
Enabling Domain-Specific
Rule-Based Automation With
Semantic Stream Technology

Master’s Thesis
from

Michael Jacoby

Chair of Pervasive Computing Systems/TECO
Institute of Telematics

Department of Informatics

Reviewer #1: Prof. Dr. Michael Beigl
Reviewer #2: Prof. Dr. Hannes Hartenstein
Supervisor: Dr. Till Riedel

Editing Time: 16/06/2014 – 15/12/2014

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten
Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe, den 15.12.2014

iv

v

Zusammenfassung

Ziel dieser Arbeit ist die Zusammenführung von Semantischen Technologien, Stream-
ing Technologien und benutzerzentrierter regelbasierter Heimautomatisierung mit
dem Zweck dadurch die Entwicklung von mächtigeren und benuzterfreundlicheren
Heimautomatisierungssystemen zu ermöglichen. Um dies zu erreichen verbindet
diese Arbeit die relativ neue Technologie des Semantic Streamings mit Heimautoma-
tisierung unter Berücksichtigung der Anforderung und Perspektive der Benutzer.

Ein Beitrag dieser Arbeit ist eine systematische Literaturanalyse existierender An-
wendungsfälle der regelbasierten Heimautomatisierung sowie deren Klassifikation
anhand neu gefundener Kriterien. Als Teil der Analysephase wurde eine partizipa-
tive Designstudie durchgeführt die ergab, dass Benutzer visuelle Programmier- bzw.
Abfragesprachen im Bereich der Heimautomatisierung präferieren. Außerdem wurde
ein neues Abfragemuster im Bereich des Semantic Streamings entdeckt das als Dy-
namische Sensorselektion bezeichnet wird.

Als Hauptbeitrag dieser Arbeit wurde ein Heimautomatisierungssystem basierend
auf Semantic Streaming entwickelt, genannt ERAS (Event and Rule Automation
System) das auf zwei hierarchisch angeordneten visuellen Sprache basiert, genannt
Event Language (EL) und Rule Language (RL). ERAS wurde vollständig imple-
mentiert und umfasst ebenfalls je einen grafischen Editor für die beiden visuellen
Sprachen.

Da sich alle existierenden Semantic Streaming Systeme und Benchmark-Tests als
nicht passend für diese Arbeit herausstellten wurde außerdem ein eigenes solches
System implementiert, genannt ECQELS (Extended Continuous Query Evaluation
over Linked Stream) sowie ein entsprechender Benchmark-Test der die durchschnit-
tliche Antwortzeit als Kriterium für den Vergleich verschiedener Semantic Streaming
Systeme einführt.

Das in dieser Arbeit entwickelte System wurde mit Hilfe des ebenfalls in dieser Arbeit
entwickelten Benchmark-Tests mit CQELS, dem vermutlich mächtigsten existieren-
den Semantic Streaming System, verglichen. Dieser Vergleich ergab, dass ECQELS
für eher einfache Abfragen ähnlich gute Ergebnisse liefert wie CQELS und es bei der
zeitgleichen parallelen Ausführung mehrerer Abfragen sogar übertrifft. Im Weiteren
wurde als Teil der Evaluation eine Studie zur Benutzerakzeptanz zum Vergleich der
Benutzerfreundlichkeit der grafischen Sprache EL und ihrem textuellen Äquivalent
ECQELS durchgeführt. Diese ergab, dass die Benutzer in den meisten Fällen die
grafische Notation geringfügig bevorzugten, wobei die nicht gezeigt werden konnte,
dass die Unterschiede signifikant sind.

Auf Basis der Ergebnisse dieser Arbeit kann man zu dem Schluss kommen, dass die
Verwendung von Streaming Technologien in der Domäne der Heimautomatisierung
das Potential bietet große Vorteile für die Entwicklung mächtigerer und zugleich
benutzerfreundlicherer Heimautomatisierungssysteme bereitzustellen.

vi

vii

Abstract

The aim of this study is to consolidate semantics, streaming and user-centered rule-
based home automation with the goal of thereby enabling more powerful and more
user-friendly home automation systems. To reach this goal this thesis incorporates
the rather new field of semantic streaming into home automation taking into account
the users’ needs and perspective.

This thesis contributes a structured literature review on rule-based home automa-
tion use cases including their classification by new criteria. As part of the analysis
a participatory design study was conducted yielding that users prefer visual lan-
guages in the domain of home automation. Furthermore a new pattern in semantic
streaming was discovered called dynamic sensor selection.

As main contribution of this thesis a home automation system based on semantic
streaming called ERAS (Event and Rule Automation System) was developed using
two hierarchically-aligned visual languages called Event Language (EL) and Rule
Language (RL). ERAS was completely implemented also containing an editor for
each of the two visual languages.

As existing semantic streaming engines and benchmarks for semantic streaming
engines did proof not suitable a custom semantic streaming engine called ECQELS
(Extended Continuous Query Evaluation over Linked Stream) was designed and
implemented as well as a corresponding benchmark introducing the average response
time as relevant feature for comparison of semantic streaming engines.

The system developed in this thesis was evaluated by performing the implemented
benchmark on ECQELS comparing it to CQELS, probably the most powerful ex-
isting semantic streaming engine, which yielded that ECQELS can compete with
CQELS for rather simple queries. When executing multiple queries simultaneously
ECQELS event outperforms CQELS. Furthermore a user acceptance study was con-
ducted as part of the evaluation comparing the visual language EL and the textual
language ECQELS regarding usability. As outcome of the study EL was slightly pre-
ferred by the users in most cases but differences could not be proven significantly.

On the basis of the results of this research, it can be concluded that the use of
semantic streaming technologies in the domain of home automation has the potential
to provide great benefits for developing more powerful and nevertheless more user-
friendly home automation systems.

viii

Contents

1 Introduction 1
1.1 Objective . 2
1.2 Structure of the Document . 2

2 Background & Related Work 5
2.1 Home Automation . 5

2.1.1 Systems using Textual Languages 6
2.1.2 Systems using Visual Languages 8
2.1.3 Analysis and Comparison . 9

2.2 Semantic Streaming Technology . 13
2.2.1 Data Stream Management Systems 14
2.2.2 Complex Event Processing . 15
2.2.3 Semantic Streaming Technologies 15
2.2.4 Analysis and Comparison . 17

2.3 Summary . 18

3 Analysis 21
3.1 Smart Home Use Case Classification 21

3.1.1 Use Case Categories . 21
3.1.2 Applying the Classification . 23

3.2 Participatory Design Study . 25
3.2.1 Form of the Experiment . 25
3.2.2 The Participants . 26
3.2.3 Introduction to Topic . 26
3.2.4 Procedure and Presented Use Cases 26
3.2.5 Evaluation and Discussion . 27

3.3 Summary . 28

4 Design 31
4.1 System Overview . 32

4.1.1 Architecture . 34
4.2 ERAS Ontology . 35
4.3 Event Language . 37

4.3.1 Metamodel . 38
4.3.2 Runtime . 41

4.4 Rule Language . 42
4.4.1 Metamodel . 42

4.5 Summary . 44

Contents i

5 Language and Framework Implementation 45
5.1 Development Environment, Tools and Libraries 45
5.2 Event and Rule Automation System 46
5.3 Event Language . 47

5.3.1 Language and Editor . 48
5.3.2 Runtime and ECQELS . 50
5.3.3 Compilation . 56

5.4 Rule Language . 57
5.4.1 Language and Editor . 58
5.4.2 Runtime and Compilation . 58

5.5 Summary . 59

6 Evaluation 63
6.1 Performance Analysis . 63

6.1.1 Benchmark Design and Runtime Environment 63
6.1.2 Results and Analysis . 65

6.2 Use Case Expressiveness . 69
6.3 User Acceptance Study for the Event Language 72

6.3.1 Study Design . 72
6.3.2 Study Outcome . 76
6.3.3 Outcome Analysis . 78

6.4 Summary . 80

7 Conclusion and Future Work 83
7.1 Conclusion . 83
7.2 Future Work . 84

Bibliography 85

ii Contents

Contents 1

1. Introduction

“A smart home is a residence equipped with a communications network, linking
sensors, domestic appliances, and other electronic and electric devices, that can be
remotely monitored, accessed or controlled, and which provide services that respond
to the needs of its inhabitants”[29]. Over the last years the number of commercially
available interconnective home appliances massively increased whereas at the same
time the prices dropped significantly. Probably the most well-known products for
the smart home are Nest Thermostat1 taken over by Google just recently, Philips
Hue2, the product line WEMO from Belkin3 and the company INSTEON4 which
both provide a very wide assortment comprising different sensors and actuators. Due
to this rapidly increasing market for smart and interconnective appliances the field
of smart homes comes to the center of attention in research and industry. Apart
from the hardware-centric aspect also on the software side a lot of movement can
be observed as several of the big players are working on or already offering smart
home software solutions like Apple’s HomeKit5, Samsung’s Smart Home6, AT&T’s
Digital Life 7, Honeywell’s Evohome8 and Google’s “Works with Nest” project9.

Surprisingly most of the currently available software solutions rather focus on con-
trolling the home than on automating it whereas research has recognized the need
for user-centered home automation systems as shown later in this work in Sec-
tion 2.1. Furthermore some vendors keep their systems closed to devices produces
by themselves (or at least licensed by them) by using proprietary standards like com-
munication protocols instead of openly available and accepted ones. Even though
the vendors usually state that this is done to guarantee quality of the provided ser-
vices it is often perceived as a trick to keep the user buying special hardware which

1https://nest.com/
2http://www.meethue.com
3http://www.wemothat.com/
4http://www.insteon.com/
5https://developer.apple.com/homekit/
6http://www.samsung.com/de/promotions/ifa2014/
7https://my-digitallife.att.com/learn/
8http://getconnected.honeywell.com/
9https://nest.com/works-with-nest/

https://nest.com/
http://www.meethue.com
http://www.wemothat.com/
http://www.insteon.com/
https://developer.apple.com/homekit/
http://www.samsung.com/de/promotions/ifa2014/
https://my-digitallife.att.com/learn/
http://getconnected.honeywell.com/
https://nest.com/works-with-nest/

2 1. Introduction

ensures the company further profit. This is also known as vendor lock-in and usually
neither desired by nor beneficial for the user.

The home automation system drafted in this work supports the user in automating
his home with the constraints to make this task as easy and intuitive as possible
and to be capable of being integrated with any devices and communication protocol.
This work uses ontologies and semantics to anticipate any sort of vendor lock-in as
ontologies are a known way to enable knowledge sharing and thereby interaction in
a specialized domain such as home automation[39].

At the same time using ontologies enable the definition of abstract and therefore
powerful rules for home automation as they provide a unified conceptualization of
the domain knowledge. Unfortunately the additional power of ontologies does not
come for free. Working with ontologies is much slower compared to classical database
systems[36]. This is especially the case when dealing with rapidly changing data that
needs to be inserted/updated like the data produced by all the sensors in the smart
home as semantic database are optimized for bulk updates and inserts [82]. To
neither loose performance nor scalability due to the use of semantics this work will
make use of the upcoming concept of semantic streaming. Semantic streaming allows
to handle vast amounts of rapidly changing semantic data by clustering them into
streams and applying so-called window operators to define that parts of the data
stream that is of interest to the application or user. Following the concept of semantic
streaming a system therefore immediately drops any incoming information if it is
not explicitly stated to be of interest at the current time and keeps this information
only as long as it can contribute in answering any query. This behavior is also very
well suited for the dynamic and error-prone nature of smart homes consisting of
multiple partially mobile, battery-driven and/or wireless connected smart devices.

1.1 Objective

The objective of this work is to consolidate semantics, streaming and user-centered
rule-based home automation. As shown in Chapter 3 users do want to use a high level
of abstraction when formulating rules and therefore semantics are needed in home
automation. As timeliness is crucial in home automation scenarios (for example
picture a use case where lights are automatically turned on when a presence detector
detects movement with a delay in terms of seconds) semantic streaming technology
will be used to ensure that timeliness although using semantics which are normally
known for rather slow execution compared to relational systems. The system to be
developed will also take into account to be easy to use by non-programming experts.
This will be ensured by conducting a pre-study.

1.2 Structure of the Document

The rest of the document is structured as follows. Chapter 2 introduces the two main
topics of this thesis which are home automation and semantic streaming. Also an
overview on related work is given. Furthermore the presented existing solutions are
analyzed, categorized and compared. Chapter 3 presents the analysis done in this
work. This includes a detailed and systematic review and analysis of use cases for the
smart home as well as the study design, realization and evaluation of the pre-study

1.2. Structure of the Document 3

conducted. From this findings the requirements for the system developed in this
thesis are derived. Chapter 4 shows the design process of the system designed in this
thesis named Event and Rule Automation System (ERAS) and the rationales behind
the design. Also the ERAS ontology is introduced in Section 4.2. In Chapter 5
implementation details and problems are shown. Chapter 6 presents the evaluation
of this thesis containing a detailed performance evaluation of the underlying, newly
developed semantic streaming engine and a review on use case expressiveness where
three sample use cases are implemented using the system. Furthermore it contains
a user acceptance study conducted as an online survey. The thesis closes with
Chapter 7 showing possible future work and giving an overall conclusion of this
thesis.

4 1. Introduction

2. Background & Related Work

This chapter introduces the terms home automation and semantic streaming tech-
nology and provides background information on these topics. For each of them re-
lated work and existing solutions are presented. These solutions are then analyzed,
categorized and compared by suitable criteria.

2.1 Home Automation

Home automation is also known as smart house, smart home, smart living or do-
motics (lat. domus meaning house and informatics). It is the extension of building
automation realized by Building Automation Systems (BAS) to domestic homes.
Building automation describes the concept of centralized management, control and
automation of electrical systems deployed in the building such as ventilation, heat-
ing, lighting and air conditioning. It is mostly used in institutional and industrial
buildings and therefore its objectives are essentially reducing energy consumption
and operating costs. A BAS typically consists of multiple controllers, input/out-
put devices (like sensors and actuators) and a user interface all connected via some
bus system. One of the biggest challenges is to manage the interconnectivity of
these different devices, often produced by different companies, as they use different
communication protocols and physical forms of communication.

Home automation takes the concept of building automation to the peoples’ homes.
Thereby the objectives are advanced and now also cover convenience, comfort, secu-
rity and increased quality of life. When building automation is applied to domestic
homes multiple new challenges arise. As the market for smart home appliances in-
creases it gets more competitive and thus a vast amount of heterogeneous appliances
are available for affordable prices today. This intensifies the problem of interconnec-
tivity of different appliances using different physical communication channels and
protocols. In this issue, home automation is closely tied to the Internet of Things
(IoT) which focuses on interconnection of unique identifiable (embedded) computing
devices within the existing internet infrastructure. IoT also introduces the concept
of smart objects [62] which is defined as objects, that can describe their own possi-
ble interactions. These smart objects can be used in home automation to ease the

6 2. Background & Related Work

task of configuration of the smart home. The problem of interconnectivity is fur-
ther intensified by the use of multiple different physical networks due to retrofitting.
As wiring an existing home is not always feasible due to high costs and effort or
even that the home is only rented a lot of home automation appliances use wireless
networks.

The aspect of applying building automation to the domestic home of most interest
for this work is the fact, that home automation systems should be manageable, con-
figurable and useable by end-users. In comparison to technicians and administrators
using building automation, end-users using home automation cannot be expected
to have a deeper technical knowledge. Thus, the systems must be designed to be
easy to manage, easy to configure and easy to use[45]. Given this, it is necessary to
abstract from the technical details and find a level of abstraction non-expert users
can understand and use. To investigate how such a level could be like we take a look
at the interaction between end-user and the home automation system.

The interaction of end-users with smart homes can be divided into configuration/
management, monitoring, control and automation. Monitoring and control are basic
functions from building automation and solutions are well known. The challenges
of home automation are configuration and management as the deployed hard- and
software is much more heterogeneous than in classical building automation and
automation, which is much more complex in home automation than in building au-
tomation as it deals with objectives like convenience, comfort and increased quality
of life which are way harder to express in logical rules then a objectives of building
automation like reduction of energy consumption and operating costs. Furthermore,
a domestic home needs more specialized and personalized rules than an industrial
building as it is used in a more unpredictable and changing way. Because of that,
this work focuses on user-defined rule-based home automation.

In the context of this work, two opposed kind of rules are presented: production
rules and reaction rules. Production rules, also called inference rules, are of the
form if ... then The execution of these rules is usually triggered explicitly by
a user and it is executed in a stateless manner. The second kind of rules are the
reaction rules, also called Event Condition Action (ECA) rules and have the form
when ... if ... do They are triggered automatically when events occur and are
executed in a stateful manner. For home automation reactive rules clearly seem
suitable as home automation is a strongly event-centric domain with all the sensor
data produced.

2.1.1 Systems using Textual Languages

homeOS[48] The objective of homeOS is to build an operating system for the
smart home focusing on protocol-independent integration of network devices to ease
development of cross-device applications. The device services are exposed via an
API written in C#. It is proposed to distribute applications through some sort of
app store as in [49]. Their focus in user-interaction is on management and security,
allowing users the define devices as extra sensitive regarding security (e.g., locks and
cameras). Rules of simple if...then... form can be created through interaction as
shown in Figure 2.1a.

SPOK (Simple PrOgramming Kit)[40] The objective of SPOK is to develop
an end-user development environment for smart homes. It allows for describing ap-

2.1. Home Automation 7

plications with a dedicated pseudo-natural language which is adapted to the devices
connected to the smart home at runtime by using the systems device repository and
meta data. The system is based on OSGi and ApAM (Application Abstract Ma-
chine)[44] and supports interconnectivity by defining the concept of adapters (based
on OSGi containers) realizing the physical integration of devices. The SPOK lan-
guage is a combination of rule-based and imperative programming and follows the
ECA pattern. Conditions can refer to events or states, whereat conditions referring
to states are translated to refer to the two corresponding events for entering and
leaving the state. It comes with a visual editor supporting the user in combing
blocks of text elements to define rules which is connected to the system via HTTP
(see Figure 2.1b).

Homer[67] Homer is a fully functioning home automation system focusing on
the integration of “any type of device, appliance or home service”[67]. It defines its
own abstraction layer for interconnectivity by using Java and OSGi (Open Service
Gateway initiative)1 and also supports self-registering components. Component ab-
straction is done by treating components as services defining events (called triggers),
conditions and actions which are specific per device type. Homer supports moni-
toring and control of all devices and also rule-based automation using the concept
of policies following the pattern when...do... as shown in Figure 2.1c. The when
part can contain multiple and, or and then (which referrers to temporal logic) com-
mands and the do part can contain multiple branches in form of if s and events
which can be seen as commands/actions. Further a time interval is specified per
policy in which all conditions must be fulfilled to execute the do part. The system
does not define any user interface for specifying policies but rather allows them to
be remotely created via HTTP and JSON (JavaScript Object Notation)[42].

User-configurable Semantic Home Automation System (USHAS)[59]
USHAS combines web services, BPEL, OWL and their self-created markup language
SHPL (Semantic Home Process language) into a home automation system that en-
ables user-based semantic definition of processes. Two of the assumptions made
are that automation processes are better understandable if semantic concepts are
used and if they are defined in a common process pattern. They also use a publish-
subscribe approach for distributing generated semantic events. Their introduced
language for describing semantic processes SHPL is XML-based and defines the four
core elements of home automation processes: preconditions, variables, execution
time and flow of invocations. Preconditions can only be combined using conjunc-
tion, therefore the flow of invocation supports a for all operator. An example rule
can be seen in Figure 2.1d. The system is exclusively tailored to home automation.

IFTTT (If This Than That)[1] IFTTT is not a classical home automation
system but rather a software that allows for very easy end-user automation. Al-
though home automation has not been its purpose it has advanced over the years
and now allows to realize multiple typical home automation tasks. It is based upon
simple if...then... rules called recipes (see Figure 2.1e). As it does not focus on
integrating physical devices the basic building blocks of IFTTT are called channels
acting as device abstraction. Channels expose triggers which the if-part of a recipe is
composed of and actions which form the then-part of a recipe. Furthermore a recipe
can contain variables shared between if and then part called ingredients. To this

1http://www.osgi.org/

http://www.osgi.org/

8 2. Background & Related Work

day there exist multiple channels for integrating home automation devices like ther-
mostats (from Nest and Honeywell Evohome2) and multiple devices from Belkin’s
WeMo system like switches, plugs and sensors for motion control, temperature and
brightness.

(a) homeOS (screenshot of video from[2])

(b) SPOK (from [40])

(c) Homer (from [67]) (d) USHAS (from [59])

(e) IFTTT (from [1])

Figure 2.1: Overview of the UIs of home automation systems using textual lan-
guages.

2.1.2 Systems using Visual Languages

homeBLOX[72] HomeBLOX is a user-centric process-driven home automation
system. The user composes sequences by combining events and actions of different
devices at different steps using an Android-based tablet app. An example of such
a sequence is depicted in Figure 2.2a. These sequences are then translated into
Business Process Execution Language (BPEL) and executed using the Apache ODE
process engine. The system supports different automation protocols by using its
own device abstraction layer.

2www.evohome.info/de/

www.evohome.info/de/

2.1. Home Automation 9

iCAP (Interactive Context-aware Application Prototyper)[46] The goal
of iCAP is to “allow[...] end users to visually design a wide variety of context-
aware applications, including those based on if-then rules, temporal and spatial
relationships and environment personalization”[46]. This is achieved without having
the user to write any line of code. Concerning interconnectivity iCAP differs from the
system described so far as it does not explicitly deal with multiple communication
protocols and channels but rather relies on the Context Toolkit[47] to connect to
sensors and actors. Furthermore, a repository approach is used for all user-defined
artifacts thus allowing high re-usability by allowing the user to define rules by just
combining previously defined artifacts. Figure 2.2b shows the user interface of iCAP
including an example rule being defined.

openHAB[3] OpenHAB is a vendor and technology agnostic open source home
automation system based on Java and OSGi. It is probably the most wide-spread
open source home automation system and won multiple awards (e.g., IoT Challenge
20133). Since November 2013 the core framework of openHAB is part of the Eclipse
SmartHome project4. It supports monitoring, control and rule-based automation
of connected devices. Rules are written in a java-like language following the ECA
pattern and are executed using a self-developed framework shown in Figure 2.2c.
Furthermore a visual editor for rules is available shown in Figure 2.2d. In the
upcoming version 2.0 it supports one-click auto-discovery of new devices though
multiple protocols.

VRDK (Visual Robot Development Kit)[61] The approach for home au-
tomation described in [61] is not given a special name rather the name of the visual
programming language VRDK is mentioned throughout the paper. Therefore this
approach will also be referred to as VRDK if not explicitly stated that the language
is meant. For context processing it takes a similar approach as iCAP by using an
external context server, in this case the Nexus context-server[55]. In all aspects it
greatly differs from all system mentioned so far as it works in a decentralized manner.
At first a user specifies a script via an application for a tablet or a PC. A script de-
fines which hardware (also referred to as components) it should run on and multiple
processes each consisting of one workflow. Each of the previously chosen compo-
nents has defined a set of commands and events which can now be combined to form
the workflow with the support for elements like branches and loops. Components,
commands and events are defined by plug-ins which can be loaded at runtime. After
the script is ready it is compiled into executable code (currently supported are C#
and C) and then remotely deployed to the matching components. Also functionality
can be bound to locations, situations, persons or physical objects which defines to
which components a script is deployed. Rules are defined using a visual language
shown in Figure 2.2e.

2.1.3 Analysis and Comparison

In this section the just introduced home automation systems are analyzed and com-
pared. The result is shown in Table 2.1. Due to the lack of space the information that
only to openHAB and homeOS the source code is openly available is not contained
in the table. Below all the criteria are explained in detail.

