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1 Introduction

The Higgs boson discovered at the LHC by ATLAS and CMS collaborations almost four

years ago [1, 2] is a mysterious particle. Indeed, it seems to fit perfectly into the Stan-

dard Model (SM) of particle physics and its mass is numerically close to the weak scale

v. However, the mechanism that would tie these two quantities together in a more gen-

eral theory requires presence of other, relatively light, particles that couple to the Higgs

boson. Such particles have not been observed so far and limits on their masses gradually

become so tight that the “natural” relation mH ∼ v is endangered. Further exploration of

Higgs boson properties, including its couplings and quantum numbers, will be essential for

understanding to what extent the observed particle is indeed described by the Standard

Model and, hopefully, for discovering clues as to what the mass scale of physics beyond the

Standard Model can actually be.

An important observable in Higgs physics is the Higgs boson transverse momentum

distribution. There are several reasons for that. On one hand, precise knowledge of the

Higgs boson p⊥-distribution is important for understanding jet-vetoed cross sections and,

more generally, observables subject to experimental constraints. The uncertainties in mod-

eling the p⊥-distribution affect values of the Higgs coupling constants extracted from such

fiducial quantities. Since the total inclusive Higgs boson production cross section is cur-

rently known through next-to-next-to-next-to-leading order in perturbative QCD [3], the

uncertainty in the Higgs p⊥-distribution may become the dominant one when future ex-

perimental data is confronted with theoretical predictions for the Higgs boson production.
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Further motivation for the precise description of the Higgs boson p⊥-spectrum comes

from the observation that the p⊥-distribution is, potentially, a good observable for detecting

relatively light (m ∼ mH) colored particles that couple to the Higgs boson [4]. Indeed the

contribution of a particle with the mass m ∼ mH to the Higgs boson production in gluon

fusion is almost independent of p⊥ for p⊥ < m while for p⊥ > m it rapidly decreases. Thus

the p⊥-distribution of Higgs bosons or jets recoiling against it, may serve as a sensitive

probe of this type of physics beyond the Standard Model.

High-precision theoretical predictions for Higgs boson p⊥-distribution within the Stan-

dard Model are necesary to pursue this program [5–8]. Unfortunately, despite significant

progress in understanding the Higgs p⊥-spectrum in recent years, the overall situation is

unsatisfactory. The main challenge is to describe the bottom quark contribution to the

Higgs boson production in gluon fusion at moderate values of the transverse momentum.

Indeed, the gg → H transition in the Standard Model is dominated by the top-quark

loop, thanks to the large Higgs-top Yukawa coupling. Since the top quark mass is large

compared to the Higgs mass, it is possible to integrate out the top quark and describe the

Higgs production at sufficiently low transverse momentum in the effective field theory with

a local ggH interaction. This reduces the number of loops in perturbative computations by

one and allows us to push them to very high orders in QCD perturbation theory. Within

this approximation, the Higgs p⊥-distribution has been evaluated through next-to-next-to-

leading order at high p⊥ < mt [9, 10] and to next-to-next-to-leading logarithmic accuracy

at low p⊥ < mH [11, 12].1

At the same time understanding the bottom-quark contribution to gg → Hg turned

out to be more involved.2 Indeed, since mb ∼ 4.2 GeV, the point-like approximation for

the bottom quark contribution to ggH vertex is only valid for tiny transverse momenta

p⊥ < mb. In a broader and more interesting momentum region p⊥ > mb, the local vertex

approximation for the bottom quark-mediated ggH interaction is invalid and we must

deal with the computation of complicated box diagrams with internal masses. Calculation

of such diagrams at two and more loops is beyond the reach of existing computational

techniques.3 As the result, the gg → Hg amplitudes for p⊥ > mb are only known in the

leading (one-loop) approximation.

The bottom quark contribution to Higgs boson production is small, compared to the

contribution of the top quark. However, it is still relevant phenomenologically because of

the high precision of forthcoming experimental measurements of the Higgs-gluon coupling

and because the bottom quark contribution is dynamically enhanced. Indeed, although

the coupling of the bottom quark to the Higgs boson is small compared to the Higgs-top

coupling, the n-loop bottom quark contribution to gg → Hg is enhanced by two powers of

large logarithms per one power of αs, i.e. O(αnsL2n), where L ∈ {ln(m2
H/m

2
b), ln(p2

⊥/m
2
b)}.

For relevant values of the transverse momentum p⊥ ∼ 30 GeV and the Higgs boson mass

mH = 125 GeV, these logarithms can be numerically quite large L2 ∼ 20− 50. In fact, the

1For a recent discussion and further references see ref. [13].
2Contributions of even lighter quarks are negligible.
3For a recent progress in the next-to-next-to-leading order analysis of the bottom quark mass effects in

gg → H production see ref. [14].
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magnitude of the double logarithmic corrections suggests that the all-order resummation

may be necessary.

The origin of these logarithmically enhanced terms is currently not well understood.

Although their double logarithmic nature suggests a mechanism similar to the Sudakov en-

hancement [15], as we explain below the mass suppression of the amplitudeMgg→Hg ∼ m2
b

makes such an interpretation problematic. Contribution of bottom quarks to the Higgs

boson production in gluon fusion was discussed in refs. [16–18] in the context of p⊥-

resummation. There it was pointed out that the standard technology of p⊥-resummation

only applies for p⊥ < mb, while for larger values of p⊥ it is incomplete. The authors

of refs. [16–18] then used differences between various resummation prescriptions to esti-

mate the uncertainty in the Higgs p⊥-distribution, caused by unknown higher-order QCD

corrections to the bottom quark contribution.

