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Abstract

We report on a completely analytical calculation of the field anomalous dimension γϕ and the critical 
exponent η for the O(n)-symmetric ϕ4 model at the record six loop level. We successfully compare our 
result for γϕ with n = 1 with the predictions based on the method of the Borel resummation combined 
with a conformal mapping (Kazakov et al., 1979 [40]). Predictions for seven loop contribution to the field 
anomalous dimensions are given.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Since Kenneth Wilson, who was first to apply ε-expansion and renormalization group method 
to calculate critical exponents in ϕ4 model, this model became one of the most popular testing 
grounds for a wide range of methods of diagram calculations and resummation. The first two 
terms of the ε-expansion were calculated by Wilson in [1], ε3 terms and ε4 for critical exponent 
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η were calculated in [2]. The latter work was the last where calculations using Wilson renor-
malization group approach were performed for this model. All subsequent calculations were 
performed using quantum field renormalization group approach, which effectively reduces the 
problem of evaluation of critical exponents to the one of finding the corresponding beta-function 
(or the anomalous dimension).

This approach combined with modern computational techniques allows one to calculate high 
order corrections with significantly less effort than in the original Wilson’s formalism. Using this 
approach ε4 terms for other exponents were found in [3]. The field anomalous dimension γϕ and 
the critical exponent η were calculated with 5-loop accuracy in [4], the 5-loop β-function was 
first published in [5,6]. Later some (numerically insignificant) inaccuracies were found in this 
calculation and results for index η and β-function were corrected [7]. Recently, a completely 
independent check of the analytic results [4–7] was successfully performed in [8] with the use of 
purely numerical methods.

In this work we describe the results of a completely analytical calculation of γϕ and η at six 
loop level in the O(n)-symmetric ϕ4 model.

2. Setup and notations

The (renormalized) Lagrangian of the ϕ4-model in the Euclidean space of d = 4 − 2ε dimen-
sions reads

L(ϕ) = 1

2
m2Z1ϕ

2 + 1

2
Z2 (∂ϕ)2 + 16π2

4! Z4 g μ2ε ϕ4, (1)

where RCs (Renormalization Constants) Zi are expressed in terms of renormalization constants 
of the field ϕ0 = ϕZϕ , mass m2

0 = m2Zm2 and coupling constant g0 = gμ2εZg in the standard 
way:

Z1 = Zm2Z
2
ϕ, Z2 = Z2

ϕ, Z4 = ZgZ
4
ϕ. (2)

In the MS-scheme [9] which we employ throughout the paper the UV counterterms do not 
depend on μ and may depend only polynomially on any other dimensionfull parameter of a 
theory [10]. As a result the RCs Zi do depend on the regulating parameter ε and renormalized 
coupling constant g only and can be written as:

Zi = 1 +
∑
k=1

Zi,k(g)

εk
. (3)

Given the RC Zϕ(g), the corresponding anomalous dimension of the scalar field we are interested 
in is defined as follows

γϕ(g) = μ
∂ logZϕ(g)

∂ μ

∣∣∣
g0,ϕ0

= β(g)
∂ logZϕ

∂g
= −2g

∂ Zϕ,1(g)

∂ g
= −g

∂ Z2,1(g)

∂g
. (4)

The RC Z2 and Zm2 are related with UV divergences of the two point one particle irreducible 
Green function 
2(p, m2

0, g0), which is connected with two point Green function (propagator) 
D(p, m2

0, g0) by Dyson equation D−1(p, m2
0, g0) = p2 + m2

0 − 
2(p, m2
0, g0). Thus for renor-

malized two point Green function DR(p, m2, g, μ) we got
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DR(p,m2, g,μ) = 1

Z2
ϕ

D(p,m2Zm2, gμ2εZg)

= 1

Z2
ϕ(p2 + m2Zm2 − 
2(p,m2Zm2, gμ2εZg))

= 1

p2Z2 + m2Z1 − Z2
ϕ
2(p,m2Zm2, gμ2εZg)

. (5)

Last term in (5) can be rewritten with use of the Bogoliubov–Parasiuk R-operation [11,12] in the 
following way Z2

ϕ
2(p, m2Zm2, gμ2εZg) = KR′ 
2(p, m2, gμ2ε). So RCs Z1 and Z2 can be 
conveniently extracted from 
2:

Z2 = 1 + ∂p2KR′ 
2(p,m2, g,μ), Z1 = 1 + ∂m2KR′ 
2(p,m2, g,μ), (6)

where R′ is the incomplete R-operation (which subtracts all proper UV subdivergences from a 
given Feynman amplitude but does not touch its UV divergence as a whole) and K stands for the 
operator extracting the singular part of an ε expansion:

K
∑

i

Ci ε
i =

∑
i<0

Ci ε
i .

Renormalization constants Zi , i = 1, 2, 3, are known up to 5th-loop order [4–7]. The aim of this 
paper is to extend the results of [4] by one more order, that is, to evaluate analytically the sixth 
loop contribution to the anomalous dimension γϕ and the corresponding critical exponent η.

3. RG calculations in MS-scheme: general framework

At present there are basically two different ways to perform the analytical RG calculations 
at the multi-loop level. Both approaches make use of the method of Infrared Rearrangement 
(IRR) [13,14] in order to make integral more suitable for analytical calculations by setting zero 
(possibly after a proper Taylor expansion) initial masses and external momenta and introducing 
artificial ones. Both eventually employ the traditional integration by parts method to compute the 
resulting Feynman integrals.

The first one [15–17] amounts to adding an artificial mass or an external momentum to a 
properly chosen propagator of a given Feynman diagram before the (formal) Taylor expansion 
in all masses (except for the artificial one) and external momenta is made. The artificial external 
momentum has to be introduced in such a way that all spurious infrared divergences are softened 
away and the obtained Feynman integral is calculable. In practice the condition of absence of the 
infrared divergences leads to unnecessary complications and, in some cases, even prevents from 
reduction to the simplest integrals. The problem was solved by elaborating a special technique 
of subtraction of IR divergences — the R̃-operation [18–20] which we will discuss later.

In the second approach the infrared rearrangement is archived by inserting one and the same 
auxiliary mass to all propagators [21–23]. After this no IR divergences can ever appear. Next, 
a proper expansion in all external momenta and particle masses (except the auxiliary one) is to 
be performed. The resulting integrals are completely massive purely vacuum integrals (tadpoles), 
i.e. Feynman integrals without external momenta. Note that the expansion in external momenta 
and masses (except for the auxiliary one!) in both approaches is an unavoidable step if the (UV) 
RC we are looking for is related to a non-logarithmically divergent Feynman amplitude. It ef-
fectively reduces the quadratically (or even higher) UV divergent amplitude to the logarithmic 
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one which opens the way to apply IRR to the latter. This is always possible within dimensional 
regularization and minimal subtractions schemes (see, e.g. [24]).

Starting from L = 3, L-massive tadpoles are getting significantly more complicated for ana-
lytical evaluation than the L-loop vacuum integrals with all but one massless propagators. As a 
result, the most advanced RG calculations are being performed nowadays at the five loop level 
within the first, “massless” approach (see, e.g. [25,26]).

