

Structure and reactivity of ceria single crystal surfaces studied by IR spectroscopy

Chengwu Yang, Alexei Nefedov, Yuemin Wang, Christof Wöll

Institute of Functional Interfaces (IFG)

Why ceria (CeO₂, cerium dioxide) is interesting?

- Reducibility, storage/release of oxygen atoms – oxygen storage capacity (OSC).
- Interconversion between 4f¹-Ce(III) and 4f⁰-Ce(IV) oxidation states.
- Defects can be created by oxygen release and electron transfer.
- Promote electron and oxygen transfer.
- Promote dispersion of noble metals and thermal stability of the support.

40 years of catalysis by ceria

H. S. Gandhi, A. G. Piken, M. Schelef, R. G. Delosh, SAE Paper, 1976, 55, 760201.

Ceria has low oxygen vacancy formation energy

 $p(O_2)$ vs T phase diagram.

Calculated oxygen defect formation energy.

Stability and reducibility of ceria surfaces

Surface	Surface energy (J·m ⁻²)	O-vacancy formation energy (eV)
(111)	0.68	2.60
(110)	1.01	1.99
(100)	1.41	2.27
M. Nolan et al., <i>Surf. Sci.</i> , 2005, 576, 217. M. Nolan et al., <i>Surf. Sci.</i> , 2005, 595, 223.		

UHV-FTIR apparatus

CO on ceria powders

Wulff construction

How to assign the CO IR-bands?

R. Farra et al., *PCCP*, 2013, 15, 3454. G. A. H. Mekhemer, M. I. Zaki, *Adsorpt. Sci. Technol.*, 1997, 15, 377.

5

Controversial assignments of CO IR-bands on ceria powders

⁷ C. Yang, C. Wöll et al., *PCCP*, 2014, 16, 24165.

Institute of Functional Interfaces (IFG)

CO on single crystal CeO₂(110)

CO on reduced single crystal CeO_{2-x}(100)

Reassignment of IR-bands of CO on ceria surface

2157 cm⁻¹: physisorbed CO
2168 cm⁻¹: CO coordinated with Ce⁴⁺

J.-C. Lavalley et al., Catal. Today, 1999, 50, 207. (> 460 citations)

CH₃OH on oxidized monocrystalline CeO₂(110) and (111)

Institute of Functional Interfaces (IFG)

C. Yang, F. Bebensee, A. Nefedov, C. Wöll, T. Kropp, L. Komissarov, C. Penschke, R. Moerer, J. Paier, J. Sauer, J. Catal., 2016, 336, 116.

Reassignment of IR-bands of CH₃OH on ceria surface

A. Badri, C. Binet, J.-C. Lavalley, J. Chem. Soc., Faraday Trans., 1997, 93, 1159.
C. Yang, F. Bebensee, A. Nefedov, C. Wöll, T. Kropp, L. Komissarov, C. Penschke, R. Moerer, J. Paier, J. Sauer, J. Catal., 2016, 336, 116.

Summary

- 1. Using CO and CH₃OH as probe molecules, UHV-IRRAS can distinguish ceria surface orientations and probe oxygen vacancies.
- 2. Based on vibrational frequencies of CO and CH_3OH adsorption on oxidized and reduced ceria single crystals, the controversial assignments of IR-bands of CO and CH_3OH adsorption on ceria powders can be clarified.

Acknowledgements

Thank You!!

Prof. Dr. Christof Wöll Dr. Yuemin Wang Xiaojuan Yu Ludger Schöttner

Prof. Dr. Joachim Sauer Dr. Joachim Paier Thomas Kropp Christopher Penschke

Prof. Dr. Xue-Qing Gong Li-Li Yin

Science and Technology of Nanosystems (STN) Helmholtz Research School Energy-related catalysis