The goal of this paper is to make a step towards a better understanding of the origin

of double logarithmic corrections to the Higgs boson production, their computation in the

two-loop approximation and to their resummation. Since these tasks are very challenging,

we restrict our analysis to abelian QCD corrections, i.e. corrections associated with the

abelian color factor CnF in the n-th order of QCD perturbation theory. Note that the

abelian radiative corrections are generated by the coupling of virtual gluons to massive off-

shell quarks. As a consequence, these corrections are infra-red finite on their own, so that

physical results can be obtained without the need to consider processes with additional

soft and collinear radiation.

The paper is organized as follows. In the next section we introduce our notation. In

section 3 we describe evaluation of one-loop double logarithmic corrections to the bottom

quark contribution to gg → Hg helicity amplitudes. In section 4 we extend this analysis

to two loops. In section 5 we show how these logarithmic corrections can be resummed to

all orders in the strong coupling constant. Numerical estimates of the corrections are given

in section 6. We conclude in section 7.

2 Setup and notations

We consider the Higgs boson production in the process gg → Hg mediated by the bottom

quark loop. The Higgs boson has a non-vanishing transverse momentum. The particle

momenta are assigned in the following way

g(p1) + g(p2)→ g(p3) +H(pH). (2.1)

Our goal is to find the double logarithmic contributions to helicity amplitudes in a kinematic

situation where the energy of the final state gluon E3 is much smaller than the energies of

the colliding gluons E1,2 and the Higgs boson mass. At the same time, we consider E3 to

be much larger than the mass of the quark that mediates the gg → H transition. When

written in terms of kinematic invariants, these conditions become

m2
b � t, u� s,m2

H , (2.2)
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where s = (p1 + p2)2, t = (p1 − p3)2, u = (p2 − p3)2. Eq. (2.2) in particular implies that

m2
b � p2

⊥ � t, u, where p2
⊥ = tu/s is the square of the transverse momentum of the Higgs

boson or the gluon in the final state.

To illustrate this kinematic situation further, consider the production of a Higgs boson

through a bottom quark loop accompanied by an emission of a soft gluon. We take mb =

4.2 GeV,
√
s ≈ mH , p⊥ ≈ 20 GeV and assume central production (small rapidity), so that

E3 ≈ p⊥. Numerically we find
mb

E3
∼ λ, E3

E1
∼ λ, (2.3)

with λ ∼ 0.25. We consider λ to be a small parameter and adopt the scaling rules eq. (2.3).

In the limit λ → 0 the gg → Hg amplitude develops the 1/λ singularity, characteristic to

the soft gluon emissions; this allows us to write the perturbative series for the amplitude

in the following way

Mgg→Hg =
gs
λ

∞∑
n=1

Cnα
n
s ln2n(λ) + . . . . (2.4)

In eq. (2.4), we neglected all terms that are less singular than λ−1αns ln2n λ in the λ → 0

limit. We are interested in the abelian part of the coefficients Cn, which determine the

double logarithmic approximation for the amplitude. The leading-order coefficient C1 is

well-known and can be extracted from the one-loop result for the gg → Hg amplitude [19].

In what follows, we explain how to obtain this coefficient without following the standard

route of a one-loop computation. We then compute the two-loop coefficient C2 and gener-

alize the result to arbitrary n.

We begin by fixing the notation for helicity amplitudes. There are eight helicity am-

plitudes that are needed to describe g1g2 → Hg3 process. However, when the gluon g3

is soft, the Higgs boson is effectively produced in the collision of two energetic gluons g1

and g2. This can only happen when helicities of these gluons are equal. The constraint

λ1 = λ2 leaves us with four helicity amplitudes which are pair-wise related by the parity

conjugation. We take M+++ and M++− as the two independent amplitudes that we need

to compute.

It is convenient to write the amplitudes in such a way that their spin-helicity structure

in the soft limit is factored out, and the remaining part only depends on the Mandelstam

invariants of the process

M soft
+++ = −gs

√
2fa1a2a3

g2
sgymb

16π2

〈12〉2

[12]〈23〉〈13〉
A+++(t, u,m2

H ,m
2
b),

M soft
++− = −gs

√
2fa1a2a3

g2
sgYmb

16π2

〈12〉
[23][13]

A++−(t, u,m2
H ,m

2
b).

(2.5)

Two helicity-dependent form factors A++± are given by the series in the strong coupling

constant

A++± = A
(0)
++± +

(αs
2π

)(
CFA

(1A)
++± + CAA

(1NA)
++±

)
+O(α2

s), (2.6)

where the abelian and non-abelian parts are separated. Our goal is to compute abelian

contributions at two loops and beyond.
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Figure 1. One-loop diagrams representing the leading order bottom quark contribution to gg → Hg

process. Symmetric diagrams corresponding to the opposite direction of the quark flow and to the

soft emissions off the opposite gluon/quark line are not shown.