Let us discuss now the current limits of the massless way of doing RG calculations for the 
example of a logarithmically divergent L-loop Feynman integral 〈γ 〉. We assume that all its UV 
subdivergences are already known (the corresponding Feynman (sub)-integrals will all have loop 
number strictly less than L). Thus, our aim is to compute the UV counterterm (we assume that 
the original FI 〈γ 〉 is free from IR singularities)

Zγ = −KR′ 〈γ 〉.
The first two steps are trivial:

(i) all (external momenta) and masses are set to zero;

and

(ii) the integrand of FI 〈γ 〉 is modified by introducing a “softening factor”

p2

(p − q)2
, (7)

where the momentum p is the one flowing through an (arbitrary) internal line � (in principle, 
one could equivalently use a combination p2/(m2

aux + p2), with maux being an auxiliary 
(non-zero) mass).

The modified FI 〈γ q〉 is naturally represented as a convolution:

〈γ q〉 =
∫

dp

(2π)D
〈γ ′〉(p)

p2

(p − q)2
, (8)

where the (L − 1)-loop p-integral1

〈γ ′〉(p) = Cγ ′(ε)
1

(p2)2+(L−1)ε

is obtained by cutting the “softened” line � in the original diagram, that is γ ′ = γ \ �. Now, if 
by a proper choice of � the FI 〈γ q〉 is made free from any IR divergences (such a choice is not 
always possible, see an example below) then

Zγ = −KR′ 〈γ q〉 = −K 〈γ q〉 + . . . . (9)

Here dots stand for subtractions of UV subdivergences; the corresponding FI’s all have loop 
number strictly less than L and, consequently, are known according to our initial assumption. 
Thus, the evaluation of Zγ amounts to the calculation of the following expression:

1 That is a massless integral, depending on only one external momenta FI.
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Fig. 1. No IR safe IRR (with one softened line) is possible for this graph.

Cγ ′(ε)
∫

dp

(2π)D

1

(p2)2+(L−1)ε
· p2

(p − q)2
= Cγ ′(ε) (q2)−Lε G(1 + (L − 1) ε,1)

= Cγ ′(ε) (q2)−L ε 1

Lε
· (1 +O(ε)), (10)

or, equivalently, the function Cγ ′(ε) with accuracy O(ε0). In the r.h.s. of (10) we employ a 
convenient shortcut notation for a basic one loop p-integral [4]:∫

d p

(2π)d

1

(p2α)(q − p)2β

= (q2)2−ε−α−β

16π2

(
G(α,β) = (4π)ε


(α + β − 2 + ε)


(α)
(β)


(2 − α − ε)
(2 − β − ε)


(4 − α − β − 2ε)

)
.

(11)

Unfortunately, the condition of IR finiteness of the modified FI 〈γ q〉 is rather restrictive, 
in many cases it prevents from a convenient choice of the cut-line � leading to a simpler for 
calculation (L − 1)-loop p-integral or even from the very possibility of application of IRR to a 
diagram (see Fig. 1). The restriction can be lifted completely with the use of R∗-operation which 
includes IR subtractions in addition to usual UV ones:

R∗ = R · R̃. (12)

Here R̃ stands for the IR R-operation which recursively subtracts all IR singularities from a given 
(Euclidean!) FI. Thus, for the case of an arbitrary chosen line � eq. (9) assumes the form

Zγ = −KR′ R̃ 〈γ q〉 = −KR′ R̃′ 〈γ q〉 = −K 〈γ q〉 + . . . . (13)

Eq. (13) requires a few comments.
First, the R̃′ operation is defined as R̃ without the last IR subtraction corresponding to IR 

divergence of the FI 〈γ q〉 as a whole. The transition to R̃′ in the middle of (13) is perfectly legal 
as the presence of the modified propagator in the FI 〈γ q〉 ensures the superficial IR convergence 
of the latter.

Second, the application of both R′ and R̃′ in (13) is a purely algebraic procedure as all UV 
and IR counterterms to be computed can be algebraically expressed2 in terms of (proper) UV 
counterterms of 〈γ 〉 (which are known according to our initial assumption). As a result, we 
again arrive at a conclusion, that even for a generic choice of the cut-line � the evaluation of Zγ

requires knowledge of the pole and finite parts of the (L-1)-loop p-integral 〈γ q〉 (as well as some 
p-integrals with less number of loops).

Third, given a vertex with more than three incident fields, it can be easily transformed (cut) 
into two vertices joined by a new line with the corresponding propagator equal identically 1 

2 We will not discuss in any detail the internal mechanics of R̃′-operation (see in this connection [18,27,28]).
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Fig. 2. IRR performed using vertex cut, dashed line represents corresponding softening factor.

(see Fig. 2). This new line can also be used as a cut-one. We will see in the next section that in 
many cases cutting a vertex leads to especially simple (in fact, factorizable) p-integrals.

Recently the state of the art of analytical calculation of p-integrals has established itself at 
the four loop level (for more details see [29]), which means that 5-loop RG calculations are now 
feasible, while 6-loop calculations are still not possible in the general case. We will see in the 
next section why for a particular simple model of the scalar ϕ4 theory the 5-loop barrier was 
taken more than thirty years ago and why these days even 6-loop level has got accessible.

To summarize this section: given an L-loop completely massless vacuum diagram 
 with zero 
(in four-dimensions) superficial index of the (UV) divergence of the corresponding formal FI 〈
〉
the use of R∗ operation reduces the calculation of the UV counterterm Z
 to evaluation of only 
one (L − 1)-loop p-integral 〈
p〉(p) obtained by cutting an arbitrary line � from 
 (not counting 
p-integrals with loop number less than L which should be computed for removing UV and IR 
subdivergences from 〈
q〉). The final result for the UV counterterm

KR′ R̃′〈γ q〉
does not depend on the choice of the line � which provides us with a strong check of the correct-
ness of the calculations.

4. Calculation of TV-Reducible diagrams

The main simplifying feature of the ϕ4 model comes from the fact that its only interaction 
vertex is composed of four scalar fields. As a result the variety of different “topologies” of FIs 
to be computed is strongly reduced with respect to, say, the ϕ3 model. This is well illustrated by 
the fact that the first analytical four-loop RG calculation in the latter model have been performed 
very recently [30] (the four-loop RG-functions for the ϕ4 model are known since 1979 [16]).

Different cut-lines lead generically not only to different (L − 1)-loop p-integrals: a wisely 
chosen cut line could in many cases result in especially simple p-integral. This happens if the 
original vacuum graph 
 is TVR (Two-Vertex-Reducible). By definition, a 1PI vacuum graph 

belongs to a class of TVR ones if it is possible to cut one of its lines or vertexes in such a way 
that the resulting graph 
 \ � becomes One-Vertex-Reducible (OVR), that is, the corresponding 
FI F
\�(p) can be presented as a product of two p-integrals each with non-zero number of loops.

Thus, for a TVR graph the calculation of FI the F
\�(p) amounts to computing two p-integrals 
Fγ1 and Fγ2 with loop numbers L1 > 0 and L2 > 0, L1 + L2 = L − 1 respectively. This also 
means that any UV counterterm for every 6-loop FI 〈
〉 (not necessarily logarithmically diver-
gent one) with 
 being TVR is analytically calculable provided one knows the ε expansions of 
four-loop master p-integrals with ε accuracy by one order more than the one necessary for 5-loop 



D.V. Batkovich et al. / Nuclear Physics B 906 (2016) 147–167 153
Fig. 3. The only TVI diagram contributing to the field self-energy at five loop.

Fig. 4. (a) and (b): TVI diagrams contributing to the field self-energy at six loop level.

calculations3 (and available from [31]). Fortunately, this missing power of ε (and many more) 
have been all found in [32] for the whole collection of 4-loop p-masters and confirmed in [33].

In fact, TVR graphs abound in the ϕ4 model which is the underlying reason of the very 
possibility of the early 4 and 5-loop RG calculations as well as our current ability to perform the 
same calculations at the six loop level. Indeed, at three and four loops all diagrams contributing 
to the AD γ2 happen to be TV-Reducible. At five loops all except for one (see Fig. 3) diagrams 
are also TV-Reducible.

At six loop level the situation is as follows: among 50 diagrams all are TV-Reducible except 
for two. To compute 48 TVR-diagrams we have used a (python) toolbox for calculation of UV 
countertems [28] which allows to automate all operations on Feynman diagrams, like infrared 
rearrangement, R∗ operation as well as IBP reduction (we have employed the reduction rules 
generated by LiteRed [34]). The diagram-wise results are listed in Table A.2 of Appendix A. The 
table includes also the results for TV-Irreducible diagrams whose treatment will be discussed in 
the next section.

5. Calculation of TV-Irreducible diagrams

In six loops there are only two TV-Irreducible diagrams pictured on Fig. 4. According to 
the general strategy of IRR these diagrams do require the knowledge of complicated (that is 
non-factorizable) 5-loop p-integrals for their evaluation. Below we describe how both diagrams 
have been computed.

5.1. Diagram (a)

Diagram (a) (see Fig. 4(a)) has quite a special topology: it contains a line connecting both 
external vertexes. In addition, it is quadratically divergent. These facts combined allow for rather 
simple calculation of the corresponding UV counterterm. First step is trivial as one among six 

3 Actually, our current calculation has not (accidentally?) required this extra power of ε for four-loop master p-integrals. 
As a result our final result for γϕ (see eq. (19)) does not include any irrational constants beyond those appearing in general 
5-loop RG calculations (for a detailed discussion, see [31]).
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loop integrations for diagram (a) can be easily done analytically (due to a line connecting both 
external vertexes) with the following result:

= 1

16π2
G(1,5 ε) ,

where (see eq. (11)) G(1,5 ε) = − 5

12
+O(ε). (14)

The fact that the first factor G(1, 5 ε) in r.h.s. of (14) is of order O(ε0) means that we need to 
know only pole part of the second factor. Pole part of this 5-loop p-integral is easy to compute 
(see Appendix B).

5.2. Diagram (b)

For the second diagram in Fig. 4 we need to calculate the derivative with respect to p. This 
produces two terms (the line with an arrow stands for pμ/p2):

1

2
(∂p)2KR′

⎛⎜⎜⎝
⎞⎟⎟⎠ = 2KR′

⎛⎜⎜⎝4 − d

d

⎞⎟⎟⎠

+ 2KR′

⎛⎜⎜⎝ 4

d

⎞⎟⎟⎠ . (15)

The first diagram in r.h.s. of (15) can be calculated in the same way as first non TVR diagram in 
Sec. 5.1. The second one requires additional consideration.

First of all this diagram is logarithmically divergent and primitive (i.e. contains no subdiver-
gences), so we can perform the following IR rearrangement:

KR′

⎛⎜⎜⎝ 4

d

⎞⎟⎟⎠ = KR′

⎛⎜⎜⎜⎝ 4

d

⎞⎟⎟⎟⎠ . (16)

For the latter diagram we can integrate out one loop using (10):

K

⎛⎜⎜⎜⎝ 4

d

⎞⎟⎟⎟⎠ = K

⎛⎜⎜⎜⎝ 4

d
G(1,1 + 5ε)

⎞⎟⎟⎟⎠ . (17)

We need the value of the diagram in r.h.s. of (17) up to a constant term only as the corresponding 
factor there is of order O(ε−1). Because of the fact that the diagram is finite (no divergences at 
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all) we need to calculate only the leading (constant) term in its expansion in ε. This can be done 
using transition to the corresponding dual graph:⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠
p-space

= C

⎛⎜⎜⎝
⎞⎟⎟⎠

x-space

= C

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

p-space

. (18)

It should be noted that the x-space propagators (second and third diagrams in (18)) have a 
non-standard ε dependence, viz. 1/(x1 − x2)

2(1−ε). Fortunately, as far as we are looking only 
for leading (constant) contribution we can consider standard propagators 1/(x1 − x2)

2. Now, the 
diagram in r.h.s. of (18) has only 4 loops and can be calculated using the standard 4-loop IBP 
reduction. The fact that transition to the dual graph can lower the number of loops is another 
simplifying feature of the ϕ4 model. Interestingly, the 5-loop TVI diagram on Fig. 3 can be also 
easily performed in the same way.4

6. Results and discussion

After adding diagram-wise results of Table A.2 and known five loop results [7] we arrive at 
the following expression for the anomalous dimension of field γϕ to the six loop level:

γϕ(g) = g2(n + 2)

36
−

[
8 + n

]
g3(n + 2)

432
+

[
500 + 90 n − 5 n2

]
g4(n + 2)

5184
+

+
[

− 77 056 + 8832 ζ3 − 25 344 ζ4 + (−22 752 + 3072 ζ3 − 5760 ζ4) n +

+ (−296 − 288 ζ3) n2 + (−39 + 48 ζ3) n3
]
g5(n + 2)

186 624
+

[
1 410 544 +

+ 1 190 400 ζ6 + 297 472 ζ3 − 833 536 ζ5 − 95 232 ζ 2
3 + 619 776 ζ4 +

+
(

549 104 + 352 000 ζ6 + 69 888 ζ3 − 293 632 ζ5 − 28 160 ζ 2
3 + 215 808 ζ4

)
n +

+
(

30 184 + 12 800 ζ6 + 14 976 ζ3 − 23 680 ζ5 − 1024 ζ 2
3 + 15 744 ζ4

)
n2 +

+ (−794 + 96 ζ4) n3 + (−29 − 16 ζ3 + 48 ζ4) n4
]
g6(n + 2)

746 496
. (19)

Substituting g∗ calculated in 5 loop approximation (see e.g. [36]) into the anomalous dimension 
γ2 = 2 γϕ we obtain the critical exponent η up to O(ε7):

4 Originally the diagram was analytically computed in [35] with a series of ad hoc non-obvious tricks.



156 D.V. Batkovich et al. / Nuclear Physics B 906 (2016) 147–167
η(ε) = (2ε)2

2

(n + 2)

(n + 8)2
+

[
272 + 56 n − n2

]
(2ε)3

8

(n + 2)

(n + 8)4
+

+
[

46 144 − 67 584 ζ3 + (17 920 − 23 808 ζ3) n +

+ (1124 − 1920 ζ3) n2 − 230 n3 − 5 n4
]
(2ε)4

32

(n + 2)

