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Abstract

Since the advent of websites and platforms that enable users to participate and interact with
each other by sharing content in different forms, a plethora of possibly relevant information is
at scientists’ fingertips. Data on any type of topic – from sports news to private discussions to
disaster events – occurs in a wide range of different formats such as text, pictures or videos.
However, this literally never-ending stream of data, which is often referred to as Big Data, also
introduces new challenges and calls for new and practical approaches, which are in fact able to
find the information needles in this data haystack.
Consequently, this thesis elaborates on two distinct approaches to extract valuable information
from social media data and sketches out the potential joint use case in the domain of natural
disasters.

The first part develops an operational framework for real-time event analysis on a global-scale,
exploiting the real-time stream of georeferenced TWITTER messages (so-called tweets). The
spatio-temporal statistical analysis of local tweet frequencies based on an equidistant grid
reliably detects significantly increased volumes on a per cell and per time step basis. Then
the messages in the identified cells are subject to a keyword-based thematic classification
using a domain taxonomy to possibly assign one or more domain-relevant topics, which are
ranked according to a document similarity score. Events with large impact areas as well as
with temporally lasting effects on social media users can be detected and monitored, as a
spatial-thematic and temporal clustering is applied at the end of each time step. The framework
is completed by an automatic e-mail notification containing the most important facts on the
event and an ad hoc visualization.
The operational prototype for the analysis of natural disasters is evaluated based on a ground
truth dataset of earthquake events.

The second part introduces the idea of automatically extracting spatial information from text
in the form of spatial relations between physical entities, which are encoded by a preposition.
In unrestricted natural language input however, the majority of prepositional phrases does not
carry physically spatial information but conveys other meanings of the involved preposition
such as temporal, modal, causal, or semantically transformed cases as in metaphors.
The developed extraction and disambiguation approach is constraint to English utterances
but involves a range of pre-processing steps to extend its applicability from standard natural
language to the often ungrammatical and noisy nature of social media texts.
A definition of physically spatial relations for the scope of this thesis is given and a manual
decision schema is derived in order to build a solid basis for the evaluation of the approach.
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The automatic approach is subdivided in three components: The identification of potentially
spatial prepositions (step 1) is based on approximate regular expression matching to allow
for minor spelling mistakes. The subsequent extraction of the involved entities (step 2) – the
subject and object of the preposition – utilizes the idea of a candidate selection and ranking, as
well as a straightforward rule-based algorithm, respectively. The resulting output together with
carefully engineered linguistic features, and features relying on an external knowledgebase,
finally builds the necessary input for the disambiguation process of spatial versus non-spatial
prepositional use cases (step 3). The last step makes use of the combined output of several
current machine learning classifiers and an informed feature selection to push the capability of
the automatic approach close to human performance. The evaluation is conducted based on a
hand-annotated corpus, whose consistency is verified by an annotator agreement study.
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Kurzfassung

Seit dem verstärkten Aufkommen von Internetseiten und online Plattformen, welche Nutzern
die Möglichkeit bieten an deren verschiedenen Inhalten mitzuwirken und untereinander zu
interagieren, ist eine Fülle an potentiell relevanter Information für Forscher vermeintlich zum
Greifen nahe. Von Sportnachrichten über persönliche Diskussionen bis zu Katastrophenereignis-
sen treten Daten zu verschiedensten Themen in einer Bandbreite unterschiedlicher Formen auf,
wie beispielsweise als Text, als Bilder oder als Videos. Dieser tatsächlich endlose Datenstrom,
der oft auch unter dem Namen Big Data firmiert, bringt jedoch auch neue Herausforderungen
mit sich. Folglich werden vermehrt praktische Ansätze benötigt, die tatsächlich erfolgreich die
vereinzelten Informations-Nadeln in diesem Daten-Heuhaufen ausfindig machen.
An dieser Herausforderung setzt die vorliegende Arbeit an und stellt zwei unterschiedliche
Ansätze vor zur Extraktion von relevanter Information aus social media Daten. Zusätzlich wird
eine potentielle Verbindung über die Anwendungsschale Naturkatastrophen aufgezeigt.

Der erste Teil der Arbeit stellt Forschung zu einem operationellen System zur Echtzeitanalyse
von Ereignissen auf globaler Ebene dar, welches den Echtzeitdatenstrom georeferenzierter
Twitter Nachrichten (sog. Tweets) nutzt. Die raumzeitliche statistische Analyse lokaler Tweet
Häufigkeiten basierend auf einem äquidistanten Gitter, ermöglicht die zuverlässige Detektion
von signifikant erhöhtem Tweet Aufkommen in einzelnen Zellen pro Zeitabschnitt. Im Fol-
genden wird für die so identifizierten Zellen eine auf Stichworten basierende thematische
Klassifikation durchgeführt. Diese nutzt eine domänenspezifische Taxonomie um die Zellen
einer oder mehrerer domänenrelevanter Ereignisarten zuzuordnen und diese basierend auf
einem Ähnlichkeitsmaß für Textdokumente in einer Rangfolge einzuordnen. Durch räumlich-
thematische und zeitliche Aggregation relevanter Zellen nach jedem Zeitabschnitt, können
auch Ereignisse mit ausgeweitetem Einflussgebiet und länger andauernden Auswirkungen auf
Nutzer sozialer Medien, sowohl detektiert als auch zeitlich verfolgt werden. Abgerundet wird
das System durch eine automatische E-Mail Benachrichtigung mit den wichtigsten Fakten zum
Ereignis und einer ad hoc Visualisierung.
Der operationelle Prototyp zur Analyse von Naturkatastrophen wird an Hand eines ground
truth Datensatzes von Erdbeben bewertet.

Der zweite Teil beschreibt den Ansatz, Rauminformation in Form räumlicher Relationen
zwischen physischen Entitäten automatisiert aus Text zu extrahieren, welche mit Hilfe von Prä-
positionen beschrieben sind. Die Mehrheit der Präpositionalphrasen übermittelt jedoch keine
physisch-räumliche Information, sondern bildet andere Bedeutungen ab, wie beispielsweise
bei temporalen, modalen und kausalen Präpositionen oder auch bei semantisch veränderter
Anwendung (z.B. in Metaphern).
Der entwickelte Extraktions- und Disambiguierungsansatz beschränkt sich auf die englische
Sprache, ist aber durch eine Reihe von Vorverarbeitungsschritten auf die oft grammatikalisch
fehlerhaften und “verrauschten” Texte in sozialen Medien anwendbar.
Eine Definition physisch-räumlicher Relationen im Rahmen dieser Arbeit wird dargestellt und
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ein Schema zur manuellen Unterscheidung abgeleitet.
Der automatisierte Ansatz gliedert sich in drei Komponenten: Die Identifikation potentiell
räumlicher Präpositionen (Schritt 1) basiert auf einer approximierten Übereinstimmung mit
regulären Ausdrücken um geringfügigen Rechtschreibfehlern Rechnung zu tragen. Die fol-
gende Extraktion der beteiligten Entitäten (Schritt 2) – dem intendierten Objekt und dem
Referenzobjekt der Präposition – macht sich zum einen die Idee der Kandidatenvorauswahl mit
anschließdem Ranking zu nutze, als auch zum anderen einen unkomplizierten regelbasierten
Algorithmus. In Kombination mit wohldurchdachten linguistischen Attributen, sowie Attributen
die auf eine externe linguistische Wissensdatenbank zurückgreifen, bildet das Resultat aus
Schritt 2 die notwendige Eingangsgröße für den Disambiguierungsprozess zwischen räumlichen
und nicht räumlichen Anwendungsfällen von Präpositionen (Schritt 3). Dieser letzte Schritt
setzt schließlich auf die kombinierten Ergebnisse mehrerer aktueller maschineller Lernver-
fahren und einer fundierten Attributauswahl, um die Leistungsfähigkeit des Systems so nah wie
möglich an die Fähigkeiten eines menschlichen Operateurs heranzuführen. Die Bewertung des
Ansatzes wird anhand eines manuell annotierten Textkorpus durchgeführt, dessen Konsistenz
durch eine sogenannte annotator agreement Studie verifiziert wird.
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1The Big (Data) Picture

In this introductory chapter the work is motivated based on the potential of so-called Big Data
in the form of user-generated content (UGC) on social media platforms. This will be referred
to as social media data in the following. After explaining its distinctive characteristics, the two
main goals constituting this research are described, and how they can be combined in a mutual
use case. Eventually the tripartite structure of this thesis is explained.

1.1 Motivation

In 1999, Sir Timothy J. Berners-Lee, the inventor of the modern web, envisioned the idea of
interactivity on the internet as “the possibility of jointly creating things or solving problems
together” (Berners-Lee et al., 1999). With the advent of websites that allowed internet users
to participate and interact with each other by sharing content in different forms (e.g. text,
pictures or videos), this idea prospered.
The development can be roughly dated back to the years around the millennium with the
launch of sites such as NAPSTER (1998), WIKIPEDIA (2001), MYSPACE (2003) and FACEBOOK

(2004). Back then, these websites focused on rather long lasting and detailed content. Later on,
however, other social media sites (e.g. TWITTER (2006), TUMBLR (2007), SINAWEIBO (2009)
or INSTAGRAM (2010)) started aiming at sharing smaller chunks and satisfying the users’ desire
for more immediate information. The distinction is getting fuzzier with more sites adding
different options of interaction and content sharing. In the end, all these sites have contributed
to the explosion of the amount of available social media data that could be observed during
the last 16 years.
Today, millions of small information chunks such as news bulletins, text messages, pictures
or videos are uploaded and shared on various social media sites every day. The idea of
automatically extracting valuable information from this large resource of often freely available
data is obviously intriguing. However, two questions arise: “Is there in fact any relevant or
valuable information hidden inside?” and if so, “How can it be retrieved in an efficient way?”.
In the scope of this thesis I will present two different ways of exploiting social media data in
order to extract valuable information, and I will provide a mutual use case as recurrent theme
for examples and a prototypical implementation.
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1.2 Characteristics of Social Media Data

The term Big Data – often denoted as buzz word – in fact fits quite well for describing the
characteristics of social media data and the involved challenges when it is processed. Big Data
does not solely refer to the absolute data volume but rather to the so-called four V’s (cf. Cielen
et al. (2015) and Jagadish et al. (2014)).

Volume – the scale of the data
A look at usage statistics of some of the most popular social media sites illustrates the
tremendous volume of potential data available for analyzing – 1.55B1 monthly active
users on FACEBOOK, 5M check-ins shared per day on SWARM, 300M active users on
GOOGLE+, 80M pictures posted daily on INSTAGRAM, 120M daily posts on TUMBLR,
430K hours of video uploaded daily on YOUTUBE, 600M tweets sent daily on TWITTER

(statistics from Smith (2015) and Internet Live Stats (2016)).

Velocity – the arrival rate of the data
Another characteristic of social media data is the velocity the data comes into any kind
of processing system. Whereas volume is more about the amount of data in collections,
velocity refers to massive and continuous data streams. Again the statistics can provide a
good grasp of the issue – 7K tweets every second on TWITTER, 900 pictures every second
on INSTAGRAM, 1.4K posts every second on TUMBLR (statistics from Smith (2015) and
Internet Live Stats (2016)).

Variety – the different forms of the data
The data the users upload or post on social media sites occurs in a large variety of
formats. Besides the most common types – text, pictures and videos – the data can
include locations (coordinates, addresses, etc.), Uniform Resource Locator (URL), dates,
calendar items, animated Graphics Interchange Format (GIF), audio files and any other
kind of file format.

Veracity – the uncertainty of the data
In this context, veracity carries several meanings, e.g. uncertainty, reliability (unknown
source), bias (subjective opinion) or noisiness. In particular concerning textual social
media data the challenges are manifold. Due to the usually limited content, tweets for
example suffer from spelling mistakes, ungrammatical sentences, (uncommon) abbrevia-
tions and acronyms, colloquial terms and lexical variants, mixed language use, etc. This
characteristic will be referred to as noisiness (cf. Baldwin, Cook, et al., 2013; Han and
Baldwin, 2011; Han, Cook, et al., 2012; Petrovi et al., 2012).

Social Media Mining The challenge that arises from these characteristics is the question how
to operationalize a meaningful usage of social media data.
Consequentially, Goodchild (2007) introduced the idea of interpreting citizens as sensors that
voluntarily contribute to the creation, assembly, and dissemination of information. Although he

1Throughout this work, I will use the short forms K for thousand, M for million and B for billion, i.e. a thousand
million
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focused on the purposive sharing of (geographic2) information (i.e. crowdsourcing), the idea
quickly spread to general use cases and often a more passive role of the users – this is often
called social media mining.

In general, social media users are not common sensors but provide a rather complementary
type of information. Usually sensors are evenly distributed in space or placed at specifically
chosen positions. Moreover, they either provide measurements at fixed points in time or can
even be (remotely) triggered to provide an ad hoc measurement. Thus, they normally yield very
accurate information, optimized for a very narrow and specific purpose, e.g. seismographic
networks for detecting ground waves generated by earthquakes. In contrast, messages on
social media platforms could be disseminated from almost anywhere in the world, at every
time of day and even containing any relevant or irrelevant content, but almost always without
prior knowledge of the system. Social media data has, at least in urban areas, a more spatially
comprehensive character than common sensors. However, albeit the implicit advantages
such as high mobility, high versatility of captured information and rapid distribution, all the
inherent drawbacks have to be dealt with as well, e.g. subjectivity and varying quality and
quantity. Moreover, social media mining uses this data in a passive way, that means the original
intention of the message sender is not to provide data for an automated system, but rather
to inform friends, followers or other platform users in general – i.e. other human beings.
Thus, the information is given in a very informal way which poses even more challenges for a
computational analysis.

Topic and Event Detection Although the topics discussed by social media users cover a wide
range of news stories, sports, politics, disasters, etc. the major part consists of irrelevant content
such as daily chatter, simple non-sense or offensive language (cf. Chen et al., 2012; Java et al.,
2007; Xiang et al., 2012). The velocity and volume of social media data can nonetheless
be exploited for important real-time topic and event detection. In many cases the identified
messages incorporate not only topical content but also spatial references within the text or
even geographical coordinates, allowing to assign geographic context to an event.

Especially the usage of social media data in the field of natural disasters or disaster management
has been proven to yield valuable general as well as spatial information such as on-site accounts
of first responders, estimated impact areas, and identification of smaller scale hot-spots within
large-scale disaster areas (cf. Backfried et al., 2013; Imran et al., 2013; Stollberg et al., 2012;
Tapia et al., 2013; Terpstra et al., 2012; Zin et al., 2013).

1.3 Research Goals and Use Case

Based on the identified potentials and challenges of social media data in the preceding section,
now a first overview of the two main research goals addressed in the scope of this thesis will

2This is often called Volunteered Geographic Information (VGI).
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be given. Moreover, this section will sketch out how these goals could be brought together in
one mutual use case.

Goal I
The first goal consists of developing a fully automatic (operational) framework for
global-scale, real-time event analysis using social media data.

The analysis should incorporate the temporal and spatial detection and identification of an
event, its domain specific classification, as well as its temporal monitoring.

Goal II
The second goal consists of developing methods to identify, extract and disambiguate
spatial information, encoded as so-called locative expressions – i.e. incorporating a
preposition – from English social media text.

The methods should be able to account for the noisiness of social media data. A specific aim
for the approach is the capability to semantically disambiguate between spatial and non-spatial
use cases of prepositions – a problem that has not been sufficiently addressed in state-of-the-art
approaches.

In the following section I will outline, how the two research goals could be combined in a joint
workflow targeting the mutual use case of natural disaster events.

1.3.1 Natural Disasters as Mutual Use Case

In case of a natural disaster event the research goals can be expressed in a conceptual workflow
consisting of two main consecutive steps:

1. mass data analysis

2. single message analysis

These two steps depict the idea of first taking a large-scale view on a disaster, i.e. gathering con-
text information, and then zooming in and searching for local hot-spot information describing
spatial scenes as in [1.1]3.

[1.1] Road cracks and wall cracks along the hospital road.

In the first step, a real-time social media stream is monitored and processed to detect natural
disaster events. Context information such as the estimated impact area of the event, the time
the disaster started to affect people and the classified type of the disaster (e.g. earthquake or
hurricane) is derived. Additionally, incoming messages related to the disaster are continuously
aggregated and stored in an event database. The first detection of a disaster event triggers the

3Throughout this thesis, brackets are used to denote linguistic examples numbered by chapter, whereas parentheses
refer to mathematical equations.
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second step, the single message analysis. Consequently, the second step can use the output
of the first and benefit in different ways. First, the filtered relevant messages can be used as
initial input to identify and extract Locative Expressions (LE) that describe local spatial scenes.
Second, the context information can be employed to query other social media sources and
thus retrieve more small-scale spatial descriptions which may be more relevant and also of
greater detail. Lastly, the estimated impact area could serve as a-priori knowledge to resolve
ambiguous place references in spatial descriptions – e.g. only by knowing the affected city, the
reference to “hospital road” in [1.1] could be resolved.

A system that exhibits the aforementioned capabilities can provide real-time on-site information
in case of natural disasters in populated areas. This is often faster than relying on traditional
information sources and hence, it can complement them in providing more up-to-date situa-
tional awareness. Getting such a rapid understanding of the situation on-site is often crucial for
disaster response organizations like the fire fighters or the Red Cross to be able to coordinate
their actions and to provide help.

1.4 Thesis Outline

The remainder of this thesis is structured in three parts. As described in the preceding section,
Part I and Part II will present two stand-alone methodologies with respect to their scientific
goals. However, throughout the work the mutual use case of natural disasters will serve as a
recurrent theme for examples. Additionally, I suggest reading this thesis in the given order
as basic methods for processing linguistic data are introduced in the first part that are also
applied in the second part.

Part I is subdivided into three thematic chapters that will treat the issue of real-time event
analysis. Chapter 2 will first define important terms with respect to the context of this work and
introduce the subject of Information Retrieval (IR) with respect to topic detection. Eventually,
selected approaches will be reviewed to reveal the current research gap. Chapter 3 then details
the developed real-time event analysis framework concerning the used input data, developed
methods and technical information on the operational prototype. It depicts the scientific core
contributions of Part I. Finally, Chapter 4 describes the experimental event detection results
based on a publicly available earthquake ground truth data set.

Part II is subdivided into three chapters that will treat the issue of spatial information extraction
from text. Chapter 5 will explain the fundamentals of spatial language and detail important
related work. Selected methods and algorithms of Natural Language Processing (NLP) and
computational linguistics that are essential for this work will be introduced. Then Chapter 6
details the developed extraction process for LEs and the approach for their semantic disam-
biguation. It comprises the scientific core contributions of Part II. Finally, in Chapter 7 an
annotator agreement study as well as the extraction and disambiguation of LEs is evaluated
and discussed based on a hand-annotated corpus.

1.4 Thesis Outline 5



Part III finalizes the complete work in one concluding chapter. Hence, Chapter 8 summarizes
the achievements, provides concluding remarks and points out possible optimizations as well
as future directions.
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Part I

REAL-TIME EVENT ANALYSIS





2Introduction

In recent years, several social media platforms have gained high popularity among researchers.
Fostered by their relatively simple accessibility through Application Programming Interfaces
(API), the large amount of data these platforms generate have become the subject of a multitude
of interesting research questions. From single user behavior to networking variations (cf. Chu
et al., 2010; Hecht et al., 2011; Java et al., 2007; K. Lee et al., 2011; Lotan, 2011; Stefanidis
et al., 2013) and from simple statistics to complex spatial and temporal distributions (cf.
Hahmann et al., 2014; Huck et al., 2015; R. Lee and Sumiya, 2010; R. Lee, Wakamiya, et al.,
2011; Leetaru et al., 2013), a lot of different aspects have been examined.
Beyond these examples, the idea of retrieving the topic(s) of current data streams by means of
computer algorithms, often with respect to time and location, has gained high popularity (cf.
Aiello et al., 2013; Guzman et al., 2013; Jackoway et al., 2011; Kireyev et al., 2009; C.-H. Lee,
C.-H. Wu, et al., 2011; Mathioudakis et al., 2010; Naaman et al., 2011; Petrovi et al., 2012;
Sankaranarayanan et al., 2009). In order to obtain the topic or subject of user interactions, the
approaches often focus on extracting certain informative words to apply clustering algorithms.
Some of these topics are concerned with people’s general interests or habits and therefore often
reveal simple patterns of re-occurrence in accordance with ordinary everyday life. Other topics
however, have a more irregular type of trigger – unexpected events.
Depending on the characteristics of the event, a subsequent increase in general user activity as
well as event-related activity can be observed (cf. Dittrich et al., 2013; Krumm et al., 2015;
C. Li et al., 2012; Walther et al., 2013). Thus, from understanding the current topic of user
interaction, the type of event that caused it can be inferred. Ultimately, the general goal
is to automate this process of detecting and classifying events based on social media data
streams. An important aspect introduced by the nature of social media data (cf. Section 1.2)
is the temporal efficiency of the detection and, depending on the specific source, also the
localization.

This chapter will first define the terms event and natural disaster (cf. Section 2.1), as well as
the term real-time (cf. Section 2.2), all in the context of this work’s conducted research. In
Section 2.3 the general idea of IR and topic detection will be described, and some typical termi-
nology and methods that are applied in the approach will be introduced. Finally, Section 2.4
will take a closer look at the most important related work in event analysis from social media.
The respective strengths and shortcomings of the different approaches will be elaborated with
particular focus on a comparison to the capabilities of the approach developed in this work.

9



2.1 What Is an Event?

The general primary dictionary definitions (cf. Cambridge University Press, 2015; Merriam-
Webster, Inc., 2015; Oxford University Press, 2015) of the term event can be concentrated
as

something that happens or takes place, especially something important or unusual

Following Merriam-Webster, Inc. (2015) and Oxford University Press (2015) the second notions
can be merged to

a planned public or social occasion or activity (such as a social gathering)

Due to the context of event detection and the particular use case of natural disasters, the
primary definition and the aspect of an event being something unusual will be taken as essential.
Also the notion of an event as something that possibly triggers unusual real-world reactions,
i.e. deviations from usual behavioral patterns that can be identified.

2.1.1 Events on Social Media

Several definitions have been proposed in the field of event analysis using social media data.
The initial idea of topic detection kept the definition of an event rather general.
Y. Yang et al. (1998) claim that an event should identify something (non-trivial) happening in
a certain place at a certain time, while according to Cieri et al. (2002) an event is a specific
thing that happens at a specific time and place along with all necessary preconditions and
unavoidable consequences.
Later on, the definitions were formulated more narrowly in order to apply them to modern
social media, but leaving a somehow fuzzy border between topics and events:

• The information flow between a group of social actors on a specific topic over a certain
time period.
(Q. Zhao et al., 2007)

• A set of messages that are highly concentrated on some issues in a period of time.
(C.-H. Lee, H.-C. Yang, et al., 2011)

• A real-world occurrence with an associated time period and a time-ordered stream of
(TWITTER) messages, of substantial volume, discussing the occurrence and published
during the time period.
(Becker et al., 2011)

However, in the vast majority of publications, the authors have refrained from giving any
definition of the events they want to detect or analyze using social media data.
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Here, parts from the aforementioned definitions are borrowed to describe the interpretation of
an event that I aim to detect through social media data. The basis can be put as

something observable that happens rather unexpectedly in the real world at a
specific time and in a limited region.

The term observable is meant to be interpreted in a way that a critical mass of people has to be
affected and triggered to react to the event. Of course the idea is that, eventually, enough social
media users will be activated too, as they are used as a proxy to the whole affected population.
The aim is to observe the triggered reaction in the quantity of social media usage as well as in
the disseminated content. This proxy is, of course, strongly biased to a very specific subgroup
of the population. However, one attempt of this thesis is to reveal what is still possible with all
the inherent drawbacks of the input data.
In contrast to the modern definitions given above, this thesis has a clear focus on spatially
grounded events rather than only confining itself on the temporal extent. This corresponds
with the desired speed of the detection – i.e. real-time as defined in Section 2.2 – and the goal
of pinning the event down to a certain location or direct impact area. The timeliness of the
detection is often essential for a successful localization. Naturally, the information dispersion
on social media sites such as TWITTER is rapid and a message can be forwarded (i.e. retweeted
in TWITTER terms) easily without the user having to have experienced the event himself. Thus,
an event can cause an increase in topically related messages far away from its original location
after some time.

2.1.2 Natural Disaster Events

Natural disasters are the main focus of the operational aspects of this work (cf. Section 3.6).
Thus, a solid definition what constitutes an event as a natural disaster in general and its notion
in the scope of this work is needed – that means in the context of event analysis using social
media data.

First of all, a distinction has to be made between the terms natural hazard and natural disaster.
The former refers to a:

natural process or phenomenon that may cause loss of life, injury or other health
impacts, property damage, loss of livelihoods and services, social and economic
disruption, or environmental damage.
(United Nations International Strategy for Disaster Reduction (UNISDR), 2009)

while the latter is described as a:

natural event [that] is so intense that people suffer and material assets are affected
to a substantial degree . . . [It] depends not so much on the absolute force of the
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event as on the vulnerability of the affected region.
(CEnter for DIsaster Management and Risk Reduction Technology (CEDIM), 2005)

In this relation, hazards are seen as latent thread (natural process or phenomenon) and
disasters are actual instances (natural event) of these hazards in vulnerable regions.
In accordance to the rather general usage of the term event in the scope of this work, also a
less strict view on the term disaster is employed. The aim is to detect natural events caused
by natural hazards that affect a critical mass of people without any constraint on the degree
of suffering or damage. Hence, as long as there are enough people that directly experience –
i.e. hear, feel, see, etc. – the natural event and are triggered to show a reaction, it should be
detected. It can be put even simpler the other way around – if an earthquake happens in an
uninhabited area it is not considered a natural disaster in the scope of this work.

Types of Natural Disasters According to Below et al. (2009), natural disasters can be divided
into six disaster groups with several main-types, sub-types and sub-sub-types. The groups
partly overlap because they are based on a “triggering hazard” logic. Their comprehensive
categorization is shown in Table 2.1. The special groups “Biological” and “Extra-terrestrial” are
excluded. In the topic classification step (Section 3.4), a simplified and slightly adapted version
will be used as hierarchical structure – i.e. as domain taxonomy.

Natural Disaster Analysis using Social Media Several authors have shown that social media
data can be used in the process of detecting and analyzing a natural disaster. The following
list depicts several types of natural disasters that have been investigated and the respective
references. It is meant as a quick overview but does not claim to be complete.

wild fire De Longueville et al., 2009; Starbird et al., 2010; Vieweg et al., 2010

storm Krumm et al., 2015; Terpstra et al., 2012

snowstorm Krumm et al., 2015

flood Starbird et al., 2010; Vieweg et al., 2010

tsunami Kireyev et al., 2009

earthquake Doan et al., 2012; Kireyev et al., 2009; Krumm et al., 2015; Sakaki et al.,
2010

tornado Sakaki et al., 2010; Saleem et al., 2014

hurricane Hughes et al., 2009; Saleem et al., 2014
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Table 2.1: Detailed categorization of disaster types according to Below et al. (2009)

Group Main-Type Sub-Type Sub-Sub-Type

Geophysical Earthquake Ground shaking

Tsunami

Volcano Volcanic eruption

Mass movement (dry) Rockfall

Avalanche Snow avalanche

Debris avalanche

Landslide Mudslide

Subsidence Sudden subsidence

Long-lasting subsidence

Meteorological Storm Tropical storm

Winter storm

Local/Convective storm Thunderstorm/Lightning

Snowstorm/Blizzard

Sandstorm/Duststorm

Generic (severe) storm

Tornado

Orographic storms

Long-lasting subsidence

Hydrological Flood General (river) flood

Flash flood

Coastal flood

Mass movement (wet) Rockfall

Landslide Debris flow

Avalanche Snow avalanche

Debris avalanche

Subsidence Sudden subsidence

Long-lasting subsidence

Climatological Extreme temperature Heat wave

Cold wave Frost

Extreme winter conditions Snow pressure

Icing

Freezing rain

Debris avalanche

Drought Drought

Wild fire Forest fire

Land fires
(grass, bush, etc.)
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2.2 Real-Time

According to the International Organization for Standardization (2015), the adjective real time
or real-time in the technical sense, is

pertaining to the processing of data by a computer in connection with another
process outside the computer according to time requirements imposed by the
outside process.

In the context of this work, the data to be processed is represented by the steady flow of new
information from social media streams, and the process outside the computer refers to an
occurring real-world event. The time requirements imposed by the outside process on the other
hand, are strongly dependent on the type of event. Therefore, no general quantification of the
desired minimum time delay between the event occurrence and the detection can be given.
Consequently, the emphasis is rather on the importance of the system’s responsiveness, i.e. the
permanent capability

1. to process incoming, real-time data and

2. to yield respective results within a fixed time range.

This includes that all incoming data, i.e. each single message, is processed and contributes to
the result which must be available before the next analysis loop starts.
No individual, absolute time ranges are set for specific event types, as it would strongly limit
the generic nature of the approach. Instead, I am focusing on developing a system that taps
the full velocity potential of the specific input source on a global scale (see Section 3.3.2).

2.3 Information Retrieval and Topic Detection

Commonly, IR is defined as:

finding material (usually documents) of an unstructured nature (usually text)
that satisfies an information need from within large collections (usually stored on
computers).
(Manning, Raghavan, et al., 2008)

In short, general IR systems, already dating back to the 1940s, aim to identify and locate
information that matches – or is at least relevant to – some user query. The system typically
searches in collections of unstructured or semi-structured data, such as documents, images,
videos, web pages, etc. (cf. Sanderson et al., 2012).
In the mid 1990s, however, the need for more specialized methods that could handle large
streams of data rather than just static collections arose. Thus, from September 1996 through
October 1997 the Defense Advanced Research Projects Agency (DARPA), the Carnegie Mellon
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University, Dragon Systems, and the University of Massachusetts at Amherst, launched the
first Topic Detection and Tracking (TDT) pilot study. It originally started out as referring to
automatic methods for the discovery of topically related entities of information in streams of
data, in particular broadcast news from television and radio. Several follow-up workshops took
place to investigate the current state-of-the-art in finding and following new events in a stream
of broadcast news stories (cf. Allan et al., 1998).

In more detail, the research objectivesof TDT can be split into three (consecutive) subtasks:

1. Segmentation – finding topically homogeneous chunks in a news stream

2. Detection – detecting the occurrence of new events

3. Tracking – tracking the recurrence of known events

Today the general pattern of Segmentation, Detection, and Tracking in essence still holds.
However, the input source has changed to mainly web based services and social media platforms
where the information is disseminated via large data streams. Hence, the volume and velocity
of incoming data increases. Despite the overall growth in data volume, single documents are
oftentimes much shorter. Nonetheless, modern approaches in TDT as well as IR still rely on
well established ideas of word occurrences and frequencies. These ideas can be aggregated
under the term Vector Space Model (VSM), and will be presented in the following.

2.3.1 Vector Space Models

The basic idea underlying all VSMs is to represent each document in a collection as a vector
in a vector space. Thus, vectors that are close in the chosen vector space, are expected to be
semantically more similar than vectors that are far apart from each other, which in turn should
be semantically distant (Turney et al., 2010). The information need expressed as a user query
is then mapped to the same vector space, thus enabling distance measurements, also called
semantic similarity in the context of IR.
According to Turney et al. (2010), the term VSM only refers to models where the values of the
vector elements are derived from event frequencies, e.g. the number of times that a certain
word occurs in a given context. This constraint emphasizes the derivation of VSMs from the
rather general statistical semantic hypothesis.

statistical semantic hypothesis
Statistical patterns of human word usage can be used to figure out what people mean
(Furnas et al., 1983; Weaver, 1955).

The bag of words hypothesis puts that in a more tangible and concrete context.

bag of words hypothesis
The frequencies of words in a document tend to indicate the relevance of the document
to a query (Salton et al., 1975).
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An important prerequisite for VSMs is the definition of a document unit. If the units get too
small, the terms defining the topic will be distributed over several documents and important
passages might be missed. In contrast, if the units are too large, systems tend to retrieve
undesired matches and the relevant information is hard to find (cf. Manning, Raghavan, et al.,
2008). The choice of a specific unit is strongly application-dependent. I will introduce my
document aggregation approach for short messages based on space-time slices in Section 3.4.

2.3.2 Term-Document Matrix

In general mathematics, a bag is related to a set, in the sense that it also ignores the order of
elements it contains. In a bag, however, duplicates are allowed. Thus, the sentences in this
small example document

[2.1] The car is in front of the house. The owner is in the house.

can be represented as a Bag of Words (BoW)

BoW = {car, front, house, house, in, in, is, is, of, owner, the, the, the, the}

and consequently as a vector x = {1, 1, 2, 2, 2, 1, 1, 4} capturing in this case the number of
occurrences of each word in the document.

