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1 Introduction

1.1 Motivation

This work is dedicated to the efficient numerical simulation of hyperbolic first-order
problems by using a space-time finite element approach. Throughout, the emphasis
is on linear transport and electromagnetic wave problems, described by linear ad-
vection and Maxwell’s equations, respectively. The presented ideas and techniques,
however, can be applied and extended to various other hyperbolic problems, acous-
tic and elastic wave problems for instance. We focus on a holistic approach to solve
Maxwell’s equations numerically. This means that we consider the main occurring
issues such as discretization, implementation and solving of the obtained linear sys-
tems as well as adaptivity. As a consequence, there will be no elaborated discussion
of every topic up to all specific details. Instead we often focus on selected represen-
tative ideas and methods to emphasize the importance and applicability of a whole
class of concepts. In the following literature reviews we give an overview of existing
ideas and methods and their evolution. Moreover, we highlight their importance
and influence with respect to space-time approaches. Afterwards a short outline of
our work is given.

Space-Time (Petrov–) Galerkin Methods The basic idea of space-time meth-
ods for time-dependent problems is that the time direction can be understood as
another spatial dimension. Hence a finite element discretization can be applied in
space and time simultaneously. The simplest (tensor product) approach consists
of using a standard finite element in space discretization equipped with a suitable
(Petrov–) Galerkin method in time. This procedure is quite common and has been
applied already to various problems, see, e.g., [Hul72], [AM89], [Joh93], [BGR10],
[MS11], [HST12], [KB14], [ZW14]. The reason for the popularity of these methods
is that, depending on the chosen method, they are similar to explicit or implicit
Runge–Kutta schemes and can be applied slice-wise as a time stepping method.
Moreover, due to their finite element origin it is possible to use standard techniques

1



2 CHAPTER 1. INTRODUCTION

to analyze them. Apart from that features, space-time discretizations offer the pos-
sibility to consider the entire space-time domain at once. Thus it is possible to
apply hybridization techniques by introducing skeleton variables, see, e.g., [DG14]
or [EDCM14]. Additionally, space-time discretizations can be used for problems
with moving boundaries as well as space-time parallel computation and local space-
time refinement. The last two features are highlighted in the following paragraphs
and investigated in more detail within this work.
To avoid instabilities due to a violated CFL (Courant–Friedrichs–Lewy) condition
we focus on an implicit continuous Petrov–Galerkin discretization in time, see, e.g.,
[Hul72], [AM89], [BGR10], [KB14]. For the spatial discretization a discontinuous
Galerkin finite element method (DG-FEM) is used. Due to their flexibility and low
effort in terms of implementation, compared to other methods, DG-FEM methods
for hyperbolic equations experienced an enormous attention during the last decade.
In case of DG-FEM for Maxwell’s equations see for example [CFP06], [GSS07],
[HW02], [HW08], [HPS+15], [DFW16].

Space-Time Parallelization Nowadays the use of spatial parallelism has be-
come a standard procedure and is part of almost every sophisticated commercial
or scientific finite element software library. However, the need of new parallel in
space and time methods is the result of two circumstances. On one hand three
dimensional time-dependent problems, which occur from modern applications and
issues, result in high numerical complexity. On the other hand the recent devel-
opments in computer science indicate that increasing computational power is not
gained by increasing clock speed of a single core anymore. However, the computa-
tional resources are increased by adding more and more independent arithmetical
units on one chip. Hence using spatial parallelization only will lead to a bottleneck
in the future due to prevailing communication times, when running the algorithms
on thousands of processes. So far, only efficient parallel in space and time solvers
seem to be able to overcome this challenge.
The first idea of parallelizing in time already appeared more than 50 years ago in
[Nie64]. But it took several years until the concept of parallel in time methods was
continued in the mid 1990s by the parareal algorithm [ARW95], [LMT01] [GV07],
multigrid methods [HV95], [EM12], [FFK+14] and direct methods later on, e.g.,
[GG13]. The development of most of these methods was started under the condi-
tion, that it should be easy to incorporate them into existing time stepping codes.
Furthermore, their application is mainly focused on parabolic problems. Due to in-
creasing computational resources and the realization that hyperbolic problems have
to be considered in space and time simultaneously, new parallel space-time meth-
ods have been recently introduced, e.g., [GHN03] or [Neu13]. An almost complete
overview over the progress of parallel in time methods during the last 50 years can
be found in [Gan15].
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Adaptivity Another aspect of space-time finite element discretizations is the
“build-in” possibility of using adaptivity in space and time. Adaptivity for time-
dependent problems always requires to track and store the evolution of the solution
and the mesh over the whole time domain. Furthermore, one also has to mind
changing local polynomial degrees. All these issues have to be considered when
implementing adaptivity within an existing time stepping scheme. However, these
features are naturally inhered in a space-time discretization since it can be under-
stood as a D + 1 problem.
Despite a straightforward implementation in space-time discretizations, the main
reason for using adaptivity is the high reduction of computational costs which can
be achieved. In many application it is not necessary to compute a solution with the
same (high) accuracy over the whole space-time domain. Examples would be the
resolution of a single wave front, where reflections are simultaneously neglected or
special properties of the solution within certain subsets of the space-time domain.
For this purpose dual weighted residual methods are used.
These methods build up on the foundations achieved by Aubin [Aub67] and Nitsche
[Nit68], known as the “Aubin-Nitsche trick”, where a duality argument is used in the
a priori error analysis for finite element methods. Later on, duality was exploited for
a posteriori error analysis for elliptic and parabolic problems in [EJ88] and [EJ91],
respectively. As a further development the dual weighted residual method was
finally introduced in [BR96] and successfully applied to various problems, such as
eigenvalue and elliptic problems as well as time-dependent parabolic and hyperbolic
problems, see, e.g., [AO00, Ch. 8],[EG04, Sec. 10.3],[Ver13, Sec. 1.11] for basic
introductions and [BR03] for an overview of applications.

1.2 Outline
This work is structured as follows:
In the following chapter we define notations frequently used throughout this work.
Furthermore, basic results and definitions on Sobolev and Hilbert spaces are re-
peated.
In the third chapter we introduce a first-order hyperbolic model equation and de-
rive a corresponding variational setting. We prove existence and uniqueness for
solutions of the model equation. Finally, we focus on two applications, the lin-
ear transport example and Maxwell’s equations, and show that they fit into the
predefined hyperbolic setting.
In Chapter 4 we discuss a space-time discontinuous Petrov–Galerkin method for
first-order hyperbolic problems. Starting with an introduction to Galerkin and
finite element methods, we derive discontinuous Galerkin approximations to the
spatial operators occurring in the hyperbolic framework. In doing so, upwind fluxes
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are constructed by solving a general Riemann problem. On this basis the upwind
fluxes on cell interfaces are explicitly computed for the two model applications. The
results are then combined with an implicit continuous Petrov–Galerkin method in
time to achieve a space-time discretization. In case of tensor product discretizations
we are able to prove existence and uniqueness of solutions within the discrete setting.
In the end of the chapter the application of nodal finite elements is discussed.

The fifth chapter is dedicated to dual error estimation and adaptivity. We introduce
the concept of dual weighted residual methods, where one is interested in minimizing
the approximation error with respect to a given quantity, expressed as a functional.
In general this functional can be chosen almost arbitrarily with respect to the
underlying problem. We restrict ourselves to commonly used linear and quadratic
functionals. Furthermore, we derive error representations to approximate the error
locally with respect to a chosen functional. As a result a local error indicator is
achieved and used for p-adaptive refinement. The single components are finally
combined within a p-adaptive algorithm.

In Chapter 6 we deal with the solving of large linear systems occurring as a re-
sult of the space-time discretization introduced in Chapter 4. We give a detailed
introduction to iterative splitting and multigrid methods and their application to
space-time problems. Moreover, we discuss the extension to p-adaptive problems.
The two grid cycle in time is studied for a test equation to derive an optimal set-
ting for a block-Jacobi smoother. Finally, several tests are performed for the linear
transport equation to determine a suitable configuration for a multigrid method.
Afterwards the derived setting is investigated in case of Maxwell’s equations.

The implementation of a parallel space-time method is discussed in Chapter 7. We
highlight how space-time meshes can be generated within an existing finite element
library and p-adaptive methods can be implemented. The occurring performance
problems, due to different polynomial degrees, can be reduced by applying a simple
load balancing algorithm.

Finally, we perform several numerical experiments in Chapter 8. We begin with an
experimental convergence analysis of our space-time method to verify the expected
convergence rates. These tests are done in space and time for different polynomial
degrees and both, the linear transport example and the Maxwell case. Afterwards
we consider the parallel scaling performance of our code. Due to the difficulties
discussed in Chapter 6 we do not achieve a so called perfect weak scaling behavior.
The strong scalability results, however, indicate that our code is parallelized well.
In two final numerical tests all described methods are combined. Again we use
the linear transport example (with known exact solutions) as a test example to
prove the reliability of the error indicator derived in Chapter 5. In a more realistic
test case for electromagnetic waves we highlight that the introduced parallel and
adaptive space-time method is suitable to solve real application problems efficiently.
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1.3 Prepublication
The main results of this work have been published in advance together with Prof.
Dr. Willy Dörfler and Prof. Dr. Christian Wieners in “Space-Time Discontinuous
Galerkin Discretizations for Linear First-Order Hyperbolic Evolution Systems”, see
[DFW16]. Corresponding citations are given within this work.
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2 Fundamentals

In this chapter we introduce basic notations and definitions which are used through-
out this work. Additional notations and definitions are introduced wherever needed.
To help the reader, we give a corresponding reference if notations reappear in an-
other context.

2.1 Notations
In general we distinguish between scalar- and vector-valued quantities by using
normal and boldface lowercase letters, respectively. Hence the i-th scalar compo-
nent of a vector v is denoted as vi. If results are valid for both, the scalar- and
vector-valued case, we stick to the boldface notation. Matrices and operators are
represented in capital letters. Correspondingly we use boldface capital letters for
vectors of matrices or operators, e.g., F = (B1, . . . , BD)>. Vectors and matrices
used in a computational context, i.e., they can be stored in the memory of a com-
puter, are equipped with an underscore. For better readability we refrain from using
the boldface notation in this case. Moreover, we use the bracket notation to access
single entries of the vectors or matrices, e.g., (v)i = vi, (v)i = vi or (M)i,j. One spe-
cial vector is the so called unity vector id ∈ RD. Its entries are equal to zero, except
the d-th component which is set to one, i.e., (id)j = id,j = δd,j. Here, δd,j denotes
the so called Kronecker delta. The identity matrix is denoted as IdN ∈ RN,N .
In various parts of this work we will consider restrictions, jumps and averages of
scalar- or vector-valued functions v. In principal we stick to the notations intro-
duced in [DPE12, Sec. 1.2.3]. Consider two disjoint open set ΩL,ΩR ⊂ RD, D ∈ N
with a non-empty common interface f = ∂ΩL

⋂
∂ΩR. Assume that v is smooth

enough such that the restriction vΩL = v|ΩL to ΩL can be defined up to the bound-
ary ∂ΩL by extension (analogously for vΩR = v|ΩR). The jump of v with respect to
ΩL along the interface is then denoted as

[v]ΩL,f (x) = vΩR(x)− vΩL(x), for almost all x ∈ f

7
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vΩL

vΩR

{v}f [v]Ω,f

ΩL ΩRf

Figure 2.1: Illustration of the jump and average of v in one dimension.

and analogously the jump with respect to ΩR is denoted as

[v]ΩR,f (x) = vΩL(x)− vΩR(x), for almost all x ∈ f.

The jumps are defined uniquely and it holds that [v]ΩL,f = −[v]ΩR,f . Note that the
definitions of a jump are not consistent in the general literature. The average of v
along the interface is given as

{v}f (x) = 1
2
(
vΩL(x) + vΩR(x)

)
, for almost all x ∈ f.

See Figure 2.1 for an illustration of the jump and average of a function across an
interface.

2.2 Definitions
In this section we briefly state basic norms and spaces used in this work. The
following definitions can be found for example in [Bra13, Ch. II, §1], [DPE12, Sec.
1.1.3] or [Eva10, Sec. 5.2]. For an open set Ω ⊆ RD and D ∈ N we define the norms

‖v‖Lp(Ω) =
(∫

Ω
|v|p

) 1
p

, for all v ∈ Lp(Ω),

‖v‖L∞(Ω) = sup essΩ{|v|}, for all v ∈ L∞(Ω),

for 1 ≤ p < ∞. In particular, the Lebesgue space L2(Ω) equipped with the inner
product

(v, w)0,Ω =
∫

Ω
vw, for all v, w ∈ L2(Ω)

is a Hilbert space.
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Moreover, we denote the Sobolev spaces as Wm,p(Ω) for 1 ≤ p ≤ ∞ and m ∈ N0.
For p = 2 the spaces

Hm(Ω) = Wm,2(Ω)

are again Hilbert spaces equipped with the inner product

(v, w)m,Ω =
∑
|α|≤m

(∂αv, ∂αw)0,Ω, for all v, w ∈ Hm(Ω).

Hence we achieve the corresponding norms

‖v‖m,Ω =
 ∑
|α|≤m

‖∂αv‖2
L2(Ω)

 1
2

in multi-index notation. Note that L2(Ω) ≡ H0(Ω) and hence ‖.‖L2(Ω) ≡ ‖.‖0,Ω.
However, the Euclidean norm for vectors v ∈ RD is defined as

‖v‖2 =
√

v · v,

with respect to the standard dot-product.
In the following we introduce definitions stated in [Mon04, Ch. 3] to consider weak
curl fields in L2(Ω)3. Therefore we additionally define the Sobolev space

H(curl,Ω) = {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3}

with inner product

(v,w)curl,Ω = (v,w)0,Ω + (∇× v,∇×w)0,Ω, for all v,w ∈ H(curl,Ω)

and corresponding norm

‖v‖H(curl,Ω) =
(
‖v‖2

0,Ω + ‖∇ × v‖2
0,Ω

) 1
2 , for all v ∈ H(curl,Ω).

To enforce homogeneous boundary conditions on ∂Ω we define the spaces

Hm
0 (Ω) = closure of C∞0 (Ω) in Hm(Ω),

H0(curl,Ω) = closure of C∞0 (Ω)3 in H(curl,Ω),

where C∞0 (Ω) is the set of functions in C∞(Ω) which have compact support in Ω.
Moreover, we can define a dual pair for a vector space X and its dual space X∗ as

〈v, w〉 = w(v), for all v ∈ X,w ∈ X∗.

If we, for example, choose X ≡ Hm
0 (Ω) and X∗ ≡ H−m(Ω) for m ≥ 1, then the dual

pair is a bilinear form and it yields

〈v, w〉 = (v, w)0,Ω , for all v ∈ Hm
0 (Ω), w ∈ L2(Ω).

Here H−m(Ω) is the closure of L2(Ω) with respect to the norm

‖w‖−m,Ω = sup
v∈Hm0 (Ω)

(v, w)0,Ω

‖v‖m,Ω
for w ∈ L2(Ω)(cf. [Bra13, Ch. III, §3]).
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3 Hyperbolic Model and
Analytic Framework

In this chapter a general first-order hyperbolic model equation is introduced. We
state a variational formulation of the hyperbolic problem and prove existence and
uniqueness of solutions under certain conditions (cf. [DFW16]). For this purpose we
apply the standard Babuška setting (cf. [Bra13]) and show inf-sup stability. Finally,
we consider two different applications from the fields of advection phenomena and
electromagnetic waves, which fit into the hyperbolic setting. Moreover, we show that
these applications fulfill the corresponding requirements presumed in the derived
existence and uniqueness result.

3.1 General Hyperbolic Model

Let Ω ⊂ RD, D ∈ {1, 2, 3}, be a bounded Lipschitz domain, i.e., the boundary ∂Ω
of Ω can be locally represented as a Lipschitz continuous function. Furthermore
consider a time interval (0, T ) with final time T > 0. In this work we study first-
order evolution equations of the following type

M∂tu(t) + Au(t) = f(t), t ∈ (0, T ). (3.1)

Here M ∈ L∞(Ω)J×J is a symmetric and uniformly positive definite matrix, i.e.,
there exists a constant c > 0 such that (Mv,v)0,Ω ≥ c‖v‖2

0,Ω > 0 for all v ∈ RJ\{0}.
Additionally, A : D(A)→ H is a linear operator, which maps from its domain D(A)
into a Hilbert space H ⊂ L2(Ω)J . H is equipped with the weighted inner product
(v,w)H = (Mv,w)0,Ω =

∫
Ω Mv · w and f ∈ L2(0, T ;H) is a given right-hand

side. To state the complete model, we have to provide a suitable initial condition
u0 ∈ D(A) at time t = 0 and boundary conditions (b.c.) on ∂Ω for t > 0. Hence
the full model reads as

M∂tu(t) + Au(t) = f(t), t ∈ (0, T ),
u(0) = u0, on Ω× {0},

and u fulfills b.c. on ∂Ω× (0, T ).
(3.2)

11
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We restrict ourselves to the case of linear conservation laws (see, e.g., [Eva10, Sec.
11.1]), by claiming that the operator A can be written as

Av = ∇ · F(v) =
D∑
d=1

∂d(Bdv) =
D∑
d=1

Bd(∂dv) ∈ L2(Ω)J , v ∈ D(A), (3.3)

where F(v) = (B1v, . . . , BDv)> is called flux function, with symmetric matrices
Bd ∈ L∞(Ω)J×J . Note that one can formally replace ∇ = (∂1, ∂2, . . . , ∂D)> by some
arbitrary vector n = (n1, . . . , nD)> ∈ Rd and state the following lemma.

Lemma 3.1. For every n = (n1, . . . , nD)> ∈ RD, n · F is diagonalizable with real
eigenvalues.

Proof. It holds that n · F = n1B1 + . . . + nDBD. Since Bd is symmetric the linear
combination n·F is again symmetric and hence has real eigenvalues. Moreover, n·F
is diagonalizable due to the finite dimensional spectral theorem, see, e.g., [Wer11,
Thm. VII.1.13, Ex. a)].

Due to the following definition given in [Eva10, Sec. 7.3] and Lemma 3.1, (3.1) is a
hyperbolic system.

Definition 3.1 (Hyperbolic). A system of partial differential equations

M∂tv +
D∑
d=1

Bd(∂dv) = f , for t ≥ 0

is called hyperbolic, if n ·F is diagonalizable for every n ∈ RD and the matrix M is
symmetric and positive definite.

In the following we introduce a variational setting and consider a so called weak
or variational formulation of problem (3.2). Correspondingly, (3.2) is denoted as
strong form of the problem.

3.2 Variational Setting

Consider the abstract operator L = M∂t+A on a space-time cylinder Q = Ω×(0, T )
and homogeneous initial conditions u0 = 0. The extension to inhomogeneous initial
conditions is discussed later on. As in Section 2.2, we define the inner L2-produc
and corresponding norm in the space time domain, e.g.,

(v,w)0,Q =
∫ T

0

(
v(t),w(t)

)
0,Ω

dt, for all v,w ∈ L2(Q)J

‖v‖0,Q =
√

(v,v)0,Q, for all v ∈ L2(Q)J .
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The domain of the space-time operator L is given as

V = D(L) =
{
v ∈ C1(0, T ;D(A)) : v(0) = 0

}
,

where the closure is taken with respect to the weighted graph norm

‖v‖2
V = (Mv,v)0,Q + (M−1Lv, Lv)0,Q. (3.4)

This means that D(L) equipped with ‖.‖V is complete and hence V is again a
Hilbert space, see, e.g., [EG04, Sec. 5.2.1]. Since Ω×{0} can be understood as part
of the inflow boundary of the space-time cylinder Q, the quantity v(0) for v ∈ V is
well-defined (cf. [EG04, Sec. 5.2.2] or [MSW95]). Moreover, we define

W = L(V ) ⊆ L2(0, T ;H)

as the closure of the range with respect to the weighted norm ‖w‖2
W = (Mw,w)0,Q.

Note that in terms of this definition, the graph norm (3.4) can be rewritten as
‖v‖2

V = ‖v‖2
W + ‖M−1Lv‖2

W . The corresponding dual space to V is given as

V ∗ =
{
v∗ ∈ C1(0, T ;D(A∗)) : v∗(T ) = 0

}
(3.5)

and equipped with a dual graph norm ‖ . ‖V ∗ , see, e.g., [SS98]. Here the initial
condition transfers to a final condition and the evaluation of v∗ ∈ V ∗at time t = T

is again justified by [EG04, Sec. 5.2.2] or [MSW95].
To derive a variational formulation of our problem, we multiply Lv with an arbitrary
test function w ∈ W and integrate over the space-time domain Q. This defines the
bilinear form b : V ×W → R with

b(v,w) = (Lv,w)0,Q, (3.6)

and we are able to establish the standard Babuška setting stated in the following
lemma (cf. [EG04, Thm. 2.6 & Sec. 5.2.1] or [Bra13, Ch. III, §3]). The proofs base
on techniques developed in [WW14].

Lemma 3.2 ([DFW16, Lem. 2.1]). Assume that A is positive semi-definite, i.e.,
(Av,v)0,Ω ≥ 0 for all v ∈ D(A). Then, the bilinear form b(·, ·) from (3.6) is
continuous and inf-sup stable in V ×W with constant β = 1/

√
4T 2 + 1, i.e.,

sup
w∈W\{0}

b(v,w)
‖w‖W

≥ β ‖v‖V , for all v ∈ V .

Proof. First we show that b is bounded and hence continuous, by using Cauchy–
Schwarz inequality. We obtain

|b(v,w)|2 = (Lv,w)2
0,Q = (MM−1Lv,w)2

0,Q

≤ ‖M−1Lv‖2
W‖w‖2

W ≤ (‖v‖2
W + ‖M−1Lv‖2

W )‖w‖2
W

= ‖v‖2
V ‖w‖2

W
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and |b(v,w)| ≤ ‖v‖V ‖w‖W . To prove the inf-sup condition we first note that for
all v ∈ C1(0, T ;D(A)) with v(0) = 0 it holds that

‖v‖2
W =

∫ T

0

(
Mv(t),v(t)

)
0,Ω

dt

=
∫ T

0

((
Mv(t),v(t)

)
0,Ω
−
(
Mv(0),v(0)

)
0,Ω

)
dt

=
∫ T

0

∫ t

0
∂t
(
Mv(s),v(s)

)
0,Ω

ds dt = 2
∫ T

0

∫ t

0

(
M∂tv(s),v(s)

)
0,Ω

ds dt

≤ 2
∫ T

0

∫ t

0

(
M∂tv(s) + Av(s),v(s)

)
0,Ω

ds dt

≤ 2
∫ T

0

∫ t

0

(
M−1Lv(s), Lv(s)

)1/2

0,Ω

(
Mv(s),v(s)

)1/2

0,Ω
ds dt

≤ 2T ‖M−1Lv‖W‖v‖W .

This yields ‖v‖W ≤ 2T ‖M−1Lv‖W for v ∈ V . Let v ∈ V \ {0} and take w =
M−1Lv ∈ W \ {0} as a special test function, then

sup
w∈W\{0}

b(v,w)
‖w‖W

≥ b(v,M−1Lv)
‖M−1Lv‖W

= (Lv,M−1Lv)0,Ω

‖M−1Lv‖W

= ‖M−1Lv‖W ≥
1√

4T 2 + 1
‖v‖V ,

where the latter inequality follows from

‖v‖2
V = ‖v‖2

W + ‖M−1Lv‖2
W ≤ (4T 2 + 1)‖M−1Lv‖2

W .

The inf-sup stability ensures that the operator L ∈ L(V,W ) is injective and that
the range is closed. Thus, the operator is surjective by construction and the inverse
L−1 is bounded in L(W,V ). Due to [Bra13, Thm. III.3.6], this yields directly the
following result.

Theorem 3.1 ([DFW16, Thm. 2.2]). For given f ∈ L2(Q)J there exists a unique
solution u ∈ V of

(Lu,w)0,Q = (f ,w)0,Q , for all w ∈ W. (3.7)

Moreover, u satisfies the a priori bound ‖u‖V ≤
√

4T 2 + 1 ‖M−1/2f‖0,Q.

Remark 3.1. The a priori bound in Theorem 3.1 is achieved by using the inf-sub
condition

‖u‖V ≤ β−1 sup
w∈W\{0}

b(v,w)
‖w‖W

= β−1 sup
w∈W\{0}

(f ,w)0,Q

‖w‖W

= β−1 sup
w∈W\{0}

(MM−1f ,w)0,Q

‖w‖W
≤ β−1‖M−1f‖W

= β−1(M−1/2f ,M−1/2f)0,Q = β−1‖M−1/2f‖0,Q.
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Note that M−1/2, given through the decomposition M−1 = M−1/2M−1/2, is well
defined since M is symmetric positive definite.

The next lemma shows the connection of the weak and strong formulation of the
problem.

Lemma 3.3 ([DPE12, Prop. 2.7]). If u ∈ V solves (3.7), then u solves the original
problem (3.2)

M∂tu + Au = f

almost everywhere in Q.

Proof. Taking w ∈ C∞0 (0, T ;C∞0 (Ω)) as a test function in (3.7) implies that

(Lu− f ,w)0,Q = 0.

and the assertion follows from fact that C∞0 (0, T ;C∞0 (Ω)) is dense in L2(0, T ;H).

Remark 3.2 (Inhomogeneous initial and boundary conditions). Due to the defini-
tion of V , only homogeneous initial conditions have been assumed for every solution
u ∈ V so far. One can extend the results to inhomogeneous initial values u0 6= 0
by defining u = uhom + u0, where uhom ∈ V . Hence from (3.7) one receives the
following equivalent problem. Seek uhom ∈ V such that

b(uhom,w) = (f ,w)0,Q − (Au0,w)0,Q, for all w ∈ W.

Similarly, the boundary conditions are given by the definition of D(A). Dirichlet
boundary conditions can be imposed, as before for the initial condition, by modi-
fying the right-hand side. Hence u = uhom + ubnd and again the problem results in
seeking uhom ∈ V such that

b(uhom,w) = (f ,w)0,Q − (Lubnd,w)0,Q, for all w ∈ W.

To do this, a sufficiently smooth extension ubnd of the boundary data is needed
(see, e.g., [EG04, Sec. 2.1.4], [Bra13, Ch. II, §2], [DPE12, Sec. 2.1.6]).

In the following sections we consider two examples, which fit into the introduced
hyperbolic setting.

3.3 Linear Transport Equation
The linear transport of a concentration or quantity of a material through a fluid
without any diffusion is modeled by the so called advection equation

ρ∂tu+∇ · (qu) = f, in Ω× (0, T ). (3.8)
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To solve this equation, one has to determine a scalar solution u : Ω× (0, T )→ R for
a given initial condition u0, right-hand side f and density distribution ρ ∈ L∞(Ω),
ρ > 0. The speed of the fluid is given by the vector field q ∈ W1,∞(Ω)D which is
assumed to be divergence free, i.e., ∇ · q = 0. Hence we can define the inflow and
outflow boundary as

Γin = {x ∈ ∂Ω: q(x) · nΩ(x) < 0} ⊆ ∂Ω,
Γout = {x ∈ ∂Ω: q(x) · nΩ(x) > 0} ⊆ ∂Ω,

respectively. Here nΩ is the outer unit normal vector on ∂Ω. The full advection
model with homogeneous inflow boundary condition then reads as

ρ∂tu+∇ · (qu) = f, in Ω× (0, T ),
u(0) = u0, on Ω× {0}, (3.9)
u = 0, on Γin × (0, T ).

Remark 3.3. Let F(u) = qu be the flux function, Au = ∇ · (qu) = q∇ · u with
domain D(A) =

{
u ∈ H1(Ω) : u = 0 on Γin

}
, H = L2(Ω) and Mu = ρu. Then

equation (3.8) is a hyperbolic first-order evolution equation, due to Definition 3.1.
Moreover, we achive that J = 1 and Bd = qd ∈ L∞(Ω). Note that for the adjoint
operator A∗ the roles of the inflow and outflow boundary are interchanged and
hence A∗u = −∇ · (qu) with domain D(A∗) =

{
u∗ ∈ H1(Ω) : u∗ = 0 on Γout

}
.

Lemma 3.4. The operator A is positive semi-definite and hence Theorem 3.1 holds
true.

Proof. For all v ∈ D(A) it holds that

(Av, v)0,Ω = (∇ · (qv), v)0,Ω =
∫
∂Ω

n · q v2 da − (qv,∇v)0,Ω

=
∫

Γin
n · q v2 da +

∫
Γout

n · q v2 da − (∇ · (qv), v)0,Ω

=
∫

Γout
n · q v2 da − (Av, v)0,Ω.

Hence

(Av, v)0,Ω = 1
2

∫
Γout

n · q v2 da ≥ 0

since n · q ≥ 0 on Γout.

3.4 Electromagnetic Waves
Electromagnetic waves are waves, which occur as a coupling of an electric and a
magnetic field. Typical examples are radio and micro waves, (visible) light, X-
rays and gamma rays, as well as thermal radiation. A very detailed introduction
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to electrodynamics can be found for example in [Jac99]. In this work we restrict
ourselves to a summary of the main points. We consider a spatial domain Ω ⊂ R3

and a final time T > 0. Electromagnetic waves are then described by four vector
fields E,D,H,B : Ω× (0, T )→ R3, which solve the so called Maxwell’s equations

∂tD−∇×H = −J (Ampère’s circuital law), (3.10)
∇ ·D = ρ (Gauss’s law), (3.11)

∂tB +∇× E = 0 (Faraday’s law of induction), (3.12)
∇ ·B = 0 (Gauss’s law for magnetism). (3.13)

The data parameters J : Ω → R3 and ρ : Ω → R are called electrical current den-
sity and electric charge density. The fields are called electrical field E, electric
displacement field D, magnetic field intensity H, magnetic induction B, respec-
tively. Furthermore, for a complete description a relation of the fields with matter
is needed. It is given by the so called constitutive relations D(H,E) and B(H,E).
In vacuum we have the linear relations

D(x, t) = ε0E(x, t) and B(x, t) = µ0H(x, t)

with the vacuum permittivity ε0 (electric constant) and the vacuum permeability µ0

(magnetic constant). These constants fulfill the relation

ε0µ0 = 1
c2

0
,

where c0 is the speed of light in vacuum. In matter the electric field E induces a
dislocation of charges and hence a polarization field P occurs within the constitutive
relation

D = ε0E + P.

For linear media the polarization is given as

P(E) = ε0χEE.

We assume that the electric susceptibility χE is independent of the frequency of the
electromagnetic waves. Furthermore, we assume that χE is real valued and scalar,
i.e., the media is isotropic. For simplification we introduce the relative permittivity
εr = 1 + χE > 0 and obtain the following linear constitutive relations

D = εE = ε0εrE and B = µH = µ0µrH,

where the relation for the magnetic fields B and H is deduced in an analogous
way. Correspondingly, µr > 0 is called relative permeability. Note that the electric
permittivity ε ∈ L∞(Ω) and magnetic permeability µ ∈ L∞(Ω) may depend on Ω,
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but not on time. Finally the general Maxwell’s equations (3.10)–(3.13) reduce to
the linear first-order system

µ∂tH +∇× E = 0,
ε∂tE−∇×H = f ,

∇ · (µH) = 0,
∇ · (εE) = ρ.

(3.14)

Note that the divergence constraints require the compatibility condition

∂tρ−∇ · f = 0 (3.15)

for the data f = −J and ρ. We assume that ρ is independent of time and hence the
compatibility condition reduces to ∇ · f = 0. Furthermore, the following Lemma
shows that the divergence constraints are fulfilled for all times, if they are fulfilled
for the initial condition.

Lemma 3.5 (Divergence conditions). We assume that the given data fulfill the
compatibility condition (3.15) for ∂tρ = 0. Furthermore, assume that µH and εE are
smooth enough. If ∇·

(
µH(., 0)

)
= 0 and ∇·

(
εE(., 0)

)
= ρ, then ∇·

(
µH(., t)

)
= 0

and ∇ ·
(
εE(., t)

)
= ρ, for all t > 0.

Proof. We prove the statement for ∇ · (εE) = ρ. The other (magnetic) constraints
can be shown analogously. It yields that

0 = ∇ · f = ∇ · (ε∂tE−∇×H) = ∂t
(
∇ · (εE)

)
.

Hence ∇ · (εE) is constant and since ∇ ·
(
εE(., 0)

)
= ρ and ∇ · (εE) is continuous

in time, it holds that ∇ · (εE) = ρ for all t ≥ 0.

In the following two remarks, we give a short overview over further reductions of
Maxwell’s equations in special cases and applications.

