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CHAPTER 1

Introduction

The properties and fundamental interactions of all known elementary particles are remarkably
well described by the Standard Model (SM) of elementary particle physics. One of the corner-
stones of the SM is the Higgs mechanism [1–6], which is required to explain the spontaneous
breaking of the electroweak (EW) symmetry [7–9]. A consequence of the Higgs mechanism
is the existence of one scalar Higgs boson as a remainder of the EW symmetry breaking and
ever since the formulation of the SM in the 1960’s, the search for the Higgs boson was one of
the major tasks of experimental and theoretical particle physics research.
In 2012 this endeavour lead to a successful result when the LHC experiments ATLAS [10]
and CMS [11] announced the discovery of a new scalar particle with mass of about 125 GeV.
The combined analysis [12] of the data gathered in LHC Run 1 suggests that the couplings
of the newly found particle to the massive gauge bosons, to pairs of τ leptons and of bottom
quarks, as well as the loop-induced couplings to gluons and photons are in good agreement
with the SM predictions for the Higgs boson couplings within the experimental uncertain-
ties. Additionally, the experimental data also strongly suggests that the newly found boson
carries zero spin and positive CP parity [13,14], which further supports the interpretation of
the particle as the long-sought SM Higgs boson. The ultimate proof of this interpretation
requires the determination of the particle’s trilinear and quartic self-interactions, which are
accessible in multi-Higgs production processes [15–18]. The measurement of these couplings
allows for the experimental reconstruction of the Higgs potential, which is required to possess
a non-vanishing vacuum expectation value.

While the measurement of the quartic self-coupling is out of reach of current and planned col-
lider experiments [16, 18–23], the determination of the trilinear self-coupling is a demanding
yet promising goal [24–44] of a possible high luminosity upgrade of the LHC. The experi-
mental determination of the Higgs pair production process at the LHC is difficult, since the
production cross section is small and the main Higgs boson decay modes are plagued by large
QCD backgrounds. This necessitates on the theoretical side precise predictions for the total
and differential production cross sections by including higher order corrections. The domi-
nant Higgs boson pair production process is gluon fusion [45, 46], for which the knowledge
of the higher order corrections has long been based solely on the heavy top quark mass ap-
proximation [15]. The approximate corrections increase the production cross section for SM
Higgs bosons at the LHC by approximately 80%. The heavy top quark mass approximation
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reduces the complexity of the next-to-leading order (NLO) calculation considerably and was
applied successfully in the past to single Higgs boson production in gluon fusion. For Higgs
pair production, the approximation is less precise, since the leading order (LO) approximate
result is known to differ from the result with full top quark mass dependence by 20%. Fur-
thermore, the approximation fails to produce correct kinematic distributions [25, 47], which
are required by experiment to extract the self-coupling.
The main project of this thesis was the calculation of the two-loop NLO QCD corrections to
Higgs pair production in gluon fusion with full top quark mass dependence. This is a chal-
lenging task, since the Higgs pair production process is already loop induced at LO, making
the virtual corrections a two-loop calculation of a two-to-two process with massive and mass-
less particles running in the loops, which lead to ultraviolet (UV) and infrared (IR) divergent
expressions for the NLO amplitude. While there are established procedures for the pole ex-
traction and numerical evaluation of one-loop integrals with arbitrary masses in the loop and
ongoing improvements for massless multi-loop calculations, the integrals involved in this pro-
cess are still uncharted territory. The calculation is performed in dimensional regularisation
and its strategy is similar to the one successfully applied in the single Higgs production case.
It involves non-trivial transformations in Feynman parameter space, allowing the isolation of
singularities through endpoint subtractions, as well as the treatment of additional threshold
singularities by partial integration. This procedure results in numerically integrable expres-
sions for the virtual amplitude with fully isolated UV and IR poles. The calculation of the
amplitude of the virtual corrections poses the crucial step in the calculation of the NLO QCD
corrections with full top quark mass dependence.

The Higgs pair production process is also of interest in the context of new physics (NP)
searches, as many beyond the Standard Model (BSM) extensions contain scenarios, in which
the cross section for Higgs pair production differs largely from the SM prediction, while the
other observable properties of the Higgs boson are still fairly SM-like. The absence of a
discovery of new physical states during LHC Run 1 suggests that the scale of NP is well
separated from the EW scale. This encourages the description of NP within the framework of
the Effective Field Theory (EFT), in which the NP effects are parametrised by local higher-
dimensional operators of the SM fields and their derivatives. These EFT operators allow for a
rather model-independent description of BSM physics. In this project we have calculated the
NLO QCD corrections to Higgs pair production including dimension-6 operators in the heavy
quark limit and investigated the impact of these operators on the NLO QCD corrections of
the Higgs pair production cross section.
Prior to this project, the results of which were published in [48], the Higgs pair production
process was already studied in the EFT framework including approximate NLO QCD cor-
rections in [49]. The strategy to account for higher order corrections in this analysis was
to calculate the LO amplitude including dimension-6 EFT operators and to multiply the re-
sulting cross section with the overall K-factor, given by the ratio of the SM result for the
NLO QCD cross section divided by the LO cross section in the heavy top quark limit [15].
We investigate the validity of this approximation by including the dimension-6 contributions
directly at the NLO amplitude level in the heavy top quark limit. These two approaches
lead to different results, as the individual contributions to Higgs pair production are affected
differently by the NLO QCD corrections.

This thesis is organised as follows: Chapter 2 provides the theoretical basics by giving a brief
introduction to the SM in section 2.1, section 2.2 describes the general techniques used for
calculations of NLO QCD corrections and in section 2.3 the phenomenology of Higgs boson
pair production at the LHC is discussed.
Chapter 3 presents the details on the derivation of the NLO QCD corrections to Higgs pair
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production in gluon fusion with full top quark mass dependence. In section 3.1 the LO cross
section is recalculated with all contributions up to O(ε2) in the regulator ε explicitly kept
in the amplitude, as these are required for the NLO calculation. Section 3.2 gives a detailed
strategy for the technically involved calculation of the two-loop virtual amplitude and sec-
tion 3.3 briefly introduces the structure of the real corrections.
Chapter 4 reports on the calculation of the dimension-6 EFT contributions to Higgs pair
production at NLO. First the framework of EFT and the heavy top quark limit are intro-
duced in section 4.1 and section 4.2, respectively, before the actual calculation is presented
in section 4.3. The results of our analysis are summarised in section 4.4.
Chapter 5 serves as a brief conclusion of the results and gives an outlook on the next steps
of the main project of chapter 3.





CHAPTER 2

Theoretical Foundations

2.1. The Standard Model

The SM of particle physics is the result of an ambitious pursuit to explain all data gathered
by collider experiments in a coherent relativistic quantum field theory framework. Ever since
its formulation in the 1960’s it has provided the theoretical basis for the description of the
interactions between elementary particles. The following chapter presents a brief introduction
to the formulation of the SM as a renormalisable gauge theory.

2.1.1. The Standard Model Gauge Group

The Standard Model successfully combines all known elementary particles and three of the
four observed forces of nature into a spontaneously broken gauge theory. The Lagrangian
of this quantum field theory is symmetric under transformations of a non-abelian group
represented by the tensor product

SU(3)C⊗SU(2)L⊗U(1)Y . (2.1)

The SU(3)C is the symmetry group of the strong interaction between quarks and gluons, the
latter being the interaction mediators, and associated conservation of the colour charge. The
phenomenology of strongly interacting particles is described by quantum chromodynamics
(QCD) [50–53]. The EW gauge group SU(2)L⊗U(1)Y is associated with the conservation
of the weak isospin I and hypercharge1 Y and it describes the electromagnetic and weak
interactions unified within the Glashow-Weinberg-Salam theory [7, 8, 54]. All heretofore ob-
served elementary fermionic particles can be classified within the Standard Model into chiral
right-handed singlets and left-handed doublets according to their transformation behaviour
under the symmetry group eq. (2.1) as stated in table 2.1. Right-handed neutrinos, while
not forbidden by theoretical arguments, are not included in the Standard Model, as they
transform as singlets under the gauge group eq. (2.1) and therefore couple to none of the
force mediators.
In addition to the matter fields, one gauge field for every generator of the symmetry group

1In the process of electroweak symmetry breaking these quantities lead to the conservation of electric charge Q
given by the Gell-Mann-Nishijima formula: Q = I3+Y , where I3 is the third component of the weak isospin.
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Field SU(3) SU(2) U(1)

QiL (uL, dL)T (cL, sL)T (tL, bL)T 3 2 1/6

uiR uR cR tR 3 1 2/3

d iR dR sR bR 3 1 −1/3

L i
L (νe,L, eL)T (νµ,L, µL)T (ντ,L, τL)T 1 2 −1/2

l iR eR µR τR 1 1 −1

Table 2.1: Matter field content of the Standard Model with corresponding gauge quantum num-
bers. The fermionic quark and lepton fields Qi

L, L
i
L, u

i
R, d

i
R, l

i
r exist in three generations i = 1, 2, 3

distinguished solely by the mass of the particles.

has to be included in the theory. These are the 8 gluon fields Gaµ for the strongly interacting
sector and 4 fields W 1

µ , W
2
µ , W

3
µ , Bµ for the electroweak sector, so that the kinetic part of the

Lagrangian L for the fermions,

LF
kin = iψ /Dψ , with ψ = QiL, u

i
R, d

i
R, L

i
L, l

i
R and

Dµ = ∂µ−igs
ta
2
Gaµ−ig2

σk
2
W k
µ −ig1Y Bµ a ∈ {1, . . . 8}, k ∈ {1, 2, 3}

(2.2)

remains invariant under gauge transformations. These fields are the mediator fields of the
interactions and the parameters gi, i ∈ {s, 1, 2} the corresponding couplings. Gauge invariant
couplings between matter and mediator fields are generated dynamically from the kinetic
term, whereas self-interactions among the gauge fields result from the gauge-kinetic part of
L

LG
kin = −1

4

(
GaµνG

aµν+W a
µνW

aµν+BµνB
µν
)
. (2.3)

With the field strength tensors Gaµν , W
i
µν , and Bµν defined by,

Gaµν = ∂µG
a
ν−∂νGaµ−gs fabcGbµGcν , (2.4)

W i
µν = ∂µW

i
ν−∂νW i

µ−g2 εijkW
j
µW

k
ν , (2.5)

Bµν = ∂µBν−∂νBµ , (2.6)

where fabc (a, b, c ∈ {1, . . . , 8}) and εijk (i, j, k ∈ {1, 2, 3}) are the structure constants of the
SU(3) and SU(2), respectively.

2.1.2. The Higgs Mechanism

Complications arise when gauge theories are to contain massive gauge bosons, as the usual
Lorentz-invariant mass terms quadratic in the fields break gauge invariance. In the Standard
Model this problem is solved by the Higgs mechanism [1–6] by adding a complex isospin
doublet scalar field Φ = (φ+, φ0)T with hypercharge Y = 1/2. When the Higgs field potential
is constructed as

VHiggs = µ2Φ†Φ+
λ

2

∣∣Φ†Φ∣∣2 (2.7)

with µ2< 0 and λ > 0, it possesses a non-vanishing vacuum expectation value

〈Φ〉 = (0, v/
√

2)T , with v =
√
−2µ2/λ . (2.8)
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The vacuum expectation value v is related to the Fermi constant GF as v = (
√

2GF )−1/2 and
thereby experimentally determined to be v ' 246 GeV. The shift of the Higgs field ground
state in the kinetic part of the Higgs Lagrangian,

LH
kin = (DµΦ)† (DµΦ)

Φ→〈Φ〉−−−−→ v2

8

[
g2

2

(
W 1
µ+iW 2

µ

) (
W 1
µ−iW 2

µ

)
+
(
g2W

3
µ−g1Bµ

)2 ]
, (2.9)

yields mass terms for physical combinations of the gauge fields. These are the massless
neutral photon A0

µ, the massive neutral Z-boson Z0
µ and the charged W -bosons W±µ . With

the Weinberg angle θW defined by cos θW = g2/
√
g2

1+g2
2, these can be written in terms of the

gauge SU(2)L⊗U(1)Y fields as

W±µ =
1√
2

(
W 1
µ∓iW 2

µ

)
, with mW =

g2v

2
, (2.10)

Z0
µ = cos θWW

3
µ−sin θWBµ , with mZ =

v

2

√
g2

1+g2
2 , (2.11)

A0
µ = sin θWW

3
µ+cos θWBµ , with mA = 0. (2.12)

Gauge invariant fermion mass terms can also be included in the Lagrangian by introducing
the Yukawa couplings between the fermion fields and the Higgs doublet field2,

LF
mass = LF

y +h.c. , with

−LF
y = Y e

ij L
i
LΦ l jR+Y u

ij Q
i
LΦc u jR+Y d

ij Q
i
LΦ d jR

Φ→〈Φ〉−−−−→ v√
2

(
Y e
ij l

i
Ll

j
R+Y u

ij u
i
Lu

j
R+Y d

ij d
i
Ld

j
R

) (2.13)

where the Yukawa matrices Y e, Y u, Y d are diagonal in the unitary gauge and fermion masses
are proportional to the corresponding diagonal element. Yukawa couplings for the neutrino
fields are not included in LF

y as in the usual formulation of the SM neutrinos are considered to
be massless and the right-handed neutrino fields are singlets of the SM gauge group eq. (2.1).
This brief introduction of the SM can therefore be summarised using eq. (2.2)-(2.13) by
recapitulating the SM Lagrangian, apart from gauge fixing and ghost contributions of the
strong sector, as

LSM = LF
kin+LG

kin+LH
kin+LF

mass−VHiggs . (2.14)

2.2. Next-to-Leading Order Corrections

2.2.1. Hadronic Cross Sections

According to the factorisation theorem [55], high energy collisions of hadrons can be described
by interactions of individual constituents of the hadronic bound states called partons. The-
oretical perturbative predictions for cross sections measured at hadron collider experiments
are calculated within this parton model as a scattering of quarks and gluons, which carry a
fraction xi of the hadron momenta Pi. Since the subject of this thesis is the calculation of
the NLO corrections for the hadronic cross section of Higgs boson pair production in gluon
fusion, let us discuss the general features of hadronic NLO calculations on this example. At
LO of the perturbative expansion in the strong coupling αs = g2

s/(4π), the hadronic cross
section of this subprocess is given by

σ(pp→ gg → hh) =

∫ 1

0
dx1

∫ 1

0
dx2 fg(x1, µF ) fg(x2, µF ) σ̂(g(p1) g(p2)→ hh) , (2.15)

2Φc denotes the charge conjugated Higgs doublet field given as Φc = iσ2 Φ∗ = ((v+h∗(x))/
√

2, 0)T in the unitary
gauge.
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where µF denotes the factorisation scale and σ̂(g(p1) g(p2) → hh) is the partonic LO cross
section of Higgs boson pair production in the collision of two gluons g which carry fractions
of the proton momenta pi = xiPi (i ∈ 1, 2). The SM Lagrangian eq. (2.14) does not contain
direct couplings of gluons and Higgs fields, as the gluons are massless. This means that in the
Feynman diagrammatic approach [56] the gluon fusion process is mediated by quark loops
already at LO [45,57] and the LO cross section is of O(α2

s ).
The process-independent parton distribution functions (PDFs) fg(xi, µF ) are non-perturbative
quantities which are determined by fits to experimental data obtained in deep inelastic scat-
tering experiments. They can be interpreted as the probability densities for finding a gluon
with momentum fraction xi in the proton. Since the collisions at the LHC occur in the centre-
of-mass frame of the protons with the hadronic centre-of-mass energy

√
s and the production

cross section is non-zero only for partonic energies
√
ŝ above the Higgs pair production thresh-

old given by the Higgs boson mass mh as ŝ > 4m2
h, the PDF integrations can be rewritten

in terms of the fraction τ = ŝ/s of the squared hadronic and partonic centre-of-mass energies
and the gluon luminosity dLgg/dτ as,

σ(pp→ gg → hh) =

∫ 1

τ0

dτ
dLgg
dτ

σ̂(ŝ = τs) , with τ0 = 4m2
h/s and

dLgg
dτ

=

∫ 1

τ

dx

x
fg(x, µF ) fg(τ/x, µF ) .