(n + 8)6
+

+
[

5 655 552 + 60 948 480 ζ5 − 21 921 792 ζ3 − 12 976 128 ζ4 +
+ (2 912 768 + 33 259 520 ζ5 − 11 530 240 ζ3 − 7 815 168 ζ4) n +
+ (262 528 + 6 113 280 ζ5 − 1 244 160 ζ3 − 1 714 176 ζ4) n2 +
+ (−121 472 + 445 440 ζ5 + 137 984 ζ3 − 163 584 ζ4) n3 +
+ (−27 620 + 10 240 ζ5 + 20 800 ζ3 − 5760 ζ4) n4 +
+ (−946 + 288 ζ3) n5 + (−13 + 16 ζ3) n6

]
(2ε)5

128

(n + 2)

(n + 8)8
+

+
[

565 354 496 − 60 808 495 104 ζ7 + 19 134 414 848 ζ5 +

+ 19 503 513 600 ζ6 − 5 485 101 056 ζ3 + 5 036 310 528 ζ 2
3 −

− 4 208 984 064 ζ4 +
(

323 108 864 − 44 652 625 920 ζ7 +
+ 13 118 341 120 ζ5 + 15 518 924 800 ζ6 − 3 681 222 656 ζ3 +
+ 4 007 919 616 ζ 2

3 − 3 266 052 096 ζ4

)
n +

+
(

8 413 184 − 12 662 415 360 ζ7 + 2 504 949 760 ζ5 + 4 921 753 600 ζ6 −
− 533 012 480 ζ3 + 1 142 210 560 ζ 2

3 − 858 095 616 ζ4

)
n2 +

+
(
−45 721 600 − 1 749 888 000 ζ7 − 84 449 280 ζ5 +

+ 797 900 800 ζ6 + 131 311 616 ζ3 + 144 695 296 ζ 2
3 − 67 817 472 ζ4

)
n3 +

+
(
−17 128 928 − 118 540 800 ζ7 − 71 895 040 ζ5 +

+ 69 478 400 ζ6 + 40 585 984 ζ3 + 8 321 024 ζ 2
3 + 6 884 352 ζ4

)
n4 +

+
(
−2 460 768 − 3 161 088 ζ7 − 6 955 264 ζ5 +

+ 3 046 400 ζ6 + 2 822 400 ζ3 + 250 880 ζ 2
3 + 1 467 648 ζ4

)
n5 +

+
(
−110 512 − 195 200 ζ5 + 51 200 ζ6 + 36 096 ζ3 +

+ 8192 ζ 2
3 + 79 296 ζ4

)
n6 + (−2748 + 2656 ζ3 + 1632 ζ4) n7 +

+ (−29 − 16 ζ3 + 48 ζ4) n8
]
(2ε)6 (n + 2)

10
. (20)
512 (n + 8)
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For n = 1 the anomalous dimension γϕ and the exponent η assume the form

γϕ = 1

12
g2 − 1

16
g3 + 65

192
g4 +

[
− 3709 − 1152 ζ4 + 432 ζ3

]
g5

2304
+

+
[

73 667 + 31 536 ζ4 − 4608 ζ 2
3 + 57 600 ζ6 − 42 624 ζ5 + 14 160 ζ3

]
g6

9216
+O(u7)

= 0.0833g2 − 0.0625g3 + 0.3385g4 − 1.9255g5 + 14.383g6 +O(g7), (21)

η = 2

27
ε2 + 109

729
ε3 +

(
7217

39 366
− 64

243
ζ3

)
ε4 +

+
(

321 511

2 125 764
− 32

81
ζ4 − 1316

2187
ζ3 + 1280

729
ζ5

)
ε5 +

(
3 421 613
38 263 752

− 3136
243

ζ7 +

+ 73 232
19 683

ζ5 − 181 462
177 147

ζ3 + 3200
729

ζ6 + 2432
2187

ζ 2
3 − 658

729
ζ4

)
ε6 +O(ε7) (22)

= 0.074074 ε2 + 0.149520 ε3 − 0.133260 ε4 + 0.821006 ε5 − 5.201449 ε6 +
+O(ε7). (23)

We perform various consistency checks of our results. First of all, the finiteness of γϕ as found 
from (4) at 6 loop ensures the correctness of high order poles in ε in the RC Zϕ . The first pole in 
ε (which actually contributes to γϕ and η) cannot be checked in such a way. Fortunately, there is 
a self-consistency test which is sensitive to the structure of the first pole. It is based on the known 
results of 1/n-expansion for critical exponent η. The expansion is currently available up to 1/n3

term [37,36]. The coefficients of this expansion are exact functions of ε, on the other hand coef-
ficients of ε-expansion of critical exponent η are exact functions on n. Expanding both functions 
in ε and 1/n respectively we will obtain double expansion in ε and 1/n which must coincide up 
to given (ε6, 1/n3) order. From these expansions we can derive 3 independent relations on linear 
combinations of the coefficients at first pole in ε of the six loop diagrams. Moreover, a relation 
that originates from the term of order 1/n3 includes all graphs from A.2. All three relations are 
indeed in agreement with our results (more details can be found in Appendix C).

For some selected diagrams we have also performed additional numerical checks using the 
sector decomposition technique (see, e.g. [38]).

In papers [39,40] the method of a resummation of the asymptotic series was proposed. This 
method combines an assumption about asymptotic of beta function at g → ∞ and the available 
information about higher order asymptotic [41] via a Borel transformation with conformal map-
ping. It was shown that for the series where asymptotic g → ∞ is known, most accurate values 
(after resummation of the finite part of the series) are obtained if parameter ν (additional param-
eter which defines the behavior of the resummed series at g → ∞) is chosen in accordance with 
g → ∞ asymptotic. Moreover, in this case the contribution of high order terms gets minimized.

For the ϕ4 model the asymptotic behavior at g → ∞ is not known, so authors of [39,40] used 
the criterion of minimization of the contribution of the high order terms as a way to determine 
the correct value of the parameter ν. They found that for the case of the beta-function of the ϕ4

model it should lie within the range 1.7 < ν < 2.2, commonly the value ν = 2 is taken.
Furthermore, if we perform such a resummation procedure for a given number of loops L

and then expand back the series obtained after conformal mapping procedure up to the next, 
(L + 1)-loop order, then this term may be considered as a prediction for the (L + 1)-loop contri-
bution because of the minimization of high order contributions we have discussed above. In 
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Table 1
Resummation result for the Fisher exponent η for different number of loops taken into account.

Loops β/γϕ 3/4 3/5 3/6 4/4 4/5 4/6 5/5 5/6 est.

D = 2 0.1716 0.1818 0.1827 0.2211 0.2365 0.2379 0.2263 0.2276 0.25
D = 3 0.03201 0.03256 0.03260 0.03557 0.03624 0.03629 0.03577 0.03581 0.03601

particular, the prediction of [39,40] for the 5-loop term in the beta-function happened to be 
1404.3 while the direct calculations [5–7] (published a year later) produced the value 1424.28, 
which is different from the prediction only by a minute 1.5%.

We apply the same procedure to γϕ with n = 1 (see eq. (21)). Using ν = 3 and performing the 
same steps for terms up to 5 loops we arrive at the following predictions for the 6-loop term

γ P 5
ϕ (g) = 0.0833g2 − 0.0625g3 + 0.3385g4 − 1.9255g5+14.316g6 +O(g7), (24)

which is only by 0.5% smaller than calculated in the present work. If we repeat the same pro-
cedure starting from 6 loops we can make a prediction for the 7 loop contribution to the field 
anomalous dimension.