In a typical setting a collection D of n documents dj is given with j = 1, ..., n, i.e. a set of bags,
and a vocabulary V of m distinct terms ti with i = 1, .., m from D. The term-document matrix is
then defined as the m× n matrix T whose columns correspond to the vector representations
of the documents dj = (t1,j , t2,j , ..., tm,j). The elements ti,j denote the weighting of term ti

for document tj . The simplest weighting scheme is the boolean model where T is a binary
term-document (incidence) matrix, capturing for each term ti of V if it occurs in a certain
document dj of the collection D or not, so that the matrix entries are compiled according to

ti,j =

1, if ti ∈ dj

0, otherwise.
(2.1)

However, a boolean model can only handle boolean queries and therefore just retrieve exact
matches, which is often not desirable. Moreover, it is not able to incorporate cumulative
evidence, that means it can not account for several occurrences of a word in a document.
Hence, the more valuable approach is an algebraic model that introduces term frequency as
basic weighting scheme from which more advanced weighting schemes can be derived. The
term frequency (tf) is simply the number of occurrences of term t in document d and usually
denoted by tft,d.
One major issue is still left in the weighting scheme though – i.e. simple term frequency
assumes that each term is equally important for assessing the relevance to a query. Hence,
the weighting for terms that occur in many documents of the collection D need to be scaled
down as they have less discriminative power to score document relevance. For this purpose the
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so-called inverse document frequency (idf) is used. According to Jurafsky et al. (2009) and
Turney et al. (2010) the idf of a term tj is commonly defined as

idft = log n

nj
(2.2)

where nj is the number of documents that contain the term tj . The logarithm is usually
applied to dampen the effect of very large document collections. As I will explain in detail
in Section 3.4, my approach introduces the notion of dynamic document collections but of a
rather small size. Accordingly, the simple ratio is used and the logarithm is omitted, which is a
better fit for the framework.
For readability’s sake, the combination of the tf and idf is denoted as tf-idft,d or simply tf-idf in
the following. Following Manning, Raghavan, et al. (2008) the tf-idft,d essentially assigns a
weight to each term t in document d which is

1. highest when the term occurs many times within a small number of documents,

2. lower when the term occurs fewer times in a document, or occurs in many documents,

3. lowest when the term occurs in virtually all documents.

When applying the tf-idft,d weighting scheme or one of its modifications, the patterns of
frequencies that arise in the columns are a kind of signature of the corresponding documents
over the vocabulary space V . Now according to the above defined bag of words hypothesis,
these patterns capture to some degree an aspect of the meaning of the corresponding document
– i.e. the topic of the document.

Although the BoW approach ignores word order as well as any other structural elements
inherent in the text, such as punctuation, phrases, sentences, paragraphs, etc., it is widely and
very successfully applied in topic detection and modeling, search engines and other branches of
IR. However, due to the special characteristics of language as input data, certain pre-processing
steps are often essential for the effective adoption of VSMs.

2.3.3 Linguistic Pre-Processing

In this section, I will shortly describe the typical steps for pre-processing raw textual input
data. Some of the methods are also an important basis for the approach of Spatial Information
Extraction from Text, which will be the topic of Part II. Additional steps necessary for pre-
processing textual social media data will be explained in Section 3.4.

An important aspect of the VSM is a plausible notion of what constitutes a term, and eventually,
which terms are relevant enough to be represented in the BoW capturing the semantics of a
document. Although, it might be desirable to differentiate between the concepts word and
term1 in some applications, they will be used interchangeably unless explicitly noted.

1E.g. New York might be considered as one (compound) term in IR and still consist of two words.
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Tokenization To extract the terms from documents, a process is employed that is called
tokenization or sometimes more general lexical analysis. In the field of NLP, it is the task of
cutting a character sequence (i.e. a string) into identifiable linguistic units (also called lexical
entities) that constitute a piece of natural language data, e.g. a document or a sentence (cf.
Bird et al., 2009).
The first and main step for most so-called segmented languages2 can be as simple as splitting a
sequence of characters at whitespace and dismissing the punctuation. Other languages such as
Japanese and Thai do not separate the words by special characters. Hence, they require more
complex approaches. However, even for English and other segmented languages, there are a
lot of complicated cases (cf. Trim, 2013) such as

• apostrophes for possession and contractions

• acronyms with punctuation

• words containing periods

• different types of hyphens (end-of-line hyphen, true hyphen, lexical hyphen, sententially
determined hyphenation)

• numerical and special expressions (email addresses, URLs, telephone numbers, dates,
time)

The definition of a token is usually given as being only a single instance of a sequence of
characters in a document that is aggregated as a useful semantic unit for processing, i.e. a term
(cf. Manning, Raghavan, et al., 2008; Mitkov, 2003). Terms are also not just the set of unique
tokens, though, but they are usually derived from those tokens by selection and normalization
processes.

Stop Word Removal The selection of terms is commonly conducted with the help of a stop
word list. Stop words are terms that appear extremely often in a certain language or domain,
but are of little value for topic detection or query matching, and mostly carry little semantic
content. They are excluded from the vocabulary for any further processing. According to
Manning, Raghavan, et al. (2008), the general strategy for determining a stop word list is to
order the terms by their frequency in the collection or another large corpus of the application
domain. Then, sometimes after a manual filtering for the semantic content with respect to the
domain, the most frequent terms get assigned to a stop word list. Figure 2.1 depicts such a first
step in stop word list generation. In this case, the 20 most common terms are displayed with
their respective number of occurrence from a sample of 380,683 English tweets3 – punctuation,
numeric characters and special signs (e.g. @, #, =, etc.) already excluded. Prepositions such
as to, in, of , for, at and on, are included as stop words in this approach, which is justified
for topic detection, however as will be described in Part II they can sometimes carry quite
important semantic content.

2Segemented languages, are all languages that use a Latin-, Cyrillic-, or Greek-based writing system.
3These are all georeferenced tweets of one day from the Coordinated Universal Time (UTC)−8 h time zone

constraint to the United States of America, i.e. the Pacific Standard Time (PST).
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Figure 2.1: High frequency terms in a sample of 380,683 English tweets with punctuation, numeric
characters and special signs (e.g. @, #, =, etc.) already excluded.

Normalization In this context normalization means canonicalizing tokens that exhibit superfi-
cial differences in their character sequences, i.e. their surface form, but at the same time are
derived from a mutual base form – in a lexical and a semantic sense.

[2.2] Foxes often have a brownish-red color.

[2.3] The fur of a fox has several shades of a rusty red.

When a system is confronted with the input given in [2.2] and [2.3], it should be capable of
grasping the topical similarity of these two documents. However, after the tokenization and
stop word removal they have either none or one single token in common (that is “red”, as a is
subject to stop word removal), depending on how the applied tokenizer handles the hyphen.
The steps to arrive at the desired information – that both documents share a similar topic,
which can roughly be described by the words “red” and “fox” – are case folding and stemming.
Case folding can be interpreted as the step that separates the lexical base form from a surface
form. The common approach to achieve this is simply mapping all letters to lowercase.
Thus, capitalized instances at the beginning of a sentence such as “Foxes” will match queries
including the intra-sentence representation “foxes”. This kind of modification might not always
be advantageous. Some proper nouns, such as company names, organizations and persons,
can loose their distinctiveness compared with the common words from which they are usually
derived. In most scenarios, however, more complex approaches such as truecasing4 did not
yield the expected improvements with respect to their costs.
The second step stemming relies on a more complex process referred to as morphological
analysis, the study of the inner structure of a word. Words often combine a stem and added

4Truecasing is the general term for different machine learning sequence models that make the decision of when to
case-fold based on feature learning (cf. Manning, Raghavan, et al., 2008).
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affixes (inflections), such as past tenses, continuous forms and plurals – e.g. “foxes” with
its stem “fox” and affix “-es”. Stemming tries to reduce such inflected words to their stems
(Turney et al., 2010). A more complex example is the verb “go” and its past tense form “went”.
In this case a simple removal of the ending does not deliver the desired output. Stemming
algorithms that can handle these advanced cases are sometimes called lemmatizers, because
they reduce the inflected words to their lemma, i.e. their dictionary form. However, there is
no strict definition, neither for stemming nor for lemmatization. So the two terms are used
interchangeably throughout this work and are detailed when needed.

2.3.4 Document Similarity

Ultimately, in topic detection, the aim is to quantify the similarity of a certain document to a
specific topic. This topic is either defined by a user query as in search engine applications or
a predefined topic model, i.e. usually given as a set of distinctive keywords. Either way the
VSM approach can be adopted and the respective representation interpreted as a BoW vector in
the same vocabulary space as the document applying the same weighting scheme (here tf-idf).
Thus, a score is given that describes the similarity between them.

Naturally, there exists a plethora of possible measures that could be used to derive a plausible
score. In his book Information Retrieval, Rijsbergen (1979) showed that if proper normalization
has been applied, the difference in retrieval performance using different measures is insignifi-
cant.
Nonetheless, Bullinaria et al. (2007) conducted a study with five popular distance measures as
well as the cosine similarity measure and compared their respective effectiveness in four differ-
ent tasks incorporating word (co-)occurrence statistics. The investigated distance measures
were Euclidean distance and Manhattan distance (as geometric measures) as well as Hellinger
distance , Bhattacharya distance, and Kullback-Leibler distance (as measures from information
theory). In their settings, the cosine measure yielded the best results for all tasks.

Cosine Similarity The cosine similarity is based on the dot product (also called inner product)
from linear algebra. The dot product of two vectors x = {x1, . . . , xn} and y = {y1, . . . , yn} is
defined as

x · y =
n∑

i=1
xi · yi (2.3)

Obviously, it can act as a similarity measure because it will be higher when x and y have large
values in the same dimensions, and in contrast, it will be closer to 0 if the vectors have zeros in
many different dimensions (Jurafsky et al., 2009). Still, it suffers from the shortcoming of a
strong document length dependence as the relative distributions of words may be similar, but
the absolute term frequencies of one document may be far larger, just because it is much longer
(Manning, Raghavan, et al., 2008). The vectors are normalized to unit length to account for
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the sensitivity to the absolute magnitudes of the various dimensions. Thus, the cosine similarity
measure is given by

cos (x, y) = x · y
|x| · |y| =

∑n
i=1 xi · yi√∑n

i=1 x2
i ·
∑n

i=1 y2
i

(2.4)

with the intuitive interpretation that it computes the cosine of the angle between two vectors.
Consequently, if two documents are identical, with respect to the vector space, the cosine will
be 1 and if they do not share any terms it will be 0. In VSMs the cosine is limited to positive
values, as all the vector elements represent weightings based on term frequencies, i.e. positive
counts.

2.4 Related Work

The body of work concerned with event analysis from social media sources comprises inves-
tigations in various research fields such as artificial intelligence, computational linguistics,
computer science, electrical engineering, information science, social science, as well as research
with industrial background (e.g. HP, MICROSOFT, PHILIPS, IBM, etc.). Hence, a considerable
amount of approaches has been proposed to tackle the task for social media sources in general
(e.g. Chae et al., 2012; Nurwidyantoro et al., 2013; Sayyadi et al., 2009; Valkanas et al., 2013;
Q. Zhao et al., 2007). However, the overwhelming majority of approaches either use TWITTER

exclusively or at least as their experimental dataset (Aggarwal et al., 2012; Atefeh et al., 2015;
Becker et al., 2011; Benson et al., 2011; Dong et al., 2015; Krumm et al., 2015; C.-H. Lee,
H.-C. Yang, et al., 2011; C. Li et al., 2012; R. Li et al., 2012; Ritter, Mausam, et al., 2012;
Sakaki et al., 2010; Sugitani et al., 2013; Walther et al., 2013; Wang et al., 2013; Watanabe
et al., 2011; Weng et al., 2011; W. X. Zhao et al., 2012).

Due to this huge amount of research it seems reasonable to provide a more focused review.
Most of the aforementioned approaches only deal with a small aspect of event analysis. As
the framework developed in this work depicts a holistic view on the matter, the three most
important approaches that also cover several essential aspects are considered.
Each of the approaches is reviewed as detailed as necessary and elaborated on its respective
strengths and shortcomings. The inspection is based on important features allowing an
informed comparison to the approach presented in this thesis. The targeted features are

real-time capabilities e.g. potential speed of detection, operational prototype, notifica-
tion mechanism

event localization e.g. granularity, accuracy, spatial coverage

clustering capabilities e.g. spatial, thematic and temporal (i.e. monitoring)

event classification e.g. distinctive class labels, language coverage, domain depen-
dency

A Novel Approach for Event Detection by Mining Spatio-temporal Information on Mi-
croblogs, C.-H. Lee, H.-C. Yang, et al., 2011
In their proposed approach, C.-H. Lee, H.-C. Yang, et al. (2011) try to provide a comprehensive
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spatio-temporal viewpoint of an event by detecting and grouping emerging topics in real-time
and assign a geo-location to the identified topics. They motivate their work based on the
information needs of situational awareness for event control. Moreover, they emphasize the use
case of utilizing spatio-temporal information from TWITTER to support emergency planning,
risk assessment and damage estimation in case of natural disasters such as earthquakes and
tsunamis.
The system architecture is a two-pass model comprising the consecutive steps of thematic
topic categorization and spatial analysis. The authors use an incremental Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm to constantly group related mes-
sages into topics. The clustering is based on a dynamic feature space which keeps messages in
a sliding window model. They rely on a BoW approach with dynamic term weighting based
on history, originally introduced by C.-H. Lee, C.-H. Wu, et al. (2011). So-called hot topics
are identified by analyzing the detected clusters – however, the authors provide no further
explanation how they analyze the clusters. Finally, they try to exploit the spatial distribution of
messages in a topic cluster, using textual location mentions to estimate the location where the
event occurred. As the approach aims for detecting local events, they penalize higher amounts
of different locations within one topic.

Evaluation
The approach of C.-H. Lee, H.-C. Yang, et al. (2011) lacks the proof of real-time capabili-
ties as their analysis is carried out retrospectively. The authors use two hour chunks of the
TWITTER random sample stream as their sliding window width, resulting in roughly 68K
messages per chunk. It is therefore questionable if local events generate enough traffic to
be detectable. The proposed method for topic detection is unbound from any domain, but
it runs short of a real classification of the event type as it only yields a list of keywords.
Although the localization method can be applied on a global scale, it suffers from several
issues, as it is based on location mentions in the messages. Location references provided
in natural language data are inherently highly ambiguous, as they are usually given in
low granularity (e.g. city level) and mostly not reliable (cf. Section 3.1.3). Finally, the
approach allows cluster shapes – i.e. the distribution of the distinctive terms describing
the topic – to change over time. Nonetheless, it is not capable of linking temporally
distant topic occurrences to one mutual event.

Beyond Trending Topics: Real-World Event Identification on Twitter, Becker et al., 2011
As described in Section 2.1, Becker et al. (2011) define an event as a real-world occurrence
with (i) an associated time period and (ii) a time-ordered stream of Twitter messages of
substantial volume, discussing the occurrence, and published during the time period. The goal
is to identify real-world event content in an online fashion.
Incremental online clustering and filtering is conducted without initially defining the number
of clusters. The threshold parameters are empirically tuned during training. The different
cluster features are categorized into four groups:

• temporal – volume of frequent cluster terms and deviation from expected message volume
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• social – percentages of messages containing different types of user interaction (retweets,
replies, mentions)

• topical – describing the topical coherence of a cluster, relying on the hypothesis that event
clusters have one central topic

• twitter-centric – usage of tags and presence of multi-word hashtags

The subsequent classification is based on a machine learning approach using the described
cluster features in one hour time steps. Human annotators are employed to label clusters
for both the training and testing phases. Ambiguous clusters as well as clusters where the
annotators disagreed are not considered. The classifier is trained with a balanced dataset of
event and non-event clusters. A variety of classifiers is considered and support vector machines
yielded the best results for this setup. A following logistic regression model allows to obtain
probability estimates of the class assignment. The top 20 events during one hour according
to their event probability are selected for a baseline comparison. The authors show that their
classifier is superior to the baseline – a Naïve Bayes classifier for text similar to the approach of
Sankaranarayanan et al. (2009).

Evaluation
The approach of Becker et al. (2011) has similar shortcomings as the approach of C.-H.
Lee, H.-C. Yang, et al. (2011), i.e. (i) there is no proof of real-time capabilities because
their analysis is carried out retrospectively, (ii) their topic detection incorporates no real
classification of the event type and (iii) the approach is not capable of linking similar
topics from the distinct one hour chunks to one possibly mutual event.
A set of 2.6M TWITTER messages from February 2010 is used where the user account
location information states New York City – i.e. they assume a predefined spatial extent5

without incorporating any event localization in their approach.

Eyewitness: Identifying Local Events via Space-Time Signals in Twitter Feeds, Krumm
et al., 2015
In contrast to C.-H. Lee, H.-C. Yang, et al. (2011) and Becker et al. (2011), Krumm et al., 2015
show that what they call geotagged tweets, i.e. including a pair of geographical coordinates,
are sufficient for high-precision detection of local events. They conclude that it is not necessary
to infer locations from tweet text or user profiles.
The key assumption is similar to the one in this work – significant local events will trigger
people to suddenly write messages in a limited region and limited time. Their definition of an
event is kept rather simple as “something that happens at some specific time and place”.
The discretization of the earth’s surface is accomplished using the Hierarchical Triangular
Mesh (HTM) according to Szalay et al. (2005). The step to a higher resolution is achieved
by dividing each triangle into four smaller triangles. Four resolution levels are incorporated
resulting in triangle areas of roughly 15 km2 to 1000 km2. Concerning the time discretization,
the authors used uniform, disjoint intervals ranging from 20 min to 24 h. They refer to the
different combinations of temporal intervals and spatial extents as space-time prisms. The

5Above all they rely on the highly ambiguous location field; see Section 3.1.3 for a thorough discussion.
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detection of anomalies in these space-time prisms is conducted using a regression function
that predicts the amount of messages based on five features: the time of day, the day of the
week and the number of tweets in the three adjacent triangles. The authors declare an event
when the prediction error is larger than three times the standard deviation of the regression.
The approach provides a so-called event summary, i.e. it uses the SUMBASIC algorithm by
Vanderwende et al. (2007) to select the five messages that best summarize the event.
103 crowdsourced human judges were employed to produce binary ground truth for 2400
candidate events, yielding a precision of 70% for the automatic detection. They were able to
increase the precision up to 93% by using the ground truth data as input for a machine learning
approach6. The feature relevance investigation shows that the most important features for the
classifier are – by far – the actual number of messages in the respective space-time prism, the
normalized prediction error and the relation of the two.

Evaluation
Krumm et al. (2015) present a well-informed approach to local event detection using
tweets. Their method produces a high detection precision based on machine learning
and human annotated ground truth data. As their study is conducted retrospectively,
they acknowledge that their current regression function has to be adapted to enable a
real-time detection. The study is limited to a bounding box containing the United States
of America, but it is very likely that their spatial discretization would also work on a
global scale for their rather long time intervals. For real-time analysis in the range of a
few minutes though, the approach might suffer from the complexity of the HTM.
On the one hand, Krumm et al. (2015) make use of the most accurate location information
provided with a tweet, but then they leave their localization at the spatial granularity
of the triangle. Exploiting the messages that caused the detection in a spatial clustering
would largely improve the localization accuracy. Moreover, the authors do not account
for events spreading over several cells, i.e. there is no spatial clustering of triangles that
host the same event. Instead of a real event classification the approach only provides
five representative messages. Eventually, the approach also lacks thematic clustering
capabilities over distinct time intervals.

2.4.1 Research Gap

The literature review revealed several drawbacks of current state-of-the-art approaches for
real-time event analysis using social media.
First of all, the generally missing operational prototype, which might be considered as a
technical issue rather than a scientific one. However, I argue that the challenges in case of
real-time systems go beyond simple coding tasks, but directly influence the actual feasibility of
the applied methods. Throughout the design of my framework (cf. Chapter 3) the operational
implementation was a key aspect. Specific implementation details will be presented in Sec-
tion 3.6.
With a restriction to English messages, a global event detection is unlikely to be successful.

6They used a FASTRANK algorithm that learns an ensemble of decision trees.

24 Chapter 2 Introduction



Only C.-H. Lee, H.-C. Yang, et al. (2011) account at least for 13 different languages in their
topic detection, but only in terms of removing so-called stop words (see Section 2.3.3). Their
system would still interpret two equivalent keywords in different languages as distinct and
thus skew the resulting topic. In order to overcome this issue, I incorporate a domain restricted
translation engine for 64 common languages (see Section 3.4.2).
Furthermore, the approaches are not taking advantage of the full potential of the data source
concerning the speed of detection. Only Krumm et al. (2015) use time intervals below one hour.
In contrast, the framework developed in this work operates on a one-minute moving-window
basis aiming for real-time event detection and classification. In terms of localization granularity,
the approaches either do not use all the available information, or, in case of Krumm et al.
(2015), not to the full extent.
Finally, the approaches are missing a real event classification in terms of assigning a concrete
class label to an event. They either provide only the most frequent keywords or a presumably
representative subsample of the messages.

Considering these shortcomings of current approaches, the need for a holistic approach of
real-time event analysis using social media data becomes apparent. In the following chapter
I will present my event analysis framework offering (i) real-time, global event detection,
(ii) fine-grained localization capabilities, (iii) multi-lingual event classification, (iv) spatial-
thematic clustering and (v) temporal monitoring as well as (vi) immediate e-mail notification
and (vii) ad hoc visualization.
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3Event Analysis Framework

In this chapter, the developed framework is presented that monitors the worldwide georef-
erenced data stream of a social media platform to automatically analyze events in real-time.
The analysis of an event includes the spatio-temporal detection and monitoring of the event’s
impact on the platform users as well as the classification of the event type based on the textual
content of the messages sent by the users.
The main contributions of the approach are

• the applicability to a global, high-volume and real-time data stream,

• the generic implementation for domain-dependent event classification,

• the extensive multi-lingual coverage, and

• the spatial-thematic and temporal clustering capabilities.

To accomplish these tasks, the framework follows a pattern of first filtering the massive data
stream and afterwards aggregating the extracted information. In a more concrete sense, the
steps that the system traverses can be described as:

1. Identifying areas with unusually high message volume
(filter step one)

2. Testing the identified areas for domain relevance and assigning class labels
(filter step two)

3. Spatially clustering classified areas produced by the same event
(aggregation step one)

4. Temporally monitoring spatial event clusters
(aggregation step two)

The complete workflow will be explained in detail in the subsequent sections which are
organized as follows:
Initially, the input data will be described concerning its source, format and different content
aspects such as textual, temporal and locational information (see Section 3.1). Subsequently,
the investigation of important space- and time-dependent, quantitative characteristics for
its usage in a detection approach follows (see Section 3.2). On this basis, the developed
spatio-temporal model is detailed, which uses a grid-based spatial discretization and a temporal
moving window approach (see Section 3.3). A short review of alternative spatial discretization
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approaches will also be provided.
The thematic event classification uses the filtered output obtained by the spatio-temporal
model and conducts a multi-lingual keyword-based analysis to assign a certain class label to
an event (see Section 3.4). The classification incorporates a domain taxonomy to account
for the usually unspecific reporting style of social media users. Due to size and durational
variabilities of events, spatial-thematic and temporal clustering is essential to capture the
specific characteristics of an event (see Section 3.5).
Eventually, a description of operational aspects of the prototype such as computational resources
for the real-time data processing, as well as notification and visualization capabilities will be
given (see Section 3.6). Section 3.7 concludes this chapter with a short summary.

3.1 Input Data

Similar to the three approaches detailed in Section 2.4 and also most other approaches, I also
use the popular microblogging platform TWITTER as data source. The reasons for this choice
are mainly its large user base, the worldwide coverage1, and its real-time nature – i.e. the
platform users tend to disseminate information on something they have just experienced (cf.
Java et al., 2007).
TWITTER was launched in October 2006 and has been reaching 316M monthly active users
as of June 30, 2015 according to its official website (Twitter Inc., 2015b). On average, 600M
tweets, i.e. 140-character messages2, are sent via TWITTER per day (Internet Live Stats, 2016).
80% of the vast amount of users interact with the platform via mobile devices. Additionally,
the message can be sent through web-based services and applications. Java et al. (2007)
demonstrate the main types of user intentions to be: daily chatter, conversations, sharing
information and reporting news.
TWITTER provides access to the Firehose, the real-time stream of all tweets being sent, through
its Streaming API. Single tweets are received as documents in Java Script Object Notation
(JSON) consisting of compulsory and optional fields containing different types of alphanumeri-
cal information. The relevant fields for the current research contain the timestamp the tweet
was posted (created_at-field), the position from where it was sent (coordinates-field) and
the message itself, i.e. the textual information (text-field). Listing 3.1 shows an excerpt of a
tweet that was sent after an earthquake in La Verne, California on September 19, 2013.
In the following sections the textual (Section 3.1.1) and the temporal information (Sec-
tion 3.1.2) of a tweet are described. Then the various forms of embedded locational infor-
mation are detailed, their respective characteristics described and the exclusive choice of the
coordinates-field is motivated (Section 3.1.3).

1Except for China where TWITTER has been blocked permanently from the government since June 2009 (Guardian
News and Media Ltd., 2009). In some other countries such as Iran, United Arab Emirates, Russia and Turkey,
occasional blockage exists (Bender, 2015; Privax Ltd., 2015). According to the “Twitter Transperancy Report”
(Twitter Inc., 2015a), other countries that have recently requested TWITTER to filter or remove tweets include
Brazil, Japan, Netherlands, Germany, South Korea, Canada, India, Indonesia, Iraq, Italy, Kazakhstan, Malaysia,
Mexico, Mongolia, Pakistan, Spain, United Kingdom and the United States of America. North Korea has only an
intra-net, i.e. no access to TWITTER.

2They will be referred to as tweets or (short) messages interchangeably in the remainder of this work.
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1 {
2 id_str : "380664856422006784",
3 text : "just felt an earthquake for the first time.",
4 coordinates : {
5 type : "Point",
6 coordinates : [-117.88524217, 34.12811191]
7 },
8 created_at : "Thu Sep 19 12:09:08 +0000 2013",
9 place : ...

10 user : {
11 location : "",
12 statuses_count : NumberInt(2466),
13 lang : "en",
14 ...
15 }
16 retweeted : false,
17 lang : "en",
18 ...
19 }

Listing 3.1: Excerpt of a tweet in JSON-format containing locational information in the form of geo-
graphical coordinates (based on the World Geodetic System 1984 (WGS84)).

3.1.1 Textual Information

The textual information disseminated by the user is accessible through the field text. The
content is limited to 140 characters per message. It can be observed in the examples [3.1], [3.2]
and [3.3] that this limitation aggravates the typical properties that textual social media content
exhibits - i.e. ungrammatical and incomplete sentences, erroneous or missing punctuation,
abbreviations and acronyms (both often non-standard), spelling mistakes, slang and colloquial
terms (e.g. colloquial place names) and a lot of offensive language. This characteristic needs
special treatment in the form of suitable pre-processing steps using various NLP methods (for
details see Section 3.4 and Section 6.5).

[3.1] Had meh too gud ofa wrkout this mornin .

[3.2] fuck school nigga imma be a drug dealer lol

[3.3] FOLLOW ME BACK pleaseeeeeeee

3.1.2 Temporal Information

The information of when the tweet was created is provided in the field created_at in UTC
standard. The format represents the day of the month, the time and the year as numerical
values. The day of the week and the month, however, are provided as text as depicted in
Table 3.1. This is supposed to prevent misinterpretations in terms of zero or one-based counting
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(months) and different geographical standards concerning the definition of the beginning of a
week - Sunday (e.g. in the United States) or Monday (e.g. in Germany).

Table 3.1: Field names of the TWITTER timestamp format using the value from Listing 3.1

Day of week Month Day of month Hour of day Minute Second UTC-offset Year

Thu Sep 19 12 9 8 +0000 2013

Due to the processing in the TWITTER database ecosystem (e.g. message indexing for the
Search API), the subsequent redistribution through the streaming endpoints is bound to be
subject to a small delivery delay. Hence, the timestamp in the created_at – field will not
match the time the message actually arrives in a monitoring system’s database. To quantify the
delay, the time difference is calculated for all georeferenced3 messages obtained through the
Streaming API on Monday, June 10, 2013 (8,235,883 messages). The latency period proves to
be relatively stable with a median of 2 s and a 99.9th percentile of 4 s. The measured latencies
are only exceeding 10 s for 7.2 · 10−2 % of the messages. There are no significant effects on the
latency neither concerning the location from where the message was sent nor the time of day it
was created at.
The latency was also tested for longterm changes. Therefore, another day with a time delta of
two years was investigated - Wednesday, June 10, 2015 (8,757,570 messages). With a median
of 2 s and a 99.9th percentile of 4 s seconds, the results reveal a longterm consistency of the
messages’ latency. Only the amount of messages with a latency exceeding 10 s of 4.6 · 10−3 %
suggests an improvement over time on the side of TWITTER dissemination mechanisms in terms
of large delays. Nonetheless, the magnitude of the latency for the vast majority of messages is
negligible for the approach at hand (cf. Section 3.3).

3.1.3 Locational Information

The locational information provided as part of a tweet can be represented in different ways.
The formats range from unstructured to semi-structured to structured locational information.

Unstructured Format The unstructured format is given if the user provides spatial references
within the textual part of the message. The process of parsing text to identify terms associated
with geographic places is often referred to as geoparsing or toponym recognition. That means
that it is a sub-problem of Named Entity Recognition (NER), which aims at identifying relevant
types of named entities in text, such as persons, organizations, places, etc. NER is also one of
the main tasks in NLP and applied in other fields such as general Computer Linguistics, Text
Mining, IR and Information Extraction (IE) (see Section 5.3 for details).
In Part II of this thesis, several methods of NLP will be explained and employed to extract and
disambiguate special cases of spatial references from text, namely spatial relations incorporating
a preposition – so-called locative expressions.

3The definition of a georeferenced message for this work is given in Section 3.1.3.
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Semi-structured Format The semi-structured representation refers to the field user.location,
which the user usually populates when setting up his account on the TWITTER homepage or
in official clients for mobile platforms, or in one of the innumerable third-party applications.
According to Leetaru et al. (2013) the field is available in 71.4% of all tweets. The provided
term often refers to the hometown of the user or another place at city level. However, as the
user can set any string as input, several issues are also frequent4.

• several toponyms e.g. “seattle // los angeles”

• vernacular place-names e.g. “the city of angels”

• unofficial spelling e.g. “losangeles”

• non-sense terms/phrases e.g. “From the Country to the beach”

Hecht et al. (2011) found that 66% of the users in their large corpus provided “any inkling of
real geographic information” with a vast majority at city level followed by state level granularity.
However, they included vernacular place-names as long as their human annotators could decode
the information. One of their examples was “kcmo–call da po po”. Their coders were able to
determine that the user referred to “Kansas City, Missouri”. Such decoding capabilities are still
not possible with automatic systems. Moreover, the authors also included examples such as
“Bieberville, California” as geographic information although the city is not real. Hence, the
respective estimation is most likely too optimistic.
Even in the cases where the user provides a correct place-name such as “Frankfurt”, the inherent
ambiguity of toponyms is still an open issue – i.e. multiple instances of the same term in
different geographic regions. The process of matching these toponyms in text to the correct
physical location is called geocoding (cf. W. Zhang et al., 2014). A study of Leetaru et al.
(2013) revealed that “[N]early one third of all locations on earth share their name with another
location somewhere else on the planet [...]”. The task of geocoding is an active field of research,
which is, however, not in the scope of the presented work here.

In summary, the information provided in the user.location field is neither reliable nor fine-
grained nor explicit enough to be used as georeference for the approach.
For the sake of completeness, the fields user.time_zone and user.utc_offset are also
mentioned, which are often populated (78.4% and 74.9% of all tweets, respectively - cf.
Leetaru et al., 2013) and represent locational information as well. However, the granularity of
timezones obviously does not satisfy the needs to detect local events and, moreover, the user
can easily enter false information.

Structured Format Finally, the structured format can again be subdivided into a textual (en-
coded in the place-field) and a numerical representation (encoded in the coordinates-field)
which are, however, often closely connected with each other. Messages containing at least one
form of structured locational information will be referred to as geo-tagged in the following.
Different numbers have been reported on the percentage of geo-tagged tweets in the total

4Hecht et al. (2011) provide an extensive and interesting analysis of the information entered in the user.location
field.
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number of tweets, ranging from 0.7% to 3% (cf. Hecht et al., 2011; Krumm et al., 2015; Leetaru
et al., 2013; Watanabe et al., 2011). Custom tests in this work showed varying percentages
ranging from 1.5% to 2%.
The textual representation is an unambiguous place object as depicted in Listing 3.2 containing
a unique identifier (from the TWITTER place database), the place’s bounding box represented
in Geographical JSON (GeoJSON)5, the type of place, a short form of the name, the official
country code, the URL of this place object, the country name and the full name of the place.

1 {
2 place : {
3 id : "3b77caf94bfc81fe",
4 bounding_box : {
5 type : "Polygon",
6 coordinates : [[
7 [-118.668176, 33.704554],[-118.668176, 34.337306],
8 [-117.753334, 34.337306],[-117.753334, 33.704554]]]
9 },

10 place_type : "city",
11 name : "Los Angeles",
12 country_code : "US",
13 url : "https://api.twitter.com/1.1/geo/id/3b77caf94bfc81fe.json",
14 country : "United States",
15 full_name : "Los Angeles, CA"
16 }
17 }

Listing 3.2: Place object in JSON-format as it is embedded in a tweet

The numerical representation, in contrast, is a pair of geographical coordinates in GeoJSON-
format, i.e. the coordinate order is longitude first then latitude, and the reference system is the
WGS84. The place object can be set manually by the user via a software menu for each tweet
individually or as default setting for all following tweets. The options presented to the user
are based on the last known location of the device or on its current location if the locational
sensors are activated. The place object is then derived by TWITTER through reverse geocoding6

and presented to the user in different granularities from city to country level, e.g.