(2.16)

The calculation of NLO corrections requires the computation of all O(α3
s ) contributions to

the hadronic cross section. These can be expressed as,

∆σNLO = ∆σvirt+∆σgg+∆σqg+∆σqq̄ , (2.17)

where the virtual corrections ∆σvirt are proportional to the interference term of the LO
amplitude with the two-loop amplitude, which involves the exchange of a virtual gluon, and
the real corrections ∆σij are proportional to the matrix element squared of the corrections to
the LO process with an additional massless parton in the final state. The additional final state
parton can be a gluon emitted off the quark loop, or due to an initial state splitting, which
gives rise to additional contributions to the gluon fusion process at NLO with quark-gluon
(∆σqg) and quark-antiquark (∆σqq̄) initial states. The reason why real corrections need to
be included to the process will be explained in section 2.2.4.

2.2.2. Regularisation of Divergences

A consequence of the perturbative description in quantum field theories is the appearance
of divergences in higher order calculations. In virtual corrections these divergences originate
from the enclosed propagator loops of the Feynman diagrams. Even when momentum con-
servation at each vertex of the amplitude is utilised, the momentum kµ of one propagator
within the loop can always acquire an arbitrary value. In the spirit of quantum field theory,
all possible values of this indeterminate momentum contribute to the amplitude, which is
mathematically expressed by an indefinite integration over the loop momentum. The mo-
mentum integration can lead to UV and IR divergences of the amplitude. UV singularities
occur in the limit |kµ| → ∞ and IR singularities are present when a massless loop propagator
connecting external particles has vanishing momentum, or when the momenta of two mass-
less loop propagators attached to an external massless particle are collinear to the external
particles momentum – these momentum constellations correspond to the soft and collinear
limits [58,59].
In order to perform numerical NLO calculations, the UV and IR divergences of the ampli-
tudes need to be isolated and cancelled in an unambiguous way. The first step is achieved by
defining a regularisation scheme. A regularisation method suitable for SM calculations which
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preserves gauge and Lorentz invariance called dimensional regularisation was introduced by
’t Hooft and Veltman [60]. Both UV and IR divergences are isolated by calculating ampli-
tudes as analytic functions of the space-time dimensionality D = 4−2ε. Mathematically this
corresponds to the replacement of the loop momentum integration as,∫

d4k

(2π)4
→ µ4−D

∫
dDk

(2π)D
, (2.18)

where µ denotes the arbitrary ’t Hooft scale, which is introduced in order to preserve the
dimensionality of the amplitude. For one-loop amplitudes the isolation of the UV and IR
divergences is achieved in a straightforward way by reducing the loop momentum integrals to
a set of scalar one-loop master integrals according to the Passarino-Veltman reduction [61].
The UV and IR divergences manifest as ε−1 and ε−2 poles in the physical limit ε → 0
with intgrable coefficients and the remaining finite parts parts of the loop integrals can be
evaluated. This calculational strategy is used in section 3.1.3 in order to obtain the LO
amplitude3. The calculation of the NLO amplitude is more involved, since arbitrary two-loop
amplitudes cannot be reduced to a finite set of master integrals. The isolation of the UV and
IR poles and the numerical calculational strategy will be presented in detail in section 3.2.1.

2.2.3. Renormalisation and Counterterms

Once the UV and IR poles have been isolated, they still need to be cancelled in order to
obtain non-divergent results. For the UV divergences this is achieved through renormalisation.
This procedure is based on the interpretation of the fields, couplings and masses in the
SM Lagrangian eq. (2.14) as bare parameters which develop divergences in higher order
calculations and need to be expressed in terms of the corresponding physical parameters
and divergent renormalisation constants. For the calculation of the NLO QCD corrections
to Higgs boson pair production, the bare parameters involved in the LO amplitude are the
strong coupling constant αs,0 and the top quark mass mt,0. These need to be replaced by the
physical parameters αs and mt and the counterterms δαs and δmt connected via,

αs,0 = αs+δαs , (2.19)

mt,0 = mt+δmt . (2.20)

The counterterms δαs and δmt are determined solely by the requirement that the counterterm
exactly cancels the divergent behaviour of the bare parameter. They can also contain a finite
part, which is determined by the renormalisation condition. The choice of renormalisation
conditions does not effect the results of physical observables calculated to all orders of per-
turbation theory, however the truncation of the perturbative expansion at a finite order leads
to a dependence of the result on the renormalisation conditions. The two most frequently
used renormalisation conditions are the on-shell and MS conditions.

The MS scheme is defined by the modified minimal subtraction condition according to which
the counterterm absorbs only the UV pole and a universal constant. This renormalisation
condition is usually applied for parameters which are not directly accessible in experiments.
The strong coupling is a parameter which is commonly renormalised in the MS scheme and
the NLO counterterm δαMS

s is given by

δαMS
s =

α2
s

4π
β0(−∆+log

µ2
R

µ2
) , (2.21)

3Even though the gluon fusion process is loop induced already at LO, the amplitude is UV and IR finite.
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where µ is the ’t Hooft scale, µR the renormalisation scale and the modified minimal subtrac-
tion scheme pole ∆ = ε−1−γE+log 4π includes universal finite contributions of log 4π and
the Euler-Mascheroni constant γE . The one-loop coefficient of the β-function reads

β0 =

[
11−2

3
NF

]
−2

3
, (2.22)

where the term in the bracket in eq. (2.22) contains the contribution of the gluon and of
the NF = 5 light quark flavours to the running of αs, and the last term gives the additional
contribution of the heavy top quark. As can be inferred from eqs. (2.21) and (2.22), the µR
dependence of the strong coupling constant in the MS scheme is given by both the light and
the heavy quark flavours, but it only depends on the number of the particles and not their
mass. Thus, the heavy top quark does not decouple automatically, which may lead to large
logarithms, if the scale of the process and the top quark mass are widely separated. These
large logarithms can be avoided by explicitly decoupling the top quark from the running of
αMS

s [62–64]. At NLO this is achieved by the replacement,

α(5)MS
s (µR) = αMS

s (µR)

[
1+

αMS
s (µR)

4π

2

3
log

m2
t

µ2
R

]
, (2.23)

which can be introduced into the calculation by modifying the counterterm δαMS
s as,

δαMS
s → δα(5),MS

s = δαMS
s −

α
(5)MS
s

4π

2

3
log

m2
t

µ2
R

. (2.24)

With this replacement, the evolution of the strong coupling is correctly described by the light
contributions,

∂α2
s (µ2

R)

∂ logµ2
R

= −α
2
s (µ2

R)

4π

[
β0+

2

3

]
(2.25)

so that only the gluon and the five light quark flavours contribute to the running of αs.

In contrast to the MS scheme, the counterterms of the on-shell scheme contain more involved
finite parts. These are defined in such a way that the counterterm not only cancels the
divergent behaviour but also any finite shifts which the bare parameter acquires in higher
orders, so that the physical parameter retains the same numerical value in higher orders. For
the top mass counterterm δmt the on-shell renormalisation condition requires the real part of
the pole of the renormalised top quark propagator to be located at k2 = m2

t . The counterterm
is obtained from the renormalised one-particle-irreducible two-point function Γ̂t(k) of the top
quark field, which can be expressed in terms of scalar form factors Σ̂V

t (k2) and Σ̂S
t(k

2) defined
according to the conventions4 of [65],

Γ̂t(k) = i(/k−mt)+i

[
/k Σ̂V

t (k2)+mt Σ̂S
t(k

2)

]
. (2.26)

The on-shell renormalisation condition can be expressed as,

Re
[
Γ̂t(k)u(k)

]
k2=m2

t
= 0 ⇒ Re

[
Σ̂V
t (m2

t )+Σ̂S
t(m

2
t )
]

= 0 , (2.27)

where u(k) is the top quark spinor. The top mass counterterm is thus given in terms of
the components of the unrenormalised one-particle-irreducible two-point function of the top
quark field,

δmt = mt Re
[
ΣV
t (m2

t )+ΣS
t(m

2
t )
]
. (2.28)

4The calculation is in this case even simpler, as, unlike for the EW corrections, no flavour mixing is induced by
the QCD NLO corrections.
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2.2.4. Cancellation of Infrared Singularities

The inclusion of the counterterms to the NLO amplitude of the process renders the virtual
corrections UV finite, however they still contain IR divergences. These divergences are re-
solved by a reinterpretation of the process itself. According to the Kinoshita-Lee-Nauenberg
theorem [58, 59], IR divergences do not occur in sufficiently inclusive observables due to a
cancellation between the IR poles of the virtual corrections ∆σvirt and the real emission con-
tributions ∆σij . The formulation “sufficiently inclusive” refers to the existence of a finite
cutoff of the energy and angular resolution of any physical measurement, which implies that
signal events are indistinguishable from events with additional soft and/or collinear particles
in the final state and thus the calculation of a sufficiently inclusive observables must take both
contributions into account. While the sum of the separately IR divergent real and virtual
corrections is finite for any process, the numerical evaluation is technically involved, as the
IR cancellation takes place between terms which are integrated over the D dimensional phase
space dPS with different final-state multiplicities,

σNLO︸ ︷︷ ︸
IR finite

=

∫
dPSn dσLO+dσvirt︸ ︷︷ ︸

IR divergent

+

∫
dPSndPS1 [dσgg+dσqg+dσqq̄]︸ ︷︷ ︸

IR divergent

. (2.29)

A solution to this issue is provided by subtraction techniques such as the Catani-Seymour- [66–
68], FKS- [69] or antenna-subtraction [70,71]. The subtraction techniques define an auxiliary
cross section σA, which has the same pointwise IR singular behaviour as the real corrections
and can be integrated analytically over the 1-particle phase space of the additional real
emission. Subtracting σA in the real corrections and readding the integrated form

∫
dPSσA

in the virtual corrections renders both contributions separately IR finite,

σNLO︸ ︷︷ ︸
IR finite

=

∫
dPSn

[
dσLO+dσvirt+

∫
dPS1 dσA

]
︸ ︷︷ ︸

IR finite

+

∫
dPSndPS1 [dσgg+dσqg+dσqq̄−dσA]︸ ︷︷ ︸

IR finite

.

(2.30)

Due to the factorisation of QCD, the auxiliary cross section σA can be unambiguously con-
structed from the LO cross section and process independent dipole operators.

The cancellation of the IR singularities in this project follows a similar strategy as the sub-
traction techniques, but is performed in a more process specific way based on the knowledge
of the NLO corrections to Higgs boson pair production in the heavy quark mass limit [15].
While this process specific subtraction technique yields IR finite expressions for the vir-
tual corrections already on the amplitude level, the real corrections still contain initial state
collinear divergences, which are cancelled by PDF renormalisation. The cancellation of the
IR divergences will be discussed in detail in section 3.3.

2.3. Higgs Boson Phenomenology at the LHC

2.3.1. The Higgs Boson discovery

With the discovery of the Higgs boson [1–6] by the LHC experiments ATLAS [10] and CMS
[11] in 2012, the last free parameter of the SM, the Higgs boson mass, has been pinned down
to the value [72]

mh = 125.09±0.24 GeV . (2.31)
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Figure 2.1: Combined results of the ATLAS and CMS experiments for LHC Run 1. Left: Higgs boson
mass determination. [72] Right: Best fits for the signal of Higgs boson production in gluon fusion with
subsequent decay into a Z boson pair and ratios of the production cross sections and branching ratios
in comparison with the SM prediction. [12]

By determining the Higgs boson mass, all its properties, such as the production cross section
and partial decay widths in the individual channels, can be uniquely predicted by theory and
compared with experimental findings, ushering in a new era of LHC phenomenology. The
role of the Higgs boson has thus developed from the long-sought missing piece of the SM to a
tool for probing the validity of the SM as the complete theory of elementary particle physics
on the TeV scale.
During LHC Run 1 both experiments recorded datasets each corresponding to approximately
5 fb−1 at

√
s = 7 TeV and 20 fb−1 at

√
s = 8 TeV centre-of-mass energy which were recently

used for elaborate combined data analyses. For the determination of the Higgs boson mass
the combined analysis [72] is based on the data obtained in the H → γγ and H → ZZ → 4l
channels, yielding results which are remarkably complementary for the individual channels
and experiments, as shown in the left summary plot of fig. 2.1. The results of the detailed
analysis for the Higgs boson production and decay rates performed in [12] are exemplary
shown in the right plot of fig. 2.1. The best fit values for the production cross sections in
vector boson fusion (σVBF), and in associated production with vector bosons (σWH , σZH)
or top quark pairs (σttH) normalised to the gluon fusion cross section (σggH), as well as the
branching ratios of the Higgs boson decays into W bosons (BRWW ), photons (BRγγ), tau
leptons (BRττ ) and bottom quarks (BRbb) normalised to the branching ratio of the decay into
Z bosons (BRZZ) are compared to the corresponding SM values, yielding results consistent
with the SM predictions. The experimental data also strongly favours the newly found boson
to carry zero spin and positive CP parity [13, 14]. This favours the SM hypothesis, even
though there is still room left for more exotic interpretations.

2.3.2. Higgs Boson Pair Production

Even though the so far gathered data supports the interpretation of the newly found bosonic
particle as the SM Higgs boson, the final proof of this assumption requires comprehensive
studies of the particles properties. In addition to the gauge boson and fermion couplings, the
Higgs boson self-interactions also need to be examined, which are accessible in multi-Higgs
production processes [15–18]. The Higgs boson self-couplings follow from the SM Lagrangian
by rewriting the Higgs potential eq. (2.7) in terms of the physical Higgs field in the unitary
gauge

Φ(x) =
1√
2

(
0

v+h(x)

)
⇒ VHiggs = −m

2
hv

2

8
+
m2
h

2
h(x)2+

λhhh
3!

h(x)3+
λ4h

4!
h(x)4 ,

with m2
h = −2µ2 , λhhh = 3m2

h/v and λ4h = 3m2
h/v

2 .

(2.32)
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(a) (b) (c) (d) (e)

Figure 2.2: Sample diagrams for the Higgs boson pair production in gluon fusion which are sensitive
(a) and non-sensitive (b) to the trilinear Higgs self-coupling. For the vector boson fusion (c), associated
production with top quarks (d) and Higgs radiation (e) only the sensitive diagrams are shown.

The determination of the trilinear and quartic couplings λhhh and λ4h allows to probe the
shape of the Higgs potential with a non-vanishing vacuum expectation value, which is required
by the Higgs mechanism. While the measurement of the quartic Higgs coupling seems to be
out of reach of current and planned collider experiments as it suffers from low production rates
and large backgrounds [16, 18–23], the determination of the trilinear coupling is challenging,
yet more promising [24–44] and presents an important first step towards the reconstruction
of the Higgs potential.
The main production channels for Higgs pairs at the LHC are similar to the single Higgs
production. Sample LO Feynman diagrams for the production in gluon fusion [45,46,73,74],
vector boson fusion [73,75–79] and associated production with top quarks [80,81] and in Higgs
radiation [30,73,82] are shown in fig. 2.2 (a), (c), (d) and (e) respectively. The diagrams giving
access to the trilinear Higgs self-coupling involve the production of a single off-shell Higgs
boson decaying into a pair of real Higgs bosons. However, all production mechanisms also
contain diagrams in which the Higgs bosons are produced separately, as shown for the gluon
fusion production in fig. 2.2 (b). These pose an irreducible background for the determination
of the trilinear Higgs self-coupling. In comparison to single Higgs production, the processes
have much lower production cross sections due to being of higher order in the electroweak
coupling and due to phase space suppression because of the additional heavy particle in the
final state. The cross sections for the Higgs pair production processes and the prospects for the
determination of the trilinear Higgs self-coupling in hadron collisions have been investigated in
many analyses throughout the years [15,17,18,24–44], yielding predictions for the production
cross sections in the main channels including higher order corrections, which were summarised
in [83] and are shown in fig. 2.3 left. The hierarchy of the cross sections is similar to single
Higgs production, with the main channel being gluon fusion and the other production channels
suppressed by factors of 10−30.

