
Statistical modelling of algorithms for signal
processing in systems based on environment

perception

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Jan Erik Stellet

aus Braunschweig

Tag der mündlichen Prüfung: 09.06.2016
Erster Gutachter: Prof. Dr.-Ing. J. Marius Zöllner
Zweiter Gutachter: Prof. Dr.-Ing. habil. Jürgen Beyerer



Document template provided by:

Institute of Industrial Information Technology (IIIT)
Karlsruhe Institute of Technology (KIT)
Hertzstraße 16
76187 Karlsruhe



Abstract

Advanced driver assistance systems (ADAS), for example autonomous emergency brake
(AEB) systems, aim to sense a vehicle’s environment, understand the current traffic
situation and react appropriately in order to support the human driver. One cornerstone
for reliable systems is an appropriate handling of uncertainties. Uncertainties arise for
instance due to noisy sensor measurements or the unknown future evolution of a traffic
situation.

This work’s objective is to contribute to the understanding of these uncertainties.
To this end, parametric probability distributions are used to analytically model and
propagate uncertainties at individual parts of ADAS signal processing chains. Previous
works approach this mostly with numerical simulations. An inherent drawback is that
only a concrete implementation of algorithms can be analysed. Analytical modelling
on the other hand, as pursued in this thesis, allows drawing more generic conclusions.
One can for example attempt to derive upper performance bounds which apply to any
implementation of (sub-) optimal solutions.

This thesis devises probabilistic models of uncertainty in selected algorithms with a
distinct role in current and future ADAS. The models are applied to the derivation of
sensor parameter constraints for feature-based localisation for urban automated driving
and the analysis of performance limitations in AEB systems.

First, environment perception tasks are studied. This comprises the detection of obsta-
cles with a stereo vision sensor and feature-based localisation. Instead of a theoretical
top-down analysis, an environment sensor’s inaccuracy can also be empirically evalu-
ated by comparison to a reference sensor. Advanced off-line approaches can be leveraged
to obtain accurate reference data from raw sensor measurements. The potential of such
methods, in contrast to an on-line processing under real-time constraints, is studied on
the example of a laser scanner sensor.

Second, the models of errors in individual measurements are propagated to the uncer-
tainty in estimates of unobservable dynamic states, for instance motion state variables.

Third, the prediction and risk assessment of traffic situations is considered. Novel
expressions for performance bounds on the recognition of semantic driver intentions for
long-term motion predictions are derived. Moreover, parametric models of uncertainty in
kinematic motion models for short-term predictions are estimated from empirical driving
data. Based on these predictions, the risk of an imminent collision can be quantified
in terms of criticality measures. A comprehensive approach to probabilistic modelling
of these risk metrics is developed. Performance bounds on the timely activation of an
AEB intervention are then derived by uncertainty propagation from perception and state
estimation to the criticality assessment.





Zusammenfassung

Umfelderfassende Fahrerassistenzsysteme (FAS), zum Beispiel automatische Notbrems-
systeme, erfassen und interpretieren das Fahrumfeld, um den Fahrer bei der Fahraufgabe
zu unterstützen. Eine wichtige Voraussetzung für ein robustes Systemverhalten ist ein
angemessener Umgang mit Unsicherheiten. Unsicherheiten treten beispielsweise auf-
grund von Sensormessrauschen sowie des unbekannten zukünftigen Verhaltens von
Verkehrsteilnehmern auf.

Das Ziel der vorliegenden Arbeit ist es, zum Verständnis von derartigen Unsicherhei-
ten beizutragen. Hierzu werden parametrische Wahrscheinlichkeitsdichtefunktionen
angesetzt, um Unsicherheiten zu modellieren und entlang der Signalverarbeitungsket-
te eines FAS fortzupflanzen. Bisherige Arbeiten verwenden hierfür meist numerische
Simulationen. Nachteilig ist dabei, dass lediglich konkrete Implementierungen von
Algorithmen untersucht werden können. Analytische Modelle hingegen können zu
generischen Erkenntnissen führen. Beispielsweise kann eine theoretische obere Schranke
für die Güte einer Lösung direkt aus der Problemformulierung abgeleitet werden.

In dieser Arbeit werden probabilistische Modelle für Unsicherheiten in für heuti-
ge und zukünftige FAS relevanten Algorithmen und Aufgabenstellungen entwickelt.
Die Anwendung dieser Modelle wird anhand einer Ableitung von Sensorgenauigkeits-
anforderungen für eine Landmarken-basierte Lokalisierung sowie einer Analyse von
Systemgrenzen in Notbremssystemen demonstriert.

Zuerst werden Algorithmen zur Umfeldwahrnehmung untersucht. Dies beinhaltet
die Erkennung von Hindernissen mittels einer Stereo-Video-Kamera sowie die Lokali-
sierung durch Korrespondenzsuche im statischen Umfeld. Anstelle einer theoretischen
Modellbildung kann die Genauigkeit einer Umfeldwahrnehmung auch empirisch durch
Vergleich mit Referenzmessungen ermittelt werden. Am Beispiel eines Laserscanners
wird in dieser Arbeit untersucht, wie sich die Genauigkeit von Referenzdaten durch
akausale Signalverarbeitungsmethoden ohne Echtzeitanforderungen verbessern lässt.

In einem zweiten Schritt werden Unsicherheiten in den Messungen aus individuel-
len Zeitschritten auf die Genauigkeit eines daraus geschätzten Bewegungszustandes
übertragen. Drittens werden Unsicherheiten in der Vorhersage und Risikobewertung
von Fahrsituationen untersucht. Hierbei werden neue obere Schranken für die Güte
einer Manövererkennung zur Langzeitprädiktion hergeleitet. Parametrische Modelle für
Unsicherheiten in kinematischen Fahrzeugbewegungsmodellen für Kurzzeitprädiktio-
nen werden aus empirischen Daten ermittelt. Basierend auf diesen Prädiktionen kann
das Risiko einer bevorstehenden Kollision in Form von Kritikalitätsmaßen quantifiziert
werden. Eine umfassende Unsicherheitsmodellierung in derartigen Risikometriken wird
in dieser Arbeit entwickelt.
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1 Introduction

Increasingly, the technical progress in the automotive industry is not only measured
in terms of how safe, reliable or efficient but how intelligent a vehicle is. This shift of
attention can be traced back to numerous driver assistance functions, which have made
their way from research labs to series production over the recent years.

According to DONGES [47] and as seen in Fig. 1.1, the driving task can be structured
into three levels on different time scales. The longest forecasting horizon is available
for navigation, that is planning of a route to a destination through the road network.
(Electronic) maps and global positioning aid the driver with this task. In contrast,
guiding a vehicle in a dynamic traffic situation involves processing higher amounts of
information and shorter reaction times. Advanced driver assistance systems (ADAS)
offer support at this level to ensure safe and comfortable travel. Electronic support
at the third layer, the stabilisation of the vehicle, is already a mature and widespread
technology [191].

Currently, ADAS only support the driver by information and warnings or by au-
tonomous interventions in a limited scope of situations. For instance, an autonomous
emergency brake (AEB) is only triggered in the case of an impending collision with other
vehicles or pedestrians. Significant research effort is made to realise automated vehicles
which relieve humans from the driving task entirely. Research on intelligent vehicles
strives for more comprehensive environment perception, an accurate interpretation of
traffic scenes with a prediction of the future paths of other participants and the planning
of safe trajectories.

One key question for realising the aforementioned vision is how to handle uncer-
tainties. Due to a limited field of view of exteroceptive sensors, dynamic occlusions or
inevitable measurement noise, uncertainties in the environment perception are unavoid-
able. Concerning the interpretation of a scene, no simple law describes the intentions of
human drivers in ambiguous situations. Therefore, algorithms that predict the future
trajectories of other vehicles are likewise affected by inherent uncertainties.

Despite these uncertainties, ADAS are required to act correctly in all cases. For
example, triggering an emergency brake manoeuvre introduces potential hazards for the
traffic behind. Thus, such an intervention is only justified in the rare case of an imminent
collision. Developers are therefore faced with the challenge of either testing that a given
assistance system is free of hazardous errors or, during the engineering stage, find a
design which guarantees this property.

The objective of this thesis is to contribute to the understanding of uncertainties in
ADAS. To this end, probabilistic models of uncertainty in exemplary signal processing
chains are developed. These models address the questions of how different kinds of
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Navigation

Vehicle guidance

Stabilisation

Perception Interpretation

Figure 1.1 Three level model of
the driving task [47].

Perception Tracking Interpretation 

Prediction 

Innovation 

Association 

Information 
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Figure 1.2 ADAS signal processing chain.

uncertainties propagate through the processing chain and how they impact the overall
system performance.

The signal processing chains of different ADAS functions are usually not monolithic
but – as it is visualised in Fig. 1.2 – comprise generic, reusable algorithms for common
estimation and detection tasks. Thus, models derived for these parts can lead to valuable
conclusions beyond a particular combination of ADAS function and environment sensor.

It is the hypothesis of this thesis that a deeper understanding of the problem space will
lead to a more efficient engineering process. For instance, model-based knowledge can
be employed to select appropriate components or to identify infeasible system designs
prior to exhaustive testing.

The introductory chapter of this thesis is organised as follows: Firstly, the problem
formulation and derived research questions will be detailed in Sec. 1.1. The concept
which addresses these aspects is then outlined in Sec. 1.2. Thirdly, an overview of the
main contributions will be given in Sec. 1.3 before this chapter concludes with an outline
of the remainder of the document in Sec. 1.4.

1.1 Problem statement

Given an algorithm which relies on noisy input data and potentially inaccurate assump-
tions, the effects of these uncertainties on the algorithm’s output data are to be analysed.
This question might be addressed by an empirical observation in the field. Due to
the abundant traffic situations and other relevant influences, an extensive field test is
currently the only known approach to ensure that very rare effects can be discovered [15].

Besides the repeated effort and often a lack of reproducibility that come with empirical
observations, a drawback is that no generic conclusions can be drawn beyond the
current selection of components, algorithms and parametrisations. For a more structured
approach it is therefore desirable to find a model, an idealised representation of the
relevant influences and their impact.

One objective that is addressed by a model is to explain observations of a phenomenon
by a mathematical description of cause and effect. For example, the accuracy of a distance
measurement obtained by a stereo vision sensor can be described by a characteristic
quadratic dependence of the measurement’s standard deviation on the distance.
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A second objective is to predict a response under not yet observed conditions, for
example for different values of a system parameter. Such predictions are of course subject
to uncertainty. Nevertheless, a model might yield sensible initial values or best case
requirements before costly experimental evaluations are conducted.

An important characterisation of a model is to which degree it falls into the category
of a purely empirical or substantive model. The latter are characterised by specific aspects
of the phenomenon’s underlying subject-matter, for example derived from theoretical
considerations. On the contrary, purely empirical models are generic and can be applied
to describe common patterns in different domains [41]. This thesis focusses primarily
on substantive models. It is attempted to find statistical models of specific algorithms
in ADAS signal processing chains and to develop generic frameworks which can be
applied to other algorithms with a similar purpose.

The majority of the algorithms that are analysed in this thesis can be found in a typical
AEB system, for example based on a stereo vision camera. Therefore, statistical models
of the individual algorithms can be concatenated in order to draw conclusions on the
overall behaviour of a realistic exemplary system.

However, AEB systems have a purely reactive behaviour within a limited scope of
situations and thus present only a first step towards functions with a higher degree
of automation. One central distinction of automated driving functions is that they
continuously guide the vehicle through a dynamic environment. This poses higher
requirements on accurate self-localisation and long-term predictions of other traffic
participants. Algorithms for these two tasks are analysed in this work as well in order to
contribute to the development of automated vehicles.

Due to the complexity of an intelligent vehicle’s workspace, simplified representa-
tion of real-world phenomena are usually required. Concerning algorithms for ADAS
applications, a number of typical challenges arise when attempting to find a statistical
model.

1. In estimation and detection tasks, an algorithm’s output is often defined implicitly
in terms of a cost function. Often, no closed-form solution of the optimisation is
available and the eventual result can only be obtained by numerical methods.

2. Tracking and interpreting the behaviour of other traffic participants is usually
based not on single observations but on a time series thereof. When considering
uncertainties in these input quantities, the combinatorics and possible correlations
have to be addressed.

3. Uncertainties often result from inaccurate model assumptions in an algorithm. For
instance, to cope with the natural lack of measurement information on the future
evolution of a traffic scene, motion models are employed to predict the trajectories
of other vehicles. Thus, probabilistic models of the deviation between the true
trajectory and the prediction have to be retrieved from empirical data.

The aforementioned aspects lead to the following research questions:
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1. Is it possible to derive theoretical performance bounds in order to reveal fundamen-
tal limitations of a system?

2. Is it possible to derive inverse models in order to obtain sensor parameter con-
straints from functional requirements?

3. Which simplifying assumptions on real-world conditions can be introduced in
order to obtain insightful models?

4. How to analytically propagate uncertainty in estimates which are implicitly defined
and thus rely on numerical methods?

5. How to efficiently model tracking and estimation algorithms which aggregate
information over time?

6. How to describe inaccurate model assumptions, for example in vehicle motion
models, with an unsupervised, data-based approach?

The concept that is pursued in order to address these questions is outlined in the follow-
ing section.

1.2 Concept overview

The overall approach and the thesis are organised according to the modularised structure
of an ADAS processing chain as seen in Fig. 1.2. It is structured in terms of the major,
qualitatively different tasks. In a specific implementation, algorithms are employed to
address these tasks. Perception refers to (often spatial) measurements of environmental
features and is treated in Ch. 3. Tracking and prediction additionally introduce the time
domain and are considered in Ch. 4. Previous measurements are aggregated and possible
future evolutions are estimated. Thirdly, interpretation is the abstraction from temporal-
spatial estimates to semantic aspects such as intentions or risks. Exemplary algorithms
for this purpose are studied in Ch. 5.

Ch. 6 addresses the generation of reference measurements from raw sensor data
using off-line signal processing algorithms. Accurate reference measurements are a key
requirement for experimental evaluations of a system and model identification based on
empirical data.

In a concluding part of the thesis in Ch. 7, it is exemplarily demonstrated how the
previously described models can be applied in order to derive performance bounds of
an AEB system and sensor accuracy requirements for feature-based self-localisation.

Essentially, parametric models of the uncertain inputs of an algorithm have to be
derived and propagated to parametric models of the output quantities. The latter thus
describe the inputs of a subsequent algorithm. Therefore, a systematic and comprehen-
sive treatment of the entire signal processing chain can be achieved. Often, multiple
algorithms exist that address the same task and differ for example by the use of different
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Figure 1.3 Comparison of data- and knowledge-based approaches to modelling.

approximations. To achieve generic models it is therefore advisable to focus on the task
itself instead of particular algorithms. That is why it is valuable to derive theoretical
performance bounds which apply to any (sub-) optimal algorithm.

In general, two different directions can be followed in order to obtain models of a
process. As visualised in Fig. 1.3, white-box models are built entirely on knowledge
(for example, laws of physics or mathematical relationships) whereas black-box models
are obtained from empirical observations. An intermediate way is offered by grey-box
approaches where simplified models of the central characteristics are combined with
empirical data.

This work pursues to develop white- or grey-box models in order to achieve generic
and insightful results. The knowledge-driven approach can reveal which aspects of an
algorithm’s output are due to the choice of a specific implementation or parametrisation
and which are inherent limitations of the problem itself. Such upper performance
bounds allow finding necessary requirements on the input data or the design of objective
performance metrics. In contrast, black-box approaches only yield a model of one
particular system. Furthermore, they do not leverage the available knowledge about a
system in order to alleviate the required amount of empirical data.

However, pure white-box models of common ADAS sensors, for example vision-based,
are extremely difficult to obtain and feature a high number of necessary parametrisa-
tions [35, 89]. It is thus crucial to assess the accuracy and limitations of simplified
models.

Assuming that a probabilistic model of the input quantities of a component has been
obtained, the goal is then to propagate the input distribution to the algorithm output. To
this end, there are two principal approaches:

1. Numerical methods1 are based on iterated computations for varying inputs. There-
fore, input data is randomly sampled from the respective distribution and fed into
the algorithm. This yields a non-parametric distribution of the algorithm’s output.

2. Analytical propagation means to derive a parametric model of the output distribu-
tion as a function of a parametric model of the input.

1Also termed Monte-Carlo experiments or simulations.
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Table 1.1 Comparison of analytical and numerical methods for the propagation of proba-
bility distributions. The implementation of numerical simulations is more straightforward
but only allows the analysis of a specific algorithm. Analytical approaches yield more
generic models but are often limited to certain families of input distributions.

Analytical Numerical
Approach Propagate a parametric

distribution
Sample from a
distribution

Result p Parametric models

p Generic performance
bounds

p Singular evaluation for
specific algorithm and
parametrisation

Challenges p Effort for derivation

p Restrictions imposed
by parametric models

p Repeated numerical ef-
fort

The two approaches feature different strengths and weaknesses which are compared in
Tab. 1.1. On the one hand, numerical computations are appealing since they have fewer
prerequisites. The drawbacks on the other hand are that only a specific algorithm and
singular parametrisation can be evaluated at a time. Therefore, no further insight on the
(asymptotic) relationship of parameter values or general performance bounds is obtained.
Furthermore, depending on the dimensionality of the input space, the computational
burden may become inacceptable.

The strong advantage of an analytical approach is that much more generic conclu-
sions can be drawn. It is possible to take on a problem centric view and thus to derive
upper performance bounds which apply to any (sub-) optimal algorithm implemen-
tation. Moreover, informative insights on relevant influencing factors, such as system
parameters, can be obtained. Finally, analytical results facilitate the implementation of
probabilistic models on embedded devices and thus the development of algorithms with
a self-assessment of uncertainty. However, analytical approaches are often restricted to
certain classes of input densities that allow the propagation through an algorithm. Fur-
thermore, the exact propagation in closed form is often intractable and only approximate
models can be derived.

Previous works on the analysis of entire ADAS signal processing chains, for exam-
ple [73, 111, 143, 170, 183], employ mostly numerical methods. These examples differ by
the considered sensors and functions. Using numerical simulations is a viable approach
to yield a precise evaluation of an already specified system. However, in order to build
a solid understanding for the development of future systems, simplified but analytical
models are valuable tools.

In-depth analyses of specific algorithms in ADAS are reported in the literature both
with numerical and analytical approaches. Detailed reviews and comparisons to the
results from this thesis are given in the respective sections. The conceptual difference is
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that this work considers the individual tasks in the context of the entire processing chain.
Therefore, models that describe the inputs of an algorithm are consistently motivated.
Previous works which only consider one specific algorithm have to substitute such
models by assumptions on the input signals.

For example, algorithms for the risk assessment of traffic situations rely on uncertain
state estimates from a tracking filter. Previous works which study the impact of these
uncertainties often introduce the assumption of a known constant estimation error
covariance. The value of this covariance might be chosen as an average or theoretical
worst case value. However, more realistic and time-dependent models can be obtained
by explicitly modelling the sensor’s uncertainty and its propagation to the state estimates,
as is pursued in this work.

In summary, this thesis focusses on analytical modelling and uses numerical methods
to validate the results. Results and conclusions that were obtained by numerical studies
in previous works will be confirmed or extended with mathematical arguments. The
main contributions are summarised in the following section.

1.3 Contributions

This thesis contributes to the state of the art in research on intelligent vehicles with
a comprehensive analytical modelling of algorithms in an ADAS signal processing
chain. A similar end-to-end analysis has to the best of the author’s knowledge not been
developed before.

Contributions on specific problems can be summarised as follows:

p Stereo vision based object detection: A prototypical object detection algorithm is
assumed. The influence of measurement noise is studied analytically, the models
are evaluated with empirical data and the influencing factors are discussed. The
analysis (Sec. 3.1, [223]) contributes to the understanding of uncertainty propagation
in stereo vision based algorithms for object detection.

p Feature-based localisation: To achieve highly accurate localisation without satellite-
based methods, static environmental features can be matched against a known map.
The underlying task is to estimate transformation parameters from noisy sets of
corresponding feature positions (Procrustes problem). This work (Sec. 3.2.4, [211,
212]) derives novel closed-form expressions of the estimate’s variance for the matrix-
and scalar-weighted Procrustes problem. Moreover, a novel bias-corrected solution
for the scalar-weighted case is proposed (Sec. 3.2.4.3, [217]).

p Identification of process noise models: Algorithms for tracking and situation in-
terpretation employ vehicle motion models for short-term trajectory predictions.
The prediction’s inaccuracy can be modelled in a probabilistic sense as process
noise. This work estimates the parameters of Gaussian process noise models from
measured vehicle trajectories using the expectation maximisation (EM) algorithm
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(Sec. 4.2.5, [221]). A novel closed-form adaptation of the algorithm to a covari-
ance matrix with Kronecker product structure presents a theoretical contribution
(Sec. 4.2.4.4).

p Performance bounds on driver intention recognition: Long-term predictions of
vehicle trajectories can be obtained with a dedicated recognition of semantic
driver intentions. This work formulates this task as a hypothesis test and thus
a novel framework for the derivation of analytical performance bounds is proposed
(Sec. 5.1.3). The development of an equivalent recursive form of the performance
bound presents a contribution to change detection problems in general linear dy-
namic systems (Sec. 5.1.4.4, [219]). In contrast to previous results, the recursive
calculation avoids the inversion of large matrices with growing dimensions.

p Probabilistic models of criticality measures: Situation interpretation for emer-
gency brake systems can be tailored to the specific use cases of these systems.
Thereby, criticality measures quantify the risk of an impending collision. A novel
method for the propagation of stochastic errors in these algorithms is developed
(Sec. 5.2.4, [218]). In contrast to previous works, the approach is fully analytical and
takes inherent prediction errors into account. Moreover, a previous study on the
activation timing of an AEB system is generalised to the case of correlated errors.

Additional contributions address the testing and validation of higher automated driving
functions. Despite the strong progress in the development of automated vehicles, a lack
of efficient and standardised methods for approval is regarded as a potential bottleneck
for market introduction [15]. One root cause for the necessity of exhaustive field tests is
a lack of complete and accurate models of an intelligent vehicle’s workspace.

In the course of writing this thesis, a framework for the testing problem has been
developed. This enables to assess different approaches and identify open questions
in a systematic manner. Relevant publications have been categorised in the proposed
framework and discussed in a collaborative survey [220]. This thesis does not entail the
survey in its entirety but includes relevant parts to compare own approaches with the
state of the art in the respective sections. Furthermore, methods for post processing of
laser scanner measurements have been developed (Ch. 6, [215]) which contributes to the
complex of generating ground truth data and test scenarios.

1.4 Document outline

The thesis is structured in eight chapters as visualised in Fig. 1.4. Following this intro-
ductory chapter, an introduction to probabilistic models is provided in Ch. 2.

Thereafter, Ch. 3, Ch. 4 and Ch. 5 entail the main contents on statistical modelling.
Each of these chapters contains two independent sections on specific algorithms.

A third and more application-oriented part is constituted by Ch. 6-Ch. 7. Firstly, the
generation of accurate reference measurements of vehicle trajectories is considered in
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Introduction Ch. 1

Foundations of probabilistic models Ch. 2
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Applications Ch. 7

Accuracy requirements for
localisation in urban au-
tomated driving Sec. 7.1

Performance bounds of an au-
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Conclusion Ch. 8

Figure 1.4 Thesis outline.

Ch. 6. This topic is relevant for empirical analyses and testing in general. Secondly, Ch. 7
contains two exemplary applications of the probabilistic models from the main body of
the thesis.

Finally, Ch. 8 contains the conclusion and a discussion of possible directions for further
research.





2 Foundations of probabilistic models

This chapter introduces basic concepts and notations that are employed throughout the
thesis. It consists of three parts. First, foundations of random variables and probability
distributions are introduced in Sec. 2.1. Second, the transformation of random variables
by non-linear functions will be studied in Sec. 2.2. Third, different interpretations of
probabilities, known as Bayesian and frequentist, will be discussed in Sec. 2.3.

2.1 Random variables and probability distributions

Phenomena with an unknown exact but random behaviour are modelled with random
variables in this thesis. Instead of a deterministic value, probability distributions are used
to characterise these variables. A brief introduction to random variables and probability
distributions will be given in Sec. 2.1.1. Gaussian random variables constitute one
particular and important example. They will be introduced in Sec. 2.1.2. The derivation
of optimal performance bounds in estimation tasks relies on the analysis of information
in distributions which will be studied in Sec. 2.1.3.

2.1.1 Basic definitions and notations

A random variable x does not possess one definite value but takes on individual re-
alisations x with a certain likelihood. These realisations may be part of a discrete set
X = {x1, . . . , xN }, for example the possible outcomes when rolling a dice. A probability
P
(
x = x

)
that is assigned to each possible realisation characterises a discrete random

variable.
In a driver assistance context, random variables are frequently needed to describe a

representation of the environment that consists of continuous states x ∈ Rn, for example
distances and velocities. A continuous random variable x can be defined by a probability
density function (PDF) px

(
x
)
. The probability that a realisation x of x falls into a set A is

given by the integral over the probability density function:

P
(
x ∈ A

)
=

ˆ
A
px
(
x
)

dx . (2.1)

Instead of the probability density function, a random variable is also fully defined by the
cumulative distribution function (CDF) Px

(
x
)

:= P
(
x1 ≤ x1, . . . , xn ≤ xn

)
.

PDF and CDF both provide a full description of a random variable. An alternative but
usually not complete characterisation is given by the central moments. Especially the
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first two central moments are often used to compare two distributions or to characterise
samples for which the underlying distribution is unknown.

p Expected value: According to the law of large numbers, the average of a large num-
ber of independently drawn realisations of a random variable converges against
the expected value Ex [x]:

µx := Ex [x] =

ˆ
xpx
(
x
)

dx . (2.2)

p Covariance: The second central moment describes the expected squared deviation
from the mean:

Σx := cov (x) = Ex

[
(x− Ex [x]) (x− Ex [x])T

]
. (2.3)

In the case of a vector-valued random variable x, one refers to cov (x) as the co-
variance matrix whereas for scalar x, this quantity is known as the variance var (x).
Furthermore, σx :=

√
var (x) is known as the standard deviation.

Often, a model contains not one but multiple variables which refer to different influ-
ences. Two random variables x and y can be described by their joint probability density
function px,y

(
x,y

)
. The marginal density of just one variable follows after integrating out

the other:

px
(
x
)

=

ˆ
px,y
(
x,y

)
dy . (2.4)

An important property is independence of multiple random variables which means that
the joint density function can be factorised:

px,y
(
x,y

)
= px

(
x
)
· py
(
y
)
. (2.5)

Random variables being independent can simplify calculations to a great extent. How-
ever, the assumption of strictly independent influences is often not accurate in practical
applications. The conditional probability density px|y

(
x
∣∣y
)

describes this dependence,
namely the distribution of x given that y takes on a specific realisation y:

px|y
(
x
∣∣y
)

=
px,y
(
x,y

)

py
(
y
) . (2.6)

In conjunction with the definition of marginal densities from (2.4) one obtains the law of
total probability:

px
(
x
)

=

ˆ
px|y
(
x
∣∣y
)
py
(
y
)

dy . (2.7)

Noting that px,y
(
x,y

)
= py,x

(
y,x

)
, one has a relation known as Bayes’ rule:

px|y
(
x
∣∣y
)

=
py|x
(
y
∣∣x
)
px
(
x
)

py
(
y
) =

py|x
(
y
∣∣x
)
px
(
x
)

´
py|x
(
y
∣∣x
)
px
(
x
)

dx
. (2.8)
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Figure 2.1 Visualisation of exemplary probability density functions: (a) a bivariate Gaus-
sian distribution according to (2.10) and (b) a univariate Gaussian mixture model with
two mixands according to (2.14).

In the remainder of this thesis, the difference between a random variable x and its
realisation x will be clear from the context. Therefore, the notational differentiation is
omitted and solely x is used for clarity. Moreover, the shorthand notations p

(
x
)

:= px
(
x
)

and P
(
x
)

:= Px

(
x
)

are employed. Likewise, the operator E [x] := Ex [x] is written
without the subscript that indicates over which distribution the expectation is taken,
unless needed for clarification.

2.1.2 Gaussian distributions

Among numerous parametric distributions, the Gaussian distribution plays an important
role. Its definition and favourable properties will be introduced in the following. The
practical importance of Gaussian distributions is motivated by the central limit theorem.
Under weak assumptions, the sum of infinitely many random variables converges
against a Gaussian distribution. In practice, noise processes in a technical component are
caused by a combination of multiple random phenomena. Therefore, the overall noise
may be regarded as the sum of individual random variables and hence is distributed
approximately Gaussian.

A Gaussian random vector x ∈ Rn ∼ N (µx,Σx) is characterised by the following
probability density function:

p
(
x
)

= N (x;µx,Σx) =
1√

det (2πΣx)
exp

(
−1

2
(x− µx)T Σ−1

x (x− µx)

)
. (2.9)

An example of this density for a two-dimensional random vector is visualised in
Fig. 2.1(a). The Gaussian density function1 N (x;µx,Σx) is fully defined by the first two

1In this work, x ∼ N (µx,Σx) is used to indicate that x is a Gaussian random variable. Whereas
N (x;µx,Σx) refers to the Gaussian probability density function (2.9).
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moments µx = E [x] and Σx = cov (x). For det (Σx) → 0 one has the limiting case of a
Dirac delta distribution which is denoted by p

(
x
)

= δ (x− µx).
If a random variable, whose exact distribution is unknown, is described in terms

of mean and covariance this implies a Gaussian approximation. This approximation
will be frequently employed to model the propagation of a random input signal to an
algorithm’s output. As will be shown in Sec. 2.2, it is often impossible to analytically
obtain the exact density of a non-linear function of a random variable. On the other hand,
calculating the mean and variance and thus a Gaussian approximation of this density is
usually much easier.

In the following, three properties which facilitate analytical derivations with depen-
dent Gaussian random variables will be stated. Assume that x ∈ Rn and y ∈ Rm are
jointly Gaussian with

p
(
x,y

)
= N

([
x

y

]
;

[
µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
. (2.10)

First, inserting the joint density into (2.4) yields that the marginal densities are Gaussian
as well [172]:

p
(
x
)

= N (x;µx,Σxx) , p
(
y
)

= N
(
y;µy,Σyy

)
. (2.11)

If Σxy = ΣT
yx = 0 it follows that p

(
x,y

)
= p
(
x
)
· p
(
y
)

and thus x and y are independent.
Second, the conditional density p

(
x
∣∣y
)

can be derived from (2.6). Again, this density
remains a Gaussian [172]:

p
(
x
∣∣y
)

= N
(
x;µx + ΣxyΣ−1

yy

(
y − µy

)
,Σxx −ΣxyΣ−1

yyΣyx

)
. (2.12)

The expectation of the random variable x is a linear function of the realisation y.
A third important relationship concerns the marginal density that results from a

Gaussian conditional density of the form N
(
x; Ay + b,Σx|y

)
and a Gaussian prior

densityN
(
y;µy,Σy

)
. Here, we assume that x,b ∈ Rn, y ∈ Rm and A ∈ Rn×m. Applying

the law of total probability (2.7) yields for the posterior density p
(
x
)

[172]:

p
(
x
)

=

ˆ
N
(
x; Ay + b,Σx|y

)
N
(
y;µy,Σy

)
dy

= N
(
x; Aµy + b,Σx|y + AΣyAT

)
. (2.13)

Sec. 4.1 will show in more detail how the property of a Gaussian distribution being its
own conjugate prior [160] is helpful for estimating a system’s state that evolves according
to a conditional Gaussian model.

Despite the widespread applicability of a Gaussian noise assumption, some processes
cannot be accurately described by a unimodal Gaussian. Measurements with a Gaussian
distribution and additional sporadic outlier values are one example that will be studied
in Sec. 4.1.5.1. To cope with these and other non-Gaussian phenomena, a more general
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Gaussian mixture model (GMM) can be employed. The probability density function
consists of a weighted sum of K Gaussian mixands:

p
(
x
)

=
K∑

k=1

ωk · N (x;µk,Σk) ,
K∑

k=1

ωk = 1 , ωk ≥ 0 ∀k . (2.14)

Exemplarily, this density is shown in Fig. 2.1(b) for a mixture model with K = 2 com-
ponents. In principle, any distribution can be approximated by a sufficient number of
mixands [43]. One advantage of this generic model is that many results for unimodal
Gaussians, as will be derived in this thesis, can be repeated en mass for multimodal
GMMs. In practice, this is limited by a growing number of mixands. Additional means
for recombination make this more efficient [71].

2.1.3 Information in distributions

Often, quantities of interest are not directly and accurately observable. This leads to an
estimation problem where an unknown parameter θ is to be estimated from measured
data x. A known density function p

(
x
∣∣θ
)

is assumed that describes the relation between
the data and the parameter.

The Fisher information matrix (FIM) Ix (θ) with respect to θ quantifies the information
in p

(
x
∣∣θ
)

about θ. It can be calculated according to the following two expressions that
involve either the Hessian ∆θ

θ (·) or gradient2 ∇θ (·) [74]:

Ix (θ) = −Ex|θ

[
∆θ

θ log p
(
x
∣∣θ
)]

= Ex|θ

[(
∇θ log p

(
x
∣∣θ
))T (∇θ log p

(
x
∣∣θ
))]

. (2.15)

The covariance of any unbiased estimate θ̂ of θ, that is E
[
θ̂
]

= θ, is bounded below
by the inverse Fisher information matrix under certain regularity conditions [11]. This
important relation is known as the Cramér-Rao bound (CRB):3

cov
(
θ̂
)
� I−1

x (θ) . (2.16)

An estimator which reaches the CRB is termed efficient. If an efficient unbiased estimator
exists for a given problem, this is the maximum likelihood (ML) estimator [122]:

θ̂ = arg max
θ

p
(
x
∣∣θ
)
. (2.17)

The FIM with respect to the expected value µx of a random variable x is a special
case of (2.15). This quantity is termed intrinsic accuracy (IA) and is especially useful to
characterise zero mean noise processes [178]:

Ix := Ex

[(
∇µx

log p
(
x
))T (∇µx

log p
(
x
))]

. (2.18)

2In this work, the numerator-layout notation is employed for derivatives of vector-valued functions or
functions with multi-dimensional arguments. This notation is exemplified in (A.1) in the appendix.

3The notation A � B for matrices A,B denotes that the difference A−B is positive semidefinite.
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The following general inequality holds [74]:

cov (x) � I−1
x . (2.19)

Furthermore, it is easy to show that for a Gaussian density (2.9), Ix = Σ−1
x and thus

(2.19) holds with equality. Therefore, it follows that if a noise process is approximated by
a Gaussian with the same mean and covariance as the original density, information is
always lost. To quantify this loss of information, the notion of relative accuracy (RA) is
introduced in [74]. If (2.19) holds with equality after multiplication with a scalar Ψx ≥ 1,
this coefficient denotes the relative accuracy of the distribution p

(
x
)
:

cov (x)
!

= Ψx · I−1
x . (2.20)

One advantage of a Gaussian approximation is that the maximum likelihood estimate
becomes an analytical, linear function of the data for models with additive Gaussian noise.
For non-Gaussian densities, an ML estimate is often not available in closed form. Instead,
numerical methods are required to calculate the maximisation in (2.17). However, the
computational power of embedded devices for driver assistance applications is usually
fairly limited. Therefore, it is of great value to objectively assess the difference between
an ML estimate with a minimum variance according to the CRB for the exact density
and a sub-optimal Gaussian approximation. This will be discussed on the example of
motion state estimation in Sec. 4.1.

2.2 Functions of random variables

In order to propagate probabilistic models of uncertainty through a signal processing
chain, the probability densities of (non-)linear transformations of random variables have
to be derived. Often, this task is not solvable in closed form and a number of methods for
approximate solutions have been developed. An introduction to a linearisation-based
approach that is mostly used within this thesis is given in the following. A more complete
overview and more examples are provided in [69, 74, 162].

Let x be a scalar4 random variable that is defined by a probability density p
(
x
)
.

Applying a non-linear, differentiable function f : R 7→ R yields a second random variable
y = f (x) and the goal is to find the density function p

(
y
)
. This can be achieved with

the definition of the density function being the derivative of the cumulative distribution
function:

p
(
y
)

=
d

dy
P
(
y
)

=
d

dy

ˆ
f(x)≤y

p
(
x
)

dx . (2.21)

Unfortunately, not every non-linear transformation of a random variable possess an
analytical solution of (2.21). A numerical Monte-Carlo approach is to draw Ns � 1

4Only the scalar case is considered for clarity but all derivations can be extended to random vectors.
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random samples x(i) from the input distribution p
(
x
)

and to transform these to samples
y(i) = f

(
x(i)
)
. As long as sufficiently many samples are drawn, the relative frequencies

of the transformed samples yield a non-parametric representation of p
(
y
)
. Monte-Carlo

estimates of the expected value and variance can be obtained as [157]:

µy =
1

Ns

Ns∑

i=1

y(i) , σ2
y =

1

Ns − 1

Ns∑

i=1

(
y(i) − µy

)2

. (2.22)

The result is non-deterministic due to the random nature of the input. Since this thesis
focusses on analytical methods, numerical sampling is mainly employed for model
evaluation. A more extensive account on Monte-Carlo methods can be found [49, 184].

In order to obtain a closed-form approximation of p
(
y
)
, one might assume a Gaussian

density N
(
y;µy, σ

2
y

)
. To this end, the expected value and variance of y have to be

calculated. A simple approach is to linearise f (x) around the expected value µx of x:

f (x) ≈ f (µx) + A (x− µx) , A =
d

dx
f (x)

∣∣∣∣
µx

. (2.23)

Therefore:

µy = E [f (x)] ≈ E [f (µx) + A (x− µx)] = f (µx) (2.24a)

σ2
y = E

[
(f (x)− E [f (x)])2] ≈ E

[
A2 (x− µx)2] = A2 var (x) . (2.24b)

We remark that this transformation makes two assumptions:

1. The densities p
(
x
)

and p
(
y
)

are accurately approximated by a Gaussian density
function.

2. The linearisation of f (x) is sufficiently accurate.

If p
(
x
)

is in fact Gaussian and f (x) a linear function, the transformation (2.24) is exact.
Therefore, Gaussians are mapped to Gaussians under affine transformations which is a
further reason for their frequent use. The following example will illustrate the differences
between the approximation (2.24) and the exact solution (2.21).

Example 2.1 (Quadratic function of Gaussian random variable)
We consider the case where p

(
x
)

= N
(
x;µx, σ

2
x

)
and y = x2. Inserting into (2.21)

yields the exact transformation:

p
(
y
)

=
d

dy

ˆ √y
−√y

1√
2πσ2

x

exp

(
−1

2

(
x− µx
σx

)2
)

dx

=
1√

2πσ2
x

1√
y

exp

(
−1

2

y + µ2
x

σ2
x

)
cosh

(√
yµx

σ2
x

)
, y > 0 . (2.25)
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Figure 2.2 Gaussian random variable x transformed by a quadratic function y = x2.
The exact probability density function p

(
y
)

from (2.25) is compared to the Gaussian
approximation (2.26). Since the linear approximation is reasonably accurate for the
considered range, a good fit between the Gaussian and the exact density is observed. A
non-parametric approximation of the transformed density is obtained by individually
transforming a set of Monte-Carlo samples. Note that although Ns = 1× 103 samples
were drawn, notable deviations between the samples’ distribution and the true density
occur. This emphasises the high computational effort that is needed to obtain an accurate
Monte-Carlo approximation.

The result is known as a non-central χ2-distribution with n = 1 degree of freedom.
It can be generalised to quadratic forms y = xTΣ−1

x x where x ∈ Rn ∼ N (µx,Σx).
With the non-centrality parameter λ := µT

xΣ−1
x µx, the density is denoted by χ2

n (y;λ).
Furthermore, χ2

n (y) := χ2
n (y; 0) denotes the central χ2-distribution.

For the linearisation-based approach (2.24), one obtains:

p
(
y
)
≈ N

(
y;µ2

x, 4µ
2
xσ

2
x

)
. (2.26)

We remark that this density does not per se restrict values y < 0 although x2 is
never negative. This indicates a weakness of only approximating the function locally
around µx but not globally. A visual comparison of both methods is shown in Fig. 2.2.

In conclusion, an exact propagation of a probability density function through a non-linear
function is often not solvable in closed form. For the special case of linear transformations
and Gaussian densities, an exact analytical solution exists. Furthermore, this solution can
be generalised to a linearisation-based approximation. Due to its notational consistency
and analytical simplicity, this technique will be employed in the remainder of this thesis.
In principle, all derivations can be repeated with more sophisticated approximations, for
example based on higher-order approximation of the function [162] or by approximating
the exact posterior density by a Gaussian [97].
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2.3 Bayesian and frequentist interpretations of probability

Although the mathematical definitions and relationships concerning probabilities are
unambiguous, different views exist on the interpretation in the context of real-world
applications. The two common views of Bayesian and frequentist understanding as well
as their occurrence in this thesis will be briefly discussed in the following.

In a frequentist interpretation, probabilities refer to the limiting behaviour of relative
frequencies, that is, if an experiment were repeated infinitely many times. The Bayesian
characterisation on the other hand regards probabilities as a quantification of belief or
knowledge. This understanding is particularly well suited to formulate decision making
problems.

The differences between these views become clear for the ubiquitous task of inferring
the unknown value of a parameter θ from a measured data sample x. The measurement
is assumed to be affected by random noise and is therefore described by a known
probabilistic model p

(
x
∣∣θ
)
. Examples of this kind of model will be given in Sec. 3.2

for estimating a vehicle’s pose from measured landmark locations or in Sec. 5.1 for
recognising the intended manoeuvre of another driver from trajectory data.

Frequentist inference methods calculate a point estimate θ̂ from a random realisation
x and the model p

(
x
∣∣θ
)
. To quantify the certainty of such an estimate, confidence regions

can be constructed from the estimator’s density p
(
θ̂
∣∣θ
)
. These regions in the parameter

space are defined relative to the random estimate θ̂ and designed in order to include the
true deterministic value θ with a desired relative frequency.

Bayesian inference techniques on the other hand regard θ itself as a random vari-
able [160]. This facilitates introducing additional knowledge in the form of a prior
distribution p

(
θ
)
. Concerning the example of driver intention recognition, a useful prior

could be obtained from traffic rules, which render certain manoeuvre hypotheses much
less likely than others in a particular situation. By applying Bayes’ rule (2.8) to the model
p
(
x
∣∣θ
)
, the knowledge on θ is updated with the information given by a measurement x:

p
(
θ
∣∣x
)

=
p
(
x
∣∣θ
)
p
(
θ
)

´
p
(
x
∣∣θ
)
p
(
θ
)

dθ
. (2.27)

A point estimate θ̂ can be obtained from the updated density p
(
θ
∣∣x
)

. With the under-
standing that θ is random, fixed credible regions can be defined using p

(
θ
∣∣x
)
. Confidence

regions coincide with their Bayesian counterparts only in special cases since they are
built from different densities and rely solely on information in the data but not prior
distributions [96].

In this thesis, Bayesian approaches play an important role in the context of state
estimation (Sec. 4.1), state prediction (Sec. 4.2) and decision making (Sec. 5.2). Despite
the debatable subjectivity that is introduced by prior distributions, Bayesian methods
are highly popular in the domain of autonomous systems since they allow for many
problems to be solved in a straight-forward manner. For example, the estimate of a
dynamic state may be recursively updated over time using (2.27).
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3.1 Stereo vision based object detection

Detecting static and dynamic obstacles in the surroundings is a cornerstone for the
guidance of intelligent vehicles. Environment perception for automotive applications
can be realised with a number of different measurement principles which include radar,
ultrasound or video sensors. Recently, stereoscopic (stereo) cameras have been frequently
used to obtain both 3-D position and additional visual information.

However, sensor measurements are in general affected by noise. In order to process
uncertain information in a Bayes filter or to find minimum accuracy requirements, statis-
tical models of the sensor measurements have to be derived. Following an introduction
to this task in Sec. 3.1.1, the stereo vision measurement principle is outlined in Sec. 3.1.2.
Multiple processing steps are usually performed to aggregate the vast information in
stereo images to a compact environment representation. An exemplary algorithm to
this end is introduced in Sec. 3.1.3. As the main contribution of this section, a statistical
model of this algorithm is developed in Sec. 3.1.4 and evaluated in Sec. 3.1.5. The con-
cluding Sec. 3.1.6 summarises the modelling approach and discusses the possibility of
its extension to other algorithms.

3.1.1 Introduction

The stereoscopic vision measurement principle provides dense 3-D depth maps. Addi-
tionally, visual cues can be obtained from the image sensor output. Stereo vision is thus
frequently used in intelligent vehicles because information rich environment perception
can be achieved with a single sensor [8, 12, 17, 59, 152].

Depth information is obtained from the displacement, termed disparity, between
images which are taken by two cameras from slightly different viewing angles. Hence,
finding correspondence pairs between the two images is the first necessary step to obtain
a 3-D scene representation [84]. Subsequently, relevant information is extracted from the
high-dimensional disparity maps.

This section focusses on the detection of and distance measurement to a preceding
vehicle, which is relevant for example for automotive emergency brake systems. Many
approaches have been proposed to this end [17]. Usually, parametrised models of the
expected appearance of an object are introduced and compared to the measurements.

Knowing the statistical properties of the detection result is important for system
development and further processing, for example sensor data fusion [94]. However, the
complexity of real-world stereo images as well as algorithms that are built on heuristics
make a rigorous analytical treatment often infeasible. Previously, modelling of stereo
vision based obstacle detection has been considered only in non-automotive contexts, for
example robotics [135, 177]. Since the goals and underlying assumptions differ from the
domain of intelligent vehicles, the statistical models are not immediately transferable.

In order to develop a probabilistic model, a simplified algorithm for vehicle detection
in stereo images is considered in this work. The intention is to provide building blocks
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for statistical modelling of more complex state of the art algorithms. The following
material is a revised and extended version of the conference publication [223].

3.1.2 Stereo vision measurement principle

Stereo vision measurements consist of image coordinate values (u, v) and a third disparity
information d which relates each point as seen in one image to the coordinates of the
corresponding pixel in the second image.

Due to the perspective projection, a point (u, v, d) in disparity coordinates is related to
Cartesian coordinates by a non-linear map. For convenience, it is usually differentiated
between two different Cartesian coordinate systems: First, a Cartesian world coordinate
system is used as a joint representation frame of points pw =

[
xw yw zw

]T
in the

vehicle’s environment. In an automotive context, the origin usually lies in the middle
of the vehicle’s rear axle projected at ground plane level. The xw-axis is pointing in
the driving direction. Second, a Cartesian sensor coordinate system with the origin at
the centre of the left sensor’s image plane and its optical axis as xc-axis is introduced.
The transformation between both coordinate systems is defined by the extrinsic camera
parameters. These are the camera’s orientation expressed in a rotation matrix R and its
position with respect to the vehicle’s rear axle t:

pc = Rpw − t . (3.1)

Due to the linearity of this transformation, the statistics of a measurement are easily
transformed between both coordinate systems. For simplified expressions, it is assumed
in the following that camera mounting angles are usually small and thus R ≈ I3×3.
Without loss of generality, a setup with tx = ty = 0 is considered, that is the origins are
only shifted in the vertical direction.

Concerning the image generation, an ideal pinhole camera model is assumed. The two
cameras are assumed to form a standard stereo configuration where the image planes
are separated by the base-width bw. Then, a point pc in Cartesian sensor coordinates can
be mapped to pixel locations (ul, vl) in the left and (ur, vr) in the right image.

In a single image, the depth information xc is lost, but it can be recovered by triangula-
tion from a second image. In the assumed rectified stereo system, corresponding points
lie in same image rows and therefore vl = vr. The column-wise displacement defines the
disparity d = ur−ul. Hence, all three coordinate values (xc, yc, zc) of pc can be calculated
from (ul, vl, ur) [39]:

xc =
ckbw

d
, yc =

bw

d
(ul − u0) , zc =

bw

d
(vl − v0) . (3.2)

Here, the camera constant ck denotes the camera’s focal length in pixel (pel) and (u0, v0)

is the pixel location of the origin of the sensor coordinate system.
The transformation from Cartesian coordinates to (ul, vl, ur) values reads:

ul = u0 + ck

yc

xc
, vl = v0 − ck

zc

xc
, d =

ckbw

xc
. (3.3)
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An important aspect of the stereo measurement principle is to find corresponding pixels
in both images. In the assumed standard stereo configuration, this simplifies to a search
within image rows. To obtain accurate results, the displacement d between corresponding
pixels is usually estimated with a finer quantisation than the native image resolution.
To this end, different algorithms have been developed which estimate the displacement
from multiple adjacent pixels [84].

3.1.3 Derivation of an exemplary object detection algorithm

A simplified object detection algorithm for collision warning in car-following scenarios
is derived in this section. Its statistical properties will then be analysed in Sec. 3.1.4.

The proposed scheme evaluates disparity measurements in central columns of a stereo
image by means of an objective function. Its central idea is to assume that relevant objects
can be approximated by a vertical plane. Thus, a correspondence measure between the
measurements and measurements expected from an idealised vertical plane at a specific
distance is formulated. This scalar objective function is then numerically maximised
over the distance parameter and the maximum peak value is compared to a threshold.

The approach is inspired by published full-scale methods. Column-wise detection of
vertical obstacles – though not only in the central region but on the entire image – can
be used to obtain a compact environment representation termed stixel world [8, 12, 152].
Hence, these algorithms have to employ similar criteria to decide whether a column
in the disparity map includes a relevant object. Maximising an objective function of
disparity measurements is common to many object detection approaches. These can be
simple histograms [59], histograms over image rows (v-disparity) [92, 112] or probabilistic
approaches with likelihood functions [37, 61, 152].

Due to the narrow image region that is considered here, the usual task of segmenting
multiple relevant objects from the image background simplifies to a binary detection
task. Moreover, instead of estimating an object’s position in all three dimensions, only
the one-dimensional distance information is extracted.

A rectangular disparity map is formally described by a matrix D of disparity values
Dv,u for each image row v and column index u. An example is visualised in Fig. 3.1(a). In
the following, only a narrow rectangular region of interest is considered which is defined
by the indicesR := {u : u } × { v : v }. This region of interest is assumed to stretch over
n∆u central columns and n∆v � n∆u rows of the image. Disparity values from this region
are firstly represented in the form of row vectors dv :=

[
Dv,u

]
u=u:u

.
For improved robustness and under the assumption of spatial homogeneity of an

object contour, disparity values within the region of interest are condensed to their
row-wise mean value d̄v:

d̄v :=
1

n∆u

u∑

u=u

Dv,u =
1

n∆u

dv · 1n∆u×1 . (3.4)
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Figure 3.1 Visualisation of stereo vision disparity measurements and the object detection
algorithm in a scene with a vehicle at xcobj = 12 m → d̂obj ≈ 12 pel. The vehicle’s rear
lies within the central columns which are considered in the algorithm and it can be
recognised how it is mapped to similar disparity values over multiple image rows v. The
objective function g(d, dobj) is calculated for two different values of the system parameter
t1. Increasing t1 yields higher maximum values and less sensitivity to an object’s contour
but reduced distinction between object and background.

The values d̄v from all considered image rows are written in the form of a column vector
d :=

[
d̄v
]
v=v:v

. This vector is the input of the detection algorithm which is detailed in the
following.

Relevant objects shall be detected from a measurement d by a template matching
approach in disparity space [37]. A template is understood as a parametrised represen-
tation of all possible measurement realisations. It is assumed that relevant objects are
ideally described by vertical planes fronto-parallel to the camera with xcobj = const. This
approximately maps to disparity values dobj = const. as can be seen in Fig. 3.1(b) [152].
The template is thus defined by a single parameter dobj.

Formally, this approach is expressed by a correspondence measure g(d, dobj). Here,
a Gaussian window is applied to the distances (di − dobj) and the sum over all image
rows is taken. Scaling the distance with a parameter t1 governs the tolerance to small
deviations:

g
(
d, dobj

)
=

n∆v∑

i=1

exp

(
−1

2

(
di − dobj

)2

t21

)
. (3.5)

Note that the sum appears outside of the Gaussian, whereas a likelihood as derived
in [152] consists of a multiplication of Gaussians. This is because the approach pursued
here does not assume that all disparity measurements belong to the vertical object contour
but can as well occur on the road surface in front of the vehicle. Using (3.5), outlier values
contribute with zero weight to the correspondence measure but do not penalise the result.
For a likelihood-based objective function on the other hand, additional parameters have
to be introduced to indicate the image rows within which the object is located.
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As it is exemplified in Fig. 3.1(c), maximising (3.5) over the template parameter dobj

yields a realisation of the template that corresponds best to the measurements:

d̂obj = arg max
dobj

g
(
d, dobj

)
. (3.6)

Relevant objects are differentiated from false measurements or clutter by a detection
threshold on the maximum correspondence measure

gmax = max
dobj

g
(
d, dobj

)
= g

(
d, d̂obj

)
. (3.7)

Finally, distance estimates x̂wobj are calculated by transforming d̂obj to Cartesian coordi-
nates according to (3.1)-(3.3).

3.1.4 Statistical modelling

The detection algorithm from Sec. 3.1.3 considers the row-wise mean disparity from a
narrow image region and estimates if a vertically extended contour exists. A statistical
analysis of the algorithm’s output quantities is developed in this section. The derivation
comprises four different parts which are detailed in Sec. 3.1.4.1-3.1.4.4. An overview is
visualised in Fig. 3.2.

Disparity measurements, which are the input quantities of this algorithm, have to be
modelled first. To this end, one has to consider the stereo camera’s measurement model
as well as the physical object contour. Firstly, Sec. 3.1.4.1 details measurement models
which have been reported in the literature. Secondly, the scope of Sec. 3.1.4.2 is how the
relevant contour of physical objects can be efficiently modelled.

Thirdly, given a probabilistic descriptions of the detection algorithm’s input quantities,
an analytical propagation to the output is derived in Sec. 3.1.4.3. The objective function
(3.5) is analysed in terms of the maximum correspondence measure gmax as well as the
estimated object position d̂obj in disparity coordinates.

Fourthly, the transformation of this disparity estimate to a Cartesian distance x̂obj

is studied in Sec. 3.1.4.4. A statistical test is used to assess the consistency of the joint
transformation of mean and variance.

Object appear-
ance in disparity
space Sec. 3.1.4.2

Disparity
measurements

Sec. 3.1.4.1

µd
Detection
algorithm
Sec. 3.1.4.3

d
Cartesian
distances

Sec. 3.1.4.4

d̂obj x̂obj

Figure 3.2 Overview of signal flow and modelling approach.

3.1.4.1 Disparity measurement error model

Stereo vision measurements according to Sec. 3.1.2 can be affected by systematic and
stochastic errors. Firstly, inaccuracies during a camera calibration process cause uncer-
tainty in the model parameters. A detailed discussion of the origin and propagation of
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calibration errors is presented in [21]. These systematic errors lead to biased estimates
and are not considered in the following. Secondly, the measured coordinates (u, v, d) in
disparity space are affected by random noise. This is due to image quantisation effects as
well as errors in the correspondence search for disparity estimation. A stochastic model
will be employed to quantify these uncertainties.

Algorithms for disparity reconstruction with sub-pixel accuracy estimate the disparity
from multiple adjacent pixels. This leads to correlated errors in neighbouring image
columns. However, it is supposed that this correlation does not extend over image rows.
As in [8, 135], a multivariate normal distribution is assumed to model the additive error
edv

in the measured disparity values dv from one image row v:

dv = µdv
+ edv

, edv
∼ N

(
0,Σe,dv

)
. (3.8)

To parametrise the measurement error covariance Σe,dv
, quantisation errors can be

geometrically studied and approximated by Gaussian densities [8, 25, 136]. However, as
in [58, 206], these analyses focus only on the hardware parameters of the stereo system.
Hence, they do not consider the influence of a specific algorithm for correspondence
search on the estimated disparity. In order to obtain a comprehensive error model that
includes a matching algorithm’s influences, errors can be evaluated on real-world images
as in [154] or synthetic data as in [164].

The input vector d of the detection algorithm consists of the row-wise mean values of
dv according to (3.4). Given (3.8), the mean values d̄v are distributed as:

d̄v = µd̄v + ed̄ , ed̄ ∼ N
(
0, σ2

e,d̄

)
, σ2

e,d̄ =
1

n2
∆u

11×n∆u
Σe,dv

1n∆u×1 . (3.9)

A simple approximate expression for σ2
e,d̄ can be derived from (3.9), if a constant correla-

tion coefficient ρe,d between ncorr neighbouring pixels is assumed:

σ2
e,d̄ =

σ2
e,d

n∆u

(
1 + ρe,dL

2n∆u − L− 1

n∆u

)
, L = min (n∆u, ncorr) . (3.10)

Compared to the case of uncorrelated measurements with ρe,d = 0, the variance increases
due to the second term. By assuming uncorrelated errors among image rows it follows
that

d ∼ N
(
µd, σ

2
e,d̄In∆v×n∆v

)
. (3.11)

Finally, it should be noted that a correspondence search algorithms may fail entirely,
for example at image regions with low texturisation. This causes invalid measurements
and hence gaps in the dense disparity map, as seen in Fig. 3.1(a). Due to the high
complexity of the interplay between lighting conditions, object surface and algorithm,
this effect is not modelled explicitly but subsumed by a fixed percentage 0 < ηvalid ≤ 1 of
valid measurements.
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3.1.4.2 Object appearance in disparity space

The appearance of objects in the narrow region of interest depends on object dimensions
and the depth profile along the vertical axis. Due to the countless possible objects that
might be visible, this analysis focusses on the detection of vehicle rear views only. In
order to achieve a generic model, a probabilistic description of the depth distribution is
introduced.