• Bowie (city)

• Prince George’s County (county)

• Maryland (state)

• United States of America (country)

In rare cases this is not possible and thus only a tiny fraction of approximately 0.1% of geo-
tagged messages do not feature a place object. In contrast, messages just containing a place

5Geographical JSON Working Group (2008)
6the process of deriving a readable street address or toponym in text format, given a coordinate-based georefer-

encing (cf. Hill, 2006)
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object and no data in the coordinates-field make up for approximately 10% of geo-tagged
messages in custom tests. However, apart from the options in the menu, the user can also
input any other existing place-name that is available in the TWITTER place database and thus
even overrule the reverse geocoding result. Consequently, the place object does not need to
represent the true location where the message was sent from, even if the tweet also contains
the numerical representation, i.e. the true position. Although the place object is an explicit
locational information, it still lacks the desired granularity and reliability for the approach.
Taking these considerations into account, the approach in this work exclusively uses messages
featuring locational information in the form of geographical coordinates and ignores the
information in the place-field. Hence, approximately 90% of all geo-tagged messages are used.
This constraint yields a total of 8-10M messages worldwide per day. To avoid confusion, this
subgroup of geo-tagged messages will be referred to as georeferenced throughout this work.

Accuracy of Coordinates The provided coordinates either originate from a Global Positioning
System (GPS) or Global Navigation Satellite System (GNSS) sensor of the usually involved
mobile device (depending on satellite signal coverage) or they are derived through other
positioning methods, e.g. Wi-Fi positioning or cellular positioning (also called cell ID method).
In practice, the methods show strongly differing levels of accuracy. Modern mobile phones
usually use a combination of these methods – e.g. in the form of Assisted GPS (A-GPS) – and
can reach horizontal accuracies up to 2 m under good multipath conditions, and accuracies
of 10 m and above under adverse multipath conditions (see Pesyna et al., 2014). An earlier
study with a more practice-related setup from Zandbergen (2009) quantified the root mean
square error for an iPhone 3G to 8.3 m with a maximum error of 18.5 m. In another set of
experiments from Zandbergen and Barbeau (2011), the authors state that as long as a GPS
position fix could be obtained, the maximum positional error never exceeded 100 m for indoor
environments. However, the indoor positioning of mobile phones is in practice often achieved
through the wifi-signal, which allows accuracies in the range from 30 m to 50 m according to
Bauer (2013). Zandbergen (2009) reports larger errors with a median of 74 m. The very rare,
worst case scenario is the positioning of a mobile phone solely based on the closest cellular
network towers. In theory, this could yield accuracies varying from 10 m to 35 km. In practice
however, the cell id is enhanced with different techniques such as the signal strength, the angle
of arrival, the time of arrival, and the so-called timing advance value. The accuracies usually lie
in the range from 100 m to 550 m (see Willaredt, 2011).
The quality of Wi-Fi and cellular positioning decreases with the distance to urban areas due
to the lower density of Wi-Fi access points and cell phone towers (cf. Paek et al., 2011;
Zandbergen, 2009). In contrast, the GPS/GNSS accuracy is often higher in rural areas than in
larger cities with high buildings, due to less multipath effects and usually an unobstructed view
of the satellites, and thus also often more visible satellites.
In conclusion, the position of a georeferenced tweet is acknowledged to range from 2 m to
550 m, however, with a bias to urbanized areas the assumption that the majority of messages
has a positional accuracy lower than 100 m seems reasonable.
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3.2 Spatio-Temporal Message Flow

As described in the preceding paragraphs, TWITTER’s architecture enables real-time propagation
of a large amount of UGC including temporal, locational and textual information. In order to
exploit the potential of the platform using statistical methods, it is essential to understand its
characteristics in terms of spatial and temporal variability in message volume. Accordingly, this
facilitates the spatio-temporal identification of significant increases, which are indicative to an
event. Consequently, several aspects of message distribution, periodicity and recurring patterns
are investigated.

3.2.1 Spatial Distribution

First, the characteristics of the spatial distribution of georeferenced tweets are analyzed.

Figure 3.1: The typical global, spatial distribution of georeferenced tweets per day. On the top and on
the right, the histograms illustrate the longitudinal and latitudinal distribution, respectively,
in 5° bins

Figure 3.17 depicts the typical distribution of georeferenced tweets on a global scale with the
distinct longitude and latitude histograms on the marginals. The histogram bins have a width
of 10° and the respective y-axes are dropped to focus on the relative differences in the amounts.
Different, active areas can be observed, such as Japan, southeast Asia, western Europe and
the east coast of the United States of America. At least to some degree there is a correlation
between the population density and the amount of messages sent. In smaller scales (e.g.
within one country), other contributing factors such as service availability (and availability
of similar other services), internet access, distribution of mobile devices, age structure, data
privacy sensitization, social media affinity, etc., are rather similar and may lead to a higher

7All figures presenting a global map are in equidistant cylindrical projection with the equator as the standard
parallel unless explicitly noted – this is also known as the plate carée projection.
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correlation with population density (cf. Figure 3.2). A study of Malik et al. (2015) investigated
the correlation of georeferenced tweets and fine-grained census data of the USA. They report
biases towards younger users, users of higher income, and users in urbanized areas, as well
as a surprisingly weak correlation of population density and message density. On a global
scale the variability of all contributing factors is of course even higher and thus they have a
very volatile influence on the amount of georeferenced messages. India, China, Pakistan and
Nigeria, for example, account together for over 40% of the world’s population, but only for
1.5% of all georeferenced tweets (sent per day).
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Figure 3.2: The typical spatial distribution of georeferenced tweets per day from locations in Germany
(in Mercator projection)

However, for a statistical analysis of tweet volume it is not essential to understand the exact
baseline generics, but to know the quantitative characteristics. Consequentially, no additional
input data such as population density estimates or countries gross product are used as proxies
in the approach, and instead it relies solely on the direct data, i.e. the georeferenced tweets.
The fact that the set of georeferenced tweets is obviously not a representative sample of the
whole population is acknowledged. But the approach will show that it can still be used as an
indicative proxy for events.
On this global scale, the distribution of tweets shows no obvious recurring patterns and is
rather “spiky” in nature. Accordingly, no smoothing methods are applied for modeling the
spatial distribution, such as Kernel Density Estimation or regional averaging. These may lead
to major errors in the baseline estimation.
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Figure 3.3: Comparison of the normalized histograms of daily sent georeferenced tweets and the
population, in 10° latitude bins. The source of binned population data is provided by
Kummu et al. (2011).

In terms of the spatial extent where georeferenced tweets occur, a rather clear constraint on a
bounded latitudinal range is apparent. This is of course no surprise as it depicts approximately
the zone inhabited by humans. In fact, more than 99.2% of the messages are sent between 40°
south and 60° north and more than 99.6% of the world’s population lives in this latitude range.
Figure 3.3 shows the normalized histograms of the number of tweets sent per day and the
population in 10° bins. The largest differences in the histograms can be observed at latitudes
around 45°, 25°, −5°, −25° and −35°. The low number of tweets around 25° is caused by the
blockage of TWITTER in China and the relatively moderate usage in India. The remaining
significant differences are in the other direction, i.e. many georeferenced tweets compared
to the population (both normalized to the respective total number). The differences on the
southern hemisphere can all be attributed to rather small areas of extreme tweet density –
e.g. Indonesia (≈ −5°), southern Brazil with Sao Paulo, Rio de Janeiro and Curitiba (≈ −25°),
the metropolitan area of Buenos Aires in Argentina and the metropolitan area of Montevideo
in Uruguay (both ≈ −35°). The difference on the northern hemisphere (≈ 45°) is caused by
a generally higher TWITTER activity and several active regions, e.g. the northeastern United
States of America (including the metropolitan areas of Chicago, Detroit, Cleveland and New
York), northern Spain, northern Italy, northern Japan, and the metropolitan areas around Paris
and Istanbul.

Figure 3.1 depicts each of the messages with a transparency value of α = 0.05 so that it is
possible to identify the most dense regions. In Figure 3.4 however, only messages with offshore
coordinates are shown, and in a solid color. Obviously, there are in fact messages sent from
almost all over the world including seas and oceans. Nonetheless, with only 0.5%, their number
is rather insignificant compared to the overall amount.
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Figure 3.4: An exemplary depiction of the daily volume of georeferenced tweets from offshore locations.

3.2.2 Temporal Distribution

In order to understand the temporal characteristics of the georeferenced message flow on
TWITTER, different temporal granularities are investigated to find recurring patterns. The data
used to present the findings are tweets collected from the West Coast of the United States of
America. The messages are constrained to one time zone to avoid skewing the statistics, as
these are most likely related to daily routines of the users. The time zone is UTC−8 h, that is
the PST.

Apr
2013

May Jun Jul Aug Sep Oct Nov Dec Jan
2014

Feb Mar
0

100

200

300

400

500

600

N
u

m
b

e
r 

o
f 

M
e
ss

a
g

e
s

×103

Figure 3.5: Daily amount of georeferenced messages in the PST timezone within the United States of
America from the beginning of April 2013 until the end of March 2014. The dark green line
is a smoothed version of the light green raw data, to show the general course.
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Seasonal Effect The first visible aspect is a moderate seasonal effect of TWITTER volume
over a year. December and January are the most active months, while the summer months
from mid May to end of August show less tweeting activity. Figure 3.5 depicts the amount of
georeferenced messages aggregated in one day periods from the beginning of April 2013 until
the end of March 2014. This suggests a limited use of historical data when acquiring a robust
baseline for the statistical model, i.e. the baseline generation should be adaptive to temporal
change.
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Figure 3.6: Example of the minute-by-minute amount of georeferenced messages in the PST timezone
within the United States of America from Sunday 17:00 to 17:00 the following Sunday.
The dark green line is a smoothed version of the light green raw data, to show the general
course.

Daily Patterns The next finer temporal granularity that is investigated is one week from
Sunday to Sunday. Here the expected clear pattern of daily tweet flow can be observed.
Figure 3.6 shows the amount of georeferenced messages in the above described area in time
steps of one minute. The dark green line is again a smoothed version of the raw data presented
in light green, to emphasize the general similarities between the different days of the week. Two
significantly differing patterns are visible – days during the week and days on the weekend8.

A closer inspection yields that the normal day boundary, i.e. 24:00 or 0:00 respectively, is not
suitable for decomposing the weekly message flow in periodical intervals. By looking at the
time between Friday and Saturday, as well as Sunday and Monday, the time around 5 p.m.
(local time) can be identified as a suitable boundary. Around this time, the daily tweet amount
is very similar, no matter if the next day is a day during the week or not. That is why, the
weekly flow of georeferenced messages can be compressed into two 24-hour models that are
here called weekday model and weekend model, respectively. The former is applied from Sunday
5 p.m. to Friday 5 p.m., and the latter from Friday 5 p.m. to Sunday 5 p.m. (all local time).

8This can be generalized to days where the majority of users has to work or to go to school the next day, and days
where the majority of users has the next day off. Taking into account each single holiday around the world
would of course be out of scope for this work.
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Figure 3.7 and Figure 3.8 depict the averaged amount of georeferenced tweets for the weekday
model and the weekend model respectively (white line) – for the investigated area. The
positive and negative 1σ-, 2σ- and 3σ-bounds are represented in shaded color of increasing
transparency.
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Figure 3.7: An averaged daily message flow on a weekday in the PST timezone within the United
States of America (white line) with 1σ-, 2σ- and 3σ-bounds as shaded colors of increasing
transparency
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Figure 3.8: An averaged daily message flow on a weekend in the PST timezone within the United
States of America (white line) with 1σ-, 2σ- and 3σ-bounds as shaded colors of increasing
transparency

In a direct comparison as shown in Figure 3.9, the different characteristics of the two models
can be seen and probable causes can be inferred. The peak of the weekend model is slightly
shifted by approximately 30 minutes to the right and is much lower in terms of the absolute
amount of messages per minute. This could be caused by a large percentage of users going out
on evenings before a day off from work, for example, to eat in a restaurant, have a drink in a
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bar, meet with friends or to go to the movies. The broad lows – most likely depicting the time
most users are asleep – are also shifted against each other. This suggests that users stay up
longer, and stay in bed longer on a weekend than on weekdays. The increased activity between
4 a.m. and 8:30 a.m. during weekdays also supports this. Accordingly, the phase between 8:30
a.m. and 4 p.m. represents the time when most users are at work or in school and thus the
activity is higher on weekends during this time.
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Figure 3.9: A comparison of the average daily flow of TWITTER messages for weekdays (solid line) and
weekends (dashed line) in the PST timezone within the United States of America.

3.3 Spatio-Temporal Model for Global Event Detection

Based on the findings of the preceding sections concerning the spatial and temporal distribution
of georeferenced messages on TWITTER, the spatio-temporal model for global event detection
is introduced.
The specific characteristics of the input source are exploited to obtain the most efficient
identification of significantly increased message volume in space and time. These are interpreted
as first indicators for potential events. As identification conveys the sense of assigning an
absolute time and location to an event – or in this case the time when users were first affected
and the estimated areal location of these users – suitable discretization methods for both space
and time are needed. After building a baseline model of normal message volume for each
discrete region and each discrete time interval, the current amount of each region can then
be compared to the respective, statistically derived threshold and thus potential events can be
identified.
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3.3.1 Spatial Discretization

The basis of the spatial discretization method is a constant global grid – basically a two-
dimensional histogram – which is aligned with the meridians and parallels of the earth. This
is somewhat similar to an equidistant cylindrical projection with the equator as the standard
parallel, known as the plate carée projection. With this uniform tessellation, no implicit
assumptions are made about how population or other factors introduce variance to the extent
of an event (cf. Krumm et al., 2015). Figure 3.10 exemplifies such a grid with constant
spacing of 10°. The same grid is shown in Figure 3.11, but in the equal-area, pseudocylindrical
projection from Mollweide that is based on ellipses and gives a more realistic view on the actual
shapes of the cells on the earth’s surface (cf. Snyder, 1993). Apparently, the grid distortion gets
more severe when approaching the pole, i.e. the covered area of the cells gets smaller and the
shape gets elongated in longitudinal direction. In fact, the equidistant rectangular tessellation
suffers from singularities at the poles.
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Figure 3.10: A depiction of a global regular grid with a spacing of 10° in latitude and longitude direction
in plate carée projection, i.e. increasingly distorted area representation towards the poles.

However, as Section 3.2.1 revealed, the major focus of the framework, and therefore also its
expected detection capabilities, lies mainly in the range from −40° to 60°. Moreover, I again
emphasize the goal of this approach as defined in Section 2.1.1 where I postulated that a
critical mass of people has to be affected by an event to be relevant in the scope of this work.
Figure 3.12 shows the change in area size of the grid cells along the complete latitude range.
In the critical range, the maximum area scaling factor reaches a value of approximately 1/2.
Thus, the grid cells at a lower latitude of 60° have approximately half the size of the 0° latitude
cells.

Formal Interpretation Formally, the simple grid covering the earth is denoted by G′, using
matrix style notation, which means that a specific single cell is represented as G′(r, c). The
indexes r = 1, . . . , m′ and c = 1, . . . , n′ represent the row and the column of the respective
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Figure 3.11: A depiction of a global regular grid with a spacing of 10° in latitude and longitude direction
in Mollweide projection to better illustrate the changing shape and area of the grid cells
towards the poles.
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Figure 3.12: The ratio of the grid cell areas of different (lower) latitudes and the grid cell area at 0°
latitude.

cell. The number of rows m′ and the number of columns n′ depend on the chosen cell size
∆g, which is equally defined in units of degrees [°] for latitudinal and longitudinal spacing.
As the extent of the earth is fixed to 360° and 180° in terms of longitude and latitude range
respectively, m′ and n′ are given as

m′ = 180
∆g

and n′ = 360
∆g

. (3.1)

The actual value of ∆g is an application-dependent compromise of several factors. On the one
hand, a suitable and representative spatial granularity of the targeted event type is needed.
On the other hand, it needs to be taken into account if the input source is able to provide
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enough messages in a certain space and time range to allow statistical analysis and eventually
IR methods. For the operational prototype, ∆g is accordingly set to 0.25°, leading to m′ = 720
and n′ = 1440. In the latitudinal focus range this yields approximate cell areas from 387 km2 to
769 km2.

Oversampling The spatial discretization of the earth’s surface with static boundaries exhibits
a disadvantage concerning the detection capability. The problem arises if an event generates
messages that are adversely distributed between neighboring cells in such a way that the
respective increases are not significant enough on their own. As the cell boundaries are not
correlated with the typical spatial distribution of messages, they may also split common clusters
and distort the “real” underlying distribution to some extent. This is a common issue when
quantifying data in discrete bins.

threshold=7threshold=6

Figure 3.13: Depiction of an example event situation yielding messages in two adjacent grid cells
without surpassing neither threshold.

Figure 3.13 illustrates the problem with two neighboring cells. Let us assume that an arbitrary
event caused all ten displayed messages represented as dots. The event would not be detected
as both thresholds are higher than their respective number of messages, here five. In order to
still be able to achieve the detection of the event in the desired resolution ∆g, oversampling is
applied to acquire knowledge on the area around the edges.
The spacing used for oversampling – again in longitudinal and latitudinal direction – is ∆g/2.
Hence, the resulting cells are only covering (approximately9) 1/4 of the original cells as depicted
in Figure 3.14. They represent a new grid G′′ with 2m′ rows and 2n′ columns which represents
an intermediate step during the data capturing.

Figure 3.14: Depiction of oversampling the original grid by a factor of two in latitudinal and longitudinal
direction to overcome the edge problem.

From G′′ the information can be retrieved that is needed to analyze all possible edge areas of
the original cells – i.e. the edges between two vertical or horizontal neighboring cells, as well

9Exactly 1/4 in geographical coordinates but not in terms of the covered area
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as the area where four cells meet. In case of the simple fictitious example, it is now possible
to detect the event because the threshold of the overlapping cell as depicted in Figure 3.15 is
known.

threshold=4

Figure 3.15: Depiction of the same event as in Figure 3.13, but detected due to the oversampling
information for the region covering half of the respective original cells.

In order to obtain this information, a simple two-dimensional convolution is used – a fundamen-
tal mathematical operation often used in image processing, that produces linear combinations
of input pixel values. The basic idea is to slide a so-called kernel or filter over the input grid
through all positions where the kernel fits entirely into the input grid. The general formula for
a linear convolution for discrete, two-dimensional functions is given as (adapted from Burger
et al. (2008))

I′(u, v) = I ∗H =
∞∑

i=∞

∞∑
j=∞

I(u + i− 1, v + j − 1) ·H(i, j) (3.2)

In this case the discrete function I equals the oversampled grid G′′ and the kernel H is given
as a 2× 2 matrix

H =
(

1 1
1 1

)
(3.3)

Equation (3.2) can then be simplified to

G(r, c) =
2∑

k=1

2∑
l=1

G′′(r + k − 1, c + l − 1) (3.4)

with the indexes now defined as r = 1, . . . , m and c = 1, . . . , n with m = 2m′ − 1 and
n = 2n′ − 1. This is in fact a summation of the four cell values covered by the kernel at each
possible position.
The resulting m× n grid G actually represents overlapping regions on the earth’s surface of
width and length ∆g and no discrete cells anymore. They contain the sum of the respective
cell values of G′′. Later on, the process accounts for possible multiple detections caused by the
same messages.
The prototype setting of ∆g = 0.25° leads to m = 1439 and n = 2879 as the size of G. Finally,
G is the actual grid, which is used in terms of the statistical analysis in Section 3.3.3.
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3.3.2 Temporal Discretization

As mentioned before, the second requirement for a spatio-temporal model to identify increased
message volumes, is a bounded time interval that can be analyzed.
The selection of such a time interval, as well as the dimensions of the spatial cells described in
the previous section, is subject to external conditions. With the most important one being the
specific input source, i.e. its characteristics in terms of volume and velocity. The logical choice
of a time interval in combination with a desired spatial resolution is definitely a compromise
between statistical robustness and speed of detection. Simply put, a time interval that is too
small for the chosen cell size will not yield enough messages for a solid analysis of the volume
and the content of the messages. On the other hand, a time interval that is too long will not
satisfy the criterion of a time efficient detection, and may lead to a system that is not sensitive
enough for smaller events.
Another factor of a framework aiming at real-world functionality is the capacity of satisfying
the definition of real-time systems given in Section 2.2. The definition specifically demands
that the system has to yield results before the next analysis loop starts. Accordingly, even if the
input source provided enough messages, there still were lower bounds for the applicable time
interval. The maximum time the system needs to process the data from one time interval is
denoted as tmax.

Formal Interpretation A certain length ∆t is chosen for a time interval t, during which all
incoming messages are mapped to their corresponding cells in G′′(r, c). At the end of a time
interval, each cell contains the number of messages that have occurred within its boundaries,
i.e. the system simply increments the respective counter for each message arrival according to
its location.
Although ∆t is selected to be as short as possible considering the message volume, the detection
time can still be accelerated. Therefore, a temporal moving window approach is applied with
windows equal to the time intervals and fixed time steps ts. At the end of each time step tsi,
the respective time interval ti is evaluated. Two constraints apply for the length of the time
steps ∆ts:

∆ts > tmax and ∆ts = ∆t

k

where k ∈ N and for practical reasons k ≥ 2. Consequently, the inequality

∆t > 2 · tmax

has to be satisfied for the optimization to be applicable for a certain input source and imple-
mentation. Figure 3.16 depicts the process for 5 time intervals that cover 9 time steps in this
example, i.e. k = 5.
In the prototype, ∆t is set to 1 min and ∆ts to 10 s, i.e. 8640 analysis steps per day. The
time intervals are based on experience with the data source and the chosen spatial resolution.
In contrast, the time steps are subject to the temporal performance capacity of the current
implementation of the prototype.
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Figure 3.16: Abstract visualization of the temporal moving window approach to optimize the detection
efficiency. The original time interval is split into an integer-valued number of time steps at
which the preceding time interval is processed.

This temporal moving window idea has similarities to the oversampling of space. Assuming
that an event produces messages distributed over the boundary of two time intervals, then this
event might not be detected with the use of temporally disjoint analysis entities. But now the
single time intervals are overlapping each other, i.e. possible increases not large enough to be
significant, can often still contribute to a detection in the next time interval.
The advantage in contrast to the spatial case is the fact that the message volume of one cell is
temporarily much more stable than the volumes of neighboring cells in space. Therefore, a
weighted average can be performed, instead of capturing the baseline statistics for each time
step. The weighted average is simply a linear interpolation of the values in the two respective
disjoint time intervals. In the majority of cases, the introduced error stays in the magnitude of
one to two messages.

Time Zones In Section 3.3.2 it was already briefly mentioned that temporal data from different
time zones should not be mixed. Otherwise the resulting model would be blurred in some
parts.
The problem is that by introducing different models for specific days during a week, the system
always needs to know which model has to be applied to which parts of the world, in other
words to which parts of the grid. For example, at Friday 5 p.m. UTC, the weekday model has
to be applied to all cells within time zones west of UTC, that is UTC−1 h to UTC−12 h. At the
same time the weekend model has to be applied to the rest of the cells, i.e. UTC to UTC+14 h.
As two models were identified to be necessary to represent the daily tweet volumes reliably,
two time spans have to be handled that traverse the grid from right to left during one week
and depict the time when the weekday model has to be applied to some part of the grid and the
weekend model to the other part.
The first time span starts at Friday 3 a.m. UTC, when the weekend model starts in the time
zone UTC+14 h and goes on until Saturday 5 a.m. UTC, i.e. when the weekend model started
everywhere.
The second time span starts at Sunday 3 a.m. UTC, i.e. when the weekend model ends in the
time zone UTC+14 h and goes on until Monday 5 a.m. UTC, i.e. when the weekend model
ends everywhere.

So far the approach has not taken into account daylight saving time – that is the advancing of
the clocks by one hour during summer months. However, as the two models are rather close in
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the transition phases, the introduced inaccuracies are not too large.
Technically, so-called masked arrays in PYTHON are used to assemble the current grid from the
two separate models. The masks are pre-compiled and are adapted in 15 min time steps, as this
is the smallest existing difference between time zones.
The time zone information is obtained from the Internet Assigned Numbers Authority (IANA)
time zone database via the PYTHON library PYTZWHERE10. Figure 3.17 illustrates Friday
13:00:00 UTC, i.e. when all timezones with a positive offset larger or equal to 4 h are rep-
resented by the weekend model. Hence, all cells where the weekend has already started are
green and the rest is not colored. The grid resolution is the one used in the prototype at the
oversampling rate of ∆g/2, i.e. the cells are 0.125°×0.125°.

Figure 3.17: Visualization of a so-called masked array for time zone handling at Friday, 13:00:00 UTC
in a spatial resolution of 0.125°×0.125°. The weekend cells are green and weekday cells are
not colored.

3.3.3 Frequency Analysis

Now that suitable discretization methods for time and space are established, the respective
thresholds have to be modeled in order to detect significant message increases, i.e. potential
event cells. Consequentially, appropriate distributions to model the typical number of messages
and its variability have to be chosen. So far, only increases are considered to be indicative to
an event, as a significantly decreased tweet volume could be the result of several unknown and
mostly non-detectable causes.

Count Data Models An important aspect for choosing the right statistical model is the nature
of the data that is analyzed. In this case, the variable to model is the number of messages in

10Available from https://github.com/pegler/pytzwhere and based on work done by Eric Muller – an up-to-date
shapefile of the timezones of the world available from http://efele.net/maps/tz/world/.
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a cell that arrived during a time interval11. This is usually referred to as count data, i.e. the
realization of a nonnegative integer-valued random variable.

The most common way to model count data is the Poisson distribution (cf. Cameron et al.,
2013), a discrete probability distribution, given as

Pλ = (tλ)k

k! e−tλ (3.5)

with t, λ > 0 and k ∈ N. The distribution has only one parameter λ that represents the expected
value12 as well as the variance, this characteristic is called equidispersion. Here it represents
the expected amount of messages in a cell during a certain time interval and is also called
intensity or rate. The parameter t denotes the exposure or the length of time the messages get
counted. Here, t can be set to 1 as it is always the exact same exposure and thus no adjustment
for varying exposures is needed. Equation (3.5) is then simply given as

Pλ = λk

k! e−λ (3.6)

Hence, the Poisson distribution provides the probability of the occurrence of a certain number
k of messages in the time interval. In Figure 3.18 a Poisson distribution is shown for a typical
cell with λ = 1.5 with its cumulative distribution function (CDF). As the variable is discrete,
the CDF is discontinuous at the possible variable values and constant in between.
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Figure 3.18: A typical Poisson distribution of one cell for a specific one minute time interval with
λ = 1.5.

Due to its limitation of one parameter, the Poisson distribution is obviously not very flexible.
In order to test if the data really follows a Poisson distribution, a Pearson’s χ2 goodness-of-fit
test is conducted with a significance level of 1% for the historic data in each cell and each time
11To avoid skewing the message frequency by so-called tweet bots (cf. Chu et al., 2010), only one message per user

per time interval is considered.
12The Maximum-Likelihood estimate for the parameter λ of the Poisson distribution is given by the arithmetic

mean.
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interval. This is the standard way of testing if a data sample comes from a specified discrete
probability distribution. Approximately 5% of cases can be identified in the data, where the null
hypothesis is rejected, i.e. where the data most likely does not follow a Poisson distribution.

The deviation from the expected Poisson distribution has two possible causes that are handled
separately. The first is called overdispersion and refers to the situation when the sample variance
exceeds the sample mean. Formally, this is defined as an index of dispersion (also variance-to-
mean ratio) that is greater than 1. In a Poisson model, the index of dispersion is equal to one,
or at least very close in real data.
However, there is another discrete probability distribution, namely the negative binomial
distribution, which has two parameters and a variance greater than its mean. This distribution
can be interpreted as a continuous mixture of Poisson distributions, also called a compound
probability distribution. The mixing distribution of the Poisson parameter λ follows a gamma
distribution. Thus, the negative binomial distribution is also known as gamma-Poisson mixture
distribution and given as

Pr,p = Γ(r + k)
k! Γ(r) pk (1− p)r (3.7)

For r approaching infinity, the negative binomial distribution converges to the Poisson distribu-
tion. The parameters r ∈ R+ and p ∈ [0, 1] do not have a straightforward physical interpretation
anymore, but they can still be used in a model of the number of messages in a cell during a
time interval. In Figure 3.19 a clearly elongated tail of the distribution, and a higher amount of
zeros can be observed, which both depict a larger variance. The parameters of the negative
binomial distribution in the graph approximately correspond to a sample mean of 1.8 and a
sample variance of 2.9.
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Figure 3.19: A negative binomial distribution (green) of a typical cell for a specific one minute time
interval exhibiting overdispersion, in comparison with a typical Poisson distribution (gray)
with λ = 1.5.

The second reason for a rejection of the Poisson assumption is called zero-inflation. The
term refers to the excessive occurrence of zero-valued observations compared to the expected
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amount according to a Poisson distribution. In these cases the approach relies on the so-called
zero-inflated Poisson (ZIP) model.
In the ZIP model it is assumed that the process generating the messages has two states (cf. D. B.
Hall, 2000), a state from which only zero values are generated and a Poisson state from which
all other values are generated (possibly also zero). Which state the model takes is determined
by the result of a Bernoulli trial. An illustrative interpretation of the generation of observations
from a ZIP model is given by Rochford (2015):

A weighted coin with a probability of π of yielding heads is flipped repeatedly. In
case the result is head, the observation is zero, and in case of tails, the observation
is generated from a Poisson distribution with parameter λ. Hence, there are two
ways such a model can produce a zero observation. Either the coin shows heads or
the coin shows tails and the Poisson process generates a zero.

Formally, the probability mass function of a ZIP model is given as

P (X = 0) = π + (1− π)e−λ

P (X = k) = (1− π)e−λ λk

k! for k > 0
(3.8)

Figure 3.20 depicts again a Poisson distribution with λ = 1.5 and a ZIP cell with λ = 1.5 and
π = 0.5. The excess zero observations are clearly visible and decrease the probabilities of
the other observations generated by the Poisson process. The reason for these excess zero
observations is hard to determine in the case of social media messages. It can be due to local
network failures that are not equally likely across the world.
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Figure 3.20: A ZIP distribution (green) of one cell for a specific one minute time interval exhibiting
excessive zeros, in comparison with a typical Poisson distribution (gray) with λ = 1.5.
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In all of the three count data models the CDF is exploited to derive the thresholds. For the
Poisson and the negative binomial distribution, calculating the CDF is straightforward. Let f(x)
denote the probability mass function of a discrete random variable X, then

F (x) =
∑

xi≤x

f(xi) (3.9)

is the CDF of X. However, in case that X follows a ZIP model, Equation (3.9) needs to be
extended.

FZIP (x) = π + FPλ
(x) · (1− π) (3.10)

with FPλ
(x) being the CDF of the respective Poisson part of the ZIP model.

Dynamic Baseline Data Acquisition The following explanations are always meant to be ap-
plied to each cell for each time interval.
Before the initiation of the actual real-time analysis, the thresholds of the cells are derived for
each time interval, as well as separated in weekday and weekend instances. In order to build
a robust and reliable, initial statistical model to predict the number of messages, 3 months
of baseline data is collected – that means approximate sample sizes of 60 observations for
weekdays and 24 observations for weekends. After this initial phase, the framework continues to
rely on a historic baseline of a maximum length of 3 months, and continuously collects new
baseline data. No older data is used as it increasingly skews the data due to the described
seasonal effects (see Section 3.2.2). Moreover, the models and thus their applied thresholds
are automatically updated during runtime on a weekly basis. Consequently, the framework
never applies “outdated” baseline data to predict current message volume.

Identification of Potential Event Cells In order to set a plausible threshold to detect significant
increases, a value of p1 = 0.95 and p2 = 0.99 of the CDF of the fitted count model are
heuristically chosen. These thresholds are inspired by the 2σ-bound and 3σ-bound, often
referred to as significant and highly significant, respectively. For the count models, the thresholds
depict the amount of messages that have a probability of only 5% and 1% to be exceeded.
For the framework, these heuristic thresholds are a good compromise between sensitivity and
robustness – i.e. they are not too sensitive and thus yielding too many potential event cells for
the next step, but they are sensitive enough to also not miss interesting events.
In case of natural disasters, the recall rate is of course more important than the precision, i.e.
no important event should be missed and therefore a certain amount of false positive alarms
is accepted. Moreover, as the detection of increased message volume is just the first step in
a process chain to an actual alarm, a rather sensitive threshold is set as long as the defined
real-time constraints are not violated. The thresholds are applied at the end of each time step
ts. They are derived from the models whenever the current time step is synchronous with a
time interval t available in the baseline data. If the current time step is in between two baseline
time intervals, the threshold is derived by applying a weighted average. Let an example clarify
the process:
The baseline data is sampled in disjoint time intervals of length ∆t = 1 min. In order to
evaluate the data at time steps of size ∆ts = 10 s, six time steps per time interval are needed.
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The thresholds available for the exemplary time intervals t1 from 16:50:00 to 16:51:00 and t2

from 16:51:00 to 16:52:00, are denoted as th1 and th2. When analyzing t1 at 16:51:00, th1 can
be directly retrieved from the stored models. However, at 16:51:10 the system needs to analyze
the time interval t1,10 from 16:50:10 to 16:51:10. In order to apply plausible thresholds to the
cells, a weighted average is used to calculate th1,10.

th1,10 = 5
6 · th1 + 1

6 · th2 (3.11)

Finally, at the end of each time step, the cells exceeding their respective thresholds are
identified and denoted as potential event cells. This set of cells builds the basis for the thematic
classification described in Section 3.4.