3http://iotevent.eu/application-2/announcement-the-winner-of-the-iot-challenge-2013/
4https://projects.eclipse.org/projects/technology.smarthome

http://iotevent.eu/application-2/announcement-the-winner-of-the-iot-challenge-2013/
https://projects.eclipse.org/projects/technology.smarthome

10 2. Background & Related Work

ff

ff

ff ff

ff

ff

(a) homeBLOX (from [72])

(b) iCAP (from [46])

(c) openHAB Designer (from [3])

(d) HABmin Rule Designer for openHAB
(from [4])

ff

(e) VRDK (from [61])

Figure 2.2: Overview of the UIs of home automation systems using visual languages.

Rule Representation This criteria states how rules are visualized in each sys-
tem. Most of the systems do visualize the rules in a text-based manner. Even if
they use visual elements they are mostly text-based. Only homeBLOX and iCAP
use a mostly visual representation as shown in Figure 2.2a and Figure 2.2b.

Rule editing This criteria states in which way the user can create and edit rules.
Drag & drop and dialogs are the most common editing types. Only HomeOS has a
significantly different editing style. It allows specification of rules in an interactive
way. The user interface consists of two blocks called when and then which can be
selected and as soon as the user interacts with the smart home, e.g. by opening
a door, the just performed action is added to the selected block (see Figure 2.1a).
Homer features three different complexity level for the editor, simple, intermediate
and advanced, and thereby accommodates the capabilities and needs of different
user groups.

Low-level Rules This means if the system is designed for supporting definition
of low-level rules which are rules dealing with handling of raw sensor data. Therefore,
low-level rules are mostly data-centered rules doing some data transformation and
filtering. In the systems not supporting this the low-level rules are implemented in

2.1. Home Automation 11

the device abstraction by a developer. Not allowing the user to define low-level rules
does help him to concentrate on the higher-level logic of his rule but does at the
same time limit the expressiveness.

High-level Rules By high-level rules the support of rules with a more compli-
cated structure than simple if...then pattern is understood. In contrast to low-level
rules which focus on data transformation high-level rules are used to express the
logical structure of detected low-level events and therefore focus on the logical for-
mulation of the automation task.

Event Abstraction This criteria refers to the term event abstraction as defined
in Section 3.1.1 and specifies if the system allows to defines rules only with concrete
sensors/events as triggers or with abstract ones. Only two systems support the use
of abstract sensors/events as triggers which are USHAS and openHAB. USHAS can
provide this functionality as it stores the meta data of all sensors in a semantic
database. OpenHAB however does not use semantics and realizes this functionality
by the help of a configuration file containing a hierarchy of devices and groups
whereby a group is presented almost just as a regular device to the user.

Action Abstraction Action abstraction just as event abstraction refers to the
concept of the same name defined in Section 3.1.1 and therefore specifies if a system
only allows the use of concrete actions/actuators or also abstract ones. Again, only
USHAS and openHAB support abstract ones.

Event-Action Parametrization Specifies if systems provide support for rules
passing parameters between event and actions. To give an example see use case 2
in Section 3.2.4 where the sensed temperature and the room the temperature was
sensed in is passed as parameter to the action. This functionality is only supported
by openHAB. In some systems it would be possible to integrate without any or with
only little costs but this would require the rethink the UI design and concept of user
interaction.

Rule Parametrization This criteria specifies if a rule can contain (potentially
unbound) variables that can be bound when the rule is instantiated/deployed. This
allows to specify parametrizable rules which can be instantiated multiple times with
different bindings which results in more re-usability and flexibility when dealing with
dynamic adaption of rules. As an example also see use case 2 in Section 3.2.4.

12 2. Background & Related Work

ru
le

re
p
re

se
n
ta

tio
n

ru
le

e
d
itin

g
lo

w
-

le
v
e
l

ru
le

s

h
ig

h
-

le
v
e
l

ru
le

s

e
v
e
n
t

a
b
stra

c-
tio

n

a
ctio

n
a
b
stra

c-
tio

n

e
v
e
n
t-a

ctio
n

p
a
ra

m
e
triza

-
tio

n

ru
le

p
a
ra

m
e
triza

-
tio

n

h
o
m

e
B

L
O

X
b

ox
es

(sy
m

b
ols)

an
d

arrow
s

d
rag

&
d
rop

,
d
ialogs

n
o

yes
n
o

n
o

n
o

n
o

h
o
m

e
O

S
tex

tu
al

(if...th
en

...)
in

teraction
yes

n
o

n
o

n
o

n
o

n
o

U
S
H

A
S

tex
tu

al
(if...th

en
...)

d
ialog/form

yes
yes

yes
yes

n
o

yes

o
p

e
n
H

A
B

tex
tu

al
(w

h
en

...if...th
en

...)
&

v
isu

al
(tex

t-b
ased

)
tex

t
ed

itor,
d
rag

&
d
rop

yes
yes

yes
yes

yes
n
o

iC
A

P
sy

m
b

ols
w

ith
p
red

efi
n
ed

layou
t

d
rag

&
d
rop

,
d
ialogs

n
o

yes
n
o

n
o

n
o

n
o

V
R

D
K

b
ox

es
an

d
arrow

s
d
rag

&
d
rop

,
d
ialogs

yes
n
o

n
o

n
o

n
o

n
o

H
o
m

e
r

tex
tu

al
(if...th

en
...)

d
ialog/form

n
o

yes
n
o

n
o

n
o

n
o

S
P

O
K

tex
tu

al
w

ith
sy

m
b

ols
(w

h
en

...if...th
en

...)
tex

t
ed

itor,
d
rag

&
d
rop

yes
(yes)

n
o

n
o

n
o

n
o

IF
T

T
T

tex
tu

al
w

ith
sy

m
b

ols
(if...th

en
...)

d
ialog/form

yes
(yes)

n
o

n
o

n
o

n
o

T
ab

le
2.1:

C
lassifi

cation
of

h
om

e
au

tom
ation

sy
stem

s
su

rveyed
in

th
is

w
ork

.

2.2. Semantic Streaming Technology 13

2.2 Semantic Streaming Technology

As semantics can provide a solution to the above mentioned problem of finding a level
of abstraction non-experts can understand and easily use and streaming technology
provides solutions for realizing reactive rules, this chapter gives a background on
both, semantics and streaming technology, as well as the combination of both known
as semantic streaming technology.

The term semantics has multiple meaning depending on the context. In this work
with semantics is referred to the meaning within the Semantic Web. The Semantic
Web is a concept for the further evolution of the Word Wide Web introduced by
Tim Berners-Lee[35] and promoted by the World Wide Web (WWW) Consortium
(W3C). Its aim is to extend the WWW which is designed for human readability with
structured and therefore machine-readable information, so called semantic informa-
tion or semantic data. It is therefore closely related to the IoT as they share the
objective of autonomous machine-to-machine (M2M) communication. As a common
data model the Resource Description Format[5] (RDF) is proposed by the W3C. It
is a very basic data model consisting of statements about resources in the form sub-
ject - predicate - object called triples. RDF also defines some very basic classes like
rdf:Statement or rdf:Property and also some basic properties like rdf:type, rdf:subject,
rdf:predicate and rdf:object. For the practical use of RDF there are higher level con-
cepts defined like RDF Schema[6] (RDFS), Web Ontology Language[7] (OWL) and
also OWL2[8].

These concepts of the Semantic Web are helpful in finding a suitable level of ab-
straction for non-expert users of technical systems within a specific domain such as
home automation in this work as they can be used to define a domain-specific on-
tology. An ontology in computer science is a formal definition of types and entities
within a specific domain and their interrelationship expressed via classes, individuals
(instances of a class), attributes and relations. Such an ontology can act as level
of abstraction between a technical system and an end-user as it is able to formally
correct represent the technical details of the system and, at the same time, present
the user a more understandable view of the system by abstracting from the technical
details and providing a human-readable representation (via labeling of the classes,
individuals and relations).

The second aspect of semantic streaming technology besides semantics is data stream
processing, also known as continuous querying, and complex event processing (CEP)
which are summarized as information flow processing (IFP) in [43]. In this work,
the term streaming technology is used for technical systems related with IFP.

As described in [43] IFP comes to use when “applications require[...] continuous
and timely processing of information”[43]. This obviously is the case in rule-based
home automation and in [53] it is explicitly pointed out, that sensor networks, which
represent the ears and eyes of a smart home, is a domain for streaming applications.
According to [43] the requirement of timeliness can hardly be fulfilled by traditional
Database Management Systems (DBMS) and that’s where IFP systems have their
strengths.

Data stream processing is realized by Data Stream Management Systems (DSMS)
of which the typical model is shown in Figure 2.3. Like traditional Data Base
Management Systems (DBMS) from which they have evolved DSMSs use a query

14 2. Background & Related Work

language to formalize the users need for information. The difference in execution
is, that DSMSs use continuous (or standing) queries which, once registered in the
system, are executed periodically or as new stream items arrive and actively notify
the user about new results. This is also called Database-Active Human-Passive in
[20]. Another approach subsumed by IFP is CEP. CEP systems set their focus

Figure 2.3: The typical model of a DSMS (from [43]).

on filtering, combining and composition of incoming event by using so-called event
patterns to detect or infer higher-level events. These event patterns are based on
casual, temporal and spatial logic[68]. CEP systems take the well-known interaction
style of publish-subscribe and extend it by allowing to subscribe to composite events.

Although these two approaches seem very alike they differ in the kind of language
they use. DSMS systems usually use a transformation language which can either be
a declarative language describing rather what the system should do than how the
system should do it or an imperative language describing how the system should
act by defining a plan of primitive operators to follow thus describing the data flow.
CEP systems however usually use detection languages in an ECA style with patterns
as conditions.

Data streaming systems and CEP systems both lack the power of semantics and
therefore semantic adaptions of both system types have emerged. They are known
as semantic streaming, semantic data streaming, linked data streaming or semantic
stream processing and Semantic Complex Event Processing (SCEP). Unfortunately
these terms are not clearly separated or get mixed up. So most of the time when it is
referred to SCEP in fact semantic streaming systems are mentioned. Combined with
the use of background knowledge in the form of ontologies it is also called stream
reasoning.

2.2.1 Data Stream Management Systems

CQL (Continuous Query Language)[25] CQL combines the processing of
streaming and relation data and is based on SQL. It defines three kind of operators:
stream-to-relation, relation-to-relation and relation-to-stream. Stream-to-relation
operators allow transforming unbounded streams into bounded sets of tuples and
they are implemented as sliding windows which can be time-based, tuple-based or
partitioned. Relation-to-relation operators define the execution logic of the query
and are directly derived from SQL. Relation-to-stream operators allow for the output
of the query to be transformed into streams again. Three different operators are
defined: Istream only streaming insertions into the underlying relation, Dstream
analogously only streaming deletions and Rstream streaming the whole relation. No

2.2. Semantic Streaming Technology 15

in-order arrival of stream elements for incoming streams is assumed but this leads
to the need of a heartbeat function which is realized as a “meta-input”. CQL is
implemented in the STREAM prototype (STanford stREam datA Manager)[69].

Aurora[20] Aurora is explicitly designed for realizing monitoring applications.
Monitoring applications are defined as “applications for which streams of informa-
tion, triggers, imprecise data, and real-time requirements are prevalent”[20]. Aurora
operates only on streams and uses the SQuAl (Stream Query Algebra) to define
workflow networks in a visual editor. SquAl defines seven stream processing op-
erators which more or less correspond to operators know from SQL namely filter
(closely related to select in SQL), union, BSort, join, map, aggregate and resample.
The last two can be used in combination with user-defined windows. As all data
is stream-based it is discarded as soon as it has passed the system unless explicitly
instructed to be persistently stored. This functionality can be used to store a history
of intermediate results when needed. SQuAl also allows specification of QoS (Qual-
ity of Service) parameters for each output. These constraints are taking into account
when dynamic continuous query optimization is performed which allows continuous
adaption of the execution plan to the changing nature of streams.

2.2.2 Complex Event Processing

SASE [81] SASE has been designed for monitoring of real-time RFID (Radio-
Frequency Identification) readings with the aim to provide a compact yet useful event
detection language. The introduced language allows formulation of pattern-based
detection rules for events having the structure EVENT ... [WHERE ...] [WITHIN
...] with the blocks in squared brackets being optional. The EVENT part defines
which events are of interest as well as their relation and can contain sequences and
logic operators. The WHERE part defines constraints on and selection of attributes
of before select events and the WITHIN part allows to specify temporal windows.
In [57, 21] an extension called SASE is introduced supporting aggregations and
iterations. The system follows the data-flow paradigm and requires the streams of
incoming events to by totally-ordered by a discrete time.

TIBCO StreamBase[9] Streambase is a commercial CEP system allowing the
integration of information from heterogeneous sources. It is of interest for this
work as it claims to provide “the industry’s first and only graphical event-flow lan-
guage”[10] as they provide an Eclipse-based IDE for their declarative SQL-like event
detection language.

Esper[11] Esper is probably the leading open-source CEP provider. They in-
troduced their own declarative language called EPL (Event Processing Language)
which allows event pattern to be expressed in two different ways: using EPL pattern
defined as nested constraints consisting of conjunctions, disjunctions, negotiations,
sequences and iterations as well as flat regular expressions[43]. Users can be notified
via listeners of new events or consume them in a pull-based manner using iterators.

2.2.3 Semantic Streaming Technologies

EP-SPARQL[24] EP-SPARQL stands for Event Processing SPARQL and is
a language for semantic CEP. It is an extension of SPARQL and adds windows,
logical and temporal operators and an interval-based time model for triples. It is

16 2. Background & Related Work

implemented by the ETALIS system5 which uses event-based backward chaining
based on Prolog as execution back-end. EP-SPARQL supports static background
knowledge to be integrated with streams and also RDFS reasoning.

C-SPARQL[31, 30, 32] C-SPARQL has been one of the first contributions in this
area and was developed within the LarKC project (Large Knowledge Collider)[52].
It follows the intuitive approach to simply combine an existing DSMS (Esper) and
an existing SPARQL engine (Apache Jena6). To make it work they extended the
SPARQL syntax to support streaming and also included physical (triple-based) and
logical (time-based) windows. All queries are executed time triggered and return
always the complete query result (which corresponds to the concept of an Rstream
as defined in CQL).

INSTANS[73, 74, 75] INSTANS approaches the problem of semantic CEP by
incremental execution of standard-compliant SPARQL 1.1 queries and SPARQL
Update using the Rete algorithm[27]. Its functionality can be described that it
“shares equivalent parts of queries, caches intermediate matches and provides results
immediately, when all the conditions of a query have been matched”[73]. RDF
streams have to be fed into the system using SPARQL Insert commands and deleted
with SPARQL Delete commands (that is also the way windows are implemented).
Detection of missed events is possible through the use of a special “timergraph”.
Unfortunately it seems, that the system is not designed to work with dynamically
changing queries as in setup a Rete-network is build from all queries which is then
compiled into executable Lisp code.

CQELS(Continuous Query Evaluation over Linked Streams)[66, 64] As
query language CQELS-QL (CQELS Query Language) is introduced which is based
on SPARQL and adds constructs for streams as well as windows (tuple-based, time-
based, sliding and tumbling). In contrast to all previously shown systems CQELS
uses a white-box approach, that means it does not re-use any components as black-
boxes but rather integrates them into the own system to allow optimization. It is
developed in Java and uses Esper and Jena ARQ7 which is a SPARQL query engine
implemented in Java. It is the fastest of the presented systems which is achieved
by only support data-triggered re-evaluation which corresponds to the concept of an
Istream in CQL. CQELS also supports multiple windows on the same stream and
dynamic stream selection by binding the address of the stream to a variable.

SCEPter[83] SCEPter is a semantic CEP system build around the existing CEP
engine Siddhi8 and using Apache Jena for SPARQL processing. Its unique features
are that it supports querying for streaming data as well as historical data and that
it is fed with streams of typed key-value pairs rather than RDF streams. Therefore
it performs a semantic lifting of the incoming stream data with the use of an event
ontology, domain-specific ontologies and an annotation file for every stream. For
handling historical data it also extends the window concept and splits it into a
query window which is used on streams as in all other system and a data window
which specifies on data from which interval the query should be executed.

5http://code.google.com/p/etalis/
6https://jena.apache.org/
7http://jena.apache.org/documentation/query/
8http://siddhi.sourceforge.net/

http://code.google.com/p/etalis/
https://jena.apache.org/
http://jena.apache.org/documentation/query/
http://siddhi.sourceforge.net/

2.2. Semantic Streaming Technology 17

2.2.4 Analysis and Comparison

In this section the existing solutions for semantic streaming are analyzed and com-
pared. From the five solutions for semantic streaming only four are analyzed and
the fifth, SCEPter, is left out because its source code is not public available.

Table 2.2 shows the four compared languages and all the criteria they have been
compared in. In the following, each criteria is described and discussed.

Stream Data Model These criteria describe which data model is used to rep-
resent RDF streams. Most of the systems model a data stream as an unordered
sequence of pairs where each pair consists of an RDF triple and a timestamp τ .

. . .
(〈subji, predi, obji〉, τi)

(〈subji+1, predi+1, obji+1〉, τi+1)
. . .

EP-SPARQL on the other hand uses an interval-based time model assigning each
triple a start and end timestamp. INSTANS is completely flexible which time model
is used as it does not define any and instead new data is inserted using SPARQL
Update, thus the time model depends on the structure of inserted data. Furthermore
it is to distinct between triple-based and graph-based streams. As just mentioned
triple-based streams define a stream as sequence of triples and therefore each triple
can trigger a new result. This behavior is not always desirable as when it comes to
sending events on an RDF stream it hardly can be described using a single triple.
Therefore it is in some cases desirable to define a stream element as a pair of a graph
consisting of multiple triples and a timestamp. From the four considered systems
only INSTANS supports this functionality.

Window Support Windows are used to convert portions of a unbounded to a
bounded set which can than be processed with regular relational operators. There
are multiple types of windows (see [70]) of which only a subset is used in the four
considered systems. It is to notice, that EP-SPARQL and INSTANS do not provide
specialized language constructs for handling windows but rather do it with additional
queries explicitly using the available time information. Therefore all window logic
must be implemented by the user via special queries. Two kinds of windows are
supported by some of the four systems. These are physical or tuple-based windows
and logical or time-based windows. The criteria windows in the past describes if it is
possible to define windows that start and end in the past or if only windows starting
in the past up to the current time are possible. In C-SPARQL windows in the past
are not explicitly supported but as C-SPARQL defines a custom SPARQL function
to access the time stamp of a triple it is possible to realize windows in the past by
right formulation of the query. Only CQELS allows multiple windows per stream.
That is due to INSTANS and EP-SPARQL not having special language construct
for streams but rather implicitly addressing them.

Output Type In [26] three different relation-to-stream operators are defined:
Istream, Rstream and Dstream which help to classify the possible output formats
of the four systems. An Istream only contains triples added since the last result, a
Dstream only those deleted since the last result and and Rstream each time contains
the whole current result and therefore does not depend on previous results. Since in

18 2. Background & Related Work

EP-SPARQL and INSTANT the user is responsible for inserting and deleting data he
has full control and therefore can produce any three types of output stream if wanted.
C-SPARQL does always return the whole result due to the black-box approach used
whereas CQELS only support Istream output which has been a design decision in
favor of very high throughput.

Execution Mode Queries can be triggered to re-evaluate as soon as new data ar-
rives, i.e. data-triggered and also time-triggered which is the case when re-evaluation
of a time-based window is triggered.

General All of the four systems can integrate static RDF data while evaluating
streams, however only C-SPARQL does support some basic rule-based reasoning.
Dynamic stream selection is a functionality normally not listed in any paper probably
because it is not needed for the constructed use cases but it is of interest for this work,
as it has shown, that it is a powerful tool when it comes to real world applications
in a dynamically changing infrastructure. It describes whether streams can only be
addressed explicitly via their concrete URI or if they can be addressed implicitly
by writing queries that take a variable as stream URI. This functionality is only
implemented in CQELS.

2.3 Summary

This chapter provided background information on home automation systems and
presented existing solutions with visual as well as textual languages. Furthermore
they were compared and classified with the result, that most of them are not well
suited to the requirements found in Chapter 3, especially concerning action abstrac-
tion and event abstraction. Besides for most of them the source code is not publicly
available.

In addition semantics and semantic streaming have been introduced as well as com-
parable techniques. Existing solutions for semantic streaming have been presented
and compared.

2.3. Summary 19

E
P

-S
P

A
R

Q
L

C
-S

P
A

R
Q

L
IN

S
T

A
N

S
C

Q
E

L
S

st
re

a
m

d
a
ta

m
o
d
e
l

tr
ip

le
s

ye
s

ye
s

ye
s

ye
s

gr
ap

h
s

n
o

n
o

ye
s

n
o

ti
m

e
m

o
d
el

in
te

rv
al

ti
m

es
ta

m
p

fl
ex

ib
le

ti
m

es
ta

m
p

w
in

d
o
w

su
p
p

o
rt

p
h
y
si

ca
l

ye
s

ye
s

ye
s

ye
s

lo
gi

ca
l

ye
s

ye
s

ye
s

ye
s

sl
id

in
g

ye
s

ye
s

ye
s

ye
s

st
ep

si
ze

n
o

ye
s

ye
s

ye
s

tu
m

b
li
n
g

n
o

ye
s

ye
s

ye
s

w
in

d
ow

s
in

th
e

p
as

t
ye

s
ye

s
ye

s
n
o

m
u
lt

ip
le

p
er

st
re

am
n
o

n
o

n
o

ye
s

o
u
tp

u
t

ty
p

e
Is

tr
ea

m
ye

s
n
o

ye
s

ye
s

R
st

re
am

ye
s

ye
s

ye
s

n
o

D
st

re
am

ye
s

n
o

ye
s

n
o

e
x
e
cu

ti
o
n

m
o
d
e

d
at

a-
tr

ig
ge

re
d

ye
s

ye
s

ye
s

ye
s

ti
m

e-
tr

ig
ge

re
d

n
o

ye
s

ye
s

ye
s

g
e
n
e
ra

l
u
se

st
at

ic
R

D
F

-d
at

a
ye

s
ye

s
ye

s
ye

s
re

as
on

in
g

n
o

ye
s

n
o

n
o

d
y
n
am

ic
st

re
am

se
le

ct
io

n
n
o

n
o

n
o

ye
s

d
et

ec
ti

on
of

m
is

se
d

ev
en

ts
n
o

n
o

ye
s

n
o

im
p
le

m
en

ta
ti

on
la

n
gu

ag
e

P
ro

lo
g

J
av

a
L

is
p

J
av

a

T
ab

le
2.

2:
C

la
ss

ifi
ca

ti
on

of
se

m
an

ti
c

st
re

am
in

g
la

n
gu

ag
es

an
d

en
gi

n
es

.

20 2. Background & Related Work

3. Analysis

3.1 Smart Home Use Case Classification

To identify basic needs of the users as well as weaknesses in existing systems that
probably point out potential improvements we searched the literature [67, 63, 79,
28, 76, 71, 58, 50, 48, 41, 72, 59] and found 83 uses cases. The aim of this section
is to identify few representative use cases to drive this work. To reach this goal, in
the next sections we examine different criteria to classify use cases.

It is to mention, that the initial selection of examined papers and use cases is not
representative as there exists a vast number of papers containing some sort of home
automation use case.

3.1.1 Use Case Categories

By looking at the found use cases it is obvious that they can be intuitively classified
by the abstract nature of the task the user wants to achieve. There are simple
monitoring tasks like “remotely monitoring cameras from a smartphone”[48], control
tasks like turning lights on/off[76] and automation tasks like “when the front door
opens, switch on the porch light”[79]. There are also a few work-flow-like use cases
(e.g. in [72]) but in this work they are seen as multiple interconnected automation
tasks. As this work deals with rule-based home automation only the use cases
performing automation are of relevance which make up 66 out of 83 considered use
cases.