Remark 3.4 (Wave equation). The linear Maxwell’s equations (3.14) can be further
reduced to a second-order equation by eliminating H (or analogously E), i.e.,

ε∂2
t E +∇×

(
1
µ
∇× E

)
= f . (3.16)

In vacuum and with the absence of external charges and currents, it holds that
ε = ε0 and µ = µ0 and ρ = 0 and J = 0. Hence 0 = ∇ · (ε0E) = ε0∇ · E and with
the representation of the Laplacian

−∆E = ∇(∇ · E)−∆E = ∇× (∇× E)

we end up with the (second-order) wave equation

∂2
t E− c2

0∆E = E.
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Remark 3.5 (Time-harmonic Maxwell’s equations). In case of a constant frequency
ω, e.g., monochromatic laser light, we can assume that all fields are of the form
eiωtE and eiωtH, where E(x) ∈ C3 and H(x) ∈ C3 now only depend on space. This
approach is known as time-harmonic ansatz. Again we assume that ρ = 0 and
J = 0. Hence the linear first-order Maxwell equations (3.14) can be written as
eigenvalue problems

∇×
(1
ε
∇×H

)
= ω2µH or ∇×

(
1
µ
∇× E

)
= ω2εE

for H and E, respectively. For example, these kind of Maxwell’s equations occur
when one wants to investigate band structures in photonic crystals or losses in
photonic waveguide transitions (see, e.g., [DLP+11], [DF15]).
The next remark and lemma show how the linear first-order Maxwell system (3.14)
can be fitted into the setting of first-order hyperbolic evolution equations (3.1).
Remark 3.6. Let u = (H,E)>, H = L2(Ω)3 × L2(Ω)3, Mu = (µH, εE)> and
consider the operators Au = (∇ × E,−∇ × H)> = −A∗u in D(A) = D(A∗) =
H(curl,Ω)×H0(curl,Ω) to model a perfect conducting boundary n×E = 0 on ∂Ω.
Hence, M and A can be written as

M =
(
µ 0
0 ε

)
and A =

(
0 ∇×
−∇× 0

)
.

Moreover, it holds that M is symmetric and positive definite and

Bd =
(

0 Cd
−Cd 0

)
=
(

0 −C>d
C>d 0

)
=
(

0 Cd
−Cd 0

)>
= B>d , for d = 1, . . . , 3.

Here the x-independent, anti-symmetric blocks Cd ∈ R3×3 are equivalent to the
matrix representations of the cross product, i.e., id × x = Cdx = −C>d x for all
x ∈ R3. We conclude that J = 6 and Bd ∈ L∞(Ω)6×6 is symmetric. Thus (3.14) is
a hyperbolic first-order evolution system of equations due to Definition 3.1.
Lemma 3.6. The operator A is positive semi-definite and hence Theorem 3.1 holds
true.
Proof. Due to the perfect conducting boundary condition n × E = 0, it holds for
all v ∈ D(A) that

(Av,v)0,Ω =
∫

Ω
∇× E ·H−∇×H · E dx

=
∫

Ω
E · ∇ ×H−∇×H · E dx +

∫
∂Ω

n× E ·H da = 0.

For some applications it is not necessary to solve Maxwell’s equations in a three
dimensional spatial domain, since the problem can be reduced to one or two spatial
dimensions. In case of polarized electromagnetic waves, one can derive 1D and 2D
settings for Maxwell’s equations (cf. [Jac99, Sec. 8.2]):
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Transverse Electromagnetic (TEM) Waves

In this case let Ω ⊂ R and the electric and the magnetic field vanish in x3 direction.
Hence E3 = H3 = 0 and the linear Maxwell’s equations (3.14) reduce to two
decoupled one-dimensional linear systems

µ∂tH2 + ∂3E1 = 0,
ε∂tE1 + ∂3H2 = f1

and µ∂tH1 − ∂3E2 = 0,
ε∂tE2 − ∂3H1 = f2,

where J = 2, u = (H2, E1)> or u = (H1, E2)> and given data on the right-hand
side f = (0, f1)> or f = (0, f2)>, respectively.

Transverse Magnetic (TM) Waves

In this case let Ω ⊂ R2 and the electric field E vanishes in x1 and x2 direction.
Hence H3 = E1 = E2 = 0, J = 3 and u = (H1, H2, E3)>. The two-dimensional TM
case will be investigated numerically in Chapter 6 and 8.

Transverse Electric (TE) Waves

In this case let Ω ⊂ R2 and the magnetic field H vanishes in x1 and x2 direction.
Hence H1 = H2 = E3 = 0, J = 3 and u = (H3, E1, E2)>.

3.5 Boundary Conditions in Applications
In Remark 3.2 we have seen, that inhomogeneous initial and boundary conditions
can be applied by incorporating them into the right-hand side f . For our analysis we
assumed a given homogeneous boundary condition for simplicity and incorporated
them into the domain of A. However, other boundary conditions are often needed
in applications to model problems correctly. In the following we briefly introduce
common boundary conditions for electromagnetic problems.

Conducting Boundary Conditions

So far we assumed a perfect electric conducting boundary condition

n× E = 0, on ∂Ω.

On the other hand, the magnetic counterpart of a perfect conducting boundary
condition is given as

n×H = 0, on ∂Ω,

(cf. [Jac99, Sec. 5.8, Sec. 5.13]). These kind of boundary conditions correspond to
reflecting boundary conditions, where the electric and magnetic fields are reflected
back (with a phase shift) into Ω without any losses. Physically this means that the
fields vanish inside a perfect conductor.



3.5. BOUNDARY CONDITIONS IN APPLICATIONS 21

Unbounded Domains

If electromagnetic waves are not encapsulated in constructions with perfectly con-
ducting boundaries, they usually travel up to infinity. Since we have to cut off the
computational domain at some point, it is crucial to model the correct boundary
conditions in this case. For time-harmonic waves (see Remark 3.5) one can im-
pose the so called Silver–Müller radiation conditions and show that they model the
decaying behavior of electromagnetic waves correctly (see, e.g., [AK04, Sec. 2.9]).
In particular this means that waves cannot enter the computational domain from
infinity.
Therefore, so called perfectly matched layers (PML) can be added to the compu-
tational domain in numerical simulations. Within these layers artificial material
parameters are used to damp outgoing waves exponentially. Hence only very few
layers of additional cells are needed around the computational domain to achieve
a sufficiently large damping. Moreover one has to assure that the waves are not
reflected at the interface between computational domain and the PML. For more
details on perfectly matched layers in combination with discontinuous Galerkin
methods and time-dependent problems see, e.g., [Sch15].
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4 A Space-Time Discontinuous
Petrov–Galerkin Discretization

In the previous chapter we have seen that for every given right-hand side f ∈ L2(Q)J
there exists a unique solution u ∈ V of the weak first-order evolution equation, such
that for all w ∈ W equation (4.4) is fulfilled, i.e.,

(Lu,w)0,Q = (M∂tu + Au,w)0,Q = 〈f ,w〉, for all w ∈ W.

In the present chapter we want to derive a discrete version of this problem, to be
able to compute approximations uh to u later on. Therefore the spaces V and
W are replaced by corresponding finite-dimensional spaces Vh,Wh ⊂ L2(Q). This
results in the idea of so called Galerkin Methods. A short introduction is given in the
following section. Afterwards a special kind of Galerkin method, the so called Finite
Element Method (FEM), is introduced. Finally, we derive a finite element space-
time discretization of our hyperbolic problem (3.1). For this purpose we combine
a discontinuous Galerkin (dG) method in space with a continuous Petrov–Galerkin
(cPG) method in time. Moreover, we discuss an implementation, where a nodal
space-time discretization is used.

4.1 Galerkin Methods
To approximate a solution u of a partial differential equation with a Galerkin
method, we choose finite-dimensional vector spaces Vh,Wh and seek a solution
uh ∈ Vh such that

bh(uh,wh) = 〈f ,wh〉 (4.1)

holds for all wh ∈ Wh. Here bh(., .) = (Lh., .)0,Q : Vh×Wh → R is the discrete bilinear
form, which arises from the approximation Lh = Mh∂t + Ah of the continuous
operator L. Hence bh is an approximation of the weak formulation

b(u,w) = 〈f ,w〉, for all w ∈ W

23
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of the original problem (3.7). The space Vh is called ansatz space or trial space,
whereas Wh is called test space. If both spaces do not coincide, i.e., Vh 6= Wh, the
Galerkin method is usually called Petrov–Galerkin method or non-standard Galerkin
method to emphasize this circumstance. A Galerkin method is called conforming if
Vh ⊂ V and Wh ⊂ W . Otherwise the method is called non-conforming. The term
“Galerkin method” only indicates that formulation (4.1) is used to approximate a
solution to the original problem. However, to achieve a suitable numerical method
it is crucial to choose the finite-dimensional vector spaces Vh and Wh in a correct
way. One possibility is the so called finite element method presented in the next
section. For a more comprehensive introduction to Galerkin methods and their
connections to FEM see, e.g., [Bra13, §4] or [EG04, Sec. 2.2].

4.2 Finite Element Method
To apply a finite element method, a decomposition of the underlying computational
domain Ω ⊂ RD, D ∈ N, is needed. The following definitions build the foundations
of suitable decompositions for finite element methods.

Definition 4.1 (Cells and reference cell). A non-empty, open polyhedron K ⊂ Ω
(e.g., an interval for D = 1, quadrilateral or triangle for D = 2, hexahedron or
tetrahedron for D = 3) is called (spatial) cell. It is given as the interior of a convex
hull which is characterized by the set of vertices x0,x1, . . . ,xD (for tetrahedral cells)
or x0,x1, . . . ,x2D−1 (for hexahedral cells). A subset f ⊂ ∂K of the surface, which
corresponds to one hyperplane is called face. The set of all faces of K is denoted as
FK . The cell diameter is denoted as hK = diam(K).
Moreover we define a so called reference cell K̂, not necessarily in Ω. Every “phys-
ical” cell K ⊂ Ω can be represented as the reference cell and a corresponding affine
linear mapping φK : K̂ → K. In particular φK is a C1-diffeomorphism. Hence it
is sufficient to define a finite element only once on a reference cell K̂ and use the
linear mapping φK to map it to the “physical” elements. The mapping φK is usually
given by so called barycentric coordinates (see Section A.1 for a short introduction
on barycentric coordinates on tetrahedral cells).
Furthermore, we define the Jacobian matrix of φK as

FK(x̂) =
(
∂x̂jφK,i(x̂)

)
i,j=1,...,D

and denote the corresponding determinant as JK(x̂) = det(FK(x̂)).

Definition 4.2 (Meshes). Assume that Ω has a polyhedral boundary, i.e., ∂Ω can
be represented piecewise by C1 functions (continuous and differentiable). Then we
decompose Ω into a finite set K of non-overlapping cells K ⊂ Ω such that

Ω =
⋃
K∈K

K.
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Figure 4.1: Illustration of an element K and a neighboring cell Kf in 2D.

The decomposition K is denoted as (spatial) mesh or (spatial) grid. A mesh de-
composition is called admissible if every intersection of two cells Ki, Kj ∈ K, i 6= j,
fulfills exactly one of the following conditions:

a) ∂Ki ∩ ∂Kj = ∅

b) ∂Ki ∩ ∂Kj ∈ RD is a vertex of Ki and Kj

c) ∂Ki ∩ ∂Kj ⊂ RD is a face of Ki and Kj

In particular it follows that no hanging nodes are allowed for admissible meshes.
The set of all faces of a mesh K is denoted as FK. We distinguish between interior
faces f 6⊂ ∂Ω and outer faces f ⊂ ∂Ω. For a cell K with interior face f ∈ FK we
denote the cell Kf ∈ K as neighboring cell if f ∈ FK ∩ FKf 6= ∅ is a common face.
Furthermore let nK denote the outer unit normal vector on ∂K (see Figure 4.1).

Definition 4.3 (Mesh size and shape regularity). Let K be an admissible mesh.
The maximal cell diameter of all cells

h = max
K∈K

hK

is called mesh size. Moreover, a family of meshes {Kh}h>0 is called shape-regular if
there exists an upper bound σ0 > 0 such that

σ0 ≥
hK
dK

, for all h > 0 and K ∈ Kh.

Here dK is the diameter of a ball with maximal volume, which can be fitted into K.

The following definitions and remarks build the basis for the finite element dis-
cretization presented later on. A general introduction to finite element methods
can be found for example in [Bra13] and [EG04]. We use the latter reference to give
a small introduction to the main points of finite elements, see [EG04, Sec. 1.2]. For
simplicity, we first consider the scalar case for J = 1. A vector valued extension
for J > 1 can be achieved by applying finite elements component-wise. This case
is discussed afterwards.
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Definition 4.4 (Finite element). In our setting a triplet (K,Hh,K ,ΣK) is denoted
as finite element, if it fulfills the following properties:

a) The element K ∈ K is a cell of an admissible mesh K (see Definitions 4.1 and
4.2).

b) Hh,K ⊂ C(K) is a finite subspace of continuous functions. We use polynomial
spaces Hh,K = PpK (K), where

PpK (K) =

vh,K(x) =
∑

0≤i1,...,iD≤pK ,
i1+...+iD≤pK

αi1,...,iDx
i1
1 . . . x

iD
D , x ∈ K


is the space of all polynomials with highest degree pK ≥ 0 and coefficients
αi1,...,iD ∈ R. The dimension of Hh,K is denoted as nK = dim(Hh,K).

c) ΣK is a set of nK linear independent functionals on Hh,K . Every function
(polynomial) ψ ∈ Hh,K can be uniquely determined by using the values of
these functionals li ∈ ΣK , 1 ≤ i ≤ nk, i.e., the linear mapping

ψ 7→ (l1(ψ), l2(ψ), . . . , lnK (ψ)) ∈ RnK

is bijective and ΣK is a basis of L(Hh,K ,R). ΣK is called the set of degrees
of freedom (DoFs). As a consequence of the bijectivity we achieve that there
exits a basis {ψj}j=1,...,nk of Hh,K such that

li(ψj) = δi,j, 1 ≤ i, j ≤ nK .

The basis functions {ψ1, . . . , ψnK} are called shape functions.

Definition 4.5 (Nodal finite elements). Consider a finite element (K,PpK (K),ΣK).
Let {x0,x1, . . . ,xnK} be a set of points in K such that for all shape functions
ψj ∈ PpK (K) it holds that

li(ψj) = ψj(xi), 1 ≤ i, j ≤ nK .

Then (K,PpK (K),ΣK) is called nodal finite element (or Lagrange finite element).
The associated points {x1,x2, . . . ,xnK} are called nodes of the finite element. In
this context, the set of shape functions {ψj}j=1,...,nk is denoted as nodal basis and
we achieve that

ψj(xi) = δi,j, 1 ≤ i, j ≤ nK . (4.2)

Hence every polynomial vh ∈ PpK (K) is uniquely defined by its corresponding
coefficient vector v = (v1, . . . , vnK )> ∈ Rnk and can be represented as

vh =
nK∑
i=1

viψi.
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The local nodal interpolation operator is defined as

IK : C0(K)→ PpK (K), IKv =
nK∑
i=1

v(xi)ψi.

Definition 4.6 (Nodal shape function). Let K ∈ K be a cell in RD and choose
a polynomial degree pK ≥ 0. We consider a set of nodes {x1,x2, . . . ,xnK} where
every element xi can be represented by its barycentric coordinates

λi =


(

1
D+1 , . . . ,

1
D+1

)
, for pK = 0,(

i0
pK
, . . . , iD

pK

)
, 0 ≤ i0, . . . , iD ≤ pK , i0 + . . .+ iD = pK , for pK > 0.

For an introduction to barycentric coordinates see Section A.1 in the appendix. The
first three nodal sets are illustrated in Figure 4.2 for different dimensions D = 1, 2, 3
and pK = 0, 1, 2. Moreover, let (K,PpK ,ΣK) be a nodal finite element with respect

pK = 0 pK = 1 pK = 2
x1 x1 x1

x1

x2

x1

x2

x1

x2

x1

x2

x3

x1

x2

x3

x1

x2

x3

Figure 4.2: Illustration of one-, two- and three-dimensional nodal finite elements.

to the set of nodes with barycentric coordinates. Then the corresponding shape
functions are given by Lagrange polynomials and the shape functions are called
nodal or Lagrange shape functions, respectively (see Example A.1 in the appendix).
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Remark 4.1 (Implementation). As indicated above in Definition 4.1, we use a
reference finite element element (K̂,Pp(K̂),Σ

K̂
) and the affine linear mapping φK

to represent a “physical” finite element (K,Pp(K),ΣK) for all K ∈ K. Hence we
achieve that a shape function ψ ∈ PpK (K) and its gradient can be represented as

ψ = ψ̂ ◦ φ−1
K and ∇ψ = F−>K ∇̂ψ̂ ◦ φ−1

K ,

where ψ̂ ∈ Pp(K̂) is a reference shape function and FK the Jacobian matrix.
Integrals are evaluated by numerical integration. Therefore Gaussian quadrature
formulas QGauss

K̂
with weights {ωi}i=1,...,nGauss and quadrature points {q̂i}i=1,...,nGauss

on the reference cell are used. Thus, the integral over a polynomial vh ∈ PpK (K)
can be computed as∫

K
vh(x) dx =

∫
K̂
v̂h(x̂)JK(x̂) dx̂ = QGauss

K̂
(v̂hJK) =

nGauss∑
i=1

v̂h(q̂i)ωiJK(q̂i),

where v̂h = vh ◦ φ−1
K ∈ PpK (K̂) and JK = det(FK). Note that (depending on the

integrand vh) the order of the quadrature formula has to be chosen sufficiently large.

Remark 4.2 (Vector valued case). In case of vector valued problems, e.g., in the
Maxwell case, J > 1 holds and thus Hh,K = PpK (K)J . Here we choose a finite
element (K,PpK ,ΣK) for every component. Hence, every node xi is assigned to
J shape functions and we receive a vector valued version of property (4.2) for all
shape functions ψj ∈ PpK (K)J , i.e.,(

ψj(xi)
)
k

= δi,jmod J δk,dj/Je, 1 ≤ i ≤ dim(PpK ), 1 ≤ j ≤ npK , 1 ≤ k ≤ J.

Remark 4.3 (Dimensions). Let K be a decomposition of intervals, triangles or
tetrahedrons, the dimension of the local polynomial space PpK (K), K ∈ K, can be
calculated as

dim(PpK (K)) =
(
D + pK
pK

)
=


pK + 1, for D = 1,
1
2(pK + 1)(pK + 2), for D = 2,
1
6(pK + 1)(pK + 2)(pK + 3), for D = 3.

Hence the dimension of Hh,K is nK = dim(PpK (K))J .

Next we want to construct an ansatz space Vh. In principle one has the possibility
to choose a conforming or non-conforming finite element discretization. This choice
is crucial, since it will lead to two different finite element discretizations with differ-
ent advantages and disadvantages. In the following section, we will briefly discuss
the conforming case and resulting difficulties for Maxwell’s equations. Afterwards
we focus on the non-conforming case, which is finally used in this work. A de-
tailed description of conforming finite elements for Maxwell’s equations is given in
[Hip02] or [Mon04]. For an introduction to general non-conforming finite element
discretizations see [DPE12]. A description of non-conforming finite elements for
Maxwell’s equations can be found in [HW08].
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4.2.1 Conforming Finite Element Discretization

We have seen that the ansatz space is given as V = D(A) = H(curl,Ω)×H0(curl,Ω)
in the Maxwell case (cf. Remark 3.6). Taking standard continuous piecewise linear
finite elements is not a reasonable choice, since the corresponding finite element
space Vh is not dense in V for the limit case h → 0. In this case, a finite element
solution uh will convergence towards a projection of the continuous solution into
H1(Ω)3 × H1

0(Ω)3 and not the continuous solution u itself. This results in approxi-
mations which are wrong in general, since the solution might be not regular enough,
e.g., u ∈ Hs(Ω)3×Hs

0(Ω)3 for s < 1 (cf. [Hip02, Thm. 6.3]). Moreover, this approach
contains the danger of showing well convergence behavior and thus misleading trust
in numerical results.
To circumvent this issue, one has to choose the correct H(curl)-conforming finite
element space. Such an approach leads to the edge element discretization introduced
by Nédélec [Néd80].

4.2.2 Non-Conforming Finite Element Discretization

Now we focus on the construction of a non-conforming finite element discretization
by using so called discontinuous Galerkin finite element methods (DG-FEM). De-
pending on the point of view DG-FEM can be understood as a finite volume method.
However, instead of using only constant functions to approximate solutions locally
on one cell, the framework is extended by additionally allowing polynomials of
higher degree p ≥ 0. Thus for polynomial degree p = 0 a discontinuous Galerkin
method coincides with a finite volume method. On the other hand DG-FEM can
be seen as a finite element method, where we allow discontinuous ansatz and test
spaces. Compared to conforming discretizations, non-conforming methods require
more degrees of freedom on the same mesh. However, they are able to adapt to non-
regular solutions more accurately. Due to that and the grater flexibility and easier
implementation, we stick to a finite element framework for discontinuous Galerkin
methods throughout this work.
The practical use of DG-FEM for first-order partial differential equations started
almost 40 years ago by applying the method to a steady linear transport example
(see [RH73]). In the following years the method was applied to time-dependent
first-order problems by first using explicit Euler [CC89] and Runge–Kutta schemes
later on, see, e.g., [CS91]. For problems with an additional diffusion term, interior
penalty techniques for DG-FEM became very popular (see, e.g., [Bab73]). Mean-
while discontinuous Galerkin methods combined with Runge–Kutta methods are
standard methods for solving partial differential equations as several textbooks in-
dicate, see, e.g., [DPE12], [HW08]. On the other hand the development of new
discontinuous Galerkin discretizations and their application is still a broad field
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of open research. Examples are the investigation of local time stepping and p-
adaptivity (cf. [DKT07]) or the progress in space-time Petrov–Galerkin methods
(cf. [DG14], [EDCM14]).

4.3 Discontinuous Galerkin Operators in Space
We use the definitions and properties of finite elements, stated in the previous sec-
tion, to construct a suitable non-conforming discontinuous Galerkin finite element
discretization. We start by constructing a finite dimensional subspace Hh ⊂ H ⊂
L2(Ω)J for the spatial discretization. Therefore we follow the approach stated in
[HPS+15] and also used in [DFW16]. As introduced above, we select a polynomial
degree pK ≥ 0 for every cell K and define the local spaces Hh,K = PpK (K)J . Taking
all subspaces together leads to the finite, global discontinuous Galerkin space

Hh = {vh ∈ L2(Ω)J : vh|K ∈ Hh,K for all K ∈ K}.

We want to define the discrete spatial operatorsMh, Ah via their weak forms. Hence
we define the discrete mass operator Mh ∈ L(Hh, Hh) by the Galerkin approxima-
tion of M as

(Mhvh,wh)0,Ω = (Mvh,wh)0,Ω (4.3)

for all vh,wh ∈ Hh. Mh is represented by a block-diagonal positive definite matrix.
Since A contains spatial derivatives and the Galerkin space Hh is discontinuous,
the Galerkin approximation, stated above, cannot be used to define the discrete
operator Ah. Instead, we use the following approach. Multiply Av = ∇ ·F(v) with
a smooth test function φK , integrate by parts over one element K ∈ K and achieve
for every smooth ansatz function v that

(Av,φK)0,K = −(F(v),∇φK)0,K +
∑
f∈FK

(nK · F(v),φK)0,f . (4.4)

As shown in Lemma 3.1, nK · F is a symmetric J × J matrix. We now extend this
local approach to the whole spatial domain Ω. Therefore we couple two neighboring
elements by introducing a new flux function.

Definition 4.7 (Numerical flux). Let f = ∂ΩL ∩ ∂ΩR be a non-empty interface of
two disjoint open sets ΩL,ΩR ⊂ RD and nf ∈ RD a unit normal vector to f . A
function nf ·Fnum

f : RJ ×RJ → RJ across the interface f is called numerical flux to
a flux F, if it is consistent, i.e.,

nf ·
(
Fnum
f (z, z)− F(z)

)
= 0, for all z ∈ RJ

and Fnum
f is Lipschitz continuous, i.e., for all v,w, z ∈ RJ it holds that

‖nf ·
(
Fnum
f (v,w)− F(z)

)
‖2 ≤ Cnum max {‖v− z‖2, ‖w− z‖2} ,

with Lipschitz constant Cnum ≥ 0.
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Remark 4.4 (Numerical flux for DG methods). In case of discontinuous Galerkin
discretizations we consider fluxes across cell interfaces f = ∂K ∩ ∂Kf for two
neighboring cells K,Kf ∈ K and use the notation

Fnum
K,f (vh) = Fnum

K,f (vh,K ,vh,Kf ), for all vh ∈ Hh.

Throughout this work we omit the indices K and f if the associated cell and face
can be derived from the context. Due to consistency of a numerical flux it holds
that

nK ·
(
Fnum
K,f (v)− F(v)

)
= 0, for all v ∈ D(A)

on all faces f ∈ FK . Furthermore, nK · (Fnum
K,f (vh)− F(vh,K)) depends only on the

jump [vh]K,f and not on the absolute values, since the numerical flux is Lipschitz
continuous.

With this definition we can define the discrete linear operator Ah ∈ L(Hh, Hh)
locally as

(Ahvh,φh,K)0,K = −(F(vh,K),∇φh,K)0,K +
∑
f∈FK

(nK · Fnum(vh),φh,K)0,f , (4.5)

for any ansatz function vh ∈ Hh and test function φh,K ∈ Hh,K . By again using
integration by parts, one obtains

(Ahvh,φh,K)0,K =
(∇ · F(vK),φh,K)0,K +

∑
f∈FK

(nK · (Fnum(vh)− F(vh,K)),φh,K)0,f .
(4.6)

Moreover it yields that, for some v ∈ D(A) and test function φh ∈ Hh

(Av,φh)0,Ω = (Ahv,φh)0,Ω, (4.7)

due to the consistency of the numerical flux. Formulation (4.5) is usually known
as the weak form of the operator Ah, whereas (4.6) is denoted as strong form.
Mathematically both formulations are equivalent, but from a computational point
of view differences can occur. We do not need any smoothness requirements for
the test function in the strong form. Furthermore, the sum over the faces only
depends on the jump of the ansatz function in the strong case. Thus we will use
the strong formulation for numerical computation in this work. The construction of
the numerical flux is crucial to achieve a stable numerical scheme and is discussed
in the following section.

4.4 Upwind Flux
Not every arbitrary choice of a numerical flux will lead to a stable numerical scheme.
For example, the so called centered flux, which is defined as the mean value of a
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function on a face, is generally unstable for hyperbolic problems (cf. [LeV08, Sec.
3.5]). We follow the ideas given in [HPS+15] and [LeV08] and construct a numerical
flux by investigating the behavior of so called shock solutions. These solutions
are discontinuous along a given interface, but regular in the neighborhood of the
interface.
To find weak shock solutions, we consider the weak formulation of the first-order
evolution equation

(Mu, ∂tφ)0,RD×(0,T ) + (F(u),∇φ)0,RD×(0,T ) = 0, (4.8)

which is obtained by multiplying (3.1) with a continuous test function φ with
compact support, integrating over the space-time domain RD× (0, T ) and applying
the integration by parts formula.

Definition 4.8 (Riemann problem). Let n ∈ RD \ {0} be an arbitrary unit vector.
Then RD = ΩL ∪ ΩR can be divided into two open subsets ΩL = {x ∈ RD : n·x < 0}
and ΩR = {x ∈ RD : n·x > 0}. One now seeks a weak solution u : RD×(0, T )→ RJ

such that the weak first-oder evolution equation (4.8) is fulfilled for a discontinuous
initial condition

u(x, 0) = u0(x) =

uL, for all x ∈ ΩL,

uR, for all x ∈ ΩR,

with uL,uR ∈ RJ and constant M = ML in ΩL or M = MR in ΩR, respectively.
This problem is called Riemann problem and the corresponding weak shock solution
u is called Riemann solution.

To solve the Riemann problem we first look for separate solutions on ΩL and ΩR.
From Lemma 3.1 we know that Bn = n · F is diagonalizable with real eigenvalues.
Hence let [λi,L, ci,L] ∈ R×RJ , i = 1, . . . , J , be the ML-orthogonal eigenpairs of the
eigenvalue problem

Bnci,L = λi,LMLci,L, where ci,L ·MLcj,L = 0 (for i 6= j). (4.9)

and analogously let [λi,R, ci,R] ∈ R×RJ , i = 1, . . . , J , be the MR-orthogonal eigen-
pairs of the eigenvalue problem

Bnci,R = λi,RMRci,R, where ci,R ·MRcj,R = 0 (for i 6= j). (4.10)

Lemma 4.1 ([HPS+15, Sec. 3.1]). A general Riemann solution on ΩL∪ΩR is given
by

u(x, t) =

uL +∑
x·n−λi,Lt>0 bi,Lci,L, if x ∈ ΩL,

uR +∑
x·n−λi,Rt<0 bi,Rci,R, if x ∈ ΩR,

for i = 1, . . . , J and arbitrary real coefficients bi,L, bi,R.
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Proof. It is sufficient to show that

ũ =


∑

x·n−λi,Lt>0 bi,Lci,L, if x ∈ ΩL,∑
x·n−λi,Rt<0 bi,Rci,R, if x ∈ ΩR,

is a solution of the Riemann problem

(M ũ, ∂tφ)0,RD×(0,T ) + (F(ũ),∇φ)0,RD×(0,T )

=− (∇ · F(uL),φ)0,ΩL×(0,T ) − (∇ · F(uR),φ)0,ΩR×(0,T )

with homogeneous initial data, since this is an equivalent formulation to (4.8) with
incorporated initial condition (cf. Remark 3.2). Since uL and uR are constant, the
right-hand side vanishes and the Riemann problem reduces to

(M ũ, ∂tφ)0,RD×(0,T ) + (F(ũ),∇φ)0,RD×(0,T ) = 0.

We prove that ũ solves this problem by splitting up the integrals. This results in

(M ũ, ∂tφ)0,RD×(0,T ) + (F(ũ),∇φ)0,RD×(0,T )

=
J∑
i=1

{
(MLbi,Lci,L, ∂tφ)0,Qi,L + (F(bi,Lci,L),∇φ)0,Qi,L

}

+
J∑
i=1

{
(MRbi,Rci,R, ∂tφ)0,Qi,R + (F(bi,Rci,R),∇φ)0,Qi,R

}
,

where we integrate over Qi,L = {(x, t) ∈ ΩL × (0, T ) : x · n − λi,Lt > 0} and
Qi,R = {(x, t) ∈ ΩR × (0, T ) : x · n− λi,Rt < 0}, respectively. Using the integration
by parts formula within the first sum leads to

J∑
i=1

{
(MLbi,Lci,L, ∂tφ)0,Qi,L + (F(bi,Lci,L),∇φ)0,Qi,L

}

=
J∑
i=1

(−λi,LMLbi,Lci,L + n · F(bi,Lci,L),φ)0,∂Qi,L

=
J∑
i=1

(−λi,LMLbi,Lci,L +Bnbi,Lci,L,φ)0,∂Qi,L = 0.

Here we used the definition of the eigenvalue problems (4.9) and that the volume
term vanishes, since bi,Lci,L is constant. Applying the same techniques to Qi,R and
the second sum proves the assertion.

Note that the Riemann solution is piecewise constant, as a direct consequence of
this lemma. Furthermore, the number of intermediate steps is related to the charac-
teristic wave speeds, i.e., the eigenvalues λi of Bn. A typical situation is illustrated
in Figure 4.3.
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û1,L
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Figure 4.3: Riemann solution with intermediate states û1,L, û2,L, . . . , ûJ-1,R, ûJ ,R

To obtain a Riemann solution in RD, continuity of the flux across the interface
fL,R = ∂ΩL ∩ ∂ΩR = {x ∈ RD : n · x = 0} is required, i.e.,

Bn

uL +
∑

λi,L<0
bi,Lci,L

 = Bn

uR +
∑

λi,R>0
bi,Rci,R

 . (4.11)

This equation is known as Rankine–Hugoniot (jump-)condition, see [LeV08, Sec.
3.6]. It can be used to determine the unknown coefficients bi,L and bi,R by solving

cj,R ·Bn(uR − uL) = cj,R ·Bn[u0]ΩL,fL,R = cj,R ·
∑

λi,L<0
Bnbi,Lci,L, for λj,R < 0,

cj,L ·Bn(uL − uR) = cj,L ·Bn[u0]ΩR,fL,R = cj,L ·
∑

λi,R>0
Bnbi,Rci,R, for λj,L > 0.

We conclude that bi,L and bi,R only dependent on the jump [u0]ΩL,fL,R . Moreover, one
can define a numerical flux via the inflowing part of the flux through the interface
fL,R as

n · Fnum
fL,R

(u0) =n · Fnum
fL,R

(uL,uR)

=Bn

uL +
∑

λi,L<0
bi,Lci,L

 = Bn

uR +
∑

λi,R>0
bi,Rci,R

 . (4.12)

This numerical flux is known as upwind flux, see, e.g. [HW08, Sec. 2.4] or [DPE12,
Sec. 3.2.2.2].
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Lemma 4.2. If M can be replaced by a piece-wise constant scalar, e.g., in isotropic
or homogeneous materials, the sums in (4.12) can be computed explicitly and the
upwind flux can be written in a more elegant way, as

n · Fnum(u0) = BnuL + 1
2(Bn − |Bn|)[u0]ΩL,fL,R ,

= BnuR + 1
2(Bn + |Bn|)[u0]ΩR,fL,R .

(4.13)

Here we use the component-wise absolute values |Λ| = diag
(
|λ1|, . . . , |λJ |

)
of the

diagonal eigenvalue matrix Λ = diag
(
λ1, . . . , λJ

)
to define |Bn| = S|Λ|S−1, where

Bn = SΛS−1. Hence it holds that
1
2(Bn − |Bn|) = S(Λ− |Λ|)S−1 = SΛ−S−1,

1
2(Bn + |Bn|) = S(Λ + |Λ|)S−1 = SΛ+S−1,

(4.14)

where Λ− and Λ+ are negative semi-definite and positive semi-definite matrices,
respectively, with Λ = Λ− + Λ+.

Proof. SinceML > 0 andMR > 0 are scalar, we achieve that λi = MLλi,L = MRλi,R
and ci = ci,L = ci,L for i = 1, . . . , J . Due to the Rankine–Hugoniot (4.11) condition
it yields that

cj ·Bn[u0]ΩL,fL,R = cj ·Bn
∑
λi<0

bi,Lci, for λj < 0,

cj ·Bn[u0]ΩR,fL,R = cj ·Bn
∑
λi>0

bi,Rci, for λj > 0

and thus

∑
λi<0

bi,Lci =

[u0]ΩL,fL,R , for λj < 0,
0, otherwise,

∑
λi>0

bi,Rci =

[u0]ΩR,fL,R , for λj > 0,
0, otherwise.

This representation is used in (4.12) together with notation (4.14) to obtain (4.13).

Remark 4.5. In case of matrix-valued M , representations similar to (4.13) can be
obtained by using the diagonalization M−1Bn = SΛS−1 (cf. [HW08, Sec. 2.4]).

Assume that M is a constant scalar within on cell K ∈ K. Then we conclude from
equation (4.13) that a stable upwind flux on every f ∈ FK is given cell-wise as

nK ·
(
Fnum
K,f (vh)− F(vh,K)

)
= 1

2(nK ·B− |nK ·B|)[vh]K,f

for all vh ∈ Hh in case of the strong formulation (4.6), where B = (B1, . . . , BD)>.
This representation is used in the following lemma.
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Lemma 4.3. Let M be a piece-wise constant scalar within each cell K ∈ K, then
it holds that ∑

K∈K
(nK · Fnum

K (vh),v)0,∂K = 0

for all vh ∈ Hh and v ∈ D(A) ∩ H1(Ω)J.

Proof. To show this property we first conclude that(
nK ·Bvh,K + nKf ·Bvh,Kf

)
· v

=
(
nK ·Bvh,K − nK ·Bvh,Kf

)
· v

=−
(
nK ·B[vh]K,f

)
· v = −

(
nKf ·B[vh]Kf ,f

)
· v

and hence (
nK ·Bvh,K + nKf ·Bvh,Kf

)
· v

=− 1
2
(
nK ·B[vh]K,f + nKf ·B[vh]Kf ,f

)
· v.

We use the representation of the upwind flux given in Lemma 4.2 to verify that∑
K∈K

(nK · Fnum
K (vh),v)0,∂K

=
∑
K∈K

(nK ·Bvh,K ,v)0,∂K + 1
2
(
(nK ·B− |nK ·B|)[vh]K,f ,v

)
0,∂K

=
∑
K∈K
−1

2(nK ·B[vh]K,f ,v)0,∂K + 1
2
(
(nK ·B− |nK ·B|)[vh]K,f ,v

)
0,∂K

=
∑
K∈K
−1

2(|nK ·B|[vh]K,f ,v)0,∂K

=− 1
2

∑
f∈FK∩∂Ω

(|nK ·B|[vh]K,f ,v)0,∂K = 0

due to homogeneous boundary conditions contained in D(A).

For the examples given in Sections 3.3 and 3.4, i.e., for linear transport and electro-
magnetic waves, we compute the eigenpairs explicitly. Moreover, we compute the
coefficients bi and provide explicit expressions for the upwind flux. Additionally we
discuss how homogeneous boundary data, corresponding to D(A), can be enforced.

4.4.1 Linear Transport Equation
We consider the Riemann problem in case of the linear transport example. It holds
that Bn = n · q is scalar and the eigenpairs are given as [λL, 1] and [λR, 1], with
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eigenvalues λL = ρ−1
L Bn and λR = ρ−1

R Bn, respectively, see (4.9) and (4.10). Due to
the Rankine–Hugoniot condition (4.11) it yields for the coefficient bL that

bL =

[u]ΩL , if λL, λR < 0,
0, otherwise.

Since ρL, ρR > 0 we conclude for the upwind flux

n · Fnum(u) =

BnuL +Bn[u]ΩL , if Bn < 0,
BnuL, otherwise,

= (n · q)uL + 1
2(n · q − |n · q|)[u]ΩL .

Thus we achieve for the flux term on the cell K ∈ K

nK ·
(
Fnum
K,f (vh)− F(vh,K)

)
= 1

2 (nK · q − |nK · q|) [vh]K,f ,

for all vh ∈ Hh. To simplify implementation, we want to use the same definition of
the upwind flux on interior and exterior cell faces f ∈ FK . On exterior faces f ⊂ ∂Ω
the value of vh,Kf and hence the jump [vh]K,f is not defined. The following idea
consists of formally replacing [v]K,f in a way, such that the homogeneous conditions
are correctly enforced on f ⊂ Γin and f ⊂ Γout. We choose

[vh]K,f =

−2vh,K , for f ⊂ Γin,

0, for f ⊂ Γout,

since we (virtually) require that {vh}f = 0 for f ⊂ Γin, i.e., the average of vh is zero
on Γin.

4.4.2 Electromagnetic Waves
To compute the upwind flux for an electromagnetic wave problem explicitly, we
proceed as stated in [HW02]. A simplification for transverse electromagnetic waves
is given in [HW08, Ex. 2.6]. Assume that ML and MR are constant in ΩL and ΩR

for the Riemann problem in the Maxwell case. It holds that Bnu = n · F(u) =
(n× E,−n×H)>. Due to (4.9) the eigenpairs [λi,L, ci,L] in ΩL are given as[

−cL,

( √
εL τ√

µL n× τ

)]
and

[
−cL,

(√
εL n× τ
−√µL τ

)]
.

Correspondingly and due to (4.10) the eigenpairs [λi,R, ci,R] in ΩR are given as[
cR,

(
−√εR τ√
µR n× τ

)]
and

[
cR,

(√
εR n× τ
√
µR τ

)]
.



38 CHAPTER 4. A SPACE-TIME DPG DISCRETIZATION

Here the eigenvalues cL = −λ1,L = −λ2,L = −(εLµL)−1/2, cR = λ1,L = λ2,L =
(εRµR)−1/2 correspond to the speed of light in the different materials ΩL, ΩR, re-
spectively. Moreover, τ denotes a unit tangent vector perpendicular to n. Hence
we achieve the Riemann solution

u(x, t) =



uL, for x · n + cLt < 0 and x ∈ ΩL,

ûL, for x · n + cLt > 0 and x ∈ ΩL,

ûR, for x · n− cRt < 0 and x ∈ ΩR,

uR, for x · n− cRt > 0 and x ∈ ΩR,

with intermediate states

ûL = uL + b1,L

( √
εL τ√

µL n× τ

)
+ b2,L

(√
εL n× τ
−√µL τ

)

ûR = uR + b1,R

(
−√εR τ√
µR n× τ

)
+ b2,R

(√
εR n× τ
√
µR τ

)
.

We use the Rankine–Hugoniot condition (4.11) at the interface fL,R to determine
the unknowns b1,L, b2,L. Thus for [u]ΩL = (HR −HL,ER − EL)> it yields

b1,L

(
−√µL τ

−√εL n× τ

)
+ b2,L

(
−√µL n× τ
√
εL τ

)

= Bn[u]ΩL + b1,R

(
−√µR τ√
εR n× τ

)
+ b2,R

(√
µR n× τ
√
εR τ

)
.

Testing with a Basis of R3, e.g., {n, τ ,n× τ}, results in two independent systems
of equations

(
−√µL

√
µR

−√εL −√εR

)(
b1,L

b1,R

)
=
(

(n× [E]ΩL) · τ
−(n× [H]ΩL) · (n× τ )

)
,(

−√µL −√µR√
εL −√εR

)(
b2,L

b2,R

)
=
(

(n× [E]ΩL) · (n× τ )
−(n× [H]ΩL) · τ

)
.

Thus we conclude that

b1,L = −
√
εR(n× [E]ΩL) · τ −√µR(n× [H]ΩL) · (n× τ )

√
µLεR +√εLµR

,

b2,L = −
√
εR(n× [E]ΩL) · (n× τ ) +√µR(n× [H]ΩL) · τ

√
µLεR +√εLµR

.
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By inserting this result into the general upwind flux definition (4.12) yields

n · Fnum(u)

= BnuL−
√
εR(n× [E]ΩL) · τ −√µR(n× [H]ΩL) · (n× τ )

√
µLεR +√εLµR

(
−√µLτ

−√εLn× τ

)

−
√
εR(n× [E]ΩL) · (n× τ ) +√µR(n× [H]ΩL) · τ

√
µLεR +√εLµR

(
−√µLn× τ
−√εLτ

)

= BnuL+
√
εR√

µLεR +√εLµR

( √
µL n× [E]ΩL√

εL n× (n× [E]ΩL)

)

+
√
µR√

µLεR +√εLµR

(√
µL n× (n× [H]ΩL)
−√εL n× [H]ΩL

)

= BnuL+ εRcR

εLcL + εRcR

(
n× [E]ΩL

0

)
+ 1
µLcL + µRcR

(
0

n× (n× [E]ΩL)

)

− µRcR

µLcL + µRcR

(
0

n× [H]ΩL

)
+ 1
εLcL + εRcR

(
n× (n× [H]ΩL)

0

)
,

where we used the following vector identities for x ∈ R3

n× x =
(
(n× x) · τ

)
τ +

(
(n× x) · (n× τ )

)
(n× τ ),

n× (n× x) =
(
(n× x) · τ

)
(n× τ )−

(
(n× x) · (n× τ )

)
τ .

For homogeneous materials (i.e., ε = εL = εR and µ = µL = µR) we achieve

n · Fnum(u) = BnuL + 1
2

(
n× [E]ΩL

−n× [H]ΩL

)
+ 1

2

√µ
ε
n× (n× [H]ΩL)√
ε
µ
n× (n× [E]ΩL)


= BnuL + 1

2Bn[u]ΩL −
1
2

√µ
ε

0
0

√
ε
µ

BnBn[u]ΩL

= BnuL + 1
2Bn[u]ΩL −

1
2

√µ
ε

0
0

√
ε
µ

 |Bn|[u]ΩL .

Thus we state the flux term on the cell K ∈ K as

nK ·
(
Fnum
K,f (vh)− F(vh,K)

)
= 1

2Bn[vh]K,f −
1
2

√µ
ε

0
0

√
ε
µ

 |Bn|[vh]Kf

for all vh ∈ Hh. The proof of Lemma (4.3) can be transferred analogously to show
consistency of the upwind flux in this case. To enforced perfect electric conducting
boundary conditions we proceed similar as in the linear transport case and choose

nK × [Hh]K,f = 0 and nK × [Eh]K,f = −2nK × Eh,K

for f ⊂ ∂Ω. This corresponds to the (virtual) requirement {Eh}f = 0 for f ⊂ ∂Ω.
A more detailed discussion on the upwind flux for Maxwell’s equation and the
application of boundary conditions can be found for example in [Sch15, Sec. 2.3.4,
Sec. 2.3.5].
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4.5 Discontinuous Petrov–Galerkin
Approximation in Space-Time

Based on the discrete spatial operators Mh and Ah introduced in the previous sec-
tion, we extend this discretization by a Petrov–Galerkin method with a continuous
ansatz space and discontinuous test space in time, see for example [BR99]. This
results in an implicit space-time setting by using a tensor product approach. Hence
we avoid stability issues due to a violated CFL (Courant–Friedrichs–Lewy) condi-
tion which can occur when applying a discontinuous Galerkin method in time, see,
e.g., [Joh93], [HW02, Sec. 4.8], [LeV08, Sec. 10.6].
The space-time cylinder Q is decomposed into a finite set R of non-overlapping
space-time cells R = K × I, where K ⊂ Ω is a spatial cell and I = (t−, t+) ⊂ (0, T )
a local time interval. If K is quadrilateral, R is a space-time parallelepiped and if K
is a triangle, R becomes a space-time prism (cf. Figure 4.4). The decomposition is
chosen such that Q = ⋃

R∈RR holds (cf. Figure 4.5). As in the previous section, we

t

x0

x1

x2

I

cR

K

Figure 4.4: Illustration of a prismatic
space-time cell R.

Figure 4.5: Illustration of an admis-
sible space-time Mesh R.

choose discrete local ansatz and test spaces Vh,R,Wh,R ⊂ L2(R)J withWh,R ⊂ ∂tVh,R
for every cell R. The global ansatz and test spaces are defined as

Vh =
{

vh ∈ H1(0, T ;H) : vh(x, 0) = 0 for almost all x ∈ Ω

and vh,R = vh|R ∈ Vh,R
}
,

Wh =
{

wh ∈ L2(0, T ;H) : wh,R = wh|R ∈ Wh,R

}
.

These spaces are constructed such that functions in Wh are discontinuous in space
and time, whereas functions in Vh are continuous almost everywhere in time, but
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discontinuous in space. Hence this choice of spaces is a Petrov–Galerkin approach
(cf. Section 4.1). To receive a unique discrete solution we require that dim(Vh) =
dim(Wh), which restricts the choice of the local spaces Vh,R. In this work we focus
on a Petrov–Galerkin approach within a tensor product space-time discretization.

Definition 4.9 (Tensor product discretization). We proceed as in the method of
lines, where we choose a time series 0 = t0 < t1 < . . . < tN = T to discretize
(0, T ). A tensor product space-time discretization then consists of local space-time
cells R = K × (tn−1, tn) for K ∈ K and n = 1, . . . , N , where K is a fixed spatial
mesh K. Hence the tensor product space-time discretization R is given as

R =
⋃
K∈K

N⋃
n=1

K × (tn−1, tn).

In particular R is an admissible mesh and can be decomposed in time slices (cf.
Section 4.6).

By using this discretization, we can chose the discrete space Hh as in section 4.3
independent in time. Furthermore we define Wh,R = (PpR(K)× P0(tn−1, tn))J to
be constant in time on R = K × (tn−1, tn). This results in a piecewise linear
approximation in time

Vh =
{

vh ∈H1(0, T ;H) :

vh(x, 0) = 0 , vh(x, tn) ∈ Hh for almost all x ∈ Ω,

vh(x, t) = tn − t
tn − tn−1

vh(x, tn−1) + t− tn−1

tn − tn−1
vh(x, tn)

for t ∈ (tn−1, tn) and n = 1, . . . , N
}
.

(4.15)

An illustration of a space-time solution uh ∈ Vh is given in Figure 4.6. This idea
can be extended to arbitrary high polynomial order in time. Thus, for every R ∈ R,
we select polynomial degrees pR ≥ 0 and qR > 0 in space and time locally. The
tensor product approach results in local test spaces Wh,R = (PpR(K) × PqR−1(I))J
and local ansatz spaces

Vh,R =
{

vh,R ∈L2(R)J :

vh,R(x, t) = t+ − t
t+ − t−

vh(x, t−) + t− t−
t+ − t−

wh,R(x, t) ,

where vh ∈ Vh|[0,t−] and wh,R ∈ Wh,R

and (x, t) ∈ R = K × (t−, t+)
}
.

(4.16)

Hence Vh is continuous in time and vh,R ∈ (PpR(K)× PqR(I))J for all vh,R ∈ Vh,R.
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x

t

Figure 4.6: Illustration of a space-time solution uh ∈ Vh, which is discontinuous in
space but continuous in time. In this example lowest polynomial degrees (p, q) =
(0, 1) are used.

The discontinuous Galerkin operator in space defined in (4.6) can be extended to
the space-time setting, by defining Ahvh ∈ Wh through

(
Ahvh,wh

)
0,Q

=
∑

R=K×I∈R

((
∇ · F(vh,R),wh,R

)
0,R

+
∑
f∈FK

(
nK · (Fnum

K (vh)− F(vh,R)),wh,R

)
0,f×I

) (4.17)

for vh ∈ Vh and wh ∈ Wh. Moreover, we define the discrete space-time operator
Lh = Mh∂t + Ah ∈ L(Vh,Wh) and the discrete bilinear form bh(·, ·) = (Lh·, ·)0,Q.
To show existence and uniqueness of our discrete Petrov–Galerkin scheme, we pro-
ceed similarly as in the continuous case (cf. Lemma 3.2) and extend the proof to the
discrete spaces Vh and Wh. Therefore we first define a weighted L2-projection into
the test space Wh and discrete norms correspondingly to Vh and Wh. Furthermore,
we prove auxiliary results in the following lemmas which are needed to show the
inf-sub condition for our discrete bilinear form bh(., .) afterwards.

Definition 4.10 (Discrete graph norm). Let Πh : W → Wh be the weighted L2-
projection given by

(ΠhMv,wh)0,Q = (Mv,wh)0,Q, for all wh ∈ Wh.

Due to the definition of the discrete operatorMh (4.3) and the discrete discontinuous
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Galerkin operator Ah (4.17) we conclude

Mh(Wh) = Wh, ΠhMh = MhΠh, ΠhM
−1
h = M−1

h Πh, ΠhAh = Ah

and hence ΠhLh = Lh. Furthermore, we define the discrete graph norm

‖vh‖2
Vh

= ‖vh‖2
W + ‖M−1

h Lhv‖2
W ,

which is used for the following stability and convergence analysis.

Lemma 4.4. For every φ ∈ L1(0, T ) it holds that∫ T

0

∫ t

0
φ(s) ds dt =

∫ T

0
dT (t)φ(t) dt

with weight function dT (t) = T − t ≥ 0.

Proof. Define a characteristic function

χ : (0, T )× (0, T ) 7→ {0, 1}, χ(t, s) =

1, if s ≤ t,

0, otherwise.

Hence with Fubini’s theorem we conclude that∫ T

0

∫ t

0
φ(s) ds dt =

∫ T

0

∫ T

0
χ(t, s)φ(s) ds dt =

∫ T

0
φ(s)

∫ T

0
χ(t, s) dt ds

=
∫ T

0
dT (s)φ(s) ds.

Lemma 4.5 ([DFW16, Lem. 6]). We consider a tensor product space-time dis-
cretization with a fixed polynomial degree qI ∈ N in time on every time interval
I = (tn−1, tn) ⊂ (0, T ) and a fixed polynomial degree pK ∈ N0 in space on every
spacial cell K ∈ K. Hence we get the local spaces Vh,R = Ppk(K) × PqI (I) and
Wh,R = Ppk(K)× PqI−1(I). In this case it holds for all vh ∈ Vh:

a) Πh∂tvh = ∂tvh

b) (Mh∂tvh, dTvh)0,Q ≤ (Mh∂tvh, dTΠhvh)0,Q

c) 0 ≤ (Ahvh, dTΠhvh)0,Q

Proof. Since we are only considering the tensor product case with fixed polynomial
degrees in space and time, there exist local representations for vh ∈ Vh and wh ∈ Wh

such that

vh(x, t) =
qI∑
k=0
ψI,k(x)λI,k(t) and wh(x, t) =

qI−1∑
k=0

φI,k(x)λI,k(t)
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on a time slice (x, t) ∈ Ω × I. Note that the coefficients ψI,k,φI,k ∈ Hh and
λI,k ∈ Pk(I) only depend either on the spatial variable x or the temporal variable
t. Furthermore, we can choose general orthonormal Legendre polynomial as a basis
for the polynomial space Pk(I) (see Section A.2 in the appendix). We can now
prove the assertions:

a) Taking the temporal derivative of the representation leads to

∂tvh(x, t) =
qI∑
k=0

ψI,k(x)∂tλI,k(t),

where ∂tλI,k ∈ Pk−1(I) for all (x, t) ∈ Ω× I. Hence we obtain ∂tvh ∈ Wh and
Πh∂tvh = ∂tvh.

b) It holds that

(dTMh∂tvh,vh − Πhvh)0,Q =
∑
I

qI∑
k=0

(MhψI,k, ψI,qI )0,Ω(dT∂tλI,k, λI,qI )0,I

=
∑
I

(MhψI,qI , ψI,qI )0,Ω(dT∂tλI,qI , λI,qI )0,I

= −qI
∑
I

(MhψI,qI , ψI,qI )0,Ω ≤ 0.

Here we used that (dT∂tλI,k, λI,qI )0,I = 0 for k < qI since the Legendre poly-
nomials are orthogonal. In the last step we applied Lemma A.2 to conclude
that

(dT∂tλI,qI , λI,qI )0,I = −(t∂tλI,qI , λI,qI )0,I = −qI .

c) In the tensor product case it holds that
(
Ahvh,wh

)
0,Q

=
∑
I

∑
K

((
∇ · F(vh,R),wh,R

)
0,K×I

+
∑
f∈FK

(
nK · (Fnum

K (vh)− F(vh,R)),wh,R

)
0,f×I

)

=
∑
I

∑
K

qI∑
k=0

qI−1∑
j=0

((
∇ · F(ψK×I,k),φK×I,j

)
0,K

+
∑
f∈FK

(
nK · (Fnum

K (ψI,k)− F(ψK×I,k)),φK×I,j
)

0,f

)(
λI,k, λI,j

)
0,I

=
(
AhΠhvh,wh

)
0,Q



4.5. DPG APPROXIMATION IN SPACE-TIME 45

and hence Ah = AhΠh. Finally we achieve(
Ahvh, dTΠhvh

)
0,Q

=
(
AhΠhvh, dTΠhvh

)
0,Q

=
∑
I

∑
K

qI−1∑
k=0

qI−1∑
j=0

((
∇ · F(ψK×I,k),ψK×I,j

)
0,K

+
∑
f∈FK

(
nK · (Fnum

K (ψI,k)− F(ψK×I,k)),ψK×I,j
)

0,f

)(
λI,k, dTλI,j

)
0,I

=
∑
I

qI−1∑
k=0

qI−1∑
j=0

(
AhψI,k,ψI,j

)
0,Ω

(λI,k, dTλI,j)0,I ≥ 0.

In the last step we used that the qI×qI matrices with entries
(
AhψI,k,ψI,j

)
0,Ω

and (λI,k, dTλI,j)0,I are always positive semi-definite.

Lemma 4.6 ([DFW16, Lem. 3]). Assume that the assumptions in Lemma 4.5 are
fulfilled. Then the bilinear form bh(·, ·) is bounded and inf-sup stable in Vh ×Wh

with β = 1/
√

1 + 4T 2, i.e.,

sup
wh∈Wh

bh(vh,wh)
‖wh‖W

≥ β ‖vh‖Vh , vh ∈ Vh .

Proof. We transfer the proof of Lemma 3.2 to the discrete setting and conclude that

‖vh‖2
W =

∫ T

0

(
Mhvh(t),vh(t)

)
0,Ω

dt

=
∫ T

0

((
Mhvh(t),vh(t)

)
0,Ω
−
(
Mhvh(0),vh(0)

)
0,Ω

)
dt

=
∫ T

0

∫ t

0
∂t
(
Mhvh(s),vh(s)

)
0,Ω

ds dt

= 2
∫ T

0

∫ t

0

(
Mh∂tvh(s),vh(s)

)
0,Ω

ds dt = 2
(
Mh∂tvh, dTvh

)
0,Q

≤ 2
(
Lhvh, dTΠhvh

)
0,Q
≤ 2T ‖M−1

h Lhvh‖W‖vh‖W .

Hence we achieve ‖vh‖W ≤ 2T ‖M−1
h Lhvh‖W . Applying this result to the discrete

norm ‖.‖Vh we get that ‖vh‖Vh ≤
√

1 + 4T 2 ‖M−1
h Lhvh‖W . Finally, we obtain the

discrete inf-sup stability

sup
wh∈Wh\{0}

bh(vh,wh)
‖wh‖W

= sup
wh∈Wh\{0}

(MM−1
h Lhvh,wh)0,Q

‖wh‖W

≥ ‖M−1
h Lhvh‖W ≥

1√
1 + 4T 2

‖vh‖Vh ,

where we used the Galerkin approximation of M , i.e., Equation (4.3), and inserted
a special choice of wh ∈ Wh, namely wh = M−1

h Lhvh.
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As we have seen in Theorem 3.1, this shows existence of a unique solution of our
Petrov–Galerkin scheme. Hence we can state the following theorem.

Theorem 4.1 ([DFW16, Thm. 4]). Assume that the assumptions in Lemma 4.6
are fulfilled. For given f ∈ L2(Q)J there exists a unique solution uh ∈ Vh of

(Lhuh,wh)0,Q = (f ,wh)0,Q , wh ∈ Wh , (4.18)

satisfying the a priori bound ‖uh‖Vh ≤
√

4T 2 + 1‖M−1
h Πhf‖W .

Lemma 4.7 (Galerkin orthogonality). Let u ∈ V be the exact solution of problem
(3.1) and let uh ∈ Vh be the discrete solution of problem (4.1). Then the Galerkin
orthogonality

bh(u− uh,wh) = 0 (4.19)

holds for all wh ∈ Wh.

Proof. The Galerkin approximation (4.3) and the consistency of the discontinuous
Galerkin method (4.7) yields that

(M∂tu,wh)0,Q = (Mh∂tu,wh)0,Q and (Au,wh)0,Q = (Ahu,wh)0,Q.

Hence we conclude that

bh(u,wh) = (Mh∂tu + Ahu,wh)0,Q = (M∂tu + Au,wh)0,Q

= b(u,wh) = (f ,wh)0,Q = bh(uh,wh).

We will now analyze the convergence with respect to the discrete norm ‖·‖Vh . Due to
the consistency of the numerical flux, it holds that (Ahv,wh)0,Q = (∇·F(v),wh)0,Q

for v ∈ V . Thus, we obtain that Ahv = Πh∇ · F(v) and conclude that Ah and
correspondingly ‖ · ‖Vh can be evaluated in V + Vh. Moreover, bh(·, ·) is continuous
with respect to this extension.

Theorem 4.2 ([DFW16, Thm. 5]). Let u ∈ V be the solution of (3.7) and uh ∈ Vh
its approximation solving (4.18). Then it hold that

‖u− uh‖Vh ≤ (1 + β−1) inf
vh∈Vh

‖u− vh‖Vh .

If in addition the solution is sufficiently smooth, we obtain the a priori error estimate

‖u− uh‖Vh ≤ C
(
Mtq + Mxp

)(
‖∂q+1

t u‖0,Q + ‖Dp+1u‖0,Q

)
for Mt,Mx and p, q ≥ 1, where Dp+1 is the p + 1-th spatial derivative. Moreover,
Mt ≥ t+ − t−, Mx ≥ diam(K) and p ≤ pR and q ≤ qR for all R = K × (t−, t+).
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Proof. With Galerkin orthogonality (4.19) we achieve that for all vh ∈ Vh and
wh ∈ Wh

bh(vh − uh,wh) = bh(vh − u,wh) ≤ ‖vh − u‖Vh‖wh‖W

and thus

‖u− uh‖Vh ≤ ‖u− vh‖Vh + ‖vh − uh‖Vh

≤ ‖u− vh‖Vh + β−1 sup
wh∈Wh\{0}

bh(vh − uh,wh)
‖wh‖W

≤ (1 + β−1) ‖u− vh‖Vh .

Now we assume that the solution is regular satisfying u ∈ Hq+1(0, T ; L2(Ω)J) ∩
L2(0, T ; Hp+1(Ω)J). By consistency we have that Ahvh = ΠhAvh for all vh ∈
Vh ∩ H1(Q)J and the following error estimate yields

‖u− uh‖Vh ≤ (1 + β−1) inf
vh∈Vh∩H1(Q)J

‖u− vh‖Vh

≤ C
(
‖∂t(u− Chu)‖0,Q + ‖D(u− Chu)‖0,Q

)
.

Here we used a suitable Clément-type (patch-wise) interpolation operator Ch : V →
Vh ∩H1(Q)J . To do so, we have to assume that the meshes {Rh} are shape-regular
and admissible, see Definitions 4.2 and 4.3, and that Q is covered by every mesh Rh

exactly, see for example [EG04, Sec. 1.6.1] or [Bra13, Ch. II, §6]. Thus we obtain a
bound depending on Mtq in time and Mxp in space.

Example 4.1 (Implicit midpoint rule). In this example, we verify that for lowest
polynomial degrees in time, the tensor product Petrov–Galerkin discretization is
equivalent to a discontinuous Galerkin method in space, equipped with the implicit
midpoint rule in time.
Therefore we choose constant polynomial degrees pR ≡ p and q ≡ 1 for all R ∈ R
on a tensor product discretization. Due to (4.15), it yields for all vh ∈ Vh that

vh( . , t) = tn − t
Mt

vh,n−1( . ) + t− tn−1

Mt
vh,n( . ),

∂tvh( . , t) = 1
Mt

(
vh,n( . )− vh,n−1( . )

)
,

(4.20)

for t ∈ I = (tn−1, tn) and Mt = tn− tn−1. The ansatz and test spaces are illustrated
in Figure 4.7. Restricting the weak form of the problem to only one time interval I
results in the following subproblem. Find uh ∈ Vh, such that

(Mh∂tuh + Ahuh,wh)0,Ω×I = (f ,wh)0,Ω×I , for all wh ∈ Wh,

uh( . , tn−1) = uh,n−1( . ), on Ω× {tn−1}.
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n− 2 n− 1 n n+ 1 n+ 2

vh,n−1

vh,n

vh,n+1

vh,n+2

∂tvh,n−1 ∂tvh,n ∂tvh,n+1∂tvh,n+2

Figure 4.7: Illustration of the implicit midpoint rule, where vh ∈ Vh and ∂tvh ∈ Wh.

Since uh is linear in time, we can replace the temporal integral by a suitable quadra-
ture formula, e.g., the midpoint rule (cf. [HB09, Ch. 36]). Moreover, we choose the
special test function wh ≡ 1. Hence we conclude

(Mh∂t + Ah) uh( . ,
tn + tn−1

2 ) = fn− 1
2
( . ),

where fn− 1
2
( . ) = f( . , tn+tn−1

2 ). We now use the representation (4.20) of uh and ∂tuh
to recover the implicit midpoint rule

1
Mt

(Mh + 1
2Ah) (vh,n( . )− vh,n−1( . )) = fn− 1

2
( . )

⇐⇒ (Mh + 1
2MtAh)vh,n( . ) = (Mh −

1
2MtAh)vh,n−1( . ) + Mtfn− 1

2
( . ).

This scheme, applied to the wave equation, is investigated by Bangerth et al.
[BGR10] in detail.

Depending on the ansatz and test space, (Petrov–) Galerkin approaches in time
can be traced back to a Runge–Kutta time stepping scheme. See for example
[AM89], [Hul72] for continuous Petrov–Galerkin or [Neu13], [ZW14] for discontinu-
ous Galerkin (dG) schemes. In the final section of this chapter we introduce a nodal
discretization for our discontinuous Petrov–Galerkin space-time discretization and
discuss the possibility of solving the resulting linear system using either a time
stepping scheme or a space-time solver.
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4.6 Nodal Space-Time Discretization
In this section we apply the finite element method from Section 4.2.2 to the dis-
continuous Petrov–Galerkin discretization. This means that we provide the tools
to discretize the local spaces Vh,R and Wh,R and derive a linear system of equations
which can be solved numerically.
We suppose that K is a spatial tetrahedral mesh, then the occurring space-time cells
R = K×I for K ∈ K and I = (t−, t+) ⊂ (0, T ) are prism-shaped (cf. Figure 4.4 and
4.5). To achieve a space-time nodal discretization we define prismatic coordinates
corresponding to Definition 4.6. Therefore we extend the definition given in [EG04,
Sec. 1.2.5] such that different polynomial degrees in space and time are allowed.
Again only the scalar case J = 1 is considered. As before, the following techniques
can be applied component-wise in vector valued case for J > 1 (cf. Remark 4.2).

Definition 4.11 (Prismatic coordinates). Let R ∈ R be a prism-shaped space-
time cell and consider polynomial degrees pR, qR ≥ 0 in space and time, respectively.
Similar to Definition 4.6, the numbers λ0, λ2, . . . , λD, λD+1, λD+2 are called prismatic
coordinates and are given as

(λ0, . . ., λD) =
(

1
D+1 , . . . ,

1
D+1

)
, for pR = 0,(

i0
pR
, . . . , iD

pR

)
, 0 ≤ i0, . . . , iD ≤ pR, i0 + . . .+ iD = pR, for pR > 0,

and

(λD+1, λD+2) =
(

1
2 ,

1
2

)
, for qR = 0,(

iD+1
qR

, iD+2
qR

)
, 0 ≤ iD+1, iD+2 ≤ qR, iD+1 + iD+2 = qR, for qR > 0.

Hence every node (xi, ti) ∈ {(x1, t1), . . . , (xnR , tnR)} can be represented as

(xi, ti) = (λ0y0 + . . .+ λDyD, λD+1t− + λD+2t+),

where {y0,y1, . . . ,yD} is the set of vertices of the spatial cell K.

Lemma 4.8. Let {(x1, t1), . . . , (xnR , tnR)} be the set of nodes associated to R ∈ R
and PpR,qR(R) = PpR(K) × PqR(I). Moreover, let ΣR = {l1, . . . , lnR} be the set of
degrees of freedom such that

li(ψj) = ψj(xi, ti), for all 1 ≤ i, j ≤ nR and ψj ∈ PpR,qR(R),

then (R,PpR,qR(R),ΣR) is a nodal finite element with shape functions ψj. Further-
more, the local nodal interpolation operator in space-time is given as

IR : C0(R)→ PpR,qR(R), IRv =
nR∑
i=1

v(xi, ti)ψi. (4.21)
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Proof. Verify Definitions 4.5 and 4.6.