3.3.4 Alternative Spatial Discretization Methods

In a purely scientific view on the spatial discretization, there are obviously more complex
and advanced methods than a regular grid. However, with one main goal of this work being
the global, real-time applicability of the event analysis, the number of possible approaches
decreases. Nonetheless, I want to very briefly discuss three alternatives.

Hierarchical Triangular Mesh The first approach is the one used by Krumm et al. (2015), a
HTM. This is a two-dimensional tessellation of the surface of the earth in equilateral triangles
of nearly equal size. Several discrete levels of resolution are applicable. A new level arises by
inscribing a reversed triangle within an existing one, i.e. by dividing each triangle into four
smaller triangles. Krumm et al. (2015) do not use the HTM in different resolution in different
areas but only investigate four different resolutions as discrete nets for local event detection.
Compared to the grid the triangles are less distorted near the poles, as they are not aligned
with the meridians and parallels of the earth. Hence, they do neither suffer from anisotropy
nor create singularities when subdividing the sphere. If this has any significant impact on the
detection capabilities in the relevant latitude range (i.e. from −40° to 60°) is doubtful.
The implementation and resulting management of the geographic data stored in this way is
quite complex and introduces even more complexities for following analysis steps. The HTM
has not been applicable in a global real-time approach so far as Krumm et al. (2015) state
themselves. Moreover, solving the edge problem (cf. Section 3.3.1) and the correct handling of
time zones would also raise more non-trivial issues.

Quadtree Another possible method for discretizing space is the well known quadtree method
of Finkel et al. (1974). Basically, it is also a hierarchical mesh just like the HTM but using
rectangles (also sometimes squares) instead of triangles13. I implemented and tested a quadtree
algorithm that is aligned with the meridians and parallels of the earth and makes use of the
inherent hierarchy of the quadtree idea – i.e. according to a certain threshold the quadtree has
a higher granularity in areas that yield more messages. The threshold describes the maximum

13Sometimes the HTM is categorized into a broad notion of quadtrees according to Samet (1984).
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number of messages in one rectangle before it is split up into four smaller ones along its two
centerlines in longitudinal and latitudinal direction.
After defining a baseline tree for a certain time of day, a current quadtree can be compared
to the baseline tree. Consequentially, potential event areas can be detected by extracting
rectangles where the current tree has a higher resolution than the baseline tree. Tests show
that this comparison is actually possible within approximately 0.3 sec for a global, one minute
quadtree of TWITTER messages. Thus, the quadtree approach would be feasible concerning the
goals of this work. Figure 3.21 depicts a one minute quadtree from Thursday, July 9th 2015 at
2:35 UTC.

Figure 3.21: The one minute global quadtree of georeferenced tweets from Thursday, July 9th 2015 at
2:35 UTC down to a maximum of one tweet per quadrant.

However, there are some drawbacks as well. First, the storage size of a global quadtree model
representing one minute amounts to approximately 2MB compared to the grid with only 20
to 25KB. Secondly, the edge problem is not as easily resolvable as with a grid. The adjacent
rectangles can be distributed over several depth levels of the tree. Third, the incorporation of
time zones is far from trivial.
Last and most important is the question of defining a sensible baseline tree for a time interval
from historic data. The chosen approach for the quick feasibility test is straightforward. All
messages are aggregated from the n historic instances of the respective time interval and build
one quadtree with a maximum threshold of n messages per rectangle. The current quadtree is
then assembled by using a maximum threshold of one message per rectangle. Thus, it is not a
mathematically strict but highly plausible basis for the comparison. However, there is also no
obvious correct way of quantifying the increase and thus evaluating its significance.

Congruent cells The last and very interesting approach is an idea presented in the broad
field of GNSS and specifically in the handling of multipath effects as main error source in
static and kinematic GNSS measurements. In order to optimize the consideration of site-
specific conditions when generating so-called multipath stacking maps, Fuhrmann et al. (2014)
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introduce the idea of congruent cells.
The cells have a constant increment in latitudinal direction but variable longitudinal resolution,
i.e. there is a variable number of cells per latitudinal increment. The goal is to generate cells
with very similar shape and size to possibly capture more accurate area specific characteristics
over nearly the whole latitude range.
In their formulae, Fuhrmann et al. (2014) assume a spherical approximation of the earth’s
shape. The direct extension for ellipsoidal models – e.g. the WGS84 ellipsoid on which the
coordinates are based – is non-trivial because a constant increment in latitudinal direction in
degrees on an ellipsoid does not generate constant arc lengths. But even when applying the
spherical model, the maximum relative area deviation with respect to the ellipsoidal surface
can be reduced to only 1.25% in the relevant latitude range from −40° to 60°. Moreover, the
cells are not systematically elongated in longitudinal direction when approaching the poles.
Nonetheless, this approach also leads to a much more complex setup for data storage structures.
This has negative implications for the efficient assignment of messages to cells as well as the
retrieval of messages from specific cells. Additionally, the handling of the edge problem poses
another non-trivial problem compared to the grid approach. However, in contrast to the HTM
and the quadtree, the congruent cells approach could be made aware of time zones, although
not as straightforward as the grid.

Synopsis Overall, it is questionable if approaches that in parts strongly increase complexity
at various levels of the analysis, are worth the effort that needs to be put into making them
globally and real-time applicable. Especially, when a much simpler approach is just as effective
for the event detection, and even largely outperforms the more complex ones concerning the
storage and retrieval efficiency, the speed of implementation, and the maintenance workload.

3.4 Thematic Classification

At this point of the event analysis, possible event locations can be narrowed down to one or
several cells in the global grid for the previous time interval, based on statistical models and
respective appropriate thresholds for message volumes. Consequentially, the next step is to
derive the cause of the increased message volume, i.e. to determine the topic of the messages
from the respective cells. Therefore, the textual content of the messages that generated the
statistical detection is analyzed. However, instead of assigning an arbitrary topic to each of the
cells, the similarity to a predefined set of topics from a domain of interest is calculated – i.e.
only with domain relevance provided, a concrete class label is derived.
In order to explain the thematic classification approach, I will rely on examples of the use-case
scenario of natural disasters throughout this section.

3.4.1 Modeling the Domain

For the abstraction of the domain of interest a hierarchical tree structure is employed for the
different levels of sub-domains – a domain taxonomy. Thus, the desired topical granularity of
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the classification is controlled.
In order to keep the approach as generic as possible, the exact contents and characteristic of
the taxonomy are decoupled from the rest of the framework. So a domain change is feasible in
a plug-and-play fashion without any other changes to the overall system14.

Domain
Node 1 Node 2 Node 3 Node 4

Node
1.1

Node
1.2

Node
2.1

Node
2.2

Node
3.2

Node
2.3

Node
3.1

Node
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3.2.1
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BoW3.2.1 BoW3.2.2
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Figure 3.22: Example for a general domain taxonomy with BoW for each leaf node.

An abstract depiction of a potential taxonomy is shown in Figure 3.22. The nodes in this
structure represent the sub-domains of the respective granularity level and the root node
represents the complete domain. The different branches in the taxonomy do not need to
have the same depth, which means that the topical granularity of the sub-domains can vary.
Especially considering the used input data, it might not be possible to discriminate between
some sub-domains. The main reason is the unspecific reporting style in social media data,
i.e. the users might not distinguish between formally distinct sub-domains, either because of
indifference or due to ignorance.
Each leaf of the taxonomy contains a set of distinct terms that is virtually unambiguous for the
specific sub-domain. These terms are initially based on common sense heuristics and expert
knowledge and represent the event as BoW model. The BoW for a non-leaf node is derived
during runtime through the union of the BoWs from the respective leaves. For example, the
BoW for node 2, i.e. BoW2 is given by

BoW2 = BoW2.1 ∪BoW2.2 ∪BoW2.3 (3.12)

with
BoW2.1 = BoW2.1.1 ∪BoW2.1.2 (3.13)

For the sake of clarity, I will go through the process of the thematic classification using the
natural disaster taxonomy presented in Figure 3.23, which is a simplified and adapted version
of Table 2.1 based on Below et al. (2009).

The initial distinct terms for the leaves are mainly the different event names and event-related
terms that are otherwise rather rare in natural language. When several events of a certain type
could be detected, a careful, manual extension of the distinct terms might be applied. In case of

14Except for the domain dictionary described in Section 3.4.2 for a multi-lingual coverage.
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natural disaster
geophysical meteorological hydrological climatological

earthquake
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eruption blizzard

hail/
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... ... ..................... ...

Figure 3.23: The employed taxonomy for the domain of natural disasters. The BoWs are excluded from
this depiction.

the disaster type earthquake, for example, the terms richter scale and epicenter were manually
added after some event experience, whereas the term shaking was removed as it proofed to be
too frequent in general usage. Only terms with a high discriminative power should be kept.
In the prototype the taxonomy is loaded as a standard JSON file which can reflect the tree
structure. Listing 3.3 shows the natural disaster taxonomy in JSON-format including the terms
in their respective BoWs.

Analogous to the procedure in Equations (3.12) and (3.13), the BoW for the node hydrological
can be derived by uniting the BoWs from the nodes flood and tsunami, and consequently
contains the terms:

flood, flooding, inundation and tsunami.

3.4.2 Additional Pre-Processing

In Section 2.3.3, it was explained why certain pre-processing steps are necessary to the effective
adoption of models that are based on the number of term occurrences. Hence, the steps
are tokenization15, stop word removal16 (and exclusion of pure digits, i.e. numbers, and
non-alphanumeric characters), as well as linguistic normalization of surface word forms (i.e.
lemmatization17) when possible.
These steps, as well as the ones explained in the following, are mainly necessary to reduce the
size of the vocabulary space and to yield more reliable similarity values between the documents
and the BoW models for events.

Apart from these typical methods, the special characteristics of social media data has to be
accounted for. These texts commonly suffer from spelling mistakes, (uncommon) abbreviations
and acronyms, colloquial terms and lexical variants, mixed language use, etc. There are two
ways of handling these issues according to Eisenstein (2013): normalization18 (also cleansing)
and domain adaption. Whereas the former is described as adapting text to fit the tools, the

15A custom tokenizer based on regular expressions is used, which basically removes all non-word characters and
then splits the resulting string on word boundaries.

16Custom lists were compiled, inspired by the lists of Doyle (2016), MySQL (2016), and PostgreSQL (2008).
17morphy, a tool for morphological transformations integrated in the WORDNET lexical database for English (Miller,

1995) is used; available at https://wordnet.princeton.edu/.
18This is not the same as linguistic normalization in Section 2.3.3.
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1 {name:"natural disaster",
2 geophysical:{name:"geophysical",
3 earthquake:{name:"earthquake",
4 terms:["earthquake","quake","aftershock",
5 "epicenter","foreshock","mainshock","quake",
6 "richter scale","seismic","seismicity",
7 "tremor"]},
8 volcanic_eruption:{name:"volcanic eruption",
9 terms:["volcano","volcanic","caldera","crater",

10 "eruption","eruptive","lava","magma",
11 "stormvolcano"]}},
12 meteorological:{name:"meteorological",
13 blizzard:{name:"blizzard",
14 terms:["blizzard","snowstorm","winterstorm"]},
15 hail_thunder:{name:"hail/thunder",
16 terms:["hail","lightning","hailstorm",
17 "thunderstorm"]},
18 tornado:{name:"tornado",
19 terms:["tornado","whirlwind"]},
20 tropical_storm:{name:"tropical storm",
21 terms:["cyclone","typhoon","hurricane"]}},
22 hydrological:{name:"hydrological",
23 flood:{name:"flood",
24 terms:["flood","flooding","inundation"]},
25 tsunami:{name:"tsunami",
26 terms:["tsunami"]}},
27 climatological:{name:"climatological",
28 drought:{name:"drought",
29 terms:["drought"]},
30 heat_wave:{name:"heat wave",
31 terms:["heat wave"]}}}

Listing 3.3: Natural disaster taxonomy represented as JSON file to reflect the tree structure for a fast
traversal of the different granularity levels.

latter can be seen as adapting the tools to fit the text. Baldwin, Cook, et al. (2013) showed
that, although social media is indeed noisy, it is possible to cleanse it using existing NLP tools.
Moreover, cleansing often is less complex than domain adaption but still equally efficient.
The major step is the detection and correction of possible spelling mistakes (also called lexical
normalization19). Frequent mistakes include

• expressive lengthening, e.g. “touchdooooown” for “touchdown”

– often indicating subjectivity and sentiment according to Brody et al. (2011)

• vowel dropping, e.g. “tlking” for “talking”

– to save time on standard keyboard writing (cf. Eisenstein, 2013) and adopted for
mobile devices

19This, again, is not the same as linguistic normalization in Section 2.3.3.
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• miscellaneous, e.g. “ggame”, “hame” or “gam” for “game”

– usually unintentionally

These spelling mistakes can be reduced using an implementation based on word lists and
dictionaries, and the Damerau-Levenshtein distance. The Damerau-Levenshtein distance (cf.
Damerau (1964) and Levenshtein (1966)), is a metric (also called edit distance) to quantify the
dissimilarity of two sequences, here strings. This is achieved by counting the minimum number
of operations required to convert one sequence into the other. The operations defined for that
distance are insertion, deletion, substitution, and the transposition of two adjacent characters.
Figure 3.24 depicts an example of a spelling mistake that needs two steps to be corrected, i.e.
the original and the correct term have an edit distance of two. First, the letters u and o need to
change their respective position with each other and then the last o needs to be deleted.

touchdowntuochdoown

transposition

touchdoownx
deletion

Figure 3.24: Example for a spelling correction with an edit distance (Damerau-Levenshtein) of two –
one transposition of two adjacent characters and one deletion.

For spelling correction, a given word is first checked for existence in the dictionaries and only
if it does not exist, corrections are applied. The dictionary consists of extensive word lists
mainly from WORDNET, GNU ASPELL20 and a collection of English WIKIPEDIA21 article titles.
The approach also accounts for modern slang terms22 and typical social media abbreviations23.
However, no transformation of so-called phrasal abbreviations such as lol for laugh out loud
or shmily for see how much I love you into their full form is conducted, as they usually do not
contain important keywords.
In order to limit the results of the possible correct versions of a term, a maximum edit distance
of two is set. Nonetheless, several possibilities can remain. This is the reason why the
results are ranked based on an algorithm of Ratcliff et al. (1988). The idea is to retrieve
the longest contiguous matching subsequence of two strings. Then the same procedure is
applied recursively to the parts of the strings on the right side and on the left side of the
matching substring. The final score is calculated as the ratio of twice the number of characters
in common, and the total number of characters of the two strings. This algorithm tries to
emphasize the similarity of the overall Gestalt24 of the two strings (see Ratcliff et al., 1988).
Expressive lengthening is partially cleansed (for English messages) before spelling correction is
applied. The occurrence of three or more consecutive equal characters is reduced to only two
of them, i.e. touchdooooown will be mapped to touchdoown. Thus, the necessary edit distance
to the true form of the term decreases. Otherwise, terms with expressive lengthening would
be excluded or at least ranked very low by the standard procedure possibly leading to false
corrections.

20Available at http://www.aspell.net.
21Dumps of all English WIKIPEDIA article titles are available at https://dumps.wikimedia.org/enwiki/latest/.
22Available at http://onlineslangdictionary.com/word-list/0-a/.
23Partly derived from http://www.netlingo.com/ and semi-automatically extended.
24The approach refers to the Gestalt laws of grouping originally introduced by Wertheimer (1923).
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The following minor cleansing steps are also conducted mostly by using regular expressions:

• replace specific TWITTER glossary such as @ and #,

@David is at #StonesConcert ⇒ David is at StonesConcert

• remove any form of URL and HyperText Markup Language (HTML) code,

• split camel caps expressions and terms concatenated by underscores,

BigData ⇒ Big Data
Big_Data ⇒ Big Data

• remove multiple consecutive whitespace characters,

• replace multiple consecutive punctuation,

!!!?!?! ⇒ !

• transform words with all upper letters to capitalized form,

IT’S JUSTIN BIEBER ⇒ It’s Justin Bieber

• append missing sentence ending punctuation.

Multilingual Aspects When analyzing georeferenced tweets on a global scale, various lan-
guages that can occur in social media messages have to be considered. As Leetaru et al. (2013)
showed in their extensive study, more than 40% of georeferenced tweets are in English and
88.82% are written in one of the languages in Figure 3.25 (including English) – hence, a main
focus on the English language is justified. Nonetheless, I try to account to some extent for the
most common languages. Therefore, all terms in the natural disaster taxonomy are compiled
in the 64 languages listed in Table 3.2. The list contains the most common languages used in
georeferenced tweets as well as other languages with a large number of native speakers25.

Table 3.2: The 64 languages represented in the disaster dictionary of the translation engine.

Albanian French Khmer Serbian
Arabic Georgian Korean Slovak
Armenian German Laotian Slovenian
Azerbaijanian Greek Macedonian Spanish
Belarusian Gujarati Malaysian Sundanese
Bengal Hausa Maltese Swedish
Bosnian Hindi Marathi Tagalog
Bulgarian Hungarian Nepali Tamil
Cebuano Icelandic Norwegian Telugu
Chinese Indonesian Pashto Thai
Croatian Irish Persian Tok pisin
Czech Italian Polish Turkish
Danish Japanese Portuguese Ukrainian
Dutch Javanese Punjabi Urdu
English Kannada Romanian Vietnamese
Finnish Kazakh Russian Zulu

25Estimates of the number of native speakers of different languages are available from http://www.ethnologue.
com/statistics/size
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The study of Leetaru et al. (2013) also yielded that another 8.39% of georeferenced tweets can
not be clearly assigned to one language (referred to as Other in Figure 3.25).
The employed tokenization approach based on regular expressions is language agnostic for
segmented languages. Hence, even if a message shows a mixed language usage or the language
cannot be identified, it can still be tokenized (in case it is a segmented language) and relevant
keywords can be found in the 64 languages. In order to be able to retrieve meaningful tokens
from unsegmented languages such as Japanese26, Korean27, Thai28 and Chinese29, specialized
tokenizers are employed.
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Japanese
Dutch

Norwegian
German

Figure 3.25: Language frequencies in georeferenced tweets according to Leetaru et al. (2013).

Concerning stop word removal, respective lists for all languages in Table 3.2 are applied. These
lists are available in the aforementioned sources for 40 of the 64 languages. For the rest,
custom short lists of articles (the, a(n)), prepositions, pronouns (personal, possessive, etc.) and
conjunctions (e.g. and, or, but) are compiled30.
The spelling correction approach works for all languages with available dictionaries from
GNU ASPELL31. Moreover, the check for existence is of course optimized for English, as the
slang dictionary, the WIKIPEDIA titles and the WORDNET database are in English. So, spelling
correction is employed only if the language of the message can be identified. TWITTER has
an in-built language identification system on its servers, i.e. each tweet incorporates a field

26A PYTHON port by Masato Hagiwara (available at https://pypi.python.org/pypi/tinysegmenter) of TINY-
SEGMENTER, a compact Japanese tokenizer originally written in JAVASCRIPT by Taku Kudo is used (available at
http://chasen.org/~taku/software/TinySegmenter/).

27TWKOREAN, a PYTHON wrapper from Jaepil Jeong (available at https://github.com/jaepil/twkorean/) is
used for the SCALA/JAVA library TWITTER-KOREAN-TEXT from TWITTER (available at https://github.com/
twitter/twitter-korean-text).

28PYTHAI, a PYTHON library from Herman Schaaf (available at https://github.com/hermanschaaf/pythai)
based on the C library LIBTHAI is used (available at http://linux.thai.net/projects/libthai/).

29PYMMSEG, a PYTHON interface from Chiyuan Zhang (available at https://github.com/pluskid/pymmseg-cpp)
to the RUBY utility RMMSEG is used (available at https://github.com/pluskid/rmmseg-cpp).

30Different online translation engines were used: http://www.worldlingo.com/en/products_services/
worldlingo_translator.html, https://translate.google.com/ and http://freetranslation.paralink.
com/.

31That excludes Albanian, Bosnian, Cebuano, Chinese, Georgian, Hausa, Japanese, Javanese, Kazakh, Khmer,
Korean, Lao, Nepali, Sundanese, Thai and Urdu from Table 3.2.
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specifying its automatically derived language. However, this is a black-box system and the
TWITTER API terms of service forbid benchmarking32. Nonetheless, Lui et al. (2014) report that
the proprietary solution does not outperform the best off-the-shelf tools, and even lacks a wide
language coverage. In order to overcome this issue, the off-the-shelf language identification
tool LANGID.PY of Lui et al. (2012)33 is used, which supports 97 languages including all but
three of the 64 languages in Table 3.2 (Hausa, Cebuano, Sundanese). Thus, the system is also
guaranteed to stay independent from one specific social media source.

Beside the cleansing measures to prepare the multilingual input for the tf-idf weighting, a
simple domain-restricted translation engine is applied. The translation engine detects all terms
in the BoW for the complete taxonomy in all languages listed in Table 3.2 and maps them
onto the English equivalent. In case a term can have several English translations, the count is
equally split across the English terms – e.g. the Arabic term لازلز can be translated as quake or
earthquake, thus both terms would get 0.5 added to their respective counters.
The translation in one system language (here English) allows a consistent classification output
for events and in addition, it accounts for messages in different languages from the same cell.
Oftentimes, the messages from one cell are in (one of) the main languages of the specific
country, with some occurrences of English messages. In cells close to country borders as
well as in countries with several frequently used languages, these cases are quite common.
Figure 3.26 depicts an example from a cell in India where messages in the three Indian
languages Urdu, Telugu and Hindi occurred together with English messages. Due to the
translation engine, an inter-lingual aggregation can be performed for the equivalent terms –
زرگ (Urdu), ఉరుము (Telugu) and आंधी (Hindi) – in English and eventually the event can be
classified as hail/thunder.

3 x + 1 x + 2 x = 6 x thunderstorm

Urdu Telugu Hindi

Figure 3.26: Example of inter-lingual aggregation of equivalent terms (here thunderstorm) in three
common languages in India: Urdu, Telugu and Hindi.

The optimal way would be a complete translation of all messages into one single system
language upon arrival in the system. However, this is not a feasible approach with the currently
available translation APIs or software tools. Besides the constraints concerning the usual rate
limits of these services, the translation capabilities generally neither achieve the desirable
quality nor the temporal efficiency for the large range of different languages.

32“Be a Good Partner to Twitter”, Part I. Section 6. Paragraph e. Phrase iv. of the TWITTER Developer Policy
available at https://dev.twitter.com/overview/terms/agreement-and-policy.

33An up-to-date version is available from https://github.com/saffsd/langid.py.
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3.4.3 Classification Process

The initial situation of the thematic classification is a certain set of cells that exhibited a
significantly increased message volume for the preceding time interval. The following clas-
sification process is then conducted separately for each of these potential event cells. The
methods employed to derive the topic are based on the ideas of IR introduced in Section 2.3.
Although one final class label is assigned for each cell, the idea of a fuzzy class membership is
adopted based on the similarity scores of the current documents with the sub-domains in the
taxonomy.

Document Aggregation As described in Section 2.3.1, an important aspect for VSM is an
appropriate definition of a document unit. Concerning social media data as input, the single
messages are quite short compared to the usual length of documents in IR. In case of TWITTER,
for example, the encountered messages have an average length of 10±6.4 words per message34.
By defining one message as one document, the topic will be scattered and the weighting based
on tf will be unstable.
That is why I decided to introduce the idea of aggregating several messages into one document.
Naturally, this aggregation can not be random but has to be guided by suitable constraints.
Fortunately, the framework already provides a message partitioning system that fits this purpose
– that is the messages from one cell during one time interval. When adapting the idea of
Tobler’s first law of geography35, the assumption in this case is that messages, which are sent
from the same area and during the same (short) time interval, are very likely to be topically
related, especially when a significant event has occurred.

Dynamic Document Collections In order to be able to apply the tf-idf weighting scheme
detailed in Section 2.3.2, a collection of documents is needed instead of a single document.
This collection should represent a sort of up-to-date baseline of the typical topics discussed in
the respective cell. I compile a dynamic document collection on-the-fly accordingly, instead
of using pre-built collections. Due to the topically variable nature of TWITTER, only historic
data of up to one hour for each cell in the grid is used. So each time a potential event cell is
analyzed, the system can rely on a sufficient collection of documents for comparison. Given
that the length of a time interval ∆t is set to one minute, a maximum of 60 documents in total
is available. Another advantage of not using pre-built models is that the framework stays more
independent from the domain.
In cases where the cell already yielded a detection of an event relevant to the domain in the
previous hour, the document representing that time interval is excluded from the collection.
Otherwise, this document would skew the results as it does not represent a baseline usage of
the terms in the vector space.

With that document collection at hand, the tf-idf weighting scheme can be applied to the
documents and the BoWs representing the event types – i.e. both are represented in the
34Calculated over a total of 0.2B georeferenced tweets.
35“[e]verything is related to everything else, but near things are more related than distant things”. (cf. Tobler,

1970).
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same vector space and the cosine similarities can eventually be calculated as described in
Section 2.3.4. Here the analogy to IR systems or search engines applies, as the documents can
be interpreted as indexed websites and the event BoWs are similar to search queries provided
for example by user input.
The documents in the collection are then ranked according to their similarity scores. The
current document – i.e. the aggregated tweets from the statistical significant cell of the previous
time interval – should yield a significantly higher score than the other documents representing
the baseline and hence be ranked on top. Otherwise, it is not accepted as event-related. In
practice, either all documents frequently exhibit similarities very close to zero in case the
increase was not event-related, or the increase was in fact event-related, then often all but the
current document exhibit values close to zero.

Classification Granularity Instead of only testing the different event BoWs stored in the leaves
of the taxonomy, I additionally try to account for rather unspecific event descriptions in the
messages. This is achieved via a stepwise classification process through the different levels of
the taxonomy from top to bottom.
In this process, the different nodes of the taxonomy are represented by the union of the BoWs
of all their leaves. In terms of the use case scenario, the first step is the calculation of the
similarities as described above, between the documents and the BoW for the first level (the root
node), i.e. natural disaster. If the relevance of the current document for the domain in general
can be established based on the similarity ranking, the next deeper levels of the taxonomy are
analyzed recursively. From there onwards, there are several nodes per level whose scores for
the current document are compared if necessary. The comparison becomes necessary if the
current document is ranked on top for more than one node at the current level. In case the
nodes have equal scores for the current document or no node ranks the current document on
top, the classification process terminates and yields the preceding node as event type.
Let me illustrate the procedure with an example. Let d1 denote the current document and di

with increasing index i = 2, . . . , 60 the other documents in the collection. The term frequency
analysis for the tf-idf weighting scheme of the VSM yields the following results for keywords
contained in the disaster taxonomy.

d1 6 occurrences of the term tornado
2 occurrences of the term whirlwind
1 occurrences of the term lightning
7 occurrences of the term thunderstorm

...
d9 1 occurrence of the term thunderstorm
...
d17 1 occurrence of the term earthquake
...
d35 1 occurrence of the term tornado
...
d60 . . .
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A possible document ranking in the first step for the natural disaster taxonomy is then depicted
in Table 3.3.

Table 3.3: Example of a document ranking according to the similarity with the BoW representing the
first level natural disaster in the taxonomy for the domain of natural disasters

Rank Document Similarity

1 d1 0.696
2 d17 0.138
3 d9 0.032
4 d35 0.015
...

...
...

60 d48 0.0

In the second step, the document rankings are determined for the nodes earthquake, meteoro-
logical, hydrological and volcanic eruption, with their respective BoWs. This could result in the
rankings depicted in Table 3.4.

Table 3.4: Example of a document ranking according to the similarity with the BoWs representing the
second level nodes in the taxonomy for the domain of natural disasters –
i.e. (a) geophysical, (b) meteorological, (c) hydrological and (d) climatological

Rank Document Similarity

1 d17 0.258
2 d35 0.0
3 d9 0.0
4 d1 0.0
...

...
...

60 d48 0.0

(a) node geophysical

Rank Document Similarity

1 d1 0.824
2 d9 0.038
3 d35 0.018
4 d17 0.0
...

...
...

60 d48 0.0

(b) node meteorological

Rank Document Similarity

1 d35 0.0
2 d1 0.0
3 d17 0.0
4 d9 0.0
...

...
...

60 d48 0.0

(c) node hydrological

Rank Document Similarity

1 d1 0.0
2 d35 0.0
3 d17 0.0
4 d9 0.0
...

...
...

60 d48 0.0

(d) node climatological

The following step only tests the sub-nodes of node meteorological as this yielded the highest
score of the nodes which ranked d1 on top. In fact, it is the only node that ranks d1 on top,
because the nodes hydrological and volcanic eruption are not taken into account as all scores
equal zero and thus their rankings are arbitrary.
The next nodes in consideration are blizzard, tornado, drought/heat wave, tropical storm and
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hail/thunder. In the example, all nodes except for tornado and hail/thunder exclusively yield
zero scores. Thus, Table 3.5 only depicts the two relevant nodes.

Table 3.5: Example of a document ranking according to the similarity with the BoWs representing the
third level nodes in the taxonomy for the domain of natural disasters –
i.e. (a) tornado, (b) hail/thunder

Rank Document Similarity

1 d1 0.582
2 d35 0.025
3 d9 0.0
4 d17 0.0
...

...
...

60 d48 0.0

(a) node tornado

Rank Document Similarity

1 d1 0.582
2 d9 0.054
3 d35 0.0
4 d17 0.0
...

...
...

60 d48 0.0

(b) node hail/thunder

At this point, the two nodes can obviously not be distinguished as they both rank d1 on top and
also with the same similarity score. In this case, the preceding node in the taxonomy hierarchy
is set as label for this event – i.e meteorological. Hence, the system accounts for the unspecific
content of the current document with equal similarity scores for two formally different events.
Nonetheless, the respective scores are kept for the current document of the lower level for later
usage.
In such cases, the users who disseminated the messages might either have interpreted the
weather conditions differently or it actually was a combination of the two events.

3.5 Spatial-Thematic and Temporal Clustering

At this point of the event analysis, cells of the preceding time interval with significantly
increased message volume have been identified and they have been tested if the topic of the
respective messages can be assigned to the domain of interest in general or even to a specific
subtype.
In order to enable this large-scale detection and classification of events in the first place, I
introduced discretization in the framework for both space and time (see Section 3.3.1 and
Section 3.3.2). By now, however, the amount of data has been reduced to a size that is much
more processible and allows for steps that, in some sense, reverse the discretization – i.e. the
events can now get clustered with respect to space and time.

3.5.1 Spatial-thematic Clustering

First, the process of spatially clustering event cells of the same time interval is introduced.
Here, the event cells that are highly likely to be triggered by the same real-world event based
on their spatial proximity and the class label assigned by the thematic classification should be
identified. For this reason, the aim is a spatial-thematic clustering.
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This step is necessary, as the resolution of the grid is chosen – in combination with additional
factors – to avoid being too sensitive to very small-scale events (depending on the domain of
interest). Nevertheless, there might be events of interest that exceed the extent of single cells
and spread over larger areas. The framework should account for these cases by aggregating
the respective cells into one spatial-thematic event cluster.

Image Segmentation As the space is represented as a rectangular grid, methods from digital
image processing can be applied. Here the idea of image segmentation according to Haralick
et al. (1992) is adopted, i.e. partitioning an image into a set of non-overlapping regions, whose
union is the entire image, in order to decompose the image into parts that are meaningful with
respect to a particular application. In this case, the meaningful parts are obviously the areas
which are affected by the same event in the same time interval.

Region Growing The method applied for clustering cells is based on region-oriented or
contextual segmentation algorithms which consider the local neighborhood of cells – commonly
referred to as pixels in image processing. The general goal is to identify objects in images
as these are usually represented as connected regions. The specific approach I adapt for this
purpose is called region growing.

4-neighborhood 8-neighborhood

Figure 3.27: Depiction of a typical 4-neighborhood (left) and 8-neighborhood (right) of the central
pixel (gray).

The basic idea is to initialize a starting position on the image, i.e. a first pixel, as the current
region. Then the adjacent pixels (either constrained by a 4-neighborhood or 8-neighborhood
depicted in Figure 3.27) are tested against a certain criterion of homogeneity based on the
characteristics of the starting pixel or dynamically adapted characteristics of the region. Pixels
that satisfy the criterion of homogeneity are added to the current region. Thus, the region
grows iteratively until no more pixels meet the criterion or all pixels have been tested.
The main difference introduced in the method is the admission of disjoint image components
being aggregated in the same cluster. The constraint of pixel connectivity is therefore relaxed
from direct adjacency to a more general notion of spatial proximity – i.e. larger cell neigh-
borhoods than in image processing are allowed. The reason for this alternative approach is
motivated by the non-continuous nature of human settlements. In contrast to general objects in
image processing applications, these are rather scattered and not represented as one continuous
region in the grid, but still can be affected by the same event – i.e. they belong to the same
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“object” in image processing terms.
The specific neighborhood could, of course, be adjusted on a per event type basis. However, if
not constrained to the first sub-domain level of the taxonomy, this causes a pointless increase
in complexity of the clustering method. Moreover, as I aim for a rather generic approach
in general, the clustering should not be tailored too much to particular needs of a specific
domain.

events neighborhood of current clusterclustered events

Figure 3.28: Example of a spatial-thematic clustering of event cells based on region growing.

