
Article

Uncertainty Analysis of Multi-Model Flood Forecasts

Erich J. Plate 1,* and Khurram M. Shahzad 2

Received: 3 September 2015; Accepted: 17 November 2015; Published: 1 December 2015
Academic Editors: Paolo Reggiani and Ezio Todini

1 Department of Water and River Basin Management Karlsruhe, Karlsruhe Institute of Technology,
Karlsruhe 76133, Germany

2 Department of Civil Engineering, Institute of Southern Punjab, Multan 60000, Pakistan;
shahzadmuhammadkhurram@gmail.com

* Correspondence: erich.plate@kit.edu; Tel.: +49-729-468752; Fax: +49-9463984

Abstract: This paper demonstrates, by means of a systematic uncertainty analysis, that the use of
outputs from more than one model can significantly improve conditional forecasts of discharges or
water stages, provided the models are structurally different. Discharge forecasts from two models
and the actual forecasted discharge are assumed to form a three-dimensional joint probability
density distribution (jpdf), calibrated on long time series of data. The jpdf is decomposed into
conditional probability density distributions (cpdf) by means of Bayes formula, as suggested and
explored by Krzysztofowicz in a series of papers. In this paper his approach is simplified to optimize
conditional forecasts for any set of two forecast models. Its application is demonstrated by means
of models developed in a study of flood forecasting for station Stung Treng on the middle reach
of the Mekong River in South-East Asia. Four different forecast models were used and pairwise
combined: forecast with no model, with persistence model, with a regression model, and with a
rainfall-runoff model. Working with cpdfs requires determination of dependency among variables,
for which linear regressions are required, as was done by Krzysztofowicz. His Bayesian approach
based on transforming observed probability distributions of discharges and forecasts into normal
distributions is also explored. Results obtained with his method for normal prior and likelihood
distributions are identical to results from direct multiple regressions. Furthermore, it is shown that
in the present case forecast accuracy is only marginally improved, if Weibull distributed basic data
were converted into normally distributed variables.

Keywords: forecast uncertainty; Bayesian uncertainty analysis; conditional flood forecasting; data
based models; Mekong flood

1. Introduction

1.1. Purpose of Study

Among the most important tasks of applied hydrology is the forecasting of river stages or
discharges, for which hydrologists and meteorologists have developed increasingly more complex
models. The problem considered here is how to obtain the best possible forecast by using outputs
from a given set of two calibrated forecast models. The best forecast is defined as that linear
combination of model outputs from the set which minimizes the forecast error. More specific, our
objective is to provide a systematic error analysis based on Bayes formula in order to obtain the
optimum forecast from up to two models, and to determine the probability density function (pdf) of
forecast errors eF(i+m). The result is a simplified version of the Bayesian framework developed by
Krzysztofowicz [1], and Todini [2]. This approach is generally applicable to any two forecast models.
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For illustration purposes, it is applied to data and models from a study of forecasting discharges for
station Stung Treng on Mekong River in South-East Asia, which is described in Shahzad and Plate [3].

1.2. Background

Setting up a multi-model forecast system requires a sequence of steps. First step is the selection of
the set of models to be used for forecasting. The second step is model calibration because hydrological
models generally depend on empirical parameters which are specific for the basin considered. For
each of the flood forecast models that set of model parameters is determined which minimizes the
error between forecast and observation of long historical time series. The third step is application,
i.e., the use of each model for real time forecasting. Finally, in a fourth and final step, the models are
suitably combined to yield the optimum real time forecast. Due to model-, parameter- , and other
uncertainties only estimates for the true record are obtained, and the purpose of the analysis in this
paper is to minimize total uncertainty, which shall be expressed through the error of observed record
minus forecast. We shall distinguish between design and operational (conditional) uncertainties,
which are of a very different nature [4], as will be discussed briefly in Section 1.2.3.

1.2.1. Model Selection

Hydrological models for river discharges can only approximately reproduce the true
hydrological situation of real hydrological basins, because they generally require to combine runoff
increments from many poorly defined, aggregated and connected hydrological area elements—local
contributions which are generated by climate and precipitation inputs of uncertain magnitude and
poorly known spatial distribution acting on complex local hydrological processes. Therefore, forecast
models for river discharges (or stages) can only yield estimates, with an uncertainty band which
reflects the total uncertainty resulting from data input, model structure, and model parameters.

For a flood forecaster, the physical correctness of a model is of secondary importance as
compared to the goodness of fit of its outputs. In principle, any data-based hydrological model for
flood calculations could be used. “Data based” implies that for calibration sufficiently long records of
observations are available to obtain statistically significant outputs from the model. There exist a large
number of potentially useful models for this purpose (as summarized by Singh and Woolhiser [5], or
see the extensive list in Gouweleeuw et al. [6]). They are basically either time series models, where
the output is determined from known input data by means of transition probabilities (time series
models), sometimes as artificial neural networks (ANN) [7] or conceptual rainfall-runoff models,
usually based on applying linear systems theory (one or more Nash Cascades, see [8] for an extensive
discussion). A strong case can be made to not rely on a given model but to develop models based
on basic hydrological principles, which optimally account for physical and climatic conditions of the
region [9–11], perhaps starting with an elementary model, which may be upgraded with increased
observational evidence (model development along the “axis of complexity” [12]).

1.2.2. Model Calibration

At the outset, the modeller has to decide which model to use, a process which is guided,
among other criteria, by the available data basis, and by the purpose for which the forecast is to be
made—agriculture (ecological flooding), navigation, or flood protection are typical topics. Important
is selection of time intervals, ∆ t , for example days, and of maximum forecast time, m∆t . It is
assumed in this paper that forecast specifications call for models to forecast the complete time series
of discharges for m = 5 (days) for one season.

The selected forecast model is calibrated by means of a given set of time series of discharges
and, for rainfall-runoff models, precipitation from measuring stations located in or near the river
basin. Generally, the whole time series of available data of discharge and rainfall fields should be
used. However, in our case the analysis is restricted to the monsoon season of South-East Asia, from
June to November of each year. The model is calibrated to determine the set of parameters that finds
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the optimum of some objective function, which should depend on the planned use of the forecast.
For example, weighted errors are useful for selecting the best among different models, obtained by
introducing appropriate objective functions [13,14], which may be based on economic criteria [14], or
on risk for people living along the river. However, standard procedure, adapted also in this paper,
is to find that set of parameters for the hydrological model which minimizes linear least squares of
system errors eMk(i+m) = Q(i+m) ´ QFk(i+m). Here, Q(i+m) is the historical discharge time series,
observed at time i for m time intervals ahead, and QFk(i+m) is the discharge calculated from forecast
model k. Parameters are optimized by means of split sampling techniques, yielding a validated set of
optimum parameters for the selected model.

Methods of parameter estimation differ mainly in how parameter spaces are defined and
which objective functions are used for determining goodness of fit [15]. Because there is generally
no physical reason for assigning particular numerical values to most model parameters, different
parameter sets may fit the model equally well. This problem of “equi-finality” [16] is inherent in
hydrological models. One way to proceed is to define a range in which parameters may vary, assign
suitable empirical probability distributions to each of the parameters in the parameter space and
determine possible parameters through a Monte Carlo procedure, with different sets used to generate
an output pdf. This approach is used for their GLUE method by Beven and Binley [17], Freer et al. [18],
or for the method of Gupta et al. [19]. Other authors transfer parameters from other catchments, for
example Hundecha and Bardossy [20]. If the data series is long enough, some final best fit set of
parameters for the model can be estimated, whereas for shorter series, a preliminary set obtained
from the available data may be upgraded if additional information becomes available, for example
by means of Bayesian methods [21].

