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And a question requires doubt." 
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Abstract 

The synthesis of sequence-defined macromolecules is inspired by highly-defined 

biomacromolecules like DNA and peptides. The high degree of definition allows complex 

processes like DNA replication or enzyme-catalyzed reactions to proceed, which 

explains the fascination behind sequence-defined macromolecules. However, the 

synthesis of defined structures was restricted to control over polymer architectures and 

molecular weights for a long time. The synthesis of defined monomer sequences, in 

contrast, was limited to chemical DNA- and peptide synthesis. In this thesis, the 

investigation of three novel approaches towards the synthesis of sequence-defined 

macromolecules are described. Therefore, isocyanide-based multicomponent reactions 

were employed due to their versatility. Furthermore, they provide the possibility to simply 

introduce tailored side chains to the sequence-defined materials. First, a protecting 

group-free approach was investigated, making use of the Passerini and the Ugi reaction. 

Hereby, sequence-defined tetramers and pentamers were synthesized in good overall 

yields and high purity. Interestingly, each P-3CR allowed the introduction of a tailored 

side chain, whereas the U-4CR allows the introduction of two tailored side chains per 

monomer unit. Moreover, the synthesis protocol was transferred to a polymeric support, 

benefitting from an easier purification of the products by simple precipitation. Secondly, 

a benzylester-protected isocyanide monomer was prepared and employed in the 

synthesis of a sequence-defined decamer by the iteration of the Passerini reaction and a 

subsequent deprotection step. Here, the yield of each step was above 90 % and a 

quantity of more than two grams of the decamer was obtained. Additionally, in each 

Passerini reaction, a tailored side chain was incorporated. The introduction of a double 

bond in the tenth repeating unit, enabled the sequence-defined decamer to be dimerized 

by a self-metathesis reaction, resulting in a sequence-defined icosamer with 20 tailored 

side chains. Finally, a convergent synthesis approach towards sequence-defined 

macromolecules was investigated by combination of multicomponent reactions and 

thiolactone chemistry. Therefore, a set of sequence-defined trimers with a terminal 

double bond and a thiolactone-moiety were prepared and subsequently ring-opened by 

aminolysis. Thereby, a thiol-functionality is liberated, which was reacted in the same pot 

with an isocyanide-containing acrylate in a Thia-Michael addition. In this way tetrameric 
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isocyanide building blocks with terminal double bonds were obtained. The isocyanide 

building block was subsequently coupled to a carboxylic acid trimer in a Passerini 

reaction resulting in a sequence-defined octamer. Attractively, the sequence-defined 

octamer bears a terminal double bond, which can subsequently be functionalized in a 

Thiol-Ene addition. The use of 3-mercaptopropionic acid as thiol-compound, allows the 

subsequent coupling with another isocyanide building block in a Passerini reaction and 

thus, the iteration of the cycle and the synthesis of larger macromolecules. All in all, 

different approaches towards sequence-defined macromolecules by the use of 

isocyanide-based multicomponent reactions were investigated and macromolecules of 

up to 20 monomer units were synthesized. Moreover, all obtained products were 

thoroughly characterized by NMR, GPC, mass spectrometry and infrared spectroscopy. 
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Zusammenfassung 

Die Synthese sequenzdefinierter Makromoleküle ist von hochdefinierten, in der Natur 

vorkommenden Polymeren wie DNA oder Peptide inspiriert. Die perfekt definierte 

Primärstruktur dieser Makromoleküle erlaubt hochkomplexe und raffinierte Prozesse wie 

die Replikation von DNA oder enzymkatalysierte Reaktionen, was die Faszination für 

sequenzdefinierte synthetische Polymere hervorruft. Jedoch beschränkte sich die 

Synthese von definierten Polymeren lange Zeit darauf, Polymerarchitekturen gezielt 

aufzubauen und dabei das Molekulargewicht der Polymere genau einzustellen. Die 

Synthese definierter Monomerabfolgen in Makromolekülen hingegen, war lange Zeit auf 

die chemische Synthese von Biopolymeren wie DNA und Peptide beschränkt. In der 

vorliegenden Arbeit wurden drei unterschiedliche Ansätze zur Synthese 

sequenzdefinierter, synthetischer Makromoleküle untersucht und dabei zwei 

unterschiedliche, isocyanid-basierte Multikomponentenreaktionen verwendet. 

Multikomponentenreaktionen bieten vielerlei Vorteile: sie profitieren von der Vielseitigkeit 

der einsetzbaren Reaktanden, sie können im Gramm-Maßstab durchgeführt werden und 

sie erlauben zusätzlich das Einführen von maßgeschneiderten Seitenkennten in jeder 

Monomereinheit. Zuerst wurde ein Ansatz untersucht, der die Synthese von 

Makromolekülen mit definierter Sequenz in Abwesenheit von Schutzgruppen ermöglicht. 

Mithilfe der Passerini-Reaktion wurde ein sequenzdefiniertes Tetramer hergestellt und 

das Syntheseprotokoll wurde darüber hinaus an einem löslichen polymeren Träger 

untersucht. Durch die Polymer-gestützte Synthese konnte die Aufarbeitung der Produkte 

stark vereinfacht werden und es konnte ein Pentamer-Block synthetisiert werden. Unter 

Verwendung der Ugi-Reaktion wurden ein sequenzdefiniertes Tetramer und ein 

Pentamer synthetisiert. Die Ugi-Reaktion erlaubt hierbei das Einführen von zwei 

unterschiedlichen Seitenketten pro Monomereinheit in einer einzigen 

Multikomponentenreaktion. Außerdem wurde ein Monomer mit Isocyanid- und 

Benzylester-Funktionalität hergestellt und durch die abwechselnde Durchführung einer 

Passerini-Reaktion und einer Entschützungsreaktion ein sequenzdefiniertes Decamer 

mit zehn unterschiedlichen Seitenketten synthetisiert. Die Ausbeute betrug hierbei in 

jedem Schritt über 90 % und es wurden über zwei Gramm des sequenzdefinierten 

Decamers erhalten. Die Einführung einer olefinischen Doppelbindung in der Seitenkette 
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der zehnten Wiederholeinheit ermöglichte die anschließende Dimerisierung durch eine 

Selbstmetathese-Reaktion. Hierbei wurde ein sequenzdefiniertes Icosamer mit 20 

maßgeschneiderten Seitenketten erhalten. Schließlich wurde die konvergente Synthese 

von sequenzdefinierten Makromolekülen unter Verwendung von Thiolactonen in 

Kombination mit Multikomponentenreaktionen untersucht. Hierfür wurde eine Reihe an 

sequenzdefinierten Trimeren mit einer terminalen Doppelbindung und einem Thiolacton 

synthetisiert. Durch Ring-Öffnung des Thiolactons wurde ein Thiol frei gesetzt, welches 

anschließend mit einem Isocyanid-funktionalisierten Acrylat in einer Thia-Michael 

Addition umgesetzt wurde. Die so erhaltenen Isocyanid-Tetramere können anschließend 

für den konvergenten Aufbau von Makromolekülen verwendet werden. Die Reaktion 

eines Carbonsäure-Trimers mit einem Isocyanid-Tetramer sowie einer Aldehyd-

Komponente ergab ein sequenzdefiniertes Octamer mit terminaler Doppelbindung. Die 

terminale Doppelbindung erlaubt die Funktionalisierung mit, z.B. 3-

Mercaptopropionsäure und dadurch die Wiederholung der Schritte und schließlich die 

Synthese größerer Makromoleküle. Zusammenfassend wurden unterschiedliche 

Ansätze zum Aufbau sequenzdefinierter Makromoleküle untersucht und Makromoleküle 

mit bis zu einer Kettenlänge von 20 synthetisiert. Darüber hinaus wurden alle erhaltenen 

Produkte sorgfältig mittels NMR, GPC, Massenspektrometrie und Infrarotspektroskopie 

charakterisiert. 
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1 Introduction 

Nature plays a role model in the field of sequence control, since it developed complex 

biosynthetic procedures in its evolutionary process that allow the synthesis of perfectly 

defined macromolecules.[1] Processes like the amplification of genetic material by the 

polymerase chain reaction display fascinatingly the high sophistication of the biological 

machinery. Moreover, the formation of three-dimensional structures, such as the DNA 

double helix by Watson-Crick base-pairing or the precise conformation of enzymes 

enabling the catalytic reaction of specific substrates, emphasize the importance of 

sequence definition in biopolymers.[2-3] A major breakthrough in the chemical synthesis 

of sequence-defined macromolecules was the development of the solid phase peptide 

synthesis in 1963.[4] The importance of the invention of the solid phase peptide synthesis 

was emphasized by the Nobel Prize, awarded in 1984.[4-5] On the other hand, sequence 

control in synthetic polymer chemistry was an unsolved problem for a long time, and 

sequence-control was even named the "holy grail" of polymer science.[6] Although 

synthetic polymer chemists developed powerful methods for the synthesis of defined 

macromolecular architectures along with the precise synthesis of polymers with narrow 

molecular weight distributions, especially by using controlled radical polymerization 

techniques, the synthesis of defined sequences remained an unsolved problem.[7-11] 

However, a large variety of novel approaches were developed in order to narrow the gap 

between the biosynthesis and the chemical synthesis of sequence-defined polymers.[12] 

One impressive synthetic example, resembling natural processes, is the enzyme-free 

translation of DNA into non-natural polymers, developed by Liu and coworkers in 

2013.[13] Moreover, numerous other interesting approaches, which are for instance 

based on templates, step-growth and chain growth reactions are described.[12, 14-16] 

Recently, ever more research groups turn their attention to the synthesis of sequence-

controlled and sequence-defined polymers. This is certainly correlated with the 

numerous envisioned applications for these novel materials. Sequence-defined 

polymers can be used to fine-tune material properties and to design smart materials.[17-

18] Moreover, the design of highly sophisticated catalysts or even artificial enzymes 

seems possible. Alternatively, the use as molecular bar codes for product identification 

is discussed due to worldwide increased product piracy.[19] Interestingly, the application 
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in the field of data storage is most frequently discussed because the storage density 

could be drastically increased if information could be stored on a molecular level.[20] 

Furthermore, the chemical diversity allows the use of numerous different monomers, 

resulting in immense storage capacity.[19] However, only efficient read-out techniques 

allow the storage of data on molecules, and to date mostly tandem MS/MS techniques 

are employed therefore, which is nowadays only feasible for experts. [21] Another 

important issue when discussing applications of materials is scalability. Many 

approaches towards sequence-defined polymers lack the possibility of large scale 

synthesis of the materials, which is without a doubt necessary for certain applications. 

Therefore, efficient approaches allowing the synthesis of sequence-defined 

macromolecules on a larger scale and in high purity are of great importance. In this 

thesis, novel approaches towards sequence-defined macromolecules by the use of 

isocyanide-based multicomponent reactions are investigated. Multicomponent reactions 

have the inherent advantage of simple reaction protocols, high yields and high atom 

economy.[22] Moreover, a large chemical diversity can simply be reached by the variance 

of the employed components.[23-24] The reactions are scalable and most of the employed 

components are commercially available.[22] Owing to the simple reaction protocol, the 

scalability, the high yields and the easily obtainable structural diversity, multicomponent 

reactions are highly attractive for the efficient synthesis of sequence-defined 

macromolecules. 
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2 Theoretical Background and State of the Art 

2.1 Multicomponent Reactions 

Multicomponent reactions (MCRs) are reactions where three or more components react 

in one-pot to form complex products, into which most atoms of the reactants are 

incorporated.[25-26] Some of the key features of MCRs are the high atom-efficiency, the 

formation of many covalent bonds in one reaction and the convergent character of the 

reactions.[26] Due to the use of readily available starting materials, simple procedures, 

environmentally friendly components, high atom economy and high yields, MCRs can be 

regarded as "ideal reactions" in the concept of Wender et al.[27] The convergent 

character should however be considered as one of the main advantages of MCRs, 

because the synthesis of complex architectures in one-pot is rendered possible without 

time consuming purification steps of intermediates. Additionally, multicomponent 

reactions are used in combinatorial chemistry, because of the easy synthesis of 

substance libraries by simple variation of the different components in the MCR.[25] In 

general, MCRs can be differentiated depending on their basic reaction mechanism 

(Figure 1).[25]  

 

Figure 1: The three basic types of MCRs: type I describes reactions in which all steps are 
reversible, type II describes reactions with an irreversible last step and type III describes 
reactions in which each step is irreversible.[25] 

In type I MCRs, all reactions steps are reversible leading to low yields, depending on the 

individual equilibrium constants. Type II MCRs have an irreversible last step, which is 

favorable in terms of the obtainable yields, since the overall equilibrium is shifted 
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towards product formation. The ideal case are type III MCRs, in which each individual 

step is irreversible. However, type III reactions are very rare in preparative chemistry, 

but some biochemical reactions in nature can be grouped into this category.[25] It has to 

be noted that this classification is not strict and that the transitions between the different 

types are fluent. 

The Strecker three-component reaction (S-3CR), discovered in 1850, is said to be the 

first known multicomponent reaction and is an example for type I MCRs.[25, 28] In the  

S-3CR, an aldehyde is reacted with hydrogen cyanide and ammonia to form  

α-aminonitriles, which can subsequently be hydrolyzed in acidic media to obtain racemic 

mixtures of the corresponding amino acids (Figure 2).[28] Nowadays, also many 

asymmetric and asymmetric catalytic variants of the S-3CR are reported enabling the 

synthesis of enantiopure amino acids.[29-30] In 1882, Hantzsch reported on a four-

component reaction (H-4CR) between two equivalents of a β-ketoester, ammonia and 

an aldehyde to obtain dihydropyrimidines, which can be converted to the corresponding 

pyridines by oxidation (Figure 2).[31] The discovery of this simple, one-step 

dihydropyrimidine synthesis route enabled the development of Nifedipin, a commercially 

available drug, which is employed in the treatment of angina and cardiovascular 

deceases.[25] In 1890, another historically important MCR, the Hantzsch pyrrole 

synthesis (H-3CR), was reported.[32] Therein, a β-ketoester reacts with ammonia and  

α-haloketones to the corresponding pyrrole-derivative (Figure 2).[32] Interestingly, 

pyrrole-derivatives show advantageous physiological and biological properties, such as 

antimalarial activity.[33-34] In 1891, Biginelli reported on the synthesis of 3,4-dihydro-2(H)-

pyrimidinone-compounds, which are the aza-analogues of Hanztsch's 

dihydropyridines.[35] In the Biginelli reaction (B-3CR), an aldehyde component is 

condensed with urea and the formed imine reacts subsequently with a β-ketoester. After 

intramolecular condensation with the second urea-amine function, the 

dihydropyrimidinones are obtained (Figure 2).[35] The products of Biginelli reactions are 

pharmacologically interesting, for instance as calcium channel blockers or as antitumor-

agents.[36-37] Another historically important MCR is the Mannich three-component 

reaction (M-3CR) of formaldehyde, amines and an oxo-component (aldehydes or 

ketones) (Figure 2).[38]  
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Figure 2: Some historically important MCRs in chronologic order. [25, 28, 31-32, 35, 38] 

Here, formaldehyde and the amine are condensed to the corresponding iminium-ion, 

which is subsequently attacked by the oxo-component (enol) and the β-aminocarbonyl is 

formed.[38] In general, the Mannich reaction can be considered as an aminoalkylation of 

ketones or aldehydes and is often used in alkaloid syntheses, for instance for the 

synthesis of tropinone.[39] 
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In 1952, Kabachnik1 and Fields reported independently on a novel multicomponent 

reaction of aldehydes or ketones, amines and dialkylphosphates.[40] The Kabachnik-

Fields reaction is also based on the formation of the imine, which then reacts with 

alkylphosphates to form aminophosphonates (Figure 3).[40] 

 

Figure 3: The Kabachnik-Fields reaction of amines, aldehydes or ketones and dialkylphosphates 
yielding aminophosphonates.[40] 

The so far discussed MCRs are non-isocyanide-based MCRs, however, there are two 

more important subclasses of MCRs: metal-catalyzed MCRs and the isocyanide-based 

MCRs (IMCRs).[41] Before discussing in detail the IMCRs in the following chapter, some 

metal-catalyzed MCRs are introduced. 

In synthetic organic chemistry, the Pauson-Khand reaction is a valuable tool to 

synthesize substituted cyclopentenones, which are useful precursors in the synthesis of 

prostaglandins.[42-43] The Pauson-Khand reaction is a [2+2+1]-cycloaddition of an alkyne 

with an alkene and carbon monoxide, which is catalyzed by transition metal complexes, 

mostly dicobalt octacarbonyl.[44] Back in 1977, the transition metal complex was required 

in stoichiometric amounts. However, the high synthetic potential of the reaction 

motivated many groups to develop catalytic variants.[42] Nowadays, there are many 

catalytic as well as enantioselective variants reported.[42, 45] The works of Reppe and 

Roelen describe the hydrocarboxylation of alkynes and the hydroformylation of alkenes, 

respectively. Both of them are nowadays industrially important processes. [46-47] A more 

modern metal catalyzed MCR is the three-component reaction between alkynes, amines 

and aldehydes (A3-coupling) to synthesize propargyl amines.[41, 48-49] The three-

component reaction was reported by Li et al. in 2004 and is catalyzed by copper, iridium 

or gold-complexes. Recently, also the use of rhodium was investigated.[48-49] The Cu(I)-

                                            
1
 The publication of Kabachnik is written in Cyrillic, therefore no citation can be given. Since the reaction is 

named after both authors, Kabachnik is mentioned here as well. 
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catalyzed three-component reaction between nucleophiles, alkynes and sulfonyl azides 

(CuMCR) to yield amidines was reported in 2005 by Chang et al.[41, 50] Another five-

component reaction was lately reported by Orru et al. describing the synthesis of pyrido-

pyrimidones, which are biologically and pharmacologically interesting compounds.[51] 

These recent examples show that the field of MCRs, though its history started already in 

1850, is a developing and modern research area and that the potential of MCRs is still 

not fully exploited. 

2.1.1 Isocyanide-based Multicomponent Reactions 

The class of isocyanide-based MCRs is a very important subclass in the field of 

multicomponent reactions, due to the interesting reactivity of isocyanides. The intrinsic 

reactivity of isocyanides, their synthesis and properties will be discussed in the next 

chapter, before the Passerini three-component reaction (P-3CR) and the Ugi four-

component reaction (U-4CR), which are the most popular examples, will be introduced. 

2.1.1.1  Isocyanides (Isonitriles) 

Isocyanides, also named isonitriles, are characterized by the reactivity of the formally 

divalent carbon atom. Besides isocyanides, only carbon monoxide and carbenes exhibit 

stable divalent carbon atoms.[25] Figure 4 shows two resonance structures of 

isocyanides, explaining their extraordinary reactivity. Beside the carbene-like reactivity, 

the negatively charged carbon in the zwitterionic resonance structure is able to react as 

nucleophile and upon the nucleophilic attack, it becomes an electrophile, enabling a 

nucleophilic attack at the same carbon atom. This process is referred to as α-addition. 

 

Figure 4: The two resonance structures of isocyanides, including the carbene- and the 
zwitterionic-structure. 

The chemistry of isocyanides is further based on the α-acidity and the easy formation of 

radicals.[25] The α-acidity can be explained by the positively charged nitrogen atom in the 

zwitterionic resonance structure and it can be increased by electron withdrawing 

substituents in α-position.[25] Due to this remarkable reactivity, isocyanides are valuable 



Theoretical Background and State of the Art 

 

8 

reagents in heterocycle synthesis, for instance the synthesis of oxazoles or 

imidazoles.[52-54] Furthermore, isocyanides are applied in steroid-synthesis, such as the 

one of Progesterone.[55] Additionally, isocyanides can be polymerized easily by initiation 

with Brønstedt or Lewis acids, or by decomposition of metallo-isocyanide-complexes.[56-

57] Isocyanides are very stable in basic media, but tend to hydrolyze in acidic media. 

Moreover, volatile isocyanides have an unpleasant odor, which is decreasing with 

increasing molecular weight.[25, 58] 

Naturally occurring isocyanides are grouped into terrestrial isocyanides, which are amino 

acid-derived and the larger group of marine isocyanides, which are terpene-based.[59-60] 

Many of the isolated natural isocyanides show antibiotic and/or fungicidal effects.[60] 

In 1859, Lieke accidentally synthesized allyl isocyanide for the first time by reacting allyl 

iodide with silver cyanide.[58] Lieke intended to synthesize allyl cyanide, however, in 

1868 Gautier proved that the isocyanide was synthesized.[61] Hydrolysis of the product 

resulted in the corresponding formamide; in the case of a nitrile, the corresponding 

carboxylic acid would have been obtained.[61] In 1867, Hofmann discovered the 

formation of isocyanides by reacting primary amines in the presence of chloroform and 

potassium hydroxide.[62-63] Almost 100 years later, Ugi reported on a novel isocyanide 

synthesis by dehydration of N-formamides using phosgene in the presence of bases, 

which is since then the method of choice in isocyanide-synthesis.[64] This novel synthesis 

method for isocyanides contributed strongly to the fast development in the field of 

IMCRs. Though phosgene is still used as dehydration agent in industrial procedures for 

economic reasons, it is replaced in synthetic laboratories by other reagents, such as 

triphosgene, diphosgene and phosphorous (V) oxychloride, due to the high toxicity of 

phosgene.[65-67] Lately, Dömling et al. discovered the Leuckart-Wallach reaction as 

valuable tool for the synthesis of N-formamides, starting from oxo-components, and 

thus, the amount of chemically accessible isocyanides is further enlarged. [68] Figure 5 

shows the isocyanide synthesis approaches proposed by Lieke, Hofmann, Ugi and 

Dömling. 
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Figure 5: The isocyanide syntheses of Lieke, Hofmann, Ugi and Dömling. The synthesis route 
proposed by Ugi via N-formamides is nowadays the method of choice.[58, 62, 64, 68] 

In order to avoid the unpleasant odor of isocyanides, Dömling et al. recently introduced a 

method for the in-situ synthesis of isocyanides from N-formamides using triphosgene as 

in-situ-dehydrating agent and applied the method for various IMCRs.[69] 

2.1.1.2  The Passerini Three-Component Reaction (P-3CR) 

The Passerini three-component reaction (P-3CR), reported in 1921, is the first known 

IMCR and describes the reaction of oxo-components (aldehydes or ketones) with 

isocyanides and carboxylic acids to yield α-acyloxy carboxamides (Figure 6).[70] The  

P-3CR is usually conducted at room temperature in aprotic solvents, like 

dichloromethane (DCM) and in high concentrations of the reactants.[71] 
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Figure 6: The Passerini three-component reaction of a carboxylic acid, an oxo-component (here 
an aldehyde) and an isocyanide yielding α-acyloxy carboxamides.[70] 

Although the reaction is known since almost 100 years, the mechanism is still not fully 

understood. One plausible mechanism of the P-3CR is shown in Figure 7.  

 

Figure 7: Mechanism of the P-3CR: activation of the oxo-component by hydrogen-bonding (1), 
α-addition of the isocyanide yielding intermediate (2), which subsequently rearranges to the α-
acyloxy carboxamide (3).[72-73] 

First, the oxo-component is activated for the α-addition of the isocyanide by hydrogen 

bonding with the carboxylic acid. In the α-addition of the isocyanide, the carbon atom of 

the isocyanide adds as a nucleophile to the activated aldehyde component, while the 

carboxylic acids adds to the same, now electrophilic, carbon atom. Intermediate (2), 

being the aza-analogue of an anhydride, undergoes an intramolecular transacylation 

and the product of the Passerini reaction (3) is obtained. Since the rearrangement is an 

ultimate, irreversible step, the P-3CR can be classified as type II MCR (compare Figure 

1). This mechanism is commonly accepted and was confirmed by kinetic investigations 
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of Baker and Ugi in 1959 and 1961, respectively.[72, 74] As already mentioned, the 

mechanism of the P-3CR is still in doubt. In 1965, Eholzer et al. proposed another 

mechanism, where the isocyanide is protonated by the carboxylic acid in a first step.[75] 

This mechanism was postulated due to their observation that the P-3CR is accelerated 

under mineral acid catalysis.[75] This observation is in agreement with a recent 

publication of Pirrung et al. reporting on accelerated Passerini reactions in water,[76] but 

is not conform with the observation of Ugi that the reaction is accelerated in unpolar, 

aprotic solvents.[77] In 2011, another mechanism was postulated which is based on 

quantum mechanical calculations in the gas phase.[78] In this postulated mechanism, the 

P-3CR is rather a four-component reaction involving two carboxylic acid molecules. 

However, the additional carboxylic acid molecule acts as a catalyst, so the P-3CR can 

be described as organo-catalyzed three-component reaction. Figure 8 shows the 

proposed mechanism of Maeda et al. involving a second carboxylic acid molecule. In the 

presented mechanism, the activation steps and the α-addition are as postulated 

previously, but the rearrangement is postulated to be acid catalyzed due to a 

significantly lower energy for the transition state (TS) involving another carboxylic acid 

molecule (4). The resulting cyclic intermediate undergoes subsequently a carboxylic acid 

catalyzed rearrangement via another four-component TS (5), to yield the product of the 

P-3CR (3).[78] Later on, DFT calculations confirmed the carboxylic acid catalyzed 

mechanism, which was postulated by Meada et al.[79] 
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Figure 8: Proposed mechanism for the P-3CR involving two molecules of the carboxylic acid. 
This mechanism was postulated based on quantum mechanical calculations in the gas phase. [78] 

Though the mechanism of the P-3CR is still in doubt, there is no doubt about the 

potential of the P-3CR in preparative chemistry. The P-3CR allows, for instance, the 

synthesis of pharmacologically interesting depsipeptides and is often applied in 

medicinal chemistry for the development of pharmaceuticals.[26, 80] Additionally, many 

variants of the P-3CR were reported, including the use of hydrazoic acid leading to 

substituted tetrazoles or the use of electron-poor phenols in Passerini-Smiles couplings 

yielding α-hydroxyamides.[25, 81] Furthermore, the P-3CR was employed in the synthesis 

of butenolides. Therefore, the P-3CR was followed by a subsequent Wittig-type 

reaction.[82] Another very interesting variation is the use of alcohols and their in-situ 

oxidation to aldehydes using 2-iodoxybenzoic acid (IBX) as oxidizing agent.[83] The use 
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of alcohols in the P-3CR is an interesting alternative in case of limited commercial 

availability or difficult synthesis and isolation of the required aldehydes. Furthermore, it 

addresses the problem of the limited shelf-life of aldehydes, which is no issue with the 

corresponding alcohols. A drawback is the use of IBX in a twofold excess, reducing the 

atom economy of the P-3CR drastically. Furthermore, IBX needs to be synthesized from 

2-iodobenzoic acid and has itself a limited shelf-life. 

In the P-3CR, a new stereocenter is formed, which cannot be influenced in conventional 

P-3CRs; thus, the products are obtained as racemic or diastereomeric mixtures. The 

stereoselctivity in the P-3CR can be influenced by the use of chiral isocyanides,[84] chiral 

carboxylic acids,[85] chiral aldehydes[86] or by the use of chiral additives (e.g. titanium 

isopropoxide and TADDOL).[87] These approaches towards stereocontrolled Passerini 

reactions are summarized in Figure 9. Another approach uses a chiral Lewis acid as 

additive, namely a tridentate bis-(oxazolinyl)pyridine (pybox)-Cu(II) complex, achieving 

high yields and impressive ee values of up to 98 %.[88]  
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Figure 9: Some examples for stereoselective P-3CRs controlled by the isocyanide, the 
carboxylic acid, chiral aldehydes or chiral additives.[84-87] 
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2.1.1.3 The Ugi Four-Component Reaction (U-4CR) 

The Ugi four-component reaction (U-4CR) was discovered by Ivar Ugi in 1959 and uses, 

in comparison to the P-3CR, as additional fourth component an amine.[89-90] The reaction 

of a carboxylic acid with an oxo-component (aldehydes or ketones), an isocyanide and 

an amine yields α-aminoacylamides, while water is released (Figure 10). Due to the use 

of an amine as fourth component, the number of accessible products is drastically 

increased and therefore, the U-4CR is an even more interesting reaction for 

combinatorial chemistry, compared to the P-3CR. Due to the formation of two amide 

bonds during the U-4CR, the products are characterized by a higher chemical stability, 

compared to the products of the P-3CR, which are sensitive to hydrolysis due to the 

ester bond. 

 

Figure 10: The Ugi four-component reaction of a carboxylic acid with an aldehyde, an isocyanide 
and an amine yielding α-aminoacylamides.[89-90] 

In the U-4CR, the amine and the aldehyde component are usually precondensed to the 

corresponding imine, and subsequently the carboxylic acid and the isocyanide are 

added.[91] The preformation of the imine usually has positive effects on the obtainable 

yields.[25] The reactions are conducted at high concentrations (0.5 - 2.0 molar) in order to 

obtain high yields and the commonly used solvent is methanol (compare Chapter 

4.1.2).[25, 91] However, also the use of other alcohols like ethanol and trifluoroethanol or 

polar aprotic solvents like dimethyl formamide (DMF), tetrahydrofuran (THF) or 

dichloromethane (DCM) were investigated.[25, 91] The use of methanol as protic, polar 

solvent and the acceleration of the reaction by Lewis acids led to the assumption of an 

ionic mechanism. The commonly accepted mechanism of the U-4CR starts with the 

imine-condensation of the oxo-component and the amine (Figure 11). The imine is 

subsequently protonated by the carboxylic acid to increase the electrophilicity and to 

facilitate the α-addition of the isocyanide. Other ways of imine-activation include the use 
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of Lewis acids, such as TiCl4 or BF3*OEt2.
[25] The resulting aza-analogue of an 

anhydride, the imidate, is then rearranged in an irreversible Mumm rearrangement to 

form the Ugi-product. The Mumm rearrangement describes the rearrangement of 

hydroxylimines to amides and is known since 1910.[92] Due to the irreversibility of the 

Mumm rearrangement, the U-4CR can be classified as type II-MCR (compare Figure 1). 

 

Figure 11: The commonly accepted mechanism of the U-4CR; the formed imine is protonated, 
the α-addition takes place via the hemiaminal or the nitrilium intermediate, followed by the 
irreversible Mumm rearrangement.[25, 84, 93] 

The α-addition can have two possible pathways: On the one hand, the carboxylic acid 

reacts with the protonated imine to the hemiaminal, followed by the isocyanide-insertion 

and, on the other hand, the protonated imine reacts with the isocyanide to the nitrilium, 

followed by the addition of the carboxylic acid (Figure 11). In 2012, Fleurat-Lessard et al. 

studied both pathways for the formation of the imidate, based on DFT calculations. [94] It 

was revealed that the imine is protonated in protic solvents like methanol but the 

mechanism was found to be non-ionic in aprotic solvents like toluene.[94] The Mumm 

rearrangement was also part of the calculations, revealing that in toluene, another 

carboxylic acid molecule might catalyze the rearrangement, confirming the calculations 
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of Maeda et al. for the P-3CR.[78, 94] Though, if the reaction is conducted in methanol, 

methanol catalyzes the Mumm rearrangement. Furthermore, the Mumm rearrangement 

and the imidate-formation were determined as highly exothermic reaction steps and thus 

they display the driving-force of the reaction. Therefore, it is suggested that the 

formation of the imidate is no longer considered as equilibrium reaction. [94] Additionally, 

the hemiaminal pathway was only found using toluene as solvent. These calculations 

were further confirmed by in-situ ESI-MS(/MS) investigations of Ugi reactions in 

methanol.[95-96] 

Interestingly, the mechanism was partially confirmed experimentally by Faggi et al. who 

were able to isolate the imidate-intermediate.[97] These mechanistic studies are in very 

good agreement with experimental observations: the reaction is conducted at room 

temperature, which is thermodynamically favorable due to the highly exothermic steps. 

Besides, methanol is confirmed as the solvent of choice, which can be explained by the 

fact that methanol is able to catalyze the Mumm rearrangement.[91, 94] 

In the U-4CR, the carboxylic acid component can be substituted by plenty of other 

components, for instance the use of hydrazoic acid in combination with isocyanides, 

oxo-components and amines leads to the formation of 1,5-substituted tetrazoles.[93] 

Besides, cyanates, thiocyanates, water, or hydrogensulfide are valuable substitutes for 

carboxylic acids in the U-4CR leading to a variety of scaffolds.[90, 98] As amine-

component, primary and secondary amines, hydrazine-derivatives as well as 

hydroxylamines can be used.[90] By the use of methanol and CO2 instead of the 

carboxylic acid, carbamates can be synthesized in impressive yields of up to 97 %. The 

first report on this Ugi five-component reaction (U-5CR) was published in 1961 by Ugi et 

al.[99] This concept was later on extended to other alcohols, though the yields were only 

moderate.[100] Additionally, carbon disulfide and carbonyl sulfide (COS) were 

investigated in the U-5CR, leading to α-aminothioamides and carbamate-thioamides, 

respectively.[100] Another interesting variant of the U-4CR is the so called Ugi-Smiles 

reaction, employing electron deficient phenols as carboxylic acid substitutes. [101] The 

Ugi-Smiles reaction is conducted in methanol at elevated temperatures (40 - 60 ° C) and 

the use of o-nitrophenols results in highest yields.[101] Furthermore, the last step of the 

reaction consists of a Smiles-rearrangement instead of a Mumm-rearrangement. The 
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Smiles rearrangement was discovered in 1931 as rearrangement of hydroxy sulphones 

to the corresponding sulphinic acids.[102] Later on, the Smiles variant of the U-4CR was 

also investigated using quinoline and pyridine derivatives.[103] The U-5CR and the Ugi-

Smiles reaction are shown in Figure 12. 

 

Figure 12: The Ugi-5CR using methanol and carbon dioxide as carboxylic acid surrogates and 
the Ugi-Smiles reaction using electron deficient phenols as substitute for the carboxylic acid. [99, 

101] 

The control over the stereochemistry in U-4CRs is more difficult to achieve than in the P-

3CR and thus still displays a difficult challenge. For instance, if chiral isocyanides are 

employed, good stereocontrol can be achieved in the P-3CR, whereas there is no 

stereocontrol in the U-4CR.[84] Ugi and co-workers found out that the stereochemistry is 

controlled, unlike in the P-3CR, during the addition of the carboxylate to the iminium 

ion.[84] Therefore mainly the amine component is responsible for stereochemical 

induction in the U-4CR. In 1975, Urban and Ugi reported on the synthesis of peptide 

fragments in a stereochemically controlled way. Here, the control over the 

stereoselctivity was achieved by the use of optically active ferrocenylalkyl amines as 

chiral auxiliaries.[104] A downside of this approach was the lack of reisolation procedures 

for the chiral auxiliary, since they were destroyed during their cleavage. Later on, an 

improved method was reported allowing the reisolation of the chiral auxiliary by a mild 

hydrolysis procedure, thereby enabling high yields of the desired peptide fragments. [105] 

Furthermore, the use of a chiral galactopyranosyl amine as chiral auxiliary was 

investigated, indicating good control over the stereochemistry of the reaction yielding 
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high diastereomeric excesses.[106] Interestingly, the chiral auxiliary can be cleaved by 

hydrolysis after the Ugi reaction, thereby the (R)-α-amino acids can be obtained in high 

purity. Furthermore, the previously cleaved chiral auxiliary can be reisolated in high 

yields.[106] The same group also reported on a stereoselective Ugi reaction on a solid 

support, allowing the reisolation of the chiral auxiliary as well.[107] Additionally, many 

other chiral glycosylamines have been reported for stereoselctive U-4CRs.[26] Due to the 

induction of stereochemistry during the reaction of the iminium ion with the carboxylic 

acid, the use of chiral isocyanides, carboxylic acids or oxo-components does not have a 

significant effect on the stereochemical course of the U-4CR.[26, 84] 

2.1.2 Multicomponent Reactions in Polymer Chemistry 

In this section, some selected examples of MCRs in polymer chemistry will be 

introduced with a major focus on the P-3CR and the U-4CR, since they were 

investigated by several groups in great detail. 

The use of multicomponent reactions was limited to the field of organic, medicinal and 

combinatorial chemistry for a long time. However, the synthetic advantages of MCRs, 

such as the easy synthesis protocol, the high atom economy, the high chemical diversity 

and the use of commercially available starting materials also caused growing interest 

amongst polymer chemists. Furthermore, the increasing demand on smart materials with 

special material properties made MCRs interesting candidates for polymer science, due 

to the easy tuning of material properties by the use of different components in the MCR. 

However, the chosen reaction has to be highly efficient, since side reactions would lead 

to low molecular weights or unequal structures in the resulting polymers. The simplest 

and most obvious way of transferring an organic reaction into polymer chemistry is the 

synthesis of monomers, with polymerizable end groups by the respective reaction and 

the subsequent polymerization of the obtained monomers. Alternatively, the reactions 

can be used as polymerization methods themselves and a third way would be the use of 

the MCR as post-polymerization modification method.  

In 2010, Gianneschi, Yang and co-workers reported on the synthesis of monomers via 

the P-3CR for the first time. They used a convertible isocyanide in the P-3CR, allowing 

the cleavage of the convertible group and thereby the synthesis of α-hydroxy carboxylic 
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acid-monomers, which were subsequently incorporated into poly(α-hydroxy acid)-

copolymers.[108] Meier et al. reported on the synthesis of monomers for acyclic diene 

metathesis polymerization (ADMET) via the P-3CR and the U-4CR and their subsequent 

polymerizations obtaining polyesters with amide side chains (P-3CR) and polyamides 

with amide side chains (U-4CR), respectively (Figure 13a) and b) ).[109-110] The 

monomers derived from the U-4CR were additionally co-polymerized with butanedithiol 

in a Thiol-Ene addition polymerization (Figure 13c) ).[110]  

 

Figure 13: a): Synthesis of an ADMET-monomer via the P-3CR and the subsequent 
polymerization, obtaining polyesters with amide side chains. b): Synthesis of an ADMET-
monomer via the U-4CR and the subsequent polymerization to obtain polyamides with amide 
side-chains. c): Thiol-Ene addition polymerization of an Ugi-derived monomer using 
butanedithiol as co-monomer.[109-110] 

Furthermore, diverse asymmetric α-ω-dienes have been prepared by the P-3CR and 

polymerized in ADMET polymerizations achieving excellent head-to-tail selectivity.[111-112] 

Likewise, several acrylate and acrylamide monomers were prepared via the P-3CR and 

the U-4CR using acrylic acid in combination with various aldehydes, isocyanides and 

amines (only in the U-4CR).[113-114] The acrylate monomers were polymerized in a free 

radical polymerization and the obtained polymers showed interesting material properties, 

such as tunable glass transition temperatures Tg and thermoresponsive behavior (upper 

critical solution temperature, UCST).[113] Moreover, the acrylamide polymers showed 
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potential biocompatibility.[114] Additionally, Wright et al. synthesized substituted 

norbornenes via the U-4CR and polymerized them subsequently in a ring opening 

metathesis polymerization (ROMP).[115] Shen et al. synthesized monomers via the 

Biginelli three-component reaction and polymerized the resulting acrylates subsequently 

in a free radical polymerization obtaining polymers with dihydropyrimidinone-side 

chains.[116] Interestingly, the Hantzsch reaction was combined with reversible addition 

fragmentation chain transfer polymerization (RAFT) in a one-pot manner, synthesizing 

polymers with the pharmaceutically interesting 1,4-(poly)-dihidropyridine structural 

motif.[117] Here, the Hanztsch reaction and the RAFT-polymerization proceeded 

simultaneously in the same reaction vessel.[117] Besides the monomer-approaches, a 

more elegant way to introduce MCRs into polymer science is their use as polymerization 

method, which was achieved for instance for the P-3CR and the U-4CR.[109, 118] By the 

use of bifunctional monomers, polyaddition took place in case of the P-3CR and 

polycondensation in case of the U-4CR.[109, 118] It has to be noted that in the Ugi-

polycondensation, polyamides are synthesized under very mild conditions at room 

temperature, which is in sharp contrast with the usually harsh conditions in polyamide 

synthesis.[119-120] The Passerini polyaddition was first described in 2011 using 

dicarboxylic acids and bifunctional aldehydes in combination with monofunctional 

isocyanides yielding poly(esters) with amide side-chains (Figure 14a) ).[109] The same 

procedure has been reported for the synthesis of poly(ester-amides) using a dicarboxylic 

acid and a bifunctional isocyanide in combination with a monofunctional aldehyde 

component.[121] Moreover, the synthesis of poly(amides) with ester side-chains was 

achieved by the P-3CR using a dialdehyde and a diisocyanide in combination with 

monofunctional carboxylic acids.[122] Another strategy for the Passerini addition 

polymerization includes the use of a bifunctional AB-monomer. Therefore, a monomer, 

equipped with a carboxylic acid and an aldehyde function, was prepared via Thiol-Ene 

addition of 10-undecenal and 3-mercaptopropionic acid.[123] Subsequent polymerization 

was performed and different isocyanides were used in order to investigate the influence 

of the side chains. The use of the AB-type monomer makes the reaction a two 

component-three center reaction.[123-124] The synthesis of polymers via the P-3CR with 

sequence-ordered side chains was also reported.[125] Li et al. synthesized sequence-

defined macromonomers and polymerized them subsequently in a Passerini 
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polyaddition polymerization.[125] Thereby, the sequence of monomer units in the 

macromonomer induced the monomer sequence in the resulting polymer. [125] Recently, 

the synthesis of star-shaped block copolymers with tailored side chains and adjustable 

block lengths via the P-3CR was described.[126] The U-4CR was also employed as 

polymerization method. By the use of two bifunctional components and two 

monofunctional components, polycondensations can be achieved (Figure 14b) ).[118] 

Hereby, the choice of the solvent-mixture is crucial. While conventional U-4CRs are 

mostly conducted in methanol, most polymers are insoluble therein. Therefore, other 

solvents or solvent-mixtures had to be tested. It was revealed that a mixtures of 

tetrahydrofuran (THF) and methanol are suitable for the U-4CR polycondensation. 

