

Analysis of the interaction between liquid tin and austenitic steels, nickel-based alloys as well as protective surface layers at high temperature

Thomas Emmerich, Carsten Schroer

INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS (IAM-AWP), CORROSION DEPARTMENT

KIT – University of the State Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Liquid tin

- Application as a heat transfer medium
 - □ Large liquid temperature range 232 2620 °C
 - □ High heat flux
 - Not volatile or toxic
- □ Corrosion of metallic materials
 - Solution of alloying elements
 - Formation of intermetallic phases with Sn (stannides)
- Compatible materials
 - Rhenium, tungsten, quartz-glass, ceramics, graphite
- □ Alternative
 - Protective surface layers on steels or Ni-based alloys

Analysis of the interaction between liquid tin and austenitic steels, nickel-based alloys as well as protective surface layers at high temperature Lausanne, 11.07.2016

Experimental Furnace chamber Gas cavity Sample Tube Door Thermocouple Crucible 52 mm Γ5 TЗ Gas cavity 80 mm Plugs Liquid tin ٢6 Tin filled tubular samples Ø20 mm Ø25 mm □ Austenitic steels (1.4301, 1.4571) at 500 and 700 °C 36 mm Ni-based alloys (2,4642, 2.4650, 2.4663) at 700 and 1000 °C 38 mm Procedure Testing at 500, 700 and 1000 °C for 25, 50 und 100 h Formation of surface layers by gas-phase processes and PVD Post-test analysis Measurement of material loss OM, REM, EDX and XRD Analysis of the interaction between liquid tin and austenitic steels, nickel-based alloys Institute for Applied Materials-3 as well as protective surface layers at high temperature Applied Materials Physics (IAM-AWP) Lausanne, 11.07.2016

Corrosion Department

Corrosion by liquid tin

1.4571 at 700 °C for 25 h

2.4663 at 700 °C for 25 h

Steels and Ni-based alloys

- Solution of alloying elements, especially Ni
- Penetration by Sn
- \Box Cr, Fe and Mo form α -, σ or similar phases
- Steels formation of stannide layers
- Stannides allow solutes to re-precipitate in case of local saturation of the melt

Material losses

- □ Steels at 500 °C: 40 µm after 100 h
- □ Steels at 700 °C: 150 µm after 100 h
- □ Ni-based alloys at 700 °C: 1100 µm after 50 h
- Ni-based alloys at 1000 °C: 2500 µm after 25 h

Analysis of the interaction between liquid tin and austenitic steels, nickel-based alloys as well as protective surface layers at high temperature Lausanne, 11.07.2016

Surface layers

1.4571 at 700 °C for 100 h

Low pressure carburisation

- □ At 1000 °C in propane
- Internal carbides instead of layer
- □ No significant reduction of corrosion at 700 °C

1.4571 at 700 °C for 100 h

- □ High temperature gas oxidation
 - □ At 800 °C in flowing Ar
 - Continuous oxide layers
 - Oxide layers partially dissolved
 - □ Local protection of alloy at 700 °C

Analysis of the interaction between liquid tin and austenitic steels, nickel-based alloys as well as protective surface layers at high temperature Lausanne, 11.07.2016

Surface layers

1.4571 at 700 °C for 100 h

2.4642 at 700 °C for 100 h

□ High temperature gas nitration

- □ At 800 °C in flowing N₂
- Continuous Cr-nitride layers
- □ 1.4571 sample mainly protected (700 °C,100 h)
- Local penetration by Sn through defects
- Cr-nitride layers on 2.4642 were transformed into (AI, Ti)-nitrides

Surface layers

2.4663 at 700 °C for 50 h

Physical vapor deposition

- □ 5 µm thick layers of TiC and TiN on 2.4663
- Layer defects formed, likely due to different
 - thermal expansion than substrate
- Penetration by Sn through defects
- No transformation of TiC and TiN observed

Conclusions

Corrosion

- Dense protective surface layers necessary to prevent solution of alloying elements, especially leaching of Ni
- □ Short grace periods, especially at 1000 °C
- Precise corrosion monitoring necessary

Oxides

- Thick layers necessary for longer durability
- Stabilisation by oxygen content in melt

Nitrides

- □ Improvement of process to ensure layer continuity
- Alloys with higher alloying content of AI or Ti than Cr

PVD

Multi-layer, or gradually structured layers to compensate thermal expansion difference

Thank you for your attention!

Analysis of the interaction between liquid tin and austenitic steels, nickel-based alloys as well as protective surface layers at high temperature Lausanne, 11.07.2016

Institute for Applied Materials– Applied Materials Physics (IAM-AWP) Corrosion Department

Analysis of the interaction between liquid tin and austenitic steels, nickel-based alloys as well as protective surface layers at high temperature

Thomas Emmerich, Carsten Schroer

INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS (IAM-AWP), CORROSION DEPARTMENT

KIT – University of the State Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu