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Abstract
Using theUsadel approach, we provide a formalism that allows us to calculate the critical current
density of 21 different types of Josephson junctions (JJs)with a ferromagnetic (F) barrier and
additional insulating (I) or/and normal (N) layers inserted between the F layer and superconducting
(S) electrodes. In particular, we obtain that in SFS JJs, even a thin additionalN layer between the S layer
and F layermay noticeably change the thickness dF of the F layer at which the 0-π transitions occur.
For certain values of d ,F a 0-π transition can even be achieved by changing only theN layer thickness.
We use ourmodel tofit experimental data of SIFS and SINFS tunnel junctions.

1. Introduction

Superconducting spintronics is an intensively developing field [1]. It is based on the effects resulting from the
competition and coexistence ofmagnetic and superconducting ordering. Themixing of spin and charge degrees
of freedomwith superconducting correlations in hybrid nanostructures leads to a rich spectrumof unusual
physical phenomena [2–4].Moreover, a new generation of supercomputers has been developed based on
superconducting spintronics [5, 6]. One of themain goals of the recent superconducting spintronics
development is the creation of rapid singleflux quantum logic (RSFQ) elements, such as Josephson phase
batteries [7–12] andmagneticmemory [13–23]. Both, Josephson phase batteries andmagneticmemory are
based on ferromagnetic Josephson junctions (FJJs).

We consider anFJJ consisting of two thick superconducting (S) electrodeswith a ferromagnetic (F)filmbetween
them; seefigure 1(a). This canonical arrangementwas considered inmany theoreticalworks [2, 3]. The keyproperty
of this structure is the possibility of havingnegative critical current density Jc in some ranges of F layer thickness d .F

The transition frompositive tonegative Jc corresponds to the transition from the 0 to theπ ground state of the JJ.
For applications, one tries to choose such a thickness d ,F forwhich the (absolute) value of Jc in theπdomain is as
high as possible. This is usually the case inside thefirstπdomain along the F axis. For the simple SFS structure,
shown infigure 1(a), the boundaries ofπdomains and thewhole J dc F( ) dependence is known [24].

However, experimentalπ JJs often include extra insulating (I) layers [25, 26] and/or normal (N) layers
[26, 27] between SF or FS layers. The purpose of the additional I layer(s) is to enlarge the characteristic voltage,
especially in theπ state. It was shown [28, 29] that the presence of extra insulating layers shifts the first 0-π
transition to smaller values of d .F There are also several reasons to considerN layer(s), as follows.

First, a so-called ‘dead’ layer exists inmany sputtered ferromagnetic films. The dead layer is a surface layer of
the ferromagnet, which behaves as a non-magneticmetal. It usually appears due to the surface roughness or the
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mutual dissolution of atoms at the interface betweenN and F layers. Such a dead layer is inherent, for example in
NF interfaces involving Cu and its alloyswith d3 metals, which are very popular as spacers. Usually it is naively
assumed that the dead layermakes the effective F layer thinner and adds an extraN layer (non-magnetic F).
Many experimental datamatch the theory only if one assumes such a dead layer offinite thickness [24, 26, 30–
34]. However, sometimes such a naive fit gives questionable results because it does not take into account the
correct boundary conditions at all interfaces.

Second, anN layer between F and S is often technologically necessary to produce high-quality JJs
[24, 26, 27, 30–33, 35–38], for example by preventing diffusion between F and S films [39]. The presence of anN
layer in FJJs was not taken into account in any theoretical work [44, 40–43, 45] (see also [2, 3] for review) in spite
of numerous experiments.We show that this is reasonable only if the F andNmetals behave fully identically,
except for theirmagnetic properties. Otherwise, the presence of the thinN layer changes the boundary
conditions, which affects the dependence of the Josephson current Jc on d .F Recent experiments [46], which use
a new continuous in situ technology allowing the deletion of this layer, actually exhibit a change of the 0-π
transition points in the J dc F( ) dependence.

The overall effect of these extra I andN layers is not studied in detail. Therefore, we present a formalism in
the following, which allows us to calculate the critical current density of FJJs with additional I and/orN layers
inserted between SF and/or FS layers. The heterostructures under question can be constructed by selecting one
of the items offigure 1(b) and inserting it by following one of the arrows into figure 1(a). At the other arrow
positionwe insert either the same or another item from figure 1(b). In this waywe obtain 21 possible
configurations of layers in FJJs.

The article is organized as follows. In section 2we describe ourmodel based on theUsadel equations
supplementedwithKupriyanov–Lukichev boundary conditions. Different types of interlayer boundaries are
analysed. Section 3 presents the obtained dependencies of the critical current density on the F layer thickness as
well as the analysis of the 0-π transitions in the framework of a linear approximation.We use our formalism in
section 4 tofit experimental data of SINFS and SIFS junctions. Section 5 concludes this work. Details of the
calculation can be found in the appendix.

Figure 1.The Josephson junction configurations we consider. In (a)we show the basic geometry consisting of two thick
superconducting (S) electrodes separated by a ferromagnetic (F)weak link of thickness d .F Our formalism covers all 21 Josephson
junctions resulting from the insertion of one of the layers shown in (b) at the SF interfaces in (a). These layers are composed of
insulating (I) or normalmetal (N)films. The case of no additional layer is denoted by T (transparent interface). In (c) and (d)we define
parameters for the derivation of our formalism.
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2.Model

2.1. The boundary value problem
The basic Josephson junction configurationwe consider is sketched infigure 1(a). It consists of two thick S
electrodes enclosing an F layer of the thickness dF along the x axis. Ourmodel allows to consider an additional I
orN layer at the SF interfaces aswell as I layers at the SNorNF interfaces, as illustrated by figure 1(b).

We calculate the critical current density Jc of these configurations by determining their Green’s functions in
the ‘dirty’ limit. In this limit, the elastic electron scattering length ismuch smaller than the characteristic decay
length of the superconducting wave function.We determine theGreen’s functionswith the help of theUsadel
equations [47], whichwe use similar to [3] in the form
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in theN and F layer, where Fj andGj are theUsadel Green’s functions, while F F .j j*w wº - ( ) ( ) The frequencies

hiW º W +
~

contain the scaledMatsubara frequencies T ,cw pW º ( ) where T n2 1w pº +( ) at the
temperatureT, andTc is the critical temperature of the superconductor. By using the definition T1 m ch t pº ( )
we take, similar to [28], the spin-flip scattering time mt into account. This approach requires a ferromagnet with
strong uniaxial anisotropy, for example, Cu alloys with transitionmetals, which are used inmany experiments.
Equation (1) should be satisfied for any integer number n. The scaled exchange energy h H Tcpº ( ) of the
ferromagneticmaterial, where the energyH describes the exchange integral of the conducting electrons, is
assumed to be zero in theN layer.