3 One-loop helicity amplitudes in the double logarithmic approximation

In this section, we will study the double logarithmic contributions to the one-loop gg → Hg

amplitude mediated by a quark of mass m. A well-known example of a double logarithmic

enhancement is provided by the Sudakov logarithms [15]. However, the situation with

gg → Hg is different. Indeed, as we will show, in contrast to the Sudakov logarithms [15]

associated with the radiation of soft virtual gauge bosons by highly energetic on-shell

charged particles, the double logarithmic enhancement of the gg → Hg amplitude is caused

by a soft quark exchange. Such non-Sudakov double logarithms are typical for amplitudes

that are mass-suppressed at high energy [20–22]. Since physics of these non-Sudakov double

logarithmic corrections is not well-known, we begin by discussing the one-loop case in detail.

In total, there are ten one-loop Feynman diagrams contributing to the leading order

gg → Hg amplitude, figure 1. However, up to differences in color factors that ensure

that the final result is proportional to structure constants fabc of the gauge group SU(3),

diagrams that differ only by the direction of the quark flow in the loop give identical

contributions. The number of relevant diagrams can be further reduced by a judicious

choice of gluon polarization vectors. Indeed, each polarization vector can be chosen to

satisfy two transversality conditions. It is convenient to require

εi · pi = 0, i ∈ {1, 2, 3}, ε1 · p2 = 0, ε2 · p1 = 0, ε3 · p2 = 0. (3.1)

Explicit expressions for polarization vectors satisfying eq. (3.1) in terms of spinor products

are given in appendix. Emission of a soft gluon g3 off the gluon or quark line carrying

large momentum pi can be described by an effective vertex proportional to pi · ε3. Thus the

condition ε3 · p2 = 0 ensures that there are no soft gluon emissions off the gluon and quark

lines carrying the external momentum p2. As the result, only diagrams shown in figure 1

need to be considered.

To determine the double logarithmic asymptotic behavior of the amplitude we follow

the original method of ref. [15]. We start by evaluating the diagram figure 1a together with

the diagram with the opposite direction of the quark flow. By calculating the trace we find

that the diagram is proportional to mb. The mass suppression is caused by the fact that

the Higgs-quark interaction flips quark helicity. Since strong interactions conserve helicity
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in the massless limit, the mass term provides the required second helicity flip in the quark

loop. This helicity flip is caused by a mass term of the soft quark propagator

l̂ +mb

l2 −m2
b

→ mb

l2 −m2
b

. (3.2)

It follows from eq. (3.2) that once the mass term is selected, the soft quark propagator

becomes a propagator of a scalar particle, which is sufficiently singular at small momenta

to develop a double logarithmic contribution. We note that if the mass term is taken from

the quark propagator that carries large momentum, the double logarithmic contribution

does not develop because the soft quark propagator 1/l̂ is insufficiently singular. By virtue

of a similar argument, the soft loop momentum l can often be neglected in the numerators of

contributing diagrams, since we are only interested in the leading logarithmic enhancement.

We note that the last feature is not generic (see e.g. the analysis of the diagram figure 1c

below). With all these simplifications it is straightforward to derive contributions of the

diagram figure 1a to the helicity-dependent form factors. They read

A
(0),1a
++± = −32 i π2s C(s, t,m2

b), (3.3)

where

C(s, t,m2
b) =

∫
d4l

(2π)4

1

(l2 −m2
b)((p1 − p3 − l)2 −m2

b)((p2 + l)2 −m2
b)

(3.4)

is the three-point function with two of its legs off-shell. To compute C(s, t,m2
b) in the double

logarithmic approximation, we follow ref. [15] and introduce the Sudakov parametrization

of the virtual momentum l = αp1 + βp2 + l⊥. We integrate over the transverse momentum

components l⊥ by taking the residue of the soft quark propagator pole

1

l2 −m2
b + i0

→ −iπδ(l2 −m2
b) = −iπδ(sαβ − l2⊥ −m2

b). (3.5)

This allows for a symmetric treatment of the soft and collinear parts of the double loga-

rithmic contribution. The two remaining propagators in eq. (3.4) become

1

(p2 − l)2 −m2
b

→ 1

sα
,

1

(p1 − p3 − l)2 −m2
b

→ 1

t− βs
. (3.6)

To obtain the double logarithmic contribution we require both α and β integrations to be

logarithmic. This requirement is automatically satisfied for the integration over α. At the

same time the integration over β is logarithmic only for β > |t|/s. Hence, in the double

logarithmic approximation eq. (3.4) reduces to

C(s, t,m2
b) ≈

i

16π2s

∫ 1

m2
b/s

dα

α

∫ 1

|t|/s

dβ

β
θ(αβ −m2

b/s), (3.7)

where the intervals |t|/s < β < 1 and m2
b/s < α < 1 are determined by the effective infrared

and ultraviolet cutoffs of the logarithmic integral, and additional kinematic constraint αβ >

m2
b/s ensures that the pole of the soft quark propagator is in the integration domain. It is

– 6 –
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convenient to factor out the large logarithm L = ln (m2
b/s) ≈ ln (m2

b/m
2
H) and introduce

the normalized variables η = lnα/L and ξ = lnβ/L. By using eqs. (3.3), (3.4), (3.7)

we find

A
(0),1a
++± = ±2L2

∫ 1−τt

0
dη

∫ 1−η

0
dξ = ±L2(1− τ2

t ), (3.8)

where τt = ln
(
m2
b/|t|

)
/L.