System error eMk(i+m) sets the limit of forecast quality obtainable with a given model k, as it
corresponds to the best forecast obtainable from the model. Further improvement can be obtained
only if model structure and/or calibration data base, or both, are improved. However, the forecast
error may be reduced if more than one model is used, which can be arranged in series or in parallel.
For example, models are used in series, where a decision is made to switch from one model to another
depending on season or catchment characteristics [22]. Or the models are arranged in parallel, applied
to the same period of forecast, and separately calibrated on the same basic data, as in [1–3] and used
in this paper. For parallel models, optimum forecasts are obtained by combining outputs from all
models into a final forecast. The simplest way of using more than one model is to average the forecasts
from all models. A direct improvement on this approach is obtained by multiple linear regression of
model outputs, giving weights to the individual outputs by means of least squares analysis [1,2,23].
In the remainder of this paper the Bayesian version of this approach will be discussed.

1.2.3. Model Application for Discharge Forecasting

For the operational stage, models are assumed given and calibrated. They become a part of the
forecasting system, usually embedded in a flood forecasting package, such as by Werner et al. [24].
When making a forecast new errors occur in addition to system errors yielding estimates QFk(i+m)
for Q(i+m). In the forecasting case, Q(i+m) is the unknown predictand, and QFk(i+m), the output
of forecast model k, is the calculated predictor. The difference eFk(i+m) = Q(i+m) ´ QFk(i+m) is
the forecast error. In contrast to system error eMk(i+m), which is based on average performance
with known input and output, forecast error eFk(i+m) is conditional on known initial conditions but
depends on unknown forecasts of future inputs [4]. For time series models without rainfall input,
eFk(i+m) and eMk(i+m) are basically the same, because dependence on basic data is the same in
model building and forecasting. For rainfall-runoff models neither rainfall nor lateral inflows from
tributaries of the future are known and therefore must be forecast by means of a rainfall forecast
model. This yields additional uncertainties. Consequently, forecast errors eFk(i+m) of conditional
forecasts from model k are generally larger than system errors eMk(i+m) of the same model.
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Forecast quality of conceptual forecast rainfall-runoff models depends to a large extent on
adequacy of the sub-models used for generating rainfall inputs. Many sub-models of different
degrees of complexity exist. Simple models use present day rainfall, or rainfall averaged over a
number of days [25], as input into the model. Other methods of rainfall forecasting based on more
refined time series models have been suggested, [25,26]. These methods are empirical, estimating
future rainfall records on the basis of past measurements, some by means of different types of artificial
neural networks (ANN) [26–30]. Physically based rainfall forecasts are the alternative, which extend
existing weather pattern into the future [31], or forecasts using downscaling from large scale weather
models, such as the global gridded weather model GME [32]. Examples are the sub-grid models
COSMO [33], or COSMO-LEPS [33,34] developed for Central Europe.

1.2.4. Performance Indicators

Model calibration and application require different performance indices for skill evaluation.
Generally, in both cases at least two quantities [35] should be used: a measure of forecast error
magnitude, and a measure of forecast quality. The former measure gives an indication of the absolute
magnitude of performance errors, whereas the latter is a measure of comparison of the forecast
against that from a “benchmark” model [36]. Benchmark models should be models which can be
used without using forecast information, such as the simple persistence model, or use of averages for
each day of the year taken over many years.

During calibration, indicators for error magnitude should be based on the objective function
used for model fitting. Typically measures are rms values of error eMk(i+m), or similar absolute
quantities, as summarized by Gupta et al. [19] or Dawson et al. [29], such as mean absolute error
values. For forecasting, the criterion for error magnitude requires use of conditional forecasting errors
eFk(i+m) [4] instead of eMk(i+m), which occur when a model k is applied to generate forecasts.

As measures of calibration quality the error magnitude is compared with the error of a
benchmark model. Nash-Sutcliffe Index (NSI) has been used extensively, i.e., [24,37] among many
others, which compares the error variance with the variance of the total record. NSI is useful for
comparison purposes, for example to facilitate the selection of the best among different models, or as
composite index for many different performance measures Gupta et al. [38]. However, it is not very
appropriate for forecast performance evaluation. Evaluation of forecast application skills requires
use of conditional forecasting errors eFk(i+m) [4], which occur when a model k is applied to generate
forecasts. A better reference is persistence index (PI) of Kitanides and Bras [39], which has been used
in recent studies, for example [4,7]. It compares the forecast error variance with that of the error from
assuming persistence as benchmark condition, when the discharge of today is used as predictor for
the discharge of the future. Other quality parameters may be based on binary information-correct or
false forecast of flood level exceedance, or the performance scores used in meteorology [40,41].

In conclusion, forecasters have to face the problem of having to infer useful forecasts from an
unreliable information base—a task that can be realized only if it is acknowledged that one has to live
with uncertainty. To compensate uncertainty, in addition to using forecast models, forecasters tend to
rely on intuition and experience to adjust forecasts [42]. On a more rational basis conditional forecasts
should be cast into a probabilistic framework, by means of a probability density function, with the
mean as a crisp forecast, and different error bounds as indications of degree of uncertainty. These
quantities can be improved by means of efficient use of more than one model. It is shown in this
paper that Bayes formula, as suggested by Krzysztofowicz [1], allows to combine the outputs from
several models in a meaningful way (see also [2]). For this purpose, a system for classifying forecast
errors is developed in Section 2, and in Section 3 these error classifications are applied to outputs of
simple forecast models described in Shahzad and Plate [3] for the middle reach of Mekong River.
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2. Bayesian Error Classification and Analysis

Consider the task of obtaining forecasted discharges QFk(i+m) at some station j = 0 for a river.
Predictand is the discharge Q(i+m) to be expected in the future, at m time intervals (days) from time
instant i when the forecast is made. Assume that for this purpose the forecaster has available a
number of forecast models, identified by index k (k = 0, 1, 2 . . . ). When using these models for
flood forecasting the two types of errors discussed in Section 1.2.2 and Section 1.2.3, i.e., system error
eMk(i+m) and conditional error eFk(i+m) occur. The purpose of this section is to explore the nature
of these errors by means of Bayes formula, as originally used by Krzysztofowicz [1], and further
developed by Todini [2]. Applications of the results are demonstrated in Section 3, by means of four
models from Shahzad and Plate [3], which are briefly described in Section 3.1.

2.1. Preliminary Definitions

Models shall be identified by classes and types, which are investigated independently or in
combination of any two models. Classes denote the number of models used for making a forecast.
Model class 0 actually works without model, class 1 with 1 model, and class 2 with two models.
Model type identifies models according to the model generation process. Type 0 is the persistence
model with Q(i) as predictor for Q(i+m). Type 1 refers to a model based on time series of the historical
record of discharges, and type 2 to rainfall-runoff models. For type 2, subtypes 2.1 and 2.3 are defined,
as will be further explained in Section 2.4.3.