In ourmodel we use the coherence lengths
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of the superconducting correlations, which are definedwith the help of the diffusion coefficients DN and DF in
the normal and ferromagneticmetal, respectively.We use the scaling defined by k 1.B º º

The decay length Hx of superconducting correlations in the ferromagnet is usually in the order of nm. This is
sufficiently small ( dH Fx ) to consider the supercurrent as a result of interference of anomalousGreen’s
functions induced from the superconducting banks. It was shown [28] that this ansatz is valid even for small
distances d ,F Hx~ that is, in the region of the first 0-π transition.

It is convenient to consider this problem in theta parametrization [48]

F Ge sin , cos , 3j j j j
i j q q= =j ( )

where jj is independent of the coordinate x. It corresponds to the phase 2jj fº  of the order parameter of
the S banks for the right and left superconducting electrode, respectively, while jq satisfies the sine-Gordon–type
differential equation
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Sincewe assume that the superconductivity in the S electrodes is not suppressed by the neighbouringN and
F layers, we obtain

arctan 5Sq
w
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analogous toVasenko et al [28] at the interfaces of the superconductor, whereΔ is the absolute value of the order
parameter in the superconductor. The validity of this assumption depends on the values of the suppression
parameters
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at the S boundaries, whichwe discuss inmore detail in subsection 2.3.We use the resistances R R,BSF BSN and the
areas A A,BSF BSN of the SF and SN interfaces. The values ,N Fr r and Sr describe the resistivity of theN, F and S
metals, respectively.

TheKupriyanov–Lukichev boundary condition [49, 50] at the superconducting interface, shown in
figure 1(c), is

3

New J. Phys. 17 (2015) 113022 DMHeim et al



x
sin , 7

x
F,S S BSF F F

SF

⎡
⎣⎢

⎤
⎦⎥q q g x q- =

¶
¶( ) ( )

where x ,F,S F SFq qº ( ) while infigure 1(d) it is

x
sin , 8

x
N,S S BSN N N

SN

⎡
⎣⎢

⎤
⎦⎥q q g x q- =

¶
¶( ) ( )

where x ,N,S N SNq qº ( ) at the SNboundary and

x
sin 9

x
F,N N,F BNF F F

NF

⎡
⎣⎢

⎤
⎦⎥q q g x q- =

¶
¶( ) ( )

at theNF boundary.Herewe defined xF,N F NFq qº ( ) and x .N,F N NFq qº ( ) Additionally, we use the
differentiability condition
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are defined analogous to (6), but not restricted to only small or large values.
In order tofinally extract the critical current density Jc from the current phase relation J J sincf f=( ) we

will calculate the total current density [2]
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flowing through our device, with the help of theGreen’s function FF in the F layer. Herewe chose the position
x= 0; see figure 1(a), in order to simplify the calculation.

2.2. Critical current density
In this sectionwe rewrite expression (12) to be able to directly calculate the critical current densities of all SFS
Josephson junctions of the type sketched infigure 1(a), whichmay include each of the layers, shown in
figure 1(b) at the SF interfaces.

In order to solve theUsadel equations (1) in the F layer we use the ansatz [28, 51]
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where each function xFq
-( ) and xFq

+( ) solves the non-linear differential equation (4) for j F.= Additionally we
use the conditions 0Fq = and x 0Fq¶ ¶ = at x .= ¥ Then the solution xFq

-( )will turn out to bemost
dominant in the left side of the F part and to decay exponentially in the right side of the junction. Therefore, it
has practically no overlapwith the solution xFq

+( )which is dominant in the right side of the F layer.
We obtain both solutions xFq

-( ) and xFq
+( ) by integrating the differential equation (4) for j F= twice. The
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Here g are the integration constants. In the F layer we can assume small superconducting correlations 1Fq 
to linearise the denominator of the left-hand side of (15), which leads us to the equation
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The rewritten integration constants care given by the boundary conditions at the right and left ferromagnetic
interfaces as
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By inserting the ansatz (13)with the solutions (16) into the current density (12), and by using the
approximation hi ,W »

~
which holds for the condition T Hcp  and the assumption dH Fx , we obtain the

critical current density
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The constants cwill be determined in the next section.

2.3. SF interfacewithout or including anN layer
In the followingwe determine a constant TIc to replace c+ or c- in (18) in the case of noN layer at an SF
interface, as shown for example infigure 1(c). The index TI stands for transparent or insulating.

We insert the integrated sine-Gordon equation (14) at the position xSF into the boundary condition (7) and
obtain the relation
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In the case 0,h  whichmeans neglecting the effect of spin-flip scattering, this equation is a quartic equation in

TIc and therefore exactly solvable. Tofind the solutions in this case we use the function solve of theMATLAB
software. Afterwardswemake use of (19) to select one of the four solutions. In the case 0h ¹ we solve (20)
numerically by using the function fsolve of theMATLAB software together with the solution of the limit 0h 
as the starting value.

In this waywefind TIc for the determination of the critical current density (18) in the case of noN layer at the
SF boundary. The case of a small parameter BSFg corresponds to a transparent SF interface, while a large one
corresponds to an insulating interface [28, 52].

Next, we determine a constant Nc for the case of a thinN layer dN Nx between the superconductor and
ferromagnet, as shown infigure 1(d).

By inserting the integrated sine-Gordon equation (14) for x xNF= into the boundary condition (9), we
obtain the equation
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looks similar to (20). Themain difference is that it reduces in the case 0h  not to an equation of fourth order
in .Nc This is because we take an effect similar to the inverse proximity effect at theNF boundary into account;
that is, the reduction of the superconducting correlations in theN layer due to the proximity of the F layer.
Therefore, the value N,Fq xN NFqº ( ) also depends on ,Nc which itself is related to xF,N F NFq qº ( ), even in the
case d ,N Nx aswe show in the appendix.

However, we also show in the appendix that (22) reduces in the limit 0h  together with 0NFg  , which
means assuming the conductivity of theN layer to bemuch larger than that of the ferromagnet, to an equation of
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fourth order in .Nc Therefore, wemake three steps in order to solve (22). First we determine its solution in the
case , 0NFh g  similar to the fourth-order case of (20).We then use this result as a starting value to solve (22)
for only the limit 0h  with the help of the function fsolve of theMATLAB software. This in turn leads to
another starting valuewhichwe use to solve (22)with fsolve, but without any limiting case.