Next, we consider the diagram figure 1b. To compute this diagram in the double

logarithmic approximation, we again pick up a mass term from the soft quark in the

t-channel and neglect the momenta l and p3 everywhere in the numerator. Then the

contribution of the diagram figure 1b reduces to

A
(0),1b
++± = −16iπ2tsD(s, t,m2

H ,m
2
b), (3.9)

where D(s, t,m2
H ,m

2
b) is the four-point integral

D =

∫
d4l

(2π)4

1

(l2 −m2
b)((p1 − l)2 −m2

b)(p1 − p3 − l)2 −m2
b)((p2 + l)2 −m2

b)
. (3.10)

We use the same Sudakov parametrization l = αp1 + βp2 + l⊥ as before. Upon inspecting

the infrared structure of eq. (3.10) we find that the double logarithmic contribution can

only be obtained when the propagator

1

(p1 − p3 − l)2 −m2
b

≈ 1

t− βs
(3.11)

becomes independent of β. This leads to a constraint β < |t|/s. The logarithmic integration

intervals become m2
b/s < α < 1, m2

b/s < β < |t|/s and we obtain

A
(0),1b
++± = ±L2

∫ 1

1−τt
dη

∫ 1−η

0
dξ = ±L2 τ

2
t

2
. (3.12)

We will now discuss the diagram shown in figure 1c where the gluon is emitted off

the soft quark line. Similar to the previous case we deal here with the box diagram and

need to “remove” one of its propagators to obtain the proper (logarithmic) scaling of the

integrand. In fact, the underlying box diagram has two non-overlapping momenta regions

that lead to a double logarithmic enhancement. These regions are characterized by the

choice of the soft momentum in the diagram. Indeed, we can choose the soft momentum l

in such a way that the momentum of the emitted gluon p3 flows through the lower (upper)

half of the quark loop figure 1c in region I (II), respectively. Consider region I and choose

the momentum decomposition l = αp1 + βp3 + l⊥. After omitting irrelevant terms, the

quark propagators become

l̂ +mb

l2 −m2
b

→ −iπmbδ(|t|αβ − l2⊥ −m2
b), (3.13)

p̂1 − l̂ +mb

(p1 − l)2 −m2
b

→ p̂1

tβ
, (3.14)
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p̂3 − l̂ +mb

(p3 − l)2 −m2
b

→ p̂3 − αp̂1

tα
, (3.15)

p̂2 + p̂3 − l̂ +mb

(p2 − p3 + l)2 −m2
b

→ p̂2

u+ sα
. (3.16)

It follows from eqs. (3.13), (3.14), (3.15), (3.16) that the double logarithmic contribution

can be obtained in two different ways: (i) for α < |u|/s only the p3 term in the numerator

of eq. (3.15) should be kept (the “scalar” contribution) and (ii) for α > |u|/s the αp1

term should be taken from the numerator in eq. (3.15) to cancel an extra power of α that

appears in the denominator of eq. (3.16) in this limit (the “vector” contribution).4 These

two contributions are proportional to

N s
λ1,λ2,λ3 =

Tr [ε̂3ε̂1p̂1p̂2ε̂2p̂3]

2tu
, (3.17)

and

Nv
λ1,λ2,λ3 =

Tr [ε̂3ε̂1p̂1p̂2ε̂2p̂1]

2ts
, (3.18)

respectively. By calculating traces and using explicit expressions for the polarization vectors

given in appendix, we find the following results

N s
+,+,+ = 0, N s

++− =

√
2〈12〉

[13][23]
,

Nv
+,+,+ =

√
2〈12〉2

[12]〈23〉〈13〉
, Nv

++− = −
√

2〈12〉
[13][23]

,

(3.19)

Note that the vector integral has the usual tensor structure of a color-dipole emission

which gives A+++ = −A++−, similar to all other diagrams. At the same time, the tensor

structure of the scalar integral corresponds to the three-gluon configuration described by

a local gauge invariant operator

GaµνG
b
νλG

c
λµf

abc, (3.20)

which does not contribute to the all-plus helicity amplitude.

By crossing symmetry, the scalar contributions of the momentum regions I and II are

equal. Therefore, the total scalar contribution of the diagram figure 1c can be written in

terms of the double logarithmic integral over the interval m2
b/|t| < α < |u|/s, m2

b/|t| < β <

1 that originates from region I. This gives

A
(0),1c,s
++− = −2L2

∫ τt

1−τu
dη

∫ τt−η

0
dξ = −L2(1− τt − τu)2, (3.21)

whereas A
(0),1c,s
+++ = 0. At the same time, the vector contribution of region II vanishes due

to our choice of the polarization vector for the gluon g3, p2 · ε3 = 0. As the result, the total

4We refer to this contribution as “vector” because it originates from a term in the numerator of the

diagram figure 1c which is linear in the soft loop momentum l.
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Figure 2. Two-loop diagrams contributing to the abelian double logarithmic corrections. Dia-

grams that differ by the direction of the fermion flow are not shown.

vector contribution of the diagram figure 1c is given by the double logarithmic integral

over the interval |u|/s < α < 1, m2
b/|t| < β < 1 from region I. It reads

A
(0),1c,v
++± = ±L2

∫ 1−τu

0
dη

∫ τt−η

0
dξ = ∓L2 (1− τu)(1− 2τt − τu)

2
. (3.22)

We are now in position to present the leading-order bottom-quark contribution to gg → Hg

helicity amplitudes in the double logarithmic approximation. We sum the contributions of

individual diagrams given in eqs. (3.8), (3.12), (3.21), (3.22) and obtain

A
(0)
+++ = L2

(
1− τ2

2

)
, A

(0)
++− = −L2

(
1 +

τ2

2

)
, (3.23)

where we used τ = ln(m2
b/p

2
⊥)/L. These results coincide with the double logarithmic limits

of the one-loop amplitudes computed in ref. [19] long time ago.5 Our analysis identifies the

origin of the double logarithmic enhancement of the gg → Hg amplitude mediated by a

light quark. With this understanding, it is straightforward to extend the above calculation

first to two loops and then to all orders in the strong coupling constant αs. We will describe

how to do this in the next sections.