Taking a closer look at some example use cases classified as automation tasks /listed
in Table 3.1) it can be seen that these are not directly applicable to any technical
system as they are formulated in natural language which is claimed to be too ambigu-
ous for human-computer interaction [23]. This phenomenon has also been described
as “Inference in the Presence of Ambiguity” in [51]. In this paper Edwards and
Grinter state that “systems that rely on inference will never be right all of the time,
and thus users will necessarily have to have models of how the system arrives at
its conclusions. These models must not only concern themselves with the actual
rules of inference (“when people gather in the living room, display the television

22 3. Analysis

1. If the temperature is higher than 30 ◦C at 6:00 PM, turn on the air condi-
tioner. [59]

2. When Birgit gets up (detected by a pressure mat in front of the bed) turn on
the lights in the bathroom. [72]

3. When the front door is unlocked and the hall is dark turn on the hall lights. [67]
4. When the living room is unoccupied for five minutes then turn of then tele-

vision and speakers. [67]
5. If presence is detected in any room and the luminosity is too low turn on the

lights in the room. [50]
6. Get notified when a door opens unexpectedly. [48]

Table 3.1: Some example home automation use cases.

schedule”), but also the capabilities of the system’s sensors (“how does the system
know I’m in the living room in the first place?”)” [51]. This makes it harder to find
a suitable classification of the use cases as they depend on how the user models
or how he would like to model the model closing the gap between raw sensor data
and the inferred states and events used in the use cases. Fortunately some further
information how the user wants this model to behave can be concluded by looking
at requirements, barriers and challenges for the smart home in the literature. There
reliability is listed as a requirement [38] and as a challenge [51, 28]. Also (zero)
administration is mentioned as a requirement [38, 78] and as a challenge [51, 28]
respectively poor manageability and inflexibility as barriers [37]. This indicates the
user wants to express this models in a manner that provide reliable results but also
are abstract enough to deal with failure, re-arrangement or new installation of some
sensor subsystems.

Furthermore, Edwards and Grinter [51] distinct between use cases that are possible
with limited (or even no) inference, those which are possible only through inference
and those which require an oracle (like the meaning of “unexpectedly” in the last
use case in Table 3.1). Applying this to the mentioned sensors and actuators in
the use cases and leaving out the ones that require oracles yields two criteria for
classification. They both relate to the level of abstraction. The first is named event
abstraction and distinguishes between the use of precisely named sensors and/or
events (e.g. third use case in Table 3.1) and the use of sensors, states or events in
an abstract manner (e.g. fourth use case in Table 3.1). The second criteria is the
same the as the first one but this time applied to the action-part of the rule and is
therefore named action abstraction.

Another feature is whether a rule is parametrizable or not. That means the if and
the then part have a shared variable like room in the fifth use case in Table 3.1.
This indicates that there can coexist multiple instances of that rule with different
variable bindings which all have an own state and can be concurrently executed.
This feature is named parametrizability.

The last feature introduced is named event type which can be time-based or event-
based (which includes state changes) and also a combination of both.

3.1. Smart Home Use Case Classification 23

3.1.2 Applying the Classification

In this section the above found classifications are used to find few distinctive and
representative use cases. At first, only the use cases classified as automation tasks
are taken into account which leaves 66 use cases from the total of 83 (see Table 3.2).
These use cases are evaluated against the found features/classifications as show in
Table 3.3.

Nature of Task % of use cases # of use cases

Automation 80% 66/83
Monitoring 12% 10/83
Control 8% 7/83

Table 3.2: Use cases classified by nature of task.

It shows that nearly all use cases use event-based triggers. In fact, there are only
three use cases that exclusively use time-based trigger. Nevertheless, time-based
triggers can not be neglected as they are used in 20% of the use cases. Looking at
Table 3.4 which analyzes the distribution of the different feature vectors in detail, we
can see that time-based triggers are mainly used in combination with event-based
triggers and event abstraction. It is also to notice that parametrizability seems
to be more important than time-based triggers as they are used almost twice as
often. This seems somewhat surprisingly as time-based triggers are implemented
in virtually every home automation system whereas parametrizability is relatively
unused. Furthermore event-abstraction seems to be are very desirable feature (as
used in 80% of the use cases) but it is also not that common in openly-available
home automation systems.

Feature % of usage # of usage

Event-based 95% 63/66
Event Abstraction 80% 53/66
Action Abstraction 48% 32/66
Parametrizability 36% 24/66
Time-based 20% 13/66

Table 3.3: Automation use cases classification.

Feature pattern

Event-based x x x x x x x x
Time-based x x x x x
Event Abstraction x x x x x x
Action Abstraction x x x x x
Parametrizability x

% occurrence 32% 21% 15% 12% 11% 3% 2% 2% 2% 2%
occurrence 21 14 10 8 7 2 1 1 1 1

Table 3.4: Feature vector analysis of the 66 automation use cases.

24 3. Analysis

As a representative subset, three use cases are chosen in this work. The first one
will be a basic one to represent the need to handle the basic functions of home
automation as this makes up about 17% use the use cases as shown in Table 3.4.
It will have an event-based trigger and no event abstraction, action abstraction or
parametrizability.

The second representative use case will be event-based with even abstraction and
thus meets the need for event abstraction used in 80% of the use cases. Also one of
the first two representative use cases will have a time-based trigger in addition.

As parametrizability is used in over one-third of the use cases and also seems to be
very useful to overcome know problems and barriers in current system as mentioned
in Section 3.1.1, the third representative use case will be one with parametrizability.
As Table 3.4 shows it only occurs in combination with event-based trigger and event
and action abstraction, hence also action abstraction is covered.

To not just randomly choose any three use cases that match these specifications
but rather choose representative ones we also classify the use cases by the user’s
need they target as mention in [28]. There, eight categories are listed, namely e-
health, security, assisted living, health, entertainment, communication, convenience
and comfort, and energy efficiency. In [29] these have been grouped into the three
overlapping and interconnected classes energy consumption and management, safety
and lifestyle support as shown in Figure 3.1. Table 3.5 shows the uses cases classified
by provided service. It is to notice, that some use cases fall into two service cate-
gories and are therefore counted in both. The three representative use cases will be
taken from the three most used services, i.e. convenience/comfort, energy efficiency
and security. For every previously identified feature vector of interest for the rep-
resentative use cases the service category with the highest matching percentage of
use cases is chosen. Therefore will the first representative use case (the easy one) be
taken from the service category convenience/comfort, the second one (event-based
with event abstraction) will be taken from the security category and the third one
(with parametrizability) will be taken from the category energy efficiency. Within
these categories the representative use cases are chosen randomly. The ones chosen
are listed in Table 3.6.

Figure 3.1: Types of smart home services (from [29])

3.2. Participatory Design Study 25

Provided Service % of use cases # of use cases

Convenience/Comfort 49% 40/83
Energy Efficiency 22% 18/83
Security 13% 1/83
Communication 12% 10/83
Assisted Living 8% 7/83
Entertainment 6% 5/83
E-Health 4% 3/83

Table 3.5: Use cases classified by provided service.

1. When the television in the living room is turned off and time is after 9:30pm
do turn on the electric blanket in master bedroom and send SMS to Mary
saying ’Electric blanket has been turned on!’ [67]

2. When a restricted room is entered by an employee at a prohibited time, a
message is sent to the guard [50]

3. When there is no presence in a room for 5 minutes then switch off the lights
in the room [58]

Table 3.6: Chosen representative use cases.

3.2 Participatory Design Study

To get an idea on how users want to program their home a pre-study has been
conducted. The goal was to find out what seems to be an easy and intuitive way for
non-expert programmers to solve home automation tasks using rules. The question
in detail was which kind of notation is easy to use and which components of a
programming language or an IDE (Integrated Development Environment) do ease
programming in the home automation context.

3.2.1 Form of the Experiment

The study was performed as an expert interview with open discussion in the group
moderated by an unbiased computer scientist who has been briefed for this job. Also
the whole study was monitored remotely by me with a communication link to the
moderator to give instructions if he struggled with the lead through. Also a video
including sound of the whole study has been recorded.

The persona of a non-expert programmer has been introduced. He should be de-
picted as a system administrator or an energy consultant.

The study took about 2 hours and has been split into two logical and two physical
parts. It started with a short introduction of about 15 minutes which represents
the first logical part followed by a discussion of the first use case which took ap-
proximately one hour. These two parts formed the first physical block and were
followed by a 10 minutes coffee break. After the break the second use case has been
discussed.

26 3. Analysis

3.2.2 The Participants

The participants, five computer scientists, one female, four male, with level of educa-
tion ranging from B.Sc. to Ph.D have been chosen. They all participated voluntarily
and did not receive any reward but free snacks and coffee during the study.

3.2.3 Introduction to Topic

The introduction took about 15 minutes and encompassed seven slides. The first
three slides explained the course of the study followed by three slides giving a short
example-driven introduction to rule-based home automation. The last of the seven
slides did introduce the persona and present the goal of this study. The slides in-
troducing rule-based home automation contained the following two examples: The
first was a shortened version of a program written in C reading the value of n tem-
perature sensors, calculating the average of these values and if the average is greater
30 trigger sending a SMS via an API call. The second slide showed a screenshot of
the openHAB designer containing some demo rules.

3.2.4 Procedure and Presented Use Cases

As all participants were native speakers of German the study has been carried out
in German. After the introduction they were presented (and handed out in paper
form) the first use case which is presented here in an English translation:

Bob is a system administrator and would like to monitor the temperature in the
server room (named “ServerRoom1”). Therefore he scattered some µPart sensors[34,
33] in the server room. He now wants to receive a notification via SMS as soon as
the average temperature of all sensor in ServerRoom1 exceeds 30◦C containing the
average temperature.
Bob wants to formulate the rule in a way that it still works correctly if a sensor
drops out or he adds new sensors.

Afterwards they were given 5 minutes to sketch a possible programming approach
each on their own on the given paper. Then randomly one expert was chosen to show
his/her sketch on the white board to start a discussion and work out a collective
approach. The discussion went on for about 35 minutes and then was ended due to
time constraints. It was followed by a coffee break of 15 minutes.

After the break the experts were given further constraints on how to model a possible
programming approach. The constraints given were: use a graphical notation, meta
data of the sensors and infrastructure is given and sensors publish their data in a
streaming manner. As examples for graphical notations a figure of a rule in IFTTT
was given (see Figure 2.1e) as well as an example flow diagram modeled with Yahoo!
Pipes 1 (see Figure 3.2) was shown. The given meta data and stream data model is
depicted in Figure 3.3. After that the experts were again given 5 minutes to rethink
and if needed adapt their approach each on their own followed by a discussion on
how users probably would like to integrate this information.

After a discussion of approximately 10 minutes the second use case was introduced
which was basically a extension of the first. It is presented again in the English
translation:

1https://pipes.yahoo.com/

https://pipes.yahoo.com/

3.2. Participatory Design Study 27

Figure 3.2: Example flow dia-
gram with Yahoo! Pipes used
in the study.

locatedAt

observes

μPart1

μPart1_temps
ensor

hasSensor

air_temperature

TECO
ConferenceRoom

TECO

contains

observes

μPart1_light
sensor

light_intensity http://μPart1_temp
sensor_stream

http://μPart1_light
sensor_stream

< μPart1_tempsensor hasValue 19 >
< μPart1_tempsensor hasValue 20 >
< μPart1_tempsensor hasValue 18 >

time

static meta data

dynamic stream data

Figure 3.3: Model of meta data and stream
data given to experts during study.

Bob is happy with the result of the first use case and now wants to extend is in a
way that he can monitor all server rooms in the building. So a notification should
be send via SMS every time the average temperature within the last 10 minutes in
any server room within the building with the number 50.34 raises above 30◦C. The
content of the notification should be the average temperature and the room number
of the room triggered the notification.
Bob wants, just as is use case one, that the rule works for further extensions like
new server rooms being added without further modification.

Again the experts were given 5 minutes to find a solution on their on followed by a
discussion and a collective approach developed on the board.

(a) A photograph of the board showing
the collective approach for use case 1.

(b) A photograph showing the approach
of an expert for use case 2.

Figure 3.4: Two results produced by the experts during the pre-study.

3.2.5 Evaluation and Discussion

As result for the first task where the experts should sketch each on their own how
they suppose non-expert programmers would like to model the functionality given
in use case 1 all of them came up with a visual language. That was somehow
unexpected as they have not been told or shown anything about visual languages
but rather have seen two examples using textual languages. As can be seen in
Figure 3.4a and Figure 3.4b they all look quite similar and resemble the concept of
“boxes and arrows” introduced in [20]. The also share some common operators like

28 3. Analysis

boxes computing the average , filtering by a given condition or extraction a certain
portion of data from a stream based on time. The last fact indicates, that the
concept of windows on streams seems to be quite intuitive and easy to understand.
It has also been agreed that an IDE should provide a palette of such re-usable
functional blocks that can be inserted via drag & drop into a rule. This resembles
the repository concept used in [46].

An other key aspect for the discussion was the (dynamic) sensor selection, especially
after the constraint of accessible meta data has been introduced. It was stated that
describing the sensors of interest directly by its meta data would probably overwhelm
the user and so there has evolved a discussion on how the user would probably select
the sensors. In that point the experts disagreed somewhat. Some proposed selection
by sensor type whereas others proposed selection by location. Moreover it has been
stated that its probably the most intuitive to define the sensors used by selecting
the properties and entities of interest rather than the sensors or their location itself.
The most supported idea for an user interface was a tree view with checkboxes to
support easy and fast selection of all sensors of interest. This largely matches the
concept of faceted search which probably all users will already know from online
shops.

All experts furthermore agreed on a workflow they think users would follow when
modeling automation rules. It is sensor selection → time selection (windowing) →
data transformation.

3.3 Summary

In the first part of this chapter a classification of use cases found in a literature
review was presented. The use cases have been analyzed and criteria for catego-
rization have been derived. The classification showed that event abstract is a very
common pattern used in 80% of the home automation use cases (see Table 3.3). Also
action abstraction (used in 48%) and parametrizability (used in 36%) are not to be
neglected as they form, together with event abstraction, the most common pattern
within all use cases being used in 32% as shown in Table 3.4.

In the second part of this chapter the participatory design study conducted was
presented. The study showed that all participants proposed the use of a visual lan-
guage with a flow-based style like shown in Figure 3.4. Furthermore they agreed
that metadata is needed and a repository-style system design in terms of metadata
repository and also re-usable user-defined element repository is desirable. More-
over they advocated the use of dynamic sensor selection by metadata and proposed
the corresponding workflow sensor selection → time selection (windowing) → data
transformation.

Therefore the following requirements are derived for the system developed in this
thesis:

� Support the three concepts found in the use case analysis and classification:
event abstract, action abstraction and parametrizability.

� Design a visual language close to the one shown in Figure 3.4.

3.3. Summary 29

� Use semantics to make metadata easily browsable.

� Support re-use of user-defined elements to enable the use of a repository.

� Support dynamic sensor selection and use the found workflow sensor selection
→ time selection (windowing) → data transformation.

30 3. Analysis

4. Design

The goal of this work is to design an easy-to-use rule based home automation system
using semantic technology and semantic streaming fulfilling the requirements listed
in the previous chapter. Figure 4.1 shows the abstract architecture of such a system.
It’s mostly characterized by its interfaces. The system contains a semantic database
storing the meta data of sensor and actors connected to it as well as user-defined
elements modeling the behavior of the system like rules. Such meta data could be
for example type, location, measured features and address of the RDF stream the
data is sent on for sensors and type, location, supported actions and corresponding
parameters for actuators. It consumes the measured sensor values via RDF streams.
Based on the sensor data and meta data the user-defined rules are executed and
generate actions which are forwarded to the desired actuators as commands.

In general, such a system is composed of three major components: a Domain-Specific
Language (DSL) to model rules, an user interface containing an editor for the DSL
and a DSL runtime to execute rules defined in that DSL. In Figure 4.1 a compo-
nent named Semantic Stream Engine is modeled as part of the DSL Runtime as in
this work an existing semantic streaming engine should be re-used to handle RDF
streams.

This abstract architecture however does not model a complete automation system as
it lacks some functionality like how sensors and actuators are physically connected
and how the semantic lifting is done, that means how the relational data and meta
data from sensors and actuators is converted into semantic data. This integration
of sensors and actuators, mostly connected with different interfaces using different
communication protocols, is called physical integration layer in [56]. It is to notice,
that this functionality is not part of the system designed in this work. Also the
following presumptions are made.

� The meta data of all sensors and actuators connected to the system is stored
in the Semantic Database.

� Sensor data is published as RDF stream. The address of the stream is stored
in the Semantic Database.

32 4. Design

DSL Runtime

Semantic Database

User Interface/IDE

DSL & Editor

Semantic Stream Engine

RDF Streams Commands Meta Data

Figure 4.1: Abstract architecture of the system to be designed.

� Actuators can be controlled via uniform commands. The information on how
to execute a command on an actuator is stored in the Semantic Database.

This chapter describes the design Event and Rule Automation System (ERAS) de-
veloped in this work. It therefore points out what design decision were made, why
they were made and which alternatives were considered. The following section gives
an overview of the designed ERAS and Section 4.2 introduces the basic ontology
used. In Section 4.3 and Section 4.4 the two languages that are part of ERAS are
introduced. This chapter is completed with a short summary in Section 4.5.

4.1 System Overview

As the use case analysis in Section 3.1.1 shows, users tend to formulate rules rather
on a higher semantic level than on the sensor level. In 80% of the reviewed use
cases the concept of Event Abstract is used as shown in Table 3.3. According to
[51] this leads to the need for the user to formulate not only his goals with high-
level rules but also to explicitly model how the system’s sensors are integrated in
this task. Therefore this work proposes to separate these two tasks by adapting
the concept of separation of concerns. This will increase to ease of use and also
improve re-usability by introducing modularity. To do this, the following concepts
are introduced: Event, Action, Command, Rule, Rule Deployment, Repository and
Dynamic Sensor Selection.

An Event is in this work defined as a notification containing the right information at
the right time. The term ’right’ refers thereby to the user’s intention. An Event is
always driven by incoming sensor data. Therefore it represents the explicit modeling
of how sensors are integrated in the task of automation.

An Action is considered as some functionality an actuator can perform. It is always
triggered by a Command send to the actuator describing the Action to perform and

4.1. System Overview 33

the parameters. In this work Commands will be sent via REST calls as explained
in Section 4.1.1 in detail.

A Rule is the key element bringing together Events and Actions as a sequence of
reactions to Events and triggering Actions. They represent the high-level goals of the
user. By allowing to chain Events in a sequence a simple temporal logic is provided.
This temporal aspect reinforced by the concept of Rule Deployment which allows
users the control when a Rule will be activated.

The concept of a Repository is rather optional but will highly increase user accep-
tance, ease of use and productivity. It stores user-defined Actions, Events and Rules
(and Stream Sources which are introduced later in this work) and thus allows easy
re-usability and combination (like Events and Actions inside a Rule) of elements.

The concept of Dynamic Sensor Selection allows to define the data of which sensors
are of interest by a query/pattern on their metadata. This will be later on in this
thesis also referred to as implicit addressing since in comparison to the classical
approach to explicitly write down the sensors of interest here the sensors are chosen
by evaluating the query/pattern against the metadata repository. This allows to
adapt the sensors used while the query is running without any modification of the
query and without stopping and restarting it.

To realize this concepts, two separate languages are designed. The first one is called
Event Language (EL) and models the concept Event and the second one is called
Rule Language (RL) and models the concept Rule. Figure 4.2 shows a mock-up of

Figure 4.2: Mock-up of a possible ERAS user interface showing an example Event
modeled with EL.

a possible user interface for ERAS. In the middle an example Event modeled with
EL is shown which is explained in detail in Section 4.3. The purpose of this figure
is to support the reader in envisioning the workflow of how a user would realize an
automation task to better get a understanding the concept behind ERAS. Assuming,

34 4. Design

that all the needed sensors and actuators are configured and connected, a possible
workflow could look like this.

� The user designs an Event either from scratch or by reusing an existing one as
a template. He starts with the selection of sensors of interest. These can be
either explicitly addressed or implicitly by describing the meta data to select
sensors by. To simplify the task of formulating proper meta data criteria any
kind of wizard could be implemented to support the user (for example faceted
search). He then models the data- and event-flow and defines the output data.
Before continuing he checks the modeled Event via the live output window at
the bottom to ensure proper functionality.

� The user has defined all Events needed for modeling his rule. So he created a
new Rule and places the just created Event(s) via drag and drop inside. He
also adds the desired actions via drag and drop to the Rule and models the
behavior he wants to achieve.

� After saving the Rule to the repository he schedules his rule to run on every
start-up of the system.

4.1.1 Architecture

Event Language
Runtime

Rule Language
Runtime

Sensor Actor Server

Semantic
Database

User Interface/IDE

Rule Language Event Language Administration

Semantic
Stream Engine

REST

SPARQL SPARQL

SSE

REST

REST REST

REST

Figure 4.3: System overview.

Figure 4.3 shows the architecture of ERAS. The architecture is based on the ab-
stract architecture shown in Figure 4.1 and adapted to the concepts introduced in
the previous section. According to the decision made to have two languages the
architecture now shows separate components for the RL and EL as well as separate
runtimes. In addition Figure 4.3 is annotated with the protocols used for communi-
cation between the components. The communication of both of the runtimes with
the Semantic Database is realized via SPARQL[12] which stands for SPARQL Pro-
tocol And RDF Query Language and is a query language for semantic data. It is an

4.2. ERAS Ontology 35

official W3C (World Wide Web Consortium) recommendation and the de facto stan-
dard for querying semantic data. However, more important is the communication
between the Rule Language Runtime and the Sensor Actor Server as it refers to the
concept of Commands just introduced above. This communication aims on sending
commands to an actuator. Here, REST (REpresentational State Transfer) is chosen
as it is a lightweight protocol and guarantees loose-coupling and therefore is best
suited for resource-constrained, ad-hoc environments like home automation[80]. The
data communicated between the Sensor Actor Server and the Event Language Run-
time are the RDF streams containing sensor data. Thereby it is a one-directional
communication with the need for high throughput and low latency as the sensor data
can arrive at high frequencies. Two protocols have been considered to be used for
this communication: Server-Sent Events (SSE) and WebSockets. SSE works on top
of HTTP and provides a one-way communication channel whereas WebSockets uses
its own protocol based on TCP and provides a two-way communication channel. As
SSE is standardized as part of HTML5 by the W3C and only a one-way communica-
tion is needed, SSE is chosen as protocol to connect RDF streams to the system. As
there are no special requirements on the remaining communication interfaces they
will also be realized using REST to keep the communication as simple as possible.

4.2 ERAS Ontology

ssn:Device

eras:Device

eras:Sensor

eras:Stream eras:Action

eras:Parameter

ssn:SensingDevice

xsd:string

eras:hasSensor eras:hasActuator

eras:hasStream eras:supportsAction

eras:hasUri eras:hasParameter

eras:name

eras:value

spt:Actuator

eras:name eras:name eras:Actuator

xsd:string

eras:name

eras:name

rdfs:Literal

xsd:string

eras:hasUrl

Figure 4.4: Classes and properties of the ERAS ontology.

In this section the ontology designed in this work, called ERAS ontology, is pre-
sented. The approach was to design it as simple as possible and as complex as
needed. Therefore it is based on the simple RDFS and not the more complex OWL
or even OWL2. Also it covers only the very essential concepts and thus leave the
possibility to describe everything else needed in additional (custom) ontologies.