Figure 3.28 shows an example of the clustering process using a 24-neighborhood as currently
implemented in the prototype. This setting matches an influence radius for each event cell of
approximately twice its size. Here the cells represent disjoint regions in real space, which is a
simplified view for the sake of clarity. The oversampling approach introduced in Section 3.3.1
results in cells that represent overlapping regions in real space. Thus, the system actually has
to search a 80-neighborhood to achieve the results exemplified in Figure 3.28.

An advantage over the common algorithm is the a priori knowledge which cells could potentially
be clustered – that is only the classified cells of the time interval. Thus, the process can be
significantly accelerated. Instead of searching the complete neighborhood at each step, just the
remaining candidates have to be tested if they fall into the current neighborhood region of the
cluster or not.
Another adaption is applied that concerns the starting position, which is often randomly chosen
in region growing algorithms. For the situation here, the classified event cells are sorted
according to their depth in the taxonomy in decreasing order – i.e. the clustering starts from
the cell that has the longest direct path to the root node. This means that the system tries to
cluster the cells with a high classification granularity first. Based on this condition, the criterion
of homogeneity is defined as:

An event cell in the current neighborhood is added to the cluster, if

it has the same class label as the starting cell

or

its class label is on the direct path from the label of the starting cell to the root
node in the taxonomy and the similarity scores overlap,

or
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its class label has the same direct parent in the taxonomy as the starting cell
and the similarity scores overlap.

In the natural disaster taxonomy (see Figure 3.23) a possible scenario is

tornado → meteorological → natural disaster

as direct path and e.g. tornado and tropical storm as nodes with the same direct parent, i.e.
meteorological. Overlapping similarity scores should denote that, using the example above, the
cell classified as tornado yielded a similarity score for tropical storm larger than zero or vice
versa – i.e. both cells shared similar content to some extent and thus have a kind of fuzzy
membership in both classes.

At the end of the clustering process, the label with maximum depth is kept as the final class
label for a cluster. However, in case this is ambiguous, the system again reverts to the similarity
scores for the labels in question of the respective cells. Eventually, the label with the highest
average similarity score is set as the final class label for the cluster.
Let me provide a simple example for this procedure. Let us assume 4 cells – 1 classified as
node meteorological, 1 classified as tornado, and 2 classified as tropical storm, then Table 3.6
presents the state of things in a structured way.

Table 3.6: Example of a cell cluster of four cells with differing final class labels.

Cell Label

1 meteorological
2 tornado
3 tropical storm
4 tropical storm

Hence, tornado and tropical storm are in consideration for the final class label. Therefore,
their respective similarity scores in the cells 2, 3 and 4 are taken into account (depicted in
Table 3.7).

Table 3.7: Comparison of a cell ranking according to the similarity scores for the two different labels
(a) tornado, (b) tropical storm

Cell Similarity

2 0.55
3 0.31
4 0.27

average 0.38
(a) Similarity scores for

tornado

Cell Similarity

2 0.13
3 0.33
4 0.30

average 0.25
(b) Similarity scores for

tropical storm

Although, there are more cells labeled as tropical storm in total, on average over the whole
cluster the label tornado is obviously more prominent and hence set as final class label.
However, just like for single cells, the individual averaged scores are kept. On the one hand
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they provide a possible human operator with more context knowledge to assess the reliability
of the classification result. On the other hand these scores can be exploited for the next step in
the framework – the temporal monitoring of events described in Section 3.5.2.

Theoretically, the system may be confronted with as many different event types as present in
the applied taxonomy – e.g. 15 in the disaster taxonomy (10 leaf-nodes, 4 sub-domain nodes
and one root node). However, the experience with the prototype shows that there are rarely
more than three different class labels per time interval. Yet, depending on the domain, this
number might be higher and more diverse.

Real-World Example Figure 3.29 depicts a real scenario of the detection of an earthquake
which exhibits a typical case of spatial-thematic clustering in the prototype. The earthquake
took place between Stillwater, Oklahoma and Oklahoma City on April 19th, 2015 at 5:27:14
UTC and had a magnitude of 4.2 with its epicenter at 97.332°W and 35.953°N. It is depicted as
red dot in Figure 3.29. The framework detected the event for the time interval from 5:27:10 to
5:28:10. The analysis of this time interval finished at 5:28:16 and the automatic e-mail alert
arrived at 5:28:20.

The majority of the clustered cells (green shaded rectangles) were classified as earthquake
and some (on the bottom of the map) were classified as geophysical because of some tweets
containing the term eruption36. As geophysical is on the direct path from earthquake to natural
disaster in the taxonomy, it is added to the cluster based on the above defined criterion of
homogeneity.
In this case, I tried to visualize the fact that the cells in the grid for the statistical analysis
represent overlapping regions in real space. Therefore, the dashed gray lines depict the
oversampled grid and the clustered cells are depicted in a transparent green shade (always
encompassing four oversampled cells) – i.e. the darker the green the more overlapping cells
were clustered. As a side-effect, this visualization approach yields a suitable depiction for an
impact area of the event based on TWITTER user activation.

This specific event also illustrates the importance to account for disjoint cells being affected by
the same real-world event. Here, the TWITTER users of Stillwater and Oklahoma City both felt
the earthquake. The epicenter, however, actually does not lie in an event cell, which is most
likely due to its low population. At this point, another characteristic of the approach becomes
apparent again – i.e. it neither necessarily detects, nor is it aiming for, the exact location of an
event (especially concerning natural disasters), but where it affects a critical mass of people.

36The usage of this “wrong” term might be due to people in Oklahoma not yet being accustomed to earthquakes.
Oklahoma has been a rather quiet region concerning earthquakes before 2009 but it surpassed California
in the total number of earthquakes with a magnitude higher than 3.0 in 2014 (derived from data of the
United States Geological Survey (USGS) earthquake archives available at http://earthquake.usgs.gov/
earthquakes/search/). According to Keranen et al. (2014), the increase is likely caused by fluid migration
from wastewater disposal wells of unconventional oil and gas production facilities – i.e. so-called induced
seismicity.
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Figure 3.29: Result of spatial-thematic clustering of an earthquake event. The map depicts the cells of
the oversampled grid (dashed gray lines), the tweets (white dots), urban areas (medium
gray), clustered cells (green shaded rectangles) and the earthquake epicenter (red dot)

3.5.2 Temporal Monitoring as Clustering

Now that events which spread over larger areas than covered by the cells are taken into account,
long lasting events are also considered – i.e. events that, because of their characteristics or
severity, affect people and potentially trigger them to disseminate messages on social media
over a longer period of time. With respect to the formal approach, this translates to expanding
the spatial-thematic clustering over a certain number of time intervals. This number could be
adapted for different event types of a domain (e.g. by incorporating domain experts and/or
heuristics). The information already persistently stored in the event database is extended
and updated accordingly, e.g. by adding the new messages of the current event cluster to the
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database and linking them to the original event.
The general clustering approach I employ is straightforward:

For each current event cluster, the database is queried for another cluster,

whose impact area overlaps with the current one,

and

which is not older than the set number of time intervals to be considered,

and

that meets the criterion of homogeneity for the spatial-thematic clustering
concerning its final class label.

However, in the very unlikely case that the query yields more than one potential historic cluster,
a fast process is needed that yields the most plausible match. Therefore, a heuristically driven
algorithm is implemented to establish a decision based on how well the historic clusters agree
with the database query. Hence, the system has to prioritize the three query parts. The ranking
was chosen as (i) criterion of homogeneity (general) over (ii) temporal distance over (iii) size
of spatial overlap.Within the first, another prioritization has to be introduced. The attributes
are prioritized as follows:

1. same class label

2. direct path

3. same direct parent

Hence, Algorithm 3.1 depicts the decision process after querying the database. In case the
query yields no results, the current cluster is classified as a new event, is stored in the event
database and generates an automatic alert.

3.6 Operational Aspects of the Prototype

As mentioned throughout this thesis, I implemented a prototype that exploits the global real-
time stream of georeferenced tweets and analyzes specific natural disasters, according to
the methods explained in the preceding sections of Part I. The prototype is called Twitter
Event Notification and Analysis Service (TENAS) and shows the feasibility of the methods
for a real-world application. As the explanation of the approach already mostly relied on the
prototype, now some of the more technical issues of the system are presented.
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Algorithm 3.1. Matching a current event cluster to a historic event

1: R← set of historic event clusters matching the database query
2: l← class label of the current cluster
3: E ← current event cluster
4: function BESTMATCH(R, l, E)
5: sameLabel← all clusters from R with label l
6: directPath← all clusters from R whose label is on direct path from l to root
7: sameParent← all clusters from R whose label has the same direct parent as l
8: if R = {} then
9: return {} . New event detection

10: end if
11: if sameLabel 6= {} then
12: if len(sameLabel) > 1 then
13: return SUBRANKING(sameLabel, E)
14: else
15: return sameLabel
16: end if
17: else if directPath 6= {} then
18: if len(directPath) > 1 then
19: return SUBRANKING(directPath, E)
20: else
21: return directPath
22: end if
23: else if len(sameParent) > 1 then
24: return SUBRANKING(sameParent, E)
25: else
26: return sameParent
27: end if
28:

29: end function
30: function SUBRANKING(C, E)
31: mostCurrent← getMostCurrent(C)
32: if len(mostCurrent) > 1 then
33: largestOverlap← getLargestSpatialOverlap(mostCurrent, E)
34: if len(largestOverlap) > 1 then
35: highestScore← getHighestScore(largestOverlap, E)
36: . cluster with highest similarity score for label l
37: return highestScore
38: else
39: return largestOverlap
40: end if
41: else
42: return mostCurrent
43: end if
44: end function

3.6.1 Computational Resources

TENAS’s main modules are implemented in JAVA37. For some of the numerical calculations
involving the spatial grid, the framework issues system calls to MATLAB38 processes. Most
37A general-purpose, concurrent, class-based, object-oriented programming language (cf. Gosling et al., 2015).
38A proprietary (interactive) computing environment for numeric computation, visualization, and data analysis (cf.

Cavers, 1998), developed by MATHWORKS.
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of the computer linguistic methods are integrated via system calls to PYTHON39 scripts. The
framework runs 24/7 on a server with an Intel Core i7-3820 processor (3.6 GHz, Octa Core)
and 64GB of RAM running OpenSuse 13.2.
In order to exploit the full capacity of the hardware, the code makes use of JAVA’s straight-
forward threading capabilities and task scheduling. Hence, the system continuously collects
and processes incoming messages and, in parallel, the framework analyzes the preceding time
interval at scheduled time steps. Consequently, the workload is well distributed over all CPU
cores.

MONGODB, a document-oriented database system is employed as main storage technology and
database back end. It is part of a relatively new group of database architectures, which are not
based on a relational schema. This group is often referred to as NoSQL databases. However,
some can be queried with Structured Query Language (SQL) and thus the acronym is rather
meant as Not only SQL.
MONGODB uses the JSON format. Hence, with TWITTER as input source, no data transformation
steps are necessary, but each tweet is stored as-is. Moreover, MONGODB offers two-dimensional
spatial indexing for efficiently querying georeferenced data and enables regular expressions for
fast keyword searches. Additionally, an index is created on the field holding the time stamp, as
the system often has to retrieve space-time slices from the data – i.e. the data of a cell from a
specific time interval. I also make use of MONGODB’s capped connection setting, which enables
the database to “forget” data after a specific time. In the prototype, the ongoing message flow is
only kept for one hour, mainly to be accessible for the thematic classification (see Section 3.4.3).
Without deleting older data, the system would need to accommodate for a daily amount of
more than 40GB of tweets and an additional 5GB for the indexes.

In order to provide real-time dictionary look ups and spelling correction, the capabilities of
ELASTICSEARCH40 are exploited. It is basically a powerful search engine that also provides
storage facilities in JSON format. The integration of custom functions for tokenization, stop
word removal and tf-idf weighting is also possible.

3.6.2 Alert Mechanism

At the moment of writing, the alert mechanism is implemented as an automatic e-mail message
issued to recipients which can subscribe to the service on a per event type basis. So far it is an
internal service for other researchers in CEDIM, where the main part of this research is based.
In the future, this service could be opened up and might issue the alerts back to its data source
– i.e. disseminate the extracted event information as tweet. This way any interested individual
or organization could follow TENAS updates without any changes on the service side.

The alert message incorporates the most important event information that the system derives
from the messages in a compact format. As an example, Figure 3.30 shows the information

39An interpreted, higher programming language suited for rapid development, production deployments, and
scalable systems (cf. Gorelick et al., 2014).

40Avaliable from https://www.elastic.co/products/elasticsearch.
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that was sent after the detection of an earthquake in Guayaquil, Ecuador on October 24, 2013.
The mail arrived at 0:39:08 UTC, with a processing time of 3 s, that means a 6 sec delay is
caused by the mail delivery process. The use of TWITTER could often reduce this delay to below
2 sec (see Section 3.1.2). The information includes the date and time the event was detected,
the coordinates of the centroid of the messages, the relevant similarity scores, the detected
terms and their frequency, and the number of messages as well as the 95% threshold from the
respective count data model(s).
According to the USGS earthquake archive, the event happened at 0:37:20 UTC with its epi-
center at 79.790°W and 2.060°S41. TENAS detected the first reactions related to the earthquake
1 min and 46 sec after it occurred. The messages’ centroid was at an approximate distance of
15.2 km from the epicenter.

Figure 3.30: The e-mail notification for the earthquake in Guayaquil, Ecuador on October 24, 2013 at
0:37:20 UTC with its epicenter at 79.790°W and 2.060°S.

In order to make the location information more comprehensible for a human operator, reverse
geocoding is applied to the geographical coordinates of the centroid. The NOMINATIM web
service42 is used, which provides the Place information in a structured format.

3.6.3 Ad Hoc Visualization

As a small add-on for a human operator to get a first glance of the impact area, the alert mail
includes a link to a custom web service. The service is implemented in JAVASCRIPT using the
library NODE.JS for the web server and the library LEAFLET.JS to visualize an interactive map
based on OSM data. The single tweets are depicted as markers. By clicking on a marker a small

41Event information available from http://earthquake.usgs.gov/earthquakes/eventpage/usc000km1p.
42The search engine for Open Street Map (OSM) data accessible via the base-URL http://nominatim.

openstreetmap.org/reverse?.

74 Chapter 3 Event Analysis Framework

http://earthquake.usgs.gov/earthquakes/eventpage/usc000km1p
http://nominatim.openstreetmap.org/reverse?
http://nominatim.openstreetmap.org/reverse?


Figure 3.31: Ad hoc impact area visualization in a browser with OSM data as background and overlain
by tweet metadata.

window shows the text, the date and time, and the coordinates of the message. Figure 3.31
shows the map corresponding to the earthquake alert mail presented in the preceding section.

3.7 Summary

In this chapter, the used methods for real-time event analysis using social media data have
been explained.
First, the exploited input data and its attributes in general, as well as the relevant parts used in
the approach has been introduced. Then the spatial and temporal characteristics have been
investigated to enable an informed decision for the choice of suitable discretization approaches
for space and time. The detection of significantly increased message volumes on a per cell and
per time interval basis using different count data models has been described.
The idea of a thematic classification based on domain-dependent document similarities and
a domain taxonomy has been detailed. The similarities allowed for the implementation of
a class label ranking rather than only an assignment of fixed class labels. Moreover, the
spatial-thematic and temporal clustering approaches have been described adapting a common
algorithm from the field of image processing. Eventually, operational aspects of the prototype
have been provided, including the automatic alert mechanism and the ad hoc visualization.
The next chapter, will evaluate the detection capabilities of the approach based on an earthquake
ground truth dataset, with respect to the detection rate, the temporal efficiency and the spatial
proximity to the epicenter.
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4Experimental Results

In this chapter, the detection performance of the developed algorithm described in the preceding
sections will be numerically evaluated. Eventually, Section 4.3 concludes this chapter as well
as the first part of this thesis with a critical discussion and a short summary.

4.1 Experimental Setup

For a numerical evaluation of the developed system, it is necessary to acquire so-called ground
truth data, in this case, trustworthy and verified information on the time, the location and the
type of large-scale events. Due to the focus of the prototype implementation, the evaluation
will be concerned with the capabilities of the system related to natural disaster events. To
exemplify a robust evaluation, I rely on historical earthquake data, which is, in contrast to
other types of disasters, consistently available on a global scale and supplied with informative
metadata. Moreover, earthquakes can be rather accurately assigned to a position in space and
time. Thus, they allow for an appropriate comparison of real earthquakes and the events which
the system detects and classifies as earthquakes.

4.1.1 Evaluation Set

As a resource for ground truth data, the Advanced National Seismic System Comprehensive
Catalog (ANSS ComCat) is used, which is an online accessible earthquake database combining
earthquake source parameters and other products generated by a large group of contributing
seismic networks1. The database can be queried via a web-interface2 or accessed through its
API.
The ANSS ComCat contains several pieces of information for the stored earthquake events. The
most important pieces for the evaluation are

• time

the time when the event occurred,

• longitude

the longitude of the earthquake’s epicenter in decimal degrees (negative values for
western longitudes),

• latitude

1A list of all contributing networks is available at http://earthquake.usgs.gov/earthquakes/map/doc_
aboutdata.php#contributing-networks.

2Accessible at http://earthquake.usgs.gov/earthquakes/search/
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the latitude of the earthquake’s epicenter in decimal degrees (negative values for
southern latitudes),

• magnitude

the magnitude for the event,

• depth

the depth of the event in kilometers, i.e. vertical distance from epicenter to
hypocenter.

For some events there is even more information available such as the horizontal distance from
the epicenter to the nearest station or the total number of seismic stations used to determine
the earthquake’s location. For the evaluation, only the consistently populated fields in the set
are used. However, additional information is derived, such as the local time3, the country4, the
distance to the closest major city5 (population larger than 100K), and the maximum intensity
radius – the approximate maximum radius in which the earthquake can be felt by humans.
These values will be considered in the evaluation to analyze missed events.

Felt Earthquake Intensities The mentioned maximum intensity radius is based on the Modified
Mercalli Intensity (MMI) scale for felt earthquake intensities (see U.S. Geological Survey, 2000).
The MMI scale categorizes the felt intensities of earthquake events in twelve classes labeled
with roman letters from I to XII. Only intensities of II and above can be felt by humans, so the
radius excludes areas of lower intensities.
Depending on the magnitude and the depth of the earthquake the intensities for different
distances from the epicenter can be roughly approximated. The following are the most common
formulas according to Dr. James Daniell (personal communication, December 10, 2015), a
designated expert in the field of earthquake engineering. The formulas are given in Shebalin
et al. (1997) with

mmi = 2m− 0.2− 3 log (s)− 0.0008s, (4.1)

in Ambraseys and Douglas (2000) with

mmi = 1
0.65

(((m− 1.176)
0.817

)
+ 1.54− 0.0029s− 2.14 log (s)

)
, (4.2)

and in Ambraseys (1985) with

mmi = 1.5m− 0.5 + 0.15 log (d)− 2.85 log
(

s

d

)
− 0.0024 (s− d) , (4.3)

where s =
√

(r2 + d2), m is the magnitude, r is the distance from the epicenter in kilometers
and d is the depth in kilometers.
Again relying on external domain expertise of Dr. James Daniell (personal communication,

3The time zone information is again obtained from the IANA time zone database via the PYTHON library PYTZWHERE

(see Section 3.3.2).
4Again, the NOMINATIM web service, the search engine for OSM data is used, which is accessible via the base-URL

http://nominatim.openstreetmap.org/reverse? (see Section 3.6.2).
5Data on populated places at global scale is available from Natural Earth at http://www.naturalearthdata.com/

downloads/110m-cultural-vectors/110m-populated-places/.
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December 10, 2015), Equation (4.1) is used for shallow earthquakes (d < 75 km) in active
regions, and Equation (4.2) for intermediate-depth earthquakes (d ≥ 75 km) in active regions.
For stable regions in the dataset, Equation (4.3) is used. The decision whether an earthquake
occurred in a stable or active region is based on the information provided in the global
seismic hazard map6 of Giardini et al. (2003). The map provides probabilistic Peak Ground
Acceleration (PGA) values in m s−2 on a global scale. The values have a 10% probability to be
exceeded for the duration of fifty years which corresponds to a 475 years repeat rate. Following
Dr. James Daniell, active regions are defined where the PGA provided in the global seismic
hazard map exceeds 1 m s−2. These regions have a 10% probability to undergo an event with
an intensity as high as V with respect to the MMI scale in the next fifty years (cf. Wald et al.,
1999).

Table 4.1: Temporal extent of the global evaluation set in three disjoint time periods.

start date end date

time period #1 2015-06-13 23:00:00 UTC 2015-06-15 08:49:00 UTC

time period #2 2015-06-18 11:00:00 UTC 2015-06-21 10:00:00 UTC

time period #3 2015-07-06 23:00:00 UTC 2015-07-12 12:05:00 UTC

Global Evaluation Set The global evaluation set was acquired for three distinct time periods.
During these periods, the prototype was running without interruption. The time periods are
listed in Table 4.1. This set contains all earthquakes around the world which took place during
one of the three time periods and had a magnitude of larger than or equal to 3.0. Again
according to the U.S. Geological Survey (2015), earthquakes with a magnitude below 3.0
commonly exhibit maximum intensities of I on the MMI scale and are thus excluded. The
frequencies of the earthquakes with respect to their magnitude is depicted in Table 4.2 together
with the total number and the respective numbers for events with onshore and offshore
epicenters.

Concerning the spatial distribution with respect to political boundaries, the ground truth dataset
contains earthquakes from approximately 60 different countries. Table 4.3 shows countries
with five or more earthquakes in the dataset, again for the total number as well as split in
onshore and offshore events.

Finally, Figure 4.1 depicts all earthquakes in the evaluation set on a global map with increasing
size according to their magnitude range. Here I used larger steps for the magnitude ranges
for a clearer visual arrangement of the legend. The events are depicted in different colors for
onshore and offshore epicenter locations.

6Available at http://www.seismo.ethz.ch/static/GSHAP/global/.
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Table 4.2: Number of earthquakes in total and split in onshore and offshore events, grouped by different
magnitude ranges (Note: ranges are upper-bound exclusive!)

magnitude range #EQs total #EQs onshore #EQs offshore

3.0 - 3.2 34 20 14
3.2 - 3.4 23 10 13
3.4 - 3.6 14 8 6
3.6 - 3.8 11 6 5
3.8 - 4.0 10 3 7
4.0 - 4.2 54 23 31
4.2 - 4.4 97 31 66
4.4 - 4.6 77 12 65
4.6 - 4.8 53 13 40
4.8 - 5.0 33 2 31
5.0 - 5.2 9 1 8
5.2 - 5.4 9 0 9
5.4 - 5.6 4 1 3
5.6 - 5.8 5 0 5
5.8 - 6.0 3 0 3
6.0 - 6.2 0 0 0
6.2 - 6.4 1 0 1
6.4 - 6.6 1 0 1
6.6 - 6.8 1 0 1∑

439 130 309

Table 4.3: Number of earthquakes per country with at least 5 events in total. The numbers are also
given for onshore and offshore events.

Country #EQs total #EQs onshore #EQs offshore

United States of America 83 44 39
Indonesia 40 4 36
Japan 36 5 31
Papua New Guinea 34 10 24
Solomon Islands 29 0 29
Tonga 19 0 19
Fiji 18 0 18
Chile 16 8 8
New Zealand 14 0 14
South Sandwich Islands 14 0 14
Russian Federation 12 3 9
Mexico 12 3 9
Afghanistan 11 11 0
China 7 7 0
Peru 6 5 1
British Virgin Islands 6 0 6
Dominican Republic 5 0 5

4.2 Results

In order to quantify the performance of the system with respect to the detection of earthquakes,
all event detections are taken into account which the system yielded in the respective time
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Figure 4.1: Visualization of the earthquake evaluation set acquired from the ANSS ComCat. The marker
size is adapted according to the magnitude range of the earthquakes. Onshore events
are depicted in green and offshore events in blue. Additionally, dark gray denotes areas
classified as seismically active according to the global seismic hazard map of Giardini et al.
(2003).

periods and which were classified as earthquake. The detection rate is the main metric used,
i.e. the ratio of detected earthquakes divided by the total number. The detection rate with
respect to several other event attributes will be reported and analyzed. Moreover, the temporal
efficiency of the detection as well as the spatial proximity to the earthquakes’ epicenter will be
presented.
A detection is only considered within 20 min of the earthquake occurrence and within a distance
from the epicenter of twice the maximum intensity radius.

Detection Rates The overall detection rates for the global evaluation set in total and split for
onshore and offshore events are given in Table 4.4. As expected, offshore events are less likely
to be detected.

Table 4.4: Overall detection rate for the global evaluation set in total and split in onshore and offshore
events.

Total Onshore Offshore

52.62% 70.77% 44.98%

As another indicator why events were missed, the ratio of the intensity radius and the distance
to the next major city are determined. Table 4.5 shows that in general earthquakes that have a
small ratio, i.e. combined a small intensity radius with a large distance to a major city, are less
likely to be detected. In contrast, the local time had no significant influence on the detection
performance.

In Figure 4.2, the detection rates are presented for the different magnitude ranges existing in
the dataset. First, the rates increase with the magnitude range as expected. Then however, a
significant drop in the detection rate can be observed for events with magnitudes ≥ 4.0 and
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Table 4.5: Median ratios of the intensity radius and the distance to the next major city in total and split
in onshore and offshore events.

Total Onshore Offshore

detected 0.207 0.311 0.136
missed 0.041 0.165 0.038

< 4.4 and also lower rates for magnitudes of ≥ 4.4 and < 4.8. The trends for onshore and
offshore events are qualitatively rather similar.
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Figure 4.2: The detection rates per magnitude ranges in total (gray) and split for onshore (green) and
offshore events (blue).

Focusing on this problematic magnitude range for onshore events with a detection rate of only
58.2%, the reasons for the low rates can be identified by looking at the respective country
statistics. The bar chart in Figure 4.3 depicts the number of onshore earthquakes detected
and in total, for countries that experienced at least 3 onshore events with magnitudes ≥ 4.0
and < 4.8. The countries are ordered according to their detection rate from top to bottom.
Clearly, in some countries the earthquake detection capabilities of the system is much lower
than in others. Moreover, especially for the three countries with the most events in this category
(Afghanistan, Papua New Guinea and China) the detection rate is rather low.

Additionally, the figure depicts the average number of daily georeferenced tweets per 1K
inhabitants in the countries7. The value will be referred to as average TWITTER activity in the
following. Not surprisingly, the detection rate strongly correlates with the average TWITTER

activity of the country. However, for the problematic category in total – i.e. 4.0 ≤magnitude <

4.8 and onshore epicenter – 27 out of the 33 missed events occurred in countries with less
than 1 georeferenced tweet per day per 1K inhabitants. In contrast, for the remaining onshore
events – i.e. magnitude < 4.0 or ≥ 4.8 – the detection rate was 90.2% and the events originate

7The population data per country is derived from the World Development Indicators, The World Bank, accessible
through http://data.worldbank.org/data-catalog/world-development-indicators.
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Figure 4.3: The number of onshore events with magnitudes of ≥ 4.0 to < 4.8 in total (light gray) and
the number of detections (green) per country that exhibited at least 3 events. The blue bars
depict the average number of daily georeferenced tweets per 1K inhabitants.

from 7 different countries from which each exceeds 1 georeferenced tweet per day per 1K
inhabitants (see Figure 4.4).
Following the MMI scale, earthquakes that have a magnitude of ≥ 5.0 have the potential to
actually generate damage, corresponding to intensities of VI and above. In this group, the
detection rates are even 96.97% (total), 100% (onshore) and 96.77% (offshore).

Temporal Efficiency The detection time is the time that passed between the occurrence of the
earthquake and the respective detection in the system. Hence, it is a measure of the temporal
efficiency.
The overall median detection time for the evaluation set is 4 min 2.4 s with a median absolute
deviation of 2 min 24.4 s. More than 94% of the events could be detected in less than 10
minutes. The results for the different magnitude ranges are shown in Figure 4.5. The box plot
depicts the median, the interquartile range (IQR), the 5th percentile (lower whiskers) and the
95th percentile (upper whiskers), and where necessary the outliers.

For a very general comparison of my system with established real-time earthquake notification
services, I use the Earthquake Notification Service (ENS) of the USGS. For the evaluation
set, the ENS sent notifications for 24 events, three of which my system did not detect. The
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Figure 4.4: The number of onshore events with magnitudes of < 4.0 or ≥ 4.8 in total and the number
of detections per country. The blue bars depict the average number of daily georeferenced
tweets per 1K inhabitants.

Figure 4.5: The median detection time per magnitude range (light gray line in boxes), split in onshore
(green) and offshore (blue) events, together with the IQR (colored boxes), the 5th percentile
(lower whiskers) and the 95th percentile (upper whiskers) and outliers (black dots). For
the sake of visual clarity, magnitude ranges with only one value are highlighted in a darker
gray.
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respective detection times for these events by ENS, were 63 min, 198 min and 2954 min (i.e.
more than 47 h). Concerning the remaining 21 events, the system consistently outperformed
the ENS. The detection times are presented in Figure 4.6. However, due to the low number of
instances, this comparison might not be completely representative.
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Figure 4.6: A comparison of the detection times for 24 earthquakes from the evaluation set which were
automatically reported by the ENS of the USGS. TENAS, the system developed in this work
is depicted in green and the ENS in blue.

Spatial Proximity to Epicenter The centroids of the messages of the first detection by the
system are considered as the estimated earthquake impact location. These values are compared
to the estimated epicenter locations provided in the evaluation set. The results for all detections
and split for onshore and offshore events are presented in Table 4.6 as mean and standard
deviation.

Table 4.6: Overall detection distances for the global evaluation set in total and split in onshore and
offshore events

Total Onshore Offshore

32.04 km±40.48 km 20.03 km±30.09 km 40.11 km±44.24 km

The estimated maximum intensity radii can be considered as a rough spatial constraint for
a plausible detection. Out of the 229 detected earthquakes in total, 87.3% were detected
within their respective maximum intensity radius. Except for two events, the remaining events
were all detected within a 15% limit above the respective radius. Splitting in onshore and
offshore events, the percentages are 91.3% and 84.7% respectively, wherein the two events
outside of the 15% limit happened offshore. Figure 4.7 depicts the detected events and their
corresponding estimated maximum intensity radius with the individual 15% add-on, and their
detection distances.

4.2 Results 85



0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000
D

is
ta

n
ce

 [
k
m

]

Figure 4.7: The detected earthquakes (green dots) ordered from left to right by increasing maximum
intensity radius. The vertical axis encodes the detection distance to the epicenter. The dark
blue line depicts the respective maximum intensity radius together with an individual 15%
add-on (visualized as light blue shade). The two events detected outside of that range are
colored in red.

4.3 Discussion

The results show that the detection of specific events is feasible at a high detection rate on
a global scale together with good temporal efficiency and plausible spatial proximity to the
earthquakes’ epicenter.
As expected, the results indicate that the proximity to large urban areas is beneficial for a
successful detection. In terms of spatial coverage, the results revealed that the system suffers
from drawbacks in some political regions where the exploited social media platform TWITTER

is either not very popular (e.g. Russian Federation) or (partly) blocked (e.g. China), or where
internet access in general is limited (e.g. Afghanistan, Papua New Guinea). In countries with a
high TWITTER penetration in contrast, the detection rates are very high (e.g. Japan, United
States of America, Indonesia, Chile, Turkey, Argentina). The overall detection rate for onshore
events is slightly skewed due to the predominance of events in the magnitude range ≥ 4.0 to
< 4.8. Within this range, a significant part of the missed events took place in countries with
very low TWITTER activity. Concerning events that are likely to have damaging impact however,
the detection rate is almost perfect with 96.97%.
Considering temporal aspects, the majority of events could be detected in less than 10 minutes.
For a subgroup of the evaluation set, real-time notifications from USGS were available. The
comparison revealed that the developed system is faster than the official service ENS in all but
3 cases.
Although the aim is not to detect earthquake epicenters, but the main impact area with respect
to affected people, the results show that the detections occurred in reasonable spatial proximity
to the epicenter. Moreover, the comparison to the estimated maximum intensity radii also
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demonstrates that the detection locations are within a plausible distance – i.e. people on site
were potentially able to experience the earthquake themselves.

Concerning the covered time periods of the evaluation set, the system yielded not a single
false alarm. For earthquakes in general, all alarms could be assigned to a real event by
manual post-processing. In case of other natural disasters the retrieval of information for local
events on a global scale is not feasible and mostly even unavailable. Nonetheless, since the
beginning of this research, a couple of incidents took place which were obvious false alarms.
The most frequent cause with three occurrences, was an alarm classified as a volcanic eruption
in Turkey. By manual investigation, however, it could be identified as a soccer-related issue –
the goalkeeper of the Turkish national soccer team is called Volkan Demirel, and his first name
happens to be the Turkish word for volcano. Similar cases are not entirely impossible but so far
have not been occurred.