For simplifying multiple regression analysis, it is advantageous to convert all variables into
dimensionless quantities with mean values of 0, and standard deviations of 1. Adapting the notation
of Krzysztofowicz [1], dimensionless variables h, sk and h0 are introduced:

sk “
QFk pi`mq ´QFk pmq

ϑk

h “
Q pi`mq ´Q pmq

ϑh

h0 “
Q piq ´Q piq

ϑ0

(1)

where, the overbars identify arithmetic means, and ϑx is the standard deviation of h (with x = h),
of s (with x = k) and of h0 (with x = 0). Mean values and variances are determined during calibration,
based on the assumption that records are long enough to yield stable estimates. Quantity h0 is a
special case of h, introduced separately to stay within the terminology of Krzysztofowicz, [43]. It is
the dimensionless forecast from the persistence model, with Q(i) as predictor for Q(i+m). Variables h,
sk and h0 have co-variances. COV

!

h, skq “ h ¨ sk , COV
!

h, h0q “ h ¨ h0 , and COV
!

h0, skq “ h0 ¨ sk .
In recognition of unavoidable output uncertainty of any model, forecasts should be described

by a crisp value and an uncertainty band. The crisp value should be the best estimate, which is the
expected dimensionless value hopt(i+m), i.e., the predictor obtained with well calibrated models. The
uncertainty band is expressed through the pdf of the conditional forecast error, which for one model
with forecast sk φk th |sk u. For two models with outputs sk1 and sk2 it is φk1,k2 th |sk1, sk2 u.

It is interesting to note that in a forecast situation, the uncertainty expressed by the likelihood
function must be of a regression type. This may be inferred from the following argument. Let h be the
predictand and forecast s1 obtained by model 1 for this quantity be the predictor. During calibration
s1 is found as the best estimate for actual value h, determined by means of the error pdf f{s1 ´ h}
by least squares analysis. Thus, the forecast consists of mean value h and pdf f{s1 ´ h}. In a model
calibration procedure this function has been used to minimize the variance of error s1 ´ h. In the
forecasting case s1 still is the best estimate for actual value h, so that when we look at the forecast
h we know that h is (for given s1) a random variable with expected value a0,1

.s1, where a0,1 is the
regression coefficient. Consequently conditional pdf f{h|s1} changes into the error pdf f{h ´ a0,1

.s1}.
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Thus, the conditional forecast consists of mean value a0,1
.s1 and pdf f{h ´ a0,1

.s1}. In the sense of
Bayesian error analysis, this implies that we have prior information, which includes the mean value,
which reduces the problem of Bayesian forecasting to linear regression analysis.

2.2. Class 0 Error Analysis

For class 0, one has no information that helps to improve a forecast, i.e., s1 and s2 are zero. The
forecast is made by using only historical records of the predictand. Interpreted in terms of Bayesian
estimation theory, the prior is non-informative, with posterior = likelihood function = Φ00 thu . This
is the situation of forecasters who have no information except past records of some time ago, or who
must make a forecast for large values m and therefore can only use the pf or pdf of the total record.
The best forecast that can be made on that kind of data base is mean value QF00(i+m) = Q pmq of the
historical record, with error e00 = Q(i+m)´Q pmq and varianc ϑ2

k. If this “model” (= model 00) is used
as benchmark model, to assess forecast quality, it leads to the well-known Nash Sutcliffe criterion for
model performance evaluation.

2.3. Class 1 Error Analysis

For class 1, one forecast model k exists with dimensionless output sk. Bayes formula for this
case yields:

φk th|sku “
g tsk|hu ¨ f thu

ş8

´8
g t sk|hu ¨ f thu ¨ dh

“ κ ¨ gtsk|hu ¨ fthu (2)

This is the classical Bayes estimator used for predicting uncertainties due to changes [44]. The
left side of Equation (2) simply describes the conditional error pdf for a forecast with given model
output, which is forecast sk. It is the conditional pdf for operational forecasts with model k, as shall
be discussed in the remainder of this section. This is a strict result of applying the Bayes formula. In
contrast, Equation (2) also may be used as basis for Bayesian estimation, in which case the right side
is of interest for estimating effects of basic changes. It separates effects of changing h from effects of
changes in model k. f{h} is the prior distribution obtained from historical data, which in an uncertain
environment may reflect expectations of changes in the structure of the time series of predictands,
i.e., due to climate change. Changes in likelihood function g{sk|h} reflect changes of the model.

2.3.1. Model Class 1 Type k = 0

In an actual forecasting situation, forecasters always have the value of the quantity to be forecast
at time of forecast, i.e., they know value h0. In the context of forecasting h0 is the output of model
class 1 type 0 (called model 0), yielding sk = h0. We define this to be the case when predictor QF0

(i+m) is discharge Q(i) of today, (persistence assumption) which in some cases, and in particular
for short forecasting times or for large rivers, may be a good first guess. Forecasters can make a
class 1, type 0 forecast by time shifting the observed record over historical times, and establishing a
functional relationship h = q(h0) between h and h0. In principle, q(h0) could have any functional form
depending on h0 , but actually, since model outputs are optimum estimators, a linear relationship is
plausible and will be postulated. For a linear correlation h|h0 the left side of Equation (2) yields the
conditional forecast probability density function (cpdf):

φ0 th |h0 u “ ψ0

ˆ

h´ a0 ¨ h0

σ0

˙

(3)

Function ψ0 { } is the error pdf. During calibration, this function can be obtained empirically, but in
general errors for model class 1, type 0 would be purely random, so that ψ0 { } is a normal pdf. Linear
regression analysis of h with h0 yields a0 = h ¨ h0 , so that the optimum dimensionless forecast is
hopt = h ¨ h0 ¨ h0 , with conditional forecast error ε0 “ h ´ h ¨ h0 ¨ h0 , which has variance
σ2

0 “ σ
2
h r1´ pa0q

2
s. Since σ2

h = 1, this leads to dimensional forecast error e0 = ε0 ¨ σ0 ¨ ϑh with variance
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σF2
0 “ ϑ2

h ¨ σ
2
0 . As will be shown for Mekong data in Section 3.1, the usefulness of this forecast in

practical cases is rapidly reduced for longer forecast times.

2.3.2. Model Class 1 Type k =1

This type of forecast is generated by a time series model which produces runoff forecasts at
station 0 using only past records of discharges—in the simplest case as a linear Markov regression
model, or a higher level ARMA model based on discharges observed at different upstream gaging
stations. A special feature of a model in class 1 type 1 (called model 1) is that no parameters have to
be estimated during real time operation, all parameters are optimized during calibration and remain
fixed during forecasting. For this case, Equation (3) applies, with h0 replaced by s1. Since h and s1 are
random variables with mean 0 and variances 1, the conditional probability distribution of h is also
given by Equation (3):

φ1 th |s1 u “ ψ1

ˆ

h´ a1 ¨ s1

σ1

˙

(4)

where a1 “ s1h Error ε1 = h ´ a1 ¨ s1 is a random variable with mean zero, and variance
σ2

1 “ 1´ ps1 ¨ hq
2

. For application of forecasts with model 1, the dimensional predictand is QF1(i+m),
which has conditional forecast error e1 = ε1 ¨ σ1 ¨ ϑh with variance σF2

1 “ ϑ2
hσ

2
1 .

2.3.3. Model Class 1 Type k = 2

This class defines models based on inputs which have to be estimated in real time before
a forecast can be made, for example models depending on inputs from meteorological variables.
Typical for this class are rainfall-runoff models, for which rainfall inputs have to be forecast. In such
a case two types of uncertainty arise. The first occurs during calibration. It is that of model class 1
type 2.1 (model 2.1), which has dimensionless forecast s2.1 as output. For this, the future rainfall is
known from historical records, but it has to be converted into the input to model 2.1 by means of
a rainfall forecast model. s2.1 is the best value that can be obtained from the model. It is not exact,
because input calculated from this rainfall and input from true rainfall may be widely different. It
includes errors both from the rainfall forecast model, and from the uncertainty due to estimating the
actual rainfall distribution from the precipitation records. Errors due to observed rather than true
rainfall become part of the model uncertainty and are reflected in error eF2.1(i+m). Consequently,
forecast s2.1 is a random variable with variance σ2

2.1 , which is found empirically during calibration. Its
conditional probability density cpdf φ2.1 th |s2.1 u has the functional form of Equation (4) for random
variable h given s2.1, with indices appropriately changed. Function φ2.1 th |s2.1 u is determined during
calibration by using the model to reconstruct historical data. It differs from the hydrologic uncertainty
processor (HUP) of Krzysztofowicz [1], which yields outputs from the hydrological model under
perfectly known rainfall inputs, whereas in our case rainfall inputs for Nash-cascades are estimates,
although they are generated from actually observed (area averaged) future rainfall inputs from each
of the sub-areas.