36 4. Design

Figure 4.4 shows the classes and their properties of the ERAS ontology. The concept
of sensors and actuators are aligned with the SSN (Semantic Sensor network) on-
tology[13] designed by the W3C Semantic Sensor Network Incubator Group which
is close to being de facto standard for semantic modeling of sensors respectively
the SPITFIRE ontology [14] (for which the prefix spt is used in the figure) which
has been developed as part of the SPITFIRE project[15] and is itself aligned with
the SSN ontology. The most important part of the ontology is the modeling of
streams visible on the lower left of Figure 4.4. it is described, that a eras:Sensor
has a eras:Stream which is connected via the eras:hasStream property. The prop-
erty eras:hasUri in turn points to the URI of the RDF stream send via SSE. This
structure allows dynamic stream selection by meta data pattern. Furthermore, the
ontology models actions with the eras:Action class having an URL which represents
the REST address to send the command to. Also the concept eras:Device is intro-
duced which acts as container for sensors and actors and thereby will represent real
world thing like for example a fridge in most of the cases.

eras:name

eras:hasSensor

eras:hasActuator

eras:hasStream

eras:hasUri

eras:supportsAction

eras:hasParameter

eras:value

ssn:hasSubsystem

rdfs:string

eras:Device

eras:Sensor

eras:Stream

eras:Action

eras:Parameter

eras:Actuator

rdf:Property

rdfs:label rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:subPropertyOf

rdfs:range

rdfs:range

rdfs:range

rdfs:range
rdfs:Literal

eras:hasUrl rdfs:string

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:range

Figure 4.5: Detailed view of the properties defined in the ERAS ontology.

Figure 4.5 gives a detailed view of the properties defined in the ERAS ontology. It
shows, that also the properties are aligned with RDFS and the SSN ontology. The
property rdfs:range ensures that some property can only be applied to an instance
of the class referred to by rdfs:range. rdfs:domain works in the opposite direction
and ensures that all instances the referred property points to are instances of the
class rdfs:domain. So for example eras:hasStream can point from any instance (as
rdfs:range is not defined) but only to instance of eras:Stream (or subclasses). This
allows not only sensors but every instance in the ontology to state the it is publishing
some information on a RDF stream.

4.3. Event Language 37

4.3 Event Language

In this section the design of EL is illustrated. The first design decision made was to
realize it as a visual language rather than a text-based one. This decision was made
as all participants in the pre-study intuitively tried to realize the given use case
with some sort of visual language. According to the two-folded nature of the defi-
nition of the concept Event in the Section 4.1, namely a notification containing the
right data at the right time, EL is designed to reflect that duality by distinguishing
between data-flows, describing what data is of interest, and event-flows describing
when it’s the right time to trigger a notification. As the data-flow processing is more
complicated than the event-flow processing EL is designed like a general query lan-
guage with a few additional timing and event-handling concepts. Figure 4.6 shows a
mockup of an example event modeled with EL. The event notifies when the average
temperature of the last 10min in any room (defined by ?room) raises above 30 ◦C.
On top we see one of the core concepts of EL, the event element, decorated with
a flash. It defines a name for the event and combines event- and data-flow as it
specifies when a notification should be generated and what data it should contain.

When? What?
?avg_temp_room

?room

Average temperature of
last 10min raises above
30°C in ?room

within 10 min tumbling

?sensor ?value ?room

Pattern ?sensor hasValue ?value

hasStream

Sensor

temperature

observes

hasSensor
?room

is a
Device

Room

locatedAt

All temp sensors in ?room

?value AS ?avg_temp_sensor

?avg_temp_sensor ?sensor ?room

?avg_temp_room ?room

?avg_temp_sensor AS ?avg_temp_room

expression satisfied? ?avg_temp_room

?avg_temp_room >= 30

A
l
3

to ?true
changes?

Figure 4.6: A mockup of an example event modeled with EL.

On the bottom of Figure 4.6 we see another core concept: the dynamic stream
selection. As seen in Section 2.2.3 dynamic stream selection was a requirement for

38 4. Design

the design of this language which has been accounted for with this concept. It allows
selection of streams by meta data so that the sensors involved in this event can vary
over time as new sensor are added, old ones are deleted or some meta data of a sensor
changes. Nevertheless streams can also be addressed explicitly by providing their
URI. By this, EL addresses the requirement reliability and the barrier inflexibility
shown in Section 3.1.1. The concept of windowing[70] is applied to incoming RDF
streams to extract only the data of interest which then can be processed as a set of
triples (also known as graph). It is also allowed to introduce variables in the stream
selection pattern (which determines which streams are selected). These variable can
be used inside the data-flow of the event but also can be used to configure the event
when called from outside, thus allowing an event to be parametrized. Furthermore,
the formulation of a suitable stream selection pattern should be supported by some
wizard helping the user which is not intended to be familiar with writing triple
patterns. This could be realized by some sort of faceted search where the user can
select the sensors currently deployed in the system he is interested in, probably by
filtering by some criteria like sensor type, observed property or location, and then
suggested a general pattern like ’Did you mean: all sensors observing temperature
with an accuracy of at most + − 1 ◦C in room xy?’. This kind of sensor selection
would enable even users with no knowledge of semantic data to query it to express
their intentions. Sadly it is a to complex topic to be covered in this work so it will
be listed as a possible extension in future work.

To make it easier to distinguish between data- and event-flow they are highlighted
using different colors. The data-flow is shown in blue as the event-flow is depicted
in red. In the rest of this section the metamodel of EL is presented and discussed
and also the design of a runtime for EL is presented.

4.3.1 Metamodel

Figure 4.7 shows the metamodel of the EL as an UML class diagram. It is as
stated above basically designed to represent a regular flow-based query language
but with two noticeable differences. The first one is that EL uses two kinds of
flows, event-based and data-based flows. This is observable by the separation of
the metamodel in two parts. The upper half of the depicted metamodel shows the
elements modeling the data-flow whereas the lower half shows the elements modeling
the event-flow. Between them in the middle of Figure 4.7 are three classes that are
not specialized either to model event- or data-flow: Element, Connection and Event.
The first two provide abstract superclasses for an element and a connection whereas
the class Event is the root element of any model and thus represents any model based
on this metamodel. It consists of two attributes: a name and a list of parameter
names which will later be used to initially bind to some parameters and thereby
making an Event reusable. It also contains multiple StreamSources, Connections and
Elements as well as exactly one EventSink which represents the final element in each
model. The second difference to a regular flow-based language is that in the data-flow
the elements are not directly connected. Rather a DataElement contains multiple
DataPorts which represent the available output parameters and act as sources for
DataConnections. DataPorts also allow multiple outgoing DataConnections.

4.3. Event Language 39

dataPorts

name: String

EventPort
source
connection

Event

name: String
parameter: List<String>

DataElement

DataConnection

EventElement

EventConnection

Connection Element

varName: String

DataPort

1..*

1

1

1

1..* 1 1..* 1

query: String

Extend

aggVar: String

Aggregation

leftVar: String
rightVar: String

Join

expression: String

Filter

LogicalAND LogicalOR LogicalNOT

changesTo: bool

ChangesTo

1..* 1

1..* 1

1..*

1

1..*

1

MAX MIN SUM AVG COUNT

1..*
1

1
1

eventPorts parent

parent

sink

sink
source
connections

dataConnections

eventConnections

connections

sink

sources

elements

1

1
eventPort

StreamSource

name: String
streamUri: String
streamPattern:String
window: String

name: String

EventSink

Figure 4.7: UML class diagram showing the EL metamodel.

As not all relevant definitions can be made with UML directly there also exist some
constraints on the classes of the metamodel. These constraints are expressed with
with the Object Constraint Language (OCL)1. In the following the classes of the
metamodel and their OCL constraints are briefly described. Each description is
followed by the corresponding constraints if there are any.

Event The root class containing all the other elements.

Connection Abstract representation of a connection and superclass of DataCon-
nection and EventConnection.

Element Abstract superclass of all elements in an Event.

DataElement, EventElement Abstract superclasses of all elements for the
data-/event-flow. Allow incoming DataConnections/EventConnections and con-
tain any number of DataPorts/EventPorts, thus allowing outgoing DataConnec-
tions/EventConnections.

context DataElement inv:
self.dataPorts->forAll(p1, p2 | p1<> p2 implies p1.varName<> p2.varName)

1http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/

40 4. Design

context EventElement inv:
self.eventPorts->forAll(p1, p2 | p1 <> p2 implies p1.name <> p2.name)

The constraints ensure, that neither a DataElement can have multiple DataPorts
with the same varName nor a EventElement can have multiple EventPorts with the
same name.

DataConnection, EventConnection Represent a connection between DataEle-
ments/EventElements.

DataPort Represents a data variable which name is given by the property var-
Name and allows multiple outgoing DataConnections to be connected.

EventPort In similarity to DataPort it represents an event variable but only
allows a single outgoing EventConnections to be connected. Thus it is not possible
to split up and event-flow like a data-flow in EL.

StreamSource Represents data coming from RDF streams specified by the
streamUri property, matching the given streamPattern within a window specified by
the window property. It is the only element without any predecessors and therefore
the start of any flow. For each variable in streamUri and streamPattern it contains
a DataPort instance with the property varName set to the name of the variable.

EventSink Acts as final or output element of a flow and accepts DataConnections
and EventConnections. It is one of two elements crossing the separation of event-
and data-flow.

context EventSink inv:
self.eventConnections->size() <= 1
self.eventPorts->size() = 0
self.dataPorts->size() = 0

Constraints the EventSink to not have any DataPorts and EventPorts, i.e. now
outgoing connections are allowed. Also only a single incoming EventConnection is
allowed.

Filter A Filter allows incoming data to be filtered by the expression defined by
his expression property. Furthermore, the Filter element is the only element capable
of initially generating an event-flow by exposing an EventPort representing whether
the current data match the expression.

Extend Defines an operation that allow to query additional data from a SPARQL
endpoint.

Join Allows to merge data-flows by equating two incoming variables whose names
are given by the properties leftVar and rightVar.

context Join inv:
self.dataPorts->size() < self.dataConnections->size()
self.left <> self.right

The first constraint limits the number of output variables to the number of incoming
variables - 1 because as they are joined they have one variable in common. The
second constraint prohibits to join a variable with itself.

4.3. Event Language 41

Aggregation It’s an abstract superclass for multiple classical aggregation oper-
ators. They accept multiple input variables, execute the aggregation on the variable
specified through the aggVar property and group by all others inputs.

context Aggregation inv:
self.dataPorts->size() <= self.dataConections->size()

The constraint ensures that there are no more output variables than input variables.

LogicalAND, LogicalOR, LogicalNOT Simple logical operators to be used
in the event-flow.

context LogicalAND inv:
self.dataPorts->size() = 1

context LogicalOR inv:
self.dataPorts->size() = 1

context LogicalNOT inv:
self.dataPorts->size() = 1
self.dataConnections->size() = 1

These constraints ensure that all three elements only have one output variable and
in addition that LogicalNOT has only one input variable.

ChangesTo An operator that stores the last received value, compares it with the
current value and fires when the input changes to the value specified in the property
changesTo.

4.3.2 Runtime

To implement the EL runtime an existing semantic streaming engine should be re-
used to speed up the implementation so there will be more time to focus on ease
of use for non-programming experts. Therefore a decision between the four engines
compared in Table 2.2 had to been made. After an examination of the engines
it became clear that EP-SPARQL and INSTANS are not suited as they both do
not implement the concept of a stream. Also there were problems with using the
code available due to compilation errors and unclear or missing documentation. This
holds especially for INSTANS. Furthermore EP-SPARQL does not support tumbling
windows and sliding windows with a step size. Therefore the use of EP-SPARQL and
INSTANS has been discarded leaving CQELS and C-SPARQL as possible engines.

The drawbacks of C-SPARQL are that it only supports one window per stream and
has no support for dynamic stream selection. Furthermore it has been shown to
be remarkable slower than others systems especially than CQELS[65]. In the tests
carried out in [65] C-SPARQL yielded execution times about 1000 times lower than
CQELS. That C-SPARQL will be slower than CQELS is not surprising because C-
SPARQL always yields the complete result (Rstream) whereas CQELS only yields
the newly added results (Istream) but a factor of 1000 seems pretty high for only
this.

CQELS does already allow to implicitly address streams by using a variable as
address which can then be further specified by additional bindings. Further it is
very fast. The downside of CQELS is that it only yields an Istream which in some

42 4. Design

use cases will not be enough to model the desired functionality but it is assumed
that CQELS can be extended yield also Rstreams. Because of this detailed analysis
CQELS will be used to implement the runtime of EL.

4.4 Rule Language
In this section the design of RL is introduced. It is like the EL language designed
as visual language. It realizes the concept Rule defined in Section 4.1. Therefore
its purpose is to combine events in sequences and trigger actions. Figure 4.8 shows
a mock-up of a simple rule modeled with RL. It is no coincidence that its design
resembles a finite-state machine. It was modeled like this as rules naturally uses
events as triggers and events can be seen as a notification that the (world’s) state has
changed. Thus it seems naturally that an event can be seen as a transition between
to states (of the world). Also this approach allows to model very complex behavior
by not making simple rules more complex. Furthermore it allows to break down a
complex rule in small simple steps, which may or may not be time-dependent, what
seems to suit the human approach in modeling complex behavior. In the following
the general functionality of RL is illustrated.

As mentioned, it is designed like a finite-state machine and therefore it has a start-
ing state. States in RL does not have any deeper meaning, they only represent
intermediate state of rule execution flow and allow execution of actions when en-
tered. Transitions represent events that can occur. This can be events defined in EL,
time-based events or compound events, which means multiple transitions connected
with a logical and or logical or. When entering a state the outgoing connections
are deployed. If a state has multiple outgoing connections they are all deployed but
only the first one to fire is followed. Before exiting a state all deployed events are
undeployed. If a state does not have any outgoing transitions the rule will end after
that state is reached. If the rule should always be running it should be modeled as
a loop. As mentioned above, states can have multiple actions connection which are
all executed when the state is entered.

A powerful feature provided is parametrization. It allows to pass values along tran-
sitions and also on to actions. A part of it can be seen in Figure 4.8. The event
on the transition has two output values, !room and !avg temp. It is to notice, that
variables are prefixed with a ? and values with an !. Following the transition to the
action call it can be observed, that the two output variables from the event are used
in the parameter definition of the action depicted in green.

Another very powerful feature is the foreach pattern. By placing it before the initial
state it allows to specify that this rule shall be deployed multiple times with a
different variable binding each time. In the shown example the rule will be deployed
once for every room defined in the meta data. The current room is bound to !room
and accessible inside the rule. In the shown example the event used for the transition
has a parameter ?room defined which is bound to the current value of !room before
the event is deployed thus taking full advantage of parametrizable events.

4.4.1 Metamodel

In this section the metamodel of RL is introduced. It was basically derived from
the example shown in Figure 4.8 and then enriched with features not present in the
example.

4.4. Rule Language 43

?room = !room
IN

Average temperature of
last 10min raises above

30°C in ?room

EVENT
!room
!avg_temp

OUT

SEND SMS
?number = 1234
?text = “temp alarm for“ + !room + “with a
 temperature of “ + !avg_temp

FOREACH: !room
SELECT ?room WHERE {
 ?room a :room
}

Figure 4.8: A mock-up of an example rule modeled with RL.

Figure 4.9 shows the RL metamodel as UML class diagram. The root class is Rule
which contains the States and Transitions of the rule as well as a reference to the
initial state and a Binding.A Transition always has exactly two States, namely source
and target whereas a State can have multiple outgoing Transitions.

The concept of variable binding is realized by introducing the Binding class and
modeling relations to this class from all elements taking part in the rule-flow. This
allows forwarding the variable binding beginning from the optional Foreach to the
initial state and through transitions, which can modify the binding with the binding
of their condition, up to the actions to be executed.

The metamodel nicely shows the different conditions that can cause a transition to
trigger modeled as subclasses of Condition. Besides the EventCondition used in the
example there are two time-based conditions and two compound conditions. The
time-based conditions can be absolute in time defined by a time pattern for which it
is proposed to use a Cron expression2. This is a close de facto standard for defining
time patterns and intervals. Thus allows the user to express conditions like ’every
Monday at 07:00 AM’ or they can be of relative time allowing expression like ’in
5 minutes’. The CompoundCondition subclasses AND and OR allow to combine
multiple conditions with a logical and or logical or. Combining some conditions
with a logical and only triggers when all conditions are fulfilled and the resulting
bindings are merged. Conflicts in merging the bindings are neither resolved nor
detected. It is supposed that the result of the execution of any condition is merged
into the compound binding right when the execution has finished which results in
that results of previously finished sub-conditions returning a value with the same
name is overwritten. If multiple conditions are combined with a logical or all sub-
conditions are undeployed as soon as the first sub-condition yields a result.

2http://en.wikipedia.org/wiki/Cron#CRON expression

http://en.wikipedia.org/wiki/Cron#CRON_expression

44 4. Design

states

condition
Condition

name: String

State

name: String
command: String
actorPattern: String

Action

query: String

Foreach

name: String

Rule

values:
Map<String, String>

Binding

Compound
Condition

AND OR

event: Event

EventCondition

duration: long
timeUnit: TimeUnit

RelativeTime
Condition

timePattern: String

AbsoluteTime
Condition

Transition

1 source 1 target

* actions 0..1 binding

*
outgoing
transitions

1
subconditions
1..*

0..1 binding

0..1
binding

0..1 binding

* transitions

1
initialState

* 1
binding

Figure 4.9: UML class diagram showing the RL metamodel.

4.5 Summary

In this chapter ERAS and the underlying concepts were illustrated. It was shown
that ERAS tries to improve ease of use by introducing separate languages for rules
and events and thus decoupling them to give suitable solutions for each domain.
For both languages a formal metamodel was presented as well as a concept for the
runtime. It was decided to base the implementation for the EL runtime upon CQELS
because it seems best suited for this task.

5. Language and Framework
Implementation

In this section the implementation done in this thesis is described. At first, in
Section 5.1 the used programming environment and runtime libraries are explained.
Section 5.2 gives an overview of the ERAS system implemented and the structure
of all of its components. In Section 5.3 and Section 5.4 the implementation of EL
respectively RL is described and details on implementation of the languages, editors
and runtimes as well as the compilers are presented. The chapter closes with a
summary in Section 5.5.

5.1 Development Environment, Tools and Libraries

The system was implemented using Java as it’s the most common language for
Semantic Web applications. For implementing the visual languages Eclipse Modeling
Framework (EMF)1 was chosen and the corresponding editors were implemented
using the Graphical Modeling Framework (GMF)2. For easier and a more automated
development EuGENia3 was used, a tool that simplifies the integration of EMF and
GMF. The Java Compiler Compiler (JavaCC)4 was used to generate the compiler
for ECQELS (see Section 5.3.3). The following list shows all tools and the version
used for development.

� Java 8

� NetBeans IDE 8.0.1

� Eclipse Luna

� Eclipse Modeling Framework (EMF) 4.4.0

1http://eclipse.org/modeling/emf/
2https://wiki.eclipse.org/Graphical Modeling Framework
3http://eclipse.org/epsilon/doc/eugenia/
4https://javacc.java.net/

http://eclipse.org/modeling/emf/
https://wiki.eclipse.org/Graphical_Modeling_Framework
http://eclipse.org/epsilon/doc/eugenia/
https://javacc.java.net/

46 5. Language and Framework Implementation

� EuGENia 1.2.0

� Graphical Modeling Framework (GMF) Tooling SDK 3.2.0

� JavaCC 6.0.1

� Maven 3.2.1 and SVN

Furthermore some third-party libraries were used. These were Esper5 an event
processing framework, parts of the Apache Jena framework6 which is a open source
framework for building Semantic Web applications, a JSON API, the JavaEE Web
API for enabling SSE, JAX-RS7 for enabling RESTful communication, a library
providing a simple HTTP server component and the QUARTZ Job scheduler8 for
time-based scheduling of tasks. The following list shows the third-party libraries
including their version used. It is to notice that this list is not complete as libraries
not of interest for the reader such as logging libraries are omitted.

� Esper 4.2.0

� Jena ARQ 2.9.3

� Jena TDB 0.9.3

� Jackson JSON processor 2.3.0

� JavaEE Web API 7.0

� JAX-RS 2.7

� Jersey Grizzly2 HTTP Server 2.7

� QUARTZ Job Scheduler 2.2.1

5.2 Event and Rule Automation System

Figure 5.1 gives an overview of the structure of ERAS showing an UML package
diagram of the system. It is to notice that each depicted package represents a whole
project which is represented by the topmost package. It shows a lot of commonalities
to Figure 4.3 which is clear as it is the concrete representation in code of the abstract
system design depicted in Figure 4.3. The layout of Figure 5.1 can be considered as
split in two almost symmetrical parts by an imaginary horizontal line in the middle.
The upper part describes the Event Language (EL) and the lower one the Rule Lan-
guage (RL). Only two packages in the middle of the left side(edu.teco.eras.server and
edu.teco.eras.client) do not fit into this scheme as they are the main packages of the
system representing the ERAS server and the corresponding client API respectively.

As the structure of the two languages is, except for one relation, completely identical
the structure will only be explained once. The four most right packages of the form

5http://esper.codehaus.org/
6https://jena.apache.org/
7https://jax-rs-spec.java.net/
8http://quartz-scheduler.org/

http://esper.codehaus.org/
https://jena.apache.org/
https://jax-rs-spec.java.net/
http://quartz-scheduler.org/

5.3. Event Language 47

edu.teco.ecqels
edu.teco.eras.

el.common
edu.teco.eras.

el.runtime.server
edu.teco.eras.

el.compiler

edu.teco.eras.
el.runtime.client

<<generated>>

edu.teco.eras.
el.language.tests

<<generated>>

edu.teco.eras.
el.language.diagram

<<generated>>

edu.teco.eras.
el.language.edit

<<generated>>

edu.teco.eras.
el.language.editor

edu.teco.eras.
el.language

edu.teco.eras.
rl.runtime.client

edu.teco.eras.
rl.runtime

edu.teco.eras.
rl.common

edu.teco.eras.
rl.runtime.server

edu.teco.eras.
rl.compiler

edu.teco.eras.
rl.language

<<generated>>

edu.teco.eras.
rl.language.editor

<<generated>>

edu.teco.eras.
rl.language.edit

<<generated>>

edu.teco.eras.
rl.language.diagram

<<generated>>

edu.teco.eras.
rl.language.tests

edu.teco.eras.
client

edu.teco.eras.
server

Figure 5.1: UML Package diagram of ERAS.

edu.teco.eras.X.language.* (where X denotes el or rl and * is a wildcard) form the
visual editor and are auto generated using EMF and GMF. However some parts of
them are manually edited to realize custom behavior of the editors. They all import
the package defining the language which is edu.teco.eras.X.language. Furthermore
for each language there is a runtime, realized by the packages edu.teco.ecqels and
edu.teco.eras.rl.runtime, as well as a compiler package named edu.teco.eras.X.compiler
translating the language into something the runtime can execute. On top there is a
server package (edu.teco.eras.X.runtime.server) implementing a server and exposing
a REST interface as well as a client API to access the server (edu.teco.eras.X.runtime.
client). Furthermore common functionality and data types shared between the
server and client are extracted into a package named edu.teco.eras.X.common.

5.3 Event Language

In this section the implementation of EL is shown. As stated above the language
was implemented using EMF and the editor using GMF. The language is defined by
a file written in the language Emfatic9 which is language for defining metamodels.
GMF allows to define the visual appearance of models created upon this metamodel
by adding annotations to the elements inside the Emfatic file. Thereby the language
and the corresponding editor can be defined within a single file. Therefore the next

9https://wiki.eclipse.org/Emfatic

https://wiki.eclipse.org/Emfatic

48 5. Language and Framework Implementation

section does cover the language and the editor rolled into one. This section also
shows the implementation of the corresponding runtime and the compiler which
closes the gap between the language and the runtime.