4.4 Conclusion

In this chapter, the detection capabilities of the developed system were evaluated based on a
global earthquake ground truth data set. The detection rate with respect to different attributes
as well as the temporal efficiency and spatial proximity to the earthquakes’ epicenter were
presented and critically discussed. As exemplified on available cases, the system outperformed
even an official, dedicated earthquake notification service.

Other Event Types In general, the system naturally shows its strengths in terms of temporal
detection efficiency with events that exhibit a sudden and rather unexpected impact such as
earthquakes or volcanic eruptions from the natural disaster domain. Events that do not have
a real climax but a very long start-up period are sometimes not detected at all, for example
due to a small effect on people. Sometimes these are only detected at an arbitrary time during
their existence. However, according to the definition of an event given in Section 2.1, the first
detection symbolizes the status when the event activated a critical mass of users to react to the
event rather than a domain specific definition – such as the forming of a tornado.
During the last three years, two different cases of unexpected but interesting results were
observed in the framework. The first case can occur when the population is warned by the
authorities beforehand that a disaster event such as a hurricane is expected to hit at some
specific time and in a specific area. This has led to two incidents, where the system issued an
alert before the event actually took place. This of course was not due to any amazing capability
of predicting natural disasters. The system was simply triggered by the significantly increased
TWITTER traffic yielded by users within the area, who were already worrying or just chatting
about the upcoming event.
The second case has only occurred once so far. On October 12, 2013 the category 4 cyclone
Phailin with approximated wind speeds of 222 km

h hit the coast south of the city of Brahmapur
in the Indian federal state of Odisha (Mühr et al., 2013). However, the Indian Meteorological
Service (IMD) issued warnings days ahead of landfall and approximately 1.7M people were
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evacuated prior to the event (IFRC, 2013). Thus, one of the largest evacuations in Indian
history (see Mühr et al., 2013), not only made the system completely miss this major event,
but also caused a significant decrease in tweet volume in some affected areas.

The chapter concludes the first part of this thesis “Real – Time Event Analysis”. A comprehensive
recapitulation of this part together with the recapitulation of the second part is given in
Section 8.1 in the form of a combined concluding summary.
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Part II

SPATIAL INFORMATION EXTRACTION FROM
TEXT





5Introduction

This starting chapter of Part II introduces the field of textual spatial information in general, as
the developed methods are completely independent from the joint use case of natural disasters.
In fact, the core methods are not even limited to social media input, but can handle English
text no matter what kind of source it originates from. The focus on social media obviously just
complicates the task and calls for additional processing and pre-processing steps, as will be
mentioned throughout Chapter 6.

First, Section 5.1 gives a short overview and details the most common encoding for textual
spatial information in English according to the literature (cf. Herskovits, 1986; Landau et al.,
1993; Miller and Johnson-Laird, 1976) – so-called locative expressions. Then the research
gap will be identified based on related work and fundamental literature concerning spatial
prepositions will be discussed (Section 5.2). Finally, in Section 5.3, important methods of NLP
will be introduced that are used in the extraction and disambiguation process.

5.1 Textual Spatial Information

Spatial language understanding is a complex field drawing on different disciplines. The
ability of a computer to recognize and interpret textual spatial information, such as place
descriptions (I’m waiting in front of the train station) or route descriptions (turn right at the
post office), is a particular challenge that has recently attracted attention from a wide range
of diverse research communities such as computer science, robotics, computer linguistics,
spatial cognition and Geographic Information Science (GIScience). People use these kind of
expressions in their daily life when making decisions and verbalizing their spatial knowledge
about their surroundings; enabling computers for spatial language understanding will therefore
be beneficial for human-computer interaction relating to everyday decision support, search,
and similar generic information. But the automatic extraction and disambiguation of spatial
information in particular, e.g. from large textual data streams, is a promising field for possible
applications.

5.1.1 Locative Expressions

Textual spatial information can be encoded in a variety of syntactic categories, such as preposi-
tions, adverbs, nouns and verbs, or any combination of them. In English, as well as many other
natural languages, a very common means for people to express their spatial knowledge is LEs,
as described in their prototypical form by Herskovits (1985).
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LEs are spatial expressions incorporating a preposition, its object, and the entity the preposi-
tional phrase modifies, i.e. the subject.

[5.1] the spider is on the wall.

In [5.1], the object wall of the preposition on is called the relatum, ground, anchor or landmark,
and the entity the prepositional phrase modifies, i.e. spider, is called the locatum, figure, theme
or trajectory in the various literature (cf. Levinson (1996) and Retz-Schmidt (1988)). The
terms relatum and locatum will be used throughout this work, even in cases with non-spatial
preposition uses.

However, apart from the spatial domain, these prepositions can occur in a wide range of senses
(e.g., temporal, modal, causal) as well as in semantically transformed senses (e.g., metaphors
and metonymies1). Existing practical approaches usually disregard semantic transformations
or falsely classify them as spatial, although they represent the majority of cases2. The next
section will detail this shortcoming of current approaches.

5.2 Related Work

5.2.1 Identifying the Research Gap

Applications which involve LEs in verbal interaction are still a major challenge for Artificial
Intelligence (AI). These include, e.g., extracting spatial information from streaming data, robots
following verbal wayfinding instructions, dialog-driven geo-services, emergency response/as-
sistance systems, or querying search engines with spatial language. From a GIScience point
of view, LEs represent a so-far largely untapped resource of spatial information. In particular
with the rapid advent of social media platforms in the last decade, the amount of potentially
valuable spatial information has been increasing by the second.
To utilize this information in intelligent systems, it needs to be correctly identified, extracted
and modeled in a suitable machine readable format first. This task represents an essential step
in the complex processing pipeline from unstructured spatial information to structured spatial
knowledge and its potential iconic representations on sketch-maps (cf. Vasardani, Timpf, et al.,
2013) or georeferenced maps. In approaches dealing with the actual interpretation of spatial
relations in a geometric or geo-spatial sense (e.g. qualitative distances and directions), the
extraction and disambiguation is assumed to be given (cf. M. Hall and Jones, 2012; M. Hall,
Smart, et al., 2010; Lucas, 2012). However, the task is far from trivial and needs a dedicated
approach based on methods from NLP, computer linguistic and machine learning.

1In contrast to metaphor, metonymy is a cognitive process mapping structures within one domain, and not across
different domains (see Boers, 1996).

2Lakoff et al. (1980) demonstrated that metaphors are not just pervasive in language, but in thought and action
and that our conceptual system is fundamentally metaphorical in nature. Herskovits (1986) later explicitly
re-emphasizes that spatial metaphors pervade language; they are necessary to conceptualize various semantic
domains, in particular abstract domains.
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Spatial prepositions can occur in a multitude of different senses apart from their spatial
usage. Although several approaches exist to automatically disambiguate prepositional senses
(cf. Boonthum et al., 2006; Litkowski and Hargraves, 2007; O’Hara et al., 2003; Srikumar
et al., 2013; Villanueva et al., 2013) the disambiguation of spatial prepositions from their
extended uses in metaphors, metonymies, idioms and related figures of speech (e.g. [5.2], cf.
Section 6.1.1), generally named semantic transformations (see Gärdenfors, 2014), has been so
far largely disregarded.

[5.2] the thought in the back of my mind.

In the spatial extension of the linguistic ontology Generalized Upper Model (GUM) by Bateman
et al. (2010), for instance, the “[C]lauses with idiomatic or metaphorical uses of spatial
terms were not considered” for the inter-annotator agreement. Khan et al. (2013), however,
discovered these cases of semantic transformations as the main reason for high false positive
rates in the identification of spatial language utterances. Some advanced approaches for spatial
information extraction from text, such as the SPATIALML scheme from Mani et al. (2008) have a
related goal of identifying and annotating spatial information in text, but focus on geographical
and culturally-relevant landmarks, i.e. named places or toponyms instead of spatial relations.
This is often called geoparsing (cf. Gelernter et al., 2013; Oliveira et al., 2015; Ritter, Clark,
et al., 2011).

In general approaches to sense disambiguation, semantically transformed cases are often classi-
fied as spatial, in contrast to temporal, manner and other common senses. In Srikumar et al.,
2013, the authors identify 32 distinct classes of prepositions, but still classify metaphoric cases
as spatial amongst others. Furthermore, approaches to automatic spatial relation extraction
often completely omit these cases (Kordjamshidi, Frasconi, et al., 2012; Kordjamshidi et al.,
2010, 2011; H. Li et al., 2006; Mani et al., 2008; Pustejovsky et al., 2011, 2013; Shen et al.,
2009; C. Zhang et al., 2009; X. Zhang et al., 2011). The main reason for omission often lies in
the choice of corpora, for example by using corpora that are manually preselected to have a
high rate of spatial language utterances (cf. Bateman et al., 2010). In an unrestricted natural
language environment however, the number of expressions misleadingly identified as being
spatial will be significant. This high rate of false positives has a direct negative impact on the
accuracy, on the processing speed, and ultimately on the feasibility of an automatic system.

I am therefore aiming to provide an intelligible and fast approach to extract and disambiguate
spatial from non-spatial uses of prepositions that are generated by any kind of semantic
transformation.

5.2.2 Fundamental Literature on Spatial Prepositions

Due to the richness of approaches to the general topic of spatial prepositions, only selected
views on spatial prepositions that influenced my approach are provided.
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In semantic theory in general, two types of approaches can be identified: full specification
and minimal specification. In full specification, every meaning of a word has a distinct
representation in a lexicon. In minimal specification one meaning is seen as central, and from
this all others are supposed to be derived by context or semantic transformations such as
metaphors and metonymies (cf. Gärdenfors, 2014).
In terms of research on the semantics of prepositions, the minimal specification view is also
called the localist view. The localists argue for the spatial sense being the central meaning of
prepositions. The first to promote this view was Leibniz (1765), stating that prepositions “are
all taken from space, distance and movement”, and many others followed (e.g., Coventry et al.,
2004; Herskovits, 1986; Landau et al., 1993; Miller and Johnson-Laird, 1976). Herskovits
(1986) argued for an ideal meaning, and called any divergence from it a sense-shift, but
still as based on the spatial meaning. However, later theories claimed that there is more to
prepositional meaning, for example the notion of a control relation as in [5.3] (cf. Garrod and
Sanford, 1989).

[5.3] John is in a bad mood.

Neuro-scientist and Nobel-Prize winner John O’Keefe described the non-spatial relationships
as higher dimensional axes additional to the first dimensions of space and time and called
them metaphorical (O’Keefe, 1996). Coventry et al. (2004) supports this view but states that
such extended uses are direct extensions of the spatial meaning of the terms rather than novel
metaphorical uses.

For an efficient GIScience approach, a rather practical common sense separation in spatial
and non-spatial uses of prepositions is targeted. With the main purpose being to increase the
accuracy and efficiency of language parsers to identify physically spatial LEs. Hence, I argue
that for the scope of this thesis, the existence of a core meaning is not essential. Section 6.3.2
shows that the claimed core meaning, i.e. the spatial meaning, is not necessarily the most
frequent one. However, the deep linguistic and cognitive analysis of the cited work (and many
more) represents the basis of the current understanding of prepositions, and nurtured the idea
for a feasible disambiguation approach.

5.3 Natural Language Processing

According to Bird et al. (2009), NLP, in a wide sense, covers any kind of computer manipulation
of natural language, i.e. languages spoken by humans. This includes simple tasks such as
comparing word frequencies as well as complex algorithms for “understanding” complete
human utterances, at least to a useful extent, e.g. for automatic question answering.
In this section, typical methods in NLP are introduced that are employed for the extraction and
disambiguation approach.
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5.3.1 Part-Of-Speech Tagging

Usually the first step after tokenization in a typical NLP pipeline, is Part-Of-Speech (POS)-
tagging. It is the process of classifying words into their parts of speech and labeling them
accordingly (see Bird et al., 2009). The mentioned parts of speech are also referred to as word
classes or lexical categories. The set of labels used for a specific task is known as a tagset.

Table 5.1: The 45 Penn Treebank tags for word classes in English with examples from Jurafsky et al.
(2009).

Tag Description Example Tag Description Example

CC coordin. Conjunction and, but, or SYM symbol +,%, &
CD cardinal number one, two TO “to” to
DT determiner a, the UH interjection ah, oops
EX existential ‘there’ there VB verb base form eat
FW foreign word mea culpa VBD verb past tense ate
IN preposition/sub-conj of, in, by VBG verb gerund eating
JJ adjective yellow VBN verb past participle eaten
JJR adj., comparative bigger VBP verb non-3sg pres eat
JJS adj., superlative wildest VBZ verb 3sg pres eats
LS list item marker 1, 2, One WDT wh-determiner which, that
MD modal can, should WP wh-pronoun what, who
NN noun, sing. or mass house WP$ possessive wh- whose
NNS noun, plural houses WRB wh-adverb how, where
NNP proper noun, sing. IBM $ dollar sign $
NNPS proper noun, plural Carolinas # pound sign #
PDT predeterminer all, both “ left quote ‘ or “
POS possessive ending ’s ” right quote ’ or ”
PRP personal pronoun I, you, he ( left parenthesis [, (, {, <
PRP$ possessive pronoun your, one’s ) right parenthesis ], ), }, >
RB adverb quickly, never , comma ,
RBR adverb, comparative faster . sentence-final punc . ! ?
RBS adverb, superlative fastest : mid-sentence punc : ; . . . – -
RP particle up, off

A widely used tagset is the so-called Penn Treebank tagset described in Santorini (1990) and
developed at the University of Pennsylvania with 45 different tags. Table 5.1 shows the tags
for all word classes in English accompanied by their names and examples from Jurafsky et al.
(2009).

State-of-the-art POS-taggers for English achieve reliable accuracies of approximately 97 %
according to Jurafsky et al. (2009) and Manning (2011), but have stagnated since 2003. Most
of the taggers either use rule-based approaches or supervised learning techniques. The learning
approaches usually employ Hidden Markov Models (HMM), maximum entropy conditional
sequence models, or other techniques like decision trees, that can deal with the sequential
nature of the tagging problem (cf. Toutanova et al., 2003).
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An example of a sentence with its POS-tags is depicted in Figure 5.1 visualized with the BRAT3

visualization and annotation software described in Stenetorp et al. (2012). Here the problems
that can arise with ungrammatical input are already visible. As the sentence completely misses
any verb, the term Road at the beginning is falsely tagged as NNP instead of NN – most likely
because it is capitalized. Nonetheless, these tags are highly valuable input features for learning
approaches involving natural language.

Figure 5.1: Result of POS-tagging for an English sentence.

Concerning social media input, standard taggers exhibit decreased accuracies as they are
usually trained on well-formed corpora like news texts, for example from the Wall Street
Journal. However, when specifically trained for mixed input, they can still reach between 85 %
to 89 % accuracy according to Derczynski et al. (2013).

5.3.2 Named Entity Recognition

Another typical NLP tool that is used to benefit the approach is NER. It is the process of
assigning a specific categorical label to mentions of so-called named entities. What exactly
constitutes a named entity type is application dependent according to Jurafsky et al. (2009),
but commonly includes people, places, and organizations. In other fields more specific entities
might be of interest, e.g. the names of genes and proteins in NLP for bio-medical applications
(Cohen et al., 2014).
For my purpose the common tags PERSON, TIME/DATE/DURATION, ORGANIZATION and LO-
CATION are sufficient. They will provide valuable hints for the disambiguation approach,
to evaluate the involved entities in a LE. Figure 5.2 depicts the result of an named entity
recognizer.

Figure 5.2: Result of NER for an English sentence.

5.3.3 Dependency Parsing

The probably most powerful method from the NLP toolbox that will be used is dependency
parsing. It is the process of analyzing the grammatical structure of a sentence by establishing
binary asymmetric relationships (semantic or syntactic) between so-called “head” words and
their dependents, i.e. words which modify those heads (see Bird et al., 2009). According to
Jurafsky et al. (2009), these relationships are often called lexical dependencies. In English,
the tensed verb is commonly the head of a sentence, and all remaining words are either direct

3Available from http://brat.nlplab.org/.
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Figure 5.3: Result of a dependency parser for an English sentence.

dependents or are connected to the head via a path of dependencies. Consequently, the result of
a dependency parser can be represented as labeled directed graph. The nodes then denote the
lexical items, here words, and the labeled arrows denote the dependency relations from heads
to dependents, i.e. the edges of the graph. Figure 5.3 shows an example result of a dependency
parser using the universal dependencies4 which mainly evolved from work of Marneffe et al.
(2014), Petrov et al. (2012), and Zeman (2008).
The arrow from the word City to the word in indicates that in modifies City, and the label case
assigned to the arrow classifies the relation as case-marking. Case-marking elements such as
prepositions and postpositions, are regarded as dependents of the noun or clause they attach to
or introduce (see Marneffe et al., 2014). In this work however, the dependency graph is used
as an undirected graph, because the directions of the relations are not only irrelevant for the
approach described here, but in fact limit the necessary connectivity of the nodes that I want to
exploit.
In the following, a relations path refers to the sequence of relations that connects two words
in this graph. For example the relations path between along and the first mention of cracks is
given by

[Start — ] case — nmod [ — End ]

where the bracketed parts are automatically added for further processing steps explained in
Section 6.5.

For all three of the above described NLP tasks, the STANFORDCORENLP library is used in version
3.5.2. It is a toolkit by Manning, Surdeanu, et al. (2014) that offers, in addition to POS-tagging,
NER and dependency parsing, also a high-quality lemmatizer and a syntactic parser for English.
It is originally written in JAVA but here the PYTHON wrapper STANFORD-CORENLP-PYTHON from
Dustin Smith is used5.

5.3.4 Word Sense Disambiguation

The majority of words in natural languages have multiple possible meanings6 such as the word
road, which can mean an open way (generally public) for travel or transportation but also a way
or means to achieve something as in the road to fame. Computers do not have the advantage of

4A detailed description of the currently 40 dependency relations can be found in the online documentation
available at http://universaldependencies.org/u/dep/index.html.

5The library is available at https://github.com/dasmith/stanford-corenlp-python.
6This is commonly referred to as polysemy according to Jurafsky et al. (2009) and Villanueva et al. (2013).
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a human’s experience of the world and language. So assigning the correct sense to a word is
challenging (cf. Banerjee et al., 2002). The automatic process of distinguishing these different
senses from one another is called Word Sense Disambiguation (WSD).
Many algorithms rely on machine readable dictionaries and exploit the shared vocabulary
between the definitions of words. The prototypical approach for this idea has been introduced
by Lesk (1986). Later, Banerjee et al. (2002) have optimized the approach by using WORDNET

instead of traditional dictionaries. WORDNET is a lexical database of English, containing
nouns, verbs, adjectives and adverbs, which are grouped into sets of cognitive synonyms, each
expressing a distinct concept (see WordNet, 2015).
Moreover, WORDNET offers a wide range of semantic hierarchies between concepts such as
hyponymy and hypernymy. Concerning the term road for example, a hyponym would be
side road – side road is a kind of road – and a hypernym would be way – road is a kind of
way. The all-comprising concept in WORDNET is the entity no matter where the hypernym
hierarchy is entered. Entity has two hyponym concepts, which are abstract entity and physical
entity, respectively given as a general concept formed by extracting common features from specific
examples, and an entity that has physical existence. The hypernym path for the term road in its
first sense given above, is depicted in the following list. When combining the output of the
WSD and the hypernym hierarchy, a strong indicator can be given if a noun is a physical or
abstract entity.

road, route – an open way (generally public) for travel or transportation
⇒ way – any artifact consisting of a road or path affording passage from one place to

another
⇒ artifact, artefact – a man-made object taken as a whole

⇒ whole, unit – an assemblage of parts that is regarded as a single entity
⇒ object, physical object – a tangible and visible entity; an entity that can cast a

shadow
⇒ physical entity – an entity that has physical existence

⇒ entity – that which is perceived or known or inferred to have its own
distinct existence (living or nonliving)
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6Developed Extraction and
Disambiguation Process

This chapter introduces the approach for efficiently extracting and disambiguating spatial infor-
mation encoded as LEs from unrestricted natural language. As an additional task, the approach
needs to account for the noisiness of social media texts. For this reason, the investigated corpus
(cf. Section 6.3) comprises texts from different social media sources to represent a variety of
modern language usage.
The main contributions of the approach are

• the applicability to noisy language such as social media texts,

• the coverage of all potentially spatial English prepositions,

• the automatic extraction of the locatum and relatum, and

• the capability of disambiguating spatial from non-spatial preposition usage.

The chapter is structured in six methodical sections and a short summary. First, I outline the
scope of the approach, i.e. what exactly it aims to accomplish and which prepositions are
investigated. Section 6.2 then details the conceptual decision schema based on the preceding
section and introduces its three rules for a manual disambiguation of spatial and non-spatial
uses of prepositions.
The mixed social media corpus used in this study is described in Section 6.3. Then, the last
three sections explain how this schema can be implemented in code – i.e. the methods to
teach a computer to get from a raw English utterance to a structured output of a LE. These are
again filter steps to generate the desired output. Section 6.4 deals with the identification of LE
candidates based on the existence of a preposition. Subsequently, Section 6.5 details the step
of extracting triplets of the form

locatum — preposition — relatum

as essential preparation for the final process of disambiguating these triplets – that is classifying
them as spatial or non-spatial (Section 6.6). In some cases, these triplets are missing the
locatum. In particular in short messages the implicit I or you is sometimes omitted. These are
so-called degenerated triplets as described by Khan et al. (2013)1. Here, these are explicitly
excluded as non-spatial.

1Khan et al. (2013) us the term degenerated locative expression, however, as they can be non-locative, that is
non-spatial, the name degenerated triplets is a better fit in the scope of this work.
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Concerning the use case of natural disasters, these descriptions of spatial scenes can hold
valuable on-site information. Extracting this kind of information efficiently from large, real-
time social media streams is then essential to be able to contribute to the situational awareness
in a disaster scenario. Still, I will rather focus on the scientific methods and algorithms than on
the question how to further process the output in a real disaster or general event.

6.1 Scope

This section describes the scope and theory of the extraction and disambiguation approach.
As there is no universally valid definition of what is really meant by spatial, a description is
given to explain the notion of a spatial preposition in the scope of this thesis. Thereupon,
general constraints on syntax and types of objects in consideration will be explained. Finally,
this section is concluded by introducing the resulting choice of prepositions for this study.

6.1.1 Spatial vs. Non-Spatial

The notion of spatial in the approach is locating in physical space. Hence, spatial prepositions in
LEs can be defined as:

describing the location (e.g., inclusion, proximity) or movement (e.g., origin, path,
endpoint) of physical entities [and events] relative to other physical entities, actual
places or locations.

The definition provides a good basis as to which LEs should be detected and which should be
excluded in this practical approach. The involved entities in the scope should support the notion
of identifiability as well as being physically anchored. In small-scale environments entities
should be accessible for direct or indirect physical interaction, often involving changing their
location in space. Following the definition above, some types of expressions should explicitly
be excluded as non-spatial. These expressions can incorporate spatial prepositions of which the
sense has changed or shifted from their spatial meaning through semantic transformations. For
humans, these non-spatial meanings are relatively easy to identify, due to their understanding
of the involved entities and their world knowledge in general.

[6.1] The thought in the back of my mind.

In [6.1], it is generally understood that the relation in the back of is not a physically spatial
one, i.e. the thought is not physically in the back of the mind. The locatum is an abstract entity
and as such it can not be assigned to an explicit location in physical space. It is also known that
thoughts being in one’s mind is just the way people conceptualize this abstract relation because
of its resemblance to the general spatial relation of an object in a container. These metaphors are
denoted as container metaphors and are probably the most wide-spread in everyday usage, with
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conceptualizations such as STATES ARE CONTAINERS as in [6.2], ACTIVITIES ARE CONTAINERS as
in [6.3] or EVENTS ARE CONTAINERS as in [6.4], etc.

[6.2] We’re out of trouble now.

[6.3] I put a lot of energy into dancing.

[6.4] Are you in the race on Sunday?

Other common metaphorical concepts which incorporate prepositions are so-called orientational
metaphors, because they provide a spatial orientation to a non-spatial concept. The typical
orientations are up-down, front-back, etc. (cf. Boers (1996) and Lakoff et al. (1980)) – e.g.
HIGH (SOCIAL) STATUS IS UP and LOW (SOCIAL) STATUS IS DOWN as in [6.5] or FUTURE IS IN

THE FRONT and PAST IS IN THE BACK as in [6.6].

[6.5] that would be beneath me.

[6.6] the weeks ahead of us.

Although locational uses of prepositions are often implicitly spatio-temporal, I only consider the
spatial aspect in the current approach. Lakoff et al. (1980) notes that these major orientations
seem to cut across all cultures, but the direction in which the concepts are oriented vary from
culture to culture.

6.1.2 Syntactic Constraints

This subsection will explain the syntactic constraints on spatial prepositions with respect to the
goals of the research in a practical manner. It is therefore not meant to provide a deep analysis
of prepositional phrase structures in English and uses terminology typically found in computer
linguistic publications and not in purely linguistically driven research.
Spatial relations can be encoded by other word categories such as adverbs (e.g. here, downstairs,
nearby) and verbs (usually indicating a directed path, e.g., to enter, to descend, or implicitly
describing a spatial arrangement, e.g., to follow or to surround), but the focus in this research
is on the closed group of prepositions as indicators of spatial relations. The reasons for this are
as follows:
(i) path-indicating verbs can in general be expressed by a simpler verb denoting movement
(usually the manner) and a preposition providing the direction, such as to go in(to) instead
of to enter; and (ii) adverbial terms lack an explicit relatum, and can usually not be decoded
without discourse or context knowledge.

[6.7] I’m working nearby.

Example [6.7] is only fully understandable if a reference object is mentioned in the preceding
discourse or is obvious in a specific situation – e.g., the listener knows the current location
of the speaker and can assume the reference object equals the current location. However,
discourse analysis and co-reference resolution spanning over the boundaries of a sentence has
not yet been considered in this work.
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In terms of syntax, an (optional) modifier (MOD), a preposition (P) and a complement (C)
establish a prepositional phrase (PP). A PP denotes a single sentence constituent, which in
general can not be separated. For an extensive analysis of syntactic and semantic cases of LEs
that goes beyond the scope of this work, see Kracht (2002).

PP ⇒ (MOD) + P + C

It is important to distinguish between (transitive) prepositions and verb particles (i.e. intransi-
tive prepositions). Verb particle constructions do not take a complement (e.g., He blacked out)
or can be moved to the right of the following noun phrase (NP) as in turn off the light and turn
the light off . Hence, they are not constituents, as the NP is a direct object of the verb and not of
the preposition.
Verb particle constructions (VPCs) often form a semantic unit with the verb, where the particle
does not carry its own semantic meaning and thus is not the head of a PP (Baldwin, Kordoni,
et al., 2009), as in [6.8].

[6.8] We looked up the answer.

However, in [6.9] the word up is in fact the head of the following NP and therefore a (transitive)
preposition.

[6.9] We looked up the street.

Prepositions can also take different types of complements such as participial verb phrases as in
[6.10], sentences as in [6.11], NPs as in [6.12] or other PPs as in [6.13].

[6.10] John left before eating dessert.

[6.11] He was nervous before the President called.

[6.12] The book was placed on the table.

[6.13] She jumped out from behind the tree.

Only the latter two are of interest for this research because the former two can not describe
spatial relations.
It follows that the present approach exclusively studies transitive prepositions, i.e., taking a
NP as complement, and complex PPs, i.e., taking one or more PPs as complement where the
last preposition has a NP complement. In these complex PPs, not every preposition will be
recursively disambiguated, but rather assessed as one compound preposition that will get one
class label. Thus, in [6.14], the compound preposition would be from inside of .

[6.14] The function was called from inside of itself.

6.1.3 Choice of Prepositions

In this research, an extensive list of English prepositions is studied that are typically considered
to be potentially spatial. The list is compiled with the help of several English dictionaries (e.g.
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Merriam-Webster, Inc., 2015; Oxford University Press, 2015) and the distinguished work done
by Litkowski (2014) in the Pattern Dictionary of English Prepositons (PDEP).
Prepositions that, to the author’s best knowledge, do not (or not anymore) occur with a spatial
sense in natural language, such as as, because of , despite, during, for, in line with, in the face
of , like, since, until, with, and without are not investigated, i.e. they are directly excluded as
non-spatial. I acknowledge that until might in some cases be interpreted as temporal and
spatial, however, the temporal aspect is usually the more prominent one.
Additionally, there are a few English prepositions which can denote spatial relations but are
archaic (e.g. betwixt and nigh) or domain specific (e.g. nautical terms such as athwart and
abeam). They are also excluded because they are extremely rare in everyday language. The
final list of prepositions considered in this study is presented in Table 6.1.

Table 6.1: Potentially spatial English prepositions considered in the scope of this work.

about before from northwest of southeast of

above behind in of southwest of

across below in (the) back of off through

after beneath in (the) front of on throughout

against beside in the middle of on top of to

ahead of between in the midst of onto toward

along(side) beyond inside (of) opposite (of) under

amid(st) by into out (of) underneath

among(st) close to left of outside (of) up

aside down near over upon

at east of next to past via

atop far from north of right of west of

back to forth from northeast of south of within

6.2 Manual Decision Schema

In this section the manual decision schema is presented covering the scope described in the
preceding section. The schema comprises three rules which mainly help to identify non-spatial
uses – i.e. based on these rules, utterances incorporating prepositions, which do not comply
with the definition of spatial given in Section 6.1.1 are excluded. Each rule is explained with
examples, drawn from the corpus of this study wherever possible.
Figure 6.1 shows a process diagram that is used as graphical representation of the schema. It
depicts a very compact form of the schema and its three exclusion rules, and serves as quick
reference for annotators (cf. Section 7.1).
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Figure 6.1: The manual decision schema depicted in a simplified form as workflow diagram.

6.2.1 Abstract Locatum or Abstract Relatum

If the potential LE has an abstract locatum or an abstract relatum it should be excluded as
non-spatial, i.e. the locatum and relatum have to denote physical entities. Depending on
the application domain, this rule can be relaxed to allow specific events as locatum, such as
earthquake or fire.
Typical examples for abstract entities include emotions [6.15], ideologies [6.16], actions [6.17]
and perceptual structures [6.18].

[6.15] [I’]m already in love with someone else[. . . ]

[6.16] [. . . ]individuals can be drawn into world capitalism [. . . ]

[6.17] I wish I was good at singing.

[6.18] We’ve settled into a pattern.

Terms that usually describe physical entities but are used in an abstract sense, count as abstract
entities here and should be excluded as non-spatial as well.

[6.19] The author lures her reader into dark and dangerous territory.

The term territory in its most common sense can be described as a confined geographic area.
In [6.19], however, it is used as an imaginary or abstract instance of its physical equivalent.
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6.2.2 Idioms

If the potential locative expression itself is in fact a (frozen) idiom or if it is used idiomatically,
the example should also be excluded as non-spatial. Idioms often contain potentially spatial
prepositions, but utilize them in a non-spatial meaning.

[6.20] Peter is over the hill.

[6.21] She felt under the weather.

In [6.20], the preposition over does neither imply that the subject Peter is located nor that he
is living over the hill, but rather that he is too old to accomplish something according to the
Cambridge Idioms Dictionary (Walter et al., 2006). [6.21] also does not locate an entity under
the weather, but describes a status of being ill, sick or intoxicated. The idiom is based on the
parallelism of someone being un-healthy and the negative influence that weather change can
have on someone’s well-being.

6.2.3 Others Missing Locative Purpose

The last group of non-spatial expressions incorporating a preposition is a rather heterogeneous
one. Here, all non-spatial examples are subsumed that are not “captured” by the previous two
decision steps.

If the preposition used in the example does not locate the locatum relative to the relatum,
it should be excluded as non-spatial. Examples for this rule include, but are not limited to,
prepositions that denote a temporal relation, the material of an object [6.22], the agent of an
action [6.23], or the topic of some means of communication [6.24].

[6.22] The paint is made from resin.

[6.23] He was paid by the customers.

[6.24] I read the paper on construction sites.

6.3 Social Media Corpus

In this study, a processed version of the mixed social media corpus is used that was originally
compiled in Baldwin, Cook, et al. (2013) for the purpose of investigating and testing the
common assumption of strong noisiness in textual data from social media sources. The original
corpus comprised the following sources:

• Twitter1 and Twitter2 — posts (tweets) from Twitter; 1M documents respectively

• Comments — user comments on Youtube; 874772 documents
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• Forums — posts from the top-1000 valid vBulletin-based forums in the Big Boards forum
ranking; 1M documents

• Blogs — blog posts from tier one of the ICWSM-2011 Spinn3r dataset (Burton et al.,
2011); 1M documents

• WIKIPEDIA — text from an English WIKIPEDIA dump; 200K documents

• British National Corpus (BNC) — all documents from the written part of the BNC (cf.
Burnard, 1995), a balanced corpus of British English used mainly as a point of comparison
to the social media corpora; 3141 documents

The single entities in the corpus usually correspond to one sentence. In the following, however,
they will be referred to as documents as they can comprise several sentences as well.
The authors further restricted the corpus to English documents by applying automatic language
identification using LANGID.PY. For a deeper description of the original corpus and the process-
ing tools used see Baldwin, Cook, et al. (2013). Liu et al. (2014) further sampled the corpus
down to a selection of 100K random sentences from each source. Additionally, they extracted
500 sentences from each source for their hand-annotation. The raw string representation
without the hand-annotation of the remaining 3500 sentences in total, eventually depict the
base corpus investigated in this work for extracting and disambiguating spatial prepositions.