γ P 6
ϕ (g) = 0.0833g2 − 0.0625g3 + 0.3385g4 − 1.9255g5 + 14.383g6−127.29g7

+O(g8).

If one performs a resummation of the γϕ(g) at g = g∗ (where g∗ is a first positive zero of 
the resummed beta-function), one can obtain estimations for the Fisher exponent η for different 
numbers of loops taken into account in β(g) and γϕ(g).

The column in Table 1 marked as ‘est.’ is an estimated value for this model (n = 1). For 
two-dimensional model it corresponds to the Onsager exact solution, for three-dimensional case 
it corresponds to a combination of the results of the high temperature expansion (HT) and the 
Monte Carlo simulations (MC) made in [42]. One can see that results of resummation for the 
3D model are very close to HT and MC results (∼ 0.5%). For the 2D model results are also 
in reasonable agreement with the Onsager exact solution but still far from it (∼ 5–10%). This 
effect may be explained by large value of the expansion parameter ε = 1. Also one can see 
from the table that most valuable impact on the value of the Fisher exponent is given by the 
value of the fixed point (i.e. beta function). This fact may serve as an additional argument 
to compute 6-loop beta function [43], of course, for the 3D model one may expect swing 
around the HT/MC value, but for the 2D model, due to significant impact of the 5-loop beta 
function (comparing to the 4-loop one) we still can’t expect reasonable result for the Fisher ex-
ponent.

7. Conclusions

We have described a completely analytical calculation of the field anomalous dimension γϕ

and the critical exponent η for the O(n)-symmetric ϕ4 model at the six loop level. The calculation 
has proved to be possible due to a combination of the method of IRR based on the heavy use of 
the R∗-operation and recent advances in computing master four-loop massless p-integrals as well 
as due to a special feature of the ϕ4 theory: the overwhelming number of diagrams appearing at 
4- and 5-loops happen to be Two Vertex Reducible ones.
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We successfully compare our result for γϕ with n = 1 with the predictions based on the 
method of the Borel transform followed by a conformal mapping.

Our diagram-wise results for all six loop contributions to Z2 (together with some auxil-
iary information) are available (in computer-readable form) in http://www.ttp.kit.edu/
Progdata/ttp15/ttp15-046/.

They are also appended to the TEX-file of the present paper.
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Appendix A. Diagramwise results for 6-loop contributions to Z2

Tables A.2 and A.3 display results for all fifty self-energy diagrams contributing to RC Z2. 
For brevity we have used the so-called Nickel index (NI) which allows for a short and concise 
description of a given diagram [44,45].

Generally speaking Nickel index is a list of graph edges written for some canonical vertex 
ordering. The canonical vertex ordering ensures that two isomorphic graphs have equal Nickel 
indices. For example, consider Nickel index ‘ee12|223|3|ee|’: vertical lines split the NI on sec-
tions, each section corresponds to the one of the vertices. Vertices are assumed to be labeled 
from 0 (up to 3 for this graph), each section describes graph edges connected to this vertex, i.e. 
vertex 0 has two external (e) edges and edges to vertices 1 and 2. Next section lists edges con-
nected to vertex 1 (except ones that connected to the vertex 0): two edges to vertex 2 and edge 
to 3. Third section lists edges connected to vertex 2 (except ones connected to 0 and 1) and so 
on. Drawing graph in such a way we arrive at the diagram on Fig. A.5.

Construction of the NI from the graph is a bit more complicated task: one needs to take all 
possible graph labeling, for each labeling write a Nickel notation described above, and then 
choose minimal (in some sense) notation as NI. Luckily this procedure can be optimized to avoid 
n! growth (see [45]).

Every row in A.2 describes a contribution of a diagram γ with NI NI(γ ) to Z2 as a product of 
three factors, namely, sγ (a symmetry factor), rγ (an additional structure factor for n-component 
O(n)-symmetric ϕ4-model in terms of polynomials given in A.3) and, finally, the very countert-
erm ∂p2KR′γ .

Fig. A.5. Graph that corresponds to Nickel index (NI) equal to ee12|223|3|ee|.

http://www.ttp.kit.edu/Progdata/ttp15/ttp15-046/
http://www.ttp.kit.edu/Progdata/ttp15/ttp15-046/
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Table A.2
Values of the six loop graphs contributing to Z2.

