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The intermetallic alloy Pt3Ti is a promising representative for

titania (TiO2) based catalysts. It is known that oxidation of

Pt3Ti(111) under moderate preparation conditions leads to the

formation of closed and well ordered ultrathin TiOx films. The

latter are expected to exhibit new structural and electronic

properties that are quite different from the bulk TiO2. In this

work we present a surface science study of CO adsorption on

pure and oxidized Pt3Ti(111) single-crystal surfaces by

employing infrared reflection absorption spectroscopy

(IRRAS) in combination with X-ray photoelectron

spectroscopy (XPS) and low-energy electron diffraction

(LEED).

IRRAS experiments
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UHV-IR/XPS apparatus “THEO”
The series of measurement was carried out in our own UHV-

chamber with a base pressure of 10-10 mbar. The Pt3Ti (111)

single crystal was mounted on a sampleholder with e-beam

heating. The alloy crystal was cleaned by repeated cycles of

sputtering with 3,0 kV Ar+ ions at 900 K and subsequent

annealing at 1100 K. For temperature displaying a K-type

thermocouple was attached on the sample holder heating plate.

After cooling carbon monoxide was dosed for several portions

over a leak valve in the IR-compartment. At saturated coverage

the temperature was elevated and spectra were recorded at a

given set of temperatues for monitoring the CO desorption

process. Ultrathin titanium oxide film growing was tested

referring a literature known recipe at 1000 K for different

oxygen dosages. XPS measurements were performed under

grazing incidence conditions in order to resolve highly precise

the appropiate surface composition.
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Peak evolution during oxidation of Pt3Ti(111) at 1000 K

Structure of pure and oxidized Pt3Ti(111) surfaces
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- The pure Pt3Ti(111) is primarily Pt-terminated with a p(2x2) superstructure. 

- CO adsorbs terminally (on-top) at Pt sites on pure Pt3Ti(111). A coverage-dependent blue-

shift of the CO band (from 2176 to 2187 cm-1) was observed, which is attributed to the lateral 

adsorbate-adsorbate interaction including dipole-dipole coupling and chemical shift.  

- Oxidation of Pt3Ti(111) at 1000 K: a second CO band was observed at 2100 cm-1 which is

assinged to CO adsorbed on Pt with adjacent TiOx thin films

- Expose of 100 L O2 at 1000 K leads to the formation of a closed TiO bilayer which is O-

terminated and shows an ordered hexagonal (7x7)R21.8° superstructure (w‘-TiO phase). 

-
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