Remarkably, all six different combinations of AA- and BB-type monomers in combination 

with monofunctional components were successfully polymerized.[118] Moreover, the 

direct polymerization of levulinic acid as AB-monomer in an Ugi polycondensation was 

described very recently.[127] 



  Theoretical Background and State of the Art 

 

23 

 

Figure 14: a) The P-3CR polyaddition polymerization using bifunctional acid- and aldehyde 
components in combination with monofunctional isocyanides. b) The U-4CR polycondensation 
using bifunctional amine and carboxylic acid in combination with monofunctional isocyanides 
and aldehydes.[109, 118] 

Also, the U-5CR was used as polymerization method using diamines and diisocyanides 

in combination with isobutyraldehyde, methanol and CO2.
[128] Interestingly, the U-5C-

polymerization allows the mild and isocyanate-free synthesis of polyurethanes and the 

products can subsequently be transformed to poly(hydantoins) by cyclization of the 

obtained polymer backbone.[128-129] 

Also non-isocyanide-based MCR were used as polymerization methods. For instance, 

the Biginelli reaction enabled the synthesis of polymers containing the pharmaceutically 
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interesting dihydropyrimidinone structural motif.[130-131] Remarkably, even two MCR were 

conducted in one-pot to form structurally diverse polymers.[117] Here, the Hantzsch and 

the Biginelli reaction were conducted as competitive reactions, which was easily 

achievable due to the use of β-ketoesters and aldehydes in both types of reactions.[117] 

Another example for non-isocyanide-based MCR polymerizations is the copper 

catalyzed polymerization of diynes, sulfonylazides and diamines, yielding poly(N-

sulfonylamidines).[132]  

The third way of transferring organic reactions into the field of polymer chemistry is their 

use in post-polymerization modifications. Therefore, functional polymers need to be 

synthesized, which can subsequently be reacted in a MCR. For instance, Theato et al. 

synthesized poly(4-vinylbenzaldehyde) by free radical polymerization. The aromatic 

aldehyde groups, present in the monomer units, were then reacted in a Kabachnik-

Fields reaction using various amines and phosphites and thus leading to α-amino 

phosphonate side chains.[133] The CuMCR of alkynes, amines and sufonyl azides, the 

Biginelli reaction as well as the P-3CR have also been used for post-polymerization 

modifications.[134-136] 
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2.2 Sequence-Control in Polymer Chemistry 

The control over monomer sequences is up to now an unachieved goal in synthetic 

polymer chemistry. However, the synthesis of highly defined macromolecules could 

allow the precise tuning of material properties, the development of highly active and 

tailored catalyst systems or, on the very long term, complex processes like self-

replication.[137] In this aspect, nature is a master in the synthesis of perfectly-defined 

primary structures. Peptides and proteins, as well as DNA are examples of 

macromolecules with a high degree of precision.[1] Due to the very well defined primary 

structure in peptides, certain secondary and tertiary structures can be formed and 

complex processes, like enzyme catalyzed reactions, are rendered possible. The 

prerequisite for enzyme catalyzed reactions and the "key-and-lock-principle" is an 

exactly defined monomer sequence, allowing the perfect match of substrate and 

enzyme.[3] In general, synthetic approaches yielding sequence-controlled 

macromolecules can be grouped into two categories: the chemical synthesis of bio-

macromolecules and the synthesis of sequence-controlled synthetic polymers.[1] Before 

discussing some important syntheses of biopolymers, important terms in the field of 

sequence-controlled polymers are introduced. Afterwards some synthetic approaches 

towards sequence-controlled macromolecules are described, which include the use of 

solid supports, (DNA-) templates, and molecular machines. 

 

2.2.1 Definitions 

In 2013, Lutz, Ouchi and Sawamoto defined sequence-controlled polymers in a review 

as follows:[15] 

"Sequence-controlled polymers are macromolecules in which monomer units of different 

chemical nature are arranged in an ordered fashion." 

This definition implies that the term sequence-controlled polymers is an umbrella term 

for polymers of any level of control over the monomer sequence, including block 

copolymers, gradient copolymers but also highly defined polymers, such as 
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polypeptides. Therefore, some more strict definitions are necessary to distinguish 

between different levels of sequence-controlled polymers (Figure 15).[137-138]  

 

Figure 15: Classification and examples of different types of sequence-controlled polymers.[137-138] 

According to Lutz, sequence-controlled polymers can be differentiated into polydisperse 

and monodisperse polymers (Figure 15).[137-138] Polydisperse, sequence-controlled 

polymers include for instance, alternating copolymers, periodic copolymers and chain 

positioned polymers (ideally one different co-monomer unit in a homopolymer chain). 

Sequence-defined polymers are monodisperse macromolecules with a perfectly defined 

primary structure.[137] Other commonly used terms are sequence-ordered and sequence-

regulated polymer. The latter is frequently used for polydisperse polymers having a 

certain sequence of monomer units.[121] Sequence-ordered and sequence-defined 

polymers both describe polymers of defined length and monomer sequence.[137] 

However, the terminology in the field of sequence controlled polymers is not yet clearly 

defined and to date there is no general consensus about the nomenclature. [139-140] In this 

work, sequence-defined, monodisperse macromolecules are investigated. 

 

2.2.2 Synthesis of Biopolymers 

In this section, the chemical synthesis of naturally occurring biopolymers with defined 

primary structures, namely polypeptides, oligonucleotides and oligopeptoids, are 

described. The chemical synthesis of polypeptides had its breakthrough with Merrifields 

invention of the solid-phase peptide synthesis (SPPS).[4] This method allowed the rather 

simple synthesis of oligomeric peptides and later on, the automation of the whole 



  Theoretical Background and State of the Art 

 

27 

process. The same strategy was applied for the oligonucleotide synthesis, allowing 

simple and fast synthesis of oligopeptides and oligonucleotides in an automated fashion. 

However, in principle, the concept of SPPS is applicable to any bifunctional monomer, 

which can selectively be protected on one reactive side.[5] Taking into account the 

importance of the development of highly efficient synthesis methods for biopolymers, 

some aspects on the chemical synthesis and the properties of peptides, peptoids and 

oligonucleotides will be introduced and discussed in this chapter.[141] 

 

2.2.2.1 Polypeptide Synthesis 

As already mentioned, Merrifield did pioneering work with the development of the solid-

phase peptide synthesis, and was therefore awarded the Nobel Prize in 1984.[4-5] The 

synthesis of peptides on a solid support bears eminent advantages: The products can 

be collected by simple filtration and the reagents can be used in high excess in order to 

ensure complete conversion.[5] Afterwards, the excess components can be removed by 

simple filtration and subsequent washing cycles.[5] Due to the simple workup procedure, 

losses during isolation and purification of intermediates are reduced to a minimum. [5] 

The solid-phase concept is, as already mentioned, not limited to peptide synthesis, but 

also depsipeptides, oligoamides, oligonucleotides and oligosaccharides were 

synthesized on a solid support already in the 1970s.[142-145] Some more recent examples 

include, for instance, the synthesis of peptide nucleic acids (PNA) and polypeptoids. 

[146-147]  

For the coupling of two amino acids, the amino acids need to be equipped with 

orthogonal protecting groups to avoid unwanted reactions of the carboxylic acids with 

amines, leading to product mixtures. Therefore, one amino acid needs to be protected at 

the amine group and the other at the carboxylic acid function to ensure the exclusive 

formation of one product (temporary protecting groups).[141] Moreover, the side chains of 

the amino acids need to be protected, if functional groups are present, to avoid side 

reactions (permanent protecting groups).[141] The synthesis of polypeptides includes 

therefore a thoroughly planned and orthogonal protecting group strategy. A general 

overview of the SPPS is shown in Scheme 1. Synthetic peptide synthesis follows the 
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C  N-strategy, meaning that the C-terminus of the first amino acid is bound to the 

linker at the solid support (See Scheme 1).[141, 148] 

 

Scheme 1: Schematic picture of the solid phase peptide synthesis.[73, 148] 

The linker is bound to the resin by an ester or amide bond, depending on the type of 

resin (alcohol: e.g. Wang-resin or amine: e.g. Rink-resin, Figure 16).[149-150] 
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Figure 16: The Wang- and the Rink-resin, which are frequently applied as solid supports in 
SPPS.[149-150] 

The resin itself mostly consists of a highly crosslinked co-polymer of styrene and 1,4-

divinyl benzene and is swelling in organic solvents to solvate the growing peptide well 

and to make it freely accessible for the diffusing reagents.[4, 141] Alternatively, 

polyacrylamide resins were reported for the use in SPPS.[151] Once the first amino acid is 

attached to the linker and the resin, the SPPS-cycle starts with the deprotection of the 

temporary protecting group at the N-terminus (Scheme 1). The free amine-group is then 

reacted with an activated and N-protected amino acid in a second step. The carboxy 

function of the amino acid needs to be activated in order to avoid the acid-base reaction 

of the basic amine and the acidic carboxylic acid and to allow mild reaction conditions. [5] 

This activation can, for instance, be achieved by the synthesis of (mixed) anhydrides, 

acyl azides, N,N-dicyclohexylcarbodiimide (DCC) or the use of phosphonium- or 

uronium-based activating agents, such as PyBOP (benzotriazol-1-yl-oxytripyrrolidino 

phosphonium hexafluorophosphate) and HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (Figure 17).[5, 141, 152-156]  

 

Figure 17: Two examples for phosphonium and uronium-based activation agents: PyBOP and 
HBTU.[155-156] 

The activation is formally the generation of an active ester, enhancing the reaction rate 

of the peptide-bond formation by increasing the electrophilicity of the carboxy group and 
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installing very good leaving groups.[141] After successful coupling of the amino acids, the 

temporary protecting group of the N-terminus is cleaved and another activated amino 

acid can be attached (see circle in Scheme 1). Once the desired peptide sequence is 

synthesized, the temporary and the permanent protecting groups are removed and the 

peptide is cleaved from the solid support.[148] As already mentioned, SPPS requires an 

orthogonal protecting group strategy. The temporary N-terminus protecting group of 

choice is nowadays commonly the base labile 9-fluorenyl-methoxy carbonyl (Fmoc) 

protecting group (Figure 18).[148, 157]  

 

Figure 18: The base labile 9-fluorenyl-methoxy carbonyl (Fmoc) protecting group.[157] 

Due to the use of a base-labile group for the temporary protecting groups, the 

permanent protecting groups and the linker should be acid-labile to ensure orthogonal 

deprotection and to avoid side reactions, like the cleavage from the resin or reactions of 

the side chain functionalities of the amino acids.[148] 

Another breakthrough in peptide chemistry was the automation of the whole process. In 

1965, Merrifield reported on the first peptide synthesizer, which was able to perform all 

the necessary operations in the stepwise synthesis of polypeptides on a solid 

support.[158-159] The automated synthesis protocol was then used in the synthesis of the 

oligomeric peptides bradykinin (nonamer), angiotensin (octamer) and oxytocin 

(nonamer).[160-162] 

The key requirements for the SPPS are rapid reactions along with high yields and the 

absence of side reactions. This is necessary in order to prevent the accumulation of by-

products since the separation of byproducts after cleavage from the solid support is 

challenging.[5, 141] Due to incomplete conversion in each synthesis-cycle, the formation of 

mismatched sequences is unavoidable.[141] However, it should be limited to a minimum 
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extend, which can be visualized by a simple calculation: If the yield of each cycle was 

99 %, the overall yield after 10 and 100 cycles reached 90 % and 37 %, respectively.[141] 

For the synthesis of proteins and enzymes, amino acid sequences of at least 125 amino 

acids are required.[163] However, by means of classical peptide synthesis strategies this 

is a very challenging task taking into account the poor solubility of protected peptide 

intermediates in solution phase synthesis and the accumulation of side products due to 

incomplete conversion in SPPS.[163] SPPS allows the routine synthesis of peptide chains 

of 60 to 80 amino acids, therefore a major milestone was the development of chemical 

ligation methods.[164-166] Chemical ligation describes the covalent linkage of two 

unprotected peptide fragments making use of a chemoselective reaction, in order to 

provide the products in high yields and purity.[163, 165] In the native chemical ligation, a 

reversible transthioesterification is followed by an irreversible amide formation (Scheme 

2).[166-167] Thereby, a "native" polypeptide with a cysteine residue at the position of the 

ligation can be obtained.[163] Scheme 2 shows the basic principle of native chemical 

ligation: the nucleophilic attack of the thiol at the carbonyl group of the thioester forms 

the transthioesterification product reversibly, which then rapidly rearranges irreversibly 

via a five-membered ring to the desired ligation product.[166-167]  
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Scheme 2: The principle of native chemical ligation: A thioester-peptide fragment is coupled to 
another unprotected peptide fragment with a terminal cysteine by a reversible 
transthioesterification and subsequent irreversible rearrangement to yield the targeted 
peptide.[166] 

Hereby, the reversible addition of the thiol to the thioester fragment is crucial, because 

the subsequent intramolecular rearrangement exclusively takes place when the thiol is 

located next to the N-terminal cysteine moiety.[163] Therefore, only the desired amide 

bond between the two fragments can be formed even in the presence of other internal 

cysteine moieties in either peptide fragment.[163] Interestingly, the ligation is performed in 

water as solvent in the absence of protecting groups.[168] However, the synthesis of 

peptides and proteins via native chemical ligation is technically limited to proteins 

containing cysteine residues within the sequence.[168] However, this can be overcome by 

simple insertion of an additional cysteine and it was shown for some cases that there is 

no effect on the folding of the peptide or its biological activity.[169] Moreover, cysteine-like 

auxiliaries have been used during the native chemical ligation and were cleaved 

afterwards.[170-171] Alternatively, the Staudinger-ligation can be employed, having the 

advantage that the method is not restricted to certain amino acids in the peptide 

sequence.[172] The Staudinger ligation is based on the Staudinger reaction of alkyl 

azides with phosphines, leading to amines after aqueous workup. [173] Bertozzi et al. and 

Raines et al. developed the Staudinger-ligation system for cell surface modifications and 
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peptide couplings, respectively in 2000.[172, 174] Scheme 3 shows the principle of the so 

called traceless Staudinger-ligation introduced by Raines et al.[174]  

 

Scheme 3: Proposed mechanism of the traceless Staudinger-ligation as amino-acid sequence-
independent ligation method for protein synthesis.[174] 

The term traceless was coined due to the cleavage of the phosphine oxide after the 

ligation reaction and the exclusive formation of a new peptide bond. [174] The major 

advantage of the traceless Staudinger-ligation compared to the native chemical ligation 

is the independency of cysteine residues in the protein sequence. 

All in all, more than 300 biologically active proteins of 20 protein families were 

synthesized by chemical ligation methods and it was shown that the synthetic 

polypeptides fold spontaneously in vitro, forming protein molecules of defined tertiary 

structures.[168] The development of the ligation methods enabled, for instance, the 

synthesis of tethered dimers of the HIV-1 protease (~ 22 kDa) and the chemical 

synthesis of a polymer-modified analogue of erythropoietin (~ 50 kDa), a glycoprotein 

mimetic.[175-176] The latter was synthesized by subsequent chemical ligations obtaining 

the polypeptide with 166 amino acids.[176] 

Although the development of ligation chemistry displays a major breakthrough in the 

chemical protein synthesis, SPPS still plays a very important role in the field since the 

peptide fragments, required for ligation, are mostly synthesized using SPPS. [163] 
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2.2.2.2 Oligopeptoids 

Oligopeptoids, oligomers of N-substituted glycines, differ from oligopeptides by the 

position of the side chain: peptides are Cα-substituted, whereas peptoids are N-

substituted (Figure 19).[177] 

 

Figure 19: General structures of peptides (oligo-amino acids) and peptoids (oligo-N-substituted 
glycines).[177] 

In contrast to peptides, peptoids are achiral leading to easier synthesis of peptoids 

avoiding epimerization issues.[178] Furthermore, the N-substitution prevents the formation 

of hydrogen bonds, resulting in conformationally unstable structures. However, it was 

shown that the formation of secondary structures can be influenced significantly by the 

choice of the side chains.[178-180] Another difference to peptides is the comparably higher 

proteolytic stability arising from the non-natural backbone as well as the higher solubility 

in organic solvents.[181] However, some peptoids show high biological activity, which 

makes peptoids interesting candidates for the pharmaceutical industry as peptide-

mimics.[177] 

Peptoids can be synthesized, analogous to peptides, by coupling of Fmoc-protected  

N-substituted glycine monomers on a solid support.[177] But due to the slower couplings 

of secondary amines, the method of choice is the submonomer approach developed by 

Zuckermann in 1992.[147] Here, the synthesis of different monomers is not necessary and 

commercially available reagents can be employed in the synthesis of peptoids. [147] 

Furthermore, the submonomer approach avoids the use of backbone-protecting 

groups.[147] In the submonomer approach, the glycine monomer-units are formed by the 

reaction of two so called submonomers, an amine and a haloacetic acid. Therefore, a 

resin-bound secondary amine reacts with a haloacetic acid upon activation with 

diisopropylcarbodiimide (DIC) (acylation). The activated haloacetic acid is a much more 
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reactive compound than the amino acid analogue due to the electron withdrawing effect 

of the halide.[182] Therefore, and because of the use of commercially available primary 

amines, the submonomer approach is superior to the coupling of N-glycines.[182] In the 

following nucleophilic displacement, an amine substitutes the halide and the N-glycine 

monomer unit is formed (Scheme 4).[147]  

 

Scheme 4: Synthesis of polypeptoids with the submonomer strategy: the amine is acylated using 
for instance bromoacetic acid upon DIC activation. By addition of an amine component in 
excess, the displacement reaction takes place and the N-glycine monomer unit is formed.[147] 

The submonomer-synthesis of polypeptoids on a solid support can be performed 

automatically making use of commercially available peptide synthesizers. [147, 182] This 

strategy allows the routine synthesis of polypeptoids of up to 50 N-glycine monomer 

units.[183-185] The rather simple synthesis of sequence-defined oligopeptoides led to the 

investigation of sequence-property relationships and the investigation of the influence of 

the side chains on the secondary structure in polypeptoids.[179-180] It was shown that 

oligopeptoids with α-chiral side chains fold in solution to helices and a threaded loop 

structure was formed by peptoid-nonamers via intramolecular hydrogen bonding.[186-188] 

Thereby, the formation of helices is mostly caused by bulky, α-chiral side chains, such 

as N-(S)-(1-phenylethyl)-glycine.[180] The analysis of the crystal structure of a pentamer 

of N-(1-cyclohexylethyl)glycine revealed that one turn in the helical structure contained 

three N-glycine units and that the amide bonds are all cis-configured.[189] However, 

solution NMR measurements indicated conformational heterogeneity, which was 

reduced by introduction of electron withdrawing, positively charged substituents (e.g. 
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pyridinium) or the introduction of very sterically demanding side chains, such as naphthyl 

groups.[190-192] Also, the formation of β-sheets was achieved by the mixing of two 

oppositely charged peptoid 36-mers of a certain sequence in solution.[193] Thereby, self-

assembly of the polypeptoids to well-defined two-dimensional nanosheets was 

achieved.[193] Moreover, the synthesis of a biomimetic diblock co-polypeptoid, which self-

assembles to homochiral superhelices, was reported in 2010.[194] Here, the self-

assembly is evoked by the interplay of hydrophobic and electrostatic forces within the 

amphiphilic and partially charged diblock co-polypeptoid of a defined sequence. 

Therefore, N-(2-carboxyethyl)glycine and N-(2-phenylethyl)glycine were used as 

monomers, allowing the formation of homochiral superhelices in aqueous solution. 

However, the origin of the homochirality in the diblock system is not entirely clear. [181, 194] 

All in all, polypeptoids display an interesting group of peptidomimetics and a very 

interesting class of non-natural sequence-defined macromolecules. Particularly 

interesting in the field of sequence control are the already well investigated sequence-

property relationships. 

 

2.2.2.3 Oligonucleotide Synthesis 

The chemical synthesis of oligonucleotides is conducted, like the peptide synthesis, 

mostly on a solid support. The first report on the solid phase synthesis of 

oligonucleotides was published by Letsinger and Mahadevan in 1965. [144] Since then, 

the oligonucleotide synthesis was improved and finally the phosphoramidite chemistry 

was developed.[195] In this section, the nowadays applied synthesis protocol and the 

commonly used protecting groups will be briefly introduced, as it displays one aspect of 

current research on sequence-controlled polymers.[196-198]  

Scheme 5 shows the general principle of the solid phase oligonucleotide synthesis 

employing the phosphoramidite strategy.[73, 144, 199-200]  
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Scheme 5: General methodology of the chemical oligonucleotide synthesis applying the 
phosphoramidite-strategy.[73, 144, 199-200] 

In contrast to biological systems, synthetic chemistry synthesizes oligonucleotides from 

the 3' to the 5' position.[200] For this purpose, a highly orthogonal protecting group 

strategy is required. The chemical oligonucleotide synthesis starts with the deprotection 

of the 5' position of a solid-phase-bound nucleoside (Scheme 5). The solid phase, unlike 

in SPPS, commonly consists of controlled pore glass (CPG) due to its non-swelling 

properties.[201] The swelling of polystyrene-resins leads to inhibited diffusion of reagents 

and solvents through the matrix and thus to reduced coupling efficiencies. [201] The 

deprotected primary OH-group is then reacted with an excess of tetrazole-activated 
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phosphoramidite yielding a phosphite triester.[200] Similar to SPPS, the reagents are 

used in large excess in order to force the reaction to completion. [202] However, it is not 

always possible to fully convert the 5' OH group; thus, a capping step is necessary after 

the coupling step. Hereby, the remaining primary OH groups are acylated using acetic 

anhydride and 4-dimethylaminopyridine (DMAP) in order to facilitate the isolation of the 

desired product, once the desired sequence is synthesized.[200] The capping step is 

followed by an oxidation of the rather unstable phosphite triester to the corresponding 

phosphotriester using iodine as mild oxidation agent and 2,6-lutidine as base.[199] 

Subsequently, the deprotection, coupling, capping and oxidation steps can be repeated 

until the desired sequence is obtained.[200] Once the desired primary structure is 

synthesized, all permanent protecting groups are removed and the oligonucleotide is 

cleaved from the solid support.[200] As already mentioned, the solid-phase 

oligonucleotide synthesis requires a highly orthogonal protecting group strategy for the 

different OH-groups, the exocyclic amine groups of the DNA bases, for the phosphite 

triester and for the cleavage from the solid support.[201] The most common protecting 

groups, applied in the phosphoramidite-oligonucleotide synthesis, are shown in Figure 

20. Guanine, adenine and cytosine are typically protected with a base labile benzoyl 

protecting group, whereas uracil and thymine do not need a protecting group due to the 

lack of an exocyclic amine function.[200] The 5' OH group is usually protected using the 

acid-labile dimethoxytrityl group due to the excellent regioselectivity to the primary OH 

group and the facile acidic cleavage, which can be followed by photometry due to the 

formation of the orange triphenyl cation.[200] The 2' OH group is only present in RNA, 

where it is commonly protected using the fluorine-labile triisopropyl silyloxymethyl (TOM) 

protecting group.[202] The development of the TOM protecting group enabled the 

synthesis of RNA under similar reaction conditions like in DNA syntheses. [202-203] The β-

cyanoethyl group acts as base-labile protecting group for the phoshotriester, whereas 

the diisopropylamino group acts as leaving group during the coupling step.[201, 204-206] 



  Theoretical Background and State of the Art 

 

39 

 

Figure 20: The commonly used protecting groups for the solid phase oligonucleotide synthesis 
via the phosphoramidite approach.[73, 200, 202, 207] 

The chemical oligonucleotide synthesis is nowadays a fully automated procedure: The 

desired sequence can automatically be synthesized by a computer-controlled device. 

[208-210] The first report on an automated DNA synthesis was already reported in 1985;[208] 

since then, for instance, the synthesis of 98-mers and even 120-mers have been 

described.[211-212] 

 

2.2.3 Synthesis of Sequence-Controlled Polymers via Chain-Growth 

Polymerizations 

In chain-growth polymerizations, the propagating chain ends are highly reactive species, 

such as radicals or ions. Therefore, the obtained comonomer sequences are in many 

cases randomly distributed. Though, in radical polymerizations there are certain selected 
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monomer pairs, which can be polymerized in conventional radical polymerization 

obtaining alternating sequences. In these specific examples, the cross reactivity of the 

monomers is remarkably higher than the homo-propagation reactivity due to 

donor/acceptor properties of the monomers.[213] However, this outstanding reactivity is 

only shown by a few monomer pairs such as maleic anhydride and styrene, maleimide 

and styrene or maleimide and limonene.[214-218] Remarkably, the high cross reactivity of 

maleic anhydride was already reported in 1945.[214] The development of controlled 

radical polymerization methods, such as atom transfer radical polymerization (ATRP), 

nitroxide mediated polymerization (NMP) and reversible addition fragmentation transfer 

polymerization (RAFT), allowed the precise synthesis of macromolecular architectures 

along with the synthesis of polymers with narrow molecular weight distributions. [7-8, 10-11] 

These highly controlled processes allow the synthesis of more precisely controlled 

polymers. In 2000, Russel et al. synthesized a copolymer of maleic anhydride and 

styrene via NMP.[219] Hereby, a 1:9 mixture of the comonomers maleic anhydride and 

styrene were copolymerized and a diblockcopolymer with a narrow dispersity 

(ÐM = 1.19) was obtained in a one-pot procedure.[219] The first block consisted of an 

alternating maleic anhydride-styrene block, whereas the second block was a homo-

styrene block, which was formed after the complete consumption of maleic 

anhydride.[219] Kamigaito and coworkers reported on the synthesis of copolymers of 

limonene and maleimides by RAFT polymerization.[218] Hereby, a 1:2 

limonene/maleimide incorporation was observed independently of the comonomer feed-

ratio, which was explained by the steric demand of the limonene-monomer.[218, 220] The 

copolymerizations incorporating maleimides have in common that (functional) 

substituents can easily be introduced to the final polymers owing to the N-substitution of 

the maleimides.[221] One basic idea towards sequence control makes use of living-radical 

copolymerizations of acceptor-donor comonomer pairs. The concept takes advantage of 

the fact that in "living" polymerizations the chain propagation starts at the same time and 

that the chains grow almost simultaneously.[222] In combination with the high cross 

propagation reactivity of the comonomer pairs it is possible to introduce statistically, for 

instance, one maleimide monomer in a polystyrene chain by adding one equivalent 

(relative to the initiator) of the maleimide monomer.[222] Furthermore, it was shown that 

the maleimide could be positioned within the growing chain by introduction of the 
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maleimide monomer at different styrene conversions.[221] By the introduction of different 

maleimides (one equivalent each) at different styrene conversions, it is possible to 

decorate the polystyrene chains with different maleimides sequentially (Figure 21). 

[223-224]  

However, owing to the statistical nature of a radical polymerization process, chain to 

chain deviations as well as over and under functionalization of single polymer chains 

cannot be avoided and the obtained products display chain length deviations. In order to 

reduce these undesired effects to a minimum, the approach was further improved by the 

addition of the maleimide monomer at a high conversion of styrene, leading to a narrow 

distribution of the maleimide monomer within the polymer chain (Figure 21).[225] This can 

be explained statistically: the higher the donor/acceptor monomer ratio, the broader the 

sequence distribution. Thus, the addition of the acceptor monomer at high conversions 

of the donor monomer leads to a more precise incorporation of the acceptor monomer 

(Figure 21). 

 

Figure 21: The concept of Lutz et al. using controlled polymerization methods for the 
copolymerization of styrene and different maleimides. At certain times of the polymerization 
process, one equivalent of the maleimide is added and incorporated rapidly, enabling a 
positioning of the maleimide in certain polymer regions.[223] The positioning gets more precise 
with an increased conversion of styrene due to a more favorable styrene/maleimide ratio. [225-226] 

These findings were investigated in detail by addition of the maleimide monomer at 

different styrene conversions.[225] Although the positioning of the maleimides along the 

polystyrene chain is achieved in more narrow regions of the polymer, still over and under 
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functionalized polymer chains are obtained.[226] Moreover, the same concept was 

investigated in NMP copolymerizations of styrene or styrene derivatives and maleimides 

synthesizing, for instance, polyelectrolytes or water soluble polymers.[227-231] 

In 2016, Kamigaito and coworkers reported on the synthesis of side chain and main 

chain regulated polymers by combining two approaches for sequence-regulation.[232] 

First, sequenced macromonomers were synthesized by atom transfer radical addition, 

also referred to as the Kharasch reaction, using acrylate and styrene monomers. [233-235] 

The carbon chlorine bond was then displaced by phtalimide in a nucleophilic substitution 

reaction, followed by a retro Diels-Alder reaction to obtain sequenced-maleimide 

monomers. These sequence-regulated maleimide monomers were then copolymerized 

with styrene or limonene to yield a 1:1 or 2:1 alternating copolymer, respectively.[232] In 

that way, the main chain sequence could be regulated by the choice of monomers, 

whereas the side chain regulation was accomplished by the monomer-design. This 

approach elegantly combines two different approaches and accomplishes thereby a 

higher degree of control, namely control over side- and main chain sequences. 

Another different approach towards sequence-controlled polymers includes the control 

over tacticity. The Ziegler-Natta polymerization of propylene allows, for instance, the 

syndiospecific incorporation of monomer units, which can be influenced by the employed 

catalyst system.[236-237] The control over monomer sequences and the introduction of 

different and tailored side chains can hardly be achieved with this approach. However, 

Thomas and co-workers introduced an elegant approach for the synthesis of alternating 

copolyesters by ring-opening polymerization (ROP) of enantiopure, but different β-

lactones.[238] Yttrium-bisphenolate complexes allowed the syndiospecific incorporation of 

monomer units, depending on their configuration, resulting in alternating 

copolyesters.[238] 

Perrier et al. synthesized a icosablock copolymer, applying the RAFT technique, in a 

one-pot procedure.[239] Therefore, each monomer was polymerized until the conversion 

exceeded 99 %, before the next monomer was added. By the successive polymerization 

of different monomers, the icosablock copolymer was obtained in a one-pot fashion 

without the workup of intermediates.[239] This method provided sequence-controlled 
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multiblock copolymers, but the polymerization time for each individual block was 24 

hours in order to ensure complete consumption of the employed monomer. [239] By 

changing the solvent from dioxane to dioxane / water (1:4) the reaction times could be 

reduced drastically and the individual blocks were synthesized within two hours. [240] 

Comparably, Haddleton and coworkers synthesized multiblock copolymers via photo-

mediated copolymerization of different acrylates and obtained undecablock copolymers 

of narrow dispersity (ÐM < 1.2).[241] 

Another polymerization technique with chain-growth characteristics investigated in the 

context of sequence-controlled polymers is the ring opening metathesis polymerization 

(ROMP).[242-245] ROMP is a controlled polymerization method providing polymers with 

narrow molecular weight distributions and is extensively studied for applications in 

material science.[246-247] The synthesis of sequence-controlled polymers by the use of 

ROMP was investigated by different groups, indicating the versatility of ROMP.[242-245] In 

2012, Hillmyer and co-workers reported on the synthesis of sequence-regulated 

polyalkenes by regioselective ROMP of multiply substituted cyclooctenes.[242] Taking 

advantage of the already known head-to-tail- and E-selectivity in ROMP of 3-substituted 

cyclooctenes, this new approach allows the synthesis of sequence regulated polymers 

resembling the substitution pattern of the cyclooctene monomers (Figure 22).[248] 

 

Figure 22: Synthesis of sequence-regulated polyalkenes by regioselective ROMP of multiply 
substituted cyclooctenes.[242] 

Hereby, the substituent at 3-position is mandatory, whereas the positions of other 

substituents are variable. Though the monomer sequence of the resulting polymers can 

be controlled applying this approach, the products show dispersity and the monomer 

synthesis is demanding. 

Comparable to the copolymerization of maleimides and styrenes, O'Reilly et al. 

investigated the ROMP copolymerization of exo- and endo-norbornenes.[243] It is well 
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known that exo-norbornenes polymerize with considerably higher reaction rates 

compared to endo-norbornenes due to steric interactions between the growing chain 

and the incoming monomer units in endo-norbornene-polymerizations.[249-250] By addition 

of small amounts (e.g. one equivalent in respect to the catalyst) of an exo-norbornene to 

an endo-norbornene homopolymerization, the exo-norbornene is quickly incorporated 

due to its higher reactivity. Therefore, statistically one exo-monomer is incorporated in 

each growing chain if one equivalent (in respect to the catalyst) of the exo-norbornene is 

added owing to the fast addition of the more reactive exo-monomer.[243] It was shown 

that four different exo-norbornenes can be incorporated into the polynorbornene. An 

advantage in this kinetically driven concept is the synthesis of a homogeneous 

backbone along with variable side chains. Nevertheless, this approach allows no 

absolute control over the primary structure of the obtained polymer and enantiomerically 

pure monomers are needed. 

Hawker et al. synthesized a polyester-based macrocycle containing an eneyne-trigger, 

which facilitates the ROMP of unstrained macrocycles.[244, 251] Hereby, the high reactivity 

of alkynes towards metathesis catalysts is utilized to conduct the ring-opening of 

unstrained macrocycles. The macrocycles consisted of glycolate, lactate, phenyl acetate 

and β-alanine monomer units, forming an ester backbone, which could be degraded 

after ROMP.[244] Very similarly, Meyer and coworkers prepared sequence-regulated 

polymers via entropy-driven ROMP of unstrained oligoester-macrocycles.[245] Hereby, 

they synthesized a α-ω-diolefin containing a symmetric sequence of three different 

esters. The diolefin underwent ring closing metathesis (RCM) under dilute conditions 

and was subsequently polymerized in a entropy-driven ROMP at high concentration. 

[252-255] Thereby, sequence-regulated polymers with molecular weights of up to 60 kDa 

were obtained.[245] 

Very recently, Harrisson et al. investigated "the limits of precision monomer placement in 

chain growth polymerizations" in a statistical manner.[256] By the use of Poisson and the 

related beta distributions, the monomer locations in sequence-controlled copolymers 

were calculated and the degree of control was quantified by means of yield and standard 

deviation values. Hereby, high yields along with low standard deviations indicate a high 

level of control.[256] In this statistical approach, the degree of control of anionic 
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polymerizations and reversible deactivation radical polymerizations (RDRP), or "living" 

radical polymerizations could clearly be differentiated. The results indicate that RDRP 

processes are hardly suitable for precision positioning of single monomer units along a 

polymer chain, because the uncertainty of the monomer position grows in proportion to 

the square root of the length of the polymer chain.[256] The authors investigated several 

examples of chain-growth and ionic polymerizations and illustrated the results with some 

examples.[224-225, 243, 257] For instance, if monomer pairs of unequal reactivities, such as 

styrene (S) and maleic anhydride (M), are copolymerized with the target to obtain a 

S10M1S10 triblock copolymer, only 12.5 % of the polymer chains incorporate M at the 

eleventh position.[256] However, it is stated that the control over relative positions within 

polymer chains is achievable and that the degree of control can be increased with an 

increasing block length. Furthermore, the synthesis of multiblock copolymers with the 

goal that almost every chain contains each block is easily achievable using RDRP 

techniques as long as the individual blocks have a sufficient chain length. [241, 256] These 

results confirm that the statistical nature of chain growth processes lead to chain to 

chain deviations and that absolute control over monomer sequences can hardly be 

achieved by RDRP processes. 

 

2.2.4 Synthesis of Sequence-Controlled Polymers via Step-Growth 

Polymerizations 

Step-growth polymerizations are polymerizations, in which di- or multifunctional 

monomers form dimers, the dimers react with each other to form tetramers and 

eventually polymers are formed at high conversions. Classical polycondensations like 

polyester and polyamide syntheses are mostly condensation reactions of diesters with 

diols and diacids or diesters and diamines, respectively.[258-259] On the other hand, some 

more recent polymerization methods, such as acyclic diene metathesis polymerizations 

(ADMET), can be categorized as polycondensations. [260-261] Wagener and coworkers 

succeeded in the synthesis of the first ADMET-derived polymer in 1991.[260] Almost two 

decades later, the same group reported on the synthesis of sequence-controlled 

polymers via ADMET polymerizations, which they called "precision polyethylene" at that 
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time. Hereby, different ADMET monomers containing branching groups were 

synthesized, subsequently polymerized and hydrogenated in order to study the 

crystallization behavior depending on the introduced side chains (Figure 23).[262] Hereby, 

the side-chain substitution in the monomer dictates the sequence of the obtained 

polymers. 

 

Figure 23: Synthesis of precision polyethylene via ADMET polymerization of substituted dienes 
and subsequent hydrogenation.[262] 

In 2010, Kamigaito et al. synthesized sequence-regulated vinyl copolymers by a metal 

catalyzed step-growth radical polymerization and obtained ABC- or ABCC-sequences, 

depending on the employed monomer.[263] The monomer and polymer synthesis 

obtaining ABC-sequence-regulated polymers is shown in Figure 24. 

 

Figure 24: Synthesis of an ABC-monomer by the Kharasch reaction and subsequent ATRA step-
growth polymerization of the obtained macromonomer.[263] 

The ABC and ABCC comonomers were prepared by the atom transfer radical addition 

(ATRA), also known as Kharasch reaction.[233-235] The resulting monomers contained an 

unconjugated double bond and a C-Cl bond, allowing subsequent atom transfer radical 
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addition step-growth. Hereby, the C-Cl bond is activated by metal catalysts, enabling the 

radical addition to unconjugated double bonds. A very similar approach was followed by 

Li and coworkers synthesizing sequence-regulated methyl methacrylate-styrene 

copolymers and acrylonitrile-styrene copolymers.[264] 

 

2.2.5 Synthesis of Monodisperse Macromolecules 

This section provides an overview of selected examples for the synthesis of 

monodisperse, though not sequence-defined polymers. Hereby, all chains have the 

same length, but consist of one and the same monomer unit along the polymer chain. 

Conjugated polymers, such as poly(p-phenylenevinylene)s, are valuable candidates for 

applications in photovoltaics, organic light-emitting displays or in field-effect 

transistors.[265-267] In order to investigate structure-property relationships more easily, 

monodisperse conjugated oligomers are of great importance. [268] The synthesis of 

monodisperse p-phenylenevinylene oligomers can be accomplished, for instance, by the 

use of an acetal protected phosphonate containing a stilbene core, which is 

oligomerized stepwise by the iteration of Horner-Wadsworth Emmons (HWE) reactions 

and subsequent deprotection.[268] But also the synthesis of monodisperse p-

phenylenevinylene oligomers by protecting group free approaches were described.[269-

270] Moreover, monodisperse, π-conjugated cis- and trans- oligo-eneynes can be 

synthesized via consecutive Sonogashira couplings.[271] 

On the other hand, also the solution phase synthesis of monodisperse oligoesters was 

described.[272] This synthesis approach relies on the use of two orthogonally protected 

monomers, which were synthesized by the ring-opening of ε-caprolactone and 

subsequent orthogonal protection reactions of the carboxylic acid and the hydroxy 

function.[272] These two monomers are then orthogonally deprotected and reacted upon 

DCC activation to yield in turn, a orthogonally protected dimer. The dimer is then divided 

in two parts, orthogonally deprotected and coupled to yield the tetramer. The repetition 

of these steps allowed the synthesis of a monodisperse 64-mer (Figure 25).  
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Figure 25: Exponential growth strategy towards monodisperse oligo-ε-caprolactones making use 
of orthogonal protecting groups.[73, 272] 

The exponential growth allowed the synthesis of a monodisperse oligo-ε-caprolactone 

with a molecular weight of 7522 Da. However, the purity of the 64-mer reached only 

around 94 % and the efficiency of the couplings decreased with an increasing chain 

length.[272] Attractively, the physical properties of the monodisperse oligomers were 

compared with the properties of a commercially available, polydisperse sample 

revealing, for instance, differences in crystal sizes.[272] The same synthesis strategy was 

followed for the synthesis of oligo-(L)-lactides.[273] On the other hand, monodisperse 

oligomers were prepared on a polymeric support in a protecting-group free synthesis 

approach.[274] Therefore, Lutz and coworkers made use of two orthogonal reactions, 

namely the copper catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) 

and the amidification of carboxylic acids with primary amines.[274] Owing to the 

orthogonal reactions, which were applied iteratively, the synthesis of monodisperse 

trimers succeeds without the use of protecting groups and, attractively, the employed 

polymeric support could be cleaved afterwards.[274] 
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2.2.6 Synthesis of Sequence-Defined Macromolecules 

2.2.6.1 Single-Unit Monomer Insertions (SUMI) 

The basic idea of single-unit monomer insertions (SUMIs) is to reduce the reactivity in 

conventional RDRP processes drastically in order to enable the addition of a single 

monomer unit or to adjust the ratio of growing chains and monomers in a way that the 

addition of one single monomer unit is statistically possible.[275-278] 

The first report on SUMIs for the synthesis of sequence-defined macromolecules was 

published in 2011 by Huang and coworkers.[275] Therefore, the low reactivity of allyl 

alcohol in ATRA reactions was used to introduce a single allyl alcohol unit to the chain 

end of the polymeric support. Though, the SUMI of allyl alcohol into ATRP-derived 

polymers was already described earlier in the context of polymer end group 

modifications.[279-280] In order to synthesize sequence-defined oligomers, the SUMI of 

allyl alcohol was followed by an Anelli oxidation using 2,2,6,6-(tetramethylpiperidin-1-

yl)oxyl (TEMPO) and sodium hypochlorite as well as potassium bromide as secondary 

oxidants.[281] After oxidation of the alcohol to the corresponding carboxylic acid, the latter 

was esterified using isopropyl alcohol in combination with 1-ethyl-3-(3-dimethyl 

aminopropyl) carbodiimide (EDC) and DMAP. The esterification activated the chain end 

for another ATRA and therefore, the insertion of another monomer unit is enabled. 