4 Two-loop helicity amplitudes in the double logarithmic approximation

It is easy to convince oneself that a two-loop diagram contributing to gg → Hg can develop

leading O(mb) double logarithmic enhancement only if exactly one of its fermion lines is

soft. Indeed, since each soft fermion effectively contributes one power of mb to the final

result, leading O(mb) double logarithms are provided by exchanges of one soft fermion and

one soft virtual gluon.

5See also ref. [18] for a recent discussion.
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The abelian part of the two-loop correction originates from a soft gluon exchange

between virtual bottom quarks. The relevant two-loop Feynman diagrams are shown in

figure 2. We note that the one-loop correction to qq̄H vertex appears as a subdiagram

in many two-loop diagrams in figure 2. This correction develops a double logarithmic

enhancement, so that the (properly normalized) qq̄H vertex in the one-loop approximation

reads [15]

Vqq̄H = 1 + δVqq̄H , δVqq̄H = −CFαs
2π

ln

(
q2

1

2q1 · q2

)
ln

(
q2

2

2q1 · q2

)
. (4.1)

In eq. (4.1), q1 and q2 are the momenta of the off-shell quark lines and we assume that

m2
b � q2

1, q
2
2 � q1 ·q2. This expression and the one-loop analysis of the previous section can

be used to easily compute the leading logarithmic part of the relevant two-loop diagrams.

We begin with the diagram figure 2a. The external momenta of the vertex subgraph

in this case are q1 = p1 − l and q2 = p2 + l, where l is the soft momentum of the quark

loop. For l = αp1 + βp2 + l⊥ we get q2
1 = sβ, q2

2 = sα, 2q1 · q2 ≈ s, so that

δV 2a
qq̄H = −CFαs

2π
lnα lnβ = −xηξ, (4.2)

where x = CFαsL
2/2π and η, ξ and L are defined in the previous section. The double

logarithmic integration over the soft quark momentum is the same as for the diagram

figure 1a and the correction to the helicity amplitudes is obtained by including δV 2a
qq̄H

factor into the integrand of the one-loop expression eq. (3.8). For the two-loop abelian

coefficient in eq. (2.6) we obtain

A
(1A),2a
++± = ∓2L4

∫ 1−τt

0
dη

∫ 1−η

0
dξ η ξ = ∓L4 (1− 4τ3

t + 3τ4
t )

12
. (4.3)

The diagram in figure 2b is computed in a similar way. Virtualities of the quark lines

become q2
1 ≈ |t| and q2

2 ∼ sα, and the one-loop vertex reads

δV 2b
qq̄H = −CFαs

2π
ln
|t|
s

lnα = −x(1− τt)ξ. (4.4)

Substituting this result into eq. (3.12), we obtain

A
(1A),2b
++± = ∓L4

∫ 1

1−τt
dη

∫ 1−η

0
dξ (1− τt) ξ = ∓L4 (τ3

t − τ4
t )

6
. (4.5)

The double logarithmic contribution of the diagram figure 2c is generated when the quark

propagator between the emission vertex of the soft gluon g3 and the qq̄H vertex becomes

independent of the soft photon loop momenta. In this case the inner loop reduces to the

one-loop vertex with an additional restriction on the integration region. We find

δV 2c
qq̄H = −CFαs

2π
ln
βs

|t|
lnα = −x (η − 1 + τt) ξ. (4.6)

The corresponding two-loop corrections to the amplitudes read

A
(1A),2c
++± = ∓L4

∫ 1

1−τt
dη

∫ 1−η

0
dξ (η − 1 + τt) ξ = ∓L4 τ

4
t

24
. (4.7)
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To compute the diagram figure 2d in the double logarithmic approximation, we again insert

the expression for the qq̄H vertex eq. (4.1) into the one-loop diagram in figure 1c. As was

explained in the previous section this diagram receives the double logarithmic contributions

from two independent momentum regions. In region I we parametrize the soft momentum

as l = αp1 + βp3 + l⊥ and find

δV 2d = −CFαs
2π

ln
|t|β
s

ln
|u|+ αs

s
→ −CFαs

2π


ln
|t|β
s

ln
|u|
s

α <
|u|
s
,

ln
|t|β
s

lnα α >
|u|
s
.

(4.8)

We note that the two integration regions, α < |u|/s and α > |u|/s, correspond to scalar

and vector contributions, respectively. The expression for the qq̄H vertex in region II can

be found in the same way. We insert these results into eqs. (3.21), (3.22) and obtain

A
(1A),2d,s
++− = L4

∫ τt

1−τu
dη

∫ τt−η

0
dξ(1− τu) (ξ + 1− τt) + (t↔ u)

= L4 (2− 2τt + τu)(1− τu)(1− τt − τu)2

6
+ (t↔ u). (4.9)

A
(1A),2d,v
++± = ∓L4

∫ 1−τu

0
dη

∫ τt−η

0
dξ(ξ + 1− τt)η

= ±L4 (1− τu)2(5− 12τt + 6τ2
t − 2τu − 3τ2

u)

24
. (4.10)

We note that the corresponding one-loop expression given in eq. (3.21) includes equal scalar

contributions from regions I and II. At two loops, contributions of regions I and II are not

equal anymore; we separate them in eq. (4.9) and indicate contribution of the region I by

the corresponding integral and the contribution of region II by the t↔ u symmetric term.