Since we deal with different polynomial degrees on every cell, we use the nodal
interpolation operator given in equation (4.21) to interpolate functions between
different polynomial spaces. We consider two different polynomial spaces Pp,q(R)
and Pp′,q′(R) with p, q, p′, q′ ≥ 0, on the same space-time cell R. The interpolation
of v′h ∈ Pp′,q′(R) on Pp,q(R) is then given as

vh = IRv
′
h =

nR∑
i=1

v′h(xi, ti)ψi,

where IR is the local nodal interpolation operator given in (4.21) and {ψi}i=1,...,nR
the corresponding nodal basis on Pp,q(R). Hence the coefficients of vh are given as
vi = v′h(xi, ti) for i = 1, . . . , nR. Since v′h is a polynomial, it can be represented as

v′ =
n′R∑
i=1

v′jψ
′
j

by using the coefficient vector v′ =
(
v′1, . . . , v

′
nR′

)>
and the corresponding nodal

basis {ψ′i}i=1,...,nR′ of Pp′,q′(R). The coefficient vector v = (v1, . . . , vnR)> of vh can
then be computed as

v = Ip,qp′,q′v
′ =


ψ′0(x0, t0) . . . ψ′nR′(x0, t0)

... ...
ψ′0(xnR , tnR) . . . ψ′nR′(xnR , tnR)



v′1
...

v′nR′

 . (4.22)

The nR×nR′-matrix Ip,qp′,q′ is denoted as interpolation matrix. The following remark
collects some useful properties of the space-time finite element (R,PpR,qR(R),ΣR)
defined in Lemma 4.8.

Remark 4.6. Due to the prismatic structure of R = K × I ∈ R, the Lagrange
shape functions decouple in space and time. Hence it holds for every Lagrange
shape function ψi ∈ PpR,qR(R) of the finite element (R,PpR,qR(R),ΣR) that

ψi(x, t) = φi(x)λi(t), for all 1 ≤ i ≤ nR,

where φi and λi are Lagrange shape functions of the spatial and temporal nodal
finite elements (K,PpK (K),ΣK) and (I,PqI (I),ΣI), respectively. As a direct con-
sequence, the dimension nR of PpR,qR(R) can be computed as

nR = dim(PpR,qR(R)) = dim(PpR(K)) dim(PqR(I))

=


(pR + 1)(qR + 1), for D = 1,
1
2(pR + 1)(pR + 2)(qR + 1), for D = 2,
1
6(pR + 1)(pR + 2)(pR + 3)(qR + 1), for D = 3,

(cf. Remark 4.3).
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To simplify notation we again consider a tensor product space-time mesh R =⋃N
n=1Rn with time slices Rn = ⋃

K∈KK × (tn−1, tn), where K is an underlying fixed
spatial mesh (cf. Definition 4.9). In every space-time cell R = K × (tn−1, tn) ∈
R we choose polynomial degrees pR ≥ 0, qR > 0 in space and time, respec-
tively. Furthermore we use the nodal finite element

(
R,PJpR,qR(R),ΣR

)
introduce

in Lemma 4.8 and the set of nodal shape functions {ψn
R,j}j=1,...,dimWh,R

as a ba-
sis of the local test spaces Wh,R. On every time slice Rn we define the subspace
W n
h = span{⋃R∈Rn ⋃dimWh,R

j ψn
R,j} ⊂ Wh.

According to (4.16), vh ∈ Vh is represented by

vh(x, t) = tn − t
tn − tn−1

wn−1
h (x, tn−1) + t− tn−1

tn − tn−1
wn
h(x, t),

for all (x, t) ∈ Ω × (tn−1, tn), where w0
h = 0 and wn

h ∈ W n
h and n = 1, . . . , N .

The corresponding coefficient vector on R is denoted by w = (w1, . . . , wN)>, where
wn ∈ RdimWn

h is the coefficient vector of the representation

wn
h =

∑
R∈Rn

dimWh,R∑
j=1

wnR,jϕ
n
R,j

on a time slice Rn. Here {ϕnR,j}j=1,...,dimWh,R
is again a basis of Wh,R. In the

most simple case one can choose the nodal shape functions as a basis, i.e., ψn
R,j =

ϕnR,j. However other basis functions are possible, too. For example, one can choose
{ϕnR,j}j=1,...,dimWh,R

such that the functions φnR,j ∈ Vh,R defined as

φnR,j( . , t) = tn − t
tn − tn−1

ϕn−1
R′,j ( . , tn−1) + t− tn−1

tn − tn−1
ϕnR,j( . , t), for all t ∈ (tn−1, tn),

build a basis {φnR,j}j=1,...,dimVh,R of nodal shape functions on the local ansatz space
Vh,R. Here R′ = K × (tn−2, tn−1) ∈ Rn−1 denotes the preceding space-time cell
corresponding to R = K × (tn−1, tn) ∈ Rn and K ∈ K. Hence both spaces, Vh
and Wh, can be represented by using a nodal structure. Moreover, vh ∈ Vh can be
directly expressed as

vh(x, t) =
∑
R∈Rn

dimVh,R∑
j=1

vnR,jφ
n
R,j(x, t),

for all (x, t) ∈ Ω × (tn−1, tn), where the continuity condition is incorporated into
the coefficient vector v = (v1, . . . , vN)>.
Finally, we test the discrete space-time system given in equation (4.18) with basis
functions ψn

R,j of Wh,R and achieve

(Lhuh,ψn
R,j)0,Q = (f ,ψn

R,j)0,Q,
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for all n = 1, . . . , N and j = 1, . . . , dimWh,R and R ∈ R. Together with a nodal
representation of uh ∈ Vh this results in a linear system of equations with the matrix
representation

Lu = f, (4.23)

where u ∈ RdimVh is the coefficient vector of uh and L a block-matrix

L =


D1

C1 D2

. . . . . .
CN−1 DN

 .

The block-entries on the diagonal are given as

Dn
R′,k,R,j =

∫ tn

tn−1

(
Lh
( t− tn−1

tn − tn−1
ϕnR,j(·, t)

)
,ψn

R′,k(·, t)
)

0,Ω
dt, for n = 1, . . . , N,

where R,R′ ∈ Rn are cells within a common slice. The block-entries on the lower
sub-diagonal are given as

Cn−1
R′,k,R,j =

∫ tn

tn−1

(
Lh
( tn − t
tn − tn−1

ϕn−1
R,j (·, tn−1)

)
,ψn

R′,k(·, t)
)

0,Ω
dt, for n = 2, . . . , N,

where R ∈ Rn−1 and R′ ∈ Rn are cells within two batched slices. The right-hand
side is computed by f = (f 1, . . . , fN) with fnj,R = (f ,ψn

R,j)R.
Note that the system has a lower triangular structure. Thus it can be solved
iteratively by using a block-Gauss–Seidel method

D1u1 = f 1, D2u2 = f 2 − C1u1, . . . , DNuN = fN − CN−1uN−1, (4.24)

where each block corresponds to a time slice Rn, n = 1, . . . , N . This requires that
Dn can be inverted efficiently and hence corresponds to an implicit time integration
method. Due to this property, Petrov–Galerkin methods are often used to derive
and investigate new time stepping schemes (see for example [KB14] or [MS11]).
With respect to parallelization, only a distribution of the problem to various pro-
cesses in space is possible in this case (cf. Figure 4.8).
In this work, we stick to the full space-time block-system to develop a multigrid
preconditioner with a fully distributed space-time mesh (cf. Figure 4.9). This re-
sults in a parallel in space and time preconditioner for iterative solvers. Moreover
this setting allows more flexibility in the application of space-time adaptivity as
described in the following chapter.
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time

space

0 1 14 15

Figure 4.8: Spatial distribution of
space-time cells to 16 processes and re-
quired communication (arrows).

time

space

0 1 14 15

16 17 30 31

32 33 46 47

48 49 62 63

Figure 4.9: Space-time distribution of
space-time cells to 64 processes and re-
quired communication (arrows).
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5 Error Estimation and Adaptivity

In the previous chapter we have seen that space-time finite element methods lead to
very large linear systems which have to be solved. Especially in case of real appli-
cations, where highly accurate solutions are needed, space-time methods can easily
reach the range of hundreds of billion degrees of freedom. However, in most appli-
cations it is not necessary to use the same fine mesh size or high-order polynomials
on every cell. Either because the solution is already “nice” in some parts of the
domain and can be computed accurate enough with lower order polynomials or a
coarser mesh size, or one is not even interested in these parts of the solution. Hence
we want to develop a strategy which adapts the computed solution to the problem
automatically. These kind of algorithms are called adaptive. In context of finite
element methods one usually considers two different adaptive strategies to reduce
the error of the computed solution. The first one consists of local adjustments of
the mesh by refining or coarsening cells and is called h-adaptivity. The second one
is called p-adaptivity and adjusts the polynomial degree of the discretization locally
on every cell. Combining both methods results in the so called hp-adaptivity which
can be used to achieve an exponential decrease of the error, see, e.g., [Dem07] and
[DKP+08]. In many cases the crucial point concerning adaptive methods is not
the refinement itself, but the development of suitable error estimators or indicators
which estimate the errors locally on every cell. Here one usually uses represen-
tations of the error, a posteriori error bounds or heuristic arguments to compute
approximations to the local errors.
In this work we focus on p-adaptivity and applications where one is only interested
in small parts or certain properties of the solution. For this purpose so called
dual weighted residuals (DWR) or goal oriented methods are used. These kind of
methods, introduced in [BR96], base on duality techniques which are used to achieve
a posteriori error representations. In this chapter we first give a short introduction
to DWR methods and derive suitable error representations. On this basis we state
a local error indicator to be able to estimate the error locally on every cell. Finally,
we assemble an adaptive strategy and state the corresponding adaptive algorithm.

55
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General introductions to adaptive finite element methods can be found for example
in [BS08], [Ver96], [EG04, Ch. 10] and [Ver13].

5.1 Dual Weighted Residuals
The idea of DWR based methods is to model the quantity of interest in terms of
an error functional J : L2(Q)J → R. For example one can use linear functionals to
model point or mean errors (cf. Section 5.2.1) or quadratic functionals to model
energy errors (cf. Section 5.2.2). The goal is to minimize the error

MJ (u,uh) = J (u)− J (uh)

with respect to J , where uh ∈ Vh is computed as cheap as possible. Therefore we
have to find an error representation of MJ which can be used to derive a computable
quantity Jh such that

|MJ | ≈ |MJh| ≤ ηR =
∑
R∈R

ηR,

where ηR ∈ R are quantities correlating with the local errors on R ∈ R.
In the following section we derive error representations for our discontinuous Petrov–
Galerkin space-time discretization. In [BR01] and [BR03, Ch. 6] the general case
of conforming finite elements is discussed in detail. Moreover, a continuous Petrov–
Galerkin space-time discretization for the wave equation equipped with standard
continuous finite elements in space is considered in [BGR10]. Thus we extend the
ideas given in [BR03, Ch. 6] and [BGR10] to the case of DG-FEM in space using
upwind fluxes.

5.2 Error Representation

In this section we want to derive an error representation for MJ (u,uh) = J (u) −
J (uh) and a given general (nonlinear) error functional J : L2(Q)J → R. Since the
exact solution is unknown, the error representation of MJ should be independent
of u. We will see that this can be achieved by introducing an adjoint problem and
its corresponding solution.

Definition 5.1 (Adjoint operator). Let L : V → V ∗ ⊆ W be the bounded, linear
space-time operator defined in Section 3.2. Due to the Riesz representation theorem
we can express the dual (or adjoint) Hilbert space of V , defined in (3.5), equivalently
as

V ∗ =
{
w ∈ W : there exists a unique z ∈ V such that

(Lv,w)0,Q = (v, z)0,Q, for all v ∈ V
} (5.1)
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(cf. [Wer11, Thm. V.3.6]). Moreover, the operator L∗ : V ∗ → V , which satisfies

(Lv,w)0,Q = (v, L∗w)0,Q (5.2)

for all v ∈ V and w ∈ V ∗, is called adjoint or dual operator with respect to L.
Hence we conclude that z = L∗w, where z ∈ V is given as in (5.1).
Note that the homogeneous initial conditions incorporated in V are transferred to
homogeneous final conditions in V ∗, i.e., w(T ) = 0 for all w ∈ V ∗.

Lemma 5.1. (Linear hyperbolic case) For hyperbolic evolution equations introduced
in Section 3.2, the adjoint operator of L is given as

L∗ = −M∂t + A∗,

where A∗ is the adjoint spatial operator of A. Moreover, it yields that

A∗ = −A on D(A) ∩ D(A∗).

Proof. By applying the integration by parts formula in time we derive from the
previous definition that

(v, L∗v∗)0,Q = (Lv,v∗)0,Q = (M∂tv + Av,v∗)0,Q

= (v,−M∂tv∗ + A∗v∗)0,Q + (Mv(T ),v∗(T ))0,Ω − (Mv(0),v∗(0))0,Ω

=
(
v, (−M∂t + A∗)v∗

)
0,Q

holds for all v ∈ V and v∗ ∈ V ∗. Here we used that V and V ∗ contain homogeneous
initial or final conditions, respectively. In the same way one can prove that

(v, A∗v∗)0,Ω = (Av,v∗)0,Ω = (∇ · F(v),v∗)0,Ω

= −(v,∇ · F(v∗))0,Ω + (n∂Ω · F(v),v∗)0,∂Ω

= −(v,∇ · F(v∗))0,Ω = −(v, Av∗)0,Ω

for v ∈ D(A) and v∗ ∈ D(A∗), respectively, since we incorporated homogeneous
boundary conditions on the inflow boundary (linear transport equation) or perfectly
conducting boundary conditions (Maxwell’s equations), respectively (cf. Remarks
3.3 and 3.6).

As introduced in [BR01] and [BGR10], we are now able to derive an adjoint formu-
lation of our original problem. Let u ∈ V and consider the optimization problem

J (u) = min! under the constraint that u solves (4.18).

Since we have shown in Theorem 3.1 that a unique solution exists, this problem
is trivial. However to determine a solution of the optimization problem, we can
introduce the Lagrange functional E : V × V ∗ → R such that

E(v,v∗) =J (v) + (f ,v∗)0,Q − (Lv,v∗)0,Q

=J (v) + (f ,v∗)0,Q − (v, L∗v∗)0,Q.
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Seeking for a stationary point {u,u∗} ∈ V × V ∗ leads to the requirement that

E ′(u,u∗; v,v∗) =
(
J ′(u; v)− (v, L∗u∗)0,Q

(f ,v∗)0,Q − (Lu,v∗)0,Q

)
= 0, (5.3)

for all v ∈ V,v∗ ∈ V ∗. Since V ∗ ⊆ W the second condition is fulfilled for the
solution u ∈ V of the original primal problem

(Lu,w)0,Q =(f ,w)0,Q, for all w ∈ W.

Moreover, the first condition of (5.3) motivates the following definition of an addi-
tional problem:

Definition 5.2 (Dual problem). For a given primal solution u ∈ V of (4.18), seek
a solution u∗ ∈ V ∗ such that

(L∗u∗,w)0,Q =J ′(u; w), for all w ∈ W. (5.4)

This problem is denoted as dual problem and correspondingly u∗ ∈ V ∗ is called
dual solution. Note that the primal problem is independent of u∗, whereas the dual
problem depends on u for nonlinear J . We conclude that the primal and dual
solution u and u∗ are stationary points of the Lagrange functional E .

Assumption 5.1. Throughout this work we assume that the dual solution u∗ ∈ V ∗
of problem (5.4) is sufficiently smooth, i.e., u∗(., t)|f ∈ L2(f)J for all faces f ∈ FR
and almost all t ∈ (0, T ).

Definition 5.3 (Discrete dual solution). Correspondingly to the primal case let
u∗h ∈ Wh be an approximation of the dual solution which solves

bh(vh,u∗h) = (Lhvh,u∗h)0,Q = J ′(uh; vh), for all vh ∈ Vh. (5.5)

Furthermore, we assume that

(L∗u∗,uh)0,Q = J ′(u; uh). (5.6)

holds for the discrete solution uh ∈ Vh (cf. [BGR10, Cor. 4.1]). Note that this
definition is only justified by numerical experiments. Within a rigorous analysis
one has to define a corresponding discrete dual operator L∗h and a discretization
with ansatz and test spaces V ∗h and W ∗

h , respectively. Finally, one has to prove that
u∗h ∈ V ∗h obtained by solving

(L∗hu∗h,w∗h)0,Q = J ′(uh; w∗h), for all w∗h ∈ W ∗
h ,

is indeed an approximation to the dual solution u∗ ∈ V ∗ and that (5.6) is satisfied.
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Definition 5.4 (Residuals and errors). We define

ρ(uh,w) = (f ,w)0,Q − bh(uh,w), (5.7)
ρ∗(uh; u∗h,v) = J ′(uh; v)− bh(v,u∗h) (5.8)

for all v ∈ V and w ∈ W and denote ρ as primal residual and ρ∗ as dual residual.
Note that in the general cases the dual residual (5.8) reads as

ρ∗(uh; u∗h,v) = J ′(uh; v)− (L∗hu∗h,v)0,Q, for all v ∈ W,

and the subsequent results can be transferred analogously (cf. [BR03, Ch. 6]).
Moreover, we define the primal error e and the dual error e∗ as

e = u− uh and e∗ = u∗ − u∗h.

In the following lemma we derive an error representations for MJ depending only
on the primal residual ρ and terms of higher-order.

Lemma 5.2 (cf. [BR03, Prop. 6.6]). The error representation

MJ = ρ(uh,u∗ −wh) + T2

holds for all wh ∈ Wh with second-order remainder term

T2(u,uh) = −
∫ 1

0
sJ ′′(uh + se; e, e) ds

with respect to J .

Proof. First we apply Taylor’s theorem to J and J ′, respectively, and achieve

MJ = J (u)− J (uh) = J ′(uh; e) +
∫ 1

0
(1− s)J ′′(uh + se; e, e) ds,

J ′(u; e) = J ′(uh; e) +
∫ 1

0
J ′′(uh + se; e, e) ds.

Using the second equation within the first one leads to

MJ = J ′(u; e)−
∫ 1

0
sJ ′′(uh + se; e, e) ds = J ′(u; e) + T2(u,uh).

Moreover, due to consistency of the upwind flux (cf. Lemma 4.3), it holds that

(uh, L∗u∗)0,Q =
∑
R∈R

(
(Luh,u∗)0,R − (uh,nR · F(u∗))0,∂R

)
=

∑
R=K×I∈R

(
(Luh,u∗)0,R

+ (nK · (Fnum(uh)− F(uh)),u∗)0,∂K×I
)

= bh(uh,u∗).

(5.9)
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By combining the previous results and using (5.2) and (5.6), we conclude that

J ′(u; e) = (e, L∗u∗)0,Q = (u, L∗u∗)0,Q − (uh, L∗u∗)0,Q

= (Lu,u∗)0,Q − bh(uh,u∗) = (f ,u∗)0,Q − bh(uh,u∗)
= (f ,u∗ −wh)0,Q − bh(uh,u∗ −wh)
= ρ(uh,u∗ −wh).

Note that Galerkin orthogonality (4.19) was used in the last step.

On the other hand we can achieve an even better error representation if we take
the dual residual ρ∗ into account. The result is given in the following lemma.

Lemma 5.3 (cf. [BR03, Prop. 6.2]). The error representation

MJ = 1
2ρ(uh,u∗ −wh) + 1

2ρ
∗(uh; u∗h,u− vh) + T3

holds true for all vh ∈ Vh, wh ∈ Wh, with third-order remainder term

T3 = 1
2

∫ 1

0
s(s− 1)J ′′′(uh + se; e, e, e) ds

with respect to J .

Proof. We take the result form Lemma 5.2 and write

MJ = ρ(uh,u∗ −wh)−
∫ 1

0
sJ ′′(uh + se; e, e) ds

= 1
2ρ(uh,u∗ −wh) + 1

2

{
ρ(uh,u∗ −wh)−

∫ 1

0
2sJ ′′(uh + se; e, e) ds

}
= 1

2ρ(uh,u∗ −wh) + 1
2

{
(f ,u∗)0,Q − bh(uh,u∗)−

∫ 1

0
2sJ ′′(uh + se; e, e) ds

}
.

Now we take a closer look at the integral term. Integration by parts leads to∫ 1

0
2sJ ′′(uh + se; e, e) ds =

J ′′(uh; e, e)−
∫ 1

0
(s2 − 1)J ′′′(uh + se; e, e, e) ds.

From Taylor’s theorem we achieve again that

J ′(u; e) = J ′(uh; e) + J ′′(uh; e, e) +
∫ 1

0
(1− s)J ′′′(uh + se; e, e, e) ds.

Combining both equations results in∫ 1

0
2sJ ′′(uh + se; e, e) ds =

J ′(u; e)− J ′(uh; e)−
∫ 1

0
s(s− 1)J ′′′(uh + se; e, e, e) ds.
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Hence, by applying (5.5), (5.9) and proceeding as in the proof of Lemma 5.2, we
obtain the error representation

MJ = 1
2ρ(uh,u∗ −wh) + 1

2
{

(f ,u∗)0,Q − bh(uh,u∗)− J ′(u; e) + J ′(uh; e)
}

+ T3

= 1
2ρ(uh,u∗ −wh) + 1

2
{

(f ,u∗)0,Q − (Lhuh,u∗)0,Q − (e, L∗u∗)0,Q

+ J ′(uh; u)− J ′(uh; uh)
}

+ T3

= 1
2ρ(uh,u∗ −wh) + 1

2
{

(Lu,u∗)0,Q − (u, L∗u∗)0,Q

+ J ′(uh; u)− (Lhuh,u∗h)0,Q
}

+ T3

= 1
2ρ(uh,u∗ −wh) + 1

2
{
J ′(uh; u)− (Lhuh; u∗h)0,Q

}
+ T3

= 1
2ρ(uh,u∗ −wh) + 1

2
{
J ′(uh; u)− bh(uh; u∗h)

}
+ T3

= 1
2ρ(uh,u∗ −wh) + 1

2
{
J ′(uh; u)− bh(u; u∗h)

}
+ T3

= 1
2ρ(uh,u∗ −wh) + 1

2ρ
∗(uh; u∗h,u) + T3

= 1
2ρ(uh,u∗ −wh) + 1

2ρ
∗(uh; u∗h,u− vh) + T3,

where Galerkin orthogonality (4.19) was used again.

Combining Lemma 5.2 and Lemma 5.3 leads to the following relationship between
the primal and the dual residual.

Lemma 5.4 (cf. [BR03, Prop. 6.6]). The relationship

ρ∗(uh; u∗h,u− vh) = ρ(uh,u∗ −wh) + T ′2

holds true for all vh ∈ Vh,wh ∈ Wh, with second-order term

T ′2 = −
∫ 1

0
J ′′(uh + se; e, e) ds.

Proof. By using Lemma 5.2 in Lemma 5.3 and Taylor’s theorem we conclude that

T ′2 = 2(T2 − T3) =
∫ 1

0

(
− 2sJ ′′(uh; e, e)− s(s− 1)J ′′′(uh + se; e, e, e)

)
ds

= J ′(uh, e)− J ′(u, e) = −
∫ 1

0
J ′′(uh; e, e) ds.

This approach allows a large variety of different error functionals. In the end of this
section, we focus on linear and quadratic error functionals in particular:
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5.2.1 Linear Error Functionals
In the most simple case, the error functional J : L2(Q)J → R is linear. Hence we
can write it as

J (u) = (j,u)0,S and J ′(u; v) = (j,v)0,S, for all w ∈ L2(Q)J ,

where j : S → RJ is a density function, e.g., a space-time measure or approximations
to Dirac functionals and S ⊆ Q the so called region of interest. Note that if
one wants to measure a point-value (derivative) error at some point (x, t) ∈ Q,
regularization is needed, e.g.,

J (u) = 1
|Bε(x, t)|

(χBε(x,t),u)0,Q ≈ u(x, t),

where χBε(x,t) is a characteristic function on a ball Bε(x, t) ⊂ Q around (x, t) with
radius ε > 0 sufficiently small, see [BR03, Ex. 3.3 or Ex. 3.4].
In case of linear error functionals J ′′(u; w,v) = 0 holds true. Thus both error
representations in Lemma 5.2 and Lemma 5.3 are exact and the primal and dual
residuals coincide (cf. Lemma 5.4). Since J ′(u; v) is independent of u, the dual
solution becomes independent of the primal one. We conclude that

ρ(uh,u∗ −wh) = (f ,u∗ −wh)0,Q − bh(uh,u∗ −wh) = bh(e,u∗ −wh)
= bh(e,u∗) = (j, e)0,S,

ρ∗(uh; u∗h,u− vh) = (j,u− vh)0,S − bh(u− vh,u∗h) = bh(u,u∗)− bh(u,u∗h)
= bh(u, e∗) = (f , e∗)0,Q,

and hence MJ = (j, e)0,S = (f , e∗)0,Q.

5.2.2 Quadratic Error Functionals
Quadratic error functionals are quite common since they are used to model the
energy of the solution in a certain region of interest, see [BR03, Ex. 3.2]. For
example one can take the special energy error functional

J (u) = 1
2(Mu,u)0,S, (5.10)

with

J ′(u; v) = (Mu,v)0,S and J ′′(u; w,v) = (Mv,w)0,S,

for all v,w ∈ L2(Q)J . For quadratic error functionals the error representation in
Lemma 5.3 is exact, i.e., T3 = 0 and we conclude that MJ can be represented as

MJ = ρ(uh,u∗ −wh) + 1
2J

′′(u; e, e) = ρ(uh,u∗ −wh) + J (e)

or MJ = 1
2ρ(uh,u∗ −wh) + 1

2ρ
∗(uh; u∗h,u− vh).



5.3. ERROR ESTIMATION 63

5.3 Error Estimation
In this section we use the previous results to derive an approximation MJh to MJ
and computable quantities ηR ∈ R for every cell R ∈ R such that

|MJ | ≈ |MJh| ≤ ηR =
∑
R∈R

ηR.

The quantities ηR are denoted as (local) error estimates or error indicators. The
development of a suitable and reliable error estimator for the presented error rep-
resentations is a crucial point. To do so, we have to evaluate the residuals ρ or ρ∗
defined in (5.7) or (5.8) and get

MJ = ρ(uh,u∗ − u∗h) + T2, (5.11)

MJ = 1
2ρ(uh,u∗ − u∗h) + 1

2ρ
∗(uh; u∗h,u− uh) + T3, (5.12)

where we used the discrete solutions uh and u∗h as test functions. In both cases we
have to compute a discrete dual solution u∗h, which has the same effort as computing
the discrete primal solution uh. Since T3 is third-order, it seems that (5.12) is more
accurate than (5.11), where T2 is a second-order remainder term. But in most
applications it is already sufficient to compute (5.11) and use the relationship

T ′2 = ρ∗(uh; u∗h,u− uh)− ρ(uh,u∗ − u∗h)

from Lemma 5.4 to validate that the second-order remainder T2 = 1
2T
′

2 +T3 is small.
This can be done a posteriori by verifying that

|T2| ≈ |T ′2 | ≈ |ρ∗(uh; u∗h, ũ− uh)− ρ(uh, ũ∗ − u∗h)| ≤ tol

for a given tolerance tol and higher-order approximations ũ ≈ u and ũ∗ ≈ u∗.
This strategy is proposed for example in [BR03, Rem. 6.7].
Since T2 can be approximated and the fact that (5.11) is not depending on u, we
will focus on this second-order accurate error representation. Moreover, we only
use the energy error functional (5.10) in our numerical experiments, where

T2 = −
∫ 1

0
sJ ′′(uh + se; e, e) ds = −1

2(Me, e)0,S.

We now develop a (local) error estimation by using (5.11). Hence it holds that

MJ = ρ(uh,u∗ − u∗h) + T2 = (f ,u∗ − u∗h)0,Q − bh(uh,u∗ − u∗h) + T2

= (f ,u∗ − u∗h)0,Q −
∑

R=K×I∈R

(
(M∂tuh +∇ · F(uh),u∗ − u∗h)0,R

+ (nK · (Fnum(uh)− F(uh)),u∗ − u∗h)0,∂K×I

)
+ T2

=
∑
R∈R

(
(f −M∂tuh −∇ · F(uh),u∗ − u∗h)0,R

− (nK · (Fnum(uh)− F(uh)),u∗ − u∗h)0,∂K×I

)
+ T2.
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Using triangle and Cauchy-Schwarz inequality leads to

|MJ | ≤
∑
R∈R

(
‖f −M∂tuh −∇ · F(uh)‖0,R‖u∗ − u∗h‖0,R

+ ‖nK · (Fnum(uh)− F(uh))‖0,∂K×I‖u∗ − u∗h‖0,∂K×I

)
+ T2

=
∑
R∈R

ρR(uh) · ρ∗R(u∗h) + T2 ≤
∑
R∈R
‖ρR(uh)‖2‖ρ∗R(u∗,u∗h)‖2 + T2,

(5.13)

where ‖ . ‖2 is the Euclidean vector norm and ρR,ρ∗R ∈ R2 are assembled as

ρR(uh) =
(
‖f −M∂tuh −∇ · F(uh)‖0,R

‖nK · (Fnum(uh)− F(uh))‖0,∂K×I

)

ρ∗R(u∗,u∗h) =
(
‖u∗ − u∗h‖0,R

‖u∗ − u∗h‖0,∂K×I

)
=
(
‖e∗‖0,R

‖e∗‖0,∂K×I

)
.

If the second-order term T2 is neglected, we achieved an error estimate, where
the local residual error ‖ρR(uh)‖2 is weighted with the error of the dual solution
‖ρ∗R(u∗,u∗h)‖2. However, in applications the dependency of the weights ρ∗R on the
error of the dual solution e∗ is a crucial point. In general this value cannot be
computed and a good approximation e∗ ≈ e∗h,r = u∗r −u∗h is needed to define a local
error indicator

ηR(uh,u∗h) = ‖ρR(uh)‖2‖ρ∗R(u∗r ,u∗h)‖2, for all R ∈ R. (5.14)

To investigate the quality of approximations u∗r with respect to MJ one can proceed
as follows. We again consider the error representation (5.11) from Lemma 5.2 and
apply an approach which is illustrated in [BR03, Sec. 5.2 ii)]. This yields

MJ = ρ(uh; u∗ − u∗h) + T2

= ρ(uh; u∗ − u∗r ) + ρ(uh; u∗r − u∗h) + T2

= ρ(uh; u∗ − u∗r ) + MJh + T2,

(5.15)

where MJh = ρ(uh; u∗r − u∗h) is the computable approximated error. To validate
that u∗H,r is a suitable approximation to u∗ one has to ensure that the first term is
sufficiently small, i.e.,

|ρ(uh; u∗ − u∗r )| ≈ T2 � |MJh|.

However, this is not a trivial task. Even in case of an elliptic Poisson problem with
linear error functional stated on an “optimized” mesh, one has to assume restrictive
mesh conditions and smoothness properties for u and u∗ (cf. [BR03, Sec. 5.2 ii)]).
In the following we discuss two commonly used strategies for achieving a suitable
approximation u∗r ≈ u∗, see, e.g., [BR01], [BR03, Sec. 4.1], [NVV09] or [BGR10].
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5.3.1 Higher-Order Approximation

In this approach one computes an approximated dual solution u∗h ∈ W
p+1,q+1
h in an

ansatz spaceW p+1,q+1
h with uniformly increased polynomial degrees p, q ≥ 0. Hence,

the dual error can be approximated as e∗h,r = u∗h − Ihu∗h, where Ih : W p+1,q+1
h →

W p,q
h ≡ Wh is the nodal interpolation operator which is defined locally in (4.21)

on every R ∈ R. Numerical experiments for an elliptic test case indicate this
approach leads to very good approximations (cf. [BR03, Tab. 4.1]). However, the
computation of u∗h becomes very costly and even surpasses the computational effort
which is needed to compute the discrete primal solution uh. Hence this approach
is not suitable for most real applications, but it motivates the a strategy presented
in the following.

5.3.2 Higher-Order Interpolation on Patches

Since the previous approach leads to good results, we introduce an approximation
based on higher-order interpolation techniques. Therefore, we use a discrete dual
solution which is computed on the same discretization as uh. Hence the computation
of both solutions uh and u∗h requires the same computational effort. Moreover the
system matrix of the primal problem can be reused as we will see in the next section.

Due to their flexibility and simplicity in terms of implementation, so called (patch-
wise) recovery estimators are commonly in case of residual based a posteriori error
estimation, see, e.g., [AO00, Ch. 4] or [Ver13, Sec. 1.9]. There, one uses a recovery
operator to approximate the gradient of the solution from a computed discrete
solution. In the following we use a similar technique to approximate u∗ from u∗h. To
achieve a higher-order approximation we first coarse the space-time meshRh once in
space and time. This results in a meshRH , where every cell covers 2D×2 space-time
cells of Rh, i.e., for every cell Rc ∈ RH there exists a set of cells {R1, . . . , R2D+1} ⊂
Rh such that

Rc =
2D+1⋃
m=1

Rm.