5.3.1 Language and Editor

Listing 5.1 shows an excerpt of the Emfatic file defining the EL and shows the
abstract superclasses of the metamodel. The metamodel implemented does differ
in some parts from the metamodel presented shown in Figure 4.7. This is because
the meta model in the design phase has been developed target-platform-agnostic
and therefore does not take platform-specific implementation details into account.
Therefore the designed metamodel has been slightly adapted to better suit the needs
of the platform. Before giving detailed insights on how to metamodel has been
adapted some information on how to read Emfatic code and how this code is further
processed is given.

Emfatic code defines a metamodel. Therefore at a later step in development Java
code is generated out of it. For each class in the metamodel a Java interface with the
same name is generated as well as an implementation class with the suffix Impl. It is
to notice that Emfatic allows multiple inheritance. This is sometimes confusing Java
as does not but at the same time Emfatic code can be used to generate Java classes.
So multiple inheritance is resolved by only subclassing one of the superclasses and
implementing the interface of the other one.

The first three lines of the listing define the external implemented classes as data
types by the use of the keyword datatype so that they can be used within the Emfatic
file. Emfatic allows to express two UML relationships. These are Association using
the keyword ref and Composition using the keyword val. Furthermore multiplicity
can be defined using squared brackets. Relations can also be defined as two-way
relations called opposite reference in Emfatic and is expressed by using # after the
relation definition followed by the name of the opposite relation. The lines staring
with @gmf are annotations for GMF and specify the visualization in the editor.
@gmf.affixed can only be defined on a composition and causes the elements to be
aligned on the border of the parent element instead of inside of it. Furthermore
Emfatic also allows to define method headers with the keyword op which have to be
implemented in the generated implementation classes.

The adaption of the metamodel designed at runtime manifests for example in the
existence of the class DataEventElement shown in Listing 5.1 not present in the
metamodel at design time. The need for this class arises from the fact that the
classes realizing the language model should be designed to also suit the needs of the
parser so that models defined in the language can easily be traversed. As typical for
parsers the visitor pattern is used that requires all elements to implement a method
like visit(Visitor visitor){...}. This is realized as all abstract superclasses does define
such a method. As EL has a data-flow and an event-flow the two separate classes
DataElement and EventElement are defined each implementing their own visit(...)
method thus providing type-safety. As there are some elements that can be part
of a data-flow and event-flow the class DataEventElement is introduced which uses
multiple inheritance to later act both as a DataElement and an EventElement.

Listing 5.2 shows the definition of the StreamSource class as an example for a visual
element as well as the definition of DataConnection as example for a connection.

5.3. Event Language 49

Listing 5.1: Excerpt from the EL Emfatic showing the abstract superclasses.

datatype EElementVisitor: edu.teco.eras.el.language.extension.visitor.ElementVisitor;
datatype EDataElementVisitor: edu.teco.eras.el.language.extension.visitor.DataElementVisitor;
datatype EEventElementVisitor:

edu.teco.eras.el.language.extension.visitor.EventElementVisitor;

abstract class Element{
op void visit (EElementVisitor visitor) ;

}

abstract class DataElement extends Element {
@gmf.affixed
val DataPort[*]#parent dataPorts;
ref DataConnection[*]#sink dataConnections;
op void visit (EDataElementVisitor visitor);

}

abstract class EventElement extends Element {
@gmf.affixed
val EventPort[*]#parent eventPorts;
ref EventConnection#sink eventConnection;
op void visit (EEventElementVisitor visitor);

}

abstract class DataEventElement extends DataElement, EventElement {

}

GMF distinguishes partitions all elements that can later be used in the editor into
two classes: nodes defined with the annotation @gmf.node and links defined with
@gmf.link. These annotations can contain further parameters on how the elements
should be visualized like for example the attribute used as label or the color. Links
furthermore have to define which relation models the source and the target of the
link.

It is to notice that the attributes of the StreamSource class are all defined as strings
even though for most of them dedicated types do exist in the project. This is due
to the fact that the generated editor does only support editing basic data types (as
can be seen in Figure 5.2 at the bottom) without additional custom implementation
which is out of scope of this thesis.

Listing 5.2: Excerpt from the EL Emfatic showing the definition of an example
visual element and a connection.

@gmf.node(label=”name”, color=”200,200,200”)
class StreamSource extends DataEventElement {

attr String name = ”DATA SOURCE”;
attr String StreamPattern = ””;
attr String StreamSelectionPattern = ””;
attr String Window = ””;
attr String Refresh = ””;

}

@gmf.link(source=”source”, target=”sink”, style=”solid”, width=”5”, target.decoration=”arrow”,
color=”170,210,240”)

50 5. Language and Framework Implementation

class DataConnection extends Connection {
ref DataElement#dataConnections sink;
ref DataPort#connections source;

}

Figure 5.2 shows the implemented editor modeling the use case already presented in
Figure 4.6.

Figure 5.2: A screenshot of the EL editor showing the example use case already
shown in Figure 4.6.

5.3.2 Runtime and ECQELS

This section describes the implementation of the runtime of EL. As shown in Sec-
tion 4.3.2 the runtime will be implemented using CQELS. Listing 5.3 shows the most
important methods of the runtime defined in interface-like style. Looking at these
methods it is obvious that most of them are for life-cycle management. Unfortu-
nately CQELS does not provide all of these methods so they had to be implemented
as part of this thesis.

Listing 5.3: Most important methods of the EL runtime interface.

public ContinuousSelect registerSelect (Query query, Map<String, String> initialBinding);
public ContinuousConstruct registerConstruct(Query query, Map<String, String> initialBinding

);
public void registerStream(RDFStream stream, String metadataGraph, String metadata);
public void unregisterSelect (ContinuousSelect query);
public void unregisterConstruct(ContinuousConstruct query);
public void unregisterStream(RDFStream stream, String metadataGraph, String metadata);
public void send(Node graph, Triple triple) ;
public void start () ;
public void stop() ;
public void shutdown();

5.3. Event Language 51

Furthermore in the course of the implementation it has been noticed that CQELS
does only support a basic and not further defined subset of SPARQL. More precisely
the CQELS language (as defined later in Listing 5.4) and Parser does support full
SPARQL 1.1 but when executed some undefined behavior occurs which can be the
occurrence of an exception without a detailed message or normal program execution
without any result showing up. As the concept of compiling EL to CQELS is essential
based on using subselects this functionality also needed to be implemented.

Though CQELS does partially support the dynamic stream select out of the box by
allowing to bind the address of a stream to a variable like STREAM ?uri [RANGE
10s] it is not enough for this thesis as the variable binding is just evaluated once the
query is registered. Therefore the concept of refreshable elements was introduced as
seen in the next section.

Halfway through the implementation another problem concerning the window se-
mantic arose which in combination with the need for subselects and the overall
structure and code quality of CQELS did not allow to further extend the existing
CQELS code to fulfill all requirements. In consequence a custom implementation of
the CQELS engine was developed from scratch using the original CQELS code as a
template. The new implementation of CQELS developed within this work is called
ExtendedCQELS or short ECQELS and is presented in the following.

ECQELS
ECQELS defines its own language based on the CQELS language shown in List-
ing 5.4 and is therefore complete compatible to CQELS (meaning that CQELS
queries can be executed with ECQELS, not the other way round), yet yielding dif-
ferent results due to the different window semantic used. Its implementation is
largely based on combining Esper and Jena ARQ which is the part of the Apache
Jena framework responsible for SPARQL parsing and execution.

Listing 5.4 shows the definition of the CQELS language expressed as a grammar in
Extended Backus-Naur Form (EBNF). It is based upon the SPARQL 1.1 grammar
as defined by the W3C[16].

Listing 5.4: CQELS language grammar under EBNF notation.
GraphPatternNotTriples : := GroupOrUnionGraphPattern | OptionalGraphPattern |

MinusGraphPattern |GraphGraphPattern | StreamGraphPattern | ServiceGraphPattern |
F i l t e r | Bind

StreamGraphPattern : := ‘STREAM’ VarOrIRIref ‘ [’ Window ‘] ’ ‘{ ’ TriplesTemplate ‘} ’
Window : := Rangle | Tr ip l e | ‘NOW’ | ‘ALL’
Range : := ‘RANGE’ Duration (‘SLIDE ’ Duration | ‘TUMBLING’) ?
Tr ip l e : := ‘TRIPLES’ INTEGER
Duration : := (INTEGER ‘d ’ | ‘ h ’ | ‘m’ | ‘ s ’ | ‘ ms ’ | ‘ ns ’)+

It links into the SPARQL grammar by adding the StreamGraphPattern into the
GraphPatternNotTripples pattern. Listing 5.5 now shows the extensions introduced
by ECQELS highlighted in red. Basically there are only two extension. The first
one is the Refresh pattern allowing to specify that some parts should be refreshed
in a given interval. This pattern is optional and is defined to be used with streams
defined by the StreamGraphPattern pattern, SPARQL SERVICE blocks defined by
the ServiceGraphPattern pattern and ordinary SPARQL GRAPH blocks defined
by GraphGraphPattern pattern. The second extension is the extension of theFilter
pattern which introduces the ChangesTo operator.

52 5. Language and Framework Implementation

Listing 5.5: ECQELS language grammar under EBNF notation. Extensions to
CQELS grammar are highlighted.
StreamGraphPattern : := ‘STREAM’ ‘ [’ Window ‘] ’ VarOrIRIref Refresh ‘{ ’ TriplesTemplate

‘} ’
Refresh ::= (‘[REFRESH’ Duration ‘]’)?
GraphGraphPattern : := ‘GRAPH’ VarOrIr i Refresh GroupGraphPattern
ServiceGraphPattern : := ‘SERVICE’ ‘SILENT’ ? VarOrIr i Refresh GroupGraphPattern
F i l t e r : := ’FILTER’ Constra int (‘CHANGES TO’ BooleanLiteral)?

In the following a coarse overview of the architecture of Jena ARQ is given and it
is explained how ECQELS is build on top of it.

Figure 5.3 shows the classes involved in processing a SPARQL query and the data
types passed between them inside Jena ARQ. At first a SPARQL query in form of
a string enters the system (depicted on the left) and is passed to the Tokenizer.
The Tokenizer cuts the long query string into smaller ones referred to as tokens.
This process is known as lexicographic analysis. These tokens are then passed to
the Parser which performs a syntactic analysis and builds the abstract syntax tree
often only referred to as AST. In Jena ARQ the AST consists of instances of sub-
classes of the abstract class Element. For the AST to become executable it is passed
to the AlgebraGenerator which compiles the AST into SPARQL algebra. Elements
of the algebra are instances of classes implementing the Op interface in Jena ARQ.
To execute the query the resulting root Op instance is passed to the OpExecutor.
As Jena ARQ extensively uses iterators for lazy execution the OpExecutor builds a
tree of instances of subclasses of QueryIterator which is then return as result. It is
to notice that all the classes involved in this processes are designed to be subclassed
to implement custom behavior. More precisely, there is already a subclass of Op

String Element Op
Query

Iterator

Tokenizer Parser
Algebra

Generator
OpExecutor Processing Classes

Data Structures

query result

Figure 5.3: Visualization of data structures and processing classes involved in parsing
and executing a SPARQL query in Jena ARQ.

defined to link in custom operators. Figure 5.4 shows which classes were added
to realize ECQELS and also the corresponding superclasses from Jena ARQ they
inherit from (depicted is gray). So five subclasses of Element were added extending
the classes used for processing SPARQL ElementNamedGraph, ElementService and
ElementFilter. Furthermore the just mentioned subclass of Op, OpExt, is shown
which is part of Jena ARQ and designed as entry point to implement custom oper-
ators. For each added subclass of Element a corresponding subclass of OpExt was
created. Also the AlgebraGenerator and OpExecutor classes seen in Figure 5.3 were
subclassed. The custom implementations of the Tokenizer and Parser class are not
shown in this figure as they are not derived from any class from Jena ARQ. The
class ECQELSOpVisitorBase was implemented as the visitor pattern demands so
when new subclasses are added and the QueryIterConditionalFilter class is needed
for run-time execution of the ChangesTo operator. In the following the core struc-
ture of ECQELS is illustrated and a detailed explanation is given on how ECQELS

5.3. Event Language 53

Element

ElementNamed
Graph

ElementService

ElementFilter

ElementRefreshable
NamedGraph

ElementStream

ElementRefreshable
Service

ElementConditional
Filter

ElementRefreshable
Stream

Op

OpExt

OpRefreshable
Stream

OpStream

OpRefreshable
Service

OpRefreshable
Graph

OpConditional
Filter

Algebra

ECQELS
Algebra

Algebra
Generator

ECQELS
AlgebraGenerator

OpExecutor

Cached
OpExecutor

QueryIterFilter
Expr

QueryIter
ConditionalFilter

OpVisitorBase

ECQELS
OpVisitorBase

Figure 5.4: An UML class diagram showing the extension points used to integrate
into Jena ARQ. Classes belonging to the Jena ARQ framework are highlighted in
gray.

works. Figure 5.5 shows an UML class diagram of the most important classes of
ECQELS. It is to notice that the diagram is not absolutely complete and correct as
simple get and set functions are omitted, uses relationships are not explicitly shown
(expect for one) and external classes are only depicted by name and some of them
are event shown two times in the diagram to enable a nicer layout.

The main classes when using ECQELS from another project are ECQELSRuntime
which exposes a nicely to use interface for life-cycle management of queries and
stream. It is basically a wrapper for Engine adding handling of RDFStreams. RDF-
Stream is an interface for implementing custom sort of streams. The system already
comes with an SSE-based implementation of RDFStream. The class Engine imple-
ments the whole query life-cycle management. As ECQELS internally works with
encoded triples where each element is encoded as a long most of the time Engine
provides method to encode and decode. Also methods are provided to add to data
and delete data from the internal RDF store used during execution. Engine does
use EPServiceProvider which is an external class from the Esper framework. For
every query registered Engine creates an instance of QueryExecutor.

The QueryExecutor class is responsible for executing a query. Each time the query
generates a new result the engine is notified via the NewQueryResultAvailableLis-
tener interface. To execute the query it is divided into static parts which are only
evaluated once at registering the query, refreshable parts which are re-evaluated
with a fixed interval and streams which can be re-evaluated at a given interval or
event-based depending on the type of window used. Therefore the QueryExecutor

54 5. Language and Framework Implementation

EP
Se

rvice
P

ro
vid

e
r

R
e

fre
sh

R
e

q
u

e
st

EP
State

m
e

n
t

<<en
u

m
era

tio
n

>>

W
in

d
o

w
Typ

e

N
o

w

A
ll

Trip
les

Slid
in

g
Tu

m
b

lin
g

EC
Q

ELSR
u

n
tim

e

- execu
to

rService: Execu
to

rService

- ru
n

n
in

g: b
o

o
lean

+ registerStream
(R

D
FStream

 stream
, Strin

g
 m

etad
atG

rap
h

, Strin
g m

etad
ata): vo

id

+ registerSelect(Q
u

ery q
u

ery): C
o

n
tin

u
o

u
sSelect

+ registerC
o

n
stru

ct(Q
u

ery q
u

ery): C
o

n
tin

u
o

u
sC

o
n

stru
ct

+ sen
d

(N
o

d
e stream

, Trip
le trip

le): vo
id

En
gin

e

- d
ictio

n
ary: N

o
d

eTab
le

- d
ataset: D

ataset
- arq

Execu
tio

n
C

o
n

text: Execu
tio

n
C

o
n

text

+ registerSelect(Q
u

ery q
u

ery): C
o

n
tin

u
o

u
sSelect

+ registerC
o

n
stru

ct(Q
u

ery q
u

ery): C
o

n
tin

u
o

u
sC

o
n

stru
ct

+ sen
d

(N
o

d
e stream

, Trip
le trip

le): vo
id

+ en

co
d

e(N
o

d
e n

o
d

e): lo
n

g
+ d

eco
d

e(lo
n

g id
): N

o
d

e

+ ad
d

R
D

F(Strin
g grap

h
U

R
I, Strin

g d
ata): vo

id

+ d
eleteR

D
F(Strin

g grap
h

U
R

I, Strin
g d

ata): vo
id

Q
u

e
ryExe

cu
tio

n
C

o
n

te
xt

- o
p

C
ach

e: Q
u

eryIterato
rC

ach
e<O

p
>

- o

p
H

ierarch
ie: M

ap
<O

p
, O

p
>

- cach

ab
leO

p
s: Set<O

p
>

- refresh
ed

O
p

s: Set<O
p

>
- o

p
sA

ffected
Fro

m
R

efresh
: Set<O

p
>

- fo

rceR
efresh

O
p

s: Set<O
p

>

- b
u

ild
O

p
h

ierarch
ie(O

p
 o

p
)

+ clearR
efresh

ed
O

p
s(): vo

id

+ getP
aren

t(O
p

 o
p

): O
p

+ getC

h
ild

ren
(O

p
 o

p
): List<O

p
>

+ isA

ffected
Fro

m
R

efresh
(O

p
 o

p
): b

o
o

lean

+ isC
ach

eab
le(O

p
 o

p
): b

o
o

lean

+ isFo
rceR

efresh
(O

p
 o

p
): b

o
o

lean

+ isR
efresh

ed
(O

p
 o

p
): b

o
o

lean

+ rem
o

veFo
rceR

efresh
(O

p
 o

p
): vo

id

+ setFo
rceR

efresh
(O

p
 o

p
): vo

id

+ setR
efresh

ed
O

p
s(List<O

p
> refresh

ed
O

p
s): vo

id

Q
u

e
ryExe

cu
to

r

- execu
to

r: Sch
ed

u
led

Execu
to

rService

- refresh
R

eq
u

estQ
u

eu
e: B

lo
ckin

gQ
u

eu
e<R

efresh
R

e
q

u
est>

+ Q
u

eryExecu
to

r(En
gin

e en
gin

e, Q
u

ery q
u

ery)
+ start(): vo

id

+ sto
p

(): vo
id

+ ad

d
N

ew
Q

u
eryR

esu
ltA

vailab
leListe

n
er(N

ew
Q

u
eryR

e
su

ltA
vailab

leListen
er listen

er): vo
id

+ rem

o
veN

ew
Q

u
eryR

esu
ltA

vailab
leListe

n
er(N

ew
Q

u
eryR

esu
ltA

vailab
leListe

n
er listen

er): vo
id

R
e

fre
sh

M
an

age
r

- tasks: M
ap

<C
allab

le<R
efresh

R
eq

u
est>, Lo

n
g>

- execu

to
r: Sch

ed
u

led
Execu

to
rService

- tim

er: Tim
er

+ sch
ed

u
le(C

allab
le<R

efresh
R

eq
u

est> task, lo
n

g in
terval): vo

id

+ u
n

sch
ed

u
le(C

allab
le<R

efresh
re

q
u

est> task): vo
id

+ ad

d
R

efresh
R

eq
u

ested
Listen

er(R
efresh

R
eq

u
ested

Listen
er listen

er): vo
id

+ rem

o
veR

efresh
R

eq
u

este
d

Listen
er(R

efresh
R

eq
u

ested
Listen

er listen
er): vo

id

+ start(): vo
id

+ sto

p
(): vo

id

<<in
terfa

ce>>

R
e

fre
sh

R
e

q
u

e
ste

d
Liste

n
e

r

+ refresh
R

eq
u

ested
(R

efre
sh

R
e

q
u

ested
Even

t e): vo
id

Eve
n

tListe
n

e
r

Eve
n

tO
b

je
ct

R
e

fre
sh

R
e

q
u

e
ste

d
Eve

n
t

- refresh
req

u
est: R

efresh
R

eq
u

est

Stre
am

Exe
cu

to
r

- stream
N

o
d

e: N
o

d
e

- su
b

O
p

: O
p

- o

p
s: List<O

p
Stream

>
- p

attern
: B

asicP
attern

- refresh
B

o
u

n
d

Stream
s(): vo

id

+ Stream
Execu

to
r(En

gin
e en

gin
e, Execu

tio
n

C
o

n
text

 execu
tio

n
C

o
n

text, R
efresh

M
an

ager
 refresh

M
an

ager, List<O
p

Stream
> o

p
)

+ ad
d

R
efresh

R
eq

u
ested

Listen
er(

 R
efresh

R
eq

u
ested

Liste
n

er listen
er): vo

id

+ rem
o

veR
efresh

R
eq

u
este

d
Listen

er(
 R

efresh
R

eq
u

ested
Liste

n
er listen

er): vo
id

+ start(): vo

id

+ sto
p

(): vo
id

<<in
terfa

ce>>

D
ataC

h
an

ge
d

Liste
n

e
r

+ d
ataC

h
an

ged
(D

ataC
h

an
ged

Even
t e): vo

id

Eve
n

tListe
n

e
r

Eve
n

tO
b

je
ct

D
ataC

h
an

ge
d

Eve
n

t

- w
in

d
o

w
: W

in
d

o
w

- resu

lt: Q
u

eryiterato
r

<<in
terfa

ce>>

R
D

FStre
am

+ getU
ri(): Strin

g
+ sto

p
(): vo

id

+ stream
(Trip

le trip
le): vo

id

C
ach

e
d

O
p

Exe
cu

to
r

+ createO
p

Execu
to

r(Execu
tio

n
C

o
n

text execu
tio

n
C

o
n

text): C
ach

ed
O

p
Execu

to
r

- C
ach

ed
O

p
Execu

to
r(Execu

tio
n

C
o

n
text execu

tio
n

C
o

n
text)

+ execu
te(O

p
 o

p
, Q

u
eryIterato

r in
p

u
t): Q

u
eryIterato

r

R
e

fre
sh

R
e

q
u

e
st

So
u

rce

- o
p

: O
p

- resu

lt: Q
u

eryIterato
r

Stre
am

R
u

n
tim

e
In

fo

- sch
ed

u
led

R
efresh

ab
le: b

o
o

lean

- cu
rren

tR
esu

lt: Q
u

eryIterato
r

- sch
ed

u
led

H
an

d
ler: C

allab
le<R

efresh
R

eq
u

e
st>

- even
tListen

er: D
ataC

h
an

ged
Listen

er

<<in
terfa

ce>>

W
in

d
o

w

+ evalu
ate(Q

u
eryIterato

r in
p

u
t, Execu

tio
n

C
o

n
text co

n
text): Q

u
eryIterato

r
+ ad

d
D

ataC
h

an
ged

Listen
er(D

ataC
h

an
ged

Listen
er listen

er): vo
id

+ rem

o
veD

ataC
h

an
ged

Listen
er(D

ataC
h

an
ged

Listen
er listen

er): vo
id

+ sto

p
(): vo

id

+ getD
atasetG

rap
h

(): D
atasetG

rap
h

+ getStream

N
o

d
e(): N

o
d

e
+ getP

attern
(): B

asicP
attern

W
in

d
o

w
In

fo

- size: D
u

ratio
n

- slid

e: D
u

ratio
n

- trip

les: lo
n

g
- tu

m
b

lin
g: b

o
o

lean

stream
s

1

*

en
gin

e

1

1

1

1

p
ro

vid
er

* 1

registered
Q

u
eries

en
gin

e

1

1

execu
tio

n

C
o

n
text

1

1

refresh

M
an

ager

1

*
stream

s

en
gin

e

1

1

q
u

eryC
o

n
text

*
1

refresh
M

an
ager

*
1

 w
in

d
o

w
In

fo

1

*
typ

e

1

1

statem
en

t

stream
s
*

1

1

*
w

in
d

o
w

1

*
so

u
rces

O
p

Exe
cu

to
rTD

B

F
ig u

re
5.5:

A
n

U
M

L
d
iagram

sh
ow

in
g

th
e

m
ain

classes
of

E
C

Q
E

L
S
.