The vector contribution eq. (4.10) comes entirely from region I, as in the one-loop case.

Diagrams shown in figure 2e and figure 2f are related by crossing symmetry and we

only consider the evaluation of the former. This diagram receives the scalar contribution

from region I; the double logarithmic term is generated when the propagator between the

emission vertex of the gluon g2 and the qq̄H annihilation vertex becomes independent on

the soft momenta. Thus as in the case of the diagram figure 2c the inner loop reduces to

the one-loop vertex integral with an additional restriction on the integration region. The

effective vertex in this case reads

δV 2e
qq̄H = −CFαs

2π
ln
αs

u
lnβ = −x (η − 1 + τu) ξ. (4.11)

Since the scalar contribution to the all-plus helicity amplitude vanishes, we obtain

A
(1A),2e
++− =L4

∫ τt

1−τu
dη

∫ τt−η

0
dξ (η − 1 + τu) ξ = L4 (1− τt − τu)4

24
. (4.12)

The result for the diagram in figure 2f is also given by eq. ( 4.12) since it is symmetric with

respect to the replacement t↔ u.
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Taking the sum of all the individual contributions in eqs. (4.3), (4.5), (4.7), (4.9),

(4.10), (4.12), we obtain the two-loop correction to the gg → Hg amplitude in the double

logarithmic approximation

A
(1A)
+++ = −L

2

24

(
2− 3τ2 + 2τ3 + 3τ2ζ2

)
,

A
(1A)
++− =

L2

24

(
2 + 3τ2 − 6τ3 + 4τ4 − 3τ2ζ2

)
,

(4.13)

where the new variable ζ = ln(u/t)/L parametrizes the dependence of the amplitudes on

the soft gluon rapidity.

5 Resummation of the abelian double logarithmic contributions

The perturbative expansion parameter for the double logarithmic corrections x = CFαs

2π L2

is not small numerically, x ∼ 1. For this reason, resummation of such corrections might

be relevant. This problem is also quite interesting theoretically, since very little is known

about the all-order structure of the power-suppressed non-Sudakov logarithms. Indeed, on

the one hand, only few examples of the resummation of non-Sudakov double logarithmic

corrections are known so far [20–22] and, on the other hand, systematic renormalization

group analysis of the high-energy behavior of the on-shell amplitudes beyond the leading-

power approximation is still elusive for existing effective field theory methods.

The problem that we discuss in this paper is, however, simpler than the general case. As

we pointed out already, to leading order in mb, higher-order double logarithmic corrections

to the helicity amplitudes are caused by multiple soft virtual gluon exchanges and a single

soft quark exchange. Thus we have to consider Feynman diagrams similar to figure 2 but

with multiple soft gluon exchanges between different quark lines. For the abelian part of

the corrections we can use simple factorization properties of soft emissions in QED. It is

well-known that in this case, upon summing over all relevant diagrams, integrations over

soft gluon momenta factorize and the all-order result is given by the exponent of the single

gluon contribution, given by the O(αs) term in eq. (4.1).

By using the expression eq. (4.2) specific for the diagram figure 2a we find the Sudakov

exponent to be e−xξη. The all-order double logarithmic corrections to helicity amplitudes

are then obtained by including this exponent into the integrand of eq. (3.8). Upon inte-

gration over ξ, we obtain the resummed expression for helicity amplitudes in the form of

the one-parameter integral

AA,a
++± = ±2L2

∫ 1−τt

0

1− e−xη(1−η)

xη
dη. (5.1)

The multiple gluon exchange diagrams related to figure 2b and figure 2c must be considered

simultaneously.6 After summing over all possible permutations of the soft gluon emission

vertices, their contributions factorize and produce a product of the exponents of the one-

loop contributions (4.4), (4.6). They combine into the exponential factor e−xξη identical to

6Indeed, already at the two-loop level, these diagrams describe the two possible ways to emit the soft

gluon with momentum p3 and a soft virtual gluon by an energetic quark line.
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the previous case. By including it into the integrand of the one-loop expression eq. (3.12)

we get the all-order result

AA,bc
++± = ±L2

∫ 1

1−τt

1− e−xη(1−η)

xη
dη. (5.2)

For the diagram figure 2d the Sudakov factor depends on whether a vector or a scalar contri-

bution is considered, cf. eq. (4.8). For the vector part, the Sudakov exponent is e−x(ξ+1−τt)η

and the all-order result associated with the leading-order contribution eq. (3.22) reads

AA,d,v
++± = ±L2

∫ 1−τu

0

e−x(1−τt)η − e−xη(1−η)

xη
dη. (5.3)

As in the case of the diagrams figure 2b and figure 2c, the scalar contributions from

the momentum region I of the diagram figure 2d combine with the diagram figure 2e,

exponentiate and produce a Sudakov factor e−x(1−τt−τu+τtτu+ηξ). The Sudakov exponent

of the scalar contribution from region II of the diagrams that combine figure 2d and figure 2e

with additional soft exchanges is obtained by the replacement t ↔ u. The sum of these

contributions is, therefore, given by

AA,de,s
++− = −2L2

∫ τt

1−τu

e−x(1−τu)(1−τt)
(
1− e−xη(τt−η)

)
xη

dη + (t↔ u). (5.4)

The sum of individual contributions given in eqs. (5.1), (5.2), (5.3), (5.4) determines the

complete result for the abelian double logarithmic corrections to the bottom quark contri-

bution to gg → Hg helicity amplitudes to all orders in QCD perturbation theory.