The solution Nc of (22) can finally be used as c+ or c- for the determination of the critical current density
(18) in the case of anN layer at the SF interfaces. Small parameters BSNg and BNFg correspond to transparent SN
andNF interfaces, while large ones correspond to insulating interfaces [28, 52].

3.Discussion

In this sectionwefirst select FJJ configurations, where theN layer has the largest influence.We then analyse their
critical current densities with the help of the formalismwe derived in the previous section. Finally, we discuss the
results with the help of solutions of the linearised differential equation.

We do not analyse configurationswhere a thinN layer (dN Nx ) is located between S and I layers, which
gives only a negligible reduction of Jc compared to the case without anN layer. This is because the
superconducting condensate simply penetrates into thewholeN layer. The same effect occurs when the thinN
spacer separates the S and F layers and both (SN andNF) interfaces are transparent.

However, when the SNboundary has a veryweak transparency or gets even insulating, that is, when theN
layer is located between an I and an F layer, then theN layer(s) play(s) amore notable role depending on the
relation of resistances NFg (11), as wewill see in the following.

Examples for the critical current density J dc F( ) in these situations are presented infigure 2with different
numbers of insulating barriers. To in- and exclude these barriers we use the boundary parameters shown in
table 1. Sincewe onlywant to changeN-layer properties, like d ,N Nr or Nx of the same junction, we keep the
product

R A
23BSN NF

BSN BSN

F F

g g
r x

= ( )

constant.
Each section offigures 2(a)–(d) shows several dependences J dc F( ) for FJJs containingN layers of different

thicknesses and the corresponding reference FJJ without anyN layer (solid black lines [28, 53]). The I layers in all
panels offigures 2(b)–(d), (f)–(h) are chosen to be exactly identical. Herewe observe that the additional N layer at
the IF boundary decreases the amplitude of Jc by 1–2 orders ofmagnitude and, while the insulating barrier at the
SF boundary shifts the 0-π transitions towards smaller values of dF (solid black lines), the additional N layer in
the SINFpart shifts it back to larger d .F

This effect depends strongly on the value ,NFg as can be seen fromfigures 2(f)–(h), wherewe show critical
current densities J dc F( ) in the same FJJ configurations as infigures 2(b)–(d), but withfixed d 0.4N Nx= and
variable 1, 0.1, 0.01.NFg = With decreasing ,NFg the 0-π transitions are shifted back to their positionswithout
an I layer. Onemay conclude that the thinN layerwith small resistance ( N Fr r< ) effectively ‘smooths’ the
order parameter in the SIF region.

For a physical explanation of this behaviour, one can imagine that a decrease of the amplitude of the
superconducting pair wave-function in the F layer is connected to a decrease of the function .Fq In particular, the
positions along the F layer where Fq becomes zero correspond to sign reversals of the critical current density and
are therefore directly linked to the thicknesses dF where a 0-π transition occurs.

This picture already helps us to understandwhy an insulating layer at the SF interface shifts the 0-π
transitions towards smaller values of dF [28, 29]. This is because the I layer induces a decreasing shift to Fq at the
SF interface, as can be seen from (7) for 1.BSFg  Since Fq decreasesmonotonically from the interfaces into the
F layer, this shift results in a shift of its zeros towards the interface. This in turn leads to a shift of the 0-π
transitions to smaller d ,F as can be seen by comparing, for example, the black lines infigures 2(a) and (b).

By inserting anN layer at the IF interface, we canmitigate this effect. In fact, the function θ is still decreased
by the I layer, but the decrease of its derivative q¢may be smaller than in the case of a superconducting pair wave-
function that directly penetrates the F layer. This in turn leads to a shift of the 0-π transition back to larger d .F

To explain this effect, we replace the derivative Nq¢ in (A.7)with the help of (10), which leads us to the
derivative

x

d
sin

sin
24

x

F N

N F NF
N,S

S N,S

BSN NF FNF

⎡
⎣⎢

⎤
⎦⎥

q
x x g

q
q q

g g x
¶
¶

=
W

-
-( )
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Figure 2.The critical current density J dc F( ) calculated using (18) for different FJJs in units of J T e .0 c F Fp r x= ( ) Coloured lines
correspond to SFS junctions includingN layers. The solid black lines are solutions withoutN layers and in agreementwith [28, 51].
The coloured lines in figures (a)–(d) are dotted for d 0.1 ,N Nx= dashed-dotted for d 0.2 ,N Nx= dashed for d 0.3N Nx= and solid for
d 0.4 .N Nx= Herewe used the suppression parameter 0.01.NFg = Infigures (e)–(h) the dashed-dotted lines correspond to 1,NFg =
the solid lines to 0.1NFg = and the dashed lines to 0.01NFg = at thefixed thickness d 0.4 .N Nx= Weused the suppression parameters
given by table 1. Additionally we chose h T T T30, 9.2 K, 0.5c c= = = and 0.h = From figures (b)–(d)we conclude that inserting an
N layer canmitigate the effect of the insertion of an I layer, and figures (f)–(h) show that this behaviour depends strongly on .NFg

Table 1.Parameters for the calculation of the critical current
densities (18) shown in figure 2. The parameters Bg are
responsible for the presence of an I layer, while the equation
for the calculation of c determines whether we consider an
N layer or not.We keep the product BSN NFg g constant
because its outcome (23) does not change during our analysis.

Interface BSFg BNFg BSN NFg g for c

SF 0.001 — — (20)
SIF 100 — — (20)
SNF — 0.001 0.001 (22)
SINF — 0.001 100 (22)
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at the F interface. For d 0,N = (24) resembles (7). Therefore, we obtain, by using the values defined in table 1, the
correct limiting results. Note that Fq¢ is negative in this case because the amplitude of the superconducting pair
wave-function decreases when entering the F layer.

An increase of dN increases Fq¢ and therefore shifts the 0-π transitions towards larger d ,F as shownby
figures 2(b)–(d). Furthermore, from (24) it can be understoodwhy a smaller value of NFg induces a larger

increase of .Fq¢ This again shifts the 0-π transitions towards larger d ,F as shown by figures 2(f)–(h).
The same effect occurs infigure 2(e), but it has a different interpretation because the 0-π transitions are

already shifted to large dF without anN layer, due to the absence of the I layer (black line). A small value of NFg
does not change this situation significantly. However, if NFg increases and therefore Fq¢ decreases, the 0-π
transitions get shifted to smaller d .F

These effects are related partially to dN thatmay be small (dN Nx ) butmainly to the conducting properties
of theN layer represented by NFg (11).