N NI(γ ) sγ rγ ∂
p2KR′γ

1 e112|23|34|45|55|e| 1/4 r1 r10 − 1
90 ε−5 + 13

180 ε−4 − 13
45 ε−3 + 133

180 ε−2 − 4
3 ε−1

2 e112|23|34|55|e55|| 1/4 r1 r13 − 1
48 ε−5 + 121

1440 ε−4 − 11
64 ε−3 +

(
289
5760 + 13

120 ζ3

)
ε−2 +(

5809
11 520 − 1

40 ζ4 − 53
240 ζ3

)
ε−1

3 e112|23|34|e5|555|| 1/6 r2
1 r3 − 31

2880 ε−4 + 191
2880 ε−3 − 47

256 ε−2 + 1675
4608 ε−1

4 e112|23|44|455|5|e| 1/8 r1 r11 − 1
40 ε−5 + 7

80 ε−4 − 67
480 ε−3 +

(
29
960 + 1

20 ζ3

)
ε−2 +(

− 49
640 + 3

40 ζ4 − 43
120 ζ3

)
ε−1

5 e112|23|44|555|e5|| 1/12 r2
1 r3 − 1

64 ε−4 + 3
64 ε−3 − 19

3840 ε−2 +
(

707
7680 + 1

30 ζ3

)
ε−1

6 e112|23|44|e55|55|| 1/8 r1 r9 − 11
240 ε−5 + 41

480 ε−4 − 23
960 ε−3 +

(
− 11

384 − 1
24 ζ3

)
ε−2 +(

− 187
768 + 1

8 ζ4 + 1
48 ζ3

)
ε−1

7 e112|23|45|445|5|e| 1/2 r1 r10 − 7
720 ε−5 + 17

288 ε−4 − 563
2880 ε−3 +

(
2269
5760 − 13

60 ζ3

)
ε−2 +(

− 497
3840 + 1

20 ζ4 + 9
40 ζ3

)
ε−1

8 e112|23|45|e45|55|| 1/4 r1 r11 − 11
720 ε−5 + 103

1440 ε−4 − 127
960 ε−3 +

(
31

1152 + 1
5 ζ3

)
ε−2 +(

2843
11 520 − 3

40 ζ4 − 3
10 ζ3

)
ε−1

9 e112|23|e4|455|55|| 1/4 r2
1 r2

2 − 7
720 ε−4 + 37

720 ε−3 − 307
2880 ε−2 +

(
− 1

240 + 1
120 ζ3

)
ε−1

10 e112|33|344|5|55|e| 1/16 r1 r14 − 7
180 ε−5 + 3

40 ε−4 + 7
720 ε−3 +

(
− 59

480 + 1
10 ζ3

)
ε−2 +(

959
2880 + 3

20 ζ4 − 1
20 ζ3

)
ε−1

11 e112|33|444|55|5|e| 1/48 r2
1 r4 − 1

40 ε−4 + 13
320 ε−3 + 29

320 ε−2 +
(

221
1280 − 7

80 ζ3

)
ε−1

12 e112|33|445|45|5|e| 1/4 r1 r13 − 13
720 ε−5 + 103

1440 ε−4 − 377
2880 ε−3 +

(
155
1152 − 19

120 ζ3

)
ε−2 +(

703
1280 − 1

20 ζ4 − 1
48 ζ3

)
ε−1

13 e112|33|445|e5|55|| 1/16 r2
1 r2

2 − 1
72 ε−4 + 1

18 ε−3 − 7
288 ε−2 − 11

24 ε−1

14 e112|33|e34|5|555|| 1/12 r2
1 r4 − 13

720 ε−4 + 197
2880 ε−3 − 1

48 ε−2 +
(
− 223

2304 − 1
48 ζ3

)
ε−1

15 e112|33|e44|55|55|| 1/32 r1 r15 − 1
12 ε−5 + 1

24 ε−4 + 5
48 ε−3 +

(
13
96 − 1

6 ζ3

)
ε−2 +(

29
192 − 1

4 ζ4 + 1
12 ζ3

)
ε−1

16 e112|33|e45|45|55|| 1/8 r1 r9 − 1
36 ε−5 + 31

360 ε−4 − 13
240 ε−3 +

(
− 11

288 − 1
60 ζ3

)
ε−2 +(

− 511
2880 − 1

40 ζ4 + 23
120 ζ3

)
ε−1

17 e112|34|334|5|55|e| 1/8 r1 r10 − 1
72 ε−5 + 13

240 ε−4 − 17
288 ε−3 +

(
5

192 − 1
10 ζ3

)
ε−2 +(

− 341
5760 − 3

20 ζ4 + 7
60 ζ3

)
ε−1

18 e112|34|335|4|55|e| 1/8 r1 r12 − 1
72 ε−5 + 13

240 ε−4 − 17
288 ε−3 +

(
5

192 + 1
15 ζ3

)
ε−2 +(

− 341
5760 − 11

40 ζ4 + 9
20 ζ3

)
ε−1

19 e112|34|335|5|e55|| 1/4 r1 r11 − 7
360 ε−5 + 1

15 ε−4 − 37
720 ε−3 +

(
− 17

480 − 1
60 ζ3

)
ε−2 +(

553
2880 − 1

40 ζ4 − 19
120 ζ3

)
ε−1

20 e112|34|335|e|555|| 1/24 r2
1 r3 − 7

480 ε−4 + 11
240 ε−3 + 7

384 ε−2 + 3
256 ε−1

21 e112|34|345|45|5|e| 1/2 r1 r2 r3 − 4
15 ζ3 ε−3 +

(
1
10 ζ4 + 19

30 ζ3

)
ε−2 +

(
− 17

40 ζ4 − 13
10 ζ3 + 21

20 ζ5

)
ε−1

22 e112|34|345|e5|55|| 1/2 r1 r10 − 1
180 ε−5 + 29

720 ε−4 − 217
1440 ε−3 +

(
1019
2880 − 7

30 ζ3

)
ε−2 +(

− 1903
1920 + 1

40 ζ4 + 3
5 ζ3

)
ε−1
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Table A.2 (continued)