In this context we denote the coarse cells Rc ∈ RH as space-time patches. If multi-
grid techniques are used to solve the resulting linear finite element systems, the re-
quired data structures are already available and can be reused, see Section 6.2.3. On
the coarse mesh we can choose a discretizationWH with higher polynomial degrees,
e.g., (pc, qc) = (p+ 2, q + 2) (cf. [BR03, Rem. 4.4]), where p = maxm=1,...,2D pm and
q = maxm=1,...,2D qm are the highest polynomial degrees on the cells R1, . . . , R2D+1 .
Analogously to Section 4.6 we define a nodal interpolation I(2)

h,r : Wh → WH locally
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on every patch Rc as

I
(2)
Rc,r : span

{ 2D+1⋃
m=1

Wh,Rm

}
→ Wh,Rc ⊂ WH , I

(2)
Rc,rwh =

dimWh,Rc∑
i=1

{wh(xc
i , t

c
i )}iψi,Rc

which maps the lower order discrete dual solution solution u∗h ∈ Wh on the fine
mesh Rh to a higher-order approximation u∗H,r = I

(2)
h,r u∗h ∈ WH on the coarse mesh

RH . Here {.}i denotes the averages on the coarse nodal points (xc
i , t

c
i ), for i =

1, . . . , dimWh,Rc . An example of the patch-wise polynomial interpolation in time
is given in Figures 5.1 and 5.2, whereas an illustration for D = 1 of a higher-order
patch-wise interpolation in space-time is shown in Figure 5.3.
To investigate the quality of the approximation u∗H,r ≈ u∗, we transfer and verify the
conditions postulated in [AO00, Sec. 4.2] for suitable gradient recovery operators
to our case:

Lemma 5.5. Let u∗h ∈ Wh be a solution of the discrete dual problem (5.5). The
higher-order patch-wise interpolation operator I(2)

h,r provides suitable approximations
u∗H,r = I

(2)
h,r u∗h ∈ WH to the exact solution u∗ ∈ V ∗ in the sense of [AO00, Sec. 4.2].

In particular I(2)
h,r fulfills the following conditions:

a) consistency: I(2)
Rc,r(IhwH) = wH for all polynomials wH ∈ Pp,q(Rc)J ,

b) localization: u∗H,r|Rc only depends on u∗h|Rc for every patch Rc ∈ RH ,

c) boundedness: ‖I(2)
h,r u∗h‖L∞(Rc) ≤ c‖u∗h‖L∞(Rc) for all Rc ∈ RH , u∗h ∈ Wh and

c > 0 independent of h.

Here Ih : WH → Wh is again the nodal space-time interpolation operator which is
defined locally in (4.21).

Proof. By definition I
(2)
h,r and Ih interpolate polynomials of degree (p, q) exactly.

Thus Ihwh ∈ Pp,q(Rc)J is again a polynomial and it yields

I
(2)
Rc,r(IhwH) = I

(2)
Rc,r(wH) = wH .

Condition b) is fulfilled by the patch-wise definition of I(2)
h,r . Note that in principle

larger patches are also possible. To prove condition c), we use the definition of I(2)
h,r

to conclude that

‖I(2)
h,r u∗h‖L∞(Rc) =

∥∥∥ dimWh,Rc∑
i=1

{u∗h(xc
i , t

c
i )}iψi,Rc

∥∥∥
L∞(Rc)

≤
dimWh,Rc∑

i=1
‖ψi,Rc‖L∞(Rc)‖u∗h‖L∞(Rc) ≤ c‖u∗h‖L∞(Rc).

Here c depends only on the polynomial degrees, since the range of the shape func-
tions ψi,Rc = ψ̂i ◦ φ−1

Rc is independent of Rc (cf. Remark 4.1).
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However, the quality of recovery techniques strongly depends on the underlying
discretization and can only be justified for sufficiently small mesh sizes, see, e.g.,
[Car05]. In adaptive algorithms this contains the danger that the presented strategy
will lead to wrong results if the initial discretization is chosen not accurate enough
(cf. [AO00, Sec. 4.7] or [NVV09]). This issue becomes relevant in the following
section, where suitable stopping criteria are discussed.

t
tn−1 tn tn+1

Figure 5.1: Example of higher-order
patch-wise recovery (dashed line) for
given data (solid line) and q = 0.

t
tn−1 tn tn+1

Figure 5.2: Example of higher-order
patch-wise recovery (dashed line) for
given data (solid line) and q = 2.

t

x

R1 R2

R3 R4

p1, q1 p2, q2

p3, q3 p4, q4 apply I(2)
h,r

on Rc

t

x

Rc

pc = p+ 2
qc = q + 2

Figure 5.3: Illustration of the higher-order patch-wise recovery on a 2×2 space-time
patch for D = 1.

5.4 Adaptive Algorithm and Implementation
By now, we have all necessary ingredients at hand to implement the adaptive algo-
rithm. We start with a fixed mesh R and a discretization Vh, Wh which uses lowest
order polynomial degrees in space and time, i.e., (pR, qR) = (p, q) = (1, 1), for all
space-time cells R ∈ R. Afterwards we solve the resulting linear system Lu = f

to achieve a discrete solution uh ∈ Vh (cf. Section 4.6). To do this efficiently, a
multilevel strategy is discussed in the next chapter. Furthermore, we have to com-
pute an approximation u∗h ∈ Wh to the dual solution. Due to the properties of the
discrete adjoint problem, introduced in Definition 5.3, we use the transpose finite
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element matrix L> to archive an approximation of L∗. This leads to the dual linear
problem L∗u∗ = f ∗, where L∗ is a block-matrix

L∗ = L> =



D1> C1>

D2> C2>

. . . . . .
DN−1> CN−1>

DN>


.

The local matrices Dn and Cn, n = 1, . . . , N , correspond to the local matrices intro-
duced in Section 4.6. For a linear error functional with density j (cf. Section 5.2.1),
the right-hand side is computed by f ∗ = (f ∗,1, . . . , f ∗,N) with f ∗,nj,R = (j,φnR,j)R∩S,
where

{
φnR,j

}
j=1,...,dimVh,R

is a nodal basis of Vh,R. Note that this is in contrast to
the primal case, where we test with a nodal basis of Wh,R. For the nonlinear error
functionals, e.g., the quadratic functional given in Section 5.2.2, the right-hand side
depends on uh and hence the components of f ∗ are given as f ∗,nj,R = (uh,φnR,j)R∩S.
Thus u∗h ∈ Wh solves the discrete dual problem (5.5) stated in Definition 5.3.
The resulting dual system has an upper triangular structure and can be again solved
iteratively by a block-Gauss–Seidel method as stated before in (4.24). However, this
time the method is performed backwards from N to 1, i.e.,

DN>u∗,N = f ∗,N , DN−1>u∗,N−1 = f ∗,N−1 − CN−1>u∗,N ,

. . . , D2>u∗,2 = f ∗,2 − C2>u∗,3, D1>u∗,1 = f ∗,1 − C1>u∗,2.

In a second step we perform the higher-order interpolation u∗H,r = I
(2)
h,r u∗h as in-

troduced in Section 5.3.2. By using the approximation u∗ ≈ u∗H,r, we receive the
approximated error e∗h,r. Hence equation (5.14) can now be evaluated on every cell
R ∈ R to obtain the estimated local error ηR. One achieves a new discretization by
increasing the polynomial degree on cells with highest estimated error ηR. For this
purpose we apply a maximum marking strategy, see, e.g., [Dör96], and introduce a
parameter ϑ ∈ [0, 1]. The polynomial degree in space and time on a cell R ∈ R is
increased if the condition

ηR > ϑmax
R̃∈R

η
R̃

is fulfilled. For ϑ = 0 one receives uniform refinement, whereas ϑ = 1 results
in no refinement at all. Choosing the parameter ϑ is not a trivial task since it
highly depends on the given problem. If it is chosen too big, the solution might
not be accurate enough, whereas the effort becomes to large if ϑ is chosen too
small. To reduce these effects, we additionally increase the polynomial degrees on
all neighboring cells Rf of a refined cell R ∈ R, too. This procedure increases the
robustness of the adaptive strategy with respect to the parameter ϑ. Finally, we
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use the new discretization Ṽh, W̃h to compute a new discrete solution uh ∈ Ṽh. This
procedure can be repeated several times until the total estimated error is small
enough or a maximal polynomial degree is reached. Due to the construction of
ηR = ∑

R∈R ηR, cancellations between elements are neglected and the error |MJ |
might be overestimated too much. Thus, computing MJh and applying

|MJh| ≤ tol

as a stopping criterion for a given tolerance tol is more appropriate (cf. Section
5.3.2). At this point it is worth to emphasize that, due to (5.15), MJh ≈ MJ holds
only true if the neglected errors are small. In [NVV09] a safeguarded version of
DWR methods is presented by considering higher-order terms to achieve a reliable
error estimation on coarse meshes. This procedure prevents the algorithm from
underestimating the true error and terminating too early. Moreover, the results
asymptotically coincide with the original DWR method. The complete p-adaptive
strategy is summarized in Algorithm 5.1.
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Algorithm 5.1 p-adaptive strategy
1: R = Generate_Mesh()

2: Generate initial polynomial distribution pR, qR:
3: for R ∈ R do
4: pR(R) = 1
5: qR(R) = 1

6: Solve primal problem with initial discretization:
7: (L, f) = Assemble(pR, qR)
8: u = Solve(L, f)

9: while |MJh| > tol and maxR∈R p(R) < pmax and maxR∈R q(R) < qmax do

10: f ∗ = Assemble_Dual_Rhs(pR, qR)
11: u∗ = Solve(L>, f ∗)
12: u∗r = Approximate_Dual_Solution(u∗)
13: e∗r = u∗ − u∗r
14: for R ∈ R do
15: ηR = Estimate_Error(R, u, e∗r )
16: ηmax = maxR∈R ηR
17: for R ∈ R do
18: if ηR > ϑηmax or ηRf > ϑηmax for one f ∈ FK then
19: p(R) = p(R) + 1
20: q(R) = q(R) + 1

21: Redistribute mesh on processes for better load balance:
22: Redistribute_Mesh(R, pR, qR)

23: Solve primal problem with new polynomial discretization:
24: (L, f) = Assemble(pR, qR)
25: u = Solve(L, f)



6 Space-Time
Multilevel Preconditioning

In this chapter we investigate how the linear system of equations (4.23) can be
solved efficiently in a parallel framework for a large number of unknowns N ∈ N.
We focus on so called multigrid methods or multigrid strategies which were first
stated in the 1960s in [Fed64] and [Bak66]. For elliptic and (space-time) parabolic
problems, multigrid methods can lead to optimal effort O(N), see, e.g. [Hac03, Ch.
6, Ch. 7], [Hac85] and [Neu13]. Thus they are a suitable choice for large problems
with many unknowns. However, there exists no standard procedure for applying
multigrid methods efficiently to arbitrary problems as the following statement by
Hackbusch indicates:

“The previous characterisation does not mean that there is a fixed multi-grid
algorithm applying to all boundary value problems. There is rather a multi-
grid technique fixing only the framework of the algorithm. The efficiency
of the multi-grid algorithm depends on the adjustment of its components to
the problem in question.” (from [Hac03, Sec. 1.1])

In general, (space-time) multigrid methods for hyperbolic problems are still an open
field of research (cf. [DFW16]). A detailed introduction to multigrid methods and
their application as preconditioners can be found for example in [Hac03], [Saa03,
Ch. 13] or [Mei11, Ch. 4.2].

6.1 Introduction to Multigrid Methods
The idea of multigrid methods is to derive a divide and conquer strategy with opti-
mal convergence rate O(1) or at least near to optimal convergence rate O(log(N)).
Thereby the fact that a problem can be discretized on different grids (meshes) is
exploited. Since these grids are often derived from a very coarse initial mesh by
using different levels of refinement the term multilevel methods is common, too. On
every mesh one can perform several steps of a well known iterative splitting method,
e.g., Jacobi or Gauss–Seidel. These methods usually damp highly oscillating parts
in the error quite well, whereas smooth parts are damped arbitrarily bad as the

71
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mesh size goes to zero. This motivates a strategy where the spectrum of the error
is divided into a highly oscillating and a smooth part. Now one can adjust the
standard splitting method in a way that the highly oscillating parts of the error
are damped independently of the mesh size. This is done by choosing a suitable
damping parameter in the iterative method. Since this smooths the error function,
the standard iterative splitting methods are denoted as smoothers in this context.
To damp the error in the smooth part, it is transferred to a coarser mesh (smaller
level). On this coarse mesh the discrete solution is computed exactly, e.g., by a
direct method. The information gained by the solution on the coarse mesh is again
transferred to the fine mesh to correct the smooth parts of the error.
This approach is denoted as two-grid cycle. Generally speaking, a multigrid method
is a two-grid cycle, where the solver of the coarse grid problem is replaced recursively
by one (V-cycle) or two (W-cycle) two-grid cycles until a very coarse level is reached,
see [Hac03, Sec. 2.5]. On the coarsest level the discrete problems can be solved by
standard methods with almost no computational costs compared to the problem on
the initial discretization. Thus a multigrid method can be analyzed by investigating
the underlying two-grid cycles. Since our problem is stated in space and time
simultaneously, we distinguish between two-grid cycles in space and time. This
means that the fine mesh is a uniform refinement of the coarse mesh in space or
in time, respectively. In the following the general two-grid cycle is introduced.
Afterwards we apply this method to a time- dependent test equation to determine
an optimal damping factor for the Jacobi smoother in time. Finally, the two-grid
cycle is applied to the full space-time problem to determine a suitable space-time
multilevel strategy.

6.2 Two-Grid Cycle
To apply multigrid methods to a general linear space-time system

Lu = b, (6.1)

for L ∈ RN×N and u, b ∈ RN , a hierarchy in space and time is needed. Therefore,
we introduce a coarse space-time mesh denoted as R0,0. Furthermore let Rl,k be the
mesh obtained by l = 1, . . . , lmax uniform refinements in space and k = 1, . . . , kmax

refinements in time. In a tensor product structure R = K × I the refinements in
space and time result either in refining the spatial mesh K or the time discretization
I. This yields the splitting

Rl,k = Kl × Ik.

Thus a linear system

Ll,kul,k = bl,k
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can be computed on each level (l, k). On the finest level we have to solve (6.1)
and hence L = Llmax,kmax and b = blmax,kmax . Since every mesh can be derived from
the coarse mesh by performing uniform refinements in space and time, the set of
all grids is called a nested mesh structure. A two-grid cycle only depends on two
different levels. Hence this leads to two different settings, with grids Rl,k−1,Rl,k

or Rl−1,k,Rl,k, respectively. The first one corresponds to a two-grid cycle in time,
whereas the second one corresponds to a two-grid cycle in space. In the following
we give a short introduction to iterative methods and smoothers. Afterwards we
discuss mesh transfer operations for homogeneous polynomial degrees and their
extension to the p-adaptive case. Finally, we introduce a coarse grid correction and
show how a complete two-grid method can be investigated.

6.2.1 Iterative Methods and Preconditioning
In this section we give a short repetition of iterative methods and the concept
of preconditioning. A general introduction and further results can be found for
example in [Saa03, Ch. 4] or [Mei11, Ch. 4].

Definition 6.1. Consider a mapping Φ: RN → RN . A method which solves the
linear system (6.1) by computing approximations u(i) to u for given a given u(0)

such that

u(i+1) = Φ(u(i)), for i = 0, 1, . . . , (6.2)

is called iterative method and (6.2) is called iteration scheme. The method is called
linear if there exists matrices G,N ∈ RN×N such that

Φ(u) = Gu+Nb.

The matrix G is called iteration matrix.

Definition 6.2. An iterative method is called consistent with respect to the matrix
L, if the solution L−1b is a fix point of the iteration scheme (6.2), i.e.,

L−1b = Φ(L−1b)

for every right-hand side b ∈ RN . Furthermore it is called convergent, if for all
b, u(0) ∈ RN there exists a limit

y = lim
i→∞

u(i)

which is independent of the starting vector u(0).

Theorem 6.1. (cf. [Mei11, Thm. 4.4]) A linear iterative method is consistent if
and only if

G = Id−NL

holds true.
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Theorem 6.2. (cf. [Mei11, Thm. 4.5]) A linear consistent iterative method is
convergent if and only if the spectral radius ρ(G) of the iteration matrix G fulfills
the condition

ρ(G) < 1.

Definition 6.3. Let B ∈ RN×N be invertible. The linear system

BLu = Bb (6.3)

is called preconditioned with respect to the linear system (6.1) and B is called
precondition matrix. Hence, a preconditioner is a method with suitable precondition
matrix B such that

BL ≈ Id

where B can be computed or applied with much lower computational costs, com-
pared to L.

The following lemma shows that it is very easy to apply iterative methods as a
preconditioner:

Lemma 6.1. Solving the original linear system (6.1) with a consistent linear iter-
ative method

Φ(u) = Gu+Nb

is equivalent to the simple (Richardson’s) iteration (cf. [Mei11, 4.1.4])

u(i+1) = (Id− L)u(i) + b, for i = 0, 1, . . .

applied to the preconditioned system (6.3) with precondition matrix B = N .

Proof. Apply Richardson’s iteration to the preconditioned system yields

u(i+1) = (Id−NL)u(i) +Nb = Gu(i) +Nb = Φ(u(i)),

where we used the consistency condition in the last step.

6.2.2 Smoothers
For the smoothing operations, mentioned in Sec. 6.1, one usually considers itera-
tive splitting methods or incomplete LU decomposition and corresponding block-
versions (see, e.g., [Saa03, Sec. 13.2.2, Sec. 13.2.3] or [Hac03, Sec. 3.2]). In this
work we focus on two iterative splitting methods as smoother, namely the damped
block-Jacobi and block-Gauss–Seidel method. We consider the smoothing methods
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as preconditioner (cf. Lemma 6.1), where the corresponding precondition matrices
are given as

BJ
l,k = θl,kblock−diag|Rl.k|(Ll,k)

−1, (6.4)

BGS
l,k = θl,k

(
block−lower|Rl.k|(Ll,k) + block−diag|Rl.k|(Ll,k)

)−1
. (6.5)

Here θl,k ∈ (0, 1] denotes a damping factor on level (l, k). Furthermore the functions
block−diag and block−lower return the block-diagonal matrix and the block-lower
triangular matrix of an input matrix, respectively. Note that the block-methods
used as a smoother differ from the block-Gauss–Seidel solver mentioned in (4.24).
In this case every block is associated to a space-time cell R ∈ Rl,k, whereas in (4.24)
a block is associated to a slice of cells in time. To prevent confusion, block−diagn
and block−lowern are equipped with an index n ≥ 1 which denotes the number of
blocks on the diagonal. Hence n = |Rl.k| corresponds to the amount of space-time
cells. The corresponding iteration matrices are then given by

SJ
l,k = Idl,k −BJ

l,kLl,k,

SGS
l,k = Idl,k −BGS

l,k Ll,k.

Since both methods are linear, the iteration scheme can be written as

u(k+1) = u(k) +Bl,k

(
bl,k − Ll,ku(k)

)
and hence the error is given as

u(k+1) − u = Sl,k
(
u(k) − u

)
= . . . = (Sl,k)k+1

(
u(0) − u

)
for some initial vector u(0) and Bl,k ∈ {BJ

l,k, B
GS
l,k } and Sl,k ∈ {SJ

l,k, S
GS
l,k }.

Remark 6.1. (Parallel Gauss–Seidel smoother) The block-Jacobi method com-
putes the inverse of the block-matrices on the diagonal of L. Since these blocks are
decoupled this can be done completely in parallel. On the other hand the block-
Gauss–Seidel methods inverts the block-lower triangular matrix. In this case the
single blocks are not decoupled and hence the computation cannot be performed
in parallel. For this reason the method is understood as a local block-Gauss–Seidel
method on every process throughout this work. Hence the precondition matrix of
the parallel version of the block-Gauss–Seidel smoother reads as

BGS
l,k = θl,k

(
block−lower|Rl.k|(L̃l,k) + block−diag|Rl.k|(L̃l,k)

)−1
,

where L̃l,k = block−diagP (Ll,k). The function block−diagP returns another block-
diagonal matrix, where one block is build of all components, which correspond to
one process. Here the index P denotes the number of parallel processes and thus
the number of blocks (cf. Figure 6.1). In the extremal cases, i.e., where the number
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block−lower(Ll,k) + block−diag(Ll,k) =



∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗



block−lower(L̃l,k) + block−diag(L̃l,k) =



∗
∗ ∗
∗ ∗

∗
∗ ∗
∗ ∗



Figure 6.1: Visualization of the original block-Gauss–Seidel method and its parallel
version on P = 2 processes.

of processes is equal to one or corresponds to the number of used space-time cells,
respectively, it holds for P = 1 that

L̃l,k = block−diag1(Ll,k) = Ll,k

and

block−lower|Rl,k|(L̃l,k) = 0,
block−diag|Rl,k|(L̃l,k) = block−diag|Rl,k|(Ll,k),

for P = |Rl,k|. Hence, for P = 1 we recover the original version of the block-
Gauss–Seidel method (6.5), whereas for P = |Rl,k| the parallel block-Gauss–Seidel
is equivalent to the block-Jacobi method (6.4).

6.2.3 Mesh Transfer Operations
In the context of multigrid methods it is necessary to be able to transfer informations
from one mesh to another. To do this, mesh transfer operations are needed. Since
in this work the meshes are nested, we have that the ansatz and test spaces are also
nested with respect to space and time, i.e.,

V0,k ⊂ V1,k ⊂ . . . ⊂ Vlmax−1,k ⊂ Vlmax,k,

Vl,0 ⊂ Vl,1 ⊂ . . . ⊂ Vl,kmax−1 ⊂ Vl,kmax ,

Wlmax,k ⊃ Wlmax−1,k ⊃ . . . ⊃ W1,k ⊃ W0,k,

Wl,kmax ⊃ Wl,kmax−1 ⊃ . . . ⊃ Wl,1 ⊃ Wl,0,
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where l = 0, . . . , lmax and k = 0, . . . , kmax. Throughout this section we consider
the scalar valued case, e.g., J = 1. For the vector valued case (J > 1) the mesh
transfer operations can be applied component-wise. Moreover, we assume that we
use homogeneous polynomial degrees pR ≡ p and qR ≡ q on every mesh Rl,k for
l = 0, . . . , lmax and k = 0, . . . , kmax. The extension to the adaptive case is discussed
in the subsequent section.

Definition 6.4 (Restriction and prolongation). The surjective mappings from a
fine mesh Rl,k to a coarse mesh Rl−1,k or Rl,k−1, respectively, are called restrictions.
They are given as

Rl−1,k
l,k : Wl,k → Wl−1,k and Rl,k−1

l,k : Wl,k → Wl,k−1,

where Rl−1,k
l,k is the restriction operator in space and Rl,k−1

l,k the restriction operator
in time. The counterpart to restriction is called prolongation. The corresponding
injective prolongation operators are given as

P l,k
l−1,k : Vl−1,k → Vl,k and P l,k

l,k−1 : Vl,k−1 → Vl,k,

respectively. Analogously to the restriction, P l,k
l−1,k denotes the prolongation in

space, whereas P l,k
l,k−1 denotes the prolongation in time.

t

x

restriction

prolongation

tn+1

tn

tn−1

K K

R+

R−

Rc

Figure 6.2: Local mesh transfer operations in time for two batched space-time cells
R− = K × (tn−1, tn) and R+ = K × (tn, tn+1)

Due to the nested structure, restriction and prolongation operations can be defined
locally, i.e., cell-wise. The local mesh transfer in time and space is illustrated in
Figures 6.2 and 6.3, respectively. The following definition and remark give hints
how restriction and prolongation operations can be chosen in a reasonable manner.

Definition 6.5. (Trivial injection) In a nested finite element structure coarse nodal
points are always nodal points on the fine mesh, too. Hence we can define a re-
striction by using a point-wise transfer of the coefficient vector of wl,k ∈ Wl,k to the
coefficients of wl−1,k ∈ Wl−1,k or wl,k−1 ∈ Wl,k−1, respectively. This restriction is
called trivial injection.
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t

x

restriction

prolongation

tn

tn−1

K1 K2 Kc = K1
⋃
K2

R1 R2 Rc

Figure 6.3: Local mesh transfer operations in space for R1 = K1 × (tn−1, tn) and
R2 = K2 × (tn−1, tn) in one spatial dimension.

Remark 6.2. The trivial injection can be performed without any additional com-
putational costs. However, it contains the danger of loosing or distort informations
during the restriction to coarser grids. In a nested finite element context one usu-
ally uses interpolation operators for prolongation and the corresponding adjoint
operators for restriction, i.e., R = P ∗ (cf. Definition 5.1). This approach avoids
problems, since the restriction and prolongation are chosen in a canonical way.
Thus the restriction is equivalent to a projection, see [Hac03, Sec. 3.6].
To reduce computational costs, the canonical projection can be replaced by a rea-
sonable weighted restriction. Due to [Hac03, Sec. 3.8.5] a weighted restriction op-
eration Rl−1,k

l,k is reasonable if its adjoint
(
Rl−1,k
l,k

)∗
is a stable prolongation, e.g., the

operator norm of
(
Rl−1,k
l,k

)∗
is bounded independently of the mesh size hl,k. It can

be shown that the trivial injection is not a stable restriction in general.

In the follow we introduce restriction and prolongation operations in space and
time. In doing so we stick to the hints given in the previous remark. Furthermore,
we discuss the representation of mesh transfer operations as local restriction and
prolongation matrices. We begin with the mesh transfer operations in time. The
spatial case is outlined afterwards.

Prolongation and Restriction Operations in Time

We first consider the time-dependent prolongation mapping from Vl,k−1 to Vl,k for
l ≥ 0, k > 0. We define the prolongation in time as a nodal interpolation

P l,k
l,k−1 : Vl,k−1 → Vl,k.

The prolongation can be evaluated locally (cell-wise). Let R− = K×(tn−1, tn), R+ =
K × (tn, tn+1) ∈ Rl,k be two batched space-time cells on the fine mesh with a
common parent cell Rc = K × (tn−1, tn+1) ∈ Rl,k−1 on the coarse mesh. The local
prolongations are then given as

P
R−
Rc : Vh,Rc → Vh,R− and P

R+
Rc : Vh,Rc → Vh,R+ .
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Since vh,Rc ∈ Vh,Rc and vh,R ∈ Vh,R, for R ∈ {R−, R+} ⊂ Rl,k, are uniquely defined
in terms of their coefficients (cf. Definition 4.5) and nodal bases {ψRc,j}j=1,...,dimVh,Rc

and {ψR,j}j=1,...,dimVh,R we compute

vh,R =
dimVh,R∑
i=1

vh,Rc(xi, ti)ψR,i(x, t) =
dimVh,R∑
i=1

dimVh,Rc∑
j=1

vc
jψRc,j(xi, ti)ψR,i(x, t)

with coefficient vector vc =
(
vc

0, . . . , v
c
dimVh,Rc

)>
. Here (xi, ti), i = 1, . . . , dim Vh,R,

denote all nodal points associated with the cell R. Note that we have to take the
continuity in time into account. Hence the coefficients of vh,R−,R+ ∈ span{Vh,R− ∪
Vh,R+} = Vh,R−,R+ can be computed by using a dim Vh,R−,R+×dim Vh,Rc interpolation
matrix (cf. Section 4.6), i.e.,

vR−,R+ = P−,+c vc.

The corresponding components are given as (P−,+c )i,j = ψRc,j(xR−,R+,i, tR−,R+,i),
where (xR−,R+,i, tR−,R+,i) are the nodal points associated with the cells R− and R+,
see Section 4.6. This results in a global prolongation matrix P l,k

l,k−1 ∈ RN×N with
block-entries, i.e.,

P l,k
l,k−1 =


P−,+c

P−,+c
. . .

P−,+c

 .

In case of standard Galerkin methods, where ansatz and test spaces coincide (cf.
Section 4.1), one would define the restriction in time as adjoint prolongation opera-
tor Rl,k−1

l,k =
(
P l,k
l,k−1

)∗
. Thus, the restriction matrix is the transposed prolongation

matrix Rl,k−1
l,k =

(
P l,k
l,k−1

)>
. Since we use a Petrov-Galerkin discretization in time

this procedure is not possible in our case. To solve this problem we first define an
interpolation as prolongation

P̃ l,k
l,k−1 : Wl,k−1 → Wl,k

between the discontinuous test spaces. Afterwards we use the adjoint operator
of P̃ l,k

l,k−1 as restriction in time. The local interpolation is then similar as before.
However, due to the discontinuities in time the interpolation decouples and we
achieve

vR− = P̃
−
c v

c and vR+ = P̃
+
c v

c

for the coefficient vectors vR− and vR+ of vh,R− ∈ Vh,R− and vh,R+ ∈ Vh,R+ , respec-
tively. The components of the dim Vh,R− × dim Vh,Rc matrix are given as

(
P̃
−
c

)
i,j

=
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ψRc,j(xR−,i, tR−,i) associated nodal points (xR−,i, tR−,i) on R−. The local interpola-
tion matrix P̃+

c can be computed analogously. Thus the global prolongation matrix
is given as

P̃
l,k

l,k−1 =



P̃
−
c

P̃
+
c

P̃
−
c

P̃
+
c

. . .
P̃
−
c

P̃
+
c


.

We use P̃ l,k

l,k−1 to define the restriction in time as

Rl,k−1
l,k : Wl,k → Wl,k−1, Rl,k−1

l,k =
(
P̃ l,k
l,k−1

)∗
with corresponding restriction matrix

R̃
l,k−1
l,k =

(
P̃
l,k

l,k−1

)>
=


Rc
− R

c
+

Rc
− R

c
+

. . . . . .
Rc
− R

c
+

 ,

where Rc
− =

(
P̃
−
c

)>
and Rc

+ =
(
P̃

+
c

)>
. The following example illustrates the local

prolongation and restriction matrices in time, if space is neglected.
Example 6.1. The first three local prolongation matrices in time for q = 1, . . . , 3
can be computed as

P−,+c =


1 0
1
2

1
2

0 1

 , P−,+c =



1 0 0
3
8

3
4 −

1
8

0 1 0
−1

8
3
4

3
8

0 0 1

 , P−,+c =



1 0 0 0
5
16

15
16 −

5
16

1
16

0 1 0 0
− 1

16
9
16

9
16 −

1
16

0 0 1 0
1
16 −

5
16

15
16

5
16

0 0 0 1


.

For q = 1 the local prolongation is illustrated in Figure 6.4. The corresponding first
three local restriction matrices in time can be computed as(

Rc
− R

c
+

)
=
(
1 1

)
,
(
Rc
− R

c
+

)
=
(

1 1
2

1
2 0

0 1
2

1
2 1

)
,

(
Rc
− R

c
+

)
=


1 3

8 0 0 −1
8 0

0 3
4 1 1 3

4 0
0 −1

8 0 0 3
8 1

 .
See Figure 6.5 for an illustration of local restriction for q = 2.
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Vl,k

Vl,k−1

1 1
1
2

1
2

Figure 6.4: Local prolongation in time for polynomial degree q = 1.

Wl,k

Wl,k−1

1 1
1
2

1
2

1
2

1
2

Figure 6.5: Local restriction in time for polynomial degree q = 2.

Prolongation and Restriction Operations in Space

Again, we first consider the prolongation mapping in space from Vl−1,k to Vl,k for
l > 0, k ≥ 0. We define the prolongation in space as an interpolation

P l,k
l−1,k : Vl−1,k → Vl,k.

The prolongation can be again evaluated locally (cell-wise). Let Rc = Kc ×
(tn−1, tn) ∈ Rl−1,k be a coarse cell with 2D child cells Rm ⊆ Rc, m = 1, . . . , 2D. As
before vh,k ∈ Vh,Rm is defined uniquely through its coefficient vector vm ∈ RdimVh,Rm .
Hence we achieve

vm = Pm
c v

c,

where Pm
c is an local dim Vh,Rk×dim Vh,Rc interpolation matrix. The components are

given as
(
P k

c

)
i,j

= ψRc,j(xi, ti) for nodal points (xi, ti) associated with Rm ∈ Rl,k.
Hence the global prolongation matrix reads as

P k,l
l−1,k =


Pc

Pc
. . .

Pc

 , where P =


P 1

c
P 2

c
...

P 2D
c

 .

To save computational resources, we apply a weighted restriction in space. We use
the trivial injection, introduced in Definition 6.5, and equip it with an additional
weight. To circumvent stability problems, mentioned in Remark 6.2, one can use
the weight hDl−1,k/h

D
l,k, where hl,k is the corresponding mesh size to Rl,k (cf. [Hac03,

Ch. 3.5]). Since we have a nested mesh structure, we achieve that hDl−1,k/h
D
l,k = 2D.

Thus we define the restriction in space as weighted injection

Rl−1,k
l,k : Wl,k → Wl−1,k.
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Locally the restriction is given as

Rc
R1,...,R2D

: Wh,R1,...,R2D
= span


2D⋃
m=1

Wh,Rm

→ Wh,Rc .

As before wh,Rc ∈ Wh,Rc is given uniquely trough its coefficients

wc
i = 2D {wh(xc

i , t
c
i )}i ,

for a given wh ∈ Wh,R1,...,R2D
. Here {.}i again denotes the averages on the coarse

nodal points (xc
i , t

c
i ), for i = 1, . . . , dimWRh,c (cf. Section 5.3.2). Since every nodal

point on the coarse mesh corresponds to a nodal point (xRm,j, tRm,j) associated
with at least one Rm ⊂ Rc on the fine mesh, the local restriction matrix Rc

m ∈
RdimWh,Rc×dimWh,Rm can be computed component-wise as

(Rc
m)i,j =


2D
Ni
, if (xc

i , t
c
i ) = (xRm,j, tRm,j),

0, otherwise,
for m = 1, . . . , 2D.