2.3.3. Measurement Prospects

The cross sections for Higgs boson pair production are approximately three orders of mag-
nitude smaller compared to the single Higgs production. Furthermore, the SM Higgs boson
with mh = 125 GeV decays predominantly into bottom quark pairs, as can be inferred from
fig. 2.3 right, which is a final state plagued by the large QCD background in proton colli-
sions, making the signal extraction a demanding task. A solution to this issue was proposed
in [24–27] by considering the rare decay channels bb̄γγ and bb̄τ τ̄ , which pose a compromise
between the requirements of statistics and significance.
An updated analysis of the bb̄ττ channel presented in [30] for the proposed high-luminosity
upgrade of the LHC with an integrated luminosity of

∫
L = 3 ab−1 yielded a significance of

S/
√
B = 9.36 with 330 signal events after cuts. A major improvement of the sensitivity in this

channel is given by making use of jet substructure analysis [85]. This technique was applied
in [28] and found to improve the signal-to-background ratio significantly, yielding values of
S/B ' 0.5 with 95 signal events, which corresponds to a significance of S/

√
B = 6.89, already
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Figure 2.3: Left: Total hadronic cross section for the production of pairs of Higgs bosons with
mh = 125 GeV in the main production channels [83](updated version). Right: Branching ratios and
their uncertainties for the SM Higgs boson decays in the low Higgs mass range [84].

for an integrated luminosity of 1 ab−1. The addition of a jet to the final state was analysed
in [33] and found to further improve the signal-to-background ratio up to S/B = 1.5. A
combination of these techniques together with further feasible improvements can allow for a
60% accuracy on the determination of the trilinear Higgs coupling in the bb̄ττ channel with
3 ab−1 [33].
The bb̄γγ channel produces a small yet pure signal, which was also analysed in [30], yielding
a significance of S/

√
B = 6.46 with 47 signal events at 3 ab−1 after detector level cuts due

to diphoton fake rate simulation being taken into account. The authors of [35] have shown
that the results of this channel can further be improved by a multivariate analysis, which
increases the significance and could allow for a 40% uncertainty determination of the triple
Higgs coupling with

∫
L = 3 ab−1.

The ongoing development of analysis techniques can lead to further improvements of the
measurement prospects. The bb̄WW channel was long considered less promising due to the
large tt̄ background, however by making use of multivariate and jet substructure techniques,
the analysis performed in [29] yields a significance of S/

√
S+B = 2.4 with 9 signal events

already at 0.6 ab−1. Similarly, the background plagued bb̄bb̄ channel has been reanalysed
in [36] using jet substructure and side-band techniques and was found to have the potential
to constrain the trilinear coupling to λ < 1.2×λSM at 95% confidence level. This indicates
that the measurement of the Higgs pair production process is a challenging long-term goal
of the LHC project requiring precise theoretical predictions for the inclusive cross section as
well as differential distributions.

2.3.4. Gluon Fusion Beyond Leading Order

The gluon fusion is the dominant production mechanism for Higgs boson pairs. As gluons do
not directly couple to Higgs bosons, the process is already at LO mediated by quark loops
with the typical LO contributions depicted in fig. 2.2 (a) and (b). The Yukawa couplings
between quarks and Higgs bosons are proportional to the quark mass, which is why the main
contributions to the production cross section originate from top quark loops and the remain-
ing light quark flavours, including the bottom quark, contribute with less than 1% [15, 30].
The LO cross section was first calculated in [45] and revisited in [46]. For a long time the
knowledge of higher order QCD corrections was limited to the NLO corrections in the heavy
quark mass limit [15], in which the quark loops are reduced to effective contact interactions
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of the gluons with the Higgs fields, thereby reducing the NLO amplitude to a one-loop calcu-
lation. Similarly to single Higgs production, the NLO corrections for Higgs pair production
obtained in this approximation are large, yielding K-factors5 of the order of 2. New interest
in the theoretical community for the higher order corrections was triggered by the discovery
of the Higgs boson. The next-to-next-to-leading order (NNLO) corrections were obtained
in the heavy quark mass limit in [86–88]. These corrections increase the production cross
section for SM Higgs pairs at the LHC by additional 20% atop of the NLO calculation and
further reduce the scale uncertainty due to the variation of the renormalisation scale µR and
the factorisation scale µF . Threshold resummation in the soft-collinear effective theory of
soft gluons in the initial state were calculated in [89] at next-to-leading logarithmic level and
further extended to the next-to-next-to-leading logarithmic order by [90] within the conven-
tional QCD approach.
All the previously presented higher order calculations rely on the LO-improved heavy quark
mass limit, in which the higher order corrections are calculated in the mt → ∞ limit and
the top quark mass dependence is kept explicitly in the LO form factors. This improves the
estimates for the inclusive K-factor due to the fact that the LO cross section can be factored
out of the soft and collinear corrections, which provide the dominant higher order contribu-
tions. The validity of the LO-improved heavy quark mass limit was investigated in [88,91,92]
by calculating additional terms in the inverse top mass expansion of the higher order cor-
rections, estimating the finite quark mass effects to be of the order of 10% at NLO and 5%
at NNLO. While this analysis suggests that the calculation of the NLO corrections with full
mass dependence can reduce the uncertainties of the inclusive K-factor by O(10%), the cal-
culation is expected to have a much larger effect in differential distributions. This assumption
is based on a corresponding LO analysis [25], in which the heavy quark mass approximation
leads to uncertainties of order 20% on the inclusive cross section at centre-of-mass energy√
s = 14 TeV, but completely fails to reproduce correct differential distributions. Since pre-

cise predictions for differential distributions are essential to improve the signal-to-background
ratios, the calculation of the finite NLO mass effects is crucial for the determination of the
trilinear Higgs self-coupling at the LHC.
First steps towards the fully differential NLO calculation were already presented in [44, 81]
by calculating the real NLO corrections with full top mass dependence. The main project
of this thesis was the calculation of the virtual NLO corrections, which were the missing
piece of the NLO calculation with full top mass dependence. While all the major aspects of
this challenging calculation have already been addressed as will be described in chapter 3,
the final results are still in preparation. In the recently published work of [93] the authors
have managed to perform the calculation aimed by this project within the GoSam [94] and
SecDec [95] framework. This gives the opportunity for a completely independent cross check
of the results obtained by both collaborations, which is beneficial for future analyses based
on this involved calculation.

5The K-factor is defined as the ratio of the NLO and LO cross section, K = σNLO/σLO with αs and PDF effects
taken at consistent orders.





CHAPTER 3

NLO Corrections with Full Mass Dependence

The dominant NLO contributions to Higgs boson pair production in gluon fusion are the
QCD corrections. In the limit of large quark masses, these corrections are known to increase
the production cross section for pairs of Standard Model Higgs bosons at the LHC by ap-
proximately 80% [15]. However, while the heavy quark mass limit provides reliable results
for single Higgs boson production, the uncertainties of this approximation are larger in Higgs
pair production. At LO, the heavy quark mass result differs from the calculation with full
quark mass dependence by 20% [45,46] and it fails to produce correct kinematic distributions
required by experiment [25,47].
Improving these results, by taking into account the full quark mass dependence, increases the
complexity of the NLO calculation significantly, since the LO process is already loop induced
as shown in fig. 3.1 (1a, b). In addition to the diagrams involving the trilinear Higgs coupling
shown in the first line of fig. 3.1, each of the subprocesses also receives contributions from the
continuum pair production depicted in the second line of fig. 3.1, which are the most challeng-
ing diagrams of the calculation. The NLO amplitude involves virtual two-loop diagrams of
the two-to-two process, such as the diagrams in fig. 3.1 (2a, b), and real corrections, which are
one-loop diagrams with an additional massless parton in the final state. The real corrections
can be classified according to their initial state partons into the gg channel, fig. 3.1 (3a, b)
and (4a, b), the qg channel, fig. 3.1 (5a, b), and the qq̄ channel of fig. 3.1 (6a, b).

(1a) (2a) (3a) (4a) (5a) (6a)

(1b) (2b) (3b) (4b) (5b) (6b)

Figure 3.1: Sample diagrams contributing to Higgs boson pair production at LO and NLO.



18 3. NLO Corrections with Full Mass Dependence

qµ,a
1

qν,b2 q4

q3 qµ,a
1

qν,b2 q4

q3 qµ,a
1

qν,b2 q4

q3 qµ,a
1

qν,b2 q4

q3

Figure 3.2: Feynman diagrams contributing to Higgs boson pair production in gluon fusion at leading
order. Not shown are additional four diagrams with opposite fermion flow.

A common feature of NLO QCD amplitudes is the presence of infrared (IR) and ultravi-
olet (UV) singularities, which need to be regularised before numerical calculations can be
performed. Within the framework of dimensional regularisation [60], the singularities are
isolated by calculating amplitudes as analytic functions of the dimensionality of space-time,
D = 4−2ε. In the physical limit D → 4, the singularities manifest as ε−1 and ε−2 poles. The
UV singularities of the virtual diagrams are cancelled through renormalisation of the physical
parameters, specifically the strong coupling αs and the top quark mass mt. While the gluon
fusion process also receives contributions from the other flavours running within the quark
loop, due to the smallness of the corresponding Yukawa couplings, these contribute with less
than 1% and can thus be neglected [15,30]. Both the real and virtual corrections contain IR
singularities, which cancel exactly according to the Kinoshita-Lee-Nauenberg theorem [58,59].
Remaining initial state singularities are absorbed into the NLO parton densities, leading to
a finite hadronic NLO cross section of the form,

σNLO = σLO+∆σvirt+∆σgg+∆σqg+∆σqq̄ . (3.1)

The LO cross section σLO and the real corrections ∆σgg, ∆σqg, ∆σqq̄ are obtained from the
matrix element squared of the contributing diagrams, while the virtual corrections ∆σvirt

consist of the interference between the LO matrix element with the matrix element of the
two-loop diagrams. The calculation of these contributions is presented in this chapter.

3.1. Leading Order Calculation

The LO matrix element, MLO, for Higgs boson pair production was first calculated almost
thirty years ago in [45]. However, in order to consistently determine the NLO corrections, the
LO amplitude has to be recalculated including terms up to O

(
ε2
)

in the regulator. This is
required, because the virtual corrections ∆σvirt in eq. (3.1) are proportional to the interference
term of the LO matrix element with the two-loop matrix element Mvirt. The quadratically
divergent parts of Mvirt thus produce finite contributions to the virtual corrections when
multiplied with the O

(
ε2
)

part of MLO.

3.1.1. Process Definitions

For the derivation of MLO we follow the calculation strategy of [45,46] and point out where
differences arise due to retaining all terms of up to O

(
ε2
)
. Due to their distinct topologies,

the contributions originating from the first diagram of fig. 3.2 are referred to as triangle
contributions, while the latter three diagrams give rise to the box contributions. The matrix
element for the gluon polarisations εµ, εν yields,

Mab
LO = 2Fc (−1) i

(2πµ)4−D

16π2

∫
dDq

iπ2

[
Mµν

∆ +Mµν
�

]
εµ(q1) εν(q2) , (3.2)
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Figure 3.3: Feynman rules of the couplings λi and the propagators ∆i required for the calculation
with the gluon propagator defined in the Feynman gauge.

where the symmetry factor 2 is due to the not depicted diagrams with reversed fermion flow,
the factor Fc = 1

2δab originates from the color structure with the color indices a, b ∈ {1, . . . , 8}
and µ is an arbitrary renormalisation scale required to keep the dimensionality of the matrix
element fixed. The integrands of the loop momentum q integral Mµν

∆ and Mµν
� with the

external momenta qi assigned according to fig. 3.2 read explicitly,

Mµν
∆ = λhtt ∆h(q1+q2)λhhh Tr

[
∆t(q)λ

µ
gtt ∆t(q+q1)λνgtt ∆t(q+q1+q2)

]
, (3.3)

Mµν
� = Tr

[
∆t(q)λ

µ
gtt ∆t(q+q1)λνgtt ∆t(q+q1+q2)λhtt ∆t(q−q3)λhtt

]
+Tr

[
∆t(q)λ

µ
gtt ∆t(q+q1)λνgtt ∆t(q+q1+q2)λhtt ∆t(q+q1+q2+q3)λhtt

]
+Tr

[
∆t(q)λ

µ
gtt ∆t(q+q1)λhtt ∆t(q+q1+q3)λνgtt ∆t(q+q1+q2+q3)λhtt

]
,

(3.4)

with the Feynman rules for the couplings λi and for the propagators ∆i summarised in
fig. 3.3, where mh and mt are the Higgs boson and top quark mass, respectively, v is the
vacuum expectation value of the Higgs doublet field, gs is connected to the strong coupling
constant αs = g2

s/(4π) and ta are the Gell-Mann matrices. The external momenta are all
defined as incoming, so that the Mandelstam variables of the partonic process are,

ŝ = (q1+q2)2 = (q3+q4)2 ,

t̂ = (q1+q3)2 = (q2+q4)2 ,

û = (q2+q3)2 = (q1+q4)2 .

(3.5)

For future reference, we also define the variables ρi, which are particularly convenient for this
process,

ρ1 ≡ ρs =
2 q1·q2

m2
t

, ρ2 ≡ ρt =
2 q1·q3

m2
t

,

ρ3 ≡ ρu =
2 q2·q3

m2
t

, ρ4 ≡ ρh =
q3·q3

m2
t

.

(3.6)

3.1.2. Lorentz Structure Projectors

The matrix element of a process involving two massless vector bosons and two massive scalars
can be expressed in terms of two process independent Lorentz tensors Tµνi weighted with
Lorentz- and gauge-invariant form factors. The Lorenz tensors Tµνi follow from the most
general structure of the matrix element given as M = Tµν εµ(q1) εν(q2), with

Tµν = f00 g
µν+

3∑
i,j=1

fij q
µ
i q

ν
j . (3.7)

The coefficients f00, fij can be set into relation by applying the on-shell properties and the
Ward identities for the gluons

qµ1 εµ(q1) = qν2 εν(q2) = 0 , (3.8)

qµ1 Tµν = qν2 Tµν = 0 , (3.9)
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yielding only two linear independent coefficients. The basis of these coefficients can be chosen
such that the corresponding Lorentz tensors,

Tµν1 = gµν− q
µ
2 q

ν
1

q1·q2
,

Tµν2 = gµν+
(q3·q3)qµ2 q

ν
1−2(q2·q3)qµ3 q

ν
1−2(q1·q3)qµ2 q

ν
3 +2(q1·q2)qµ3 q

ν
3

(q1·q2)p2
T

, with

p2
T = 2

(q2·q3)(q1·q3)

q1·q2
−q3·q3

(3.10)

are orthogonal in four dimensions. However, in D = 4−2ε we find,

Tµν1 ·T1,µν = Tµν2 ·T2,µν = (D−2) , Tµν1 ·T2,µν = (D−4), (3.11)

which means that new projectors Pµνi need to be redefined in order to extract the form factors
for eq. (3.2) in D dimensions. With the Ansatz Pµνi = aiT

µν
1 +biT

µν
2 and the defining property

Pµνi ·Tj,µν = δij , i, j ∈ 1, 2 , (3.12)

the projectors follow as,

Pµν1 =
(D−2)Tµν1 −(D−4)Tµν2

4(D−3)
,

Pµν2 =
(D−2)Tµν2 −(D−4)Tµν1

4(D−3)
.

(3.13)

As this form factor decomposition is independent of the internal structure of the process, it
can also be applied to the two-loop matrix element of the virtual corrections discussed in
section 3.2.
Using these definitions, the matrix element Mab

LO of eq. (3.2) can be rewritten as,

Mab
LO =

αs

π
[(A∆+A1)Tµν1 +A2T

µν
2 ] δab εµ(q1) εν(q2) , (3.14)

with the scalar form factors A∆, A1 and A2 given by

αs

π
A∆ = (−1) i

(2πµ)4−D

16π2

∫
dDq

iπ2
Mµν

∆ ·P1,µν , (3.15)

αs

π
A1 = (−1) i

(2πµ)4−D

16π2

∫
dDq

iπ2
Mµν
� ·P1,µν , (3.16)

αs

π
A2 = (−1) i

(2πµ)4−D

16π2

∫
dDq

iπ2
Mµν
� ·P2,µν . (3.17)

Due to the definition of the projectors Pµνi in D dimensions, the second form factor of the
triangle contributions vanishes exactly, as Mµν

∆ ·P2,µν = 0 similarly to the four dimensional
LO calculation. The explicit expressions for the triangle and box form factors are derived in
the following subsection.