In the final corpus, all prepositions as well as their corresponding locatum and relatum were
annotated. This was conducted by the author of this thesis in repeated discussion with two
other experts, in particular Dr. Maria Vasardani (Department of Infrastructure Engineering, The
University of Melbourne, Australia) and Prof. Timothy Baldwin (Department of Computing and
Information Systems, The University of Melbourne, Australia).

6.3.1 Corpus Statistics

As described above, the investigated and annotated corpus consists of diverse sources that all
have their own characteristics. Several statistics are provided in order to offer a rough idea of
the respective similarities and differences.
Table 6.2 depicts the number of potential LEs – these are occurrences of potentially spatial
prepositions – and the number of LEs annotated as spatial with the respective percentage, the
number of different prepositions and the median word count per document for each source and
in total. The sources with a higher median word count naturally also exhibit more potentially
spatial prepositions, as well as a higher variety of prepositions. Nonetheless, the percentage of
prepositions annotated as spatial is rather stable across the sources. Still, this illustrates the
need for efficient filtering steps when processing high velocity data such as streaming data.
Particularly when considering that this represents the percentage of LEs given that a potentially
spatial preposition is provided.
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Table 6.2: Different statistics for the corpus split into the different resources – the number of potential
LEs (#LEs) and the number of LEs annotated as spatial (#spatial LEs) with the respective
percentage (%spatial LEs), the number of different prepositions (#different prepositions)
and the median word count per document (Median #Words).

#LEs #spatial LEs %spatial LEs #different prepositions Median #Words

TWITTER 1 160 23 14.38% 24 9
TWITTER 2 153 27 17.65% 21 8
Comments 174 30 17.24% 23 9
Forums 273 51 18.68% 22 13
Blogs 423 87 20.57% 27 14
Wikipedia 681 150 22.03% 34 20
BNC 575 112 19.48% 34 17

Corpus 2439 480 19.68% 52 17

6.3.2 Preposition Statistics

Concerning the single prepositions that occurred in the whole corpus, interesting statistics can
be observed. Figure 6.2 depicts the number of absolute occurrences for each preposition in
the whole corpus, whereas Figure 6.3 shows the percentage of spatial uses of the respective
prepositions.
The most frequent preposition in represents over 30% of all potentially spatial prepositions in
the corpus. The 7 most common prepositions – in, to, on, at, by, from, about – account for more
than 82%, and the first half of prepositions adds up to almost 98%. Interestingly, only 13 out of
the 52 prepositions are more likely to occur in their spatial meaning than in a non-spatial one
with respect to the corpus. Reversely follows that the others – that means 39 prepositions – are
more likely to be used in non-spatial sense. Moreover, the really frequent prepositions exhibit
low probabilities of being used spatially with respect to the corpus. The first preposition to
exceed 50% is near with 7 spatial instances out of 10 in total.
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Figure 6.2: The absolute frequencies of all 52 prepositions that occur in the corpus.
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Figure 6.3: The percentage of instances annotated as spatial for each preposition in the corpus.

6.4 Prepositional Phrase Detection

The preceding sections established the conceptual foundation for an informed decision process
to identify, extract and disambiguate LEs. On this basis, the first step of automating this process
in a combined system using machine learning methods as well as fixed rules will now be
explained.
The main purpose of this step is to identify possible candidate LEs based on the existence of
at least one of the prepositions from Table 6.1 in a document. This is a valuable filter step to
rapidly reduce the amount of data for the next, more costly, processing steps particularly when
handling streaming data in real-time.

6.4.1 Approximate Regular Expressions

In many processing tasks of linguistic data, there is some basic pattern matching involved –
that is finding a string or parts of it that equals some simple or complex pattern. The patterns
are represented as so-called regular expressions, or often simply called regexp or regex patterns
in software engineering.
With regex patterns (in the following highlighted in guillemets, i.e. «pattern») all textual
substrings that start with an i and end in an f can be retrieved, e.g. the string in front of . More
complex concepts can be expressed by combining the basic operators for boolean, grouping,
and quantification matching. In the case of in front of , a simple pattern could just be the exact
string, preceded and followed by a non-word character (e.g. whitespace) or underscore as in
the pattern

«[\W|_](in front of)[\W|_]».
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But what about the typical issues of the input source, e.g. the frequent misspellings? There
might be documents where a simple typing error produces the substring in frint of , and possibly
valuable information would already be missed. Now, the following pattern could account for
that.

«[\W|_](in fr[i|o]nt of)[\W|_]»

It would match both spellings by incorporating the boolean or operator «|». But obviously such
an approach is not the best way to handle arbitrary spelling mistakes, as every possible error
would have to be modeled explicitly.
For this reason, the pattern constraints could be softened to match, for instance, three consecu-
tive words with the starting letters i, f and o, followed by any alphabetical character and even
constraining the respective lengths to ±1 of the original word length, as in

«[\W|_](i[^\W\d]{0,2}[\W|_]f[^\W\d]{3,5}[\W|_]o[^\W\d]{0,2})[\W|_]».

However, not only would a lot of false positives be matched such as the substring is fond of in
the sentence He is fond of his job, but also the pattern just accounts for in-word or end-of-word
errors as the starting letters were fixed.

Thus, as powerful as regex patterns are, a possibility to handle arbitrary spelling mistakes is
necessary, which still limits the results to close and plausible matches. I opted for an approach
that combines regex patterns with the idea of spelling correction by edit distances that were
already introduced in Section 3.4.2. The implemented method is based on the so-called
BITAP algortihm by S. Wu et al. (1992)2. The algorithm employs bitmasks which represent
each element of the pattern as one bit. The following search and approximate matching
steps can then mostly be achieved by bitwise operations, thus making it the fastest solution
for approximate string matching. The algorithm allows for an error-tolerant search based
on the operations defined for the Levenshtein distance – that means deletion, insertion and
substitution (Levenshtein, 1966). The transposition of two adjacent characters, as defined by
the Damerau-Levenshtein distance is not yet implemented (Damerau, 1964).
Due to the shortness of the patterns – the potentially spatial prepositions – the results are
limited to matches with a maximum of one error. Additionally, three exceptions have to be
handled applying common sense heuristics.

1. The match is an existing English word.

⇒ match is not considered as preposition

2. The match has less than three letters.

⇒ match is not considered as preposition because of the high amount of other possibly
correct words

3. The match is another potentially spatial preposition.

⇒ match is considered for the preposition that matches exactly

2The PYTHON bindings of the C library TRE from Ville Laurikari are employed, which are available at https:
//github.com/laurikari/tre.
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So far the approach has not accounted for potential symbolic representations of prepositions
such as @ for at or 2 for to, unless they are part of an expanded phrasal abbreviation.

6.4.2 Additional Pre-Processing

Following this filtering for documents including potentially spatial prepositions, some additional
pre-processing is now applied to the extracted candidates by the approximate regex matching
step.
Similar to the pre-processing steps employed in Section 3.4.2, the documents are tokenized to
retrieve individual words for further analysis. In contrast to the IR approach taken for modeling
the topic of an aggregated document (i.e. several messages), now more information than just
frequencies of informative terms is needed. A small-scale view on single documents is taken
and not a large-scale view on an aggregation of documents. As I now want to exploit the
syntactic and semantic information encoded in the text, only really irrelevant terms should
be deleted or ignored – i.e. no stop word removal is conducted. Although some words do
not necessarily carry a lot semantic content in themselves they might still be important for
acquiring insight into the structure of a sentence.
Mainly for the same reasons, neither any stemming algorithms nor any lemmatizers are applied
to the documents before analyzing their structure. The inflections of words such as tenses or
the voice provide valuable hints to the meaning of a sentence.
Nonetheless, the approach needs again, to some extent, consider the special characteristics of
social media input. Accordingly, the same minor cleansing steps as described in Section 3.4.2
are applied, as well as the correction of obvious spelling mistakes. Moreover, also phrasal
abbreviations are extended to their full form to optimize the input for the following POS-tagging
and dependency parsing.

6.5 Triplet Extraction

The preceding sections showed how LE candidates are identified, and that some prepositions
are more likely to occur in a spatial sense than others. However, before the spatial cases can be
disambiguated from the non-spatial ones, two important features of the assumed LE need to be
extracted. Those are the subject (potential locatum) and the object (potential relatum), which
represent the involved entities and carry essential information for the disambiguation of the
preposition.

The main input for the extraction is the dependency parser result, together with information
on a per-token basis – that is the POS-tag and the potential NER output. Due to the already
mentioned characteristics of social media input or complicated sentence structures, the output
of the dependency parser can sometimes be wrong. In order to overcome this drawback I
developed a rule-based approach to recover the correct relatum of the preposition, as well as an
approach based on candidate selection and ranking to retrieve the correct locatum. Therefore,
the graph structure of the parser output and the respective relation paths are exploited. As
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described in Section 5.3.3, the inherent directions are ignored here, that means, the parser
output is represented as undirected graph.

6.5.1 Identifying the Relatum

The easier of the two tasks is the identification of the object of the respective preposition, as it
has an explicit representation in the dependency graph: the relation case. However, only if a
parser was always yielding correct output. In the following, the case relation refers specifically
to the one that (potentially) connects the respective preposition to another word, although
there might be other case relations in the respective dependency graph.
Completely relying on the case relation of the preposition would mean that, if the case relation
exists, the word connected to the preposition in this manner is taken as relatum, and if it does
not exist the preposition is marked as having no relatum. Concerning the identified candidates
(see Section 6.4.1) from the investigated corpus, this would generate 81.74% correct results in
total, whereof 5.01% arise from cases with missing relatum. The remaining examples either
have (i) a relatum but the case relation does not exist (0.64%) or have (ii) no relatum but the
case relation exists (3.92%) or have (iii) a relatum and the case relation but the relatum is not
the word directly connected to the preposition in this way (13.70%).
The first group exhibits a high heterogeneity and no patterns are perceptible. Fortunately,
with respect to their minor number, the relatum extraction step can do without these cases.
Concerning the second and third group, however, a few clear patterns can be observed. These
patterns can be expressed as simple decision rules. The rather straightforward rule-based
algorithm I developed, is given in 6.1. It is able to retrieve the correct relatum in 97.74% of
the candidates over the whole corpus, hence increasing the performance quite significantly.
Table 6.3 depicts the result split for the different resources represented in the corpus. The
resources with generally longer sentences and a less noisy nature such as the WIKIPEDIA entries
and the excerpts from the BNC performed slightly better than the rest.

Table 6.3: The accuracy of the relatum extraction for the different sources of the corpus.

TWITTER 1 TWITTER 2 Comments Forums Blogs WIKIPEDIA BNC

0.946 0.971 0.962 0.955 0.977 0.983 0.996

In the pseudo-code representation in Algorithm 6.1, the variable case_word refers to the
word connected with the preposition via the case relation – that is case-marking. In contrast
nmod_word, comp_word and conj_word refer to the word connected with case_word via the
relation nmod, compound or conj, respectively – these are denoting a nominal modifier, a
compound word or a coordinating conjunction, respectively.
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Algorithm 6.1. Extracting the relatum of a potentially spatial preposition.

1: s← complete sentence containing the preposition
2: p← preposition
3: pts← possible POS-tags for relatum . these are NN, NNS, NNP, NNPS, PRP, WDT, WP,

WRB
4: ners← possible NER-tags for relatum. these are PERSON, LOCATION, ORGANIZATION and

TIME/DATE/DURATION

5:

6: function GETRELATUM(s, p, pts, ners)
7: relations← all dependency relations of the preposition
8: if relations = {} then
9: return {} . no relatum

10: end if
11: if ‘case’ in relations then
12: if CHECKPOS_NER (case_word, pts, ners) then
13: return case_word
14: else
15: cw_rels← all dependency relations of the case_word
16: if ‘compound’ in cw_rels and CHECKPOS_NER (comp_word, pts, ners) then
17: return comp_word
18: else if ‘conj’ in cw_rels and CHECKPOS_NER (conj_word, pts, ners) then
19: return conj_word
20: else if ‘nmod’ in cw_rels and CHECKPOS_NER (nmod_word, pts, ners) then
21: return nmod_word
22: else
23: return {} . no relatum
24: end if
25: end if
26: else
27: return {} . no relatum
28: end if
29: end function
30:

31: function CHECKPOS_NER(word, pts, ners)
32: if word.pos_tag in pts or word.ner_tag in ners then
33: return true
34: else
35: return false
36: end if
37: end function

6.5.2 Identifying the Locatum

The more complex task is now the identification of the locatum of the preposition. The relations
path that connects preposition and locatum in the dependency graph is generally longer and
shows significantly more variation than for the relatum. Accordingly, an approach based on
simple if-then-else decisions is not feasible. The solution I designed consists of three steps,
which are detailed below.
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1. Candidate selection

2. Candidate ranking

3. Threshold-based decision

Candidate Selection In order to be a potential candidate for the locatum, the words in the
current sentence have to met at least one of the following necessary conditions.

• The POS-tag is one of NN, NNS, NNP, NNPS, PRP, WDT, WRB or WP.

• The NER-tag is one of PERSON, LOCATION, ORGANIZATION or TIME/DATE/DURATION

This corresponds to the possible POS-tags and NER-tags for relata in Algorithm 6.1. In addition,
the relatum is excluded from the candidates. If the sentence does not contain any possible
candidates, the locatum is classified as non-existent, i.e. as an degenerated triplet.

Candidate Ranking The identification of the most suitable candidate is conducted via a
classifier that predicts the probability for each candidate to be the locatum. Only four features
are sufficient to inform the learning of the classifier.

• The relative position of the candidate in the sentence with respect to the preposition as
one of −1 or 1.

→ In general, the locatum appears before the preposition in the sentence, that means
a relative position of −1.

• The absolute difference of the position indexes of the preposition and the candidate in
the sentence, i.e. the positional distance.

→ In general, the locatum appears close to the preposition in the sentence.

• The combined absolute frequencies of the relation transitions of the relations path from
preposition to candidate.

→ The single transition frequencies are derived for all occurring relation paths from
preposition to locatum in the corpus. Here, a single transition refers to two specific
relations directly following each other in a relation path, for example case —
nmod. Eventually, the combined frequencies are calculated by simply summing the
individual transition frequencies of the current relations path.

• The combined absolute frequencies of the relation transitions of the relations path from
preposition to candidate, normalized by the relations path length.

→ The same as the absolute frequencies but length normalized. Accordingly, this
feature indicates if a certain relation path is likely from a global perspective.

The classifier is trained with a randomized 80 % to 20 % training set to test set split. In addition,
optimized parameters are derived based on an exhaustive grid search on the training set. Here,
a random forest classifier is used as it is able to directly output class probabilities for the
candidate ranking and allows for an inherent feature importance analysis. A random forest is a
so-called meta estimator, because it fits several single decision tree classifiers on sub-samples
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of the input. Then it uses averaging to optimize the accuracy of the prediction and to avoid
over-fitting. The differences in feature importances do not necessitate a dedicated feature
selection in this case (cf. Figure 6.4).
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Figure 6.4: The feature importances for the locatum extraction. The so-called mean decrease impurity
is used as importances as defined by Breiman et al. (1984). It is the total decrease in node
impurity averaged over all trees of the forest. The impurity describes how many times
an arbitrary selected item from the set is incorrectly labeled if it was randomly classified
according to the subset class distribution. The importances are plotted with their inter-trees
standard deviation.

Threshold-Based Decision Finally, the candidate with the highest probability as predicted by
the classifier is labeled as the locatum. Yet, the example could be a degenerated triplet even if
candidates exist. In order to take these cases into account, the probability of the best candidate
has to met a certain threshold to be accepted. Based on a search optimization with respect to
recalling an existing locatum, the threshold t was set to 0.21. The result of the search is shown
in Figure 6.5 and the respective optimal accuracy of 89.98 for the whole corpus.

Table 6.4 depicts the result split for the different resources represented in the corpus. Here, the
results for Comments and Forums fall a little behind the rest, but still exhibit good performance.
Again, the sources WIKIPEDIA and BNC yield the best results.

Table 6.4: The accuracy of the locatum extraction for the different sources of the corpus.

TWITTER 1 TWITTER 2 Comments Forums Blogs WIKIPEDIA BNC

0.904 0.906 0.840 0.862 0.899 0.924 0.908

6.6 Semantic Disambiguation

In order to automatically disambiguate spatial from non-spatial triplets, discriminating features
need to be identified. Mainly inspired by the corpus annotation and the three rules of the
manual schema, different types of features are considered promising. Among them are general
linguistic features and advanced linguistic features using an external knowledgebase or word
lists. Together with simple graph-based features, these build the input for a binary classifier
that predicts the category spatial or non-spatial for each extracted triplet.
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Figure 6.5: The graph shows the overall accuracies (green) of the extraction approach on the test set.
The maximum accuracy as well as the maximum recall was reached throughout the range
of 0.19 ≤ t ≤ 0.23 (highlighted in light gray). In addition, the graph depicts the number of
correctly identified locata, for the cases that have a locatum, with respect to the total size
of the test set (blue solid line), and the equally normalized number of correctly identified
degenerated triplets (blue dashed line). These values are of course inversely arranged and
sum up to the total accuracy.

Still, some characteristics are so pervading for non-spatial examples that they can be applied as
fixed exclusion rules before training the classifier and in some cases even before or in between
the triplet extraction.

6.6.1 General Linguistic Features

The general linguistic features can again be subdivided in three main groups which are related
to a certain word category. The following three paragraphs list the identified features in these
groups and a short explanation were deemed necessary. These features can all be extracted
based on the StanfordCoreNLP suite.

Verb-Related Features The features are extracted by the help of the output of the dependency
parser, the POS-tagger, and the lemmatizer.

• the verb modifying the preposition

→ The verb that modifies the preposition is given by the dependency parsing as
governor of the nmod relation.

• the verb’s position in the sentence

• the verb lemma

• the used tense or inflection of the verb (encoded in the POS-tag)

• the used voice of the verb (as one of the labels active or passive)
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Noun-Related Features The noun-related features are only referring to characteristics of the
extracted locatum and relatum and not any other nouns present in the example. They are
extracted based on the output of the POS-tagger, the NER and the dependency parser. The
term noun in the following list refers to the locatum and relatum, respectively. That means the
following features are extracted for both.

• the lemma of the noun

• the noun’s position in the sentence

• if the noun is singular or plural (encoded in the POS-tag)

• if the noun can be identified as a location and consequently as a physical entity (encoded
in the NER-tag)

→ The NER can generally identify locations down to city scale in all settings, and even
very rural towns in rather well-formed sentences.

• if the noun can be identified as a person and consequently as a physical entity (encoded
in the NER-tag)

→ The NER has a high precision and recall concerning the recognition of references to
persons in text (0.93 and 0.95 respectively according to Atdag et al. (2013)). The
performance slightly decreases when names are not capitalized.

• the accompanying adjective(s) of the noun, if existent

• the determiner of the noun, if existent

→ The possible values are e.g. articles (definite or indefinite), demonstrative and
possessive pronouns (this, those, etc. and my, his, etc.), quantifiers (many, some, a
lot, most, etc.)

Preposition-Related Features The preposition-related features refer only to the preposition
of the extracted triplet and not any other preposition in the sentence. These are analyzed
individually unless they directly follow each other and thus build a compound preposition such
as inside of .

• the preposition itself

• the preposition’s position in the sentence

• the modifier of the preposition, if existent

→ A modifier of a preposition is for example the term right in the utterance I’m right
in front of the house.

6.6.2 Advanced Linguistic Features

Three advanced features were engineered in order to optimize the input information for the
disambiguation process. The first two are motivated by the first rule of the manual decision
schema (see Section 6.2). Accordingly, the features should indicate if the locatum and relatum
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are likely to refer to physical entities. The last is based on the second rule, which excludes
non-spatial idioms.

Personal Pronouns First, locatum and relatum are checked if they are masculine or feminine
personal pronouns – no matter if used as subject or as object of the respective verb. These are
I, you, he, she, we, they, and me, him, her, us, them. Consequently, they are marked as being a
person and thus a physical entity.

Physical Entities Secondly, a WSD is applied to the identified locatum and relatum of the
preposition. Here the adapted lesk algorithm was used as described in Banerjee et al. (2002)3.
The output is the most likely sense of the term in question with a distinct identifier from the
WORDNET database. The identifier is used to access the hypernym hierarchy and follow its
path up to the concept entity. If the concept physical entity is on the path of the investigated
term – here the locatum or relatum – it is marked as such and used as input feature for the
classifier.

Potential Idioms The identification of specific indicators for idioms is difficult, if not impossible
to generalize into patterns. Therefore, a list of English idioms containing at least one of the
prepositions in Table 6.1 was manually compiled from a specialized dictionary for English
idioms by Götz et al. (2002) and the dedicated idiom website (IdiomSite, 2015). The different
combinations of the lemmas of the preposition (P), the locatum (L), the relatum (R) and the
verb (V) modifying the preposition are tested against this list and are marked as potential
idiom when indicated.
One example for each of the possible combinations of V, L, P and R in the list is given in
lemmatized form below.

• feel under weather ⇒ V – P – R

• hit nail on head ⇒ V – L – P – R

• ace in hole ⇒ L – P – R

• out of blue ⇒ P – R

6.6.3 Graph-Based Features

In addition to the different linguistic features, I also incorporated some simple graph based
features to potentially improve the performance of the disambiguation. Such features are often
not used in linguistic approaches as they do not provide much linguistic insights.

3The implementation by Liling Tan in the PYTHON library PYWSD was used available at https://github.com/
alvations/pywsd.
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• the number of nodes in the graph

→ That is not the same as the number of tokens as the dependency parser excludes
punctuation.

• the number of edges in the graph

• the eccentricity of important nodes

→ The eccentricity of a node is its maximum distance to all other nodes in the graph. It
is calculated for the locatum, the relatum, the preposition, and the verb modifying
the preposition, if applicable respectively.

• the normalized eccentricity of important nodes

→ The normalized eccentricity of a node is its eccentricity divided by the number of
edges in the graph.

6.6.4 Fixed Exclusion Rules

The manual investigation of the corpus and other linguistic data quickly revealed certain
characteristics, which invariably occurred with non-spatial examples. These characteristics can
be exploited to exclude a subgroup of non-spatial examples early on in the whole process.
The following three groups of rules can be applied at different steps of the complete extraction
and disambiguation process. This will be mentioned at the end of the respective explanations.

No Relatum or No Locatum In the case that the extraction process yielded no relatum for the
preposition, the example is immediately classified as non-spatial. This rule is applied after the
relatum extraction. Analogously, examples identified as degenerated triplet are also excluded.
This is applied after the locatum extraction.

Agent of Action The preposition by is frequently used in English to denote the agent of a
passive verb. In terms of the dependency parser this relation is named nmod:agent and is
assigned with high precision. The relation links the relatum as governor with the passive verb
modifying the preposition as dependent.
A second possibility to detect agency constructions is the identification of the relatum as a
person combined with the preposition by and the verb in passive voice. The relatum is marked
as person either by the NER-tag PERSON (see Section 6.6.1) or if it is a specific feminine or
masculine pronoun as explained in Section 6.6.2.
Both ways of detection can only be applied after the relatum extraction but before the locatum
extraction.

Non-Spatial Word Collocation Another large group that can directly be excluded as non-spatial
are typical word collocations including a preposition, which do not express any spatial relation.
This comprises verb-preposition (V-P) collocations, adjective-preposition (A-P) collocations
and preposition-noun (P-N) collocations. Lists were compiled manually for each group based
on McIntosh et al. (2002) and English corpora analysis. Here, each group can be applied at
different steps of the overall process depending on the respectively involved word categories.
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Non-spatial V-P collocations build by far the largest group among the three with more than
180 items. Some non-spatial V-P collocations in the analyzed corpus are cheat on, expect from,
think about and yell at. Communication verbs such as say, talk, listen and write are particularly
common in non-spatial examples. This exclusion rule can already be applied before the triplet
extraction.
The number of unambiguously non-spatial A-P and P-N collocations is far smaller but still
beneficial for the disambiguation approach. Examples for A-P collocations in the corpus
are contrary to and inferior to. These can also be applied before the triplet extraction. P-N
collocations occurred in the form of in fact, at least, in regard and at all, and can be applied
after the relatum identification.

6.7 Summary

In this chapter, the used methods for extracting spatial information from text in the form of LEs
have been explained.
First, the scope of the developed approach and the resulting syntactic constraints and inves-
tigated prepositions have been detailed, and three rules for a manual decision schema have
been derived. The investigated mixed social media corpus together with important statistics
has been introduced. The main part of this chapter has detailed the developed automatic
extraction and disambiguation approach with a particular focus on social media data. The
process has been described along the three core steps of prepositional phrase detection, triplet
extraction and the semantic disambiguation. The triplet extraction has been separated in the
two steps of first extracting the relatum and subsequently extracting the locatum. The semantic
disambiguation has focused on the engineering of relevant features for a classifier, as well as
on the identification of fixed exclusion rules for non-spatial uses of prepositions.
In the next chapter, the methods will be evaluated based on an annotator agreement study and
the performance of different machine learning algorithms.
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7Experimental Results

In this final chapter of Part II the manual decision schema as well as the implementation of
the extraction and disambiguation process is evaluated. First, I detail the conducted annotator
agreement study to show the feasibility and comprehensibility of the manual decision schema
as well as the consistency of the annotation – what I want to demonstrate is that the definition
of spatial given in Section 6.1.1 and the derived rules are plausible, also to non-experts. Then
the numerical results will be presented and common mis-classifications will be discussed.
The topic of Section 7.2 is the evaluation of the automation of the complete extraction and
disambiguation process, as well as in particular the disambiguation. Finally, a short discussion
and summary conclude the chapter and also this second part of the thesis.

7.1 Annotator Agreement Study

In contrast to domains with numerical data, corpus linguistics usually lacks a classical mathe-
matical definition with necessary and sufficient conditions for the categories of interest. Even
some very basic categories such as the POS-tags (see Section 5.3.1) are not entirely unam-
biguously defined. The same applies for the definition of the category spatial introduced in
Section 6.1.1. Still I want to generally quantify how well the categories can be delineated as
well as how trustworthy the annotations are. To put it more precisely, I want to show that the
definition of spatial given in Section 6.1.1 is comprehensible and plausible in the context of the
goals of this thesis.
Thus, an inter-annotator agreement study was conducted on a subset of the mixed social media
corpus with three annotators.
This section details the setup of the annotator agreement study, followed by the presentation of
the numerical results and a discussion of common wrongly classified examples.

7.1.1 Study Setup

For the purpose of annotator agreement testing, the documents were filtered with the approxi-
mate regular expression method described in Section 6.4.1 – that means all examples for the
human annotators included at least one preposition from Table 6.1. Neither the corresponding
locatum nor relatum was highlighted in any way.
A random subset of 500 documents was generated for the annotator agreement test. The anno-
tators were provided with the three decision steps (see Section 6.2) plus compact explanations
and examples for each rule.
For the classification, a spreadsheet was provided that contained one document per row. The
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prepositions that needed to be classified were completely in upper case letters. The succes-
sive columns were reserved for the annotation. The class labels were 1 for spatial and 0 for
non-spatial. A document could contain several prepositions. In these cases, the annotators
were advised to use one column for each preposition for the classification according to the
order of appearance. These columns were labeled from P1 to Pn with n being the number of
prepositions to disambiguate in the respective example (see Table 7.1).

Table 7.1: Example document with multiple prepositions highlighted for the classification.

ID Example P1 P2 P3

1 I’m standing IN FRONT OF the house NEXT TO my car. . . I’m ON time. 1 1 0

Additionally, the annotators were advised to always classify prepositions that are in upper case
and directly following each other, as one compound preposition, as in Table 7.2. Due to the
possibility of multiple preposition candidates in one document, the 500 documents for the
study contained 804 prepositions for disambiguation.

Table 7.2: Example document with a compound preposition highlighted for the classification.

ID Example P1

1 The rabbit came FROM INSIDE OF the hole. 1

7.1.2 Results

The manual classification was conducted independently by three annotators. One of the classi-
fications was done by the author in repeated discussion with two other experts as described in
Section 6.3. This will be referred to as the Reference Annotation (RA) which is sometimes
called the gold standard in NLP and computer linguistic research. The RA yielded a preva-
lence of spatial instances of 22.76% for the random sample, which is slightly higher than the
prevalence for the whole corpus (19.68%).
The remaining classifications will subsequently be called annotation A and B and were con-
ducted by non-experts. These two annotators were given 50 simple examples before the actual
annotation as a dry run. Thus, I could have responded to any general misunderstandings within
the annotation procedure. The dry run yielded no evidence that changes to the procedure were
necessary.

Evaluation Measures In order to comprehensively evaluate the outcome of the annotations,
they were compared with the RA annotation. The evaluation is based on the number of
conformities and nonconformities, which are typically distinguished as
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• True Positives (TP)

⇒ the annotator makes a positive prediction (i.e. spatial), and the example has a
positive result under RA

• False Positives (FP)

⇒ the annotator makes a positive prediction, and the example has a negative (i.e.
non-spatial) result under the RA

• True Negatives (TN)

⇒ the annotator makes a negative prediction, and the example has a negative result
under the RA

• False Negatives (FN)

⇒ the annotator makes a negative prediction, and the example has a positive result
under the RA

From these basic values more advanced and meaningful measures can be derived. These are
often denoted as

• accuracy

⇒ the fraction of all correct predictions of an annotator, i.e. that have the same
annotation result under the RA, i.e.

accuracy = TP + TN
TP + FP + TN + FN (7.1)

In the given setting, this measure has to be interpreted with care as the class
distribution is imbalanced.

• precision

⇒ the fraction of all positive predictions of an annotator that actually have a positive
result under the RA, i.e.

precision = TP
TP + FP (7.2)

• recall

⇒ the fraction of all positive results under the RA that have a positive prediction
from an annotator, i.e.

recall = TP
TP + FN (7.3)

• F1-score

⇒ the harmonic mean of precision and recall, i.e.

F1 = 2 · precision · recall
precision + recall (7.4)

In addition to these typical “positive” evaluation measures for classification systems, the
following correspondent measures are considered as well:
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• Negative Predictive Value (NPV)

⇒ the fraction of all negative predictions of an annotator that actually have a negative
result under the RA, i.e.

NPV = TN
TN + FN (7.5)

• specificity

⇒ the fraction of all negative results under the RA that have a negative prediction
from an annotator, i.e.

specificity = TN
TN + FP (7.6)

• negative agreement

⇒ the harmonic mean of the negative predictive value and specificity, i.e.

negative agreement = 2 · NPV · specificity
NPV + specificity (7.7)

Thus, I can account for the correct handling of negative examples as the corpus exhibits
unbalanced class distributions. In order to summarize the results of the confusion matrix in
one comprehensive measure, Matthews Correlation Coefficient (MCC) of Matthews (1975) is
used. The MCC commonly provides a very balanced evaluation of the prediction compared to
other comprehensive measures (cf. Baldi et al., 2000). It is limited from −1 to 1 and formally
given as

MCC = TP · TN − FP · FN√
(TP + FP) (TP + FN ) (TN + FP) (TN + FN )

(7.8)

Finally, the value of Fleiss’s Kappa is calculated to measure the agreement between all three clas-
sifications without considering the special status of the RA. It is often called Inter-Annotator
Agreement (IAA).

Agreement between Annotators and the RA The results of Annotation A and B are displayed
in comparison to the RA as confusion matrices in Table 7.3.

Table 7.3: Outcome of Annotations A and B as confusion matrices vs. the RA.

RA

spatial non-spatial

A
spatial 159 25

non-spatial 24 596
(a) A vs. RA

RA

spatial non-spatial

B
spatial 149 17

non-spatial 34 604
(b) B vs. RA

From the confusion matrices the basic evaluation values for annotator A and B, respectively,
can directly be extracted and are depicted in Table 7.4.

Based on these values, the advanced statistical measures can be calculated. These measures
are summarized in Table 7.5 for both annotators.
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Table 7.4: Outcome of Annotations A and B as list.

A B

TP 159 149
FP 25 17
FN 24 34
TN 596 604

Table 7.5: The statistical measures for the evaluation of the agreement of Annotation A and B vs. the
RA.

Measure A B

Accuracy 0.939 0.937
Precision 0.864 0.898
Recall 0.869 0.814
F1-Score 0.866 0.854
NPV 0.961 0.947
Specificity 0.960 0.973
Negative Agreement 0.961 0.959
MCC 0.827 0.815

Inter-Annotator Agreement For the IAA, all three annotations were taken into account with-
out any weighting or preferential treatment. Fleiss’ Kappa (κπ) was used, as it allows the
calculations of the agreement between more than two annotators in case of nominal data,
taking into account the probability of agreement occurring by chance (cf. Fleiss, 1971). This
leads to a conservative estimation of the IAA. The value range is dependent on the number of
annotators (r = 3) and the number of classes (q = 2) but not on the number of examples to
annotate (n = 804), i.e. the possible value range in this setup is −0.5 to 1. The value of κπ was
computed to 0.81 according to the formulae in Equation (7.9) from Gwet (2008).