However, around 20 % of the growing chains loose the bromine functionality during the 

ATRA reactions and therefore, only two successive ATRA reactions were completed 

successfully. Due to the use of a polymeric support, the loss of reactive endgroups 

resulted in hardly separable product mixtures, which were in the end purified by high-

performance liquid chromatography (HPLC).[275] 

Comparable to ATRA reactions as endgroup modification method for ATRP-derived 

polymers, SUMIs were investigated to modify the endgroups of RAFT polymers with 

maleimide groups, taking advantage of the unlikely homopolymerization of maleimide 

and maleic anhydride monomers.[282-285] Besides, also two sequential SUMIs were 

performed in a RAFT process. By the use of an electron poor monomer as first unit (e.g. 

vinyl phthalimide), followed by the addition of an electron rich and less activated 
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monomer (e.g. vinyl acetate), a dimer was synthesized.[286] In 2012, Tsanaktsidis et al. 

investigated different RAFT reagents for SUMIs of styrene and N-isopropylacrylamide 

and described the synthesis of dimers.[278] The concept of SUMIs in RAFT processes 

was further investigated by Junkers and coworkers, succeeding in the synthesis of a 

sequence-defined tetramer.[276] Here, the RAFT reagent, a radical initiator and ten 

equivalents of the first acrylate monomer are reacted in short reaction times and the 

product mixture (monomer, dimer and trimer) was purified by preparative recycling size-

exclusion chromatography (SEC). In the preparative recycling SEC, the samples are 

continuously recycled and reinjected to the SEC system until the products are well 

separated.[276] The SUMI and recycling SEC were subsequently performed three more 

times using different acrylate monomers to finally obtain a sequence-defined tetramer. 

However, the coupling efficiencies decreased drastically with increasing chain length 

(from 55 % to 4 %) and the difficulty of the automated separation increased. Thus, larger 

numbers of SEC-cycles were necessary to fully separate the products. Moreover, large 

quantities of undesired sequences are produced and the overall yields of the desired 

products are very low (< 1 %). In 2015, the same group introduced a SUMI protocol 

making use of photo induced controlled radical additions.[277, 287] Photo reactions allow 

polymerizations at room temperature, thus minimizing side reactions, such as 

backbiting. Moreover, the photo-SUMI approach avoids the loss of Br-endgroups, which 

displayed a considerable problem in the ATRA approach of Huang et al.[275] Therefore, 

the photo induced controlled radical polymerization seemed to be an appropriate 

candidate for the synthesis of sequence-defined oligomers via SUMIs.[277] The photo-

SUMI approach was then applied in the synthesis of a library of sequence-defined 

oligomers, which were synthesized by the use of different commercially available 

acrylate monomers. The products of each SUMI reaction were also purified by 

preparative recycling SEC. But also in the photo-SUMI approach the overall yields of the 

obtained tetramers and pentamers were very low (< 1 %), which is apparently due to the 

fast insertion of additional monomer units. However, also the oligomers that inserted for 

instance two monomer units of the respective acrylate were isolated and display 

sequence-defined oligomers, which might be useful.[277] Regarding yields, achievable 

chain lengths and workup procedures, the RAFT and the photo-SUMI processes are 
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comparable. Nevertheless, the mild reaction conditions for photo-SUMI approach reduce 

the thermally activated side reactions to a minimum.[277] 

2.2.6.2 Template-Mediated Polymerizations 

In the biosynthesis of DNA, the template mechanism plays an important role, arranging 

activated monomer units in the correct order to enable the biosynthesis of defined DNA 

sequences.[1] In biological systems, biocatalysts advance along the template strands 

affording the recognition of each monomer unit. In synthetic polymer chemistry, template 

systems mostly rely on DNA-templates, forcing the monomer units into a certain order 

and thus allowing the synthesis of targeted sequences.[288-290] On the other hand, there 

are also a few reports on non-DNA templated systems.[13, 291-293] 

The basic idea of DNA-templated synthesis (DTS) is to bring reactive chain ends in near 

proximity by the hybridization of complementary DNA strands, thus allowing reactions to 

proceed even in very low concentrations (Figure 26).[294-295] Hereby, the reaction 

partners are bound to complementary DNA strands and upon hybridization of the DNA 

strands, the reaction is facilitated due to their near proximity, inducing a high local 

concentration of the reaction partners. 

 

Figure 26: The DTS principle allows the reaction of A and B, due to their close proximity, which 
is evoked by the DNA-template.[73, 295] 

The DTS principle is widely applied in organic synthesis. Pioneering work was done by 

Naylor and Gilham, who investigated oligonucleotide couplings in aqueous solution and 

Orgel et al., who coupled peptide nucleic acids (PNA) on DNA-templates.[296-297] Lynn et 

al. reported on reductive aminations between modified DNA oligomers, whereas Liu and 

coworkers described the synthesis of structurally diverse products, making for instance 

use of Wittig reactions, reductive aminations, Heck-couplings and the Huisgen 

cycloaddition.[294, 298-299] In 2003, Liu and coworkers synthesized a sequence-defined 

PNA 20-mer by five successive reductive aminations of PNA tetramers.[288] Remarkably, 
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the use of mismatched codons at different positions along the sequence was 

investigated, resulting in truncated products and the obtained chain length depended on 

the position of the mismatched codon.[288] This concept was followed up and the group 

succeeded in the synthesis of a sequence-defined 60-mer by the consecutive coupling 

of twelve PNA building blocks.[300] Another interesting reversible coupling approach of 

oligonucleotides was reported by Saito and coworkers. The sequence-defined 

oligonucleotides were coupled by [2+2] cycloadditions of 3' pyrimidine and 5' vinyl 

deoxyuridine, forming cyclobutane linkages.[301-302] Moreover, the use of Wittig reactions 

for oligonucleotide couplings was investigated, applying a strand displacement 

system.[289, 303] The advantage of this system is the creation of the same reaction 

conditions for each coupling reaction, independent of the chain length of the growing 

chain. Therefore, the template is removed after the reaction by a "remover" DNA strand, 

which is added in excess in order to introduce another functional aptamer, which is able 

to react with the growing chain. With this strategy, the synthesis of tetramers and 

decamers was reported.[289, 303] The field of DNA-templated synthesis of sequence-

defined macromolecules includes some more approaches, which were recently reviewed 

by Ten Brummelhuis.[14] 

Another system allows the non-enzymatic translation of DNA-templates into sequence-

defined synthetic macromolecules, which do not resemble nucleic acids.[13, 304] In this 

system, a synthetic polymer building block is bound reversibly to a PNA adapter, which 

can be recognized by the DNA template.[13] The recognition of the PNA adapters by the 

template allows the reaction of the reversibly bound polymer building blocks and thus 

the synthesis of sequence-defined macromolecules. By cleavage of the PNA adapter-

molecules, the sequence-defined macromolecule can be released.[13] With this system, 

the synthesis of polymers of 26 kDa, containing 90 β-amino acid side chains by 16 

consecutive coupling steps, was described.[13] Moreover, sequence-defined α-peptides 

and monodisperse polyethylene glycol were synthesized using this approach. [13] 

Beyond that, some templated systems are reported, where the template does not rely on 

DNA. However, these non-DNA templated approaches are rare and do not always lead 

to sequence-defined macromolecules, but allow the synthesis of sequence-regulated 

structures.[293] Sawamoto et al. described the synthesis of a template via living cationic 
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polymerization by single monomer unit additions, which allows the recognition of specific 

monomers on the one hand, and their living radical polymerization on the other hand. [291-

292, 305] The templates contain, for instance, amine groups as recognition site, allowing 

the preferred insertion of methacrylic acid over methyl acrylate in a living radical 

copolymerization of the two monomers.[291, 305] In another study, a crown ether moiety 

was introduced to the template, favoring the incorporation of sodium methacrylate over a 

monomer containing a cationic tertiary amine due to ionic interactions between the 

monomer units and the template.[292] 

Although the template-based approaches are very elegant, they have the inherent 

disadvantage of small scale reactions (pmol to nmol scale for DNA-templated reactions 

and mmol scale for non-DNA templated reactions).[289, 292, 295] Moreover, most of the 

approaches are structurally restricted to DNA-like molecules. 

 

2.2.6.3 Molecular Machines 

Leigh and coworkers reported on the synthesis of sequence-defined peptides using a 

rotaxane-based molecular machine.[306-307] Therefore, the desired amino acid sequence 

strand was synthesized and a macrocycle was designed, which is able to move along 

the strand, and to pick up the programmed amino acids by successive native chemical 

ligations. Once the final amino acid is removed from the strand, the macrocycle is 

cleaved from the synthesized peptide tetramer. Though this approach is highly elegant, 

the synthesis of the strand with the preprogrammed amino acid sequence displays a 

sequence-defined macromolecule itself, which needs to be synthesized in multiple 

steps. Furthermore, the products are obtained in milligram scale (2 mg) and the overall 

yields, considering every step, are very low (< 1 %).[306] 

 

2.2.6.4 Solid Supported Synthesis 

The synthesis of sequence-defined macromolecules on an insoluble resin is inspired by 

the polypeptide synthesis and takes advantage of simple product isolation by filtration. 
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[4-5] However, the obtained sequences are mostly separated by preparative HPLC in 

order to remove truncated and inaccurate sequences, which are formed in case of 

incomplete conversions or side reactions. Moreover, the solid phase synthesis only 

allows the synthesis of sequence-defined macromolecules on relatively small scale, 

which limits the applicability of the final products. However, the simplicity of the workup 

procedures and the possibility of automated processes make the synthesis on a solid 

support attractive in the field of sequence control. 

An interesting approach, which enables the introduction of tailored side groups to the 

final sequence-defined macromolecules, was reported by Du Prez et al. in 2013.[308] 

Here, a resin bound thiolactone is ring opened by an aminolysis reaction and the 

intermediately obtained thiol is reacted with a thiolactone-acrylamide building block in a 

Thia-Michael addition. Hereby, a thiolactone functionality is introduced, which can be 

reacted in another iterative cycle of aminolysis and Thia-Michael addition (Scheme 6). 

By the use of different primary amines, tailored side chains can be introduced to the 

sequence-defined macromolecules. The use of the orthogonal aminolysis and the 

acrylate addition is beneficial, as it allows the synthesis of sequence-defined oligomers 

in absence of protecting groups.  

 

Scheme 6: Synthesis of sequence-defined oligomers on a solid support: The aminolysis of the 
thiolactone and the subsequent Thia-Michael addition are conducted iteratively, thereby, desired 
side chains can be introduced by the choice of the amine component. Upon reaching the desired 
sequence, the oligomer can be cleaved from the resin.[308] 
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The reactions were carried out using 200 mg of the 2-chlorotrityl chloride resin, 

indicating small scale reactions. However, there is no information on the isolated yields 

of the sequence-defined tetramer. 

On the other hand, Lutz and coworkers synthesized "molecularly encoded" oligomers by 

iterative amidifications and 1,3-dipolar cycloadditions on a Wang resin.[274, 309] For this 

purpose, 4-pentynoic acid and 2-methyl-4-pentynoic acid were defined as "0" and "1" 

bits, allowing the synthesis of different sequence-defined oligomers, which are in 

principle readable via MS/MS techniques and thus molecularly encoded.[19, 309] The 

applied strategy is an "AB + CD" strategy meaning that two different bisfunctional 

monomers are reacted iteratively applying orthogonal reactions and thereby avoiding the 

use of protecting groups. Here, the AB-monomer is, for instance, 4-pentynoic acid, 

bearing an acid and an alkyne functionality, whereas the CD-monomer is equipped with 

an azide and an amine functionality. Using this approach, sequence-defined trimers 

were obtained, but there is no report on the obtained yields. The obtained sequences 

were later on analyzed by tandem MS/MS techniques in order to read out the 

synthesized sequences.[310] 

Inspired by the synthesis of biological polymers, Sleiman, Serpell and coworkers 

synthesized sequence-defined macromolecules appended to DNA using the chemical 

oligonucleotide synthesis (compare chapter 2.2.2.3).[195-196] First, the DNA sequence 

was synthesized in a conventional DNA synthesizer and subsequently, two different, 

non-natural phosphoramidite monomers were added iteratively in order to synthesize the 

sequence-defined macromolecules appended to DNA. The monomers were hydrophobic 

(hexaethylene-phosphoramidite) and hydrophilic (hexaethylene glycol-phosphoramidite) 

and the self-assembly behavior of the obtained materials was investigated. In this study, 

sequence-defined dodecamers were synthesized. Due to indifferent yields of the 

coupling steps (compared to commonly used phosphoramidites in oligonucleotide 

syntheses) it was discussed that also longer sequences of up to 100 monomer units 

should be obtainable using this approach.[196] Later on, the same group investigated the 

influence of the sequence-defined oligomers appended to DNA on the formation of 

three-dimensional self-assemblies.[311] This idea was taken up by Lutz et al. who 

synthesized non-natural polyphosphates on an insoluble polystyrene support.[197] Taking 
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advantage of the already very well optimized synthesis procedures for oligonucleotides, 

a sequence-defined 24-mer was isolated in an overall yield of 87 % (no information on 

the reaction scale).[197] By the use of different phosphoramidite monomers it was 

possible to introduce alkyne functions, allowing the post-polymerization modification via 

CuAAC. Lutz and coworkers aimed for the synthesis of encoded sequences and defined 

two different monomers as "0" and "1" bits, targeting the application of sequence-defined 

macromolecules in the field of data storage. The proposed read-out strategies include 

tandem mass spectrometry,[312] nuclear magnetic resonance spectroscopy (NMR) as 

well as depolymerization methods and are discussed in detail in a recent minireview. [21] 

In this study, the solid-phase synthesis was conducted manually,[197] contrary a 

sequence-defined non-natural polyphosphate with a degree of polymerization (DP) 

above 100 was synthesized making use of a conventional DNA synthesizer.[313] Here, 

the synthesis protocol established by Beaucage and Carothers (Scheme 5) was applied, 

but non-natural phosphoramidites served as monomers.[195, 201] By the use of two 

different phosphoramidite-monomers (defined as "0" and "1" bits), sequence-defined 

polyphosphates of different chain lengths (DPs of 16, 24, 56, 104) and different 

sequences were synthesized and analyzed by mass spectrometry and HPLC.[313] 

Another approach includes the synthesis of oligo(alkoxyamine amide)s via an "AB + CD" 

iterative approach, with an AB-monomer that contains an amine and a nitroxide 

functionality and a CD-monomer that contains an anhydride and an alkyl bromide 

functionality.[314] The iterative reaction of an amine with an anhydride and a nitroxide with 

an alkyl bromide allows the synthesis of sequence-defined and thermally degradable 

macromolecules (Scheme 7). 
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Scheme 7: Synthesis of sequence-defined oligo(alkoxyamine amide)s by iterative reactions of 
primary amines with symmetric anhydrides and alkylbromides with nitroxides. [314] 

It was shown that the sequence-defined oligomers are thermally degradable, due to the 

thermally labile alkoxyamine bond. The thermal degradation of the sequence-defined 

macromolecules allowed the MS-analysis of the obtained fragments and thus, the 

decoding of the synthesized sequences.[314] In order to avoid the formation of many 

different products upon thermolysis of the sequence-defined materials, TEMPO was 

added in large excess as a spin trap, resulting in the formation of easily analyzable 

fragments.[314] The overall yields in this approach reached 24 % for the synthesis of a 

sequence-defined tetramer on a cleavable soluble polymer support; but there is no 

report on the obtained overall yields for the solid phase synthesis. The obtained 

sequence-defined and encoded oligomers were subsequently investigated in detail 

using MS/MS techniques in the positive and negative mode in order to study the 

fragmentation behavior.[312, 315] The fragmentation behavior in the positive and negative 

mode were found to follow the same pathways: The labile C-ON bonds dissociate and 

the thereof obtained fragments allow sequencing of the oligomers.[312, 315] Moreover, the 

same group reported on the synthesis of sequence-defined oligomers by a convergent 

approach.[316] Here, dyad-monomers were synthesized, subsequently coupled on a solid 

support and a 10-mer was obtained in an overall yield of 31 % (no information on the 

reaction scale). However, due to side reactions and incomplete conversions, the 

obtained products were not monodisperse and the authors suggest capping steps 

(comparable to the oligonucleotide synthesis) and HPLC purification in order to obtain 

oligomers of high purity, which would in turn decrease the final yields drastically. 
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Very recently, a novel synthesis approach towards sequence-defined macromolecules 

was reported, allowing the introduction of tailored side chains along with specific non-

covalent backbone interactions.[317] This approach makes use of the nucleophilic 

substitution of cyanuric chlorides in such a way, that each reaction deactivates the 

cyanuric chloride compound, making elevated temperatures necessary for further 

reaction steps (Scheme 8). 

 

Scheme 8: Synthesis of triazine-based sequence-defined macromolecules making use of 
nucleophilic substitutions of cyanuric chloride. Upon reaction, the cyanuric chloride is 
deactivated allowing further reactions only at elevated temperatures. [317] 

In order to synthesize diversely substituted, monodisperse and sequence-defined 

macromolecules, different mono-substituted cyanuric chloride submonomers were 

synthesized and incorporated. Owing to the deactivation of the cyanuric chloride 

submonomer upon reaction, this approach does not require protecting groups for the 

synthesis of the sequence-defined materials. Moreover, molecular dynamics simulations 

show backbone interactions, such as hydrogen bonding and π-π-interactions, which 

might be interesting in terms of intermolecular self-assembly and the formation of three-

dimensional structures.[317] The synthesis of sequence-defined hexamers was reported 

and the overall yields were relatively high (between 43 and 75 %). However, due to the 

solid phase synthesis, the products were only obtained in milligram scale (~ 50 mg).[317] 
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2.2.6.5 Solution-Phase Synthesis 

Solution-phase approaches include the synthesis of sequence-defined macromolecules 

on a soluble polymer support as well as conventional oligomer synthesis in solution. 

Solution-phase syntheses take advantage of easily scalable reactions, straightforward 

analysis methods for the obtained products and simple reaction protocols. However, the 

workup is often demanding and time consuming. 

Meyer and coworkers synthesized sequence-defined oligo(p-phenylene-vinylene)s 

(OPVs) in solution and varied the sequence of electron-poor (non-substituted p-

phenylene-vinylene) and electron rich (dialkoxy-substituted p-phenylene-vinylene) 

monomers in order to investigate sequence-property realtionships.[318] The aim was to 

find optimal optical, energetic and charge-transfer properties for π-conjugated polymers, 

which are promising candidates for organic photovoltaics.[319-320] Moreover, OPVs are 

well known for the substituent-dependent optoelectronic properties.[321] The synthesis 

strategy of the sequence-defined OPVs includes E-selective Horner-Wadsworth-

Emmons (HWE) olefinations followed by the reduction of cyanides to the corresponding 

aldehydes using diisobutylaluminium hydride (DIBAL-H), allowing another cycle of HWE 

reactions and subsequent reductions. The synthesis strategy towards sequence-defined 

OPVs is shown in Scheme 9. 
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Scheme 9: Synthesis of sequence-defined OPVs by iterative cyanide reductions using DIBAL-H 
and HWE olefinations.[318] 

The HWE reaction using cyanide monomers and the subsequent reduction is favorable 

in terms of E/Z-selectivity compared to the previously reported acetal-deprotection 

strategy, which was applied in the synthesis of monodisperse macromolecules. [268, 318] 

The synthesized hexamers were obtained in overall yields between 21 and 49 % and the 

reactions were conducted in milligram scales, yielding between 65 and 150 mg of the 

products. Though, it has to be noted that the tetramers were synthesized on gram scales 

and the yields for each step decreased with an increasing chain length due to solubility 

issues.[318] 

Another interesting solution phase-approach towards sequence-defined macromolecules 

was introduced by Alabi and Porel, who employed fluorous tags as soluble supports, 

taking advantage of the simple isolation of the sequence-defined materials.[322-323] In this 

approach, Thiol-Ene additions and Thia-Michael reactions are conducted iteratively, 

allowing the protecting-group-free synthesis of sequence-defined oligomers with tailored 

side-chains, which can be introduced by the use of different N-substituted acrylamide 

monomers in each cycle (Scheme 10). 
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Scheme 10: Synthesis of sequence-defined macromolecules by the iterative application of Thia-
Michael additions and Thiol-Ene additions on a soluble and cleavable fluorous tag-support, 
which allows the simple purification of the desired products.[322] 

Applying this approach, sequence-defined octamers were obtained and characterized by 

NMR and mass spectrometry. Furthermore, the sequence was proven by tandem 

MS/MS spectrometry. The yield of a sequence-defined pentamer was 68 % after 

cleavage of the fluorous tag, but there is no information about the reaction scales. 

Moreover, the synthesis of sequence-defined macrocycles on a fluorous support, using 

the same strategy, was recently reported.[324] Hereby, the cleavage from the fluorous 

support goes hand in hand with a acetal deprotection of a side chain, allowing the 

formation of the macrocycle by oxime formation. Interestingly, the macrocycles bear 

biologically active side chains, permitting the investigation how the side-chain and main 

chain sequence as well as the size of the macrocycles influence the antibacterial 

activity.[324] 

A photochemical pathway towards sequence-defined macromolecules was investigated 

by Barner-Kowollik et al. in 2015 (Scheme 11).[325] Photochemical reactions take 

advantage of temporal- and spatial control. Moreover the reactions can be conducted at 

room temperature, enable high yields and equimolar amounts of the reactants, which 

altogether make photochemical approaches interesting candidates for the synthesis of 

sequence-defined materials.[326-327] In the presented approach, a symmetric core unit, 

equipped with two maleimide functions, served as starting substrate for the synthesis of 
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a symmetric, sequence-defined decamer (Scheme 11).[325] Upon photochemical 

activation of the phenacylsulfide (blue monomer in Scheme 11), a dienophile is formed, 

which is able to react with the sorbyl-ester derivative. The obtained protected maleimide 

is deprotected by the thermally activated retro-Diels-Alder reaction enabling the Diels-

Alder reaction (DAR) with an activated photoenol-monomer (red monomer in Scheme 

11).  

 

Scheme 11: Photchemical synthesis of sequence-defined macromolecules via two different 
photoreactions. The reaction of the photoenol with the maleimide takes place after the thermally 
activated retro-Diels-Alder-deprotection of the furan-protected maleimide and photochemical 
activation of the photoenol. The phenacyl sulfide reacts subsequently with the sorbyl moiety 
upon photochemical activation.[325] 
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The photoenol-monomer contains the sorbyl-group, allowing the iteration of the reaction 

steps and thus the synthesis of sequence-defined macromolecules. The reactions 

(starting from the trimer) were conducted in a 150 mg scale and the overall yield (seven 

reaction steps) of the sequence-defined decamer reached 1.2 %. 

Beyond that, the convergent synthesis of oligo(triazole amide)s on a soluble and on a 

cleavable polystyrene support, by iterative amidifications of carboxylic acids with amines 

and copper catalyzed azide-alkyne 1,3-dipolar cycloadditions, was reported.[328] The 

same approach was described for the solid phase and the polymer-supported synthesis 

of sequence-defined macromolecules adding the sub-monomers in a stepwise 

manner.[274] The convergent approach allowed the synthesis of sequence-defined 

octamers by subsequent reactions of dyads or tetrads but there is no information on 

reaction scales and obtained yields. 

In 2015, Johnson and coworkers developed an interesting and scalable approach for the 

synthesis of sequence-defined macromolecules by the iterative exponential growth (IEG) 

strategy (compare Figure 25).[329-330] IEG approaches usually take advantage of 

orthogonal deprotection reactions, allowing the coupling of α-ω-end functionalized 

molecules, thereby doubling the molecular weight of the obtained products.[331-332] This 

novel approach describes the semi-automated coupling of ester monomers.[329] 

Therefore, an appropriate monomer was synthesized, bearing an alkyl bromide, which 

can be substituted with sodium azide and a triisopropylsilyl (TIPS) protected alkyne, 

which can be orthogonally deprotected using a fluorine reagent, such as 

tetrabutylammonium fluoride (TBAF). The flow-IEG system allows the separation of the 

monomer in two parts, the orthogonal deprotection, an in-line purification of the 

deprotected monomers as well as their subsequent coupling by CuAAC (Figure 27). The 

coupled product was collected, purified by column chromatography and subjected to 

another flow-IEG cycle. Using this approach, 600 mg of a monodisperse octamer were 

prepared in an overall yield of 58 %. However, the increasing chain length of the 

monodisperse oligomers resulted in solubility issues due to crystallization. Therefore, the 

use of a second, ethylene-glycol-based comonomer allowed the synthesis of sequence-

defined hexadecamer. The use of the ethylene-glycol monomer solved the solubility 

problem but worse yields were reported, without mentioning exact values. The lowering 
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of the isolated yields was explained by side reactions (Glaser-coupling of the alkyne-

monomer), incomplete conversions and increased partitioning of the oligomers into the 

water phase during the in-line purification owing to the increased water solubility 

introduced by the ethylene glycol monomer. 

 

Figure 27: Flow-IEG strategy allowing the orthogonal deprotection, the in-line purification and the 
coupling in a continous flow system. (PG = protecting group, TBAF = tetrabutylammonium 
fluoride, TIPS = triisoproplsilyl)[329] 

However, the semi-automated flow-IEG approach is promising in terms of scaling up, 

enabling the synthesis of sequence-defined macromolecules on a larger scale and to 

allow the investigation of structure-property-relationships of the sequence-defined 

products. The same group developed a modified approach, offering the possibility to 

control chain lengths, sequence and stereoconfiguration of the obtained 

macromolecules.[330] Therefore, the previously reported approach was slightly 

altered.[330] Here, chiral tert-butyl dimethylsilyl (TBS) protected epoxy-alkynes were 

regioselectively ring-opened by an azide anion, affording the azide group along with a 

secondary hydroxyl functional group. The secondary hydroxy group can be esterified in 

order to introduce the desired side-chain, whereas the azide can be used for the chain 

elongation by addition of a deprotected alkyne-monomer. The control over the 

stereoconfiguration is accomplished by the use of enantiopure epoxide-monomers, 

which can be synthesized from epichlorohydrine and propargyl alcohol, whereas the 

sequence can be controlled by the side chain modification of the secondary hydroxy 

function. In the presented approach, benzyl and acetyl groups were introduced and an 

alternating 16-mer was synthesized in an overall yield of 26 %. Moreover, a 

monodisperse, syndiotactic 32-mer was synthesized in 16 steps in an overall yield of 

16 %. The authors discuss their approach in the context of large scale synthesis and 

indeed, the dimer synthesis was conducted in six gram scale, however, the 16-mers and 
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32-mer were synthesized in 600 mg and 140 mg scale, respectively. Although the scales 

of the reactions for larger oligomers were not really high, the strategy is auspicious, 

allowing the control over multiple parameters. 

Very recently, Sawamoto et al. described the design of a sophisticated system, making 

use of repetitive and iterative radical intramolecular cyclizations.[333] The employed 

system carries two types of reversibly cleavable bonds: a N-hydroxysuccinimidyl ester 

(NHS), which can be cleaved upon reaction with a primary amine and a ortho-pyridyl 

disulfide (Py-SS), which can be cleaved in the presence of an excess of alkyl thiols. The 

regeneration of the NHS is accomplished by the esterification with acid halides, whereas 

the disulfide can be regenerated by the reaction with activated disulfides. Upon the 

reversible ring-opening of the employed system, the intramolecular radical monoaddition 

of an acrylate-monomer is enabled and the macromolecule is elongated by the 

subsequent ring-closing of the system. This cycle was successfully conducted at both 

cleavable sites of the cyclic system and the synthesis of a sequence-defined trimer in an 

overall yield of 74 % (~ 60 mg scale) was reported.[333] 
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3 Aims 

The aim of this work was to investigate and develop novel approaches for the synthesis 

of sequence-defined macromolecules based on efficient IMCRs in solution. Therefore, 

the preliminary results, obtained during the diploma thesis studies, served as starting 

point.[73] The stepwise synthesis of sequence-defined macromolecules in solution has 

certain requirements, which need to be fulfilled by the developed approaches. In fact, 

the reactions have to reach full conversion to enable high yields, ideally in absence of 

side reactions. Moreover, the product isolation must be straightforward and the products 

need to be isolated in high purity. Finally, the synthesis of considerable amounts of the 

sequence-defined materials is an important goal in order to provide enough material to 

establish sequence-property-relationships in the future and to aim for certain 

applications, for instance as active ingredients in pharmaeuticals. For the synthesis of 

sequence-defined macromolecules using isocyanide-based multicomponent reactions, 

three different approaches were developed and two different IMCRs were investigated. 

First, a protecting-group-free approach was explored, which is based on orthogonal 

reaction conditions for the IMCR and the subsequent Thiol-Ene addition. Hereby, the P-

3CR as well as the U-4CR were investigated and different sequence-defined 

macromolecules were synthesized in high overall yields and purities in multigram scale. 

Remarkably, the U-4CR allowed "dual side chain control" because two different and 

selectable side chains could be introduced in one MCR-step. Secondly, a mono-

protected AB-monomer, suitable for the P-3CR and the U-4CR, was designed and 

synthesized in order to improve the reaction conditions and to avoid side-reactions. The 

monomer-approach revealed that the workup of the sequence-defined materials could 

be simplified and thus the synthesis of longer sequences was enabled. Moreover, the 

approach served as synthesis protocol for sequence-defined materials on a multigram 

scale. Finally, a convergent synthesis approach was investigated, combining thiolactone 

chemistry and multicomponent reactions. The synthesis of a small library of oligomeric 

building blocks was accomplished and their subsequent coupling by a multicomponent 

reaction was investigated. 
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4 Results and Discussion 

4.1 Synthesis of Sequence-Defined Macromolecules by Protecting-

Group-free Approaches 

In this section, the synthesis of sequence-defined oligomers by protecting group-free 

approaches is discussed. The avoidance of protecting groups can be achieved by the 

iterative application of orthogonal reactions. Comparable to the submonomer approach 

developed by Zuckermann et al. (see introduction chapter 2.2.2.2) two different, 

orthogonal reactions are performed iteratively.[147] The approaches described herein for 

the U-4CR and the P-3CR make use of an aldehyde component bearing a terminal 

double bond. This terminal double bond can subsequently be functionalized in an 

efficient Thiol-Ene addition using, for instance, 3-mercaptopropionic acid. This end-

group modification enables another MCR and by stepwise iterative reactions, sequence-

defined oligomers of high purity can be synthesized. The following sections describe the 

synthesis procedures in detail and discuss the analytic results of the sequence-defined 

products. 
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4.1.1 Synthesis of Sequence-Defined Macromolecules by the Passerini-

Thiol-Ene Approach 

Parts of this chapter and the associated parts in the Experimental Section were 

reproduced with permission from: S. C. Solleder and M. A. R. Meier, Angew. Chem. Int. 

Ed. 2014, 53, 711; Angew. Chem. 2014, 126, 729.[334-335] Copyright © 2014, John Wiley 

and Sons.  

Abstract: 

A new strategy to achieve sequence control in polymer chemistry based on the iterative 

application of the versatile Passerini three-component reaction (P-3CR) in combination 

with efficient Thiol-Ene addition reactions is described within this chapter. First, stearic 

acid was used as a starting substrate to build up a sequence-defined pentamer with a 

molecular weight of 2022.13 gmol-1. Using an acid-functionalized PEG allowed for an 

easier isolation of the sequence-defined macromolecules by simple precipitation and led 

to a sequence-defined pentamer in a block-copolymer architecture. Importantly, this 

novel strategy completely avoids protecting group chemistry. By following this strategy, a 

different side chain can be introduced in each MCR step to the polymer/oligomer 

backbone in a straightforward fashion and at a defined position within the 

macromolecule. 
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Within this chapter, the synthesis of a sequence-defined pentamer as well as the 

synthesis of a block-copolymer bearing a sequence-defined pentamer block is 

described. In order to achieve sequence control, orthogonal reactions were applied 

iteratively to synthesize the sequence-defined macromolecules in a stepwise manner 

without the utilization of protecting groups. In this aspect, the versatile P-3CR and the 

efficient Thiol-Ene addition reaction proved to be a powerful combination. Applying this 

approach, the introduction of different side chains to each monomer unit was achieved 

by simply employing different isocyanides in each step of the P-3CR (Scheme 12). By 

the use of 10-undecenal 2 in the P-3CR a terminal double bond is introduced, enabling a 

subsequent Thiol-Ene addition with 3-mercaptopropionic acid 4 and thus another cycle 

of a P-3CR and a Thiol-Ene addition is possible for further chain elongation. 

 

Scheme 12: Synthesis of a sequence defined pentamer (starting from 1a) or a sequence-defined 
block-copolymer (starting from 1b) by iterative application of the P-3CR and the Thiol-Ene 
addition reaction. 

Compared to other sequential approaches (i.e. polypeptide synthesis), this strategy has 

several advantages. The use of coupling or activating reagents is avoided and protecting 

groups are not necessary for the backbone synthesis. Furthermore, there is no need of 

using different monomers to achieve sequence-control and to introduce different and 
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tailored side chains to the polymer chains. These facts make this approach versatile 

(easy choice of side groups), scalable, as well as more efficient and sustainable since 

less waste is produced.  

First, the P-3CR of stearic acid 1a with 2 and 3a was investigated and optimized. 

Therefore, THF and dichloromethane (DCM) were used as solvents and different 

concentrations of the reactants were investigated (Table 1). The reactants 1, 2 and 3a 

were used in a 1:1:1 ratio and the reactions were followed by GC to determine the 

conversion of 2. 

Table 1: Comparison of THF and DCM as solvents in the Passerini-3CR (at room temperature) 
of 1a with 2 and 3a (1.0 eq. of 1a, 2 and 3a, respectively). 

entry concentration a conversion (THF) /% b conversion (DCM) /%b 

1 0.18 M 3.40 70.6 

2 0.25 M 4.40 80.1 

3 0.35 M 15.0 86.9 

4 0.59 M 37.7 91.8 

5 1.19 M 66.6 95.9 
a
 concentration of 1a in mmol/ mL solvent. 

b 
conversion of 2 was determined by GC after 5 hours reaction 

time, using 10 mol% tetradecane as internal standard. 

The results revealed that high concentrations of the reactants resulted in higher 

conversions within shorter reaction times and higher yields and that the reaction 

proceeds faster in DCM. However, when using an equimolar ratio of the reactants 1, 2 

and 3a, traces of 1a were observed in the obtained product after recrystallization, 

indicating incomplete conversion. Therefore, in order to ensure full conversion of the 

carboxyl groups, 2 and 3a were used in a 1.5-fold excess. Full conversion of the 

carboxyl groups is essential in order to facilitate the workup procedures after each  

P-3CR and to maximize the resulting yields. After this short optimization, the conditions 

for the Thiol-Ene addition reaction were examined, revealing that highest yields can be 

obtained by using a five-fold excess of the thiol 4, 5.0 mol% 2,2-dimethoxy-2-

phenylacetophenone (DMPA) 5 as initiator and irradiation with UV-light for two hours. 

The optimization of the reaction conditions as well as the synthesis of a sequence-

defined tetramer were part of a diploma thesis.[73] However, these basic insights were of 

great importance for the whole research project and therefore they were also discussed 

in this part. 
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These optimized procedures were used in the further synthesis steps of a sequence-

defined pentamer on a larger scale (5.1 g of the pentamer 14) and also in the synthesis 

of a block-copolymer having a sequence-defined pentamer-block 23. Using the 

previously optimized reaction conditions, the sequence-defined pentamer 14 (Figure 28) 

with a molecular weight of 2022.13 g/mol was prepared in nine reaction steps in an 

overall yield of 22 %. 

 

Figure 28: Structure of the obtained sequence-defined pentamer 14 having five different side 
chains attached. 

The results obtained after each synthesis step of the sequence-defined pentamer 14 are 

summarized in Table 2. The reaction times for the P-3CR were between 15 and 48 

hours, and for the Thiol-Ene addition between two and six hours. The isolated yields are 

high and the analytically found masses are in very good agreement with the calculated 

values. 

Table 2: Summary of the results obtained after each synthetic step in the synthesis of the 
sequence-defined tetramer 14. 

reaction (product) 
reaction time 
/hours 

yield /%a/b 
exact mass 
calculated 

mass 
found 

1st P-3CR (6) 24 96a 562.5 562.5 

1st Thiol-Ene addition (7) 2 95a 668.5 668.5 

2nd P-3CR (8) 14 97b 919.8 919.6 

2nd Thiol-Ene addition (9) 2 84a 1025.8 1025.7 

3rd P-3CR (10) 30 64b 1290.0 1290.8 

3rd Thiol-Ene addition (11) 3 98a 1396.0 1396.5 

4th P-3CR (12) 18 81b 1648.2 1648.6 

4th Thiol-Ene addition (13) 6 85a 1755.2 1755.4 

5th P-3CR (14) 48 68 2020.4 2020.8 

a after recrystallization; b after column chromatography 
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The NMR-data of the obtained products show the success of each experimental step by 

the appearance of characteristic signals and appropriate integrals for the introduced 

amide protons after the P-3CR and the absence of double bond signals after the Thiol-

Ene addition reaction (Figure 29), respectively. Figure 29 shows the obtained 1H NMRs 

for the products of the first Passerini reaction (Figure 29, top) and the first Thiol-Ene 

addition (Figure 29, bottom) as an example. 

 

Figure 29: Comparison of the NMR spectra obtained for the product of the first P-3CR (6) (top) 
and the product of the first Thiol-Ene addition (7) (bottom). The disappearance of the signals of 
the double bond (zoom-box and blue boxes) and the appearance of the thioether signals (purple 
box) can clearly be seen. 

Gel Permeation Chromatography (GPC) analysis (Figure 30) of the obtained products 

further demonstrates the successful formation of the desired products and verifies the 

high purity of the products by the shifting towards higher molecular weights (lower 

retention times) after each step and the absence of low molecular weight by-products. 
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Figure 30: GPC traces of the obtained products after each P-3CR. To make it well arranged, the 
GPC traces for the products of the Thiol-Ene additions were left out. 

The successful synthesis of 14 in an overall yield of 22 % (nine steps) revealed valuable 

details about the used synthesis procedures and also on the behavior and stability of the 

oligomers. In order to improve the yields and to significantly simplify the work-up, the 

initial acid substrate was substituted by an end-group functionalized polymer. Thus, as 

also reported earlier,[336] the use of an acid functionalized polymer significantly facilitates 

the purification of the sequence-defined products by straightforward precipitation and 

also speeds up the overall synthesis procedure. Therefore, a PEG-acid was synthesized 

from a commercially available PEG-monomethyl ether (Mn ~2000 gmol-1). Starting from 

the PEG-acid 1b, the sequence-defined pentamer block was synthesized according to 

the aforementioned procedure. As anticipated, complicated purification steps were not 

required in this case: the products were isolated by simple precipitation in ice-cold 

diethyl ether and filtration. For the block-copolymer synthesis, the GPC results (Figure 
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31) also revealed a shift of the complete molecular weight distribution (MWD) towards 

higher molecular weights, which is in agreement with the successful formation of the 

desired sequence-defined products. In all GPC traces a small shoulder is observed, 

which was already present in the initially used PEG and probably arises from bis-OH 

functional PEG chains. Additional GPC/ESI-MS measurements confirm the success of 

each reaction step (see Experimental Section, Chapter 6.3.1). 

 

Figure 31: GPC traces obtained from the block-copolymer synthesis for the products of the 
Passerini reactions. To make it well-arranged, the GPC traces of the products of the Thiol-Ene 
additions were left out. The whole distribution shifts towards lower retention times (higher 
molecular weights), indicating successful reactions and complete conversions. 