6 Double logarithmic corrections to the differential cross section

We are now in position to estimate the effect of the corrections, computed in the previous

section, on the differential cross section of the Higgs boson production in association with a

jet. The total amplitude of this process is given by the sum of top and bottom contributions

since contributions of lighter quarks are negligible. We therefore write

M soft
+++ = −gs

√
2fa1a2a3

g2
s

16π2v

〈12〉2

[12]〈23〉〈13〉

[
A

(t)
+++ +

m2
b

m2
H

A
(b)
+++

]
,

M soft
++− = −gs

√
2fa1a2a3

g2
s

16π2v

〈12〉
[23][13]

[
A

(t)
++− +

m2
b

m2
H

A
(b)
++−

]
.

(6.1)

Thanks to its large Yukawa coupling, the top quark provides the dominant contribution to

the scattering amplitude. In the soft limit the real emission from inside the top-quark loop

is power-suppressed i.e. the soft emission factorizes with respect to the gg → H amplitude.

The result for this contribution is well known and in the limit of an infinitely heavy top

quark reads

A
(t)
++± = ±2

3
. (6.2)

There are O(αs) corrections to this formula that, however, are not essential for us.
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The largest effect of the bottom quark on the differential cross section is caused by its

interference with the top quark contribution. We find

dσgg→Hg = dσ
(0)
gg→Hg ×

[
1− 3

2

m2
b

m2
H

(
A

(b)
+++ −A

(b)
++−

)
+O(m4

b)

]
, (6.3)

where dσ
(0)
gg→Hg is the top quark mediated cross section, and we neglect the finite top

mass effects in the interference term. Note that since the leading bottom quark effect is

due to the interference with the top quark mediated amplitude, to leading order in 1/mt,

any additional real emission contribution involves the three-gluon interaction and does not

contribute to the abelian part of the correction.

We can now use the result derived in the previous section for numerical estimates.

It is convenient to express the correction to the cross section through the variables τ =

ln(m2
b/p

2
⊥)/L and ζ = ln(u/t)/L, which parameterize the dependence of the cross section

on the transverse momentum and rapidity. We obtain

dσgg→Hg = dσ
(0)
gg→Hg ×

[
1− 3

2

m2
b

M2
H

L2f(x, τ, ζ) +O(m4
b)

]
, (6.4)

where

xf(x, τ, ζ) =

∫ 1

0

dη

η

[
(1− e−xη(1−η)) (1 + 2θ (1− τ − ζ − 2η))− (1− e−xηδ(τ,ζ))

]
+ e−xδ(τ,ζ)

∫ (1+τ+ζ)/2

(1−τ+ζ)/2

dη

η

(
1− e−xη(1+τ+ζ−2η)/2

)
+ (ζ → −ζ),

(6.5)

and δ(τ, ζ) = ((1− τ)2 − ζ2)/4. The perturbative expansion of the function f reads

f = 2− x

6

(
1− τ3 + τ4

)
+
x2

24

(
4

15
− τ3 + 2τ4 − 7τ5

5
+

2τ6

5
+ ζ2

(
τ3 − τ4

))
+ . . . ., (6.6)

where ellipsis stands for terms suppressed by higher powers of x.

We can use the result eq. (6.6) to estimate the impact of the QCD corrections to

bottom quark contributions to gg → Hg on the Higgs boson transverse momentum dis-

tribution. In principle, we should convolute the partonic cross section eq. (6.4) with the

parton distribution functions. However, we will now argue that, given the structure of the

corrections shown in eq. (6.6), this is not necessary. Indeed, within the accuracy of our

approximation L = ln(s/m2
b) ≈ ln(m2

H/m
2
b) can be considered independent of the partonic

center-of-mass energy. In addition, the series in eq. (6.6) shows very weak dependence

on the rapidity of the soft gluon. Indeed, the function f in eq. (6.6) does not depend on

the gluon rapidity up to O(x). Moreover, at O(x2) the rapidity-dependent part of the

coefficient includes only high powers of τ . If the soft gluon is emitted at large rapidity,

|ζ| ≈ 1 and τ � 1. On the contrary, central emission with the large transverse momentum

implies |ζ| � 1 and τ ≈ 1. Therefore, the rapidity-dependent term is small everywhere and

can be neglected. After these modifications the function f depends only on the transverse

momentum of the emitted gluon or the Higgs boson. As a result it remains unaffected by
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the integration over parton distribution functions if the transverse momentum of the Higgs

boson is kept fixed. Therefore, we can write

dσpp→H+j

dp2
⊥

=
dσ

(0)
pp→H+j

dp2
⊥

{
1−

3m2
b

m2
H

L2
eff

[
1− xeff

12

(
1− τ3 + τ4

)
+
x2

eff

48

(
4

15
− τ3 + 2τ4 − 7τ5

5
+

2τ6

5

)
+O(x3

eff)

]
+O(m4

b)

}
,

(6.7)

where Leff = ln(m2
H/m

2
b) and xeff = αsCF

2π L2
eff . We emphasize that eq. (6.7) only applies

to the contribution of gg partonic channel to the production of the Higgs boson in proton

collisions and that only abelian corrections are taken into account there.