Here Ni = |{R = R1, R2, . . . , R2D : (xc
i , t

c
i ) is a nodal point of Wh,R}| denotes the

number of nodal points on the fine mesh a coarse nodal point (xc
i , t

c
i ) is connected

to. Hence we obtain the global space-time restriction matrix in space

Rl−1,k
l,k =


Rc

Rc

. . .
Rc

 ,

where Rc = (Rc
1, R

c
2, . . . , R

s
2D) is the corresponding block-matrix vector containing

the local restriction matrices. The following example illustrates the resulting local
prolongation and restriction matrices in space, if time is neglected.

Example 6.2. For p = 1, . . . , 3 and D = 1 the local prolongation matrices in space
can be computed as

(
P 1

c
P 2

c

)
=


1 0
1
2

1
2

1
2

1
2

0 1

 ,
(
P 1

c
P 2

c

)
=



1 0 0
3
8

3
4 −

1
8

0 1 0
0 1 0
−1

8
3
4

3
8

0 0 1


,

(
P 1

c
P 2

c

)
=



1 0 0 0
5
16

15
16 −

5
16

1
16

0 1 0 0
0 1 0 0
− 1

16
9
16

9
16 −

1
16

0 0 1 0
0 0 1 0
1
16 −

5
16

15
16

5
16

0 0 0 1



.
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Vl,k

Vl−1,k

1 1
1
2

1
2

1
2

1
2

Figure 6.6: Prolongation in space for polynomial degree p = 1 in one dimension.

Wl,k

Wl−1,k

2D 2D

Figure 6.7: Restriction in space for polynomial degree p = 1 in one dimension.

Correspondingly the local restriction matrix in space can be computed as

(Rc
1 R

c
2) =

(
2 0 0 0
0 0 0 2

)
, (Rc

1 R
c
2) =


2 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 2

 ,

(Rc
1 R

c
2) =


2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2

 .

The local prolongation and restriction in space is illustrated in Figures 6.6 and 6.6
for p = 1, respectively.

6.2.4 Extension to the p-Adaptive Case

In case of adaptive polynomial degree refinement we locally interpolate the data on
the child cells to homogeneous polynomial degrees p and q in space and time. Then
we choose subspaces Wh,Rc of the same polynomial degrees. This allows us to apply
the same restriction and prolongation matrices as in the homogeneous case if we
scale them with the correct interpolation matrices. The precise procedure is given
in the following two paragraphs.

Restriction and Prolongation in Time

Let p− = pR− , p+ = pR+ and q− = qR− , q+ = qR+ be the polynomial degrees
on tow batched fine cells R−, R+ in space and time, respectively. Determine the
highest polynomial degrees p = max{p−, p+}, q = max{q−, q−} and set pRc = p

and qRc = q. Then one can reuse the interpolation matrices Ip,qp−,q− , I
p,q
p+,q+ and
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Ip−,q−p,q , Ip+,q+
p,q defined in equation (4.22). Incorporating them into the restriction

and prolongation matrices yields

R̃
l,k

l,k−1 =
(
P̃
l,k

l,k−1

)>
=


Rc
− R

c
+

Rc
− R

c
+

. . . . . .
Rc
− R

c
+

 ,

where Rc
− =

(
P̃
−
c

)>
Ip,q−1
p−,q−−1 and Rc

+ =
(
P̃

+
c

)>
Ip,q−1
p+,q+−1. Analogously we achieve

P l,k
l,k−1 =


P+,−

c
P+,−

c
. . .

P+,−
c


where P+,−

c is replaced by (
Ip−,q−p,q

Ip+,q+
p,q

)
P+,−

c .

Restriction and Prolongation in Space

Let p1 = pR1 , p2 = pR2 , . . . , p2D = pR2D
and q1 = qR1 , q2 = qR2 , . . . , q2D = qR2D

be the polynomial degrees on the set of fine cells R1, . . . , R2D in space and time,
respectively. Determine the highest polynomial degrees p = max{p1, p2, . . . , p2D},
q = max{q1, q2, . . . , q2D} and set pRc = p and qRc = q. Again we reuse the inter-
polation matrices Ip,qp1,q1 , I

p,q
p2,q2 , . . . , I

p,q
p2D ,q2D

and Ip1,q1
p,q , Ip2,q2

p,q , . . . , I
p2D ,q2D
p,q defined in

equation (4.22). Incorporating them into the restriction and prolongation matrices
yields the new restriction in space

Rl,k−1
l,k =


Rc

Rc

. . .
Rc


where Rc =

(
Rc

1 I
p,q−1
p1,q1−1, R

c
2 I

p,q−1
p2,q2−1, . . . , R

c
2D I

p,q−1
p2D ,q2D−1

)
. Analogously the new pro-

longation in space reads as

P l,k
l−1,k =


Pc

Pc
. . .

Pc

 , where Pc =


Ip1,q1
p,q P 1

c
Ip2,q2
p,q P 2

c
...

I
p2D ,q2D
p,q P 2D

c

 .
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6.2.5 Coarse Grid Correction
By having the mesh transfer operations at hand, we can define a coarse grid cor-
rection. This is done by computing the residual defect r(i)

l,k = bl,k − Ll,k u(i)
l,k of the

solution ul,k in the i-th iteration step. For better readability we omit the iteration
index i within a fixed iteration step. The residual defect rl,k = r

(i)
l,k is restricted to

the coarse mesh Rl−1,k or Rl,k−1 respectively. To do this, the restriction matrices
in space or time, i.e.,

dl−1,k = Rl−1,k
l,k rl,k or dl,k−1 = Rl,k−1

l,k rl,k

are applied. On this level the coarse problems

cl−1,k = L−1
l−1,kdl−1,k or cl,k−1 = L−1

l,k−1dl,k−1 (6.6)

are solved exactly, e.g., by applying a direct solver. The computed correction is
prolongated back to the fine level by

wl,k = P l,k
l−1,kcl−1,k or wl,k = P l,k

l,k−1cl,k−1.

In a final step an improved solution ul,k = ul,k + wl,k is obtained. Assembling all
steps, for i = 0, 1, . . ., results in the iteration schemes

u
(i+1)
l,k = u

(i)
l,k + P l,k

l−1,kL
−1
l−1,kR

l−1,k
l,k

(
bl,k − Ll,k u(i)

l,k

)
(6.7)

and

u
(i+1)
l,k = u

(i)
l,k + P l,k

l,k−1L
−1
l,k−1R

l,k−1
l,k

(
bl,k − Ll,k u(i)

l,k

)
. (6.8)

Hence we can state the following lemma:

Lemma 6.2. (cf. [Mei11, Lem. 4.41, Lem. 4.42]) The coarse grid corrections
themselves are consistent iterative methods with corresponding iteration matrices

Cs
l,k = Idl,k − P l,k

l−1,kL
−1
l−1,kR

l−1,k
l,k Ll,k

and

Ct
l,k = Idl,k − P l,k

l,k−1L
−1
l,k−1R

l,k−1
l,k Ll,k.

However, the methods do no converge to a solution ul,k = L−1
l,k bl,k.

Proof. Since the statements can be shown analogously in space and time, we set R
and P to be either the mesh transfer operations in space or in time, respectively.
Moreover, let Lc be the corresponding coarse matrix. Both equations (6.7) and
(6.8) ca be written as

u
(i+1)
l,k =

(
Idl,k − PL−1

c RLl,k
)
u

(i)
l,k + PL−1

c Rbl,k

= C l,k + PL−1
c Rbl,k = Φ(u(i)

l,k)
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with iteration matrix C l,k = Cs
l,k or C l,k = Ct

l,k, respectively. Moreover, we imme-
diately note that the coarse grid correction is a consistent iterative method, due to
Theorem 6.1.
To prove that the coarse grid corrections do not converge, we follow a proof which
is stated in [Mei11, Lem. 4.42]. Since the restriction is surjective, but not injective,
the kernel of the restriction operator is not trivial. As a consequence the restriction
and prolongation matrices are not square matrices and hence ρ (C l,k) ≥ 1. This
means that the coarse grid correction is non-contractive and due to Theorem 6.2
does not converge.

6.2.6 Complete Two-Grid Method

By now, all components of a two-grid cycle can be summarized in a single method.
One first performs νpre

l,k ≥ 0 pre-smoothing steps using a smoother defined in Section
6.2.2. Afterwards the coarse grid correction, illustrated in Section 6.2.5, is applied.
Finally νpost

l,k ≥ 0 post-smoothing steps are performed by using again a smoother.
Necessarily the smoothers used in the pre- and post-smoothing steps can be different
methods or methods with different damping parameters. The complete two-grid
cycles in space and time are illustrated in Figures 6.8 and 6.9 and sketched in
Algorithms 6.1 and 6.2. Finally we discuss the convergence of the two-grid cycle.

BSM
l,k

Rl−1,k
l,k

L−1
l−1.k

P l,k
l−1,k

BSM
l,k

(l, k)

(l − 1, k)

Figure 6.8: Two level coarsening strategy in space represented as sequence of
precondition matrices.

BSM
l,k

Rl,k−1
l,k

L−1
l.k−1

P l,k
l,k−1

BSM
l,k

(l, k)

(l, k − 1)

Figure 6.9: Two level coarsening strategy in time represented as sequence of pre-
condition matrices.
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Algorithm 6.1 Two-Grid cycle in space with smoother BSM
l,k = BJ

l,k or BSM
l,k = BGS

l,k

1: (Pre-) smoothing:
2: for ν = 1, . . . , νpre

l,k do
3: wl,k = BSM

l,k rl,k
4: xl,k = xl,k + wl,k and rl,k = rl,k − Ll,kwl,k
5: Restriction:
6: dl−1,k = Rl−1,k

l,k rl,k
7: Solve coarse grid problem:
8: cl−1,k = Solve_Exact(Al−1,k, rl−1,k)
9: Prolongation:
10: wl,k = P l,k

l−1,kcl−1,k

11: Correction:
12: xl,k = xl,k + wl,k and rl,k = rl,k − Ll,kwl,k
13: (Post-) smoothing:
14: for ν = 1, . . . , νpost

l,k do
15: wl,k = BSM

l,k rl,k
16: xl,k = cl,k + wl,k and rl,k = rl,k − Ll,kwl,k

Algorithm 6.2 Two-Grid cycle in time with smoother BSM
l,k = BJ

l,k or BSM
l,k = BGS

l,k

1: (Pre-) smoothing:
2: for ν = 1, . . . , νpre

l,k do
3: wl,k = BSM

l,k rl,k
4: xl,k = xl,k + wl,k and rl,k = rl,k − Ll,kwl,k
5: Restriction:
6: dl,k−1 = Rl,k−1

l,k rl,k
7: Solve coarse grid problem:
8: cl,k−1 = Solve_Exact(Al,k−1, rl,k−1)
9: Prolongation:

10: wl,k = P l,k
l,k−1cl,k−1

11: Correction:
12: xl,k = xl,k + wl,k and rl,k = rl,k − Ll,kwl,k
13: (Post-) smoothing:
14: for ν = 1, . . . , νpost

l,k do
15: wl,k = BSM

l,k rl,k
16: xl,k = cl,k + wl,k and rl,k = rl,k − Ll,kwl,k
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Remark 6.3. The two-grid cycles in space and time are again consistent iterative
methods with iteration matrices

Gs
l,k =

(
SSM
l,k

)νpost
l,k Cs

l,k

(
SSM
l,k

)νpre
l,k and Gt

l,k =
(
SSM
l,k

)νpost
l,k Ct

l,k

(
SSM
l,k

)νpre
l,k ,

see Theorem 6.1. Since for νpre
l,k = νpost

l,k = 0 we get that the iteration matrix
reduces to M l,k = C l,k and thus the two-grid cycle is equivalent to the coarse grid
correction. This shows that at least one pre- or post-smoothing step is necessary to
obtain a convergent method. Due to Theorem 6.2 the two-grid iterations converge
if ρ (Gl,k) < 1 in space and time, respectively. For multigrid methods the solving of
the coarse problem (6.6) is recursively replaced by applying one or two additional
two-grid cycles, i.e., V-cycle or W-cycle. Hence we cannot deduce the multigrid
spectral radius from ρ

(
Gs
l,k

)
and ρ

(
Gs
l,k

)
directly (see [Hac03, Sec. 6.1.1]). For

that reason we introduce a concept of bounding the spectral radius of the two-grid
iteration by investigating the smoother and the coarse grid correction separately.

Definition 6.6 (Smoothing and approximation property). Assume that we only
use pre-smoothing within the two-grid cycle, i.e., νpost

l,k = 0 and νpre
l,k = νl,k > 0.

The smoother SSM
l,k fulfills a so called smoothing property, if there exists a positive

function γ : R→ R+ with γ(νl,k)→ 0, for νl,k →∞ and a number α > 0 such that

‖Ll,k
(
SSM
l,k

)ν
l,k
vl,k‖2 ≤ cSMγ(νl,k)h−αl,k ‖vl,k‖2 (6.9)

holds uniformly for all vl,k ∈ RN and a constant cSM > 0 as hl,k → 0. The coarse
grid correction C l,k fulfills a so called approximation property if

‖C l,kL
−1
l,k vl,k‖2 ≤ capproxh

α
l,k‖vl,k‖2 (6.10)

holds uniformly for all vl,k ∈ RN and a constant capprox > 0 as hl,k → 0. The
smoothing properties controls the effect of the applied smoother, whereas the ap-
proximation property controls the influence of the mesh transfer operations and
the coarse grid correction. Note that the proof of the approximation property re-
quires a certain regularity of the problem (cf. [Hac03, §6.3.1.2]). Moreover, the
Euclidean norms can be replaced by suitable weighted norms (cf. [Hac03, §6.3.1.3]).
See [Hac03, Sec. 6.2] and [Hac03, Sec. 6.3] for a detailed introduction to smoothing
and approximation properties.

The following theorem proves convergence of a two-grid cycle if the smoothing and
approximation properties are fulfilled.

Theorem 6.3 (cf. [Hac03, Thm. 6.1.7]). Suppose that the smoothing property (6.9)
and approximation property (6.10) hold for sufficiently large νl,k . Then we achieve
convergence of the two-grid cycle, i.e.,

ρ (Gl,k) ≤ |||Gl,k|||2 = cγ(νl,k) < 1, (6.11)

for a constant c > 0 independent of hl,k and the induced matrix norm ||| . |||2.
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Remark 6.4. Due to the high complexity, proving the smoothing property (6.9) or
approximation property (6.10) explicitly is hardly done for particular applications.
Most of the convergence results apply only for elliptic problems (cf. [Hac03, Ch.
11]) and saddle point problems, see, e.g., [BS97], [Zul00], [YZLB07]. For that
reason, other techniques are used to predict the behavior of multigrid methods. An
example is the so called local Fourier mode analysis, where a heuristic local Fourier
decomposition of the error is used to investigate the behavior of the smoother and
coarse-grid correction with respect to the single basis functions, see, e.g., [Bra94],
[TOS01, Ch. 4] or [Neu13, Ch. 4]. Although the obtained results are only valid
for very special assumptions, e.g., for periodic boundary conditions, the results can
lead to useful predictions for the general case as it is illustrated in the next section.

Remark 6.5 (Application to the multigrid case). The results of the previous the-
orem can be be transferred to multigrid methods to prove convergence, see [Hac03,
Sec. 7.1]. However, the estimates (6.9), (6.10) and (6.11) are not optimal and thus
general converge cannot be shown in case of a V-cycle, but require that at least a
W-cycle is used [Hac03, Thm. 7.1.7].
A detailed discussion of the V-cycle case is given in [BH83] and [BZ00, Sec. 3].
In case of symmetric positive definite matrices Li,j (e.g., as in elliptic problems),
duality techniques similar to Chapter 5 can be applied. This leads to a convergence
result for the V-cycle and symmetric smoothing with νl,k = νpre

l,k = νpost
l,k ≥ 1, see,

e.g., [BZ00, Thm. 3.1] or [Hac03, Thm. 7.2.2]. In particular this means that one pre-
and postsmoothing step is already enough to obtain stable multigrid convergence,
i.e., constant iteration numbers. Note that this is in contrast to Theorem 6.3,
where the number of required smoothing steps depends on the constants cSM and
capprox. In the proof of the convergence result, the approximation property (6.10) is
replaced by the so called full regularity and approximation condition [BZ00, Cond.
A.1]. Furthermore, one has to assume that the convergence of the smoother is at
least as good as the convergence of the weighted Richardson iteration with iteration
matrix

SSM
l,k = Idl,k −

θl,k
ρ(Ll,k)

Ll,k

for a weight θl,k ∈ (0, 1) (cf. [BZ00, Cond. SM.1] and [BZ00, Rem. 3.2]).

6.3 Block-Jacobi Smoothing in Time
In this section we focus on a heuristic approach to investigate the block-Jacobi
smoother within a two-grid cycle in time and derive hints for suitable damping
parameters θJ. Since multigrid methods strongly depend on the underlying problem,
achieving theoretical convergence results is not an easy task. Therefore we follow
the approach of [Neu13, Sec. 4.2] in this section:



90 CHAPTER 6. SPACE-TIME MULTILEVEL PRECONDITIONING

We first consider a test equation that depends only on time and prove that the con-
tinuous Petrov–Galerkin method in time is equivalent to an implicit Runge–Kutta
scheme for all polynomial degrees q ≥ 1 in this case. Hence we can determine the
corresponding stability regions. This result is used to derive a smoothing strategy
for the two-grid cycle in time in combination with a block-Jacobi method using a
Fourier ansatz (cf. Remark 6.4). Finally, we discuss the possibility of transferring
the result to a two-grid cycle in the space-time setting.

6.3.1 Continuous Petrov–Galerkin Method in Time
We consider the one dimensional time-dependent test equation by Dahlquist for an
ordinary differential equation

∂tu(t)− αu(t) = 0, for t ∈ (0, T ), (6.12)
u(0) = u0,

for a given final time T > 0 and a constant α ∈ R and initial condition u0 at
time t = 0. To solve this equation numerically we proceed as in the space-time
case and decompose the time interval (0, T ) into a finite number N of sub-time
intervals In = (tn−1, tn) ⊂ I, where 0 = t0 < t1 < . . . < tN−1 < tN = T . Now we
apply a Petrov–Galerkin finite element discretization to the variational formulation
of (6.12)

N∑
n=1

∫ tn

tn−1
∂tuw − αuw dt+ (u(0)− u0)w(0) = 0

as described in Section 4.5. On every interval In we choose local polynomials of order
q ≥ 1 and q− 1 for the ansatz and test space, Vh,In = Pq(In) and Wh,In = Pq−1(In),
respectively. This results in the discrete variational formulation of the problem

N∑
n=1

∫ tn

tn−1
∂tuh,Inwh,In − αuh,Inwh,In dt+ (uh(0)− u0)wh(0) = 0 (6.13)

for uh,In ∈ Vh,In , wh,In ∈ Wh,In . The global solution uh ∈ Vh is piece-wise given as
uh(t) = uh,In(t) for t ∈ In.

Lemma 6.3. The continuous Petrov–Galerkin method of polynomial degree q ap-
plied to the test equation (6.12) is equivalent to the q-stage Gauss–Legendre collo-
cation method.

Proof. A general proof for ordinary differential equations can be found in [Hul72].
Here we give a short version adapted to Dahlquists test equation (6.12) which shows
how Petrov–Galerkin methods are related to time stepping methods. Due to the
discontinuous test space the global variational formulation (6.13) decouples and can
be solved iteratively on every time interval In locally. This results in the following
problem.
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For n = 1, . . . , N find uh,In ∈ Pq(In) with uh,In(tn−1) = uh,In−1(tn−1) such that∫ tn

tn−1
∂tuh,Inwh − αuh,Inwh dt = 0

is fulfilled for all wh ∈ Pq−1(In).

Since the integrand is at most of polynomial degree 2q − 1, the integral can be
replaced by a Gaussian quadrature, with q quadrature points ck and weights ωk
where k = 1, . . . , q (cf. [HB09, Ch. 40]). We obtain

q∑
k=1

ωk∂tuh(ck)wh(ck) =
q∑

k=1
ωkαuh(ck)wh(ck).

We now test with Lagrange polynomials (cf. Example A.1)

λi(t) = Πq
j=1,j 6=i

t− cj
ci − cj

for i = 1, . . . , q. Hence it holds that λi(cj) = 0 for i 6= j and λi(ci) = 1 for
i = 1, . . . , q. We obtain 1 + q equations

uh,In(tn−1) = uh,In−1(tn−1),
∂tuh,In(ci) = αuh,In(ci), for i = 1, . . . , q.

(6.14)

This results in an equivalent problem, which is commonly known as collocation
method (cf. [Ise09, Sec. 3.4]).

Find a polynomial uh,In of degree q on In, such that the equations (6.14) are fulfilled
for all collocation parameters ci.

Thus the continuous Petrov–Galerkin method is equivalent to the Gauss–Legendre
collocation method, with right-hand side f = αuh,In .

Theorem 6.4. (cf. [HW96, Thm. 5.2]) The stability function R(z) for the q-stage
Gauss–Legendre collocation method is given by the diagonal Padé approximation of
the exponential function exp. Furthermore the method is A-stable, i.e., |R(z)| < 1
for all z ∈ C with negative real part.

Remark 6.6. Due to Lemma 6.3 the q-stage Gauss–Legendre collocation method
coincides with the continuous Petrov–Galerkin method of polynomial degree q for
the test equation (6.12). Hence both methods own the same stability function.
Due to the previous theorem, the continuous Petrov–Galerkin method is A-stable.
The first three diagonal Padé approximations of the exponential function exp(z)
are given as

P(1,1)(z) = 2 + z

2− z , P(2,2)(z) = 12 + 6z + z2

12− 6z + z2 , P(3,3)(z) = 120 + 60z + 12z2 + z3

120− 60z + 12z2 − z3 ,

see, e.g., [Ise09, Sec. 4.2].



92 CHAPTER 6. SPACE-TIME MULTILEVEL PRECONDITIONING

6.3.2 Block-Jacobi Smoother for a Test Equation
The variational formulation of Dahlquists test equation (6.13) leads to the following
linear block-system

Lu = b ⇐⇒


D1

C1 D2
. . . . . .

CN−1 DN




u1

u2
...
uN

 =


b1

b2
...
bN

 ,

with un, bn ∈ Rq and blocks Cn, Dn ∈ Rq×q. The entries can be again computed as

(Cn−1)i,j =
∫ tn

tn−1
(∂t − α)

(
tn − t

tn − tn−1
λn−1
j (tn−1)

)
λni (t) dt,

(Dn)i,j =
∫ tn

tn−1
(∂t − α)

(
t− tn−1

tn − tn−1
λnj (t)

)
λni (t) dt,

for i, j = 1, . . . , q and nodal shape functions λn1 , . . . , λnq ∈ Pq−1(In) for n = 1, . . . , N
(cf. Section 4.6). Due to the nodal structure (cf. Lemma 4.8) we can assume that
the node tn−1 is associated with the q-th degree of freedom. Hence, it hold that

(Cn)i,j = 0, for all i = 1, . . . , q and j = 1, . . . , q − 1, (6.15)

i.e., except on the last column, all entries of Cn are equal to zero. As described in
Remark 3.2 the initial condition is again incorporated into the right hand side by
computing

(bn)i =
∫ tn

tn−1
αu0λ

n
i (t) dt.

We now apply the block-Jacobi smoother defined in Section 6.2.2, where a block
corresponds to one time interval In and achieve the iteration matrix

SJ = IdNq − θJblock−diagN(L)−1L (6.16)

=


(1− θJ)Idq

E1 (1− θJ)Idq
. . . . . .

EN−1 (1− θJ)Idq

 , (6.17)

with vectors En = −θJD−1
n+1Cn ∈ Rq×q for n = 1, . . . , N − 1. We now analyze the

smoother by investigating, how the error coefficients e(i) = u(i) − u on one time
interval are damped after one Jacobi iteration. To do so, we use the representation

e(i) =
N
2∑

l=−N2

z
(i)
l φl, for coefficients z(i)

l ∈ C (6.18)
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of the error e(i) with respect to the Fourier basis φl ∈ CNq which is given component-
wise as

(
φl
)
j

= exp
(

ij
q

2πl
N

)
, for j = 0, . . . , Nq and l = −N2 , . . . ,

N

2 .

The value 2πl
N

is called frequency (see, e.g., [HB09, Ch. IX]). Within one separated
time interval In, for n = 2, . . . , N , the local iteration is given as

e(i+1)
n = En−1e

(i)
n−1 + (1− θJ)e(i)

n , (6.19)

where e(i)
n ∈ Rq are the components of e(i) associated with In. Correspondingly to

(6.18) we state the local representation

e(i)
n =

N
2∑

l=−N2

z
(i)
l φl,n, (6.20)

where the components of the local basis functions read as

(
φl,n

)
j

= exp
(

i
(
nq + j

)2πl
Nq
− i2πl

N

)
, for j = 1, . . . , q.

A simple calculation shows that φl,n−1 = e−i 2πl
N φl,n. Inserting (6.20) into the local

iteration scheme (6.19) and using (6.15) yields

(1− θJ)Idq φl,n + En−1φl,n−1

=(1− θJ)Idq φl,n + En−1e−i 2πl
N φl,n

=


(1− θJ) e−i 2πl

N (En−1)1,q
. . . ...

(1− θJ) e−i 2πl
N (En−1)q−1,q

(1− θJ) + e−i 2πl
N (En−1)q,q

φl,n
= S̃l,n φl,n,

with local iteration matrices S̃l,n ∈ Rq×q, for l = −N
2 , . . . ,

N
2 and n = 2, . . . , N . For

n = 1 we immediately conclude form (6.16) that S̃l,1 = (1− θJ)Idq. Thus the local
iteration (6.19) reads as

e(i+1)
n =

N
2∑

l=−N2

z
(i)
l S̃l,n φl,n, for n = 1, . . . , N.

Note that S̃l,n depends on the frequency 2πl
N

and therefore also the efficiency of
the block-Jacobi smoother. To analyze the smoothing behavior we compute the
spectral radius of the iteration matrix S̃l,n in the following lemma.
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Lemma 6.4. The local iteration matrix S̃l,n has the two different eigenvalues 1−θJ

and 1 − θJ + θJe−i 2πl
N R (α(tn − tn−1)) and hence the corresponding spectral radius

with respect to θJ is given as

ρ(S̃l,1, θJ) =
∣∣∣1− θJ

∣∣∣ ,
ρ(S̃l,n, θJ) = max

{∣∣∣1− θJ
∣∣∣ , ∣∣∣1− θJ + θJe−i 2πl

N R (α(tn − tn−1))
∣∣∣} ,

where n = 2, . . . , N and R is the stability function introduced in Theorem 6.4.

Proof. For n = 1 the assertion is trivial, since S̃l,1 is a diagonal matrix. In case of
n > 1, the entry (En−1)q,q can be computed as (En−1)q,q = θJR (αMt) (see proof of
[Neu13, Thm. 4.2.17]). Here it is used that the Petrov–Galerkin method inherits
the known stability function from a time stepping scheme. Furthermore all unit
vectors ij ∈ Rq for j = 1, . . . , q− 1 are eigenvectors with corresponding eigenvalues
1− θJ. From the last column of S̃l,n we conclude, that the components of the last
remaining eigenvector are given as

(En−1)i,q
(En−1)q,q

, for i = 1, . . . , q

with corresponding eigenvalue 1− θJ + θJR (αMt) e−i 2πl
N .

Next, we want to determine an optimal damping parameter θJ
∗ such that the spectral

radius gets as small as possible for high frequencies (π2 , π], i.e., l ∈ (N4 ,
N
2 ]. For this

purpose we assume that the step size Mt = tn − tn−1 is small such that |αMt| � 1.
Then it holds that R (αMt) ≈ exp (αMt) ≈ 1 and we can apply the following lemma.

Lemma 6.5. For R (αMt) = 1 the optimal damping parameter for high frequencies
can be computed as

θJ
∗ = 1

2

and the spectral radius ρ(S̃l,n, θJ
∗) is bounded by the constant 1√

2 < 1 independent of
the step size.

Proof. (cf. [Neu13, Lem. 4.2.24]). Suppose that l ∈
(
N
4 ,

N
2

]
, then it holds that

∣∣∣1− θJ + θJe−i 2πl
N R (αMt)

∣∣∣2
=
(
θJ − 1

)2
+ 2θJ

(
θJ − 1

)
cos

(
2πl
N

)
+
(
θJ
)2

≤
(
θJ − 1

)2
+
(
θJ
)2
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and thus ρ(S̃l,n, θJ) attains its infimum at θJ = θJ
∗ = 1

2 . This yields

ρ(S̃l,n, θJ
∗) ≤max

{∣∣∣1− θJ
∗

∣∣∣ ,√(θJ
∗ − 1)2 + (θJ

∗)
2
}

≤max
{

1
2 ,
√

2
2

}
≤ 1√

2
.

Remark 6.7. Note that θJ
∗ = 1

2 holds only for |αMt| � 1. In the worst case, where
Re (R (αMt)) = 0 and Im (R (αMt)) ≥ 1 and l = N

4 , it holds that∣∣∣e−i 2πl
N R (αMt)

∣∣∣ ≥ 1,

and thus

ρ(S̃l,n, θJ) =
(

Im
(
R (αMt)

)
− 1

)
θJ + 1 ≥ 1.

This means that high frequencies are not damped at all, since the iteration is not
contractive.

6.3.3 Possible Transfer to the Space-Time Setting

The presented investigation is far from being complete. We only investigated the
smoothing behavior of high oscillating errors and neglected the coarse grid correc-
tion. Moreover, transferring the block-Jacobi smoother from the test equation to
the space-time setting would result in a structure, where every block corresponds
to a complete time slice. The required inversion would be much to costly. Thus, it
is not clear how a reduced block-size influences the smoothing behavior.
However, in context of space-time multigrid methods α can be understood as the
eigenvalues of the discrete discontinuous operator Ah in space. Hence αMt ≈ z Mt

Mx
where z ∈ C is a mesh independent constant. From this we infer that the two-grid
cycle in time may converges as long as Mtk/Mxl and Mtk−1/Mxl are small enough
for l = 1, . . . , lmax and k = 1, . . . , kmax, i.e., the assumptions of Lemma 6.5 are ap-
proximately fulfilled. Moreover, it seems that θJ = 0.5 might be a suitable damping
parameter. Despite the discussed obscurities we observe a noticeable accordance of
the smoothing results for the test equation and the numerical experiments achieved
in the following section for the space-time setting.
A similar investigation of the smoothing behavior in space is more difficult, since
the spectral radius of the iteration matrix is not known in case of the DG-FEM
method. For that reason, a guess for an optimal damping parameter is computed
numerically in the next section.
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6.4 Testing different Multilevel Settings
In this section a multigrid preconditioner is developed by using the results from the
previous section and numerical test cases. In a first numerical test we will consider
the linear transport equation together with a two-grid cycle in time equipped with
a block-Jacobi smoother. We will notice that the theoretical results of Section
6.3 for Dahlquists test equation also apply in this test case. Afterwards we test a
two-grid cycle in space equipped with a block-Gauss–Seidel smoother and different
smoothing factors θGS ∈ (0, 1] to determine an optimal setting. The results are
then used to set up a multilevel strategy. Finally, this strategy is applied to a two
dimensional Maxwell test case, too. Numerical results for the multilevel strategy in
the adaptive case are given in Chapter 8. All numerical tests in this section where
performed on 16 processes on a node of the MA-PDE cluster (cf. A.3).