3.1.3. Leading Order Form Factors

The triangle form factor A∆ involves three-point one-loop functions with up to the power
two of the loop momentum q in the numerator, which in the notation of [65] are defined as,

C{0,µ,µν}(p1, p2) = (2πµ)4−D
∫

dDq

iπ2

{1, qµ, qµqν}
[q2−m2

t ][(q+p1)2−m2
t ][(q+p2)2−m2

t ]
. (3.18)
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The coefficients of the rank 1 and 2 tensor one-loop functions Cµ and Cµν first have to be
reduced to scalar one-loop integrals B0 and C0 by using reduction properties of one-loop
integrals [61]. This is done according to the formulae summarised in appendix A.1.1, which
were derived from [96] with modifications to retain the full dimensional dependence and
simplifications for the special case of equal masses in the loop propagators. The form factor
eventually reads,

A∆ = −λhhhλhttmt

2(ŝ−m2
h)

[
2ε(1+ε)B0(q1+q2)+

(
4(1+ε+ε2)m2

t−ŝ
)
C0(q1, q1+q2)

]
(3.19)

which agrees with the results of [45,46] in the limit ε→ 0.

The form factor contributions of the box diagrams are more involved due to the additional
fermion propagator. Formally, we encounter four-point tensor integrals of up to rank four.
While the reduction procedure of [96] can also be implemented for these integrals, it is compu-
tationally much simpler to first reduce the four-point tensor integrals to three-point integrals.
This can be achieved by expanding the numerators according to,

q·pi =
1

2

{
[(q+pi)

2−m2
t ]−[q2−m2

t ]−p2
i

}
, (3.20)

q2 = [q2−m2
t ]+m

2
t , (3.21)

so that the terms of the numerator cancel against appropriate factors in the denominator.
All structures occurring in the box form factors A1 and A2 can be reduced to scalar two-,
three- and four-point one-loop integrals B0, C0, D0 by the identities listed in appendix A.1.2,
yielding,

A1 =
λ2
htt

4(m4
h−t̂û)

{
B0(q1+q2)(m4

h−t̂û)(4ε(1+ε))

+C0(q1, q1+q2)
[
8m2

t (1+ε+ε2)(m4
h−t̂û)+ε(1+2ε)(t̂+û)[16m2

hm
2
t−(t̂+û)(8m2

t+ŝ)]
]

+C0(q1, q1+q3)
2

ŝ
(t̂−m2

h)
[
2(m2

h−4m2
t )(m

4
h−t̂û)+ε(1+2ε)(m2

h−t̂)2(t̂+û−8m2
t )
]

+C0(q2, q2+q3)
2

ŝ
(û−m2

h)
[
2(m2

h−4m2
t )(m

4
h−t̂û)+ε(1+2ε)(m2

h−û)2(t̂+û−8m2
t )
]

+C0(q3, q3+q4)ŝ(ŝ−4m2
h)
[
ε(1+2ε)(t̂+û−8m2

t )
]

+D0(q1, q1+q2, q1+q2+q3)
{

2m2
t (8m

2
t−ŝ−2m2

h)(m4
h−t̂û)

+4ε(1+2ε)[m4
hm

2
t (8m

2
t−t̂−û)+û(m2

t ((t̂+û)(t̂+2û)−(m2
hû+2m2

t t̂))+
ŝû

4
(t̂+û))]

}
+D0(q2, q1+q2, q1+q2+q3)

{
2m2

t (8m
2
t−ŝ−2m2

h)(m4
h−t̂û)

+4ε(1+2ε)[m4
hm

2
t (8m

2
t−t̂−û)+t̂(m2

t ((t̂+û)(û+2t̂)−(m2
ht̂+2m2

t û))+
ŝt̂

4
(t̂+û))]

}
+D0(q1, q1+q3, q1+q2+q2)

2

ŝ
(m4

h−t̂û)
{
ŝm2

t (8m
2
t−ŝ−2m2

h)+(m4
h−t̂û)(m2

h−4m2
t )

−ε(1+2ε)[m4
h(8m2

t−t̂−û)+4m2
t (2m

2
h(t̂+û)−8m2

t ŝ−(t̂+û)2−2t̂û)+t̂û(t̂+û)]
}}

(3.22)
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and

A2 =
λ2
htt

4(m4
h−t̂û)

{
+C0(q1, q1+q2)

[
ŝ(8m2

t (t̂+u)−2m4
h−t2−u2)+e(1+2e)ŝ(8m2

t−t̂−u)(t̂+u)
]

+C0(q1, q1+q3)
[
2(m2

h−t)(m4
h−t̂(8m2

t−t))+
2

s
e(1+2e)(m2

h−t)3(8m2
t−t̂−u)

]
+C0(q2, q2+q3)

[
2(m2

h−u)(m4
h−û(8m2

t−u))+
2

s
e(1+2e)(m2

h−t)3(8m2
t−t̂−u)

]
+C0(q3, q3+q4)

[
(8m2

t−t̂−u)(2m4
h−t2−u2)+e(1+e)(4m2

h−s)ŝ(8m2
t−t̂−u)

]
+D0(q1, q1+q2, q1+q2+q3)

{
2m2

t (8m
2
t+ŝ−2m2

h)(ût̂−m2
h)−ŝû(8ûm2

t−u2−m4
h)

+4ε(1+2ε)[m4
hm

2
t (8m

2
t−t̂−u)+û(m2

t ((t̂+u)(t̂+2u)−4(m2
hû+2m2

t t))+
ŝû

4
(t̂+u))]

}
+D0(q2, q1+q2, q1+q2+q3)

{
2m2

t (8m
2
t+ŝ−2m2

h)(ût̂−m2
h)−ŝt̂(8t̂m2

t−t2−m4
h)

+4ε(1+2ε)[m4
hm

2
t (8m

2
t−t̂−u)+û(m2

t ((t̂+u)(û+2t)−4(m2
ht̂+2m2

tu))+
ŝt̂

4
(t̂+u))]

}
+D0(q1, q1+q3, q1+q2+q2)

{
2m2

t (8m
2
t−t̂−u)(m4

h−t̂û)

−ε(1+2ε)[m4
h(8m2

t−t̂−u)+4m2
t (2m

2
h(t̂+u)−8m2

t ŝ−(t̂+u)2−2t̂u)+t̂û(t̂+u)]
}}

,

(3.23)

which also agree with the results of [45, 46] in the limit ε → 0. While eqs. (3.19), (3.22)
and (3.23) contain the complete dimensional dependence of the amplitude up to O

(
ε2
)

due
to the tensorial reduction, the scalar one-loop integrals B0, C0 and D0 themselves possess
higher order terms in the ε expansion. These contributions are computed numerically.

3.1.4. Leading Order Cross Section

While the O(ε2) terms of the LO amplitude are crucial for the calculation of the NLO cor-
rections, the LO hadronic cross section σLO contributing to eq. (3.1) can be evaluated in the
physical ε→ 0 limit. The total LO hadronic cross section follows by integrating the partonic
cross section σ̂LO over the gluon luminosity dLgg/dτ ,

σLO(pp→ gg → hh) =

∫ 1

τ0

dτ
dLgg
dτ

σ̂LO(ŝ = τs) , with τ0 =
4m2

h

s
and (3.24)

dLgg
dτ

=

∫ 1

τ

dx

x
fg(x, µF ) fg(τ/x, µF ) , (3.25)

where
√
s is the hadronic centre-of-mass energy, fg(x, µF ) denotes the parton distribution

functions of the gluon in the proton and µF is the factorisation scale. The partonic LO cross
section,

σ̂LO(ŝ) = CfluxCsym

∫
dPS2 |MLO|

2
, (3.26)

can be written in terms of the form factors of eqs. (3.19), (3.22) and (3.23) as

σ̂LO(ŝ) =
α2

s (µ2
R)

1024π3 ŝ2

∫ t̂+

t̂−

dt̂ (|A∆+A1|2+|A2|2) , (3.27)

with Csym = 1
2 being the symmetry factor due to the identical final state particles, the flux

factor Cflux = (2ŝ)−1 and the renormalisation scale µR. The phase space integration dPS2
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Sample diagrams contributing to the virtual QCD corrections to Higgs boson pair pro-
duction with full mass dependence.

can be expressed in terms of the integration over the momentum transfer t̂ according to

ŝ = τs , t̂ = m2
h−

ŝ(1−β cos θ)

2
, û = 2m2

h−ŝ−t̂ , with β =
√

1−4m2
h/ŝ , (3.28)

⇒ dPS2 =
β

16π
dcos θ ≡ dt̂

32πŝ
(3.29)

so that the integration region is defined by

t̂± = m2
h−

ŝ(1∓β)

2
. (3.30)

3.2. Virtual Corrections

The amplitude for the virtual correctionsMvirt involves loop corrections to the LO diagrams
of fig. 3.2 with an additional gluon propagator within the loop. The complete set of two-loop
diagrams obtained by FeynArts [97] can be organised in 8 distinct categories with sample
diagrams shown in fig. 3.4.

The triangle contributions of fig. 3.4 (a) consist of 12 generic diagrams. In analogy to the
following classification of the box diagrams, the triangle contributions consist explicitly of
3 self-energy corrections of the top-quark propagator, 3 abelian and 2 non-abelian vertex
corrections, 2 non-planar diagrams and 2 genuine IR-divergent diagrams. They can be ob-
tained from the already known NLO corrections to single Higgs boson production [98], since
the contributions in Higgs pair production only differ by a scalar factor given by the Higgs
propagator and the trilinear Higgs self-coupling. In the calculation of the virtual corrections
∆σvirt we follow a similar strategy as applied in [98], allowing the re-use of the NLO results
for single Higgs production implemented in HIGLU [99] and providing a cross check for the
routines developed for the remaining diagrams.

The amplitude of the 2 generic reducible double-triangle diagrams represented by fig. 3.4 (b)
can also be obtained from single Higgs production. It is constructed from the contribution
to the real corrections ∆σgg of [98] which involves single Higgs production with one off-shell
gluon, corresponding to the real corrections of fig. 3.1 (4a) and (5a) apart from the subsequent
Higgs-to-Higgs decay. The amplitude is obtained by taking off the external parton line and
self-contracting the remaining expression. The explicit results for the form factors have been
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qµ,a
1

qν,b2

q3

q4

k ↓

տq

a1

a2

a3 a4

a5

a6

Figure 3.5: Process definitions for the discussed example. Left: momentum assignment of the prop-
agators. Right: Denominator assignment for the Feynman parametrisation of eq. (3.34).

derived in [100].

The corrections to the box diagrams are organised in 6 topologies with corresponding sample
diagrams shown in fig. 3.4 (c)−(h). The diagrams of topology 1 are self-energy corrections
to the top quark propagator, topology 2 and 3 consist of abelian and non-abelian vertex cor-
rections, topology 4 describes the double-box and topology 5 the non-planar diagrams, while
the genuine IR divergent diagrams are collected in topology 6. The classification of all 47
generic1 diagrams contributing to the 6 topologies is summarised in appendix B. Due to their
distinct propagator structure, the topologies need to be treated individually for numerical
evaluation, the treatment is however universal for diagrams of the same topology.
The calculation of these corrections is the most challenging task of the project, as there is no
complete basis of master integrals for arbitrary two-loop amplitudes. Additionally, the am-
plitudes involve products of up to 6 fermion propagators within the loop, leading to lengthy
algebraic expressions, which require proper book keeping.

3.2.1. Calculational Strategy

This section describes the calculational strategy we pursue in order to obtain numerically
integrable expressions for the divergent two-loop integrals. The techniques described here
were used to set up a flexible framework in the symbolic manipulation system FORM [101],
supplemented with Mathematica [102] routines for the derivation of the loop mass terms
and the Laurent series expansion. In the following the reduction procedure of the two-loop
integrals is discussed for the example of box 13 depicted in the left diagram of fig. 3.5. Taking
the direction of the external momenta as entering the loop and denoting the momenta of the
two loops by k and q, respectively, the corresponding amplitude reads,

Mab
virt = (−1)Fc εµ(q1) εν(q2)µ

2(4−D)
R

∫
dDq

(2π)D

∫
dDk

(2π)D
Mµν , with Fc = −δab

12
(3.31)

Mµν = Tr
[
λµgtt∆t(k)λρgtt∆t(k+q)λνgtt∆t(k+q+q2)λσgtt∆t(k+q2)

λhtt∆t(k−q1−q3)λhtt∆t(k−q1)∆ρσ
g (q)

] (3.32)

In analogy to the LO matrix element, Mab
virt can be expressed in terms of Lorentz- and

gauge-invariant form factors,

Mab
virt =

α2
s

π2
[B1T

µν
1 +B2T

µν
2 ] δab εµ(q1) εν(q2) , (3.33)

with the scalar form factors Bi obtained by contracting the amplitude with the projectors
Pµνi defined in eq. (3.13). The form factors are tensor integrals of up to rank 6 in the loop

1In this context ’generic’ refers to the PaintLevel of the program package FeynArts, thus the generic set
includes diagrams obtained by exchange of the Higgs boson momenta, in analogy to the second and third
diagram of the LO amplitude fig. 3.2.
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momenta k and q, which need to be reduced to scalar integrals for numerical integration.
This is achieved by the following Feynman parametrisation of the integrand,

1

aω1
1 aω2

2 . . . aωnn
=

∫
d~xn−1

Nn (1−x1−· · ·−xn−1)ω1−1xω2−1
1 . . . xωn−1

n−1

[a1(1−x1−· · ·−xn−1)+a2x1+· · ·+anxn−1]Σωi
, with

∫
d~xn−1 =

1∫
0

dx1

1−x1∫
0

dx2 . . .

1−x1−···−xn−2∫
0

dxn−1 and Nn =
Γ(ω1+· · ·+ωn)

Γ(ω1) . . .Γ(ωn)
,

(3.34)

where ai are the denominators of the propagators assigned according to the right diagram
of fig. 3.5. Subsequently, a Wick rotation and momentum integrations in D dimensional
spherical coordinates can be performed,∫

dDk

(2π)D
(k2)α

(k2−M2+iε)r
=

Gαr
(M2−iε)r−α−D/2

, α = 0, 1, . . . , with

Gαr = i
(−1)r−α

(4π)D/2
Γ(r−α−D/2)Γ(α+D/2)

Γ(D/2)Γ(r)
.

(3.35)

The infinitesimal imaginary part iε of the loop mass in the above formula fixes the analytic
continuation of the expression and is not to be mistaken with the dimensional regulator ε.
Integrals with odd power of the loop momentum in the numerator vanish and integrals in
which the loop momentum in the numerator is contracted with other momenta can be brought
into the form of eq. (3.35) according to the identities,∫

dDk

(2π)D
kµkνkρkσ(k2)n

(k2−M2)r
=
gµνgρσ+gµρgνσ+gµσgνρ

D(D+2)

∫
dDk

(2π)D
(k2)n+2

(k2−M2)r
,∫

dDk

(2π)D
kµkν(k2)n

(k2−M2)r
=
gµν

D

∫
dDk

(2π)D
(k2)n+1

(k2−M2)r
, n = 0, 1, . . . .

(3.36)

There are two subtleties in this procedure. Firstly, after applying the Feynman parametri-
sation of eq. (3.34), one has to shift the momentum to obtain an integrand corresponding to
the left hand side of eq. (3.35). Thus, the loop mass term M2 is a function of the Feynman
parameters xi and the scalar products of the remaining momenta. Secondly, the singulari-
ties of the loop momentum integrals now appear as regions in the Feynman parameter space
0 ≤ xi ≤ 1 in which the final loop mass term M2 becomes zero. In order to isolate these di-
vergent regions and to additionally disentangle the individual integration limits of eq. (3.34),
one has to perform non-trivial transformations in the Feynman parameter space.

