as

τt+Δt = τ(F t+Δt , H t+Δt) = τ
al g(F t+Δt , H t) . (B.14)

Using the same perturbation strategy as in Sec. B.1 the perturbed stress with respect to

the update algorithm yields

τε(i, j) = τ
ε,al g
(i, j) (F

ε
(i, j), H t) (B.15)

by suppressing the time step subscripts for convenience. Applying the forward difference

approximation (FD) (cf. Sec. B.1) the approximated consistent tangent yields

�̃
al g,σ ≈ �̃

ε,al g,σ
(i j) =

1
Jε
(τε,al g
(i, j) (F

ε
(i, j), H t)−τal g(F , H t)) (B.16)

for all quantities at time t +Δt otherwise noted. Applying the complex step derivative

approximation (CSDA) the approximation of the consistent tangent is given by

�̃
al g,σ ≈ �̃

ε,al g,σ
(i j) =

1
Jε

Im[τεi,al g
(i, j) (F

εi
(i, j), H t)] . (B.17)

The algorithms of both methods are presented with respect to a elastic-plastic model in

Box B.3 and Box B.4, respectively.

Algorithm to compute the approximated consistent tangent with the FD method

input in UMAT: F t+Δt , H t

→ computation with AceGen :

1. perform algorithm of Box 6.3 (till step 2.2) with H = [F p εp]

to get updated quantities τt+Δt , H t+Δt

2. perturbation of deformation gradients: F ε(i j) = F +ΔF ε(i j)

3. perform for each perturbed deformation gradient the algorithm of Box 6.3 (till step

2.2)

to get perturbed algorithmic Kirchhoff stress τε,al g
(i, j) (F

ε
(i, j), H t)

4. approximated consistent tangent moduli: �̃ε,al g,σ
(i j) ≈ 1

Jε
(τε,al g
(i j) (F

ε
(i, j), H t)−τt+Δt)

Box B.3
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Algorithm to compute the approximated consistent tangent with the CSDA method

input in UMAT: F t+Δt , H t

→ computation with AceGen :

1. perform algorithm of Box 6.3 (till step 2.2) with H = [F p εp]

to get updated quantities τt+Δt , H t+Δt

→ computation with FORTRAN :

2. perturbation of deformation gradients: F εi(i j) = F +ΔF ε(i j)i

3. perform for each perturbed deformation gradient the algorithm of Box 6.3 (till step

2.2)

to get perturbed algorithmic Kirchhoff stress τε,al g
(i, j) (F

ε
(i, j), H t)

4. approximated consistent tangent moduli: �̃ε,al g,σ
(i j) =

Im[τεi,al g
(i j) (F

εi
(i, j), H t)]

Jε

Box B.4

B.2.1. Additional discussion of computations of Sec. 6.2.2

As the hyperelastic material model implementation is additionally discussed in Sec. B.1.3

with respect to the convergence behavior of the approximated tangents, the elastic-plastic

model implementation is discussed in this section as well. For the used material model

and the computational models it is referred to Sec. 6.2.2. The generated subroutines are

listed with their size in bytes in Tab. B.4. Again, for the CSDA method only the routine

for the update of the internal variables and stress is used. This leads to seven executions

of the subroutine.

Table B.4.: With AceGen generated routines for UMAT

tangent by AceGen AD (Box 6.3) 309589 bytes

numerical tangent by AceGen FD (Box B.3) 1080376 bytes

numerical tangent by AceGen (only stress) CSDA (Box B.4) 140699 bytes
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All three methods to compute the tangent result in the same convergence behavior (Tab.

B.5) in the simulation of a cylindrical bar. All need the same number of iterations but

differ in the computation time dramatically. While the routine generated by AD is the

fastest one, the CSDA method is the slowest one with a factor of almost two with respect

to the AD. This result is not surprising since AceGen in combination with the AD method

generates smallest source code (cf. Tab. B.4) while for the CSDA method only the stress

update routine is generated by AceGen which must be called seven times. This decelerates

the computation time of course. In contrast, the FD method is completely coded with

AceGen so that the optimization of the code is fully exploited which results in a slower

computation time of a factor of 1.3 with respect to the routine coded with AD.

Table B.5.: Convergence behavior of the simulation. The norm of the largest residual force is given in
the last increment.

AD (AceGen) FD (ε = 10−8) CSDA (ε = 10−16)

total no. of iterations 227 227 227

normed
computation 1.0 1.345 1.958

wall-clock time

iteration #

1 0.430 0.430 0.430
2 0.128 0.128 0.128
3 3.606 · 10−2 3.606 · 10−2 3.606 · 10−2

4 9.177 · 10−3 9.177 · 10−3 9.177 · 10−3

5 1.570 · 10−3 1.569 · 10−3 1.569 · 10−3



C. Complete AceGen codes

C.1. Hyperelastic material model implementation

AceGen and Mathematica code
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C.2. Elastic-plastic material model implementation

AceGen and Mathematica code
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