Coverage of image rows: The number of image rows n∆v,obj that an object is mapped
to depends on its height and distance to the camera. In the following, a deterministic
expression is derived from geometrical considerations.

An object with height hobj at distance xwobj is vertically confined by its ground contact
position at pw−obj and upper edge at pw+

obj in Cartesian world coordinates. Evaluating the
projection to image coordinates (3.1)–(3.3) yields:

v+ = v0 −
ckz

c−
obj

xc−obj

, v− = v0 −
ckz

c+
obj

xc+obj

. (3.12)

These theoretical values might exceed the image’s dimensions v ∈ [v, v]. This has to be
considered when calculating the difference n∆v,obj between upper and lower image row.
Neglecting this effect yields a simplified formula:

n∆v,obj = min
(
v, v+

)
−max

(
v, v−

)
(3.13a)

≈ ckhobj

xcobj

. (3.13b)

The exact (3.13a) and approximate solution (3.13b) are shown in Fig. 3.3 for a vehicle
with hobj = 1.4 m and are compared to empirical values obtained at different distances
xcobj. For the simplified approximation, deviations can be observed at small distances
where upper and lower edges lie outside of the field of view of the camera.

Vehicle depth profile: The object detection algorithm from Sec. 3.1.3 compares the mea-
sured disparities d to a constant disparity value dobj as is expected from a vertical plane.
In order to obtain a model of the algorithm’s output, it is necessary to describe a real
vehicle’s contour, that is the mean µd in (3.11), in contrast to this idealised assumption.

It is assumed that the observed vehicle’s depth profile is independent of distance.
Minor perspective effects are hereby neglected. Therefore, the contour is first modelled
in Cartesian coordinates in terms of distances ∆x relative to the vehicle rear location at
xwobj as µx = xwobj + ∆x.

One could describe the contour as pairs of depth over height values. However,
this would complicate the model with a level of detail that is unnecessary for the
professed goal. The detection algorithm (3.5) does not consider the image row v which a
disparity measurement d̄v originates from but solely the distribution of the entire sample
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Figure 3.3 An object with height hobj = 1.4 m at a distance xcobj to the camera is mapped
to the upper and lower image rows shown in (a) and covers an absolute number n∆v,obj

of image rows shown in (b).

d. Therefore, only the relative frequency of depth values ∆x within a sample of n∆v,obj

image rows is modelled in the following.
To this end, the contour depth values ∆x are assumed to be independent1 realisations

of a random variable. It is therefore required that each sample d contains a sufficiently
high number n∆v,obj of measurements. A Gaussian mixture distribution is assumed:

p
(
∆x
)

=
K∑

k=1

ω∆x,k · N
(
∆x;µ∆x,k, σ

2
∆x,k

)
,

K∑

k=1

ω∆x,k = 1 , ω∆x,k ≥ 0 ∀k .

(3.14)

The model parameters µ∆x,k, σ2
∆x,k and ω∆x,k can be estimated with the expectation max-

imisation principle [43]. Firstly though, a choice on the number of mixture components
K has to be made. While a high-dimensional model improves the achievable fidelity, it
may cause overfitting and increase the estimate’s uncertainty. To find a sensible value,
information theoretic criteria can be employed, such as Akaike’s information criterion
(AIC) [2] or the Bayesian information criterion (BIC) [176]. Thus, the parameter estimation
is carried out for varying K and the values of the information criteria are compared. The
minimum value corresponds to the best fitting model.

To exemplify the approach, a static vehicle rear is recorded by a stereo video sensor at a
distance of xwobj = 6 m. In order to remove the measurement noise influence, the average
of the centred depth value ∆x for each image row is calculated over Nframes = 243 frames.
The GMM parameters are then estimated from the averaged values. Fig. 3.4 shows the
resulting model and the information criteria for K = 1, . . . , 10 components. The chosen
model order is K = 2 where the BIC measure attains an optimum.

1Since the physical contour is always continuous, the depth values are locally correlated. This is neglected
because only the overall distribution is of interest.
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Figure 3.4 Approximation of a vehicle depth profile ∆x from measurements at xwobj = 6 m.
The contour distribution and a GMM with K = 2 components are visualised in (a). The
number of components is selected according to the information criteria shown in (b).

In a second step, the model (3.14) of the Cartesian distance µx is transformed to a GMM
p
(
µd
)

in disparity domain. Firstly, the expected values µ∆x,k are transformed by (3.3).
Secondly, the variance components σ2

∆x,k are propagated by linearisation of the non-linear
transformation (3.3) around xwobj + µ∆x,k. The weights ω∆x,k are left unchanged [185]. In
summary, an object contour sample in disparity coordinates is described by:

p
(
µd
)

=
K∑

k=1

ωµd,k · N
(
µd;µµd,k, σ

2
µd,k

)
(3.15a)

with

µµd,k =
ckbw

xwobj + µ∆x,k

, σ2
µd,k

=

(
ckbw

xwobj + µ∆x,k
2

)2

σ2
∆x,k , ωµd,k = ω∆x,k . (3.15b)

Fig. 3.5 shows how the contour model from Fig. 3.4, that was estimated at xwobj = 6 m, is
propagated to disparity space at distances xwobj ∈ [6 m, 30 m]. Empirical measurements
taken at the respective distances are shown for comparison. These show that in general,
a satisfactory approximation can be achieved. However, especially the tails of the
distribution are not fitted well at higher distances. This can be attributed to additional
unmodeled effects caused by a change of perspective.

3.1.4.3 Propagation to the object detection algorithm

The goal of the following analysis is to analytically propagate the previously derived
models for measurement errors and object appearance to the detection algorithm output.
This comprises to model the estimated object position in disparity coordinates d̂obj as
well as the maximum objective function value gmax. Gaussian density functions are
assumed as models for both quantities. This simplifies further analytical propagation of
the results. Therefore, the first two moments, expected value and variance, of d̂obj and
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Figure 3.5 Propagation of a vehicle depth profile estimated at xwobj = 6 m from Fig. 3.4
to disparity space according to (3.15). Empirical measurements taken at the respective
distances (blue) are compared to the analytical model (red). With increasing distance, the
quality of the transformed model deteriorates due to additional unmodeled changes of
perspective.

gmax have to be calculated. Monte-Carlo experiments will be used to verify the analytical
expressions.

Probabilistic models have been derived for both the sensor measurement errors in
Sec. 3.1.4.1 as well as the object contour in Sec. 3.1.4.2. However, solely measurement
errors cause random fluctuations of the algorithm outputs. Whereas a probabilistic
contour model describes the distribution of disparity values of a non-varying depth
profile. The expected values and variances are thus derived depending on the contour
µd first.

Subsequently, there are two approaches how the contour model is incorporated in the
derivations: Either, the expectation of all results with respect to the GMM (3.15) is taken.
Or, if only one specific contour with a known realisation is considered, µd is treated as a
constant parameter.

Expected values We assume that a sample d of n∆v,obj disparity values d which are
independently and identically distributed according to d ∼ N

(
µd, σ

2
e,d̄

)
are given. The

mean µd is described by the probabilistic contour model (3.15). The disparity measure-
ment noise variance σe,d̄ follows from Sec. 3.1.4.1. In the following, the expected values of
the location d̂obj and maximum value gmax of the objective function are to be calculated.

As there is in general no closed-form expression for gmax, the first simplification is
to exchange the order of the expectation and maximisation operator. Due to the non-
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linearity of the max (·) operation, this is only an approximation:

E
[
max
dobj

g
(
d, dobj

)]
≈ max

dobj

n∆v,obj∑

i=1

E
[
g
(
di, dobj

)]
≈ n∆v,objE

[
g
(
d,E

[
d̂obj

])]
. (3.16)

Taking the expectation using the probability density function p
(
µd
)

of the contour model
from (3.15) and the measurement noise distribution ed̄ ∼ N

(
0, σ2

e,d̄

)
yields:

Eed̄,µd
[
g
(
µd + ed̄,E

[
d̂obj

])]

=

∞̂

−∞

g
(
d,E

[
d̂obj

])
·
K∑

k=1

ωµd,k√
2π
(
σ2
µd,k

+ σ2
e,d̄

) exp

(
−1

2

(
d− µµd,k

)2

σ2
µd,k

+ σ2
e,d̄

)
dd

=
K∑

k=1

ωµd,kt1√
t21 + σ2

µd,k
+ σ2

e,d̄

· exp


−1

2

(
µµd,k − E

[
d̂obj

])2

t21 + σ2
µd,k

+ σ2
e,d̄


 . (3.17)

Unfortunately, maximising (3.17) in closed form is in general not possible. Therefore, the
series expansion up to the quadratic term is studied instead. Taking the derivative of the
quadratic approximation yields a unique maximum and one obtains:

E
[
d̂obj

]
≈




K∑

k=1

ωµd,kµµd,k(
t21 + σ2

µd,k
+ σ2

e,d̄

) 3
2


 ·




K∑

k=1

ωµd,k(
t21 + σ2

µd,k
+ σ2

e,d̄

) 3
2



−1

. (3.18)

Finally, the expected value of the maximum gmax of the objective function is given by
(3.17) evaluated at E

[
d̂obj

]
from (3.18).

Variances The following analytical condition defines the location of a maximum of the
objective function:

0
!

=
∂

∂dobj

g
(
d, dobj

)∣∣∣∣
d̂obj

. (3.19)

In order to find the variance of d̂obj, a linearisation of d̂obj (d) around the expected value
µd is performed. This requires the gradient of d̂obj (d) with respect to d. Since an explicit
expression for this function is unavailable, the implicit function theorem can be used to
obtain the gradient as a function of the partial derivatives of g

(
d, dobj

)
from (3.5) [55]:

∂d̂obj (d)

∂di
= −

(
∂2g

(
d, dobj

)

∂2dobj

)−1(
∂2g

(
d, dobj

)

∂di∂dobj

)
, i = 1, . . . , n∆v,obj . (3.20)
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The measurement model d ∼ N
(
µd, σ

2
e,d̄In∆v×n∆v

)
from (3.11) is thus propagated to the

variance of d̂obj as follows:

var
(
d̂obj

)
=

n∆v,obj∑

i=1

σ2
e,d̄



(
∂2g

(
d, dobj

)

∂2dobj

)−1(
∂2g

(
d, dobj

)

∂di∂dobj

)∣∣∣∣∣∣
µd,E[d̂obj]




2

= σ2
e,d̄

∑n∆v,obj

i=1

[
exp

(
− 1

2t
2
1

(
µdi − E

[
d̂obj

])2
)(

t21 −
(
µdi − E

[
d̂obj

])2
)]2

[∑n∆v,obj

i=1 exp

(
− 1

2t
2
1

(
µdi − E

[
d̂obj

])2
)(

t21 −
(
µdi − E

[
d̂obj

])2
)]2 .

(3.21)

Similarly, the cross-covariance cov
(
d̂obj, di

)
, i = 1, . . . , n∆v,obj is obtained:

cov
(
d̂obj, di

)
= σ2

e,d̄

exp

(
− 1

2t
2
1

(
µdi − E

[
d̂obj

])2
)(

t21 −
(
µdi − E

[
d̂obj

])2
)

∑n∆v,obj

i=1 exp

(
− 1

2t
2
1

(
µdi − E

[
d̂obj

])2
)(

t21 −
(
µdi − E

[
d̂obj

])2
) . (3.22)

The variance depends on the contour µd. This means that the same measurement errors
affect the estimate d̂obj differently for different vehicle rears. A lower bound on the
variance that is independent of the contour is derived by applying the Cauchy-Schwarz
inequality2 to the denominator of (3.21):

var
(
d̂obj

)
≥

σ2
e,d̄

n∆v,obj

. (3.23)

The interpretation of this lower bound is straight-forward: In the best case, the detection
algorithm achieves the same variance as a simple averaging over independent measure-
ments from n∆v,obj image rows. The latter results in the variance law that is given at
the right-hand side of (3.23). If all measurements were independently and identically
distributed and stem from the observed vehicle, taking the average disparity value yields
a maximum likelihood estimate.

In practical situations though, outlier measurements occur, for example from the road
surface close to the vehicle. It is the purpose of the objective function (3.5) to suppress
the influence of these outliers by weighting with the Gaussian window function. The
trade-off is that in the case of non-vertical vehicle contours, the gathered information
reduces and the variance increases. It is easily shown that for the special case of an
ideally vertical object with µdi = dobj ∀i, both the location estimate d̂obj from (3.6) as well
as the variance in (3.21) simplify to the averaging strategy with equality.

2(
∑n
i=1 xiyi)

2 ≤
(∑n

i=1 x
2
i

)
·
(∑n

i=1 y
2
i

)
yi=1
=⇒ (

∑n
i=1 xi)

2 ≤ n ·∑n
i=1 x

2
i .
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Finally, an expression for the variance of the maximum value gmax of the objective
function is obtained by linearising g

(
d, dobj

)
around µd and E

[
d̂obj

]
:

var (gmax) =

n∆v,obj∑

i=1

σ2
e,d̄


 ∂g

(
d, dobj

)

∂di

∣∣∣∣∣
µd,E[d̂obj]




2

+ var
(
d̂obj

)

 ∂g

(
d, dobj

)

∂dobj

∣∣∣∣∣
µd,E[d̂obj]




2

+ 2

n∆v,obj∑

i=1

cov
(
d̂obj, di

)

 ∂g

(
d, dobj

)

∂di

∂g
(
d, dobj

)

∂dobj

∣∣∣∣∣
µd,E[d̂obj]


 .

(3.24)

Numerical example In a Monte-Carlo simulation withNsim = 1× 103 iterations, vehicle
contour samples comprising n∆v,obj = 50 values each are drawn from a GMM distribution
p (∆x) that was shown in Fig. 3.4. Each sample is mapped to disparity space for varying
distances xwobj ∈ [2 m, 30 m] according to (3.1)-(3.3) and correlated Gaussian measurement
noise with σd = 0.1 pel according to the model from Sec. 3.1.4.1 is added. In every
simulation run, the detection algorithm outputs (3.6) and (3.7) are calculated.

Firstly, the average of the simulated values of d̂obj and gmax are calculated. These are
compared to the closed-form expressions for the expected values in Fig. 3.6(a) and a good
fit can be observed. As has been shown in Fig. 3.5, the disparity distribution narrows
for higher distances and thus the peak value of the objective function increases. That is
why gmax approaches the theoretical maximum n∆v,obj as it is expected for the ideal case
di = dobj ∀i.

Secondly, the standard deviations in d̂obj and gmax are shown in Fig. 3.6(b). In contrast
to the previous simulation, only the realisations of the measurement noise are sampled
whereas the vehicle contour distribution is drawn once and treated as a known constant
parameter.

It can be observed that the difference between the true standard deviation and the
analytical lower bound from (3.23) increases at short distances. This is again caused by
a pronounced influence of the contour’s depth distribution in disparity space at short
distances. The lower bound does not depend on the depth distribution and approaches
the observed values for distances ≥ 20 m in this example.

The variance of gmax shows a deviation between simulated and analytical results at
high distances. As has been noted before, the objective function narrows in these cases.
Thus, the quality of a linear approximation around the maximum, as it is employed to
calculate the variance, decreases.

Summary Gaussian error propagation has been derived for the exemplary detection
algorithm from Sec. 3.1.3. The closed-form expressions for expectation and variance
have been verified in Monte-Carlo simulations.

The algorithm’s output depends on a vehicle’s contour in contrast to an ideally vertical
plane. This effect is most prominent at short absolute distances, due to the inversely
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Figure 3.6 Monte-Carlo simulation results of the algorithm from Sec. 3.1.3 compared to
analytical models from Sec. 3.1.4.3. (a) shows the mean values of the estimated object
position in disparity coordinates d̂obj and the objective functions maximum value gmax.
Both quantities are well described by the analytical models. (b) visualises the standard
deviation of the estimates for randomly sampled values.

proportional mapping between Cartesian coordinates and disparity space. It has been
shown that this dependence is related to the algorithm’s robustness against outlier
measurements. This comes at the price of an increased variance in contrast to a maximum
likelihood estimate in an ideal case without outliers.

One challenge in the derivation of the algorithm’s statistical properties is that it is
only implicitly defined in terms of an objective function. Apart from special cases,
an analytical solution is not available and thus a numerical solver has to be applied.
Considering the simplicity of the chosen exemplary algorithm, one should reasonably
not expect that similar challenges will not occur in more sophisticated state of the art
implementations.

3.1.4.4 Transformation to Cartesian coordinates

So far, position estimates of an object have been obtained as disparity values d. However,
an object’s motion is usually better modelled in Cartesian coordinates. Hence, for the
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purpose of object tracking, one needs to transform the disparity values to Cartesian
distances x.

Bayesian state estimation depends on precise knowledge of the measurement error
model. A usual modelling assumption is that measurement errors are zero mean Gaus-
sians with known variance. However, given a disparity estimate d̂ = µd + ed with
Gaussian errors ed ∼ N

(
0, σ2

d

)
, the exact probability density function of the distance x̂

after transformation by (3.2) follows from (2.21) and is non-Gaussian [179]:

x̂ =
ckbw

d̂
=⇒ p (x̂) =

ckbw√
2πσd

1

x̂2 exp


−1

2

(
ckbw
x̂
− µd

)2

σ2
d


 . (3.25)

In order to be used in a Bayes filter with a Gaussian representation of the states, a
Gaussian approximation N

(
x̂;µx, σ

2
x

)
of (3.25) can be derived with [8]:

µx =
ckbw

µd
, σ2

x = E



(

d

dd

ckbw

d

∣∣∣∣
µd

(d− µd)
)2

 ≈

(
ckbw

d̂2

)2

σ2
d . (3.26)

Previous works [8, 179] have studied the goodness of this approximation in terms of
a bias that is introduced by the non-linear transformation from disparity to Cartesian
coordinates. An additional aspect concerns the question whether the Gaussian with(
µx, σ

2
x

)
yields a consistent approximation of (3.25). Thereby, not only the transformation

of the mean but also the variance from (3.26) is considered. The latter is based on a
linearisation around the true, in practice unknown expected value µd. If instead, the noisy
measurement d̂ is used as a linearisation point, additional uncertainty is induced [120,
168].

First, concerning the mean,3 the following more exact transformation can be derived
with a second order expansion of (3.2):

µx =
ckbw

µd

(
1 +

σ2
d

µ2
d

)
. (3.27)

In order to assess the difference between (3.26) and (3.27), a Monte-Carlo simulation with
Nsim = 5× 108 independent samples is employed. Virtual disparity measurements d̂(i),
i = 1, . . . , Nsim are sampled from a Gaussian distributionN

(
d̂;µd, σ

2
d

)
with mean disparity

values µd that correspond to distances x = 1 . . . 50 m and σd = 0.15 pel. The results are
shown in Fig. 3.7 and demonstrate the usefulness of the corrected transformation.

Second, the transformation of the variance and the uncertainty introduced by the
linearisation point are analysed. To this end, µd = d̂ − ed is inserted into the variance

3Note that the works [8, 179] do not explicitly consider the calculation of the mean µx for the given
transformation (3.2). Instead, they propose an alternative transformation to calculate x̂ with the
property that the transformed mean equals the mean of the transformed sample. The result differs
only by the sign of the additive term in (3.27).
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Figure 3.7 Monte-Carlo simulation results of the baseline transformation (3.26) and the
bias-corrected formula (3.27). The baseline Gaussian approximation (3.26) exhibits a bias
in comparison to the exact probability density function (3.25).

formula in (3.26) and a second order Taylor expansion around E [ed] = 0 is performed.
Taking the expectation with respect to ed yields the expected variance E

[
σ2
x|d̂
]

condi-

tional on a measurement d̂ [168]. Compared to the expression from (3.26) conditional on
the true mean µd , the variance is increased:

E
[
σ2
x|d̂
]
≈ (ckbw)2 · E


 1
(
d̂− ed

)4

∣∣∣∣∣∣∣
ed=0

− 4
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20
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· e2
d


σ2

d
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(
ckbw

d̂2

)2(
1 +

10σ2
d

d̂2

)
σ2
d . (3.28)

The consistency of the joint estimates
(
µx, σ

2
x

)
is evaluated in a Monte-Carlo simulation

as detailed before. The variance σ(i)
x depends on the sample value d̂(i) which serves as the

linearisation point in (3.26) and (3.28), respectively. The expected value µx is transformed
according to the baseline approach (3.26) or with an additional bias correction as in (3.27).

With these transformed distribution parameters, the normalised error squared (NES)
is calculated [168]:

ψ̄ =

Nsim∑

i=1

(
x̂(i) − µx
σ(i)
x

)2

. (3.29)
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Figure 3.8 The normalised error squared (3.29) is used for consistency check of the trans-
formation of the Gaussian distribution from disparity d to distance x. Two variants are
compared to the baseline approach (3.26). These are a bias-corrected mean according to
(3.27) and in conjunction with the proposed transformation of the variance (3.28). Widely
consistent results are only achieved when taking bias and uncertainty in the linearisation
into account.

The NES should be distributed according to a χ2
Nsim

distribution with Nsim degrees

of freedom for a sample of Nsim independent Gaussian estimates x̂(i) ∼ N
(
µx, σ

(i)
x

2)
.

Therefore, a realisation of ψ̄ from a simulation run can be compared to the corresponding
value of the cumulative distribution function P

χ
2
Nsim

(
ψ̄
)
. A result that lies outside of an

acceptance interval [0.5α, 1− 0.5α] is only expected in a proportion α of all cases.
This test gives an objective measure whether a particular transformation yields consis-

tent distribution parameters. The results in Fig. 3.8 show that only the combination of a
bias-corrected mean together with a transformation of the variance according to (3.28)
produces mostly consistent results.

The scope of the aforementioned derivation is a consistent transformation of the
Gaussian probability densityN

(
d̂;µd, σ

2
d

)
of disparity values to an approximate Gaussian

N
(
x̂;µx, σ

2
x

)
of the Cartesian distance. In the fashion of [8, 168, 179], an alternative

bias-corrected transformation formula for the disparity values d̂ can be used in the first
place:

x̂ =
ckbw

d̂

(
1− σ2

d

d̂2

)
. (3.30a)

With a similar approach as before, a transformation of the variance which takes into
account the uncertainty of the linearisation point can be derived:

σ2
x =

(
ckbw

d̂2

)2
[(

1− 3σ2
d

d̂2

)2

+ 2

(
5− 63

σ2
d

d̂2
+ 162

σ4
d

d̂4

)
σ2
d

d̂2

]
σ2
d . (3.30b)
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3.1.5 Evaluation

Having introduced the proposed framework for statistical modelling, a summative
evaluation is now pursued. The model predictions are therefore compared to the results
of the exemplary detection algorithm from Sec. 3.1.3 when applied to experimental stereo
video recordings. It will be analysed how well the model explains the experimental data
in terms of the objective function’s maximum value gmax and the standard deviation of
the estimated vehicle position x̂obj.

The model relies on knowledge of the stereo video measurement model as presented
in Sec. 3.1.4.1 and the object contour as well as height from Sec. 3.1.4.2. Some of these
parameters are in general time varying, for example the measurement noise of vision-
based systems depends on the lighting or weather conditions. Moreover, the object
appearance differs among vehicle types. It is thus necessary to discuss whether these
dependencies are reasonable to include and how unmodeled variations affect the results.

The first aspect will be answered using the recordings of a static scene with the
identical vehicle positioned at different distances on a test track. With this setup, a
minimal variation of model parameters is ensured. Measurements from the closest
distance are used to calibrate the model and its generalisation to the remaining data is
evaluated in Sec. 3.1.5.1. Secondly, dynamic recordings from an urban environment are
analysed in Sec. 3.1.5.2. These comprise exposure to varying lighting conditions as well
as different vehicles.

3.1.5.1 Static scenes

For the first evaluation, a stereo video sensor records sequences of a standing vehicle with
height hobj = 1.4 m in rear view at nine different positions xwobj ∈ {6 m, 9 m, . . . , 30 m}.
Each sequence encompasses approximately 230 frames. Only the disparity measurements
from n∆u = 10 central image columns which comprise the vehicle rear are used in the
objective function (3.5). Here, the Gaussian window is parametrised with t1 = 0.5.
The parametrisation of the contour model is estimated from measurements taken at
xwobj = 6 m as detailed in Sec. 3.1.4.2. The resulting model has been shown in Fig. 3.5.

The object detection algorithm is applied to all images individually and the results are
aggregated per sequence in terms of the standard deviation in x̂obj. Since the distance
remains constant per sequence, the sample average of the estimates is used to calculate
the standard deviation [157]. The empirical results are visualised in Fig. 3.9 and compared
to the model predictions. Overall, a good fit between modelled and observed values is
obtained. However, a slight underestimation of the standard deviation can be recognised
in Fig. 3.9(a). This can be attributed to a stochastic variation of the number of valid
disparity measurements per image which was assumed as a constant ratio ηvalid here.
The mean values of gmax fit well to the analytical expectation.

Studying the relationship between gmax and distance in Fig. 3.9(b), especially for
distances below 15 m, reveals when it is necessary to explicitly model the vehicle contour.
It has been previously shown in Fig. 3.3(b) that the number of image rows n∆v,obj features
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Figure 3.9 Evaluation results in static scenes on a test track compared to the analytical
model from Sec. 3.1.4.3: (a) shows the standard deviation of the estimated distances. A
slight underestimation at higher distances can be observed which is supposedly caused by
additional unmodeled deteriorations of the image quality. The correspondence measure
of the detection algorithm is visualised in (b). A good fit to the model is obtained since
height and contour of the observed vehicle are known.

a hyperbolic dependence on the distance. However, although the objective function (3.5)
integrates the measurements from all image rows additively, Fig. 3.9(b) does not reveal a
similar, proportional characteristic. This effect can be explained by the influence of the
vehicle’s depth profile which causes wider disparity distributions at short distances.

3.1.5.2 Dynamic scenes

In a second evaluation, recordings from urban traffic taken out of a moving vehicle
are used. From approximately 18 min of raw recordings, Nframes = 3088 images with a
preceding vehicle in the stereo sensor’s field of view are selected for the evaluation. This
experimental dataset is visualised in terms of distances and driven velocity in Fig. 3.10.

In order to obtain reference values for the distances to these vehicles, a laser scanner
sensor is run in parallel. Further details on the generation of accurate reference measure-
ments will be given in Ch. 6. However, the differences between the two measurement
principles may cause systematic inaccuracies in the comparison. While the laser scanner
approximates the entire vehicle by a rectangular shape and estimates the distance to
its centroid, the stereo vision detections only represent a single point on a vehicle’s
surface. Therefore, a bias between both measurements may arise. Moreover, the effect is
likely to vary over time in a dynamic scene with changing viewing angle. Similar issues
are reported in [152]. Because a model-based approach to remove this bias from the
evaluation requires unknown information on all objects’ geometries, a moving average
filter is used to estimate and remove the bias over a window of 30 frames.
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Figure 3.10 Visualisation of the evaluation dataset in terms of the distance to a preceding
vehicle (a) and the velocity of the ego-vehicle (b). A high number of frames contain low
distances at low speeds which is caused by urban traffic jams.
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Figure 3.11 Evaluation results in dynamic scenes.

Due to the inherent distance dependence, all results are evaluated separately in bins
with size 3 m each. For each bin, the standard deviation std

(
x̂obj − xobj

)
is calculated

with the laser scanner measurements as reference value xobj. Similarly, the distribution
of the maximum correspondence measure values gmax is evaluated per bin.

The results are depicted in Fig. 3.11. Firstly, a much higher standard deviation in
the distance estimates is visible in Fig. 3.11(a), compared to the model values and the
previous evaluation on static scenes. However, this increase can be partly attributed to
inaccuracies in the reference measurements given by the laser scanner. The self-reported
standard deviation indicates a non-neglectable uncertainty. Under the assumption that
both sensors are statistically independent, the errors will add up when calculating the
differences. Whereas the model only considers the stereo vision part.
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Secondly, fundamental limitations of the modelling approach are seen from the distri-
bution of the objective function’s maximum as shown in Fig. 3.11(b). Stronger variations
and deviations from the model predictions compared to static scenes with a single vehicle
can be observed. These deviations are supposedly caused by the diversity of vehicles
with varying height and contour that are encountered. The model takes only a single
contour into account and thus fails to accurately describe the variation in the empirical
data. These deviations are the worst at short distances and decrease for higher distances,
where the influence of an object’s depth profile is reduced.

3.1.6 Summary

This section has addressed environment perception based on a stereo video sensor. To
this end, an exemplary algorithm for the detection of vehicles in dense stereo images has
been introduced. The exemplary algorithm relies on the intentionally simple principle of
a column-wise disparity aggregation.

For this algorithm, methods for analytical probabilistic modelling have been derived
and evaluated in numerical simulations. The dividend of analytical models is that
insight beyond a concrete parametrisation of an algorithm can be obtained. This has
been exemplified by finding a lower bound on the variance of the estimated object
position.

A second contribution concerns the transformation of measurements in disparity space
to Cartesian coordinates in general. Previous works have studied this topic with regard
to a bias that is due to the non-linear transformation. In this work, the consistency
of a transformed estimate and its variance has been analysed with a statistical test.
It has been shown that a linearisation-based transformation of the variance leads to
widely inconsistent estimates if the uncertainty in the linearisation point is not taken
into account. Therefore, a novel transformation formula with improved consistency has
been proposed.

The derived model has been evaluated on two different datasets. Recordings with
a static vehicle on a test track show the model’s validity under situations with known
conditions. Furthermore, these results emphasise that an accurate model of the detection
algorithm requires modelling of the observed object’s geometry, in this case the depth
profile and height. However, evaluations on urban traffic scenes show that additional
unmodeled variations, such as the diverse appearance of different vehicles, can have a
significant effect.

Concerning the question whether it is possible to extend the presented modelling
approach to more complex full-scale algorithms, it can be concluded that:

1. A linearisation-based variance propagation (as applied in Sec. 3.1.4.3) requires that
an algorithm’s output quantities can be formulated at least implicitly in terms of a
twice differentiable cost function.

2. A column-wise image aggregation, as it is also performed by the approaches from [8,
12, 152], reduces the dimensions of the algorithm’s input space and thus facilitates
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the model development. The requirements on developing and parametrising such
a model depend on the intended application and desired model accuracy.

Parametrising the model is certainly facilitated for applications where solely a small and
well-defined set of objects are to be considered at all. One example is landmark-based
localisation which will be studied in the following Sec. 3.2. The goal is to accurately
localise the ego-vehicle by measuring the position of known, geo-referenced landmarks
in the vehicle’s surroundings, for example sign posts.

Instead of a model-based approach to characterising an algorithm for environment
perception, the algorithm’s behaviour can be evaluated empirically. To this end, a
reference representation of the environment is needed. It will be analysed in Ch. 6 how
such reference measurements can be obtained.
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3.2 Feature-based localisation

This section develops analytical models of uncertainty in a second perception task, that
is localisation of the ego-vehicle. First, an introduction to the relevance of feature-based
localisation for automated vehicles is given in Sec. 3.2.1. After a review of related works
on uncertainty modelling in Sec. 3.2.2, the localisation task is formulated in Sec. 3.2.3.
The main contributions of this section are analytical models of uncertainty in the pose
estimate which are derived in Sec. 3.2.4. These models are then evaluated and discussed
with a numerical example in Sec. 3.2.5 before the section concludes with a summary in
Sec. 3.2.6.

3.2.1 Introduction

Accurately knowing the ego-vehicle’s current pose is mandatory for a number of assis-
tance functions with higher degrees of automation. For example, to navigate safely to a
defined destination, an intelligent vehicle has to plan a trajectory that obeys traffic rules
and thus needs to know its own position with at least lane-level accuracy. Moreover, if
the ego-vehicle is localised on a detailed map of the road network, lane-information can
be associated to other nearby vehicles. This may serve as valuable prior information for
a prediction of the other vehicles’ future trajectories, for instance at intersections [151].

To achieve a highly accurate localisation, satellite navigation alone is considered
insufficient. Especially in urban environments, the localisation performance deteriorates
due to multipath wave propagation of the satellite signals caused by reflections at
buildings [116]. At certain places, for example in parking decks, satellite navigation
might be entirely unavailable.

Therefore, feature-based localisation with exteroceptive sensors is a relevant research
topic in the context of intelligent vehicles. The basic principle is to measure the positions
of static, uniquely identifiable environment features relative to the vehicle. This is
visualised in Fig. 3.12(a). Then, the vehicle’s pose relative to a known map is estimated
by comparing the relative feature positions to the corresponding locations in the map
(map matching) [115, 155]. If a map is unavailable a-priori, one can alternatively estimate
the relative displacements of the vehicle over time (pose tracking, see Fig. 3.12(b)). These
incremental trajectory estimates can be fused with locally less accurate satellite-based
position information to achieve globally accurate localisation.4

The core approach of feature-based localisation is twofold: At first, environment
features have to be perceived and correspondences between the known landmarks from a
map or previous observations have to be established. In a second step, the transformation
parameters (rotation and translation) between both sets have to be estimated. The latter
problem is usually independent of the employed sensor technology.

4A third method, that is not discussed in this work, is to perform pose tracking and store the measured
features in a map which allows recognising places that have already been visited (simultaneous
localisation and mapping, SLAM).
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Figure 3.12 The core principle of feature-based (a) global localisation (map matching)
and (b) relative localisation (pose tracking) is to estimate the transformation parameters
between two different coordinate systems. These are the translation vector t and the
rotation angle θ.

Since sensor measurements are affected by random noise, knowing the statistical
properties of the estimated vehicle pose allows deriving sensor requirements. For
example, the uncertainty is likely to depend on the size of the sensor’s field of view since
this influences the number of landmarks from which the pose estimate can be calculated.
The relation between sensor parameters and achievable localisation accuracy will be
studied for the specific example of a stereo vision sensor in Sec. 7.1.

Therefore, this section sets out to develop closed-form probabilistic models of un-
certainty in pose estimates. In contrast to numerical Monte-Carlo methods, analytical
models help to understand the influence of system parameters and to facilitate real-time
sensor data fusion. The scope is the sensor-independent second step in the feature-based
localisation framework, the estimation of the vehicle pose. To this end, it is assumed that
the correspondences between the sets of features are ideally known and measurement
noise can be modelled with Gaussian distributions. Moreover, under the usual assump-
tion in the intelligent vehicles domain of a planar world, the problem is formulated in
two-dimensional Cartesian coordinates. This greatly simplifies the estimation and yields
explicit formulations of the probabilistic models.

In order to obtain an optimal estimate of the pose, the measurements’ statistical
properties have to be taken into account. This leads to different problem formulations
with matrix or scalar weights. In the context of this dissertation, statistical models of
the pose estimation uncertainty have been previously published for the unweighted
problem in [217], for the scalar-weighted case in [211] and for the matrix-weighted case
in [212]. In the following, the matrix-weighted problem is analysed first and other cases
are subsequently derived from this general case.
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3.2.2 Related work

Estimating a pose change from two sets of corresponding features is a relevant task
in many fields and known as the Procrustes problem. Different solution formulae and
approximate algorithms have been developed [6, 86, 87, 127, 197], see also [8] for a
comprehensive review. Together with the problem formulation, these solutions will be
further examined in Sec. 3.2.3.

Despite the widespread practical relevance of the Procrustes problem, only few works
have been dedicated to probabilistic modelling of its solution under noisy input data.
For the unweighted problem in 3-D, DORST [48] derives a first order series expansion
and thus a closed-form expression for the variance. In this thesis, solely the 2-D case is
considered. This allows developing a second order expansion for the scalar-weighted
Procrustes problem in a compact form. Thus, as an extension of previous works, not
only the variance but also the bias will be studied in Sec. 3.2.4.3.

The matrix-weighted Procrustes problem requires a conceptually different approach
though, since no closed form of the estimate has been obtained to date [8]. A suitable
method for Gaussian uncertainty propagation, that is applied to stereo vision sensors
in [54, 205] and to laser range finders in [36], is to obtain the required Jacobians using
the implicit function theorem. Along the same line, explicit results will be derived for
a sensor-independent problem formulation in Sec. 3.2.4.2. A novelty in the derivation
is given by a reformulation of the problem in terms of a centering operator. Properties
of this operation are first proven in the general case and then applied to the specific
expressions in order to systematically obtain a concise final result.

Probabilistic analyses of an estimated pose change are not to be confused with studies
on error growth over entire trajectories. A number of works, for example [9, 51, 110,
147, 204], consider the question of how errors in the incremental pose change estimates
accumulate to errors in a concatenated pose. However, previous works that aim for
analytical models [110, 204] often assume a simple concatenation of pose increments
(dead-reckoning), an approach that is well known to suffer from long-term instability.

More sophisticated system designs, for example based on Bayesian state estimation, are
studied either in simulations [147] or empirically [9, 51, 68]. To obtain analytical models,
the work [140] derives upper bounds on the expected covariance. In this thesis, the Bayes
filters will be later analysed in a generic formulation in Sec. 4.1. The incremental pose
updates before the filtering stage on the other are in the scope of the current chapter.

3.2.3 Problem formulation

This section details algorithms for pose change estimation whose statistical properties
are later analysed in Sec. 3.2.4. It consists of three parts. The notation and a formalisation
of the localisation and pose tracking problems will be first introduced in Sec. 3.2.3.1. De-
pending on the noise characteristics – anisotropic or isotropic – two different estimation
problems with matrix or scalar weights arise. These will be subsequently outlined in
Sec. 3.2.3.2 and Sec. 3.2.3.3.
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3.2.3.1 Preliminaries

Two registered sets P = {pi }i=1:N and Q = {qi }i=1:N of i = 1, . . . , N feature positions
pi,qi ∈ R2 in 2-D Cartesian coordinates form the basis of the estimation task. The
relationship between both sets is given by a transformation that consists5 of a rotation by
an angle θ and a translation by t ∈ R2:

qi = Rpi + t , R :=

[
c −s
s c

]
=

[
cos (θ) − sin (θ)

sin (θ) cos (θ)

]
. (3.31)

Given P and Q, the task of estimating (θ, t) is known as the Procrustes problem.6 The
interpretation of these parameters depends on the application:

p In the context of global localisation against a known map (Fig. 3.12(a)), pi are
feature positions in the ground-fixed coordinate system of the map. The same
features, perceived in the moving coordinate system of the ego-vehicle, are denoted
by qi. Thus, the translation t is the vehicle’s absolute position in the map and θ its
orientation.

p In the case of a pose tracking task (Fig. 3.12(b)), pi,qi stand for feature positions in
the coordinate system of the sensor from two different time steps. Then, θ and t

define changes in orientation and position of the ego-vehicle.

Without noise, solving for the three transformation parameters is trivial if at least two
feature vectors are known (assuming that the problem is not ill-posed). In the relevant
case of noisy measurements though, a parameter estimation problem has to be defined
and solved. It is assumed that the measurement errors are additive, mutually indepen-
dent, have zero mean and follow known Gaussian distributions. Thus, pi ∼ N

(
µpi

,Σpi

)

and qi ∼ N
(
µqi

,Σqi

)
.7 Then, a suitable approach to estimate (θ, t) is to minimise the

weighted sum of the quadratic residuals Ji [146]:

J =
N∑

i=1

(qi −Rpi − t)T Wi (qi −Rpi − t)︸ ︷︷ ︸
=:Ji

, Wi =
(
RΣpi

RT + Σqi

)−1

. (3.32)

The symmetric weighting matrices Wi are inversely proportional to the covariance of
the measurement errors.

It should be remarked that while this approach resembles the familiar definition of a
least squares estimator, it is not in general an optimal approach if noise is prevalent in

5Most of the subsequent derivations can be similarly performed if an additional scale change is part of
the transformation. However, this is not relevant for the applications that are considered in this work.

6Instead of estimating the angle θ, it is often more straight-forward to solve the equivalent problem of
finding the entries c, s of the rotation matrix R, subject to the constraint that c2 + s2 = 1.

7Throughout this chapter, the general case that both qi and pi are affected by noise is assumed. In a
localisation task, the pi constitute the a-priori known map and it can be reasoned that these are given
without uncertainty. An application example corresponding to this case will be later studied in Sec. 7.1.
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both variables qi and pi. The correct way of handling such errors-in-variables problems
would be a total least squares approach. However, for the Procrustes problem, the cost
function of a total least squares estimator reduces to (3.32) [146].

In the following, it will be discussed how J can be minimised. At first, the general
case of arbitrary covariance matrices (anisotropic noise) is studied, which unfortunately
does not allow for an exact closed-form solution. Secondly, the special case of equal
variance in all coordinates (isotropic noise) is analysed and analytical solution formulae
are reviewed.

3.2.3.2 Anisotropic noise: Matrix-weighted Procrustes problem

An important intermediate result towards minimising the matrix-weighted objective
function (3.32) is the matrix-weighted centroid-coincidence theorem:

Theorem 3.1 (Matrix-weighted centroid-coincidence theorem [197])
If the weighting matrices Wi do not depend on the unknown parameters (R, t), then
the estimates

(
R̂, t̂

)
which minimise (3.32) satisfy the following condition:

N∑

i=1

Wiqi =
N∑

i=1

Wi

(
R̂pi + t̂

)
. (3.33)

Thus, an explicit expression for the optimal translation estimate t̂ is obtained, given
that the rotation matrix R̂ is known:

t̂ =

(
N∑

i=1

Wi

)−1

·
(

N∑

i=1

Wiqi −WiR̂pi

)
. (3.34)

Noting that the first factor serves as a normalisation constant, the abbreviation
Ws :=

∑N
i=1 Wi is used hereafter to refer to this sum of the weighting matrices.

In order to apply this theorem to (3.32), it is suggested in [197] to obtain a tentative
estimate of R̂ first, which is only used to define the matrix weights Wi. These become
independent of R then. Another suggestion, relevant to pose tracking tasks, is to assume
that only small rotations occur and therefore to approximate R ≈ I2×2 in (3.32).

Now, (3.34) is inserted into (3.32), which yields the following cost function:

J =
N∑

i=1

aT
i Wiai , ai =

(
qi −W−1

s

N∑

j=1

Wjqj

)

︸ ︷︷ ︸
=:ci

(
{qj}j=1:N

)
−
(

Rpi −W−1
s

N∑

j=1

WjRpj

)

︸ ︷︷ ︸
=:ci

(
{Rpj}j=1:N

)
.

(3.35)
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As a means for keeping the upcoming derivations concise and interpretable, a centering
operator ci (·) is introduced. This set function maps a set

{
pj
}
j=1:N

of N vectors pj ∈ Rn

on a vector ci (·) ∈ Rn.8 Given a set of symmetric weighting matrices Wj of appropriate
dimensions and let the sum thereof be denoted by Ws, the centering operation subtracts
the centroid from the ith element of the set of vectors:

ci
({

pj
}
j=1:N

)
:= pi −W−1

s

N∑

j=1

Wjpj . (3.36)

Before proceeding to solve the Procrustes problem, relevant properties of this function
will be briefly collected in the following.

1. Additivity: Since the matrix product is distributive, it holds that

ci
({

pj + qj
}
j=1:N

)
= ci

({
pj
}
j=1:N

)
+ ci

({
qj
}
j=1:N

)
. (3.37)

2. Scale invariance: With a scalar factor α ∈ R it holds that

ci
({
αpj

}
j=1:N

)
= αci

({
pj
}
j=1:N

)
. (3.38)

In the special case where the weighting matrices Wj are scalars wj , j = 1, . . . , N ,
this property furthermore extends to matrix scale factors A ∈ Rn×n.

3. Offset invariance: As the name of the centering function indicates, its result is
invariant under a constant offset b ∈ Rn:

ci
({

pj + b
}
j=1:N

)
= ci

({
pj
}
j=1:N

)
. (3.39)

This follows from (3.36) since W−1
s

∑N
j=1 Wj = In×n.

4. Concatenation: Applying (3.36) on a previously centred set C =
{
ci
(
P
)}

i=1:N
is

equal to the same operation on the original set P :

ck
(
C
)

= ck
(
P
)
−W−1

s

N∑

l=1

Wlcl
(
P
)

= ck
(
P
)
−W−1

s

N∑

l=1

Wl

(
pl −W−1

s

N∑

j=1

Wjpj

)

= ck
(
P
)
−W−1

s

(
N∑

l=1

Wlpl −
N∑

j=1

Wjpj

)

︸ ︷︷ ︸
=0

. (3.40)

8In the context of this chapter, the operation is used only for two-dimensional inputs pj ∈ R2.
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We now return to the estimation task. The goal is to minimise the cost function (3.35)
subject to the condition that R defines a rotation matrix. Unfortunately, R is a non-linear
function of the rotation angle θ and the optimisation cannot be solved in closed form.
Thus, one has to find the minimum either numerically or content oneself with an ap-
proximately optimal estimate. One possible approximation is based on an unconstrained
estimate of R as the solution of a linear least squares problem. This initial estimate is
then used to find the closest true rotation matrix [197].

Nevertheless, although an explicit solution is not available, a model of the variance
of the optimal estimate can be obtained. This and the subsequent propagation to the
translation estimate t̂ from (3.34) will be derived in Sec. 3.2.4.2.

3.2.3.3 Isotropic noise: Scalar-weighted Procrustes problem

A scalar-weighted cost function arises from (3.32) for the case of isotropic noise. That
is, the error covariances read Σpi

= σ2
pi

I2×2 and Σqi
= σ2

qi
I2×2. This special case of the

matrix-weighted Procrustes problem has the practically relevant property that an exact
closed-form solution exists.9

Firstly, note that the weights10 Wi = wiI2×2 =
(
σ2
pi

+σ2
qi

)−1
I2×2 are always independent

of R now and thus, the requirements of theorem 3.1 are fulfilled. As a second conse-
quence, it follows that the centering operator is scale invariant (3.38) with respect to a
matrix multiplication, that is ci

({
Rpj

}
j=1:N

)
= Rci

(
P
)
. Expanding the cost function

(3.35) yields:

J =
N∑

i=1

wi

[
cT
i (Q) ci (Q)− 2cT

i (Q) Rci (P) + ci (P)T ci (P)
]
. (3.41)

Since the first and third term are independent of R, these can be neglected. Therefore,
(3.41) reduces to

J = −
N∑

i=1

wic
T
i (Q) Rci (P) = − tr

(
N∑

i=1

wici (P) cT
i (Q) R

)
= − tr (ΣPQR) . (3.42)

The notation of ΣPQ is motivated by the fact that
∑N

i=1 ci (P) cT
i (Q) is the scatter matrix

of the vectors in P and Q. If a normalisation with wi = 1
N−1

is chosen, this yields an
estimate of the cross-covariance cov (p,q).

Finding a rotation matrix R that minimises (3.42) can be achieved in a number of ways
which lead to different forms of the same closed-form solution [52]. Commonly employed

9In scenarios, where the noise is in fact anisotropic but numerically solving the matrix-weighted problem
from Sec. 3.2.3.2 is computationally infeasible, the approximations σ2

pi
= det

(
Σpi

)
and σ2

qi
= det

(
Σqi

)

can be employed [38]. Thereby, instead of taking the shape of the covariance ellipses into account, only
the area information is considered.

10The scalar weights now serve the purpose to deal with heteroscedastic noise. If the noise processes are
homoscedastic, that is σ2

pi
= σ2

p and σ2
qi

= σ2
q ∀i, one obtains the unweighted Procrustes problem. In

this case, the exact values of the variances are not needed for the estimation.
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methods are based on decomposing the matrix ΣPQ, for example with a singular value
decomposition [6], a polar decomposition [87] or a quaternion representation [86]. These
approaches are applicable to both the three- and the two-dimensional problem. With the
method of Lagrange multipliers though, a more explicit solution can be obtained for the
2-D case [127], which will be briefly derived in the following.

To this end, R is expressed element-wise in terms of c and s as in (3.31). Then, the
following Lagrangian is obtained from (3.42):

L (c, s, λ) = −c ·
(
ΣPQ,11 + ΣPQ,22

)
︸ ︷︷ ︸

=:f1

−s ·
(
ΣPQ,12 − ΣPQ,21

)
︸ ︷︷ ︸

=:f2

+λ
(
c2 + s2 − 1

)
. (3.43)

One can differentiate L (c, s, λ) with respect to its arguments and thus obtains estimates
for the entries of R:

ĉ =
f1√

f 2
1 + f 2

2

, ŝ =
f2√

f 2
1 + f 2

2

, θ̂ = arctan

(
f1

f2

)
. (3.44a)

The translation estimate t̂ follows from the centroid-coincidence theorem (3.34):

t̂ = w−1
s

N∑

i=1

wiqi

︸ ︷︷ ︸
=:q̄

−R̂w−1
s

N∑

i=1

wipi

︸ ︷︷ ︸
=:p̄

. (3.44b)

Thus, the translation is determined by the vector difference between the two centroids q̄

and p̄ with a change of orientation taken into account.
The simplicity of the solution (3.44) permits to easily develop a series expansion. This

will be studied in Sec. 3.2.4.3, where expressions for the variance and bias of the estimates
are derived and a novel debiased formula is proposed. Moreover, the explicit solution
shows practical advantages over ones that involve matrix decompositions in terms of
run time.11 This has been analysed analytically and empirically in [217].

To conclude the problem formulation, an overview of the main characteristics of the
Procrustes problem is given in Tab. 3.1.

3.2.4 Statistical modelling

In the following, statistical models of uncertainty in the pose estimates are developed.
These present the main contributions of this chapter. Firstly, the overall approach will
be laid out in Sec. 3.2.4.1. In the sequel, closed-form models are derived for the matrix-
weighted Procrustes problem in Sec. 3.2.4.2 and the scalar-weighted case in Sec. 3.2.4.3.

11If the correspondences between features in the two sets are initially unknown and not provided by
sensory information, a random sampling approach can be used to estimate both the registration and
pose transformation [57]. Thus, solving the Procrustes problem has to be carried out not once per
system time step but for a significant number of iterations. It is therefore advisable to perform the
underlying estimation as efficiently as possible in order to a achieve real-time capable system [72].
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Table 3.1 Comparison of the matrix- and scalar-weighted Procrustes problem.

Matrix-weighted Scalar-weighted

Noise model Independent, heteroscedastic
anisotropic Gaussian isotropic Gaussian

Objective
function (3.35) (3.42)

Solution p Iterative [197]

p Approximate [197]

p Singular value
decomposition [6]

p Polar decomposition [87]

p Quaternion [86]

p 2-D: Lagrangian (3.44) [127]

3.2.4.1 Preliminaries

The previous section has reviewed algorithms for optimal estimation of the pose pa-
rameters

(
θ̂, t̂
)

from two sets of feature position measurements (P ,Q). Since the input
quantities of the algorithms are assumed to be Gaussian random variables, the estimates
are random as well. Thus, the purpose of this section is to find expressions for the
estimation error variances σ2

θ := var
(
θ̂
)

and Σt := cov
(
t̂
)
.

The chosen approach is to linearise12 the estimates around the expected values and
propagate the covariance of the measurement errors to the estimate. In a first step it is
thus necessary to find the gradients of θ̂ with respect to pk and qk, k = 1, . . . , N . Under
the assumption of independent measurement errors, the variance then follows as:

σ2
θ =

N∑

k=1

(
∇pk

θ̂
)

Σpk

(
∇pk

θ̂
)T

+
(
∇qk

θ̂
)

Σqk

(
∇qk

θ̂
)T

. (3.45)

In a second step, the covariance matrix of the estimated translation t̂ can be obtained by
linearisation of (3.34):

Σt =

(
∂

∂θ
t̂

)
σ2
θ

(
∂

∂θ
t̂

)T

+
N∑

k=1

(
∇pk

t̂
)

Σpk

(
∇pk

t̂
)T

+
(
∇qk

t̂
)
Σqk

(
∇qk

t̂
)T

. (3.46)

Having formulated the approach, the aim is to obtain the necessary derivatives in the
following. Given that no closed-form solution exists for the matrix-weighted Procrustes
problem – in contrast to the scalar-weighted one – the two cases are treated separately.

12According to the general approach (2.24), all derivatives are evaluated at the expected values. For
notational brevity, an explicit indication in the form of ∂

∂x (·)|µx is omitted in this section.
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3.2.4.2 Matrix-weighted Procrustes problem

Due to the fact that a closed-form estimate θ̂ which minimises the objective function J
from (3.35) is not available, the implicit function theorem is used to find the required
derivatives [55]:

∇pk
θ̂ =

(
∂2

∂θ2J

)−1

·
(
∂

∂θ
∇pk

J

)
, ∇qk

θ̂ =

(
∂2

∂θ2J

)−1

·
(
∂2

∂θ
∇qk

J

)
(3.47)

Since J is composed of a sum
∑N

i=1 Ji, the differentiation of the individual Ji is studied
first. The first and second derivatives with respect to θ are obtained from (3.35):

∂

∂θ
Ji = 2aT

i Wi

∂

∂θ
ai ,

∂2

∂θ2Ji = 2
∂

∂θ
aT
i Wi

∂

∂θ
ai + 2aT

i Wi

∂2

∂θ2 ai . (3.48)

Thereby, the derivative of ai from (3.35) with respect to θ is required:

∂

∂θ
ai = −ci

({
R′pj

}
j=1:N

)
, R′ :=

[
− sin (θ) − cos (θ)

cos (θ) − sin (θ)

]
. (3.49)

Note that the derivatives in (3.45) are to be evaluated at the expected values. Thus, it
holds that ai = 0 in (3.48):

ai
(3.37),(3.39)

= ci

({
µqj
−Rµpj

− t
}
j=1:N

)
= 0 . (3.50)

With these two results, the final expression is obtained by summing up the individual
derivatives from (3.48):

∂2

∂θ2J = 2
N∑

i=1

cT
i

({
R′pj

}
j=1:N

)
·Wi · ci

({
R′pj

}
j=1:N

)
. (3.51)

Secondly, the mixed derivatives in (3.47) are calculated:

∂

∂θ
∇pk

Ji = 2

(
Wi

∂

∂θ
ai

)T (
∇pk

ai
)

+ 2aT
i

(
∇pk

Wi

∂

∂θ
ai

)

=

{
−2
(
Wk

∂
∂θ

ak
)T (

R−W−1
s WkR

)
k = i

−2
(
Wi

∂
∂θ

ai
)T (−W−1

s WkR
)

k 6= i
. (3.52)

The sum over i = 1, . . . , N reads:

∂

∂θ
∇pk

J = −2

[
RTWk

(
∂

∂θ
ak −W−1

s

N∑

i=1

Wi

∂

∂θ
ai

)]T

= −2ck

({
∂

∂θ
ai

}

i=1:N

)T

WkR . (3.53)
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In a similar way, the derivative with respect to qk is obtained. Note that the partial
derivative of ai from (3.49) contains a further centering operation. Utilising the properties
of scale invariance (3.38) and concatenation (3.40), simplifies the results:

∂

∂θ
∇pk

J = 2cT
k

({
R′pj

}
j=1:N

)
WkR ,

∂

∂θ
∇qk

J = −2cT
k

({
R′pj

}
j=1:N

)
Wk .

(3.54)

Finally, (3.51) and (3.54) can be inserted into (3.47). This yields the derivatives of θ̂ with
respect to the measurements pk and qk. According to (3.45), the variance of the estimate
is then obtained.

Compared to the differentiation of θ̂, it is straight-forward to find the derivatives of t̂

with respect to θ, pk and qk from the explicit definition (3.34):

∂

∂θ
t̂ = −W−1

s

N∑

i=1

WiR
′pi , ∇pk

t̂ = −W−1
s WkR , ∇qk

t̂ = W−1
s Wk . (3.55)

Inserting these into (3.46) yields a model of the variance of t̂. It is remarkable that, due
to the first term in (3.55), this expression depends on the absolute feature positions pi.
All other derivatives are either constant or depend on the feature locations relative to
each other as produced by the centering operator.

3.2.4.3 Scalar-weighted Procrustes problem

The scalar-weighted Procrustes problem from Sec. 3.2.3.3 has a solution (3.44) that is an
explicit function of the scatter matrix ΣPQ. In order to derive the estimate’s statistical
properties, the entries of the scatter matrix are studied in a first step. Secondly, a second-
order series expansion of the estimate is developed. This allows not only to calculate the
variance but also the bias. Based on these results, a novel bias-corrected algorithm will
be proposed.