5.3. Event Language 55

maintains an instance of QueryExecutionContext which on creation builds a tree-
based hierarchy of the query. Every time any part, in the later referred to as Op
as this is the interface all executable parts implement, is re-evaluated the QueryEx-
ecutionContext is modified by calling the setRefreshedOps(...) method. As an Op
gets re-evaluated all Ops on the path from that Op up to the root needs to be
re-evaluated. QueryExecutionContext does allow to query if an Op is affected and
needs to be re-evaluated. It also provides methods to check whether the so gener-
ated new result of an Op needs to be cached or not. This is extensively used by
CachedOpExecutor which inherits from the Jena ARQ class OpExecutorTDB and
maintains a cache for all cacheable intermediate results. It also decides which Ops
need the be re-evaluated using the provided methods from QueryExecutionContext.

All Ops that can be re-evaluated over time and therefore can cause the whole
query to be re-evaluated and produce a new result cause the firing of the refreshRe-
quested(RefreshRequestedEvent e) method from the interface RefreshRequestedLis-
tener. The RefreshRequestedEvent contains an instance of RefreshRequest which
itself consists of a list of instances of RefreshRequestSource. Each instance of Re-
freshRequestedSource contains the information which Op has been refreshed and
what the new result is. This structure allows multiple refresh actions taking place
at the same time to only trigger one re-evaluation of the whole query and therefore
only produce a single new query result. This is desirable as for example a query could
contain multiple streams all with a time-based window of the same size. Without
a centralized scheduling component each window would trigger one re-evaluation of
the query and therefore multiple new query results would be issued each time the
windows are triggered. As this is not desirable and only one new query result should
be generated in such cases ECQELS contains a component for central scheduling
interval-based re-evaluation tasks realized as the class RefreshManager. It exposes
the method schedule(Callable<RefreshRequest> task, long interval) which allows to
register an action returning a RefreshRequest and an interval in which that task
should be executed. All registered tasks are then aligned so that at every time step
all registered tasks that need to be executed are executed and than all results are
merged together into one RefreshRequest which is than passed back to the QueryEx-
ecutor to trigger re-evaluation of the rest of the query with the new results. Tasks
scheduled at the RefreshManager can be refreshable graphs or services as defined in
Listing 5.5 or time-based windows on streams.

The execution of streams is handled by the StreamExecutor class. It is to notice that
QueryExecutor does not create one instance of StreamExecutor per stream but rather
one per “different” stream. “Different” in that case means that one of the following
properties of two streams are different: URI, window, pattern and if they use a
variable as URI the subselect must be identical to not be treated as different. This
means that for all streams with the exact same definition used multiple times across
a query only one instance of StreamExecutor is created. When a StreamExecutor
signals a new result for a stream used multiple times the result is duplicated to be
valid for all occurrences of that stream.

In the following the behavior for implicitly addressed streams is depicted which is
quite complex, especially when the subselect binding the variable used for address-
ing of the stream is refreshable. This means that the stream can actually bind to
multiple changing RDF streams and thus needs to maintain which streams he is

56 5. Language and Framework Implementation

actually bound to and also keep a single window for each of them. Therefore the
StreamExecutor subscribes with the RefreshManager to get notified the subselect
binding his stream variable is re-evaluated and then calls his private method re-
freshBoundStreams() shown in the diagram. This method checks if new streams are
available, if yes, sets them up by creating a new window based on the WindowInfo
and creates an instance of StreamRuntimeInfo used for maintenance and life-cycle
management of bound streams. The handling of incoming stream data is done by
classes implementing the Window interface not shown to not clutter up the diagram.

Windows are implemented using an in-memory graph realized by the DatasetGraph
class of Jena ARQ. They receive their data by subscribing to a single RDF stream.
This is done using Esper and the EPStatement class. If they are time-based then
they schedule themselves with the RefreshManager to be in sync with all other time-
based tasks, otherwise they propagate their new results to the StreamExecutor using
the DataChangedListener interface.

5.3.3 Compilation

In this section it is described how EL is compiled into ECQELS to be executed.
This functionality is implemented in the project edu.teco.eras.rl.compiler as shown
in Figure 5.1. The compilation works as follows.

An event modeled with EL has the form of a tree but with possible multiple edges
between two vertexes. Also a vertex can have multiple parents. This structure if
converted into a real tree by following rules. Multiple edges between two vertexes are
combined into one edge containing the variable names from all edges. Vertexes with
multiple parents are duplicated for each parent. Applying these rules we get a tree
with an Event as root node and StreamSources as leaves. Now a depth-first search
is done using the visitor pattern. Thereby each vertex is converted into its ECQELS
counterpart based on a static pattern. Listing 5.6 shows some of these patterns which
will be discussed in details within a short time. Vertexes with multiple children do a
union on them by wrapping them all together in the WHERE block of their query.

In the following four example patterns used to compile EL to ECQELS are shown.
The are depicted as ECQELS queries with variables highlighted in italic. Two vari-
ables are query independent and are explained in the following. These are projected
vars and incoming elements. The variable projected vars is not part of the element
compiled itself but rather is context-sensitive and therefore replace by additional
information from the parent more precisely from the edge between element and its
parent. It therefore refers to all variables that are passed from that element to the
parent. The second one is incoming elements which is also context-sensitive and
refers to the ECQELS representation of all children.

Listing 5.3.0a shows the pattern used to compile a StreamSource element of EL.
Actually it shows how StreamSources with implicit stream addressing are compiled.
The variables window, stream pattern, refresh and uri pattern are replaced as defined
in the EL element. The value of metadatagraph could also be passed via the EL
model but at the moment is passed as a parameter for the compiler.

Listing 5.3.0b shows the pattern used to compile an aggregation operator from EL.
Therefore operator is replaced by the SPARQL aggregation command suited like
MIN, MAX, AVG, SUM or COUNT. aggVar describes the variable to be aggregated

5.4. Rule Language 57

by and newVar the name the result should be projected as defined in the underlying
EL model. projected vars w/o aggVar is replaced with all projected vars except for
aggVar. Also it is inserted a GROUP BY at the and containing all projected vars
that are not aggregated.

Listing 5.3.0c shows the pattern used to compile an Extend element of EL. An Extend
element simple fetches additional data and therefore the variable query is replaced
by the subselect as defined in the underlying EL model. Putting multiple elements
side-by-side in a WHERE block in SPARQL does represent a union of the results.

Listing 5.3.0d shows the pattern used to compile a Filter element in EL. It maps
to the SPARQL function FILTER which is passed the given expression to filter by.
If to the EventPort of a filter a ChangesTo operator is connected then that logic
is compiled into the filter using the CHANGES TO operator defined in ECQELS
(see Listing 5.5). The squared brackets mean the contained block is optional (as it
depends on the occurrence of a ChangesTo operator).

SELECT projected vars
WHERE
{

STREAM ? ur i window
{

stream pattern
}
GRAPH metadata graph refresh
{

uri pattern
}

}

(a) StreamSource pattern

SELECT (operator (aggVar) AS newVar)
projected vars w/o aggVar

WHERE
{

incoming elements
}
GROUP BY projected vars w/o aggVar

(b) Aggregation pattern

SELECT projected vars
WHERE
{

incoming elements
query

}

(c) Extend pattern

SELECT projected vars
WHERE
{

incoming elements
FILTER (expression) [CHANGES TO

changesTo]
}

(d) Filter pattern

Listing 5.6: ECQELS templates used for compilation of EL.

5.4 Rule Language

This section presents the implementation of the Rule Language RL. It is, like EL,
implemented using EMF and GMF. Also the corresponding runtime and the compiler
are presented.

58 5. Language and Framework Implementation

5.4.1 Language and Editor

As mentioned RL was also implemented using EMF and GMF. Unfortunately GMF
does not support a nice looking visual representation of attributes of a link as drafted
in the design phase (see Figure 4.6). Because of this a Transition in RL has been
realized using two GMF links namely a BeginTransition from a State to a Condition
and an EndTransition pointing in the opposite direction as shown in an excerpt of
the Emfatic file defining RL in Listing 5.7. The listing shows the two link classes
BeginTransition and EndTransition as well as the class State and an abstract def-
inition of a Condition. The code is pretty straight forward as it maps to the RL
metamodel shown in Figure 4.7 except the just mentioned split of the Transition
class.

Listing 5.7: Excerpt from the RL Emfatic file.

abstract interface Condition {
ref BeginTransition#target incomingTransition;
ref EndTransition#source outgoingTransition;
@gmf.compartment
val Binding binding;

}

@gmf.link(source=”source”, target=”target”, style=”solid”, width=”2”, target.decoration=”
arrow”)

class BeginTransition {
ref State#outgoingTransitions source;
ref Condition#incomingTransition target;

}

@gmf.link(source=”source”, target=”target”, style=”solid”, width=”2”, target.decoration=”
arrow”)

class EndTransition {
ref Condition#outgoingTransition source;
ref State#incomingTransition target;

}

@gmf.node(label = ”label”)
class State {

attr String label = ”STATE”;
ref BeginTransition[*]#source outgoingTransitions;
ref EndTransition#target incomingTransition;
@gmf.compartment
val Action[*] actions;

}

Figure 5.2 shows a screenshot from the RL editor implemented. It could have been
made much nicer looking and easier to use but as a complete custom implemen-
tation of CQELS had to be implemented there was no time left in this thesis for
improvement.

5.4.2 Runtime and Compilation

Because transitions had to be modeled as two classes to be compatible with GMF
(as explained in the previous section) the runtime contains an own set of classes

5.5. Summary 59

Figure 5.6: A screenshot of the RL editor showing an example Rule.

modeling RL. They represent the metamodel shown in Figure 4.9 but at the same
time implement execution logic. According to the package overview in Figure 5.1
these classes are located in the project edu.teco.eras.rl.runtime. Figure 5.7 shows
them as UML class diagram. Again simple getter and setter methods to attributes
shown are omitted. The main difference is that Rules and Actions now expose
an execute(...) method. Compilation simple maps the Emfatic-based model back
on this model and the runtime executes Rules by invoking execute() respectively
executeAsync() on them. A Rule is executed with the code snippet shown in List-
ing 5.8. Beginning with the initial state it is looped until the current state does
not have any outgoing connections. In every loop the method doTransition(...) is
called which executes all outgoing transitions in a separate thread by invoking tran-
sition.getCondition().execute(binding). As soon as the first Condition returns all
others threads are canceled an the method returns an instance of TransitionResult
which contains the new Binding an also the information which transition has trig-
gered. After that, the current binding and the one returned are merged and the
transition is taken. After that all actions in the new current state are invoked and
the loop is repeated (if the new current state has any outgoing transitions). It is
to notice that instances of the EventCondition class use an instance of ELRuntime-
Client to schedule their event on an EL server.

5.5 Summary

This chapter showed the implementation of ERAS and illustrated the implementa-
tion details for the languages and editors which were realized using EMF respectively
GMF. Also the compilation of the languages into a form executable by the corre-
sponding runtime was shown. For RL a runtime based on a finite state machine was
implemented. For EL it was planned to use CQELS (with some small extensions)
as runtime. Unfortunately CQELS did not prove suited for being used as runtime.

60 5. Language and Framework Implementation

Rule

+ execute(): void
+ executeAsync(): void

State

EventCondition

- event: String

+ EventCondition(String event, ELRuntimeClient runtime)

Transition

Binding

+ merge(Binding binding)

HashMap<String, String>

<<interface>>

Condition

+ execute(Binding binding): Binding

Foreach

- query: String

Action

- name: String
- command: String
- actorPattern: String

+ execute(Binding binding): void

ELRuntimeClient

RelativeTimeCondition

- duration: long
- timeUnit: timeUnit

+ RelativeTimeCondition(long duration, TimeUnit timeUnit)

AbsoluteTimeCondition

- timePattern: String

+ AbsoluteTimeCondition(String timePattern)

CompoundCondition

AndCondition OrCondition

foreach
1
1

1 1

binding

*

1

states

1

1 initialState

actions

*

*

* 1
outgoing
Transitions

1 *
endState

startState

1 1

condition

*
1 runtimeClient

1

*

subconditions

1
* transitions

Figure 5.7: UML class diagram of the classes used in RL runtime.

Listing 5.8: The execute() method of the class Rule

public void execute() {
Binding currentBinding = binding;
State currentState = initialState;
while(!currentState.getOutgoingTransitions().isEmpty()) {

TransitionResult result = doTransition(currentState);
currentBinding.merge(result.getBinding());
currentState = result.getTransition ().getEndState();
currentState.getActions().forEach(action −> action.execute(currentBinding));

}
}

The reasons therefore were elaborated in Section 5.3.2 in detail. Because of this an
own complete semantic streaming engine, named ECQELS, had to be implemented
as part of this thesis to be used as runtime for EL. The implementation of ECQELS
was much additional effort not scheduled in this thesis (at least not to this extent).
Because of this reason a big part of this chapter was dedicated to the implementation
of ECQELS. Furthermore the implementation did costs a lot of time and because
of this there was less time than planned to implement the editors for EL and RL in
a nicely-looking and more user-friendly way which was one objective in this thesis.

5.5. Summary 61

Despite all challenges and problems the ERAS system has been implemented and is
working.

62 5. Language and Framework Implementation

6. Evaluation

6.1 Performance Analysis

In this section the performance and correctness of ECQELS will be analyzed and
compared to CQELS. It was planned to use one of the two existing evaluation
frameworks that CQELS has been tested on. These are LSBench (Linked Stream
Benchmark) [17] used in [65] and the benchmark CQELS has initially been evaluated
against in [64] which is also available online [18]. Unfortunately it was not possible
to get one of these benchmarks to work even with two days of work as they are
poorly documented and the provided jar files could not be executed without errors.
Therefore an own benchmark system to evaluate query performance and correctness
of ECQELS against CQELS was implemented as part of this thesis. In the following
the developed benchmark is introduced and the results are presented and analyzed.

6.1.1 Benchmark Design and Runtime Environment

The benchmark was developed based on the one used in [64, 18] as the other one
seemed to complex to adapt in the short time remaining in this work due to the un-
foreseen implementation of ECQELS. The benchmark is originally based on a Live
Semantic Experiment presented in [22] and is basically composed of static back-
ground knowledge on the adjacency of rooms within a floor as well as on persons,
their possible role as authors of scientific papers and their correlations and stream
information that represent the movement of persons through that floor. The infor-
mation on persons, papers and their correlation is presented as an excerpt of the
DBLP dataset [19] which contains these information in RDF format and is public
available. For the benchmark the five queries used in the original benchmark were
used but with some small changes which will be discussed later. The queries used
are shown in Listing 6.1. It is to notice that these queries were used for both CQELS
and ECQELS evaluation with two exceptions: For query 3 and 5 the ECQELS ver-
sion has the streams written as a subquery and furthermore the FILTER operation
moved up into that subquery. This was done for performance tuning as ECQELS
supports all SPARQL 1.1 features like subqueries which CQELS does not.

64 6. Evaluation

PREFIX lv : <http :// de r i . org / f l o o r p l a n/>
PREFIX dc : <http :// pur l . org /dc/ elements /1.1/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ? person ? l o c a t i o n ? locName
WHERE
{

STREAM <http :// de r i . org / streams / r f i d> [NOW] { ? person lv : detectedAt ? l o c a t i o n . }
GRAPH <http :// de r i . org / f l o o r p l a n/> { ? l o c a t i o n lv : name ? locName . }

}

(a) Query 1

PREFIX lv : <http :// de r i . org / f l o o r p l a n/>

SELECT ?person1 ? l o c a t i on1 ? person2 ? l o c a t i on2
WHERE
{

GRAPH <http :// de r i . org / f l o o r p l a n/> { ? l o c a t i on1 lv : connected ? l o c a t i on2 . }
STREAM <http :// de r i . org / streams / r f i d> [NOW] { ? person1 lv : detectedAt ? l o c a t i on1 . }
STREAM <http :// de r i . org / streams / r f i d> [TRIPLES 5] { ? person2 lv : detectedAt ? l o c a t i on2 . }

}

(b) Query 2

PREFIX lv : <http :// de r i . org / f l o o r p l a n/>
PREFIX dc : <http :// pur l . org /dc/ elements /1.1/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ?auth ?coAuth ? l o c a t i o n ? paper ? locName
WHERE
{

GRAPH <http :// de r i . org / f l o o r p l a n/> {
? paper dc : c r e a t o r ? auth .
? paper dc : c r e a t o r ?coAuth . }

STREAM <http :// de r i . org / streams / r f i d> [NOW] { ?auth lv : detectedAt ? l o c a t i o n . }
STREAM <http :// de r i . org / streams / r f i d> [TRIPLES 5] { ?coAuth lv : detectedAt ? l o c a t i on . }
GRAPH <http :// de r i . org / f l o o r p l a n/> { ? l o c a t i o n lv : name ? locName . }
FILTER(? auth !=?coAuth)

}

(c) Query 3

PREFIX lv : <http :// de r i . org / f l o o r p l a n/>
PREFIX dc : <http :// pur l . org /dc/ elements /1.1/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX dcterms : <http :// pur l . org /dc/ terms/>
PREFIX swrc : <http :// swrc . ontoware . org / onto logy#>

SELECT ?auth ? ed i t o r ? l o c1 ? l o c2 ? paper ? proceed ing ? editorName
WHERE
{

GRAPH <http :// de r i . org / f l o o r p l a n/> { ? l oc1 lv : connected ? loc2 . }
STREAM <http :// de r i . org / streams / r f i d> [NOW] { ?auth lv : detectedAt ? loc1 . }
STREAM <http :// de r i . org / streams / r f i d> [TRIPLES 5] { ? ed i t o r lv : detectedAt ? loc2 . }
GRAPH <http :// de r i . org / f l o o r p l a n/> {

? paper dc : c r e a t o r ? auth .
? paper dcterms : partOf ? proceed ing .
? proceed ing swrc : e d i t o r ? ed i t o r .
? ed i t o r f o a f : name ? editorName . }

FILTER(? auth !=? ed i t o r)
}

(d) Query 4

PREFIX lv : <http :// de r i . org / f l o o r p l a n/>
PREFIX dc : <http :// pur l . org /dc/ elements /1.1/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ?auth ? l o c a t i on2 ? locationName (COUNT(DISTINCT ?coAuth) AS ?noCoAuth)
WHERE
{

GRAPH <http :// de r i . org / f l o o r p l a n/> {
? paper dc : c r e a t o r ? auth .
? paper dc : c r e a t o r ?coAuth . }

STREAM <http :// de r i . org / streams / r f i d> [NOW] { ?auth lv : detectedAt ? l o c a t i on1 . }
STREAM <http :// de r i . org / streams / r f i d> [TRIPLES 5] { ?coAuth lv : detectedAt ? l o c a t i on2 . }
GRAPH <http :// de r i . org / f l o o r p l a n/> {

? l o c a t i on2 lv : connected ? l o c a t i on1 .
? l o c a t i on2 lv : name ? locationName . }

FILTER(? auth !=?coAuth)
}
GROUP BY ?auth ? l o c a t i on2 ? locationName

(e) Query 5

Listing 6.1: The queries used for evaluation.

6.1. Performance Analysis 65

When designing a benchmark for semantic streaming engines there is always the
question what features are relevant to compare the tested engines against. Unfor-
tunately there is no feature that is commonly agreed to be relevant as there are
no semantic stream benchmarks commonly agreed on at all. In [64] the average
query execution time in ms is used and [65] uses the execution throughput defined
as executions per second whereby a execution is defined as insertion of a triple on a
stream. Both features do neglect the output of a query probably because it would
require having a mapping between input triples and the output expected when they
are inserted. Therefore in this work the average response time (in ms) is proposed as
feature. It is defined as the delay between the insertion of a triple and the reception
of the expected result. This also fits very well the requirements of home automation
to be quickly notified when a new result becomes available. On the other hand
this feature also has a downside. It only works well with queries with triple-based
windows as queries with time-based windows tend to not yield deterministic results
at the latest when the insert frequency increases and/or the time window is very
small. Therefore all time-based windows in the original queries have been replaced
by triple-based windows. In general the benchmark works with variable window
sizes but this evaluation was done only using a window size of 5.

To compute the average response time it must be known which triple causes which
results when inserted. Therefore a data generator has been implemented which
generates input triples of the form person :detectedAt room just as in the origi-
nal benchmark but on the fly does simulate the query and thereby calculates the
expected outcome. As CQELS and ECQELS use different output types (Istream
and Rstream) it was decided to only use the Istream result as expected result so
that both engines can be compared. Another difficulty encountered was that when
inserting a triple causes a result with multiple entries for every entry an separate
event is triggered in CQELS which made it hard to determine which results were
triggered by which input triple. It also could happen that an engine does not yield
an expected result. Therefore the number of expected results, received results and
results hit (means expected and received) were kept track of. Only the results hit
were used to calculate the average response time.

The benchmark was executed using a stream interval of 10ms which means that the
engines were fed one triple every 10ms if they processed the previous triple within this
time, otherwise the next triple was inserted as soon as the engine finished processing
the previous one. The queries were execute against variable sized streams, 1,000,
2,000, 10,000 and 50,000 triples, and a background knowledge of varying size of the
DBLP excerpt. It was planned to use four sizes of background knowledge, 10,000
(10k), 100,000 (100k), 1,000,000 (1M) and 2,000,000 (2M) triples, but as ECQELS
performed very poorly with very big background data the tests with 2M triples
background knowledge were rejected.

The benchmark was executed on a desktop machine with an Intel i7-2600k, a quad-
core processor running at 3.40GHz, and 8GB RAM using Windows 8.1 The JVM
was started with the arguments -Xms1024m -Xmx4g which ensures a minimum heap
size of 1GB and a maximum heap size of 4GB.

6.1.2 Results and Analysis

In this section the results of the benchmark are presented and discussed. Figure 6.1
shows the result for all five queries with a stream size of 1,000 triples and three

66 6. Evaluation

different sizes of background knowledge. It is to notice that all test have been run
ten times and the values listed in the following are average of these ten runs.

Figure 6.1a shows that ECQELS slightly outperforms CQELS for query 1 which is
the most simple one with only one time-based window of size 1 and no reference
to the background knowledge. For query 2 shown in Figure 6.1b it is the other
way round and CQELS slightly outperforms ECQELS. For both, query 1 and query
2, the results can be interpreted to be in O(c ∗ n) with n representing the size of
background knowledge and c a very small constant factor. If the change in average
response time is interpreted as jitter which seems plausible as the average response
time for ECQELS slightly decreases from 100k to 1M background knowledge for
both queries it could even be interpreted to be in O(1) as expected when looking at
the queries which do not make use of any background knowledge.

In query 3 and 4 CQELS can show its power with handling big amounts of back-
ground knowledge and therefore performs in O(1) for query 3 and O(n) for query
4. It is to notice that in Figure 6.1c, Figure 6.1d and Figure 6.1e a log-scale y-
axis is used. ECQELS seems to perform in O(n2). Looking at the code and how
CQELS and ECQELS work this outcome is quite obvious as CQELS is designed
to only support Istream output streams and therefore only the new incoming triple
are processed. Furthermore CQELS has a very efficient caching system based on
Berkeley DB 1. ECQELS on the other hand supports Rstream output streams and
reprocesses the whole current window each time it changes. Furthermore it uses the
default query execution mechanism of Jena ARQ and only adds caching for parts of
the execution plan. Therefore ECQELS has to recalculate the time-consuming joins
between the cached static data and the window each time a new triple is inserted
whereas CQELS only has to do a table lookup for the one new triple. Knowing this
the question is still why does ECQELS not scale linearly but rather exponential?
This is due to the fact that in SPARQL, contrary to relational query languages, self
joins are very common due to the pattern matching style. From this it follows that
how much effect the size of the dataset has strongly depends on the triple pattern
on the dataset.