In the explicit case of box 13, the first Feynman parametrisation is performed on the de-
nominators of eq. (3.32) containing the loop momentum k, with the correspondence of the
denominators ai of eq. (3.34) to the propagators depicted in the right diagram of fig. 3.5,
yielding,

Bi =

∫
dDq

(2π)D
1

q2

3∑
α=0

∫
d~x5

∫
dDk′

(2π)D
N6 g

(i)
α ·(k′2)α[

k′2−M2
1

]6 , (3.37)

where k′ is the shifted loop momentum required to complete the square in the denomina-

tor defined in the following and M2
1 the corresponding loop mass. The coefficients g

(i)
α are

obtained by contracting the numerator of eq. (3.32) with the projectors Pµνi , applying the
momentum shift k → k′ and transforming the tensorial structure according to eq. (3.36),

α2
s

π2
g(i)
α ·(k′2)α = Fc µ

2(4−D)
R Pi,µν ·M̃µν , with (3.38)

Mµν |num
(3.41) (3.36)−−−−−−−→ M̃µν (3.39)
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They are functions of the Feynman parameters xi, the Yukawa coupling λhtt and of the scalar
products of the second loop momentum q and the external momenta q1, q2, q3. In topology
2, a suitable transformation of the Feynman parameters is of the form,

x1 → (1−x̂1)(1−x̂2)

x2 → x̂2(1−x̂1)

x3 → x̂1(1−x̂3)

x4 → x̂1x̂3x̂4

x5 → x̂1x̂3x̂5(1−x̂4)


⇒
∫

d~x5 →
[ 5∏
i=1

∫ 1

0
dx̂i︸ ︷︷ ︸

≡
∫

d~̂x5

]
x̂3

1x̂
2
3(1−x̂1)(1−x̂4) , (3.40)

so that the limits of the integrals over the new variables x̂i go from 0 to 1 and, as shown in the
following, the singularity of the integrand below the top quark mass threshold is described by
a single variable x̂1. In terms of the transformed Feynman parameters the momentum shift
k → k′ reads,

kµ → k′µ = kµ+qµ(1−x̂1)+qµ2 x̂2+dµx̂1 , with

dµ = −qµ1 x̂3(1−x̂4)x̂5+qµ2 (1+x̂3x̂4−x̂2−x̂3)+qµ3 x̂3x̂4 .
(3.41)

The expression for the loop mass term2 M̂2
1 is not given explicitly, as it is involved and

it follows unambiguously from the previous steps. However, it is expedient for the second
Feynman parametrisation to normalise M̂2

1 according to,

M̂2
1 = N̂2

1 (−1)x̂1(1−x̂1) , (3.42)

so that the form factors eq. (3.37) after the momentum integration over k read,

Bi =

∫
dDq

(2π)D
1

q2

∫
d~̂x5

3∑
α=0

x̂3
1x̂

2
3(1−x̂1)(1−x̂4)

[(−1)x̂1(1−x̂1)]6−α−D/2
N6 Gα6 ĝ

(i)
α

(N̂2
1 )6−α−D/2 . (3.43)

The second loop momentum integral is solved similarly by repeating the previous procedure.
First, we introduce an additional Feynman parameter x̂6 as,

Bi =

∫
d~̂x5

3∑
α=0

∫ 1

0
dx̂6

∫
dDq

(2π)D
x̂3

1x̂
2
3(1−x̂1)(1−x̂4)

[(−1)x̂1(1−x̂1)]6−α−D/2
N6N2 x̂

5−α−D/2
6 Gα6 ĝ

(i)
α

[q2(1−x̂6)+N̂2
1 x̂6]7−α−D/2

. (3.44)

Since N̂2
1 is a function of q, we again need to perform a momentum shift q → q′ in order

to complete the square for the denominator of eq. (3.44). With the auxiliary momentum dµ

defined in eq. (3.41), the shift reads,

qµ → q′µ = qµ−dµx̂6 , and

q2(1−x̂6)+N̂2
1 x̂6 → q′2−M̂2

2 .
(3.45)

The numerator coefficients g
(i)
α are also functions of q′ of up to power 6 due to the first

momentum shift eq. (3.41). Thus, they can be organised according to eq. (3.36) as,

ĝ(i)
α =

3∑
β=0

g̃
(i)
αβ ·(q′2)β , (3.46)

where the new coefficients g̃
(i)
αβ are functions of the Feynman parameters x̂i and of scalar

products of the external momenta qi·qj . By construction, the indices α and β keep track of

2In the following the circumflex above M2
1 , N2

1 and g
(i)
α means that their functional dependence was transformed

according to eq. (3.40).



3.2. Virtual Corrections 27

the loop momentum power of the numerator. In order to express the final result in terms of

the dimensionless process variables ρi of eq. (3.6), we rewrite g̃
(i)
αβ as

g̃
(i)
αβ = (m2

t )
3−α−β ĝ(i)

αβ . (3.47)

Applying these transformations to eq. (3.44) allows for the integration over the loop momen-
tum q′ to be performed, yielding,

Bi =
3∑

α,β=0

∫
d~̂x5

∫ 1

0
dx̂6︸ ︷︷ ︸∫

d~̂x6

x̂3
1x̂

2
3(1−x̂1)(1−x̂4)

[(−1)x̂1(1−x̂1)]6−α−D/2
N6N2 x̂

5−α−D/2
6 Gα6 Gβ7−α−D/2 ĝ

(i)
αβ

(m2
t )
α+β−3 [M̂2

2 ]7−α−β−D
. (3.48)

For reasons which will become clear in the following, the loop mass term M̂2
2 is normalised

as,

M̂2
2 =

m2
t x̂6

x̂1(1−x̂1)
N̂2

2 . (3.49)

Inserting the expressions for Nn according to eq. (3.34) and Gαr of eq. (3.35) leads to the final
result for the form factors Bi in D = 4−2ε dimensions,

Bi =

3∑
α,β=0

∫
d~̂x6

(−1)α+βx̂2
3(1−x̂4)

x̂β−2−ε
1 (1−x̂1)β−ε

Γ(3−α−β+2ε)

(4π)4−2ε(m2
t )

2ε

x̂β−ε6 ĝ
(i)
αβ

(N̂2
2 )3−α−β+2ε

RαRβ , with

Rκ ≡
Γ(κ+2−ε)

Γ(2−ε) .

(3.50)

The normalisation in eq. (3.49) was chosen such, that the final loop mass N̂2
2 in eq. (3.50) is

expressed in terms of the process variables ρi introduced in eq. (3.6) and of the form,

N̂2
2 = 1−

4∑
i=1

ρici , (3.51)

with the explicit coefficients ci of the process variables found to be,

c1 = x̂1x̂3(1−x̂4)x̂5 {x̂2(1−x̂1)(1−x̂6)+[1−(1−x̂1)(1−x̂6)][1−x̂3(1−x̂4)]} ,
c2 = x̂1x̂

2
3x̂4(1−x̂4)x̂5 [1−(1−x̂1)(1−x̂6)] ,

c3 = x̂1x̂3x̂4 {1−(1−x̂1)x̂2(1−x̂6)−[1−(1−x̂1)(1−x̂6)][1−x̂3(1−x̂4)]} ,
c4 = x̂1x̂3x̂4 {1−x̂3x̂4[1−(1−x̂1)(1−x̂6)]} .

(3.52)

The coefficients ci take values between 0 ≤ ci ≤ 0.25, which means that the loop mass
eq. (3.51) is greater than zero in the entire integration region for values of the process vari-
ables ρi < 1.3 The singularities of the form factors can be directly isolated from eq. (3.50),
but before doing so, let us conclude this technically involved calculation with some general
remarks:

• The procedure transforms the two-loop momentum integral of the amplitude into a
six dimensional Feynman parameter integral. After the ε poles have been completely
isolated as described in the following section, these integrals are suitable for numerical
integration.

3This corresponds to kinematic phase space points below the top quark mass threshold.
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• This general framework applies directly to all diagrams of topology 1, 2 and 4, which
contain 6 fermion propagators in the loops. Topologies 3 and 5 follow similar calcula-
tional strategies with modifications in the initial Feynman parametrisation. Topology
6 will be discussed separately due to its IR divergent properties.

• The Feynman parameter transformation of eq. (3.40) is applicable for all 12 diagrams
of topology 2. Different transformations have to be performed in the other topologies
in order to isolate the divergences. The transformations are found by trial and error
and are based on experience obtained from the parametrisation of the triangle topology
diagrams.

• The form factors of each diagram are described by the numerator coefficients ĝ
(i)
αβ and the

loop mass N̂2
2 . These are unambiguously obtained from the amplitude by applying the

process specific momentum shifts eqs. (3.41) and (3.45), the normalisation conditions
eqs. (3.42) and (3.49) and the Feynman parameter transformation of eq. (3.40).

3.2.2. Treatment of Singularities

Before the form factors can be numerically integrated, the singularities in the dimensional
regulator ε first need to be isolated. The singularities in eq. (3.50) below the virtual top mass
threshold ρi < 1 have two possible origins.
The first denominator of the integrand develops end-point singularities at x̂1 = 0 for β = 3
and at x̂1 = 1 for β = 1.4 These singularities can be isolated by end-point subtractions.
The idea behind this technique is that the function is integrable, as long as the remaining
integrand converges faster to zero than the singular denominator. This can be achieved by
subtracting and re-adding the series expansion of the remaining integrand around the end
point as, ∫ 1

0

f(x̂1)

x̂1−ε
1

dx̂1 =

∫ 1

0

f(x̂1)−f(0)

x̂1−ε
1

dx̂1+
f(0)

ε
, (3.53)∫ 1

0

f(x̂1)

(1−x̂1)1−εdx̂1 =

∫ 1

0

f(x̂1)−f(1)

(1−x̂1)1−ε dx̂1+
f(1)

ε
. (3.54)

In addition to the end-point divergences, the form factors of eq. (3.50) contain singularities
due to the gamma function of the second numerator of the integrand for α+β = 3. The form
factors can be normalised with respect to a global gamma function prefactor which is chosen
to be,

CΓ =
Γ(1+ε)Γ(1−ε)

Γ(1−2ε)
. (3.55)

This is achieved by using one of the defining properties of the gamma function,

Γ(z+1) = zΓ(z) , (3.56)

to normalise all α, β summands of eq. (3.50) to an overall prefactor of Γ(1+2ε), which is
related to the prefactor CΓ by,

Γ(1+2ε) = CΓ

[
1+3 ζ(2)ε2

]
+O(ε3) , (3.57)

4At first glance one would expect singularities at x̂1 = 1 also for higher values of β. This is not the case, as
the original amplitude is a tensor integral of rank 2 with respect to the loop momentum q. All higher rank
contributions, which lead to the terms with β > 1, are due to the momentum shift eq. (3.41) and are thus

accompanied by additional factors of (1−x̂1)β in the numerator coefficients ĝ
(i)
αβ .
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Figure 3.6: Effects of the integration by parts technique on the real (left) and imaginary (right) part
of the simplified example eq. (3.60) for ρ = 5/(1−10−2i). The variation in the vicinity of the threshold
reduces by several orders of magnitude.

where ζ(x) is the Riemann zeta function. This choice of normalisation will become particularly
useful in the context of the cross section of the virtual corrections. At this stage, it underlines
the previous statement that for α+β = 3 the gamma function leads to a singularity in the
form factors, since according to eq. (3.56),

Γ(2ε) =
Γ(1+2ε)

2ε
. (3.58)

As the two conditions for the occurrence of the singularities can be fulfilled simultaneously,
the form factors described here formally contain ε−2 poles, too. These are a remainder
of the tensor reduction procedure. As such they are not cancelled by IR poles of the real
corrections, but instead cancel exactly when all diagrams of the vertex corrections are summed
up. After the singular behaviour has been extracted from the form factors, the expression
can be expanded in a Laurent series around ε = 0 and the coefficients of the expansion
can be integrated numerically over the six-dimensional Feynman parameter space, yielding
numerically stable results for momentum space points below the top quark mass threshold.

For kinematic configurations above the virtual thresholds ρi > 1 the loop mass term eq. (3.51)
leads to additional singularities within the integration region. In these configurations, the
virtual top quarks can become on-shell so that the integrals develop imaginary parts. The
instabilities due to threshold singularities can be treated by introducing a small imaginary
part for the quark mass in a way that the constraints of micro-causality are fulfilled. This
corresponds to a redefinition of the process variables eq. (3.6) to,

ρi →
ρi

1−iδ
, with δ ∈ R+ . (3.59)

For non-zero values of the threshold regulator δ the real and imaginary parts of the virtual
integrals are well-defined and the stability of the numerical integration increases with higher
values of δ. On the other hand, the final result of the numerical integration is independent
of δ for sufficiently small values of δ. While the redefinition of eq. (3.59) successfully removes
the threshold singularities in the real and imaginary parts of the integrands, the resulting
expressions require high statistics for the Monte Carlo integration to obtain stable results.
The convergence of the numerical integration can be improved by reducing the exponent
of the loop mass term in the denominator through integration by parts (IBP) techniques.
For the sake of argument let us consider a simple function f(x) similar to the integrands of
eq. (3.50) and its partially integrated form g(x),

f(x) =
x

(1−ρx)3

IBP−−→ g(x) =
1

2ρ(1−ρ)2
− 1

2ρ(1−ρx)2
. (3.60)
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Re ∆int Im ∆int

f(x) 0.31243(14)·10−1 ±0.66·10−7 −0.781(18)·10−3 ±0.69·10−7

g(x) 0.3124316(14)·10−1 ±0.57·10−9 −0.78122(08)·10−3 ±0.46·10−9

Table 3.1: Numerical results of the vegas integration and the integration error ∆int of eq. (3.60) with
107 sampling points.

For ρ = 5 the function f(x) possesses a singularity at x = 0.2. Shifting the function according
to eq. (3.59) with δ = 10−2 leads to non-divergent expressions for the real and imaginary part
of f(x) with rapid oscillations in the vicinity of the original pole as shown in fig. 3.6. The
variation of the partially integrated form g(x) is in comparison minuscule. This effect is also
confirmed in the explicit numerical integration. For a vegas [103] integration setup N1 = 10
iterations in for the grid determination and N2 = 5 iterations for the evaluation of the integral
with N = 107 sampling points in each iteration, the numerical results for the integration of
f(x) and g(x) listed in table 3.1 agree within numerical uncertainties. While the stability of
the integration of f(x) suffers from the large numerical cancellations near the threshold, the
error ∆int of the integration of g(x) is reduced by two orders of magnitude.
The effects illustrated by this example also occur in the actual form factors, however the
calculations are much more involved. The loop mass terms are often quadratic polynomials
in the Feynman parameter with respect to which the integration by parts is performed.
Furthermore, the coefficients of these polynomials are functions of the process variables and
the remaining Feynman parameters, which means that the partially integrated form can lead
to additional thresholds. For these reasons the final expressions for the form factors above
the threshold only yield stable numerical results for high vegas statistics, which poses the
computational bottle neck of the entire calculation. Explicitly, the integration routine needs
to be called with N = 109 sampling points and the threshold regulator set to δ = 10−2 in
order to reach an integration error of ∆int ≤ 1%.