Firstly, the distribution of f :=
[
f1 f2

]T
from (3.43) is considered. This variable is

modelled with a Gaussian f ∼ N (µf ,Σf ). Due to the assumption of zero mean noise,
the expectation µf can be calculated from the expectations of the feature positions
Pµ := {µpi

}
i=1:N

and Qµ := {µqi
}
i=1:N

.
Since the scalar-weighted Procrustes problem only yields an optimal solution for

isotropic noise, it is assumed in the following that Σpi
= σ2

pi
I2×2 and Σqi

= σ2
qi
I2×2. In

order to obtain the covariance Σf , f is expressed in terms of ΣPQ:

f1 = ΣPQ,11 + ΣPQ,22 =
N∑

i=1

wic
T
i (Q) ci (P) (3.56a)

f2 = ΣPQ,12 − ΣPQ,21 =
N∑

i=1

wic
T
i (Q)

[
0 1

−1 0

]
ci (P) . (3.56b)
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Using the property of additivity (3.37), the effect of additive stochastic errors on the
elements of P and Q can be propagated. The assumption of mutual independence of the
noise thereby allows evaluating the sum in (3.56a) element-wise. Note that it is possible
to write ci

(
Qµ
)

= Rci
(
Pµ
)

using (3.39)-(3.38):

var (f1) =
N∑

i=1

w2
i c

T
i

(
Qµ
)
ci
(
Qµ
)
σ2
pi

+ w2
i c

T
i

(
Pµ
)
ci
(
Pµ
)
σ2
qi

+ 2w2
i σ

2
pi
σ2
qi

=
N∑

i=1

w2
i ‖ci

(
Pµ
)
‖2
(
σ2
pi

+ σ2
qi

)
+ 2w2

i σ
2
pi
σ2
qi
. (3.57)

In a similar manner, the variance var (f2) = var (f1) =: σ2
f is obtained from (3.56b).

Since errors in both sets are assumed to be independent, the cross-covariance cov (f1, f2)

vanishes. Hence, the covariance matrix of f reads Σf = σ2
fI2×2.

Secondly, the perturbations in f are propagated to the estimates of ĉ, ŝ and θ̂. To this
end, the following gradient and Hessians are calculated from (3.44):

∇f θ̂ =
[

f2

f
2
1 +f

2
2

− f1

f
2
1 +f

2
2

]
(3.58a)

∆f
f ĉ =

1
(
f 2

1 + f 2
2

) 5
2

[
−3f1f

2
2 2f 2

1 f2 − f 3
2

2f 2
1 f2 − f 3

2 2f1f
2
2 − f 3

1

]
(3.58b)

∆f
f ŝ =

1
(
f 2

1 + f 2
2

) 5
2

[
2f 2

1 f2 − f 3
2 2f1f

2
2 − f 3

1

2f1f
2
2 − f 3

1 −3f 2
1 f2

]
. (3.58c)

As before, a linearisation yields a first-order approximation of the variance σ2
θ :

σ2
θ =

(
∇f θ̂

)
Σf

(
∇f θ̂

)T

=

∑N
i=1 w

2
i ‖ci

(
Pµ
)
‖2
(
σ2
pi

+ σ2
qi

)
+ 2w2

i σ
2
pi
σ2
qi∑N

i=1w
2
i ‖ci

(
Pµ
)
‖2

. (3.59)

The last equality follows from explicitly calculating f 2
1 + f 2

2 from (3.56). Therefore, the
variance of θ̂ depends on the spacing of the features as described by

∑N
i=1 w

2
i ‖ci

(
Pµ
)
‖2

but is invariant against the true rotation angle θ.
With the Hessians (3.58b)-(3.58c) one can furthermore calculate the bias in ĉ and ŝ:

E [ĉ− c] =
1

2
tr
((

∆f
f ĉ
)

Σf

)
= −1

2

σ2
f

µ2
f1

+ µ2
f2

cos (θ) (3.60a)

E [ŝ− s] =
1

2
tr
((

∆f
f ŝ
)

Σf

)
= −1

2

σ2
f

µ2
f1

+ µ2
f2

sin (θ) . (3.60b)

These expressions show that even in the case of zero mean measurement errors, the
estimates are biased proportionally to the true values. The relative estimation bias is
λf := −1

2
σ2
f

(
µ2
f1

+ µ2
f2

)−1
. It has to be noted that this bias is not caused by an incorrect
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least squares approach but is an inherent property of maximum likelihood estimators
for non-linear parameter models [26].13

It is straight-forward to define alternative estimator equations that enhance (3.44) with
a multiplicative de-biasing:

ĉnew =
f1√

f 2
1 + f 2

2

1

1− λf
, ŝnew =

f2√
f 2

1 + f 2
2

1

1− λf
. (3.61)

However, the bias correction has been analytically derived using the expected values µf1

and µf2
. In practice, these are not known and only the corresponding noisy quantities

can be used. The effect of this bias correction will be explored in Sec. 3.2.5.
Lastly, the variance of the estimated translation t̂ is given by (3.46). The required

derivatives are a special case of the ones for the matrix-weighted Procrustes problem
from (3.55). One obtains with the abbreviation µ̄q := w−1

s

∑N
i=1wiµqi

for the centroid of
Qµ:

Σt =

[
0 −1

1 0

] (
µ̄q − t

) (
µ̄q − t

)T
[

0 1

−1 0

]
σ2
θ +

1

w2
s

N∑

i=1

w2
i I2×2

(
σ2
pi

+ σ2
qi

)
. (3.62)

In summary, the variance of the estimated rotation and translation parameters is given by
(3.59) and (3.62). The estimated rotation matrix R carries a multiplicative bias (3.60) due
to the non-linearity of the parameter model. This is remedied by the proposed de-biased
algorithm (3.61).

3.2.5 Numerical example

To verify the analytical models, these are compared to the results from Monte-Carlo
simulations. A scenario with N = 5 features that are spread as seen in Fig. 3.13 is chosen.
While the translation remains constant with t =

[
2 m 0

]
, the rotation angle varies with

θ = 0 . . . 180◦.
The measured feature positions from the set P before and after the transformation Q

are corrupted by additive Gaussian noise. Simulations are carried out individually for
anisotropic and isotropic noise. Thereby, equal covariances over all features are selected
as

Σp,anisotropic = Σq,anisotropic =

[
0.3 m2 0.1 m2

0.1 m2 0.7 m2

]
,

Σp,isotropic = Σq,isotropic =
√

0.2m2I2×2 .

(3.63)

13The non-linearity is slightly obfuscated if the rotation matrix is written in terms of c and s. However, in
order to incorporate the necessary constraint, the Lagrangian (3.43) is again a non-linear model in c
and s. The unconstrained problem (3.42) defined by θ on the other hand is clearly non-linear due to
the trigonometric expressions in R.
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Figure 3.13 Illustration of the locations of N = 5 features in a simulated scenario with
θ = 37◦. Exemplary realisations of the measurements with (a) anisotropic and (b) isotropic
Gaussian noise are shown together with the 90% confidence ellipses.

In both cases, the covariance ellipses span an equal area of
√

det (Σ) =
√

0.2m2. It is
thus interesting to compare the accuracy of the respective estimates from the matrix-
weighted and scalar-weighted Procrustes problem. If a difference occurs, this is due to
the directional characteristic of the noise.

For the scenarios with anisotropic noise, solving the matrix-weighted Procrustes
problem by minimisation of the objective function (3.35) yields an optimal estimate in
the least-squares sense. A numerical non-linear optimisation algorithm is used to this
end. In the case of isotropic noise, the closed-form solution (3.44) and the proposed
de-biased version (3.61) are evaluated. For every combination of rotation angle and
noise characteristic, Nsim = 1× 106 independent realisations of the measurement noise
are simulated.

The standard deviation of the calculated estimates is visualised in Fig. 3.14 and com-
pared to the analytical models. A number of noteworthy aspects can be observed:

p While in the case of anisotropic noise (Fig. 3.14(a)) a clear dependence of the
variance of θ̂ on the rotation angle θ can be observed, constant values result under
isotropic noise (Fig. 3.14(b)) as indicated by (3.59). The invariance of Σt against θ in
the scalar-weighted case as observed in (3.62) can be noted in Fig. 3.14(d).

p The errors in the estimated translation t̂ in Fig. 3.14(c)-(d) are unequal in the two
directional components, even under isotropic noise. This relates to the dependence
on the absolute feature positions as seen in (3.55) and (3.62).

p Despite the variation over θ that is observed for the matrix-weighted Procrustes
problem, the standard deviations are in the same order of magnitude for both
noise characteristics. Further investigations of the analytical models could reveal
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Figure 3.14 Monte-Carlo simulation results of the matrix-weighted Procrustes problem
(left) according to Sec. 3.2.3.2 and the scalar-weighted case (right) from Sec. 3.2.3.3 in the
anisotropic and isotropic noise scenarios as seen in Fig. 3.13. The models from Sec. 3.2.4.2
and Sec. 3.2.4.3 are shown for comparison and a good prediction of the respective standard
deviation can be observed.

conditions on the noise processes and feature spacing, under which these take on
equal average values.

Furthermore, Fig. 3.15 depicts the bias in the estimated entries of the rotation matrix for
the scalar-weighted Procrustes problem. The simulated results agree with the analytical
expectations from (3.60). Moreover, the proposed de-biased estimator (3.61) is capable of
significantly reducing the bias.

3.2.6 Summary

This section has addressed uncertainty in low-level algorithms for feature-based loca-
lisation. In the intelligent vehicles domain, localisation is usually performed under a
planar world assumption and requires solving the two-dimensional Procrustes problem.
Depending on the measurement noise characteristics, either a matrix- or scalar-weighted
problem formulation arises.
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Figure 3.15 Monte-Carlo simulation results of the bias in the scalar-weighted Procrustes
problem. The observed bias is proportional to the absolute values of cos (θ) and sin (θ),
respectively, as it indicated in the analytical model (3.60). With the novel estimator (3.61),
almost bias-free results are obtained.

For both cases, analytical models of the estimation uncertainty have been derived.
Previous works are extended in terms of comprehensiveness and conciseness of the
model derivations. Additionally, a de-biased solution of the 2-D scalar-weighted Pro-
crustes problem has been proposed. This yields improved estimates which are free of
an otherwise multiplicative bias. The closed-form expressions are useful to optimally
parametrise a Bayes filter for tracking the position over time. Foundations of these filters
and statistical models thereof will be discussed in the subsequent Sec. 4.1.

Moreover, analytical models can be employed to efficiently derive sensor performance
characteristics which are required to reach a desired localisation accuracy. This topic will
be studied in greater detail for a stereo vision based system in Sec. 7.1.
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4.1 Object tracking and state estimation

In contrast to the previously detailed perception layer, the origin of observations over
time is now explicitly considered. Given a model of the time evolution of an underlying
dynamic process, one can associate individual measurements (tracking) and reduce the
estimation errors (filtering).

Statistical models of the filtered estimates are presented in this section. The overall
approach is firstly motivated in Sec. 4.1.1, followed by a survey of related publications
in Sec. 4.1.2. A formal definition of the tracking and state estimation problem is then
given in Sec. 4.1.3 and a number of popular algorithms are discussed. Sec. 4.1.4 presents
analytical lower bounds on the state estimation uncertainty. These are illustrated with
numerical examples in Sec. 4.1.5. Finally, a summary with potential future research
directions concludes this section in Sec. 4.1.6.

4.1.1 Introduction

Sensor measurements, as introduced in the previous Sec. 3.1-3.2, represent observations
at specific points in time that originate from a in general dynamic process. In the context
of advanced driver assistance systems, these dynamics refer for example to the motion
of traffic participants. The goal of a tracking algorithm is to associate measurements
from different time-steps. To this end, a model of the underlying dynamics is assumed.
Subsequently, the combined information can be used to estimate unobservable state
variables in the dynamic model. This is known as filtering or state estimation.

However, in general, neither the measurements nor the dynamic system model are
exact but affected by stochastic uncertainties. Consequently, the state estimates are
uncertain as well. The goal of this section is to find analytic models of this uncertainty in
order to be able to propagate them to subsequent algorithms.

An important aspect will be to understand the impact of the state history. Given that
the measurements are realisations of a random variable at each time step, modelling the
tracking filter results for all possible combinations from multiple time steps becomes
challenging. The approach pursued here is to study the Cramér-Rao lower bound
(CRB) on the best attainable state estimation variance. This bound is independent of the
assumptions and parametrisations of sub-optimal filters which allows drawing generic
conclusions.

In the context of this thesis, the purpose of deriving analytical bounds on the state
estimation variance is twofold. The performance bounds can be used for the selection
of sensor requirements and algorithms for ADAS. Sub-optimal filters can be compared
to the theoretical bound and the room for improvement is revealed. Furthermore, it is
possible to analytically propagate the uncertainty from the perception layer to subsequent
algorithms. This will be applied for the example of an AEB system in Sec. 7.2.

Since a large body of works on performance bounds in general tracking problems
exists, it is out of the scope of this chapter to further develop this theory. However, as
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will be seen from the survey in the next section, only a few examples of applications in
the driver assistance domain have been reported yet.

4.1.2 Related work

Before the advent of environment perception technologies in the automotive domain,
tracking the motion of objects has been considered for example in maritime applications
or aviation [10, 123, 124]. Similar theoretical foundations are applied to estimate a dy-
namic motion state with automotive sensors, for example radar [104], laser scanner [103],
stereo vision [12] or the fused information from multiple sensors [101, 148, 153].

The performance of a tracking algorithm can be evaluated with artificial data in a
simulation environment [80]. The estimation errors can be evaluated since the ground
truth trajectories are known. One shortcoming of this numerical approach is the effort in
sampling from different trajectories and measurement noise realisations [65]. Another
issue is that in order to objectively evaluate the performance of a tracking filter, one has to
define a meaningful reference for comparison, for example an optimal filtering solution.
Often though, such an optimal filter cannot be realised with finite computational power.

Therefore, it has become an active research topic to analytically study the theoretical
limit on the state estimation errors as given by the Cramér-Rao lower bound. This allows
gaining further insight into the problem. For example, the filter performance becomes
independent of the actual state trajectory under certain conditions and thus reduces to a
function of time only.

The theoretical foundations of the CRB have been developed in [16, 74, 188, 190].
Applications of this theory are for example the derivation of performance bounds in
angle-only tracking [88] or the deployment of multiple sensors [78]. In an automotive
context, examples for the use of the CRB have been reported in cooperative localisa-
tion [163] and as a reference for performance evaluation [8, 24]. Since these examples
are limited in number and depth, the goal of this work is to provide a more complete
overview of the CRB and illustrate its use for the development of driver assistance
systems.

4.1.3 State estimation problem formulation and solutions

Formally, the goal is to estimate the probability density p
(
x1:k

∣∣y1:k

)
of the state sequence

x1:k := x1, . . . ,xk with xk ∈ Rn ∀k using a sequence of measurements y1:k := y1, . . . ,yk
with yk ∈ Rm ∀k from the time-steps 1, . . . , k. To this end, the following models are
assumed. Firstly, the time evolution of xk is governed by a stochastic process model

xk+1 ∼ p
(
xk+1

∣∣x1:k,u1:k

)
(4.1a)

where u1:k := u1, . . . ,uk is a sequence of known, deterministic input signals.
Secondly, each measurement yk is related to the sequence of system states through the

measurement equation:

yk ∼ p
(
yk
∣∣x1:k

)
. (4.1b)
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However, in this general notation, the estimation problem is hardly tractable. Two
assumptions are the key to finding recursive or even analytic expressions for p

(
x1:k

∣∣y1:k

)
.

First, under the Markov assumption, the recursive Bayes filter will be studied in
Sec. 4.1.3.1. The Bayes filter can be numerically implemented for general probability
density functions in the particle filter framework, which will be introduced in Sec. 4.1.3.2.
Second, closed-form filter equations can be obtained under the additional assumptions
of linear system dynamics and Gaussian densities. These are known as the Kalman
filter and will be derived in Sec. 4.1.3.3. A similar algorithm for non-linear systems,
the extended Kalman filter, can be obtained by linearisation and will be presented in
Sec. 4.1.3.4. Lastly, the state estimation problem for multiple targets will be introduced
in Sec. 4.1.3.5.

4.1.3.1 Bayes filter for Markovian systems

As a first simplification, the Markov assumption is introduced in (4.1). A new state xk+1

depends only on its previous value xk and the input uk instead of the full state history
x1:k. Similarly, all information which leads to the measurement yk is included in the
current state xk:

xk+1 ∼ p
(
xk+1

∣∣xk,uk
)

(4.2a)
yk ∼ p

(
yk
∣∣xk
)
. (4.2b)

For this system, the desired density p
(
xk+1

∣∣y1:k+1

)
can be recursively calculated from

p
(
xk
∣∣y1:k

)
. Firstly, applying Bayes’ rule (2.8) yields the a posteriori density p

(
xk+1

∣∣y1:k+1

)

as a function of the measurement model (4.2b) and the a priori density p
(
xk+1

∣∣y1:k

)
[196]:

p
(
xk+1

∣∣y1:k+1

)
=
p
(
yk+1

∣∣xk+1

)
p
(
xk+1

∣∣y1:k

)

p
(
yk+1

∣∣y1:k

) = A−1p
(
yk+1

∣∣xk+1

)
p
(
xk+1

∣∣y1:k

)
. (4.3)

Note that the denominator p
(
yk+1

∣∣y1:k

)
is independent of xk+1 and therefore serves as a

mere normalisation constant A. Secondly, employing the law of total probability (2.7),
one can write the a priori density p

(
xk+1

∣∣y1:k

)
as follows [196]:

p
(
xk+1

∣∣y1:k

)
=

ˆ
p
(
xk+1

∣∣xk,uk
)
p
(
xk
∣∣y1:k

)
dxk . (4.4)

This expression only depends on the system equation (4.2a) and the a posteriori density
p
(
xk
∣∣y1:k

)
from the previous time step. Therefore, these two steps termed prediction (4.4)

and innovation (4.3) provide a way to recursively estimate p
(
xk+1

∣∣y1:k+1

)
, given an initial

state distribution p
(
x0

)
. A point estimate x̂k+1 of the state can then be constructed from

this density according to various criteria, for example the maximum likelihood principle.
Note that no assumption on the actual probability densities has been introduced yet.

In practice, two representations are commonly used: A non-parametric distribution,
described by a finite set of samples, is the foundation of a particle filter as it will be
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introduced in Sec. 4.1.3.2. Parametric distributions on the other hand play an important
role as they allow further simplifications of the general equations (4.3)-(4.4). In the
frequent case of a Gaussian distribution xk ∼ N (x̂k,Σk) described by the mean x̂k and
covariance Σk, the popular Kalman filter equations can be derived which will be shown
in Sec. 4.1.3.3.

4.1.3.2 Particle filter

The approach of a particle filter is to represent the involved probability densities by a
set of Ns samples and numerically propagate these through (4.3)-(4.4) with Monte-Carlo
methods. In theory, an arbitrary density function can be represented byNs →∞ particles.
In a practical implementation though, only a finite set can be used. Various strategies
exist in order to maintain an accurate approximation [5, 166]. The following derivation of
a naïve implementation primarily intends to illustrate the concept as presented in [196].

The posterior state distribution p
(
xk
∣∣y1:k

)
is represented by i = 1, . . . , Ns samples x

(i)
k

and weights ω(i)
k as [5]:

p
(
xk
∣∣y1:k

)
≈

Ns∑

i=1

ω
(i)
k δ
(
xk − x

(i)
k

)
,

N∑

i=1

ω
(i)
k = 1 , ω

(i)
k ≥ 0 ∀i . (4.5)

With this definition, the prediction step (4.4) reads:

p
(
xk+1

∣∣y1:k

)
=

Ns∑

i=1

ω
(i)
k p
(
xk+1

∣∣x(i)
k ,uk

)
. (4.6)

The a priori density p
(
xk+1

∣∣y1:k

)
is described by samples x

(i)
k+1|k which are drawn from

p
(
xk+1

∣∣x(i)
k ,uk

)
. Inserting the a priori density in particle representation into the inno-

vation step (4.3) yields the a posteriori density p
(
xk+1

∣∣y1:k+1

)
as a re-weighted set of

samples [196]:

p
(
xk+1

∣∣y1:k+1

)
=

Ns∑

i=1

ω
(i)
k+1δ

(
xk+1 − x

(i)
k+1|k

)
(4.7)

where ω(i)
k+1 = A−1ω

(i)
k p
(
yk+1

∣∣x(i)
k+1|k

)
and A =

∑Ns

i=1 ω
(i)
k p
(
yk+1

∣∣x(i)
k+1|k

)
. In practice, the

particle representation of p
(
xk+1

∣∣y1:k+1

)
can degenerate over time, that is most particles

eventually contribute with negligible weights. One possible countermeasure is to pe-
riodically create a new representation by drawing Ns particles with replacement from
p
(
xk+1

∣∣y1:k+1

)
and resetting all weights to ω(i)

k = N−1
s [5].

The advantage of the particle filter framework is that arbitrary system and measure-
ment models can be used. However, a drawback is the computational effort since in
order to accurately represent the distribution of a multidimensional state vector, it is
required to propagate a sufficiently high number of particles.
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4.1.3.3 Kalman filter

In this section, the special case of linear system and measurement models is considered.
The model contains zero mean Gaussian process noise wk and measurement noise vk:

xk+1 = Akxk + Bkuk + wk , wk ∼ N (0,Qk) (4.8a)
yk = Ckxk + vk , vk ∼ N (0,Rk) . (4.8b)

Unless stated otherwise, white and independent noise processes are assumed in the re-
mainder of this work:

E
[
wkw

T
k−κ

]
= 0n×n ∀k , ∀κ 6= 0 , E

[
vkv

T
k−κ

]
= 0m×m ∀k , ∀κ 6= 0 , (4.9a)

E
[
wkv

T
k−κ

]
= 0n×m ∀k , ∀κ . (4.9b)

If the initial state is a Gaussian x0 ∼ N (x0; x̂0,Σ0) and independent of wk and vk, the
state density p

(
xk
∣∣y1:k

)
remains a Gaussian N (xk; x̂k,Σk) due to the linearity.1 The

conditional probabilities (4.2) are given as:

p
(
xk+1

∣∣xk,uk
)

= N (xk+1; Akxk + Bkuk,Qk) (4.10a)
p
(
yk
∣∣xk
)

= N (yk; Ckxk,Rk) . (4.10b)

With these assumptions, it is possible to find closed-form expressions for the Gaus-
sian a priori density N

(
xk+1; x̂k+1|k,Σk+1|k

)
from (4.4) and the a posteriori density

N (xk+1; x̂k+1,Σk+1) from (4.3). These equations are known as the linear Kalman fil-
ter. In the following, a brief outline of the full derivation as found, for example in [187],
is given.2

First, the prediction step (4.4) is worked out using (2.13):

p
(
xk+1

∣∣y1:k

)
=

ˆ
N (xk+1; Akxk + Bkuk,Qk)N (xk; x̂k,Σk) dxk

= N
(
xk+1; Akx̂k + Bkuk︸ ︷︷ ︸

=x̂ k+1|k

,AkΣkA
T
k + Qk︸ ︷︷ ︸

=Σ k+1|k

)
. (4.11)

Next, the innovation step (4.3) is the product of Gaussian density functions which yields
a Gaussian after combination of the exponents [187]:

p
(
xk+1

∣∣y1:k+1

)
= A−1N (yk+1; Ck+1x̂k+1,Rk+1)N

(
xk+1; x̂k+1|k,Σk+1|k

)

= N
(
xk+1; x̂k+1|k + Kk+1

(
yk+1 −Ck+1x̂k+1|k

)
︸ ︷︷ ︸

=x̂k+1

, (In×n −Kk+1Ck+1) Σk+1|k︸ ︷︷ ︸
=Σk+1

)
,

(4.12a)

1If not explicitly stated otherwise, a covariance matrix Σ always refers to the state x in this section. An
additional subscript as in Σx is omitted for improved readability.

2Starting the derivations from the general Bayes filter equations is in line with the previous formulations.
Other derivations rely for example on an orthogonality principle as in the original work [99].
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where the abbreviation Kk+1 for the Kalman gain matrix

Kk+1 = Σk+1|kC
T
k+1

(
Ck+1Σk+1|kC

T
k+1 + Rk+1

)

︸ ︷︷ ︸
=:Σεk+1

−1

(4.12b)

is introduced. This gain matrix relates the measurement covariance Rk+1 to the pre-
dicted covariance Σk+1|k. A state estimate x̂k+1 is constructed from the prediction by
adding the weighted innovation, that is the difference between the expected and observed
measurement εk+1 = yk+1 −Ck+1x̂.

In summary, the Bayes filter for linear Gaussian systems consists of explicit matrix op-
erations for calculating the state predictions

(
x̂k+1|k,Σk+1|k

)
and estimates (x̂k+1,Σk+1).

The estimated mean and covariance fully describe the Gaussian a posteriori density
p
(
xk+1

∣∣y1:k+1

)
. Moreover, x̂k+1 features the smallest variance cov (x̂k+1 − xk+1) compared

to any unbiased estimator of xk+1 and thus is an efficient estimate [108].
However, these favourable properties are closely related to the assumption of a linear

system and Gaussian noise processes. In the more general case of non-linear systems, it
is in general not possible to find closed-form expressions for the propagated densities.
Hence, one can either resort to a numerical approach such as the particle filter from
Sec. 4.1.3.2. Or, instead of propagating the true non-Gaussian densities, these can be
approximated by Gaussians in each filter step. This can be achieved for example by a
linearisation of the system equations, which leads to an extended Kalman filter.

4.1.3.4 Extended Kalman filter

As a more general variant of the model (4.8), a non-linear system is assumed:

xk+1 = fk (xk,uk,wk) , wk ∼ N (0,Qk) (4.13a)
yk = hk (xk,vk) , vk ∼ N (0,Rk) . (4.13b)

The noise processes are independent Gaussians and the initial state is x0 ∼ N (x̂0,Σ0).
In the previous section, the linear Kalman filter has been derived as the optimal state

estimator for a known system model which is linear but potentially time-varying. A
natural extension to a non-linear system is therefore to consider a linearised version of it
at each time-step. This yields the extended Kalman filter (EKF) algorithm [108]. Firstly,
instead of the prediction step (4.11), one has:

x̂k+1|k = fk (x̂k,uk,0) , (4.14a)

Σk+1|k = AkΣkA
T
k + GkQkG

T
k , (4.14b)

where
Ak = ∇xk

fk (xk,uk,wk)|xk=x̂k,wk=0 , (4.14c)

Gk = ∇wk
fk (xk,uk,wk)|xk=x̂k,wk=0 . (4.14d)

Secondly, the innovation step reads:

x̂k+1 = x̂k+1|k + Kk+1

(
yk+1 − hk+1

(
x̂k+1|k,0

))
, (4.15a)
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Σk+1 = (In×n −Kk+1Ck+1) Σk+1|k , (4.15b)
where

Kk+1 = Σk+1|kC
T
k+1

(
Ck+1Σk+1|kC

T
k+1 + Lk+1Rk+1L

T
k+1

)−1

, (4.15c)

Ck+1 = ∇xk+1
hk (xk+1,vk+1)|xk+1=x̂ k+1|k,vk+1=0 , (4.15d)

Lk+1 = ∇vk+1
hk (xk+1,vk+1)|xk+1=x̂ k+1|k,vk+1=0 . (4.15e)

Due to the use of a linearised model, the sub-optimality of the filter is obvious. It will be
studied in Sec. 4.1.4 how the performance deteriorates compared to the theoretical opti-
mum. Note that using a first-order linearisation of the system is only one possible way
to obtain a closed form of the Bayes filter (4.3)-(4.4). More sophisticated approaches [166]
can lead to better approximations.

4.1.3.5 Extension to multi-target tracking

So far, only the tracking of a single object has been considered. The object’s motion is
represented as a dynamic system and a state estimate is obtained from sensor measure-
ments which originate from this system. In practical automotive applications, multiple
objects are visible for the sensor at the same time and it is of interest to simultaneously
estimate their motion states.

However, since the measurements are usually not uniquely identifiable, estimating
the states by separate filters in parallel is not straight-forward. This is especially true in
an automotive context, where the distances between vehicles are typically in the same
order as their dimensions and thus measurements are not cleanly separated. Therefore,
the joint problem of estimating the association between multiple measurements over
time and the dynamic states of multiple objects needs to be solved, which is known as
multi-target tracking. Furthermore, one has to cope with the notorious case of missing
or false positive measurements.

As with the single target case introduced at the beginning of Sec. 4.1.3, performing a
batch estimation over all time steps is hardly possible due to the growing computational
demand. This is especially relevant for the association problem with its combinatorial
explosion. Therefore, additional assumptions are made in order to obtain a sub-optimal
recursive but feasible solution to a multi-target tracking problem.

The main principle of a recursive association scheme is to sequentially decide on how
the current measurements are integrated in the estimation without altering the use of
previous measurement information [23]. Moreover, if the different targets are assumed
as moving independently from each other, the motion estimation can be performed with
individual state estimation filters.

In a first step, an association between measurements and the previously tracked objects
has to be found. This can be a hard decision, where each measurement is exclusively
assigned, or a weighted assignment as used in probabilistic data association [23].

Before the assignment between all measurements and all objects is considered though,
a gating step is usually performed in order to exclude unlikely combinations. For each
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currently tracked object, the filter prediction is compared with the current measurements
in terms of a distance function. In the case of a Gaussian state representation, the Kalman
filter predictions (4.11) can be used to determine the residual εk+1 = yk+1 −Ck+1x̂k+1

which is expected to be a Gaussian N
(
0,Σεk+1

)
. A suitable scalar measure for the

fit between measurement and prediction is then given by the Mahalanobis distance
εT
k+1Σ

−1
εk+1

εk+1 ∼ χ2
m. It is therefore possible to define an ellipsoidal gate in the mea-

surement space by means of a hypothesis test with an 1 − α acceptance probability.
Measurements that origin from other objects with a different mean or outlier detections
that do not follow a Gaussian distribution can be rejected if the gate is sufficiently tight.

Depending on the situation, the gating step alone will not eliminate all ambiguities of
the assignment problem in multi-target tracking. Moreover, the list of currently tracked
objects needs to be maintained, that is new filters have to be initiated and obsolete ones
terminated. Further details are given for example in [10, 23]. Still, the introductory
overview that is given here suffices to discuss the extension of optimal performance
bounds from single to multi-target tracking in Sec. 4.1.4.5.

4.1.4 Cramér-Rao bound for state estimation problems

Having introduced the formulation and approaches to solve the state estimation problem,
a lower bound on the estimation error covariance is now derived. First, non-linear,
possibly time-variant state space models of the following form are considered:

xk+1 = fk (xk,uk,wk) , wk ∼ pk (wk) , E [wk] = 0 (4.16a)
yk = hk (xk,vk) , vk ∼ pk (vk) , E [vk] = 0 . (4.16b)

Here, the discrete time noise processes wk are vk assumed as independent and white
with arbitrary probability density functions and zero mean.

It is assumed that an unbiased estimator x̂k (y1:k) of xk exists:

E [x̂k (y1:k)− xk] = 0 . (4.17)

The goal is then to find a tight lower bound on the achievable estimation error covariance
I−1
k so that

cov (x̂k (y1:k)− xk) � I−1
k (4.18)

holds for any unbiased estimator. Depending on whether the state xk is regarded as a
non-random parameter or, in a Bayesian framework, as random itself, the expectations
in (4.17)-(4.18) are taken using the densities p

(
y1:k

∣∣xk
)

or p
(
xk,y1:k

)
, respectively.

Recall from Sec. 2.1.3 that for the classical problem of estimating a constant, non-
random parameter θ from measurement information y ∼ p

(
y
∣∣θ
)
, such a bound is

provided by the inverse of the Fisher information matrix Iy (θ) from (2.15). This result
is known as the Cramér-Rao bound (CRB).

In contrast to the estimation of a static parameter θ, the dynamic state xk is time-
dependent and so will be the CRB I−1

k for this problem. Moreover, in the Bayesian state
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estimation framework, the sequence of states x1:k is not deterministic but a realisation of
a stochastic process. Two different approaches are known for handling these challenges.

1. Similar to the classical parameter estimation theory, a parametric bound can be
obtained if the state sequence x1:k is treated as a known, deterministic parame-
ter. Thus, a bound is derived for specific realisations of the state. A recursive
formulation of the parametric CRB will be shown in Sec. 4.1.4.1.

2. The posterior CRB is derived from a Bayesian point of view and takes the prob-
abilistic nature of the state evolution into account. Effectively, the information
matrix is not calculated for a particular state trajectory but averaged over the state
distribution. This bound will be explained in Sec. 4.1.4.2.

Further explicit results and relevant properties for special cases, for example the linear
(4.8) or non-linear systems (4.13), will be highlighted in Sec. 4.1.4.3-4.1.4.4. Rigorous
derivations and a comparison of both formulations of the CRB are given in [16]. The
main results are summarised in the following.

Lastly, Sec. 4.1.4.5 discusses the challenges when the CRB for estimating the state of a
single target shall be extended to the multi-target tracking problem from Sec. 4.1.3.5.

4.1.4.1 Parametric CRB

To derive the parametric bound, the sequence of system states x1:k is written as a stacked
vector and treated as a parameter X1:k =

[
xT

1 . . . xT
k

]T
with a true value X∗1:k. The

corresponding realisation of the process noise W∗
k is similarly assumed as deterministic.

Likewise, the sequence of measurements y1:k is written as Y1:k =
[
yT

1 . . . yT
k

]T
. The

density p
(
Y1:k

∣∣X1:k

)
of the measurements conditional on X1:k can be retrieved from

(4.16b). Then, the Fisher information matrix is obtained from (2.15) as

IY1:k
(X1:k) = −EY1:k|X1:k

[
∆X1:k

X1:k
log p

(
Y1:k

∣∣X1:k

)]
. (4.19)

Due to the time-dependence of xk, the dimensions of X1:k grow unlimitedly which is
impractical for calculating the inverse of IY1:k

(X1:k). To avoid this issue, a recursive
expression for Ik := IY1:k

(xk) has been developed in [181]. This recursion of the
parametric CRB is given by [16, 74]:

Ik+1 = CT
k+1R

−1
k+1Ck+1 +

(
AkI−1

k AT
k + GkQkG

T
k

)−1

, (4.20a)

where
Ak = ∇xk

fk (xk,uk,wk)|x∗k,w∗k , (4.20b)

Gk = ∇wk
fk (xk,uk,wk)|x∗k,w∗k , (4.20c)

Q−1
k = −Exk

[
∆wk

wk
log p

(
xk,wk

)∣∣
w
∗
k

]
, (4.20d)

CT
k+1R

−1
k+1Ck+1 = −Eyk+1

[
∆

xk+1
xk+1

log p
(
yk+1

∣∣xk+1

)∣∣
x
∗
k+1

]
. (4.20e)
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4.1.4.2 Posterior CRB

In contrast to the previous section, the probability distribution of the state trajectory
x1:k is now considered instead of a specific realisation only. Instead of a conditional
density p

(
Y1:k

∣∣X1:k

)
, one has the joint density p

(
Y1:k,X1:k

)
and the objective is to find

the Bayesian information matrix

IY1:k
(X1:k) = −EX1:k,Y1:k

[
∆X1:k

X1:k
log p

(
Y1:k,X1:k

)]
. (4.21)

This bound has been derived in batch matrix form IY1:k
(X1:k) in [190]. The recursive

expressions presented in the following have been reported in [16, 188]:

Ik+1 = D22,k −D21,k

(
Ik + D11,k

)−1
D12,k , (4.22a)

where

D11,k = −Exk,wk

[
∆xk

xk
log p

(
xk+1

∣∣xk
)]

, (4.22b)

D12,k = DT
21,k = −Exk,wk

[
∆

xk+1
xk log p

(
xk+1

∣∣xk
)]

, (4.22c)
D22,k = −Exk,wk

[
∆

xk+1
xk+1

log p
(
xk+1

∣∣xk
)]
− Exk+1 ,yk+1

[
∆

yk+1
yk+1

log p
(
yk+1

∣∣xk+1

)]
.

(4.22d)

The expectation is now taken over measurements Y1:k and states X1:k. Instead of evaluat-
ing the expressions for a single state trajectory X∗1:k, the expectation over the joint density
is calculated. Depending on the system equations, finding this density and evaluating
the expectations in closed form might be impossible and numerical methods such as the
particle filter from Sec. 4.1.3.2 can be used [182].3

In the following Sec. 4.1.4.3-4.1.4.4, two special cases of the system (4.16) will be
analysed. These are non-linear systems with additive Gaussian noise and linear systems
with additive non-Gaussian noise. Here, closed-form expressions for the parametric
(4.20) and posterior CRB (4.22) are available.

4.1.4.3 CRB for non-linear systems with additive Gaussian noise

Consider the non-linear system with additive Gaussian noise processes4 and Gaussian
initial state x0 ∼ N (x̂0,Σ0):

xk+1 = f (xk,uk) + wk , wk ∼ N
(
0,Q′

)
(4.23a)

yk = h (xk) + vk , vk ∼ N
(
0,R′

)
. (4.23b)

3At first sight, it is unsatisfying that a theoretical lower bound on the estimator covariance depends on
numerical estimates from a particle filter. However, it should be noted that this is still a significant
improvement over a purely numerical evaluation where a particle filter is used as a reference filter.
In this case, one has to repeat the execution of the particle filter multiple times in order to find the
covariance of these reference estimates.

4To avoid confusion with the notation used in the parametric CRB (4.20), the covariances are denoted by
(·)′.
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For the sake of clarity, both the system equations and noise covariances are assumed as
time-invariant. One obtains for the expressions of the parametric CRB from (4.20) [16]:

Q−1 = −Exk

[
∆wk

wk
− 1

2
(wk − f (xk,uk))

T Q′−1 (wk − f (xk,uk))

∣∣∣∣
w
∗
k

]
= Q′−1 (4.24a)

CT
k+1R

−1
k+1Ck+1 =

(
∇xk+1

h (xk+1)
∣∣∣
x
∗
k+1

)T

R′−1

(
∇xk+1

h (xk+1)
∣∣∣
x
∗
k+1

)
. (4.24b)

The resulting recursion of the inverse information matrix I−1
k+1 resembles the covariance

propagation of an extended Kalman filter from Sec. 4.1.3.4 [74]. The main difference lies
in the point around which the linearisation is performed which is the true state x∗k for
the parametric CRB and the current estimate x̂k in the filter equations.

The posterior CRB (4.22) is defined by the following expressions [188]:

D11,k = Exk,wk

[(
∇xk

f (xk,uk)
)T

Q′−1
(
∇xk

f (xk,uk)
)]

(4.25a)

D12,k = −Exk,wk

[(
∇xk

f (xk,uk)
)T
]

Q′−1 (4.25b)

D22,k = Q′−1 + Exk+1,yk+1

[(
∇xk+1

h (xk+1)
)T

R′−1
(
∇xk+1

h (xk+1)
)]

. (4.25c)

In the general case of non-linear system and measurement equations, the Jacobians
depend on the state xk. Often, no closed-form expressions for the expected values of the
non-linear transformations in (4.25) are available. The special case of a linear system will
be further elaborated on in the next section.

4.1.4.4 CRB for linear systems with additive non-Gaussian noise

The system equations are linear and time-invariant:

xk+1 = Axk + Buk + wk , wk ∼ p
(
wk

)
, E [wk] = 0 , cov (wk) = Q′ (4.26a)

yk = Cxk + vk , vk ∼ p
(
vk
)
, E [vk] = 0 , cov (vk) = R′ . (4.26b)

The intrinsic accuracies (2.18) of the independent noise processes are denoted by Iw and
Iv. A distribution x̂0 ∼ p (x0) with intrinsic accuracy I0 is assumed for the initial state.

The parametric bound (4.20) for this system is found as [74]:

Ik+1 = CTIvC +
(
AI−1

k AT + I−1
w

)−1

, (4.27a)

since
Ak = ∇xk

[Axk + Buk + wk]|x∗k,w∗k = A , (4.27b)

Gk = ∇wk
[Axk + Buk + wk]|x∗k,w∗k = In×n , (4.27c)

Q−1
k = −Exk

[
∆wk

wk
log p

(
xk,wk

)∣∣
w
∗
k

]
= Iw , (4.27d)

CT
k+1R

−1
k+1Ck+1 = −Eyk+1

[
∆

xk+1
xk+1

log p
(
yk+1

∣∣xk+1

)∣∣
x
∗
k+1

]
= CTIvC . (4.27e)
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The recursion resembles the covariance propagation of a linear Kalman filter from
Sec. 4.1.3.3. For the posterior CRB, one obtains the following expressions for (4.22) [74]:

D11 = ATIwA , D12 = −ATIw , D22 = Iw + CTIvC . (4.28a)

Note that after inserting these into the recursion for Ik+1, one has the same result as the
parametric CRB (4.27a):

Ik+1 = CTIvC + Iw − IwA
(
Ik + ATIwA

)−1

ATIw

︸ ︷︷ ︸
(A.9)
= (AI−1

k A
T

+I−1
w )
−1

. (4.29)

An explanation for the equality between the parametric and posterior bound is that in
linear systems, the Jacobians of the state transition and measurement functions do not
depend on the state. Thus, it is irrelevant whether a specific trajectory of the state or,
from a Bayesian perspective, the entire state distribution is considered [74].

Another observation is that the result (4.29) is independent of the state trajectory, for
example the manoeuvre driven by an observed vehicle. The bound only depends on the
time step k. This finding confirms the initial motivation for analytical modelling from
Sec. 1.2, namely that careful inspection of a problem may help to find invariant aspects
and thus reduces the modelling effort.

Moreover, the recursion given by (4.22) can be recognised as a discrete-time algebraic
Riccati equation with constant coefficients after reformulation [188]:

Ik+1 = D22 −D21 (Ik + D11)−1 D12

= D22 −D21D
−1
11

(
D11 −

(
D11 −D11 (Ik + D11)−1 D11

))
D−1

11 D12

= D21D
−1
11 IkD

−1
11 D12 + D21D

−1
11 Ik (Ik + D11)−1 IkD

−1
11 D12

+ D22 −D21D
−1
11 D12

= ÃTIkÃ−
(
ÃTIkB̃

)(
R̃ + B̃TIkB̃

)−1 (
B̃TIkÃ

)
+ Q̃

with Ã := D−1
11 D12 , B̃ := In×n , R̃ := D11 , Q̃ := D22 −D21D

−1
11 D12 .

(4.30)

It is thus possible to calculate the asymptotic steady state solution I∞ for k →∞, if it
exists. This single quantity can be used as a metric for comparing different sensors with
their measurement quality described by the intrinsic accuracy Iv [74].

Similarly, the difference between the optimal Bayes filter and a Kalman filter can
be investigated. The latter only incorporates the covariance matrices Q and R of the
potentially non-Gaussian prediction and measurement noise. Recall from (2.19), that
describing a non-Gaussian noise process e solely by its second order moment cov (e)

carries less information than the intrinsic accuracy Ie. It is shown in [74] that this
inequality propagates through the CRB recursion. Consequently, employing the full
noise information leads to more accurate state estimates than the approximation by a
Gaussian.
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While this result is not surprising, the CRB and its steady-state value enable to analyt-
ically quantify this difference and to reason whether a more accurate implementation
of a Bayes filter is worth the effort over a Kalman filter. This will be exemplified in the
following Sec. 4.1.5 for the use of stereo vision for the estimation of vehicle motion. The
non-Gaussianity of these measurements has been discussed in Sec. 3.1.4.4.

In practical cases, the noise processes are often time-dependent. An approach to
draw conclusions on the asymptotic time evolution is presented in [140]. Time-invariant
enclosures of the covariance matrices have to be defined for which the steady state value
of the CRB can be derived.

4.1.4.5 Extending the posterior CRB to multi-target tracking

Having studied the Cramér-Rao bound for the state estimation of a single target, a natural
but challenging question concerns the extension to multiple targets and measurements
with uncertain origin as introduced in Sec. 4.1.3.5. The central objective is of course not
only to formulate this bound but to obtain tractable expressions, as it is the case for the
elegant recursion of the posterior CRB (4.22). The general case of multi-target tracking
must be considered as yet unsolved in this regard but solutions to partial problems or
approximations have been obtained.

Two cases can be distinguished here: On the one hand, the single target tracking prob-
lem can be extended to measurement models with missed detections and false positive
observations. It has been found, that this degradation of the measurement information
can be included as an additional scalar information reduction factor in the calculation of
the CRB [79]. However, this remarkably simple result is overly optimistic since the
order in which nominal and false measurements may occur is not considered [78]. A
tight bound can be derived with this taken into account but at the cost of more complex
formulations [77, 138].

While fruitful work has been devoted to the case of a single or multiple, sufficiently
separated targets, the CRB for a multi-target tracking problem on the other hand remains
only partially solved. With different approaches and assumptions, recent results have
been obtained in [93, 121, 159]. The main question here is to establish how much
the achievable covariance of the state estimates increases if the association between
measurements needs to be estimated at the same time.

As has been shown in [44], the assumption of a perfectly known association always
leads to an overly optimistic bound. This means that at least a lower variance bound
can be obtained from the single target tracking case by simply considering each object
separately. Such an optimistic bound is still useful as it provides necessary conditions on
the sensor accuracy in order to achieve a state estimation uncertainty below a maximal
tolerable value. A tight bound on the other hand is of great interest for the development
of multi-target tracking algorithms, in order to quantify the gap between the performance
of an approximate algorithm and the theoretical limit.
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4.1.5 Numerical example: Vehicle motion estimation

The theoretical foundations are now illustrated with the example of estimating a vehicle’s
motion from range sensor measurements. Thus, the state estimation problem is based on
the following discrete-time dynamic system of a one-dimensional motion with distance
x and constant velocity vx:

[
xk+1

vx,k+1

]
=

[
1 TS

0 1

] [
xk
vx,k

]
+ wk , wk ∼ N (0,Q) . (4.31)

Two different measurement models will be studied in the following. State estimators
will be applied to the system and the performance of these filters will be compared to
the theoretical CRB.

Firstly, the intrinsic accuracy Iv in the measurements will be derived and compared
to the information in Gaussian approximations in Sec. 4.1.5.1. Based on these results, the
CRB is subsequently analysed in Sec. 4.1.5.2.

4.1.5.1 Information in sensor measurement distributions

Two measurement models will be analysed: Firstly, measurements of the Cartesian
distance are obtained by a stereo vision sensor as explained in Sec. 3.1.4.4. Secondly,
distance measurements that are affected by additive Gaussian noise with outlier values
are studied. A Gaussian mixture distribution with two components is employed to model
outliers which are not explained by the expected fluctuation of an ordinary measurement.

Distance measurements by stereo vision: Measurements yk of a true distance xk are
assumed to be obtained by a stereo video sensor with Gaussian disparity errors:

yk =
ckbw

dk
, dk ∼ N

(
ckbw

xk
, σ2

d

)
. (4.32)

According to (3.25), one has the following non-Gaussian measurement model:

p
(
yk
∣∣xk
)

=
ckbw√
2πσd

1

y2
k

exp

(
−1

2

(
ckbw

σd

)2(
1

yk
− 1

xk

)2
)
. (4.33)

The parametric CRB5 (4.20) will be derived for this model. To this end, (4.33) is inserted
into (4.20e) with a deterministic true distance x∗k:

Iyk (xk) = −Eyk


∆xk

xk
−1

2

(
ckbw

σd

)2(
1

yk
− 1

xk

)2
∣∣∣∣∣
x
∗
k




= −Eyk
[
ckbw

yk

]
· 2

(x∗k)
3

ckbw

σ2
d

+
3

(x∗k)
4

(ckbw)2

σ2
d

=

(
ckbw

σd

)2

· 1

(x∗k)
4 . (4.34)

5Numerical methods have to be employed to calculate the posterior CRB from (4.22).
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Figure 4.1 Comparison of the intrinsic accuracy of Gaussian disparity measurements
(a) to the variance of an approximated measurement model (b). The ratio between
both quantities is shown in (c). The variance var (yk) is numerically evaluated with
Nsim = 1× 107 Monte-Carlo iterations.

The result depends on σd and x∗k and is visualised over a range of value pairs in Fig. 4.1(a).
Increasing the measurement noise standard deviation or the distance leads to less infor-
mative measurements.

Implementing the optimal Bayes filter requires the particle filter framework from
Sec. 4.1.3.2. This might be undesirable from a computational point of view. Instead, an
extended Kalman filter from Sec. 4.1.3.4 can be used where the measurement density
(4.33) is approximated by a Gaussian in each step:

p
(
yk
∣∣xk
)
≈ N

(
yk;xk, σ

2
yk

)
, yk =

ckbw

dk
, σ2

yk
=

(
ckbw

x2
k

)2

σ2
d . (4.35)

The goodness of this approximation can be evaluated by comparing the variance var (yk)

to the intrinsic accuracy (4.34). The variance is numerically evaluated and displayed in
Fig. 4.1(b). A second order series expansion yields the following approximation [74]:

var (yk) = Edk

[(
ckbw

dk
− Edk

[
ckbw

dk

])2
]
≈
(
σd
ckbw

)2

· (x∗k)4
+ 2

(
σd
ckbw

)4

· (x∗k)6
. (4.36)

Indeed, it holds that var (yk) ≥ I−1
yk

(xk) as is given by the general inequality (2.19).
The relation between Iyk from (4.34) and the Gaussian approximation is furthermore
characterised by the relative accuracy Ψyk

= Iyk (xk) var (yk) which is shown in Fig. 4.1(c).
It can be observed that this ratio remains very close to one with the highest deviations at
higher distances and noise levels.

All in all it is thus expected that an extended Kalman filter, implicitly designed for the
Gaussian measurement model (4.35), leads to similar performance in terms of estimator
covariance as an optimal Bayes filter and reaches the Cramér-Rao bound.
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Figure 4.3 Comparison of a bi-Gaussian distribution to a Gaussian approximation.

Bi-Gaussian measurement errors: The second measurement model assumes that the
errors follow a Gaussian mixture model with two components (bi-Gaussian distribution).
Such a model has been proposed in [104] to describe range measurements from an
automotive radar sensor. Besides Gaussian noise on the measured range values, a
shift of the reflection point on the observed vehicle is included as a second cause for a
measurement’s fluctuation. The model therefore consists of a dominant Gaussian with
variance σ2

y,1 and weight ω1 and a second mode with higher variance σ2
y,2 and weight

1− ω1:

yk = xk + vk , p
(
vk
)

= ω1N
(
vk; 0, σ2

y,1

)
+ (1− ω1)N

(
vk; 0, σ2

y,2

)

=⇒ p
(
yk
∣∣xk
)

= ω1N
(
yk;xk, σ

2
y,1

)
+ (1− ω1)N

(
yk;xk, σ

2
y,2

) . (4.37)

Fig. 4.2 depicts the probability density functions for an exemplary parameter choice
with ω1 = 0.8, σy,1 = 0.5 m and σy,2 = 2.5 m. Compared to solely the first mode, the
bi-Gaussian density features heavier tails. An estimator which ignores these tails will be
overconfident about measurements with a high deviation from the expected position
and thus cause a drift towards these outliers.
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Due to the flexibility of multimodal Gaussian distributions, these have been extensively
studied for a range of different state estimation tasks in [74]. Some of these results will
be reproduced in the following for the specific case of the bi-Gaussian model (4.37).
Furthermore, the comparison of different filters in Sec. 4.1.5.2 will be extended to the ad
hoc approach of a Kalman filter with gating as described in Sec. 4.1.3.5.

First, similar to (4.34), the information Iyk (xk) from a measurement yk on xk is derived.
Since (4.37) is a linear model, this equals the intrinsic accuracy Iv of the additive noise
and is independent of the state:

Iyk (xk) = Iv = −Eyk
[
∆xk
xk

log
(
ω1N

(
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2
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)
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(
yk;xk, σ

2
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))∣∣
x
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]

=
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σ
2
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N
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)
+ 1−ω1

σ
2
y,2

N
(
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y,2

))2

ω1N
(
v; 0, σ2

y,1

)
+ (1− ω1)N

(
v; 0, σ2

y,2

) dv . (4.38)

In the special cases of either ω1 = 1 or σy,1 = σy,2, the bi-Gaussian distribution reduces
to a Gaussian and it can be seen from (4.38) that Iyk (xk) =

(
σ2
y,1

)−1. Moreover, if the
second mode becomes entirely uninformative with σy,2 →∞, one obtains the following
inequality:

Iyk (xk) ≤
ω1

σ4
y,1

∞̂

v=−∞

v2N
(
v; 0, σ2

y,1

)
dv =

ω1

σ2
y,1

. (4.39)

The integral (4.38) is numerically evaluated for different combinations of ω1 ∈ [0.8; 1],
σy,1 = 0.5 m and σy,2

σy,1
∈ [1; 10] and the results are visualised in Fig. 4.3(a). Since the weight

of the first mode remains relatively high, the information varies only slightly for the
evaluated parameter values.

Second, a Gaussian approximation of the measurement noise in (4.37) is obtained as

p
(
yk
∣∣xk
)
≈ N

(
yk;xk, ω1σ

2
y,1 + (1− ω1)σ2

y,2

)
. (4.40)

As is seen in the exemplary visualisation in Fig. 4.2, the approximate distribution is
overly wide around the mean. This illustrates how information on the distribution’s
mean is lost due to the approximation.

The inverse of the variance var (yk), that is the information carried by the Gaussian
approximation, is displayed in Fig. 4.3(b). A noticeable decrease can be observed when
increasing the variance or weight of the second mode. The comparison to Iyk (xk) in
terms of the relative accuracy Ψyk

in Fig. 4.3(c) confirms that the deviation between the
true and approximated distributions increases, the stronger the outlier mode becomes.

4.1.5.2 Time evolution of the Cramér-Rao bound

After the measurement models and approximations thereof have been investigated, these
findings can be applied to a state estimation task. The simulated scenario consists of
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Figure 4.4 Trajectory of the state xk (top: distance xk, below: velocity vx,k) in the simulated
system (4.31) parametrised according to Tab. 4.1. The mean trajectory E [xk], one random
realisation x

(i)
k and the corresponding filter estimates x̂

(i)
k are shown.

an approaching vehicle with the distance and relative velocity shown in Fig. 4.4. Due
to the stochastic process noise, each of the i = 1, . . . , Nsim realisations of the dynamic
state x

(i)
k , k = 1, . . . , N follows a random trajectory around the nominal mean E [xk].

The parameter values used in the simulation are given in Tab. 4.1. For each trajectory,
simulated distance measurements are generated according to the two models from
Sec. 4.1.5.1. Depending on the model, different filters are employed to obtain state
estimates x̂

(i)
k , k = 1, . . . , N . These estimates are evaluated in terms of the mean squared

error over all Nsim simulation runs:

cov (x̂k − xk) =
1

Nsim − 1

Nsim∑

i=1

(
x̂

(i)
k − x

(i)
k

)(
x̂

(i)
k − x

(i)
k

)T

. (4.41)

The parametric and posterior bounds are calculated for the respective models and it will
be reasoned whether the variance of the simulated filters can reach the lower bounds.

Distance measurements by stereo vision: An extended Kalman filter as outlined in
Sec. 4.1.3.4 is applied to the non-linear measurement model (4.33). Due to the small
difference in terms of the relative accuracy between this approximation and the true
probability distribution which has been observed in Fig. 4.1, it is expected that the EKF
comes close to the CRB.

Concerning the Cramér-Rao bounds, the parametric CRB is calculated from (4.34)
where the linearisation is performed around the nominal mean trajectory. For the
posterior bound on the other hand, the expressions (4.22) are numerically evaluated by
employing a particle filter with Ns = 1× 103 samples.

The results in Fig. 4.5 show that the estimation error reaches the CRB and thereby con-
firms the hypothesised outcome. It can be observed how the estimation error improves
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Table 4.1 Simulation parameters for analysing the time evolution of the CRB.

Variable Value

Initial state mean x̂0 =
[
30 m −5 m/s

]

Initial state covariance Σ0 = diag
(

1 m2, 0.56 m2/s2
)

Process noise Q = 0.4 m2/s4s−1

[
1
3TS

3 1
2TS

2

1
2TS

2 TS

]

Measurement model
Stereo vision: σd = 0.1 pel, ckbw = 121 m · pel

Bi-Gaussian noise: ω1 = 0.8, σy,1 = 0.5 m, σy,2 = 2.5 m

Sampling time TS = 0.0675 s

Monte-Carlo iterations Nsim = 1× 104

Particle filter samples Ns = 1× 103
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Figure 4.5 Standard deviation of the state estimates for the stereo vision measurement
model (4.33) compared to the CRB. (Top: distance xk, below: velocity vx,k)

over time. Since this is a non-linear system, no asymptotic limit of the CRB is expected.
Furthermore, the graphs reveal no observable difference between the parametric and
posterior CRB. Therefore, the posterior density is sufficiently tight with respect to the
gradient of the measurement model. Taking the expectation yields a similar result as an
evaluation at the mean trajectory.