We note that the series in eq. (6.7) has peculiar structure. Indeed, the one-loop double

logarithmic correction to dσ/dp⊥ is independent on p⊥, thanks to a cancellation between

p⊥-dependent contributions to individual helicity amplitudes eq. (3.23), when the differ-

ential cross section is evaluated [18]. In principle, it could have been possible to interpret

this result as an indication that the naive factorization of soft emissions extends to a re-

gion beyond p⊥ > mb, at least inasmuch as the interference with the top quark loop is

concerned. However, our result eq. (6.7) shows that such an interpretation does not hold

and that the cancellation of p⊥-dependent double logarithmic corrections does not persist

beyond one-loop. In fact, starting from three loops, the double logarithmic corrections

to the differential cross section start to depend on the rapidity of the emitted gluon as

eq. (6.6) shows.

To understand the numerical impact of these corrections, we use mH = 125 GeV,

mb = 4.2 GeV, αs = 0.12 and consider p⊥ in the range mb < p⊥ < 50 GeV. We note that

the one-loop double logarithmic corrections reduce the cross section by about 16%. This

is somewhat larger than the result of the full computation, but still in the right ballpark.

The two-loop correction increases the result by about 1.5%. This is somewhat smaller than

the next-to-leading order effect in gg → H cross section but, given the fact that we only

consider the abelian contribution here, the two results are not inconsistent.7 However,

our main interest is in p⊥-dependent corrections and these corrections turn out to be quite

small, see figure 3. In fact, the two-loop correction in eq. (6.7) decreases by just about 0.2%

when the transverse momentum varies from p⊥ ∼ mb to p⊥ ∼ 50 GeV. This tiny change

is the result of a strong cancellation between τ3 and τ4 term in eq. (6.7). When taken

separately, these terms could have caused a change in the two-loop result that is closer to

one percent. The three-loop correction in eq. (6.7) changes the prediction by about −0.1%

and its p⊥-dependent part is one order of magnitude smaller.

7 Conclusion

In this paper, we have studied the bottom-quark loop contribution to the production

of the Higgs boson in association with a jet in gluon fusion in the double logarithmic

7The top-bottom interference changes the mt → ∞ inclusive cross section by approximately −12% at

leading order. QCD corrections to the bottom loop decrease this leading order result by fifty percent.
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Figure 3. The bottom-quark loop corrections to the Higgs boson transverse momentum distri-

bution, eq. (6.7), in percent to the leading top-quark loop contribution as function of the variable

τ = ln(m2
b/p

2
⊥)/ ln(m2

b/m
2
h). The values of the input parameters are specified in the text. The trans-

verse momentum dependence of the corrections is numerically dominated by the two-loop term.

approximation. This contribution is suppressed by the ratio of the bottom-quark mass

to the Higgs boson mass but, at the same time, it is enhanced by two powers of large

logarithms, ln(s/m2
b) or ln(p2

⊥/m
2
b), per one power of the strong coupling constant. As it is

repeatedly emphasized in the literature, these terms may be important for phenomenology,

in particular for the description of the Higgs boson transverse momentum distribution in

an interesting kinematic region mb < p⊥ < mH . We have analyzed the abelian part of

the double logarithmic corrections and computed the gg → Hg helicity amplitudes which

incorporate these terms to all orders in αs.

Numerically, the abelian corrections appear to be moderate. For example, the two-loop

corrections change the transverse momentum distribution by about two percent. However

it is important to note that the p⊥-dependent part of these corrections is only about

0.2% due to the cancellation between different p⊥-dependent terms. Assuming that, up

to an obvious change in the color factor CF → CA, the non-abelian corrections will be

similar to the abelian ones, we estimate the yet unknown non-abelian corrections to be

about three times larger. We conclude that the description of the Higgs boson transverse

momentum distribution with a few percent precision requires a calculation of the O(αs)

logarithmically enhanced non-abelian corrections to bottom quark contribution while the

all-order resummation is, probably, not important. Our analysis sets up a framework for

such a calculation. A new element in the calculation of the non-abelian part is its infra-red

sensitivity and a related need to account for the contribution of soft radiation.
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A Polarization vectors

The initial state gluon with momentum k and the gauge vector r is described by the

following polarization vectors

εµ+ = − [rγµk〉√
2[rk]

, εµ− =
〈rγµk]√

2〈rk〉
. (A.1)

The polarization vectors for the final state gluon are obtained by exchanging ε+ ↔ ε−.

As reference vectors, we choose p1,2 for ε2,1 and p2 for ε3. The latter choice allows us

to ignore all the contributions where the soft gluon g3 is emitted by either gluon g2 or a

fermion that carries momentum p2. The full list of polarization vectors that we use in the

calculation, with all the reference vectors explicitly shown, reads

εµ+(1) = − 1√
2

[2γµ1〉
[21]

, εµ−(1) =
1√
2

〈2γµ1]

〈21〉
,

εµ+(2) = − 1√
2

[1γµ2〉
[12]

, εµ−(2) =
1√
2

〈1γµ2]

〈12〉
,

εµ+(3) =
1√
2

〈2γµ3]

〈23〉
, εµ−(3) = − 1√

2

[2γµ3〉
[23]

.

(A.2)
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