3.2.3. Infrared Divergent Diagrams

While the previously described techniques are sufficient to obtain numerically integrable ex-
pressions for all diagrams of topologies 1−5, additional complications arise in topology 6. In
order to elaborate this, let us consider box 45 of appendix B depicted in fig. 3.7. The reduction
of the loop integrals according to the procedure of section 3.2.1 is performed by parametrising
the fermionic propagators in the first step as shown in fig. 3.7 right. The resulting loop mass
term N2

1 is subsequently parametrised with the gluon propagators as,

1∫
0

dx4

1−x4∫
0

dx5

1−x4−x5∫
0

dx6
x

3−α−N/2
4

[q2(1−x4−x5−x6)+N2
1x4+(q+q1)2x5+(q−q2)2x6]7−α−N/2

. (3.61)

q↑

−−−→
k+q2

qµ,a
1

qν,b2

q3

q4

a3

a1

a2 a4

Figure 3.7: Process definitions for a sample IR divergent diagram. Left: momentum assignment of
the propagators. Right: Denominator assignment for the Feynman parametrisation of eq. (3.34).
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Together with the Feynman parameter transformations,

x1 → (1−x̂1) , x2 → x̂1(1−x̂2) , x3 → x̂1x̂2x̂3 ,

x4 → x̂4x̂5 , x5 → (1−x̂5) , x6 → (1−x̂4)x̂5x̂6
(3.62)

and the momentum shifts,

kµ → k′µ = kµ−qµ(1−x̂1)+qµ1 x̂1x̂2−qµ2 x̂1(1−x̂2)+qµ3 x̂1x̂2x̂3 , (3.63)

qµ → q′µ = qµ−qµ1 [1−x̂5(1−x̂2x̂4)]+qµ2 x̂5[x̂6+x̂4(1−x̂2−x̂6)]−qµ3 x̂2x̂3x̂4x̂5 , (3.64)

this leads to form factors of similar structure as in topology 2. In order to keep the notation
as simple as possible, we restrain the explicit form factors to the terms of relevance for this

discussion and collect all additional factors in a prefactor G
(i)
η ,

Bi =

∫
d~̂x6G

(i)
η

x̂1+ε
1 (1−x̂1)1+ε x̂1+η+ε

4 x̂−ε5

(N̂2
2 )3+2ε

, with η ∈ N0 . (3.65)

The index η keeps track of the power of x̂4 in the numerator, which will be required in the

following. The corresponding prefactors G
(i)
η are polynomials of the Feynman parameters

and process variables and also involve gamma functions from the reduction procedure, which
means that they lead to UV divergences of up to O(1/ε2). For this reason, the IR structure of
the amplitude has to be determined up to O(ε2) to consistently include all finite and divergent
contributions of the matrix element. In contrast to topologies 1−5, the loop mass term N̂2

2

cannot be completely cast into the form of eq. (3.51), but instead reads

N̂2
2 = x̂4−

4∑
i=1

ρici , with (3.66)

c1 = x̂1 {x̂1x̂2(1−x̂2)x̂4+(1−x̂1)[1−x̂5(1−x̂2x̂4)][(1−x̂4)x̂6+(1−x̂2)x̂4]} ,
c2 = x̂1x̂2x̂3x̂4 {1−x̂1x̂2−(1−x̂1)[1−x̂5(1−x̂2x̂4)]} ,
c3 = x̂1x̂2x̂3x̂4 {x̂1(1−x̂2)+(1−x̂1)x̂5[(1−x̂4)x̂6+(1−x̂2)x̂4]} ,
c4 = x̂1x̂2x̂3x̂4[1−x̂1x̂2x̂3−(1−x̂1)x̂2x̂3x̂4x̂5] .

(3.67)

The mathematical structure of eq. (3.66) is a consequence of the IR divergence of the diagram
due to the virtual gluon exchange between the initial state gluons. The IR poles have to be
isolated before the form factors can be treated according to section 3.2.2. This is achieved by
analytic integration with respect to the Feynman parameter x̂4, in terms of which the loop
mass term eq. (3.66) is a second degree polynomial,

N̂2
2 = ω2x̂

2
4+ω1x̂4+ω0 , with (3.68)

ω0 = −ρ1x̂1(1−x̂1)(1−x̂5)x̂6 , (3.69)

ω1 = 1−ρ1x̂1 {x̂1x̂2(1−x̂2)+(1−x̂1)[(1−x̂5)(1−x̂2−x̂6)+x̂2x̂5x̂6]}
−ρ2x̂1x̂2x̂3[1−x̂1x̂2−(1−x̂1)(1−x̂5)]−ρ3x̂1x̂2x̂3(x̂1(1−x̂2)+(1−x̂1)x̂5x̂6)

−ρ4x̂1x̂2x̂3(1−x̂1x̂2x̂3) ,

(3.70)

ω2 = −ρ1x̂1(1−x̂1)x̂2x̂5(1−x̂2−x̂6)+ρ2x̂1(1−x̂1)x̂2
2x̂3x̂5

−ρ3x̂1(1−x̂1)x̂2x̂3x̂5(1−x̂2−x̂6)+ρ4x̂1(1−x̂1)x̂2
2x̂

2
3x̂5 .

(3.71)

In eq. (3.65) one can see that the divergences arise solely in the roots of N̂2
2 and eq. (3.68)

implies that this corresponds to the simultaneous limit of ω0 → 0 and x̂4 → 0. Thus, by
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subtracting this limit as

Bi = I1+I2 , with

I1 =

∫
d~̂x6

x̂1+ε
1 (1−x̂1)1+ε x̂1+η+ε

4

x̂ε5

[
G

(i)
η

(N̂2
2 )3+2ε

− G
(i)
η |x̂4=0

[ω0+ω1x̂4]3+2ε

]

I2 =

∫
d~̂x6

x̂1+ε
1 (1−x̂1)1+εG

(i)
η |x̂4=0

x̂ε5 ω
3+2ε
0

x̂1+η+ε
4

[1+ω1
ω0
x̂4]3+2ε

,

(3.72)

the integral I1 is by construction finite and I2 can be expressed in terms of hypergeometric
functions,

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
dt tb−1(1−t)c−b−1(1−zt)−a , as (3.73)

I2 =
Γ(2+η+ε)

Γ(3+η+ε)

∫
d~̂x6|x̂4

x̂1+ε
1 (1−x̂1)1+εG

(i)
η |x̂4=0

x̂ε5 ω
3+2ε
0

F (3+2ε, 2+η+ε; 3+η+ε;−ω1

ω0
) . (3.74)

The notation d~̂x6|x̂4 is an abbreviation for the five dimensional differential in which dx̂4

is omitted. The divergences of I2 can now be isolated by making use of the properties of
hypergeometric functions [104],

F (a, 0; c; z) = 1 , (3.75)

F (a, b; c; z) =
Γ(c)Γ(b−a)

Γ(b)Γ(c−a)
(−z)−aF (a, 1−c+a; 1−b+a; z−1)

+
Γ(c)Γ(a−b)
Γ(a)Γ(c−b)(−z)−bF (b, 1−c+b; 1−a+b; z−1) ,

(3.76)

leading to the form of I2 in which singularities only occur for η = 0,

I2 =
Γ(η−1−ε)
Γ(η+1−ε) I3+

Γ(2+η+ε)Γ(1+ε−η)

Γ(3+2ε)
I4 , with

I3 =

∫
d~̂x6|x̂4 x̂1+ε

1 (1−x̂1)1+ε x̂−ε5 G(i)
η |x̂4=0

F (3+2ε, 1+ε−η; 2+ε−η;−ω0
ω1

)

ω3+2ε
1

and

I4 =

∫
d~̂x6|x̂4 x̂1+ε

1 (1−x̂1)1+ε x̂−ε5 G(i)
η |x̂4=0 ω

η−1−ε
0 ω−η−2−ε

1 .

(3.77)

The expressions I3 and I4 have a well-defined pole structure and can be expanded in a Laurent
series around ε = 0. The first integral I3 is finite and yields explicitly,

Γ(−1−ε)
Γ(1−ε) I3 =

∫
d~̂x6

x̂1(1−x̂1)G
(i)
0 |x̂4=0

(ω1+ω0x̂4)3

[
1+ε log Ω+

ε2

2
log2 Ω

]
, with

Ω =
x̂1(1−x̂1)x̂4

x̂5(ω1+ω0x̂4)2
,

(3.78)

while I4 contains divergences due to the end points of ω0 according to eq. (3.69),

Γ(2+ε)Γ(1+ε)

Γ(3+2ε)
I4 =

∫
d~̂x6|x̂4

(−ρ1)−1−εx̂−ε5

(1−x̂5)1+εx̂1+ε
6

G̃
(i)
0 , with G̃

(i)
0 =

G
(i)
0 |x̂4=0

ω2+ε
1

. (3.79)
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The end point subtraction for I4 has to be performed simultaneously for two parameters
according to∫ 1

0

f(x, y)

x1+ε(1−y)1+ε
dxdy =

∫ 1

0

f(x, y)−f(0, y)−f(x, 1)+f(0, 1)

x1+ε(1−y)1+ε
dxdy+

f(0, 1)

ε2

−1

ε

[∫ 1

0

f(0, y)−f(0, 1)

(1−y)1+ε
dy+

∫ 1

0

f(x, 1)−f(0, 1)

x1+ε
dx

]
.

(3.80)

Once the end points of x̂5 and x̂6 in eq. (3.79) are subtracted, the IR singularities are fully
isolated as ε−1 and ε−2 poles and and the integral I4 can also be expanded in a Laurent
series around ε = 0. Together with the Laurent expansion of the remaining matrix element

term G
(i)
η , which also contains ε−1 and ε−2 poles of similar structure as the example of box

13 discussed in section 3.2.2, this calculation leads to expressions for the matrix element with
fully regulated IR and UV divergences suitable for numerical integration. The form factors
also contain ε−3 poles which are a remainder of the tensor reduction and cancel exactly when
all diagrams of topology 6 are summed up.

3.2.4. Finite Virtual Corrections

The previously presented techniques are sufficient to isolate the UV and IR poles and to avoid
instabilities due to threshold singularities in the form factors. These involved calculations
yield well-defined expressions for the full matrix element of the virtual two-loop diagrams
Mvirt. In order to obtain the finite virtual NLO corrections ∆σvirt, the UV and IR poles of
the form factors now need to be cancelled. For the UV divergences this is achieved through
renormalisation of the physical parameters involved in the LO process, which are the strong
coupling constant αs and the top quark mass mt. In analogy to the LO and virtual matrix
elements, the counterterm matrix element Mab

CT can be written in terms of form factors,

Mab
CT = δmt

∂Mab
LO

∂mt
+δαs

∂Mab
LO

∂αs

Mab
CT =

α2
s

π2

[
(ACT

∆ +ACT
1 )Tµν1 +ACT

2 Tµν2

]
δab ε

a
µ(q1) εbν(q2) .

(3.81)

The top quark mass counterterm δmt previously defined in the on-shell scheme eq. (2.28)
reads explicitly,

δmt = −Γ(1+ε)

(
4πµ2

R

m2
t

)ε
mt

[
1

ε
+

4

3

]
αs
π
. (3.82)

and the definition of the counterterm for the strong coupling δgs in the MS scheme was
obtained in eq. (2.24)

δα(5),MS
s =

α2
s

4π

[(
11−2

3
NF−

2

3

)(
−∆+log

µ2
R

µ2

)
−2

3
log

m2
t

µ2
R

]
. (3.83)

with the number of active quark flavours NF set to NF = 5, and the top quark decoupled from
the running of αs. After the UV poles have been cancelled, the renormalised form factors B̃n
given by the sum of the form factor contributions represented in fig. 3.4 and the counterterm
form factors,

B̃n = ACT
n +

∑
diags

Bn (3.84)

still contain IR divergences. These are cancelled on the cross section level by the corresponding
IR poles of the real corrections in the context of the Kinoshita-Lee-Nauenberg theorem [58,59].
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Numerical NLO QCD calculations often employ subtraction techniques to obtain separately
finite expressions for the virtual and real corrections. In this calculation, a suitable subtraction
mechanism is provided by the results in the heavy quark mass limit (HQL) of [15], as due to
the QCD factorisation the relative IR divergent structure of the HQL matrix elements and of
the matrix elements with full quark mass dependence is equal,

B̃n
An

∣∣∣∣
div

=
B̃hqln

Ahql
n

∣∣∣∣
div

⇒ Cn ..=
B̃n
An
− B̃

hql
n

Ahql
n
∼ O(ε0) . (3.85)

In terms of the relative form factors Cn of eq. (3.85) and the LO form factors, eqs. (3.19),
(3.22) and (3.23), the differential virtual corrections dσvirt can thus be organised as,

dσvirt = dσfin
virt+dσhql , with (3.86)

dσfin
virt =

α3
s (µ2

R)

16π3ŝ
Re
[
|A∆|2 C∆+|A1|2 C1+|A2|2 C2+(A∗∆A1)(C∆+C1)

]
and (3.87)

dσhql =
α3

s (µ2
R)

16π3ŝ
Re

[
|A∆|2

B̃hql∆

Ahql
∆

+|A1|2
B̃hql1

Ahql
1

+|A2|2
B̃hql2

Ahql
2

+(A∗∆A1)
( B̃hql∆

Ahql
∆

+
B̃hql1

Ahql
1

)]

−2ε α3
s (µ2

R)

16π3ŝ
Re

[
(A∗∆A2)

( B̃hql∆

Ahql
∆

+
B̃hql2

Ahql
2

)
+(A∗1A2)

( B̃hql1

Ahql
1

+
B̃hql2

Ahql
2

)]
.

(3.88)

The divergent parts of dσhql cancel exactly against the corresponding terms in the real
corrections after phase space integration. However, by construction in eq. (3.85), the auxiliary
cross section also involves IR finite terms which correspond to the virtual corrections in the
HQL. By this convenient choice, the virtual two-loop corrections ∆σvirt of eq. (3.1) can be
expressed as a direct sum of the HQL corrections Chql given in [15] and of the corrections
exclusively due to the finite mass effects of the two-loop diagrams Cmass,

∆σvirt =
αs(µ

2
R)

π

∫ 1

τ0

dτ
dLgg
dτ

σ̂LO(ŝ = τs) [Cmass+Chql] , with

Cmass = 2Re

∫ t̂+
t̂−

dt̂
[
|A∆|2 C∆+|A1|2 C1+|A2|2 C2+(A∗∆A1)(C∆+C1)

]
∫ t̂+
t̂−

dt̂ [|A∆+A1|2+|A2|2]
.

(3.89)

3.3. Real Corrections

The final missing components of the NLO calculation are the contributions due to an un-
resolved real emission. These corrections consist of one-loop diagrams with an additional
massless parton in the final state, meaning that the amplitudes involve three-, four- and
five-point one-loop tensor integrals formally of up to rank four, as can be inferred from
fig. 3.1 (3a)−(6a) and (3b)−(6b). The calculation of these corrections including finite top
quark mass effects was performed in the MadLoop framework [105] and used in the analysis
of [81]. As the main topic of this thesis was the calculation of the virtual two-loop corrections,
the explicit expressions for the real corrections still need to be implemented. However, at this
stage we can already discuss the general structure of the corrections, which follows from the
HQL result of [15]. Upon integration of the spin and color averaged squared matrix elements
over the D dimensional three-particle phase space,

dPS3 = µ4−D
R

dD−1q3

(2π)D−12q0
3

dD−1q4

(2π)D−12q0
4

dD−1q5

(2π)D−12q0
5

(2π)DδD(q3+q4+q5−q1−q2) , (3.90)
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the IR divergences cancel exactly against the IR divergent subtraction term of the virtual cor-
rections obtained from the phase space integration of eq. (3.88). The partonic real corrections
can be expressed as,

σ̂ij = σ̂LO
αs(µ

2
R)

π
Dij(z)θ(1−z) , (3.91)

where the real correction coefficients Dij of the gluon-gluon, quark-gluon and quark-antiquark
initial states read respectively,

Dgg(z) = dgg(z)−
z

ε

Γ(1−ε)
Γ(1−2ε)

(
4πµ2

R

µ2
F

)ε
Pgg(z)+6[1+z4+(1−z)4]

[
log(1−z)

1−z

]
+

,

Dgq(z) = dgq(z)−
z

2ε

Γ(1−ε)
Γ(1−2ε)

(
4πµ2

R

µ2
F

)ε
Pgq(z) ,

Dqq̄(z) = dqq̄(z) ,

(3.92)

with the plus-distribution,

[f(x)]+ = f(x)−δ(1−x)

∫ 1

0
dx f(x) . (3.93)

The expressions dij(z) are the still to be calculated finite contributions of the real corrections,
which are known in the HQL,

dgg(z)
hql−−→ −11

2
(1−z) , dgq(z)

hql−−→ 2

3
z2−(1−z)2 , dqq̄(z)

hql−−→ 32

27
(1−z)3 , (3.94)

and the coefficients of the regularised Altarelli-Parisi splitting functions Pij(z) [106],

Pgg(z) = 6

{[
1

1−z

]
+

+
1

z
−2+z(1−z)

}
+δ(1−z)33−2NF

6
, (3.95)

Pgq(z) =
4

3

1+(1−z)2

z
, (3.96)

contain residual collinear divergences which are cancelled by replacing the bare gluon densities
fBg (x) by the renormalised gluon densities fRg (x). In the MS factorisation scheme, up to O(αs)
these are given by the relation [66],

fBg (x, µR) = fRg (x, µF )+
αs

2π

(
4πµ2

R

µ2
F

)ε
1

ε

Γ(1−ε)
Γ(1−2ε)

{
Pgg⊗fRg (x, µR)+Pgq⊗fRq (x, µR)

}
(3.97)

where the operator ⊗ depicts the convolution of the Altarelli-Parisi splitting functions with
the renormalised parton densities,

f⊗g(x, µ) =

∫ 1

x

dz

z
f(z, µ) g(x/z, µ) . (3.98)

Thus, the finite real corrections ∆σij contributing to eq. (3.1) are obtained in analogy to the
HQL result of [15] as,

∆σgg =
αs(µ

2
R)

π

∫ 1

τ0

dτ
dLgg
dτ

∫ 1

τ0/τ

dz

z
σ̂LO(ŝ = zτs)Cgg(z) , (3.99)

∆σgq =
αs(µ

2
R)

π

∫ 1

τ0

dτ
∑
q,q̄

dLgq
dτ

∫ 1

τ0/τ

dz

z
σ̂LO(ŝ = zτs)Cgq(z) , (3.100)

∆σqq̄ =
αs(µ

2
R)

π

∫ 1

τ0

dτ
∑
q

dLqq̄
dτ

∫ 1

τ0/τ

dz

z
σ̂LO(ŝ = zτs)Cqq̄(z) , (3.101)
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with the real correction coefficients Cgg(z), Cgq(z) and Cqq̄(z) given by,

Cgg(z) = dgg(z)−zPgg(z) log
µ2
F

τs
+6[1+z4+(1−z)4]

[
log(1−z)

1−z

]
+

, (3.102)

Cgq(z) = dgq(z)−
z

2
Pgq(z) log

µ2
F

τs(1−z)2
, (3.103)

Cqq̄(z) = dqq̄(z) . (3.104)

Once the finite contributions dij(z) of the real corrections have been determined, the last ingre-
dient of this technically involved calculation can be implemented in the numerical framework,
allowing for the calculation of the NLO QCD corrections to Higgs boson pair production with
full top quark mass dependence.