Gaussian measurements with outliers: Secondly, the bi-Gaussian measurement distri-
bution (4.37) is analysed. This corresponds to a linear system with additive noise from
Sec. 4.1.4.4. Three different strategies to cope with the non-Gaussian noise process are
applied. First, a linear Kalman filter from Sec. 4.1.3.3 is parametrised with the variance
of the Gaussian approximation (4.40) of the measurement noise. As has been seen in
Fig. 4.2, this approximation overestimates a measurement’s uncertainty around the mean
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Figure 4.6 Standard deviation of the state estimates for the bi-Gaussian measurement
model (4.37) compared to the CRB. (Top: distance xk, below: velocity vx,k)

and thus neglects valuable information.
A second strategy is to consider only the first mode p

(
yk
∣∣xk
)
≈ N

(
yk, xk, σ

2
y,1

)
. The

occurrence of measurements which are far from the current prediction have to be treated
separately in the filter then. Due to the second mode of the true distribution, these
outliers will occur more frequently than expected. To this end, a gating strategy as
introduced in Sec. 4.1.3.5 is used. A χ2 test with a 1 − α = 99 % acceptance interval is
performed on the normalised squared innovation error εT

k+1Σ
−1
εk+1

εk+1 from (4.12a). If
a measurement falls out of the acceptance interval, the update step is skipped and the
state prediction is used as an estimate. One advantage of this ad hoc approach over
a completely probabilistic treatment is that it does not require a precise model of the
outlier distribution. The method is therefore robust to different outlier distributions.
However, neither of the two approaches takes the full noise distribution into account
and it is thus not expected that the CRB will be reached.

Thirdly, a particle filter as described in Sec. 4.1.3.2 is implemented with Ns = 1× 103

particles for the exact bi-Gaussian measurement model (4.37). The particles approximate
the posterior density p

(
xk
∣∣y1:k

)
and the distribution’s mean is used as a state estimate

x̂k. Since the full noise information is included, it is expected that the variance of the
estimation error reaches the CRB and thus confirms the analytical bounds.

Due to the model’s linearity, the parametric and posterior CRB are identical and
given in closed form by (4.29). Here, the intrinsic accuracy Iv of the bi-Gaussian noise
distribution from (4.38) has to be inserted. Moreover, an asymptotic value exists which
is calculated by numerically solving the Riccati equation (4.30).

Fig. 4.6 depicts the standard deviations of the filter estimates and the CRB for compar-
ison. The first Kalman filter that is based on the approximation (4.40) shows a lasting
difference to the CRB. Improved estimates of vx are observed for the second Kalman
filter that is enhanced with the additional gating strategy. It has to be remarked that
the quality of the estimates is sensitive to the chosen gating threshold. The acceptance
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interval 1−α has to be chosen in order to achieve a sensible compromise between outlier
rejection and loss of measurement information.

As is expected, the particle filter estimates reach the CRB and confirm the bound.
Therefore, knowing the CRB is of great value since one can quantify the potential for
further improvement from a sub-optimal to a more sophisticated approach.

4.1.6 Summary

The goal of this section has been to model the uncertainty in a tracking filter as it can be
used to estimate the velocity of a vehicle from range sensor measurements. To this end,
the best attainable estimator variance given by the Cramér-Rao bound (CRB) has been
studied. A numerical example, which is used to illustrate the bound, considers the task
of tracking a vehicle. Nevertheless, state estimation as introduced in Sec. 4.1.3 plays an
important role in other applications as well, for example localisation. Hence, by studying
the CRB in Sec. 4.1.4, one is rewarded with a generic concept to draw conclusions for
different driver assistance tasks. The derivation of the CRB has been exemplified for two
different measurement models in Sec. 4.1.5 and compared to tracking filter estimates in
simulations.

One question which can be answered with the CRB is whether the accuracy of a
given sensor meets the necessary requirement to achieve a desired certainty of the state
estimates. Moreover, the expected deviation of a sub-optimal filter algorithm in contrast
to the optimal solution can be evaluated. In the context of embedded devices, slightly
less accurate estimates might be acceptable in exchange for improved run time.

Two aspects determine the difficulty in calculating the CRB. These are whether the
system model equations are linear or non-linear and whether the noise processes follow
Gaussian or non-Gaussian distributions. Closed-form expressions can be obtained for
linear systems with additive noise. Here, non-Gaussian instead of Gaussian noise can be
seamlessly included by using the inverse intrinsic accuracy instead of the covariance, as
developed in [74]. This powerful generalisation allows for straight-forward evaluation
of the best attainable performance. The optimal estimator itself is unlikely to exist in
closed form other than for special cases.

Compared to the theory of state estimation, work on the posterior CRB is a relatively
new field. The major achievement in this regard was the derivation of the recursive
formula (4.22) in [16, 188]. An open question is how the involved expectations can be
efficiently evaluated for specific models to achieve interpretable analytic results. As it
has been shown, even the extension from a Gaussian to a bi-Gaussian measurement
distribution leads to complicated integrals. Conducting further in-depth analyses for the
specific sensors and system models used in driver assistance applications could aid the
development and objective evaluation of tracking algorithms for intelligent vehicles.
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4.2 Vehicle motion models for short-term predictions

Situation analysis in traffic scenes requires making accurate predictions on the future
motion of other traffic participants, for example vehicles. Likewise, state predictions are
a crucial part of the Bayesian state estimation framework from the previous section. This
section develops statistical models of uncertainties in these predictions.

A problem definition is first formulated in Sec. 4.2.1. Following an outline of related
works in Sec. 4.2.2, the main findings are developed in six sections. These are organised
as visualised in Fig. 4.7. First, commonly employed vehicle motion models are discussed
in Sec. 4.2.3. Theoretical foundations of estimating the parameters of the statistical
models are introduced in Sec. 4.2.4 and subsequently applied to three exemplary motion
models in Sec. 4.2.5. Based on the parametrised models, an analytical propagation is
derived for the uncertainty in the absolute motion of individual vehicles in Sec. 4.2.6 and
the relative motion between them in Sec. 4.2.7.

The obtained models and analytical propagation are evaluated in Sec. 4.2.8. Especially
the validity of the proposed noise model is critically studied by comparison to the
distribution of prediction errors in a large-scale dataset of real-world trajectories. A
summary in Sec. 4.2.9 concludes this section.

Major parts of the following content have been previously published in [218, 221].

Vehicle motion models Sec. 4.2.3

Parameter identification of process noise models

Methods for estimating the pro-
cess noise covariance Sec. 4.2.4

Application to vehicle
motion models Sec. 4.2.5

Gaussian uncertainty propagation

Prediction uncertainty in
absolute motion Sec. 4.2.6

Prediction uncertainty in
relative motion Sec. 4.2.7

Evaluation Sec. 4.2.8

Figure 4.7 Outline of the main sections of Sec. 4.2.

4.2.1 Introduction

In the simplest form, trajectories are predicted individually in terms of kinematic motion
quantities, for example position, velocities, and accelerations. These are written in the
form of a state vector x (t) ∈ Rn. A prediction model that describes the time evolution of
the state is defined by a system of differential equations:

ẋ (t) = f (x (t)) , x (tk) = xk . (4.42)
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An initial value xk of the dynamic state at an initial time tk can be estimated from a
history of measurements by means of a state estimator, as introduced in the previous
Sec. 4.1. Then, the future trajectory is obtained by solving (4.42) with the initial value. In
order to make a prediction solely based on the limited information of the initial state,
the model includes certain assumptions on the future trajectories. Usually, some time
derivatives of the state are zero, that is the corresponding kinematic quantity is assumed
to remain at a constant value.

Due to an incomplete and uncertain perception of the environment, the predictions are
in general affected by uncertainty. To assess the reliability of a prediction and facilitate its
integration into a Bayesian framework, statistical models of the prediction uncertainty are
required. Besides the obvious cause of noisy sensor measurements, the future behaviour
of traffic participants is never certain. Thus, uncertainty is introduced by inaccuracies
in the assumed model (4.42) of the time evolution. Two kinds of deviations can be
differentiated [118]:

1. Manoeuvre changes: Abrupt changes in the driven manoeuvre, for example from
straight driving to turning, can occur. These may be expressed as an unknown,
deterministic input signal u (t) in ẋ (t) = f (x (t) ,u (t)).

As these changes are not included in an initial motion state x (tk) they can only be
inferred on a higher level of abstraction than the kinematic quantities, for instance
from context information or driver intention estimation.

2. Stochastic disturbances: Small perturbations occur during the same driven manoeu-
vre. For example, while driving along a straight road the vehicle’s velocity can vary
due to slopes. These deviations are modelled as a stochastic noise process w (t)

which acts additively6 on the system dynamics through an input matrix L:

ẋ (t) = f (x (t)) + Lw (t) . (4.43)

This section focusses on the second case of stochastic disturbances in kinematic motion
models. A probabilistic model of these deviations will be employed and the model
parameters will be estimated from recorded empirical data. Thereby, it is assumed here
that no manoeuvre changes occur during the considered prediction horizon. Models
with multiple modes that describe individual manoeuvres will be studied in Sec. 5.1.

Valuable insight can be obtained from models that allow closed-form solutions of
the predicted state distribution p

(
x (t)

)
. To this end, w (t) is assumed as a zero mean

Gaussian white noise process, parametrised by a constant power spectral density S:

E
[
w (t) wT (τ)

]
= Sδ (t− τ) . (4.44)

6An additive influence of the process noise is not a principal requirement for the derivations in this
section. Since this is usually the case for the physical motion models considered here and allows for
easier notation though, this assumption is made.
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The first goal, which will be approached in Sec. 4.2.4-4.2.5, is therefore to estimate S from
recorded measurement data. Secondly, the distribution of the predicted state will be
derived in Sec. 4.2.6-4.2.7.

4.2.2 Related work

Prediction models have two main applications in the driver assistance context, namely in
object tracking and situation interpretation. Hence, related works on parameter estimation
and error analysis for these models are reported in both areas. The difference is the
time-span over which a prediction is made, that is either a fraction of a second for the
system sampling time or multiple seconds for situation analysis.

For the purpose of object tracking, a number of motion models with white Gaussian
process noise are known [124]. In order to make a sensible choice, the overall accuracy of
the tracking filter results can be evaluated. This is done either in simulations [202] or
based on real-world trajectories [175].

Concerning the parametrisation of the process noise model, two approaches can be
differentiated. Firstly, the covariance can be chosen as an upper expected deviation
between the model and a true trajectory. When modelling vehicle motion, bounds can be
derived from the maximum acceleration capabilities [101, 103]. In a tracking algorithm,
such a conservative choice minimises the risk of a track loss. For long-term predictions
though, large and barely conclusive covariance predictions are a consequence because
any physically possible trajectory is enclosed.

Secondly, the noise parameters can be estimated from recorded data. To this end, the
expectation maximisation (EM) [45] will be employed in this work. This method has been
applied for system identification in many fields, for example in the robotics domain [7,
126]. Additionally, it has been proposed to use the method for an on-line adaptation of a
tracking filter in [20, 119]. However, a comprehensive account on estimating the process
noise parameters of vehicle motion models from recorded trajectories has to the best of
the author’s knowledge not been provided before.

In the field of situation assessment, a plethora of works exist on the design, parameter
inference and evaluation of models for long-term predictions [118]. For example, a
sophisticated Markovian model, which incorporates multiple semantic aspects such
as intentions and interactions, is proposed in [180]. Furthermore, a number of works,
for example [129], deal with model identification of the car-following behaviour using
naturalistic driving data. However, these models concern the interactions of a driver
with a preceding vehicle and are used for instance in microscopic traffic simulations. For
a driver assistance system, this information is usually unknown as vehicles in front of
the observed one are occluded.

The focus of this work is on uncertainty propagation in driver assistance functions
where simple, purely kinematic models are implicitly assumed. For example, algorithms
for risk assessment will be studied in Sec. 5.2 and these are often based on the con-
stant acceleration (CA) model [95]. The following section will provide an overview on
commonly employed vehicle motion models.
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4.2.3 Kinematic vehicle motion models

The scope of this section is predicting the two-dimensional motion of vehicles on the
road. To make predictions for other road users, for example cyclists or pedestrians,
other kinds of models are required which take into account the higher variability of their
motion [189].

First, continuous-time vehicle motion models are described in Sec. 4.2.3.1. Second, the
transformation to equivalent discrete-time models is explained in Sec. 4.2.3.2.

4.2.3.1 Continuous-time vehicle motion models

Following the classification in [118], the vehicle motion models considered here are
physics-based. This stands for the most simple family of models where the future
trajectory is assumed to be governed solely by physical laws. Higher levels of abstraction,
for example the intentions and goals of a driver, are not included. Thus, the models’
validity is limited to short prediction horizons of a few seconds, appropriate for example
for collision avoidance functions.

Within this class, one can differentiate between dynamic and kinematic models [118].
Dynamic models consider the forces that act on a vehicle, for example the tire-road
contact, and describe the resulting trajectory. While this view is viable for vehicle
dynamics control, these models are usually too complicated to be useful when a vehicle
is only observed with exteroceptive sensors. In this case, kinematic models are more
suitable. They describe a vehicle’s motion only in terms of kinematic quantities but
without taking the internal forces and torques into account.

Kinematic models can be furthermore differentiated by their level of complexity:

p In terms of the order of time differentials which are comprised in the state vector,
for instance velocity, acceleration, jerk etc. Considering higher derivatives leads
to more unknown state variables. At the cost of increased state estimation effort,
higher fidelity is possible.

p In terms of the dynamics: Models either assume purely translational motion or
take an additional rotation into account (curvilinear models). The advantage of the
former is their linearity, at the cost of realism. Hence, closed-form expressions for
the exact estimation and prediction of Gaussian states can be employed.

Given the possible combinations of these aspects, a number of different models is
commonly used in ADAS applications as seen in Fig. 4.8 [175]. The most general model
considered in this work is the constant turn rate and acceleration model (CTRA). Other
popular models are thereby included as special cases: If either the acceleration or the yaw
rate is assumed as zero, the constant acceleration (CA) or constant turn rate (CT) models
are obtained. In the case that both quantities are zero, one has the constant velocity (CV)
model.
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CTRA
constant turn rate
and acceleration

CT
constant
turn rate

CA
constant

acceleration

CV
constant
velocity

a = 0 ω = 0 a = 0

Figure 4.8 Relations between commonly used kinematic motion models.

The CTRA and CV models will be exemplarily studied throughout this chapter. Most
of the derivations are however performed for general non-linear systems (4.43) and are
thereby not limited to vehicle motion models.

4.2.3.2 Discrete-time vehicle motion models

The eventual goal is to estimate the power spectral density S of the process noise w (t) in
the continuous-time models from measured data. However, this measurement data is
obtained by sampling at discrete points in time. Thus, the discrete-time counterparts of
the models have to be introduced.

We assume a constant sampling time TS and denote the sampled time as tk = k · TS

and xk := x (tk). The discretised model which corresponds to (4.43) is given as [63]7

xk+1 = f (xk) + wk , wk ∼ N (0,Qk) , (4.45a)
where

Qk =

ˆ tk+1

tk

Φ (tk+1, τ) LSLTΦT (tk+1, τ) dτ , (4.45b)

Φ (t, t0) = exp

(
t

∫
t0

F (τ) dτ

)
, F (t) = ∇x(t)f (x (t)) . (4.45c)

Here, f (xk) denotes the discrete time state transition function. It can be found by solving
the differential equation (4.42) of the system in continuous time.

In general, the covariance of the process noise Qk depends on the sampling time TS, the
spectral density S and the state xk and is therefore time-variant. These dependencies will,
however, complicate the estimation of S and thus, the use of alternative discretisation
methods can be a viable option. Different approaches are discussed in [70]. One method
is to assume a discrete-time noise input wk ∼ N (0,Q) with Q = TS

−1S and modulate its
influence on the system dynamics with a state-dependent input matrix G (xk):

xk+1 = f (xk) + G (xk) wk , G (xk) =

ˆ tk+1

tk

exp (F (tk) τ) L dτ . (4.46a)

In the special case of linear dynamics ẋ (t) = Fx (t) the transition matrix Φ (t, t0) only
depends on the time difference t− t0:

Φ (t, t0) = exp (F (t− t0)) . (4.47)
7A rigorous analysis of the discretisation of continuous-time stochastic differential equations by means

of Itô calculus is presented in [133]. However, to make the presentation easier accessible, this degree of
formalism is not introduced in this work.
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Thus, Q from (4.45b) is time-invariant and does not depend on the state x (t).
Note that Q is intentionally derived by starting from a continuous-time noise process.

Alternatively, discrete-time noise inputs can be directly modelled under the assumption
of a constant amplitude and covariance between two sampling time instants [70, 124, 161].
This is a viable approach if solely the discrete-time system is considered, for example for
the design of a tracking filter. However, it is not applicable to our case since the link to
the continuous-time model (4.43) is lost.

Example 4.1 (Constant turn rate and acceleration model)
A curvilinear trajectory is modelled by taking into account rotational and trans-
lational motion with constant acceleration a and yaw rate ω. In the state vector
x =

[
x y v θ a ω

]T
, velocity and acceleration are conveniently modelled in

polar coordinates. Then, the differential equations in the form of (4.43) are given as:




ẋ (t)

ẏ (t)

v̇ (t)

θ̇ (t)

ȧ (t)

ω̇ (t)




=




v (t) cos (θ (t))

v (t) sin (θ (t))

a (t)

ω (t)

0

0




+




0 0

0 0

0 0

0 0

1 0

0 1



·
[
wa (t)

wω (t)

]
, S =

[
Sa 0

0 Sω

]
. (4.48)

Despite the model’s non-linearity, closed-form expressions for the time evolution of
the state and the process noise covariance matrix are available. The derivations and
results are further detailed in appendix A.2.

Example 4.2 (Constant velocity model)
The model describes a purely translational, non-accelerated motion in Cartesian
coordinates. This simplified view is useful when an object’s motion is modelled
without explicit knowledge of its orientation.




ẋ (t)

v̇x (t)

ẏ (t)

v̇y (t)


 =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0







x (t)

vx (t)

y (t)

vy (t)


+




0 0

1 0

0 0

0 1


 ·
[
wx (t)

wy (t)

]
, S =

[
Sx 0

0 Sy

]
. (4.49)

Due to the model’s linearity, a simple closed-form solution of the discrete-time state
transition (4.45) can be obtained




xk+1

vx,k+1

yk+1

vy,k+1


 =




1 TS 0 0

0 1 0 0

0 0 1 TS

0 0 0 1







xk
vx,k
yk
vy,k


+ wk , wk ∼ N (0,Q) (4.50a)
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with the process noise covariance Q of the discretised model according to (4.45b):

Q =




1
3
TS

3Sx
1
2
TS

2Sx 0 0
1
2
TS

2Sx TSSx 0 0

0 0 1
3
TS

3Sy
1
2
TS

2Sy
0 0 1

2
TS

2Sy TSSy


 . (4.50b)

If the state vector of the CV model is extended with Cartesian accelerations, the
constant acceleration (CA) model can be defined similarly to (4.49). Due to its
similarity to the CV model, all further derivations can be performed in the same
way and will not be discussed in detail. However, this model will be included in the
evaluation in Sec. 4.2.8 in order to compare its accuracy with the simpler constant
velocity one.

4.2.4 EM-based estimation of the process noise covariance

In this section, theoretical background on estimating the process noise parameters will
be introduced. The estimator equations are derived for general non-linear systems with
additive process noise in Sec. 4.2.4.1-4.2.4.3. A novel theoretical contribution is a closed-
form adaptation of the algorithm to a process noise covariance matrix with a Kronecker
product structure (Sec. 4.2.4.4). Such a factorisation can be found for example in the CV
and CTRA motion models from examples 4.1-4.2.

4.2.4.1 Problem formulation and approach

The preliminary goal is to estimate the covariance Q which defines the process noise
in the discretised system (4.45). Since the spectral density S of the noise process in the
corresponding continuous-time system (4.43) is of main interest though, its relation to Q

and the implication on the estimation are subsequently analysed.
Measurement data, which forms the basis for estimating Q, usually comprise a partial

and uncertain representation yk ∈ Rm of the state xk only. This is expressed by a
non-linear measurement function h (·) and additive white Gaussian noise:

yk = h (xk) + vk , vk ∼ N (0,Rk) . (4.51)

It is assumed that e = 1, . . . , Nseq independent sequences of measurements with k =

1, . . . , N samples each are available. These are denoted by Y :=
{
y

(e)
1:N

}
e=1:Nseq

.8

One assumption is that one has full knowledge of the state transition function f (·).
For the kinematic motion models, this state transition is fully derived from physical
considerations. However, when autoregressive processes with time-correlated states or

8For notational convenience, it is assumed that the measurement time-series are of equal length N .
However, this is not a restriction and the method can be similarly derived for individual lengths Ne,
e = 1, . . . , Nseq.
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coloured process noise are to be modelled, additional degrees of freedom have to be
included. In these cases, a parametric transition model for an augmented state vector
which spans multiple time steps can be constructed. In addition to the process noise
covariance, the parameters of the transition models have to be estimated. This can be
performed with the EM principle as well [130].

The stochastic system (4.45) and the measurement model (4.51) allow us to formulate
the probability density function p

(
Y
∣∣θ
)

of a time series of measurements conditional
on an unknown system parameter θ. In the case considered here, θ defines the process
noise covariance. For example, it may refer to the spectral density parameters Sx and Sy
in the process noise covariance (4.50b) of the CV model.

According to the maximum likelihood principle, maximising the likelihood p
(
Y
∣∣θ
)

yields the most likely estimate θ̂ that explains the observations. For notational conve-
nience, the log-likelihood lY (θ) := log p

(
Y
∣∣θ
)

is equivalently maximised:

θ̂ = arg max
θ

lY (θ) . (4.52)

However, for a large number of data points, a maximisation in batch form becomes
very difficult. An efficient, iterative approach is the EM-algorithm [45]. The central idea
is to reformulate the log-likelihood lY (θ) in terms of the states X :=

{
x

(e)
1:N

}
e=1:Nseq

as

lY,X (θ) = log p
(
Y ,X

∣∣θ
)
. Due to the assumption of Markovian processes, the conditional

density will factorise and thus allow an efficient maximisation of the log-likelihood.
However, the true states X are in general unknown and the complete log-likelihood is
thus unavailable.

The key idea of the EM-principle is to estimate the distribution of X from the measure-
ments Y and calculate the expected log-likelihood:

qθ̂l (θ) = E
[
log p

(
Y ,X

∣∣θ
)]

. (4.53)

To find the distribution of X , a fully parametrised system model and thus an estimate
θ̂l for θ is required. A new estimate θ̂l+1 is then obtained by maximising the expected
log-likelihood:

θ̂l+1 = arg max
θ

qθ̂l (θ) . (4.54)

Therefore, the EM-algorithm iteratively calculates the expectation in the E-Step (4.53)
and subsequently maximises qθ̂l (θ) with respect to θ in order to find a new estimate
θ̂l+1 in the M-Step (4.54). It can be shown, using Jensen’s inequality, that the sequence of
estimates θ̂l approaches the maximum likelihood estimate [45]. A possible convergence
criterion for stopping the recursions after l∗ steps is given by the difference in the
expected log-likelihood. The values from two subsequent iterations are compared to a
threshold value ∆qmin:

qθ̂l

(
θ̂l∗
)
− qθ̂l−1

(
θ̂l

) !

≤ ∆qmin . (4.55)
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One remarkable property is that both steps of the algorithm can be efficiently performed
for the (non-) linear Gaussian systems that are considered here. The algorithm’s details
will be laid out in the following, similar to the derivations found in [7, 64].

4.2.4.2 Expectation step

First, the joint log-likelihood lY,X (θ) is simplified under the assumption that the e =

1, . . . , Nseq individual sequences of measurements are independent and that the noise
sequences wk and vk are white and independent. Thus, the sequences x

(e)
1:N and y

(e)
1:N fulfil

the one-step Markov property and one can rewrite the joint probability density using
Bayes’ rule (2.8) [7]:

log p
(
Y ,X

)
=

Nseq∑

e=1

[
log p

(
y

(e)
1 ,x

(e)
1

)
+

N∑

k=2

{
log p

(
y

(e)
k

∣∣x(e)
k

)
+ log p

(
x

(e)
k

∣∣x(e)
k−1

)}
]
.

(4.56)

Since process (4.45) and measurement (4.51) models with Gaussian noise are assumed,
the conditional densities are Gaussians. Inserting them into (4.56) yields the expected
log-likelihood:

qQ̂l
(Q) = c− 1

2
Nseq (N − 1) log det (Q)− 1

2
tr
(
Q−1M

)
(4.57a)

where c is a constant that is independent of Q and M is an abbreviation for

M :=

Nseq∑

e=1

N∑

k=2

M
(e)
k , M

(e)
k := E

[(
x

(e)
k − f

(
x

(e)
k−1

))(
x

(e)
k − f

(
x

(e)
k−1

))T
]
.

(4.57b)

The essential part of the E-step is now to separately calculate M
(e)
k , k = 2, . . . , N for

each sequence of observations y
(e)
1:N [7]. In a first step, it is thus necessary to obtain an

estimate of the joint densities p
(
x

(e)
k ,x

(e)
k−1

)
, k = 2, . . . , N . Preserving Gaussianity, such

an estimate is provided by the extended Kalman smoother (EKS) through a linearisation
of the process and measurement models.

The smoother algorithm consists of the same prediction (4.14) and innovation step
(4.15) as the extended Kalman filter from Sec. 4.1.3.4. At this stage, the estimate Q̂l of
the process noise covariance is required to perform the prediction. In contrast to the
filtering problem, measurements from all time steps 1, . . . , k, . . . , N can be employed to
find an estimate of the state distribution at time k. These are included in an additional
smoothing step. Based on the results from the prediction

(
x̂

(e)
k+1|k,Σ

(e)
k+1|k

)
and innovation

step
(
x̂

(e)
k ,Σ

(e)
k

)
, the recursion of this backward pass reads for k = N − 1, . . . , 1 [166]:

x̂
(e)
k|N = x̂

(e)
k + J

(e)
k

(
x̂

(e)
k+1|N − x̂

(e)
k+1|k

)
(4.58a)

Σ
(e)
k|N = Σ

(e)
k + J

(e)
k

(
Σ

(e)
k+1|N −Σ

(e)
k+1|k

)(
J

(e)
k

)T

(4.58b)
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Σ
(e)
k+1,k|N = Σ

(e)
k+1|N

(
J

(e)
k

)T

(4.58c)

with J
(e)
k = Σ

(e)
k

(
A

(e)
k

)T (
Σ

(e)
k+1|k

)−1

, A
(e)
k = ∇xk

f (xk)|xk=x̂
(e)
k

. (4.58d)

The backward pass is initialised with the last estimate
(
x̂

(e)
N ,Σ

(e)
N

)
of the forward pass.

Subsequently, the expectation in (4.57b) can be calculated with the obtained joint
densities p

(
x

(e)
k ,x

(e)
k−1

)
. To this end, the state transition function f (xk) is linearised around

the smoothed state estimate [7]:9

M
(e)
k ≈ E

[(
x

(e)
k−1 − f

(
x̂

(e)
k−1|N

)
−A

(e)
k−1

(
x

(e)
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(e)
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f (xk)|xk=x̂
(e)
k|N

. (4.59)

Discretised systems according to (4.46), where the process noise is additionally modu-
lated by an input matrix G (xk), are treated in [7]. The eventual result is an extension of
(4.57b) that involves the Moore-Penrose inverse (·)†:

M =

Nseq∑

e=1

N∑

k=2

(
G
(
x̂

(e)
k−1|N

))†
M

(e)
k

(
GT

(
x̂

(e)
k−1|N

))†

where G† :=
(
GTG

)−1

GT .

(4.60)

The subsequent steps of the algorithm do not rely on having an analytical expression
for M and alternatively, numerical integration as in [172] can be used to calculate the
expectation. However, since the calculation has to be repeated for each time step of each
measurement sequence in each iteration, the computational burden quickly becomes
very high.

4.2.4.3 Maximisation step

The objective is now to maximise the scalar expected log-likelihood qQ̂l
(Q) from (4.57a)

with respect to Q. Employing the identities for matrix differentials from Sec. A.1, it
follows that:

∂

∂Q
qQ̂l

(Q) = −1

2
Nseq (N − 1) Q−1 +

1

2
Q−1MTQ−1 . (4.61)

Solving for Q so that all partial derivatives become zero, one obtains a closed-form result
of the maximisation [7]:

Q̂l+1 =
1

Nseq (N − 1)
MT . (4.62)

9The shorthand notation xA (·)T := xAxT is introduced for vectors x and matrices A of appropriate
dimensions.
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With this new covariance estimate, a further iteration of the expectation step can be
started, that is the execution of the Kalman smoother and the subsequent expectation.

So far, the full covariance matrix Q has been estimated. A more general case is to
assume a functional relationship Q (θ) to an unknown, nθ-dimensional parameter θ.
While the expectation step remains identical, finding the estimate θ̂l+1 has a different
solution. Instead of (4.61) the differentiation is now performed with respect to the
elements of θ. Thereby, the chain rule can be applied [131]:

∂

∂θj
qθ̂l (θ) = tr

((
∂

∂Q
qQ̂l

(Q)

)T
∂Q (θ)

∂θj

)
, j = 1, . . . , nθ . (4.63)

The previous result (4.61) appears within the j = 1, . . . , nθ equations and it depends on
the functional relation Q (θ), how these can be solved for θ. One frequent case is that Q

is defined by a Kronecker product between a known and unknown matrix. This will be
further elaborated in the following.

4.2.4.4 Covariance matrix with Kronecker product structure

The process noise covariance of the motion models from Sec. 4.2.3 can be decomposed
as a Kronecker product Q (S) = S⊗Q1. Here, Q1 ∈ RnQ×nQ is a known constant matrix
and S is the unknown nS ×nS-dimensional spectral density. For example, the covariance
of the discretised constant velocity model (4.50b) can be written as:

Q =
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. (4.64)

Exploiting that Q is partly known in order to solely estimate the lower-dimensional S

has to the best of the author’s knowledge not been exemplified for the EM-algorithm.
Related derivations exist though for covariance estimation of independent and identically
distributed random samples, for example in [128, 198]. Independently distributed states
are a special case of the Markovian processes which are studied here.

It will be shown in the following, how the decomposition (4.64) can be incorporated
into the maximisation step from the previous Sec. 4.2.4.3. Instead of individually calcu-
lating the partial derivatives (4.63) and solving for the entries of S, a simple closed-form
solution similar to (4.62) will be derived with the help of matrix differentials.

First, (4.64) is inserted into (4.57a) and the expected log-likelihood qŜl (S) is obtained:

qŜl (S) = −1

2
Nseq (N − 1) log det (S⊗Q1)− 1

2
tr
(
(S⊗Q1)−1 M

)
. (4.65)

In order to find the derivative with respect to S, a reformulation is introduced. This
is done using an abbreviation for the inverse of Q1, namely Q̃ := Q−1

1 . Moreover, an
nS×nS matrix M̃(j,i) is introduced whose elements are taken from M at a regular pattern:

M̃(j,i) =
[
Mj+(u−1)nQ, i+(v−1)nQ

]
u=1,...,nS
v=1,...,nS

. (4.66)
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As is shown in the appendix in Sec. A.3, it holds that

tr
(
(S⊗Q1)−1 M

)
=

nQ∑

i=1

nQ∑

j=1

Q̃ij tr
(
S−1M̃(j,i)

)
. (4.67)

Second, (4.67) is inserted into (4.65) and the derivative is obtained with the identities
from Sec. A.1:

∂

∂S
qŜl (S) = −1

2
Nseq (N − 1)nQS−1 − 1

2
S−1

( nQ∑

i=1

nQ∑

j=1

Q̃ijM̃
(j,i)

)T

S−1 . (4.68)

This derivative has a similar form as (4.61) and thus, the desired estimate Ŝl+1 at which
the derivatives vanish, is readily available:

Ŝl+1 =
1

Nseq (N − 1)nQ

( nQ∑

i=1

nQ∑

j=1

Q̃ijM̃
(j,i)

)T

. (4.69)

In summary, if the process noise covariance can be parametrised as a Kronecker product
with one known factor, a simple closed-form solution is available. This result (4.69)
has a similar form as the estimate of the unstructured covariance in (4.62). The central
difference is that one has to employ the sum over the matrices M̃(j,i) from (4.66), weighted
with the known entries of Q−1

1 , instead of M.

4.2.5 Application to kinematic vehicle motion models

Having introduced the theoretical background, the estimation is carried out on vehicle
trajectory data measured by a range sensing laser scanner. Applying the EM-algorithm
to large datasets may become computationally and numerically challenging. These
aspects are firstly discussed in Sec. 4.2.5.1 and advice for practitioners on commonly
experienced issues is compiled. Details on the employed dataset and pre-processing steps
are subsequently explained in Sec. 4.2.5.2. The estimation results are then summarised in
Sec. 4.2.5.3.

4.2.5.1 Implementation of the EM-algorithm

Two aspects relevant for the implementation of the EM-algorithm will be briefly dis-
cussed. Firstly, each iteration of the E-Step includes a Kalman smoother run and hence
computationally expensive matrix inversions. It is proposed in [130] to parallelise the
E-Step and thus calculate M

(e)
k in (4.57b) independently for each sequence e. Another

suggestion leverages that for linear, time-invariant systems, the gain and covariance ma-
trices converge to stationary values. These can therefore be pre-computed by numerically
solving an algebraic Riccati equation [130].



4.2 Vehicle motion models for short-term predictions 95

An alternative approach to increase the computational speed is to choose a different
update rule in the M-Step with a better rate of convergence and thus reduce the number
of iterations. For example, a Newton-type scheme can be applied where the Hessian of
the expected log-likelihood is used to direct the next estimate [67].

Secondly, numerical robustness is concerned. Due to the iterative nature of the algo-
rithm, round-off errors may accumulate. This can lead to negative definite estimates of a
covariance matrix and divergence of the algorithm [64]. The numerical properties may
be improved as follows:

p E-Step: Robust implementations of the Kalman smoother equations such as the
square root form [64] can be used. Thus, it is ensured that the estimated Σ

(e)
k|N are

always positive definite.

p M-Step: The estimate of Q in (4.62) is based on the matrix M. For notational
convenience, the calculation of the individual M

(e)
k in (4.59) is often explicitly

written as additions and subtractions of matrices, for instance in [126, 130]. In
order to avoid a potential loss of positivity due to round-off errors, the work [64]
proposes an implementation based on Cholesky factorisations instead. Denote

Σ̃Σ̃T = chol

([
Σ

(e)
k−1|N Σ

(e)T
k,k−1|N

Σ
(e)
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])
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[
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k−1 In×n

]
Σ̃T (4.70)

so that
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(4.71)

is always positive definite.

4.2.5.2 Dataset and pre-processing

For the professed goal to determine the deviation between predictive models and
recorded trajectories, two approaches to acquire the necessary data can be followed.

The first is to equip the ego-vehicle with recording devices that capture the required
CAN-signals. Advantages of this method are the low efforts concerning measuring
instruments and the generation of precise data. The drawback is a lack of diversity in
vehicles and driving styles as only one car and driver is recorded at a time.

Therefore, a second approach was favoured. Both the CAN-data of the ego-vehicle
and the positions of objects in the vehicle’s environment are measured. Hence, varia-
tions caused by different driving styles and vehicles are included in the dataset, which
comprises ≈ 170 h of raw recordings.10 For the detection of the surrounding objects, the
ego-vehicle was additionally provided with a laser scanner. The 2-D Cartesian position
yk of an object that is measured by this sensor can be described by a linear mapping

10The focus of later analyses in this work is on emergency brake systems based on a stereo vision sensor
for accident prevention in urban scenarios. Therefore, only those parts of the raw recordings where the
ego-vehicle maintains a speed of less than 70 km/h are considered in the following.
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h (xk) = Cxk of the motion state xk. However, several preprocessing steps have to be
performed on the exteroceptive measurements, which were developed in the supervised
bachelor thesis [225] and are explained in the following paragraphs.

Filtering Detections which do not represent road users, like traffic signs or pedestrians,
have to be filtered out of the measured objects. Employing the results of a classifier
built-in the laser scanner, all recordings apart from cars, trucks and motorcycles are
sorted out.

Transformation to ground-fixed coordinates Using the recorded CAN-data for ve-
locity, acceleration and yaw rate, the trajectories of the ego-vehicle in a ground-fixed
coordinate system can be calculated. Based on these, the trajectories of the remaining
objects can be determined from the relative ranges between host and detected vehicles,
which are measured by the laser scanner.

Classification of road user types In the next processing step, vehicles are categorised
into those driving on the same lane, in the same direction and parked or oncoming
vehicles. For the sake of data precision, only preceding vehicles on the same lane are
considered in this work. The motivation is that the subsequent manoeuvre classification
task can be based on the ego-vehicle CAN-data, because both the preceding vehicle and
the following ego-vehicle drive along the same route but at different times.

Classification of manoeuvres For the purpose of evaluating the stochastic variations
which occur during the same driven manoeuvre, the recorded trajectories are analysed
for certain frequently occurring manoeuvres (straight driving, curves or turning). After-
wards, the recordings are split at the transitions between the manoeuvres. The reason
for this is that manoeuvre changes severely violate the kinematic models’ underlying
assumptions. Hence, without further information about the driver’s intention, any of the
considered models will fail to correctly predict a future change which is not indicated in
the current state.

Distribution into sequences The trajectories, which do now represent one manoeuvre
type throughout, are grouped in a final processing step. Thus, three datasets which
contain episodes of straight driving, curves and turns are obtained. Fig. 4.9 visualises
the duration and velocity distribution of the straight driving and curved trajectory
recordings.

4.2.5.3 Estimation results

At first, the two datasets for straight driving and curved trajectories are separated into a
randomly chosen part (50%) for parameter estimation as well as the remaining 50% for
evaluation purposes.
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(a) Straight driving episodes.

0 20 40 60 80
0

10

20

vx [km/h]

t s
eq

[s
]

Nseq = 1559

0

20

40

A
bs

ol
ut

e
fr

eq
ue

nc
y

(b) Curves.

Figure 4.9 Visualisation of the mean absolute velocity and duration of detected manoeu-
vres in the datasets.

The trajectories in these disjoint sets have a non-uniform length, as visualised in
Fig. 4.9. In a next step, they are cut in sequences of uniform length. The objective is
to limit the influence of deterministic driver inputs, for example accelerations, to the
short prediction time horizon that is to be captured by the probabilistic model. Thus,
a sequence duration of 5 s is chosen for straight trajectories and 4 s for curves for the
parameter estimation.11

Overall, Nest,straight = 9576 and Nest,curves = 1205 sequences are available for estimating
the process noise parameters. This is performed for three different motion models, that
are the CV and CA as well as the CTRA model from Sec. 4.2.3. For the first two, the
covariance matrix has a Kronecker product form and the estimation is performed as
proposed in Sec. 4.2.4.4. The discretisation of the non-linear CTRA model is detailed in
Sec. A.2.

The EM algorithm is parametrised with randomly12 chosen initial covariances Ŝ0 and
a threshold of ∆qmin = 1× 10−7 on the likelihood difference between two iterations. A
maximum number of 1× 103 iterations is employed as an additional stop criterion.

In order to analyse the algorithm’s convergence behaviour with respect to the initial
values and how well the estimates generalise, the estimation is carried out not once but
multiple times for different portions of the dataset. For each run, a portion of 20% is
sampled from all sequences in the estimation dataset. This corresponds to approximately
17 h of raw driving data. The obtained estimates are visualised in Fig. 4.10 and Fig. 4.11
over the number of iterations. Moreover, the median values over all runs per model are
given in Tab. 4.2(a).

11Given that a prediction horizon of up to 3 s is analysed, this would be a natural choice for the sequence
length in the estimation as well. However, slightly higher values are chosen here in order to provide a
sufficient amount of data to the estimator.

12Distributed uniformly within a range of 0 . . . 200% of a tentative estimate.
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Firstly, despite the different datasets and initial values, the estimated process noise
parameters converge to similar final values in most cases. This indicates that the chosen
size of the data samples, that is 20% of the entire estimation dataset, is sufficiently
high. Furthermore, the independence from the initial value choice suggests a robust
convergence behaviour of the algorithm.

Secondly, different results for the straight and curved trajectory samples can be ob-
served. Unsurprisingly, the process noise power Sy in lateral direction for the CV and
CA models in curves takes on higher values than the longitudinal value Sx. Since these
models only consider translational motion, the predictions are affected by high uncer-
tainty when the vehicle is in fact performing a combined translational and rotational
movement. The yaw rate component of the process noise Sω for the CTRA model shows
increased values compared to the case of straight trajectories as well. This suggests
a higher variability of the steering input than in straight driving. A further potential
cause is that the model assumption of a constant yaw rate is systematically violated for
predictions that extend beyond a curve with finite length.

Thirdly, it can be noticed that for straight trajectories, both CA and CTRA model
feature similar values for the longitudinal noise component Sx or Sa, respectively. This
is expected since for a purely translational motion, the CTRA model reduces to the CA
model. Thereby, the different variants of the EM algorithm which are employed for the
two models lead to consistent results.

In conclusion, initial confidence in the estimation results is gained from their coherence
and consistency to expectations. Nonetheless, a comprehensive evaluation on an inde-
pendent validation dataset is necessary in order to draw meaningful conclusions. To this
end, the second part of the dataset, which has not been used in the parameter estimation,
is employed. Trajectory predictions are calculated with the parametrised models and
compared to the true future course which will be detailed in Sec. 4.2.8.2. Previously
though, theoretical foundations for obtaining the probabilistic trajectory predictions will
be introduced in the following Sec. 4.2.6.

4.2.6 Gaussian prediction uncertainty in absolute motion

It is now assumed that a parametrised model of the form (4.43) with a known process
noise power spectral density S is available. Given an initial state estimate x (tk) ∼
N (x̂ (tk) ,Σx (tk)), the goal is to obtain a Gaussian model N (x̂ (tk + T ) ,Σx (tk + T )) of
the state prediction x (tk + T ) at a future time instance tk+T . To this end, the foundations
of uncertainty propagation in non-linear and linear dynamic systems are reviewed.

First of all, uncertainty propagation can be performed directly for the continuous-time
model or iteratively for a discretised variant from Sec. 4.2.3.2 [90, 114]. The second
method is identical to the prediction step (4.4) of a Bayes filter and its formalism possibly
more familiar. However, this can introduce discretisation errors if the prediction horizon
is not aligned with the chosen sample time. To circumvent such potential issues, this
section concentrates on the treatment in continuous time.
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Figure 4.10 Straight trajectories: Estimation results of the process noise power spectral
density for (a) the CV model, (b) the CA model and (c) the CTRA model. The graphs
show the convergence of the iterative EM algorithm for 10 randomly drawn subsamples
of the entire training data (solid) and the median estimates (dashed)
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Figure 4.11 Curved trajectories: Estimation results of the process noise power spectral
density for (a) the CV model, (b) the CA model and (c) the CTRA model. The graphs
show the convergence of the iterative EM algorithm for 10 randomly drawn subsamples
of the entire training data (solid) and the median estimates (dashed).
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Table 4.2 Estimated process noise power spectral density.

(a) Straight trajectories.

Model Parameter estimates

CV Sx = 0.375 m2/s4s−1

Sy = 0.293 m2/s4s−1

CA
Sx = 0.261 m2/s6s−1

Sy = 0.337 m2/s6s−1

CTRA
Sa = 0.224 m2/s6s−1

Sω = 0.0038 rad2/s4s−1

(b) Curves.

Model Parameter estimates

CV
Sx = 0.576 m2/s4s−1

Sy = 1.476 m2/s4s−1

CA
Sx = 0.437 m2/s6s−1

Sy = 2.022 m2/s3s−1

CTRA
Sa = 0.280 m2/s6s−1

Sω = 0.020 rad2/s4s−1

For linear Gaussian models, an exact propagation in closed form is possible [63].
However, the state prediction density in motion models with non-linear dynamics, for
example those including rotations, is non-Gaussian. As has been motivated in Sec. 2.2,
a linearisation-based approximation [107] will be used due to consistency of notation.
More accurate predictions can be achieved with non-Gaussian models, for example
Gaussian mixture distributions [71].

The linearisation-based covariance propagation is given by [63]:

Σx (tk + T ) = Φ (tk + T, tk) Σx (tk) ΦT (tk + T, tk) + Q (tk + T, tk) , (4.72a)
where

Q (t, t0) =

ˆ t

t0

Φ (t, τ) LSLTΦT (t, τ) dτ, (4.72b)

Φ (t, t0) = exp

(
t

∫
t0

F (τ) dτ

)
, F (t) = ∇x(t)f (x (t)) . (4.72c)

Furthermore, the mean state x̂ (tk + T ) has to be calculated by solving the non-linear
differential equation (4.42) with x̂ (tk) as the initial state.

It may be impossible to find closed-form expressions for the transition matrix Φ (t, t0)

and the integral (4.72b) in general. Fortunately, the non-linear CTRA model makes a
remarkable exception. One key insight is that while the matrix exponential in (4.72c) can
always be approximated by breaking the series expansion at a certain order

Φ (t, t0) = In×n +

ˆ t

t0

F (τ) dτ +
1

2

[ˆ t

t0

F (τ) dτ

]2

+ . . . , (4.73)

all terms of order n and beyond vanish for the case where F (τ) is an n× n strict upper
diagonal matrix [107].
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Example 4.3 (Constant turn rate and acceleration model)
The Jacobian of the model from (4.48) is obtained as a strict upper diagonal matrix.
Thus, a closed-form expression for Φ (t, t0) can be obtained according to (4.73). Sub-
sequently, (4.72b) can be solved in closed form to obtain Q (tk + T, T ) which finally
yields an analytical expression for the predicted state uncertainty Σx (tk + T ). Further
details on this result are provided in the appendix in Sec. A.2.

In the special case of linear dynamics, the propagation to a Gaussian is exact. Since the
Jacobian of a linear model with f (x (t)) = Fx (t) is constant, the transition matrix (4.72c)
only depends on the time difference t − t0 as in (4.47). This will be illustrated for the
constant velocity model in the following.

Example 4.4 (Constant velocity model)
This model has been defined in (4.49). Again, F is a strict upper diagonal matrix13

and one obtains Φ (t, t0) = I4×4 + F (t− t0). It follows for the mean and covariance of
the state prediction from (4.72):

x̂ (tk + T ) = (I4×4 + FT ) x (tk) (4.74a)

Σx (tk + T ) = (I4×4 + FT ) Σx (tk) (I4×4 + FT )T + LSLTT

+
1

2

(
FLSLT + LSLTFT

)
T 2 +

1

3
FLSLTFTT 3 .

(4.74b)

4.2.7 Gaussian prediction uncertainty in relative motion

In the previous section, uncertainty propagation has been considered for motion models
in a ground-fixed coordinate system. In the case of a moving ego-vehicle, object trajecto-
ries can also be described in a Cartesian coordinate system that is centred and aligned to
the pose of the ego-vehicle. An exemplary visualisation of the two coordinate systems is
shown in Fig. 4.12. In the following, a Gaussian model of the state prediction density in
these relative coordinates will be derived.

Using relative coordinates is beneficial for tracking and situation interpretation. One
reason is that position measurements from exteroceptive sensors are naturally obtained
relative to the ego-vehicle. Thus, with a motion model defined in relative coordinates,
further transformations of the measurements are avoided [3]. A second advantage is that
relations between the ego-vehicle and an object can be represented in an algebraically
concise form. For example, a collision with a geometrically extended object is defined as
an overlap with the ego-vehicle’s contour. In relative coordinates, this equals that the

13Here, F is in fact 4× 4-dimensional, but since the x and y components of the state are not coupled, the
dynamics could be written as two independent systems with a 2× 2-dimensional system matrix each.
This explains why already the second order term of the series expansion vanishes.



102 4 Modelling of algorithms for state estimation and prediction

x

y

xo (t)

xe (t)

xy

x
(t

)
Figure 4.12 Illustration of ground-fixed coordinates (black) and the relative coordinate

system of the moving ego-vehicle (green).

object position is located within an environment around the origin. Such an approach
will be employed in Sec. 5.2 where algorithms for risk assessment are studied.

The notation used throughout this section is as follows: The dynamic states xe (t) of the
ego-vehicle and the object xo (t) comprise Cartesian location and velocity components14,
that is x (t) =

[
x (t) y (t) vx (t) vy (t)

]
. Moreover, it is assumed that the ego-vehicle’s

motion may contain rotations, where the heading angle is described by θe (t) and yaw
rate by ωe (t).

The transformation from ground-fixed Cartesian coordinates to a coordinate system
relative to the ego-vehicle reads [3]:

x (t) := M (θe (t) , ωe (t)) (xo (t)− xe (t)) , (4.75a)

where

M (θe (t) , ωe (t)) =

[
R (θe (t)) 0

Ṙ (θe (t) , ωe (t)) R (θe (t))

]
(4.75b)

and R (θ) defines a rotation matrix and Ṙ (θ, ω) its time derivative:

R (θ) =

[
cos (θ) sin (θ)

− sin (θ) cos (θ)

]
, Ṙ (θ, ω) =

[
−ω sin (θ) ω cos (θ)

−ω cos (θ) −ω sin (θ)

]
. (4.75c)

It will be outlined in the following that there are two principal ways to obtain a Gaussian
representation of the state prediction density in relative coordinates: One, where the
differential equations of the relative dynamics are derived first and the uncertainty is
propagated for this model as described in Sec. 4.2.6. As it will be shown in Sec. 4.2.7.1,
this approach can lead to very difficult expressions, depending on the assumed models
for ego-vehicle and object motion. The second novel method, which is developed in
Sec. 4.2.7.2, first propagates the uncertainty individually in absolute coordinates and

14The arrangement of the location and velocity components in the state vector, which is chosen here, leads
to compact expressions since the rotation can be expressed with block matrices. All findings can be
derived in a similar manner if higher moments of the motion, for example accelerations, are included.
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then transforms the two distributions to relative coordinates. Since the motion models
are treated independently, this approach is generic with respect to the employed models.

4.2.7.1 Uncertainty propagation via relative dynamics

The first approach is based on the differential equations of the relative motion state x (t).
These follow from the dynamic equations of the two involved absolute motion models

ẋe (t) = f e (xe (t)) + Lewe (t) , ẋo (t) = fo (xo (t)) + Lowo (t) (4.76)

and the transformation (4.75).
To derive the relative dynamics, the evolution of the ego-vehicle state xe (t) and θe (t),

ωe (t) has to be obtained first. Therefore, the transformation matrix only depends on the
time M (t) := M (θe (t) , ωe (t)). Then, the following time-variant differential equations
describe the dynamics of x (t) [3]:

ẋ (t) = Ṁ (t) M−1 (t) x (t) + M (t)

·
[
fo
(
M−1 (t) x (t) + xe (t)

)
+ Lowo (t)− f e (xe (t))− Lewe (t)

]
.

(4.77)

Obviously, solving these equations to obtain the uncertainty propagation may become
very difficult. In special cases though, an intuitive solution can be obtained.

Example 4.5 (Linear translational models)
We assume that both ego-vehicle and object move according to the same purely
translational motion, for example the constant velocity model (4.49) from example 4.2.
Instead of (4.76), one has

ẋe (t) = Fxe (t) + Lwe (t) , ẋo (t) = Fxo (t) + Lwo (t) (4.78)

and θe (t) = 0, ωe (t) = 0. This choice yields for the relative dynamics (4.77):

ẋ (t) = F (x (t) + xe (t)) + Lwo (t)− Fxe (t)− Lwe (t)

= Fx (t) + L (wo (t)−we (t)) . (4.79)

The relative state x adheres to the same differential equations as the absolute motion
state but with the process noise added up. A closed-form solution for the Gaussian
state prediction density N (x (tk + T ) ; x̂ (tk + T ) ,Σx (tk + T )) is therefore available.

4.2.7.2 Uncertainty propagation via absolute dynamics

To overcome the challenges that are caused by the relative motion dynamics (4.77),
it is proposed to separately propagate uncertainties in absolute coordinates with the
methods from Sec. 4.2.6 first and subsequently transform the resulting covariances
Σe

x (tk + T ) ,Σo
x (tk + T ) to Σx (tk + T ) in the relative frame through (4.75).
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If M (θe (tk + T ) , ωe (tk + T )) is known exactly, the transformation reads:

Σx (tk + T ) = M (θe (tk + T ) , ωe (tk + T )) · (Σo
x (tk + T ) + Σe

x (tk + T ))

·MT (θe (tk + T ) , ωe (tk + T )) .
(4.80)

In practice, the heading angle and yaw rate of the ego-vehicle are subject to uncertainty as
well. Therefore, the transformation matrix M (θe (tk + T ) , ωe (tk + T )) has to be consid-
ered as a random variable. Since x (tk + T ) is thus given by a product of two Gaussians,
its distribution is in general non-Gaussian. The idea of the proposed approach is to
firstly write these products as quadratic forms of a Gaussian random variable. Secondly,
closed-form results that are available for the moments of such quadratic forms yield a
Gaussian approximation.

To this end, the ith row mT
i (θe, ωe) of M (θe, ωe) is firstly rewritten as a linear mapping

mi (θ
e, ωe) =

(
∇qmi

)
· q (θe, ωe), where

q (θe, ωe) :=
[
cos (θe) sin (θe) ωe cos (θe) ωe sin (θe)

]T
(4.81)

are the trigonometric expressions which (4.75b) consists of.
Moreover, an abbreviation for the relative motion state prior to rotation into the

ego-vehicle’s coordinate system is introduced as ξ := xo − xe with ξ ∼ N
(
ξ̂,Σξ

)
and

Σξ := Σo
x + Σe

x. Hence, the ith component of x can be written equivalently to (4.75) as:

xi =
1

2

[
ξT qT (θe, ωe)

]
[

04×4

(
∇qmi

)
(
∇qmi

)T
04×4

] [
ξ

q (θe, ωe)

]
. (4.82)

Now, a result on the moments of quadratic forms can be employed. That is, if two
quadratic forms yTAiy and yTAjy are defined for a multivariate normal random variable
y ∼ N

(
µy,Σy

)
, it holds for the cross-covariance [134]:

cov
(
yTAiy,y

TAjy
)

= 2 tr
(
AiΣyAjΣy

)
+ 4µT

y AiΣyAjµy . (4.83)

With this general result, the covariance matrix Σx =
[
cov

(
xi, xj

)]
i,j

can be obtained
element-wise:

cov
(
xi, xj

)
=

1

2
tr

([(
∇qmi

)
Σq

(
∇qmj

)T
Σξ 04×4

04×4

(
∇qmi

)T
Σξ

(
∇qmj

)
Σq

])

+
[
E
[
mT

i (θe, ωe)
]
ξ̂T
] [ Σξ 04×4

04×4

(
∇qmi

)
Σq

(
∇qmj

)T

] [
E [mi (θ

e, ωe)]

ξ̂

]
.

(4.84)

Note that q (θe, ωe) is given by a non-linear transformation (4.81) of the Gaussian head-
ing angle and yaw rate. We assume that θ :=

[
θe ωe

]
is distributed according to

θ ∼ N
(
θ̂,Σθ

)
. Then, the covariance of q (θe, ωe) is given by Σq = (∇θq) Σθ (∇θq)T.

Furthermore, the expectation of M (θe, ωe) to first order is E [mi (θ
e, ωe)] = mi

(
θ̂e, ω̂e

)
.



4.2 Vehicle motion models for short-term predictions 105

Now, since ∇qmi∇θq (θe, ωe) = ∇θmi (θ
e, ωe), one obtains a simplification of the

intermediate result (4.84) without the auxiliary variable q:

cov
(
xi, xj

)
= mT

i

(
θ̂e, ω̂e

)
Σξmj

(
θ̂e, ω̂e

)
+ tr

(
Σmi,mj

Σξ

)
+ ξ̂TΣmi,mj

ξ̂ (4.85a)

with Σmi,mj
= (∇θmi) Σθ (∇θmi)

T . (4.85b)

When comparing this result to (4.80), it can be recognised that the first term in (4.85a)
equals the covariance in the case of certain θ. The additional term ξ̂TΣmi,mj

ξ̂ depends
on the difference ξ̂ between the two motion states. Thereby, higher distances increase the
uncertainty due to the uncertain heading angle. The effect of this additional uncertainty
will be illustrated with a simulation example in the next section.

4.2.8 Evaluation

This section presents a twofold evaluation of the previously detailed uncertainty models
of vehicle motion predictions. At first, the analytical propagation of the state uncertainty
from Sec. 4.2.6 and the transformation to relative dynamics from Sec. 4.2.7 are addressed
in simulations. All model parameters are pre-defined and solely the uncertainty trans-
formation is analysed. Secondly, trajectory recordings from real traffic situations are
used to evaluate the process noise models which have been estimated according to
Sec. 4.2.4-4.2.5. Thus, both the parameter estimates as well as the applicability of the
Gaussian white noise assumption are evaluated.

4.2.8.1 Simulations

All simulations are based on the configuration shown in Fig. 4.13. The ego-vehicle is
moving in the x-direction according to the CTRA model (4.48), towards an object which
is crossing into the driving corridor (CV model (4.49)). It is assumed that the driver has
anticipated the situation and performs an evasive steering manoeuvre. Initial values and
the process noise parameters are given in Tab. 4.3.

Firstly,Nsim = 1× 102 trajectory predictions of the ego-vehicle and object are calculated.
The analytical propagation from Sec. 4.2.6 is obtained using the respective models and
visualised in the form of 90% credibility ellipses. Evaluated at six different time steps,
the results in Fig. 4.14 show good correspondence.