The second type of uncertainty occurs when the calibrated model is used during actual
forecasting (case of model class 2 type 3 = model 2.3), resulting in forecasts s2.3. The conditional
probability φ2.3 th |s2.3 u is that of operational forecasts s2.3, when a rainfall model has to be used and
future rainfall inputs for the rainfall model have to be forecast. φ2.3 th |s2.3 u also is of the form of
Equation (4), and determined by means of historical data in the calibration phase. It uses a forecast
for the rainfall, and a rainfall model to convert observed rainfall into model input. We assume that
random variable s2.3 is bias free, and has variance σ2

2.3 .

2.3.4. Relative Importance of Rainfall and Model Uncertainties

In the operational mode, model 2.1 cannot be used, because neither the true rainfall model nor
the actual rainfall input is known. However, from a comparison of φ2.3 th |s2.3 u and φ2.1 th |s2.1 u it is
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possible to infer that part of the variance which is due to uncertainty of rainfall information. For this,
we recognize that forecasts s2.3 are related to forecast s2.1 through a conditional pdf f ts2.1|s2.3u . In our
definition, f ts2.1|s2.3u is the precipitation uncertainty processor, which is unknown, because rainfall
inputs are estimated quantities, which may have large errors.

Variance σ2
02 of f ts2.1|s2.3u can be determined by means of the following argument. Calibration

using the assumed rainfall model and forecast rainfield at time m ∆t yields φs th |s2.3, s2.1 u . Applying
the Bayes formula, this can be written as:

φs th |s2.3, s2.1 u “ φ2.1 th |s2.1 u ¨ f ts2.1|s2.3u (5)

where f ts2.1|s2.3u is the unknown cpdf for the output s2.1 due to the unknown true rainfall,
conditioned on the known calculated output s2.3. Conditional pdf φ2.1 th |s2.1 u is obtained from
model 2.1 with known rainfall fields. It has mean a2.1 ¨ s2.3 and variance σ2

2.1 obtained during
calibration with historical data. From Equation (5), φ2.3ph

ˇ

ˇs2.3q is obtained by marginalization over
s2.1 to yield:

φ2.1 th |s2.3 u “

8
ż

0

φ2.1 th |s2.1 u ¨ f ts2.1|s2.3u ¨ ds2.1 (6)

If both φ2.1 th |s2.1 u and f ts2.1|s2.3u in Equation (6) are assumed to be (approximately) Gaussian,
and because a linear correlation h “ a2.3 ¨ s2.3 exists, then one obtains, by integration of Equation (6):

φ2.3 th |s2.3 u “ ψ2.3

¨

˝

h´ a2.3 ¨ s2.3
b

a2
2.3 ¨ σ

2
2.1 ` σ

2
02

˛

‚ (7)

which also is a normal density distribution with variance a2
2.1 ¨ σ

2
2.1 ` σ

2
02 . A second expression for

φ2.3 th |s2.3 u can be obtained directly from the data by means of model 2.3, with the result:

φ2.3 th |s2.3 u “ ψ2.3

ˆ

h´ a2.3 ¨ s2.3

σ2.3

˙

(8)

with empirical variance σ2
2.3 and a2.3 “ s2.3 ¨ h . Comparing variances of Equation (7) and (8) yields

σ2
2.3 “ a2

2.3 ¨ σ
2
2.1 ` σ

2
02 . Variance σ2

02 due to the more accurate rainfall input provided by model 2.1
then is calculated as the difference between observed variances:

σ2
02 “

´

σ2
2.3 ´ a2

2.3 ¨ σ
2
2.1

¯

(9)

Note that during model calibration a comparison of variances for e2.1(i+m) and e2.3(i+m)
indicates where efforts of improvements of model or model input might be most effective. If
difference Equation (9) for a rainfall runoff model in a given situation is small, then an effort to obtain
better rainfall forecast data offers no advantage, and primary efforts should be directed to improve the
models and/or their parameters. If the difference is large, improving forecasts of precipitation inputs
or rainfall forecast should have priority. As an example, in Section 3.3, Equation (9) will be used to
assess the relative importance of the rainfall forecast model on the total variance of the rainfall-runoff
model by means of data from Shahzad and Plate [3].

2.4. Class 2 Error Analysis

For class 2 models, dimensionless predictand h is calculated by means of predictors s1 and
s2 from two models, type k1 and k2 (called model k1,k2). Uncertainty bands of forecasts are
derived from the joint probability density function (jpdf) f{h,s1,s2} for the triplet h, s1, s2. Following
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Krzysztofowicz [1], the desired error pdf f th |s1, s2 u is obtained by decomposing f{h,s1,s2} by means
of the Bayes formula:

f th, s1, s2u “ φ th |s1, s2 u ¨ f ts1, s2u “ g ts1|h, s2u ¨ fp th|s2u ¨ f2 ts2u (10)

Note that:

f ts1, s2u “

ż 8

´8

g ts1|h, s2u ¨ fp th |s2 u ¨ f2 ts2u ¨ dh “ f2 ts2u ¨

ż 8

´8

g ts1|h, s2u ¨ fp th |s2 u ¨ dh (11)

where for any given pair s1 and s2 the integral on the right is a constant, which is known when making
forecasts with both models k1 and k2. With this expression one obtains from Equations (10) and (11):

φ th|s1, s2u “
g ts1|h, s2u ¨ fp th|s2u ¨ f2 ts2u

r
ş8

´8
g ts1|h, s2u ¨ dhs ¨ f2 ts2u

“ κ ¨ gts1|h, s2u ¨ fpth|s2u (12)

where φ th|s1, s2u is the conditional forecast cpdf to be determined.
Using the terminology of the Bayes estimation theory, function fp{h|s2} for any calculated

pair s1 s2, is the conditional prior, and g{s1|h,s2} the conditional likelihood function. However, in
contrast to its use in Bayesian estimation, Equation (12) is the classical Bayes formula [44], connecting
probabilities from multiple sources.

2.4.1. Model Class 2: Type k,0

Well studied is the case of linear combination of one (conceptual) forecast model with output s1

and model 0 with output h0. This is model class 2 type 0,k (called model 0,k). It was introduced by
Krzysztofowicz [1] as part of his HUP (hydrological uncertainty processor). It is based on the fact that
whenever one has a mathematical forecast model k yielding some output sk, one also has available
the observed value of h0 as additional predictor. Inclusion of initial values h0 into forecasting models
yields a three-dimensional pdf f{h, sk, h0} with variables h, sk and h0, so that Equation (12) becomes:

φk,0 th |sk, h0 u “ κ ¨ g tsk|h, h0u ¨ fp th |h0 u (13)

This is the conditional probability density of h for given values of sk and h0. It is possible
to determine φk,0 th |s1, h0 u either directly by means of multiple regression analysis, as used by
Todini, [2] with his model conditional processor MCP, or by means of separate analysis of functions
g tsk|h, h0u and fp th |h0 u , as done for the HUP of Krzysztofowicz [43], and Krzysztofowicz and
Herr [45]. All functions have to be found from parallel calibration data for quantities h, s1, and h0.