CHAPTER 4

NLO Corrections including Dimension-6 Operators

The discussion throughout the previous chapters was limited to the Higgs boson pair produc-
tion within the SM. This process is, however, also interesting in the context of NP searches,
especially since up to now the LHC has not provided direct discovery of BSM physics. Even
though the measured properties of the Higgs boson are so far in good agreement with the
SM predictions, further more precise studies of its couplings may reveal hints for NP. Various
BSM models allow for scenarios in which the Higgs boson self-couplings deviate significantly
from the SM value, while the remaining properties of the Higgs boson are fairly SM-like [49].
In addition to the coupling modifications, BSM models can further affect cross section predic-
tions due to contributions from Feynman diagrams containing novel particles and couplings.
Examples for such contributions to Higgs boson pair production can be obtained in BSM
theories with an extended Higgs spectrum where already at LO the virtual Higgs boson in
the triangle topology diagram can be (one of) the additional Higgs bosons of the model, or
in composite Higgs models which give rise to direct couplings of two fermions to two Higgs
bosons.

The absence of a discovery of new physical states suggests that the scale of NP is well sep-
arated from the electroweak scale, which encourages a description within the Effective Field
Theory (EFT) framework. The EFT description is based on the idea, that the heavy degrees
of freedom of a BSM model can be integrated out, giving rise to effective, local operators
of the SM fields. These higher dimensional operators modify the SM couplings and intro-
duce novel couplings not present in the SM. The matching of the Wilson coefficients of the
EFT operators to experimental data allows for rather model-independent limits, which can
be translated into constraints on parameters of specific NP models.

The EFT approach to Higgs boson pair production in gluon fusion is of interest, since it
provides model independent predictions for deviations of the measurable signal from the SM
prediction. Conversely, future experimental results can be used to set limits for the allowed
EFT coupling values, which narrow down the parameter space of specific NP models. In
order to provide reliable estimates for these limits, the EFT analysis has to include higher
order corrections to the Higgs pair production process. Prior to this project, the results of
which were published in [48], the Higgs pair production process was already studied in the
EFT framework including approximate NLO QCD corrections in [49]. The strategy to ac-
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count for higher order corrections in this analysis was to calculate the LO amplitude including
dimension-6 EFT operators and to multiply the resulting cross section with the overall K-
factor, given by the ratio of the SM result for the NLO QCD cross section divided by the
LO cross section in the heavy top quark limit [15]. In this study we investigate the validity
of this approximation by including the dimension-6 contributions directly at the NLO ampli-
tude level in the heavy top quark limit. These two approaches lead to different results, as the
individual contributions to Higgs pair production are affected differently by the NLO QCD
corrections.

The following chapter presents the details of this project. After the introduction of the EFT
framework and the heavy quark limit in section 4.1 and section 4.2, the implementation of
the process is presented in section 4.3 and the results of the calculation are discussed in
section 4.4.

4.1. Effective Field Theory

The influence of BSM physics realised at some high scale on SM observables can be parame-
trised in a rather model-independent way by introducing higher-dimensional operators. When
the Higgs boson is, in analogy to the SM, embedded within a weak doublet, the leading BSM
effects originate mostly from dimension-6 operators. Although in certain phase space regions
the dimension-8 operators can become equally important, the investigation of these kinematic
regions is challenging. Therefore, the contributions of dimension-8 operators are neglected
in this project. The dimension-6 operators relevant for Higgs boson pair production without
CP-violating effects in the Strongly-Interacting-Light Higgs (SILH) operator basis [107] are
given by,

∆LSILH
6 ⊃ c̄g

g2
s

m2
W

H†HGaµνG
aµν+

c̄H
2v2

∂µ(H†H)∂µ(H†H)

+
c̄u
v2
yt(H

†Hq̄LHctR+h.c.)− c̄6

6v2

3m2
h

v2
(H†H)3 ,

(4.1)

where v is the Higgs field vacuum expectation value v ' 246 GeV, mh = 125 GeV the Higgs
boson mass, mW = 80.38 GeV the mass of the W boson, yt the top quark Yukawa coupling,
gs the strong coupling and Gaµν the gluon field strength tensor. The first operator describes
the effective contact interactions of gluons with one and two Higgs bosons, while the remain-
ing three operators modify the top Yukawa coupling and the trilinear Higgs self-couplings.
Additionally, the first operator in the second line of eq. (4.1) introduces a novel coupling
of two top quarks to two Higgs bosons. The coefficients of the operators c̄H , c̄u, c̄6 and c̄g
parametrise the deviation from the SM and are bounded by experimental findings [107].
An alternative parametrisation of the dimension-6 operators can be obtained when the elec-
troweak group SU(2)L⊗U(1)Y is non-linearly realised and the physical Higgs boson is a
generic CP-even scalar, which is a singlet of the custodial symmetry and need not necessarily
be embedded in a weak doublet. The dimension-6 operators of the non-linearly realised EFT
Lagrangian [108] relevant for Higgs pair production read

∆Lnon-lin ⊃ −mtt̄t

(
ct
h

v
+ctt

h2

2v2

)
− c3

6

(
3m2

h

v

)
h3+

αs

π
GaµνGaµν

(
cg
h

v
+cgg

h2

2v2

)
, (4.2)

with αs = g2
s/(4π). The coefficients of the non-linear EFT Lagrangian cg, cgg, ct, ctt and c3

in the SM limit of the EFT description read

ct → 1 , ctt → 0 , c3 → 1 , cg → 0 , cgg → 0 . (4.3)
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In contrast to the SILH parametrisation, where the coefficients need to be small, the non-
linear Lagrangian is valid for arbitrary values of the couplings ci and they are only restricted
by experiment [49]. Furthermore, the coefficients of both parametrisation can be set into
relation through,

ct = 1− c̄H
2
−c̄u , ctt = −1

2
(c̄H+3c̄u) , c3 = 1−3

2
c̄H+c̄6 , cg = cgg = c̄g

(
2πv

mW

)2

. (4.4)

In the following the results will be given in the non-linear parametrisation.1

4.2. Heavy Top Quark Limit

In analogy to the SM (and supersymmetric) calculation of [15], the NLO QCD corrections
in the EFT framework can be obtained in the heavy top quark limit. These corrections are
calculated by explicit expansion of the two-loop amplitude in the heavy quark mass according
to the general algorithm of [109,110] or in an equivalent approach by applying the low-energy
theorem for Higgs physics [111–113]. In the low-energy limit, the Higgs field operator acts like
a constant field and the NLO corrected interaction of Higgs fields with gluon fields is generated
from the top quark contribution to the unrenormalised transverse gluon-polarisation at zero-
momentum transfer Πt

gg(0) [15,113]. At two-loop order, this yields

Πt
gg(0) =

αs

π
Γ(1+ε)

[
4πµ2

(m0
t )

2

]ε{ 1

6ε
+
αs

π
Γ(1+ε)

[
4πµ2

(m0
t )

2

]ε 1

16ε

}
+O(ε0, α3

s ) (4.5)

and the Higgs field couplings to gluons are obtained from the Higgs field dependence of the
bare top quark mass m0

t in the low-energy limit,

m0
t → m0

t

(
1+ct

h

v

)
. (4.6)

After renormalisation and by consistently including the EFT contributions from the couplings
of two gluons to one and two Higgs fields described by the parameters cg and cgg respectively,
as well as the novel coupling of two top quarks to two Higgs bosons described by ctt, the
effective Lagrangian for the couplings of Higgs bosons to gluons reads

Leff =
αs

12π
GaµνGaµν

{
h

v

[
ct

(
1+

11αs

4π

)
+12cg

]
+
h2

2v2

[
(ctt−c2

t )

(
1+

11αs

4π

)
+12cgg

]}
. (4.7)

In the SM limit given by eq. (4.3), the effective Lagrangian agrees with the corresponding SM
result of [15]. The factor (1+11αs/(4π)) was obtained by consistently deriving the effective
Lagrangian from the transverse gluon-polarisation at two-loop order and thus it describes the
matching of the effective theory to the full theory at NLO QCD. The Feynman rules for the
effective couplings obtained from eq. (4.7) are summarised in fig. 4.1.

The validity of the heavy top quark limit for the calculation of the NLO QCD corrections
to Higgs boson pair production was already discussed for the SM case in section 2.3.4. The
analysis of the finite top quark mass effects performed in [88,91,92] estimated the uncertainty
on the K-factor to be of O(10%) at NLO. The application of the heavy quark mass limit
in BSM models can, however, lead to much larger uncertainties than in the SM, as was
shown for the minimal composite Higgs model in [47,114], where the LO result with full mass
dependence deviates by up to 50% from the result of the heavy top quark approximation.
But since the NLO corrections are dominated by soft and collinear gluon effects, the K-factor
uncertainty in EFT can be expected to be of order 10−20%.

1In the publication to this project [48], the results in the SILH parametrisation are included in the appendix.
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ga
µ(k1)

gb
ν(k2)

h = −iδab αs
3πv2

[(k1·k2)gµν−kµ2kν1 ][ct(1+ 11αs
4π )+12cg]

ga
µ(k1)

gb
ν(k2) h

h

= −iδab αs
3πv2

[(k1·k2)gµν−kµ2kν1 ][(ctt−c2
t )(1+ 11αs

4π )+12cgg]

Figure 4.1: Feynman rules for the couplings of two gluons to one and two Higgs boson in the heavy
top quark limit. The expressions contain corrections from the matching to the exact theory at NLO
QCD as well as contributions from the EFT dimension-6 operators.

4.3. Details of the Calculation

The calculation of the NLO QCD corrections in the EFT framework follows the same strategy
as the discussion of chapter 3. However, since the results are obtained in the heavy top quark
limit, it is straightforward to perform the calculation using the conventions of [15]. Generic
contributions to the LO process are depicted in fig. 4.2. The LO partonic cross section can
be written as

σ̂eftLO (ŝ) =
G2
Fα

2
s (µR)

512(2π)3

∫ t̂+

t̂−

dt̂
[
|Aeft

1 |2+|Aeft
2 |2

]
, with (4.8)

Aeft
1 = C∆c3(ct F∆+8cg)+cttF∆+8cgg+c

2
t F� , (4.9)

Aeft
2 = c2

t G� . (4.10)

The form factors Aeft
1 and Aeft

2 are expressed in terms of the EFT coefficients ci as well as
the coupling coefficient

C∆ = 3m2
h/(ŝ−m2

h+imhΓh) (4.11)

and the SM form factors F∆, F� and G�, which are given by the SM expressions of [46] and
contain the full top quark mass dependence. The spin zero form factor Aeft

1 receives contri-
butions from all LO diagrams and the individual terms in eq. (4.9) correspond, respectively,
to the diagrams represented in fig. 4.2, while only the box topology diagrams contribute to
the spin two form factor Aeft

2 .

Figure 4.2: Generic contributions to Higgs boson pair production in gluon fusion at LO including
dimension-6 operators.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Sample contributions for the virtual (upper) and real (lower) corrections to Higgs boson
pair production at NLO in the heavy quark limit.

The partonic differential cross section is a function of the partonic Mandelstam variables ŝ, t̂,
and û and the phase space integration is expressed in terms of the momentum transfer t̂, as
defined previously in section 3.1.4,

ŝ = τs , t̂ = m2
h−

ŝ(1−β cos θ)

2
, û = 2m2

h−ŝ−t̂ , t̂± = m2
h−

ŝ(1∓β)

2
, with

β =
√

1−4m2
h/ŝ .

(4.12)

For the calculation of the NLO QCD corrections we use the effective couplings of fig. 4.1. The
corrections consist of real and virtual contributions, with sample diagrams shown in fig. 4.3.
The calculation is performed in dimensional regularisation in D = 4−2ε dimensions, as the
NLO amplitudes develop ultraviolet (UV) and infrared (IR) divergences. The UV singularities
of the virtual corrections are cancelled by renormalisation of the strong coupling constant αs

in the MS scheme with five active flavours according to eq. (2.24). The IR divergences cancel
in the sum of the real and virtual corrections and remaining collinear initial state singularities
are absorbed by the definition of the NLO parton densities, which are also defined in the MS
scheme with five active flavours. The finite hadronic NLO cross section can be organised as

σeftNLO(pp→ hh+X) = σeftLO +∆σeftvirt+∆σeftgg +∆σeftgq +∆σeftqq̄ . (4.13)

The individual contributions are obtained in analogy to the SM calculation of [15], as also
discussed in sections 3.2.4 and 3.3, yielding

σeftLO =

∫ 1

τ0

dτ
dLgg
dτ

σ̂eftLO (ŝ = τs) , (4.14)

∆σeftvirt =
αs(µR)

π

∫ 1

τ0

dτ
dLgg
dτ

σ̂eftLO (ŝ = τs)Ceft
virt , (4.15)

∆σeftgg =
αs(µR)

π

∫ 1

τ0

dτ
dLgg
dτ

∫ 1

τ0/τ

dz

z
σ̂eftLO (ŝ = zτs)Ceft

gg (z) , (4.16)

∆σeftgq =
αs(µR)

π

∑
qq̄

∫ 1

τ0

dτ
dLgg
dτ

∫ 1

τ0/τ

dz

z
σ̂eftLO (ŝ = zτs)Ceft

gq (z) , (4.17)

∆σeftqq̄ =
αs(µR)

π

∑
q

∫ 1

τ0

dτ
dLgg
dτ

∫ 1

τ0/τ

dz

z
σ̂eftLO (ŝ = zτs)Ceft

qq̄ (z) , (4.18)
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where µR denotes the renormalisation scale,
√
s is the hadronic centre-of-mass energy and

τ0 = 4m2
h/s. With the factorisation scale of the parton-parton luminosities dLij/dτ denoted

by µF and the definitions of the Altarelli-Parisi splitting functions Pij(z) given in section 3.3,
the coefficients of the real corrections read

Ceft
gg (z) = −z Pgg(z) log

µ2
F

τs
−11

2
(1−z)3+6[1+z4+(1−z)4]

( log (1−z)
1−z

)
+
, (4.19)

Ceft
gq (z) = −z

2
Pgq(z) log

µ2
F

τs(1−z)2
+

2

3
z2−(1−z)2 , (4.20)

Ceft
qq̄ (z) =

32

27
(1−z)3 . (4.21)

These expression agree exactly with the corresponding SM coefficients due to QCD factori-
sation. The virtual corrections, on the other hand, are altered in comparison to the SM case
because of the EFT coefficients and due to the novel effective vertices not present in the SM.
The coefficient of the virtual corrections Ceft

virt is found as

Ceft
virt =

[
π2+

33−2NF

6
log

µ2
R

ŝ
+

11

2

]
−44 Re

{ ∫ t̂+
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1 |2+|Aeft
2 |2]

}

+
4(ct+12cg)

2

9
Re

{∫ t̂+
t̂−

dt̂
[
Aeft

1 −Aeft
2 [

p2T
2t̂û

(ŝ−2m2
h)]
]

∫ t̂+
t̂−

dt̂[|Aeft
1 |2+|Aeft

2 |2]

}
, with

p2
T =

(t̂−m2
h)(û−m2

h)

ŝ
−m2

h .