Secondly, the resulting relative trajectories as seen from the ego-vehicle are visualised
in Fig. 4.15. The propagation model from Sec. 4.2.7 is shown without (4.80) and with
(4.85) taking the uncertainty in the rotation angle into account. Neglecting the heading
errors causes too narrow credibility ellipses, most notable at far distances. In these cases,
even small angle errors lead to high lateral deviations.

Besides this first qualitative evaluation, the accuracy of the analytical prediction is
quantitatively assessed. To this end, Nsim = 1× 104 trajectories x(i) (tk + T ) are simulated.
The relative frequency of trajectories that lie within a finite region Xα of the state space
at each time step is compared to the models’ predictions of this probability.
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Figure 4.13 Illustration of the simulation setup.
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Figure 4.14 Absolute positions. Nsim = 1× 102 trajectories are generated with randomly
sampled initial values and process noise realisations. The state distribution at specific
time-steps is visualised by dots. For the analytical uncertainty propagation from Sec. 4.2.6,
solid lines are used to indicate the mean trajectory and 90% quantiles.
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Table 4.3 Parameter values for the simulation of state prediction uncertainty.

Variable Value

Eg
o-

ve
hi

cl
e Initial state

mean x̂e (tk) =
[
0 m 0 m 13.89 m/s 20◦ 1 m/s2 −0.0524 rad/s

]T

Initial state
covariance

Σe
x (tk) = diag

(
0.01 m2, 0.01 m2, 0.0025 m2/s2, 0, 0.01 m2/s4, 0

)

Process
noise Se

a = 0.224 m2/s6s−1 , Se
ω = 0.0038 rad2/s4s−1

O
bj

ec
t Initial state

mean x̂o (tk) =
[
80 m −5.75 m 0 m/s 1 m/s

]T

Initial state
covariance

Σo
x (tk) = diag

(
0.25 m2, 0.25 m2, 0.0625 m2/s2, 0.0625 m2/s2

)

Process
noise So

x = 0.375 m2/s4s−1 , So
y = 0.293 m2/s4s−1

The finite region in which the model’s coverage Pα := P
(
x ∈ Xα

)
is evaluated is

defined by a hyperellipse around the predicted mean x̂:

Xα := {x| (x− x̂) ·Σ−1
x · (x− x̂)T ≤ Q

χ
2
n

(α) } . (4.86)

Here, Q
χ

2
n

(α) refers to the quantile of a χ2 distribution with n degrees of freedom
where n is the dimension of the state x. Under the Gaussian model assumption, the
hyperellipse (4.86) encompasses a probability of Pα = α. Since the model predictions
(x̂ (tk + T ) ,Σx (tk + T )) depend on the prediction horizon T , these ellipses are functions
of T .

For each T , the proportion of all simulated trajectories that fall into the respective
hyperellipse Xα (T ) are calculated. This relative frequency Pα is shown in comparison to
the ideal outcome in Fig. 4.16.

It can be recognised that only the linear CV model yields consistent results over the
entire prediction horizon. This is not surprising since the Gaussian state propagation
for the non-linear CTRA model is only an approximation. In this case, an acceptable
accuracy until approximately T = 2 s is achieved but the deviations increase for higher
prediction times. Note that the baseline model in relative coordinates (4.85) leads to
strong underestimations. This has been previously seen from the too narrow ellipses in
Fig. 4.15.

4.2.8.2 Prediction error distribution in real traffic

Introduction In the previous section, the analytical propagation of an initial state distri-
bution to a future predicted time is studied in simulations for a known parametrisation
of the models. Now, the goal is to evaluate the estimated process noise models from
Sec. 4.2.4 for the CV, CA and CTRA model using real-world vehicle trajectories.

Essentially, the approach is to predict both the mean trajectory and covariance and
compare these to the true trajectory. In contrast to previous analyses, for example [175],
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not only the deviations of the mean state but also the error distribution compared to
the predicted covariance are evaluated. The rationale is that while prediction errors are
inevitable with any model, knowing that these follow a given uncertainty model is of
great value for example for further decision making. Eventually, this comparison tries to
answer the questions whether

1. the assumed uncertainty model (4.43) with white Gaussian process noise is reason-
able and

2. the estimated model parameters generalise to other trajectories than the ones used
for estimation.

Method To evaluate the predictions, vehicle trajectories are taken from the dataset
as described in Sec. 4.2.5.2. The length of an individual sequence is 6 s for straight
trajectories where the first 3 s are used to estimate the initial state and the remaining
3 s to evaluate the actual prediction model. Similarly, curved trajectories with a total
duration of 4 s are split evenly for predictions of up 2 s.

The data comprises 50% of the entire raw recordings or Neval,straight = 8189 and
Neval,curves = 1125 sequences. Model estimation and validation are therefore conducted
on two disjoint datasets. Approaches that divide the entire dataset in multiple rounds,
for example k-fold cross-validation, are not applied due to the already vast amount of
available data. Moreover, qualitative comparisons of the distributions can be performed
without the need to aggregate the results from multiple rounds.

In order to calculate predictions with the three models, initial state values are required.
Henceforth, an extended Kalman filter is applied to the first half of each trajectory and
estimates (x̂ (tk) ,Σx (tk)) are obtained. The actual predictions x̂ (tk + T ) and Σx (tk + T )

are then calculated using (4.72) for the subsequent T = 0 . . . 3 s for straight and T =

0 . . . 2 s for curved trajectories.
Reference values for comparison are obtained by applying an extended Kalman

smoother to the entire sequences. The prediction error is then given by the differ-
ence of the predicted state variables to this reference trajectory. For straight trajectories,
the longitudinal motion is of main interest. Therefore, the differences in position and
velocity are projected on the reference trajectory and the longitudinal components ∆x (T )

and ∆vx (T ) are used as evaluation metrics. Curved trajectories on the other hand are
evaluated in terms of longitudinal ∆x (T ) and lateral ∆y (T ) position errors.

By calculating the prediction errors for each trajectory at each time step of the pre-
diction horizon, empirical error distributions are obtained. These are compared to the
normal distributions defined by the predicted covariances15 Σx (tk + T ). The comparison
is conducted qualitatively and quantitatively:

15In fact, slightly different variances are predicted for each sequence, depending on the initial Kalman
filter estimate. Hence, the mean value is taken for the evaluation.
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1. Histograms and quantile-quantile plots at three distinct prediction times T ∈
{1 s, 1.5 s, 2 s} allow a visual comparison of the empirical error distribution to the
model.

2. 70% percentile values of the absolute errors over T are compared to the correspond-
ing value of the predicted normal distribution.

Thereby, the model assumptions as well as the estimated parameter values are evaluated.
As a reference for comparison, a normal distribution is fitted to the empirical error
distribution. This corresponds to the best possible Gaussian model as its parameters are
estimated directly from the evaluation dataset.

Results The resulting error and model distributions are visualised in Fig. 4.17-4.18 and
Fig. 4.19 for straight trajectories and curves, respectively.

As is expected, these results exemplify how the uncertainty on the future vehicle
location and velocity increases with prediction time. Comparing the different models
reveals, for example, that the CA model features slightly lower errors than the CV model,
especially in terms of the highest absolute values. This concurs with the findings in [175].

Concerning the assumption of a Gaussian error model, two kinds of deviations can be
observed for longitudinal motion in Fig. 4.17-4.18:

p On the one hand, heavy distribution tails are observed, that is high deviations
occur more frequently than expected. This is visible from the non-linear shape in
Fig. 4.17(b) and 4.18(b). The CA and CTRA model reveal a better behaviour in this
regard than the simple CV model, since they take (constant) acceleration commands
explicitly into account.

p On the other hand, the distribution peaks are slightly underestimated by the CA
and CTRA model as seen in the histograms in Fig. 4.17(a) and Fig. 4.18(a). This
leads to a too conservative estimation of the 70% percentile values in Fig. 4.17(c)
and Fig. 4.18(c). The a posteriori reference fits better accommodate the distribution
around the mean. However, as seen from the quantile-quantile plots Fig. 4.17(b)
and Fig. 4.18(b), the approximation of the distribution tails is worse than for the
predicted model. Therefore, describing the non-Gaussian error distribution with
a Gaussian model leads to the compromise whether a good fit of the behaviour
around the mean or the distribution tails is preferred.

Possible reasons for the observed non-Gaussianity are a violation of the assumption of
white, uncorrelated driver inputs which is a strong simplification of reality. If acceleration
commands (not considered by the CV model) are applied, these will typically last for
time spans up to multiple seconds. A similar reasoning explains the overly high peaks
of the acceleration models, where a driver keeps his inputs at a constant value (that is
correlated) for some time.

In all cases, the deviation between model prediction and empirical values increases
for higher prediction times, as it is revealed by the diverging percentile values over time
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in Fig. 4.17(c) and Fig. 4.18(c). Overall, the reference fits are slightly better adapted to the
distribution peaks. However, the tails are underestimated as well. This indicates that the
estimation was correctly performed and yields sensible estimates within the limits of the
underlying Gaussian assumptions.

In the case of curved trajectories, only the results of the CTRA model are depicted
in Fig. 4.19. The assumption of a translational motion, as included in the CV and CA
model, is obviously strongly violated in curves which causes high prediction errors.
Moreover, these errors depend mainly on the road geometry and the curvature at the
time of prediction. Such dependencies are not explicitly included in the process noise
model which describes prediction errors in the form of stochastic driver inputs.

Overall, the deviations between true trajectories and the ones predicted by the CTRA
model grow strongly with the prediction horizon. It can be seen that the 99% percentile
values which are displayed in Fig. 4.19(b) are almost twice as high at T = 2 s than at
T = 1 s. The dependence on a curve’s geometry might explain the high deviations in
the lateral direction for increased prediction times. Once a curve is passed, the yaw rate
drops to zero and the value which has been estimated during the curve is no longer a
valid initial state for the prediction.

Conclusion In summary, the following conclusions can be drawn about the proba-
bilistic vehicle motion predictions. Concerning the longitudinal motion in straight
trajectories, predictions with zero mean errors and a reasonable description of the error
distribution have been obtained. Slight inaccuracies in the predicted uncertainty arise
due to a non-Gaussian shape with heavy tails.

The vehicle motion in curves is determined by the changing geometry of the road.
This affects the predictions given by a CTRA model under the assumptions of constant
acceleration and yaw rate. A strong increase and non-Gaussian distributions of the
prediction errors in lateral direction have been noticed for a prediction horizon T ≥ 1 s.
This might be explained by the finite length of real curves.

4.2.9 Summary

This section has studied parameter identification and Gaussian uncertainty propagation
for stochastic non-linear dynamic systems. Specifically, kinematic vehicle motion models
have been analysed which are used in driver assistance functions to predict the future
trajectories of other road users. The stochastic uncertainties in these predictions have
been assumed to be driven by Gaussian white process noise. With this assumption,
closed-form expressions for the distribution of the predicted states have been derived.

The process noise model parameters have been estimated with the iterative expectation
maximisation algorithm. Theoretical foundations of the method have been first explained
and then applied to the specific motion models. A generic closed-form result for the
estimation of covariance matrices with a Kronecker product structure has been derived.
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Estimating the parameters for three commonly used models has been then performed
using an extensive dataset which comprises 170 h of driving data. Because the dataset is
based on trajectories measured by surround environment perception, it encompasses a
large variety of different vehicles and driving styles.

The appropriateness of a Gaussian process noise model with the estimated parametri-
sation has been evaluated on a second disjoint evaluation dataset. It has been found that
prediction errors are often non-Gaussian and feature a heavy-tailed distribution. While
a Gaussian noise model leads to satisfying results in describing the errors around the
mean, rare cases of strong deviations are not predicted. The comparison of the three
different models furthermore reveals that models which take (constant) accelerations
into account are less affected by these outliers than a constant velocity model.

For driver assistance functions, not only the trajectories in a ground-fixed coordinate
system but an object’s motion relative to the moving ego-vehicle are relevant. In order
to transform the uncertainty models into the moving frame of the ego-vehicle, a novel
method has been developed. The proposed idea is to separately propagate the stochastic
trajectories of ego-vehicle and object first and subsequently transform the distributions
from absolute to relative motion. In contrast to an immediate propagation in relative
coordinates, simple and more generic results are obtained.

Essentially, trajectory predictions can be regarded as input quantities of a situation
assessment algorithm. Similar to sensor measurement errors, the statistical models from
this section will be propagated to such algorithms in Sec. 5.2.
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Figure 4.17 Straight trajectories: Longitudinal prediction errors are compared to the
prediction model distributions and a-posteriori Gaussian fits for different prediction times
T ∈ {1 s, 1.5 s, 2 s}. The non-Gaussianity of the error distribution becomes apparent in the
non-linear shape of the quantile-quantile plots in (b). Still, the a-posteriori fits that are
used to validate the model agree with the predicted distribution in most cases. Hence, the
derived model provides a reasonable prediction within the limits of a Gaussian model.
Increasing deviations are observed at higher prediction horizon. For the CA and CTRA
model, the data shows an overly high peak around the mean in (a) which is not captured
and hence the predicted percentile values in (c) are too conservative.
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Figure 4.18 Straight trajectories: Prediction errors in the longitudinal velocity vx are
compared to the prediction model distributions and a-posteriori Gaussian fits for different
prediction times T ∈ {1 s, 1.5 s, 2 s}. A qualitative deviation from the theoretical evolution
σ∆vx

(T ) ∝
√
T can be observed for the CV model in (c).
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Figure 4.19 Curved trajectories: Prediction errors in longitudinal (x) and lateral (y) direc-
tion are compared to the CTRA prediction model distributions and a-posteriori Gaussian
fits for different prediction times T ∈ {1 s, 1.5 s, 2 s}.
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5.1 Manoeuvre recognition for long-term predictions

Realising sophisticated driver assistance functions up to fully automated vehicles re-
quires long-term trajectory predictions of other road users. How to obtain such predic-
tions is an active research topic which is tackled from different directions. One commonly
employed possibility is to extend the prediction models from Sec. 4.2 with an additional
semantic layer at which high-level driver intentions are described. Thus, discrete driver
intentions have to be inferred from measurement information. This section focusses on
the statistical properties of this manoeuvre recognition problem.

After an introduction to the problem in Sec. 5.1.1, an overview of the diverse ap-
proaches for manoeuvre recognition is first given in Sec. 5.1.2. This leads to a specific
formulation of the problem in Sec. 5.1.3 and thereafter the review of its optimal solution
in Sec. 5.1.4. The statistical properties of this optimal solution constitute a performance
bound for any algorithm which can be implemented in practice. As the main contri-
bution, a novel recursive formulation of the bound is developed. The findings are
illustrated with a numerical example in Sec. 5.1.5 and summarised in Sec. 5.1.6.

5.1.1 Introduction

In the previous Sec. 4.2, kinematic motion models for predicting a vehicle trajectory have
been analysed. These models define a trajectory in the form of interpretable physical
quantities. While a purely kinematic prediction is reasonable for short time spans,
for example in collision avoidance systems, it generally lacks the ability to predict a
sequence of changing driver inputs. For instance, a lane change manoeuvre consists of
two consecutive driver actions, each of them possibly influenced by the presence of other
vehicles. Considering only the kinematic quantities at one stage without knowledge of
the future driver inputs will therefore lead to an erroneous prediction. It is thus necessary
to employ knowledge on a driver’s intentions in order to realise more sophisticated
predictions.

Different approaches for driver intention recognition, for example pattern- or model-
based algorithms, are reported in the literature. However, all methods have to rely
on uncertain sensory measurements and model assumptions in order to infer the un-
observable plans of a human driver. The goal of this section is to contribute to the
understanding of how uncertainties affect the detection of an intended manoeuvre. As it
has been highlighted in the context of the Bayes filter in Sec. 4.1, an optimal solution to
statistical estimation problems is seldom available in closed-form. Nevertheless, theoret-
ical upper performance bounds are a valuable means for drawing generic conclusions,
for example for the evaluation of a sub-optimal solution. The focus of this section is to
model the best attainable performance for the detection of discrete manoeuvres.

Major parts of the remainder of this chapter have been previously published in [219].
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5.1.2 Related work

Analytical models or performance bounds for the task of manoeuvre recognition for
intelligent vehicles have to the best of the author’s knowledge not been discussed in
the literature so far. The performance of an algorithm is often evaluated in simulations
and thus, no analytical insight on how the individual components affect the results is
obtained. One possible explanation for the lack of an established theory of performance
bounds lies in the diversity of approaches. An overview of recent works will be given in
the following. A differentiation is made between motion pattern based (Sec. 5.1.2.1) and
intention-based (Sec. 5.1.2.2) approaches [118]. Sec. 5.1.2.3 contains a discussion of the
different methods and defines the scope this work’s analysis.

5.1.2.1 Motion pattern based predictions

The core principle of motion pattern based predictions is that measurements of a trajec-
tory up to the current time step are compared to a set of prototype trajectories that have
been stored in a database.

In a learning phase, vehicle trajectories are recorded and stored. To decrease the
dimensionality of the data, a trajectory can be represented by the coefficients of an
approximating Chebyshev polynomial [76, 200]. Trajectories can be stored individually
or in aggregate form as clusters [192] or variational Gaussian mixture models [167, 200].

When the system is operating, a partially measured trajectory is compared to the
database using a similarity metric. For example, the longest-common-subsequence
method [148] or a likelihood value in the case of a probabilistic knowledge representa-
tions [98] can be employed.

One advantage of this method is that estimation and prediction are naturally connected
since they only refer to different parts of the trajectory patterns, the observed and the
future part. Once a trajectory pattern that matches the current measurements has been
identified, the further trajectory evolution from the knowledge base can be used as a
prediction.

5.1.2.2 Intention-based predictions

The basic idea of intention-based methods is to separate the prediction in high-level
semantic aspects and low-level vehicle trajectories. A driver’s intention to perform
a specific manoeuvre is modelled at the semantic layer and has to be estimated first.
Second, the corresponding trajectory can be calculated with a low-level kinematic model
as introduced in Sec. 4.2. This distinguishes the approach from the matching of mo-
tion patterns where a data-based instead of a model-based trajectory representation is
employed.

The main questions are how to define and parametrise a model of the semantic aspects
and to establish the connection to the trajectory level. A differentiation of the driver
behaviour into goals, plans and behaviours is suggested in [66]. Throughout this work, the
term manoeuvre will be used to summarise the driver behaviour.
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Diverse application goals and constraints lead to a variety of model structures which
are reported in the literature. A model’s properties affect the flexibility in describing
different situations, how the model parameters can be identified and how the statistical
properties can be derived.

In the following, several commonly employed forms of models are briefly summarised
while a more exhaustive compilation is provided in [118]. The applications include
predicting a lane change on a highway [42], recognising the intended direction at in-
tersections [125, 199] or planning of safe trajectories in generic traffic situations with
multiple road users [1, 66].

Bayesian networks (BN) represent conditional probabilities between random observ-
ables and latent variables in the form of a directed acyclic graph [56]. Given the known
dependences between the different graph nodes, the probability density of unobservable
variables can be inferred by measuring the realisations of other nodes in the graph.

For example, a BN can relate the occurrence of an emergency braking situation to the
velocity with which another vehicle is approached. Given a measurement of this feature,
one can infer the probability of an emergency braking situation from the network [171].
Further applications are reported for manoeuvre recognition in structured environments,
like highways [42, 105, 174], and multimodal criticality assessment [173].

The advantage of a BN lies in its intuitive, graphical presentation. Moreover, it
is shown in [171] how uncertainty in the feature measurements can be analytically
propagated to the inference results. However, since the networks are static, they are not
well suited to represent chains of events.

Dynamic Bayesian networks (DBN) extend static BNs to a time-dependent set of states.
A DBN can be thought of as multiple BNs, one for each time step with an additional
transition model [142]. This is a very generic concept and can therefore be used to
describe complex traffic situations with interactions between multiple participants [1,
66, 117]. However, learning the model and estimating its state are challenging. Hidden
Markov models and linear state space models are special cases which enable an efficient
handling.

Hidden Markov models (HMM) describe the Markovian evolution of a discrete state
variable in terms of a transition probability matrix. Discrete or continuous measurements
are obtained according to conditional measurement distributions.

Multiple HMMs have to be defined in order to recognise different manoeuvres. Given
a sequence of measurements, the most probable manoeuvre can be identified [56, 139].
Efficient algorithms exist for both learning and inference of HMMs. However, due to the
discrete state space, continuous motion dynamics have to be approximated.



5.1 Manoeuvre recognition for long-term predictions 119

Linear state space models describe the time evolution of a continuous state by a linear
stochastic difference equation as introduced in Sec. 4.1.3.3. A linear measurement model
defines the probability distribution of a continuous observable conditional on the state.

Different manoeuvres are represented by different models and the goal is to infer each
model’s likelihood from observations. For example, a deterministic control input can
be used to define a driver behaviour which is related to a specific intention [125, 180].
Specifically for highway scenarios, it is shown in [91] how the likelihood of a lane change
manoeuvre can be estimated from the distance to the lane centres.

The advantages of this approach are that continuous motions are naturally modelled
using physical relations. Furthermore, obtaining a trajectory prediction from the state
transition function is straightforward once a manoeuvre hypothesis is known.

5.1.2.3 Discussion

Motion pattern based approaches are closely linked to a pre-defined database. The
accuracy of a prediction depends on factors such as the data used for learning, the data
representation and the similarity metric. This hinders to develop statistical models for
generic conclusions. Thus, pattern-based methods are not considered in this work.

In the context of intention-based predictions, dynamic Bayesian networks with a
mixed discrete and continuous state space are a very general class of models. However,
their flexibility also increases the difficulty of deriving statistical properties. For instance,
deriving bounds for the state estimation error in switching systems is still an active
research topic [60].

Therefore, as a first step, linear state space models are used in this work to formulate
different driving manoeuvres. Having a continuous state representation, these models
can be easily linked to the previously introduced state estimation and trajectory predic-
tion framework. However, continuous dynamics introduce limitations in the modelling
of purely discrete clues. In these cases, HMMs, which rely on a discrete state space,
would be better suited.1 Going beyond the scope of this work, both types could be
combined in a Bayesian approach.

5.1.3 Problem formulation

Based on the previous discussion, the linear state space model that is employed in this
work will be detailed in Sec. 5.1.3.1. Subsequently, the intention recognition task is
formalised as a hypothesis test in Sec. 5.1.3.2. Furthermore, an optimality criterion that
is used for the derivation of performance bounds will be introduced.

1Nevertheless, linear state space models and HMMs are built on very similar assumptions, for example
the Markov property. Hence, a transformation is possible with a suitable mapping between discrete
and continuous states [209].
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5.1.3.1 Model representation

Firstly, a linear transition model for the motion state xk ∈ Rn is assumed:

xk+1 = Axk + Buk + wk , wk ∼ p (wk) , E [wk] = 0 . (5.1a)

In contrast to the model (4.26) as it is introduced for the state estimation task, uk now
stands for a deterministic but unknown control input signal which models the driver
commands when a certain manoeuvre is executed. For example, the Intelligent Driver
Model can be used to describe a driver’s acceleration inputs when he intends to follow
another vehicle or to stop at a certain position [125]. Particularly, a driver’s intention to
change the currently driven manoeuvre will result in changing control inputs.

In addition to the variability that is introduced by the possible realisations of the
control input, stochastic variations are modelled with the process noise wk in (5.1a). The
case of a zero mean white non-Gaussian process which is characterised by the intrinsic
accuracy Iw is assumed.

Detecting a deterministically changing input signal is a classical problem in supervi-
sion and fault detection2 for technical processes [13, 74, 106, 214]. The central idea in this
section is therefore to formalise a manoeuvre recognition task as a change detection prob-
lem. Thus, general results on the best attainable performance of a detection algorithm
can be applied.

Even for the same manoeuvre, the corresponding sequence of driver inputs u1, . . . ,uk
is likely to vary among different driving styles and may depend on unobservable vari-
ables, for example the distance to a preceding vehicle. It is not important at this stage
how such variations and dependencies are modelled in a specific application context.
Instead, a generic formulation as proposed in [74] is assumed. It consists of known time-
dependent basis functions Ψk, for instance Chebyshev polynomials, and an unknown
constant coefficient vector θ ∈ Rnθ :

uk = Ψk · θ . (5.1b)

Therefore, different manoeuvres lead to different sequences u
(i)
1 , . . . ,u

(i)
k of the driver

input and are described by different coefficient vectors θi. The objective is thus to
differentiate between the possible realisations of θ. For clarity, it will be assumed in the
following that there are only two different manoeuvres, that is i ∈ { 0, 1 }.3

Having specified the state transition model, it remains to detail how measurements
yk ∈ Rm are obtained. These form the basis of any estimator. A linear measurement
model with additive zero mean white noise vk with intrinsic accuracy Iv is assumed:

yk = Cxk + Duk + vk , vk ∼ p (vk) , E [vk] = 0 . (5.1c)
2In the context of fault detection, the unknown input is usually denoted by fk, to differentiate it from an

additional known control input uk. Here, uk will be used exclusively to be aligned with the notation in
other parts of the thesis.

3Extending models of a binary hypothesis test problem to M hypotheses is discussed in [106].
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5.1.3.2 Formal problem definition

Given a sequence of L noisy measurements yk−L+1, . . . ,yk and an initial estimate of the
state x̂k−L+1 at time k − L, the objective of a manoeuvre detection algorithm is to decide
if a change in the input signal uk has occurred.

Formally, this means to decide between two hypothesesHi, i ∈ { 0, 1 }where in the fol-
lowing,H0 refers to the current andH1 to the alternative manoeuvre. These hypotheses
correspond to different probability distributions from which the measurements originate.
The complexity of the hypothesis test problem depends on the available knowledge
about these distributions [106]:

1. In a simple hypothesis test problem, the probability densities are fully specified:
{
H0 : θ = θ0

H1 : θ = θ1

. (5.2)

Under these conditions, an optimal decision rule is provided by the Likelihood ratio
test which will be discussed in Sec. 5.1.4.2.

2. A composite hypothesis test problem on the other hand refers to the case where
unknown parameters are part of the hypotheses. Specifically the case where θ is
unknown underH1 will be considered:

{
H0 : θ = θ0

H1 : θ 6= θ0

. (5.3)

For example, H1 may represent a braking manoeuvre in contrast to keeping the
current velocity underH0. However, different drivers and situations will lead to
varying characteristics of the vehicle’s deceleration. Therefore, the value of θ1 is
not known beforehand.

Unfortunately, no generally optimal detector exists for composite hypothesis prob-
lems [106]. An approach with asymptotically favourable performance, known as
the Generalised likelihood ratio test, will be studied in Sec. 5.1.4.3.

In order to derive a performance bound for this task, the metrics and definition of
optimality have to be clarified first. In the case of a binary hypothesis test, where an
estimate Ĥ with only two possible outcomes is obtained, the probability of making an
incorrect decision can be used. This is expressed by the true positive detection probability
PD := P

(
Ĥ = H1

∣∣H1

)
and the false alarm probability PFA := P

(
Ĥ = H1

∣∣H0

)
.

In practice, these two probabilities are coupled and it is therefore not possible to
improve the true positive rate without making the sacrifice of an increased chance of
false alarms. This relationship is usually visualised in the form of a diagram of PD over
PFA which is known as the receiver operating characteristic (ROC) of a detector.

One property, which is considered as an optimality criterion here, denotes a hypothesis
test as being uniformly most powerful if it features the highest PD at a specific level PFA
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among all possible tests. A performance bound for the described hypothesis test problem
should therefore define a curve PD (PFA) which encloses the ROC curves of any detection
algorithm [106].

5.1.4 Statistical modelling of optimal hypothesis tests

After the manoeuvre recognition task has been formulated in the framework of a hypoth-
esis test problem, this section develops statistical models of the optimal detector. Fol-
lowing the approach in [74], a batch-matrix formulation is first introduced in Sec. 5.1.4.1.
Known statistical models for the case of two simple hypotheses are stated in Sec. 5.1.4.2
and for the combination of a simple and a composite hypothesis in Sec. 5.1.4.3. As the
central contribution of this section, a novel recursive derivation of the statistical models
is developed in Sec. 5.1.4.4.

5.1.4.1 Transformation to a general linear model

The system (5.1) has been defined recursively. Therefore, the probability densities which
relate a series yk−L+1:k of L measurements to the unknown manoeuvre parameter θ are
only known per time step k through the probabilistic measurement model p

(
yk
∣∣xk
)
.

The unobservable state xk evolves according to the system state transition density
p
(
xk+1

∣∣xk,θ
)

from (5.1a). In order to apply fundamental results on general hypothesis
test problems, it is beneficial to concatenate the individual time steps and rewrite the
problem in the form of a general linear model [106]:

RL = ΦLθ + EL . (5.4)

Here, RL denotes a vector of the measurement data, EL a random vector of zero mean
noise and ΦL an observation matrix with full rank of appropriate dimensions.

To achieve a model in the form of (5.4) the following notations are proposed in [74].
First, the relevant signals from the time steps k − L+ 1, . . . , k are written as stacked
vectors:

XL :=




xk−L+1
...

xk


 , WL :=




wk−L+1
...

wk


 , YL :=




yk−L+1
...

yk


 , VL :=




vk−L+1
...

vk


 . (5.5)

Moreover, the following matrices are defined from the system matrices4 in (5.1):

OL :=
[
CT

(
CA

)T
. . .

(
CAL−1

)T
]T

, (5.6a)

4In order to simplify the notation, time-invariant system matrices are assumed in (5.1). Nevertheless, the
case of a time-dependent system can be treated accordingly and further details are given in [74].



5.1 Manoeuvre recognition for long-term predictions 123

HL :=




C 0 . . . 0

0 C
. . . ...

... . . . . . . 0

0 0 . . . C



, Hw

L :=




0 0 . . . 0 0

C 0
. . . ...

...
... . . . . . . 0 0

CAL−2 CAL−3 . . . C 0



, (5.6b)

ΦL :=
[
ϕ1 . . . ϕL

]T
, ϕT

l := DΨk−L+l +
∑l−1

j=1
CAl−j−1BΨk−L+j . (5.6c)

OL is the observability matrix of the system (5.1), HL relates the stacked measurements
YL to the states XL and the Toeplitz matrix Hw

L describes the impact of the process noise
WL on YL.

Lastly, we suppose that the initial state estimate x̂k−L+1 is affected by a zero mean
estimation error ∆xk−L+1. This error is assumed as independent of all other noise
processes, for example because it has been estimated using data from outside of the now
considered window { k − L+ 1, . . . , k }. Its intrinsic accuracy is denoted by Ixk−L+1

.
These definitions allow (5.1) to be recast in the shape of (5.4):

YL −OLx̂k−L+1︸ ︷︷ ︸
=:RL

= ΦLθ + OL∆xk−L+1 + Hw
LWL + VL︸ ︷︷ ︸

=:EL

. (5.7)

All noise terms have been collected on the right-hand side of the equation. Thus, the
probability density p

(
RL

∣∣θ
)

of the measured residuals RL conditional on the unknown
manoeuvre parameter θ can be obtained from the individual noise densities. This density
is crucial for the definition of a sensible rule to distinguish betweenH0 andH1 based on
a sample of measurements RL.

5.1.4.2 Simple hypotheses: Likelihood ratio test

At first, we consider the case where the unknown parameter can take on two known
values θ ∈ {θ0,θ1 }. According to the Neyman-Pearson theorem, the decision rule of the
most powerful test is then based on the likelihood ratio L (RL) [106]:

L (RL) :=
p
(
RL

∣∣θ1

)

p
(
RL

∣∣θ0

)
H1

≷
H0

γ . (5.8)

Here, γ denotes a user-defined threshold value. The true and false detection probabilities
of this test are:

PD (γ) = P
(
L (RL) > γ

∣∣θ1

)
, PFA (γ) = P

(
L (RL) > γ

∣∣θ0

)
. (5.9)

It depends on the involved densities, how the likelihood ratio (LR) and the properties
of this optimal test can be calculated. For the example of Gaussian noise, this will be
further detailed in the following.
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Example 5.1 (Likelihood ratio test for linear model with Gaussian noise)
We assume that the noise distributions are zero mean Gaussians, that is wk ∼ N (0,Q),

vk ∼ N (0,R) and ∆xk−L+1 ∼ N
(
0,Σxk−L+1

)
. Since the noise is assumed indepen-

dent between different time steps, the covariances ΣWL
and ΣVL

of the stacked noise
vectors from (5.5) have a block diagonal form. Then, EL in (5.7) is a linear combina-
tion of zero mean Gaussian random variables and thus a zero mean Gaussian as well
with the covariance

ΣEL
= OLΣxk−L+1

OT
L + Hw

LΣWL
Hw
L

T + ΣVL
. (5.10)

According to (5.8), the optimal decision rule can be established. For simplified
expressions, the log-likelihood ratio L′ (RL) := 2 logL (RL) is considered instead of
L (RL) [106]:

L′ (RL) = 2 log
N
(
RL; ΦLθ1,ΣEL

)

N
(
RL; ΦLθ0,ΣEL

)

= (ΦLθ0)T Σ−1
EL

(ΦLθ0)− (ΦLθ1)T Σ−1
EL

(ΦLθ1)

+ 2 (θ1 − θ0)T ΦT
LΣ−1

EL
·RL

. (5.11)

The first two terms are constant whereas the actual dependence on the measured
residuals RL is given by the third term.

The statistical properties of this decision rule are defined by the probability distri-
butions of L′ (RL) under the two possible realisations of θ. It follows from (5.7) that
RL ∼ N

(
ΦLθ1,ΣEL

)
underH1 and otherwise RL ∼ N

(
ΦLθ0,ΣEL

)
. Since (5.11) is a

linear transformation of the Gaussian random variable RL, the distribution of L′ (RL)

remains Gaussian:

L′ (RL) ∼
{
N (λL, 4λL) underH1

N (−λL, 4λL) underH0

(5.12a)

where λL = (θ1 − θ0)T ΦT
LΣ−1

EL
ΦL (θ1 − θ0) . (5.12b)

The two distributions are symmetric around L′ (RL) = 0 and further apart for higher
values of λ, which facilitates detecting the correct hypothesis. For an exemplary case,
the probability density functions are illustrated in Fig. 5.1(a).

Furthermore, it is possible to obtain a closed-form expression for the ROC PD (PFA).
To this end, the cumulative probability function of the normal distribution is denoted
by PN(µ,σ2) (·) and the quantile function, that is the inverse cumulative probability
function, as QN(µ,σ2) (·). Inserting (5.12) into (5.9) yields:

PD (PFA) = 1− PN(λL,4λL)

(
QN(−λL,4λL) (1− PFA)

)
. (5.13)

An exemplary case is visualised in Fig. 5.1(c).
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Figure 5.1 Illustration of the test statistics for two simple hypotheses with Gaussian noise
(5.12) and the asymptotic distribution (5.18) of the composite hypothesis test. An ex-
emplary parametrisation with λL = 5 and nθ = 1 is chosen. For a specific value of the
detector threshold γ, the resulting probabilities of true positive detections and false alarms
can be calculated by integrating the probability densities in (a)-(b) according to (5.9). This
leads to the ROC curves in (c). For an identical parametrisation, deciding between two
simple hypotheses allows better detection results due to the reduced degrees of freedoms.

When deciding between two simple hypotheses, (5.8) provides a very generic recipe on
how to find an optimal decision rule. In the more complex case of composite hypotheses
from (5.3), a similar result does not exist and optimality is in general only attained
asymptotically. This will be further elaborated in the following section.

5.1.4.3 Composite hypotheses: Generalised likelihood ratio test

While the probability density p
(
RL

∣∣θ
)

is completely specified for simple hypotheses,
additional unknown parameters are included in composite hypothesis test problem. In
general, the optimality of a decision rule depends on the value of these parameters. A test
whose optimality is invariant against the parameter is therefore uniformly most powerful.
Unfortunately, such tests only exist under special conditions. However, the Generalised
likelihood ratio (GLR) test delivers this favourable property in an asymptotic sense (for an
infinite number of measurements) and for different families of probability distributions
(for example Gaussian distributions, as it will be shown in example 5.2) [106].

The GLR test generalises the test statistic (5.8) of the LR test by replacing the unknown
parameters θ0, θ1 with their maximum likelihood estimates θ̂0 and θ̂1 [106]:

LG (RL) :=
p
(
RL

∣∣θ̂1

)

p
(
RL

∣∣θ̂0

)
H1

≷
H0

γ . (5.14)
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In the following, the special case whereH0 : θ = θ0 is fully specified according to (5.3)
will be analysed. In the more general case where θ0 is unknown as well, the GLR test
(5.14) is still applicable but no general result on the statistical properties of the decision
rule is available [106].

In practice, implementing the GLR test can be facilitated by alternative decision rules
known as the Wald test or Rao test. These tests provide the same asymptotic performance
as (5.14) [106]. The Wald test will be detailed in the following.

The basic idea of the Wald test is to calculate a maximum likelihood estimate of the
parameter θ underH1 from the measured residuals RL:

θ̂ = arg max
θ

p
(
RL

∣∣θ
)
, Σθ̂ =

(
ΦLIEL

ΦT
L

)−1

. (5.15)

Here, Σθ̂ denotes the asymptotic covariance of the maximum likelihood estimate and
IEL

is the intrinsic accuracy of the noise vector EL [74]5:

IEL
=
(
OLI−1

xk−L+1
OT

L + Hw
LI−1

WL
Hw
L

T + I−1
VL

)−1

. (5.16)

The decision rule is then to compare the Mahalanobis norm of θ̂ − θ0 against a threshold
γ > 0. Ideally, the norm becomes zero underH0 where θ = 0:

LW (RL) =
(
θ̂ − θ0

)T

Σ−1

θ̂

(
θ̂ − θ0

) H1

≷
H0

γ . (5.17)

Quadratic forms of Gaussian random variables follow the χ2-distribution. Therefore,
depending on the true hypothesis, LW (RL) is distributed according to a central or
non-central χ2-distribution [106]:

L′G (RL) := 2 logLG (RL) = LW (RL)
asymp.∼

{
χ2
nθ

(λL) underH1

χ2
nθ

(0) underH0

(5.18a)

where λL = (θ1 − θ0)T ΦT
LIEL

ΦL (θ1 − θ0) . (5.18b)

The non-centrality parameter λL, which is in a fact a generalisation of (5.12b), can be
interpreted as a measure of how different the distributions of L′G (RL) under the two
hypotheses are. Finding the correct distinction becomes easier for higher λL because this
separates the non-central χ2

nθ
(λL)-distribution further from χ2

nθ
(0). An exemplary case

is shown in Fig. 5.1(b).
Interestingly, the probability of a false alarm PFA, that is the detection threshold γ is

exceeded underH0, remains independent of any system parameter. Therefore, a system
improvement only affects the true positive detection probability PD. The false alarm
probability is thus only indirectly reduced by choosing a higher threshold value γ which
achieves the same PD but fewer false alarms.

5Note that assuming equality in (5.16) is a best case approximation and thus leads to an upper perfor-
mance estimate. Equality holds for example in the case of Gaussian noise [193].
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With the respective cumulative distribution and quantile functions, an expression for
the ROC is obtained as

PD (PFA) = 1− P
χ

2
nθ

(λL)

(
Q
χ

2
nθ

(1− PFA)
)
. (5.19)

A comparison of this expression to the previous result (5.13) in Fig. 5.1(c) illustrates that
the composite hypothesis test problem is in fact more difficult to solve than the case of
two simple hypotheses.

Example 5.2 (Generalised likelihood ratio test for linear model with Gaussian noise)
In the special case of Gaussian noise EL ∼ N

(
0,ΣEL

)
in (5.4), the maximum likeli-

hood estimate (5.15) is given by the Generalised least squares (GLS) estimator [108]:

θ̂ =
(
ΦT
LΣ−1

EL
ΦL

)−1

ΦT
LΣ−1

EL
RL , Σθ̂ =

(
ΦT
LΣ−1

EL
ΦL

)−1

. (5.20)

Alternatively, a recursive algorithm based on a Kalman filter is proposed by WILLSKY

and JONES [201].
Inserting (5.20) into (5.17) yields for the Wald test decision rule:

LW (RL) = lTW ·
(
ΦT
LΣ−1

EL
ΦL

)−1

· lW , lW := ΦT
LΣ−1

EL
RL −ΦT

LΣ−1
EL

ΦLθ0 . (5.21)

Since EL is Gaussian, the distribution of lW is:

lW ∼




N
(
ΦT
LΣ−1

EL
ΦL (θ1 − θ0) ,ΦT

LΣ−1
EL

ΦL

)
underH1

N
(
0,ΦT

LΣ−1
EL

ΦL

)
underH0

. (5.22)

Thus, LW (RL) in (5.21) is the Mahalanobis norm of the Gaussian random vector lW.
The distribution thus follows as [106]:

LW ∼
{
χ2
nθ

(λL) underH1

χ2
nθ

(0) underH0

, λL = (θ1 − θ0)T ΦT
LΣ−1

EL
ΦL (θ1 − θ0) . (5.23)

Note that while this result is included in the general case given in (5.18), the derivation
does not require the assumption of asymptotic Gaussianity of an MLE. Therefore,
(5.23) holds for arbitrary window length L.

Although all relevant information on the asymptotic properties of the test is contained in
the scalar λL from (5.18b), one has to obtain the intrinsic accuracy IEL

first. According
to (5.16), this requires inverting a matrix of dimensions L ·m× L ·m. It will be analysed
in the following section, how IEL+1

for L+ 1 measurements relates to IEL
. This leads

to a recursive expression for λL+1 where the increment ∆λL+1 added by the (L+ 1)st
measurement is identified.
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5.1.4.4 Deriving a recursive form of the GLR test distribution

Decision making in a driver assistance context is often very time critical. Thus, improving
the certainty of an estimate by additional measurements comes at the price of a decreased
remaining reaction time. Being based on a batch matrix notation as in [74], the results
from the previous section do not provide an intuitive insight into how the number of
measurements L influences the detector performance. It is therefore desirable to obtain
an equivalent recursive model, similar to the Cramér-Rao bound for state estimation
problems presented in Sec. 4.1.4.

The objective of this section is thus to derive a recursive expression for the non-
centrality parameter λL from (5.18b). Especially the matrix inversion necessary to find
the information matrix IEL

in (5.16) is to be avoided. Due to the assumption of white
noise processes it follows that I−1

WL
and I−1

VL
are block diagonal matrices with entries

I−1
w and I−1

v , respectively [74]. Nevertheless, the sum in (5.16) results in a dense matrix
and finding the inverse is not straightforward.

Partly, this problem is similar to the derivation of the posterior CRB whose recursion
is given in Sec. 4.1.4.2. There, it is strived for a recursive expression for the information
matrix Ixk

of the state estimate which is part of the larger information matrix for the
complete state sequence IY1:k

(X1:k). To this end, it is necessary to find a recursion for
the lower right block matrix of the inverse I−1

Y1:k
(X1:k). As has been shown in [188],

this block matrix can be efficiently calculated without obtaining the entire inverse. The
increased difficulty of the problem at hand comes from the outer multiplications in
(5.18b). Thus, not only the lower right block but the full matrix I−1

EL
is needed for the

result.
The different terms in the linear regression problem (5.7) will be analysed first, since

this is where the combined error term EL comes from. On the left-hand side, the state
estimate x̂k−L+1 from the initial time step k − L + 1 is multiplied by the extended
observability matrix OL from (5.6a). Thereby, predictions of the state x̂k−L+1, . . . , x̂k
for the subsequent time steps are implicitly calculated. These predictions, which are
denoted by X̂L in stacked vector form, are then transformed as HLX̂L according to
the measurement model (5.1c). Thus, the residual RL is the difference between these
predicted measurements and the actual observed ones, that is YL.

The right-hand side of (5.7) contains the reasons for such a difference to occur. On the
one hand, a manoeuvre change is reflected in the deterministic term ΦLθ. All remaining
terms on the other hand denote stochastic uncertainties:

1. Measurement errors are given by VL.

2. Uncertainty in the state predictions X̂L arises from errors ∆xk−L+1 in the initial
value and stochastic process noise WL. The overall state prediction error is denoted
by ∆XL := X̂L −XL. Thus, this error projected on the measurements is HL∆XL =

OL∆xk−L+1 + Hw
LWL which constitutes the second part of EL in (5.7).
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Therefore, (5.16) can be equivalently written in terms of the intrinsic accuracy of
the state prediction IXL

:

IEL
=
(
OLI−1

xk−L+1
OT

L + Hw
LI−1

WL
Hw
L

T
)−1

=
(
HLI−1

XL
HT
L + I−1

VL

)−1

. (5.24)

As a first step, the matrix inversion lemma (A.9) is used to reformulate (5.24):

IEL
= IVL

− IVL
HL

(
IXL

+ HT
LIVL

HL

)−1

︸ ︷︷ ︸
=:ML

HT
LIVL

. (5.25)

The majority of the upcoming derivations focusses on the inverse that is abbreviated by
ML. Note that this expression comprises IXL

instead of its inverse. The key to finding a
recursive expression for IEL

will be to leverage the structure of IXL
. Due to the Markov

assumption, this matrix has a block diagonal form [188]:6

IXL
=

[
A B
BT C

]
, IXL+1

=



A B 0

BT C + D11 D12

0 D21 D′22


 . (5.26)

The expressions for D11, D21 and D′22 for a linear system with additive non-Gaussian
noise (5.1) are:

D11 = ATIwA , D12 = −ATIw , D′22 = Iw . (5.27)

The first two of these are identical to the ones introduced for the tracking bound in
Sec. 4.1.4.4. The third term D′22 though does not contain a term related to the measure-
ment information Iv since it refers to a predicted state.

It is then strived for an expression for ML+1, L > 1 which avoids the inversion of an
(L+ 1) · n× (L+ 1) · n-dimensional matrix. Firstly, ML is written in a partitioned form
using IXL

from (5.26):

ML =

[ (L− 1) · n n

ML,11 ML,12

ML,21 ML,22

]
=

([
A B
BT C

]
+

[
HT
L−1IVL−1

HL−1 0

0 CTIvC

])−1

. (5.28)

Due to the white noise assumption on the measurement noise, IVL
is a block diagonal

matrix. The inversion in (5.28) can be calculated block-wise according to (A.12):

ML,11
(A.12b)

=

(
A + HT

L−1IVL−1
HL−1 −B

(
C + CTIvC

)−1

BT

)−1

(5.29a)

ML,22
(A.12c)

=

(
C + CTIvC−BT

(
A + HT

L−1IVL−1
HL−1

)−1

B
)−1

(5.29b)

6The notation of the entries of IXL
is chosen in accordance with [188]. Though, in order to avoid

confusion with the system matrices from (5.1), a calligraphic font (A) is used here.
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ML,21
(A.12e)

= MT
L,12 = −ML,22BT

(
A + HT

L−1IVL−1
HL−1

)−1

. (5.29c)

Secondly, a similar partitioning is introduced for ML+1, using (5.26):

ML+1 =





A B 0

BT C + D11 D12

0 D21 D′22


+




HT
L−1IVL−1

HL−1 0 0

0 CTIvC 0

0 0 CTIvC





−1

. (5.30)

Again, the inversion in (5.30) is calculated block-wise and expressions which are identical
to the ones in ML are replaced by the respective matrices from (5.29). Firstly, theL·n×L·n-
dimensional upper left block of ML+1 is denoted by ML+1,11:

ML+1,11
(A.12b)

=

([
A + HT

L−1IVL−1
HL−1 B

BT C + D11 + CTIvC

]

−
[

0

D12

](
D′22 + CTIvC

)−1 [
0 D21

])−1

(5.28)
=

(
M−1

L +

[
0

In×n

]
S
[
0 In×n

])−1

(A.11)
= ML −

[
ML,12

ML,22

]
S
(
M−1

L,22 + S
)−1

M−1
L,22

[
ML,21 ML,22

]
. (5.31)

Here, the following abbreviation has been introduced:

S := D11 −D12

(
D′22 + CTIvC

)

︸ ︷︷ ︸
(4.28)
=: D22

−1

D21 = ST . (5.32)

S is the Schur complement of the matrix D with respect to its part D22.
Secondly, ML+1,22 denotes the n× n-dimensional lower right block:

ML+1,22

(A.12c)
=

(
D22 −

[
0 D21

] [A + HT
L−1IVL−1

HL−1 B
BT C + D11 + CTIvC

]−1 [
0

D12

])−1

(A.12c)
=

(
D22 −D21

(
C + D11 + CTIvC−BT

(
A + HT

L−1IVL−1
HL−1

)−1

B
)−1

D12

)−1

(5.29b)
=

(
D22 −D21

(
D11 + M−1

L,22

)−1
D12

)−1

.

(5.33)

Besides the different initial value M1,22 =
(
Ixk−L+1

+CTIvC
)−1 this is the same recursion

as for the inverse information matrix of a filtered state from (4.29).
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Finally, the lower left block, which is n× L · n-dimensional, is obtained as:

ML+1,21

(A.12e)
= −ML+1,22 ·

[
0 D21

] [A + HT
L−1IVL−1

HL−1 B
BT C + D11 + CTIvC

]−1

(5.29b)
= −ML+1,22D21

(
D11 + M−1

L,22

)−1
[
−BT

(
A + HT

L−1IVL−1
HL−1

)−1

In×n

]

(5.29c)
= −ML+1,22D21

(
D11 + M−1

L,22

)−1
M−1

L,22︸ ︷︷ ︸
=:ΓL+1

[
ML,21 ML,22

]
. (5.34)

Therefore, ML+1,21 consists of L sub-matrices M
(l)
L+1,21 of size n× n:

ML+1,21 =
[
M

(1)
L+1,21 . . . M

(L)
L+1,21

]
with M

(l)
L+1,21 =

L∏

j=l

Γj+1Ml,22 . (5.35)

In a similar manner and due to symmetry it follows that ML+1,12 = MT
L+1,21.

To summarise the intermediate result, a recursive expression for ML has been derived
which can be used to obtain IEL

according to (5.25). In contrast to the batch calculation
in (5.16), only inverses of matrices with a size of n× n have to be calculated.

It is especially noteworthy that ML+1,11 in (5.31) consists of the result from the previous
iteration, that is ML, and a second additive term. Since all subsequent calculations that
lead to λL only involve further matrix multiplications and additions, this incremental
relationship will propagate to the final result.

In the next step, ML+1 is inserted into (5.25) to obtain IEL+1
:

IEL+1
=

[
IVL

0

0 Iv

]
−
[
IVL

HLML+1,11H
T
LIVL

IVL
HLML+1,12C

TIv

IvCML+1,21H
T
LIVL

IvCML+1,22C
TIv

]
. (5.36)

According to the definition (5.6c), ΦL+1 can be written as ΦL+1 =
[
ΦT
L ϕL+1

]T
. Then,

inserting into (5.18b) yields:

λL+1 = (ΦL (θ1 − θ0))T
(
IVL

− IVL
HLML+1,11H

T
LIVL

)
(ΦL (θ1 − θ0))

− 2 (ΦL (θ1 − θ0))T IVL
HLMT

L+1,21C
TIv

(
ϕT
L+1 (θ1 − θ0)

)

+
(
ϕT
L+1 (θ1 − θ0)

)T (
Iv − IvCML+1,22C

TIv

)(
ϕT
L+1 (θ1 − θ0)

)
.

(5.37)

The expression (5.37) can be further simplified as detailed in Sec. A.4 of the appendix:

λL+1 = λL + aT
L+1 ·

(
I−1

v −CML+1,22C
T
)
· aL+1

︸ ︷︷ ︸
=:∆λL+1

, (5.38a)

where

aL+1 = Ivϕ
T
L+1 (θ1 − θ0)−

(
I−1

v −CML+1,22C
T
)−1

CΛT
L+1 , (5.38b)
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ΛL+1 = −
(

ΛLM−1
L,22 +

(
ϕT
L (θ1 − θ0)

)T

IvC

)(
S + M−1

L,22

)−1
D12D

−1
22 ,

Λ1 = 0nθ×n .

(5.38c)

This is the final result for the desired recursive form of (5.18b). In order to calculate λL+1

it is thus necessary to propagate the recursions for two matrices,7 that are ML+1,22 from
(5.33) and ΛL+1 from (5.38c). On the one hand, ML+1,22 contains the information matrix
of the predicted state which is used to calculate the residual and closely linked to the
CRB for the state estimation problem from Sec. 4.1.4.4. ΛL+1 on the other hand defines a
projection of this matrix on the space of the manoeuvre change and thereby integrates its
time-dependence.

With an expression for the increment ∆λL+1, the effect of an additional measurement
on the detection probability from (5.19) can be investigated. To this end, PD (PFA) is
linearised around λL:

PD (PFA) ≈ PD (PFA)|λL +
d

dλ
PD (PFA)

∣∣∣∣
λL

∆λL+1

︸ ︷︷ ︸
:=∆PD

. (5.39)

However, there is no closed-form expression for the cumulative distribution function
P
χ

2
nθ

(λ)

(
·
)

of the non-central χ2-distribution, which is required here. Instead, an analytical
approximation is employed and the derivative thereof calculated. Out of the numerous
proposed approximations, a compact variant by PATNAIK [165] is used here:

P
χ

2
nθ

(λ)

(
z
)

=

ˆ z

0

χ2
ν (ζ;λ) dζ ≈

ˆ z
′
(z,λ)

−∞
N
(
ζ;µζ (λ) , 1

)
dζ (5.40a)

with z′ (z, λ) =

√
2z

ν + λ

ν + 2λ
, µζ (λ) =

√

2
(ν + λ)2

ν + 2λ
− 1 . (5.40b)

Thus, one obtains an approximate derivative with respect to λ in closed-form

d

dλ
P
χ

2
ν(λ)

(
z
)
≈ d

dλ

ˆ z
′
(z,λ)

−∞

1√
2π

exp

(
−1

2

(
ζ − µζ (λ)

)2
)

dζ

=
1√
2π

exp

(
−1

2

(
z′ (z, λ)− µζ (λ)

)2
)
· d

dλ

(
z′ (z, λ)− µζ (λ)

)
. (5.41)

5.1.5 Numerical example

In order to exemplify the theoretical results, a possible application for a manoeuvre
detection algorithm is analysed in simulations. While the example is not explicitly
related to a specific driver assistance function, the ambiguity of the situation makes it a
typical candidate for driver intention recognition.

7The recursions for the sub-matrices ML+1,11 and ML+1,21 are not necessary to calculate since these are
implicitly contained in the final result.



5.1 Manoeuvre recognition for long-term predictions 133

The simulated scene is visualised in Fig. 5.2 and consists of the ego-vehicle and a
preceding target vehicle. Both vehicles approach a signalled intersection at equal velocity
of 50 km/h. Since the traffic light has just switched from green to yellow, the driver of
the first vehicle may conduct two possible manoeuvres:

1. He may keep his velocity or even accelerate slightly to pass the intersection.8

2. He may decelerate in order to stop in front of the intersection.

These two possibilities lead to qualitatively different trajectories of the target vehicle. In
order to plan the future course of the ego-vehicle, an early differentiation between the
manoeuvres is crucial.

STOP

Figure 5.2 Illustration of the simulation scenario. The ego-vehicle (equipped with a front
facing environment sensor) and a preceding target vehicle approach a traffic light at equal
initial velocity. Given the remaining distance to the traffic light when the signal switches
from green to yellow, it is ambiguous whether the driver of the target vehicle intends to
stop or pass. For driver assistance functions, early detection of this driver intention is a
crucial task.

Firstly, the problem will be formulated in the chosen framework from Sec. 5.1.3.
Secondly, the optimal decision rule for a hypothesis test as well as the asymptotic
distribution can be set up according to Sec. 5.1.4. A Monte-Carlo simulation with
Nsim = 1× 105 independent runs is then used to obtain a numerical estimate of the
true and false positive detection probabilities which can be compared to the analytical
performance bound. Different lengths L ∈ { 1, . . . , 20 } of the sliding window are used.
The initial time-step corresponds to the beginning of the manoeuvre.9

Since the two vehicles are driving with equal velocity at first, the CV model is used
to describe their relative motion. The state vector comprises distance x and relative

8An initial distance of 37 m to the intersection and a duration of the yellow phase of 3 s, according to
German legislation for inner-city traffic lights, are assumed. Therefore, the intersection can be reached
after 2.67 s at a speed of 50 km/h.