If linear correlations exist among the three variables, with h dependent and h0 and s1 as
independent variables, it is straightforward to use φk,0 th |s1, h0 u and to apply linear multiple
regression analysis to h as function of s1 and h0. Let the distribution of this linear combination be:

φk,0 th |sk, ho u “ ψk,0

ˆ

h´ ak,0 ¨ sk ´ bk,0 ¨ h0

σk,0

˙

(14)

Determination of coefficients of linear regression by means of least square fitting yields:

ak,0 “
skh´ h0h ¨ h0sk

1´ h0sk ¨ skh0

bk,0 “
h0h´ h0sk ¨ hsk

1´ h0sk ¨ skh0

(15)

6796



Water 2015, 7, 6788–6809

Error εk,0 “ h´ ak,0 ¨ sk ´ bk,0 ¨ h0 has variance:

σ2
k,0 “

1´ hsk
2
´ skh0

2
´ h0h

2
` 2skh ¨ skh0 ¨ hh0

1´ h0sk ¨ skh0
(16)

It should be noted that for this analysis of error εk,0 no assumption was made on types of
probability distributions of the three variables apart from assuming linearity of the relationship
among them. Note: although during calibration the error variances can be found directly from the
data, it is useful, as a control for accuracy, to also use Equation (16).

2.4.2. Model Class 2 Type w,0

A different analysis of class 2 type k,0 error is obtained if the problem is formulated as a
Bayesian problem by means of the right side of Equation (13), as suggested by Krzysztofowicz
and Herr [45] for their HUP. In this way they were able to use the properties of conjugate normal
distributions [46]. Krzysztofowicz named g{.} likelihood function, and fp{.} prior distribution, in
analogy to Bayes estimation. Basic data are sk, h and h0, which for many rivers are found to be
Weibull distributed [43]. The data for the present study also were well represented by a Weibull
distribution, so that the approach of [45] could be used. A method of fitting Weibull distributions to
observed data is briefly described in an appendix. As an alternative, Krzysztofowicz and Herr [45]
recommend to convert variables s, h, and h0 into normal variables z, w, w0, respectively, through
equality of normal probability function and Weibull probability function.

Prior Density Distribution

The Bayes formulation does not depend on specific forms of prior and likelihood functions,
thus fp(w|w0) and g tz|w, w0u may be any empirically found distribution to be fitted by a suitable
distribution. Relation w|w0 of prior fp{w|w0} is an unknown function, which in general also could
have any functional form. The simplest type of dependency is a linear dependency w = apw0

with w0 as independent variable, in which case function fp(w|w0) also is a normal distribution.
Krzysztofowicz [43] derived coefficient ap by connecting w and w0 as a Marcov chain leading from
w0 to forecast w1 for m = 1, where transition probability ap1 is based on past observation records. The
same transition probability is then used to connect any two time steps up to time m, so that w|w0

remains linear. As was shown by Todini [2] better results are obtained if instead of this Marcov chain
model a direct linear regression of w (= w(m)) on w0 is assumed, as will be used here. It leads to a
normally distributed prior distribution:

fp tw |w0 u “ ψF

ˆ

w´ ap ¨w0

σp

˙

(17)

which is of the same form as the pdf of error class 1 Type 0, so that we obtain ap “ ww0 and
σ2

p “ 1´ papq
2
“ 1´ ww0

2 , which yield the dimensionless error εW1,0 “ w´ ww0 ¨w0 .

Likelihood Density Distribution

Likelihood function g{.} is based on calibration data, for which w and w0 are known, so that for
purpose of forecasting z can be expressed as a function of w and w0. The simplest relationship again
is a linear dependency of z on w and w0 to yield a distribution:

g tz|w, wou “ ψg

ˆ

z´ al ¨w´ bl ¨w0

σl

˙

(18)

6797



Water 2015, 7, 6788–6809

which has the same form as Equation (14), so that we obtain best fit estimates:

al “
zw0 ´w0w ¨w0z

1´w0w ¨ww0

bl “
w0z´wz ¨w0w
1´ww0 ¨w0w

σ2
l “

1´ wz2 ´ww0
2 ´w0z2 ` 2wz ¨ zw0 ¨ww0

1´w0w ¨ww0

(19)

Posterior Distribution

Posterior distribution φ th|sk, h0u is obtained as combination of the two distributions into one
conditional forecast pdf: g tz|w, w0u ¨ fp tw|w0u . Assuming this to be the product of two normal
distributions, the solution is also a normal distribution, where exponents of both distributions are
added and the result is expressed in terms of w as function of z and wo:

g tz |w, w0 u ¨ fp tw |w0 u “ ψw

ˆ

w´ aw,0 ¨ z´ bw,0 ¨w0

σw,0

˙

(20)

i.e., difference w ´ aw,o¨ z ´ bw,ow0 is a random variable with variance σ2
w,0 . As for Equation (14),

linear least squares fitting yields coefficients aw,0, bw0 and variance σ2
w,0:

aw,0 “
al

´

1´ hh0
2
¯

a2
l

´

1´ hh0
2
¯

` σ2
l

bw,0 “
ww0

2 ¨ σ2
l ´ al ¨ bl ¨

`

1´ww0
2˘

a2
l

`

1´ww0
2˘` σ2

l

σ2
w,0 “

σ2
l

`

1´ww0
2˘

a2
l

`

1´ww0
2˘` σ2

l

(21)

Finally the result is re-transformed into original variables. For this last step, original observed
data Q(i+m) were graphically correlated with their normal counterparts and a nonlinear regression
curve was fitted, which was used to re-transform normally distributed variables into the original
Weibull distributed variables.

These relationships have been extensively used by Krzysztofowicz and his students. However,
given the assumption of linearity and normal distributions, separation into prior and likelihood
functions actually adds no additional information to the error analysis of class 2 type k,0 error. For if
one inserts coefficients al, bl and σ2

l from Equations (18) and (19) into expressions aw,0. bw,0 and σ2
w,0

from Equation (21), equalities aw,0 = a1,0. bw,0 = b1,0 and σ2
w,0 = σ2

1,0 are readily established [4]. Thus,
the Bayesian approach offers no advantage, if normality and linearity can be assumed. Differences
may come only from conversion of original distributions of variables into normal distributions,
because linear regressions in original space may not equal linear regressions in normal space.

In their application of these results, Krzysztofowicz and Herr [45] have added a model for
forecasting rainfall based on conditions of no rain or with rain on day i. This modification of the
basic theory was not used in the application of this model to the Mekong River, because analysis was
restricted to rainy seasons with only very few dry days, and the simple persistence assumption for
rainfall of today = rainfall of the future was made.

2.4.3. Model Class 2 Type 1,2

The influence of h0 fades very quickly with increase of forecast time. But other models which
have a better forecast quality can also be used in class 2 mode, as was suggested, for example, in [2]
and used in Shahzad and Plate [3]. A combination of output s1 from a regression model of type 1 and
output s2 obtained from a rainfall-runoff model of type 2.3 is such a case of applying two forecast
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models for the same forecast situation. If a linear combination among h, s1 and s2 is assumed, then
the left side of Equation (14) in the form φ1,2 th |s1, s2 uwith sk = s1 and h0 replaced by s2 leads to:

φ1,2 th| s1, s2u “ ψ1,2

ˆ

h´ a1,2 ¨ s1 ´ b1,2 ¨ s2

σ1,2

˙

(22)

The best forecast estimate then is:

hopt “ a1,2s1 ` b1,2s2 (23)

with forecast error: ε1,2 “ h´ hopt “ h´ a1,2s1 ´ b1,2s2 and variance σ2
1,2 .