Figure 32 illustrates the mass spectra of 15 and 17 obtained after the first and the 

second P-3CR, respectively. It is obvious that all polymer chains are functionalized, 

which is apparent due to the shift of the whole MWD by 357.3 Da (119.1 m/z), which 

exactly corresponds to the mass of 3-mercaptopropionic acid 4, 10-undecenal 2 and 

tert-butyl isocyanide 3b. 
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Figure 32 ESI-MS spectra of 15 (product of the first P-3CR) and 17 (product of the second P-
3CR), showing a shift of the MWD towards higher molecular weights. The peaks shown in the 
spectra correspond to chains carrying three sodium ions and the selected peaks correspond to 
polymer chains having 51 PEG monomer units. The peak shifts by 119.1 m/z (357.3 Da), which 
is exactly the sum of the masses of 3-mercaptopropionic acid 4, 10-undecenal 2 and tert-butyl 
isocyanide 3b. 

Furthermore, the introduction of the desired functional groups can be followed by 

1H NMR spectroscopy (Figure 33). The presence or absence of the terminal double 

bond and the presence of amide signals also verify full conversion of the starting 

material to the desired products in each reaction step. Figure 33 shows exemplary the 

1H NMR spectra obtained after the first P-3CR (Figure 33, top) and the first Thiol-Ene 

addition (Figure 33, bottom). The presence or absence of the signals for the terminal 

double bond is clearly observed (Figure 33, zoom and blue boxes). 
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Figure 33: NMR spectra obtained for polymer 15 (first P-3CR, top) and polymer 16 (first Thiol-
Ene addition, bottom). The disappearance of the double bond signals (blue boxes) after the 
Thiol-Ene addition reaction can be followed (zoom-box). 

Moreover, the integration of the 1H NMR signals of the modified polymer end-groups are 

in good agreement with those of the desired products and confirm the success of the 

synthetic steps. 

Table 3 summarizes the results obtained from Gel Permeation Chromatography (Mn, 

Mw, Mp and Ð) and Differential Scanning Calorimetry (DSC, Tm) for each polymer after 

precipitation in ice cold diethyl ether. 
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Table 3: Summary of the results obtained in the synthesis of a block-copolymer containing a 
sequence-defined pentamer-block. 

reaction (product) Mn / g mol-1 a Mw / g mol-1 a Mp/ g mol-1 c 
Ð a Tm / °C yield / % b 

PEG 2705 2859 2990 1.06 53.1 - 

PEG-COOH (1b) 2871 3001 3118 1.05 52.1 89 

1st Passerini (15) 3338 3473 3757 1.04 48.9 96 

1st Thiol-Ene (16) 3429 3512 3719 1.02 47.4 88 

2nd Passerini (17) 4317 4515 4657 1.05 47.0 89 

2nd Thiol-Ene (18) 4313 4525 4426 1.05 45.9 92 

3rd Passerini (19) 5016 5290 5000 1.05 46.0 92 

3rd Thiol-Ene (20) 4915 5178 5051 1.05 45.4 89 

4th Passerini (21) 5971 6342 5999 1.06 45.8 81 

4th Thiol-Ene (22) 6064 6403 6121 1.06 45.1 87 

5th Passerini (23) 6597 7028 6570 1.07 45.0 85 

a values determined by GPC (calibrated on narrow linear PMMA standards). b yield after 
precipitation in ice cold diethyl ether (0°C) and filtration. c values calculated from the calibration 
curve. 

Compared to the oligomer synthesis, the synthesis of the block-copolymer revealed to 

be much easier regarding the time saving purification procedure by precipitation. 

Moreover, higher yields can be obtained in the synthesis of 23 having a sequence-

defined pentamer structural motif. An overall yield of 34 % of 23 was obtained after nine 

reaction steps. 

All in all, the synthesis of the sequence-defined block utilizing the PEG-acid is more 

efficient with regard to ease of purification and reaction efficiency, but also the overall 

preparation procedure is significantly accelerated.  

In conclusion, a novel synthesis approach towards sequence-defined maromolecules 

was successfully applied to synthesize pentamer 14 as well as block-copolymer 23 

containing a sequence-defined block of five units and bearing five different side chains. 

The products were obtained in high yields and purity. Thereby, the iterative utilization of 

the P-3CR and the Thiol-Ene addition reaction proved to be a powerful combination in 

the preparation of the sequence-defined materials and enabled an easy and versatile 

introduction of different side chains. Moreover, the use of a PEG-acid allowed for a 

straightforward isolation of the sequence defined products by precipitation. It should be 
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emphasized that this novel synthesis protocol does not require any protecting groups or 

activating reagents, which is feasible due to the orthogonal reactions. Above all, there is 

no need for complex monomer synthesis, since the used compounds for each step are 

commercially available. 
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4.1.2 Synthesis of Sequence-Defined Macromolecules by the Ugi-Thiol-

Ene Approach 

Parts of this chapter and the associated parts in the Experimental Section were 

reproduced with permission from: S. C. Solleder, K. S. Wetzel and M. A. R. Meier, 

Polym. Chem 2015, 6, 3201.[337] Copyright © 2015, Royal Society of Chemistry. 

(http://pubs.rsc.org/en/content/articlelanding/2015/py/c5py00424a#!divAbstract) 

 

Abstract: 

The synthesis of sequence-defined oligomers by the iterative application of the modular 

Ugi four-component reaction (U-4CR) and the efficient Thiol-Ene addition reaction is 

described within this chapter. By varying the amine component in the U-4CR, a 

sequence-defined and monodisperse tetramer (M= 1861.5 g mol−1) was obtained. More 

interestingly, if both the amine and the isocyanide components were varied 

simultaneously in the U-4CR, a double sequence-controlled, monodisperse pentamer 

(M= 2411.8 g mol−1) bearing ten different and selectable side chains was obtained. All 

oligomers were thoroughly characterized by NMR and IR spectroscopy, mass 

spectrometry and GPC. 
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Compared to the P-3CR, the U-4CR offers the possibility to introduce two different side 

chains in one single reaction step within the same synthetic strategy. The carboxylic acid 

functionality and the double bond of the aldehyde component were utilized for chain 

elongations, comparable to the previously discussed P-3CR approach (Chapter 

4.1.1).[334] However, in the U-4CR, an amine is used as an additional component. Thus, 

the isocyanide and the amine can be used to introduce two tailored side chains to the 

sequence-defined polymers in one single reaction step. Moreover, the resulting 

oligomers offer a comparably higher chemical stability due to formed amide backbone. 

Therefore, the iterative use of the U-4CR and the Thiol-Ene addition reaction is a 

valuable combination of reactions to prepare sequence-defined oligomers with great 

structural diversity (Scheme 13). Conceptually, this is the first synthesis approach that 

introduces two defined side groups to the growing macromolecular chain in one reaction 

step, thus offering a significant advance in the design of sequence-defined polymers. 

 

Scheme 13: Synthesis strategy towards dual side chain controlled, sequence-defined oligomers 
through the iterative application of the Ugi four-component and the Thiol-Ene addition reaction. 

To synthesize the sequence-defined oligomers, stearic acid 1a was used as starting 

substrate and 10-undecenal 2 as the aldehyde component, allowing for a subsequent 

Thiol-Ene addition reaction of 3-mercaptopropionic acid 4, which enables another  
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U-4CR and completes one sequence of the oligomer-synthesis (Scheme 13). In each  

U-4CR, the amine and the isocyanide-component can be varied to obtain 

macromolecules with tailored side chains. An optimization of the reaction conditions in 

the U-4CR revealed that the use of 10-undecenal 2, propyl amine 24a and tert-butyl 

isocyanide 3b in a 1.7-fold excess relative to stearic acid 1a leads to isolated yields of 

the product 25 of up to 91 % (Table 4, entry 3). In this optimization study, the reactions 

of 1a, 2, 3b and 24a were conducted at room temperature in a 1.0-molar concentration 

of 1a in methanol (Figure 34).  

 

Figure 34: First U-4CR of stearic acid 1a, 10-undecenal 2, propyl amine 24a and tert-butyl 
isocyanide 3b, yielding product 25. 

Here, the conversion could not be determined from the reaction mixtures due to the 

rapid formation of the imine (condensation of the aldehyde and the amine) and its 

invisibility in GC or GC-MS measurements. Also in 1H NMR measurements, no 

distinctive, non overlapping signal for the imine could be found. Therefore, the reactions 

with different ratios of reactants were performed and after workup by column 

chromatography the yields were determined (Table 4). 

Table 4: Comparison of the yields obtained in the first U-4CR using stearic acid 1a, 10-
undecenal 2, tert-butyl isocyanide 3b and propyl amine 24a in different ratios. 

entry ratio 1a : 2 : 3b : 24a yield [%]a 

1 1.0 : 1.0: 1.0: 1.0 53 

2 1.0 : 1.1 : 1.1 : 1.1 56 

3 1.0 : 1.7 : 1.7 : 1.7 91 

4 1.0 : 2.0 : 2.0 : 2.0 51 

a yield after isolation of product 25 by column chromatography. 

According to this optimization study, the U-4CR was conducted using a 1.7-fold excess 

of the aldehyde, the isocyanide and the amine component. Since high concentrations of 
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the reactants are favorable, all U-4CR reactions were performed in a minimum amount 

of methanol (1.0 molar solution with respect to the acid component).[71, 91] The obtained 

products of the Ugi reactions were purified by column chromatography in order to ensure 

the complete removal of the excess components and to provide the products in high 

purity. The subsequent Thiol-Ene addition reaction was conducted at room temperature 

under UV irradiation, using 5.0 equivalents of mercaptopropionic acid 4 and 5.0 mol% 

DMPA 5 as UV-initiator. The products of the Thiol-Ene addition reactions were, unlike 

the products of the P-3CR and Thiol-Ene addition approach (Chapter 4.1.1), purified by 

vacuum distillation of the excess of 3-mercaptopropionic acid 4 and simple washing with 

water. The workup could be simplified in this case due to the higher stability of the 

amide-backbone, which is formed in the U-4CR compared to the ester-backbone, which 

is formed in the P-3CR (see Figure 35). Interestingly, the distillation of the excess 

amount of 3-mercaptopropionic acid 4 allowed the recycling of the thiol and its reuse in 

subsequent Thiol-Ene addition reactions. 

 

Figure 35: Comparison of the P-3CR and the U-4CR: The iterative sequence of the P-3CR and 
the Thiol-Ene addition provides a poly(ester)-backbone (top), whereas the iterative sequence of 
the U-4CR and the Thiol-Ene addition provides the more stable poly(amide)-backbone (bottom). 

In this first synthesis of sequence-defined macromolecules through the U-4CR, the 

amine component (24a-d) was varied while using tert-butyl isocyanide 3b in each U-

4CR, yielding tetramer 31 (Figure 36, top) in an overall yield of 15 % (seven steps).  
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Figure 36: Structure of the synthesized tetramer 31 (top) with four different side chains and the 
obtained GPC traces after each Ugi four-component reaction (bottom). To make it well arranged, 
the GPC traces obtained for the products of the Thiol-Ene additions were left out. 

The obtained GPC traces clearly show the success of each synthetic step by the shifting 

towards higher molecular weights (lower retention times). Additionally, the GPC traces 

prove the high purity of the synthesized sequence-defined macromolecules. Table 5 

gives an overview of the obtained results in each U-4CR in the synthesis of tetramer 31. 

The reaction times for the U-4CR were between 24 and 48 hours, whereas the Thiol-

Ene additions were performed in reaction times between one and two hours. The results 

obtained from mass spectrometry are in very good agreement with the calculated 

values. 
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Table 5: Summary of the results obtained after each U-4CR and each Thiol-Ene addition in the 
synthesis of the sequence-defined tetramer 31. 

reaction (product) 
reaction time 
/hours 

yield /%a/b 
exact mass 
calculated 

mass 
found 

1st U-4CR (25) 24 91a 577.6 577.6 

1st Thiol-Ene addition (26) 2 91b 683.6 683.6 

2nd U-4CR (27) 24 76a 1022.9 1022.9 

2nd Thiol-Ene addition (28) 1 81b 1129.9 1129.4 

3rd U-4CR (29) 48 81a 1461.2 1460.9 

3rd Thiol-Ene addition (30) 2 75b 1567.2 1567.3 

4th U-4CR (31) 48 48a 1862.5 1861.9 

a after column chromatography; b after distillation of the excess of 4 and washing with water  

In the fourth U-4CR, ethanolamine 24d was used as amine component, introducing a 

functional group to the backbone, which can be used, for instance, as initiator for ring-

opening polymerizations. However, the relatively low yield (48 %) of this U-4CR 

indicates that protecting groups could be advantageous for the introduction of primary 

alcohols. The overall yield in the synthesis of tetramer 31 was 15 % and a sequence-

defined macromolecule with a molecular weight of 1861.5 g mol-1 was obtained in seven 

reaction steps. 

The synthesis of tetramer 31 confirmed that the U-4CR is a valuable tool to prepare 

sequence-defined and structurally diverse oligomers. To further benefit from the 

versatility of the U-4CR, the monodisperse pentamer 40 was synthesized by variation of 

both the amine and the isocyanide component in each U-4CR (Figure 37, top) using the 

previously optimized reaction conditions. In this way, two different side chains were 

introduced at each monomer unit in one single step leading to dual side chain control. 

By combination of tert-butyl isocyanide 3b and propylamine 24a, cyclohexyl isocyanide 

3a and benzylamine 24b, n-butyl isocyanide 3d and p-methoxy benzylamine 24e, n-

pentyl isocyanide 3c and iso-propyl amine 24f, benzyl isocyanide 3f and cyclohexyl 

amine 24c, ten different side chains were sequentially introduced in five subsequent Ugi 

reactions. 
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Figure 37: Structure of the obtained pentamer 40 (top). In each U-4CR, two different side chains 
were introduced, yielding a sequence-defined pentamer with ten different and selectable side 
chains. GPC traces obtained in the synthesis of the sequence-defined pentamer 40 after each 
U-4CR (bottom). To make it well arranged, the GPC traces obtained after the Thiol-Ene 
additions were left out. 

Table 6 provides an overview of the yields and reaction times for each U-4CR and Thiol-

Ene addition in the synthesis of pentamer 40. Furthermore, the results of the mass 

analyses are shown. The overall yield of the pentamer-synthesis was 15 % (nine steps) 

and a highly defined, monodisperse macromolecule with ten different side chains and a 

molecular weight of 2411.8 g mol-1 was obtained. 
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Table 6: Summary of the results obtained after each U-4CR and each Thiol-Ene addition in the 
synthesis of the sequence-defined pentamer 40. 

reaction (product) 
reaction time 
/hours 

yield /%a/b 
exact mass 
calculated 

mass 
found 

1st U-4CR (32) 24 91a 577.6 577.6 

1st Thiol-Ene addition (33) 1 99b 683.6 683.6 

2nd U-4CR (34) 48 53a 1049.9 1049.7 

2nd Thiol-Ene addition (35) 3 92b 1155.9 1155.6 

3rd U-4CR (36) 40 80a 1526.2 1526.3 

3rd Thiol-Ene addition (37) 3 99b 1632.2 1632.1 

4th U-4CR (38) 48 77a 1937.5 1937.7 

4th Thiol-Ene addition (39) 4 99b 2043.5 2043.1 

5th U-4CR (40) 24 56a 2409.8 2410.1 

a after column chromatography; b after distillation of the excess of 4 and washing with water  

 

The success of the reactions in the synthesis of tetramer 31 and pentamer 40 can be 

followed by 1H NMR analysis (see Figure 38); Characteristic signals for the amide 

protons and the olefin protons appeared after each U-4CR, whereas the olefin protons 

were absent after the Thiol-Ene addition reactions. Figure 38 shows the comparison of 

the 1H NMR spectra obtained after the first U-4CR 32 (Figure 38, top) and the first Thiol-

Ene addition reaction 33 (Figure 38, bottom). The disappearance of the double bond 

signals (5.8 and 5.0 ppm) after the Thiol-Ene addition can be clearly seen (Figure 38). 

Furthermore, the signals for the newly formed thioether group (between 2.9 and 2.4 

ppm) can be observed. The 1H NMR of product 33 still shows traces of the photoinitiator 

DMPA 5, which cannot be removed by the chosen workup procedure. However, it does 

not interfere with the subsequent U-4CR, so it was removed by column chromatography 

after the following U-4CR. 
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Figure 38: Comparison of the NMR spectra obtained for the product of the first U-4CR (32) (top) 
and the product of the first Thiol-Ene addition (33) (bottom). The disappearance of the signals of 
the double bond (zoom-box and blue boxes) and the appearance of the thioether signals (purple 
box) can clearly be seen  

Furthermore, the high purity of the sequence-defined oligomers is confirmed by GPC 

and their structure by mass spectrometry (see Table 5 and Table 6 and Experimental 

Section Chapter 6.3.2). 

In conclusion, it was shown that the Ugi four-component reaction is a valuable tool for 

the synthesis of sequence-defined macromolecules. By iteration of the modular U-4CR 

and the efficient Thiol-Ene addition reaction it is possible to tailor the side chains of the 

synthesized macromolecule by either varying one or two components in each U-4CR. 

The presented approach is highly orthogonal, thus no protecting groups or activating 

agents are needed. Beside mass and GPC analysis, the success of each reaction step 

is evidenced by proton and carbon NMR analysis. The overall yields over seven or nine 

steps are around 15 %, which might be improved in the future by, for instance, 

transferring the procedure to solid-phase synthesis. Most interestingly, the use of the U-
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4CR proved to be a powerful tool in the field of sequence control, offering the unique 

possibility to introduce two tailored side chains to the macromolecule in a single reaction 

step while maintaining a stable amide backbone. 
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4.2 Synthesis of Sequence-Defined Macromolecules Using the 

Monomer-Approach 

Parts of this chapter and the associated parts in the Experimental Section were 

reproduced with permission from: S. C. Solleder, D. Zengel, K. S. Wetzel and M. A. R. 

Meier, Angew. Chem. Int. Ed. 2016, 55,1204; Angew. Chem. 2014, 128, 1222.[338-339] 

Copyright © 2016, John Wiley and Sons. 

 

 

Abstract:  

The efficient synthesis as well as the characterization of a sequence-defined decamer 

and its straightforward dimerization by self-metathesis is described. For this purpose, a 

monoprotected AB-monomer was designed and successfully applied for the synthesis of 

a decamer bearing ten different and selectable side chains by using an alternating 

protocol of the Passerini three-component reaction (P-3CR) and subsequent 

deprotection. The highly efficient procedure provided excellent yields and allows for 

multigram scale synthesis of such perfectly defined macromolecules. By the introduction 

of an olefin at the end of the synthesis, a self-metathesis reaction of the decamer 

resulted in a sequence-defined 20-mer with a molecular weight of 7046.40 g mol-1. The 

obtained oligomers were carefully characterized by NMR and IR spectroscopy, GPC and 

GPC coupled to ESI-MS, as well as by mass spectrometry (FAB and orbitrap ESI-MS). 
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In order to combine high yields and scalability in one strategy, another strategy to 

prepare sequence-defined oligomers using the P-3CR including the use of protecting 

groups, was investigated. Therefore, an appropriate monomer was synthesized and 

subsequently used for the synthesis of sequence-defined oligomers in an iterative 

protocol of a Passerini reaction and subsequent deprotection. Thus, a monomer having 

both an isocyanide and a benzyl ester protected carboxylic acid function was prepared, 

similarly as for the synthesis of dendrimers prepared by the U-4CR.[340] This combination 

of functional groups seemed to be the most convenient one, due to the limited stability 

and difficult synthesis of aldehydes on the one hand and the lack of protecting groups 

for isocyanides on the other hand. Moreover, the efficient, simple and orthogonal 

deprotection of benzyl esters is highly valuable for this strategy. An overview of the 

reaction conditions for the monomer synthesis is shown in Scheme 14. The overall yield 

over three steps was 63 % and the reaction was performed on a 15 gram scale. 

 

Scheme 14: Three-step synthesis of the monoprotected AB-type monomer 49, having both a 
benzyl ester and an isocyanide functionality. 

Attractively, this synthesis protocol is adaptable to other amino acid derivatives, allowing 

structural backbone variety along with selectable side chains. Following this synthesis 

approach, three other monomers, starting from β-alanine, 6-aminohexanoic acid and 4-

(aminomethyl)benzoic acid were synthesized, but not yet applied for the synthesis of 



  Results and Discussion 

 

91 

sequence-defined macromolecules (Figure 39). The use monomer 49c allows the 

introduction of rigid monomer units, whereas the density of side chains in the sequence-

defined macromolecules can be tailored by the choice of monomer 49a, monomer 49b 

or monomer 49. 

 

Figure 39: Three other isocyanide-monomers, which have been synthesized, but not yet applied 
in the synthesis of sequence-defined macromolcules. 49a was synthesized in three steps 
starting from ß-alanine, 49b was synthesized in three steps starting from 6-aminohexanoic acid 
and 49c was synthesized in four steps starting from 4-(aminomethyl)benzoic acid. 

Subsequently, monomer 49 was applied in the efficient iterative sequence of a P-3CR 

and subsequent deprotection of the benzyl ester yielding the sequence-defined decamer 

69 with ten different side chains (Scheme 15).  

 

Scheme 15: Synthesis strategy towards sequence-defined macromolecules using the 
monoprotected AB-monomer 49. 
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In detail, the isocyanide functionality of monomer 49 was reacted in a P-3CR with, e.g., 

stearic acid 1a as starting substrate and an aldehyde component 50a-j. The thus 

obtained product of the P-3CR bears a benzylester moiety, which can be used for 

another P-3CR after hydrogenolysis by heterogeneous Pd/C catalyst and hydrogen gas, 

followed by a simple workup by filtration.  

Remarkably, the workup by column chromatography after the P-3CR step turned out to 

be simpler with increasing chain lengths: the excess of the low molecular weight 

reactants (monomer 49 and the aldehyde 50a-j) were recovered using apolar eluents 

and subsequently, polar eluents allowed the simple collection of the sequence-defined 

oligomers. By the use of different aldehydes 50a-j for the P-3CR, ten different side 

chains were introduced to the sequence-defined decamer, including aliphatic, aromatic 

and olefinic moieties (Figure 40, top).  

It has to be noted that, if olefins are introduced to the oligomer, the deprotection step 

also leads to a reduction of the double bonds. Thus, olefins have to be introduced either 

at the end of the sequence, or the double bonds must be protected or further 

functionalized prior to the hydrogenolysis of the benzyl ester. 
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Figure 40 Top: Structure of the sequence-defined decamer 69 with ten side chains, including 
aliphatic, aromatic, and olefinic side chains. Bottom: GPC traces of the obtained products after 
each P-3CR; To make it well arranged, the GPC traces obtained for the products of the 
deprotections were left out. 

The overall yields in the synthesis of the sequence-defined macromolecules were very 

high. Especially compared to the previously described procedure (Chapter 4.1.1), the 

yields increased considerably and the workup was simplified (see Table 7, entries 1 - 

5).[334] In addition, only one single monoprotected building block was required, the 

reactions could be conducted on a multigram scale and activating agents were not 

necessary, making this synthesis protocol advantageous compared to other stepwise 

procedures, such as the well-established polypeptide synthesis. 



Results and Discussion 

 

94 

Table 7: Comparison of the yields of the Passerini/Thiol-Ene approach (Chapter 4.1.1)[334] with 
the monomer approach (this Chapter). 

sequence a Passerini/Thiol-Ene Passerini/deprotection 

1st 92 % 97 % 

2nd 81 % 96 % 

3rd 63 % 88 % 

4th 69 % 90 % 

5th 68 % 91 % 

6th  92 % 

7th  91 % 

8th  92 % 

9th  89 % 

10th  95 % 

overall yield 22 % (for 5-mer) 44 % (for 10-mer) 

a sequence includes the Passerini reaction as well as the Thiol-Ene addition or the 
deprotection. 

The sequence-defined decamer 69 (Figure 40, top) was obtained in 19 reaction steps in 

an excellent overall yield of 44 % and very high purity. It has to be highlighted that the 

reactions were carried out on multigram scale. Hence, 2.4 grams of the sequence-

defined decamer 69 were obtained, allowing for the synthesis of defined 

macromolecules for certain applications and the establishment of structure-property 

relationships in the future. Table 8 summarizes the reaction times, yields and the results 

of the mass analysis for each step in the synthesis of decamer 69. The high purity of the 

obtained products was evidenced by GPC (Figure 40, bottom) and 1H NMR, and the 

macromolecules were further characterized by GPC-ESI-MS and mass spectrometry 

(Experimental Section, Chapter 6.3.3).  
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Table 8: Summary of the results obtained in each synthetic step in the synthesis of the 
sequence-defined decamer 69.  

reaction (product) 
reaction time 
/hours 

yield /% calculated mass a/b/c found mass a/b/c 

1st P-3CR (51) 24 97 658.5405a 658.5407a 

1st deprotection (52) 15 > 99 568.4936a 568.4937a 

2nd P-3CR (53) 24 96 983.8022a 983.8021a 

2nd deprotection (54) 15 > 99 893.7552a 893.7551a 

3rd P-3CR (55) 24 93 1260.9676b 1260.9667b 

3rd deprotection (56) 15 95 1170,9206b 1170.9196b 

4th P-3CR (57) 30 93 1584.2136b 1584.2126b 

4th deprotection (58) 15 97 1494.1667b 1494.1658b 

5th P-3CR (59) 24 92 1881.4440b 1881.4518b 

5th deprotection (60) 15 99 1791.3971b 1791.4048b 

6th P-3CR (61) 42 93 2192.6901b 2192.6970b 

6th deprotection (62) 15 99 2102.6431b 2102.6492b 

7th P-3CR (63) 38 93 2537.9205b 2537.9294b 

7th deprotection (64) 15 98 2447.8735b 2447.8809b 

8th P-3CR (65) 40 94 2859.1509b 2859.1558b 

8th deprotection (66) 15 98 2771.1196b 2771.1306b 

9th P-3CR (67) 20 95 3262.4595b 3262.4719b 

9th deprotection (68) 15 94 3172.4125b 3172.4177b 

10th P-3CR (69) 48 95 1804.3474c 1804.3574c 

a [M+H]+ determined by HRMS-FAB ; b [M+Na]+ determined by orbtitrap ESI-MS; 
c [M+2Na]+ determined by orbitrap ESI-MS 

 

Figure 41 shows the obtained ESI-MS spectrum of the sequence-defined decamer 69; 

the doubly (1805.36 m/z) and triply (1211.23 m/z) charged sodium cations are clearly 

observed. 
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Figure 41: ESI mass spectrum of the sequence-defined decamer 69. The assigned masses 
correspond to the doubly (1805.36 m/z) and the triply (1211.23 m/z) charged sodium cations. 

Moreover, the isotope pattern was compared with the calculated one, showing excellent 

agreement and confirming the chemical structure of the sequence-defined decamer 69 

(Figure 42).  

 

Figure 42: Comparison of the calculated (left, blue) and the measured (right, black) isotope 
pattern of the sequence-defined decamer 69. The very good agreement verifies the chemical 
structure of the sequence-defined decamer 69. 
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Monomer 49 was also investigated for the synthesis of sequence-defined 

macromolecules using the Ugi four-component reaction. However, the use of methanol 

as solvent in combination with an amine as reactant in the U-4CR led to partial 

transesterification of the benzyl ester with methanol and thus to an undesired side 

reaction. This side reaction leads to product mixtures, as well as decreased yields and 

purities of the obtained products. In order to avoid complicated purification steps, the 

use of a monomer bearing a methyl-ester protecting group should be investigated for the 

application in the U-4CR. The use of the base-labile methyl-ester protecting group is 

possible in the synthesis of sequence-defined macromolecules using the U-4CR, in 

contrast to using the P-3CR, due to the higher chemical stability of the formed 

poly(amide)-backbone and the absence of additional ester groups in the products. 

In order to highlight the versatility of the monomer approach using the P-3CR, a cis-

double bond was introduced to the side chain of the tenth repeating unit allowing further 

modifications. Thus, a self-metathesis reaction of the sequence-defined decamer 69 was 

successfully conducted (see Figure 43, left) using the Hoveyda-Grubbs second 

generation catalyst in combination with p-benzoquinone in order to prevent possible 

isomerization reactions.[261, 341] Thereby, a sequence-defined 20-mer was synthesized in 

a yield of 48 %, resulting in an overall yield of 21 % over 20 reaction steps. The GPC 

trace of the 20-mer 70 shows a clear shift in retention time compared to the decamer 69 

due to the significant increase in molecular weight (Figure 43, right). Additionally, the 

GPC-trace evidences the high purity of the obtained product 70.  
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Figure 43: Left: Reaction scheme of the self-metathesis reaction of the sequence-defined 
decamer 69 yielding the sequence-defined 20-mer 70. Right : GPC traces of the obtained 
products, indicating the clear shift of the 20-mer 70 compared to the decamer 69 due to the 
almost doubling of the molecular weight. 

In order to characterize the sequence-defined 20-mer 70 in more detail, a coupled GPC-

ESI-MS measurement was conducted. The GPC graph, as well as the ESI-MS spectrum 

at a retention time of 13.56 minutes are displayed in Figure 44. 

 

Figure 44: GPC trace of the sequence-defined 20-mer 70 and the corresponding ESI mass 
spectrum at a retention time of 13.56 minutes. The fourfold (1784.34 m/z), fivefold (1432.07 m/z) 
and six-fold (1197.22 m/z) charged sodium ions are clearly observed. 
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The ESI-MS spectrum clearly shows the fourfold (1784.34 m/z), fivefold (1432.07 m/z) 

and six-fold (1197.22 m/z) charged sodium cations of the sequence-defined 20-mer 70. 

Additionally, the isotope pattern of the spectrum was analyzed and shows very good 

agreement with the calculated one, thereby verifying the chemical structure of the 

sequence-defined 20-mer (Figure 45). 

 

Figure 45: Analysis of the isotope pattern of the sequence-defined 20-mer 70. The left, blue 
graph shows the calculated isotope pattern and the figure on the right (black) shows the 
measured isotope pattern. The calculated and the measured isotope patterns are in very good 
agreement, verifying the chemical structure of the obtained sequence-defined 20-mer 70. 

 

In conclusion, an easy, scalable and high-yield strategy towards sequence-defined 

macromolecules was developed and successfully applied in the synthesis of a 

sequence-defined decamer with a molecular weight of 3565.28 g mol-1. It must be 

emphasized that the workup procedures could be simplified compared to the previous 

approaches: the products of the deprotection reactions were isolated by simple filtration. 

The purification by column chromatography after the P-3CR allowed the collection of the 

excess components by the use of apolar eluents and the subsequent simple collection of 

the product by the use of polar eluents. Remarkably, a quantity of more than two grams 

was synthesized applying this strategy. Furthermore, functional side chains, such as 

unsaturated ones, were introduced, which allow further modifications. Here, the self-

metathesis reaction of the sequence-defined decamer led to a sequence-defined 20-mer 
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with a molecular weight of 7046.40 g mol-1. In addition, the high purity of the products 

was confirmed by in-depth analysis including NMR, GPC, GPC-ESI-MS and ESI orbitrap 

mass spectrometry. 
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4.3 Convergent Synthesis of Sequence-Defined Macromolecules 

Parts of this project were performed at the University of Ghent in the working group of F. 

E. Du Prez. 

Abstract: 

The convergent synthesis of sequence-defined macromolecules is described within this 

chapter. Therefore, two efficient approaches towards sequence-control were combined 

in order to achieve convergent couplings of sequence-defined oligomeric building 

blocks. First, a start-sequence was synthesized by the monomer approach (Chapter 

4.2),[338-339] yielding a sequence-defined trimer with carboxylic acid end group. Then, a 

library of sequence-defined α-ω-functionalized tetramers with isocyanide and alkene end 

groups were synthesized, making use of thiolactone chemistry.[308] Finally, the 

sequence-defined building blocks were coupled by a P-3CR. Thus oligomers bearing a 

terminal double bond were obtained. Interestingly, the alkene moiety of the obtained 

coupled product can be reacted in a subsequent Thiol-Ene addition, allowing the 

iteration of the synthetic cycle, which makes the synthesis of larger oligomers (DP > 20) 

feasible. 
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Convergent synthesis approaches were developed in order to reduce the number of 

consecutive steps in multistep synthesis and thus to improve the overall yields. [342-343] 

Convergent synthesis approaches are very often used in peptide chemistry for the 

synthesis of longer polypeptide or protein sequences by the native chemical ligation of 

two or more smaller fragments (compare chapter 2.2.2.1).[168] Moreover, dendrimers can 

be synthesized in a convergent manner, meaning that the dendrons are synthesized 

separately and subsequently coupled to the core. On the other hand, dendrimer 

synthesis in a divergent manner means that the core is the starting material and 

branching points are introduced in each step.[344-345] For instance, the convergent and 

divergent synthesis of dendrimers via IMCRs, are described.[340, 346-347] For the synthesis 

of sequence-defined macromolecules, up to now, convergent approaches are barely 

used. However, the synthesis of monodisperse macromolecules is well explored and 

convergent approaches for the synthesis of sequence-defined macromolecules are 

recently more and more investigated.[272, 316, 330] In this study, a convergent synthesis 

approach towards sequence-defined macromolecules was investigated by combination 

of thiolactone chemistry and multicomponent reactions. Thiolactones are valuable 

precursors for thiols, since ring-opening can be conducted by nucleophiles, such as 

amines, releasing a thiol functional group, which is able to undergo subsequent 

reactions (Scheme 16).[348] This reaction was first described in 1958 and was applied as 

thiolation reaction for proteins.[348]  

 

Scheme 16: Aminolysis of a thiolactone by primary amines, releasing a thiol-group, which is able 
to undergo subsequent reactions.[348] 

Around 50 years later, thiolactones were shown to be valuable thiol-precursors for the 

synthesis of polymers.[349] For example, the direct polymerization of thiolactones bearing 

double bonds was shown. Hereby, the thiolactone was ring-opened by primary amines 

enabling the subsequent Thiol-Ene polymerization in the same pot under UV irradiation 

along with the introduction of side chains by the primary amine.[350-351] Besides, as 
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discussed in chapter 2.2.6.4 and shown in Scheme 6, thiolactones were employed in the 

synthesis of sequence-defined macromolecules on a solid support.[308] 

In the herein described approach, thiolactones are used to protect the thiol-function and 

to be subsequently released by aminolysis, allowing the Thia-Michael addition with an 

isocyanide-containing acrylate. In this way, α-ω-functionalized sequence-defined 

building blocks can be obtained and employed for the convergent synthesis of larger 

structures. The synthesis strategy towards sequence-defined thiolactone-functionalized 

oligomeric building blocks is shown in Scheme 17. The utilization of the thiolactone-

carboxylic acid 71 (TLa-COOH) in presence of 10-undecenal 2 and an isocyanide 

component, allows the formation of a Passerini-product containing the thiolactone 

moiety as well as a terminal double bond. Moreover, a tailored side chain can be 

introduced by the isocyanide component. The terminal double bond is subsequently 

functionalized with 3-mercaptopropionic acid 4, allowing adjacent iterative cycles of  

P-3CR and Thiol-Ene addition reactions (Scheme 17). 

 

Scheme 17: Synthesis of sequence-defined building blocks by the P-3CR using thiolactone-
carboxylic acid 71 (TLa-COOH) as starting material. By the use of 10-undecenal 2 as aldehyde 
component a terminal double bond is installed, which can be reacted in a subsequent Thiol-Ene 
addition with mercaptopropionic acid 4. The introduction of the carboxylic acid functionality 
allows the repetition of the cycle and the elongation of the macromolecular chain. 

Hereby, the previously optimized reaction conditions (Chapter 4.1.1) were adapted: the 

first P-3CR using the thiolactone carboxylic acid 71 was conducted in a 4: 1 mixture of 
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THF and water due to the insolubility of 71 in DCM and in THF. Moreover, for the Thiol-

Ene addition reactions only 1.2 equivalents of 3-mercaptopropionic acid were used and 

the subsequent P-3CR was carried out without the purification of the intermediately 

obtained carboxylic acid. Owing to the small excess of the thiol, the amount of DMPA 5 

needed to be adjusted carefully, due to an observed side reaction, which was 

independent of the reaction time and of the amount of solvent. It was observed that the 

side reaction can be suppressed by lower radical concentrations. Therefore, the Thiol-

Ene additions were conducted using 1.7 mol% DMPA 5 for the first and 2.6 mol% of 

DMPA 5 for the second Thiol-Ene addition, respectively. In the second Thiol-Ene 

addition, larger amounts of DMPA 5 were required to obtain full conversion of the double 

bond. Since the residual 3-mercaptopropionic acid 4 undergoes the P-3CR with 10-

undecenal 2 and the isocyanide, a larger excess of the isocyanide and 10-undecenal 2 

was used (1.8 equivalents) in the subsequent P-3CR. The formed side product (P-3CR 

of 4, 2 and the isocyanide) was easily separated during workup by column 

chromatography. This simplified procedure resulted in larger overall yields for the 

obtained trimers: Without purification of the product of the Thiol-Ene addition, the trimers 

were obtained in an average overall yield of 64 %, whereas the trimer 10 (chapter 4.1.1) 

was obtained in an overall yield of 48 %. The structures of the obtained sequence-

defined macromolecules are shown in Figure 47, but it has to be noted that the chemical 

structures of the products after ring-opening of the thiolactone and the Thia-Michael 

addition are depicted there. Table 9 gives an overview of the reaction times, the 

obtained yields and the mass analysis results in the synthesis of the four different 

sequence-defined trimers. The yields are good to excellent in each step and the 

masses, obtained by ESI-MS measurements, are in very good agreement with the 

calculated values. 
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Table 9: Overview of the reaction times, obtained yields and mass analysis for the synthesis of 
the four different sequence-defined trimers 78, 81, 86 and 87 with a thiolactone-moiety at the α-
terminus and a double bond at the ω-terminus. 

reaction (product) 
reaction time 
/hours 

yield /%a/b/c 
exact mass 
calculatede 

mass 
founde 

Building block 1 

1st P-3CR (76) 24 93c 505.2707 505.2698 

2nd P-3CR (77) 28 88a,b 876.5201 876.5211 

3rd P-3CR (78) 30 82a,b 1259.7695 1259.7716 

Building Block 2 

1st P-3CR (79) 48 90c 531.2863 531.2861 

2nd P-3CR (80) 48 86a,b 888.5201 888.5209 

3rd P-3CR (81) 26 84a,b 1295.7331 1295.7340 

Building Block 3 

1st P-3CR (82) 24 95b 505.2707 505.2700 

2nd P-3CR (83) 24 85a,b 878.4630 878.4630 

3rd P-3CR (86) 24 79a,b 1259.6603 1259.6605 

Building Block 4 

1st P-3CR (82) 24 95b 505.2707 505.2700 

2nd P-3CR (83) 24 85a,b 878.4630 878.4630 

3rd P-3CR (87) 30 68a,b,d 1305.6811 1305.6818 

a yield for two steps (Thiol-Ene addition and P-3CR) b after column chromatography; c after 
recrystallization d only 1.35 eq. of isocyanide added e [M+Na]+ 

 

With four different sequence-defined trimers in hand, the thiolactone was ring-openend 

by benzylamine 24b and the obtained thiol was reacted with an acrylate isocyanide in 

situ (Scheme 18 b). By the ring-opening of the thiolactone, the amine component allows 

the introduction of another tailored side chain and thus a tetramer is obtained after the 

aminolysis and the subsequent Thia-Michael addition. The required acrylate-isocyanide 

75 was prepared by a simple P-3CR of acrylic acid 74, acetaldehyde 50c and an excess 

of diisocyanohexane 73 in a one-pot procedure. Alternative approaches (esterification, 

formamide synthesis and dehydration) starting from ethanolamine failed (Scheme 18 a). 

The synthesis of the acrylate-isocyanide 75 further proves the versatility and the 

modular nature of multicomponent reactions. 
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Scheme 18: a) Synthesis of the acrylate-isocyanide 75 via the Passerini reaction of acrylic acid 
74, acetaldehyde 50c and 1,6-diisocyanohexane 73. b) Aminolysis of the sequence-defined 
thiolactone building blocks using benzylamine 24b and the subsequent Thia-Michael addition of 
the isocyanide-acrylate 75, yielding sequence-defined tetrameric α-ω-functionalized isocyanide 
building blocks. 

For the synthesis of the acrylate-isocyanide 75, 1,6-diisocyanohexane 73 was used in 

threefold excess in respect to acrylic acid 74 in order to favor the monoaddition over the 

double addition. Attractively, the excess of the diisocyanide 73 could be recovered and 

reused, while the product 75 was isolated by column chromatography in a yield of 77 %. 

By the use of a larger excess of the diisocyanide 73, even higher yields of the acrylate-

isocyanide 75 might be obtained due to the more effective suppression of the double 

addition. The procedure for the aminolysis of the thiolactone is, as already mentioned, a 

two-step one-pot procedure, due to an observed side reaction of the amine and the 

acrylate-isocyanide. It was observed that the addition of the amine to the acrylate-

isocyanide 75 proceeds faster than the nucleophilic ring-opening of the thiolactone, 

which might occur due to the inherent structure of the Passerini-derived acrylate 75. 