9In practice, a sliding window will encompass time-steps both before and after occurrence of the
manoeuvre. One could treat the time of occurrence as an additional unknown parameter which is
to be estimated [201]. By considering only those measurements which contribute information to the
detection problem, we thus analyse the optimal performance.
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Figure 5.3 Deceleration of the target vehicle over time (a) and the resulting relative velocity
between ego and target vehicle (b). The brake characteristic is modelled with two ramp
functions according to (5.42b) with the parameter values as given in Tab. 5.1.

longitudinal velocity vx. A braking manoeuvre is described by a deceleration command
as input signal uk. Therefore, the state transition in the form of (5.1a) reads:

[
xk+1

vx,k+1

]
=

[
1 T

0 1

] [
xk
vx,k

]
+

[
1
2
T 2

T

]
uk + wk , wk ∼ N (0,Q) . (5.42a)

The time evolution of uk describes the applied deceleration profile. There are multiple
possible characteristics, from a simple ramp function to more sophisticated models which
take a controller-like adaptation into account [137]. The framework (5.1b) permits to
approximate such general non-linear characteristics by means of a linear parametrisation.
In the simulation, an ideally known model where the parameters enter linearly is chosen.
The brake deceleration is assumed to follow two subsequent ramp functions with known
durations

(
tramp,1, tramp,2

)
but unknown slope parameters

(
rbrake,1, rbrake,2

)
. This can be

interpreted as a driver who applies an initial force to the brake pedal but realises that the
resulting deceleration requires further adjustment in order to stop at a desired point:

uk =





rbrake,1tk 0 ≤tk ≤ tramp,1

rbrake,1tramp,1 tramp,1 <tk ≤ tstart,2

rbrake,1tramp,1 + rbrake,2

(
tk − tstart,2

)
tstart,2 <tk ≤ tstart,2 + tramp,2

. (5.42b)

The unknown parameter vector is θ =
[
rbrake,1 rbrake,2

]
and thus, H1 is a composite

hypothesis. Whereas the non-braking case is a simple hypothesis with θ0 = 0. For the
chosen parametrisation, this results in the acceleration and velocity profiles as visualised
in Fig. 5.3. The exemplary parameter values are detailed in Tab. 5.1.

Measurements of the distance are obtained with a Gaussian measurement distribution:

yk =
[
1 0

]
xk + vk , vk ∼ N (0, R) . (5.42c)

A detector for the two hypotheses is implemented according to the principle of the
Wald test (5.17). Due to the Gaussian noise assumption, the closed-form GLS estimator
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Table 5.1 Simulation parameter values of a manoeuvre recognition task.

Variable Value

Initial state mean xk−L+1 =
[
10 m 0

]

Initial state covariance Σxk−L+1
= I−1

xk−L+1
= diag

(
0.0625 m2, 0.04 m2/s2

)

Process noise Q = I−1
w = 0.375 m2/s4s−1

[
1
3TS

3 1
2TS

2

1
2TS

2 TS

]

Measurement noise R = I−1
v = 0.04 m2

Brake ramp model
rbrake,1 = −2 m/s3 , tramp,1 = 0.405 s ,

rbrake,2 = −6 m/s3 , tstart,2 = 0.440 s , tramp,2 = 0.405 s

Sampling time TS = 0.0675 s

(5.20) is employed to estimate θ. Decision making is then performed with varying
threshold values γ where the true and false positive probabilities are evaluated for each
window length L. The results are shown in terms of the true positive probability at a
specific false positive probability of PFA = 5 % in Fig. 5.4(a) and the overall ROC curves
in Fig. 5.4(c).

Comparing the Monte-Carlo simulation results to the model of the asymptotic GLR
test statistic shows a good correspondence. It is furthermore notable from Fig. 5.4(a) that
the dependence of the true positive probability PD on the number of measurements L
resembles a sigmoid curve. With the proposed analytic model (5.41) for the increments
∆PD as shown in Fig. 5.4(b) it is thus possible to identify the point with the highest
increase. This can be used for example as a sensible initial value for the minimum
required L.

5.1.6 Summary

This section has developed probabilistic models of driver intention recognition, which is
a crucial task for achieving long-term trajectory predictions. To this end, the problem
has been formulated as a change detection problem in linear state space models. This
class of models allows deriving analytical performance bounds of an optimal hypothesis
test. A theoretical contribution, not limited to the application of manoeuvre recognition,
is the derivation of a recursive version of this upper performance bound. In contrast to
previous results, the inversion of matrices with growing dimensions can be avoided and
further insight into the time-dependence is gained. The application of the framework is
illustrated for an exemplary scenario and the obtained theoretical result are validated in
Monte-Carlo simulations.

While the developed method is generic with respect to the specific linear system mod-
els, future works could extend the concept to non-linear models and M -ary hypothesis
tests. Moreover, the GLR test relies on classical parameter estimation principles. If
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Figure 5.4 Simulation results: (a) detection probability PD, (b) increments ∆PD for false
positive probability PFA = 5 % and (c) receiver operating characteristic curves.

additional prior knowledge is available, for example context information, it may be
extended to a Bayesian approach [106].
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5.2 Criticality measures for risk assessment

Algorithms for situation interpretation use the scene representation that is obtained at the
perception (Sec. 3.1) and object tracking (Sec. 4.1) layer in order to infer an appropriate
strategy for a system intervention. Reasoning about such interventions is often based on
a prediction of future trajectories as studied in Sec. 4.2 and Sec. 5.1.

This chapter analyses situation interpretation for autonomous emergency brake (AEB)
systems. The specifics of these systems and the implications of uncertainties are firstly
introduced in Sec. 5.2.1. An overview of related works about situation analysis for
emergency brake systems and probabilistic modelling of uncertainties is then given in
Sec. 5.2.2. Examples of such algorithms are introduced in Sec. 5.2.3 and formulated
in a common mathematical framework. Based on this, a fully probabilistic, analytical
framework for the propagation of measurement and prediction errors is subsequently
developed in Sec. 5.2.4 which presents the main contribution of this section. The findings
are illustrated with numerical examples in Sec. 5.2.5 and lastly summarised in Sec. 5.2.6.

5.2.1 Introduction

Autonomous emergency brake systems aim to avoid or mitigate accidents due to colli-
sions with other vehicles, static objects or vulnerable road users (for example pedestrians),
by means of warnings to the driver or autonomous brake interventions. An AEB system
should respond early in the rare case of an impending collision but should not falsely
activate during uncritical normal driving. With a limited and uncertain perception
of the environment, algorithms for situation interpretation have to achieve these two
conflicting goals of performance and robustness.

In general, human-like scene understanding is a challenging task due to the complexity
of the environment, especially in urban scenarios. One part of the problem is to estimate
a human driver’s intentions. As has been previously pointed out in Sec. 5.1 this is still
an active research topic. However, for the narrow scope that is addressed by an AEB
system – a limited set of critical situations with short prediction time spans and a small
set of reaction patterns – tailored analytical solutions have been developed in the past.
These algorithms are termed criticality measures and have been implemented both in
prototypes [95] and series products. Usually, the criticality of a situation is expressed as
a normalised scalar measure and decision making reduces to a threshold check.

In this work, criticality measures that aim to quantify the risk of a collision with
a preceding vehicle in longitudinal traffic are considered. Three basic examples of
criticality measures are derived in Sec. 5.2.3. The main contributions concern statistical
modelling of criticality measures. Research on this topic is spurred by two motivations:

p Although uncertainties often cannot be ruled out entirely, knowing probabilistic
models thereof can benefit the robustness of a system. Thereby, an intervention
decision is generalised from a threshold check to a Bayesian formulation [95, 173].
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p At the development stage, sensor accuracy requirements have to be determined in
order to achieve a desired collision avoidance performance. For a given braking
capability of the vehicle, this reduces to the question of activation timing. Models
for the deviation from an ideal timing due to uncertainties can thus be used to
obtain requirements on a sensor.

While probabilistic analyses of criticality measures have been developed for the afore-
mentioned motivations, some questions remain unanswered in previous works. As it
is further discussed in Sec. 5.2.2, this topic has been previously studied mainly with
Monte-Carlo simulations [46, 83] or analytically under the assumption of bounded
errors [144].

Criticality measures implicitly contain kinematic prediction models since they assess
the risk of a future collision. In addition to measurement errors, inaccuracies of the
prediction model, as have been discussed in Sec. 4.2, thus cause an uncertain situation
assessment. To the best of the author’s knowledge, an analytical treatment of these
prediction errors has not been developed in previous works.

Central contributions of this section have been previously published in [221]. Novel
extensions to correlated errors and an analysis of the time of activation are included in
the following.

5.2.2 Related work

The state of the art is reviewed separately for the development of criticality measures
and analyses of the impact of uncertainties.

Criticality measures First, a brief overview of deterministic criticality measures, as
analysed in this work, is given. Second, probabilistic criticality measures are reviewed,
which have evolved as a natural extension of the deterministic metrics.

In the most basic interpretation, criticality can be measured by a binary indicator
whether a collision is unavoidable. This means that all trajectories which lie within a
vehicle’s acceleration and steering capabilities are checked for possible collisions [100,
169]. In order to facilitate a multi-stage intervention strategy though, for example
with early warnings and successive brake interventions of increasing strength [82], a
continuous measure of criticality is required.

Popular examples for such continuous scalar metrics are on the one hand time-based
and indicate the remaining time until a critical event is predicted to occur, for example the
collision (time-to-collision) or the last moment at which an accident is still avoidable (time-
to-react) [83]. On the other hand, measures related to the necessary driver inputs in order
to avoid a collision in the last possible moment provide a clear physical interpretation
(brake-threat-number, steer-threat-number) [95]. The latter are further refined in [30] by
more accurately modelling the vehicle geometries.

In order to handle stochastic errors, the state estimation uncertainty, which is usually
provided by a tracking filter, is propagated to the above mentioned metrics by means of
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Monte-Carlo sampling methods in [95, 104]. This idea is extended in [31, 32, 53, 109] to a
stochastic future driver behaviour. An extensive Bayesian generalisation of the classical
time-to-collision metric has been recently suggested in [173]. While these works consider
sophisticated probabilistic prediction models, they are all based on numerical methods.
Analytical approaches, which are proposed for time-based metrics in [18, 19], do not
consider the uncertainty of a prediction.

Analysis of uncertainty in criticality algorithms The influence of sensor noise on criti-
cality measures is evaluated with simulations in [46, 207]. Additionally, [83] studies the
distribution of the decision timing. There, prediction errors are either not considered or
assumed as deterministically bounded.

A further in-depth simulation-based evaluation is presented in [137] for the time-
to-react metric. Recordings of real vehicle trajectories are employed in order to study
both sensor and prediction errors. This concept is similar to the approach in this work,
since the deviations between a prediction model and real driver behaviour are taken
into account. The difference is that this thesis focusses on a fully analytical treatment.
Empirical data is first used to learn probabilistic models of the prediction uncertainty
(Sec. 4.2), which are then analytically propagated to the criticality measures in this
section.

A worst case analysis is discussed in [144] where closed-form expressions for the
decision timing of two acceleration-based criticality measures are derived. Besides the
purely deterministic treatment, predictions are only regarded as a means to compensate
for short-time sensor delays prior to calculating the criticality. Thus, errors in the inherent
predictions performed by the algorithms themselves are not taken into account.

5.2.3 Derivation of criticality measures

Since numerous proposals for criticality measures have been proposed in the literature,
the scope of this section is not to reiterate every individual derivation. For a number of
relevant algorithms, these can be found for example in [83, 95]. Instead, it is attempted
to formulate a common ground on which these criticality measures can be derived. This
abstract framework is then illustrated with examples of three criticality measures, that
are the time-to-collision, brake-threat-number and time-to-brake. The added value of the
framework is that it enables to derive a generic approach to uncertainty propagation.

From the foremost goal of an AEB system to avoid or mitigate the impact of a collision,
finding the point in time where a collision becomes unavoidable is crucial. Speaking not
in a strict mathematical sense, the objective of a criticality metric is then to measure how
close the current driving situation is to such an event. The motion of the ego-vehicle
and object are expressed in dynamic states xe (t) and xo (t). A collision event can then be
defined by a binary indicator function

IC (xe,xo) =

{
1 G (xe) ∩ G (xo) 6= ∅
0 G (xe) ∩ G (xo) = ∅

(5.43)
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which is based on the object geometries G (xe) and G (xo).
It is assumed that the dynamic states xe

k, xo
k at the current time tk are known and a

collision has not yet occurred. Then, a criticality measure κ (xe
k,x

o
k) can be defined as a

norm ‖ue (t)‖ of the minimum driver10 inputs ue
min ≤ ue (t) ≤ ue

max that are necessary to
avoid a collision in the future. In practice, the problem formulation is limited to a time
interval

[
tk, tk + T̄

]
where T̄ denotes a pre-defined prediction horizon [83]:

κ (xe
k,x

o
k) = minimise

u
e
(t)

‖ue (t)‖

subject to IC (xe (t) ,xo (t)) = 0 ∀t ∈
[
tk, tk + T̄

]
.

(5.44a)

The future states11 of ego-vehicle and object are given by prediction models as follows:

ẋe (t) = f e (xe (t) ,ue (t)) , xe (tk) = xe
k , ue

min ≤ ue (t) ≤ ue
max , (5.44b)

ẋo (t) = fo (xo (t)) , xo (tk) = xo
k . (5.44c)

The problem formulated in (5.44) is very general and in order to obtain closed-form
criticality measures, further reformulations are introduced in [83, 95]:

1. Instead of considering two motion states xe (t) and xo (t) in ground-fixed coordi-
nates, a simplification is achieved by using the motion state x (t) in a coordinate
system relative to the moving ego-vehicle. A prediction model in relative dynamics
can be obtained as discussed in Sec. 4.2.7. It is assumed that the state prediction
can be expressed in additive form:

x (tk + T ) = Φ (tk + T, tk) x (tk) +

ˆ tk+T

tk

B (τ) ue (τ) dτ . (5.45)

A collision indicator function in relative coordinates is denoted by IC (x) and is
used instead of (5.43). To cope with explicit dependences on the absolute states, for
example the orientation angles, rotationally invariant enclosing hulls [28] can be
used to approximate the exact shapes.

2. Secondly, the ego-vehicle’s driver input vector ue (t) is evaluated component-wise
which yields individual criticality metrics per input ue

i (t). Evasive actions by accel-
erating or braking and steering to the left or right are thereby treated separately. For
example, the required acceleration to avoid a collision by a longitudinal manoeuvre
and the yaw rate for a lateral evasive manoeuvre can be calculated individually
and combined to an overall figure later on.12 Since each input is bounded from

10It is important to note that all vehicle inputs refer to the possibilities available to a human driver and not
the evasive actions which can be performed by the AEB system. If a situation is critical with respect to
the braking deceleration alone but can still be resolved with moderate steering effort, for example a
lane change, an autonomous brake intervention is in general not justified.

11In this thesis, criticality measures are derived with trajectories being represented in Cartesian coordinates,
whereas a lane-centred coordinate system is employed for example in [53].

12However, the assumption that no evasive manoeuvre of combined braking and steering exists if neither
braking nor steering alone suffice to avoid a collision is violated in some cases [169].
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above and below according to (5.44b), the problem is furthermore split into the
cases 0 ≤ ue

i (t) ≤ ue
max,i and 0 ≤ −ue

i (t) ≤ −ue
min,i.

Moreover, instead of a general time-dependent input ue
i (t), a compact parametrisa-

tion is usually introduced. For example, a constant value ue
i (t) = ue

i can be assumed.
Another possibility, pursued for the derivation of the time-to-react metric in [83], is
to parametrise the bounded inputs in terms of the time tB at which ue

i (t) has to take
on its maximum possible value while it remains zero before. Thus, the remaining
times until a brake-, acceleration-, or steering-manoeuvre has to be performed are
obtained and the maximum over these yields the overall time-to-react.

3. Thirdly, the optimisation problem in (5.44) of finding the smallest driver input
such that no collision occurs for t ∈

[
tk, tk + T̄

]
is reformulated. To this end,

the problem is equivalently expressed as reaching a specific relative motion state
ψ (x (tk + T )) = γ at a future time tk + T conditional that no collision has occurred
until that time instead:

minimise
u

e
i (t)

|ue
i (t)| subject to IC (x (t)) = 0 ∀t ∈

[
tk, tk + T̄

]

⇐⇒ sol
u

e
i (t)
{ψ (x (tk + T )) = γ ∧ IC (x (t)) = 0 ∀t ∈ [tk, tk + T )} .

(5.46)

Therefore, ψ (·) and γ define a condition so that a collision is just avoided. For
example, a rear-end collision between two vehicles is just avoided by braking, if the
relative velocity has dropped to zero at the moment that the distance is zero. This
condition can be easily extended to obey additional safety margins (5.43). Solving
(5.46) yields a criticality value κ (xk) and the corresponding prediction horizon T ∗k
as functions of xk.

Developing algorithms for criticality assessment from a general problem formulation
similar to (5.46) is not new but has been employed for example in [83, 95]. However, this
generic framework has to the best of the author’s knowledge not been used before to
derive analytical methods for uncertainty propagation as will be shown in Sec. 5.2.4.

In the following, three examples of criticality measures are presented to illustrate the
framework. For clarity, only longitudinal traffic scenarios with an impending rear-end
collision are considered. The motion of the target object relative to the ego-vehicle is
described by a state vector x which comprises longitudinal distance x, relative velocity
vx and relative acceleration ax. At the initial time step tk a negative relative velocity
vx,k < 0 is assumed. It is furthermore assumed that the relative lateral velocity vy is
negligible and the lateral position y therefore remains in the driving corridor |y| ≤ ycoll.

Example 5.3 (Time-to-collision (TTC))
The relative longitudinal dynamics are described by a constant velocity model (ax =

0). Its time-evolution has been previously derived in example 4.4 and reads:
[
x (tk + T )

vx (tk + T )

]
=

[
1 T

0 1

] [
x (tk)

vx (tk)

]
. (5.47)
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Without considering any potential evasive action, the time-to-collision metric can be
defined as the solution (5.46) at which the distance x (tk + T ) becomes zero:

ttc (xk) = sol
T
{x (tk + T ) = 0} = sol

T

{
xk + vx,k · T = 0

}
= − xk

vx,k
. (5.48)

Example 5.4 (Brake-threat-number (BTN))
The relative dynamics are modelled with constant accelerations. In order to simplify
the derivations, a negative relative initial acceleration ax,k ≤ 0 is assumed. This
includes the practically relevant case of driving behind a preceding vehicle where the
driver is forced to brake suddenly due to an unforeseen situation.13 A constant input
ue (t) = ae

x models the ego-vehicle’s brake deceleration:



x (tk + T )

vx (tk + T )

ax (tk + T )


 =




1 T 1
2
T 2

0 1 T

0 0 1






x (tk)

vx (tk)

ax (tk)− ae
x


 . (5.49)

To avoid a collision by braking, the relative velocity vx needs to be reduced to zero
when the distance approaches zero. This yields the following formulation of (5.46):

ae
x,req (xk) = sol

a
e
x

{[
xk + vx,k · T + 1

2

(
ax,k − ae

x

)
· T 2

vx,k +
(
ax,k − ae

x

)
· T

]
=

[
0

0

]}
= ax,k −

v2
x,k

2xk
.

(5.50)

The prediction horizon is thereby obtained as T ∗k = −2 xk
vx,k

.
Finally, in order to obtain a normalised criticality measure, ae

x,req (xk) is usually
divided by a minimum acceleration ae

x,min < 0. This yields the dimension-less brake-
threat-number, which can be compared to other evasion strategies, for example by
steering. The maximum braking deceleration ae

x,min depends on the tire-road friction
coefficient and may be estimated on-line [216] or set to a constant overapproximation
that corresponds to ideal conditions.

Example 5.5 (Time-to-brake (TTB))
As a third measure of how critical a situation is with respect to braking, the time-to-
brake ttb is considered. Only the case of an initially unaccelerated motion (ax = 0) is
studied here but further details on other cases can be found in [81]. The deceleration

13A number of special cases are introduced by the assumption of an accelerated relative motion. For
example, the velocity of an already decelerating vehicle will only decrease until it reaches standstill. It is
not in the scope of this work to discuss all of these cases, but it is referred to [83, 95] for a comprehensive
treatment.
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of the ego-vehicle is parametrised via the time tB at which the maximum brake
deceleration ae

x,min < 0 is applied:

ue (t) =

{
0 t < tB

ae
x,min t ≥ tB

. (5.51)

Similar to (5.50), the following conditions define the TTB:

ttb (xk) = sol
tB

{[
xk + vx,k · T − 1

2
ax,min · (T − tB)2

vx,k − ae
x,min · (T − tB)

]
=

[
0

0

]}

= − xk
vx,k
− vx,k

2ae
x,min

.

(5.52)

The time that remains before a full-brake manoeuvre has to be initiated is thus
naturally smaller than the TTC from (5.48). Values ttb (xk) ≤ 0 result if ae

x,req (xk) ≤
ae
x,min in (5.50).

It has been shown that different criticality measures which are reported in the literature
can be expressed in a general criterion (5.46) together with a prediction model (5.45).
In the next section, this representation will be used to derive probabilistic models of
uncertainty in the criticality estimates. Both errors in the estimated state xk and the
prediction x (tk + T ∗k ) are considered.

While only basic examples of criticality measures have been shown here, more so-
phisticated formulae can be derived in the same way, if higher order motion models are
employed.

5.2.4 Statistical modelling of criticality measures

Having introduced the necessary background on criticality measures, statistical models
of these algorithms are developed in this section. Firstly, the error between the estimated
and the true criticality value will be analysed in Sec. 5.2.4.1. Such deviations occur due
to errors in the estimated states but also due to deviations between a predicted future
trajectory and the true one. The framework will be exemplified for the time-to-collision
and the brake-threat-number as previously introduced in example 5.3 and 5.4, respectively.
Here, simple closed-form models are obtained. Secondly, correlations between errors
over time are subsequently modelled in Sec. 5.2.4.2.

Thirdly, a probabilistic model of the time at which the estimated criticality exceeds
an activation threshold is derived in Sec. 5.2.4.3. In a previous analysis [83], only
independent errors are assumed. If correlated errors are taken into account, a more
general approach is required. As will be shown, the results developed here form a
generalisation of previous works.

Lastly, the fact that criticality measures are often defined piece-wise in order to avoid
singularities is included in the probabilistic model. For example, the time-to-collision
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metric is only defined between two approaching vehicles and becomes negative or
infinite for relative velocities greater than or equal to zero. This corresponds to the
case that no future collision is predicted from the current state. Therefore, probabilistic
modelling of criticality measures relates to determining the probability of a collision
between two extended objects. In general situations, different approaches based on
Monte-Carlo methods are known. A novel closed-form approximation that is tailored to
rear-end situations will be developed in Sec. 5.2.4.4.

5.2.4.1 Uncertainty propagation in criticality measures

A Gaussian estimate xk ∼ N (x̂k,Σx (tk)) of the dynamic motion state is assumed, from
which a criticality measure κ (xk) is calculated. In order to model the influence of
uncertainties on the criticality measure, Gaussian error propagation can be used to
obtain the distribution κ (xk) ∼ N

(
µκ (tk) , σ

2
κ (tk)

)
. To first order, the expected value is

µκ (tk) = κ (x̂k). In a classical approach, the variance σ2
κ (tk) is calculated by linearising

the explicit function κ (xk) around the expected value x̂k. As introduced in Sec. 2.2, the
covariance of xk is then propagated as follows:

σ2
κ (tk) =

(
∇xk

κ (xk)
∣∣
x̂k

)
·Σx (tk) ·

(
∇xk

κ (xk)
∣∣
x̂k

)T

. (5.53)

However, only the initial state uncertainty but not the prediction errors are taken into
account with this classical approach. In contrast, the implicit prediction over a state-
dependent time horizon T ∗k is made explicit by (5.46). Assuming that this prediction
model is given in the form of (5.45), uncertainties can be modelled as additive Gaussian
white process noise. As has been previously shown in Sec. 4.2.6, a Gaussian model of the
predicted state at a future time instant tk + T can be inferred. The resulting covariance is
recalled here:

Σx (tk + T ) = Φ (tk + T, tk) Σx (tk) ΦT (tk + T, tk) + Q (tk + T, tk) ,

(5.54a)

with Q (tk + T, tk) =

ˆ tk+T

tk

Φ (tk + T, τ) LSLTΦT (tk + T, τ) dτ . (5.54b)

Therefore, one obtains the variance σ2
κ (tk) under consideration of both state estimation

and prediction uncertainty by linearising the criticality measure around the mean of the
predicted state x̂ (tk + T ∗k ).

To this end, the unknown variables in the criticality definition (5.46), which usually
comprise14 the prediction horizon T ∗k and the criticality measure κ (xk), are written in
the form of a vector α :=

[
T ∗k κ (xk)

]T
. In order to obtain the Jacobian with respect to

x (tk + T ∗k ), the implicit function theorem is applied [40]:

∇x(tk+T
∗
k )α = −

[
∇α (ψ (x (tk + T ∗k ))− γ)

]−1[
∇x(tk+T

∗
k ) (ψ (x (tk + T ∗k ))− γ)

]
.

(5.55)
14For the time-to-collision metric (5.48), the prediction horizon T ∗k itself defines the criticality.
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With the Jacobian evaluated at the expectations E [T ∗k ] ≈ T ∗k (x̂k), κ (x̂k) and x̂ (tk + T ∗k ),
the covariance of α is obtained as:

Σα =

[
σ2
T
∗
k

ρT ∗k κ
ρκT ∗k σ2

κ

]
=

(
∇x(tk+T

∗
k )α

∣∣∣
x̂(tk+T

∗
k )

)
·Σx (tk + T ∗k ) ·

(
∇x(tk+T

∗
k )α

∣∣∣
x̂(tk+T

∗
k )

)T

.

(5.56)

The element σ2
κ contains the desired result. This general framework will be illustrated

for the time-to-collision from example 5.3 and the brake-threat-number that was introduced
in example 5.4.

Example 5.6 (Uncertainty propagation in TTC)
According to the definition in (5.48), the predicted time T ∗k at which a collision occurs
defines a criticality measure ttc (xk). This metric is calculated from a state vector
xk =

[
xk vx,k

]T
which comprises the distance and relative velocity. Calculating the

gradient (5.55) of T ∗k with respect to the predicted state x (tk + T ∗k ) yields:

∇x(tk+T
∗
k )T

∗
k = −

[
∇T

∗
k

(
xk + vx,k · T ∗k

) ]−1 ·
[
∇x(tk+T

∗
k )x (tk + T ∗k )

]
=
[
− 1
vx,k

0
]
.

(5.57)

The predicted state covariance Σx (tk + T ∗k ) of the underlying CV model is given in
(4.74b). Together with the gradient (5.57), this yields the following closed-form result
for (5.56):

var (ttc (xk)) =
(
∇xk

ttc (xk)
∣∣
x̂k

)
·Σx (tk) ·

(
∇xk

ttc (xk)
∣∣
x̂k

)T

− 1

3v̂2
x,k

(ttc (x̂k))
3 Sx

where ∇xk
ttc (xk)

∣∣
x̂k

=
[
− 1
v̂x,k

x̂k
v̂

2
x,k

]
.

(5.58)

This can be identified as the classical result (5.53) plus an additional term for the
process noise influence. The latter is proportional to (ttc (x̂k))

3 and inversely pro-
portional to 3v̂2

x,k. Therefore, the criticality estimate is less affected by prediction
uncertainties in situations with small ttc (x̂k) as well as those with high speeds vx,k.

Example 5.7 (Uncertainty propagation in BTN)
The definition of the function ψ (x (tk + T )) and the terminal state γ are given in

(5.50). This time, the state xk =
[
xk vx,k ax,k

]T
includes the relative acceleration

ax,k. The Jacobian (5.55) is obtained as follows where α :=
[
T ∗k ae

x,req (xk)
]T

:

∇x(tk+T
∗
k )α = −

[
vx,k +

(
ax,k − ae

x,req (xk)
)
· T ∗k −T

∗
k

2

2

ax,k − ae
x,req (xk) −T ∗k

]−1

·
[
1 0 0

0 1 0

]
. (5.59)
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Due to the assumption of zero mean noise processes, (5.50) yields the expected values
of T ∗k and ae

x,req (x̂k) in terms of x̂k. Inserting these into the second row of the Jacobian
(5.59) yields the desired gradient of ae

x,req:

∇x(tk+T
∗
k )a

e
x,req (xk)

∣∣∣
x̂(tk+T

∗
k )

=
[
v̂

2
x,k

2x̂
2
k

0 0 0
]
. (5.60)

The covariance Σx (tk + T ) of a state prediction in the constant acceleration model
follows according to (4.72):

Σx (tk + T ) =




1 T 1
2
T 2

0 1 T

0 0 1


 ·Σx (tk) ·




1 T 1
2
T 2

0 1 T

0 0 1




T

+




1
20
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(5.61)

Together with the gradient (5.60), this yields the following closed-form result:

var
(
ax,req (xk)

)
=
(
∇xk

ax,req (xk)
∣∣
x̂k

)
·Σx (tk) ·

(
∇xk

ax,req (xk)
∣∣
x̂k

)T

− 2x̂k
5v̂x,k

Sx

where ∇xk
ax,req (xk)

∣∣
x̂k

=
[
v̂

2
x,k

2x̂
2
k

− v̂x,k
x̂k

1
]
.

(5.62)

The first term of this expression equals the result which is obtained from the classical
approach (5.53) whereas the second term denotes the additional influence of the
process noise.

To summarise the result, (5.56) provides a closed-form expression for the combined
propagation of Gaussian state estimation and prediction errors to a criticality measure.
The general result has been exemplified for the TTC and BTN criticality measures. It
has been shown that the resulting compact models are generalisations of the classical
approach (5.53).

Concerning the interpretation of the obtained variance it has to be noted that the
true criticality is different for each realisation of a stochastic trajectory. If only the state
estimate is uncertain on the other hand, the variance propagation describes the errors
compared to the one true criticality value. In contrast, the variance under state estimation
and prediction uncertainty describes the distribution of the predicted criticality given
the uncertain state and models. Modelling this distribution is thus useful for Bayesian
decision making.

5.2.4.2 Correlated errors

In order to model uncertainties over multiple time steps, correlations have to be analysed
in addition to the previous models.
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It is assumed that two Gaussian state estimates xk ∼ N (x̂k,Σx (tk)) and xk+1 ∼
N (x̂k+1,Σx (tk+1)) from time steps tk+1 > tk are available. Moreover, these estimates are
assumed to be correlated with a cross-covariance Σx (tk, tk+1) := cov (xk,xk+1). Correla-
tion may be induced if state estimates are formed by aggregating sensor measurement
information from multiple time steps. Even though the individual measurements might
be uncorrelated, the state estimates may become correlated.

A second source of correlations is due to the influence of prediction errors on the
criticality estimate. Starting from the first time step tk, a prediction of the future state
x (tk + T ∗k ) is calculated. When a prediction is started from a later time step tk+1 until
tk+1 + T ∗k+1, parts of the first trajectory are included in the second prediction as well.15

Hence, the prediction errors made for a specific trajectory will be partly identical and
thus correlations are caused.

The variance of a criticality measure κk := κ (xk) is given in (5.56). A similar approach
is now pursued to obtain the cross-covariance cov (κk, κk+1) of κk and κk+1. First, the
cross-covariance Σx (tk + T ∗k , tk+1 + T ∗k+1) between the two predicted states x (tk + T ∗k )

and x (tk+1 + T ∗k+1) is calculated. The criticality values κk and κk+1 are implicitly based
on these state predictions. Secondly, the cross-covariance between the state predictions
is propagated to criticality estimates by linearisation.

It is assumed that the state prediction model can be expressed in the form of (4.72)
where w (t) is white Gaussian process noise that is independent of the state estimates.
One obtains for the first prediction from tk until tk + T ∗k [107]:

x (tk + T ∗k ) = Φ (tk + T ∗k , tk) x (tk) +

tk+T
∗
kˆ

tk

Φ (tk + T ∗k , τ) Lw (τ) dτ (5.63a)

The second prediction starts at tk+1 and reads:

x (tk+1 + T ∗k+1) = Φ (tk+1 + T ∗k+1, tk+1) x (tk+1) +

tk+1+T
∗
k+1ˆ

tk+1

Φ (tk+1 + T ∗k+1, τ) Lw (τ) dτ .

(5.63b)

When the cross-covariance between x (tk + T ∗k ) and x (tk+1 + T ∗k+1) is calculated, all prod-
ucts of the state estimates and w (t) as well as integrals of w (t) with non-overlapping
boundaries vanish due to the assumption of white noise processes. The overall result
comprises the cross-covariance Σx (tk, tk+1) between the two state estimates as well as

15Without loss of generality, it is assumed that T ∗k ≥ T ∗k+1 here. That is, the situation becomes more
critical as time progresses and thus the prediction horizon T ∗k+1 is smaller than T ∗k . Since tk+1 > tk, the
state predictions over the time interval

[
tk+1, tk+1 + T ∗k+1

]
are included in both estimates. However,

the derivation can be performed in a similar way if this overlapping interval has to be defined with
T ∗k ≤ T ∗k+1.
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a second term which relates to the process noise during the common part of the two
predictions:

Σx (tk + T ∗k , tk+1 + T ∗k+1) = Φ (tk + T ∗k , tk) Σx (tk, tk+1) ΦT (tk+1 + T ∗k+1, tk+1)

+ Φ (tk + T ∗k , tk+1 + T ∗k+1) Q (tk+1 + T ∗k+1, tk+1)
.

(5.64)

The process noise covariance Q (tk+1 + T ∗k+1, tk+1) is defined in (5.54b). Finally, the cross-
covariance of the criticality is obtained by linearisation where the gradients have been
derived in (5.55):

cov (κk, κk+1) =

(
∇x(tk+T

∗
k )κ (xk)

∣∣∣
x̂(tk+T

∗
k )

)
·Σx (tk + T ∗k , tk+1 + T ∗k+1)

·
(
∇x(tk+1+T

∗
k+1)κ (xk+1)

∣∣∣
x̂(tk+1+T

∗
k+1)

)T

.

(5.65)

The obtained models of the distribution at a single time instant yield the probability that
a criticality measure exceeds an activation threshold. It is thus possible to model the
time of activation, which will be studied in the following section.

5.2.4.3 Uncertainty in decision timing

We will now consider situations that span multiple time steps ti, i = 1, . . . , k. An object
is measured and tracked by the ego-vehicle during this time interval, which leads to a
sequence of Gaussian state estimates x1, . . . ,xk with means x̂1, . . . , x̂k and estimation
error covariances Σx (t1) , . . . ,Σx (tk). The cross-covariances Σx (t1, t2) , . . . ,Σx (tk−1, tk)

describe the correlation between subsequent state estimates.
At each time instant, a criticality measure κi := κ (xi) is calculated from these estimates.

We assume that the considered traffic situation is critical and it is therefore desired that
an emergency brake intervention is activated at a time tB. In terms of the criticality
measure, this means that κ (x (tB)) > κmax where κmax is a pre-defined threshold.16

A criticality measure that is calculated from uncertain state estimates xi becomes a
random variable κ (xi). It has been shown in the previous sections how a Gaussian
approximation κi ∼ N

(
µκ (ti) , σ

2
κ (ti)

)
can be derived. Due to the randomness of the

sequence κ1, . . . , κk, the time of activation tB is random as well. The following analysis
therefore focusses on finding the probability P

(
tB ≤ tk

)
that the emergency brake has

been activated by a time step tk. If this distribution is shifted by the ideal time of
activation, one obtains the distribution of the activation jitter ∆tB which is an indicator
of how reliable the system acts.

The key information for finding P
(
tB ≤ tk

)
is the distribution of the sequence of

criticality estimates κ1, . . . , κk. In a previous investigation [83], statistically independent

16In the general case, a κ (x) ≥ κmax threshold decision will be assumed whereas for specific examples
such as the TTC, falling below a lower value defines an activation event. Since both formulations can
be transformed to each other, the choice is determined by easier interpretation of a criticality measure.
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Figure 5.5 Example of truncating a bivariate Gaussian with κ1 ∼ N (0, 0.5), κ2 ∼ N (1, 1)

and cov (κ1, κ2) = 0.475. The marginal density p
(
κ1

∣∣κ1 ≤ κmax

)
with κmax = 1 (top

right) is compared to a Gaussian approximation (5.71). The conditional marginal density
(bottom right) of κ2|κ1 ≤ κmax is distributed according to (5.70) (green). The derived
Gaussian approximation (5.72) is shown in red.

Gaussians have been assumed. However, as it has been previously discussed, it stands to
reason that correlations over time exists. Therefore, the problem will be first formulated
in the general case, where the sequence of criticality values κ1, . . . , κk is distributed
according to a multivariate distribution p

(
κ1, . . . , κk

)
. The probability that an activation

event has occurred until tk is:

P
(
tB ≤ tk

)
= 1−

ˆ κmax

−∞
· · ·
ˆ κmax

−∞
p
(
κ1, . . . , κk

)
dκ1 . . . dκk . (5.66)

In the following paragraphs, two specific models for p
(
κ1, . . . , κk

)
will be detailed. First,

a Gauss-Markov process is considered where the Gaussian distribution of κi is fully
described with knowledge of the immediate predecessor value κi−1. Second, the special
case of independent Gaussians will be studied. The validity of the derived models is
assessed with Monte-Carlo simulations in the third paragraph.

Gauss-Markov process One frequent special case arises if the sequence κ1, . . . , κk
fulfils the Markov property, that is p

(
κi
∣∣κi−1, . . . , κ1

)
= p

(
κi
∣∣κi−1

)
, i = 2, . . . , k. Hence,

the joint density p
(
κ1, . . . , κk

)
simplifies to

p
(
κ1, . . . , κk

)
=

[
k∏

i=2

p
(
κi
∣∣κi−1

)
]
· p
(
κ1

)
. (5.67)

Moreover, the integration in (5.66) can be written as

P
(
tB ≤ tk

)
= 1−

[
k∏

i=2

ˆ κmax

−∞
p
(
κi
∣∣κi−1 ≤ κmax

)
dκi

]
·
ˆ κmax

−∞
p
(
κ1

)
dκ1 . (5.68)
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The densities p
(
κi
∣∣κi−1 ≤ κmax

)
are referred to as conditional marginals. Unfortunately,

solving the iterated integration in (5.68) is still challenging. In the following, an approxi-
mate solution for the special case of Gaussian densities will be derived.

We assume Gaussian marginal densities, that is p
(
κi
)

= N
(
κi;µκ (ti) , σ

2
κ (ti)

)
. The

cross-covariance between two time steps cov (κi, κi−1) is denoted by ρκ (ti, ti−1), i =

2, . . . , k. According to (2.12), the conditional densities are Gaussians:

p
(
κi
∣∣κi−1

)
= N

(
κi;µκ (ti |ti−1 ) , σ2

κ (ti |ti−1 )
)
, (5.69a)

where

µκ (ti |ti−1 ) = µκ (ti) + ρκ (ti, ti−1)σ−2
κ (ti−1) [κi−1 − µκ (ti−1)] , (5.69b)

σ2
κ (ti |ti−1 ) = σ2

κ (ti)− ρ2
κ (ti, ti−1)σ−2

κ (ti−1) . (5.69c)

However, the conditional marginal densities p
(
κi
∣∣κi−1 ≤ κmax

)
which are required to

solve (5.68) are non-Gaussian. In the case of i = 2, one has the following probability
density function [22] which is illustrated in Fig. 5.5:

p
(
κ2

∣∣κ1 ≤ κmax

)
=

(ˆ κmax

−∞
N
(
κ1;µκ (t1) , σ2

κ (t1)
)

dκ1

)−1

· N
(
κ2;µκ (t2) , σ2

κ (t2)
)

·
ˆ κmax

−∞
N
(
κ1;µκ (t1 |t2 ) , σ2

κ (t1 |t2 )
)

dκ1 (5.70)

In order to enable a recursive integration of (5.68), a Gaussian approximation of (5.70)
will be derived in the following. Due to the high relevance to many problems of effi-
ciently integrating a multivariate Gaussian density function, similar methods have been
developed for example in [149, 203].

In principle, two ways can be followed to obtain a Gaussian approximation of the
conditional marginal density p

(
κi
∣∣κi−1 ≤ κmax

)
. On the one hand, the first two mo-

ments µκ (ti |κi−1 ≤ κmax ) and σ2
κ (ti |κi−1 ≤ κmax ) could be explicitly calculated from

(5.70), which is pursued for example in [22, 132].
A different approach is to find a Gaussian approximation of the truncated density

p
(
κi−1

∣∣κi−1 ≤ κmax

)
first. Afterwards, the conditional marginal density p

(
κi
∣∣κi−1 ≤ κmax

)

is calculated from the conditional density p
(
κi
∣∣κi−1

)
from (5.69) and the truncated density

using the law of total probability. As will be shown in the following, this approach leads
to the same result as the first method.

First, the truncated density is approximated by a Gaussian [22]:

p
(
κi−1

∣∣κi−1 ≤ κmax

)
≈ N

(
κi−1;µκ (ti−1 |κi−1 ≤ κmax ) , σ2

κ (ti−1 |κi−1 ≤ κmax )
)
,

(5.71a)
where

µκ (ti−1 |κi−1 ≤ κmax ) = µκ (ti−1)− σκ (ti−1)λκ (ti−1) , (5.71b)

σ2
κ (ti−1 |κi−1 ≤ κmax ) = σ2

κ (ti−1) [1− λκ (ti−1) (βκ (ti−1) + λκ (ti−1))] , (5.71c)
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λκ (ti−1) :=
N (βκ (ti−1) ; 0, 1)

∫βκ(ti−1)
−∞ N (κ; 0, 1) dκ

, βκ (ti−1) :=
κmax − µκ (ti−1)

σκ (ti−1)
. (5.71d)

Effectively, the mean of κi−1 after truncation is shifted away from the upper bound at
κmax and the variance decreases.

Second, a Gaussian approximation of the conditional marginal density is calculated
from the conditional density p

(
κi
∣∣κi−1

)
and the approximated truncated density (5.71).

Both distributions are Gaussians and applying the law of total probability yields accord-
ing to (2.13):

p
(
κi
∣∣κi−1 ≤ κmax

)
≈ N

(
κi;µκ (ti |κi−1 ≤ κmax ) , σ2

κ (ti |κi−1 ≤ κmax )
)
, (5.72a)

where

µκ (ti |κi−1 ≤ κmax ) = µκ (ti) +
ρκ (ti, ti−1)

σ2
κ (ti−1)

· [µκ (ti−1 |κi−1 ≤ κmax )− µκ (ti−1)]

(5.71b)
= µκ (ti)−

ρκ (ti, ti−1)

σκ
λκ (ti−1) , (5.72b)

σ2
κ (ti |κi−1 ≤ κmax ) = σ2

κ (ti) +
ρ2
κ (ti, ti−1)

σ4
κ (ti−1)

·
[
σ2
κ (ti−1 |κi−1 ≤ κmax )− σ2

κ (ti−1)
]

(5.71c)
= σ2

κ (ti)−
ρ2
κ (ti, ti−1)

σ2
κ (ti−1)

· [λκ (ti−1) (βκ (ti−1) + λκ (ti−1))] .

(5.72c)

This final result is the same as the one derived in [22] where the true non-Gaussian
density (5.70) is approximated by its first two moments.

Based on the results µκ (ti−1 |κi−2 ≤ κmax ) and σ2
κ (ti−1 |κi−2 ≤ κmax ) from each previous

iteration, one can recursively calculate the approximation for i = 2, . . . , k. Finally, (5.68)
becomes a product of integrals of one-dimensional Gaussians:

P
(
tB ≤ tk

)
= 1−

k∏

i=2

ˆ κmax

−∞
N
(
κi;µκ (ti |κi−1 ≤ κmax ) , σ2

κ (ti |κi−1 ≤ κmax )
)

dκi

·
κmaxˆ

−∞

N
(
κ1;µκ (t1) , σ2

κ (t1)
)

dκ1 . (5.73)

Independent Gaussians Solving (5.66) is drastically simplified if κ1, . . . , κk is a se-
quence of independent Gaussian random variables. Then, the joint density p

(
κ1, . . . , κk

)

can be factorised and the integration performed individually:

P
(
tB ≤ tk

)
= 1−

k∏

i=1

ˆ κmax

−∞
N
(
κi;µκ (ti) , σ

2
κ (ti)

)
dκi . (5.74)

This result has been obtained in [83] by first modelling the activation logic as a two
state Markov chain and applying the Chapman-Kolmogorov equation. Note that the
approximate solution (5.73) reduces to (5.74) in the uncorrelated case. This is because
the conditional marginal density (5.72) equals the unconditional one if ρκ (ti, ti−1) = 0.
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(a) Monte-Carlo integration of (5.66).
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(b) Closed-form approximation (5.73).

Figure 5.6 Probability of exceeding a threshold κmax = 1 until the kth element of a random
sequence defined by a Gauss-Markov process. The process is defined by κi ∼ N (0, 1) and
varying cross-covariance cov (κi, κi−1) ∈ [0, 1] ∀i. Comparing the numerical Monte-Carlo
estimate (a) to the approximate solution (5.73) in (b) reveals deviations for high values of
the correlation, that is cov (κi, κi−1)→ 1. Nevertheless, the importance of considering the
correlation is indicated by the non-linear contours.

Monte-Carlo simulations The purpose of the numerical analysis is to compare the
probability of an activation given by the integral (5.66) to the approximation (5.73). This
is done for a Gauss-Markov process with varying correlation coefficient. Thereby, insight
on the general limitations of this approximation is obtained.

Sequences κ1, . . . , κk of a random variable from a Gauss-Markov process up to k = 50

are generated. The individual elements are identically distributed Gaussians κi ∼
N (0, 1). Simulations are performed for different values cov (κi, κi−1) ∈ [0, 1] of the
cross-covariance.17 A threshold of κmax = 1 defines an activation event. For each of
Nsim = 1× 104 independent sequences it is evaluated whether κmax has been exceeded at
least once until the kth element of the sequence. Thus, the fraction of all sequences, for
which this is true, yields a Monte-Carlo estimate of the probability P

(
tB ≤ tk

)
.

The estimated probability is visualised over the cross-covariance in Fig. 5.6 and com-
pared to the analytical model (5.73). If cov (κi, κi−1) = 0, one has the case of independent
Gaussians and the approximate model reduces to the exact solution (5.74). For a fixed
sequence length k, the highest probability of an activation is obtained in this case but
lower values result as the cross-covariance increases. This stresses that neglecting the
correlation leads to inaccurate results.

For high correlations cov (κi, κi−1)→ 1, the approximate model fails to produce correct
estimates. Due to the strong coupling between subsequent values, the first element κ1

17Since var (κi) = 1, the correlation coefficient cor (κi, κi−1) =
cov(κi,κi−1)

var(κi)
thus varies within the possible

spectrum from independence to total positive correlation.
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alone determines κ2, . . . , κk. Thus, the overall probability of exceeding κmax once does
not depend on the length of the sequence.

5.2.4.4 Probability of a collision

Previously, the distribution of a criticality measure has been studied under the assump-
tion that a collision will definitely occur. In order to find the overall unconditional
distribution, the probability of a collision needs to be considered.

The initial formulation of criticality in (5.44) is very general and includes the possibility
that no further driver action at all is needed to avoid a collision within the prediction
horizon. This might be the case if a preceding vehicle is driving on a different lane or
with a higher velocity. In order to derive specific risk metrics, the problem is transformed
to finding the necessary driver inputs which lead to the last uncritical state γ prior
to a collision. The transformation (5.46) implicitly assumes that a collision will occur
otherwise. Therefore, certain restrictions on the state have to be imposed in order to
obtain sensible criticality values κ (xk). For example, the TTC (5.48) is defined only for
negative relative velocities vx,k < 0 and possesses a singularity for vx,k = 0. Formally, a
criticality measure κ (xk) is thus defined on a subset xk ∈ XC of the entire state-space.

Concerning the statistical model from Sec. 5.2.4.1, the previously derived Gaussian
N
(
κ (xk) ;µκ (tk) , σ

2
κ (tk)

)
therefore defines a conditional distribution p

(
κ (xk)

∣∣xk ∈ XC

)
.

In order to obtain the unconditional distribution p
(
κ (xk)

)
it is necessary to know the

probability P
(
xk ∈ XC

)
. However, since the future trajectory is assumed uncertain in

this work, a straightforward definition of XC is not possible. Instead, the fundamental
problem of determining the probability of a collision between two objects which are on
uncertain trajectories xe (t) and xo (t) has to be solved.

Given the joint probability density p(t)

(
xe,xo

)
:= p

(
xe (t) ,xo (t)

)
and a collision indi-

cator function IC (xe,xo) from (5.43), the instantaneous probability of a collision event
C(t) at a specific point in time t can be calculated as follows [50]:

P
(
C(t)

)
=

ˆ
x

o

ˆ
x

e
IC (xe,xo) p(t)

(
xe,xo

)
dxe dxo . (5.75)

Depending on the involved probability density and geometries, evaluating this integral
may become intractable and must be approached by Monte-Carlo techniques. Further-
more, P

(
C(t)

)
defines the probability of a collision at a single time instant t conditional

that the previous trajectory has been collision-free. In order to obtain the overall collision
probability P

(
C(tk,tk+T̄)

)
within a time interval t ∈

[
tk, tk + T̄

]
, the integration has to be

extended over the time domain.
A number of previous works have investigated this problem, but most of them rely

on numerical Monte-Carlo methods. To alleviate the computational burden, various
re-parametrisations or assumptions on the general problem formulation have been
reported and a brief overview will be given in the following. As a novel contribution, an
approximation of an approach described in [145] will be proposed. This simplifies the
problem to an integration over a one-dimensional Gaussian density function.
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Most works introduce a discrete-time formulation of the problem. Then, a discrete
time Bayes filter18, for example the unscented [34] or extended Kalman filter [90], can
be used to calculate the state predictions p

(
xe
k,x

o
k

)
at future time steps. Non-iterative

predictions in continuous time, such as the linearisation approach from Sec. 4.2, are
employed in [141, 145]. Another work uses stochastic reachable sets [4].

With the state prediction densities, the integration over the state space can be per-
formed by Monte-Carlo techniques [173] or grid-based calculations [4, 148]. Alternatively,
a re-parametrisation can be introduced first in order to simplify the calculation. For
example, collisions can be defined on a two-dimensional vector space [90], as a one-
dimensional distance function [18] or in two-dimensional relative coordinates [28].

The difficulty of this problem is due to the dependence between the states over time.
At each time instant, the distribution of the current state is conditional that no collision
has occurred before. This can be identified as the same notorious integration as in (5.66)
but with the added complexity of multivariate density functions. A technique based on
conditional marginals, similar to the one discussed in the previous section, is proposed
in [150] to efficiently calculate the probability.

Suitable for potential rear-end collisions in longitudinal traffic, [145] develops a com-
pletely analytical formulation. Here, the motion is separated in longitudinal and lateral
direction. Moreover, simple rectangular shapes and zero heading angles are assumed.
A similar setting is assumed in [141] but a further projection on a constant non-zero
heading angle is taken into account. By considering the lateral and longitudinal motion
separately, the calculation is structured into two steps:

1. Firstly, the probability density pttc
(
ttc
)

of the point in time ttc where both vehicles
share the same longitudinal position x has to be obtained.

2. Secondly, the probability density py
(
y (τ)

)
of the lateral distance y at a time instant

τ is integrated over a critical corridor |y| ≤ ycoll conditional on the time ttc. The
width ycoll is defined by the vehicles’ shapes.

In the case of independent motion in x and y, this reads [145]:

P
(
C(tk,tk+T̄)

)
=

ˆ tk+T̄

tk

ˆ ycoll

−ycoll

py
(
y (τ)

∣∣τ
)
pttc(xk)

(
τ
)

dy dτ . (5.76)

In the following, a further simplification of this bivariate non-Gaussian integration to a
one-dimensional Gaussian is proposed. To this end, it is assumed that the uncertainty in
ttc (xk) can be neglected. This assumption simplifies (5.76) to:

P
(
C(tk,tk+T̄)

)
=

ˆ ycoll

−ycoll

py
(
y (ttc (x̂k))

)
dy . (5.77)

The simplification to a one-dimensional Gaussian, whose integral is available for example
using lookup-tables, is certainly beneficial for real-time applications. The goodness of
this approximation will be further evaluated with Monte-Carlo simulations in Sec. 5.2.5.3.
18However, since the objective is to calculate a prediction, the measurement step is left out and the

algorithm consists of an iterated calculation of the prediction step (4.4).
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Table 5.2 Simulation parameter values for uncertainty propagation in the TTC.

Variable Value

State estimation mean x̂k =
[
x̂k −10 m/s

]T
, x̂k ∈ {30 m, 20 m, 10 m}

State estimation covariance Σx (tk) = diag
(

0.25 m2, 0.0625 m2/s2
)

Process noise Sx = 2 · 0.375 m2/s4s−1

5.2.5 Numerical examples

The following three sections detail simulation results which are used to illustrate and
validate the analytical models from Sec. 5.2.4. Firstly, the distribution of criticality
measures under state estimation and prediction uncertainty is considered in Sec. 5.2.5.1.
Subsequently, the time of activation is analysed in Sec. 5.2.5.2. Thirdly, the proposed
model for the collision probability is assessed in 5.2.5.3.

5.2.5.1 Uncertainty propagation in criticality measures

The distribution of the TTC criticality measure from example 5.3 is analysed in the
following due to its intuitive interpretation.

The simulation setup comprises simulated trajectories which are defined in relative
coordinates and state estimates affected by Gaussian noise. TTC values are calculated
from these noisy estimates. The scenario consists of a one-dimensional motion with
a relative velocity of −36 km/h. Simulations are performed for three different mean
distances x̂k ∈ {30 m, 20 m, 10 m}. Examples of the resulting trajectories are shown in
Fig. 5.7 based on the parameter values as given in Tab. 5.2.

For each simulated trajectory, the true value of the TTC is given by the time of crossing
the x-axis in Fig. 5.7. A Gaussian model of the distribution of the TTC measure has
been derived in example 5.6. To first order, the expected value is ttc (x̂k). The variance
var (ttc (xk)) on the other hand follows from (5.58).

Comparing the deterministic (Fig. 5.7(a)) and stochastic (Fig. 5.7(b)) trajectories reveals
that the TTC is more widespread in the second case. This difference can be recognised in
the histograms in Fig. 5.8 as well, where the simulated values that result for different
initial distances are shown. As is expected, an increased variation due to the uncertainty
of the trajectory is caused at higher distances, that is a longer prediction horizon. Finally,
the analytical models agree well with the numerical results.

5.2.5.2 Uncertainty in decision timing

Having analysed the distribution of the time-to-collision at single time instants, it is now
studied how the probability of exceeding an activation threshold evolves over time, as it
is discussed in Sec. 5.2.4.3. Thus, the entire derivation of the TTC distribution, including
its time correlation and the approximate solution of the integration is evaluated.
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Figure 5.7 Distance x over time for a trajectory with a mean initial value x̂k = 30 m and a
relative velocity of v̂x,k = −36 km/h. Trajectories are generated with randomly sampled
initial values and with (a) a deterministic or (b) uncertain motion model. The analytical
propagation from example 4.4 is visualised by dashed and dash-dotted lines for the
mean trajectory and 90% quantiles, respectively. The time of crossing the x-axis is the
time-to-collision which becomes more widespread in the case of process noise.
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Figure 5.8 Time-to-collision for trajectories with three different mean initial distances
x̂k ∈ {30 m, 20 m, 10 m} and relative velocity v̂x,k = −10 m/s. For each of the three initial
distances, Nsim = 1× 103 trajectories are simulated without (a) and with (b) process noise.
The times of crossing the x-axis as visualised in Fig. 5.7 are depicted as histograms.
For comparison, the analytical model derived in example 5.6 is shown and a good
correspondence is obtained. Slight deviations of the simulated distributions from a
Gaussian are caused by the non-linear mapping to the criticality. Comparing (a) and (b)
reveals that the influence of uncertain trajectory predictions increases with the prediction
horizon, that is the ttc.
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Table 5.3 Simulation parameter values for evaluating the decision timing based on the
TTC. In order to minimise the influence of time discretisation on the activation timing,
the sampling time is intentionally chosen smaller than in other numerical examples.

Variable Value

Initial state mean x̂1 =
[
20 m −10 m/s

]T

State estimation covariance Σx := Σx (ti) = diag
(

0.25 m2, 0.0625 m2/s2
)
∀i

State error correlation cov (xi,xi−1) = 0.3 ·Σx ∀i
Sampling time TS = 0.006 75 s

Activation threshold ttc,min = 0.8 s

For the example of the TTC metric, a brake activation is naturally defined when falling
below a threshold ttc (xk) < ttc,min. Here, a value of ttc,min = 0.8 s is chosen.19

The true trajectories are assumed as deterministic now and therefore no process noise
is included. Otherwise, the ideal time of intervention would become a random variable
itself. A mean initial distance of x̂1 = 20 m and a relative velocity v̂x,1 = −10 m/s are
chosen. Ideally, the criticality threshold ttc,min = 0.8 s is thus reached at tB,ideal = 1.2 s. All
parameters which define the simulation are given in Tab. 5.3. Two cases are investigated:
First, the state estimation errors are sampled independently with cov (xi) = Σx and
cov (xi,xi−1) = 0 ∀i. In the second case, correlated sequences of the estimation errors are
sampled from a Gauss-Markov process with cov (xi,xi−1) = 0.3 ·Σx ∀i.

For the first case, Fig. 5.9(a) shows the variance and cross-covariance over time and
compares the simulated values to the analytical models. Criticality estimates are calcu-
lated from the noisy states and the resulting time of activation is shown in Fig. 5.10(a).
Although the noise has zero mean, the distribution of tB is clearly biased towards early
activations, an effect that was previously noted in [83] as well. In the absence of correla-
tions, (5.74) is an exact solution of the integration and agrees well with the simulation
results.