N NI(γ ) sγ rγ ∂
p2KR′γ

23 e112|34|355|45|e5|| 1/2 r1 r10 − 1
180 ε−5 + 29

720 ε−4 − 217
1440 ε−3 +

(
1019
2880 − 1

15 ζ3

)
ε−2 +(

− 1903
1920 − 1

10 ζ4 + 3
5 ζ3

)
ε−1

24 e112|34|355|e4|55|| 1/4 r1 r13 − 1
90 ε−5 + 1

24 ε−4 − 13
720 ε−3 − 11

480 ε−2 +
(
− 1769

2880 + 7
20 ζ3

)
ε−1

25 e112|34|e33|5|555|| 1/24 r2
1 r4 − 13

720 ε−4 + 197
2880 ε−3 − 1

48 ε−2 +
(
− 223

2304 − 1
48 ζ3

)
ε−1

26 e112|34|e34|55|55|| 1/8 r1 r14 − 1
72 ε−5 + 11

240 ε−4 + 53
1440 ε−3 +

(
− 61

192 + 17
60 ζ3

)
ε−2 +(

157
5760 + 1

20 ζ4 − 7
40 ζ3

)
ε−1

27 e112|34|e35|45|55|| 1/2 r1 r13 − 1
144 ε−5 + 71

1440 ε−4 − 101
576 ε−3 +

(
1319
5760 − 11

120 ζ3

)
ε−2 +(

29
3840 + 1

20 ζ4 + 11
240 ζ3

)
ε−1

28 e112|34|e55|445|5|| 1/16 r1 r9 − 1
36 ε−5 + 31

360 ε−4 − 13
240 ε−3 +

(
− 11

288 − 1
60 ζ3

)
ε−2 +(

− 511
2880 − 1

40 ζ4 + 23
120 ζ3

)
ε−1

29 e112|e3|334|5|555|| 1/24 r3
1 − 1

384 ε−3 + 5
128 ε−2 − 7

32 ε−1

30 e112|e3|344|55|55|| 1/16 r2
1 r4 − 1

160 ε−4 + 3
80 ε−3 − 53

640 ε−2 +
(

59
1280 + 7

80 ζ3

)
ε−1

31 e112|e3|345|45|55|| 1/8 r2
1 r3 − 1

480 ε−4 + 11
480 ε−3 − 71

640 ε−2 +
(

293
1280 + 7

40 ζ3

)
ε−1

32 e112|e3|444|555|5|| 1/72 r3
1 − 1

192 ε−3 + 5
192 ε−2 − 11

384 ε−1

33 e112|e3|445|455|5|| 1/8 r2
1 r3 − 1

240 ε−4 + 17
480 ε−3 − 173

960 ε−2 +
(

1249
1920 − 3

20 ζ3

)
ε−1

34 e123|224|4|555|e5|| 1/24 r2
1 r3 − 1

120 ε−4 + 11
320 ε−3 − 3

80 ε−2 +
(

401
3840 − 7

40 ζ3

)
ε−1

35 e123|224|5|445|5|e| 1/4 r1 r10 − 1
120 ε−5 + 11

240 ε−4 − 49
480 ε−3 +

(
47
960 − 1

10 ζ3

)
ε−2 +(

261
640 − 3

20 ζ4 + 7
60 ζ3

)
ε−1

36 e123|234|45|45|5|e| 1/2 r1 r8
5
3 ζ5 ε−2 +

(
− 25

12 ζ6 + 1
6 ζ 2

3

)
ε−1

37 e123|234|45|55|e5|| 1/2 r1 r2 r3 − 1
10 ζ3 ε−3 +

(
− 3

20 ζ4 + 11
20 ζ3

)
ε−2 +(

− 3
10 ζ4 − 7

40 ζ3 − 1
30 ζ5

)
ε−1

38 e123|245|45|445||e| 1/4 r1 r2 r3 − 1
10 ζ3 ε−3 +

(
− 3

20 ζ4 + 11
20 ζ3

)
ε−2 +(

− 3
10 ζ4 − 7

40 ζ3 + 23
60 ζ5

)
ε−1

39 e123|e23|34|5|555|| 1/12 r2
1 r3 − 1

288 ε−4 + 25
576 ε−3 − 91

384 ε−2 +
(

583
1152 + 1

24 ζ3

)
ε−1

40 e123|e23|44|55|55|| 1/16 r1 r9 − 1
120 ε−5 + 7

240 ε−4 + 11
480 ε−3 +

(
− 197

960 + 2
15 ζ3

)
ε−2 +(

443
1920 + 23

40 ζ4 − 43
60 ζ3

)
ε−1

41 e123|e23|45|45|55|| 1/8 r1 r11 − 1
360 ε−5 + 17

720 ε−4 − 11
160 ε−3 +

(
− 587

2880 + 13
30 ζ3

)
ε−2 +(

10 453
5760 − 1

10 ζ4 − 101
60 ζ3

)
ε−1

42 e123|e24|33|5|555|| 1/6 r2
1 r3 − 7

960 ε−4 + 1
30 ε−3 − 11

768 ε−2 +
(
− 73

512 + 1
24 ζ3

)
ε−1

43 e123|e24|34|55|55|| 1/4 r1 r13 − 1
360 ε−5 + 1

48 ε−4 − 77
1440 ε−3 +

(
− 31

960 + 2
15 ζ3

)
ε−2 +(

2243
5760 − 7

40 ζ4 − 1
4 ζ3

)
ε−1

44 e123|e24|35|45|55|| 1 r1 r10 − 1
720 ε−5 + 5

288 ε−4 − 347
2880 ε−3 +

(
3037
5760 − 11

60 ζ3

)
ε−2 +(

− 1323
1280 + 1

10 ζ4 + 13
24 ζ3

)
ε−1

45 e123|e24|55|445|5|| 1/4 r1 r11 − 1
240 ε−5 + 13

480 ε−4 − 11
192 ε−3 +

(
− 239

1920 + 1
12 ζ3

)
ε−2 +(

1211
1280 + 1

8 ζ4 − 97
120 ζ3

)
ε−1

(continued on next page)
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Table A.2 (continued)

N NI(γ ) sγ rγ ∂
p2KR′γ

46 e123|e45|334|5|55|| 1/8 r1 r11 − 1
90 ε−5 + 1

20 ε−4 − 17
360 ε−3 +

(
− 19

240 + 1
60 ζ3

)
ε−2 +(

− 49
1440 + 1

40 ζ4 − 3
40 ζ3

)
ε−1

47 e123|e45|344|55|5|| 1/8 r1 r12 − 1
360 ε−5 + 1

48 ε−4 − 77
1440 ε−3 +

(
− 31

960 + 2
15 ζ3

)
ε−2 +(

2243
5760 − 7

40 ζ4 − 1
4 ζ3

)
ε−1

48 e123|e45|345|45|5|| 1/4 r1 r2 r3 − 1
6 ζ3 ε−3 +

(
1
4 ζ4 + 7

12 ζ3

)
ε−2 +

(
− 1

2 ζ4 − 5
8 ζ3 + 2

3 ζ5

)
ε−1

49 e123|e45|444|555||| 1/72 r3
1 − 1

192 ε−3 + 5
192 ε−2 − 11

384 ε−1

50 e123|e45|445|455||| 1/8 r1 r10 − 1
360 ε−5 + 1

48 ε−4 − 77
1440 ε−3 +

(
− 31

960 − 1
30 ζ3

)
ε−2 +(

2243
5760 − 1

20 ζ4 − 1
4 ζ3

)
ε−1

Table A.3
Values of the factors ri (n) in A.2.

i ri (n) i ri (n)

1 (n + 2)/3 9 (3n3 + 24n2 + 80n + 136)/243
2 (n + 8)/9 10 (7n2 + 72n + 164)/243
3 (5n + 22)/27 11 (11n2 + 76n + 156)/243
4 (n2 + 6n + 20)/27 12 (n3 + 10n2 + 72n + 160)/243
5 (3n2 + 22n + 56)/81 13 (n3 + 14n2 + 76n + 152)/243
6 (n2 + 20n + 60)/81 14 (n3 + 18n2 + 80n + 144)/243
7 (n3 + 8n2 + 24n + 48)/81 15 (n4 + 10n3 + 40n2 + 80n + 112)/243
8 (2n2 + 55n + 186)/243

Appendix B. Extended ’t Hooft condition for separate diagrams

In this Appendix we discuss an extension5 of the well-known ’t Hooft constraints originally 
suggested in [9] for global renormalization constants (that is, ones including all contributions up 
to some number of loops) to a case when one deals with a separate Feynman integral.

Let 
 be a particular L-loop OPI Feynman diagram without any IR (sub)divergences.6 With-
out essential loss of generality we assume that 〈
〉(Q2, μ2) is a scalar integral depending on the 
external momentum Q via its square, Q2 = QνQ

ν . In addition, we introduce the renormaliza-
tion scale parameter μ into the definition of every bare dimensionally regulated FI by providing 
it with a factor (μ2)L ε .

The renormalized version of the corresponding Feynman integral can be generically written 
as

R 〈
〉(Q2,μ2) = 〈
〉(Q2,μ2) + Z
 + ∑
γ Zγ 〈
/γ 〉(Q2) + . . . (B.1)

Here Zγ is the UV Z-factor corresponding to a OPI subgraph γ of 
, Z
 is the UV counterterm 
for the very FI 〈
〉 and dots stand for contributions with two and more UV subtractions.

5 We do not claim that the extension is an original contribution of us. In fact, at least for IR-finite diagrams it is 
well-known among experts since long. For instance, very recently similar considerations have been effectively employed 
in [46] to study divergences in maximal supersymmetric Yang–Mills theories in diverse dimensions.

6 This constraint will be relaxed later.
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Every particular term in the boxed part of eq. (B.1) is a product of some Z-factors and a 
reduced FI, the latter by construction includes a factor (μ2)nε , with n being its loop number.

The finiteness of the left part of eq. (B.1) together with the fact that the Zγ has no depen-
dence on μ leads to a number of interesting consequences. For instance, if L = 2 then only 
the knowledge of the pole parts of the one-loop subgraphs of 
 as well as one-loop reduced FI 
〈
/γ 〉 allows one to construct the leading 1/ε2 poles of the FI 〈
〉 and the counterterm Z
 . By 
induction, one could easily infer that for arbitrary number of loops L the leading 1/εL poles of 
both the FI 〈
〉 and the corresponding counterterm Z
 can be completely restored from the pole 
parts (read UV counterterms) of properly constructed set of one-loop FIs. The set includes all 
graphs of the form γ /γ ′, with γ and γ ′ being two OPI subgraphs of 
 such that γ ′ ⊂ γ and 
Lγ − Lγ ′ = 1.

In the same way one could infer subleading poles of order 1/εL−1 exclusively from knowl-
edge of Z-factors from similarly constructed set of two-loop FIs. And so on and forth. This is, 
obviously, the diagram-wise formulation of the ’t Hoof constraints.

Another simple (but still useful) observation is that the knowledge of Z
 and all the boxed 
terms in the r.h.s. of (B.1) is enough to completely restore the pole part of the original bare FI 
〈
〉.