Therefore, the amine was added to the thiolactone, allowing the ring-opening to proceed 

and after five to eight hours reaction time at room temperature (r.t.), the acrylate-
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isocyanide 75 was added to enable the Thia-Michael addition. However, this two-step, 

one-pot procedure displays a compromise between high conversion of the thiolactone 

into the corresponding thiol and a minimum level of the undesired disulfide-formation. 

Therefore, the tetrameric isocyanide building blocks were obtained in yields between 

69 % and 50 %, due to the aforementioned reasons. The structures of the four 

tetrameric isocyanide building blocks 88, 89, 90 and 91 are shown in Figure 47. 

Tetramer 90 contains a furan side-chain allowing orthogonal modifications via Diels-

Alder reactions. The furfurylisocyanide 3g is not commercially available and was 

therefore synthesized in a two-step procedure starting from the commercially available 

furfurylamine 84 (Figure 46). 

 

Figure 46: Two-step synthesis of furfurylisocyanide 3g starting from the commercially available 
furfurylamine 84. 
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Figure 47: Library of sequence-defined isocyanide building blocks, which can be used in the 
convergent synthesis of larger sequence-defined macromolecules. 

The four different isocyanide building blocks were obtained in high purities, which was 

confirmed by GPC measurements of the products of each P-3CR as well as the product 

of the aminolysis and the subsequent Thia-Michael addition (Figure 48 and Figure 50). 

However, small traces of the formed disulfide in the final isocyanide building blocks 

cannot be avoided in some cases. Moreover, the existence of the desired products was 

evidenced by mass spectrometry and the analysis of the obtained isotope patterns 

(Figure 49 and Figure 50). Figure 48 shows the GPC chromatograms obtained after 

each P-3CR and after the aminolysis in the synthesis of the sequence-defined tetramer 

88, verifying the high purity of the obtained products. 
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Figure 48: Top: Structure of the first isocyanide building block 88. Bottom: GPC traces of the 
products of the Passerini reactions and the aminolysis in the synthesis of the isocyanide building 
block 88.  

Figure 49 shows the obtained mass spectrum for tetramer 88 along with the measured 

(black) and the calculated (blue) isotope pattern. The molecular ion is clearly observed 

and the measured isotope pattern is in very good agreement with the calculated one, 

proving the structure of the isocyanide building block 88. 
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Figure 49: ESI-MS spectrum of the sequence-defined tetramer 88, where the molecular ion 
([M+Na]+ calculated: 1618.99 m/z, found: 1618.99 m/z) is clearly observed. Moreover the isotope 
pattern is shown (black), which is in very good agreement with the calculated one (blue) and 
thus confirming the structure of tetramer 88. 

Figure 50 shows the obtained GPC traces, mass spectra and isotope patterns for the 

remaining three sequence-defined isocyanide-tetramers 89, 90 and 91. The GPC traces 

confirm the high purity of the products and the mass spectra as well as the isotope 

patterns prove the structures of the targeted tetramers. 
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Figure 50: GPC traces, mass spectra and isotope patterns (black: measured, blue: calculated) of 
the isocyanide building blocks 89 (top, [M+Na]+ calculated:1654.95 m/z, found: 1654.97 m/z), 90 
(middle, [M+Na]+ calculated:1618.88 m/z, found: 1618.88 m/z) and 91 (bottom, [M+Na]+ 
calculated:1664.90 m/z, found: 1664.91 m/z). 
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Moreover, the successful end group transformation can be followed by 1H NMR (Figure 

51): The signals of the thiolactone disappear (purple boxes in Figure 51), whereas 

signals for the formed benzyl amide appear after aminolysis and the Thia-Michael 

addition (red and blue boxes in Figure 51).  

 

Figure 51: NMR spectra obtained for the product of the third P-3CR 78 (top) and for the product 
of the aminolysis and Thiol-Michael addition 88 (bottom). It is obvious that the signals for the 
thiolactone disappear (purple boxes) and that signals for the newly formed benzyl amide appear 
(red and blue boxes). 

Moreover, infrared (IR) spectra show a characteristic band around 2150 cm-1, if aliphatic 

isocyanides are present. Therefore, the IR spectra of the diisocyanide 73, of the 

acrylate-isocyanide 75 and the product of the aminolysis 88 were compared (Figure 52). 

In each spectrum, a signal at 2146.88 cm-1 is observed, further confirming the 

introduction of the isocyanide end group. 
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Figure 52: Infrared spectra and structures of the synthesized isocyanides: The diisocyanide 73 
(blue curve), the isocyanide acrylate 75 (red curve) as well as the isocyanide building block 88 
(black curve) show a signal at 2146.88 cm-1, indicating the presence of the aliphatic isocyanide. 

Having four different sequence-defined isocyanide building blocks in hand, a sequence-

defined trimer with a carboxylic acid end group was synthesized as start-sequence. 

Therefore, the monomer approach, which was introduced in chapter 4.2, was employed 

for the synthesis of a sequence-defined trimer with a carboxylic acid end group in an 

overall yield of 70 % (six steps). Figure 53 shows the GPC chromatograms obtained 

after the first (92) and second P-3CR (93) as well as the structure and the GPC 

chromatogram of the deprotected trimer 95. The GPC chromatogram evidences the high 

purity of the intermediate products 92 and 93 and the deprotected trimer 95. 
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Figure 53: Top: Structure of the sequence-defined trimer 95. Bottom: GPC traces of the products 
obtained after the first and second P-3CR (92, black curve and 93, red curve) and after the 
deprotection of the product of the third P-3CR (95, blue curve). 

Moreover, the structure was proven by 1H NMR measurements (see Experimental 

Section Chapter 6.3.4), mass spectrometry and the obtained isotope pattern (Figure 54). 

In the mass spectrum (Figure 54), the molecular ion is clearly observed and the 

measured isotope pattern (black) agrees very well with the calculated one (blue). 
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Figure 54: Mass spectrum of the obtained trimer 95, clearly showing the hydrogen, sodium and 
potassium adducts as well as the corresponding isotope pattern (black curve), which is in very 
good agreement with the calculated one (blue curve). [M+Na]+ calculated: 1184.94 Da, found: 
1184.94 Da. 

Having the start-sequence (trimer 95), as well as the isocyanide building blocks 

(tetramers 88, 89, 90 and 91) prepared, the convergent synthesis of larger structures 

was investigated. Therefore, 1.00 equivalent of the starting trimer 95 was reacted with 

1.05 equivalents of the first isocyanide building block 88 and 10.0 equivalents of 

propionaldehyde 50k in a P-3CR (Scheme 19). 
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Scheme 19: The Passerini three-component coupling of the trimer carboxylic acid 95 and the 
isocyanide building block 88 yielding the sequence-defined octamer 96. 

For this purpose, the trimer 95 serves as carboxylic acid component and the tetramer 88 

as isocyanide component while another tailored side chain is introduced by the aldehyde 

component 50k. The sequence-defined octamer 96 was obtained as product of the 

Passerini reaction after column chromatography in a yield of 80 %. The structure of the 

sequence-defined octamer 96 is shown in Figure 55. 

 

Figure 55: Structure of the sequence-defined octamer 96. 

Figure 56 shows the GPC traces of the two oligomeric building blocks 95 and 88 as well 

as the GPC trace of the sequence-defined octamer 96. The GPC trace of 96 proves the 

high purity of the product and due to the large increase in molecular weight, the GPC 

trace of the octamer 96 is shifted considerably towards shorter retention times. 
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Figure 56: GPC traces of the carboxylic acid trimer 95 (black curve) , the isocyanide tetramer 88 
(red curve) and the sequence-defined octamer 96 (blue curve). 

Additionally the structure was verified by NMR measurements (Experimental Section, 

Chapter 6.3.4), mass spectrometry and the analysis of the isotope pattern (Figure 57). 

The single and the doubly charged sodium cations are clearly observed and the isotope 

pattern (black) is in very good agreement with the calculated one (blue). Due to the 

congruency of the isotope patterns, the chemical formula of the sequence-defined 

octamer 96 is evidenced. 



Results and Discussion 

 

118 

 

Figure 57: Mass spectra obtained for octamer 96. The single ([M+Na]+ calculated: 2839.98 Da, 
found: 2839.99 Da) and doubly charged sodium cations ([M+2Na]+ calculated: 1431.49 Da, 
found: 1431.49) are clearly observed. Moreover, the isotope pattern for the doubly charged 
sodium cation (black) is in very good agreement with the calculated one (blue). 

Since the obtained product 96 bears a terminal double bond, the iteration of the cycle is 

possible. Comparable to the approach of chapter 4.1.1, the double bond can be 

functionalized in a Thiol-Ene addition using 3-mercaptopropionic acid 4 and catalytic 

amounts of DMPA 5. In turn, the introduction of the carboxylic end group allows another 

P-3CR. Along with the use of another isocyanide building block, the convergent 

synthesis of macromolecules with a higher DP can be accomplished (Scheme 20).  
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Scheme 20: Convergent synthesis of larger sequence-defined macromolecules. The iteration of 
the Thiol-Ene addition and the P-3CR using different isocyanide building blocks allows the 
convergent synthesis of sequence-defined macromolecules. 

First preliminary results show that the iteration of the cycle is possible, however, further 

optimization is necessary in order to force the Thiol-Ene addition to completion. 

Therefore, a larger excess of the thiol can be used since the product of the Thiol-Ene 

addition 97 can be precipitated in hexane/ethyl acetate mixtures, in order to remove the 

excess of the thiol. Also, the P-3CR with the isocyanide building block 89 was tested, 

indicating the successful formation of the sequence-defined 13-mer 98 (Figure 58) by a 

shift of the GPC trace towards shorter retention times.  

 

Figure 58: Structure of the sequence-defined 13-mer 98. The structure of the synthesized 
octamer 96 (Figure 55) is shown schematically. Each sphere displays one repeating unit 
containing a tailored side chain. 
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In conclusion, it was shown that by combination of thiolactone chemistry with 

multicomponent reactions, the convergent synthesis of sequence-defined 

macromolecules is possible. First, sequence-defined building blocks, with a thiolactone 

end group were prepared, allowing the introduction of an isocyanide functionality by 

aminolysis and the adjacent Thia-Michael addition. Moreover, it was shown that the 

coupling of a sequence-defined carboxylic acid containing trimer with an isocyanide 

building block can be successfully conducted and that the product can be obtained in 

high yield and purity. In that way, a sequence-defined octamer with a molecular weight 

of 2818.18 g mol-1 and eight different side chains was prepared. Additionally, the 

iteration of the Thiol-Ene addition and the coupling of oligomers via the P-3CR was 

tested, indicating the successful formation of larger sequence-defined oligomers. All in 

all, the combination of thiolactone chemistry and MCRs demonstrates a promising 

synthesis concept. Due to the versatility of the two approaches, the introduction of many 

different and tailored side chains can be achieved and oligomers of higher DPs are 

obtainable. 
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5 Conclusion and Outlook 

In summary, it was shown that the P-3CR and the U-4CR are highly valuable reactions 

for the synthesis of sequence-defined macromolecules, also in larger scale. The 

inherent versatility and straightforwardness of the described approaches is built into the 

nature of multi-component reactions, which seem to be the natural choice for this task. 

The scalability is furthermore an important factor in order to bring sequence-defined 

materials into application. Moreover, IMCRs were shown to be very versatile, allowing 

the introduction of various tailored and functional side chains. Furthermore, the products 

can be obtained in high purity and high yields, which is especially important in the 

synthesis of larger oligomers. Within this thesis, the P-3CR and the U-4CR were 

investigated in a protecting group-free approach by the iteration with a Thiol-Ene 

addition reaction (Chapter 4.1.1 and Chapter 4.1.2). Hereby, tetramers and pentamers 

were synthesized and different side chains were introduced. Interestingly, the use of the 

U-4CR allows the introduction of two tailored side chains per monomer unit. Moreover, 

the iterative application of the P-3CR and the Thiol-Ene addition was investigated on a 

soluble polymeric support, benefitting from easier and time-saving purification by 

precipitation. The use of a monomer containing a benzylester-protected acid 

functionality as well as an isocyanide group allowed additionally the synthesis of a 

sequence-defined decamer with ten different (functional) side chains (Chapter 4.2). It 

has to be emphasized that each step of the decamer synthesis enabled isolated yields 

above 90 % and thus a quantity of more than two grams of the sequence-defined 

decamer was obtained. Due to the introduction of a double bond in the tenth side chain 

of the decamer, the subsequent self-metathesis resulted in a symmetric icosamer with a 

perfectly-defined monomer sequence along with 20 tailored side chains. Finally, a 

convergent synthesis approach, combining thiolactone chemistry and the P-3CR was 

investigated (Chapter 4.3). Therefore, a library of tetrameric isocyanide building blocks 

was synthesized, making use of a thiolactone carboxylic acid as starting compound. 

Moreover, a trimer with a carboxylic acid end group was synthesized by the monomer 

approach. The carboxylic acid trimer and an isocyanide building block were 

subsequently reacted with an aldehyde in a P-3CR and a sequence-defined octamer 

was thus obtained. Interestingly, the sequence-defined octamer bears a terminal double 
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bond, which enables a Thiol-Ene addition and thus subsequent couplings with (other) 

isocyanide building blocks (compare Chapter 4.1.1). Besides, one of the isocyanide 

building blocks bears a furan-moiety, serving for post-polymerization modifications. All in 

all, three different approaches and two different MCRs were investigated within this 

thesis. Hereby, sequence-defined macromolecules of up to a DP of 20 were successfully 

synthesized and fully characterized. These results clearly show the potential of MCRs in 

the synthesis of sequence-defined macromolecules.  

In the future, the research on new monomers for sequence-control via MCRs should be 

deepened in order to reach control over multiple parameters at the same time. By the 

use of monomers of different chain lengths, the density of functional groups, the density 

of the side chains and the backbone structure could be fine-tuned. Accompanied with 

the introduction of tailored side chains, the full control over the synthesized 

macromolecules could be accomplished. Moreover, the use of chiral amino acid-based 

monomers allows the introduction of chirality, which might evoke interesting material 

properties. The use of rigid (e.g. aromatic) monomers allows the fine-tuning of the 

material properties. Besides, a monomer with another protecting group (e.g. methyl 

ester) should be investigated for its use in Ugi reactions due to the observed side 

reaction with the benzylester-protected monomer. Additionally, the examination of side-

chain property relationships will be interesting. For instance, the introduction of bulky 

side chains might allow the formation of helical structures. Another very interesting 

future topic is the investigation of sequence-property relationships, which might reveal 

valuable guidelines for the synthesis of sequence-defined macromolecules for certain 

applications, such as enzyme-mimics. The introduction of catalytically active side-chains 

along with the study of the three-dimensional structures of the highly-defined materials 

might be important steps towards the synthesis of artificial enzymes. 
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6 Experimental Section 

6.1 Materials: 

The following chemicals were used as received: 10-undecenal 2 (>90 %, Sigma-

Aldrich), 3-mercaptopropionic acid 4 (99 %, Sigma-Aldrich), cyclohexyl isocyanide 3a 

(98 %, Sigma-Aldrich), tert-butyl isocyanide 3b (98 %, Sigma-Aldrich), stearic acid 1a 

(95 %, Sigma-Aldrich), 2,2 dimethoxy-2-phenylacetophenone 5 (DMPA, 99 %, Sigma-

Aldrich), 1-pentyl isocyanide 3c (97 %, Sigma-Aldrich), n-butyl isocyanide 3d (98 %, 

Acros Organics), methyl isocyanoacetate 3e (>97 %, Sigma-Aldrich), benzyl isocyanide 

3f (98 %, Sigma-Aldrich), propylamine 24a (>99 %, Sigma-Aldrich), benzylamine 24b 

(>99.5 %, Sigma-Aldrich), cyclohexylamine 24c (99 %, Sigma-Aldrich), ethanolamine 

24d (>98 %, Sigma-Aldrich), 4-methoxybenzylamine 24e (98 %, Sigma-Aldrich), 

isopropylamine 24f (>98.5 %, Sigma-Aldrich), 11-aminoundecanoic acid 41 (97 %, 

Sigma-Aldrich), benzyl alcohol 42 (99 %, Sigma-Aldrich), thionyl chloride 43 (99 %, 

Sigma-Aldrich), trimethyl orthoformate 45 (99 %, Sigma-Aldrich), diisopropylamine 47 

(>99.5 %, Sigma-Aldrich), phosphorous (V) oxychloride 48 (99 %, Sigma-Aldrich), 

isobutyraldehyde 50a (98 %, Sigma-Aldrich), heptaldehyde 50b (95 %, Sigma-Aldrich), 

acetaldehyde 50c (99 %, Sigma-Aldrich), cyclohexanecarboxaldehyde 50d (97 %, 

Sigma-Aldrich), isovaleraldehyde 50e (95 %, Sigma-Aldrich), 2-ethylbutyraldehyde 50f 

(90 %, Sigma-Aldrich), 2-phenylpropionaldehyde 50g (98 %, Sigma-Aldrich), 3-

cyclohexene-1-carboxaldehyde 50h (97 %, Sigma-Aldrich), 2-methyl-3-(p-

isopropylphenyl)propionaldehyde 50i (>95 %, Sigma-Aldrich), cis-4-hepten-1-al 50j 

(>98 %, Sigma-Aldrich), propionaldehyde 50 k (>97 %, Sigma-Aldrich), ß-alanine (99 %, 

Sigma-Aldrich), 6-aminohexanoic acid (>98.5 %, Sigma-Aldrich), 4-

(aminomethyl)benzoic acid (97 %, Sigma-Aldrich), palladium on activated charcoal 

(10 % palladium basis, Sigma-Aldrich), hydrogen (99,999 %, Air Liquide), p-

benzoquinone (>98 %, Sigma-Aldrich), Hoveyda-Grubbs 2nd generation catalyst (97 %, 

Sigma-Aldrich), thiolactone-COOH 71 was synthesized by Dr. Pieter Espeel (Ghent 

University) according to a previously reported procedure,[308] hexamethylenediamine 72 

(98 %, Sigma-Aldrich), 1,6-diisocyanohexane 73 was synthesized according to a 

literature-procedure,[118] acrylic acid 74 (99 %, Sigma-Aldrich; acrylic acid was distilled 
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before use), butyl formate (97 %, Sigma-Aldrich), 2-naphthyl isocyanide 3h (95 %, 

Sigma-Aldrich), furfurylamine 84 (>99 %, Sigma-Aldrich), ethyl formate (97 %, Sigma-

Aldrich), 4-methoxyphenyl isocyanide 3i (97 %, Sigma-Aldrich), silica gel 60 (0.040 - 

0.063 mm, Sigma-Aldrich), TLC silica gel F254 (Sigma-Aldrich), cerium(IV)-sulfate (99 %, 

Sigma-Aldrich), phosphomolybdic acid hydrate (99 %, Sigma-Aldrich), chloroform-d 

(99.8 atom-% D, Euriso-Top), sodium hydrogencarbonate (>95 %, Sigma-Aldrich), 

sodium sulfate (>99 %, anhydrous, Sigma-Aldrich), pyridine (99.5 %, Acros Organics), 

poly(ethylene glycol) methyl ether (average Mn ~ 2000 Da, Sigma-Aldrich), succinic 

anhydride (>99 % Sigma-Aldrich), methanol-d4 (99,8 atom-% D, Euriso-Top), DMSO-d6 

(99,8 atom-% D, Euriso-Top), sodium carbonate (98 %, Sigma-Aldrich). All solvents 

were used without further purification, unless otherwise noted. 
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6.2 Instrumentation 

NMR spectra were recorded on a Bruker AVANCE DPX spectrometer operating at 

300 MHz for 1H- and at 75 MHz for 13C- NMR measurements. CDCl3, CD3OD and 

DMSO-D6 were used as solvents and the resonance signals at 7.26 ppm and 2.50 ppm 

(1H) and 77.16 ppm and 39.52 ppm (13C) served as reference for the chemical shift δ. 

Polymers 13-21 were characterized on a GPC System LC-20A (Shimadzu) equipped 

with a SIL-20A autosampler, RID-10A refractive index detector in THF (flow rate 

1 mL/min) at 50 ° C, The analysis was performed on the following column system: main-

column PSS SDV analytical (5 µm, 300 mm × 8.0 mm, 10000 Å) with a PSS SDV 

analytical precolumn (5 µm, 50 mm × 8.0 mm). For the calibration narrow linear 

poly(methyl methacrylate) standards (Polymer Standards Service PPS, Germany) 

ranging from 1100 to 981000 Da were used. 

Oligomers (6-12 and 23-29) were characterized on a Varian 390-LC gel permeation 

chromatography (GPC) system equipped with a LC-290 pump (Varian), refractive 

index detector (24 ° C), PL AS RT GPC-autosampler (Polymer laboratories) and a 

Varian Pro Star column oven Model 510, operating at 40 ° C. For separation two PLgel 

5 µm Mixed-D columns and a guard column were used. Detection was done by a 

refractive index detector operating in THF (flow rate 1 mL min-1). For calibration linear 

poly(methylmethacrylate) standards (Agilent) ranging from 875 to 1 677 000 Da were 

used. 

Oligomers (30-38, 49-67, 70, 76-83, 86-98) were characterized on a Varian 390-LC gel 

permeation chromatography (GPC) system equipped with a LC-290 pump (Varian), 

refractive index detector (24 ° C), PL AS RT GPC-autosampler (Polymer laboratories) 

and a Varian Pro Star column oven Model 510, operating at 40 ° C. For separation two 

SDV 5 µm linear S columns (8 x 300 mm) and a guard column (8 x 50 mm) were used. 

Detection was done by a refractive index detector operating in THF (flow rate 

1.0 mL min-1). For calibration linear poly(methylmethacrylate) standards (Agilent) 

ranging from 875 to 1 677 000 Da were used.  
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Thermal properties of the prepared substances were studied via differential scanning 

calorimetry (DSC) with a Mettler Toledo DSC stare system operating under nitrogen 

atmosphere using about 5 mg of the respective sample for the analysis. Method: heating 

from 25 to 200 ° C with a heating rate of 20 K/minute, then cooling from 200 to – 75 ° C 

with a cooling rate of 20 K/minute, the second scan starts at -75 ° C and heats up until 

200 ° C with a heating rate of 10 K/minute. Melting points were determined as peak 

temperature of the second heating scan.  

Infrared spectra (IR) were recorded on a Bruker Alpha-p instrument in a frequency 

range from 3998 to 374 cm-1 applying KBr and ATR technology.  

Fast atom bombardment (FAB) mass spectra were recorded on a Finnigan MAT 95 

instrument. The protonated molecule ion is expressed by the term: [(M+H)]+.  

GPC/ESI-MS spectra for oligomers 6-12 and polymers 13-21 were recorded on a LXQ 

mass spectrometer (Thermo Fisher Scientific, San Jose, CA) equipped with an 

atmospheric pressure ionization source operating in the nebulizer-assisted electrospray 

mode. The instrument was calibrated in the m/z range 195 - 1822 using a standard 

containing caffeine, Met-Arg-Phe-Ala acetate (MRFA), and a mixture of fluorinated 

phosphazenes (Ultramark 1621) (all from Aldrich). A constant spray voltage of 4.5 kV, a 

dimensionless sweep gas flow rate of 2, and a dimensionless heat gas flow rate of 12 

were applied. The capillary voltage, the tube lens offset voltage, and the capillary 

temperature was set to 60 V, 110 V, and 275 ° C, respectively. The LXQ was coupled to 

a Series 1200 HPLC-system (Agilent, Santa Clara, CA) consisting of a solvent degasser 

(G1322A), a binary pump (G1312A), and a high-performance autosampler (G1367B), 

followed by a thermostated column compartment (G1316A). Separation was performed 

on two mixed bed size exclusion chromatography columns (Polymer Laboratories, 

Mesopore 2504.6 mm, particle diameter 3 μm) with precolumn (Mesopore 50-4.6 mm) 

operating at 30 ° C. THF at a flow rate of 0.30 mL min-1 was used as eluent. The mass 

spectrometer was coupled to the column in parallel to an RI-detector (G1362A with 

SS420x A/D) in a set-up described previously, 0.27 mL min-1 of the eluent was directed 

through the RI detector, and 30 μL min-1 was infused into the electrospray source after 

post column addition of a 100 μM solution of sodium iodide in methanol at 20 μL min-1 
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by a micro flow HPLC syringe pump (Teledyne ISCO, Model 100DM). 20 μL of a 

polymer solution with a concentration of ∼3 mg mL-1 was injected onto the HPLC 

system.  

GPC-ESI-MS spectra for oligomers 69, 70, 76-38, and 86-98 were recorded on a Q 

Exactive (Orbitrap) mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) 

equipped with an HESI II probe. The instrument was calibrated in the m/z range 74–

1822 using premixed calibration solutions (Thermo Scientific). A constant spray voltage 

of 4.6 kV, a dimensionless heath gas of 8, and a dimensionless auxiliary gas flow rate of 

2 were applied. The capillary temperature and the S-lens RF level were set to 320 ° C 

and 62.0, respectively. The Q Exactive was coupled to a UltiMate 3000 UHPLC System 

(Dionex, Sunnyvale, CA, USA) consisting of a pump (LPG 3400SD), autosampler (WPS 

3000TSL), and a thermostated column department (TCC 3000SD). Separation was 

performed on two mixed bed size exclusion chromatography columns (Polymer 

Laboratories, Mesopore 250 × 4.6 mm, particle diameter 3 µm) with precolumn 

(Mesopore 50 × 4.6 mm) operating at 30 ° C. THF at a flow rate of 0.30 mL·min-1 was 

used as eluent. The mass spectrometer was coupled to the column in parallel to a RI-

detector (RefractoMax520, ERC, Japan). 0.27 mL·min-1 of the eluent were directed 

through the RI-detector and 30 µL·min-1 infused into the electrospray source after 

postcolumn addition of a 100 µM solution of sodium iodide in methanol at 20 µL·min-1 by 

a micro-flow HPLC syringe pump (Teledyne ISCO, Model 100DM). A 20 µL aliquot of a 

polymer solution with a concentration of 2 mg·mL-1 was injected onto the HPLC system. 

 

Orbitrap Electrospray-Ionization Mass Spectrometry (ESI-MS): mass spectra for 

oligomers 49 - 67 and 70 were recorded on a Q Excative (Orbitrap) mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA, USA) equipped with an atmospheric pressure 

ionization source operating in the nebulizer assisted electrospray mode. The instrument 

was calibrated in the m/z-range 150-2000 using a standard containing caffeine, Met-Arg-

Phe-Ala acetate (MRFA) and a mixture of fluorinated phosphazenes (Ultramark 1621) 

(all from Aldrich). A constant spray voltage of 3.5 kV and a dimensionless sheath gas of 
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6 and a sweep gas flow rate of 2 were applied. The capillary voltage and the S-lens RF 

level were set to 68.0 V and 320 ° C, respectively. 

UV-Lamps: Thiol-Ene additions were conducted using two handheld UV-lamps from 

Vetter Laborgeräte (Wiesloch) UVKL4U operating at 365 nm or 254 nm (4 W) or two 

handheld UV-lamps from Vilber, VL-6.LC operating at 365 nm or 254 nm (6 W). 

All thin layer chromatography experiments were performed on silica gel coated 

aluminum foil (silica gel 60 F254, Aldrich). Compounds were visualized by staining with 

Seebach-solution (mixture of phosphomolybdic acid hydrate, cerium(IV)-sulfate, sulfuric 

acid and water). 
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6.3 Experimental Procedures 

6.3.1 Experimental Procedures Chapter 4.1.1 

Synthesis of the sequence-defined tetramer: 

1st Passerini-3CR:  

6 

5.09 g of stearic acid 1a (17.91 mmol, 1.00 eq.) were dissolved in 18 mL (1.00 M) 

dichloromethane. 4.48 g of 10-undecenal 2 (26.59 mmol, 1.48 eq.) and 2.79 g of 

cyclohexyl isocyanide 3a (26.57 mmol, 1.43 eq.) were added to this solution and stirred 

at room temperature for 24 hours. The solvent was evaporated under reduced pressure 

and the crude product was purified by recrystallization from hexane/ethyl acetate (10:1). 

Due to the excess of the isocyanide 3a and 10-undecenal 2 the recrystallization process 

was repeated twice. The desired product 6 was isolated as a white solid in a yield of 

96 % (9.54 g). 

1H NMR: (CDCl3, 300 MHz) δ /ppm: 5.94 – 5.69 (m, 2H, NH, CH, 2,7), 5.13 (dd, J = 6.7, 

5.1 Hz, 1H, CH, 6), 4.94 (ddd, J = 14.2, 12.1, 1.2 Hz, 2H, CH2, 
1), 3.84 – 3.68 (m, 1H, 

CH, 8), 2.37 (t, J = 7.4 Hz, 2H, CH2, 
10), 2.01 (q, J = 7.0 Hz, 2H, CH2, 

3), 1.95 – 1.52 (m, 

10H, 5 CH2, 
9), 1.38 – 1.17 (m, 44H, 22 CH2, 

4,5), 0.86 (t, J = 6.6 Hz, 3H, CH3, 
11). 

13C NMR (75 MHz, CDCl3) δ /ppm: 172.6, 169.1, 139.3, 114.3, 74.0, 47.9, 34.5, 33.9, 

33.2, 32.0, 29.8, 29.7, 29.6, 29.5, 29.4, 29.4, 29.3, 29.2, 29.0, 25.6, 25.2, 24.9, 22.8, 

14.2. 

HRMS-FAB of [C36H68NO3]
+: calculated: 562.5199, found: 562.5198. 
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IR (ATR platinum diamond):  [cm-1] = 3288.9, 3086.5, 2916.6, 2849.2, 1744.4, 1655.7, 

1555.6, 1466.2, 1447.4, 1378.4, 1312.0, 1272.2, 1251.3, 1233.9, 1213.3, 1191.9, 

1162.4, 1107.0, 1074.0, 991.2, 911.9, 762.1, 720.3, 683.5, 493.3, 429.5. 

SEC/ESI-MS: [C36H67NO3Na]+: calculated: 584.5, found: 584.7.  

Melting point: 70.7 ° C. 

 
 

1st Thiol-Ene addition:  

7 

17.79 g of 3-mercaptopropionic acid 4 (167.6 mmol, 10.0 eq.) were added to 9.41 g of 

substance 6 (16.74 mmol, 1.00 eq.). Subsequently, 0.22 g of 2,2 dimethoxy-2-phenyl 

acetophenone 5 (DMPA) (0.85 mmol, 5.1 mol%) were added and the mixture was stirred 
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under UV-irradiation (360 nm) at room temperature for two hours. Full conversion of the 

double bond was confirmed by 1H NMR. The excess of 3-mercaptopropionic acid 4 was 

removed under reduced pressure, whereby 13.5 g (84 % of the excess) were recycled. 

The crude product was purified by recrystallization from hexane/ethyl acetate (4:1). The 

desired product 7 was isolated as a white solid in a yield of 95 % (10.67 g). 

1H NMR: (300 MHz, CDCl3) δ /ppm: 5.91 (d, J = 8.3 Hz, 1H, NH, 9), 5.15 (dd, J = 6.8, 5.0 

Hz, 1H, CH, 8), 3.78 (td, J = 14.4, 7.1 Hz, 1H, CH, 10), 2.78 (t, J = 7.4 Hz, 2H, CH2, 
3), 

2.64 (t, J = 7.1 Hz, 2H, CH2, 
2), 2.52 (t, J = 7.4 Hz, 2H, CH2, 

4), 2.38 (t, J = 7.4 Hz, 2H, 

CH2, 
12), 1.96 – 1.49 (m, 12H, 6 CH2, 

11, 5), 1.39 – 1.10 (m, 46H, 23 CH2, 
6,7), 0.87 (t, J = 

6.6 Hz, 3H, CH3, 
13). 

13C NMR (75 MHz, CDCl3) δ /ppm: 176.3, 172.6, 169.5, 74.0, 48.1, 34.8, 34.5, 33.1, 

33.0, 32.3, 32.1, 32.0, 29.8, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 28.8, 26.9, 25.6, 

25.2, 24.8, 22.8, 14.2. 

HRMS-FAB of [C39H74NO5S]+: calculated: 668.5288, found: 668.5286. 

IR (ATR platinum diamond):  [cm-1] = 3289.7, 2916.5, 2848.9, 1741.8, 1700.1, 1654.8, 

1555.6, 1465.9, 1421.1, 1378.2, 1332.1, 1235.0, 1213.7, 1193.3, 1162.7, 1108.1, 

1072.7, 934.4, 892.0, 813.1, 720.5, 657.3, 490.0, 432.2. 

SEC/ESI-MS: [C39H73NO5SNa]+: calculated: 690.5, found: 690.7.  

Melting point: 71.0 ° C. 
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2nd Passerini-3CR:  

8 

To 10.58 g of substance 7 (15.84 mmol, 1.00 eq.), 4.01 g of 10-undecenal 2 

(23.80 mmol, 1.50 eq.) and 15.0 mL (1.06 M) dichloromethane were added and stirred 

for ten minutes at room temperature. Subsequently, 1.82 g of tert-butyl isocyanide 3b 

(21.88 mmol, 1.38 eq.) were added and the reaction mixture was stirred at room 

temperature overnight. The reaction progress was followed by GPC-analysis. After 

complete consumption of substance 7, the solvent was evaporated under reduced 

pressure and the crude reaction mixture was purified by column chromatography 

(hexane/ethyl acetate 9:1  4:1). The silica gel used for column chromatography was 
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pretreated with triethylamine (3 vol%). The desired product 8 was obtained as viscous oil 

in a yield of 97 % (14.18 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.08 (s, 1H, NH, 7), 5.93 – 5.71 (m, 2H, NH, CH, 2, 

11), 5.22 – 4.86 (m, 4H, 2 CH, CH2, 
1, 6), 3.86 – 3.67 (m, 1H, CH, 12), 2.97 – 2.64 (m, 4H, 

2 CH2, 
8, 9), 2.59 – 2.49 (t, J = 7,4 Hz, 2H, CH2, 

10), 2.38 (t, J = 7.4 Hz, 2H, CH2, 
14), 2.11 

– 1.01 (m, 73H, 32 CH2, 3 CH3, 
3, 4, 5, 13 ), 0.88 (t, J = 6.6 Hz, 3H, CH3, 

15). 

13C NMR (75 MHz, CDCl3) δ /ppm: 172.5, 170.8, 169.1, 169.0, 139.2, 114.3, 74.8, 77.0, 

51.5, 47.9, 35.0, 34.5, 33.9, 33.2, 33.1, 32.3, 32.0, 31.9, 29.8, 29.8, 29.7, 29.7, 29.6, 

29.5, 29.4, 29.3, 29.3, 29.2, 29.0, 28.9, 27.2, 25.6, 25.2, 24.8, 22.8, 14.2. 

FAB of [C55H103N2O6S]+: calculated: 919.8, found 919.6. 

IR (KBr):  [cm-1] = 3293.0, 3083.5, 2921.0, 2851.9, 1743.1, 1659.0, 1555.4, 1466.3, 

1364.5, 1214.9, 1166.5, 1103.7, 909.2, 721.6. 

SEC/ESI-MS: [C55H103N2O6SNa]+: calculated: 941.7, found: 941.8. 

Rf: (hexane/ethyl acetate 3:1) = 0.47. 

Melting point: 50.1 ° C. 
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2nd Thiol-Ene addition:  

9 

To 14.03 g of substance 8 (15.25 mmol, 1.00 eq.), 8.09 g 3-mercaptopropionic acid 4 

(76.23 mmol, 5.00 eq.) were added and stirred at room temperature. Subsequently, 

0.19 g of 2,2-dimethoxy-2-phenylacetophenone (DMPA) 5 (0.72 mmol, 4.70 mol%) were 

added and the reaction mixture was stirred at room temperature under UV-irradiation 

(360 nm) for two hours. Full conversion of the double bond was confirmed by 1H NMR. 

After removing the excess of 3-mercaptopropionic acid 4 (5.01 g, 77 % of the excess 

were recycled) under reduced pressure, the crude reaction mixture was recrystallized 

from hexane/ethyl acetate 3:1 to obtain 9 as a white solid in a yield of 84 % (13.15 g). 
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1H NMR: (300 MHz, CDCl3) δ /ppm: 6.14 (s, 1H, NH, 8), 5.91 (d, J = 8.3 Hz, 1H, NH, 10), 

5.13 (ddd, J = 15.9, 6.9, 4.9 Hz, 2H, 2 CH, 7), 3.85 – 3.69 (m, 1H, CH, 11), 2.85 – 2.60 

(m, 8H, 4 CH2, 
2), 2.53 (t, J = 7.3 Hz, 4H, 2 CH2, 

3), 2.38 (t, J = 7.4 Hz, 2H, CH2, 
13), 1.97 

– 1.47 (m, 16H, 8 CH2, 
12,4), 1.30 (m, 69H, 3 CH3, 30 CH2, 

5), 0.87 (t, J = 6.6 Hz, 3H, CH3, 

14). 

13C NMR (75 MHz, CDCl3) δ /ppm: 175.8, 172.6, 170.8, 169.3, 74.8, 74.0, 51.6, 48.0, 

34.9, 34.8, 34.5, 33.1, 33.1, 32.3, 32.2, 32.0, 32.0, 31.9, 29.8, 29.8, 29.7, 29.7, 29.6, 

29.6, 29.5, 29.5, 29.4, 29.3, 29.7, 29.1, 29.0, 28.8, 28.8, 27.2, 26.9, 25.6, 25.2, 24.8, 

22.8, 14.2. 

FAB of [C58H109N2O8S2]
+ calculated: 1025.8, found: 1025.7. 

IR: (ATR platinum diamond)  [cm-1] = 3293.4, 2919.1, 2850.2, 1735.8, 1658.1, 1640.9, 

1547.9, 1465.5, 1364.5, 1280.9, 1189.7, 1143.7, 1107.0, 1074.1, 930.8, 806.5, 721.6, 

615.0, 433.5, 401.6. 

SEC/ESI-MS: [C58H108N2O8S2Na]+: calculated: 1047.7, found:1047.8. 

Melting point: 54.3 ° C. 
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3rd Passerini-3CR:  

10 

13.04 g of substance 9 (12.71 mmol, 1.00 eq.) were diluted in 13 mL DCM (0.98 M), 

subsequently, 3.21 g of 10-undecenal 2 (19.05 mmol, 1.50 eq.) and 1.89 g of 1-pentyl 

isocyanide 3c (19.42 mmol, 1.53 eq.) were added and the reaction mixture was stirred at 

room temperature for 15 hours. The solvent was removed under reduced pressure and 

the crude reaction mixture purified by column chromatography (hexane/ethyl acetate 9:1 

 2:1). The silica gel used in the column chromatography was pretreated with 
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triethylamine (3 vol%). The product 10 was obtained as viscous oil in a yield of 64 % 

(10.54 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.55 (t, J = 5.5 Hz, 1H, NH, 5), 6.10 (s, 1H, NH, 9), 

5.92 – 5.69 (m, 2H, NH, CH, 10,2), 5.24 – 4.86 (m, 5H, 3 CH, CH2, 
4,1), 3.85 – 3.66 (m, 

1H, CH, 11), 3.32 – 3.13 (m, 2H, CH2, 
6), 2.89 – 2.61 (m, 8H, 4 CH2, 

7), 2.53 (td, J = 7.4, 

4.0 Hz, 4H, 2 CH2, 
8), 2.37 (t, J = 7.4 Hz, 2H, CH2, 

12), 1.95 – 0.99 (m, 107H, 3 CH3, 49 

CH2, 
3), 0.92 – 0.82 (m, 6H, 2 CH3, 

13). 

13C NMR (75 MHz, CDCl3) δ /ppm: 172.6, 170.7, 169.8, 169.1, 139.3, 114.3, 74.8, 74.7, 

74.0, 51.5, 47.9, 39.4, 35.0, 34.8, 34.5, 33.9, 33.2, 33.1, 32.4, 32.3, 32.1, 32.0, 29.8, 

29.8, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.3, 29.2, 29.0, 28.9, 27.4, 27.3, 25.6, 25.2, 

25.0, 24.9, 22.8, 22.5, 14.2, 14.1. 

FAB of [C75H140N3O9S2]: calculated: 1290.0, found: 1290.8. 

IR (KBr):  [cm-1] = 3304.9, 3078.0, 2925.3, 2854.2, 1743.7, 1659.6, 1455.3, 1365.1, 

1237.3, 1166.3, 909.4, 722.4. 

SEC/ESI-MS: [C75H139N3O9S2Na]+: calculated: 1313.0, found: 1313.1. 