2.5. Results of the Error Analysis

In the final form the forecast results are expressed through two quantities: a crisp forecast,
i.e., expected value of the forecast and the standard deviation as a measure of the error band. In a
dimensional form, the expected value of the predictand QFopt(i+m) is found by replacing s1 and s2

(or h0 in combination with either k = 1 or k = 2) into Equations (22) and (23), and then converting hopt

into dimensional form by means of Equation (1) to yield:

QFopt pi`mqQ pmq ` a1,k1 ¨
ϑh

ϑsk1
¨

”

QFk1 pi`mq -QFk1

ı

` b1,k2 ¨
ϑh

ϑsk2
¨

”

QFk2 pi`mq -QFk2

ı

(24)

with variance: σF2
k “ σ

2
1,2 ¨ ϑ

2
h of the forecast error ek1,k2 “ εk1,k2 ¨ ϑh where indices k identify model

types. If the error pdf is Gaussian (as should be checked), then probabilities of any range can easily
be obtained from mean and standard deviation. If the pdf is non-Gaussian, its empirical distribution
may be found by ranking data from the lowest value with rank n = 1 to the highest value with
rank n = nmax, and assigning an empirical probability function n/(nmax + 1) to the data of rank n.
Alternatively, a transformation can be introduced that converts error data into Gaussian distributions,
as was outlined in Section 2.4.2 for a Weibull distribution. For Gaussian distributions the distribution
is fully specified by mean and variance of the data. From Gaussian exceedance probabilities these
pdfs are re-transformed into original data space to obtain upper bounds, for example upper bounds
for 80% of all errors.

2.6. Criterion for Forecast Quality

As measure of forecast error bands we use standard deviations σFk pmq of forecast pdfs.
Additionally needed is a measure of forecast quality. A meaningful index is obtained from the
persistence assumption, Q(i+m) = Q(i), which uses the fact that during a forecast, the present day
value is always known and can be included as a special model case (as “benchmark” model, [36]). It
leads to variance σF2

0, and to persistence index PI of Kitanides and Bras [39], defined as:

PIpmq “ 1´
řnmax

i rQFk pi`mq ´Q pi`mqs
řnmax

i rQ piq ´Q pi`mqs
“ 1´

σF2
kpmq

σF2
0pmq

(25)

For a perfect forecast error variance σF2
k is zero, and PI is 1. PI is 0 if assuming persistence is

just as good as, and is negative, if not better than the forecasting model. By using h0 as reference,
a forecaster has improved his forecasts as compared to that of the no data case (i.e., using the

Nash-Sutcliffe index) by reducing the forecast error variance by a factor of:
σF2

0
ϑ2

h
“ 1´ h ¨ h0

2
.
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3. Application to Forecast Data for Mekong River

In order to illustrate the concepts of Section 2, data obtained from three models for forecasting
Mekong River flows for the middle reach of the Mekong River (see Figure 1) were used. Two data
based models, using very different model structures, are taken from Shahzad and Plate, [3]. Here, we
add a third model, the persistence model, which is called model 0. Models 1 and 2 were developed
by Shahzad [47] using records of daily discharges Qj(i+m) from seven gaging stations j (shown in
Figure 1) and rainfall sums for each day i from 37 rainfall stations, which were available for 15 years
from 1991 to 2005. Approximate flow times between gages are one or two days. First a basic flow
network was set up, which connects all gages j. An algorithm based on the continuity equation was
developed [3], which allows the routing of area averaged contributions from the subareas between
adjacent stations to reference station 0, where forecasts for up to m = 5 days were made. It is used for
both models, which were calibrated using the same observed discharge differences between adjacent
upstream gages. The difference between models 1 and 2 lies in their different forecast sub-models
for the sub-areas between gages. Model 1 of Shahzad and Plate [3] is a typical time series model.
Discharge increments for each sub-area are forecast by regression analysis with known increments
of the past. Model 2 is a unit hydrograph rainfall-runoff model for the discharge increments due to
runoff from the sub-areas between gages. A special feature of model 2 is the seasonally varying
adjustment factor KN, which converts rainfall into effective precipitation. For details, paper [3]
should be consulted.
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Figure 1. Middle reach of the Mekong, showing gaging stations (with permission of Mekong
River Commission).

During calibration empirical parameters of both models were fitted to minimize variances of
calibration errors e = Q(i+m) ´ QF(i+m), assuming Q(i+m) given (from historical data) and QF(i+m)
the result of model calculation. In forecast applications, the situation is reversed, forecast QF(i+m) is
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given, and Q(i+m) is estimated by means of its conditional pdf. The purpose of the present study is to
investigate this reverse process and to study effects of various error correction routines. The models
originally were applied to all seven stations along the middle Mekong River [3]. In the following,
data and model outputs for station Stung Treng, located at the end of the middle reach of the Mekong
shown in Figure 1, are used as a reference station, (identified as station j = 0) for illustrating the error
analysis of Section 2. For this station, error statistics for all years, from 1991 to 2000, are derived for
each forecast time of m days. For illustrations, discharge forecasts for three days ahead for year 1997
at station Stung Treng are used.

3.1. Application of Models 0, Model 1 and Model 0,1

Results from the analysis of errors for all models involving regressions (model 0, model 1 and
model 0,1) are summarized in Table 1. Parameters for models listed in Table 1 were calculated from
dimensionless discharge data for station Stung Treng for 1991 to 2000. Forecasts QFk(i+m) according
to model k were obtained, which yield errors ek. Combinations of models are denoted by index k1,k2.
Typical results for forecasts by means of model 1 are shown in Figure 2 for m = 3. Top curves are
observed and forecast seasonal discharges, and bottom curves conditional forecast errors: e1 for single
model dependency on model 1, e0 shows single model dependency on the persistence model, and
e1,0 two model dependency on optimum combination of model 1 and persistence model. Included in
Table 1, column 11 is the skew coefficient of the pdf of QF0,1(i+m), and the last column, 12. The skew
coefficient is needed for Weibull fitting (see Appendix).

Table 1. Results from combinations of model 1 and persistence model 0. Column 7 lists standard
deviations of calibration error e = Q(i+m) ´ QF1(i+m), columns 2, 3 and 4 show correlation coefficients
for all error equations, column 5 and 6 are parameters for Equation (15). All standard deviations (std)
are in m³/s.

m h ¨ ho h ¨ s1 h0 ¨ s1 a1,0 b1,0
std

skew PIopte e0 e1 e1,0

1 0.991 0.996 0.996 1.157 ´0.162 1299 1886 1299 1284 0.602 0.54
2 0.971 0.986 0.988 1.110 ´0.126 2349 3350 2346 2330 0.602 0.52
3 0.946 0.969 0.981 1.096 ´0.129 3450 4547 3447 3429 0.568 0.43
4 0.919 0.949 0.973 1.045 ´0.099 4418 5533 4415 4404 0.517 0.37
5 0.891 0.926 0.965 0.971 ´0.048 5266 6355 5260 5258 0.462 0.32
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Figure 2. Forecast results for m = 3 days with model 0 and model 1 for Stung Treng in 1997.