Secondly, the simulation is conducted for sequences with correlated estimation errors.
The propagation of variance and cross-covariance in the TTC is visualised in Fig. 5.9(b)
and compared to the analytical models. Both quantities are again well described by the
theoretical result. Since the covariance is chosen identical to the first simulation, the
model (5.74) of independent Gaussian errors remains the same. However, the simulated
values of the activation time shown in Fig. 5.10(b) reveal a wider distribution. This effect
can therefore be attributed to the correlation of the estimation errors. Concerning the
previous analysis of the approximate model (5.73) in Fig. 5.6, the correlation coefficient

19Thus, the density after truncation from below p
(
ttc,i−1

∣∣ttc,i−1 ≥ ttc,min

)
has to be approximated. The

result is similar to the density bounded from above in (5.71). βκ in (5.71d) remains the same but with
the lower bound κmin inserted. Only a slightly different definition of
λκ :=

(
N (βκ; 0, 1)

)(
1− ∫βκ−∞N (κ; 0, 1) dκ

)−1 is needed.
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lies within a region where good approximations are expected. It is thus not surprising
that the simulated values are matched well by the model.

5.2.5.3 Probability of a collision

As has been highlighted in Sec. 5.2.4.4, calculating the probability of a future collision
between extended objects in general dynamic scenes is almost impossible without Monte-
Carlo methods. In the special case of longitudinal scenarios and simplified geometries,
the problem can be tailored to integrating over a univariate Gaussian density function
(5.77). The accuracy of this appealingly simple approach is evaluated in the following.

The analytical model (5.77) relies on a representation of the situation in the moving
Cartesian coordinate system relative to the ego-vehicle. A collision is then defined in
(5.76) by crossing the y-axis at a lateral position |y| ≤ ycoll. Since the tolerable margin
in general depends not only on the dimensions but also on the orientation angle of the
object, ycoll has to be defined with assumptions on this angle.

Here, rectangular shapes with lengths lego and lobj as well as widths wego and wobj for
ego-vehicle and object, respectively, are assumed. A lower value of the critical corridor’s
width is obtained for exactly parallel trajectories at the time of passing as:

ycoll,underapprox =
1

2

(
wego + min

(
wobj, lobj

))
. (5.78)

On the other hand, if the object’s direction of motion deviates from a parallel course
towards the ego-vehicle, a sensible value is given by the sum of the diagonals:

ycoll,overapprox =
1

2

(√
l2ego + w2

ego +
√
l2obj + w2

obj

)
. (5.79)

The chosen simulation setup is similar to the one from Sec. 4.2.8.1: While the ego-vehicle
moves on a straight trajectory according to the CTRA model, an object crosses into the
driving corridor with a constant velocity. The motion of both traffic participants is driven
by process noise and only an uncertain estimate of the object’s initial state is known.
Details on the selected parameter values are given in Tab. 5.4 and exemplary trajectories
are visualised in Fig. 5.11(a).

Monte-Carlo simulations with Nsim = 1× 103 independent trajectories per initial state
yield numerical estimates of the collision probabilities. These reference values are shown
in Fig. 5.12(a) over the object’s initial position (x0, y0). As is expected, the highest risk
results when starting immediately in front of the ego-vehicle. Since the object moves
perpendicular to the vehicle’s trajectory, the contour lines are tilted. Fig. 5.11(b) shows
the results for one initial lateral offset y0 = 0 m. Since the trajectories cross at an angle
of approximately 90◦, the simulated values are closer to the model prediction for the
underapproximation (5.78) than the conservative approximation (5.79).

Overall, a reasonable prediction of the collision probability is obtained with the ana-
lytical approach. Limitations of the accuracy are caused by an unknown angle and the
assumption of mostly longitudinal motion.
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(a) Uncorrelated state estimates.
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(b) Correlated state estimates.

Figure 5.9 Variance var
(
ttc,i
)

(upper row) and cross-covariance cov
(
ttc,i, ttc,i−1

)
(lower

row) over time. The propagation of correlated state estimation errors to the criticality is
derived according to Sec. 5.2.4.2.
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Figure 5.10 The time tB at which the TTC criticality measure exceeds the threshold
ttc,min = 0.8 s is shifted to earlier activations due to noisy state estimates. For uncor-
related state estimation errors (a), the probability can be calculated exactly according to
(5.74). If errors are correlated over time (b), calculating the exact probability is intractable
but the recursive approximation (5.73) yields an estimate thereof.
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Figure 5.11 Monte-Carlo simulation results of the collision probability. An exemplary
realisation of the simulated trajectories is shown in (a). For a varying initial distance x0,
the estimated collision probability is shown in (b). The numerical results are compared
to the analytical model (5.77) with the underapproximation (5.78) and the conservative
approximation (5.79) for the parametrisation of the critical corridor width ycoll.
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Figure 5.12 Probability of a collision for different mean initial object positions (x0, y0).
Monte-Carlo simulation results in (a) serve as reference for the developed analytical
model (5.77). Model predictions are calculated for two variants of the critical corridor
width, the lower bound (5.78) in (b) and the conservative approximation (5.79) in (c).
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Table 5.4 Simulation parameter values for evaluating the collision probability.

Variable Value

Eg
o-

ve
hi

cl
e Initial state mean x̂e (tk) =

[
0 m 0 m 13.89 m/s 0◦ 0 m/s2 0 rad/s

]T

Initial state
covariance

Σe
x (tk) = 06×6

Process noise
Se
a = 0.224 m2/s6s−1 , Se

ω = 0.0038 rad2/s4s−1

Vehicle dimensions wego = 2 m, lego = 4 m

O
bj

ec
t Initial state mean

x̂o (tk) =
[
x0 y0 0 m/s 1 m/s

]T
,

x0 ∈ [10 m, 80 m] , y0 ∈ [−10 m, 10 m]

Initial state
covariance

Σo
x (tk) = diag

(
0.25 m2, 0.25 m2, 0.0625 m2/s2, 0.0625 m2/s2

)

Process noise Sx = 0.25 m2/s4s−1 , Sy = 0.25 m2/s4s−1

Object dimensions wobj = lobj = 1 m

Sampling time TS = 0.0675 s

Prediction horizon T̄ = 8 s

5.2.6 Summary

Criticality measures are examples of algorithms for situation interpretation with a
widespread application in emergency brake systems. In order to develop robust systems,
previous works have investigated the properties of these algorithms under inevitable
measurement uncertainties. Both numerical and analytical approaches have been used
to this end.

However, a crucial part of a criticality assessment is given by implicit prediction
models. Since possible uncertainties in such predictions have not been addressed in
previous analyses, this section extends the state of the art with a method for the analytical
propagation of measurement and prediction errors.

In order to obtain a method that is applicable beyond a particular algorithm, several
criticality measures have been first reviewed and formulated in a generic framework.
Subsequently, Gaussian error propagation in closed form has been developed based on
this framework and exemplified for two specific algorithms.

A second contribution concerns the time at which a criticality measure exceeds an
activation threshold. Previous analyses have modelled this activation timing under
the assumption that criticality estimates are independently distributed over time. The
problem has been extended to the more general case of a Markovian time-series where
the errors are correlated. Since the exact probability is practically intractable to calculate,
an approximate solution that consists of recursive Gaussian approximations has been
developed. Comparisons with Monte-Carlo simulations indicate that the approximation
yields more accurate results than a naïve model which does not take correlations into
account. Limitations of the approximation occur for strong correlations.
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The models developed in this section can be connected with other parts of the thesis
and therefore lead to further conclusions. For example, instead of using an assumed
value for the covariance of the state estimates, the time-dependent model given by the
Cramér-Rao bound from Sec. 4.1 can be employed. Thus, a credible and throughout con-
nection from the parameters of the sensor to the criticality estimation can be established.
Parametrised models for prediction errors on the other hand can be identified with the
expectation maximisation principle as described in Sec. 4.2. A comprehensive analysis of
an automatic emergency brake system which comprises these aspects will be presented
in Sec. 7.2.



6 Signal processing methods for the
generation of reference data

This chapter presents and evaluates concepts for post processing of laser scanner mea-
surements in order to obtain an accurate environment representation (reference data). It
is organised in five sections: First, the need for reference data and the motivation to use
post processing to this end are outlined in Sec. 6.1. Second, the problem is formulated in
Sec. 6.2 and known on-line processing approaches are discussed. This leads to a novel
concept for off-line processing that is proposed in Sec. 6.3. An implementation of the
method is then experimentally evaluated as detailed in Sec. 6.4. Finally, the findings are
summarised and directions for further enhancements discussed in Sec. 6.5.

6.1 Introduction

As has been seen throughout the previous sections, it is unrealistic to expect that the
entirety of an intelligent vehicle’s workspace may be formalised in a complete and
accurate model. Therefore, tests in real-world situations remain an important part of
a system’s development and approval process. The following sections will discuss
technical implications of such tests and devise novel approaches to the specific task of
reference data generation.

According to the framework that has been developed in collaboration with ZOFKA

et al. [220], testing involves three major tasks: First, test acceptance criteria have to be
defined and formalised quantitatively in terms of a metric. Second, reference information
is required to assess a system on an absolute scale. For example, ground truth distances
to relevant objects may be provided by a highly accurate reference sensor. The estimation
accuracy of a system under test can be evaluated by comparing the estimated values
to the ground truth, for instance in terms of the mean squared error metric. Third, all
relevant conditions under which a test is to be conducted, called test scenarios, have
to be formalised. Especially for higher automated driving functions, the variety of
traffic situations which have to be tested is abundant. One approach is to generate
a parametrised description of these situations from empirical data [210]. This again
requires an accurate representation of the driving environment, especially of other
vehicles’ trajectories.

In principle, reference data may be obtained from raw sensor measurements with
the same methods as in a real-time capable signal processing chain. However, real-
time operation is usually not a requirement for the generation of reference data and
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instead, raw measurements may be post processed. Besides lower restrictions on the
computational effort, this enables a backward propagation of information.

The following sections will discuss the benefits of post processing on the example of a
laser scanner (LIDAR1) sensor. Due to an inherently high accuracy of the measurement
principle, LIDAR sensors are frequently used in the driver assistance domain to obtain
reference data [62, 156]. Solutions to the classical problem of on-line processing of
automotive LIDAR measurements have been presented in numerous works, for instance
in [101, 102, 194]. However, to the best of the author’s knowledge, no detailed evaluations
of the advantages of off-line processing have yet been published apart from a sketch of
the idea given in [113].

6.2 Background on laser scanner signal processing

Laser scanner sensors obtain an environment representation in the form of a sparse
depth image. Each depth value corresponds to one reflection (scan point) of a laser
beam. In this work, only 2-D LIDAR sensors with a narrow vertical opening angle
are considered. These perceive a planar depth image of the environment whereas 3-D
sensors additionally give height information in high resolution. The beams are rotated
by small angular increments and cover a horizontal opening angle of usually more than
90◦ per cycle. Due to a high angular resolution, extended objects are usually represented
by multiple adjacent scan points, especially at short distances. Fig. 6.1 illustrates this
measurement principle. Although the raw scan points are usually measured with a fairly
high accuracy, a lack of spatial and temporal associations renders an immediate use
impractical:

p The association between scan points which stem from the same object is not known.

p Scan points from multiple cycles belonging to the same object seen at different time
steps are not associated.

p Moreover, scan points represent mere distances. Neither velocity information nor
characteristic features of an object, as for example in images, are included.

The objective of a LIDAR signal processing chain is therefore to infer a compact and
information rich environment representation from the raw measurements. According
to the aforementioned aspects, this is usually achieved by three algorithmic steps as
visualised in Fig. 6.2(a):

1. Scan points which are likely to belong to the same object are grouped into segments.
This segmentation is usually based on distance measures, for example the Euclidean
distance in Cartesian coordinates or, taking the angular discretisation into account,
in polar coordinates [101, 102].

1Light detection and ranging.
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Figure 6.1 Visualisation of exemplary LIDAR measurements from an urban road with
three lanes. The left image shows how the scan points evolve over a period of 1 s, from
light to dark colours. After the first processing step, segments as shown in the central
column result. Tracks (right column) are initialised from these segments and a continuous
trajectory is estimated as indicated by coloured arrows.

2. When a temporal association between measurements from the same object is es-
tablished, a track results. The decision to initialise a new track with scan points
that cannot be assigned to one of the previously observed tracks is based on rele-
vance criteria. For example, relevant measurements that stem from a vehicle may
be distinguished from clutter if they show a distinct shape [101] or a consistent
motion [194].

3. A model-based state estimator, for example an extended Kalman filter (Sec. 4.1.3.4),
is employed to infer unobservable motion parameters such as velocities and accel-
erations for each track. To this end, scan points that have been associated to the
track are condensed to a compact feature vector, for example the coordinates of the
centroid [101]. The feature vector serves as a measurement for the recursive state
estimator. This results in an estimate of the motion state trajectory with associated
covariance for each object.

Note that the extension of a track in the second step and the motion state estimation are
closely linked. For the extension of a track, scan points are searched close to locations
that are expected from the current motion. Thus, a successful track extension depends
on the accuracy of the motion state estimate.

For real-time applications, these algorithmic steps can only make use of past measure-
ment information. Batch processing of an entire sequence of scan points on the other
hand offers additional flexibility. The following section will discuss how this can be
leveraged to achieve a more accurate and complete estimate of vehicle trajectories.
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(b) Off-line approach.

Figure 6.2 Outline of laser scanner signal processing. In a classical on-line approach
(a), tracks are initialised, extended or terminated per time step based on the currently
available measurements. One core principle of the proposed off-line approach (b) is to
defer the decision for a track initialisation until sufficient evidence is available. To this
end, an additional rating of the segment quality is introduced. Tracks are initialised for
the best rated segments and subsequently extended in forward and backward direction.
A second important part is to perform an additional backward smoothing of the state
estimates.

6.3 Approaches to off-line signal processing

Classical approaches to on-line processing of laser scanner measurements are extended
to novel approaches for batch processing in this section. A detailed account on the
method’s development and a prototypical implementation are given by WALKLING and
HOCH in the supervised theses [224, 226]. Furthermore, parts of the following content
can also be found in the publication [215].

The proposed approach is founded on two principle ideas:

1. Relevant objects in dynamic traffic situations are usually visible from both far and
close distances. This and additional dynamic occlusions influence the number of
scan points that are obtained from an object at a specific time. An off-line approach
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can level this varying amount of information by backward propagation from later
to earlier time steps.

2. For real-time capable operation, handling entire sets of scan points is often imprac-
tical due to limited computational means. Therefore, the raw scan point measure-
ments are usually condensed to an abstract representation, for example bounding
boxes [213]. Such restrictions can be relaxed for post processing. Thus, model-free
algorithms which operate directly on scan points can be applied.

Following these ideas, it is proposed to extend the classical approach to a concept that
is shown in Fig. 6.2(b). The foremost difference is that the decision for the initialisation
of a track is deferred to an arbitrary time step where one has the highest quality of
measurement information. A track is then extended in both backward and forward
direction to those time steps where fewer and sparse scan points from the same object
are available. This approach is only possible in post processing where measurements
can be processed in an arbitrary order instead of strictly sequentially.

In order to enable a thoughtful choice of the initial time step, a quantitative measure is
employed to rate the quality of all segments from the entire sequence of measurements.
This continuous measure considers two characteristics of the scan points that belong to a
segment:

1. A high number of scan points indicates a rigid object with a relevant size.

2. The goodness of fit between the scan points and a model of the typical appearance
of relevant objects is measured in terms of the residual error. For example, cuboid
objects, such as vehicles, appear as one, two or three perpendicular line segments
in the 2-D depth image [101].

The central idea is then to initialise tracks only where sufficient evidence indicates the
presence of a relevant object. This ensures that the initial motion state estimates can
be obtained from a sufficient number of scan points. Therefore, the criteria for a track
initialisation are checked for each segment in the order of the quality rating. One criterion
is that a consistent and plausible motion exists over neighbouring time steps. To this
end, the rotation and translation between scan point clouds are estimated with the help
of methods from Sec. 3.2.3.

If a track has been successfully initialised, it is extended in both forward and backward
direction. To extend a track, all scan points in neighbouring time steps are matched
against predictions according to the state estimates at the current boundaries of the
track. In order to increase the accuracy of these state estimates and thus the chances of a
successful track extension,2 the first few iterations are performed in alternating order.
This approach is illustrated in Fig. 6.3.

2This is especially problematic for non-linear models, where a state estimate is used as the linearisation
point. If the estimate is far away from the true state, the linearised model might be very inaccurate and
the filter diverges.
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Figure 6.3 Sequence of track extensions and state estimation updates. During the first
steps (1–4), the track extension is performed in forward and backward direction in
alternating order. After this start-up phase, further extensions are conducted individually
per direction (5–6), until the track termination criterion is met. Lastly, the state is estimated
by a final filtering and smoothing operation over the entire track (7–8).

Instead of extending a track separately in forward and backward direction, the motion
state estimates are refined each time that an extension has been performed. To this end, a
new estimate of the state at the initial time step is calculated according to the backward
pass of an extended Kalman smoother from (4.58a). Subsequently, the filtering steps in
the opposite direction are repeated with this new initial state.

A track is terminated in either direction if a consistent match with the available scan
points cannot be established. The final state estimate is then obtained by a forward
filtering and backward smoothing pass over the whole trajectory. Furthermore, all scan
points that have been associated to the current track are removed from the pool of rated
segments. Then, the track initialisation and extension routine is repeated with the next
best rated segment from the remaining set.

In summary, the proposed approach to off-line reference data generation consists of
methods specifically tailored to LIDAR sensors, but also of other generic concepts. The
segment quality rating relies on the specific characteristics of laser scan points. On the
other hand, the iterative backward propagation of information is based on the generic
Kalman smoother algorithm and thus applicable to other measurement principles.

6.4 Evaluation

The goal of the following experimental evaluations is to reveal how off-line processing
can improve the track quality. One aspect of track quality is the accuracy of the state
estimates, which is assessed in Sec. 6.4.1. A second measure of track quality, analysed in
Sec. 6.4.2, is the average track length [174]. This metric indicates if tracks are initialised
with a delay or terminated prematurely when comparing two algorithms on the same
dataset.

In order to evaluate the advantages gained by off-line processing, an on-line capable
algorithm as visualised in Fig. 6.2(a) is used as a baseline. This implementation performs
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Laser scanner

GPS antenna Inertial
measurement
unit

Figure 6.4 Experimental vehicles for evaluation of the state estimation accuracy. The laser
scanner sensor is mounted at the front of the first vehicle. Both vehicles carry inertial
measurement units coupled with differential GPS for precise self-localisation.

track extensions solely in the forward direction. Moreover, state estimates are obtained by
an extended Kalman filter whereas the off-line algorithm uses an additional smoothing
pass. Both filters are designed for a CTRA motion model (Sec. A.2).

All remaining parts of the two implementations, for example the method used for
segmentation, as well as the criteria for the initialisation and termination of tracks, are
identical. The rationale for this choice of the baseline algorithm is that the evaluation shall
focus on the methodological differences and not the hardly comparable parametrisations
of two different algorithms.

6.4.1 State estimation accuracy

In order to quantitatively assess errors in the estimated motion state, a source of suffi-
ciently accurate ground truth information is needed. Following the approach presented
in [29], two experimental vehicles shown in Fig. 6.4 are equipped with dedicated inertial
measurement units3 (IMU) coupled with differential GPS for precise self-localisation.
Experiments are conducted on a closed test track. The ego-vehicle, which carries a 2-D
laser scanner with four beams4, remains stationary at the origin of a Cartesian coordinate
system. Laser scanner measurements and the estimated trajectories are given in these
coordinates. Since the global poses of both vehicles are known, ground truth values for
the target vehicle’s trajectory can be calculated and compared to the estimates.

The manoeuvre that is driven during the experiment consists of an accelerated ap-
proach and turn across in front of the ego-vehicle. Thereby, accelerations as well as
rotations are included. This trajectory and the motion state are shown in Fig. 6.5. It can
be seen that the track which results from post processing starts much earlier than the

3Automotive Dynamic Motion Analyzer (ADMA) by GENESYS ELEKTRONIK GMBH.
4ibeo LUX 2010 by IBEO AUTOMOTIVE SYSTEMS GMBH.
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Figure 6.5 The target vehicle approaches the ego-vehicle in a left turn across manoeuvre.
The ego-vehicle remains stationary at the origin in (a). Here, the laser scanner measure-
ments (blue) and trajectory estimates (red, green) are visualised (for visual clarity, only
every 10th cycle is shown). Ground truth positions are illustrated in black. Estimates of
velocity, acceleration and yaw rate with their estimated covariance as indicated by the
shaded ±1σ intervals are shown in (b).

one given by the baseline algorithm. A second observation that is visible from Fig. 6.5(b)
concerns the improved accuracy of the state estimates. With an additional smoothing
pass, the naturally high uncertainty at the beginning of the track is remedied.

In order to quantitatively assess this difference, the experiment is repeated ten times.
The sample mean µ∆(·) and sample standard deviation s∆(·) of the differences ∆ (·) to the
ground truth values in velocity v, acceleration a and yaw rate ω are calculated over all
cycles. As an additional figure for comparison, the state estimates of the new algorithm
prior to the smoothing pass are included. Thus, the benefit that is gained by backward
smoothing of the same measurements is evaluated. The results in Tab. 6.1 reveal that
smoothing alone reduces the standard deviation of the estimates by 15. . . 58 %. The
improvement is even higher when comparing with the baseline algorithm. Due to the
later track initialisation, fewer measurements are available for the state estimation which
negatively affects the accuracy.
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Table 6.1 Error statistics for five turn across manoeuvres. With forward processing alone
(first row), shorter tracks and higher standard deviations are obtained. The new algorithm
with backward tracking and smoothing consistently achieves the highest accuracy. In
comparison to the same estimates prior to smoothing (middle row), the standard deviation
is reduced by 15. . . 58 %.

v [m/s] a
[
m/s2

]
ω [rad/s]

Approach Cycles µ∆v s∆v µ∆a s∆a µ∆ω s∆ω

Baseline 523 −0.557 1.310 −0.038 1.21 0.050 0.128

New (filtered) 1212 −0.227 0.849 −0.003 0.767 0.021 0.095

New (smoothed) 1212 −0.312 0.723 −0.185 0.601 0.003 0.040

6.4.2 Track length

The purpose of the second experiment is to compare how much information is extracted
from the raw LIDAR measurements. To this end, the number and lengths of the generated
tracks are compared.

Recordings from real traffic scenes are used to achieve a more realistic setting than on
a test track. Divided in categories of different street types – urban and rural roads as
well as motorways – three datasets comprising 30 min each are analysed.

Before the track lengths can be evaluated in a meaningful way, a selection of relevant
objects has to be extracted. The objective is to focus on moving road users, for example
cars or trucks, but to exclude the roadside infrastructure. Making this distinction can be
achieved by a number of heuristics or machine learning techniques. Since the details
of such approaches are not in the scope of this work, classification results are obtained
by a built-in routine of the employed LIDAR sensor. Only tracks which have been
confirmed as vehicles are included in the evaluation. Moreover, the median track lengths
are only compared for objects which are present in the results of both the baseline and the
proposed algorithm. Multiple short tracks from the baseline algorithm may be associated
to the same longer track given by the new algorithm.

Tab. 6.2 shows the resulting figures and median track lengths per dataset. It can be
seen that on average, 15. . . 31 % longer tracks are achieved by backwards track extension.
This figure is lower than the difference in the overall cycle count of the test track results
in Tab. 6.1. However, those results were obtained in an artificial setting with the ideal
condition of an unobstructed view. The longest tracks are achieved on motorways where
the road layout causes fewer occlusions than on narrow and curvy streets.

6.5 Summary and outlook

This chapter has discussed and evaluated algorithms for post processing of laser scanner
measurements. The resulting tracks can be used as reference values for an empirical



172 6 Signal processing methods for the generation of reference data

Table 6.2 Statistics on tracks found in laser scanner recordings with a duration of 30 min
per street type. On motorways, fewer and longer tracks are initiated due to the separation
of the two traffic directions. Overall, the median track lengths can be increased by the
backward tracking approach.

Urban Rural Motorways

Number of all tracks
Baseline 2086 2375 1273

New 2505 2727 1597

Number of tracks con-
firmed as vehicles

Baseline 319 222 150

New 403 271 182

Number of common
tracks

Baseline 286 178 129

New 308 182 127

Median length of common
tracks

Baseline 2.4 s 2.0 s 6.4 s

New 3.1 s (+31.1 %) 2.5 s (25.0 %) 7.8 s (+20.5 %)

evaluation of other sensors or an automatic generation of test scenario descriptions.
The main principle is to use backward propagation of measurement information to
enhance the track quality. Experimental evaluations of a prototypical implementation
demonstrate the advantages of this approach.

The methods discussed in this chapter could be enhanced by additional means that
leverage the potential of post processing in other algorithmic steps. One example is
a dedicated analysis of all generated tracks in order to identify an erroneous merging
of separate objects. For instance, two motorcyclist who drive side by side may be
falsely regarded as one vehicle. However, if the trajectories separate at a later time,
this knowledge could be propagated backwards to initialise two tracks right from the
beginning.

Moreover, this work has not studied the inference of semantic class labels or the
estimation of object contour models. Both tasks are in general challenging in an on-line
approach since the available scan points are often sparse. Nevertheless, post processing
of a sequence offers the possibility to infer this information once and to propagate it to
the entire the track.
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7.1 Accuracy requirements for localisation in urban
automated driving

Landmark-based map matching enables self-localisation of intelligent vehicles if satellite
navigation is unavailable. The achievable localisation accuracy is related to the choice of
sensors for measuring landmark positions. Based on the previously developed models,
this section investigates the relation between parameters of a stereo vision sensor and
the localisation accuracy.

First, the task is further outlined in Sec. 7.1.1, followed by a review of related works
in Sec. 7.1.2. Thereafter, model assumptions and the localisation problem formulation
are stated in Sec. 7.1.3. Sensor parameter constraints are then derived in Sec. 7.1.4. The
validity of the obtained results is demonstrated with simulations in Sec. 7.1.5. An outlook
on possible future extensions in Sec. 7.1.6 concludes this section.

7.1.1 Introduction

The goal of an efficient engineering process is to quickly find a system design which
meets the application requirements and to minimise the overall costs at the same time.
In the domain of intelligent vehicles, the system design includes among other aspects the
selection of exteroceptive sensors, their characteristics (for example measurement accu-
racy and field of view) and the implementation of suitable algorithms on an embedded
device. Costs can be attributed to the chosen sensor, the electronic control unit but also
the number and duration of iterations in the development process. It has been motivated
in Sec. 1.1 that (analytical) models can help to accelerate this process. This claim will
be exemplified in the following with a model-based derivation of sensor parameter
constraints for a localisation task. As the overview in Fig. 7.1 shows, the analysis is based
on the statistical models of stereo cameras from Sec. 3.1 and feature-based localisation
from Sec. 3.2.

Landmark posi-
tion measurements

Map matching pose estimate

Signal processing chain

Stereo vision measure-
ment model Sec. 3.1

Uncertainty in map
matching Sec. 3.2

Model-based derivation of sensor parameters Sec. 7.1.4

pose accuracy
constraintsLa

nd
m

ar
ks

Se
c.

7.
1.

3.
1

Figure 7.1 Signal processing chain of feature-based localisation. Uncertainty in the pose
estimates is modelled according to the lower part. Inverting these models will lead to
requirements on the sensor parameters in order to reach a desired localisation accuracy.
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The objective is to localise the ego-vehicle with a pre-defined maximum allowed
variance of the pose estimates. To this end, a known map which comprises the positions
of georeferenced landmarks (for example lane markings [155] or traffic signs [158]) is
assumed to be available. These landmarks can be partially observed by a stereo vision
camera. Thus, the current vehicle pose relative to the map can be estimated by matching
the information from measurements and map.

The goal of this section is to derive a relationship between the pose estimation un-
certainty and the parameters of the stereo vision camera, for example the disparity
estimation error. However, the achievable localisation accuracy also depends on other
factors, such as the number and spacing of landmarks in the sensor’s field of view.

According to the discussion from Sec. 1.2, there are two approaches for finding sensor
parameter values so that the accuracy requirements are met. On the one hand, a proto-
typical system can be evaluated as a black-box in the real world. This approach yields
results under realistic conditions but has the drawbacks that it is costly to implement
the prototypical sensors and to conduct the field tests. In general, only a single sensor
configuration can be assessed at a time. Therefore, many iterations are required to find a
sensible combination of parameter values in a potentially multidimensional space.

On the other hand, white- or grey-box models can be employed to solve this problem
purely analytically or numerically [35]. Even though these models might rely on ide-
alised assumptions and simplified representations of real-world phenomena, they can
achieve a sensible initial parametrisation. This can be further refined with empirical
evaluations. For example, optimistic assumptions might be introduced for all necessary
approximations. Thus, the obtained parameters values of the sensor measurement noise
are the necessary minimum requirements.

As outlined in Sec. 1.2, one can obtain the propagation of sensor measurement noise
in the pose estimation uncertainty by either numerical or analytical methods. In the
first case, random realisations of the sensor noise and all other variable influences are
drawn and a non-parametric distribution of the pose estimates is obtained. Therefore,
an inefficient grid search on the parameter space of the sensor parameters has to be
conducted.1 In contrast, an analytical model can be inverted under certain conditions
which yields explicit expressions for the sensor parameters. This method, which has
been previously published in [211], will be further elaborated in the following.

7.1.2 Related work

While approaches for landmark-based localisation are usually evaluated and compared
to other methods in terms of the localisation error, only few works investigate the relation

1Note that in the general case, the pose estimates are obtained by solving the matrix-weighted Procrustes
problem from Sec. 3.2.3.2. Since no closed-form solution is available, this requires a numerical, iterative
approach. Thus, a Monte-Carlo simulation has to iterate over an iterative algorithm even for a single
combination of all parameter values. In contrast, the analytical model from Sec. 3.2.4.2 provides a
closed-form expression for the variance. This is helpful since the computational burden increases if a
further level of iterations, namely over the system and scene parameters, is introduced.
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to variable parameters.
To the best of the author’s knowledge, the most comprehensive discussion can be

found in [14]. There, the influence of the landmark configurations is analysed and strate-
gies for their optimal placement are developed. This approach supposes that landmarks
are artificial and may be freely placed in the environment. While this assumption is
reasonable in a controlled environment, such as a factory, this does not generalise to the
road environment. Instead of the landmark configuration, parameters of the sensors
have to be optimised in order to reach a desired localisation accuracy. Additionally, the
variability of landmark occurrences has to be taken into account.

A second remarkable work by BANSAL et al. [9] presents an empirical evaluation of
localisation errors in relation to the parameters of a camera-based system. In order to
relax the usual restriction that only a single sensor can be analysed at a time, images are
first recorded by an omnidirectional panoramic camera. Subsequently, a virtual camera
configuration with an arbitrary mounting angle and field of view can be emulated from
this data. Since empirical measurements are used, this approach promises a high degree
of realism. However, the method is limited to a fixed type and mounting position of the
(virtual) sensor. These limitations are overcome in a purely model-based approach as is
pursued in the following.

7.1.3 Models and problem formulation

The models which will be used to derive the localisation accuracy constraints will be
introduced in this section. This includes a probabilistic representation of landmarks and
stereo vision measurements.

Notations and coordinate systems are first defined. A global map is represented as a
two-dimensional Cartesian coordinate system with an arbitrary origin, as is visualised in
Fig. 7.2. This map contains a setM =

{
mj

}
j=1:M

of M landmarks with known positions
mj ∈ R2. Furthermore, an arbitrarily oriented and possibly curved road is assumed. An
exact model of the road in the map is not required since instead, we will focus on the
world as seen from a vehicle on this road.

To this end, a Cartesian vehicle coordinate system is introduced which is shifted by a
translation t relative to the origin of the map and rotated by an angle θ. Thus, t is the
position of the vehicle in the map and θ the current driving direction. This pose is to be
estimated from sensor measurements of the landmark positions relative to the vehicle.
The N currently visible landmarks in the vehicle coordinate system pi ∈ R2 form a set
P =

{
pi
}
i=1:N

.
Three models will be detailed in the following. Firstly, the spatial occurrence of

landmarks is modelled according to a generic framework in Sec. 7.1.3.1. Secondly, the
sensor measurement model of a stereo vision camera, as detailed in Sec. 3.1, is recalled
in Sec. 7.1.3.2. In the third part Sec. 7.1.3.3, the pose estimation task will be formulated.
A model of the pose estimation uncertainty has been previously derived in Sec. 3.2.
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Figure 7.2 Illustration of the map (black) and vehicle (red) coordinate systems. Three
landmarks with known locations

{
m1,m2,m3

}
are part of the scene. Two of these are

measured by the vehicle’s front-facing sensor as
{
p1,p2

}
. The vehicle’s pose (t, θ) is

estimated by matching the feature locations.

7.1.3.1 Landmarks

The central requirement on landmarks is that they are stationary and can be reproducibly
detected by the available exteroceptive sensor. Different domain- and sensor-specific
features are used to this end.

Lane markings [155] or traffic signs [158] are typical candidates for frequent stationary
elements in the road environment. Their distinct appearance facilitates the development
of detection algorithms. Other types of landmarks are given by abstract features that
are derived from raw sensor measurements. For instance, image features such as the
DIRD descriptor can be employed [115]. Since the certainty of a pose estimate increases
with the number of available landmarks, a combination of different types is also a viable
approach [208].

In the following, relevant types of landmarks are assumed to be given by distinct road
markings or belong to the roadside infrastructure. In order to take the environmental
variability into account, a probabilistic model of the occurrence of landmarks is employed.
However, it is not the scope of this thesis to develop models of the distribution of certain
real-world infrastructure elements and the interplay with a specific sensor. This topic
is pursued by ROHDE et al. [212]. Therefore, the framework that is proposed in the
following is a generic preliminary approach only.

In order to minimise the complexity of the parametric model, landmarks are described
in the coordinate system of the vehicle, and thus relative to the road, instead of in the
global map. The rationale is that the map coordinates are in general not aligned in
a specific way with the course of the road. Thus, the occurrence of roadside-related
landmarks is easier described relative to the road itself.

The only relevant relation between road and map is assumed to be a rotation by an
angle θroad. Since this alignment can be arbitrary, a uniform distribution θroad ∼ U (0, 2π)
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is employed. It is furthermore supposed that the vehicle is following the road and thus
the vehicle orientation θ equals θroad.

The position of a landmark in the vehicle coordinate system is denoted by mveh
j ,

j = 1, . . . ,M . Note that although they are represented in the same coordinate system,
there are two differences between the mveh

j and the sensor measurements pi: Firstly,
landmarks are modelled independently of the sensor’s field of view. Thus, the overall
number M is in general higher than the number of visible landmarks N . Secondly, the
measured position of a landmark pi is affected by sensor noise whereas mveh

j denotes
the true position. In this section, only the distribution of the true landmark positions is
modelled whereas the measurement model is detailed subsequently.

Firstly, the longitudinal distance ∆mveh
x between two landmarks along the road is

assumed to follow an exponential distribution with a rate parameter λLM:

∆mveh
x ∼ λLM exp

(
−λLM∆mveh

x

)
, ∆mveh

x ≥ 0 . (7.1a)

A remarkable consequence of this assumption is that it easily generalises to the case
of l = 1, . . . , L, independent kinds of landmarks with individual rates λLM,l. Then, the
minimum distance between any two landmark occurrences is distributed exponentially
as well with an overall rate λLM =

∑L
l=1 λLM,l.

Secondly, a Gaussian distribution with a variance of σ2
y is assumed to model the

occurrence in the lateral direction. Landmarks are spaced around a mean value µmy , for
example at the road boundary for traffic signs:

mveh
y ∼ N

(
µmy , σ

2
y

)
. (7.1b)

An exemplary landmark distribution is visualised in Fig. 7.3(a).
As will be seen in the following, it is partially required to resort to numerical methods

even with this simple formulation. Therefore, the assumptions of the preliminary model
are not crucial for the upcoming derivations and can be safely relaxed to allow for more
sophisticated models.

7.1.3.2 Measurement model

A perception system comprises the physical measurement principle of one or multiple
sensors as well as the employed algorithms for landmark detection with respective
parametrisations. Its relevant characteristics are the probability of detection and the
measurement noise covariance. These may furthermore depend on a landmark’s type,
its position relative to the sensor and other external effects such as dynamic occlusions.

In order to make this generic characterisation more explicit, a stereo vision sensor is
considered. Specifically, this work focusses on the distance dependence of the measure-
ment noise while other effects are modelled under idealised assumptions.

Firstly, the capability of a sensor to detect landmarks in the surroundings is modelled
spatially in terms of a field of view. The field of view is defined in a coordinate system
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relative to the sensor. For simplicity, but without loss of generality, it is assumed that this
frame coincides with the vehicle coordinates. The area in which landmarks are detected
is parametrised in terms of a maximum range rsens,max and opening angle αsens,max. Thus,
a landmark in vehicle coordinates mveh

j is detected if:
∥∥∥mveh

j

∥∥∥ ≤ rsens,max and −αsens,max

2
≤ ∠mveh

j ≤ αsens,max

2
. (7.2)

This deterministic model could be generalised to a continuous probability of detection.
It is furthermore supposed that the correspondences between measured landmarks and
those in the map are ideally known. Therefore, a subset M̃ ⊆ M contains the map
locations of all i = 1, . . . , N landmarks m̃i which correspond to the currently observed
features pi.

Secondly, the uncertain position measurement of a landmark is modelled as a Gaussian
random variable pi ∼ N

(
µpi

,Σpi

)
. For the assumed stereo vision camera, the covariance

Σpi
depends on the landmark position. Similar to the derivation in Sec. 3.1.4.4, indepen-

dent measurement noise in disparity d and image column number u is transformed to
Cartesian coordinates by linearisation:

Σpi
=

µ2
px,i

(ckbw)2

[
µ2
px,i
σ2
d µpx,iµpy,iσ

2
d

µpx,iµpy,iσ
2
d µ2

py,i
σ2
d + b2

wσ
2
u

]
≈ σ2

d

(ckbw)2

︸ ︷︷ ︸
=:ξSV

·
[

µ4
px,i

µ3
px,i
µpy,i

µ3
px,i
µpy,i µ2

px,i
µ2
py,i

]

︸ ︷︷ ︸
=:Σ

0
pi

.

(7.3)

This camera model is defined by the constant parameters base-width bw, focal length in
pixels ck and measurement noise variances σ2

d and σ2
u in disparity and image column,

respectively. Furthermore, (7.3) introduces an approximation that is based on two
assumptions:

1. σd is of the same order of magnitude as σu. This is reasonable since the disparity
value d is estimated from the difference of noisy image column values u.

2. µ2
py,i
� 0.5bw. For landmarks which are located sideways to the vehicle’s driv-

ing path, the lateral position µpy,i is multiple times larger than the base-width bw

between the two camera image planes.

In the approximate model, all sensor parameters are combined in a scalar coefficient ξSV.
This will simplify the model inversion that is necessary to find suitable parameter values
in Sec. 7.1.4.

7.1.3.3 Landmark-based localisation

Given the two sets M̃,P which contain the positions of i = 1, . . . , N corresponding
landmarks in the map and vehicle coordinates, the pose parameters t and θ are to be
estimated. The definition from (3.31) is recalled here using the notation of this section:

m̃i = Rpi + t , i = 1, . . . , N . (7.4)
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The measurement noise is anisotropic and heteroscedastic as seen from the covariance
(7.3). Therefore, the matrix-weighted Procrustes problem from Sec. 3.2.3.2 has to be
solved with an appropriate numerical scheme.

The pose estimates’ variance has been analytically derived in Sec. 3.2.4.2. Note that
since the map is assumed to be accurate, only the gradients with respect to the sensor
measurements have to be obtained:

σ2
θ =

N∑

i=1

(
∇pi

θ̂
)

Σpi

(
∇pi

θ̂
)T

, (7.5a)

Σt =

(
∂

∂θ
t̂

)
σ2
θ

(
∂

∂θ
t̂

)T

+
N∑

i=1

(
∇pi

t̂
)

Σpi

(
∇pi

t̂
)T
. (7.5b)

The complete expressions for the derivatives are given by (3.54) inserted in (3.47) and
(3.55). They are independent of the landmark coordinates m in the map. Thus, the
estimation error is not affected by the arbitrary definition of a map’s origin.

7.1.4 Derivation of sensor parameter requirements

The covariance Σt of the estimated vehicle position t̂ depends on the covariance Σpi

of the individual landmark observations and therefore the sensor parameters. Given
a requirement on the estimate’s covariance matrix Σt, for example upper bounds on
the diagonal elements, necessary requirements on the sensor parameter values are to be
derived. In the general case, inverting the model (7.5b) is not trivial due to the involved
matrix multiplications and possibly non-linear relationships. However, in a special case
where the relevant sensor parameters can be expressed as a scalar coefficient in front of
the measurement error covariance, a closed-form solution is possible.

As an example of this special case, the approximate measurement model of the stereo
vision camera from (7.3) will be considered. Inserting this model into (7.5b) yields
the following result. Here, Σ0

pi
denotes a part which depends only on the landmark

configuration:

Σt = ξSV

[
N∑

i=1

(
∂

∂θ
t̂

)(
∇pi

θ̂
)

Σ0
pi

(
∇pi

θ̂
)T
(
∂

∂θ
t̂

)T

+
(
∇pi

t̂
)

Σ0
pi

(
∇pi

t̂
)T

]

︸ ︷︷ ︸
=:Σ

0
t

. (7.6)

In a second step, a requirement on Σt has to be solved for the sensor parameters. In
general, requirements may be expressed as an inequality on a vector-valued function of
Σt. For example, it may be required that the variances of the components tx and ty, that
are the diagonal elements Σt,11 and Σt,22, remain below some tolerable limits σ̄2

x and σ̄2
y :

[
Σt,11

Σt,22

]
= ξSV

[
Σ0

t,11

Σ0
t,22

]
!

≤
[
σ̄2
x

σ̄2
y

]
⇒ ξ−1

SV ≥ max

(
Σ0

t,11

σ̄2
x

,
Σ0

t,22

σ̄2
y

)
. (7.7)
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The requirement on ξSV may be further broken down into requirements on individual
parameters, for example the disparity noise σ2

d.
It has to be remarked that the appealing simplicity of (7.7) depends on how the

requirements on Σt are expressed. For other relevant representations, for example
inequalities on the eigenvalues (length of the principal axes of the covariance ellipses)
or the determinant (proportional to the squared area of the covariance ellipses), similar
factorised results can be obtained.

The landmark-dependent part Σ0
t in (7.6) is assumed as constant and known. However,

as it has been motivated in Sec. 7.1.3.3, the landmark configuration is highly variable
and modelled with a probability distribution. Thus, the covariance Σt can be regarded
as a random variable. Instead of a deterministic requirement (7.7), one demands that an
inequality is satisfied 1− α percent of the time:

P
(
ξSV

[
Σ0

t,11

Σ0
t,22

]
≤
[
σ̄2
x

σ̄2
y

]) !

≥ 1− α⇒ ξ−1
SV ≥ Qη (1− α) , (7.8)

where Qη (1− α) refers to the 1− α quantile of the random variable

η = max

(
Σ0

t,11

σ̄2
x

,
Σ0

t,22

σ̄2
y

)
. (7.9)

The quantile function follows from the probability distribution of the number and
spacing of landmarks that are visible to the sensor. Therefore, it depends on the landmark
occurrence in the world as modelled by (7.1) and the limited field of view of the sensor as
defined in (7.2). Due to the further non-linear mapping to the translation error variance
in (7.6), an analytical expression is unlikely to exist in other than very simple scenarios.
Therefore, (7.8) is numerically evaluated in two steps.

Firstly, the cumulative probability distribution P
(
η
)

of η is approximated by Monte-
Carlo simulations. To this end, e = 1, . . . , Ns independent map feature samplesM(e) are
drawn using the model (7.1). After filtering these according to the sensor’s field of view
(7.2), the sets of visible landmarks M̃(e) are obtained. These sets are inserted into the
model of the location estimate’s variance (7.6) which yieldsNs values for Σ0

t and thus η(e),
e = 1, . . . , Ns . Finally, a non-parametric estimate P̂ (η) of the cumulative distribution
P
(
η
)

is given by the quantiles of the sample. Secondly, this numerical distribution is
solved for ξ−1

SV by finding the argument at which the cumulative probability takes on the
desired value 1− α according to (7.8).

Since the Monte-Carlo estimate relies on randomly drawn landmark samples, the
estimated probabilities P̂ (η) are random as well. The fluctuation of the result depends
on the number of samples Ns. Without requiring further knowledge on the distribution
of the samples, the CHERNOFF bound provides an inequality on the absolute estimation
error [184]:

1− δ := P
(
|P̂ (η)− P

(
η
)
| ≤ ε

)
≤ 2 exp

(
−2Nsε

2
)
. (7.10)

This probability inequality can be interpreted and utilised as follows: The left-hand
side defines the probability δ, that the estimated probability P̂ (η) differs by more than
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Table 7.1 Simulation parameter values for evaluating the localisation uncertainty. The
simulated trajectory represents an idealised straight road and is defined by (tk, θk) for the
time steps k = 1, . . . , 1× 104. Note that the disparity noise variance σ2

d is left unspecified
since this is the parameter which is to be obtained.

Variable Value

Trajectory tk =
[
xk −1.275 m

]T
, xk = 0 m, 1 m, . . . 10 km , θk = 0◦ ∀k

Landmark
distribution (7.1)

λLM = 0.125 m−1 , µmy = {−1.275 m, 6.775 m} , σy = 0.5 m

Measurement
model (7.2)-(7.3)

rsens,max = 40 m , αsens,max = 80◦

ckbw = 121 m · pel , σu = 5 pel

Localisation accuracy
requirements (7.8)

σ̄x = σ̄y = 0.1 m , 1− α = 0.9 , 1− δ = 0.9

ε from the true value P
(
η
)
. Thus, δ can be regarded as a pre-defined confidence level.

Then, (7.10) can be reformulated to obtain either the number of samples Ns or the bound
ε of the deviation as a function of the other. For a given number of iterations Ns, the
estimation error ε is bounded with a probability of 1− δ as follows:

ε ≤ 1√
Ns

log

(
2

δ

)
. (7.11)

It needs to be remarked that if a vehicle is driving along a specific trajectory, the sets
of visible landmarks are correlated over time. Effectively, the correlation depends on
the overlap of the sensor’s field of view in subsequent time-steps. For simplicity, this
correlation is not explicitly included in the models from Sec. 7.1.3. Thus, the landmark
samplesM(e) in the numerical evaluation of (7.8) can be drawn independently. However,
the obtained results only reflect the average behaviour on very long trajectories where
the sensor’s field of view is small compared to the dimensions of the world.

7.1.5 Numerical example

After the theoretical framework for a model-based derivation of sensor accuracy require-
ments has been introduced, its application is now demonstrated for a specific scenario
and system configuration. To this end, the parameter values from Tab. 7.1 are assumed
for the landmark distribution and the stereo vision sensor. The goal is to find a suitable
value for the disparity measurement variance σ2

d to achieve a localisation accuracy of
σ̄x = σ̄y = 0.1 m in 1− α = 90 % of all cases.

To allow a simplified parametrisation, an ideally straight road is assumed where
landmarks are placed at the road boundaries. A short part of the overall trajectory is
visualised in Fig. 7.3.

In order to obtain the sensor parametrisation, (7.8) is numerically calculated by sam-
pling of Ns = 1× 104 landmark configurations. The distribution of the diagonal entries
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Σ0
t,11 and Σ0

t,22 of the covariance is shown in Fig. 7.4(a). The maximum of these two com-
ponents divided by the accuracy requirements yields the random variable η from (7.9).
Its distribution is displayed in Fig. 7.4(b). According to (7.11), the expected deviation to
the true probabilities is smaller than ε = 0.03 with a probability of 1− δ = 0.9. The value
of η at which the cumulative distribution equals the desired 1− α can be used to find the
coefficient ξ−1

SV of the sensor covariance matrix in (7.3).
The parameter σ2

d of the stereo camera is proportional to the coefficient ξSV. Therefore,
the eventual result is σ2

d = 0.632 · 0.01pel2. It has to be stressed that the entire derivation
only requires evaluating the analytical expression of the model Ns times and to compute
the cumulative distribution once.

A Monte-Carlo simulation with Nsim = 1× 103 iterations is now performed in order
to validate the obtained value of σ2

d. Thereby, the map matching problem is repeatedly
solved along a 10 km long trajectory with a step size of 1 m. Noisy landmark measure-
ments are drawn using the exact model of the sensor noise covariance from (7.3) whereas
the analytical parameter derivation relies on the approximate form. The localisation
accuracy achieved in the simulations is shown in Fig. 7.5. The longitudinal and lateral
accuracy requirements σ̄x and σ̄y are individually met in 96.5 % and 88.1 % of the time
and jointly for 88 %. These results are close to the demanded 1− α = 90 % and therefore
confirm the derived sensor parameter value.

7.1.6 Summary and outlook

This section has outlined a model-based method for deriving sensor accuracy require-
ments for landmark-based vehicle localisation. Maximum admissible values on the
pose estimation uncertainty are defined on the level of the map matching task. These
are compared to the uncertainty model from Sec. 3.2 and the analytical expressions are
solved for the sensor parameters. This procedure has been exemplified for a stereo vision
sensor as previously detailed in Sec. 3.1.

Future works could extend this framework to more complex system designs. For
example, map matching of landmarks is usually not the only source of information but
fused with position estimates from (visual) odometry or satellite navigation [195]. In
order to predict the localisation accuracy after information fusion and temporal filtering,
the Cramér-Rao bound from Sec. 4.1 can be derived for this problem. The steady-state
value of the CRB, which is asymptotically achieved after the filter has converged, gives
a best-case performance estimate. First results on this topic are reported by ROHDE et
al. [212]. Whereas the localisation accuracy from map matching per time step, as has
been studied here, provides a conservative performance estimate.
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(a) Illustration of the simulation scenario at one time step. Two landmarks (red circles)
are in the sensor’s field of view. Their location is measured by a stereo vision
camera (red crosses), where the anisotropic measurement noise characteristic
becomes obvious. Due to this noise, the estimated positions (blue crosses) vary.
The covariance of the position estimates is modelled by (7.5b) and is visualised in
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(b) The vehicle moves along the road and estimates its position in each simulated
time step. Thus, the number of landmarks in the sensor’s field of view (bottom)
and their distances to the stereo camera are constantly varying. This causes a
changing variance of the estimated lateral and longitudinal position (top and
middle). The goal of the model-based design is to find sensor noise parameters
so that the accuracy requirements (green) are met for a desired proportion 1− α
of the time.

Figure 7.3 Illustration of the landmark-based localisation approach (a) and exemplary
simulation results (b).
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Figure 7.4 The dependence of the localisation accuracy on the landmark configuration is
obtained by numerically evaluating the analytical model (7.5b) for different landmark
configurations according to Sec. 7.1.3.1. A sensor parameter value ξSV is then obtained as
outlined in Sec. 7.1.4. All values are normalised by a pre-defined ξ0

SV which corresponds
to σd = 0.1 pel.
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Figure 7.5 Monte-Carlo simulation results of the localisation accuracy. The cumulative
frequency of the standard deviation of the longitudinal (t̂x) and lateral (t̂y) position esti-
mates are shown. These results are obtained from a trajectory with a length of 10 km and
Nsim = 1× 103 independent simulations. The requirements σ̄x and σ̄2

y are met in approx-
imately 90% of all cases. This confirms the chosen value of the disparity measurement
variance σ2

d that was predicted by the model.
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7.2 Performance bounds of an autonomous emergency
brake

After the previous section has demonstrated how constraints on sensor parameters can
be derived from accuracy requirements, it is now investigated how uncertainties in a
given system affect its effectiveness. To this end, an exemplary signal processing chain
of an autonomous emergency brake (AEB) system is considered. The goal is to analyse
how the collision prevention capabilities are affected by uncertainties in measurements,
state estimates and predictions.

The considered AEB and the overall approach to its analysis are introduced in Sec. 7.2.1.
Differences and similarities to existing works on this topic are subsequently detailed
in Sec. 7.2.2. Essentially, the capability of an AEB system to prevent an impending
collision depends on the parameters of the situation and the quality of information that
is available for the timing of a brake intervention. How these aspects are modelled is
described in Sec. 7.2.3. Subsequently, the effect of uncertainties on the AEB performance
is analysed in Sec. 7.2.4. The main findings are summarised in the concluding Sec. 7.2.5.

The publication [222] comprises central parts of the following material.

7.2.1 Introduction

On a high level of abstraction, an AEB system is described by the concatenation of
an environment sensor for the perception of obstacles (for example a stereo camera), a
tracking filter for estimating the motion state (for example an extended Kalman filter) and
an algorithm for triggering an emergency brake intervention (for example a criticality
measure). This signal processing chain is outlined in the upper part of Fig. 7.6.
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model Sec. 3.1

Cramér-Rao
bound Sec. 4.1

Uncertainty in
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Figure 7.6 Signal processing chain of AEB system (top) and overview of probabilistic
models (below). The foundations of these models have been developed in the referenced
sections of this thesis.
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After probabilistic models of uncertainty in all of these components have been derived
in this thesis, this section analyses the propagation in an overall AEB signal processing
chain. The central question is how uncertainties compromise the collision avoidance
performance and how this varies among different scenarios. Especially upper optimistic
bounds on a system’s effectiveness are to be derived. Such a study can be useful for
many purposes [144], for example the definition of requirements, sensitivity analyses or
for adjusting the system parameters.

In order to evaluate the impact of uncertainty on an AEB system, a number of models
have to be formulated:

p First, the driving situation under which the system should be analysed needs to
be defined. For clarity, only the relation between the ego-vehicle and one pre-
ceding object vehicle in longitudinal traffic are considered. In order to obtain
more comprehensive results than only an evaluation for particular trajectories, a
parametrisable model is introduced to describe entire families of trajectories. An
empirical distribution of the initial motion state is retrieved from real-world traffic
datasets.

p Second, the AEB system and parametrisation have to be formally specified. A stereo
vision sensor is assumed that obtains measurements of the distance to the preceding
vehicle. These measurements are affected by distance-dependent noise, as has been
discussed in Sec. 3.1. The propagation of the measurement uncertainty to the state
estimation layer is modelled using the Cramér-Rao lower bound that has been
presented in Sec. 4.1. This yields an optimistic approximation of the estimation
covariance of any practical filter. Lastly, for situation assessment, the brake-threat-
number (BTN) from Sec. 5.2.3 is employed. Using this algorithm guarantees that,
under ideal conditions, a collision is avoided by an emergency brake intervention
in the last possible moment.

p Third, a method to evaluate the difference between the ideal and uncertain case
needs to be defined. To this end, all uncertainty is first propagated to the decision
making component, that is the criticality measure. Instead of a deterministic
threshold on the criticality, a Bayesian brake activation criterion is employed [173].
Compared to the deterministic baseline, additional time has to pass before the
plausibility is sufficiently high and the brake activated. To objectively evaluate this
delay, its effect on the future motion of the two vehicles is calculated and subsumed
in terms of the relative collision energy.

Before these models are further detailed in Sec. 7.2.3, similar previously published
analyses are reviewed in Sec. 7.2.2 and contrasted with the chosen approach.

7.2.2 Related work

Previous related publications can be differentiated by whether numerical or analytical
strategies are pursued to evaluate the effects of uncertainty.
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Simulation-based studies are presented in [137] for vehicle collision avoidance systems
and pedestrian protection in [27, 186]. The latter works compare the expected benefit
of different evasive manoeuvres (braking, steering or combined manoeuvres) under
uncertain future motion of a pedestrian. Different levels of uncertainty, which could
correspond to different sensors, are evaluated in [186]. The probability and severity of
pedestrian injuries are used as evaluation metrics. A comprehensive analysis of collision
avoidance systems in longitudinal traffic, as is studied in this work, is presented in [137].
The analysis is founded on large amounts of recorded vehicle trajectories. Thus, the
results can be aggregated over empirical distributions of the scenario parameters which
will be similarly performed in Sec. 7.2.3.1. A drawback shared by these simulation-based
works is, as has been discussed in Sec. 1.2, that only numerical results for a specific
system can be obtained.

In contrast to the aforementioned works, a rigorous analytical derivation of worst
case performance bounds of an AEB system is presented [144]. The study introduces a
parametric trajectory model with piece-wise constant accelerations, which is adapted
in this work. Moreover, the same criticality measure, the BTN, is assumed for decision
making2. The central differences between this work and [144] are:

p Errors in the state estimates are modelled with deterministic upper bounds in [144],
whereas a fully probabilistic model is used in this work. These probabilistic models
are derived by propagating uncertainty in the entire signal processing chain. There-
fore, more detailed models can be achieved, for example by taking sensor-specific
characteristics of the measurement uncertainty into account.

p Since only upper bounds on the errors are considered in [144], the worst case
performance is derived. This work on the other hand studies the opposite case,
that are optimistic lower bounds on the error covariances. Thus, the feasibility
of a performance requirement as well as minimum accuracy constraints can be
evaluated.

p A degradation of the AEB system performance is measured in terms of the activa-
tion timing in [144]. Further consequences of such delays on the collision mitigation
capabilities are not considered. This work furthermore analyses the effectiveness of
the system in terms of reducing the collision energy.