The results of query 5 shown in Figure 6.1e again show that ECQELS slightly
outperforms CQELS. This is probably due to the aggregation used in query 5 which
seems to break the caching logic auf CQELS.

Table 6.1 shows detailed results of the benchmark for varying stream size and a
background knowledge of 10,000 triples. Besides the arithmetic mean of the average
response time it also shows the corresponding standard deviation. The first thing
to notice is that ECQELS gets slower as the stream size increases. This means that
the longer the engine is running and receiving stream data the slower the execution
of the query gets. This is a major issue especially when being used in the domain of
home automation where very long running queries are not unusual. This indicates
that there might be some sort of memory leak in ECQELS but unfortunately it
could not be found and fixed within the limited time of this thesis. A possible
cause could be that Jena ARQ extensively uses the iterator pattern to support lazy
evaluation of queries which is in most of the cases desirable but not when being
used inside a semantic streaming engine as all results have to be materialized during

1https://oss.oracle.com/berkeley-db.html

6.1. Performance Analysis 67

10k 100k 1M
0

0.2

0.4

0.6

0.8

1

1.2

1.4

size of background knowledge (triple)

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(a) Query 1

10k 100k 1M
0

0.5

1

1.5

2

2.5

size of background knowledge (triple)

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(b) Query 2

10k 100k 1M

101

102

103

size of background knowledge (triple)

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(c) Query 3

10k 100k 1M

101

102

size of background knowledge (triple)

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(d) Query 4

10k 100k 1M

101

102

103

size of background knowledge (triple)

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(e) Query 5

Figure 6.1: Result of the performance evaluation for different sizes of background
knowledge with a stream size of 1000.

execution. ECQELS uses these cached version of these iterators to store intermediate
results and as iterators can only be used to visit every element once (at least in the
implementation of Jena ARQ) every time a cached value is used the iterator is
copied into a new one. This could be one possible cause for this potential memory
leak and should be fixed in a later version as it also would allow to implement a
caching logic similar to CQELS allowing to massively boost performance in large
background knowledge when done right.

Corresponding to the the findings above CQELS scales very well for the first three
queries and also seems to improve average response time and its standard devia-
tion over time which might also be reason to the caching logic. CQELS struggles
again with query 5 and is outperformed by ECQELS event with increasing average
response time for ECQELS.

As the benchmarks presented in [64, 65] evaluate the performance for multiple si-
multaneous queries this is also done in this benchmark. To get a comparable result
this test is only performed with a stream size of 1000 triples and a background
knowledge of 10,000 triples so that ECQELS is neither penalized for its potential
memory leak nor for its structural design and therefore weaker caching logic. Fig-
ure 6.2 shows the results of the test. Surprisingly ECQELS outperforms CQELS
clearly for all four queries as none of both do any between-query optimization or
share any information between queries. One possible reason for this could be that
ECQELS uses one thread per query to process new triples for all queries in parallel
wheres CQELS supposedly does not use multithreading.

Concerning the correctness of the results produced by CQELS and ECQELS it was
observed that ECQELS in all cases returned the exact same results as expected.
CQELS however did often return additional results that were not expected. This
was the case when a query contained multiple windows over the same stream which

68 6. Evaluation

ECQELS CQELS
stream

size
(triples)

avg. response
time (ms)

standard
deviation

avg. response
time (ms)

standard
deviation

Query 1

1000 1.25 1.88 1.34 1.18
2000 1.34 1.75 1.35 0.92

10000 1.66 1.00 1.01 0.52
50000 2.88 0.99 0.99 0.36

Query 2

1000 2.29 1.32 1.70 1.18
2000 3.04 1.00 1.62 0.70

10000 4.31 1.76 1.43 0.82
50000 14.36 7.49 1.34 0.73

Query 3

1000 9.41 4.53 2.17 3.01
2000 15.42 7.42 1.85 2.22

10000 69.68 36.18 1.84 1.95
50000 433.76 289.61 1.61 1.49

Query 4

1000 3.87 1.77 2.78 3.40
2000 4.33 2.82 3.29 4.49

10000 6.96 2.75 3.07 4.43
50000 22.36 11.04 2.96 4.09

Query 5

1000 3.94 1.37 13.22 10.66
2000 4.17 1.38 12.13 8.81

10000 4.59 1.27 11.39 8.73
50000 9.98 3.49 23.35 18.16

Table 6.1: Result of the performance evaluation with a background knowledge of
10k triples and varying stream size for all queries.

6.2. Use Case Expressiveness 69

triggered one execution per window whereby for all executions except the last one
some old triples actually no longer part of the window(s) were used as the window
caches are only refreshed one by one. ECQELS avoids this problem by synchro-
nizing refreshs and refreshing all triple-based windows over one stream at the same
time. Nevertheless CQELS yielded besides the additional invalid results all expected
results at least for the single query evaluation. When processing multiple queries
simultaneously CQELS very rarely (meaning at most 0,1%) missed some expected
results.

10 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

number of queries

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(a) Query 1

10 50 100
0

2

4

6

8

10

12

14

16

18

number of queries

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(b) Query 2

10 50 100
0

20

40

60

80

100

120

140

160

180

200

number of queries

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(c) Query 3

10 50 100
0

5

10

15

20

25

30

35

40

45

50

55

60

number of queries

a
v
g
.
re

sp
o
n
se

ti
m
e
(m

s)

ECQELS CQELS

(d) Query 4

Figure 6.2: Result of the performance evaluation for multiple queries with a back-
ground knowledge of 10k triples and a stream size of 1000 triples.

6.2 Use Case Expressiveness

In this section the implementation of the three representative use cases chosen in
Section 3.1.2 listed in Table 3.6 is presented. The use cases are modeled with the
Event Language EL and the Rule Language RL and were executed using the Event
and Rule Automation System ERAS developed as part of this thesis. For test-
ing them a simple sensor simulation framework was developed and some example
background knowledge data needed for the execution of the use cases was generated.

70 6. Evaluation

Figure 6.3 shows the EL and RL diagrams modeled to represent the use case func-
tionality. It is to notice that in the RL editor the arrow heads are unfortunately
very small and hard to see. Nevertheless all edges in diagrams modeled with RL are
directed edges.

Figure 6.3a shows the event modeled with EL for use case 1 which registers explicitly
to the stream coming from the TV. It uses only the last triple on the stream, extracts
the state and generates the event named TV turned off ever time the state changes
to off. Figure 6.3b shows the corresponding rule using the just seen event as an
event-based condition. It starts in an initial state, waits for the event to occur and
then changes into its final state where the two given actions, turning on the blanket
and sending a SMS, are executed. The time constraint that this rule should only
apply every evening after 9:30pm is satisfied by a time-based scheduling of the shown
rule everyday between 9:30pm and some not further specified point somewhere in
the night. Once the rule fired it will no longer be active until next day at 9:30pm.

Figure 6.3c and Figure 6.3d show the event respectively the rule used for use case
2. The event registers to the streams of all sensors that can detect the presence of
a person via the dynamic stream select pattern introduced in this work in a room
which could be for example a bluetooth beacon inside the room or the server of
a interconnected CCTV system supporting facial recognition. From that stream
every time a person is detected at a room the information of person and room are
extracted and a lookup is done if the person is an employee via the extend operator.
Furthermore this query is explicitly designed as parametrizable and expects the input
parameter !room. For this use case it is not necessary to explicitly introduce an input
parameter as any variable could be bound from outside when instantiating the event
rather it actually makes the query unnecessarily a bit more complex. Nevertheless
it was chosen to model it this way to better show the powerful capabilities of ERAS
within this three simple use cases. The corresponding rule uses the foreach operator
in RL which allows to schedule a rule multiple times for each result of a SPARQL
query. In this case the query lists all prohibited rules of interest. The rule itself starts
again in an initial state and waits for the event to be fired. As soon as that happens
the state is changed and the message is send to the guard. From that state the rule
return immediately to the initial state and waits for another unauthorized employee
entering. The timing constraints that this rule should only be active during a certain
time is again realized through timed scheduling of the rule. Another possibility using
explicit event parameters would have been to not only select the prohibited room in
the foreach operator but also the prohibited time (if it is different per room). This
information could be passed to the event and than within the event be compared to
the time the person entered the room. There an explicit event parameter would be
a good choice as the event would not be useable without passing it a timestamp or
interval.

Use case 3 has a very simple event shown in Figure 6.3e which again takes !room
as explicit parameter. It registers to all streams of sensors that can detect presence
within a room regardless of their capability to identify the person or not again
using the dynamic stream selection pattern. It then only filters by the room and
forward the information that a person was detected at that room. The rule shown
in Figure 6.3f start in the state named no presence and listens for the event. When
the event is received and it changes its state and again registers to the event. When

6.2. Use Case Expressiveness 71

(a) Use Case 1 Event (b) Use Case 1 Rule

(c) Use Case 2 Event (d) Use Case 2 Rule

(e) Use Case 3 Event (f) Use Case 3 Rule

Figure 6.3: The three example use cases listed in Table 3.6 implemented with EL
and RL.

the event is detected in this state it loops to itself and thereby causing all current
executed conditions, which are those located an all the outgoing edges of the state
and in this case the event and a relative time condition, to be canceled when exiting
the state and immediately being rescheduled when again entering the state. This
means that every time the loop from and to the state presence is take the five
minute timer for the relative time condition is reset. This is a very similar logic to
how presence detector based lighting works and therefore fulfills the use case. This
rule also uses the foreach operator to apply this rule to all rooms of interest.

72 6. Evaluation

6.3 User Acceptance Study for the Event Lan-

guage

For evaluating user acceptance of ERAS a good way would be to do a user study
where subjects are introduced to the system and afterwards presented some scenarios
which they would have to solve using ERAS. Unfortunately no end-user-friendly IDE
for ERAS could be implemented due to the unforeseen need to implement an own
semantic streaming engine. Therefore such a study is not possible within this thesis.
As an alternative the design of EL has been evaluated against the textual equivalent
ECQELS. The objectives of the study are to find out which of both representations
the users prefer and which they achieve better results with. In addition EL will be
classified by some cognitive dimensions as introduced in[54].

In the following the type and structure of the study is shown. Afterwards the
outcome of the study is presented which is then analyzed.

6.3.1 Study Design

The study has been conducted as an online survey. The overall structure was as
follows: four queries (further referred to as query 1-4) have been modeled with
ECQELS (further referred to as textual representation) and EL (further referred to
as visual representation), two of them were rather simple (query 1 and query 2) and
the other two were rather complex. The subjects were presented the queries along
with the question “What does this query do?” and had to choose between three
possible answers in form of a textual description of the result. After each query the
subjects were shown if their answer was correct and asked to rate the difficulty by
being asked“How hard did you find the previous task?”. After completing the queries
for one kind of representation they were asked to answer three question on how they
think this language relates to three given cognitive dimensions. After finishing the
question for both kind of representations they were asked for each query “Which
language would you prefer to use?” followed by a possibility to give feedback as free
text.

To compensate any possible learning effect the actual study design is more complex
than just stated. Figure 6.4 shows the actual structure of the study. The study
starts with some questions on sex, age and experience with programming languages
whereas the answers to questions on sex and age were optional. The questions on
experience programming languages covered textual programming languages, visual
programming languages and query languages and were to answer on a five-point
Likert scale with the minimum being “used once or twice” and the maximum “daily
use” with “never used one” as alternative option. The next page in the survey
contained some general information on streaming. Up to that point all subjects were
presented the same questions in the same order. After this question the subjects
were split into four equal-sized groups to compensate learning and order effects.
Therefore the subjects are first split into two groups changing the order of the kind
of representation they are presented first. Each of those groups is then further
split into two groups which differ in which queries were presented for which kind of
representation. The four groups are depicted in Figure 6.4 as horizontally separated
columns. It is also depicted that before each group is asked question on a queries in
a representation they have not seen before they are presented a short introduction

6.3. User Acceptance Study for the Event Language 73

to that representation. To gain a higher completion rate of the survey every subject
is only presented each query once either in visual or in textual representation as
the completion rate in online surveys tend to drop if the survey takes to long to
complete. After having completed the questions on both representation types all
subjects were presented the same questions comparing the representation types per
query. In the following the details of the survey are presented such as details on
questions and answers and also some screenshots.

The type specific introduction to the visual and textual representation were kept as
short as possible to better represent how intuitive the representation is to use. So
for the textual representation it only contained a very simple example query with a
textual description of the result of that query. For the visual representation a map-
ping between the icon and their meaning were added as the visual representation
used icons instead of keywords. The actual language queries are designed like the
introduction but with three possible answers to choose from. A screenshot for a tex-
tual representation question is shown in Figure 6.5a and for a visual representation
question in Figure 6.5b. After each query question the subject was asked to rate how
hard he found the previous task as shown in Figure 6.5c. As a scale the SMEQ (Sub-
jective Mental Effort Questionnaire)[77] was chosen as it is well suited for measuring
mental effort for a single task, especially in online surveys citeSauro2009.

For evaluation of a query type three cognitive dimension have been chosen from [54]:
Consistency, Role-Expressiveness and Closeness of Mapping. The first two do re-
flect the intention to design an intuitive language and the third one checks if EL
is non-domain-specific even though it has been developed in the context of home
automation. As the dimensions are not known to the subjects they are asked for by
posing a question understandable for everybody where the subjects can answer on
a five-point Likert scale with “strongly disagree” as minimum and “strongly agree”
as maximum as shown in Figure 6.5d. Language comparison is also done using
a five-point Likert scale where on the one side of the scale the query in textual
representation is shown and on the other side of the scale the query in visual rep-
resentation. The memorization questions were designed as follows: The solution of
the query just seen in the question before is given as text and four possible queries
in the same type of representation are shown of which one is the query shown in the
last question. The feedback page contains three input fields for free test answers,
one for comments on the visual language, one for comments on the textual language
and one for general comments.

74 6. Evaluation

Streaming Intro

Welcome

Demographics & experience with programming languages

Visual Language Intro Textual Language Intro

Evaluation Visual Language Evaluation Textual Language

Query 1 Visual Query 2 Visual Query 1 Textual Query 2 Textual

Memorization
Query 3 Visual

Memorization
Query 4 Visual

Memorization
Query 3 Textual

Memorization
Query 4 Textual

Query 3 Visual Query 4 Visual Query 3 Textual Query 4 Textual

Difficulty
Query 1 Visual

Difficulty
Query 2 Visual

Difficulty
Query 1 Textual

Difficulty
Query 2 Textual

Difficulty
Query 3 Visual

Difficulty
Query 4 Visual

Difficulty
Query 3 Textual

Difficulty
Query 4 Textual

Textual Language Intro Visual Language Intro

Evaluation Textual Language Evaluation Visual Language

Query 2 Textual Query 1 Textual Query 2 Visual Query 1 Visual

Memorization
Query 4 Textual

Memorization
Query 3 Textual

Memorization
Query 4 Visual

Memorization
Query 3 Visual

Query 4 Textual Query 3 Textual Query 4 Visual Query 3 Visual

Difficulty
Query 2 Textual

Difficulty
Query 1 Textual

Difficulty
Query 2 Visual

Difficulty
Query 1 Visual

Difficulty
Query 4 Textual

Difficulty
Query 3 Textual

Difficulty
Query 4 Visual

Difficulty
Query 3 Visual

Comparison Query 1

Comparison Query 2

Comparison Query 3

Comparison Query 4

Feedback

25% 25% 25% 25%

Figure 6.4: A schema showing the structure of the online survey.

6.3. User Acceptance Study for the Event Language 75

(a)

(b)

(c)

(d)

Figure 6.5: Screenshots from the online survey.

76 6. Evaluation

6.3.2 Study Outcome

In this section the outcome of the online survey is presented. The total number
of subjects was 20 whereof 4 did not complete the survey, leaving a total of 16
complete records. The subjects were equally distributed within the groups so that
each group consisted of 4 subjects. Among these 16 subjects 13 were male, one
female and two did not answer that question. The subjects were between 15 and
55 years old as shown in detail in Figure 6.6a. In Figure 6.6b the self-assessment
of the subjects regarding their programming experience is shown as the arithmetic
mean and the standard deviation both rounded to two decimal places. All subjects
were experienced using textual programming languages whereas for visual and query
languages two subjects each had no experience with. Therefore it is to notice that
Figure 6.6b shows the corrected values where all subjects with no experience with
the given language type are not taken into account as well es the not corrected
values which take subjects which had no experience with a given language type into
account with a score of 0.

<
15

15
-2

4

25
-3

4

35
-4

4

45
-5

5
>
55

0

2

4

6

8

0

5
6

1
2

0

#
p
ar

t i
ci

p
an

ts

(a) age

textual visual query

1

3

5
0.93

0.70 0.89

1.00
1.36

4.25

1.79

2.93

1.56

2.56

ra
ti

n
g

corrected not corrected

(b) experience as arithmetic mean and standard
deviation

Figure 6.6: Age and experience of subject within study.

Figure 6.7 shows the number of correct answers to the query questions for each query
separated by query representation type. It shows that for query 1 all eight subjects
asked that question did answer it correctly when presented the visual representation
whereas for the textual representation two out of eight subjects did answer false. For
query two five out of the eight subjects asked answered correctly when presented
the visual representation whereas when presented the textual representation seven
answered correctly. For query 3 again five out of eight subjects answered correctly
when presented the visual representation and for the textual representation four out
of eight subjects did answer correctly and the other four false. For query 4 seven
out of eight subject answered correctly regardless of the representation shown in the
query.

Figure 6.8 shows the arithmetic mean and standard deviation rounded to the near-
est integer of the difficulty of the questions according to the subjects per query
and representation type. The difficulty was measured on a SMEQ scale between
0 and 150. It also shows that the mean difficulty is very close for the visual and
textual representation for each query and that the standard deviation for the tex-
tual representation is always greater or equal to the standard deviation of the visual
representation.

6.3. User Acceptance Study for the Event Language 77

Q 1 Q 2 Q 3 Q 4

0

2

4

6

8
#

su
b
je
ct
s

visual textual

Figure 6.7: Number of query questions
answered correct for all queries sepa-
rated by query representation type.

Q1 Q2 Q3 Q4

0

50

100

150

13
18 16

13 11 18
18 2622 32 29
4733

23
33

46

d
iffi

cu
lt
y

visual textual

Figure 6.8: Subjective difficulty of the
language questions for all queries by
query representation type displayed as
arithmetic mean and standard devia-
tion.

Figure 6.9 shows the outcome of the question on the three cognitive dimensions
Consistency, Role-Expressiveness and Closeness of Mapping. As the answer was in
form of a five-point Likert scale with the minimum of 1 meaning “strongly disagree”
and the maximum of 5 meaning “strongly agree” the outcome is depicted again with
arithmetic mean and standard deviation rounded to two decimal places.

consistency role mapping

strongly disagree 1

3

strongly agree 5
0.58

0.83
0.89

1.17 1.31
1.06

4.25 4.13 3.443.81 3.19
4.06

visual textual

Figure 6.9: Outcome of the language evaluation questions on cognitive dimensions
displayed as arithmetic mean and standard deviation.

Figure 6.10 shows the outcome of the final comparison of both languages where
the subjects were shown each query in both representations side-by-side and were
asked “Which language would you prefer to use?”. The answer was again in form
of a five-point Likert scale with the visual representation on the one end and the
textual representation on the other representing the preference for one of the two
representation.

Figure 6.11 shows how the subjects scored in the memorization questions. For query
3 there was no difference in the representation type as with both seven out of 8
subjects did answer correctly. For query 4 all eight subjects answered correctly when
presented the visual representation but when presented the textual representation
only six answered correctly.

78 6. Evaluation

Q1 Q2 Q3 Q4

textual 1

3

visual 5

1.20
1.10

1.15 1.13

3.31 3
3.5 3.25

Figure 6.10: Outcome of the questions on language
comparison between the visual and the textual rep-
resentation for all queries displayed as arithmetic
mean and standard deviation..

Query 3 Query 4
0

2

4

6

8

#
su
b
je
ct
s

visual textual

Figure 6.11: Number of mem-
orization questions answered
correctly for both queries asked
and both representation types.

6.3.3 Outcome Analysis

In this section the outcome of the online survey presented in the previous section
is analyzed and discussed. Starting with the subjects Figure 6.6b shows that the
average subject uses textual programming languages nearly on a daily basis and
is rather inexperienced with visual programming languages. In fact two subjects
have never used a visual programming language before and no subject has rated
their experience with visual languages above medium (3). The subjects’ experience
with query languages is also medium in average whereby there are also two subjects
that never used a query language before. Unfortunately no clear user groups could
be identified. Looking at the outcome of the query question in Figure 6.7 the vi-
sual representation scores better for query 1 and query 3. For query 2 the textual
representation scores better and for query 4 the are indifferent. Overall the visual
representation scores slightly better than the textual representation in correctness as
in sum 25 of 32 answers were correct whereas for the textual representation only 24
of 32 questions were answered correctly. To better draw a conclusion out of this the
the subjective difficulty of the question as stated by the subjects shown in Figure 6.8
should be taken into account. Again for questions 1 and 3 the visual representation
scored better (meaning a lower subjective difficulty). For query 2 and 4 the out-
come is nearly the same as for the query question correctness; in query 2 the textual
representation scores better and in query 4 both representations are indifferent. It
is noticeable that the standard deviation for the visual representation is always less
or equal to the standard deviation for the textual representation. This is probably
due to the fact that the experience with visual languages is more uniform than the
experience with textual languages. Nonetheless it is hard to say why query 2 yields
worse results in query question correctness when using the visual representation.

Regarding the outcome of the memorization questions shown in Figure 6.11 it can
be stated that the visual representation scores slightly better and therefore seems
to be more easy to memorize. This is probably because shapes, icons and colors are
more easy to remember than plain text or even text with syntax highlighting as in
the study.

Analyzing the outcome of the language comparison shown in Figure 6.10 it is again
shown that there are no great differences between the representation styles. In fact
the visual representation scores a little better with all means being greater or equal

6.3. User Acceptance Study for the Event Language 79

to 3 but as the standard deviation is always greater 1 this result is not significant.
Furthermore no significant difference between the outcomes for the different groups
could be seen. It rather seems that the preference for a representation is personal
preference as some subjects preferred the same representation for all queries. A rea-
son for this personal preference could be that the subject is very experienced with
programming languages of the one representation type and very inexperienced with
the other and therefor tends to prefer the representation he is skilled in. This could
be the case for one subject that stated to use textual programming languages on
a daily basis and never had used a visual programming language and then slightly
preferred the textual representation for all queries. Comparing Figure 6.8 and Fig-
ure 6.10 it is surprising that although the subjects found the visual representation of
query 2 more difficult than the textual representation they are completely indifferent
which representation they would like to use for this query.

Feedback on visual representation

- clear structure (3x)
- easy to learn/understand for non-programmers (3x)
- bulky, uses a lot of space (3x)
- easier for complex queries (2x)
- symbols are intuitive
- no editor known
- data flow partially confusing
- structured like textual languages

Feedback on textual representation

- more compact (3x)
- hard for non-programmers (3x)
- hard to read (3x)
- easy for experienced programmers used to SQL (2x)
- did not understand the curly braces / data flow (2x)

General feedback

- maybe more easy visual language by reducing universality
- do not want to use visual language for huge queries
- comparison is hard without suitable editor

Table 6.2: Summary of the free text feedback of the online survey.