In fact, all the above considerations are easily generalized for a case when FI 〈
〉 is suffering 
from IR divergences in addition to UV ones.7 Indeed, as it should be clear from the general 
discussion of section 3 it suffices to employ the R∗-operation instead of the usual R-one.

Finally, let us now assume that the FI 〈
〉 is a massless five-loop propagator-like FI. Combin-
ing two facts: (i) 5-loop Z-factors are all computable in terms of 4-loop p-integrals and (ii) every 
reduced FI in the r.h.s. of (B.1) is a p-integral with its loop number not exceeding 4, we arrive at
a conclusion that the pole part of 〈
〉 is expressible in terms of 4-loop p-integrals.

As an example we present here complete expression for pole part of the five loop p-integral 
from section 5.1:

K

( )
. (B.2)

Taking into account that

KR′
( )

= KR∗ ′
⎛⎝ ⎞⎠ , (B.3)

and r.h.s. is computable in terms of 4-loop p-integrals, and expanding R′ operation in the l.h.s.
of the (B.3) we arrive at the following relation:

K

( )

= K

⎛⎝R∗ ′
⎛⎝ ⎞⎠ + KR′

( )
+

7 This statement is only valid for Euclidean case, as the very R∗-operation is not suitable to deal with more complicated 
(collinear, etc.) IR singularities which might appear in Minkowskian FIs.
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+ KR′
( )

+ KR′
( ) )

. (B.4)

Here all terms of r.h.s. of (B.4) can be expressed in terms of 4-loop p-integrals.

Appendix C. 1/n-expansion

In paper [37] conformal bootstrap technique was applied to calculate 1/n-expansion of the 
critical exponent η up to 1/n3 term:

η = η1

n
+ η2

n2
+ η3

n3
+O

(
1

n4

)
. (C.1)

It is possible to compare results obtained using ε-expansion with results of 1/n-expansion for 
this exponent: while ε-expansion is an exact function of n, 1/n-expansion calculated in [37] is 
an exact function of ε. Thus twofold series of both expansions must coincide.

Unfortunately, η3 in [37] contain misprint, so we present corrected version here:

η1 = − 4
(d − 2)


(2 − d/2)
(d/2 − 2)
(d/2 − 1)
(d/2 + 1)
, (C.2)

η2

η2
1

= d2 − 3d + 4

4 − d
R0 + 1

d
+ 1

d − 2
+ 9

4 − d
+ 4

(4 − d)2
− 2 − d, (C.3)

where R0 = ψ(d −2) +ψ(2 −d/2) −ψ(2) −ψ(d/2 −2) and ψ(x) = d
dx

ln 
(x). Furthermore,

η3

η3
1

= 3d2(d − 2)(2d − 5)I (d/2)S3

4(4 − d)2
+ 2

3

d2(d − 2)(d − 3)2(3S0S1 − S3
0 − S2)

(4 − d)3
+

+ 35 + 13

2
d + d2 − 177

4 − d
+ 134

(4 − d)2
+ 232

(4 − d)2
− 128

(4 − d)3
+ 9

d − 2
+ 2

(d − 2)2
+

+ 2

d2
+ B

2

(
66 + 7d + d2 − 374

4 − d
+ 408

(4 − d)2
+ 128

(4 − d)3
+ 4

d − 2
+ 6

d

)
+

+ B2

2

(
20 − 100

4 − d
+ 128

(4 − d)2

)
+

+ S3

2

(
−45 − 5d + 7

4
d2 + 254

4 − d
− 256

(4 − d)2
− 384

(4 − d)3
+ 512

(4 − d)4

)
+

+ S4

2

(
14 + 4d + 2d2 − 60

4 − d

)
+

+ BS3

2

(
−45 − 13

2
d − 1

2
d2 + 272

4 − d
− 432

(4 − d)2
+ 256

(4 − d)3

)
, (C.4)

where

B = ψ(2 − d/2) + ψ(d − 2) − 1 + γE − ψ(d/2 − 2),

S0 = ψ(2 − d/2) + ψ(d − 2) + γE − ψ(d/2 − 1),

S1 = ψ ′(2 − d/2) − ψ ′(d − 2) − ζ(2) + ψ ′(d/2 − 1),

S2 = ψ ′′(2 − d/2) + ψ ′′(d − 2) + 2ζ(3) − ψ ′′(d/2 − 1),
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Fig. C.6. T-bubble graph contributing to η3 (α1 = α4 = 1, α2 = α3 = d/2 − 1, α5 = d/2 − 1 + �).

S3 = ψ ′(d/2 − 1) − ψ ′(1),

S4 = ψ ′′(2 − d/2) − ψ ′(d − 2), (C.5)

γE is Euler constant and value I (d) is determined from the relation:

�(d,�) = �(d,0)
(

1 + I (d)� +O(�2)
)

. (C.6)

Here �(d, �) is value of the diagram on Fig. C.6 (in x-space) with α1 = α4 = 1, α2 = α3 =
d/2 − 1, α5 = d/2 − 1 + �.

Given the value of the I (d) for any d one can construct 1/n expansion for arbitrary space 
dimension. The value of I (4 − 2ε) can be extracted from [47] with the result:

I (4 − 2ε) = −5ζ(5)

2ζ(3)
ε +

(
15ζ(4)ζ(5) − 25ζ(3)ζ(6) + 10ζ(3)3

4ζ(3)2

)
ε2 +O(ε3). (C.7)

Combining (C.1)–(C.5) with (C.7) and expanding it in ε up to ε6 term, and, from another 
hand, expanding (20) in 1/n up to 1/n3 term we arrive at two identical expansions with

η1 = 2 ε2 − ε3 − 5

2
ε4 +

(
−13

4
+ 4 ζ3

)
ε5 +

(
−29

8
− 2 ζ3 + 6 ζ4

)
ε6 +O(ε7)

η2 = −28 ε2 + 86 ε3 + (−35 − 176 ζ3) ε5 +
(

−243

4
+ 488 ζ3 − 264 ζ4

)
ε6 +O(ε7)

η3 = 320 ε2 − 1984 ε3 + (2732 − 960 ζ3) ε4 +
+ (686 + 9440 ζ3 − 1440 ζ4 + 2560 ζ5) ε5 +
+

(
799 − 28 104 ζ3 + 14 160 ζ4 + 1024 ζ 2

3 + 6400 ζ6 − 24 400 ζ5

)
ε6 +O(ε7). (C.8)

Two comments are required here. First, equality of the twofold series produces three independent 
relations for six loop diagram values (only one six loop diagram contributes to 1/n term, to 1/n2

contributes 20 diagrams, and to 1/n3 – 50 diagrams, i.e. all six loop diagrams). So comparison 
with the 1/n expansion should be considered as a really strong check of our six loop results. 
Second, actually only the first term from I (d) (of order ε) is required for six loops, the next term 
of I (d) will contribute to seven loop term, but to get the same kind of relations (which touch all 
seven loop diagrams) one would need to calculate 1/n4 contribution to (C.1).

Appendix D. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/
10.1016/j.nuclphysb.2016.03.009.

http://dx.doi.org/10.1016/j.nuclphysb.2016.03.009
http://dx.doi.org/10.1016/j.nuclphysb.2016.03.009
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