

24th International Conference on Nuclear Engineering (ICONE24) June 26–30, 2016, Charlotte, North Carolina

Corrosion of 9%Cr Ferritic / Martensitic Steelsat 450 and 550°C in Flowing Pb-Bi Eutectic with 10-7 mass% Dissolved Oxygen

Valentyn Tsisar, Carsten Schroer, Olaf Wedemeyer, Aleksandr Skrypnik, Jürgen Konys

Liquid metal corrosion - background

Issue !

- \Box Dissolution of Ni, Cr and Fe from the steel by liquid metal:
- Г Formation of week corrosion zone withferrite structure on austenitic matrix
- г Liquid metal penetrates into the ferrite

Solution !?

- □ Oxidation instead of dissolution:
- $\overline{}$ Formation of continuous and protective oxide layer
- г Long-term operation of scale in protective mode

ICONE24

Ni Cr Fe Pb Bi Earlier findings ! Ferrite corrosion zone I.V. Gorynin et al. Met. Sci. Heat Treat. 41 (9) (1999) 384–388. Steel 316 **Dissolution Oxidation**200 **Transition zone550°C, 3000h** Corrosion loss (µm) Fe3O4 (Fe,Cr)3O4 $0\frac{1}{10-10}$ $10-9$ $10-8$ $10 - 7$ $10 - 6$ $10-5$ Oxygen concentration in Pb (mass %) 1 and 2 – austenitic steels of 316L type 24nd International Conference on Nuclear Engineering Institute for Applied Materials –

 Applied Materials Physics (IAM-AWT) Charlotte, NC, USA, June 26–30, 2016 Corrosion Department

Thermodynamic basis for in-situ addition of oxygen into liquid Pb-Bi

BASIS of Pb-Bi technology

- \Box Pb-Bi dissolves and transports the oxygen;
- \Box Components of steels (Si, Cr, Fe…) have high affinity to oxygen than Pb or Bi.
- \Box **Main aim of the corrosion tests** is to determine the optimum temperatureoxygen concentration parameters for save and long-term operation of structural materials in contact with liquid Pb-Bi eutectic.

Previous test:

CO = 10–6 mass%, T = 450 and 550°C

This work:

CO = 10–7 mass%, T = 450 and 550°C

F/M steels tested in the CORRIDA loop

Concentration (in mass%) of alloying elements other than Fe

*nominal composition <

Nominally 9 mass% Cr

Element besides Cr that improves oxidation resistance

Charlotte, NC, USA, June 26–30, 2016 Corrosion Department

4

stainless steel (1.4571) designed to expose material (steel) specimens to flowing (2 m/s) Pb-Bi eutectic (~1000 kg) with controlled oxygen concentration.

Quantification of corrosion loss

⊔

\Box Goal of quantification

- r Material loss, average of general corrosion and maximum of local corrosion
- $\overline{}$ Thickness of adherent (oxide) scale
- $\mathcal{C}^{\mathcal{A}}$ Overall change in dimensions, including the scale
- × Amount of metals transferred to the liquid metal

Metallographic method (cylindrical specimens)

- **Measurement of initial diameter in a** laser micrometer with 0.1 um resolution
- Г Diameter of unaffected material (12th measurements with rotation angle 15°) and thickness of corrosion zones determined in ^a microscope (LOM) with 1 µm resolution
- г Corrosion modes on opposing sides of the re-measured diameter areevaluated (% of surface circumference) Transverse circular cross-section

Post-test examination

$$
\Delta X_{ST} = \frac{1}{2} \left(D_0 - \left(\frac{\sum D_i}{i} \right) \right)
$$

Applied Materials Physics (IAM-AWT)