κπ = pa − pe

1− pe
, (7.9)

where

pa = 1
n

n∑
i=1

q∑
k=1

rik (rik − 1)
r (r − 1) (7.10)

and

pe =
q∑

k=1
π2

k with π2
k = 1

n

n∑
i=1

rik

r
(7.11)

In Equations (7.11) and (7.10), the term rik refers to the number of times example i is labeled
as class k. The term pa then denotes the overall agreement probability and pe the probability
of agreement due to chance.

7.1.3 Discussion

The results show that the delineation of the two categories of spatial and non-spatial is possible
for the vast majority of linguistic examples. Especially, the “negative” measures are extremely
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high, but also the “positive” measures are very good for linguistic data. Annotator B had more
problems identifying all spatial examples, but annotated them with a higher precision than
annotator A.
Concerning the inter-annotator agreement, the presented result is at the lower limit of an
“almost perfect agreement” which ranges from 0.81 to 1 according to the guidelines provided
in Landis et al. (1977).

Despite the considerable agreement among all annotations shown by the IAA and the agreement
of Annotations A and B with the RA, there were still some cases where the annotators analyzed
the utterances differently. These cases were in fact quite often ambiguous concerning the actual
triplet, especially concerning the context of the utterance. This section first identifies systematic
or recurring cases within the FP category followed by the FN category.

False Positives Two types of FP classifications occurred in the annotation experiment. The
most common ones were the misinterpretations of actual abstract entities as physical ones (e.g.
project, demand, capital allocations, voice, cost, word, etc.). Annotator A produced 21 wrong
classifications of this type and Annotator B 12. However, often these examples included two
entities that could arguably be taken as locatum. In [7.1] the physical entity (person) you
and the abstract entity difference can be seen as being the subject of the preposition on. In a
further study, this error source could be reduced by highlighting the complete potential LE (i.e.
locatum + preposition + relatum) for the annotators instead of only the preposition.

[7.1] [...], I don’t know if you’d notice a huge difference on the street.

False Negatives The FN classifications showed only one smaller group of common misinter-
pretation sources, but the majority of cases was very heterogeneous. The group consisted of
cases where the annotators rejected a spatial example with a place as relatum. The rejected
places often were either very large [7.2] or they were just not very common toponyms (or
unfamiliar to the annotators [7.3]), and as such hard to classify as actual places. In general,
Annotator A produced 4 wrong classifications of this type and Annotator B 16.

[7.2] it moves inside Mercury’s orbit and [...]

[7.3] Chornovil , [...] in Lvov oblast [...]

7.2 Evaluation of the Automatic Extraction and
Disambiguation

This section details the results of the developed automatic extraction and disambiguation
approach based on the annotated corpus. A main focus is laid upon the results of the machine
learning classifier based on the engineered features explained in Section 6.6.1 and Section 6.6.2.
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The accuracy of the two triplet extraction steps for relatum and locatum were already presented
in the respective sections (see Section 6.5.1 and Section 6.5.2).

7.2.1 Disambiguation Results

For the disambiguation process of the potential spatial triplets, five effective machine learning
classifiers were trained with the hand-annotated documents of the RA. That means the
training was conducted based on the correct locatum and relatum.
For each of the classifiers an extensive grid search for the best parameters based on the recall
score for spatial instances was conducted in a 5-fold cross-validation for each parameter
combination. The choice to optimize based on recall is motivated by one of the main ideas of
this thesis – the identification of potentially valuable information. Consequently, some false
positive results are favored, that means lower precision, over possibly missing information, that
means lower recall.

The classifiers that were used are shortly introduced below:

• Support Vector Machine with linear kernel (Linear SVC)

→ Support Vector Machines are a so-called maximum-margin classifier that tries to
separate the data points with a hyperplane in a way that the distance between this
hyperplane and the closest data point is maximized.

• Random Forest Classifier (Random Forest)

→ see Section 6.5.2

• AdaBoost Classifier

→ AdaBoost is a meta-estimator that starts by fitting a classifier (here a simple Decision
Tree) on the original dataset. Then, additional instances of the classifier are fitted
on the same dataset but using adjusted weights for incorrectly classified instances.
Accordingly, subsequent classifiers adapt better to difficult cases.

• Logistic Regression Classifier (Logit)

→ Logistic regression is in fact a linear model for classification. The probabilities
describing the possible labels of one trial are modeled by a logistic function. It is
also known as Logit model.

• Ridge Classifier (Ridge)

→ As the name implies, the Ridge Classifier uses ridge regression to address some of
the issues of ordinary least squares by putting a penalty on the size of coefficients.
It belongs to the group of generalized linear models.

The results shown in Table 7.6 are based on a randomized 5-fold cross-validation using the
optimized parameters respectively on the dataset with all 1563 triplets identified by the RA.

In order to overcome the respective weaknesses of the single classifiers, I incorporated a voting
classifier. It takes into account the output of all classifiers and applies a hard majority voting.
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Table 7.6: Statistical measures for the evaluation of the automatic disambiguation with all features.
The standard deviations are derived from the 5-fold cross-validation.

Measure Linear SVC Random Forest AdaBoost Logit Ridge Voting

Accuracy 0.91± 0.02 0.90± 0.01 0.90± 0.02 0.89± 0.01 0.91± 0.01 0.91± 0.01
Precision 0.86± 0.03 0.86± 0.02 0.83± 0.03 0.79± 0.01 0.86± 0.03 0.81± 0.04
Recall 0.85± 0.05 0.79± 0.02 0.85± 0.05 0.86± 0.03 0.85± 0.04 0.89± 0.03
F1-Score 0.85± 0.03 0.83± 0.02 0.84± 0.04 0.83± 0.01 0.85± 0.02 0.85± 0.02
NPV 0.93± 0.02 0.92± 0.01 0.93± 0.02 0.94± 0.01 0.93± 0.02 0.95± 0.02
Specificity 0.94± 0.01 0.94± 0.01 0.92± 0.02 0.90± 0.01 0.94± 0.01 0.92± 0.02
Negative Agreement 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.92± 0.00 0.94± 0.01 0.93± 0.01
MCC 0.78± 0.05 0.77± 0.01 0.77± 0.04 0.75± 0.02 0.79± 0.03 0.78± 0.03

Feature Selection A lot of features explained in Section 6.6 are of type string, that means
categorical data. Except for decision trees and its derivatives such as random forests or extra
trees, most classifiers can not handle categorical features directly. But the simple approach
of encoding them as integer values introduces misleading information as it implies that the
features have an inherent order, which is usually not the case.
Consequently, they need to be vectorized using the so-called one-hot-encoding or one-of-k
encoding, where each feature with k different values is mapped to k different features. It
can be thought of as a projection into k-dimensional space where all data points have the
same distance from the origin, and are all equidistant. In practice this means that for example
the original feature preposition, which has 52 different possible string values in the corpus, is
encoded in 52 preposition=“preposition” features. In case the preposition of a triplet is at, the
new feature preposition=at has a value of 1 and all other preposition features have a value of 0
for this triplet.

In consequence this leads to a large but sparse feature space (here 8140 features), which is again
sometimes negatively affecting the classifier performance in terms of speed but also concerning
accuracy and other measures. Therefore, I performed a Recursive Feature Elimination (RFE)
combined with a grid search to estimate the best number of features.
The RFE is trained on the initial set of features and assigns weights to each one. Then, features
whose absolute weights are the smallest get removed from the current feature set. This is
recursively repeated on the diminished set until the best number of features is eventually
reached. This procedure yielded 3340 features as the best choice for the disambiguation
problem.
The results shown in Table 7.7 are also based on a randomized 5-fold cross-validation using
the optimized parameters respectively and the optimally reduced feature set.

A ranking of the 20 most important of the reduced features according to χ2 scores is presented
in Figure 7.1. In general, χ2 scores express how likely it is that a feature is independent
from the class labels, which means the features with a lower score are of minor importance
for the classification. However, the absolute scores are less relevant for the interpretation
but should rather be taken as relative importances. Thus, features are ranked with respect
to their usefulness, and not to make strict assumptions about their statistical dependence or
independence.
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Table 7.7: Statistical measures for the evaluation of the automatic disambiguation on the optimally
reduced feature set yielded by the RFE. The standard deviations are derived from the 5-fold
cross-validation.

Measure Linear SVC Random Forest AdaBoost Logit Ridge Voting

Accuracy 0.91± 0.02 0.91± 0.01 0.90± 0.02 0.89± 0.01 0.91± 0.02 0.92± 0.01
Precision 0.86± 0.03 0.85± 0.02 0.83± 0.03 0.80± 0.01 0.87± 0.03 0.85± 0.03
Recall 0.86± 0.04 0.85± 0.04 0.85± 0.04 0.87± 0.03 0.84± 0.04 0.88± 0.02
F1-Score 0.86± 0.03 0.86± 0.02 0.84± 0.02 0.83± 0.01 0.85± 0.03 0.87± 0.02
NPV 0.94± 0.02 0.93± 0.02 0.93± 0.02 0.94± 0.01 0.93± 0.02 0.95± 0.00
Specificity 0.94± 0.01 0.94± 0.01 0.92± 0.02 0.90± 0.01 0.94± 0.02 0.93± 0.02
Negative Agreement 0.94± 0.01 0.94± 0.01 0.92± 0.01 0.92± 0.00 0.94± 0.01 0.94± 0.01
MCC 0.79± 0.04 0.78± 0.04 0.76± 0.04 0.76± 0.02 0.79± 0.04 0.81± 0.02
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Figure 7.1: The ranking of the 20 most important features for the disambiguation process according to
χ2 scores.

As expected, the features relating to the locatum and relatum are of major importance for the
classification with 11 out of the 20 most relevant features. Notable exceptions are the number
of nodes and edges in the dependency graph, the specific verb to move, the index of the locatum
and the relatum in the tokenized sentence, and the prepositions at, about, by and near.

7.2.2 Complete Workflow Results

In order to evaluate the extraction and disambiguation approach as a whole, the complete
workflow shown in Figure 7.2 was applied to the 3500 short documents in the corpus.
This workflow depiction also includes the number of documents or triplets at each step,
respectively. In addition, the typical time that the step needs to process one document or triplet,
respectively, is stated.

Temporal Aspects The times depicted on the right side of each step in Figure 7.2 are measured
on a laptop with an Intel Core i7-3517U processor (1.9 GHz, Dual Core) and 8GB of RAM
running a 64Bit Ubuntu 14.04 LTS (Trusty Tahr).
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Approximately 85% of the time is spent on the WSD for the locatum and relatum. Consequently,
the whole process takes approximately 3.0 s to 3.2 s, which seems not to be fast enough to
be applied directly to incoming messages with respect to TWITTER’s velocity characteristics.
But in a real-time system similar to the prototype introduced in Section 3.6, the workflow
could be split into two parts where the latter is executed in a just-in-time fashion. That means
that only the approximate regex matching is applied to incoming messages, which are then
marked accordingly in the database. The cleansing steps and parts of the NLP pipeline are
already performed for the event analysis. Thus, the rest would only be triggered in case of an
actual event detection, that means at a point when the amount of messages is already reduced
significantly. Concerning the prototype implementation, this task can even be parallelized for
the remaining tweets as MONGODB enables document-level concurrency.

Overall and Source-Dependent Performance The final numbers for the class spatial in Fig-
ure 7.2 shows that, when applying the complete workflow to the whole corpus, it extracts and
predicts 443 triplets as spatial. However, 480 spatial triplets actually exist in the corpus.
Out of the 443 predicted spatial triplets another 339 in fact are perfect predictions – that means
correct locatum and relatum and correctly classified as spatial. When taking a strict, holistic
view on the whole corpus of 3500 documents, these values can be interpreted as depicted in
Table 7.8.

Table 7.8: Outcome for the complete workflow applied to all 3500 documents in the corpus.

Complete Workflow

TP 339
FP 146
FN 104
TN 2916

Here, TP is the number of completely correctly identified triplets (339). The cases where the
triplet was identified as spatial but had an error either concerning the locatum, the relatum or
the disambiguation result, are here denoted as FP (443− 339 = 104). These cases even might
be correctly classified as spatial, but would produce false information concerning the involved
entities in the spatial relation. The FN refers to the number of triplets that were wrongly
identified as non-spatial (480− 339 = 141). Eventually, the TN cases are all triplets that are
correctly classified as non-spatial, no matter if it was out of the right reason. For example, a
non-spatial but full triplet could be falsely identified as degenerated triplet by the locatum
extraction, and thus is still correctly classified as non-spatial.
Eventually, this leads to the performance measures in Table 7.9.

The second and third exclusion steps in the complete workflow are subject to errors introduced
by the relatum and locatum extraction respectively. The quantitative impact of cases where
(i) the locatum or relatum could not be extracted or (ii) a locatum or relatum was misleadingly
extracted, are incorporated in Figure 7.2 for the whole corpus. In contrast, Table 7.10 again
splits the exclusion results and according disambiguation for the different sources.
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Table 7.9: The statistical performance measures for the evaluation of the complete workflow applied to
the whole corpus of 3500 documents.

Measure Complete Workflow

Accuracy 0.930
Precision 0.765
Recall 0.706
F1-Score 0.735
NPV 0.954
Specificity 0.966
Negative Agreement 0.960
MCC 0.695

Table 7.10: The quantitative results yielded by the complete workflow for the 2nd and 3rd exclusion
step, as well as the disambiguation for the individual sources, compared to the respective
results of the RA.

Source 2. Exclusion 3. Exclusion Disambiguation Correct Triplets

TWITTER 1
RA 125 108 23
Workflow 120 103 25 18

TWITTER 2
RA 117 100 27
Workflow 114 95 24 17

Comments
RA 131 114 30
Workflow 128 117 32 22

Forums
RA 194 189 51
Workflow 192 174 45 30

Blogs
RA 305 275 87
Workflow 299 246 78 56

WIKIPEDIA
RA 438 390 150
Workflow 438 380 137 107

BNC
RA 436 387 112
Workflow 437 368 102 89

Corpus
RA 1746 1563 480
Workflow 1728 1483 443 399

Eventually, the statistical measures can be calculated for the individual sources (see Table 7.11).

7.3 Discussion and Summary

7.3.1 Discussion

The evaluation of the results showed that the disambiguation process can achieve high quality
results in terms of the typical statistical measures when trained with correctly labeled locatum
and relatum. As expected however, none of the classifiers could completely reach the perfor-
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Table 7.11: The statistical performance measures for the evaluation of the complete workflow applied
to the individual sources of 500 documents each.

Measure TWITTER 1 TWITTER 2 Comments Forums Blogs WIKIPEDIA BNC

Accuracy 0.98 0.97 0.96 0.93 0.89 0.85 0.93
Precision 0.72 0.71 0.69 0.67 0.72 0.78 0.87
Recall 0.78 0.63 0.73 0.59 0.64 0.71 0.79
F1-Score 0.75 0.67 0.71 0.62 0.68 0.75 0.83
NPV 0.99 0.98 0.98 0.95 0.93 0.88 0.94
Specificity 0.99 0.99 0.98 0.97 0.95 0.91 0.97
Negative Agreement 0.99 0.98 0.98 0.96 0.94 0.90 0.95
MCC 0.74 0.65 0.69 0.59 0.62 0.64 0.79

mance of the human annotators. This is not surprising as the average annotator agreement
is usually marking an upper bound in terms of plausibility for the automatic classification of
linguistic data.
The idea of exploiting the output of all classifiers in a voting wrapper proved beneficial for
the recall of spatial instances in particular, and for the NPV. For the other measures, except
for the precision, the voting result reaches similar performance as the single classifiers for the
non-constraint feature input (cf. Table 7.6).
The performance was pushed closer to the annotators’ performance by an informed selection
of the best features from the large and sparse feature space via an RFE approach. Again a
final voting wrapper generally improved the results. It outperformed the single classifiers with
respect to the overall accuracy as well as concerning the recall, the F1-Score, the NPV and the
MCC.
The feature ranking showed that the locatum and relatum related features are the most impor-
tant group for the disambiguation.
A closer inspection of misclassified results, in particular false negatives, yields that a better
word sense disambiguation would significantly improve the disambiguation result. However,
WSD is still a largely open field of research and the problem is considered rather far from
solved. Nonetheless, the WSD as an indicator for the disambiguation step is essential to the
informed prediction of the trained classifier.

The evaluation of the complete workflow revealed that the performance suffers from the
drawbacks of the sequential setup of the workflow – that means errors are propagated to
the next step and negatively affect its performance. In particular, the difference between
the “positive” measures (precison, recall and F1-score) and the “negative” measures (NPV,
specificity and negative agreement) is significant. This is not only due to the imbalance of the
classes spatial and non-spatial in the corpus, but the definition I chose of what constitutes a
result as TP, FP, FN or TN, respectively, for this holistic view of the complete workflow.
A TP needs to have all parts of the triplet correct – locatum, relatum and the classification
as spatial. Whereas a TN only needs the correct assignment as non-spatial, whether it was
excluded because no relatum could be identified (no matter if correctly or falsely) or it was
identified as degenerated triplet (no matter if correctly or falsely), or it was simply identified
as non-spatial by the final classifier based on its extracted features.
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The performance evaluation for the individual sources concerning the complete workflow, reveal
the same gap between positive and negative measures. Taking the MCC as a comprehensive
measure of the overall performance, the BNC as “normal” text corpus exhibits the best results
as expected. Concerning the other social media sources, the source TWITTER 1 yielded the
best results in terms of recall and MCC, whereas the source Forums stays below 0.6 for both
measures.

7.3.2 Summary

This chapter has evaluated the manual decision schema and the automatic extraction and
disambiguation process. The conducted annotator agreement study has been described and
the results confirmed the feasibility and comprehensibility of the manual decision schema, and
consequently that the definition of spatial and the derived rules in this work are generally
intelligible. The numerical results have been stated and common false classifications were
discussed.
The automatic disambiguation process, as well as the complete workflow have been numerically
evaluated and revealed very good and satisfying results, respectively. In addition the most
relevant disambiguation features for the machine learning classifiers have been presented, as
well as the results for the different individual sources in the corpus.

The chapter concludes the second part of this thesis “Spatial Information Extraction From Text”
and thus also the methodological explanations of this thesis.
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Figure 7.2: All steps of the extraction and disambiguation workflow together with the time each steps
commonly needs for processing one document or triplet, respectively, and the number of
triplets after the exclusion steps and the disambiguation.
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8Conclusions and Outlook

In this third and last part, I recapitulate the goals of the research carried out, and summarize
the respective approaches developed to achieve these goals. I will present the accomplishments
as well as reveal current shortcomings and trade-offs. Moreover, I will point out possible
optimizations and future research directions mainly based on the identified limitations of the
current approaches.

8.1 Concluding Summary

Based on the potential of exploiting real-time data streams from social media platforms, two
research goals were established for this thesis. The development of a fully automatic and
operational framework for global-scale, real-time event analysis using social media data (Part I),
and the development of methods to identify, disambiguate and extract spatial information,
encoded as LEs from English social media text (Part II).
Several times in this work I used examples from the potential joint use case scenario natural
disasters. Not only is the domain of natural disasters an adequate link between the two
generally distinct research goals, but it also offers the possibility to highlight the respective
strengths and also the potential benefit of the framework beyond the scientific community.

8.1.1 Conclusions and Outlook for Part I

As a basis the essential terms event and real-time have been defined in the context of this
work. With respect to the input source of social media, the work has focused on events that
affect a critical mass of people – here the users of a specific platform. This is why I have
acknowledged the limits of the used data source in terms of spatial and temporal coverage, as
well as availability, right from the beginning.

Important methods from the field of IR have been introduced. These enable to model the topic
of textual documents and to determine the similarity between documents and topic models.
I have elaborated on current state-of-the-art approaches and have shown that these do not
address the full range of real-time event analysis – that means they usually miss one or several
of the following features: an operational prototype, multi-lingual coverage, proven real-time
capabilities and/or a concrete classification of the event in the form of a class label.

A global-scale, real-time event analysis framework using social media data has been detailed
that, despite the inherent drawbacks of the input data source, is feasible to overcome the
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shortcomings of current state-of-the-art approaches.
A detailed investigation of TWITTER real-time data has yielded valuable characteristics especially
concerning the spatial and temporal distribution of message volumes. The approach based
on these findings has introduced a highly efficient grid-based spatial discretization method,
capable of (i) capturing global-scale tweet volume statistics and (ii) processing the data in
accordance with the specific real-time requirements.In order to achieve this, I have accepted
the minor drawbacks of a equidistant grid to represent the surface of the earth, in particular the
increasingly elongated shape and smaller areas towards the poles. Fortunately, a relevant core
latitude range for the input source has been identified that limits these effects to a tolerable
size.
Three more advanced discretization alternatives have been introduced and their respective
pros and cons have been discussed. None of them is capable to provide the same storage and
retrieval efficiency as the implemented grid, although the quadtree implementation comes
close. In contrast, all of them increase the complexity concerning the implementation, the
maintenance and possible future adaptations. Moreover, it is dubious if one of the alternatives
would actually have improved the pure statistical detection capabilities. But this has still to be
shown. However, such an extensive but specific comparison was out of scope for this thesis.
In the future, extended investigations of the usage of a quadtree implementation to discretize
space could overcome the manual decision for a certain grid resolution, as well as the reliance
on a limited core area of data input.

A new way to optimize the temporal efficiency of the detection based on temporally overlapping
windows instead of disjoint intervals has been illustrated. However, the absolute gain in speed
as well as the applicability in general depends on the used input source and the performance
of the implementation. For the prototype using TWITTER data, so far, time steps of just ten
seconds have been realized with overlapping time intervals of one minute. It is very likely that
for other social media platforms, these time constraints would need to be relaxed significantly.
However, an approach exploiting several platforms in parallel could probably achieve similar
temporal efficiency. Moreover, the data on other social media sources contains generally more
detailed information and also of higher quality concerning relevant content. Leveraging the
high velocity of TWITTER in combination with a subsequent querying of additional sources
could substantially improve the information coverage for all sorts of events. However, such
a system would need to overcome the complexity of fusing the information in a reasonable
fashion.

A hierarchical domain model – a domain taxonomy – for the thematic classification of events has
also been introduced. The taxonomy has been implemented as a module that is independent
from the rest of the framework, and can be exchanged in a plug-and-play fashion to keep the
classification approach generic. Within the taxonomy the different event types are modeled as
BoWs and enable the calculation of similarity scores at adaptive granularities.
The classification process has been illustrated with examples from the use case scenario. I have
demonstrated the approach of aggregating several short messages to one compound document
based on the grid cells and time intervals. Additionally, the idea of dynamically compiled
document collections has been introduced to represent a current baseline of typical topics in a
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certain area. Thus, the collections are always up-to-date and the whole thematic classification
approach stays quite generic. In terms of a final class label, I have favored the notion of a fuzzy
membership in the form of similarity rankings, to account for the rather unspecific style in
which social media messages are commonly written.
In order to meet the requirements of a global approach, several aspects to handle 64 different
languages have been illustrated, e.g. the usage of specialized tokenizers for unsegmented
languages, the integration of different dictionaries and stop word lists, and the implementation
of a custom domain-restricted translation engine for keywords. In spite of all these efforts, the
approach is optimized for the English language, due to the availability of suitable tools and
resources, as well as of course the missing language proficiency of the author for most of the
64 languages (except for German, English, and to a lesser extent French).

In order to account for spatially widespread events, I have shown that region growing, a
technique borrowed from the field of digital image processing, is capable of efficiently clustering
event cells that have been yielded by the same real world event, based on the results of the
preceding localization and thematic classification. The clustering also considers the ranking of
different class similarities and not only the final class label.
The monitoring of temporally extended events has been accomplished by a rather simple
database query that constrains the results by the impact area, a certain historic time range, and
a criterion for the final class label. However, for the very rare case of ambiguous results, I have
introduced a decision algorithm to retrieve the best match. So far this algorithm is based on
common sense heuristics and subjective preferences, and could in the future be evaluated by
empirical tests.

The necessary technical resources to implement an operational prototype that exhibits the
explained capabilities have been stated and shortly introduced, together with its alert mech-
anism and ad hoc visualization features. As the prototype has been developed in parallel to
the research for this thesis right from the start, it suffers from the typical issues of a scientific
prototypical software. At the time of writing the framework comprises almost 8000 lines of code
in a total of four different programming languages – JAVA (7000 lines of code), PYTHON (600
lines of code), MATLAB (150 lines of code) and JAVASCRIPT (200 lines of code). Although the
main code in JAVA is highly modular, a complete redesign in one programming language (e.g.
PYTHON) would not only reduce the verbose code base, but also the maintenance workload
and at the same time improve the clarity and readability of the code. Moreover, except for
ELASTICSEARCH, so far no dedicated tools for Big Data or streaming data handling is utilized.
Instead, the framework is implemented from scratch in particular concerning the real-time
complexities. In the course of a complete redesign, these very powerful and by now also quite
flexible tools, such as HADOOP1 or SPARK2, should be incorporated to get the most out of the
employed data sources and hardware.

1The Apache Hadoop library is an open-source framework that enables distributed processing of larg data sets on
a single machine to thousands of clusters (cf. The Apache Software Foundation, 2016b).

2The Apache Spark library is a fast and general processing engine, which is capable of performing both batch
processing and tasks like streaming, interactive queries, and machine learning (cf. The Apache Software
Foundation, 2016a).
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The conducted evaluation of the real-time event analysis framework has been based on
earthquake ground truth data from the ANSS ComCat database. The system has been proven
to work outstandingly well in regions with high TWITTER penetration and for earthquakes with
potentially damaging impact, i.e. with a magnitude ≥ 5.0. The system detects earthquakes
usually in less than ten minutes within reasonable and plausible distance from the epicenter
locations. The median over all detections even is only slightly above four minutes. However,
some shortcomings with respect to the data source also became apparent. In countries with a
very low amount of daily georeferenced tweets with respect to the population, the detection
rates drop significantly. Especially, China, Afghanistan, Papua New Guinea, Nepal, as well as
parts of Russia and India exhibit detection rates below 50%.
Possible extensions here are the investigation of other domains than natural disasters that
offer ground truth data for more than just one subtype. An interesting domain could be traffic
accidents in urban areas. The ground truth information could be made available through
cooperations with local police stations and traffic control units.

8.1.2 Conclusions and Outlook for Part II

In order to familiarize the reader with the idea of advanced processing and analyzing of
linguistic data in general, and for the purpose of extracting and disambiguating textual spatial
information in particular, I have started by introducing LEs as the most common form how
people describe spatial scenes – i.e. how they express their spatial knowledge.
Subsequently, the research gap has been identified based on current approaches for preposi-
tional sense disambiguation and spatial relation extraction. These currently disregard the need
for a more fine-grained differentiation of the prepositional uses labeled as spatial. In particular,
the physically spatial uses need to be disambiguated from semantically transformed uses such
as in metaphors or metonymies.
Although a considerable amount of research has been conducted on spatial prepositions in
the field of linguistics and cognitive sciences, these studies are rather concerned with all
possible interpretations of prepositions and not the extraction and disambiguation. Moreover,
in contrast to more recent and practical approaches, these fundamental studies often rely on
introspective examples rather than on data from large real corpora. Thus, extensive papers
analyzing only a single or a handful of prepositions are not uncommon (see Carlson-Radvansky
et al., 1993; Coventry et al., 2004; Garrod, Ferrier, et al., 1999; Vasardani, Winter, et al., 2012).
Hence, I acknowledge that their goals have been different from the ones I aimed for in the
scope of this thesis.
Subsequently, important methods from the field of NLP have been introduced. Especially,
dependency parsing and WSD are essential to my approach of automatically retrieving the
relatum and locatum based on the identified preposition, and for the following disambiguation
process.
As stated before, the approach is limited to English utterances, as the structure of spatial
relations between entities is rather heterogeneous across different languages. A rather bold but
nonetheless resourceful approach would be to overcome the language constraint by leveraging
a general purpose machine translation tool. For example by translating incoming tweets,
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written in other languages, into English and then perform the developed extraction and disam-
biguation workflow, the amount of valuable spatial information in case of events could possibly
be expanded.

Based on the introductory chapter the developed extraction and disambiguation process, which
is capable of handling the typical noisiness of social media text to a large extent, has been
detailed.
The definition of what makes a preposition spatial in the context of this research has been
elaborated on with respect to the core notion of locating in physical space, mainly in contrast
to semantically transformed uses. Thereupon I derived syntactic constraints as well as a certain
choice of prepositions for the investigations.
Hence, the approach has been restricted to the word category of prepositions, although textual
spatial information in general can be encoded in other ways as well (e.g. adverbs, verbs and
nouns). However, several authors have emphasized the predominant use of prepositions to
denote spatial relations in English. Nonetheless, the identification of place names or toponyms
(i.e. geoparsing) as a subcategory of NER, has also been a very active field in IR and GIScience
research for quite some years already. Thus, I have included the output of a high-quality,
general purpose named entity recognizer to enrich the input features for the learning approach
with the possible tags of PERSON, TIME/DATE/DURATION, ORGANIZATION and LOCATION.

A compact manual decision schema has been introduced that allows human operators to
annotate examples according to the definition in a straightforward fashion. The three rules of
the schema mainly aim for a complete exclusion of all non-spatial use cases of a preposition.
However, they are not entirely distinct in their targets but overlap, that means there are
examples that would be excluded based on more than just one rule. The conducted annotator
agreement study showed that the schema – and consequently the definition of spatial in this
work – is generally understandable also for non-experts and allows to delineate the two classes.
Common misinterpretations arose for example from ambiguous locata or relata, or unfamiliar
place names.

The three main steps for extracting and disambiguating LEs in natural language input in
general, and social media in particular, have been detailed and evaluated.
The first step is the detection of prepositional phrases of interest, which contain at least one
of the investigated prepositions. The shortcomings of simple regular expressions matching
particularly concerning the social media context have been explained. Hence, approximate
regex patterns, which combine regular expressions with the idea of an edit distance between
two strings, were introduced to handle the common misspellings in the input source with
respect to prepositions. Nonetheless, minor decisions have had to be made based on common
sense heuristics in unclear cases.
The identification of the locatum and relatum of the respective preposition was described as a
necessary requirement for the disambiguation step. The extraction of the relatum has been
possible with high accuracy by applying a straightforward rule-based algorithm based on the
dependency parser output. In contrast, the extraction of the locatum has required a more
complex approach. A classifier was trained to assign probabilities to identified candidates and
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an optimized threshold was used to also account for degenerated triplets. Again the most
valuable input has been shown to come from the output of the dependency parser, in particular
the length normalized transition frequency of dependency relations. However, the achieved
results could not reach the accuracy of the relatum extraction.

The disambiguation approach almost reached the performance of a human operator given
the correct locatum and relatum. It combines the output of five effective machine learning
classifiers in a majority voting wrapper. Additionally, an informed feature selection approach
not only identified the most relevant features, but also improved the performance of the
single classifiers as well as for the voting wrapper. As expected, the features related to the
locatum and relatum have been proven to be essential to the disambiguation. However, the
performance of the whole extraction and disambiguation process suffers from the drawbacks
and the consequential “error propagation” of the sequential setup of the workflow. But
latest developments in dependency parsing3 show significantly improved accuracy for relation
assignment between terms in a sentence. Due to the time frame of this work only single tests
could be conducted, these however show very promising impacts on the performance of the
locatum and relatum extraction.

In general, I have been aiming for a practical solution to the problem of automatically disam-
biguating spatial from non-spatial uses of prepositions. Hence, I am not claiming that a holistic
linguistic analysis of prepositional senses has been conducted. Consequently, I recognize that
in this approach, different aspects are disregarded such as certain meta-operators. These
meta-operators include, for example, negations and aspects of existentiality, thus the utterances
[8.1] and [8.2] would be classified as spatial. One could of course argue that in [8.1] the actual
relation that should be extracted is pencil outside of box rather than pencil in box. However,
taking the “inverse” preposition to handle negations can not account for the many different
spatial configurations a single preposition can describe and is left to works dedicated to deep
linguistic research.

[8.1] The pencil is not in the box.

[8.2] The pencil was/might be/will be in the box.

8.1.3 Synthesis Potentials

Finally, the joint implementation of both workflows – event analysis and spatial information
extraction – has a lot of potential for future developments, in particular for the natural disaster
use case.
In case of large-scale events in urban areas, the compiled context knowledge of the real-time
event analysis could trigger subsequent search queries for relevant information in other social
media sources. In addition, the identified impact area allows for disambiguating the specific
location of extracted LEs by significantly reducing the search space in case of local street names
and points of interest. Moreover, the involved increased amount of spatial relation descriptions

3The STANFORDCORENLP suite is now available in version 3.6.0 at http://stanfordnlp.github.io/CoreNLP/.
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could lead to several messages reporting the same situation from different viewpoints. If it was
possible to assign these complementing messages to one another, they could ultimately be used
to construct spatial scenes and could consequently be tested for plausibility against each other,
as well as to increase their reliability for real-word applicability.

Eventually, the probably most exciting and challenging possibility to extend the combined
workflow is the usage of an additional data layer – the visual information provided in the
form of pictures from an event. Social media messages are frequently accompanied by on-site
pictures, in particular during disaster events. These provide a visual impression of the situation
and with that are able to convey a level of insight, which can not be provided by text alone. A
combined real-time analysis of the textual description and visual representation of an event
site, where both data types mutually benefit from each other’s information, would mean a
major step forward for situational awareness during disaster events.
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