Rf (hexane/ethyl acetate 2:1) = 0.45. 
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3rd Thiol-Ene addition:  

11 

10.26 g of substance 10 (7.94 mmol, 1.00 eq.) were stirred together with 4.27 g of 3-

mercaptopropionic acid 4 (39.82 mmol, 5.02 eq.) and 0.10 g of DMPA 5 (0.41 mmol, 

5.1 mol%) under UV-irradiation (360 nm) at room temperature overnight. Subsequently, 

the excess of 4 was removed under reduced pressure and the crude product was 

recrystallized from hexane/ethyl acetate 2.5:1. The product 11 was obtained as white 

solid in a yield of 98 % (10.87 g). 
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1H NMR (300 MHz, CDCl3) δ /ppm: 6.59 (t, J = 5.7 Hz, 1H, NH, 6), 6.13 (s, 1H, NH, 8), 

5.89 (d, J = 8.3 Hz, 1H, NH, 9), 5.30 – 4.96 (m, 3H, 3 CH, 5), 3.86 – 3.67 (m, 1H, CH, 10), 

3.36 – 3.12 (m, 2H, CH2, 
7), 2.97 – 2.45 (m, 12H, 6 CH2, 

2), 2.38 (t, J = 7.4 Hz, 2H, CH2, 

11), 2.00 – 1.03 (m, 109H, 50 CH2, 3 CH3, 
4), 0.94 – 0.83 (m, 6H, 2 CH3, 

12). 

13C NMR (75 MHz, CDCl3) δ /ppm: 176.2, 172.6, 170.8, 170.1, 169.3, 77.6, 77.2, 76.7, 

74.6, 51.6, 48.0, 39.5, 33.1, 32.3, 32.2, 32.0, 29.8, 29.6, 29.5, 29.4, 29.3, 29.3, 29.1, 

29.0, 28.8, 26.8, 25.2, 24.8, 22.8, 22.4, 14.3, 14.1. 

FAB of [C78H146N3O11S3]
+: calculated: 1396.0, found: 1396.5. 

IR (ATR platinum diamond):  [cm-1] = 3286.5, 2919.6, 2850.6, 1738.1, 1697.1, 1648.1, 

1537.8, 1465.7, 1398.3, 1364.8, 1207.3, 1138.0, 1068.4, 934.7, 813.2, 721.4, 470.4. 

SEC/ESI-MS: [C78H145N3O11S3Na]+: calculated: 1419.0, found: 1419.2. 

Melting point: 58.6 ° C. 
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4th Passerini-3CR:  

12 

10.36 g of substance 11 (7.42 mmol, 1.00 eq.), 2.42 g of 10-undecenal 2 (14.38 mmol, 

1.94 eq.) and 1.30 g of n-butyl isocyanide 3d (15.59 mmol, 2.10 eq.) were diluted in 

10 mL (0.74 M) DCM and stirred at room temperature for 18 hours. Subsequently, the 

solvent was removed under reduced pressure and the crude product was purified by 

column chromatography (hexane/ethyl acetate 9:1  2:1). The silica gel used in the 

column chromatography was pretreated with triethylamine (3 vol%). The product 12 was 

obtained as highly viscous oil in a yield of 81 % (9.91 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.64 – 6.44 (m, 2H, 2 NH, 1), 6.10 (s, 1H, NH, 2), 

5.93 – 5.69 (m, 2H, CH, NH, 3, 4), 5.26 – 4.84 (m, 6H, 4 CH, CH2, 
5, 6), 3.87 – 3.66 (m, 

1H, CH, 7), 3.37 – 3.13 (m, 4H, 2 CH2, 
8), 2.98 – 2.63 (m, 12H, 6 CH2, 

9), 2.53 (td, J = 

7.4, 4.0 Hz, 6H, 3 CH2, 
10), 2.38 (t, J = 7.4 Hz, 2H, CH2, 

11), 2.10 – 1.01 (m, 129H, 3 

CH3, 60 CH2, 
12), 0.98 – 0.79 (m, 9H, 3 CH3, 

13). 

13C NMR (75 MHz, CDCl3) δ /ppm: 172.6, 170.8, 169.8, 169.8, 169.1, 169.0, 139.3, 

114.3, 74.8, 74.6, 74.6, 74.0, 51.5, 39.4, 39.1, 35.0, 34.8, 34.5, 33.9, 33.1, 32.3, 32.2, 

32.1, 32.0, 31.7, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.2, 29.0, 28.9, 27.4, 27.2, 

25.6, 25.2, 25.0, 24.9, 22.8, 22.5, 20.2, 14.3, 14.1, 13.9. 

FAB of [C94H175N4O12S3]
+: calculated: 1648.2, found: 1648.6. 

IR (ATR platinum diamond):  [cm-1] = 3304.9, 2921.1, 2851.3, 1740.1, 1654.5, 1530.2, 

1453.3, 1362.8, 1226.8, 1144.9, 907.9, 720.3. 

SEC/ESI-MS: [C94H174N4O12S3Na]+: calculated: 1670.2, found: 1670.2. 

Rf: (hexane/ethyl acetate 2:1) = 0.43. 
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4th Thiol-Ene addition:  

13 

7.43 g of substance 12 (4.51 mmol, 1.00 eq.) were stirred together with 2.42 g of 3-

mercaptopropionic acid 4 (22.80 mmol, 5.06 eq.) and 61.3 mg of DMPA 5 (0.24 mmol, 

5.3 mol%) were added. The mixture was stirred under UV-irradiation (360 nm) at room 

temperature overnight. Subsequently, the excess of 4 was removed under reduced 

pressure and the crude product was recrystallized from hexane/ethyl acetate 2:1. The 

product 13 was obtained as white solid in a yield of 85 % (6.76 g). 
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1H NMR (300 MHz, CDCl3) δ /ppm: 6.65 (m, 2H, 2 NH, 1), 6.14 (s, 1H, NH, 2), 5.93 (d, J 

= 8.3 Hz, 1H, NH, 3), 5.28 – 4.93 (m, 4H, 4 CH, 4), 3.85 – 3.60 (m, 1H, CH, 5), 3.35 – 

3.06 (m, 4H, 2 CH2, 
6), 2.95 – 2.42 (m, 24H, 12 CH2, 

7), 2.34 (t, J = 7.4 Hz, 2H, CH2, 
8), 

1.95 – 0.96 (m, 133H, 3 CH3, 62 CH2, 
9), 0.93 – 0.74 (m, 9H, 3 CH3, 

10). 

13C NMR (75 MHz, CDCl3) δ /ppm: 175.2, 172.5, 170.7, 170.0, 169.9, 169.2, 169.2, 

74.6, 74.4, 73.8, 51.5, 47.9, 39.3, 39.0, 34.8, 34.7, 34.6, 34.3, 33.0, 32.9, 32.2, 32.1, 

32.0, 31.9, 31.9, 31.8, 31.5, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 29.3, 29.2, 29.2, 29.1, 

29.1, 29.0, 28.9, 28.8, 28.7, 27.3, 27.1, 26.8, 25.5, 25.0, 24.9, 24.8, 24.7, 22.7, 22.3, 

20.0, 14.2, 14.0, 13.8. 

FAB of [C97H181N4O14S4]
+: calculated: 1755.2, found: 1755.4. 

IR (ATR platinum diamond):  [cm-1] = 3289.1, 2920.0, 2850.2, 1738.3, 1654.4, 1538.6, 

1465.4, 1363.0, 1223.5, 1137.8, 1067.9, 720.2. 
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5th Passerini-3CR:  

14 

6.50 g of substance 13 (3.70 mmol, 1.00 eq.), 1.05 g of 10-undecenal 2 (6.22 mmol, 

1.68 eq.) and 0.56 g of methyl isocyanoacetate 3e (5.63 mmol, 1.52 eq.) were diluted in 

5 mL (0.74 M) DCM and stirred at room temperature for 18 hours. Subsequently, the 

solvent was removed under reduced pressure and the crude product was purified by 

column chromatography (hexane/ethyl acetate 6:1  1:1). The silica gel used in the 

column chromatography was pretreated with triethylamine (3 vol%). The product 14 was 

obtained as highly viscous oil in a yield of 68 % (5.09 g). 

 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.91 (s, 1H, NH, 1), 6.54 (m, 2H, 2 NH, 1), 6.08 (s, 

1H, NH, 1), 5.94 – 5.67 (m, 2H, NH, CH, 2), 5.27 – 4.84 (m, 7H, CH2, 5 CH, 3), 4.01 (qd, 

J = 18.2, 5.4 Hz, 2H, CH2, 
4), 3.75 (m, 4H, CH3, CH, 5), 3.33 – 3.10 (m, 4H, 2 CH2, 

6), 

2.94 – 2.28 (m, 26H, 13 CH2, 
7), 2.06 – 0.97 (m, 147H, 3 CH3, 69 CH2, 

8), 0.95 – 0.74 

(m, 9H, 3 CH3, 
9). 

13C NMR (75 MHz, CDCl3) δ /ppm: 172.5, 170.8, 170.7, 170.3, 170.0, 169.8, 169.7, 

169.1, 169.0, 139.3, 114.2, 74.8, 74.6, 74.5, 74.3, 74.0, 73.9, 51.5, 48.1, 47.7, 40.1, 

39.3; 39.0, 34.9, 34.7, 34.5, 33.9, 33.1, 32.3, 32.2, 31.9, 31.9, 31.6, 29.8, 29.7, 29.6, 

29.5, 29.3, 29.2, 29.1, 29.0, 29.0, 28.9, 28.8, 28.7, 28.6, 27.3, 27.2, 25.1, 25.0, 24.8, 

24.8, 14.1, 14.0, 13.9. 

FAB of [C112H205N5O17S4]
+: calculated: 2020.4, found: 2020.8. 

IR (ATR platinum diamond):  [cm-1] = 3296.8, 2921.1, 2851.2, 1740.4, 1655.6, 1530.3, 

1454.3, 1363.5, 1141.4, 908.8, 720.5. 

Rf: (hexane/ethyl acetate 1:1) = 0.50. 
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Synthesis of the sequence-defined block-copolymer 23: 

Synthesis of O-Methyl-O′-succinylpolyethylene glycol 1b 

1b 

5.18 g of dry polyethylene glycol (Mn ~ 2000 g/mol) (2.59 mmol, 1.00 eq.) were 

dissolved in 25 mL dry dichloromethane. Polyethylene glycol was dried by co-

evaporation with toluene, dichloromethane was dried over CaH2. Subsequently, 0.78 g 

succinic anhydride (7.76 mmol, 3.0 eq.) and 650 μL (0.64 g, 8.13 mmol, 3.1 eq.) dry 

pyridine were added and the mixture was refluxed at 55 ° C for 48 hours. Subsequently, 

the solvent was evaporated under reduced pressure and the residue was dissolved in 

aqueous sodium hydrogencarbonate solution (10 wt%). The solution was filtered, cooled 

to 0 ° C, acidified with hydrochloric acid and extracted with dichloromethane (3 x 25 mL). 
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The combined organic layers were washed with water (3 x 25 mL) dried over sodium 

sulfate and filtered. The crude product was precipitated in cold (0 ° C) diethyl ether to 

yield the desired product 1b as a white solid in a yield of 89 % (4.83 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 4.25 (dd, J = 5.4, 3.8 Hz, 2H, OCH2, 
3), 3.90 – 3.84 

(m, 1H, CH2, 
4’), 3.66 (s, 180H, OCH2, 

2), 3.43 – 3.34 (m, 4H, CH3, CH2, 
1, 4’’), 2.70 – 2.56 

(m, 4H, OCCH2, 
5). 

Melting point: 52.1 ° C. 

IR (ATR platinum diamond):  [cm-1] = 2881.8, 2739.1, 1967.5, 1734.1, 1465.6, 1358.9, 

1339.1, 1278.5, 1238.9, 1146.0, 1102.2, 1058.9, 945.5, 840.9, 528.1, 508.4. 

SEC/ESI-MS: 

m/z exp. ion assignment formula m/z theo Δ m/z 

771.75 a (n = 47) + 3 Na+ 
[C101H200O52Na3]

3+ 771.67 0.08 

786.50 b (n = 48) + 3 Na+ 
[C103H204O53Na3]

3+ 786.35 0.15 

801.25 c (n = 49) + 3 Na+ 
[C105H208O54Na3]

3+ 801.04 0.21 
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General procedure of Passerini-3CRs:  

The carboxylic acid (1.00 eq.), 10-undecenal 2 (1.80 eq.) and dichloromethane (0.50 M 

in respect of the carboxylic acid compound) were stirred at room temperature for ten 

minutes. Subsequently, the isocyanide 3a-e (1.80 eq.) was added and the reaction 

mixture was stirred at room temperature for 12 hours. The crude reaction mixture was 

purified by precipitation into ice cold diethyl ether, filtered and dried to afford the solid 

product. 
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1st Passerini-3CR of 1b with cyclohexyl isocyanide 3a and 10-undecenal 2 yielding 

polymer 15: 

15 

Polymer 15: white crystalline solid (1.94 g, 96 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.33 (d, J = 8.4 Hz, 1H, NH, 7), 5.90 – 5.69 (m, 1H, 

CH, 10), 5.14 (dd, J = 7.4, 4.3 Hz, 1H, CH, 6), 5.03 – 4.87 (m, 2H, CH2, 
11), 4.28 – 4.20 

(m, 2H, CH2, 
3), 3.93 – 3.82 (m, 1H, CH2, 

4’), 3.63 (s, 185 H, OCH2, 
2, 8), 3.44 – 3.34 (m, 

4H, CH3, CH2, 
1, 4’’), 2.88 – 2.52 (m, 4H, 2 CH2, 

5), 2.36 – 0.98 (m, 26 H, 13 CH2, 
9). 

Melting point = 48.9 ° C. 

IR (ATR platinum diamond)  [cm-1] = 2882.1, 1736.4, 1655.9, 1535.3, 1465.6, 1358.9, 

1340.1, 1278.7, 1239.6, 1146.0, 1101.3, 1059.2, 946.4, 841.1, 528.3, 509.0. 

SEC /ESI-MS:  

m/z exp. ion assignment formula m/z theo Δ m/z 

864.25 a (n = 47) + 3 Na+ 
[C119H231O53NNa3]

3+ 864.08 0.17 

879.00 b (n = 48) + 3 Na+ 
[C121H235O54NNa3]

3+ 878.77 0.23 

893.58 c (n = 49) + 3 Na+ 
[C123H239O55NNa3]

3+ 893.45 0.13 
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2nd Passerini-3CR of 16 with 10-undecenal 2 and t-butyl isocyanide 3b yielding polymer 

17: 

17 

 

Polymer 17: white solid, (1.31 g, 89 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.34 (d, J = 8.3 Hz, 1H, NH, 7), 6.08 (s, 1H, NH, 10), 

5.88 – 5.71 (m, 1H, CH, 11), 5.19 – 4.87 (m, 4H, CH2, 2 CH, 6, 12), 4.30 – 4.19 (m, 2H, 

CH2, 
3), 3.86 (m, 1H, CH2, 

4’), 3.64 (m, 190 H, OCH2, CH, 2, 8), 3.43 – 3.34 (m, 4H, CH3, 

CH2, 
1,4’’), 2.93 - 2.45 (m, 10 H, 5 CH2, 

5 ), 1.80 (m, 53H, 22 CH2, 3 CH3, 
9). 

Melting point: 47.0 ° C. 

IR (ATR platinum diamond)  [cm-1] = 2882.5, 2739.8, 1736.5, 1664.1, 1528.9, 1465.5, 

1359.0, 1340.3, 1278.7, 1239.5, 1145.8, 1103.2, 1059.5, 957.0, 841.2, 527.9, 508.8, 

420.1. 

SEC /ESI-MS:  

m/z exp. ion assignment formula m/z theo Δ m/z 

983.50 a (n = 47) + 3 Na+ 
[C138H265O56N2SNa3]

3+ 983.17 0.33 

998.17 b (n = 48) + 3 Na+ 
[C140H269O57N2SNa3]

3+ 997.85 0.32 

1012.67 c (n = 49) + 3 Na+ 
[C142H273O58N2SNa3]

3+ 1012.53 0.14 
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3rd Passerini-3CR of polymer 18 with 10-undecenal 2 and 1-pentyl isocyanide 3c 

yielding polymer 19: 

19 

Polymer 19: white solid, (0.82 g, 92 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.52 – 6.39 (m, 1H, NH, 11), 6.26 (d, J = 16.7 Hz, 1H, 

NH, 7), 5.99 (s, 1H, NH, 10), 5.82 – 5.65 (m, 1H, CH, 13), 5.19 – 4.80 (m, 5H, CH2, 3 CH, 

6, 14), 4.23 – 4.13 (m, 2H, CH2, 
3), 3.82 (dd, J = 9.4, 4.9 Hz, 1H, CH2, 

4’), 3.58 (s, 192 H, 

OCH2, CH, 2, 8), 3.38 – 3.28 (m, 4H, CH3, CH2, 
1, 4’’), 3.26 – 3.09 (m, 2H, CH2, 

12), 2.94 – 

2.40 (m, 16H, 8 CH2, 
5), 2.12 – 0.60 (m, 80H, 4 CH3, 34 CH2, 

9). 

Melting point: 46.0 ° C. 

IR (ATR platinum diamond)  [cm-1] = 3304.3, 2884.1, 1737.7, 1660.1, 1534.2, 1465.5, 

1359.1, 1340.8, 1278.9, 1239.7, 1145.9, 1103.3, 1059.7, 958.7, 841.4, 722.0, 528.5. 

SEC /ESI-MS:  

m/z exp. ion assignment formula m/z theo Δ m/z 

1107.42 a (n = 47) + 3 Na+ 
[C158H303O59N3S2Na3]

3+ 1106.92 0.50 

1121.92 b (n = 48) + 3 Na+ 
[C160H307O60N3S2Na3]

3+ 1121.60 0.32 

1136.75 c (n = 49) + 3 Na+ 
[C162H311O61N3S2Na3]

3+ 1136.28 0.47 
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4th Passerini-3CR of polymer 21 with 10-undecenal 2 and n-butyl isocyanide 3d yielding 

polymer 23: 

23 

Polymer 23: sticky, brown solid, (0.32 g, 80.5 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.53 (d, J = 4.5 Hz, 2H, 2 NH, 11), 6.36 (d, J = 8.3 

Hz, 1H, NH, 7), 6.10 (s, 1H, NH, 10), 5.89 – 5.69 (m, 1H, CH, 14), 5.25 – 4.88 (m, 6H, 4 

CH, CH2, 
6, 15), 4.27 – 4.21 (m, 2H, CH2, 

3), 3.87 (dd, J = 9.4, 4.9 Hz, 1H, CH2, 
4’), 3.64 

(s, 189 H, OCH2, CH, 2, 8), 3.44 – 3.35 (m, 4H, CH3, CH2, 
1, 4’’), 3.32 – 3.15 (m, 4H, 2 

CH2, 
12), 3.00 – 2.46 (m, 22H, 11 CH2, 

5), 2.11 – 0.72 (m, 105H, 5 CH3, 45 CH2, 
9). 

Melting point: 45.8 ° C. 

IR (ATR platinum diamond)  [cm-1] = 3307.0, 2923.0, 2885.1, 2856.2, 1738.1, 1657.8, 

1535.1, 1465.2, 1359.1, 1341.1, 1279.0, 1239.6, 1145.9, 1105.1, 1060.0, 958.8, 841.5, 

722.0, 528.1. 

SEC /ESI-MS:  

m/z exp. ion assignment formula m/z theo Δ m/z 

1226.17 a (n = 47) + 3 Na+ 
[C177H337O62N4S3Na3]

3+ 1225.99 0.18 

1240.92 b (n = 48) + 3 Na+ 
[C179H341O63N4S3Na3]

3+ 1240.67 0.25 

1255.75 c (n = 49) + 3 Na+ 
[C181H345O64N4S3Na3]

3+ 1255.35 0.40 

 



Experimental Section 

 

154 

 

 

  



  Experimental Section 

 

155 

5th Passerini-3CR of polymer 22 with 10-undecenal 4 and methyl isocyanoacetate 3e, 

yielding polymer 23: 

23 

Polymer 23: brown solid (0.10 g, 85 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.83 (t, J = 9.1 Hz, 1H, NH, 13), 6.49 (d, J = 4.5 Hz, 

2H, 2 NH 11), 6.29 (d, J = 8.2 Hz, 1H, NH, 7), 6.02 (s, 1H, NH, 10), 5.83 – 5.65 (m, 1H, 

CH, 14), 5.23 – 4.81 (m, 7H, 5 CH, CH2, 
6, 15), 4.21 – 4.15 (m, 2H, CH2, 

3), 4.10 – 3.85 

(m, 2H, NCH2, 
16), 3.81 (dd, J = 9.4, 4.9 Hz, 1H, CH2, 

4’), 3.58 (s, 210 H, OCH2, CH, 

OCH3, 
2, 8, 17), 3.37 – 3.29 (m, 4H, CH3, CH2, 

1, 4’’), 3.24 – 3.12 (m, 4H, 2 CH2, 
12), 2.94 – 

2.40 (m, 28 H, 14 CH2, 
5), 2.29 – 0.64 (m, 121 H, 5 CH3, 53 CH2, 

9). 

Melting Point: 45.0 ° C. 

IR (ATR platinum diamond)  [cm-1] = 3304.9, 2887.1, 2855.8, 1737.9, 1664.2, 1535.3, 

1465.0, 1359.2, 1341.2, 1279.0, 1239.7, 1145.5, 1105.8, 1060.1, 959.8, 841.6, 721.5, 

528.3. 

SEC /ESI-MS: 

m/z exp. ion assignment formula m/z theo Δ m/z 

1350.75 a (n = 47) + 3 Na+ 
[C195H368O67N5S4Na3]

3+ 1350.39 0.36 

1365.42 b (n = 48) + 3 Na+ 
[C197H372O68N5S4Na3]

3+ 1365.01 0.41 

1379.75 c (n = 49) + 3 Na+ 
[C199H376O69N5S4Na3]

3+ 1379.75 0.00 
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General procedure of the Thiol-Ene addition reaction: 

To the product of the Passerini-3CR (1.00 eq.) 3-mercaptopropionic acid 4 (5.00 eq.), 

THF (0.40 M) and 2,2-dimethoxyphenylacetophenone 5 (DMPA, 5.0 mol%) were added 

and the mixture was stirred under UV-irradiation (360 nm) at room temperature for four 
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hours. The crude reaction mixture was precipitated into ice cold diethyl ether and filtered 

to afford the solid product. 

1st Thiol-Ene addition of polymer 15 with 3-mercaptopropionic acid 4 and catalytic 

amounts of DMPA 5 yielding polymer 16: 

16 

Polymer 16: white solid (0.59 g, 88 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.34 (d, J = 8.2 Hz, 1H, NH, 7), 5.11 (dd, J = 7.5, 4.2 

Hz, 1H, CH, 6), 4.10 - 4.23 (m, 2H, CH2, 
3), 3.84 – 3.78 (dd, J = 9.4, 4.9 Hz, 1H, CH2, 

4’), 

3.58 (s, 184H, OCH2, CH, 2, 8), 3.37 – 3.29 (m, 4H, CH3, CH2, 
1, 4’’), 2.77 – 2.40 (m, 10H, 

5 CH2, 
5), 1.95 – 0.88 (m, 28H, 14 CH2, 

9). 

Melting point: 47.4 ° C. 

IR (ATR platinum diamond)  [cm-1] = 2882.9, 1734.7, 1654.4, 1540.3, 1465.5, 1358.9, 

1339.9, 1278.7, 1239.4, 1145.9, 1103.0, 1059.3, 946.3, 841.1, 528.1, 508.6. 

SEC /ESI-MS:  

m/z exp. ion assignment formula m/z theo Δ m/z 

899.58 a (n = 47) + 3 Na+ 
[C122H237O55NSNa3]

3+ 899.42 0.16 

914.42 b (n = 48) + 3 Na+ 
[C124H241O56NSNa3]

3+ 914.10 0.32 

928.92 c (n = 49) + 3 Na+ 
[C126H245O57NSNa3]

3+ 928.79 0.13 
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2nd Thiol-Ene addition of polymer 17 with 3-mercaptopropionic acid 4 and catalytic 

amounts of DMPA 5 yielding polymer 18: 

18 

Polymer 18: white solid (0.93 g, 92 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.40 (d, J = 8.3 Hz, 1H, NH, 7), 6.12 (s, 1H, NH, 10), 

5.04-5.19 (m, 2H, 2 CH, 6), 4.27 – 4.20 (m, 2H, CH2, 
3), 3.86 (dd, J = 9.4, 4.9 Hz, 1H, 

CH2, 
4’), 3.63 (s, 198H, OCH2, CH, 2, 8), 3.43 – 3.32 (m, 4H, CH3, CH2, 

1, 4’’), 2.88 – 2.43 

(m, 16H, 8 CH2, 
5), 2.02 – 0.94 (m, 55H, 3 CH3, 23 CH2, 

9). 

Melting Point: 45.9 ° C. 

IR (ATR platinum diamond)  [cm-1] = 2883.4, 1735.7, 1657.9, 1533.7, 1465.5, 1359.1, 

1340.7, 1278.8, 1239.7, 1145.9, 1102.4, 1059.5, 958.7, 841.2, 528.5. 

SEC /ESI-MS:  

m/z exp. ion assignment formula m/z theo Δ m/z 

1018.58 a (n = 47) + 3 Na+ 
[C141H271O58N2S2Na3]

3+ 1018.50 0.08 

1033.58 b (n = 48) + 3 Na+ 
[C143H275O59N2S2Na3]

3+ 1033.18 0.40 

1048.00 c (n = 49) + 3 Na+ 
[C145H279O60N2S2Na3]

3+ 1047.86 0.14 
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3rd Thiol-Ene addition of polymer 19 with 3-mercaptopropionic acid 4 and catalytic 

amounts of DMPA 5, yielding polymer 20: 

20 

Polymer 20: brown, sticky solid (0.65 g, 89 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.58 (t, J = 5.6 Hz, 1H, NH, 11), 6.37 (d, J = 8.2 Hz, 

1H, NH, 7), 6.12 (s, 1H, NH, 10), 5.25 – 5.01 (m, 3H, 3 CH, 6), 4.28 – 4.20 (m, 2H, CH2, 

3), 3.86 (dd, J = 9.4, 4.9 Hz, 1H, CH2, 
4’), 3.63 (s, 197H, OCH2, CH, 2, 8), 3.43 – 3.34 (m, 

4H, CH3, CH2, 
1, 4’’), 3.34 – 3.13 (m, 2H, CH2, 

12), 2.95 – 2.44 (m, 22H, 11 CH2, 
5), 1.99 – 

0.60 (m, 82H, 4 CH3, 35 CH2, 
9). 

Melting point: 45.4 ° C. 

IR (ATR platinum diamond)  [cm-1] = 2884.9, 1736.2, 1661.7, 1535.2, 1465.2, 1359.1, 

1340.6, 1278.9, 1239.5, 1145.7, 1104.7, 1059.9, 957.5, 841.4, 528.3. 

SEC /ESI-MS:  

m/z exp. ion assignment formula m/z theo Δ m/z 

1142.75 a (n = 47) + 3 Na+ 
[C161H309O61N3S3Na3]

3+ 1142.25 0.50 

1157.42 b (n = 48) + 3 Na+ 
[C163H313O62N3S3Na3]

3+ 1156.93 0.49 

1172.00 c (n = 49) + 3 Na+ 
[C165H317O63N3S3Na3]

3+ 1171.61 0.39 
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4th Thiol-Ene addition of polymer 21 with 3-mercaptopropionic acid 4 and catalytic 

amounts of DMPA 5 yielding polymer 22: 

22 

Polymer 22: yellowish solid (0.14 g, 87 %). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.60 (d, J = 2.3 Hz, 2H, 2 NH, 11), 6.38 (d, J = 8.3 

Hz, 1H, NH, 7), 6.12 (s, 1H, NH, 10), 5.27 – 5.00 (m, 4H, 4 CH, 6), 4.29 – 4.19 (m, 2H, 

CH2, 
3), 3.86 (dd, J = 9.4, 4.9 Hz, 1H, CH2, 

4’), 3.63 (s, 201H, OCH2, CH, 2, 8), 3.43 – 

3.34 (m, 4H, CH3, CH, 1, 4’’), 3.32 – 3.13 (m, 4H, 2 CH2, 
12), 2.91 – 2.45 (m, 28H, 14 CH2, 

5), 2.00 – 0.69 (m, 107H, 5 CH3, 46 CH2, 
9). 

Melting point: 45.1 ° C. 

IR (ATR platinum diamond)  [cm-1] = 3307.7, 2922.7, 2885.6, 2855.8, 1736.7, 1658.8, 

1535.4, 1465.1, 1359.1, 1341.2, 1279.0, 1239.7, 1145.4, 1105.5, 1060.1, 959.5, 841.5, 

721.8, 527.5. 

SEC /ESI-MS:  

m/z exp. ion assignment formula m/z theo Δ m/z 

1261.17 a (n = 47) + 3 Na+ 
[C180H343O64N4S4Na3]

3+ 1261.33 0.16 

1276.58 b (n = 48) + 3 Na+ 
[C182H347O65N4S4Na3]

3+ 1276.01 0.57 

1291.42 c (n = 49) + 3 Na+ 
[C184H351O66N4S4Na3]

3+ 1290.69 0.73 
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6.3.2 Experimental Procedures Chapter 4.1.2 

Variation of the amine component: 

1st Ugi reaction: 

25 

1.34 g 10-Undecenal 2 (7.98 mmol, 1.70 eq.) were stirred for 15 minutes with 0.47 g 

propylamine 24a (7.88 mmol, 1.70 eq.) at room temperature. Subsequently, 1.30 g 

stearic acid 1a (4.59 mmol, 1.00 eq.), 0.70 g t-butyl isocyanide 3b (8.43 mmol, 1.80 eq.) 

and 5.25 mL (0.87 M) methanol were added and stirred for 24 hours at room 

temperature. The reaction was followed via GPC and after completion of the reaction, 

the solvent was removed under reduced pressure and the product was purified by 

column chromatography (hexane/ethyl acetate 30:1  12:1). Product 25 was obtained 

as a colorless liquid in a yield of 91 % (2.42 g). 

1H NMR: (300 MHz, CDCl3) δ /ppm: 6.49 (s, 1H, NH, 5), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 

1H, CH, 6), 4.95 (dd, J = 17.3, 13.8 Hz, 2H, CH2, 
7), 4.69 (t, J = 7.6 Hz, 1H, CH, 4), 3.30 

– 3.06 (m, 2H, CH2, 
3), 2.34 (dd, J = 8.1, 6.3 Hz, 2H, CH2, 

2), 2.08 – 1.00 (m, 57H, 24 

CH2, 3 CH3, 
8), 0.88 (t, J = 7.1 Hz, 6H, CH3, 

1). 

13C NMR: (75 MHz, CDCl3) δ /ppm: 175.0, 171.0, 139.3, 114.2, 58.2, 50.9, 50,0, 33.9, 

33.7, 32.1, 29.8, 29.8, 29.7, 29.6, 29.6, 29.6, 29.5, 29.5, 29.5, 29.2, 29.0, 28.8, 28.0, 

26.3, 25.9, 23.5, 22.8, 14.2, 11.6. 

FAB-MS: [C37H73O2N2]
+ calculated: 577.5669, found: 577.5667. 

IR: (ATR): [cm-1] = 3312.0, 2920.7, 2851.4, 1682.5, 1625.3, 1534.7, 1454.0, 1362.3, 

1225.0, 1112.5, 991.3, 907.1, 720.5, 470.5. 
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Rf: (hexane/ethyl acetate (9:1)) = 0.44. 

 

 

1st Thiol-Ene addition: 

26 

2.38 g of substance 25 (4.12 mmol, 1.00 eq.) were diluted with 2.20 g 3-

mercaptopropionic acid 4 (20.7 mmol, 5.00 eq.) and 32 mg 2,2-dimethoxy-2-

phenylacetophenone (DMPA) 5 (0.12 mmol, 3.00 mol%) were added. The reaction 

mixture was stirred under UV irradiation at room temperature for one hour. Full 

conversion of the double bonds was detected via 1H NMR. The excess of 3-
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mercaptopropionic acid was removed by vacuum distillation and the residue was 

dissolved in diethyl ether. The organic layer was washed with water (3 x 100 mL) and 

brine (1 x 100 mL) and dried over sodium sulfate. After removing the solvent under 

reduced pressure, the desired product 26 was obtained as yellowish oil in a yield of 

91 % (2.56 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.65 (s, 1H, NH, 5), 4.69 (t, J = 7.1 Hz, 1H, CH, 4), 

3.34 – 3.07 (m, 2H, CH2, 
3), 2.81 – 2.57 (m, 4H, 2 CH2, 

7), 2.51 (t, J = 7.3 Hz, 2H, CH2, 

6), 2.33 (t, J = 7.5 Hz, 2H, CH2, 
2), 2.00 – 0.74 (m, 67H, 26 CH2, 5 CH3, 

8,1). 

13C NMR (75 MHz, CDCl3) δ / ppm: 175.9, 175.2, 170.9, 58.3, 51.0, 47.0, 34.7, 33.5, 

32.1, 31.9, 29.7, 29.6, 29.5, 29.4, 29.4, 29.3, 29.0, 28.7, 28.5, 28.1, 26.7, 26.1, 25.7, 

23.4, 23.4, 22.7, 14.1, 11.4. 

FAB-MS: [C40H79O2N4S]+ calculated: 683.6, found: 683.6. 

IR: (ATR): [cm-1] = 2920.3, 2850.8, 1717.2, 1681.4, 1621.5, 1535.9, 1454.5, 1363.8, 

1223.8, 8993.3, 720.4, 634.4. 
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2nd Ugi reaction: 

27 

4.92 g of substance 26 (7.20 mmol, 1.00 eq.) were stirred with 2.07 g 10-undecenal 2 

(12.27 mmol, 1.70 eq.), and 1.34 g benzylamine 24b (12.5 mmol, 1.70 eq.) in 7.2 mL 

methanol (1.00 M) at room temperature. Subsequently, 1.08 g tert-butyl isocyanide 3b 

(13.0 mmol, 1.80 eq.) were added and the mixture was stirred at room temperature for 

24 hours. After completion of the reaction, the solvent was removed under reduced 
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pressure and the crude product was purified by column chromatography. (hexane/ethyl 

acetate 12:1  3:1). Product 27 was obtained as yellowish oil in a yield of 76 % (5.62 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.25 (ddd, J = 22.1, 14.5, 7.1 Hz, 5H, 5 CH aromatic, 

10), 6.50 (s, 1H, NH, 5), 6.23 (s, 1H, NH, 5), 5.89 – 5.68 (m, 1H, CH, 6), 5.04 – 4.55 (m, 

6H, 2 CH, 2 CH2, 
4,7,9), 3.29 – 3.06 (m, 2H, CH2, 

3), 2.85 – 2.69 (m, 2H, CH2, 
2), 2.60 – 

2.45 (m, 2H, CH2, 
2), 2.42 – 2.27 (m, 4H, 2 CH2, 

2), 2.08 – 0.99 (m, 84H, 33 CH2, 6 CH3, 

8), 0.87 (t, J = 7.1 Hz, 6H, 2 CH3, 
1). 

13C NMR (75 MHz, CDCl3) δ /ppm: 175.0, 173.9, 171.0, 169.9, 139.3, 137.8, 128.8, 

127.4, 126.1, 114.22, 58.7, 51.3, 50.9, 48.2, 47.0, 34.4, 33.9, 33.7, 32.6, 32.0, 29.8, 

29.8, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.4, 29.3, 29.2, 29.0, 29.0, 28.8, 28.7, 28.5, 

28.0, 28.0, 26.5, 26.3, 25.9, 23.5, 22.8, 14.2, 11.6. 

FAB-MS: [C63H115O4N4S]+ calculated: 1023.8632, found: 1023.8634. 

IR: (ATR): [cm-1] = 3322.0, 2920.9, 2851.2, 1680.2, 1625.9, 1536.9, 1452.3, 1419.2, 

1390.2, 1361.7, 1224.6, 991.3, 907.5, 723.1, 695.7. 

Rf: (hexane/ethyl acetate (3:1)) = 0.48. 
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2nd Thiol-Ene addition: 

28 

5.57 g of substance 27 (5.44 mmol, 1.00 eq.) were diluted with 2.89 g 3-

mercaptopropionic acid 4 (27.3 mmol, 5.00 eq.) and 65 mg DMPA 5 (0.25 mmol, 

5.00 mol%) were added. The reaction mixture was stirred under UV-irradiation at room 

temperature for one hour. Complete conversion of the double bonds was confirmed by 

proton NMR. Subsequently, the excess of 3-mertcaptopropionic acid 4 was removed 

applying vacuum distillation; the residue was diluted with diethyl ether (50 mL) and 
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washed with water (3 x 50 mL). The organic layer was dried over sodium sulfate and 

concentrated in vacuo. The product 28 was obtained as yellowish oil in a yield of 81 % 

(4.98 g).  

1H NMR (300 MHz, CDCl3) δ / ppm: 7.37 – 7.12 (m, 5H, 5 CH aromatic, 7), 6.60 (s, 1H, 

NH, 5), 6.46 (s, 1H, NH, 5), 4.97 – 4.53 (m, 4H, 2 CH, 2 CH2, 
4,6), 3.30 – 3.06 (m, 2H, 

CH2, 
3), 2.82 – 2.26 (m, 14H, 7 CH2, 

2), 1.99 – 0.74 (m, 92H, 34 CH2, 8 CH3, 
8,1). 

13C NMR (75 MHz, CDCl3) δ / ppm: 175.3, 175.2, 174.1, 171.4, 171.0, 170.0, 164.3, 

137.7, 132.3, 131.7, 128.8, 127.4, 126.1, 95.1, 51.4, 51.0, 48.3, 34.8, 34.4, 33.7, 32.6, 

32.2, 32.0, 29.8, 29.8, 29.7, 29.6, 29.6, 29.5, 29.3, 29.3, 29.0, 28.7, 28.2, 28.0, 26.9, 

26.4, 26.3, 25.9, 24.9, 23.5, 22.8, 22.6, 21.3, 14.6, 14.2, 11.53. 

FAB-MS: [C66H122O4N6S2]
+ calculated: 1129.9, found: 1129.4. 

IR: (KBr): [cm-1] = 3332.0, 2924.8, 2853.7, 1729.1, 1681.6, 1631.7, 1538.1, 1454.5, 

1364.4, 1226.3, 725.6. 
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3rd Ugi reaction: 

29 

4.94 g of subtance 28 (4.37 mmol, 1.00 eq.), 1.26 g 10-undecenal 2 (7.46 mmol, 

1.70 eq.) and 0.74 g cyclohexyl amine 24c (7.44 mmol, 1.70 eq.) were dissolved in 

4.4 mL methanol (1.00 M). Subsequently, 0.62 g tert-butyl isocyanide 3b (7.45 mmol, 

1.70 eq.) were added and the mixture was stirred at room temperature for 48 hours. 

After completion of the reaction, the solvent was removed under reduced pressure and 

the crude product was purified by column chromatography (hexane/ethyl acetate 10:1  

3:1). Product 29 was obtained as yellowish oil in a yield of 81 % (5.17 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.62 (s, J = 7.5 Hz, 1H, NH, 5), 7.38 – 7.08 (m, 5H, 5 

CH aromatic, 7), 6.49 (s, 1H, NH, 5), 6.23 (s, 1H, NH, 5), 5.87 – 5.69 (m, 1H, CH, 10), 

5.04 – 4.49 (m, 7H, 3 CH, 2 CH2, 
4,6,11), 3.53 (dd, J = 42.7, 35.2 Hz, 1H, CH, 9), 3.29 – 

3.01 (m, 2H, CH2, 
3), 2.94 – 2.20 (m, 14H, 7 CH2, 

2), 2.17 – 0.71 (m, 127H, 47 CH2, 11 

CH3, 
1,8). 

13C NMR (75 MHz, CDCl3) δ /ppm: 175.0, 173.9, 171.0, 169.9, 169.0, 168.6, 163.1, 

157.0, 139.3, 128.9, 126.2, 126.1, 114.2, 99.7, 62.6, 58.7, 51.3, 50.9, 45.9, 33.9, 33.7, 

32.9, 32.6, 32.0, 29.9, 29.8, 29.8, 29.8, 29.6, 29.6, 29.5, 29.5, 29.4, 29.2, 29.1, 29.0, 

28.8, 28.8, 28.7, 28.5, 28.0, 27.3, 26.2, 25.9, 23.5, 23.5, 23.5, 22.8, 19.3, 14.3, 11.6. 

FAB-MS: [C88H160O6N6S2]
+ calculated: 1461.2, found: 1460.9. 

IR: (ATR): [cm-1] = 3317.6, 2921.0, 2851.2, 1673.2, 1625.5, 1540.8, 1452.1, 1389.7, 

1361.5, 1224.8, 1121.3, 992.9, 907.1, 722.5, 695.3. 

Rf: (hexane/ethyl acetate (5:2)) = 0.48. 



  Experimental Section 

 

173 

 

 

3rd Thiol-Ene addition: 

30 

1.85 g 3-mercaptopropionic acid 4 (17.4 mmol, 5.00 eq.) were added to 5.06 g of 

substance 29 (3.46 mmol, 1.00 eq.) and 53.0 mg DMPA 5 (0.21 mmol, 6.00 mol%) and 

the mixture was stirred under UV-irradiation at room temperature for two hours. 