6.4.1 Linear Transport Equation
We consider the discrete linear transport problem with fixed polynomial degrees
p ≡ q ≡ 2 (see Section 3.3) with a divergence free vector field q(x) = 2π(−x2, x1)>
on the space-time domain Q = (−10, 10)2 × (0, 1). Furthermore, we choose a
homogeneous right-hand side f = 0, constant density ρ = 1 and a Gaussian pulse

u0(x) = exp
(
− 1.4((x1 − 5)2 + x2

2)
)

(6.21)

as initial condition.
We first test the two-grid cycle in time together with a block-Jacobi smoother
where we perform νpre,J

l,k = νpost,J
l,k = 2 smoothing steps and use the optimal damping

parameter θJ = 0.5 derived in Lemma 6.5. We use different fine and coarse grids
Rl,k and Rl−1,k, respectively. The corresponding degrees of freedom in space and
time are given in Table 6.1. The required number of iteration steps nl,k are given

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
l = 1 768× 16 768× 32 768× 64 768× 128 768× 256 768× 512
l = 2 3 072× 16 3 072× 32 3 072× 64 3 072× 128 3 072× 256 3 072× 512
l = 3 12 288× 16 12 288× 32 12 288× 64 12 288× 128 12 288× 256 12 288× 512
l = 4 49 152× 16 49 152× 32 49 152× 64 49 152× 128 49 152× 256 49 152× 512

Table 6.1: Degrees of freedom on a space-time mesh Rl,k with polynomial degrees
p ≡ q ≡ 2 where R0,0 consists of 128 = 16× 8 space-time cells.

in Table 6.2. One notes that for k − l ≥ 2 the number of iteration steps is always
bounded by ten. This corresponds to the observation, made in Remark 6.7 and
Section 6.3.3 for the test equation, where the two-grid cycle in time leads to good
convergence results only if Mtk/Mxl and Mtk−1/Mxl are small enough. Furthermore,
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the contraction rates of the two-grid cycle can be estimated by computing the
average convergence rate

dl,k =
(
‖bl,k − Ll,ku(nl,k)‖2

‖bl,k − Ll,ku(0)‖2

)1/nl,k

=
(
r(nl,k)

r(0)

)1/nl,k

of the preconditioned linear system

u(i+1) = u(i) +Bl,k(bl,k − Ll,ku(i)), u0 = 0,

where Bl,k is the corresponding precondition matrix for the two-grid cycle in space
or time, respectively. The computed averaged rates dl,k and iteration steps nl,k are
given in Table 6.2.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
l = 1 27 (4.91e-1) 25 (4.63e-1) 10 (1.43e-1) 7 (6.12e-2) 7 (6.08e-2) 7 (6.08e-2)
l = 2 34 (5.69e-1) 38 (6.09e-1) 33 (5.63e-1) 7 (6.90e-2) 7 (5.81e-2) 7 (5.83e-2)
l = 3 45 (6.56e-1) 50 (6.85e-1) 57 (7.19e-1) 49 (6.81e-1) 6 (4.53e-2) 6 (4.32e-2)
l = 4 65 (7.52e-1) 68 (7.58e-1) 79 (7.86e-1) 106 (8.40e-1) 94 (8.19e-1) 6 (3.54e-2)

Table 6.2: Iteration steps nl,k and averaged rates dl,k for a residual reduction by
the factor 10−8 of the linear iteration with two-grid cycle preconditioner in time
(Smoother: block-Jacobi [νl,k = 2, θl,k = 0.5]) and uniform polynomial degrees
(p, q) = (2, 2) on every Rl,k.

On the other hand block-Gauss–Seidel smoothing with νpre,GS
l,k = νpost,GS

l,k = 5 and
no damping, i.e., θGS = 1, is a suitable choice for the two-grid cycle in space. See
Figure 6.10, where we tested the two-grid cycle on several space-time refinements
Rl,k with different damping factors θGS ∈ (0, 1]. The results for a test with the
two-grid cycle in space on different space-time meshes are given in Table 6.3. We
notice that for coarsening in space the number of iteration steps is only bounded
in the time level k, but not in the space level l. However, the increase of the steps
is small enough to achieve a benefit by using a multilevel method. Another fact
is that for higher spatial dimensions D > 1 the coarse grid correction in space is
cheaper than in time, since coarsening in time reduces the effort by the factor 0.5
whereas coarsening in space decreases the effort by a factor (2D)−1 < 1/2.
As a conclusion we can state from the numerical tests and Remark 6.7 that coars-
ening in time is stable as long as Mtk/Mxl . 10−2 is small enough, i.e., k − l ≥ 2.
Furthermore, coarsening in space is efficient, if the increase of iteration steps is mod-
erate, e.g., logarithmic. This observations motivate a strategy for the space-time
multigrid solver, where we at first only coarse in space until the lowest spatial level
k = 0 is reached. Afterwards we coarse in time up to a lowest temporal level l = 0,
where Mt0/Mx0 is barely small enough. On this level we solve the coarse problem
exact. The full multilevel V-cycle is illustrated in Figure 6.11 and Algorithm 6.3.
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
l = 1 4 (1.31e-4) 4 (1.36e-4) 4 (1.85e-4) 4 (1.79e-4) 4 (1.68e-4) 4 (1.68e-4)
l = 2 5 (1.35e-2) 5 (5.50e-3) 5 (4.72e-3) 5 (5.50e-3) 5 (5.28e-3) 5 (4.94e-3)
l = 3 8 (7.57e-2) 7 (3.63e-2) 7 (2.26e-2) 6 (4.24e-2) 6 (4.07e-2) 6 (3.89e-2)
l = 4 15 (2.70e-1) 11 (1.61e-1) 10 (1.34e-1) 9 (1.27e-1) 9 (1.24e-1) 9 (1.20e-1)

Table 6.3: Iteration steps and averaged rates for a residual reduction by the factor
10−8 of the linear iteration with two-grid cycle preconditioner in space (Smoother:
block-Gauss–Seidel [νl,k = 5]) and uniform polynomial degrees (p, q) = (2, 2) on
every Rl,k.
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Figure 6.10: Averaged convergence rates dl,k for different damping factors θGS ∈
(0, 1] on different space-time meshes Rl,k and uniform polynomial degrees (p, q) =
(2, 2).
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The results for this strategy applied to the test problem are given in Table 6.4. Due
to the discussed problems above, we observe a moderate increase in the number of
iteration steps, when refining in space.

Algorithm 6.3 Full multilevel preconditioner
1: function xl,k = Precondition(l, k, rl,k)
2: if l == k == 0 then
3: xl,k = Solve_Exact(Al,k, rl,k)
4: return xl,k

5: if l > 0 then
6: BSM

l,k = BGS
l,k

7: else
8: BSM

l,k = BJ
l,k

9: (Pre-) smoothing:
10: for ν = 1, . . . , νpre

l,k do
11: wl,k = BSM

l,k rl,k
12: xl,k = xl,k + wl,k and rl,k = rl,k − Ll,kwl,k

13: Coarse grid correction in space if possible, otherwise correction in time:
14: if l > 0 then
15: dl−1,k = Rl−1,k

l,k rl,k
16: cl−1,k = Precondition(l − 1, k, rl−1,k)
17: wl,k = P l,k

l−1,kcl−1,k

18: else
19: dl,k−1 = Rl,k−1

l,k rl,k
20: cl,k−1 = Precondition(l, k − 1, rl,k−1)
21: wl,k = P l,k

l,k−1cl,k−1

22: Correction:
23: xl,k = xl,k + wl,k and rl,k = rl,k − Ll,kwl,k
24: (Post-) smoothing:
25: for ν = 1, . . . , νpost

l,k do
26: wl,k = BSM

l,k rl,k
27: xl,k = xl,k + wl,k and rl,k = rl,k − Ll,kwl,k
28: return xl,k
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BGS
l,k

Rl−1,k
l,k BGS

l−1,k

BJ
0,k

R0,k−1
0,k BJ

0,k−1

L−1
0,0

BJ
0,k−1 P 0,k

0,k−1

BJ
0,k

BGS
l−1,k P l,kl−1,k

BGS
l,k

(l, k)

(l − 1, k)

(0, k)

(0, k − 1)

(0, 0)

Figure 6.11: Full space-time multilevel strategy in terms of preconditioning matri-
ces: first coarsening in space up to level (0, k), then coarsening in time up to level
(0, 0). Finally, solve exact on the coarsest level and prolongate back.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
l = 1 4 (1.25e-4) 4 (1.26e-4) 4 (1.80e-4) 4 (1.92e-4) 4 (1.86e-4) 4 (1.75e-4)
l = 2 5 (1.35e-2) 5 (5.50e-3) 5 (4.71e-3) 5 (5.50e-3) 5 (5.28e-3) 5 (4.94e-3)
l = 3 8 (7.57e-2) 7 (3.63e-2) 7 (2.25e-2) 6 (4.24e-2) 6 (4.07e-2) 6 (3.89e-2)
l = 4 15 (2.73e-1) 11 (1.61e-1) 10 (1.34e-1) 9 (1.27e-1) 9 (1.24e-1) 9 (1.20e-1)

Table 6.4: Iteration steps and averaged rates for a full space-time multilevel
method for the transport problem. Smoother: Jacobi (νk,l = 2, θl,k = 0.5) in time,
Gauss–Seidel (νl,k = 5) in space.
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6.4.2 Maxwell’s Equations in 2D

We now apply the same multilevel strategy to the Maxwell case, where we take
a two-dimensional transversal magnetic test problem in Q = (0, 1)2 × (0, 1) and a
homogeneous right-hand side. The initial and boundary conditions are given by the
exact solution

u(x, t) =


H1(x, t)
H2(x, t)
E3(x, t)

 =


0

− sin ((x1 − t) π)
sin ((x1 − t) π)

 .
The results are given in Table 6.5, where we observe the same behavior as in the
linear transport case. Since hyperbolic problems do not fulfill the same regularity

l k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
degrees of freedom on the space-time mesh Rl,k with polynomial degrees p ≡ q ≡ 2

1 1 152× 16 1 152× 32 1 152× 64 1 152× 128 1 152× 256 1 152× 512
2 4 608× 16 4 608× 32 4 608× 64 4 608× 128 4 608× 256 4 608× 512
3 18 432× 16 18 432× 32 18 432× 64 18 432× 128 18 432× 256 18 432× 512
4 73 728× 16 73 728× 32 73 728× 64 73 728× 128 73 728× 256 73 728× 512

multilevel iterations in space and time
1 4 (3.42e-3) 4 (3.93e-3) 4 (4.03e-3) 4 (3.91e-3) 4 (3.70e-3) 4 (3.44e-3)
2 6 (3.18e-2) 6 (3.24e-2) 6 (3.13e-2) 6 (3.00e-2) 6 (2.85e-2) 6 (2.71e-2)
3 10 (1.31e-1) 10 (1.35e-1) 10 (1.31e-1) 10 (1.28e-1) 9 (1.59e-1) 9 (1.53e-1)
4 17 (3.62e-1) 17 (3.50e-1) 17 (3.44e-1) 17 (3.39e-1) 16 (3.68e-1) 16 (3.61e-1)

Table 6.5: Degrees of freedom of the Maxwell example in space-time domain
on different space-time meshes Rl,k, where R0,0 is decomposed into 64 = 8 × 8
space-time cells. Iteration steps and averaged rates for a full space-time multilevel
method for the Maxwell example. Smoother: block-Jacobi (νl,k = 2, θl,k = 0.5) in
time, block-Gauss–Seidel (νl,k = 5) in space.

assumptions and properties as elliptic problems, applying the techniques and results
mentioned in Section 6.2.6 is difficult. As long as corresponding smoothing and
approximation properties (cf. Definition 6.6) do not hold, we cannot assume stable
multilevel behavior, i.e., bounded iteration numbers, in our case. In the numerical
tests (cf. Tables 6.4 and 6.5), we actually observe a logarithmic dependency of
iteration numbers on the problem size. However, the numerical effort is still lower
compared to other iterative methods, e.g., Krylov–subspace methods, where the
iteration numbers grow at least linearly ([Mei11, Sec. 4.3]). As a result, we apply
the presented multilevel strategy as a preconditioner to a suitable iterative Krylov–
subspace method for our numerical experiments.
In the adaptive case a coarse cell may correspond to a set of space-time cells with
different associated polynomial degrees. In order to prevent that the convergence
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rate is disturbed, we have to choose a suitable polynomial distribution on the sub-
spaces Vl−1,k or Vl,k−1 and correspondingly on Wl−1,k and Wl,k−1. In this case we
proceed as stated in Section 6.2.4. Finally we can apply the restriction and pro-
longation matrices of the uniform refined case. The convergence behavior of the
multilevel preconditioner in the adaptive case is investigated in the last chapter.



7 Implementation

In this work the parallel finite element library M++ was used to implement the
presented space-time method (cf. [Wie10]). Additionally to common features of a
finite element library, e.g., input-output functions, linear algebra routines, spatial
conforming finite elements, time-stepping algorithms, parallel direct and parallel it-
erative solvers and preconditioners, M++ contains a framework for DG-FEM as well
(cf. [Tha15]). Nevertheless, several major changes and extensions were necessary
to implement a suitable p-adaptive space-time setting. In the following we give a
short overview of the main contributions to the M++ library implemented for this
work. This may serves as a basic guideline for the reader to implement parallel and
adaptive space-time methods in other finite element libraries.

7.1 Generating a Space-Time Mesh

An admissible spatial mesh (K,V ,F) in M++ consists of a set of cells K, vertices
V and faces F (see [Wie10, Sec. 2]). Every geometric object, e.g., a cell K ∈ K or
face f ∈ F , is stored in a distributed hash map, where its geometric midpoint is
used as a hash key. Hash maps or hash tables are data structures for associative
arrays (maps), where hash functions are used to map identifying values, i.e., (hash)
keys, to their associative data. These kind of maps are commonly used in computer
science since the average time for searching, inserting and deleting operations is
almost independent of the map size. Due to this data structure a cell K ∈ K
is defined uniquely by its midpoint cK and corresponding vertices x0,x1, . . . ∈ V .
Two neighboring cells K,Kf ∈ K, K 6= Kf , are connected by their joint face
f = ∂K ∩ ∂Kf 6= ∅. A face is again defined by its midpoint cf and the midpoints
(cK , cKf ) of both neighboring cells. If cKf attains the value ∞ then the cell K is a
boundary cell.
We have seen that the spatial mesh structure in M++ depends on the vertices and
geometric midpoints. Hence the generation of a space-time mesh is done analogously
by introducing coordinates with an additional time component. A space-time vertex
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x ∈ V is then defined as vector x = (x1, x2, . . . , xD, xt)>. We are now able to use
the same data structure as before equipped with a slight modification. As discussed
above the set of spatial cells K is replaced by the set of space-time cells R. A single
space-time cell R ∈ R consists of two underlying objects. A spatial cell K ∈ K
and a time interval I ∈ I, where I is the set of all time intervals I. Hence the
resulting space-time mesh is given as (R,K, I,V ,F). To construct a tensor product
mesh we first read in the spatial mesh K and a set of time intervals I. Then we
construct space-time cells R and use a routine which inserts the cell into the mesh
(R,K, I,V ,F) by extracting vertices and faces from R and filling up the hash maps
V and F , respectively. Afterwards the mesh is distributed to several processes as
explained in the following section.

7.2 Cell Distribution and Load Balancing

In this section we introduce a simple distribution and load balancing algorithm,
which uses the amount of degrees of freedom associated to a cell as a weight. To
distribute a mesh R on P ∈ N processes we use a recursive coordinate bisection
(RCB), see, e.g., [Wil91] and [MW14], method in space-time which is illustrated
in the following. Every space-time cell R ∈ R has a unique geometric midpoint
cR ∈ Ω × (0, T ) (see Figure 4.4). Hence we can use the space-time coordinate
cR = (c1,R, . . . , cD,R, ct,R)> of the midpoints to sort the cells. For this purpose a
strict order relation in space-time is needed. In every spatial direction and in time
we have the strict one dimensional order relation <. This relation is known to be
irreflexive, antisymmetric and transitive. Moreover we use this relation to define
the following strict D + 1 dimensional ordering relations.

Definition 7.1. Let a,b ∈ RD+1, D ∈ {1, 2, 3}. We define the following order
relations in every spatial and the time direction:

a<t b ⇐⇒



at < bt,

a1 < b1, if (at = bt),
a2 < b2, if (at = bt) ∧ (a1 = b1),
a3 < b3, if (at = bt) ∧ (a1 = b1) ∧ (a1 = b2),

a<1 b ⇐⇒



a1 < b1,

a2 < b2, if (a1 = b1),
a3 < b3, if (a1 = b1) ∧ (a2 = b2),
at < bt, if (a1 = b1) ∧ (a2 = b2) ∧ (a3 = b3),
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a<2 b ⇐⇒



a2 < b2,

a3 < b3, if (a2 = b2),
a1 < b1, if (a2 = b2) ∧ (a3 = b3),
at < bt, if (a2 = b2) ∧ (a3 = b3) ∧ (a1 = b1),

a<3 b ⇐⇒



a3 < b3,

a1 < b1, if (a3 = b3),
a2 < b2, if (a3 = b3) ∧ (a1 = b1),
at < bt, if (a3 = b3) ∧ (a1 = b1) ∧ (a2 = b2).

This definition can be used to separate R into two sets R1 and R2 with approxi-
mately the same cardinality

|R1| ≈ |R2| (7.1)

such that

cR1 <rel cR2 , for all R1 ∈ R1 and R2 ∈ R2,

where<rel ∈ {<t,<1,<2,<3} is one of the relations defined above. Since both sets
R1 and R2 can be separated again independent of each other. Thus, we can state a
space-time RCB Algorithm 7.1 which generates 2s disjoint sets R1∪R2∪. . .∪R2s =
R after s ≥ 0 recursive iterations. Every set Rπ is now associated with one process
π ∈ P = {1, . . . , P}. Note that this strategy is only efficient if the amount of
processes is given as P = 2s. Formally the RCB algorithm defines a mapping

RCB: R → P

and we obtain the representation Rπ = {R ∈ R : RCB(R) = π} for π ∈ P . The
parallel implementation is discussed in the following remarks.

Remark 7.1 (Overlapping cells). To be able to interchange informations between
neighboring processes, we introduce an additional set of so called ghost or overlap-
ping cells O (cf. [Tha15, Ch. 6]). In particular this is necessary to compute the
numerical flux Fnum and to ensure continuity in time in our space-time discontinu-
ous Petrov–Galerkin discretization (cf. Section 4.5). Thus the actual mesh is given
as (R,K, I,V ,F ,O). The construction of the overlap is done as follows. Let VR
be the set of vertices associated with the cell R ∈ R. Then the set of vertices
on one process π ∈ P is given as Vπ = ⋃

R∈Rπ VR. This defines a decomposition
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Algorithm 7.1 RCB load balancing strategy
1: function {R1,R2, . . . ,R2s} = RCB_Balance(R, rel, s)
2: if s=0 then return R

3: split R into R1 and R2 such that for all R1 ∈ R1, R2 ∈ R2:
4: cR1 <rel cR2 and |R1| ≈ |R2|

5: if rel == t then
6: return {RCB_Balance(R1, 1, s− 1),RCB_Balance(R2, 1, s− 1)}
7: if D == 1 then
8: return {RCB_Balance(R1, t, s− 1),RCB_Balance(R2, t, s− 1)}

9: if rel == 1 then
10: return {RCB_Balance(R1, 2, s− 1),RCB_Balance(R2, 2, s− 1)}
11: if D == 2 then
12: return {RCB_Balance(R1, t, s− 1),RCB_Balance(R2, t, s− 1)}

13: if rel == 2 then
14: return {RCB_Balance(R1, 3, s− 1),RCB_Balance(R2, 3, s− 1)}

15: if rel == 3 then
16: return {RCB_Balance(R1, t, s− 1),RCB_Balance(R2, t, s− 1)}

V = V1 ∪ . . . ∪ VP (not disjoint). Hence the set of overlapping cells associated with
one process π ∈ P can be defined as

Oπ = {R ∈ R \ Rπ : Vπ ∩ VR 6= ∅}

with corresponding decompositionO = O1∪. . .∪OP . The setOπ can be understood
as copies of cells on other processes which share joint vertices. Note that this
definition follows from the discontinuous Petrov–Galerkin discretization. In case
of a discontinuous Galerkin discretization in space-time the amount of overlapping
cells can be reduced, since continuity in time is not enforced. As a result

Oπ = {R ∈ R \ Rπ : Fπ ∩ FR 6= ∅}

becomes the set of cells on other processes which share joint faces, where Fπ =⋃
R∈Rπ FR and F = F1 ∪ . . . ∪ FP are defined analogously.

Remark 7.2. Since every cell can have a different amount of corresponding degrees
of freedom, Algorithm 7.1 will lead to an imbalanced distribution in the adaptive
case. To prevent this, we replace (7.1) and the corresponding expression in Algo-
rithm 7.1 (line 4) by the weighting∑

R∈R1

nR ≈
∑
R∈R2

nR,

where nR is the amount of degrees of freedom assigned to the cell R.
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7.3 Polynomial Adaptivity
To use different polynomial degrees on every cell R ∈ R in space and time we add
an additional hash map D to the M++ DoF-handling class. We only have to store
the polynomial degrees of the ansatz space Vh as tuples (pR, qR) ∈ N0 × N, since
the degrees of the test space Wh are given as (pR, qR − 1) ∈ N0 × N0. Again the
geometric midpoint of R is used as hash key. The distribution to different processes
is implemented as a decomposition

D = D1 ∪ . . . ∪ DP , where Dπ = {(pR, qR) : R ∈ Rπ ∪ Oπ} .

After the initialization with homogeneous degrees, e.g., (pR, qR) = (0, 1), it is pos-
sible to manipulate the degrees (pR, qR) ∈ Dπ, for R ∈ Rπ, on every process π ∈ P
independently. Note that every change of polynomial degrees requires the call of a
communication routine, which is necessary to keep informations consistent on over-
lapping cells Oπ associated with other processes. This is done analogously to the
linear algebra class, where an accumulation method is called to keep matrix and
vector entries consistent on overlapping cells (cf. [Wie10], [Tha15, Sec. 6.3]). Thus
the set

{(pR, qR) ∈ Dπ : R ∈ Oπ} ⊂ Dπ

is updated by requesting the corresponding data from neighboring processes. This
two-stage procedure leads to consistent results since Rπ ∩ Oπ = ∅, for all π ∈ P .
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8 Numerical Experiments

8.1 Higher-Order Space-Time Methods

To confirm the theoretical results of [HW08], [MS11] and Theorem 4.2, we consider
test case examples, where the solution u is known and smooth enough. We compute
the so called experimental order of convergence (EOC). The EOC can be determined
by computing the slope of the error graph in a double-logarithmic plot towards
the mesh size. Thus we can compute the EOC between two measuring points
(h1, ‖u− uh1‖) and (h2, ‖u− uh2‖) as

EOC12 = log(‖u− uh1‖)− log(‖u− uh2‖)
log(h1)− log(h2) ,

with respect to a given norm ‖ . ‖. Here h1 and h2 are mesh sizes of two different
corresponding meshes with h1 > h2. To evaluate integrals within the norms nu-
merically one uses quadrature formulas of sufficiently high order. In particular one
has to ensure that the quadrature error is smaller than the discretization error such
that the EOC computation is not distributed.
We first investigate the weighted L2-norm error ‖e‖W = ‖u−uh‖W in the space-time
domain. Since we are able to choose different polynomial degrees in space and time,
we distinguish between convergence in space, time and space-time, respectively. For
the spatial discontinuous Galerkin discretization we expect order p+ 1 (cf. [HW08,
Ch. 2.2]) in space and order q + 1 for the continuous Petrov–Galerkin method in
time (cf. [Hul72] or [MS11]). Thus the order of our space-time method is expected
to be as good as the lowest order in space or in time minp,q{p + 1, q + 1}. In a
second test we focus on the error ‖e‖Vh = ‖u − uh‖Vh towards the discrete norm
‖.‖Vh , which is defined in Definition 4.10 and used for stability and convergence
analysis in Theorem 4.2.
In a first numerical experiment we investigate the convergence behavior of the
Petrov–Galerkin method introduced in Chapter 4 in case of the linear transport
example. The convergence in the electromagnetic wave case is investigated after-
wards. In both numerical test cases we start with a very coarse mesh of 32 × 1
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space-time cells. To determine the EOC in space, the mesh is refined several times
in time such that Mt cmax < Mx holds true for all used spatial discretizations Mx.
Here cmax > 0 denotes an upper bound for the wave speed in Q for our examples,
e.g.,

‖q‖L∞(Q) ≤ cmax and 1
√
εµ

= 1 ≤ cmax.

Furthermore, we use the same polynomial degrees in space and time. This ensures
that the temporal error is always smaller than the error in space and hence does
not affect the spatial convergence rate. Analogously, the experimental order of
convergence in time is measured with interchanged roles of Mx and Mt. In case of
the space-time convergence we again use p = q and refine simultaneously in space
and time. All convergence tests are performed on the MA-PDE Cluster (cf. A.3)
with up to 128 processes, if possible.

8.1.1 Linear Transport Equation
We consider the exact solution

u(x, t) = sin
(
(x1 + x2 − 2t)π

)
of the linear advection equation (3.8) on a computational domain Q = Ω× (0, T ) =
(−1, 1)2 × (0, 1). The parameters are given as ρ ≡ 1 and f ≡ 0 and q = [1, 1]>.
Furthermore, the initial and boundary conditions correspond to u and hence u0(x) =
u(x, 0) and u(x, t) for all (x, t) ∈ Γin× (0, T ). We first investigate convergence with
respect to the ‖.‖W -norm. Here the computed experimental orders of convergence
for different polynomial degrees p and q in space, time, space-time are given in
Tables 8.1, 8.2, 8.3 and in Figures 8.1, 8.2, 8.3, respectively. For the ‖.‖Vh-norm
the computed experimental orders of convergence in space-time are given in Table
8.4 and Figure 8.4. In every test case, we observe that the EOCs coincide with the
expected theoretical order of convergence.

‖e‖W EOC ‖e‖W EOC ‖e‖W EOC ‖e‖W EOC
Mx p ≡ 1 p ≡ 2 p ≡ 3 p ≡ 4
2−0 1.1203e-0 - 1.2162e-1 - 3.0638e-2 - 3.8215e-3 -
2−1 2.8661e-1 1.97 2.2210e-2 2.45 1.9631e-3 3.96 1.5013e-4 4.67
2−2 7.3722e-2 1.96 2.3687e-3 3.23 1.2710e-4 3.95 4.3990e-6 5.09
2−3 1.8269e-2 2.01 2.7825e-4 3.09 7.8038e-6 4.03 1.3309e-7 5.05
2−4 4.4996e-3 2.02 3.4908e-5 2.99 4.7861e-7 4.03 7.8580e-9 5.04
theoretical order 2.00 3.00 4.00 5.00

Table 8.1: Linear transport: Convergence of the error e = u − uh in space with
respect to the ‖.‖W -norm for different polynomial degrees.
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‖e‖W EOC ‖e‖W EOC ‖e‖W EOC ‖e‖W EOC
Mt q ≡ 1 q ≡ 2 q ≡ 3 q ≡ 4
2−0 1.7626e-0 - 1.2287e-0 - 6.1151e-1 - 2.0909e-1 -
2−1 1.3562e-0 0.51 3.5235e-1 1.80 5.3649e-2 3.51 7.3478e-3 4.83
2−2 6.3385e-1 0.93 4.3308e-2 3.02 3.0953e-3 4.12 2.2716e-4 5.02
2−3 1.9581e-1 1.59 4.5838e-3 3.24 1.9073e-4 4.02 7.0715e-6 5.01
2−4 5.1644e-2 1.89 5.2628e-4 3.12 1.1924e-5 4.00 2.1925e-7 5.01
2−5 1.3091e-2 1.97 6.2802e-5 3.07 7.3927e-7 4.01 6.8244e-9 5.01
theoretical order 2.00 3.00 4.00 5.00

Table 8.2: Linear transport: Convergence of the error e = u − uh in time with
respect to the ‖.‖W -norm for different polynomial degrees.

‖e‖W EOC ‖e‖W EOC ‖e‖W EOC ‖e‖W EOC
Mx,Mt p ≡ q ≡ 1 p ≡ q ≡ 2 p ≡ q ≡ 3 p ≡ q ≡ 4

2−1 1.3029e-0 - 3.5435e-1 - 5.3395e-2 - 7.3365e-3 -
2−2 6.3627e-1 1.03 4.3447e-2 3.03 3.0773e-3 4.12 2.2636e-4 5.02
2−3 1.9932e-1 1.67 4.5495e-3 3.26 1.8976e-4 4.02 7.0224e-6 5.01
2−4 5.2700e-2 1.92 5.1740e-4 3.14 1.1857e-5 4.00 2.1870e-7 5.00
2−5 1.3351e-2 1.98 6.2636e-5 3.05 7.3927e-7 4.00 6.8244e-9 5.00
theoretical order 2.00 3.00 4.00 5.00

Table 8.3: Linear transport: Convergence of the error e = u − uh in space-time
with respect to the ‖.‖W -norm for different polynomial degrees.

‖e‖Vh EOC ‖e‖Vh EOC ‖e‖Vh EOC ‖e‖Vh EOC
space-time convergence

Mx,Mt p ≡ q ≡ 1 p ≡ q ≡ 2 p ≡ q ≡ 3 p ≡ q ≡ 4
2−1 4.1917e-0 - 2.5419e-0 - 6.8845e-1 - 1.4844e-1 -
2−2 4.0844e-0 0.04 7.9058e-1 1.68 1.0670e-1 2.69 1.0565e-2 3.81
2−3 2.1738e-0 0.91 2.1394e-1 1.89 1.3724e-2 2.96 6.7858e-4 3.96
2−4 1.1045e-0 0.98 5.3769e-2 1.99 1.7226e-3 2.99 4.2418e-5 4.00
2−5 5.5479e-1 0.99 1.3339e-2 2.01 2.1545e-4 3.00 2.6421e-6 4.00
theoretical order 1.00 2.00 3.00 4.00

Table 8.4: Linear transport: Convergence of the error e = u − uh in space-time
with respect to the ‖.‖Vh-norm for different polynomial degrees.
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Figure 8.1: Linear transport: Conver-
gence in space for sufficiently small Mt.
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Figure 8.2: Linear transport: Conver-
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8.1.2 Maxwell’s Equations in 2D
In case of two-dimensional electromagnetic waves (TM waves), we consider the exact
two-dimensional solution

u(x, t) =


H1(x, t)
H2(x, t)
E3(x, t)

 =


0

− sin ((x1 − t) π)
sin ((x1 − t) π)


of linear Maxwell’s equations (3.14) on a computational domain Q = Ω× (0, T ) =
(−1, 1)2 × (0, 1). The parameters are given as ε ≡ µ ≡ 1 and f = 0. Again
the initial and boundary conditions are taken from u. Again, we first investigate
convergence in space, time and space-time with respect to the ‖.‖W -norm. The
computed experimental orders of convergence are shown in Tables 8.5, 8.6, 8.7 and
in Figures 8.5, 8.6, 8.7. For the ‖.‖Vh-norm the computed experimental orders of
convergence in space-time are given in Table 8.8 and Figure 8.8. As in the previous
case, we observe the expected order of convergence in all four test cases.

‖e‖W EOC ‖e‖W EOC ‖e‖W EOC ‖e‖W EOC
Mx p ≡ 1 p ≡ 2 p ≡ 3 p ≡ 4
2−0 7.2477e-1 - 1.1432e-1 - 1.6535e-2 - 2.6628e-3 -
2−1 2.1618e-1 1.75 1.3099e-2 3.13 1.1178e-3 3.89 8.3780e-5 4.99
2−2 5.5389e-2 1.96 1.5297e-3 3.10 7.1642e-5 3.96 2.5857e-6 5.02
2−3 1.3803e-2 2.00 1.8470e-4 3.05 4.5048e-6 3.99 7.9860e-8 5.02
2−4 3.4740e-3 1.99 2.2775e-5 3.02 2.8168e-7 4.00
theoretical order 2.00 3.00 4.00 5.00

Table 8.5: TM Maxwell’s equations: Convergence of the error e = u−uh in space
with respect to the ‖.‖W -norm for different polynomial degrees.

‖e‖W EOC ‖e‖W EOC ‖e‖W EOC ‖e‖W EOC
Mt q ≡ 1 q ≡ 2 q ≡ 3 q ≡ 4
2−0 1.1494e-0 - 3.6888e-1 - 7.1625e-2 - 1.0034e-2 -
2−1 5.1559e-1 1.16 5.2232e-2 2.82 4.3247e-3 4.05 3.1775e-4 4.98
2−2 1.6347e-1 1.66 6.0845e-3 3.10 2.6687e-4 4.02 9.9132e-6 5.00
2−3 4.3855e-2 1.90 7.3005e-4 3.06 1.6668e-5 4.00 3.0874e-7 5.00
2−4 1.1184e-2 1.97 8.9588e-5 3.03 1.0422e-6 4.00
theoretical order 2.00 3.00 4.00 5.00

Table 8.6: TM Maxwell’s equations: Convergence of the error e = u− uh in time
with respect to the ‖.‖W -norm for different polynomial degrees.
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Figure 8.5: TM Maxwell’s eq.: Conver-
gence in space for sufficiently small Mt.
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Figure 8.6: TM Maxwell’s eq.: Conver-
gence in time for sufficiently small Mx.
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Figure 8.7: TM Maxwell’s eq.: Conver-
gence in space-time with respect to the
‖ . ‖W -norm.
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‖e‖W EOC ‖e‖W EOC ‖e‖W EOC ‖e‖W EOC
Mx,Mt p ≡ q ≡ 1 p ≡ q ≡ 2 p ≡ q ≡ 3 p ≡ q ≡ 4

2−1 5.9138e-1 - 5.5654e-2 - 4.4155e-3 - 3.2783e-4 -
2−2 1.8685e-1 1.66 6.3467e-3 3.13 2.7484e-4 4.01 1.0209e-5 5.01
2−3 5.0021e-2 1.90 7.4854e-4 3.08 1.7201e-5 4.00 3.1765e-7 5.01
2−4 1.2715e-2 1.98 9.1341e-5 3.03 1.0735e-6 4.00 9.8990e-9 5.00
2−5 3.1903e-3 1.99 1.1313e-5 3.01 6.6854e-8 4.01
theoretical order 2.00 3.00 4.00 5.00

Table 8.7: TM Maxwell’s equations: Convergence of the error e = u − uh in
space-time with respect to the ‖.‖W -norm for different polynomial degrees.