The resulting forecast hydrograph QF1(i+m) has a shape very similar to that of model 0, as
illustrated by means of the two error hydrographs in Figure 2. In both figures, substantial forecast
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errors are observed, in particular for longer forecast times, and for times with large discharge changes
over short times, where model outputs always lag behind observed hydrographs. Outputs of model
1 and of the combination of model 1 and model 0 (model 0,1, not shown) are practically identical, as
seen from comparing columns 9 and 10. The reason for this behavior is that both model 1 and model
0 are regression models, and reduce errors in the same way. However, model 1 shaves off some part
of the error peaks of the persistence model 0. This, perhaps, is not so evident in Figure 2, but it is
documented in the reduction of the standard deviation listed in Table 1, where model averages over
all 10 years of records are shown. The standard deviation of error e1 relative to standard deviation
of model 0 error e0 is about 68% for m = 2, 76% for m = 3, and 82% for m = 5, leading to persistence
indices PI of about 0.3 for m = 5 and of about 0.4 for m = 3.

3.2. Application of Model 2

Two different types of model 2 of Shahzad and Plate [3] are important: model 2.1, which is used
to calibrate model 2 with historical input and output data, and model 2.3, which uses the parameters
of model 2.1, but with rainfall forecasts (applying the rainfall persistence assumption P(i+r) = P(i),
(r = 1,2 . . . m) as rainfall forecast model).

Consider first, application of model 2.3 and the combination of model 0 and model 2.3, yielding
forecasts QF2.3,0(i+m). Typical results are shown in Figure 3 for m = 3 for 1997 at gage Stung Treng.
By comparing columns 7 and 9 in Table 2 we notice first that standard deviations of calibration errors
e are almost the same as conditional forecast errors e2.3, as was also observed in other cases by
Todini [48]. In the forecast-hydrograph strong oscillations of QF2.3(i+m) are noted, which are caused
by the strong variation of rainfall from day to day. Due to the persistence assumption for rainfall
estimation the daily variation of rainfall is fully preserved. The oscillations could be reduced if the
rainfall input was smoothed over some time period, i.e., by taking the average of the last three or
four days. Such a smoothing filter leads to a reduction of the variance, but also to larger time lags for
all stations and all times.
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Figure 3. Forecast results for 3 days with model 2.3 and linear combination of model 2.3 with model
0 for Stung Treng in 1997. Additionally shown is the forecast of model 2.1.

It is evident that inclusion of model 0 in the combined forecasts of model 2.3 and 0 also has such a
smoothing effect, as seen in Figure 3. Significantly smaller standard deviations of e0,2.3 as compared
with e2.3 are documented in columns 9 and 10 of Table 2. This is reflected in column 12 of Table 2,
which shows the improved persistence index for best results, corresponding to curve QF0,2.3(i+3) of
Figure 3. As comparison of column 9 and 10 shows, the combination of model 0 with model 2.3, in
the multiple regression mode, improves the standard deviation of e0,2.3 by 21 % for m = 1 and 11%
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for m = 5, yielding improvement of persistence index PI from 0.40 for m = 5 to 0.58 for m = 1 (see
column 12).

Table 2. Results from combinations of model 2.3 and persistence model. Columns 2–4 show
parameters (correlation coefficients) for all error equations, column 5 and 6 are parameters for
Equation (15). Column 7 lists standard deviations (std) of calibration error e = Q(i+m) ´ QF1(i+m).
All std are given in m³/s.

m h ¨ h0 h ¨ s2 s2 ¨ h0 a2,0 b2,0
std std std std

Skew PIopte e0 e2.3 e0, 2.3

1 0.996 0.991 0.994 0.910 0.087 1216 1886 1215 1207 0.589 0.58
2 0.988 0.971 0.973 0.809 0.183 2195 3350 2193 2108 0.569 0.58
3 0.969 0.946 0.936 0.672 0.317 3478 4547 3478 3105 0.563 0.53
4 0.939 0.918 0.891 0.587 0.395 4822 5533 4809 4100 0.553 0.45
5 0.907 0.891 0.846 0.541 0.433 5956 6355 5879 4913 0.548 0.40

An advantage of Bayesian analysis for model class 1 type 2 is the separation of model
uncertainty of the hydrological model from the uncertainty of the rainfall forecast model, as outlined
in Section 2.3.4. Evidently, the difference in discharge forecasts from the two versions of model 2 is
attributable to rainfall forecast inaccuracy. The best forecast with model class 2 is obtained with
historical rainfall (model 2.1) in combination with forecast from model 1. An analysis of this case
shows that the rainfall-runoff model 2.1 with inclusion of model 1 (column 4 of Table 3) is practically
the same, with and without model 1 (column 3 of Table 3). Therefore, we use the standard deviations
of column 4 as the best model with rainfall known. According to Section 2.3.4, the dimensional
variance for model 2.1 is σF2

2.1 “ σ2
2.1 ¨ ϑ2

h and that for the case with rainfall forecast model 2.3 is
σF2

2. “ σ
2
2.3 ¨ ϑ

2
h “ pa

2
2 ¨σ

12
2,1`σ

2
02q ¨ ϑ

2
h with standard deviations σ2.3 of column 6, and σ2.1 of column 3.

Fractions of variances σF2
02{σF2

1,2.3 attributable to rainfall forecast inaccuracy are summarized in
column 7 of Table 3. Errors due to rainfall forecast uncertainty are rapidly increasing with increased
forecast time, reaching more than 50% for m = 5, indicating the need for improved rainfall forecasts
for larger m, while the model error dominates short times m.

Table 3. Effect of rainfall forecast on forecast accuracy for combinations of model class 2
type 2.1 and 2.3.

m S2¨h
Standard Deviations for Different Model Combinations in m³/s Fraction of

Rainfall
Uncertainty

Persistence
Model 0 Model 2.1 Combination Model

1 and Model 2.1 Model 2.3 Combination Model
1 and Model 2.3

1 0.991 1886 1187 1186 1215 1214 0.061
2 0.971 3350 1942 1927 2193 2051 0.155
3 0.946 4550 2517 2498 3478 2951 0.349
4 0.918 5533 3002 2989 4809 3846 0.487
5 0.891 6355 3398 3391 5879 4638 0.574

3.3. Application of Model 1 and Model 2 in Combination

The success of combining model 2 type 3 and model 0 suggests using model 1 instead of model
0 as part of a class 2 model, because model 1 and model 0 are both regression models, and model 1
actually is an improved version of model 0. Let this combination be called model 3, with index 1,2.3.
Table 3 is a summary of model 3 parameters and standard deviations. It had already been suggested
in [3] to use such a combination, and the generalization used here is a logical extension of class 2 error
analysis, as it results in weighted averages of both models. The weights are listed in column 5 and 6
of Table 4, with a1,2 the weight given to model 1, and b1,2 the weight for model 2. Weights are seen to
shift with increase of m from 0.66 for model 2 type 3 for m = 1 to 0.39 for m = 5.
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Table 4. Results from combinations of model 2 and model l. Columns 2, 3, and 4 show parameters
(correlation coefficients) for all error equations, column 5 and 6 are parameters for Equations (7) and
(8). All std in m³/s.

m h ¨ s1 h ¨ s2 s1 ¨ s2 a1,2 b1,2
std

Skew PIopte1 e2.3 e1,2.3

1 0.996 0.996 0.998 0.334 0.662 1299 1215 1214 0.596 0.59
2 0.988 0.986 0.989 0.579 0.413 2346 2194 2051 0.584 0.63

2W 0.987 0.989 0.991 0.398 0.595 - - 2023 0.572
3 0.969 0.969 0.965 0.501 0.485 3447 3479 2951 0.563 0.58
4 0.949 0.939 0.930 0.558 0.420 4415 4806 3846 0.529 0.52
5 0.926 0.907 0.893 0.574 0.394 5260 5880 4638 0.496 0.47

5W 0.937 0.926 0.918 0.550 0.421 - - 4623 - 0.47

Lines 2W and 5W of Table 4 are results from using linear multiple regression of variables w
obtained from transforming originally Weibull distributed data into normal. The method described
in Section 2.4.3 is applied to the combination of model 1 and model 2.3. A very small improvement
of about 1% in variance reduction was obtained, so small that it does not seem to justify the
effort of conversion into normal variables, in particular since no theoretical reason can be given
why linear regressions among transformed variables is better than linear regressions among the
original variables.