Note that we neglected the effect of spin-flip scattering infigure 2; that is, we chose 0.h = An increase of η
shifts all shown 0-π transitions towards larger d ,F including the ones of junctionswithout anN layer [28, 52]. It is
not necessary to consider this effect in order to understand the role ofN layers in FJJs. However, the described
effect is important for thefitting of experimental results in section 4.

The influence ofN layers on FJJs can be seenmost clearly when they are inserted at IF interfaces and dF is
kept constant, not far from a 0-π transition, while dN changes. In this way, the 0-π transition can be controlled by
dN, as shown infigure 3.Here we consider an SIFIS junctionwhich is in the 0 state for d 0.5 .F Fx= By addingN
layers at the IF interfaces and increasing their thicknesses simultaneously, we tune the FJJ into theπ regime.
Figure 3 considers the same FJJ configuration asfigure 2(d), where dN isfixed and dF changes.

To understand the role of the boundary parameters in the 0-π transition patterns inmore detail, it is useful to
analyse it in a simple linear approximation. This approximation can be used if both S electrodes have non-
transparent interfaces, or ifT T .c Thenwemay assume that G1, cos 1q q= » and F sin .q q~ » The
general solution of theUsadel equations (1) in the non-superconducting layers has the form pmk xexp ,N,F( )
where k D k D p q2 , 2 i ,N N F Fw wº º º +˜ where p and q are real. The critical current density is given by
the expression (12). For FJJs without anN layer, the critical current density has already been calculated in
[28, 45, 52, 53].

3.1. Transparent-interface structures: SFS, SNFS, SNFNS
We start with the analysis offigures 2(a) and (e). For this purposewe assume that all interfaces are transparent,
that is , , 1,BSF BSN BNFg g g  andT T .c If 1,SFg  the critical current density of the SFS junction (cf solid
black lines) reads [3]

J
k

k d
Re

sinh
25c

2

2
F

F F

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥å w

~
D

w ( ) ( )

Figure 3.The critical current density J dc N( ) (18) in units of J T e0 c F Fp r x= ( ) for FJJs in SINFNIS configuration. The F layer
thickness d 0.5F Fx= is constant, while the thickness dN of bothN layers changes. In this way, we control the 0-π transition only by
adjusting d .N Analogous to figure 2(d), where the same FJJ configuration is analysed for varying d ,F weuse the suppression parameters
of table 1 and the parameters h T T T30, 9.2 K, 0.5 , 0.c c h= = = =
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and the positions of the 0-π transitions are defined by the solutions of the equation

qd
p

q
pdtan tanh . 26F F= -( ) ( ) ( )

This gives qd p qarctanF p» - ( ) and thefirst 0-π transition occurs at qd2 .Fp p< < For a large
exchange energy H T ,c we obtain p H1 2 Hw x» +( ) and q H1 2 .Hw x» -( ) Whenwe assume

p q,» thefirst 0-π transition occurs at d 3 4,F Hx p» that is d h3 8 0.6,F Fx p» » which is in good
agreementwith figures 2(a) and (e).

By adding normal layers in the case of , 1,SN NFg g  we see that even for two extra layers in the SNFNS
configuration, the critical current density

J
k d

k

k d

1

cosh
Re

sinh
27c

2

2 2
N N

F

F F

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥å w

~
D

w ( ) ( ) ( )

does not differmuch from (25).We only obtain an additional real factor k dcosh ,2
N N

- ( ) but the position of the
0-π transitions is still defined by the termmarked as the real part. Therefore, the positions of the 0-π transitions
will be the same as in the SFS case (see figure 2(a)) for one extraN layer. The small boundary parameter SNg is
needed in order to neglect the proximity effect in the S electrodes.

However, if 1NFg = in the SNFS junction (dashed-dotted line infigure 2(e)), the electronsmay easily change

between theN and F layers, since D D .NF F Ng ~ Therefore, the Josephson phase drops partially along theN
layer and thefirst 0-π transition shifts towards smaller values of d .F

3.2.Double-barrier structures SIFIS versus SINFNIS
In order to discuss the interplay of theN and I layers we jump to the description of the configurations shownby
figure 2(d) and (h). Here the resistance of the insulating barriers is large , 1,BSF BSNg g  but theNF boundaries
are still transparent 1,BNFg  andwe do not need any assumption about the temperature to use the linear
approximation.

The critical current density of the SIFIS junction (cf solid black lines) at 1BSFg  is

J
k k d

Re
1

sinh
. 28c

2

BSF
2

F
2 2 2

F F F

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥å

g x w
~

D

+ Dw ( ) ( )

The points of the 0-π transitions are nowdefined by the solutions of the equation

qd
p

q
pdtan tanh . 29F F=( ) ( ) ( )

Here the assumption p q» yields only d 0.F = At a large exchange energy H Tc , thefirst 0-π transition
occurs at d 2,F Hx p< that is, d h8 0.2,F Fx p< » which is in agreement withfigures 2(d) and (h). Its
exact position is defined by the factorT/H as well as BSFg [53].

In the case of intermediate resistances 1BSFg ~ of the SF interfaces of an SFS JJ [3], the critical current
density reads

J
k

k d k k k d
Re

sinh 1 2 cosh
, 30c

2

2
F

F F F
2

F
2 2

F F F F

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥å w x x

~
D

´
+ G + Gw ( )( ) ( ) ( )

which transforms into the two previous cases (25) and (28) for SF
2 2g w wG º + D ∣ ∣ and 1, respectively.

The points of the 0-π transitions are defined by

qd
p pd p

q
tan

1 2 tanh 4

1 2
. 31F

2
F

2
=

+ G + G

- G
( ) ( ) ( )

( ) ( )

If 2 1,G > that is, T T2 ,BSF
2 2 2g p p> + D∣ ∣ ( ) thefirst 0-π transition is located in the range

d2 3 4.F Hp x p< < If T T2 ,BSF
2 2 2g p p< + D∣ ∣ ( ) it occurs at d0 2.F Hx p< <

In contrast, the critical current density of the SINFNIS junction at 1,BSNg  at transparentNF interfaces
1BNFg  and 1,NFg  has the form

J
k k d

k

k d

1

sinh
Re

sinh
. 32c

2

2 2
BNF
2

N
2

N
2 2

N N

F
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The 0-π transitions are defined by the zeros of the real part, which has the same form as in the case of SFS JJs with
transparent interfaces (25). That is, theN layers havemitigated the effect of the I layers, which can be seen by
comparing figures 2(d)with (a).