Complete consumption of the double bonds was confirmed by a NMR measurement. 

The excess of 3-mercaptopropionic acid 4 was removed by vacuum distillation and the 

residue was dissolved in diethyl ether (50 mL) and washed with water (3 x 50 mL). The 
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organic layer was dried over sodium sulfate, filtered and the solvent was removed under 

reduced pressure to obtain product 30 as highly viscous oil in a yield of 75 % (4.08 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.78 (s, 1H, NH, 5), 7.24 (m, 5H, 5 CH aromatic, 7), 

6.55 (s, 1H, NH, 5), 6.38 (s, 1H, NH, 5), 4.92 – 4.55 (m, 5H, 3 CH, CH2, 
4,6), 3.83 – 3.04 

(m, 3H, CH, CH2, 
3,9), 2.99 – 2.18 (m, 20H, 10 CH2, 

2), 2.16 – 0.48 (m, 129H, 48 CH2, 11 

CH3, 
1,8). 

13C NMR (75 MHz, CDCl3) δ /ppm:175.1, 174.7, 172.8, 171.0, 169.9, 163.1, 137.8, 

128.8, 127.4, 126.1, 58.7, 51.4, 51.0, 50.8, 48.3, 47.0, 47.0, 35.4, 34.8, 34.4, 33.7, 32.9, 

32.6, 32.1, 32.0, 29.8, 29.7, 29.7, 29.6, 29.5, 29.5, 29.4, 29.3, 29.1, 29.0, 29.0, 28.7, 

28.7, 28.6, 28.2, 28.1, 28.0, 27.1, 27.0, 26.5, 26.3, 26.2, 26.0, 25.9, 25.1, 23.5, 22.8, 

14.3, 11.6. 

FAB-MS: [C91H167O6N8S3]
+ calculated: 1567.2, found:1567.3. 

IR: (ATR): [cm-1] = 3306.9, 2921.2, 2851.0, 1720.6, 1675.4, 1626.7, 1541.0, 1452.4, 

1390.5, 1362.3, 1223.8, 894.8, 723.9, 695.8. 
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4th Ugi reaction: 

31 

4.01 g of substance 30 (2.55 mmol, 1.00 eq.), 0.73 g of 10-undecenal 2 (4.35 mmol, 

1.70 eq.) and 0.27 g ethanolamine 24d (4.50 mmol, 1.70 eq.) were stirred with 2.5 mL 

methanol (1.00 M). Subsequently, 0.37 g tert-butyl isocyanide 3b (4.43 mmol, 1.70 eq.) 

were added and the reaction mixture was stirred at room temperature for 48 hours. 

Afterwards, the solvent was evaporated under reduced pressure and the crude reaction 

mixture was purified by column chromatography (hexane/ethyl acetate 9:1  1:2). The 

desired product 31 was obtained as highly viscous oil in a yield of 48 % (2.30 g). 
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1H NMR (300 MHz, CDCl3) δ /ppm: 7.61 (bs, 1H, NH, 5), 7.40 – 7.09 (m, 5H, 5 CH 

aromatic, 7), 6.49 (s, 1H, NH, 5), 6.22 (m, 2H, 2 NH, 5), 5.79 (m, 1H, CH, 10), 5.07 – 4.45 

(m, 8H, 4 CH, 2 CH2, 
4,6,11), 4.30 (bs, 1H, OH, 12), 3.91 – 3.31 (m, 5H, 1 CH, 2 CH2, 

9,13), 

3.17 (m, 2H, CH2, 
3), 3.00 – 2.21 (m, 20H, 10 CH2, 

2), 2.18 – 0.76 (m, 154H, 56 CH2, 14 

CH3, 
1,8). 

13C NMR (75 MHz, CDCl3) δ / ppm: 175.0, 173.9, 173.0, 172.5, 171.0, 169.9, 162.9, 

139.3, 128.8, 127.4, 126.2, 126.1, 114.3, 101.3, 61.8, 58.7, 51.7, 51.3, 50.9, 50.7, 34.5, 

34.4, 33.9, 33.7, 32.9, 32.7, 32.6, 32.0, 29.8, 29.8, 29.8, 29.6, 29.5, 29.5, 29.4, 29.2, 

29.1, 29.0, 29.0, 28.8, 28.7, 28.7, 28.6, 28.0, 26.6, 26.4, 25.9, 25.1, 23.5, 22.8, 14.2, 

11.6. 

FAB-MS: [C109H201O8N9S3]
+ calculated: 1861.5, found: 1861.1. 

IR: (ATR): [cm-1] = 3306.1, 2921.3, 2851.4, 2625.5, 1541.5, 1452.5, 1390.5, 1361.9, 

1224.7, 1077.1, 994.4, 907.4, 723.3, 696.0, 503.3. 

Rf: (hexane/ethyl acetate (3:2)) = 0.5. 
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Variation of the amine and the isocyanide component: 

1st Ugi reaction: 

32 

1.34 g 10-undecenal 2 (7.98 mmol, 1.70 eq.) and 0.47 g propylamine 24a (7.88 mmol, 

1.70 eq.) were stirred for 15 minutes at room temperature. Subsequently, 1.30 g stearic 

acid 1a (4.59 mmol, 1.00 eq.), 0.70 g tert-butyl isocyanide 3b (8.43 mmol, 1.80 eq.) and 

5.25 mL (0.87 M) methanol were added and stirred for 24 hours at room temperature. 

The reaction was followed via GPC and after completion of the reaction, the solvent was 
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removed under reduced pressure and the product was purified by column 

chromatography (hexane/ethyl acetate 30:1  12:1). Product 32 was obtained as a 

colorless liquid in a yield of 91 % (2.42 g). 

1H NMR: (300 MHz, CDCl3) δ /ppm: 6.49 (s, 1H, NH, 5), 5.80 (m, 1H, CH, 6), 4.95 (dd, J 

= 17.3, 13.8 Hz, 2H, CH2, 
7), 4.69 (t, J = 7.6 Hz, 1H, CH, 4), 3.30 – 3.06 (m, 2H, CH2, 

3), 

2.34 (dd, J = 8.1, 6.3 Hz, 2H, CH2, 
2), 2.08 – 1.00 (m, 57H, 24 CH2,3 CH3, 

8), 0.88 (t, J = 

7.1 Hz, 6H, 2 CH3, 
1). 

13C NMR: (75 MHz, CDCl3) δ /ppm: 175.0, 171.0, 139.3, 114.2, 58.2, 50.9, 50,0, 33.9, 

33.7, 32.1, 29.8, 29.8, 29.7, 29.6, 29.6, 29.6, 29.5, 29.5, 29.5, 29.2, 29.0, 28.8, 28.0, 

26.3, 25.9, 23.5, 22.8, 14.2, 11.6. 

FAB-MS: [C37H73O2N2]
+ calculated: 577.5669, found: 577.5667. 

IR: (ATR): [cm-1] = 3312.0, 2920.7, 2851.4, 1682.5, 1625.3, 1534.7, 1454.0, 1362.3, 

1225.0, 1112.5, 991.3, 907.1, 720.5, 470.5. 

Rf: (hexane/ethyl acetate (9:1)) = 0.44. 
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1st Thiol-Ene addition: 

33 

3.02 g of substance 32 (5.23 mmol, 1.00 eq.) were diluted with 2.82 g 3-

mercaptopropionic acid 4 (27.0 mmol, 5.20 eq.) and 72.3 mg DMPA 5 (0.28 mmol, 

5.40 mol%) were added. The reaction mixture was stirred under UV irradiation at room 

temperature for one hour. Full conversion of the double bonds was detected via 

1H NMR. The excess of 3-mercaptopropionic acid was removed by vacuum distillation 

and the residue was dissolved in diethyl ether. The organic layer was washed with water 

(3 x 100 mL) and brine (100 mL) and dried over sodium sulfate. After removing the 
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solvent under reduced pressure, the desired product 33 was obtained as yellowish oil in 

a yield of 99 % (3.54 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.65 (s, 1H, NH, 5), 4.69 (t, J = 7.1 Hz, 1H, CH, 4), 

3.34 – 3.07 (m, 2H, CH2, 
3), 2.81 – 2.57 (m, 4H, 2 CH2, 

7), 2.51 (t, J = 7.3 Hz, 2H, CH2, 

6), 2.33 (t, J = 7.5 Hz, 2H, CH2, 
2), 2.00 – 0.74 (m, 67H, 26 CH2, 5 CH3, 

8,1). 

13C NMR (75 MHz, CDCl3) δ /ppm: 175.9, 175.2, 170.9, 58.3, 51.0, 47.0, 34.7, 33.5, 

32.1, 31.9, 29.7, 29.6, 29.5, 29.4, 29.4, 29.3, 29.0, 28.7, 28.5, 28.1, 26.7, 26.1, 25.7, 

23.4, 23.4, 22.7, 14.1, 11.4. 

FAB-MS: [C40H79O2N4S]+ calculated: 683.6, found: 683.6. 

IR: (ATR): [cm-1] = 2920.3, 2850.8, 1717.2, 1681.4, 1621.5, 1535.9, 1454.5, 1363.8, 

1223.8, 8993.3, 720.4, 634.4. 

 

  



  Experimental Section 

 

181 

2nd Ugi reaction: 

34 

1.44 g of 10-undecenal 2 (8.56 mmol, 1.70 eq.) were mixed with 0.93 g benzylamine 

24b (8.69 mmol, 1.70 eq.) and 5.0 mL (1.00 M relative to the acid) methanol and stirred 

for 30 minutes. Subsequently, 3.43 g of substance 33 (5.02 mmol, 1.00 eq.) and 0.86 g 

of cyclohexyl isocyanide 3a (7.92 mmol, 1.60 eq.) were added and the reaction mixture 

was stirred at room temperature for 48 hours. The solvent was removed under reduced 

pressure and the product was separated by column chromatography (hexane/ethyl 

acetate 10:1  3:1) to afford 53 % of substance 34 (2.79 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.44 – 7.08 (m, 5H, 5 CH aromatic, 1), 6.49 (s, 1H, 

NH, 2), 6.31 (d, J = 8.1 Hz, 1H, NH, 3), 5.92- 5.69 (m, 1H, CH, 4), 5.06 – 4.81 (m, 3H, 

CH2, CH, 5), 4.75 – 4.52 (m, 3H, CH2, CH, 5), 3.80 – 3.55 (m, 1H, CH, 6), 3.30-3,04 (m, 

2H, CH2, 
7), 2.86 – 2.21 (m, 8 H, 4 CH2, 

8), 2.14 – 0.97 (m, 85 H, 38 CH2, 3 CH3, 
9), 0.90 

- 0.78 (m, 6H, 2 CH3, 
10). 

13C NMR (75 MHz, CDCl3) δ /ppm 175.0, 173.9, 171.0, 169.7, 139.3; 137.7, 128.9, 

127.4, 126.0, 114.2, 58.3, 50.9, 48.5, 48.2, 34.4, 33.9, 33.7, 33.1, 32.9, 32.6, 32.0, 29.8, 

29.8, 29.7, 29.6, 29.4, 29.3, 29.1, 29.0, 28.9, 28.7, 28.5, 28.0, 26.5, 26.3, 25.8, 25.6, 

24.8, 23.5, 22.8, 14.2, 11.6. 

FAB-MS of [C65H117O4N4S]+ : calculated: 1049.9, found: 1049.7. 

IR (KBr): [cm-1] = 3320.0, 2925.0, 2853.7, 1680.6, 1631.3, 1537.8, 1453.5, 1363.4, 

1227.4, 992.6, 908.7, 725.4, 696.9. 

Rf: (hexane/ethyl acetate (4:1)) = 0.36. 
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2nd Thiol-Ene addition: 

35 

2.36 g of substance 34 (2.25 mmol, 1.00 eq.) were diluted with 1.21 g 3-

mercaptopropionic acid 4 (11.4 mmol, 5.10 eq.) and 29.3 mg DMPA 5 (0.12 mmol, 

5.10 mol%) were added. The mixture was stirred under UV-irradiation at room 

temperature for three hours and the full conversion of the double bond was confirmed by 

NMR. Subsequently, the excess of 3-mercaptopropionic acid was removed via vacuum 

distillation. The residue was diluted with diethyl ether (25 mL) and washed with water (3 
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x 50 mL) and brine (50 mL). The organic layer was dried over sodium sulfate and the 

solvent was removed under reduced pressure to afford the desired product 35 as slightly 

yellow oil in a yield of 92 % (2.38 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.38 – 7.12 (m, 5H, 5 CH aromatic, 1), 6.66 – 6.47 

(m, 2H, 2 NH, 2), 4.99 – 4.83 (m, 1H, CH, 3), 4.77 – 4.55 (m, 3H, CH2, CH, 3), 3.77 – 

3.57 (m, 1H, CH, 4), 3.31 – 3.05 (m, 2H, CH2, 
5), 2.90 – 2,21 (m, 14H, 7 CH2, 

6), 2.01 – 

1.00 (m, 87H, 3 CH3, 39 CH2, 
7), 0.94 – 0.77 (m, 6H, 2 CH3, 

8). 

13C NMR (75 MHz, CDCl3) δ /ppm 175.2, 174.1, 171.0, 171.0, 169.8, 137.6, 128.9, 

127.4, 126.0, 114.0, 51.0, 48.5, 48.3, 34.8, 33.7, 33.0, 32.8, 32.6, 32.2, 32.0, 29.8, 29.8, 

29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.0, 28.7, 28.1, 28.0, 26.9, 26.4, 26.3, 25.9, 25.6, 

25.6, 24.8, 23.5, 22.8, 14.2, 11.5. 

FAB-MS of [C68H123O6N4S2]
+: calculated: 1155.9, found: 1155.6. 

IR (KBr): [cm-1] = 3317.5, 2920.7, 2850.8, 1723.9, 1677.4, 1623.7, 1534.7, 1451.2, 

1418.8, 1362.9, 1224.4, 891.2, 724.0, 695.8, 458.5. 
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3rd Ugi reaction: 

36 

0.05 g of 10-undecenal 2 (0.30 mmol, 1.70 eq.) were mixed with 0.05 g 4-methoxy 

benzylamine 24e (0.34 mmol, 1.90 eq.) and 0.25 mL (0.72 M relative to the acid) 

methanol and stirred for 30 minutes. Subsequently, 0.21 g of substance 33 (0.18 mmol, 

1.00 eq.) and 0.03 g of n-butyl isocyanide 3d (0.30 mmol, 1.70 eq.) were added and the 

reaction mixture was stirred at room temperature for 40 hours. The solvent was removed 
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under reduced pressure and the product was separated by column chromatography 

(hexane/ethyl acetate 6:1  1:1) to afford 80 % of substance 36 (0.23 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.39 – 7.00 (m, 7H, 7 CH aromatic, 1), 6.88 – 6.73 

(m, 2H, 2 CH aromatic, 2), 6.53 – 6.40 (m, 2H, 2 NH, 3), 6.32 (d, J = 8.1 Hz, 1H, NH, 3), 

5.86 – 5.64 (m, 1H, CH, 4), 5.02 – 4.78 (m, 4H, 2 CH, CH2, 
5), 4.74 – 4.45 (m, 5H, CH, 2 

CH2, 
5,6), 3.84 – 3.55 (m, 4H, CH, OCH3, 

7,8), 3.28 – 3.01 (m, 4H, 2 CH2, 
9), 2.92 – 2.21 

(m, 14 H, 7 CH2, 
10), 2.18 – 0.95 (m, 107 H, 3 CH3, 49 CH2¸

11), 0.97 – 0.72 (m, 9H, 3 

CH3, 
12). 

13C NMR (75 MHz, CDCl3) δ/ ppm: 174.9, 173.8, 173.8, 170.9, 170.6, 169.6, 158.9, 

139.2, 137.7, 129.4, 129.3, 128.8, 127.3, 127.2, 126.0, 114.2, 58.3, 58.2, 55.3, 52.4, 

50.8, 48.4, 48.1, 48.0, 46.9, 39.1, 38.6, 34.3, 33.8, 33.6, 33.0, 32.8, 32.6, 32.5, 32.0, 

31.9, 31.6, 29.7, 29.7, 29.7, 29.6, 29.5, 29.5, 29.4, 29.3, 29.2, 29.1, 28.9, 28.7, 28.4, 

28.4, 27.9, 27.9, 26.5, 26.3, 25.8, 25.6, 24.8, 23.4, 22.7, 20.1, 14.2, 13.8, 11.5. 

FAB-MS of [C92H161O7N6S2]
+: calculated: 1526.2, found: 1526.3. 

IR (film KBr): [cm-1] = 3321.4, 2925.3, 2853.7, 1631.3, 1513.7, 1454.5, 1363.1, 

1247.9, 1037.9, 909.0, 820.0, 725.3. 

Rf: (hexane/ethyl acetate (3:2)) = 0.47. 



Experimental Section 

 

186 

 

 

3rd Thiol-Ene addition: 

37 

1.57 g of substance 36 (1.03 mmol, 1.00 eq.) were diluted with 0.58 g 3-

mercaptopropionic acid 4 (5.50 mmol, 5.50 eq.) and 13.5 mg DMPA 5 (0.05 mmol, 

5.10 mol%) were added. The mixture was stirred under UV-irradiation at room 

temperature for three hours and the full conversion of the double bond was confirmed by 

NMR. Subsequently, the excess of 3-mercaptopropionic acid was removed by vacuum 

distillation. The residue was diluted with diethyl ether (25 mL) and washed with water (3 
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x 50 mL) and brine (50 mL). The organic layer was dried over sodium sulfate and the 

solvent was removed under reduced pressure to afford the desired product 37 as slightly 

yellow oil in a yield of 99 % (1.66 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.39 – 7.00 (m, 7H, 7 CH aromatic, 1), 6.82 (d, J = 

8.6 Hz, 2H, 2 CH aromatic, 2), 6.69 (t, J = 5.6 Hz, 1H, NH, 3), 6.61 – 6.43 (m, 2H, 2 NH, 

3), 4.97 – 4.76 (m, 2H, 2 CH, 4), 4.73 – 4.37 (m, 5H, 2 CH2, 1 CH, 4,5), 3.80 – 3.56 (m, 

4H, CH3, CH, 6), 3.31 – 3.00 (m, 4H, 2 CH2, 
7), 2.80 – 2.24 (m, 20H, 10 CH2, 

8), 1.98 – 

0.95 (m, 109 H, 3 CH3, 50 CH2, 
9), 0.94 – 0.72 (m, 9H, 3 CH3, 

10). 

13C NMR (75 MHz, CDCl3) δ /ppm: 175.2, 175.1, 174.9, 174.0, 171.0, 170.8, 169.7, 

158.9, 137.6, 129.3, 128.8, 127.4, 127.3, 126.0, 114.2, 58.3, 55.3, 50.9, 48.4, 48.2, 

48.1, 47.0, 39.2, 38.4, 34.8, 34.4, 33.6, 32.9, 32.8, 32.6, 32.5, 32.1, 32.0, 31.5, 29.8, 

29.7, 29.7, 29.6, 29.5, 29.4, 29.4, 29.3, 29.1, 29.0, 28.7, 28.6, 28.5, 28.1, 27.9, 26.9, 

26.5, 26.4, 26.3, 25.8, 25.6, 24.8, 23.5, 22.8, 20.1, 19.8, 14.2, 13.8, 11.5. 

FAB-MS of [C95H167O9N6S3]
+: calculated: 1632.2, found: 1632.1. 

IR (ATR): [cm-1] = 3322.6, 2920.8, 2850.8, 1726.4, 1624.7, 1535.3, 1512.4, 1452.1, 

1362.2, 1245.5, 1175.4, 1033.5, 890.9, 805.0, 722.7, 696.0, 460.1. 
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4th Ugi reaction: 

38 

0.05 g of 10-undecenal 2 (0.32 mmol, 2.50 eq.) were mixed with 0.02 g iso-propylamine 

24f (0.34 mmol, 1.90 eq.) and 0.20 mL (0.65 M relative to the acid) methanol and stirred 

for 30 minutes. Subsequently, 0.21 g of substance 37 (0.13 mmol, 1.00 eq.) and 0.03 g 

of n-pentyl isocyanide 3c (0.28 mmol, 2.20 eq.) were added and the reaction mixture 

was stirred at room temperature for 48 hours. The solvent was removed under reduced 
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pressure and the product was separated by column chromatography (hexane/ethyl 

acetate 5:1  1:3) to afford 77 % of substance 38 (0.19 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.66 (s, 1H, NH 1), 7.36 – 6.95 (m, 7H, 7 CH 

aromatic, 2), 6.78 (d, J = 8.6 Hz, 2H, 2 CH aromatic, 2), 6.58 – 6.34 (m, 2H, 2 NH, 3), 

6.28 (d, J = 8.1 Hz, 1H, NH, 3), 5.73 (m, 1H, CH, 5), 4.99 – 4.72 (m, 5H, CH2, 3 CH, 6), 

4.69 – 4.37 (m, 5H, 2 CH2, CH, 6), 3.97 (m, 1H, CH, 7), 3.79 – 3.50 (m, 4H, CH3, CH, 8), 

3.31 – 2.96 (m, 6H, 3 CH2 
9), 2.95 – 2.17 (m, 20H, 10 CH2, 

10), 2.17 – 0.91 (m, 137H, 5 

CH3, 61 CH2, 
11), 0.91 – 0.57 (m, 12H, 4 CH3 

12). 

13C NMR (75 MHz, CDCl3) δ /ppm: 175.0, 173.9, 173.9, 173.2, 172.6, 171.0, 170.7, 

169.6, 158.9, 139.3, 137.7, 129.4, 128.8, 127.4, 127.3, 126.0, 114.2, 58.3, 58.3, 55.4, 

50.9, 49.8, 48.2, 39.3, 39.1, 35.4, 34.4, 33.9, 33.6, 33.0, 32.9, 32.8, 32.6, 32.6, 32.0, 

31.6, 30.2, 29.8, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.3, 29.2, 29.0, 28.7, 28.5, 28.4, 

28.0, 27.2, 26.6, 26.6, 26.3, 25.8, 25.6, 24.8, 23.5, 22.8, 22.4, 21.2, 21.0, 20.1, 14.2, 

14.1, 13.9, 11.5. 

FAB-MS of [C115H204N8O9S3]
+: calculated: 1937.5, found: 1937.9 

IR (ATR platinum diamond): [cm-1] = 3306.6, 2921.3, 2851.3, 1626.4, 1536.5, 1512.8, 

1451.2, 1362.1, 1293.0, 1246.4, 1036.4, 907.9, 819.2, 723.6, 696.1. 

Rf: (hexane/ethyl acetate (3:2)) = 0.48. 
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4th Thiol-Ene addition: 

39 

0.57 g of substance 38 (0.29 mmol, 1.00 eq.) were diluted with 0.18 g 3-

mercaptopropionic acid 4 (1.65 mmol, 5.60 eq.) and 4.1 mg DMPA 5 (0.02 mmol, 

5.50 mol%) were added. The mixture was stirred under UV-irradiation at room 

temperature for four hours and the full conversion of the double bond was confirmed by 

NMR. Subsequently, the excess of 3-mercaptopropionic acid was removed by vacuum 

distillation. The residue was diluted with diethyl ether (25 mL) and washed with water (3 
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x 50 mL) and brine (50 mL). The organic layer was dried over sodium sulfate and the 

solvent was removed under reduced pressure to afford the desired product 39 as slightly 

yellow oil in a yield of 99 % (0.60 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.84 (s, 1H, NH, 1), 7.41 – 6.98 (m, 7H, 7 CH 

aromatic, 2), 6.84 (d, J = 8.6 Hz, 2H, 2 CH aromatic, 3), 6.68 – 6.28 (m, 3H, 3 NH, 4, 5), 

4.78 - 4.88 (m, 3H, 3 CH, 6), 4.59 - 4.62 (m, 5H, 2 CH2, 1CH, 6, 7), 4.00 - 4.05 (m, 1H, 

CH, 8), 3.89 – 3.58 (m, 4H, CH3, CH, 9), 3.40 – 3.00 (m, 6H, 3 CH2, 
10), 3.00 – 2.22 (m, 

26H, 13 CH2, 
11), 2.00 – 0.98 (m, 139H, 5 CH3, 62 CH2, 

12), 0.98 – 0.60 (m, 12H, 4 CH3, 

13). 

13C NMR (75 MHz, CDCl3) δ /ppm: 175.1, 174.6, 174.0, 173.0, 172.8, 171.0, 169.7, 

159.0, 139.2, 137.7, 129.4, 128.9, 127.4, 127.3, 126.0, 114.3, 58.4, 58.2, 55.4, 51.0, 

48.3, 47.0, 39.5, 39.2, 35.4, 34.4, 33.7, 33.0, 32.9, 32.6, 32.0, 31.6, 29.8, 29.8, 29.7, 

29.6, 29.5, 29.4, 29.2, 29.0, 28.7, 28.6, 28.1, 28.0, 27.3, 27.2, 27.0, 26.6, 26.3, 25.9, 

25.6, 24.9, 23.5, 22.8, 22.4, 20.2, 14.3, 14.2, 13.9, 11.6. 

FAB-MS of [C118H210O11N8S4]
+: calculated: 2043.5, found: 2044.1. 

IR (ATR): [cm-1] = 3315.6, 2920.9, 2850.8, 1725.7, 1625.5, 1535.3, 1512.4, 1451.1, 

1361.7, 1245.2, 1033.7, 891.2, 816.5, 722.8, 695.7, 616.9. 
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5th Ugi reaction: 

40 

0.04 g of 10-undecenal 2 (0.22 mmol, 3.20 eq.) were mixed with 0.02 g cyclohexylamine 

24c (0.19 mmol, 2.80 eq.) and 0.30 mL (0.23 M relative to the acid) methanol and stirred 

for 30 minutes. Subsequently, 0.14 g of substance 39 (0.07 mmol, 1.00 eq.) and 0.02 g 

of benzyl isocyanide 3f (0.21 mmol, 3.00 eq.) were added and the reaction mixture was 

stirred at room temperature for 24 hours. The solvent was removed under reduced 

pressure and the product was separated by column chromatography (hexane/ethyl 

acetate 7:1  1:1) to afford 56 % of substance 40 (0.09 g). 
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1H NMR (300 MHz, CDCl3) δ /ppm: 8.14 (bs, 1H, NH, 1), 7.71 (bs, 1H, NH, 1), 7.40 – 

7.00 (m, 12H, 12 CH aromatic, 2), 6.84 (d, J = 8.5 Hz, 2H, 2 CH aromatic, 3), 6.60 – 6.23 

(m, 3H, 3 NH, 1), 5.89 - 5.78 (m, 1H, CH, 4), 5.07 – 4.19 (m, 13H, 5 CH, 4 CH2, 
5), 4.17 – 

3.93 (m, 1H, CH, 6), 3.87 – 3.42 (m, 5H, CH3, 2 CH, 7), 3.29 – 3.01 (m, 6H, 3 CH2, 
8), 

2.98 – 2.26 (m, 26H, 13 CH2, 
9), 2.23 – 0.95 (m, 165H, 5 CH3, 75 CH2, 

10), 0.88 (m, 12H, 

4 CH3, 
11). 

13C NMR (75 MHz, CDCl3) δ /ppm: 174.9, 173.8, 173.8, 173.2, 173.1, 172.7, 172.5, 

170.9, 170.6, 169.6, 158.8, 139.2, 138.7, 137.6, 129.4, 128.8, 128.5, 127.4, 127.2, 

127.1, 125.9, 114.2, 58.8, 58.2, 55.3, 50.8, 48.4, 48.1, 48.0, 43.2, 39.3, 39.1, 35.3, 35.2, 

34.3, 33.8, 33.6, 33.0, 32.8, 32.8, 32.6, 32.5, 32.0, 31.6, 31.5, 31.3, 30.3, 30.2, 29.7, 

29.7, 29.7, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 29.1, 28.9, 28.9, 28.7, 28.4, 27.9, 27.3, 

27.2, 26.5, 26.5, 26.3, 26.0, 25.8, 25.8, 25.6, 25.0, 24.8, 23.4, 22.7, 22.4, 21.2, 21.0, 

20.1, 14.2, 14.1, 13.8, 11.5. 

FAB-MS of [C143H248N10O11S4]
+: calculated: 2409.8, found: 2410.3. 

IR (KBr): [cm-1] = 3314.8, 2923.0, 2851.6, 1629.6, 1536.3, 1513.1, 1452.6, 1361.8, 

1245.8, 1030.7, 906.7, 817.4, 723.1, 697.2. 

Rf: (hexane/ethyl acetate (3:2)) = 0.33. 
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6.3.3 Experimental Procedures Chapter 4.2 

Monomer synthesis: 

11-(Benzyloxy)-11-oxoundecan-1-aminium chloride 44: 

44 

15.0 g 11-aminoundecanoic acid 41 (74.5 mmol, 1.00 eq.) were suspended in 75 mL 

THF and 96.7 g benzyl alcohol 42 (0.89 mol, 12.00 eq.) were added. The suspension 

was cooled in an ice bath and subsequently 16.5 mL thionyl chloride 43 (27.1 g, 

0.23 mol, 3.10 eq.) were added dropwise at 0 ° C. After addition of the thionyl chloride, 

the solution was warmed to room temperature and stirred overnight. The yellow solution 

was then poured into 500 mL diethylether and stored in the freezer for one hour. The 
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product was the filtered off and dried under high vacuum. 11-(Benzyloxy)-11-

oxoundecan-1-aminium chloride 44 was obtained as a white solid in a yield of 96 % 

(23.5 g). 

1H-NMR: (300 MHz, CD3OD) δ /ppm: 7,43 - 7,26 (m, 5H, 5 CH aromatic, 1); 5,11 (s, 2H, 

CH2, 
2); 2,96 - 2,86 (m, 2H, CH2, 

3); 2,36 (t, J = 7,3 Hz, 2H, CH2, 
4); 1,72 - 1,55 (m, 4H, 2 

CH2, 
5); 1,46 - 1,26 (m, 12H, 6 CH2, 

6). 

13C NMR (75 MHz, CD3OD) δ /ppm: 175.2, 137.7, 129.5, 129.5, 129.2, 129.2, 67.1, 

40.8, 35.0, 30.4, 30.3, 30.2, 30.1, 28.5, 27.4, 26.0. 

HRMS-FAB-MS of [C18H30NO2]
+: calculated: 292.2271, found: 292.2272. 

IR (ATR platinum diamond): [cm-1] = 2915.7, 2847.3, 1740.3, 1601.3, 1527.6, 1495.9, 

1462.9, 1385.2, 1347.4, 1332.3, 1307.8, 1279.1, 1246.1, 1206.2, 1158.7, 1042.4, 992.2, 

960.0, 827.3, 743.2, 722.3, 695.5, 580.8, 508.4, 474.3, 416.6. 
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Benzyl 11-formamidoundecanoate 46: 

46 

23.4 g 11-(Benzyloxy)-11-oxoundecan-1-aminium chloride 44 (71.3 mmol, 1.00 eq.), 

were dissolved in 75.7 g trimethyl orthoformate 45 (0.71 mol, 10.00 eq.) and heated to 

100 ° C for 12 hours. Trimethyl orthoformate was removed under reduced pressure and 

the product was used without further purification. 

1H NMR (300 MHz, CDCl3) δ /ppm: 8.21 – 7.96 (m, 1H, CH, 1), 7.43 – 7.28 (m, 5H, 

aromatic, 2), 5.56 (s, 1H, NH, 3), 5.11 (s, 2H, CH2, 
4), 3.24-3.14 (m, 2H, CH2, 

5), 2.35 (t, J 

= 7.5 Hz, 2H, CH2, 
6), 1.76 – 1.41 (m, 4H, 2 CH2, 

7), 1.27 (s, 12H, 6 CH2, 
8). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.8, 164.7, 161.3, 136.2, 128.6, 128.2, 66.1, 41.8, 

38.2, 34.4, 31.3, 29.5, 29.4, 29.3, 29.2, 29.1, 26.9, 26.4, 25.0. 

HRMS-FAB-MS of [C19H30NO3]
+: calculated: 320.2220, found: 320.2222. 

IR (ATR platinum diamond): [cm-1] = 3265.8, 3068.1, 2913.4, 2847.8, 1732.4, 1651.5, 

1555.5, 1496.4, 1470.6, 1449.4, 1417.1, 1379.4, 1329.7, 1299.4, 12674, 1233.7, 

1212.7, 1199.7, 1159.5, 1054.9, 1028.8, 996.9, 938.7, 923.2, 903.5, 866.4, 825.3, 

806.1, 752.8, 718.2, 695.4, 609.0, 519.7, 487.3, 451.4. 
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Benzyl 11-isocyanoundecanoate 49: 

49 

21.0 g of Benzyl 11-formamidoundecanoate 46 (65.8 mmol, 1.00 eq.) were dissolved in 

200 mL dichloromethane (0.33 M), 29.0 mL diisopropylamine 47 (20.9 g, 207 mmol, 

3.10 eq.) were added and the reaction mixture was cooled to 0 ° C. Subsequently, 

7.8 mL phosphorous oxy chloride 48 (12.8 g, 83.7 mmol, 1.31 eq.) were added dropwise 

and the reaction mixture was then stirred at room temperature for two hours. The 

reaction was quenched by addition of sodium carbonate solution (20 %, 75 mL) at 0 ° C. 

After stirring this mixture for 30 minutes, 50 mL water and 50 mL dichloromethane were 

added. The aqueous phase was separated and the organic layer was washed with water 

(3 x 80 mL) and brine (80 mL). The combined organic layers were dried over sodium 

sulfate and the solvent was evaporated under reduced pressure. The crude product was 
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then purified by column chromatography (hexane/ethyl acetate 19:1  8:1). The product 

49 was obtained as slightly yellow oil in a yield of 66 % (14.4 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.44 – 7.28 (m, 5H, aromatic, 1), 5.11 (s, 2H, CH2, 
2), 

3.44 – 3.31 (m, 2H, CH2, 
3), 2.35 (t, J = 7.5 Hz, 2H, CH2, 

4), 1.63-1.58 (m, 4H, 2 CH2, 
5), 

1.50 – 1.15 (m, 12H, 6 CH2, 
6). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.8, 155.8, 155.7, 155.6, 136.2, 128.6, 128.3, 

66.2, 41.7, 41.6, 41.6, 34.4, 29.4, 29.3, 29.2, 29.2, 28.8, 26.4, 25.0. 

HRMS-FAB-MS of [C19H28NO2]
+: calculated: 302.2115, found: 302.2113. 

IR (ATR platinum diamond): [cm-1] = 3031.9, 2924.4, 2853.2, 2145.6 (isocyanide), 

1732.6, 1497.1, 1454.4, 1380.2, 1350.2, 1212.1, 1161.2, 1101.1, 1001.1, 736.4, 697.1, 

579.3, 500.5. 

Rf: (hexane/ethyl acetate (5:1)) = 0.45. 
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3-(Benzyloxy)-3-oxopropane-1-ammoniumchloride: 

 

2.06 g of ß-alanine (23.1 mmol, 1.00 eq.) were suspended in 25 mL THF and 27.8 mL of 

benzyl alcohol 42 (28.9 g, 0.27 mol, 11.50 eq.) were added. The suspension was cooled 

in an ice bath and subsequently 5.0 mL thionyl chloride 43 (8.16 g, 68.6 mmol, 2.96 eq.) 

were added dropwise at 0 ° C. After addition of the thionyl chloride, the solution was 

warmed to room temperature and stirred overnight. The yellow solution was then poured 

into 230 mL diethylether and stored in the freezer for one hour. The product was the 

filtered off and dried under high vacuum. 3-(Benzyloxy)-3-oxopropane-1-

ammoniumchloride was obtained as a white solid in a yield of 81 % (4.05 g). 

1H-NMR: (300 MHz, CD3OD) δ /ppm: 7.55 - 7.14 (m, 5H, 5 CH aromatic, 1), 5.19 (s, 2H, 

CH2, 
2), 3.22 (t, J = 5.9 Hz, 2H, CH2, 

3), 2.76 (dt, J = 25.4, 6.3 Hz, 2H, CH2, 
4). 

13C NMR (75 MHz, CD3OD) δ /ppm: 171.9, 137.1, 129.6, 129.4, 67.9, 36.4, 32.3. 

FAB-MS of [C10H14NO2]
+: calculated: 180.1, found: 180.1. 

IR (ATR platinum diamond): [cm-1] = 3243.9, 2795.8, 2038.6, 1709.8, 1597.0, 1494.9, 

1452.4, 1404.8, 1362.8, 1324.6, 1222.6, 1135.4, 1103.6, 1056.5, 981.9, 857.8, 801.7, 

748.1, 698.8, 585.4, 569.0, 458.1, 409.1. 
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Benzyl 3-formamidopropanoate: 

 

4.05 g of benzyl 3-formamidopropanoate (18.7 mmol, 1.00 eq.), were dissolved in 

20.4 mL trimethyl orthoformate 45 (19.8 g, 1.87 mol, 10.00 eq.) and heated to 100 ° C 

for 12 hours. Trimethyl orthoformate was removed under reduced pressure and the 

product was purified by column chromatography (hexane/ethyl acetate 2:1  ethyl 

acetate), and a yellowish liquid was obtained in a yield of 52 % (2.00 g).  

1H NMR (300 MHz, CDCl3) δ /ppm: 8.01 (s, 1H, COH, 1), 7.46 – 7.16 (m, 5H, 5 CH 

aromatic, 2), 5.12 (s, 2H, CH2, 
3), 3.55 - 3.38 (m, 2H, CH2, 

4), 2.69 - 2.46 (m, 2H, CH2, 
5). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.0, 163.8, 137.5, 129.5, 129.2, 67.4, 34.8. 
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HRMS-FAB-MS of [C11H14NO3]
+: calculated: 208.0968, found: 208.0967. 

IR (ATR platinum diamond): [cm-1] = 3291.1, 3033.7, 2947.3, 2869.9, 1729.1, 1658.6, 

1521.0, 1454.2, 1383.4, 1315.1, 1213.8, 1166.6, 1066.5, 1002.3, 821.1, 738.0, 696.8, 

467.5. 

 

Benzyl 3-isocyanopropanoate 49a: 

49a 

1.06 g of benzyl 3-formamidopropanoate (5.12 mmol, 1.00 eq.) were dissolved in 25 mL 

dichloromethane (0.20 M), 2.33 mL diisopropylamine 47 (1.68 g, 16.6 mmol, 3.24 eq.) 

were added and the reaction mixture was cooled to 0 ° C. Subsequently, 0.60 mL 

phosphorous oxy chloride 48 (0.98 g, 6.39 mmol, 1.25 eq.) were added dropwise and 

the reaction mixture was then stirred at room temperature for two hours. The reaction 
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was quenched by addition of sodium carbonate solution (20 %, 9.0 mL) at 0 ° C. After 

stirring this mixture for 30 minutes, 20 mL water and 20 mL dichloromethane were 

added. The aqueous phase was separated and the organic layer was washed with water 

(3 x 20 mL) and brine (20 mL). The combined organic layers were dried over sodium 

sulfate and the solvent was evaporated under reduced pressure. The crude product was 

then purified by column chromatography (hexane/ethyl acetate 5:1  2:1). The product 

was obtained as brown oil in a yield of 74 % (0.72 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.39 (s, 5H, 5 CH aromatic, 1), 5.18 (s, 2H, CH2, 
2), 

3.71 (t, J = 6.8 Hz, 2H, CH2, 
3), 2.78 (t, J = 6.8 Hz, 2H, CH2, 

4). 
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6-(Benzyloxy)-6-oxohexane-1-ammoniumchloride: 

 

1.98 g of 6-aminohexanoic acid (15.0 mmol, 1.00 eq.) were suspended in 10 mL THF 

and 20.3 mL of benzyl alcohol 42 (20.9 g, 0.19 mol, 12.9 eq.) were added. The 

suspension was cooled in an ice bath and subsequently 3.4 mL thionyl chloride 43 

(5.53 g, 46.5 mmol, 3.10 eq.) were added dropwise at 0 ° C. After addition of the thionyl 

chloride, the solution was warmed to room temperature and stirred overnight. The yellow 

solution was then poured into 200 mL diethylether and stored in the freezer for one hour. 

The product was the filtered off and dried under high vacuum. 6-(benzyloxy)-6-

oxohexane-1-ammoniumchloride was obtained as a white solid in a yield of 96 % 

(3.71 g). 

1H-NMR: (300 MHz, CD3OD) δ /ppm: 7.51 – 7.13 (m, 5H, 5 CH aromatic, 1), 5.11 (s, 2H, 

CH2, 
2), 2.90 (t, J = 7.6 Hz, 2H, CH2, 

3), 2.41 (t, J = 7.3 Hz, 2H, CH2, 
4), 1.84 – 1.54 (m, 

4H, 2 CH2, 
5), 1.54 – 1.25 (m, 2H, CH2, 

6). 

13C NMR (75 MHz, CD3OD) δ /ppm: 174.8, 137.7, 129.5, 129.2, 67.2, 40.5, 34.6, 28.2, 

26.8, 25.4. 

HRMS FAB-MS of [C13H20NO2]
+: calculated: 222.1489, found: 222.1489. 