Therefore, albeit the same objective of analytically finding fundamental limitations
in AEB systems is pursued, this work employs more detailed models and derives
conceptually complementary results compared to [144].

2Overall, multiple criticality measures that correspond to different evasive actions in longitudinal and
lateral direction are analysed in [144]. These measures are eventually combined by taking the minimum
value. All findings of this work concern solely the longitudinal criticality but could be reiterated for
additional measures.
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7.2.3 Models, parametrisations and evaluation metric

This section describes the foundations of the analysis and comprises three parts. First,
a formal representation of the considered scenarios is described in Sec. 7.2.3.1. Second,
modelling the uncertainty propagation in the signal processing chain is based on results
from previous sections of this work. The essential aspects are recalled and referenced in
Sec. 7.2.3.2. Finally, the impact of uncertainties will be evaluated in terms of the collision
energy reduction. This physically motivated metric is detailed in Sec. 7.2.3.3.

7.2.3.1 Scenario representation

The primary type of accidents which are addressed by an AEB with a front-facing sensor
are collisions with a preceding vehicle. According to [85], these contribute to 30% of all
accidents on German roads. In-depth analyses reveal that the cause of approximately
two thirds of these accidents is that the driver of a preceding vehicle is suddenly forced
to brake unexpectedly strong for some reason. Probably due to inattentiveness and close
margins, the driver of a following vehicle is not able to react quickly enough to avoid a
collision. In the remaining cases, accidents are caused by a driver who collides with a
slower vehicle at constant velocity due to speeding.

Therefore, following the works [137, 144], the longitudinal relative motion between
two vehicles that are involved in a rear-end collision is modelled with piece-wise constant
accelerations. One advantage of such a compact parametric model is that analytical
results can be derived for a wide range of different scenarios. In a top-down approach,
challenging regions in the parameter space can be systematically identified.

In principle, trajectories of the two considered vehicles could be modelled individually,
or, as is pursued here, relative to the ego-vehicle. This choice brings the advantage
that fewer variables are needed to describe a scenario. The relevant parameters are
the initial distance x0 > 0, the relative speed vx,0 ≤ 0 and accelerations. It is assumed
that the preceding vehicle brakes with a constant acceleration ao

x ≤ 0 at time t = 0. An
emergency brake manoeuvre of the ego-vehicle starts at the time of intervention tB ≥ 0

with a constant acceleration ae
x ≤ 0. This model is described by the following equations

of motion:

x (t) =

{
x0 + vx,0t+ 1

2
ao
xt

2 t < tB

x0 + vx,0t+ 1
2

(ao
x − ae

x) t
2 + ae

xtBt− 1
2
ae
xt

2
B t ≥ tB

(7.12a)

vx (t) =

{
vx,0 + ao

xt t < tB

vx,0 + ao
xtB + (ao

x − ae
x) (t− tB) t ≥ tB

(7.12b)

ax (t) =

{
ao
x t < tB

ao
x − ae

x t ≥ tB
. (7.12c)

A potential inaccuracy of this model occurs if a vehicle has decelerated until standstill
and remains fully stopped thereafter. When solely the relative velocity and acceleration
are included in the model, this effect is concealed since it depends on the absolute
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Figure 7.7 Trajectories and region of avoidable collisions for different object accelerations
ao
x in terms of distance x and relative velocity vx. Solid lines show the trajectory prior to an

emergency brake intervention and dotted lines with the emergency brake (ae
x = −6 m/s2)

applied. Green areas in the phase plane denote states where a collision is still avoidable
whereas its effect is only reducible in the red areas. The boundary between the two areas
is described by (7.13).

velocities. In principle, all derivations can be performed in a similar manner as presented
in the following but taking the additional special case of a standing vehicle into account.

Multiple trajectories can be visualised at once in a phase portrait as shown in Fig. 7.7.
Three cases that correspond to different values of the deceleration ao

x are depicted. This
includes the special case of an initially unaccelerated motion (ao

x = 0). An emergency
brake intervention changes the direction of the trajectories. If a trajectory does not
cross the vx-axis, a collision is avoided. This applies to all trajectories which start in
the green area of the phase plane. The subsets of initial states that lead to avoidable or
non-avoidable collisions are separated by the boundary

2x0 (ao
x − ae

x)− v2
x,0 = 0 . (7.13)

Furthermore, it can be seen that trajectories may initially start at different points in the
phase plane in Fig. 7.7 but eventually lie on the same trajectory. In order to find a more
compact scenario description, it is proposed in [144] to form subsets of all trajectories
with a common end state. However, such a simplified representation is not feasible if
effects that depend on the state have to be taken into account. The state dependence
of the uncertainty models will be discussed in Sec. 7.2.3.2. Therefore, trajectories are
considered individually for each triple of initial values

(
x0, vx,0, a

o
x

)
in this work.

As is seen from the previous considerations, the capability of an AEB system to prevent
an accident is linked to the initial motion parameters. In order to obtain aggregate
results, the occurrence of initial values may be weighted by their relevance to real traffic
situations. To find representative weights, the following data sources3 are used here:

3Note that it is assumed that the car-following behaviour during traffic without accidents is the same as
in the accident case before the preceding vehicle brakes unexpectedly and causes a collision. Thus, a
much larger data base can be used which yields a finer discretisation of the distribution of

(
x0, vx,0

)
.
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Figure 7.8 Empirical distributions of scenario parameters: (a) Initial relative motion state
x0, (b) deceleration ao

x of preceding vehicle.

p At the beginning of each scenario, the relative motion belongs to normal car-
following behaviour. Therefore, the dataset that was previously presented in
Sec. 4.2.5.2 can be analysed for the frequency in which combinations of distance
and relative velocity

(
x0, vx,0

)
occur. This distribution is visualised in Fig. 7.8(a).

p In order to model the acceleration ao
x of the preceding vehicle, which eventually

causes a collision, real accidents have to be analysed. In-depth analyses are for
example provided by the German In-Depth Accident Study (GIDAS). It is not in
the scope of this work to perform a detailed simulation of each individual recorded
accident, since they differ by a multitude of situation-specific factors. Instead, only
the mean deceleration of the preceding vehicle prior to the collision is considered.
Values for 111 relevant cases have been identified in [137] and are used in the
following.4 The distribution is shown in Fig. 7.8(b).

In conclusion, traffic scenarios with an impending rear-end collision are concisely
parametrised by the initial distance and relative velocity as well as a constant decelera-
tion of the preceding vehicle. Distributions of the state combinations are obtained from
empirical data.

7.2.3.2 Modelling of uncertainty in an AEB system

As is indicated in Fig. 7.6, the origin and propagation of uncertainties in the AEB system
can be divided into four major aspects which will be outlined in the following.

4It needs to be remarked that only accidents with injuries are contained in the dataset. Collisions with
minor damage, which might not be reported to authorities in general, are thus under-represented.
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Stereo vision distance measurements Measurements of the distance to a preceding
vehicle are modelled in disparity coordinates and transformed to Cartesian coordinates
at the state estimation layer. Uncertainty in the measured disparity is modelled as
additive Gaussian noise with variance σ2

d.
The variance σ2

d depends on the accuracy of the entire disparity image, the size of the
vehicle in this image and the algorithm that is used to aggregate the information. In the
following, a simplified algorithm from Sec. 3.1 which aggregates the row-wise disparity
values d̄ over all image rows is assumed. Errors in the individual rows are supposed to
be independently distributed with a variance of σ2

e,d̄.
The overall measurement variance σ2

d is inversely proportional to the number of image
rows n∆v,obj and thus increases with distance. Depending on the distance x and the
object height hobj, this number can be calculated according to (3.13b). The influence of
an object’s contour on a particular algorithm for disparity aggregation is not explicitly
modelled but the lower bound that is derived in (3.23) is employed. Thus, the following
expression for the disparity error variance of measurements of a vehicle is obtained:

σ2
d =

σ2
e,d̄

n∆v,obj

=
x

ckhobj

σ2
e,d̄ . (7.14)

Motion state estimation The motion state is written as x :=
[
x vx ax

]T
. A state

estimate x̂k can be calculated from disparity measurements that arrive at discrete points
in time tk. The covariance matrix of the state estimation error Σxk

:= cov (x̂k − xk) is
bounded from below by the inverse information matrix I−1

xk
� Σxk

as detailed in Sec. 4.1.
Attention has to be paid to the discrete-time nature of the system. The sampling time

TS determines how frequently new sensor measurements arrive at the state estimator.
This in turn influences the accuracy of a state estimate Σxk

, the certainty of the criticality
and thus the time at which a brake intervention will be triggered.

However, it is out of the scope of this work to analyse the effects of unsynchronised
sampling in general. Therefore, a simplified approach is pursued here: Firstly, the
expected value of the state estimates are treated as variables in continuous time x̂k → x̂ (t)

which corresponds to TS → 0. Secondly, the corresponding covariance matrix is defined
as Σxk

(t) := I−1
x
k
∗ calculated from the discrete time recursion (4.22) until k∗ = d t

TS
− 1e.

In general, the time evolution of the Cramér-Rao bound is state-dependent and thus
needs to be calculated individually for each trajectory. This prevents to analyse entire
subsets of trajectories with common end states. As has been previously discussed in
Sec. 4.1.5.2, neither a state-independent nor asymptotic limit of the CRB exists due to the
non-linear measurement model of the stereo camera.

Going beyond the scope of this work, special cases in which the bound becomes
independent of the state could be investigated. As has been seen in Sec. 4.1.4.4, this
applies for example to linear systems with additive, time-invariant noise processes. One
could then calculate the asymptotic limit of the bound and thus achieves a very compact
model.
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Motion state prediction Implicitly, a constant acceleration model is employed in state
estimation and criticality assessment to predict the relative vehicle motion. A Gaussian
process noise model as detailed in Sec. 4.2 describes the uncertainty in these trajectory
predictions. Since the relative motion between two vehicles is of interest, one has to
consider uncertainty in both future trajectories of the ego-vehicle and the other vehicle.
In contrast to the general case as discussed in Sec. 4.2.7, the transformation from absolute
to relative coordinates simplifies if solely the longitudinal motion is analysed. Under the
assumption of statistical independence, the process noise power spectral density Sx is
twice the value which was estimated for a single vehicle in Sec. 4.2.5.

Criticality measures The propagation of uncertainty in the state estimates and trajec-
tory predictions to algorithms for criticality estimation has been discussed in Sec. 5.2. The
specific criticality measure which is considered for the AEB activation, the brake-threat-
number (BTN), has been formulated in example 5.4. This criticality measure quantifies
the risk of a situation in terms of the instantaneous deceleration ae

x,req that is required
to avoid a collision by braking of the ego-vehicle. Given the relative motion state x, the
criticality κ (x) is defined by (5.50):

κ (x) = ax −
v2
x

2x
. (7.15)

An AEB activation is triggered if

κ (x (t))
!

≤ κ0 (7.16)

where κ0 < 0 denotes a threshold on the negative acceleration.

Uncertainty in this criticality estimate is modelled with a zero mean Gaussian distri-
bution κ (x) ∼ N

(
µκ, σ

2
κ

)
. Given a state estimate x ∼ N

(
x̂,Σxk

)
and the process noise

spectral density Sx in the underlying CA motion model, the uncertainty is propagated to
κ (x) from (7.15) according to (5.62):

µκ = κ (x̂) , (7.17a)

σ2
κ = (∇xκ (x)|x̂) ·Σxk

· (∇xκ (x)|x̂)T − 2x̂

5v̂x
Sx ,

with ∇xκ (x)|x̂ =
[
v̂

2
x

2x̂
2 − v̂x

x̂
1
]
.

(7.17b)

A probabilistic generalisation of the brake activation condition (7.16) to a system that is
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subject to known uncertainties5 reads

P
(
κ (x (t)) ≤ κ0

) !

≥ 1− α ⇐⇒
κ0ˆ

−∞

N
(
κ;µκ (t) , σ2

κ (t)
)

dκ
!

≥ 1− α (7.18)

with a predefined confidence level 1− α [173]. Given the previously detailed models,
this probabilistic condition and the activation time for the scenarios from Sec. 7.2.3.1 will
be analysed in Sec. 7.2.4.2.

7.2.3.3 Collision energy reduction metric

This section details a metric that is used to assess the influence of uncertainties on the
AEB system. One could consider the time of activation and compare the nominal with
the disturbed case, as in [144]. However, this metric does not measure the effectiveness
of the collision avoidance system. Another approach is thus to evaluate the influence
that the system would have on a hypothetical collision in terms of physical quantities,
for example the impact velocity. More sophisticated approaches even consider the
consequences of the collision on the safety of human passengers [137].

One relatively simple approach that is applied in [100] is to calculate the kinetic impact
energy Ecoll = 1

2
mv2

coll of an inelastic collision with the relative collision velocity vcoll and
vehicle mass m. A measure of effectiveness is then obtained from the difference between
the case with (Ecoll,B) and without brake intervention (Ecoll). Normalising this difference
by Ecoll yields the dimensionless relative collision energy reduction ∆E ∈ [0, 1]:

∆E =
Ecoll − Ecoll,B

Ecoll

=
1
2
mv2

coll − 1
2
mv2

coll,B

1
2
mv2

coll

= 1−
(

1− vcoll − vcoll,B

vcoll

)2

. (7.19)

The underlying assumptions – only the first contact between the vehicles is considered
and modelled with an inelastic collision – limit the accuracy of this model. Nevertheless,
the simplicity of (7.19) is appealing and allows the development of explicit expressions.

∆E depends solely on the velocity at the time of collision which can be obtained in
closed form for the parametric trajectory model from Sec. 7.2.3.1. For the case without
brake intervention (ae

x = 0), vcoll follows immediately from (7.12b):

vcoll = vx,0 + ao
xtcoll , (7.20a)

where the time of collision tcoll reads

tcoll =





− x0

vx,0
ao
x = 0

−vx,0
a

o
x

+

√
v

2
x,0−2x0a

o
x

(ao
x)

2 ao
x < 0

. (7.20b)

5Note that this criterion leads to a different approach than the analysis of the decision timing in Sec. 5.2.4.3.
There, a deterministic criticality measure and decision making function are assumed. It is studied how
random errors in this criticality affect the time instant at which the threshold is exceeded first. In this
section, on the other hand, a fully probabilistic criticality measure is assumed where all uncertainty
is taken into account. Therefore, the time of activation of a Bayesian approach to decision making is
analysed.
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If an emergency brake manoeuvre with a deceleration ae
x < 0 is initiated at the time

0 ≤ tB ≤ tcoll, one obtains vcoll,B as a function of tB:

vcoll,B = vx,0 + ao
xtcoll,B − ae

x

(
tcoll,B − tB

)
, (7.21a)

where the time of collision under braking tcoll,B is obtained from (7.12a):

tcoll,B =





−x0−
1
2
a

o
xt

2
B

vx,0+a
o
xtB

ao
x = ae

x

−vx,0+a
e
xtB

a
o
x−ae

x
+

√
v

2
x,0−2x0(a

o
x−ae

x)+2vx,0a
e
xtB+a

e
xa

o
xt

2
B

(ao
x−ae

x)
2 ao

x 6= ae
x

. (7.21b)

Note that a collision only occurs if tcoll,B is non-negative and real which requires:

{
vx,0 + ao

xtB ≤ 0 ao
x = ae

x

v2
x,0 − 2x0 (ao

x − ae
x) + 2vx,0a

e
xtB + ae

xa
o
xt

2
B ≥ 0 ao

x 6= ae
x

. (7.22)

Otherwise, one has Ecoll,B = 0 and ∆E = 1. Inserting the intermediate results (7.20) and
(7.21) into the definition (7.19) yields the following expression for ∆E:

∆E =




ae
x
t
2
Ba

o
x+2vx,0tB+2x0

2a
o
xx0−v2

x,0

2x0a
o
x−v2

x,0

a
o
xt

2
B+2vx,0tB+2x0

≤ae
x ≤ 0

1 ae
x <

2x0a
o
x−v2

x,0

a
o
xt

2
B+2vx,0tB+2x0

. (7.23)

The relative collision energy reduction is directly proportional to the strength of the
emergency brake manoeuvre ae

x. However, its dependence on the time of braking tB
as well as the initial motion state x0 is non-linear. This will be further analysed in the
following section, where tB is derived for the BTN criticality measure.

7.2.4 Effect of uncertainties on AEB brake interventions

This section builds on the previously introduced models and assesses the influence of
uncertainties on the effectiveness of an AEB system. The analysis consists of three parts:
First, the ideal case without uncertainty is studied in Sec. 7.2.4.1. Second, uncertainties
are taken into account in Sec. 7.2.4.2 and their impact is assessed in comparison to the
baseline case. Third, empirically determined weights are introduced for the scenario
parameters, over which all analyses are conducted, in Sec. 7.2.4.3. Thus, an aggregate
analysis of the real-world impact is obtained.

Numerical results are derived for a specific exemplary system which is characterised
by the parameter values given in Tab. 7.2. Nevertheless, the interchangeable nature
of the models and explicit analytical results facilitate extending the analysis to other
systems, for example with a different sensor.



196 7 Applications

Table 7.2 Model parameter values of numerical example.

Variable Value

Measurement
model (7.14): ckbw = 121 m · pel , σ2

e,d̄ = 0.01 pel2 , hobj = 1.5 m

Initial state covariance: Σx0
= diag

(
100 m2, 25 m2/s2, 4 m2/s4

)

Sampling time: TS = 0.0675 s

Process noise: Sx = 2 · 0.261 m2/s6s−1

Confidence level 1− α = 90%

Ego-vehicle
brake deceleration

ae
x = −6 m/s2

BTN activation
threshold

κ0 = ae
x = −6 m/s2

7.2.4.1 Ideal time of activation and collision energy reduction

Firstly, the time of braking tB is calculated for the BTN (7.15). Inserting the trajectory
model (7.12) into the activation condition (7.16) and solving for t yields three different
cases for the time of activation tB:

tB =





0 κ (x0) ≤ κ0



− x0

vx,0
− vx,0

2κ0
ao
x = 0

−vx,0
a

o
x

+

√
v

2
x,0−2x0a

o
x

(ao
x)

2

(
1− a

o
x

κ0

)
ao
x < 0

κ (x0) > κ0

. (7.24)

The first case refers to a situation which is already critical for the initial state x0. Exem-
plary values of tB are visualised over

(
x0, vx,0

)
in Fig. 7.9(a). It can be seen that a higher

initial relative velocity vx,0 causes an earlier activation.
Secondly, tB from (7.24) is inserted into (7.23) which yields the collision energy reduc-

tion ∆E:

∆E =








ae
x

2x0

2a
o
xx0−v2

x,0

ao
x − v

2
x,0

2x0
≤ ae

x ≤ 0

1 ae
x ≤ ao

x − v
2
x,0

2x0

κ (x0) ≤ κ0

{
a

e
x

κ0
κ0 < ae

x < 0

1 ae
x ≤ κ0

κ (x0) > κ0

. (7.25)

The first two cases refer to an already critical situation (tB = 0). A collision is only fully
avoided in the second case which requires that ae

x is sufficiently low. In practice, the
braking capability of a vehicle is limited however and therefore, it is not possible to
entirely avoid a collision for arbitrary initial states.

If the initial state is not already critical (third and fourth case in (7.25)), the activation
timing of the BTN guarantees that the collision will be avoided (∆E = 1) for a threshold
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Figure 7.9 Activation timing of an AEB brake intervention over initial states
(
x0, vx,0

)
for

ao
x = −3 m/s2. The baseline case of a system with ideal knowledge of the state is shown

in (a). Under the influence of uncertainties, activations are delayed as visualised in (b).
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Figure 7.10 Relative reduction of the collision energy ∆Euncertain by AEB brake interven-
tion over initial states

(
x0, vx,0

)
for ao

x = −3 m/s2. The baseline case of a system with
ideal knowledge of the state is shown is shown in (a). Results under the influence of
uncertainties are visualised in (b).

selection of κ0 = ae
x. Furthermore, the result for the third case shows that a linear

relationship between ∆E and ae
x and an inversely proportional relation to κ0 exist. Thus,

if the activation threshold κ0 is decreased to lower negative accelerations, the emergency
brake intervention will be delayed and its effectiveness will decrease proportionally.

These results are visualised in Fig. 7.10(a) over combinations of the initial state and
κ0 = ae

x. The boundary of the plateau indicates the region where a collision is already
unavoidable for the initial state. This boundary is described by (7.13) and has been
previously seen in the phase portrait in Fig. 7.7.
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Figure 7.11 Difference in braking time ∆tB = tB− tB,uncertain over initial state
(
x0, vx,0

)
for

ao
x = −3 m/s2. Positive values indicate that triggering the emergency brake intervention

is delayed. The worst delays are obtained for trajectories starting close to the parabola
which defines the area of unavoidable collision states (see Fig. 7.7). In these cases, only
very limited time is available for plausibilisation prior to the designated time of acti-
vation. Moreover, the results deteriorate for higher distances where the stereo vision
measurements become less accurate.

7.2.4.2 Time of activation and collision energy reduction under uncertainty

In contrast to the deterministic case, the Bayesian activation criterion (7.18) cannot be
analytically solved for t in general. It is necessary to resort to numerical methods for
calculating the integral and solving for the smallest time tB,uncertain for which the criterion
is fulfilled.

The results are shown in Fig. 7.9(b). In comparison to Fig. 7.9(a), the activation is
in general triggered later than in the deterministic case. Furthermore, the difference
∆tB := tB − tB,uncertain is visualised in Fig. 7.11 and three distinct effects can be observed:

1. The worst delays occur at the boundary (7.13) between the critical and uncritical
region. In these situations, very limited time is available to increase the confi-
dence before the brake intervention would have been already initiated under ideal
conditions.

2. Along this boundary, the results deteriorate for increasing distances. This is due to
the assumed stereo vision measurement principle whose accuracy decreases with
distance.

3. Trajectories starting in the area of unavoidable collisions or sufficiently before are
less affected by uncertainties. In the first case, the mean criticality µκ (t) is suffi-
ciently high right from the beginning and the activation criterion (7.18) is fulfilled
almost immediately. In the second case, sufficient time and sensor measurements
are available before an intervention is required. Thus, the uncertainty in the state
estimate is minimised and small values of the variance σ2

κ (t) are ensured.
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Figure 7.12 Trajectories starting at x0 = 60 m with different relative velocity vx,0. Due to
uncertainties, the emergency brake intervention (dotted trajectory) is initiated later than
in the ideal deterministic case (dashed). The collision energy is proportional to the square
of the velocity when crossing the x = 0 axis. The braking manoeuvre of the preceding
vehicle is defined by ao

x = −3 m/s2.

The practical implications of a delayed activation become visible for exemplary trajec-
tories shown in Fig. 7.12. All trajectories start at the same initial distance x0 = 60 m

but with different initial velocity. Dotted lines show the state evolution after a brake
manoeuvre is initiated. These activations are delayed due to uncertainties and therefore
collisions are mitigated but not entirely avoided.

Although a closed-form result for the difference ∆tB between the ideal and uncertain
case is not available in general, one can derive the collision energy reduction in terms of
∆tB. To this end, (7.19) is calculated for an impact velocity of vcoll,B + ae

x∆tB:

∆Euncertain = ∆E − 2
vcoll,B

v2
coll

(
ae
x∆tB +

1

2vcoll

(ae
x∆tB)2

)

= ∆E − ae
x

∆t2Ba
o
x + 2∆tB

(
tBa

o
x + vx,0

)

v2
x,0 − 2ao

xx0

. (7.26)

Delaying an AEB activation by ∆tB reduces the relative collision energy reduction
quadratically. Absolute values of ∆Euncertain are visualised in Fig. 7.10(b).

7.2.4.3 Results weighted over scenario parameter distributions

The previously obtained results show that the effectiveness of an AEB system depends
on the scenario parameters such as the initial distance between the two vehicles. In order
to make a meaningful overall assessment of a system, one has to take into account that
not every scenario occurs with the same frequency in real-world traffic. Therefore, the
empirically obtained distributions shown in Fig. 7.8 are now used to calculate a weighted
average value of the collision energy reduction ∆E.

Furthermore, it has been assumed so far that the other vehicle’s deceleration starts at
t = 0 and that sensor measurements are available from this time on as well. However,
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in practice, a sensor’s field of view is limited and therefore, the first time when an
AEB becomes aware of a possibly threatening situation depends on the initial state(
x0, vx,0

)
. Since the scenario description only covers the longitudinal movement, solely

the longitudinal range of detection xsens,max of the stereo camera’s field of view is taken
into account. This is a best case assumption since effects such as limitations of the angular
field of view or dynamic occlusions are not considered.

Precisely, a limited field of view negatively affects the AEB in two ways:

1. As seen in Fig. 7.7 there is a certain distance x for each relative velocity vx below
which a collision is not entirely avoidable any more. All situations in which the
sensor’s field of view does not extend beyond this critical boundary are thus not
fully avoidable by the AEB.

2. As has been discussed in Sec. 7.2.4.2, the time between the first observation and
before reaching the critical region in the phase portrait determines the certainty
of the criticality estimate. In general, the achievable certainty decreases for fewer
measurements, that is a shorter sensor measurement range. Thus, the probabilistic
activation criterion (7.18) is reached at a later time which has a negative effect on
the collision energy reduction.

When taking all these effects into account, one obtains the results shown in Fig. 7.13. It is
first visualised in Fig. 7.13(a)-(b) how the relative reduction of the collision energy ∆E

behaves for different combinations of object deceleration ao
x and sensor range xsens,max.

Each point is the weighted average of ∆E as previously seen in Fig. 7.10(a)-(b) over the
distribution of

(
x0, vx,0

)
from Fig. 7.8(a). As is expected, increasing the sensor range

has a positive effect. Note that even in the baseline case without uncertainties, perfect
results cannot be achieved, especially for high absolute values of ao

x. As has been seen in
Fig. 7.10(a), a collision is never avoidable for certain combinations of low initial distance
and high relative velocity, due to the limited braking capabilities. Nevertheless, the
weighted average in Fig. 7.13(a) can reach values close to one even for ao

x = −6 m/s2.
This indicates, as is expected, that human drivers maintain a sensible distance to a
preceding vehicle most of the time. Situations with a combination of distance and relative
velocity that are very sensitive to an unexpected braking of other traffic participants are
proactively avoided and only occur with low weights.

If these results are furthermore weighted with the empirical distribution of ao
x from

Fig. 7.8(b), one obtains the results shown in Fig. 7.13(c). Under ideal conditions, a sensor
range of xsens,max = 40 m suffices to achieve an average collision energy reduction of
approximately 95%. This high theoretical effectiveness is likely because the distribution
of relative velocities predominantly concentrates around small values |vx,0| ≤ 3 m/s

as seen in Fig. 7.8(a). Certain situations, for example if the ego-vehicle approaches an
already stationary vehicle with a high velocity, are not included with high weights. In
these cases, increased foresight is necessary to react sufficiently early.

With uncertainties taken into account, the average effectiveness drops by approx-
imately 20%. Thus, although an optimistic model with lower bounds on the state
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estimation uncertainty is employed, the effect on the eventual performance of the AEB
system is not negligible.
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Figure 7.13 Relative reduction of the collision energy ∆E weighted by scenario parameter
distributions from Fig. 7.8. Weighting with the distribution of

(
x0, vx,0

)
from Fig. 7.8(a)

yields the results shown in (a)-(b). The weighted means are shown over combinations of
xsens,max and ao

x in the baseline and uncertain case. Furthermore, the weighted mean of
these results over the empirical distribution of ao

x from Fig. 7.8(b) is shown in (c). This
graph depicts the relation between the effectiveness of an AEB and the sensor detection
range xsens,max.

7.2.5 Summary and outlook

This section has analysed the influence of uncertainties on the collision prevention
capabilities of an AEB system. The analysis is based on analytical models of uncertainty
in algorithms for perception, state estimation and criticality assessment. Results from a
numerical example demonstrate the concrete application of the method.

It is found that uncertainties affect the system’s ability to perform a timely emergency
brake activation depending on the driving scenario. The worst delays are obtained in
scenarios which start very close to an unavoidable collision and thus leave only little
time for plausibilisation. Fortunately, such critical scenarios are not predominant in
real-world traffic, as has been seen from empirical scenario distributions. Therefore,
the weighted average results for the exemplary system show a high collision avoidance
benefit.
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In order to derive the probabilistic model, the signal processing chain of an AEB
system has been analysed block-wise. Models of uncertainty in sensor measurements
have been propagated to the state estimates and a criticality measure. Finally, the time at
which a probabilistic activation criterion is reached, has been calculated. Future works
could attempt to derive this timing in a more abstract way without relying on a specific
criticality algorithm. This could be achieved in the framework of hypothesis tests as
introduced in Sec. 5.1. Given a series of uncertain sensor measurements over time, one
has to test the hypothesis that a brake intervention is necessary and make a decision
with a pre-defined level of confidence.



8 Conclusion and outlook

The workspace of an intelligent vehicle is in general highly dynamic, is characterised
by other traffic participants with often unforeseeable behaviour and can be observed
only partially through noisy sensor measurements. The scope of this thesis has been to
formulate probabilistic models for these unknown and uncertain aspects. Such models
benefit the development of reliable and robust driver assistance systems.

8.1 Conclusion

This work has addressed the question of how uncertainties affect algorithms in an
ADAS signal processing chain. To this end, methods for finding parametric models of
uncertainties in common processing steps have been developed and evaluated. The
developed models of uncertainties can be propagated through a processing chain with
the help of analytical approximations. In contrast to previous works – which mainly
rely on numerical approaches – analytical solutions are less computationally demanding,
open up a path to derive constraints on system parameters and can lead to generic
conclusions. These advantages have been demonstrated for the examples of finding
sensor accuracy requirements in a feature-based localisation task and the derivation of
upper performance bounds on an autonomous emergency brake system.

Finding constraints on a system parameter, for example the accuracy of an environment
sensor, answers the question of how the properties of an algorithm’s input data relate
to quality requirements on the processed output data. To this end, models of the input
signals and the propagation to the algorithm’s output are required. In this thesis, error
models of distance measurements given by a stereo vision sensor have been developed
in Sec. 3.1. The propagation of such measurement errors to algorithms for matching
of corresponding environment features has been subsequently derived in Sec. 3.2. In
combination, these models enable the model-based derivation of minimum sensor
accuracy requirements for a map matching based localisation approach which has been
detailed in Sec. 7.1.

Although the optimal solution of an estimation problem may be intractable, knowing
the theoretical performance bound is of great value. This has been studied for state
estimation problems in Sec. 4.1 and the recognition of driving manoeuvres in Sec. 5.1.
These analytical bounds can be used to objectively evaluate the performance of a sub-
optimal solution. This helps to select appropriate algorithms, determine minimum
requirements on a component and to identify fundamental limitations in a system. In
this thesis, such limitations have been investigated for an exemplary AEB system in
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Sec. 7.2. The influence of uncertain distance measurements (Sec. 3.1), motion state
estimates (Sec. 4.1) and state predictions (Sec. 4.2) on the timely activation of an AEB
brake intervention has been studied.

The two aforementioned exemplary applications are founded on probabilistic mod-
els in different processing steps. The main results covered by these models will be
summarised in the following.

Environment perception Two environment perception tasks build the foundations of
the applications of emergency brake systems and feature-based localisation.

First, errors in distance measurements that are derived from stereo images have been
modelled in Sec. 3.1. The results comprise closed-form expressions for the propagation of
disparity measurement errors in an exemplary obstacle detection algorithm. Additionally,
the transformation from disparity coordinates to Cartesian distances has been analysed
in terms of statistical consistency. A novel transformation with improved consistency
has been proposed. In order to model the relevant statistical properties of stereo images,
a deductive top-down approach has been followed. The model’s validity is shown for a
known parametrisation, which is challenging to establish in diverse and dynamic traffic
scenes. Inductive modelling of the errors from empirical data is thus a viable alternative.
To this end, reference data has to be obtained, which has been studied in Ch. 6. Novel
post processing methods for object detection and tracking have been presented and
evaluated for the example of a LIDAR sensor.

Second, a statistical analysis of the fundamental problem of matching two registered
sets of features has been developed in Sec. 3.2. Solving this kind of problem is essential
for localisation tasks. Novel closed-form expressions for the covariance of the estimated
transformation have been derived and a de-biased estimator has been proposed. These
models can be employed for example in probabilistic filtering and sensor data fusion or
to derive sensor accuracy constraints.

State estimation and prediction Algorithms that estimate and predict the motion of
traffic participants are a crucial prerequisite for realising many ADAS functions.

State estimators aggregate measurement information over time and estimate unobserv-
able motion states. In order to model the errors in these state estimates, the foundations
of the Cramér-Rao bound have been discussed and applied to the example of motion
state estimation in Sec. 4.1. In many relevant cases, this lower bound on the estimation
error covariance can be efficiently calculated. Thus, an analytical, time-dependent model
of the state estimation uncertainty can be derived and propagated to subsequent process-
ing steps from a model of measurement errors at individual time steps. Furthermore,
the performance of a sub-optimal state estimator can be compared to the theoretical
limit. Therefore, the potential benefit of more accurate but often computationally more
expensive estimators can be quantified.

Kinematic predictions of a vehicle’s motion are a crucial part of a state estimator and
algorithms for situation interpretation, for example in AEB systems. Since predicting the
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unforeseeable future driver behaviour is never exact, statistical error analyses have been
conducted on large-scale datasets of recorded vehicle trajectories in Sec. 4.2. A Gaussian
white process noise model has been used to model the prediction errors, which facilitates
closed-form results. The model parameters have been estimated using the expectation
maximisation principle. Novel explicit expressions of the estimator equations have
been derived for the considered model structure. Evaluations of the probabilistic model
confirm the estimated parameter values but also reveal some non-Gaussian effects. Thus,
future works could relax the model assumptions, for example with multimodal densities,
and extend the parameter estimation scheme accordingly.

Situation interpretation In order to enhance the reliability of long-term motion predic-
tions, additional semantic driver intentions can be inferred. In Sec. 5.1, novel perfor-
mance bounds on such a manoeuvre recognition task have been developed. To this end,
it has been proposed to formulate the task as a change detection problem in a linear
dynamical system. Thus, known results on the statistical properties of such a problem
can be applied. A novel recursive form of the theoretical performance bound has been
derived in this work. This recursion facilitates an efficient computation and yields further
insight into the fundamental dependence between the duration of an observation and
the achievable rate of correctly detecting a manoeuvre.

Based on state estimates and motion predictions, criticality measures are used for
decision making in an AEB system. A generic framework for modelling the uncertainty
in these risk metrics has been proposed in Sec. 5.2. The framework has been exemplified
for two specific criticality measures for which closed-form models have been developed.
Furthermore, the timing of a brake intervention has been studied. To this end, an
approximation method for calculating level crossing probabilities of a Gauss-Markov
process has been derived and evaluated. This result generalises previous works on the
special case of independent Gaussians.

8.2 Outlook

The obtained models and the techniques used to derive them can be employed in a
wide range of applications. Two possible directions for further research, from which
the advancement of driver assistance technology could benefit, are the definition of
performance metrics and probabilistic decision making.

Firstly, knowing the goodness of a theoretical optimum solution helps to objectively
assess the quality of an algorithm. Current research activities on this topic focus on
the usually intractable problem of multi-target tracking. Predicting driver intentions
and the future trajectories of traffic participants is a similarly difficult problem with a
high relevance to higher automated driving functions. However, objective metrics and
insight on fundamental limitations in these tasks are still lacking. With the help of the
framework and models developed in this work, such insight could be developed. The
added value is that one can differentiate conditions under which current algorithms
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already perform close to the theoretical optimum from those where there is still room for
improvement.

Secondly, analytical models of uncertainty facilitate the self-assessment of reliability in
an algorithm. Due to limited computational resources in embedded devices, numerical
approaches are difficult to apply to this end. On the other hand, significantly less
demanding implementations are enabled by closed-form models. For example, the
developed uncertainty propagation in criticality measures could be included in decision
making algorithms for AEB brake interventions.

The scope of this work has been to systematically analyse an entire signal processing
chain instead of only a particular component. The usefulness of such an end-to-end
modelling approach has been demonstrated for the examples of deriving sensor param-
eter constraints and the analysis of performance bounds. Therefore, contributions of
this work are given by the overall framework in which previous results could be inte-
grated but also the development of novel methods and models. Nevertheless, potential
approaches to more detailed models have been identified which could not be covered
within the scope of this thesis. These ideas could be further developed in dedicated
analyses and subsequently integrated into the overall framework.



A Appendix

A.1 Derivatives and matrix identities

The following provides an overview of basic matrix identities that are used in this thesis.
A thorough treatment and further relations are detailed for example in [75, 131].

Throughout this work, the numerator-layout is used for the gradient or Jacobian of
scalar- or vector-valued functions, respectively. Let f (x) ∈ Rm denote a vector-valued
differentiable function of x ∈ Rn:

∇xf (x) :=
[
∂f(x)
∂x1

. . . ∂f(x)
∂xn

]
, ∇xf (x) :=




∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

... . . . ...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn


 . (A.1)

The derivative of a scalar-valued function f (X) of a matrix X ∈ Rm×n is denoted by:

∂

∂X
f (X) :=




∂f(X)
∂X1,1

. . . ∂f(X)
∂X1,n

... . . . ...
∂f(X)
∂Xm,1

. . . ∂f(X)
∂Xm,n


 . (A.2)

Two types of matrix functions, the determinant and the trace operator, frequently
occur in the context of maximum likelihood estimation, as in Sec. 4.2.4. Closed-form
results for the derivatives are available in these cases.

Theorem A.1 (Matrix derivatives of determinant and trace [33])
Let X denote an invertible square matrix X ∈ Rn×n and A ∈ Rm×n, B ∈ Rn×p. It
holds that:

∂

∂X
det (X) = det (X)

(
X−1

)T
(A.3)

∂

∂X
log|det (X)| =

(
X−1

)T
(A.4)

∂

∂X
tr
(
AX−1B

)
= −

(
X−1BAX−1

)T
. (A.5)

The determinant and trace of a Kronecker product between two square matrices can
be reformulated. This relationship makes it straightforward to find the derivative with
respect to one of the two factors.
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Theorem A.2 (Determinant, trace and inverse of Kronecker products [33])
It holds for A ∈ Rn×n,B ∈ Rm×m that:

det (A⊗B) = det (A)m det (B)n (A.6)
tr (A⊗B) = tr (A) tr (B) . (A.7)

Furthermore, if A−1 and B−1 exist, one has the equality:

A−1 ⊗B−1 = (A⊗B)−1 . (A.8)

Theorem A.3 (Woodbury identity [75])
The following identity, also known as matrix inversion lemma, holds for regular matri-
ces A ∈ Rn×n,B ∈ Rm×m and C ∈ Rn×m:

(
A + CBCT

)−1

= A−1 −A−1C
(
B−1 + CTA−1C

)−1

CTA−1 . (A.9)

Furthermore, it follows that:
(
A + CBCT

)−1

CB =

(
A−1 −A−1C

(
B−1 + CTA−1C

)−1

CTA−1

)
CB

= A−1C

(
Im×m −

(
B−1 + CTA−1C

)−1

CTA−1C

)
B

= A−1C
(
B−1 + CTA−1C

)−1

. (A.10)

In the more general case of a regular matrix A and a possibly singular B, the following
identity applies instead of (A.9):

(
A + CBCT

)−1

= A−1 −A−1CB
(
Im×m + CTA−1CB

)−1

CTA−1 . (A.11)

Theorem A.4 (Inversion of partitioned matrices [75])
We assume an invertible matrix A ∈ Rn×n which is written in a partitioned form with
blocks A11 ∈ Rm×m, A12 ∈ Rm×p, A21 ∈ Rp×m and A22 ∈ Rp×p where n = m+ p. The
inverse of A is obtained block-wise as follows:

[
A11 A12

A21 A22

]−1

=

[
B−1

11 B12

B21 B−1
22

]
(A.12a)

where
B11 := A11 −A12A

−1
22 A21 , (A.12b)
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B22 := A22 −A21A
−1
11 A12 , (A.12c)

B12 := −A−1
11 A12

(
A22 −A21A

−1
11 A12

)−1
= −A−1

11 A12B
−1
22 , (A.12d)

B21 := −
(
A22 −A21A

−1
11 A12

)−1
A21A

−1
11 = −B−1

22 A21A
−1
11 . (A.12e)

A.2 Constant turn rate and acceleration model

First, the time evolution x (tk + T ) of the state in the CTRA model is calculated by solving
the differential equation (4.48) with an initial value xk := x (tk):

x (tk + T ) = xk + cos (θk)

[
vk

sin (ωkT )

ωk
+ ak

(
sin (ωkT )

ωk
T − 1− cos (ωkT )

ω2
k

)]

− sin (θk)

[
vk

1− cos (ωkT )

ωk
− ak

(
cos (ωkT )

ωk
T − sin (ωkT )

ω2
k

)]
(A.13a)

y (tk + T ) = yk + cos (θk)

[
vk

1− cos (ωkT )

ωk
− ak

(
cos (ωkT )

ωk
T − sin (ωkT )

ω2
k

)]

+ sin (θk)

[
vk

sin (ωkT )

ωk
+ ak

(
sin (ωkT )

ωk
T − 1− cos (ωkT )

ω2
k

)]
(A.13b)

v (tk + T ) = vk + akT (A.13c)
θ (tk + T ) = θk + ωkT (A.13d)
a (tk + T ) = ak (A.13e)
ω (tk + T ) = ωk . (A.13f)

For T = TS, this yields the discrete time state transition xk+1 = f (xk). Note that the first
two equations possess a singularity at ωk = 0 which can be resolved by rewriting the
trigonometric functions as series expansions.

Second, the state transition matrix Φ (t, t0) is derived. To this end, the Jacobian of f (t)

is obtained as:

F (t) := ∇x(t)f (x (t)) =




0 0 cos (θ (t)) −v (t) sin (θ (t)) 0 0

0 0 sin (θ (t)) v (t) cos (θ (t)) 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0



. (A.14)
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A closed-form expression for Φ (t, t0) follows according to (4.73):

Φ (t, t0) =




1 0 Φ1,3 (t, t0) Φ1,4 (t, t0) 0 0

0 1 Φ2,3 (t, t0) Φ2,4 (t, t0) 0 0

0 0 1 0 t− t0 0

0 0 0 1 0 t− t0
0 0 0 0 1 0

0 0 0 0 0 1




(A.15a)

Φ1,3 (t, t0) = cos (θ0)α (t, t0)− sin (θ0) β (t, t0) (A.15b)
Φ2,3 (t, t0) = sin (θ0)α (t, t0) + cos (θ0) β (t, t0) (A.15c)

Φ1,4 (t, t0) = − cos (θ0)

[
α (t, t0)

a0

ω0

+ β (t, t0) v0 − γ (t, t0) a0 (t− t0)

]

− sin (θ0)

[
α (t, t0) (v0 + a0 (t− t0))− β (t, t0)

a0

ω0

] (A.15d)

Φ2,4 (t, t0) = − sin (θ0)

[
α (t, t0)

a0

ω0

+ β (t, t0) v0 − γ (t, t0) a0 (t− t0)

]

+ cos (θ0)

[
α (t, t0) (v0 + a0 (t− t0))− β (t, t0)

a0

ω0

] (A.15e)

with the following abbreviations

α (t, t0) :=
sin (ω0 (t− t0))

ω0

, β (t, t0) :=
1− cos (ω0 (t− t0))

ω0

,

γ (t, t0) :=
cos (ω0 (t− t0))

ω0

, x0 := x (t0) .

(A.15f)

The process noise covariance matrix Qk of the discrete-time system is obtained by
inserting Φ (t, t0) from (A.15) into (4.45b):

cov (wk) = Qk =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 1
3
TS

3Sa 0 1
2
TS

2Sa 0

0 0 0 1
3
TS

3Sω 0 1
2
TS

2Sω
0 0 1

2
TS

2Sa 0 TSSa 0

0 0 0 1
2
TS

2Sω 0 TSSω



. (A.16)

In order to enable the estimation of the parameters Sa and Sω in Sec. 4.2.4 an equivalent
formulation in terms of an auxiliary noise process w′k with wk = Gw′k is introduced:

cov
(
w′k
)

= Q′k =

[
1
3
TS

3 1
2
TS

2

1
2
TS

2 TS

]

︸ ︷︷ ︸
=:Q1

⊗
[
Sa 0

0 Sω

]

︸ ︷︷ ︸
=S

, G :=




0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



. (A.17)
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Therefore, S can be estimated using (4.60) in conjunction with the result (4.69) for covari-
ance matrices with Kronecker product structure.

A concluding remark concerns the order in which the state transition matrix Φ (t, t0)

has been derived: At first, the system differential equation is linearised (A.14) and
subsequently integrated in (A.15) (linearisation and discretisation), as in [107].

Alternatively, one can first solve the time evolution x (t) starting from an initial state
x0 as in (A.13) and differentiate this result with respect to x0. Due to the exchanged
order of the operations, this approach is known as discretisation and linearisation. The
approach is analytically shown to be more accurate in [70].

For the CTRA model, the difference between both approaches lies in the treatment
of acceleration a (t) and yaw rate ω (t). Since these state variables do not occur in the
first two of the differential equations of the model (4.48), the Jacobian F (t) from (A.14)
contains zeros at the respective positions. However, when the time evolution (A.13)
is calculated first, such a dependence occurs and Φ (t, t0) features additional non-zero
elements:

Φ1,5 (t, t0) = cos (θ0)

[
α (t, t0) (t− t0)− β (t, t0)

ω0

]

+ sin (θ0)

[
γ (t, t0) (t− t0)− α (t, t0)

ω0

] (A.18a)

Φ2,5 (t, t0) = sin (θ0)

[
α (t, t0) (t− t0)− β (t, t0)

ω0

]

− cos (θ0)

[
γ (t, t0) (t− t0)− α (t, t0)

ω0

] (A.18b)

Φ1,6 (t, t0) = cos (θ0)

[
− α (t, t0)

(
2a0

ω0

(t− t0) +
v0

ω0

)

+ β (t, t0)
2a0

ω2
0

+ γ (t, t0)
(
v0 (t− t0) + a0 (t− t0)2)

]

− sin (θ0)

[
α (t, t0)

(
v0 (t− t0) + a0 (t− t0)2 − 2a0

ω2
0

)

− β (t, t0)
v0

ω0

+ γ (t, t0)
2a0

ω0

(t− t0)

]

(A.18c)

Φ2,6 (t, t0) = sin (θ0)

[
− α (t, t0)

(
2a0

ω0

(t− t0) +
v0

ω0

)

+ β (t, t0)
2a0

ω2
0

+ γ (t, t0)
(
v0 (t− t0) + a0 (t− t0)2)

]

+ cos (θ0)

[
α (t, t0)

(
v0 (t− t0) + a0 (t− t0)2 − 2a0

ω2
0

)

− β (t, t0)
v0

ω0

+ γ (t, t0)
2a0

ω0

(t− t0)

]

. (A.18d)
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All other entries are identical to (A.15).
Since the approach is more accurate than the general method (4.72c), the extended

transition matrix Φ (t, t0) is used in this work to propagate the initial state covariance
according to (4.72a). Note that the propagation of the process noise Q (tk + T, tk) accord-
ing to (4.72b) can be analytically solved in both cases. However, in contrast to (A.16),
the result becomes much lengthier if the additional entries from (A.18) are taken into
account.

A.3 Reformulation of mixed Kronecker matrix product

The goal is to show that the trace of a mixed Kronecker and matrix product can be
expressed as a sum of traces of matrix products:

tr
(
(S⊗Q1)−1 M

)
= tr

((
S−1 ⊗Q−1

1

)
M
)

=

nQ∑

i=1

nQ∑

j=1

Q̃ij tr
(
S−1M̃(j,i)

)
. (A.19)

The identity is helpful in order to find the derivative with respect to S. At first, the
abbreviation U :=

(
S−1 ⊗Q−1

1

)
M is introduced. The elements of S−1 are denoted by

S̃m,n, m = 1, . . . , nS, n = 1, . . . , nS . A similar notation is chosen for the elements of the
inverse Q−1

1 , that is Q̃i,j , i = 1, . . . , nQ, j = 1, . . . , nQ. Moreover, a block matrix notation
is introduced for M, where Mi:i+nQ,j:j+nQ

denotes the nQ × nQ sub-matrix at position i, j.
With these notations, the nSnQ × nSnQ-dimensional U can be written explicitly:

U =



S̃1,1Q

−1
1 · · · S̃1,nS

Q−1
1

... . . . ...
S̃nS ,1Q

−1
1 · · · S̃nS ,nSQ

−1
1


 ·




M1:nQ,1:nQ
· · · M1:nQ,(nS−1)nQ:nSnQ

... . . . ...
M(nS−1)nQ:nSnQ,1:nQ

· · · M(nS−1)nQ:nSnQ,(nS−1)nQ:nSnQ


 .

As one is interested in tr (U), only the diagonal elements of this product are studied:

Uk,k =

nS∑

n=1

nQ∑

j=1

S̃1,nQ̃k,jMj+(n−1)nQ,k
, k = 1, . . . , nQ

Uk,k =

nS∑

n=1

nQ∑

j=1

S̃2,nQ̃k−nQ,jMj+(n−1)nQ,k
, k = nQ + 1, . . . , 2nQ

...

Uk,k =

nS∑

n=1

nQ∑

j=1

S̃nS ,nQ̃k−(nS−1)nQ,j
Mj+(n−1)nQ,k

, k = (nS − 1)nQ + 1, . . . , nSnQ .
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Summing up the diagonal yields:

tr (U) =

nQ∑

k=1

nS∑

n=1

nQ∑

j=1

S̃1,nQ̃k,jMj+(n−1)nQ,k

+

2nQ∑

k=nQ+1

nS∑

n=1

nQ∑

j=1

S̃2,nQ̃k−nQ,jMj+(n−1)nQ,k

+ · · ·+
nSnQ∑

k=(nS−1)nQ+1

nS∑

n=1

nQ∑

j=1

S̃nS ,nQ̃k−(nS−1)nQ,j
Mj+(n−1)nQ,k

=

nQ∑

k=1

nS∑

n=1

nQ∑

j=1

S̃1,nQ̃k,jMj+(n−1)nQ,k
+

nQ∑

k=1

nS∑

n=1

nQ∑

j=1

S̃2,nQ̃k,jMj+(n−1)nQ,k+nQ

+ · · ·+
nQ∑

k=1

nS∑

n=1

nQ∑

j=1

S̃nS ,nQ̃k,jMj+(n−1)nQ,k+(nS−1)nQ

=

nS∑

m=1

nQ∑

k=1

nS∑

n=1

nQ∑

j=1

S̃m,nQ̃k,jMj+(n−1)nQ,k+(m−1)nQ

=

nQ∑

k=1

nQ∑

j=1

Q̃k,j

nS∑

m=1

nS∑

n=1

S̃m,nMj+(n−1)nQ,k+(m−1)nQ
. (A.21)

Key to finding an expression in S again is to introduce the matrix M̃(j,k) whose elements
are taken from M according to a regular pattern:

M̃(j,k) =
[
Mj+(u−1)nQ, k+(v−1)nQ

]
u=1,...,nS
v=1,...,nS

. (A.22)

With the definition of M̃(j,k), one obtain the desired result from (A.21):

tr (U) =

nQ∑

k=1

nQ∑

j=1

Q̃k,j

nS∑

m=1

nS∑

n=1

S̃m,nM̃
(j,k)
n,m =

nQ∑

k=1

nQ∑

j=1

Q̃k,j tr
(
S−1M̃(j,k)

)
. (A.23)

A.4 Recursive GLR test statistic as quadratic form

The following derivation details the simplification of λL+1 from (5.37) to an equivalent
expression but written as a quadratic form in (5.38). For brevity, the abbreviation
θ̃ := θ1 − θ0 is used.

Firstly, the recursive expression for ML+1,11 from (5.31) is inserted into (5.37). The
definition of λL from the previous iteration is then recovered. The remaining terms
contain matrix products which can be calculated recursively as well. To this end, a
recursively defined abbreviation ΛL, L ≥ 1 with Λ1 = 0nθ×n is introduced:

ΛL+1︸ ︷︷ ︸
nθ×n

=
(
ΦLθ̃

)T

︸ ︷︷ ︸
nθ×L·m

· IVL︸︷︷︸
L·m×L·m

· HL︸︷︷︸
L·m×L·n

·MT
L+1,21︸ ︷︷ ︸
L·n×n



214 A Appendix

=
L∑

l=1

(
ϕT
l θ̃
)T

IvCM
(l)
L+1,21

T

(5.35)
=

L−1∑

l=1

(
ϕT
l θ̃
)T

IvC

(
L−1∏

j=l

Γj+1Ml,22

)T

ΓT
L+1 +

(
ϕT
Lθ̃
)T

IvC
(
ΓL+1ML,22

)T

= −
(

ΛLM−1
L,22 +

(
ϕT
Lθ̃
)T

IvC

)(
S + M−1

L,22

)−1
D12D

−1
22 . (A.24)

It has been used here that ΓL+1 from (5.34) can be written solely in terms of ML,22:

ΓL+1 = −ML+1,22D21

(
D11 + M−1

L,22

)−1
M−1

L,22 (A.25)
(5.33)
= −

(
D22 −D21

(
D11 + M−1

L,22

)−1
D12

)−1

D21

(
D11 + M−1

L,22

)−1

(A.10)
= −D−1

22 D21

(
S + M−1

L,22

)−1
M−1

L,22 . (A.26)

Thus, one obtains λL+1 from (5.37) as λL+1 = λL + ∆λL+1 where the additive term ∆λL+1

is given by:

∆λL+1 =

(
ΛL +

(
ϕT
Lθ̃
)T

IvCML,22

)

︸ ︷︷ ︸
=:α

·S
(
S + M−1

L,22

)−1
M−1

L,22︸ ︷︷ ︸
=:β

·
(

ΛL +
(
ϕT
Lθ̃
)T

IvCML,22

)T

︸ ︷︷ ︸
=:α

T

−2ΛL+1C
TIv

(
ϕT
L+1θ̃

)

+
(
ϕT
L+1θ̃

)T (
Iv − IvCML+1,22C

TIv

)(
ϕT
L+1θ̃

)
.

(A.27)

While the second and third term contain ΛL+1 and ML+1,22, the first one involves the
respective expressions from iteration L.

To simplify (A.27) the factor α is rewritten:

α =

[
ΛLM−1

L,22 +
(
ϕT
Lθ̃
)T

IvC

]
·
[
−
(
S + M−1

L,22

)−1
D12D

−1
22

]

·
[
−
(
S + M−1

L,22

)−1
D12D

−1
22

]−1

ML,22

(A.24)
= −ΛL+1

(
D12D

−1
22

)−1 (S + M−1
L,22

)
ML,22 . (A.28)

Inserting this expression into (A.27) yields:

αβαT = ΛL+1

(
D12D

−1
22

)−1 (S + M−1
L,22

)
ML,22S

(
D−1

22 D21

)−1
ΛT
L+1

= ΛL+1

(
D12D

−1
22

)−1 (SML,22S + S
) (

D−1
22 D21

)−1
ΛT
L+1 . (A.29)

In order to proceed further, S as defined in (5.32) is reformulated using (5.27):

S = ST = D11 −D12D
−1
22 D21
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= ATIwA−ATIw

(
Iw + CTIvC

)−1

IwA

= ATIw

(
Iw + CTIvC

)−1 (
CTIvC

)
A

= −
(
D12D

−1
22

) (
CTIvC

)
A . (A.30)

Inserting this into (A.29) yields:

αβαT

= ΛL+1

[(
CTIvC

)
AML,22A

T
(
CTIvC

)
+
(
CTIvC

)
I−1

w

(
Iw + CTIvC

)]
ΛT
L+1

= ΛL+1C
T
[
Iv + IvC

(
I−1

w + AML,22A
T
)

CTIv

]
CΛT

L+1

(A.9)
= ΛL+1C

T

[
Iv + IvC

(
Iw − IwA

(
M−1

L,22 + ATI−1
w A

)−1

ATIw

)−1

CTIv

]
CΛT

L+1

(5.33)
= ΛL+1C

T

[
Iv − IvC

(
CTIvC−M−1

L+1,22

)−1

CTIv

]
CΛT

L+1

(A.9)
= ΛL+1C

TIv

(
Iv − IvCML+1,22C

TIv

)−1

IvCΛT
L+1 .

(A.31)

With this identity, the sum in (A.27) can be finally combined:

∆λL+1 =
(
IvCΛT

L+1

)T (
Iv − IvCML+1,22C

TIv

)−1 (
IvCΛT

L+1

)

− 2
(
IvCΛT

L+1

)T (
ϕT
L+1θ̃

)

+
(
ϕT
L+1θ̃

)T (
Iv − IvCML+1,22C

TIv

)(
ϕT
L+1θ̃

)

= aT
L+1 ·

(
I−1

v −CML+1,22C
T
)
· aL+1 (A.32)

with

aL+1 := Ivϕ
T
L+1 (θ1 − θ0)−

(
I−1

v −CML+1,22C
T
)−1

CΛT
L+1 . (A.33)
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