450°C, Pb-Bi with 10–7% dissolved oxygen

Solution-based attack – local corrosion trend

Effect of increasing oxygen concentration 2015 hEffective operating time of the CORRIDA loop (h) 48000 50000 52000 54000 56000 Pb-BiFe3O4Exposure time (h) X=0 – initial interface Fe-Cr spinel Cross-section Cross-section steel / Pb-Bi 500 $\frac{1}{2}$ 450 $\breve{}$ 400 **Ingress** 350
2,5 of Pb-BiFlow velocity $2,0$ \Box **Magnetite formation** (m/sec) $1,5$ $1,0$ $0,5$ Magnetite forms as a result of 0.0 EUROFER $- 10 \mu m$ sensor temporary increase in oxygen Pt / Air s concentration from 10^{-7} to \sim 10⁻⁵ $0,8$ $0,7$ mass%Fe3O4log C_o
(mass%) **• Magnetite is not observed** Surface after return to target 10^{-7} mass% O 1000 2000 3000 4000 5000 6000 7000 8000 Ω Fe-Cr1007 spinel 2015 Duration
of test
(h) Magnetite dissolves! 374 Exposure time (h) Magnetite crystals non-uniformly populate steel surface (Fe-Cr spinel surface)

Quantification of corrosion loss on 9%Cr F/M steels after exposure to flowing Pb-Bi at 450°C, 2 m/s, 10–7 mass% O

Charlotte, NC, USA, June 26–30, 2016 Corrosion Department

Phenomena observed on 9%Cr steels after test at 550°C in flowing Pb-Bi and 10^{-7%} dissolved oxygen

550°C, 10–7% dissolved oxygen

715 h

550°C, 10–7% dissolved oxygen

1007 h

550°C, 10–7% dissolved oxygen

2011 h

 \Box Severe solution-based attack – general corrosion trend

24nd International Conference on Nuclear Engineering Institute for Applied Materials – ICONE24

 Applied Materials Physics (IAM-AWT) Charlotte, NC, USA, June 26-30, 2016 **Corrosion Department**

Quantification of corrosion loss on steels after exposure to flowing Pb-Bi at 550°C, 2 m/s, 10–7 mass% O

Comparison of earlier findings with last ones !

19

ICONE24Charlotte, NC, USA, June 26–30, 2016 Corrosion Department

Applied Materials Physics (IAM-AWT)

 At 450 and 550°C, in flowing oxygen-containing LBE (2 m/s and 10–7 mass% O), **F/M steels with 9% nominal content of Cr (P92, E911, EUROFER) show following corrosion modes:**

□ Protective scaling – short term or local phenomenon (thin Cr-based oxide)

□ Accelerated oxidation – the general corrosion mode (thicker Fe(Fe_xCr_{1-x})₂O₄ scale) resulted in metal recession at 450 $^{\circ}$ C of \sim 6 µm after one year

□ Solution-based corrosion

- local at 450°C and ranged between 7-336 µm
- П general at 550°C and reached 13-1000 µm

 EUROFER showed the largest corrosion loss among the steels tested via accelerated oxidation and solution-based corrosion that might be caused by

- T, less Si content, which normally improves protective properties of scales formed on P92 and E911 and prolongs incubation period
- $\overline{}$ fine-grained structure that in combination with less protective oxide film might favor development of local solution-based corrosion attack after failure of scale
- **Comparison between 10–7 mass% O and 10–6 mass% O**:
	- \Box Shorter incubation time for 10⁻⁷ mass% O
	- **G** Slower accelerated oxidation for 10⁻⁷ mass% O in terms of metal recession but only at 550°C

Decrease in scale thickness for 10-7 mass% O at 450°C due to missing magnetite, but an equivalent amount of Fe is dissolved by liquid metal

□ The material loss caused by oxidation is generally lower at the lower oxygen concentration, but the risk of initiation of local solution-based corrosion attack increases;

 \square 10⁻⁶ mass% is closer to the optimum oxygen content in LBE than 10⁻⁷ mass% at least for 9%Cr steels

Thank you for attention !!!

Acknowledgements

The construction and operation of the CORRIDA loop was financially supported by the Nuclear Safety Programme of KIT.

The presented work is part of the MATTER project that has received funding by the 7th Framework Program of the EU (Grant Agreement No. 269706).