3.3. SIFIS versus SINFIS structures
The effect of a singleN layer on a double-barrier SIFIS junction, shown infigure 2(c) and (g), is discussed in the
following. The critical current density of the SINFIS junctionwith the same boundary parameters as in the
section before is given by

J
k k d

k

k d

1

sinh
Re

cosh
. 33c

2

2 2
BNF
2

N N N N

F

F F

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥å

w g x
~

D

+ D
´

w ( ) ( ) ( )

In this case, the 0-π transitions are defined by the zeros of the function qdcos F( ) and located at the positions
where d m m2 , 0, 1, 2 ...;F Hx p p= + = that is, they are also shifted towards larger dF in comparisonwith
the ones of the SIFIS junction; see figures 2(c) and (g).

In our previous article [42]we obtained in fact the same expressions (28) and (33). Therewe assumed that the
interface transparencies of both S electrodes are small, one of themdue to the presence of an insulating barrier.
In this waywe analysed SI1FI2S and SI1NFI2S structures with rather different transparencies of the I1 and I2
barriers.We found in the linear approximation that the critical current density for an SI1NFI2S FJJ is the same as
the one for an SI1FNI2S structure.

3.4. SIFS versus SINFS structures
If the structure contains only one insulating barrier, as infigure 2(b) and (f), wemay use the tunnelHamiltonian
method, which, for the critical current density, yields the expression

J Re sin . 34c

2

2 2
N,Så

w
q~

D

+ Dw
( )

Touse the linear approximationwe shall assume thatT is close toTc, and in order to neglect the proximity
effect in the right S electrodewe use the rigid boundary conditions , 1.BSF SFg g  Wealso assume theN layer to
be thin, d .N Nx Thenwe obtain

k

k d
k d1

sinh
cosh

1
. 35

d

k k d

k d

d
N,S

NF
F F

F F
F F BSN

NF
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F F F F
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N

N

q
g

x
g

g g
=

+ +

+ +

x

x
x

( )
( ) ( )

Tofind the position of thefirst 0-π transitionwe assume dF Hx~ and neglect d ,N N BSNx g because the
last value is determined by the large resistance of the I barrier. The solutionweakly depends on dN because the
suppression of the superconducting correlation along the thinN layer is negligible in comparisonwith that of
the I barrier. However, the ratio of theN and F resistance, which defines via NFg (the derivative jump (10) at the
NF interface), still plays a role. Then the 0-π transition takes place at d ,F for which the equation

d d d
1 2 cos cos sin 0 362 F

H

F

H

F

H

⎛
⎝⎜

⎞
⎠⎟g g

x
g

x x
+ + + + = ( )

is satisfied.
If 1,BSN NF F Hg g g x xº  themain term gives dcos 0F Hx =( ) and d 2,F Hx p= which corresponds to

the solution for the SIFS FJJ [28]. If 1g , the position of the 0-π transition shifts towards larger dF depending
on ;NFg g~ see figure 2(f). If 1g  we cannot use this approach, assuming large .BSNg

4. Comparisonwith experiment

To check our theory, we use data fromSINFS JJs [26], based on Nb Al∣ 2O 3∣Cu Ni∣ 0.6Cu 0.4∣Nbheterostructures.
These samples include a 2 nm Cu interlayer between the I and F layers. Using the same technology, new series of
samples were produced, but the process was changed in order to delete theCu layer. That is, we can compare
SIFS and SINFS FJJs with the same layer properties, including the concentration of theNiCu alloy. Infigure 4we
show afit of experimental data of critical current densities for different F layer thicknesses dF of both types of
junctions. Dots correspond to SIFS junctions and triangles correspond to SINFS junctions.

We calculated the critical current densities with the help of (18). In the case of the SIFS configurationwe
made use of (20) to calculate the parameter c- and in the case of the SINFS configurationwe used (22). For our
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fit we used the coherence lengths Nx = 10 nm, Fx = 7.60 nmand Hx = 1.72 nm.Our exchange energyH/kB

= 880 K is situated between the value 850 K corresponding to the alloyNi 0.53Cu 0.47 [27] and the value 930 K
of cleanNi [36]. The product Hmt = 1/1.7 is similar to the one used byWeides et al [26]. Further values taken
from this publication are the temperature T= 4.2 K, junction areaA= (100μm)2 and resistivity Fr = 54μΩcm.
Additionally, we used the damped critical temperatureTc = 7.2 K ofNb and the resistivity Nr = 0.66μΩcm.
Togetherwith thefit parameters BSFg = 0.1, BSNg = 90000, BNFg = 0.01 and NFg = 0.016 offigure 4we obtain the
boundary resistances RBSF = 4.10 n R, BSNW = 584μΩ and RBNF = 0.41 nΩ, which are realistic values.

Aswe have shown infigure 2(f), a small suppression parameter 1NFg < results in a shift of the 0-π transition
to larger dF for the sample withN layer. This effect explains the shift of the 0-π transition observed in the
experiments on SIFS and SINFS FJJs. The difference in the amplitude of the curves is attributed to the different
thicknesses of the I barrier in these two sample series.

This conclusion is also supported by experimental observations on SIsFS junctions [54–56]. These
observations indicate that the introduction of a thin s interlayer, which shouldmake a transition to the normal
state if its thickness is of the order of the coherence length, shifts the 0-π transitions towards larger d .F

5. Conclusion

Using theUsadel equations, we have calculated the critical current densities of ferromagnetic Josephson
junctions (FJJs) of different types, containing I andN layers at the SF interfaces, and compared them to critical
current densities of structures withoutN layers. Such layers were technologically required inmany FJJ
experiments, but were not taken into account in previousmodels.

It was shown earlier [28, 52, 53] that insulating barriers decrease the critical current density and shift the 0-π
transitions to smaller values of the ferromagnet thickness d .F A thinN layer inserted between S and I layers does
not significantly influence the Josephson effect. However, if theN layer is inserted between I and F layers, it can
have a large effect on the J dc F( ) curve. Additionally, if the transport properties of the F andN layers differ
significantly ( 1NFg  ), the presence of theN layer shifts the first 0-π transition to larger d ;F seefigures 2(b)–(d).
At certain values of d ,F the 0-π transition can even be achieved by changing only d ;N see figure 3. Finally, our
theory allows the explanation of experimental data for SINFS and SIFS junctions, shown infigure 4.