Typical results illustrating model 3 outputs are shown in Figure 4. Bottom curves are conditional
forecast errors: e1 for single model dependency on model 1, e2.3 shows single model dependency
on model 2.3, and e1,2.3 two model dependency on the optimum combination 1,2.3 of model 1 and
model 2.3. The results of column 12, with PI values roughly decreasing from 0.6 for small m to 0.47
for m = 5 are the best results obtainable with the present set of models.Water 2015, 7 21 
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Figure 4. Forecast results for m = 3 days showing model 1, model 2 type 3, and linear combination of
the two models to yield model 1,2.3 for Stung Treng in 1997.

3.4. Probability Densities of Final Errors

Probability densities were found by first normalizing all errors by division through their
standard deviation. Their mean was zero in all cases. Then the data were ordered in classes of width
0.5 times standard deviation, relative numbers of values found per class were used as estimators
for class probability, and empirical pdfs determined by drawing smooth curves through normalized
relative magnitudes.

Results for all three optimum types considered in Section 3.1 to Section 3.3 are shown in Figure 5.
All data yield shapes distinctly different from normal distributions, also shown in the figures. They
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are much more concentrated around the center—showing a large proportion of small errors—and
are somewhat skewed. Their skew coefficients are listed in columns 11 of Tables 1, 2 and 4. All
hydrographs from model 2 show (see Figures 3 and 4) that the largest errors occur due to rapid
changes in rainfall input, which is not forecasted by the rainfall model.
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Figure 5. Probability densities of errors for cases of model combinations. (a) pdf of error e1,0; (b) pdf
of error e2.3,0; (c) pdf of error e1,2.3.

It is a special characteristic of the hydrological regime of the middle Mekong that these changes
are difficult to anticipate. Rainfall maxima typically are generated by typhoons moving in from the
South China Sea and occur almost simultaneously over large stretches along the Annamite (Truong
Son) mountains, which form the boundary between Laos and Vietnam. The catchment characteristic
of the middle Mekong are such that, instead of spreading the runoff from these rainfall extrema over
time, they are superimposed and lead to large discharge peaks at downstream stations on the middle
Mekong. The analysis of the final errors does not consider the heteroscedasticity of the error. Since
critical forecasts are associated with strong jumps in the hydrograph, where unfortunately errors
are largest, tail ends of distributions are of special significance. It is evident that probabilities for
errors larger than two standard deviations are larger than normal. This must be taken into account if
weighted decisions based on these tails are to be made.

4. Summary and Conclusions

In this paper, we looked at possible forecast improvements by means of combining two different
models. We start with given forecast models, which are supposed to have been developed in a design
phase. As an example, we use results from the Mekong River, i.e., the models of Shahzad and
Plate [3], as optimum models. Parameters for the models had been optimized by means of historical
data as part of design. The parameters are kept constant during forecast.

Due to scarcity of rainfall stations and/or model simplicity, models used for the Mekong River
suffer from large inherent uncertainty—the error analysis showed that there is much room for model
improvement, in particular if the rainfall forecast could be improved. Under any circumstances one
must live with the system error eMk (i+m). It sets the limit of forecast quality. It can be reduced
only if model or data base, or both, are improved. For a regression model without forecasted
components, such as our model 1, error eMk (i+m) statistics are the same as forecast error eFk(i+m)
statistics. For rainfall-runoff models, eMk(i+m) and eFk(i+m) are different: the former obtained with
historical forecasts, the latter with forecasts based on rainfall forecast modeling, in our case assuming
persistence of rainfall. The variance of eMk(i+m) must be used as reference against which to measure
forecast error eFk(i+m), which is obtained in the operational or forecast mode as combination of
system error and error due to imperfect forecast of input data. If the difference in the two errors
for a given situation is small, then an effort in obtaining better forecast input data offers no big
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advantage, and the primary effort should be directed to improve the model and/or its parameters.
If the difference is large, a major effort is needed for improving the forecast of the input data. The
large differences of the outputs of models 2.1 (yielding eMk(i+m)) and model 2.3 (yielding eFk(i+m))
indicate that much could be gained for forecasts with the simple unit hydrograph model 2 if better
rainfall forecasts were available.

The error analysis proceeds along concepts developed by Krzysztofowicz. Operational forecasts
are identified as depending on the set of conditions existing at the time of forecasting, such as
discharge or rainfall data at time i. This concept permits to combine contributions of different models
in a logical and systematic fashion. We used three models: the simple persistence model 0 (assuming
QF(i+m) =Q(i)), model 1, which is a regression model based on regressing discharge QF(i+m) on
inputs from upstream reaches, and model 2, which is a rainfall-runoff model. Results of the error
analysis showed that the best results were obtained by means of model 2.3 combined with model
1. The original data are well fitted by Weibull distributions, but no advantage was found from
converting these data into normally distributed data, which after conversion are linearly correlated,
as had been suggested by Krzysztorowicz [1].

An interesting observation is that the contribution of h0 to the forecast pdf is much smaller for
model 1 than for model 2, although from a direct comparison it would seem that the larger uncertainty
of model 1 would make it more likely that a contribution of h0 would matter. The reason for this
behavior is that model 1 is a regression model, and the forecast for model 1 is more likely than model
2 to be comparable to the forecast from the persistence model, which also is a (rather elementary)
regression model. Therefore one may conclude that the regression property of model 0 is already
included in the general regression model, so that h0 can make only a small contribution to the forecast
by means of model 1. On the other hand, model 2 does not have a regression component. Therefore,
model 0 complements the forecast from the rainfall-runoff model. This may imply that the use of a
rainfall-runoff model profits more from the inclusion of h0-dependency than a regression model.
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Appendix

A Method of Fitting Weibull Distributions to Data

Krzysztofowicz and his students [1,43,45] recommend use of 3-parameter Weibull distribution
functions Fx with pdf fx for variables h, h0 and s1, which may be written (for any variable x):

Fx px,α,β, x0q “ 1´ exp
"

´

ˆ

x´ x0

β

˙α*

fx px,α,β, x0q “
α

βα
px´ x0q

α´1 exp
"

´

ˆ

x´ x0

β

˙α* (A1)

For determination of parameters α, β and x0 three statistical parameters, mean, variance and
skew coefficient are needed. Mean and variance of variables h, s1, and h0 are 0 and 1, respectively,
and skew coefficients Csx “ M3{M

3{2
2 (where M3 is the third central moment and M2 the variance of

variable x) can be calculated from data. Relationships between statistical moments and parameters
of the Weibull distribution consist of functions of Gamma functions and cannot be solved explicitly.
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A semi-graphic method was developed in Plate [44] which is based on the fact that parameter α of
Equation (A-1) depends on Csx only. Pairs of corresponding values of α and Csx are tabulated, and a
universal diagram showing pµth{βq

α and σ{µth as functions of 1/α is given in [44]. With α known,
the two parameters β and µth “ x ´ x0 are determined from the universal diagram. With these
parameter Fx px,α,β, x0q is calculated, and by setting Fx px,α,β, x0q “ N

` .
x,µx,σx

˘

normal variables
.
x with mean µx and variance σ2

x of the untransformed variable x are obtained.
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