(4.22)

The first line of eq. (4.22) corresponds to the contributions from the diagrams of fig. 4.3 (a)
and (b), where the term in the first bracket is the universal NLO coefficient known from the SM
heavy quark limit corrections and the second term is due to the novel EFT couplings of two
gluons to one or two Higgs bosons. The term in the second line of eq. (4.22) originates from
the diagram fig. 4.3 (c) and in the SM limit it agrees with the heavy quark limit contributions
from the reducible double-triangle diagrams of fig. 3.4 (b).

4.4. Analysis and Results

The results of the calculation presented in the previous section were implemented in the
Fortran program HPAIR [115]. For the analysis we have chosen the centre-of-mass energy√
s = 14 TeV and set the masses of the Higgs boson, top and bottom quark respectively to

mh = 125 GeV, mt = 173.2 GeV and mb = 4.75 GeV. We have used the MSTW08 [116–118]
parton densities for the LO and NLO cross section with the value of the strong coupling at
LO and NLO set to αLO

s = 0.13939 and αNLO
s = 0.12018.

In order to determine the impact of the new couplings on the QCD corrections, we calculate
the EFT K-factor, which is defined as the ratio of the NLO and LO hadronic cross sections,

K =
σeftNLO

σeftLO

, (4.23)

where the parton densities and the strong coupling in σeftNLO and σeftLO are taken at the ap-
propriate order. Deviations of the K-factor from the SM value are mainly due to the virtual
corrections, as the EFT coefficients are involved non-trivially in the virtual correction factor
eq. (4.22). Additionally, the weights of the τ integration in the real corrections are shifted due
to the modified LO cross section. We investigate the effects of the dimension-6 operators on
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the K-factor by varying individual parameters while fixing the remaining EFT parameters to
their SM value according to eq. (4.3). To examine the validity of the approximate inclusion
of the NLO corrections used in [49], we also determine the maximal relative deviation of the
SM and EFT K-factors

δcimax =
max|Kci−KSM|

KSM
(4.24)

for the variations of the individual coefficients ci = cg, cgg, ct, ctt, c3.

Figure 4.4 (upper) shows the variation of the effective coupling of two gluons to one Higgs
boson cg away from its SM value cg = 0 in the range −0.15 ≤ cg ≤ 0.15. Since this coupling
also affects signal strengths for single Higgs boson production, it is rather strictly constrained
by experimental data under certain assumptions [49,119]. The variation range exceeds these
constraints for illustrative purposes. The K-factor is flat in the entire variation range, which
can be explained by the fact that the coefficient cg enters the EFT form factors through
diagrams with an s-channel Higgs propagator, which are numerically suppressed.
In fig. 4.4 (lower) we have set cg = 0 and varied cgg away from its SM value cgg = 0 in the range
−0.15 ≤ cgg ≤ 0.15 [49]. The maximal deviation of the K-factor is found for cgg = −0.15
where the K-factor reaches a plateau. In this region, the relative K-factor deviation amounts
to δ

cgg
max = 5.4%. While the impact on the K-factor is rather small, the impact on the total

cross section is much larger. At NLO the EFT cross section can be enhanced considerably
compared to the SM cross section. We find

max|σcgg−σSM|
σSM

= 5.8 (4.25)

within the variation range of cgg allowed by experimental constraints. This significant de-
viation from the SM predictions confirms the potential of the Higgs boson pair production
process for indirect BSM searches.

The variation of the novel contact interaction between two top quarks and two Higgs bosons
ctt is shown in fig. 4.5 within the range −1.5 ≤ ctt ≤ 1.5 [49]. The K-factor yields a maximal
deviation of δcttmax = 3.2% for ctt ≈ 0.7 where the individual terms of the LO cross section inter-
fere destructively. The maximal deviation is reached at a much higher value of the coefficient
ctt compared to the previous variations of cg and cgg. This can be explained by the different
normalisations of these couplings within the Feynman rules of fig. 4.1. Since the value of the
trilinear Higgs self-coupling is so far practically unconstrained by experiment and the value
of the coupling in BSM models can differ significantly from the SM prediction, we perform
the variation of the coefficient c3 in the wide range of −10 ≤ c3 ≤ 10 [49] while setting the
remaining EFT couplings to their SM values. The effect of the c3 variation is small and leads
to a maximal K-factor deviation of δc3max = 2.1% in the region 5 . c3 . 10. The minor impact
of this coefficient on the K-factor can again be explained by the fact, that the coefficient only
contributes to diagrams with an s-channel Higgs propagator, which suppresses its effect.

In addition to the variations presented in figs. 4.4 to 4.6, we also investigated the impact of the
Yukawa coupling modifying EFT parameter ct in the still allowed range 0.65 ≤ ct ≤ 1.15 [49],
as well as the effects of these variations for a very high centre-of-mass energy of

√
s = 100 TeV.

For such high energies the EFT framework still retains its validity due to the peaking of the
parton density functions of quarks and gluons at low energy fractions, if we assume that NP
sets in somewhere above ΛNP > 10 TeV. These variations lead to K-factor deviations of a
few per cent, which underlines the dominance of the soft and collinear gluon effects in the
NLO QCD corrections, as these factorise from the LO cross section.
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Figure 4.4: Upper: K-factors of the NLO QCD corrected cross section for Higgs boson pair pro-
duction in gluon fusion at

√
s = 14 TeV as a function of the EFT coupling of two gluons to one Higgs

boson cg, while the remaining EFT parameters are set to their SM limits of eq. (4.3). The dashed
lines describe the contributions of the individual QCD correction terms of eq. (4.13). Lower: same
setup for the variation of the EFT coupling of two gluons to two Higgs bosons cgg. The figures are
already published in [48].
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Figure 4.5: Same as fig. 4.4, but with the SM values for the coefficients cg = cgg = 0, ct = c3 = 1
and the coefficient for the interaction between two top quarks and two Higgs bosons ctt is varied over
its experimentally allowed range.
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Figure 4.6: Same as fig. 4.4, but with the SM values for the coefficients cg = cgg = ctt = 0, ct = 1 and
the coefficient for the modification of the trilinear Higgs self-coupling c3 is varied over its experimentally
allowed range.





CHAPTER 5

Conclusion and Outlook

In this thesis two projects involving the NLO QCD corrections to Higgs boson pair produc-
tion were performed. Chapter 4 describes the calculation of the NLO QCD correction to
Higgs boson pair production in the EFT framework in the heavy top quark mass limit. The
considered dimension-6 EFT operators not only modify the SM Higgs couplings, but also
induce novel couplings not present in the SM and can lead to significant deviations from the
SM prediction of the Higgs pair production cross section.

The calculation of the NLO QCD corrections within the SM with full top quark mass de-
pendence was discussed in chapter 3. Here the most crucial step of the calculation has been
performed by the implementation of the two-loop amplitude of the virtual corrections. This
implementation is an elaborate task, as there is no systematic algorithm for the calculation
of two-loop four point functions with massive external and internal particles. For each of the
47 contributing box topology diagrams a proper Feynman parametrisation had to be found,
which allows for the isolation of the UV and IR poles and numerical integration. Due to
the enclosed top quark loop, which consists of up to 6 fermionic propagators, the calculation
also demands for careful bookkeeping in order to correctly reduce the two-loop momentum
tensor integrals to scalar six-dimensional Feynman parameter integrals. For these reasons a
semi-flexible FORM and Mathematica procedure had to be developed, which follows the cal-
culational strategy described in section 3.2 and is capable of reducing the variety of terms
occurring in the virtual amplitude.
Having already found a suitable description of all diagrams below the virtual top quark mass
threshold, the final challenge of this calculation is given by the treatment of the threshold
singularities. While these divergences can be formally treated by introducing a small regu-
lator for the imaginary part of the propagator quark mass, the numerical integration of the
Feynman parameters becomes unstable due to large cancellations in the vicinity of the thresh-
old. The numerical stability of the integrals can be improved by partial integration of the
Feynman integrals. Since for each diagram there are several ways to perform the partial inte-
gration, the individual possibilities are currently being carefully investigated, in order to find
the optimal choice which minimises the calculational time of the integrals. Once this stage of
the project is finished, the obtained results can be used to perform the integration over the
phase space, yielding the final result for the virtual correction factor Cmass of eq. (3.89). The
outlook of this project in the near future is the development of a numerical program package
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for the calculation of the total and differential cross section of Higgs pair production with
NLO accuracy, in which the finite top quark mass effects are fully included.

In the long term, this calculation triggers a wide range of exciting phenomenological investi-
gations. Especially the improvement in the calculation of differential distributions can yield
interesting consequences for the measurement prospects of the trilinear Higgs self-coupling at
the LHC. The results can also be combined with the calculation performed within the EFT
framework presented in chapter 4 to further improve the EFT predictions for Higgs boson
pair production.



APPENDIX A

Formulary

A.1. One Loop Tensor Integral Reduction

A.1.1. Three-Point Tensor Integrals

In the calculation of the leading order form factors, we encounter tensor one loop integrals of
up to rank two,

Ai,∆ ∼ C{0,µ,µν}(p1, p2) = (2πµ)4−D
∫

dDq

iπ2

{1, qµ, qµqν}
[q2−m2

t ][(q+p1)2−m2
t ][(q+p2)2−m2

t ]
, (A.1)

which can be reduced to scalar one loop integrals in order to simplify the numerical evaluation.
Following the strategy described in [96], the tensor integral coefficients,

Cµ(p1, p2) = pµ1C1(p1, p2)+pµ2C2(p1, p2) (A.2)

Cµν(p1, p2) = gµνC00(p1, p2)+pµ1p
ν
1C11(p1, p2)

+(pµ1p
ν
2+pµ2p

ν
1)C12(p1, p2)+pµ2p

ν
2C22(p1, p2),

(A.3)

can be expressed in terms of scalar two- and three-point one loop integrals B0, C0 as,

C00(p1, p2) =
1

2(D−2)
(B0(p2−p1)+2m2

tC0(p1, p2)+

2∑
i=1

p2
iCi(p1, p2)), (A.4)

Cij(p1, p2) =
2∑

n=1

1

2
∆−1
in (p1, p2)(Rnj(p1, p2)−2C00(p1, p2)δnj), (A.5)

Rnj(p1, p2) = B
(n)
1 (p1, p2)(1−δnj)−B̃j(p1, p2)−p2

nCj(p1, p2), (A.6)

Ci(p1, p2) =
2∑

n=1

1

2
∆−1
in (p1, p2)(B

(n)
0 (p1, p2)−B0(p2−p1)), (A.7)

with ∆−1
in being the inverse of the Gram matrix,

∆in = pi· pn, (A.8)
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and

B
(1)
{0,1}(p1, p2) = B{0,1}(p2), (A.9)

B
(2)
{0,1}(p1, p2) = B{0,1}(p1), (A.10)

B̃1(p1, p2) = −B1(p2−p1)−B0(p2−p1), (A.11)

B̃2(p1, p2) = B1(p2−p1), (A.12)

B1(p1) = −1

2
B0(p1). (A.13)

A.1.2. Four-Point Tensor Integrals

Using the abbreviation,

〈f(q, pi)〉 = (2πµ)4−D
∫

dDq

iπ2

f(q, pi)

[q2−m2
t ][(q+p1)2−m2

t ][(q+p2)2−m2
t ][(q+p3)2−m2

t ]
(A.14)

the following numerator structures need to be implemented for the calculation

〈q2q2〉 = gµνC(0)
µν (p1, p2, p3)−2pµ1C

(0)
µ (p1, p2, p3)

+(p2
1+m2

t )C
(0)
0 (p1, p2, p3)+m4

tD0(p1, p2, p3) ,
(A.15)

〈q2(qpi)(qpj)〉 = pµi p
ν
jC

(0)
µν (p1, p2, p3)−

(
(p1pi)p

µ
j +(p1pj)p

µ
i +

m2
t

2
pµi
)
C(0)
µ (p1, p2, p3)

+
m2
t

2
pµi C

(j)
µ (p1, p2, p3)+

(
(p1pi)(p1pj)+

m2
t (p1pi)

2
+
m2
t p

2
j

4

)
×

×C(0)
0 (p1, p2, p3)−

m2
t p

2
j

4
C

(i)
0 (p1, p2, p3)+

m2
t p

2
i p

2
j

4
D0(p1, p2, p3) ,

(A.16)

〈q2(qpi)〉 = pµi C
(0)
µ (p1, p2, p3)−

(
p1pi+

m2
t

2

)
C

(0)
0 (p1, p2, p3)

+
m2
t

2
C

(i)
0 (p1, p2, p3)−m

2
t p

2
i

2
D0(p1, p2, p3) ,

(A.17)

〈(qpi)(qpj)(qpk)〉 =
1

2

{
pµi p

ν
j

(
C(k)
µν (p1, p2, p3)−C(0)

µν (p1, p2, p3)
)
−p

2
k

2
pµi C

(j)
µ (p1, p2, p3)

+
(
(p1pi)p

µ
j +(p1pj)p

µ
i +

p2
k

2
pµi
)
C(0)
µ (p1, p2, p3)

−
(
(p1pi)(p1pj)+

(p1pi)p
2
k

2
+
p2
jp

2
k

4

)
C

(0)
0 (p1, p2, p3)

+
p2
jp

2
k

4
C

(i)
0 (p1, p2, p3)−

p2
i p

2
jp

2
k

4
D0(p1, p2, p3)

}
,

(A.18)

〈q2〉 = C
(0)
0 (p1, p2, p3)+m2

tD0(p1, p2, p3), (A.19)

〈(qpi)(qpj)〉 =
1

2

{
pµi
(
C(j)
µ (p1, p2, p3)−C(0)

µ (p1, p2, p3)
)

+
(
p1pi+

p2
j

2

)
C

(0)
0 (p1, p2, p3)−

p2
j

2
C

(i)
0 (p1, p2, p3)

+
p2
i p

2
j

2
D0(p1, p2, p3)

}
,

(A.20)

〈qpi〉 =
1

2

{
C

(i)
0 (p1, p2, p3)−C(0)

0 (p1, p2, p3)−p2
iD0(p1, p2, p3)

}
, (A.21)
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where the superscript of the loop functions keeps track of which denominator term drops out,

C
(0)
{0,µ,µν}(p1, p2, p3) = C{0,µ,µν}(p2−p1, p3−p1), (A.22)

C
(1)
{0,µ,µν}(p1, p2, p3) = C{0,µ,µν}(p2, p3), (A.23)

C
(2)
{0,µ,µν}(p1, p2, p3) = C{0,µ,µν}(p1, p3), (A.24)

C
(3)
{0,µ,µν}(p1, p2, p3) = C{0,µ,µν}(p1, p2). (A.25)

The resulting three-point tensor integrals can eventually be reduced to scalar integrals using
the identities of appendix A.1.1.
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An erster Stelle möchte ich mich bei meiner “Doktormutter” Prof. Margarete Mühlleitner für
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Dem gesamten ITP möchte ich meinen Dank aussprechen für die produktive aber gleichzeitig
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