In comparisonwith simple SFS JJs, the oscillation period of J dc F( ) in the dirty limit is still determined by the
magnetic exchange energyH and the diffusion coefficient D .F However, the positions of J dc F( )minima are
shifted because of different boundary conditions.When the dirty limit does not apply, the oscillation period of
J dc F( )may depend onmany other parameters and does not have to be constant, but can changewith the F layer
thickness [57]. Amulti-domain structured ferromagnetmay also change J dc F( ); for instance, the oscillation
period decreases when the domainwidth increases [58].

If the transport properties of theN layer between the I and F layer are the same as those of the ferromagnet,
not only the period of the J dc F( ) dependence stays the same as in SFS, but also its position (dF of the 1st
minimum). Thus, the dead layer [24, 26, 30–34] changes the position of J dc F( )minima only if its transport

Figure 4.The critical current density (18)fitted to the experimental data of SIFS junctions and SINFS junctions. For the calculation of
c- in the SIFS casewe used (20), and in the SINFS casewe used (22). Fitting parameters are BSNg = 90000, BNFg = 0.01, BSFg = 0.1 and

NFg = 0.016.
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properties differ from those of the F layer. The smaller the value of ,NFg the larger is the change of the Jc
amplitude and the shift of the 0-π transitions; see figures 2(f)–(h).

The situation is completely different in the case of transparent SF interfaces, that is, without an I layer in
between. In this case, the additional thin normal layer with conductivitymuch larger than that of the
ferromagnet ( 1NFg  ) does not play any role. In the same setup, anN layerwith transport properties similar to
those of the ferromagnet ( 1NFg » ) provides a shift of the 0-π transitions to smaller d ;F see figure 2(e). This
process is explained inmore detail after (24).

In summary, even a thin additional N layermay change the boundary conditions at the IF boundary
depending on the value of .NFg Weconclude that it can effectivelymitigate the effect of the insulating barrier on
the decaying oscillations of the critical current density J d .c F( ) Even technological thinN layers, which do not
quite suppress the superconducting correlations, have to be considered carefully when including them into
novel superconducting–magnetic hybrid devices.
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Appendix. N layerGreen’s function

In this appendixwe first showhow tofind the dependence of N,Fq on sin 2N F,Nc qº ( ) in order be able to solve
(22)numerically for .Nc Thereafter, we reduce (22) in the limiting case , 0NFh g  to an equation of fourth
order in .Nc

We start by solving theUsadel equation (4) in the case j N ,= that is

x
x xsin , A.1N

2
2

2 N Nx q q
¶
¶

= W( ) ( ) ( )

where Tcw pW º ( ) because the exchange energy h is zero in theN layer.
Whenwe assume dN Nx  , the function xNq ( ) changes only slowly. Therefore, in the right-hand side of

(A.1)wemake the approximation

xsin sin const, A.2N N,Sq q» º( ) ( )

where x .N,S N SNq qº ( ) Note thatwe cannot neglect this termbecause xNq ( )may be of the order of ,Sq
depending on the boundary parameters. The solution of (A.1) using the approximation (A.2) reads

x x x a x x
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q q=
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- + - +( ) ( )( ) ( )

Inserting the constant
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BSN N
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determined from the the boundary condition (8) at the SN interface, into theGreen’s function (A.3) at the
position xNF connects theNF boundary value
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x
q
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to the SNboundary value ,N,Sq whichwe determine in the next step.
For this purpose we use the integrated sine-Gordon equation (14) at the position xNF and insert it into the

differentiability condition (10) to obtain
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Herewe replace the right-hand sidewith the derivative

x
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of the function xNq ( ) from (A.3).
These steps lead uswith the definition sin 2N F,Nc qº ( ) to

d
2 1 sin sin . A.8NF BSN N

2
N

N

N
BSN N,S N,S Sg g h c c

x
g q q q- W + - = W + -
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This equation can bewritten as an equation of second order in sin N,Sm qº and can therefore be solved
exactly for .N,Sq Inserting the result into (A.5) gives us N,Fq as a function of Nc , which itself, when inserted into
(22), allows us tofinally determine Nc by solving the transcendental equation (22)numerically.

In the followingwe consider the limit , 0NFh g  to reduce (22) to an equation of fourth order in .Nc This
limit allows us to neglect the term containing Nc in (A.8). Togetherwith the definition (A.4), we obtain the
equation

d
asin , A.9N,S

N
2

N

q
x

= -
W

( )

whichwe use to replace N,Sq in (A.4).
Solving the resulting equation for a and re-inserting it into (A.9) leads us to the expression

sin sin , A.10N,S Sq l q= ( )

wherewe used the definition

d d
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With the help of (A.10)we replace N,Sq in (A.5), which in turn is used in (22) to reduce itfinally together with
0h  to an equation of fourth order in .Nc

References

[1] Linder J andRobinson JWA2015Nat. Phys. 11 307–15
[2] GolubovAA, KupriyanovMYu and Il’ichev E 2004Rev.Mod. Phys. 76 411–69
[3] BuzdinA I 2005Rev.Mod. Phys. 77 935–76
[4] Bergeret F S, Volkov A F and EfetovKB 2005Rev.Mod. Phys. 77 1321–73
[5] HolmesD S, Ripple A L andManheimerMA2013 IEEETrans. Appl. Supercond. 23 1701610
[6] ManheimerMA2015 IEEETrans. Appl. Supercond. 25 1–4
[7] Ioffe L B,Geshkenbein VB, Feigel’manMV, Fauchère A L andBlatterG 1999Nature 398 679–81
[8] UstinovAV andKaplunenkoVK2003 J. Appl. Phys. 94 5405–7
[9] Yamashita T, Takahashi S andMaekawa S 2006Appl. Phys. Lett. 88 132501
[10] OrtleppT, Ariando,MielkeO, Verwijs C JM, FooKFK, RogallaH,Uhlmann FHandHilgenkampH2006 Science 312 1495–7
[11] KlenovN,KornevV, VedyayevA, RyzhanovaN, PugachN andRumyantseva T 2008 J. Phys. Conf. Ser. 97 012037
[12] FeofanovAK et al 2010Nat. Phys. 6 593–7
[13] Vernik I V, Bol’ginovVV, Bakurskiy S V,GolubovAA, KupriyanovMYu, RyazanovVV andMukhanovOA2013 IEEETrans. Appl.