Table 6.2 shows the feedback given in free text form as bullet points annotated
with their frequency of occurrence. As positive for the visual representation it was
stated that is has a clear structure, uses intuitive symbols and is easy to learn
and understand for non-programmers. Also two subjects found it easier to use
when dealing with complex queries. This is contrasted with the feedback for the
textual representation which is stated to be hard to read and generally hard for non-
programmers. It also is stated to be more compact whereas the visual representation
is stated to be bulky. For both representations a few subject did find the data
flow confusing. Furthermore the textual representation is considered to be easy for
experienced programmers that are used to SQL as it strongly resembles SQL.

80 6. Evaluation

In the general feedback a subject stated that it would probably be a good idea
to make the visual representation even more easy to understand by reducing its
universality. This is a good idea and should be done when applying it to a specific
domain. Therefore the most used patterns could be investigated by a suitable study
and special controls or wizards could be implemented. Actually this has been done
in this work for the dynamic sensor selection. Another subject stated that he does
not want to use the visual representation for huge/complex queries which is of course
related to its bulkiness. The third general feedback is cited here as it confirm exactly
was has been proposed in the introduction of this section: “It is hard to compare
textual languages and visual languages only on images. It would be way more
realistic, if this would be done in a real environment, where I can click, and check
the parentheses and so on. It would allow me to move my mouse over certain
elements to get more information, so it would be faster to get the meaning of it, in
my opinion.” This statement indicates that usability of a language is very closely
connected to its editor/IDE. With a proper IDE the problem of bulkiness could
probably be overcome for example with some mechanism to change the level of
detail by collapsing certain areas.

Figure 6.9 shows the outcome of the questions on the cognitive dimensions. The
visual representation is rated higher in consistency, meaning it is easier for someone
who knows some of the language structures to successfully guess the rest, and in
role-expressiveness, meaning that it is more easy to answer the question “What is
this bit for?” for the visual representation. Considering this the visual representation
can be seen as slightly more intuitive than the textual representation. Interestingly
the textual representation is conceived as more general than the visual one although
they both have the same expressiveness.

Putting all the results together the visual representation seems to yield slightly
more correct results and is also preferred by the users. Furthermore it seems slightly
more intuitive and easy and is therefore better suited for inexperienced or even non-
programmers. It is to notice that these differences are not significant and therefor
are only a personal interpretation. Furthermore these differences do not hold for all
types of queries as the results for query 2 show the contrary. The reason to this
could not be discovered. It is also highlighted that the visual representation is only
easy-to-use when there is a suitable editor.

6.4 Summary

In this chapter the evaluation of the ERAS system and especially ECQELS was
shown. In Section 6.1 a new benchmark for streaming engines was introduced using
the feature of average response time which seems of more interest for users of such
systems then the formerly used average query execution time or executions per
seconds whereby an execution is defined as insertion of a triple.

The evaluation has shown that ERAS is working. It was shown that ECQELS can
compete with CQELS for queries without or only small background knowledge and
is superior when processing multiple queries a once. On the other hand it seems
that ECQELS gets very slow for queries using large background knowledge due to
its architecture based on Jena ARQ. Furthermore there seems to be a memory leak
in ECQELS causing the execution to getting slower and slower over time.

6.4. Summary 81

In Section 6.3.2 it was shown how the three representative use cases introduced in
Section 3.1.2 were implemented using ERAS which shows that the developed system
is working.

Finally in Section 6.3 an online user study was introduced in which ECQELS and
EL, the textual and visual representation, are compared with regard to usability.
The study structure and outcome were presented and the results were discussed.
The outcome was that the visual representation, EL, scored slightly better in most
cases and was slightly more favored by the subjects but these differences could not
be shown to be significant.

82 6. Evaluation

7. Conclusion and Future Work

7.1 Conclusion

In this thesis the rule-based home automation system called ERAS (Event and Rule
Automation System) has been developed. To the knowledge of the author this is the
first work using semantic stream technologies in the context of home automation.
Using semantic streaming in home automation provides the gains of using semantics
but with far less performance loss in comparison to normal query-based semantic
systems. Therefore it seems perfectly suited for the home automation domain and
in this thesis it has been shown that it can be beneficial.

ERAS has been realized using two hierarchically visual languages, the event lan-
guage EL and the Rule Language RL, following a two-folded approach to adapt the
different needs for different domains covered. EL focuses on detecting meaningful
events based on processing sensor data streams and offers re-usability by supporting
parametrization. This thesis also contributes a new pattern for semantic stream pro-
cessing especially useful in dynamic infrastructures called dynamic stream selection
(or also dynamic sensor selection) presented in Chapter 3.1 which is also supported
by EL. RL was designed as a visual modeling language for rules based on time trig-
gers or event triggers modeled with EL and resembles a finite state machine. The
use of events modeled in EL as triggers in RL in combination with native support
for parametrization of these events allows extensive re-usability of user-defined ele-
ments and supports a repository-style usage. Thereby all requirements specified in
Section 3.3 have been addressed.

As already mentioned in Section 4.5 the editors for EL and RL could not be imple-
mented as user-friendly as desired due to the fact that CQELS which was planned
to use as execution runtime for EL has proven not suitable enough for this work.
This fact required to implement a custom semantic streaming engine from scratch
which cost much time and has not been scheduled. In spite of everything a running
version of ERAS has been implemented.

As a further contribution of this thesis the structured literature review on and anal-
ysis and classification of use cases in the domain of home automation presented in
Section 3.1 should be mentioned.

84 7. Conclusion and Future Work

Another contribution of this work is the developed semantic streaming engine EC-
QELS along with the corresponding benchmark for semantic streaming engines.

7.2 Future Work

As the editors for EL and RL could only be implemented in a very basic version
the list of possible future work to improve ERAS is long. The first thing of course
would be to implement them in a nicer looking and more user-friendly way and to
integrate them in a common IDE. Such an IDE could also support further additional
features like a repository of present devices or previously user-defined elements to
support re-usability. Therefore the elements of EL and RL could be represented as
RDF and stored together with the metadata of the deployed devices. Furthermore
an existing system for physical integration of actuators could be included so that
ERAS becomes are complete infrastructure solution. On top an online event and rule
repository could be possible allowing to transfer events and rules between different
homes which should be possible if they use a common domain vocabulary or a
mapping is provided.

Also ECQELS does offer possibilities for future work. For example performance
could be optimized and memory consumption could be reduced. Especially the po-
tential memory leak needs further investigation. In addition an better caching logic
for ECQELS could be implemented to better perform with large background data.
Furthermore ECQELS could be extended to support graph-based RDF streams as
discussed in [60]. This probably will be more complex as it requires to re-think the
window semantic on graph-based streams.

A question more general and not only focused on the work presented in this thesis is
how users can be supported in using dynamic sensor selection. This topic came up
in the pre-study conducted and has been intensively discussed. There were multiple
proposals such as floor plans, tree-views with check boxes and faceted search. From
the author’s view the most promising proposal is the use of a faceted search in
combination with an auto-generated abstract representation, probably with a textual
description close to natural language.

Furthermore there seems to be a need for further studies on use cases for rule-
based home automation. This could be done probably by interviewing non-expert
programmers that are already interested or even experienced in home automation.
As soon as an IDE for ERAS suitable for non-expert programmers is available there
should be a study whether the concept improves ease of use or even better the IDE
should be designed iteratively including the feedback of non-expert programmer
users more early in the development.views

Bibliography

[1] https://ifttt.com/. Last accessed: 2014-12-15.

[2] http : / / research . microsoft . com / en - us / um / redmond / projects / homeos /
homeos-demos.htm. Last accessed: 2014-12-15.

[3] http://www.openhab.org/. Last accessed: 2014-12-15.

[4] https://github.com/cdjackson/HABmin/wiki/Rule-Designer:-Overview. Last
accessed: 2014-12-15.

[5] http://www.w3.org/TR/rdf11-concepts/. Last accessed: 2014-12-15.

[6] http://www.w3.org/TR/rdf-schema/. Last accessed: 2014-12-15.

[7] http://www.w3.org/TR/owl-ref/. Last accessed: 2014-12-15.

[8] http://www.w3.org/TR/owl2-overview/. Last accessed: 2014-12-15.

[9] http://www.streambase.com/. Last accessed: 2014-12-15.

[10] http://www.tibco.com/assets/blt0e3d0c71656918c5/ds- tibco- streambase-
overview tcm8-19262.pdf. Last accessed: 2014-12-15.

[11] http://www.espertech.com/. Last accessed: 2014-12-15.

[12] http://www.w3.org/TR/rdf-sparql-query/. Last accessed: 2014-12-15.

[13] http://www.w3.org/2005/Incubator/ssn/. Last accessed: 2014-12-15.

[14] http : / / spitfire - project . eu / incontextsensing / ontology. php. Last accessed:
2014-12-15.

[15] http://www.spitfire-project.eu. Last accessed: 2014-12-15.

[16] http://www.w3.org/TR/sparql11-query/#grammar. Last accessed: 2014-12-
15.

[17] http://code.google.com/p/lsbench/. Last accessed: 2014-12-15.

[18] http://code.google.com/p/cqels/wiki/Experiments. Last accessed: 2014-12-
15.

[19] http://dblp.uni-trier.de/. Last accessed: 2014-12-15.

[20] DJ Abadi and Don Carney. “Aurora: a new model and architecture for data
stream management”. In: The VLDB Journal—The International Journal on
Very Large Data Bases 12.2 (Aug. 2003), pp. 120–139. issn: 1066-8888.

[21] Jagrati Agrawal et al. “Efficient pattern matching over event streams”. In: Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management
of data - SIGMOD ’08 (2008), p. 147.

https://ifttt.com/
http://research.microsoft.com/en-us/um/redmond/projects/homeos/homeos-demos.htm
http://research.microsoft.com/en-us/um/redmond/projects/homeos/homeos-demos.htm
http://www.openhab.org/
https://github.com/cdjackson/HABmin/wiki/Rule-Designer:-Overview
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl2-overview/
http://www.streambase.com/
http://www.tibco.com/assets/blt0e3d0c71656918c5/ds-tibco-streambase-overview_tcm8-19262.pdf
http://www.tibco.com/assets/blt0e3d0c71656918c5/ds-tibco-streambase-overview_tcm8-19262.pdf
http://www.espertech.com/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2005/Incubator/ssn/
http://spitfire-project.eu/incontextsensing/ontology.php
http://www.spitfire-project.eu
http://www.w3.org/TR/sparql11-query/#grammar
http://code.google.com/p/lsbench/
http://code.google.com/p/cqels/wiki/Experiments
http://dblp.uni-trier.de/

86 Bibliography

[22] Alain Alani, Harith and Szomszor, Martin and Cattuto, Ciro and Van den
Broeck, Wouter and Correndo, Gianluca and Barrat. Live social semantics. Ed.
by Abraham Bernstein et al. Vol. 5823. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. isbn: 978-3-642-04929-3.

[23] I Androutsopoulos. “Natural language interfaces to databases–an introduc-
tion”. In: Natural language engineering 1.01.709 (1995), pp. 1–50.

[24] Darko Anicic and Paul Fodor. “EP-SPARQL: a unified language for event
processing and stream reasoning”. In: Proceedings of the 20th international
conference on World wide web (2011), pp. 635–644.

[25] Arvind Arasu, S Babu, and Jennifer Widom. “An abstract semantics and con-
crete language for continuous queries over streams and relations”. In: (2002).

[26] Arvind Arasu, Shivnath Babu, and Jennifer Widom. “The CQL continuous
query language: semantic foundations and query execution”. In: The VLDB
Journal 15.2 (July 2005), pp. 121–142. issn: 1066-8888.

[27] Mostafa M Aref and Mohammed a Tayyib. “Lana–Match algorithm: a parallel
version of the Rete–Match algorithm”. In: Parallel Computing 24.5-6 (June
1998), pp. 763–775. issn: 01678191.

[28] Nazmiye Balta-Ozkan et al. “Social barriers to the adoption of smart homes”.
In: Energy Policy 63 (Dec. 2013), pp. 363–374. issn: 03014215.

[29] Nazmiye Balta-Ozkan et al. “The development of smart homes market in the
UK”. In: Energy 60 (Oct. 2013), pp. 361–372. issn: 03605442.

[30] DF Barbieri and D Braga.“An execution environment for C-SPARQL queries”.
In: Proceedings of the 13th International Conference on Extending Database
Technology (2010).

[31] DF Barbieri, D Braga, and S Ceri. “C-SPARQL: SPARQL for continuous
querying”. In: Proceedings of the 18th international conference on World wide
web c (2009).

[32] DF Barbieri, Daniele Braga, and S Ceri. “Querying RDF Streams with C-
SPARQL”. In: ACM SIGMOD Record 39.1 (2010), pp. 20–26.

[33] Michael Beigl, Albert Krohn, and Till Riedel. “The uPart experience: Building
a wireless sensor network”. In: Information Processing in Sensor Networks,
2006. IPSN 2006. The Fifth International Conference on (2006), pp. 366–373.

[34] Michael Beigl et al. “µparts: Low cost sensor networks at scale”. In: Ubicomp
2005 (2005).

[35] T Berners-Lee. “The semantic web”. In: Scientific american 284.5 (2001),
pp. 28–37.

[36] Peter Boncz, Orri Erling, and Minh-duc Pham B. “Advances in Large-Scale
RDF Data Management”. In: Lecture Notes in Computer Science 8661 (2014).
Ed. by Sören Auer, Volha Bryl, and Sebastian Tramp, pp. 21–44.

[37] AJ Brush, Bongshin Lee, and Ratul Mahajan. “Home automation in the wild:
challenges and opportunities”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (2011).

Bibliography 87

[38] Marie Chan et al. “A review of smart homes- present state and future chal-
lenges.” In: Computer methods and programs in biomedicine 91.1 (July 2008),
pp. 55–81. issn: 0169-2607.

[39] B. Chandrasekaran, J.R. Josephson, and V.R. Benjamins. “What are ontolo-
gies, and why do we need them?” In: IEEE Intelligent Systems 14.1 (Jan.
1999), pp. 20–26. issn: 1094-7167.

[40] Joëlle Coutaz and Sybille Caffiau. “Early lessons from the development of
SPOK, an end-user development environment for smart homes”. In: Proceed-
ings of the 2014 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing: Adjunct Publication (2014), pp. 895–902.

[41] Joëlle Coutaz and Emeric Fontaine. “DisQo: A user needs analysis method
for smart home”. In: Proceedings of the 6th Nordic Conference on Human-
Computer Interaction: Extending Boundaries (2010).

[42] Douglas Crockford. The application/json media type for javascript object no-
tation (json). 2006.

[43] Gianpaolo Cugola and Alessandro Margara. “Processing flows of information:
From data stream to complex event processing”. In: ACM Computing Surveys
(CSUR) V.i (2012), pp. 1–70.

[44] Elmehdi Damou.“ApAM: Un environnement pour le développement et l’exécution
d’applications ubiquitaires”. Thèse de doctorat. Universit´ e de Grenoble,
2013.

[45] Scott Davidoff, MK Lee, and Charles Yiu. “Principles of smart home control”.
In: UbiComp 2006: Ubiquitous Computing (2006), pp. 19–34.

[46] AK Dey et al. “iCAP: Interactive prototyping of context-aware applications”.
In: Pervasive Computing (2006), pp. 254–271.

[47] Anind Dey, Gregory Abowd, and Daniel Salber. “A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Appli-
cations”. In: Human-Computer Interaction 16.2 (Dec. 2001), pp. 97–166. issn:
0737-0024.

[48] Colin Dixon et al. “An operating system for the home”. In: NSDI (2012).

[49] Colin Dixon et al. “The home needs an operating system (and an app store)”.
In: Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in
Networks - Hotnets ’10 (2010), pp. 1–6.

[50] Z Drey, Julien Mercadal, and Charles Consel. “A taxonomy-driven approach
to visually prototyping pervasive computing applications”. In: Domain-Specific
Languages (2009).

[51] WK Edwards and RE Grinter. “At home with ubiquitous computing: seven
challenges”. In: Ubicomp 2001: Ubiquitous Computing (2001).

[52] Dieter Fensel et al. “Towards LarKC: A Platform for Web-Scale Reasoning”.
In: 2008 IEEE International Conference on Semantic Computing (Aug. 2008),
pp. 524–529.

[53] Lukasz Golab and MT Özsu. “Issues in data stream management”. In: ACM
Sigmod Record 32.2 (2003), pp. 5–14.

88 Bibliography

[54] TRG Green and M Petre. “Usability analysis of visual programming environ-
ments: a ’cognitive dimensions’ framework”. In: Journal of Visual Languages
& Computing January (1996), pp. 1–51.

[55] Matthias Grossmann and Martin Bauer. “Efficiently managing context infor-
mation for large-scale scenarios”. In: Pervasive Computing and Communica-
tions, 2005. PerCom 2005. Third IEEE International Conference on PerCom
(2005).

[56] Bin Guo, Daqing Zhang, and Michita Imai. “Enabling user-oriented manage-
ment for ubiquitous computing: The meta-design approach”. In: Computer
Networks 54.16 (Nov. 2010), pp. 2840–2855. issn: 13891286.

[57] Daniel Gyllstrom et al. “On Supporting Kleene Closure over Event Streams”.
In: 2008 IEEE 24th International Conference on Data Engineering (Apr.
2008), pp. 1391–1393.

[58] M Jimenez, Francisca Rosique, and P Sanchez. “Habitation: a domain-specific
language for home automation”. In: Software, IEEE 26.4 (2009), pp. 30–38.

[59] Yung-Wei Kao and Shyan-Ming Yuan. “User-configurable semantic home au-
tomation”. In: Computer Standards & Interfaces 34.1 (Jan. 2012), pp. 171–
188. issn: 09205489.

[60] R Keskisärkkä and E Blomqvist.“Event Object Boundaries in RDF Streams–A
Position Paper”. In: ().

[61] Mirko Knoll et al. “Scripting your home”. In: Location-and Context-Awareness
(2006), pp. 274–288.

[62] G. Kortuem et al. “Smart objects as building blocks for the Internet of things”.
In: IEEE Internet Computing 14.1 (Jan. 2010), pp. 44–51. issn: 1089-7801.

[63] Othmar Kyas. How To Smart Home. isbn: 9783944980003.

[64] D Le-Phuoc and M Dao-Tran. “A native and adaptive approach for unified
processing of linked streams and linked data”. In: The Semantic Web–ISWC
2011 (2011), pp. 370–388.

[65] D Le-Phuoc, M Dao-Tran, and MD Pham. “Linked stream data processing en-
gines: Facts and figures”. In: The Semantic Web–ISWC 2012 (2012), pp. 300–
312.

[66] D Le-Phuoc et al. Continuous query optimization and evaluation over unified
linked stream data and linked open data. Tech. rep. Galway, Ireland: DERI,
IDA Business Park, 2010.

[67] Claire Maternaghan. The homer home automation system. December. Depart-
ment of Computing Science and Mathematics, University of Stirling, 2010.

[68] BM Michelson.“Event-driven architecture overview”. In: Patricia Seybold Group
(2006).

[69] Rajeev Motwani et al. “Query processing, resource management, and approx-
imation in a data stream management system”. In: CIDR (2003).

[70] Kostas Patroumpas and Timos Sellis. “Maintaining consistent results of con-
tinuous queries under diverse window specifications”. In: Information Systems
36.March (2011), pp. 42–61.

Bibliography 89

[71] Vincent Ricquebourg and David Durand. “Context inferring in the Smart
Home: An SWRL approach”. In: Advanced Information Networking and Ap-
plications Workshops, 2007, AINAW’07. 21st International Conference on 2
(2007), pp. 290–295.

[72] Michael Rietzler, J Greim, and M Walch. “homeBLOX: introducing process-
driven home automation”. In: Proceedings of the 2013 ACM conference on
Pervasive and ubiquitous computing adjunct publication (2013), pp. 801–808.

[73] Mikko Rinne, Esko Nuutila, and S Törmä. “INSTANS: High-Performance
Event Processing with Standard RDF and SPARQL”. In: 11th International
Semantic Web Conference ISWC 2012 (2012), pp. 6–9.

[74] Mikko Rinne, S Törmä, and E Nuutila. “SPARQL-Based Applications for
RDF-Encoded Sensor Data”. In: SSN 904 (2012), pp. 81–96.

[75] Mikko Rinne et al. “Processing heterogeneous rdf events with standing sparql
update rules”. In: On the Move to Meaningful Internet Systems: OTM 2012
(2012), pp. 797–806.

[76] Pedro Sánchez et al. “A framework for developing home automation systems:
From requirements to code”. In: Journal of Systems and Software 84.6 (June
2011), pp. 1008–1021. issn: 01641212.

[77] Jeff Sauro and JS Dumas. “Comparison of three one-question, post-task us-
ability questionnaires”. In: Proceedings of the SIGCHI Conference on Human
. . . (2009), pp. 1599–1608.

[78] Leila Takayama, Caroline Pantofaru, and David Robson. “Making technology
homey: finding sources of satisfaction and meaning in home automation”. In:
Proceedings of the 2012 ACM Conference on Ubiquitous Computing (2012),
pp. 511–520.

[79] KJ Turner. “Flexible management of smart homes”. In: Journal of Ambient
Intelligence and Smart Environments 3.2 (2011), pp. 83–109.

[80] EU Warriach. “State of the Art: Embedded Middleware Platform for A Smart
Home.” In: International Journal of Smart Home 7 (2013), pp. 1–20.

[81] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-performance complex event
processing over streams”. In: Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of data (2006), pp. 407–418.

[82] Marcin Wylot and J Pont. “dipLODocus - Short and Long-Tail RDF Ana-
lytics for Massive Webs of Data”. In: The Semantic Web–ISWC 2011 (2011),
pp. 778–793.

[83] Qunzhi Zhou, Yogesh Simmhan, and Viktor Prasanna. SCEPter: Semantic
complex event processing over end-to-end data flows. Tech. rep. April. Com-
puter Science Department, University of Southern California, 2012.

90 Bibliography

	Contents
	1 Introduction
	1.1 Objective
	1.2 Structure of the Document

	2 Background & Related Work
	2.1 Home Automation
	2.1.1 Systems using Textual Languages
	2.1.2 Systems using Visual Languages
	2.1.3 Analysis and Comparison

	2.2 Semantic Streaming Technology
	2.2.1 Data Stream Management Systems
	2.2.2 Complex Event Processing
	2.2.3 Semantic Streaming Technologies
	2.2.4 Analysis and Comparison

	2.3 Summary

	3 Analysis
	3.1 Smart Home Use Case Classification
	3.1.1 Use Case Categories
	3.1.2 Applying the Classification

	3.2 Participatory Design Study
	3.2.1 Form of the Experiment
	3.2.2 The Participants
	3.2.3 Introduction to Topic
	3.2.4 Procedure and Presented Use Cases
	3.2.5 Evaluation and Discussion

	3.3 Summary

	4 Design
	4.1 System Overview
	4.1.1 Architecture

	4.2 ERAS Ontology
	4.3 Event Language
	4.3.1 Metamodel
	4.3.2 Runtime

	4.4 Rule Language
	4.4.1 Metamodel

	4.5 Summary

	5 Language and Framework Implementation
	5.1 Development Environment, Tools and Libraries
	5.2 Event and Rule Automation System
	5.3 Event Language
	5.3.1 Language and Editor
	5.3.2 Runtime and ECQELS
	5.3.3 Compilation

	5.4 Rule Language
	5.4.1 Language and Editor
	5.4.2 Runtime and Compilation

	5.5 Summary

	6 Evaluation
	6.1 Performance Analysis
	6.1.1 Benchmark Design and Runtime Environment
	6.1.2 Results and Analysis

	6.2 Use Case Expressiveness
	6.3 User Acceptance Study for the Event Language
	6.3.1 Study Design
	6.3.2 Study Outcome
	6.3.3 Outcome Analysis

	6.4 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