‖e‖Vh EOC ‖e‖Vh EOC ‖e‖Vh EOC ‖e‖Vh EOC
space-time convergence

Mx,Mt p ≡ q ≡ 1 p ≡ q ≡ 2 p ≡ q ≡ 3 p ≡ q ≡ 4
2−1 2.6766e-0 - 6.3450e-1 - 8.5300e-2 - 8.5373e-3 -
2−2 1.6420e-0 0.70 1.7182e-1 1.88 1.1119e-2 2.94 5.4974e-4 3.96
2−3 8.6077e-1 0.93 4.3259e-2 1.99 1.3980e-3 2.99 3.4516e-5 4.00
2−4 4.3535e-1 0.98 1.0800e-2 2.00 1.7499e-4 3.00 2.1534e-6 4.00
2−5 2.1837e-1 1.00 2.6860e-3 2.01 2.1879e-5 3.00
theoretical order 1.00 2.00 3.00 4.00

Table 8.8: TM Maxwell’s equations: Convergence of the error e = u − uh in
space-time with respect to the ‖.‖Vh-norm for different polynomial degrees.
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8.2 Parallel Scalability
In this section we test the scaling behavior of the parallel implementation of our
multilevel preconditioner for different numbers of processes. To do this we consider
the linear transport equation and the same two-dimensional test setting as stated
in Section 6.4.1. All numerical tests in this section were performed on the ForHLR I
Cluster (cf. A.3).

Weak Scalability We first consider the weak scaling behavior which is defined
in the following, see, e.g., [Mag16, Def. 2.6].

Definition 8.1 (Weak scalability). The weak scalability of an algorithm measures
its efficiency with respect to an increasing number of processes P and an increasing
problem size N (with the same rate). In particular the ratio N/P stays constant
for increasing P . Moreover, weak scaling behavior is denoted as perfect if

TP (N) = const.

where TP (N) is the runtime of an algorithm on P processes applied to a problem
with N unknowns, i.e., degrees of freedom.

This means that the number of processes is doubled, quadrupled or increased eight-
fold every time we refine in space for one-, two- or three-dimensional problem,
respectively. When refining in time, the number of processes is doubled. As a con-
sequence the amount of associated degrees of freedom is fixed on every process. The
results are given in Table 8.9 and Figure 8.9, where we refined in time and space
alternatingly. Due to the small increase of iteration steps, observed in Section 6.4.1,
we do not obtain a perfect weak scaling behavior. Instead we observe a logarithmic
growth. To highlight the relation with respect to the increasing number of iter-
ation steps, Figure 8.9 also contains a scaled plot. Here we illustrated the ratio
between solving times and iteration steps Tp(N)/niter which stays almost constant,
i.e., almost perfect weak scaling behavior is achieved.

Strong Scalability As a second test we investigate the so called strong scaling
behavior which is defined in the following, see, e.g., [Mag16, Def. 2.4].

Definition 8.2 (Strong scalability). The strong scalability of an algorithm measures
its efficiency with respect to an increasing number of processes P and a constant
problem size N . Moreover, strong scaling behavior is denoted as perfect if

TP (N) = T1(N)
P

where TP (N) is given as in Definition 8.1. In particular we expect that the solving
time scales with the reciprocal number of processes.
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Degrees of freedom iteration steps time
#proc. P N N/P niter (rate) TP (N) in [s]

1 3 072× 32 3 072× 32 4 (3.51e-3) 5.5
2 3 072× 64 3 072× 32 4 (6.01e-3) 5.8
4 6 144× 64 3 072× 32 6 (3.81e-2) 6.1
8 12 288× 64 3 072× 32 6 (4.16e-2) 7.6
16 12 288× 128 3 072× 32 6 (4.24e-2) 8.2
32 24 576× 128 3 072× 32 11 (1.31e-1) 15.7
64 49 152× 128 3 072× 32 10 (1.30e-1) 15.5
128 49 152× 256 3 072× 32 10 (1.43e-1) 16.1
256 98 304× 256 3 072× 32 16 (3.11e-1) 27.2
512 196 608× 256 3 072× 32 16 (2.87e-1) 31.4
1024 196 608× 512 3 072× 32 16 (3.05e-1) 35.0

Table 8.9: Weak scalability for uniform polynomial degree (p, q) = (2, 2).
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Figure 8.9: Weak scaling behavior for uniform polynomial degrees (p, q) = (2, 2).
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The results are given in Table 8.10 and Figure 8.10. For 128 processes and less,
we recognize that the solving times decrease by a factor of approximately 0.5, if
the number of processes is doubled. Thus the strong scalability is almost optimal
in this case. Note that we observe a slight increase of iteration steps in this case,
too. This is apparent from the fact that the Gauss–Seidel smoother is applied only
locally on every process (cf. Remark 6.1). Additionally, the problem size (amount
of DoFs) on every process gets too small for a large number of processes and hence
communication time becomes dominant. As a result the strong scaling behavior
deteriorates on more than 128 processes.

#proc. P DoFs N iter. steps niter (rate) time TP (N) in [s]
1 49 152× 256 9 (1.03e-1) 1 100.4
2 49 152× 256 9 (1.08e-1) 584.3
4 49 152× 256 9 (1.12e-1) 337.4
8 49 152× 256 9 (1.16e-1) 194.7
16 49 152× 256 10 (1.25e-1) 92.8
32 49 152× 256 10 (1.15e-1) 57.0
64 49 152× 256 10 (1.28e-1) 31.3
128 49 152× 256 10 (1.43e-1) 16.6
256 49 152× 256 11 (1.40e-1) 13.0
512 49 152× 256 11 (1.63e-1) 9.9
1024 49 152× 256 12 (1.79e-1) 9.2

Table 8.10: Strong scaling behavior for uniform polynomial degree (p, q) = (2, 2).
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8.3 Parallel and Adaptive Space-Time Computa-
tion

In this section we present the results for the p-adaptive space-time method. Hence
we combine the discontinuous Petrov–Galerkin discretization from Section 4.5 with
the dual error estimation introduced in Section 5.4. Finally we solve the resulting
linear system with a parallel iterative generalized minimal residual solver (GM-
RES), see, e.g. [Saa03, Ch. 6.5] or [Mei11, Sect. 4.3.2.4]. Moreover, the multilevel
preconditioner presented in Chapter 6 is applied to reduce the computational costs.
The GMRES method stops if the residual is reduced by a factor of 10−8. Note that
this value is chosen arbitrarily for our test cases. In real applications it would be
sufficient that the solver terminates if the discretization error is reached. Again we
first start with the advection equation (3.8) and a known solution, which serves as a
test example to verify our algorithm. Afterwards we consider a more sophisticated
application for transversal magnetic waves in two spatial dimensions.

8.3.1 Linear Transport Equation

−10 −5 0 5 10
−10

−5

0

5

10

u0

Gaussian pulse
vector field q

Figure 8.11: Schematic illustration of the rotating cone problem.

In this two-dimensional example we investigate the performance and reliability of
our p-adaptive algorithm with respect to a linear advection equation. The results are
compared to the case of uniform refinement. All numerical results in this section
were computed on 64 processors on two nodes of the MA-PDE cluster (cf. A.3).
Again, we choose the setting from Section 6.4.1, where a Gaussian pulse (6.21) in a
rotating and divergence-free vector field q(x) = 2π(−x2, x1)> is investigated. The
space-time domain is given as Q = (−10, 10)2× (0, 1) and moreover a homogeneous
right-hand side f = 0 and constant density ρ = 1 is assumed (cf. Figure 8.11). The
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exact solution is then given as

u(x, t) = exp
(
− 1.4

(
(5 cos(2πt)− x1)2 + (5 sin(2πt)− x2)2

))
, for (x, t) ∈ Q.

Note that we have u0(x) = u(x, 1) at final time T = 1. In the literature, these kind
of test cases are often used as benchmarks for convection diffusion problems and
known as rotating cone problems (see, e.g., [DH03, Sec. 3.11.3]).
We begin with an initial coarse mesh which consists of 1024 = 64 × 16 space-time
cells and is refined 3 times in space and time up to 524 288 cells. Moreover we use
lowest order polynomial degrees (p, q) = (1, 1) as initial distribution. The coarse
problems, occurring in the multilevel preconditioner, are solved by using a parallel
direct solver [MW11]. Here a block LU decomposition is computed in parallel only
once. Then the LU decomposition is used to solve the coarse problem in every
multilevel iteration with the cost of two matrix-vector multiplications. The results
for the uniform p-refined case are given in Table 8.11.

GMRES with
uniform multilevel preconditioning energy error

poly. deg. (p, q) #DoFs steps (rate) time [s] MJ
(1,1) 1 585 152 10 (7.19e-2) 31.5 5.10e-2
(2,2) 6 340 608 10 (1.30e-1) 101.0 2.14e-3
(3,3) 15 851 520 11 (1.54e-1) 381.0 3.78e-5
(4,4) 31 703 040 11 (1.67e-1) 1088.3 4.41e-7

Table 8.11: Results for the rotating cone problem on a uniform mesh with 524 288 =
4 096× 128 space-time cells and different polynomial degrees.

For the adaptive refinement corresponding to Chapter 5, we choose the quadratic
error functional

J (v) = 1
2(ρv, v)0,Q. (8.1)

Our aim is to minimize the error |MJ (u, uh)| = |J (u) − J (uh)| using the dual
error indicator introduced in Section 5.3. Thus, the adaptive strategy minimizes
the energy error in the space-time domain Q. To verify the results of the error
indicator, we need the exact solution u∗ of the corresponding dual problem (cf.
Definition 5.2). The following result shows that u∗ is again a rotating cone solution
which travels backwards in time.

Lemma 8.1. Consider a rotating cone problem with solution u ∈ V . Let u∗ ∈ V ∗
be the solution of the dual problem with respect to the quadratic error functional
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(8.1), i.e.,

L∗u∗ = ρu, on Q = Ω× (0, T ),
u∗(x, T ) = 0, for all x ∈ Ω,
u∗(x, t) = 0, for all (x, t) ∈ Γout × (0, T ),

with homogeneous Dirichlet boundary conditions on the outflow boundary (cf. Def-
inition 5.2 and Remark 3.3). Then u∗ is given as

u∗(x, t) = (T − t)u(x, t).

Proof. For the rotating cone problem it yields that

L∗u∗ = −Lu∗ = −ρ∂tu∗ −∇ · (qu∗) and J ′(u) = ρu .

By inserting u∗ into the weak form of the dual problem we conclude that

(w,L∗u∗)0,Q =
(
w,−ρ∂tu∗ − q · ∇u∗

)
0,Q

=
(
w, ρu− (T − t)(ρ∂tu+ q · ∇u)

)
0,Q

=
(
ρu− (T − t)(ρ∂tu+∇ · (qu)), w

)
0,Q

=
(
ρu− (T − t)f, w

)
0,Q

=
(
ρu, w

)
0,Q

= 〈J ′(u), w〉

holds true for all w ∈ V .

The adaptive results are given in Table 8.12 and Figure 8.12. We observe that
the exact dual error e∗ = u∗ − u∗h is approximated through e∗h,r = u∗H,r − u∗h quite
well. Here we used the patch-wise higher-order approximation introduced in Section
5.3.2. Since we know the exact solution u, the exact error MJ = J (u)−J (uh) can
be computed. Moreover, we can compute the approximation MJh to MJ by using
uh, u∗h and u∗H,r in the error representation (5.15)

MJ = MJh + ρ(uh;u∗ − u∗H,r) + T2 ≈ MJh,

where we skipped the remainder term T2 as well as the error term ρ(uh;u∗ − u∗H,r).
Note that MJh almost coincides with MJ and thus MJh is the dominant term, as it
is assumed in Section 5.3. Finally, we compare MJ with the sum over all cell-wise
estimated errors ηR = ∑

R∈R ηR computed by (5.14). One observes that due to
cancellation effects the true error MJ is overestimated by far, but both have the
same asymptotic behavior. This is an essential requirement to achieve a reliable
error estimation.
Figure 8.13 and Figure 8.14 show the adaptive solution in the space-time domain
and the location of highest polynomial degrees, respectively. We note that highest
polynomial degrees (p, q) = (4, 4) are only used in areas, where the pulse is actually
located. In contrast, lowest polynomial degrees (p, q) = (1, 1) are used everywhere
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p-ref. GMRES errors
level #DoFs (effort) steps (rate) time [s] ‖e∗ − e∗h,r‖0,Q MJ MJh ηR

l = 0 1 585 152 10 (7.19e-2) 31.5 1.78e-1 5.10e-2 4.08e-2 7.60e-1
l = 1 1 894 176 (30%) 10 (1.00e-1) 39.2 9.98e-3 2.14e-3 2.63e-3 3.59e-2
l = 2 2 381 589 (15%) 11 (1.41e-1) 89.5 8.41e-4 3.79e-5 4.44e-5 7.33e-4
l = 3 3 303 819 (10%) 11 (1.67e-1) 185.7 5.29e-4 4.33e-7 4.94e-7 1.47e-5

Table 8.12: Adaptive p-refinement on a mesh with 524 288 = 4 096×128 space-time
cells (ϑ = 1e-4).
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Figure 8.12: Error estimation in the adaptive refined case.

Figure 8.13: Solution of the transport
equation in the space-time domain Q,
sliced at times t = 0, 0.3, 0.6, 1.

Figure 8.14: Location of the high-
est polynomial degrees in the space-time
domain Q.
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else. In Figure 8.15 and Figure 8.16 the benefit of adaptive strategies becomes
visible when we compare it to the uniform refined case. First we compare the
errors with respect to the degrees of freedom, needed in every refinement step.
On the last refinement level one observes that we achieve the same accuracy in
both cases, but with a reduction of degrees of freedom of about 90% when using
the presented adaptive strategy. This reduced amount of degrees of freedom also
results in a decreased amount of computation time. In Figure 8.16 the accumulated
solving times of the GMRES solver with multilevel preconditioner are illustrated.
Mind that in the adaptive case, we have to solve an additional dual problem of
the same complexity as the primal one. Despite this enlarged effort, the uniform
refinement is about 3.1 times slower than the adaptive case, i.e., we observe a solving
time reduction of about 68%. These results can only be achieved by using a load
balancing algorithm which redistributes the space-time cells in every refinement
step. In this example we used the weighted RCB method presented in Section 7.2.
The redistributed mesh after four refinements is given in Figure 8.17 at different
time points.
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Figure 8.15: Adaptive performance
with respect to degrees of freedom.

Figure 8.16: Adaptive performance
with respect to accumulated times.

In general, the actual benefit of adaptive strategies strongly depends on the un-
derlying problem. Hence no benefit would be expected, if we want to resolve a
numerical solution with global support as good as possible over the whole space-
time domain. But in applications, where a solution is strongly localized (e.g., in a
rotating cone problem or a single wavefront problem) one can save a large amount
of computational costs and time. On the other hand it might be possible that one
is only interested in small parts of the solution (e.g., point sources and receivers).
Such an example is considered in the following section for the Maxwell case.
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t = 0 t = 0.3

t = 0.6 t = 1

Figure 8.17: Redistributed space-time mesh on 16× 4 processes after four refine-
ments using a weighted RCB load balancing method (cf. Section 7.2).
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8.3.2 Electromagnetic transverse magnetic Waves
For a more realistic application, we consider the simulation of the so called double-
slit experiment. This experiment has been elected to be the most beautiful experi-
ment by readers of the Physics World journal in 2002 (see [Cre02]).
In this experiment a two-dimensional transverse magnetic wave u =

(
H1,H2,E3

)>
with wavelength λ = 1 is scattered by a double slit (see Section 3.4). The slit
itself has a gap of length a = 3 and a width b = 1. Moreover constant material
parameters µ = ε = 1 and reflecting boundary conditions are applied. On the
left side of the computational domain Q = (0, 6) × (−6, 6) × (0, 8) the scattered
wave enters (see Figure 8.18) and begins to interfere. One observes a so called

Figure 8.18: Schematic illustration of the double-slit experiment and the expected
diffraction pattern at the receiver.

diffraction pattern with several local intensity maxima and minima. In applications
one is often only interested in certain (small) parts of the scattered wave, e.g.,
the first occurring minimum on the right side of the computational domain. For
illustration, we therefore choose the region of interest as the space-time domain
S = (5.5, 6)× (0, 2)× (0, 8). Thus we choose the energy error functional as

J (v) = 1
2(Mv,v)0,S,

to resolve the minimum as accurate as possible. This corresponds to a screen or
receiver which is located in S in the real experiment.
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In this setting the exact solutions u and u∗ are unknown and hence J (u) cannot be
computed. However, we can compute an approximated value Jex via extrapolation
as

J ≈ Jex = rl
rl − 1Jl −

1
rl − 1Jl−1, rl = |Jl−1 − Jl−2|

|Jl − Jl−1|
, Jl = J (uh,l),

where uh,l are discrete solutions uh on the different refinement levels l = 0, 1, 2, . . .
(cf. [HPS+15]). Hence, an approximated error can be computed as MJ ≈ MJex =
|Jex − Jl|.
In the following we show numerical results on two different levels with 256 and
1024 processes, computed on the ForHLR I cluster (cf. A.3). Moreover, we used
a GMRES solver with block-Gauss–Seidel preconditioning for the coarse problem
within the multilevel preconditioner. First we consider a coarse initial mesh which
consists of 9 472 = 148 × 64 space-time cells and is refined 2 times in space and
time to a fine mesh with 606 208 space-time cells. The computed results for the
uniformly and adaptively refined case on 256 processes is given in Table 8.13. As

GMRES
level (p, q) #DoFs (effort) steps (rate) time [s] Jl MJex

uniform refinement
l = 0 (1, 1) 5 477 184 10 (1.14e-1) 5.4 8.9307e-2 3.1303e-1
l = 1 (2, 2) 21 908 736 17 (2.84e-1) 56.3 3.7612e-1 2.6220e-2
l = 2 (3, 3) 54 771 840 24 (4.48e-1) 437.4 4.0089e-1 1.4502e-3
l = 3 (4, 4) 109 543 680 34 (5.68e-1) 2154.0 4.0226e-1 8.0209e-5

adaptive refinement
l = 0 5 477 184 10 (1.14e-1) 5.4 8.9307e-2 3.1303e-1
l = 1 9 645 930 (44%) 13 (2.33e-1) 31.0 3.7611e-1 2.6230e-2
l = 2 17 309 043 (32%) 18 (3.37e-1) 153.8 4.0089e-1 1.4502e-3
l = 3 29 064 348 (27%) 23 (4.39e-1) 710.8 4.0226e-1 8.0209e-5

Table 8.13: Uniform vs. adaptive refinement on 606 208 = 2 368× 256 space-time
cells distributed to 256 processes (ϑ = 1e-3, Eex = 4.0234e-1).

observed in the previous example, we note that the computed values of Jl and
the approximated error MJex almost coincides when comparing the uniform and
the adaptive refined case. But only 27% of the degrees of freedom are used in the
adaptive case compared with the full high order discretization. Although we have
to solve the dual problem on every refinement level additionally, we observe that
the solving is about 2.4 times faster in the adaptive refinement compared to the
uniform case (cf. Figure 8.19). This corresponds to a solving time reduction of
almost 58%.
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Figure 8.19: Adaptive performance with respect to accumulated solving times. We
used 256 processes to solve the double-slit Maxwell.

Decreasing computation times is not the only benefit of adaptive strategies as one
observes when performing an additional space-time refinement. The fine mesh with
4 849 664 space-time cells is distributed on 1 024 processes. Correspondingly the
coarse mesh is refined, too. This is necessary, since the load balancing is done on
the coarse mesh (cf. Section 7.2). We notice that we run out of computational
resources, i.e., internal memory, in the uniform refined case. But in the adaptive
case we are still able to compute an accurate solution on the highest refinement
level since we save 79% of the degrees of freedom compared to a possible uniform
refined case (see Table 8.14).

Another point of view is the capability of parallel space-time methods compaced
to implicit Runge–Kutta time steppings schemes. Although explicit run time com-
parisons are missing, we can estimate the numerical effort in this case. To achive
the same accurate results as presented in Table 8.14, one would have to apply 512
iteration steps of a 4-stage Gauss–Legendre collocation method (cf. Lemma 6.3).
Hence one would have to solve a linear system of equations with about 1.44 mil-
lion unknowns on average in every time step (cf. [HB09, Sec. 78]). To surpass the
space-time method, this has to be done in less than 1543.5/512 ≈ 3 seconds. Even
on P = 1024 processes this can be a challenging goal.

Finally, we visualize the time evolution of the scattered wave in Figure 8.20. We
observe the expected diffraction pattern and several local extrema. Furthermore,
one notices that highest polynomial degrees are only used in areas, where it is
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GMRES
level (p, q) #DoFs (effort) steps (rate) time [s] Jl MJex

uniform refinement
l = 0 (1, 1) 43 732 224 17 (3.04e-1) 16.6 3.0520e-1 9.7373e-2
l = 1 (2, 2) 174 928 896 31 (5.36e-1) 187.4 4.0081e-1 1.7630e-3
l = 2 (3, 3) 437 322 240 out of memory
l = 3 (4, 4) 874 644 480 out of memory

uniform refinement
l = 0 43 732 224 17 (3.04e-1) 16.6 3.0520e-1 9.7373e-2
l = 1 68 437 899 (39%) 21 (4.01e-1) 76.5 4.0082e-1 1.7530e-3
l = 2 115 207 920 (26%) 28 (5.07e-1) 361.4 4.0250e-1 7.3043e-5
l = 3 184 208 094 (21%) 37 (5.82e-1) 1543.5 4.0257e-1 3.0435e-6

Table 8.14: Uniform vs. adaptive refinement on 4 849 664 = 9 472×512 space-time
cells distributed to 1024 processes (ϑ = 1e-3, Eex = 4.0257e-1).

necessary to have a high resolution in S and hence a minimal error MJ . On the
other hand lowest polynomial degrees are used everywhere else in Q. In Figure 8.21
the accumulated intensity of the scattered wave at x1 = 6 is shown. Furthermore,
we compare the results with a physical approximation to the far field intensity

I(α) = sinc2
(
π

λ
b sin(α)

)
cos2

(
π

λ
a sin(α)

)
,

which depends on the observation angle α. Note that only the extrema are supposed
to coincide. The actual graph shape of the exact solution u is different. But we
observe that the minimum of uh is indeed resolved quite well.
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Figure 8.20: Scattered wave solution uh (left) and used polynomial degrees up to
(p, q) = (4, 4) (right) at times t = 0, 1.6, 3.2, 4.8, 6.4, 8.0. Solved on a mesh with
4 849 664 = 9 472 × 512 with 1024 processes. The region of interest is additionally
highlighted (black box).
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Figure 8.21: Computed intensity compared with the approximated far field inten-
sity I. Extrema are supposed to coincide.



9 Summary, Conclusion and Outlook

9.1 Summary

In this work a discontinuous Petrov–Galerkin space-time discretization for hyper-
bolic evolution equations had been presented. In particular we focused on a linear
transport problem and the linear Maxwell’s equations. We investigated the hyper-
bolic models in a variational setting and stated existence and uniqueness proofs.
Moreover, we analyzed the space-time discretization and proved existence and
uniqueness of a discrete solution in case of tensor product space-time meshes. It was
illustrated that this approach is similar to time stepping schemes, constructed from
a slice-wise space-time discretization. However, considering the entire space-time
cylinder Q = Ω × (0, T ) offered the possibility of applying adaptivity to the finite
element setting in a “natural” way. We highlighted that in case of time-dependent
problems dual weighted residual methods can lead to a significant reduction of com-
putational costs. Here we used that a dual formulation of the problem can be used
to trace the relevant parts in the primal solution. Depending on the underlying
problem, this advantage is able to compensate the fact that an additional system of
equations has to be solved to obtain an approximation to the dual solution. Another
advantage of considering the discretization on the entire space-time cylinder is the
possibility of using new parallel solving techniques in space and time. As an exam-
ple a multilevel preconditioner with suitable convergence rates was presented. The
corresponding adjustments of its parameters were achieved by performing several
numerical test. Finally, we described how a space-time data structure can be imple-
mented into existing finite element libraries. Numerical experiments for the linear
transport problem and electromagnetic TM waves verify not only the theoretical
results, but also indicate that our implementation is parallelized well. Furthermore,
we used the test examples in Chapter 8 to illustrated the opportunities of space-time
adaptive methods and parallel multilevel solvers.
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9.2 Conclusion and Outlook
We presented a holistic approach to solve an electromagnetic wave problem ef-
ficiently. Therefore, we equipped a discontinuous Petrov–Galerkin space-time dis-
cretization with an adaptive dual error estimator technique and solved the resulting
linear systems by using a parallel in space and time multilevel preconditioner. How-
ever, the reader will have noticed that there is still a vast variety of possibilities
for further developments and improvements for space-time methods. Regarding the
discretization one can use a more general space-time discretization to overcome the
tensor product approach and use general space-time finite elements, see, e.g. [NS11]
or [Neu13, Ch. 3]. Moreover, a rigorous error analysis and a better understanding
of the recovery operator would help to improve the error estimation. So far, only
p-adaptivity has been implemented and tested. Together with a general space-time
finite element discretization, h-adaptivity would lead to more flexibility and better
adaptation to the problems. In terms of hp-adaptivity an even higher reduction of
computational costs seems possible. On the other hand a rigorous analysis of the
smoothing and approximation property, introduced in Chapter 6, may help to find
better parameters to improve the multilevel preconditioner.
Despite the indications given in this work, the evidence that parallel space-time
methods are faster than standard space-parallel explicit or implicit time stepping
methods is still missing. In [FFK+14] several strong scaling test results are given
for parabolic test equations and a parallel in space and time multigrid solver. They
indicate that several hundreds (for D = 2) or thousands (for D = 3) of parallel
working processes are needed to defeat implicit time stepping schemes. For real-
istic applications, a need of several tens of thousands processes is predicted. This
requires that the used finite element library provides the tools to handle the re-
sulting problems efficiently. Thus, applying the introduced methods to a realistic
application (where D = 3) and testing with several thousands of processes is one
of the next possible steps. With the results of this work, it is justified to hope that
parallel space-time methods will outperform standard time stepping methods on
massive parallel machines in the future.



A Appendix

A.1 Barycentric Coordinates on Tetrahedral Cells

Here we describe a short definition of barycentric coordinates as given in [EG04,
Sec. 1.2.3].

Definition A.1 (Barycentric coordinates). Let K̂ ∈ RD be the reference tetrahe-
dral cell with vertices x̂0 = (0, . . . , 0), x̂1 = (1, 0, . . . , 0), . . . , x̂D = (0, . . . , 0, 1) ∈
RD. Moreover, let K ∈ K be a cell of a mesh K, with vertices {x0,x1, . . . ,xD}. For
every point x ∈ K there exists a unique vector λ = (λ0, λ1, . . . , λD), with λi ≥ 0
such that

x = λ0x0 + λ1x1 + . . .+ λDxD and
D∑
i=0

λi = 1.

The set λ0, λ1, . . . , λD, i.e., λ, are called barycentric coordinates of the point x.
Hence we can define the affine linear mapping

φ : K̂ → K, φ(x̂) = λ0(x̂)x0 + λ1(x̂)x1 + . . .+ λD(x̂)xD

and the barycentric coordinates became affine linear functions. Let K be an arbi-
trary tetrahedral cell with vertices {x0,x1, . . . ,xD}, then

λi : RD → R, λi(x) = 1− (x− xi) · ni
(xj − xi) · ni

,

where ni is the outer unit normal to the face fi ⊂ ∂K which is opposite to xi and
xj ∈ fi can be chosen arbitrary in fi.

Example A.1 (Lagrange polynomials). For pK = 0, 1, 2 the Lagrange shape func-
tions are given in Table A.1 and illustrated for D = 1 in Figure A.1.
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Figure A.1: First three sets of Lagrange polynomials on K ⊂ R.

shape functions

pK = 0 1

pK = 1 λi, for 1 ≤ i ≤ D + 1

pK = 2

λi(2λi − 1), for 1 ≤ i ≤ D + 1
4λiλj, for 1 ≤ i < j ≤ D + 1

Table A.1: First three sets of Lagrange shape functions, defined through the
barycentric coordinates λi (see Definition A.1).

A.2 Legendre Polynomials
Here we give a short definition of Legendre polynomials, which can be found for
example in [HB09, Ex. 33.2]. Afterwards we give a result stated in [AS64] and show
Lemma A.2.

Definition A.2 (Legendre polynomials). We consider the interval [−1, 1]. The
sequence of real polynomials (λp)p∈N0 with λp ∈ Pp([−1, 1]) and

λp(t) = 1
2pp!∂

p
t (t2 − 1)p (A.1)

is called Legendre polynomials. Legendre polynomials are orthogonal, i.e.∫ 1

−1
λp(t)λq(t) dt = 0, for p 6= q.
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Figure A.2: Fist four Legendre polynomials on I = [−1, 1].

We extend this definition to arbitrary intervals I = [a, b] ⊂ R by using the scaling

λI,p(t) = cp

√
1

b− a
λp

(
2 t− a
b− a

− 1
)
, (A.2)

where the normalization constant cp is determined by the additional requirement
∫ b

a
λI,p(t)λI,q(t) dt = δp,q, for p, q ∈ N0.

Hence cp is independent of I and we achieve

1 =
∫ b

a
λ2
I,p(t) dt =

∫ 1

−1

c2
p

2 λ
2
p(t) dt ⇐⇒ cp =

(1
2

∫ 1

−1
λ2
p(t) dt

)− 1
2
, for p ∈ N0.

We denote the sequence of real polynomials (λI,p)p∈N0 with λp ∈ Pp(I) as general
orthonormal Legendre polynomials.

Example A.2. The first four Legendre polynomials are given as

λ0(t) = 1, λ1(t) = t, λ2(t) = 1
2(3t2 − 1), λ3(t) = 1

2(5t3 − 3t).

and illustrated in Figure A.2

Lemma A.1. Let (λp)p∈N0 be the sequence of Legendre polynomials defined in (A.1)
and set λ−1 ≡ 0, then the relation

(p− q + 1)∂qt λp+1(t) = (2p+ 1)t∂qt λp(t)− (p+ q)∂qt λp−1(t)

holds true for all p, q ≥ 0.
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Proof. See [AS64, Lem. 8.5.3].

Lemma A.2. Let λp,I ∈ P(I) be a general orthonormal Legendre polynomial on the
interval I = [a, b] with p ∈ N0 and cp as in Definition A.2. It yields

(t∂tλI,p, λI,p)0,I =
c2
p

2 (t∂tλp, λp)0,[−1,1] = p.

Proof. For the first identity it holds that

(t∂tλI,p, λI,p)0,I =
∫ b

a

2c2
p

(b− a)2 tλ
′
p

(
2 t− a
b− a

− 1
)
λp

(
2 t− a
b− a

− 1
)

dt

=
∫ 1

−1

c2
p

2

(
s+ a+ b

b− a

)
λ′p(s)λp(s) ds

=
∫ 1

−1

c2
p

2 sλ
′
p(s)λp(s) ds =

c2
p

2 (t∂tλp, λp)0,[−1,1].

In case of constant polynomials, i.e., p = 0 we have that ∂tλ0 = 0 and hence the
second identity is fulfilled, too. For p > 0 we obtain from the previous Lemma
(with q = 0) that

(p+ 1)λp+1(t) = (2p+ 1)tλp(t)− pλp−1(t)

and hence

(p+ 1)∂tλp+1(t) = (2p+ 1)λp(t) + (2p+ 1)t∂tλp(t)− pλp−1(t). (A.3)

Furthermore, Lemma A.1 provides

p∂tλp+1(t) = (2p+ 1)t∂tλp(t)− (p− 1)∂tλp−1(t) (A.4)

for q = 1. By subtracting (A.4) from (A.3) yields

∂tλp+1(t) = (2p+ 1)λp(t) + ∂tλp−1(t).

Finally, we show the second identity by using the previous results and the explicit
representation of cp:

c2
p

2 (t∂tλp+1, λp+1)0,[−1,1] =
c2
p

2 (t(2p+ 1)λp, λp+1)0,[−1,1]

=
c2
p

2 (t(2p+ 1)λp − pλp−1, λp+1)0,[−1,1]

= (p+ 1)
c2
p

2 (λp+1, λp+1)0,[−1,1] = p+ 1.
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A.3 Specifications of Computational Resources
All numerical experiment in this work where performed on one of the two following
computer clusters:

DELTA-Cluster MA-PDE
• Manufacturer: DELTA Computer Products GmbH

• Nodes: 6

• Cores (total): 192

• Memory (total): 768 GB RAM

• Interconnection: InfiniBand QDR (40 GBit)

• Operating system: openSUSE Linux 12.1

• Operator: Institute for Applied and Numerical Mathematics at KIT

• Node specifications:

– Processors: 2 × AMD Opteron 6274 (2.2 GHz)
– Cores: 32
– Memory: 128 GB RAM
– Memory per core: 4 GB RAM

Forschungshochleistungsrechner ForHLR I
• Manufacturer: MEGWARE Computer Vertrieb und Service GmbH

• Nodes: 540

• Cores (total): 10 800

• Memory (total): 32 768 GB RAM

• Interconnection: InfiniBand 4X FDR

• Operating system: Ret Hat Enterprise Linux 6

• Operator: Steinbuch Centre for Computing at KIT

• Node specifications:

– Processors: 2 × Deca-Core Intel Xeon E5-2670 (2.5 - 3.3 GHz)
– Cores: 20
– Memory: 64 GB RAM
– Memory per core: 3.2 GB RAM
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