Supercond. 23 1701208
[14] Goldobin E, SickingerH,WeidesM,Ruppelt N, KohlstedtH, Kleiner R andKoelle D 2013Appl. Phys. Lett. 102 242602
[15] ZdravkovV I, LenkD,Morari R, Ullrich A,Obermeier G,Müller C, Krug vonNiddaHA, SidorenkoAS,Horn S, Tidecks R and

Tagirov LR 2013Appl. Phys. Lett. 103 062604
[16] Bakurskiy SV, KlenovNV, Soloviev I I, KupriyanovMYu andGolubovAA 2013Phys. Rev.B 88 144519
[17] Abd elQaderM, SinghRK,Galvin SN, Yu L, Rowell JM andNewmanN2014Appl. Phys. Lett. 104 022602
[18] Niedzielski BM,Diesch SG,Gingrich EC,WangYixing, Loloee R, PrattWP andBirgeNO2014 IEEETrans. Appl. Supercond. 24 1–7
[19] AlidoustM andHaltermanK 2014Phys. Rev.B 89 195111
[20] Baek B, RippardWH, Benz S P, Russek S E andDresselhaus PD 2014Nat. Commun. 5 3888
[21] Bakurskiy SV,GudkovA L, KlenovNV,KuznetsovAV, KupriyanovMYu and Soloviev I I 2014MoscowUniv. Phys. Bull. 69 275–86
[22] Soloviev I I, KlenovNV, Bakurskiy SV, Bol’ginovVV, RyazanovVV,KupriyanovMYu andGolubovAA2014Appl. Phys. Lett. 105

242601
[23] Baek B, RippardWH, PufallMR, Benz S P, Russek S E, RogallaH andDresselhaus PD2015Phys. Rev. Appl. 3 011001
[24] OboznovVA, Bol’ginovVV, Feofanov AK, RyazanovVV andBuzdinA I 2006Phys. Rev. Lett. 96 197003
[25] Kontos T, ApriliM, Lesueur J, Genêt F, Stephanidis B andBoursier R 2002Phys. Rev. Lett. 89 137007
[26] WeidesM,KemmlerM,Goldobin E, Koelle D, Kleiner R, KohlstedtH andBuzdinA 2006Appl. Phys. Lett. 89 122511
[27] RyazanovVV,OboznovVA, RusanovAYu,Veretennikov AV,GolubovAA andAarts J 2001Phys. Rev. Lett. 86 2427
[28] VasenkoA S,GolubovAA, KupriyanovMYu andWeidesM2008Phys. Rev.B 77 134507
[29] BuzdinA 2003Pis’maZh. Eksp. Teor. Fiz. 78 1073–76

BuzdinA 2003 JETP Lett. 78 583–86 (Engl. transl.)
[30] BlumY, Tsukernik A, KarpovskiM and Palevski A 2002Phys. Rev. Lett. 89 187004

13

New J. Phys. 17 (2015) 113022 DMHeim et al

http://dx.doi.org/10.1038/nphys3242
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1103/RevModPhys.76.411
http://dx.doi.org/10.1103/RevModPhys.77.935
http://dx.doi.org/10.1103/RevModPhys.77.935
http://dx.doi.org/10.1103/RevModPhys.77.935
http://dx.doi.org/10.1103/RevModPhys.77.1321
http://dx.doi.org/10.1109/TASC.2013.2244634
http://dx.doi.org/10.1109/TASC.2015.2399866
http://dx.doi.org/10.1109/TASC.2015.2399866
http://dx.doi.org/10.1109/TASC.2015.2399866
http://dx.doi.org/10.1038/19464
http://dx.doi.org/10.1063/1.1604964
http://dx.doi.org/10.1063/1.1604964
http://dx.doi.org/10.1063/1.1604964
http://dx.doi.org/10.1063/1.2189191
http://dx.doi.org/10.1126/science.1126041
http://dx.doi.org/10.1126/science.1126041
http://dx.doi.org/10.1126/science.1126041
http://dx.doi.org/10.1088/1742-6596/97/1/012037
http://dx.doi.org/10.1038/nphys1700
http://dx.doi.org/10.1038/nphys1700
http://dx.doi.org/10.1038/nphys1700
http://dx.doi.org/10.1109/TASC.2012.2233270
http://dx.doi.org/10.1063/1.4811752
http://dx.doi.org/10.1063/1.4818266
http://dx.doi.org/10.1103/PhysRevB.88.144519
http://dx.doi.org/10.1063/1.4862195
http://dx.doi.org/10.1109/TASC.2014.2311442
http://dx.doi.org/10.1109/TASC.2014.2311442
http://dx.doi.org/10.1109/TASC.2014.2311442
http://dx.doi.org/10.1103/PhysRevB.89.195111
http://dx.doi.org/10.1038/ncomms4888
http://dx.doi.org/10.3103/S0027134914040043
http://dx.doi.org/10.3103/S0027134914040043
http://dx.doi.org/10.3103/S0027134914040043
http://dx.doi.org/10.1063/1.4904012
http://dx.doi.org/10.1063/1.4904012
http://dx.doi.org/10.1103/PhysRevApplied.3.011001
http://dx.doi.org/10.1103/PhysRevLett.96.197003
http://dx.doi.org/10.1103/PhysRevLett.89.137007
http://dx.doi.org/10.1063/1.2356104
http://dx.doi.org/10.1103/PhysRevLett.86.2427
http://dx.doi.org/10.1103/PhysRevB.77.134507
http://dx.doi.org/10.1134/1.1641489
http://dx.doi.org/10.1103/PhysRevLett.89.187004


[31] SellierH, BaraducC, Lefloch F andCalemczukR 2003Phys. Rev.B 68 054531
[32] WeidesM,KemmlerM,KohlstedtH,Waser R, Koelle D, Kleiner R andGoldobin E 2006 Phys. Rev. Lett. 97 247001
[33] Pfeiffer J, KemmlerM,Koelle D, Kleiner R, Goldobin E,WeidesM, Feofanov AK, Lisenfeld J andUstinov AV 2008 Phys. Rev.B 77

214506
[34] BannykhAA, Pfeiffer J, StolyarovV S, Batov I E, RyazanovVV andWeidesM2009Phys. Rev.B 79 054501
[35] Born F, SiegelM,Hollmann EK, BraakH,GolubovAA,GusakovaDYu andKupriyanovMYu2006 Phys. Rev.B 74 140501
[36] Robinson JWA, Piano S, Burnell G, Bell C andBlamireMG2006Phys. Rev. Lett. 97 177003
[37] Robinson JWA, Piano S, Burnell G, Bell C andBlamireMG2007Phys. Rev.B 76 094522
[38] WildG, Probst C,MarxA andGross R 2010Eur. Phys. J.B 78 509–23
[39] Fominov YaV, Schumann J, Hess C, KataevV, Büchner B andGarifullin I A 2015Phys. Rev.B 91 214508
[40] GolubovAA, KupriyanovMYu and Fominov YaV 2002Pis’maZh. Eksp. Teor. Fiz. 75 223–7

GolubovAA, KupriyanovMYu and Fominov YaV 2002 JETP Lett. 75 190–4 (Engl. transl.)
[41] GolubovAA andKupriyanovMYu 2005Pis’maZh. Eksp. Teor. Fiz. 81 419–25

GolubovAA andKupriyanovMYu 2005 JETP Lett. 81 335–41 (Engl. transl.)
[42] PugachNG, KupriyanovMYu, VedyayevAV, Lacroix C,Goldobin E, Koelle D, Kleiner R and SidorenkoA S 2009 Phys. Rev.B 80

134516
[43] Liu J-F andChanK S 2010Phys. Rev.B 82 184533
[44] VasenkoA S, Kawabata S, GolubovAA,KupriyanovMYu andHekking FW J 2010PhysicaC 470 863–66
[45] VasenkoA S, Kawabata S, GolubovAA,KupriyanovMYu, LacroixC, Bergeret F S andHekking FW J 2011 Phys. Rev.B 84 024524
[46] RyazanovVV,OboznovVA, Bol’ginovVV andRossolenkoAN2008Proc. of XII Int. Symp.Nanophysics andNanoelectronics vol 1

(NizhniyNovgorod: IFMRAS) p 42 (in Russian)
[47] Usadel KD1970Phys. Rev. Lett. 25 507–9
[48] ZaikinADandZharkovGF 1981 Fiz. Nizk. Temp. 7 375–9

ZaikinADandZharkovGF 1981 Sov. J. LowTemp. Phys. 7 184–8 (Engl. transl.)
[49] KuprianovMYu and LukichevV F 1988Zh. Eksp. Teor. Fiz. 94 139–49

KuprianovMYu and LukichevV F 1988 Sov. Phys. JETP 67 1163–8 (Engl. transl.)
[50] Koshina EA andKrivoruchkoVN2000 LowTemp. Phys. 26 115–20
[51] BuzdinA I andKupriyanovMYu 1991Pis’maZh. Eksp. Teor. Fiz. 53 308–12

BuzdinA I andKupriyanovMYu 1991 JETP Lett. 53 321–6 (Engl. transl.)
[52] FauréM, BuzdinA I, GolubovAA andKupriyanovMYu 2006Phys. Rev.B 73 064505
[53] BuzdinA andBaladié I 2003Phys. Rev.B 67 184519
[54] Bakurskiy SV, KlenovNV, Soloviev I I, Bol’ginovVV, RyazanovVV,Vernik I V,MukhanovOA,KupriyanovMYu andGolubovAA

2013Appl. Phys. Lett. 102 192603
[55] Larkin T I, Bol’ginovVV, Stolyarov V S, RyazanovVV,Vernik I V, Tolpygo SK andMukhanovOA2012Appl. Phys. Lett. 100 222601
[56] Ruppelt N, SickingerH,Menditto R, Goldobin E, Koelle D, Kleiner R, VavraO andKohlstedtH 2015Appl. Phys. Lett. 106 022602
[57] PugachNG, KupriyanovMYu, Goldobin E, Kleiner R andKoelle D 2011Phys. Rev.B 84 144513
[58] Bakurskiy SV,GolubovAA,KlenovNV,KupriyanovMYu and Soloviev I I 2015 JETP Lett. 101 765–71

14

New J. Phys. 17 (2015) 113022 DMHeim et al

http://dx.doi.org/10.1103/PhysRevB.68.054531
http://dx.doi.org/10.1103/PhysRevLett.97.247001
http://dx.doi.org/10.1103/PhysRevB.77.214506
http://dx.doi.org/10.1103/PhysRevB.77.214506
http://dx.doi.org/10.1103/PhysRevB.79.054501
http://dx.doi.org/10.1103/PhysRevB.74.140501
http://dx.doi.org/10.1103/PhysRevLett.97.177003
http://dx.doi.org/10.1103/PhysRevB.76.094522
http://dx.doi.org/10.1140/epjb/e2010-10636-4
http://dx.doi.org/10.1103/physrevb.91.214508
http://dx.doi.org/10.1134/1.1475721
http://dx.doi.org/10.1134/1.1944074
http://dx.doi.org/10.1103/PhysRevB.80.134516
http://dx.doi.org/10.1103/PhysRevB.80.134516
http://dx.doi.org/10.1103/PhysRevB.82.184533
http://dx.doi.org/10.1016/j.physc.2010.02.081
http://dx.doi.org/10.1103/PhysRevB.84.024524
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1063/1.593874
http://dx.doi.org/10.1063/1.593874
http://dx.doi.org/10.1063/1.593874
http://dx.doi.org/10.1103/PhysRevB.73.064505
http://dx.doi.org/10.1103/PhysRevB.67.184519
http://dx.doi.org/10.1063/1.4805032
http://dx.doi.org/10.1063/1.4723576
http://dx.doi.org/10.1063/1.4905672
http://dx.doi.org/10.1103/PhysRevB.84.144513
http://dx.doi.org/10.1134/S0021364015110041
http://dx.doi.org/10.1134/S0021364015110041
http://dx.doi.org/10.1134/S0021364015110041

	1. Introduction
	2. Model
	2.1. The boundary value problem
	2.2. Critical current density
	2.3. SF interface without or including an N layer

	3. Discussion
	3.1. Transparent-interface structures: SFS, SNFS, SNFNS
	3.2. Double-barrier structures SIFIS versus SINFNIS
	3.3. SIFIS versus SINFIS structures
	3.4. SIFS versus SINFS structures

	4. Comparison with experiment
	5. Conclusion
	Acknowledgments
	Appendix. N layer Green&#x02019;s function
	References