IR (ATR platinum diamond): [cm-1] = 3383.3, 3031.0, 2940.1, 1731.7, 1605.1, 1497.1, 

1467.6, 1454.4, 1387.4, 1356.4, 1311.1, 1248.2, 1214.9, 1166.3, 1143.5, 1045.2, 

1013.3, 964.0, 937.9, 827.1, 748.1, 695.7, 578.8, 520.4, 474.2. 
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Benzyl-6-formamidohexanoate: 

 

3.29 g 6-(benzyloxy)-6-oxohexane-1-ammoniumchloride (12.7 mmol, 1.00 eq.), were 

dissolved in 14.1 mL trimethyl orthoformate 45 (13.6 g, 0.13 mol, 10.1 eq.) and heated to 

100 ° C for 12 hours. Trimethyl orthoformate was removed under reduced pressure and 

the product was purified by column chromatography (hexane/ethyl acetate 3:1  ethyl 

acetate), and a yellowish liquid was obtained in a yield of 73 % (2.31 g).  

1H NMR (300 MHz, CDCl3) δ /ppm: 8.13 (s, 1H, CHO, 1), 7.45 – 7.27 (m, 5H, 5 CH 

aromatic, 2), 5.59 (bs, 1H, NH, 3), 5.11 (s, 2H, CH2, 
4), 3.41 – 3.06 (m, 2H, CH2, 

5), 2.37 

(t, J = 7.3 Hz, 2H, CH2, 
6), 1.78 – 1.59 (m, 2H, CH2, 

7), 1.59 – 1.44 (m, 2H, CH2, 
7), 1.42 

– 1.24 (m, 2H, CH2, 
7). 
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13C NMR (75 MHz, CDCl3) δ /ppm: 173.4, 164.7, 161.3, 136.1, 128.6, 128.3, 66.2, 41.5, 

37.9, 34.1, 30.9, 29.1, 26.3, 25.9, 24.4, 24.4. 

HRMS-FAB-MS of [C14H20NO3]
+: calculated: 250.1438, found: 250.1437. 

IR (ATR platinum diamond): [cm-1] = 3291.8, 3032.8, 2934.5, 2859.8, 1730.0, 1658.2, 

1528.3, 1454.5, 1382.6, 1213.2, 1154.0, 1100.2, 1000.9, 736.8, 697.2, 497.6. 

 

Benzyl 3-isocyanohexanoate 49b: 

49b 

1.70 g of benzyl-6-formamidohexanoate (6.84 mmol, 1.00 eq.) were dissolved in 20 mL 

dichloromethane (0.34 M), 2.98 mL diisopropylamine 47 (2.15 g, 21.2 mmol, 3.10 eq.) 

were added and the reaction mixture was cooled to 0 ° C. Subsequently, 0.83 mL 
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phosphorous oxy chloride 48 (1.36 g, 8.89 mmol, 1.30 eq.) were added dropwise and 

the reaction mixture was then stirred at room temperature for two hours. The reaction 

was quenched by addition of sodium carbonate solution (20 %, 9.0 mL) at 0 ° C. After 

stirring this mixture for 30 minutes, 20 mL water and 20 mL dichloromethane were 

added. The aqueous phase was separated and the organic layer was washed with water 

(3 x 20 mL) and brine (20 mL). The combined organic layers were dried over sodium 

sulfate and the solvent was evaporated under reduced pressure. The crude product was 

then purified by column chromatography (hexane/ethyl acetate 9:1  3:1). The product 

was obtained as brown oil in a yield of 74 % (1.17 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.50 – 7.29 (m, 5H, 5 CH aromatic, 1), 5.12 (s, 2H, 

CH2, 
2), 3.47 - 3.27 (m, 2H, CH2, 

3), 2.39 (t, J = 7.4 Hz, 2H, CH2, 
4), 1.80 – 1.58 (m, 4H, 

2 CH2, 
5), 1.55 - 1.36 (m, 2H, CH2, 

6). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.1, 156.1, 136.0, 128.6, 128.3, 66.3, 41.4, 34.0, 

28.8, 25.9, 24.1. 

HRMS-FAB-MS of [C14H18NO2]
+: calculated: 232.1332, found: 232.1331. 

IR (ATR platinum diamond): [cm-1] = 3023.3, 2943.9, 2863.6, 2146.5 (isocyanide), 

1730.2, 1496.6, 1454.1, 1382.3, 1351.9, 1257.5, 1152.2, 1093.8, 1001.3, 737.4, 697.6, 

578.7, 504.9, 454.9. 
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4-Methoxycarbonylphenylmethane ammoniumchloride: 

 

0.99 g of 4-methylaminobenzoic acid (6.55 mmol, 1.00 eq.) were suspended in 9.5 mL 

methanol. The suspension was cooled in an ice bath and subsequently 5.0 mL thionyl 

chloride 43 (8.16 g, 68.6 mmol, 2.96 eq.) were added dropwise at 0 ° C. After addition of 

the thionyl chloride, the solution was warmed to room temperature and stirred for 

43 hours. The suspension was poured into 200 mL diethylether and stored in the freezer 

for one hour. The product was the filtered off, washed with 50 mL of diethyl ether and 

dried under high vacuum. 4-Methoxycarbonylphenylmethane ammoniumchloride was 

obtained as a white solid in a yield of 79 % (0.94 g). 
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1H-NMR: (300 MHz, CD3OD) δ /ppm: 8.15 – 7.99 (m, 2H, 2 CH aromatic, 1), 7.60 (d, J = 

8.2 Hz, 2H, 2 CH aromatic, 2), 4.19 (d, J = 17.3 Hz, 2H, CH2, 
3), 3.92 (s, 3H, OCH3, 

4). 

13C NMR (75 MHz, CD3OD) δ /ppm: 167.8, 139.5, 132.0, 131.2, 130.3, 52.8, 43.9. 

FAB-MS of [C9H12NO2]
+: calculated: 166.1, found: 166.1. 

IR (ATR platinum diamond): [cm-1] = 3291.8, 3032.8, 2934.5, 2859.8, 1730.0, 1658.2, 

1528.3, 1454.5, 1382.6, 1213.2, 1154.0, 1100.2, 1000.9, 736.8, 697.2, 497.6. 
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Methyl-4-formamidomethylbenzoate: 

 

0.90 g 4-methoxycarbonylphenylmethane ammoniumchloride (4.98 mmol, 1.00 eq.), 

were dissolved in 5.4 mL trimethyl orthoformate 45 (5.28 g, 49.8 mmol, 10.0 eq.) and 

heated to 100 ° C for 23 hours. Trimethyl orthoformate was removed under reduced 

pressure and the product was obtained as white solid in a yield of 90 % (0.86 g) and was 

used without further purification.  

1H NMR (300 MHz, CD3OD) δ /ppm: 8.36 – 8.11 (m, 1H, CHO, 1), 8.11 – 7.84 (m, 2H, 2 

CH aromatic, 2), 7.57 – 7.25 (m, 2H, 2 CH aromatic, 3), 4.58 – 4.36 (m, 2H, CH2, 
4), 4.00 

– 3.72 (m, 3H, OCH3, 
5). 

13C NMR (75 MHz, CD3OD) δ /ppm: 168.3, 163.8, 145.1, 130.8, 130.3, 128.8, 128.5, 

52.6, 42.3. 

HRMS-FAB-MS of [C10H12NO3]
+: calculated: 194.0812, found: 194.0812. 

IR (ATR platinum diamond): [cm-1] = 3267.8, 2957.3, 1719.7, 1691.9, 1654.0, 1630.3, 

1538.6, 1430.5, 1412.8, 1393.3, 1275.1, 1235.5, 1217.3, 1174.1, 1100.0, 1017.2, 952.0, 

842.5, 764.7, 751.1, 723.6, 702.3, 625.9, 513.7, 488.9, 391.7. 
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Benzyl-4-formamidomethylbenzoate: 

 

0.86 g methyl-4-formamidomethylbenzoate (4.45 mmol, 1.00 eq.), 2.41 g benzyl alcohol 

42 (22.3 mmol, 5.00 eq.) and 37.0 mg 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, 

0.22 mmol, 5.0 mol%) were heated to 80 ° C overnight in an open vessel to ensure the 

release of methanol. The crude product was purified by column chromatography 

(hexane/ethyl acetate 5:1  2:1) and the product was obtained in a yield of 61 % 

(0.73 g).  

1H NMR (300 MHz, CD3OD) δ /ppm: 8.19 (s, 1H, CHO, 1), 8.01 (d, J = 8.3 Hz, 2H, 2 CH 

aromatic, 2), 7.54 - 7.22 (m, 7H, 7 CH aromatic, 2), 5.35 (s, 2H, CH2, 
3), 4.48 (s, 2H, CH2, 

4). 
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13C NMR (75 MHz, CDCl3) δ /ppm: 166.2, 164.8, 161.3, 143.1, 136.0, 130.3, 130.2, 

129.4, 128.7, 128.4, 128.2, 127.6, 126.9, 66.9, 66.8, 41.7. 

HRMS-FAB-MS of [C16H16NO3]
+: calculated: 270.1125, found: 270.1126. 

IR (ATR platinum diamond): [cm-1] = 3263.9, 2953.8, 1714.5, 1648.6, 1627.2, 1529.3, 

1447.4, 1415.6, 1364.3, 1266.7, 1175.2, 1091.3, 1017.7, 940.7, 915.6, 850.1, 822.4, 

754.4m 693.5, 624.6, 596.7, 511.2, 386.7. 

 

Benzyl-4-isocyanomethylbenzoate 49c: 

49c 

0.66 g of benzyl-4-formamidomethylbenzoate (2.46 mmol, 1.00 eq.) were dissolved in 

7.5 mL dichloromethane (0.30 M), 1.06 mL diisopropylamine 47 (2.15 g, 7.63 mmol, 



Experimental Section 

 

212 

3.10 eq.) were added and the reaction mixture was cooled to 0 ° C. Subsequently, 

0.29 mL phosphorous oxy chloride 48 (0.48 g, 3.19 mmol, 1.30 eq.) were added 

dropwise and the reaction mixture was then stirred at room temperature for two hours. 

The reaction was quenched by addition of sodium carbonate solution (20 %, 4.0 mL) at 

0 ° C. After stirring this mixture for 30 minutes, 10 mL water and 10 mL dichloromethane 

were added. The aqueous phase was separated and the organic layer was washed with 

water (3 x 10 mL) and brine (10 mL). The combined organic layers were dried over 

sodium sulfate and the solvent was evaporated under reduced pressure. The crude 

product was then purified by column chromatography (hexane/ethyl acetate 5:1  3:1). 

The product was obtained as brown oil in a yield of 18 % (0.10 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 8.10 (s, 2H, 2 CH aromatic, 1), 7.56 – 7.29 (m, 7H, 7 

CH aromatic, 2), 5.38 (s, 2H, CH2, 
3), 4.70 (s, 2H, CH2, 

4). 

13C NMR (75 MHz, CDCl3) δ /ppm: 165.8, 158.9, 137.2, 135.9, 130.5, 128.7, 128.4, 

128.3, 126.6, 67.0, 45.3. 

FAB-MS of [C16H14NO2]
+: calculated: 252.1, found: 252.1. 

IR (ATR platinum diamond): [cm-1] = 3033.1, 2950.5, 2148.5 (isocyanide), 1713.7, 

1613.3, 1580.4, 1496.8, 1454.3, 1436.1, 1416.1, 1376.2, 1311.9, 1267.5, 1178.6, 

1100.0, 1018.7, 952.5, 913.1, 842.2, 786.8, 749.0, 695.7, 585.4, 526.7, 454.3. 
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Synthesis of oligomers using monomer 49 in the Passerini reaction: 

1st Passerini reaction: 

51 

2.01 g stearic acid 1a (7.03 mmol, 1.00 eq.) were dissolved in 7 mL dichloromethane 

(DCM) (1.01 M) and 0.76 g isobutyraldehyde 50a (10.6 mmol, 1.52 eq.) and 3.16 g of 

monomer 49 (10.4 mmol, 1.51 eq.) were added. The mixture was stirred at room 

temperature for 24 hours and subsequently the solvent was removed under reduced 

pressure. The crude product was purified by column chromatography (hexane/ethyl 

acetate 10:1  5:1) to afford product 51 as a white solid in a yield of 97 % (4.51 g). 
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Furthermore, the excess of the monomer 49 was partially recovered (0.58 g, 0.32 eq.) 

and can be reused. 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.41 – 7.28 (m, 5H, aromatic, 1), 5.93 (s, 1H, NH, 2), 

5.11 (s, 2H, CH2, 
3), 5.06 (d, J = 4.4 Hz, 1H, CH, 4), 3.37 – 3.13 (m, 2H, CH2, 

5), 2.48 – 

2.21 (m, 5H, CH, 2 CH2, 
6), 1.77 – 1.10 (m, 46H, 23 CH2, 

7), 0.99 – 0.81 (m, 9H, 3 CH3, 

8). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.6, 169.4, 136.3, 128.6, 128.2, 78.0, 66.1, 

39.2, 34.4, 32.0, 30.6, 29.8, 29.8, 29.7, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 29.3, 29.2, 

26.9, 25.1, 25.0, 22.8, 18.9, 17.0, 14.2. 

HRMS-FAB-MS of [C41H72NO5]
+: calculated: 658.5405, found: 658.5407. 

ESI-MS of [C41H71NO5Na]+: calculated: 680.5224, found: 680.5209. 

IR (ATR platinum diamond): [cm-1] = 3283.7, 2915.4, 2848.0, 1737.1, 1648.7, 1571.4, 

1467.4, 1380.3, 1254.0, 1212.3, 1157.0, 1012.5, 927.0, 720.8, 693.8, 578.4, 473.3. 

Rf: (hexane/ethyl acetate (5:1)) = 0.32. 

Tm (DSC): 49.4 ° C 
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1st Deprotection: 

52 

4.38 g 51 (6.65 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.50 M) and 0.44 g (10 wt%) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 52 was obtained as a 

white solid in quantitative yield (3.79 g) and was used without further purification. 
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1H NMR (300 MHz, CDCl3) δ /ppm: 6.01 (t, J = 5.4 Hz, 1H, NH, 1), 5.05 (d, J = 4.4 Hz, 

1H, CH, 2), 3.40 – 3.06 (m, 2H, CH2, 
3), 2.51 – 2.16 (m, 5H, 2 CH2, CH, 4), 1.76 – 1.06 

(m, 46H, 23 CH2, 
5), 0.99 – 0.72 (m, 9H, 3 CH3, 

6). 

13C NMR (75 MHz, CDCl3) δ /ppm: 179.3, 172.7, 169.6, 78.00, 39.3, 34.4, 34.2, 32.0, 

30.6, 29.8, 29.8, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 26.9, 25.1, 24.8, 22.8, 18.9, 

17.0, 14.2. 

HRMS-FAB-MS of [C34H65NO5]
+: calculated: 568.4936, found: 568.4937. 

ESI-MS of [C34H65NO5Na]+: calculated: 590.4755, found: 590.4741. 

IR (ATR platinum diamond): [cm-1] = 3286.6, 2915.1, 2848.0, 1742.2, 1699.9, 1652.0, 

1542.7, 1466.8, 1433.8, 1370.6, 1294.2, 1271.9, 1253.1, 1233.4, 1213.9, 1190.8, 

1159.5, 1013.2, 951.3, 721.4, 678.8. 

Tm (DSC): 63.8 ° C 
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2nd Passerini reaction: 

53 

3.38 g 52 (5.94 mmol, 1.00 eq.) were dissolved in 6.0 mL DCM (1.02 M), 1.10 g 

heptaldehyde 50b (9.66 mmol, 1.50 eq.) and 2.70 g of monomer 49 (8.97 mmol, 

1.53 eq.) were added. The mixture was stirred at room temperature for 24 hours and 

subsequently the solvent was removed under reduced pressure. The crude product was 

purified by column chromatography (hexane/ethyl acetate 8:1  2:1) to afford product 

53 as a white solid in a yield of 96 % (5.62 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.42 – 7.27 (m, 5H, aromatic, 1), 6.03 (dt, J = 11.8, 

5.6 Hz, 2H, 2 NH, 2), 5.20 – 4.97 (m, 4H, CH2, 2 CH, 3), 3.36 – 3.09 (m, 4H, 2 CH2, 
4), 

2.49 – 2.18 (m, 7H, 3 CH2, CH, 5), 1.99 – 1.03 (m, 72H, 36 CH2, 
6), 1.03 – 0.67 (m, 12H, 

4 CH3, 
7). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.6, 172.5, 169.9, 169.3, 136.2, 128.6, 

128.2, 78.0, 74.0, 66.1, 39.2, 39.2, 34.4, 32.0, 31.7, 30.6, 29.8, 29.7, 29.6, 29.5, 29.4, 

29.3, 29.3, 29.2, 29.0, 26.9, 25.1, 25.0, 24.8, 22.7, 22.6, 18.8, 17.0, 14.2, 14.1. 

HRMS-FAB-MS of [C60H107N2O8]
+: calculated: 983.8022, found: 983.8021. 

ESI-MS of [C60H106N2O8Na]+: calculated: 1005.7841, found: 1005.7829. 

IR (ATR platinum diamond): [cm-1] = 3276.0, 3090.6, 2916.1, 2848.9, 1739.6, 1650.0, 

1546.0, 1465.8, 1378.1, 1233.0, 1213.4, 1158.2, 1103.1, 1076.8, 1012.5, 928.8, 860.0, 

721.5, 696.6, 577.8, 499.0, 426.2. 

Rf: (hexane/ethyl acetate (5:2)) = 0.42. 

Tm (DSC): 38.8 ° C 
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2nd Deprotection: 

54 

5.29 g 53 (5.38 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.52 M) and 0.40 g (7.6 wt%) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 54 was obtained as a 

white solid in quantitative yield (4.85 g) and was used without further purification. 
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1H NMR (300 MHz, CDCl3) δ /ppm: 7.58 (bs, 1H, COOH, 1), 6.18 – 6.00 (m, 2H, 2 NH, 

2), 5.13 (t, J = 5.9 Hz, 1H, CH, 3), 5.02 (d, J = 4.5 Hz, 1H, CH, 4), 3.33 – 3.11 (m, 4H, 2 

CH2, 
5), 2.47 – 2.18 (m, 7H, 3 CH2, CH, 6), 1.90 – 1.06 (m, 72H, 36 CH2, 

7), 0.96 – 0.72 

(m, 12H, 4 CH3, 
8). 

13C NMR (75 MHz, CDCl3) δ /ppm: 178.4, 172.7, 172.6, 170.1, 169.6, 78.0, 74.0, 39.3, 

34.4, 34.2, 32.0, 31.9, 31.7, 30.6, 29.8, 29.7, 29.7, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 

29.3, 29.2, 29.2, 29.1, 29.0, 26.9, 26.9, 25.1, 25.0, 24.8, 24.8, 22.8, 22.6, 18.8, 17.0, 

14.2, 14.1. 

HRMS-FAB-MS of [C53H101N2O8]
+: calculated: 893.7552, found: 893.7551. 

ESI-MS of [C53H100N2O8Na]+: calculated: 915.7372, found: 915,7430. 

IR (ATR platinum diamond): [cm-1] = 3281.2, 3088.7, 2915.6, 2848.6, 1741.7, 1650.0, 

1545.9, 1466.2, 1370.3, 1272.0, 1233.4, 1212.8, 1191.0, 1163.5, 1099.8, 927.1, 721.3. 

Tm (DSC): 36.1 ° C 
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3rd Passerini reaction: 

55 

4.00 g 54 (4.47 mmol, 1.09 eq.) were dissolved in 5.0 mL DCM (0.94 M) and 0.38 g 

acetaldehyde 50c (8.55 mmol, 1.93 eq.) and 2.21 g of monomer 49 (7.32 mmol, 

1.58 eq.) were added. The mixture was stirred at room temperature for 24 hours and 

subsequently the solvent was removed under reduced pressure. The crude product was 

purified by column chromatography (hexane/ethyl acetate 7:1  1.5:1) to afford product 

55 as a white solid in a yield of 93 % (5.15 g). Furthermore, the excess of the monomer 

49 was partially recovered (0.73 g, 0.54 eq.) and can be reused. 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.32 (s, 5H, aromatic, 1), 6.22 – 5.93 (m, 3H, 3 NH, 

2), 5.23 – 4.98 (m, 5H, 3 CH, CH2, 
3), 3.36 – 3.09 (m, 6H, 3 CH2, 

4), 2.50 – 2.18 (m, 9H, 

4 CH2, CH, 5), 2.04 – 1.10 (m, 91H, CH3, 44 CH2, 
6), 0.97 – 0.77 (m, 12H, 4 CH3, 

7). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.6, 172.5, 172.3, 170.4, 169.9, 169.4, 

136.2, 128.6, 128.2, 77.9, 74.0, 70.5, 66.1, 39.3, 39.2, 39.2, 34.4, 32.0, 31.7, 31.0, 30.6, 

29.7, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.3, 29.2, 29.2, 29.1, 29.0, 26.9, 25.1, 

25.0, 25.0, 24.9, 24.8, 22.7, 22.6, 18.8, 18.0, 17.0, 14.2, 14.1. 

FAB-MS of [C74H132N3O11]
+: calculated: 1238.9, found: 1238.8. 

ESI-MS of [C74H131N3O11Na]+: calculated: 1260.9676, found: 1260.9667. 

IR (ATR platinum diamond): [cm-1] = 3269.3, 3088.7, 2916.3, 2849.3, 1739.4, 1649.8, 

1540.6, 1465.6, 1371.4, 1233.0, 1213.0, 1162.3, 1101.2, 927.3, 720.7, 696.7, 427.1. 

Rf: (hexane/ethyl acetate (3:2)) = 0.50. 

Tm (DSC): 36.4 ° C 
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3rd Deprotection: 

56 

4.91 g 55 (3.96 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.52 M) and 0.26 g (5.4 wt%) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 56 was obtained as a 

white solid in a yield of 95 % (4.32 g) and was used without further purification. 
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1H NMR (300 MHz, CDCl3) δ /ppm: 7.61 (bs, 1H, COOH, 1), 6.33 – 5.94 (m, 3H, 3 NH, 

2), 5.10 (m, 3H, 3 CH, 3), 3.39 – 3.02 (m, 6H, 3 CH2, 
4), 2.49 – 2.12 (m, 9H, 4 CH2, CH, 

5), 1.91 – 1.01 (m, 91H, CH3, 44 CH2, 
6), 0.95 – 0.70 (m, 12H, 4 CH3, 

7). 

13C NMR (75 MHz, CDCl3) δ /ppm: 177.7, 172.7, 172.6, 172.3, 170.6, 170.1, 169.5, 

77.9, 73.9, 70.4, 39.3, 39.3, 39.2, 34.3, 34.1, 31.9, 31.6, 30.5, 29.7, 29.7, 29.6, 29.6, 

29.5, 29.5, 29.4, 29.4, 29.3, 29.4, 29.2, 29.2, 29.1, 29.1, 29.1, 28.9, 26.9, 26.8, 26.8, 

25.0, 25.0, 24.9, 24.8, 24.7, 22.7, 22.5, 18.8, 18.0, 17.0, 14.1, 14.1. 

FAB-MS of [C67H126N3O11]
+: calculated: 1148.9, found: 1148.4. 

ESI-MS of [C67H125N3O11]
+: calculated: 1170.9206, found: 1170.9196. 

IR (ATR platinum diamond): [cm-1] = 3268.7, .3089.7, 2916.5, 2849.3, 1740.5, 1649.7, 

1542.5, 1465.8, 1371.8, 1233.7, 1213.1, 1162.4, 1101.3, 1011.8, 926.5, 720.8, 426.9. 

Tm (DSC): 45.4 ° C 
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4th Passerini reaction: 

57 

3.85 g 56 (3.35 mmol, 1.00 eq.) were dissolved in 3.5 mL DCM (1.04 M) and 0.63 g 

cyclohexanecarboxaldehyde 50d (5.61 mmol, 1.69 eq.) and 1.51 g of monomer 49 

(5.02 mmol, 1.48 eq.) were added. The mixture was stirred at room temperature for 

30 hours and subsequently the solvent was removed under reduced pressure. The 

crude product was purified by column chromatography (hexane/ethyl acetate 6:1  1:1) 

to afford product 57 as a white solid in a yield of 93 % (4.90 g). Furthermore, the excess 

of the monomer was partially recovered (0.41 g, 0.40 eq.) and can be reused. 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.35 (s, 5H, aromatic, 1), 6.19 – 5.88 (m, 4H, 4 CH, 

2), 5.26 – 4.99 (m, 6H, 4 CH, CH2, 
3), 3.25 (m, 8H, 4 CH2, 

4), 2.50 – 2.22 (m, 11H, 5 CH2, 

CH, 5), 2.03 – 1.01 (m, 118H, CH3, CH, 57 CH2, 
6), 0.97 – 0.77 (m, 12H, 4 CH3, 

7). 

13C NMR (75 MHz, CDCl3) δ/ ppm: 173.7, 172.6, 172.6, 172.5, 172.3, 170.4, 169.91, 

169.3, 169.2, 136.1, 128.6, 1282, 77.9, 73.9, 70.4, 66.1, 40.0, 39.2, 39.2, 34.3, 31.9, 

31.7, 30.5, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 29.2, 29.1, 29.1, 28.9, 27.3, 

26.9, 26.1, 26.0, 25.9, 25.1, 25.0, 24.9, 24.8, 22.7, 22.6, 18.8, 18.0, 17.0, 14.2, 14.1. 

FAB-MS of [C93H164N4O14]
+: calculated: 1562.2, found: 1562.5. 

ESI-MS of [C93H164N4O14]
+: calculated: 1584.2136, found: 1584.2126 

IR (ATR platinum diamond): [cm-1] = 3304.9, 2921.1, 2851.2, 1738.8, 1652.4, 1535.1, 

1454.9, 1369.9, 1233.2, 1161.0, 1101.2, 721.3, 696.3. 

Rf: (hexane/ethyl acetate (1:1)) = 0.62. 
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4th Deprotection: 

58 

4.61 g 57 (2.95 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.32 M) and 0.33 g (7.3 wt%) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 58 was obtained as a 

white solid in a yield of 97 % (4.19 g) and was used without further purification. 
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1H NMR (300 MHz, CDCl3) δ /ppm: 6.13 (m, 4H, 4 NH, 1), 5.25 – 4.90 (m, 4H, 4 CH, 2), 

3.38 – 3.07 (m, 8H, 4 CH2, 
3), 2.59 – 2.12 (m, 11H, 1 CH, 5 CH2, 

4), 2.05 – 0.95 (m, 

118H, CH3, CH, 57 CH2, 
5), 0.95 – 0.62 (m, 12H, 4 CH3, 

6). 

13C NMR (75 MHz, CDCl3) δ /ppm: 177.6, 172.7, 172.7, 172.6, 172.4, 170.6, 170.1, 

169.5, 169.4, 77.9, 77.7, 74.0, 70.5, 40.0, 39.3, 39.3, 39.2, 34.4, 34.1, 32.0, 31.7, 30.6, 

29.8, 29.7, 29.7, 29.6, 29.6, 29.6, 29.5, 29.4, 29.3, 29.3, 29.2, 29.2, 29.2, 29.1, 29.1, 

29.0, 27.4, 26.9, 26.1, 26.1, 25.9, 25.1, 25.1, 25.0, 24.9, 24.9, 24.8, 22.8, 22.6, 18.8, 

18.0, 17.0, 14.2, 14.1. 

FAB-MS of [C86H159N4O14]
+: calculated: 1472.2, found: 1472.6. 

ESI-MS of [C86H158N4O14Na]+: calculated: 1494.1667, found: 1494.1658. 

IR (ATR platinum diamond): [cm-1] = 3289.6, 2919.8, 2850.5, 1740.1, 1650.0, 1537.0, 

1464.2, 1370.0, 1233.1, 1163.2, 1100.4, 720.7. 

Tm (DSC): 48.7 ° C 
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5th Passerini reaction: 

59 

4.00 g 58 (2.72 mmol, 1.00 eq.) were dissolved in 3.00 mL DCM (0.91 M) and 0.36 g 

isovaleraldehyde 50e (4.13 mmol, 1.50 eq.) and 1.23 g of monomer 49 (4.08 mmol, 

1.50 eq.) were added. The mixture was stirred at room temperature for 24 hours and 

subsequently the solvent was removed under reduced pressure. The crude product was 

purified by column chromatography (hexane/ethyl acetate 4:1  1:1) to afford product 

59 as viscous oil in a yield of 92 % (4.64 g). Furthermore, the excess of the monomer 

was partially recovered (0.29 g, 0.35 eq.) and can be reused. 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.30 (m, 5H, 5 CH aromatic, 1), 6.24 – 5.89 (m, 5H, 5 

NH, 2), 5.25 – 4.92 (m, 7H, 5 CH, CH2, 
3), 3.23 (m, 10H, 5 CH2, 

4), 2.48 – 2.16 (m, 13H, 

6 CH2, CH. 5), 2.04 – 0.98 (m, 137H, 66 CH2, CH3, 2 CH, 6), 0.88 (m, 18H, 6 CH3 
7). 

13C NMR (75 MHz, CDCl3) δ/ ppm: 173.8, 172.7, 172.7, 172.6, 172.6, 172.4, 170.4, 

170.3, 167.0, 169.4, 169.3, 136.2, 128.6, 128.2, 77.9, 74.0, 72.7, 70.5, 66.1, 40.9, 40.0, 

39.3, 39.2, 39.2, 34.4, 34.4, 32.0, 31.7, 30.6, 29.8, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 

29.3, 29.3, 29.2, 29.1, 29.0, 27.4, 26.9, 26.9, 26.1, 26.1, 26.0, 25.1, 25.1, 25.0, 25.0, 

24.9, 24.8, 24.6, 23.2, 22.8, 22.6, 21.9, 18.9, 18.1, 17.0, 14.2, 14.1. 

FAB-MS of [C110H195N5O17]
+: calculated: 1859.5, found: 1859.4. 

ESI-MS of [C110H195N5O17]
+: calculated: 1881.4440, found: 1881.4518. 

IR (ATR platinum diamond): [cm-1] =3304.7, 2921.6, 2851.4, 1738.8, 1652.8, 1534.3, 

1455.5, 1368.7, 1231.8, 1158.7, 1100.8, 721.3, 696.5. 

Rf: (hexane/ethyl acetate (1:1)) = 0.53. 
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5th Deprotection: 

60 

4.38 g 59 (2.35 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.33 M) and 0.24 g (5.6 wt%) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 60 was obtained as 

viscous oil in a yield of 99 % (4.12 g) and was used without further purification. 
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1H NMR (300 MHz, CDCl3) δ /ppm: 6.30 – 5.91 (m, 5H, 5 NH, 1), 5.22 – 4.91 (m, 5H, 5 

CH, 2), 3.35 – 3.05 (m, 10H, 5 CH2, 
3), 2.48 – 2.15 (m, 13H, 6 CH2, CH, 4), 2.00 – 0.97 

(m, 137H, CH3, 66 CH2, 2 CH, 5), 0.93 – 0.71 (m, 18H, 6 CH3, 
6). 

13C NMR (75 MHz, CDCl3) δ/ ppm: 177.3, 172.7, 172.7, 172.7, 172.6, 172.4, 170.5, 

170.4, 170.0, 169.5, 169.2, 77.9, 73.9, 72.6, 70.4, 40.9, 40.0, 39.3, 39.2, 34.3, 34.1, 

32.0, 31.7, 30.5, 29.7, 29.7, 29.6, 29.6, 29.6, 29.5, 29.4, 29.3, 29.3, 29.2, 29.2, 29.1, 

29.1, 28.9, 27.4, 26.9, 26.9, 26.8, 26.1, 26.0, 25.9, 25.1, 25.0, 25.0, 24.9, 24.9, 24.8, 

24.6, 23.2, 22.7, 22.6, 21.8, 18.8, 18.0, 17.0, 14.2, 14.1. 

FAB-MS of [C103H190N5O17]
+: calculated: 1770.4, found: 1770.1. 

ESI-MS of [C103H189N5O17Na]+: calculated: 1791.3971, found: 1791.4048. 

IR (ATR platinum diamond): [cm-1] =.3305.0, 2921.6, 2851.5, 1739.7, 1651.8, 1536.2, 

1462.7, 1368.9, 1231.5, 1159.1, 1100.7, 720.4, 651.6, 397.0. 
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6th Passerini reaction: 

61 

3.39 g 60 (1.92 mmol, 1.00 eq.) were dissolved in 3.00 mL DCM (0.64 M) and 0.32 g 2-

ethylbutyraldehyde 50f (3.20 mmol, 1.67 eq.) and 0.87 g of monomer 49 (2.89 mmol, 

1.50 eq.) were added. The mixture was stirred at room temperature for 42 hours and 

subsequently the solvent was removed under reduced pressure. The crude product was 

purified by column chromatography (hexane/ethyl acetate 4:1  1:1) to afford product 

61 as viscous oil in a yield of 93 % (3.86 g).  

1H NMR (300 MHz, CDCl3) δ /ppm: 7.39 – 7.27 (m, 5H, 5 CH aromatic, 1), 6.11 (m, 6H, 6 

NH, 2), 5.29 – 4.87 (m, 8H, 1 CH2, 6 CH, 3), 3.25 (m, 12H, 6 CH2, 
4), 2.55 – 2.11 (m, 

15H, 7 CH2, CH, 5), 2.05 – 0.99 (m, 158H, CH3, 76 CH2, 3 CH, 6), 0.95 – 0.66 (m, 24 H, 

8 CH3, 
7). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.7, 172.6, 172.5, 172.4, 170.4, 170.3, 

169.9, 169.8, 169.4, 169.3, 136.2, 128.6, 128.2, 77.9, 75.0, 74.0, 72.7, 70.5, 66.1, 43.5, 

40.9, 40.0, 39.3, 39.2, 34.3, 32.0, 31.7, 30.6, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 

29.0, 27.4, 26.9, 26.9, 26.1, 26.0, 25.9, 25.1, 25.0, 24.9, 24.8, 24.6, 23.2, 22.7, 22.6, 

22.23, 21.9, 21.8, 18.9, 18.0, 17.0, 14.2, 14.1, 11.7, 11.6. 

FAB-MS of [C128H228N6O20]
+: calculated: 2170.7, found: 2170.8. 

ESI-MS of [C128H228N6O20Na]+: calculated: 2192.6901, found: 2192.6970. 

IR (ATR platinum diamond): [cm-1] = 3294.2, 2921.8, 2851.7, 1739.1, 1651.8, 1534.1, 

1457.3, 1369.1, 1232.9, 1158.4, 1104.5, 721.1, 696.6, 653.4, 390.6. 

Rf: (hexane/ethyl acetate (1:1)) = 0.45. 
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6th Deprotection: 

62 

3.64 g 61 (1.68 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.33 M) and 0.30 g (8.20 wt%) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 62 was obtained as 

viscous oil in a yield of 99 % (3.46 g) and was used without further purification. 
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1H NMR (300 MHz, CDCl3) δ /ppm: 6.26 – 5.86 (m, 6H, 6 NH, 1), 5.35 – 4.89 (m, 6H, 6 

CH, 2), 3.22 (m, 12H, 6 CH2, 
3), 2.48 – 2.19 (m, 15H, 7 CH2, CH, 4), 1.98 – 1.00 (m, 158 

H, CH3, 76 CH2, 3 CH, 5), 0.96 – 0.72 (m, 24H, 8 CH3, 
6). 

13C NMR (75 MHz, CDCl3) δ /ppm: 177.0, 172.8, 172.7, 172.6, 172.4, 170.5, 170.5, 

170.0, 169.9, 169.4, 169.4, 78.0, 75.1, 74.0, 72.7, 70.5, 43.5, 40.9, 40.0, 39.3, 39.3, 

39.2, 34.4, 34.3, 34.0, 32.0, 31.7, 30.6, 29.8, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 

29.3, 29.3, 29.2, 29.1, 29.0, 27.4, 26.9, 26.1, 26.1, 26.0, 25.1, 25.1, 25.0, 24.9, 24.9, 

24.8, 24.6, 23.2, 22.8, 22.6, 22.3, 22.0, 21.9, 18.9, 18.0, 17.0, 14.2, 14.1, 11.7, 11.6. 

FAB-MS of [C121H222N6O20]
+: calculated: 2079.7, found: 2079.9. 

ESI-MS of [C121H222N6O20Na]+: calculated: 2102.6431, found: 2102.6492. 

IR (ATR platinum diamond): [cm-1] = 3304.2, 2921.9, 2851.8, 1740.2, 1651.7, 1535.8, 

1462.6, 1369.4, 1231.2, 1159.4, 1108.8, 720.9, 398.8. 
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7th Passerini reaction: 

63 

3.29 g 62 (1.58 mmol, 1.00 eq.) were dissolved in 2.50 mL DCM (0.63 M) and 0.34 g 2-

phenylpropionaldehyde 50g (2.55 mmol, 1.62 eq.) and 0.74 g of monomer 49 

(2.44 mmol, 1.55 eq.) were added. The mixture was stirred at room temperature for 

38 hours and subsequently the solvent was removed under reduced pressure. The 

crude product was purified by column chromatography (hexane/ethyl acetate 4:1  1:1) 

to afford product 63 as viscous oil in a yield of 93 % (3.70 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.38 – 7.10 (m, 10H, 10 CH aromatic, 1), 6.30 – 5.92 

(m, 6H, 6 NH, 2), 5.74 (m, 1H, NH, 3), 5.34 – 4.92 (m, 9H, CH2, 7 CH, 4), 3.49 – 2.89 (m, 

15H, 7 CH2, CH, 5), 2.48 – 2.17 (m, 17H, 8 CH2, CH, 6), 1.96 – 0.97 (m, 177H, 2 CH3, 84 

CH2, 3 CH, 8), 0.96 – 0.68 (m, 24H, 8 CH3, 
9). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.7, 172.6, 172.5, 172.5, 172.3, 170.4, 

170.3, 169.9, 169.8, 169.3, 169.2, 168.8, 168.5, 157.0, 141.7, 141.1, 136.2, 128.5, 

128.4, 128.2, 128.2, 127.9, 127.0, 126.9, 77.9, 75.0, 73.9, 72.6, 70.4, 66.1, 43.5, 41.5, 

41.2, 40.9, 40.0, 39.2, 39.2, 39.2, 34.3, 34.3, 34.2, 31.9, 31.6, 30.5, 29.7, 29.7, 29.6, 

29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.1, 29.0, 28.9, 27.4, 26.9, 26.8, 26.8, 26.7, 26.1, 

26.0, 25.9, 25.1, 25.0, 25.0, 24.9, 24.8, 24.8, 24.6, 23.2, 22.7, 22.5, 22.3, 21.9, 21.8, 

18.8, 18.0, 17.6, 17.0, 15.2, 14.1, 14.1, 11.6, 11.6. 

ESI-MS of [C149H259N7O23Na]+: calculated: 2537.9205, found: 2537.9294. 

IR (ATR platinum diamond): [cm-1] = 3305.0, 2922.1, 2851.8, 1739.0, 1652.0, 1534.8, 

1455.1, 1369.9, 1232.2, 1158.1, 1104.5, 721.4, 698.1. 

Rf: (hexane/ethyl acetate (1:1)) = 0.42. 
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7th Deprotection: 

64 

3.41 g 63 (1.35 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.33 M) and 0.24 g (7.02 wt%) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 64 was obtained as a 

viscous oil in a yield of 98 % (3.22 g) and was used without further purification. 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.33 – 7.13 (m, 5H, 5 H aromatic, 1), 6.29 – 5.90 (m, 

6H, 6 NH, 2), 5.71 (m, 1H, NH, 3), 5.38 – 4.93 (m, 7H, 7 CH, 4), 3.45 (m, 1H, CH, 5), 3.37 
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– 2.93 (m, 14H, 7 CH2, 
6), 2.63 – 2.13 (m, 17H, 8 CH2, CH, 7), 2.04 – 1.00 (m, 177H, 2 

CH3, 84 CH2, 3 CH, 8), 0.98 – 0.63 (m, 24H, 8 CH3, 
9). 

13C NMR (75 MHz, CDCl3) δ /ppm: 172.8, 172.7, 172.6, 172.5, 172.4, 170.5, 170.4, 

170.0, 170.0, 169.5, 169.4, 168.9, 168.7, 128.5, 128.3, 128.0, 127.1, 127.0, 78.0, 75.2, 

74.1, 72.8, 70.6, 43.6, 41.6, 41.3, 41.0, 40.1, 39.4, 39.3, 39.3, 34.4, 34.4, 34.3, 34.3, 

34.0, 32.0, 31.7, 30.6, 29.8, 29.8, 29.7, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.2, 

29.2, 29.1, 29.0, 27.4, 27.0, 27.0, 26.2, 26.1, 26.0, 25.2, 25.1, 25.0, 25.0, 24.9, 24.8, 

24.7, 23.3, 22.8, 22.7, 22.3, 22.0, 21.9, 18.9, 18.1, 17.1, 14.2, 14.2, 11.7, 11.7. 

FAB-MS of [C142H253N7O23]
+: calculated: 2425.9, found: 2525.7. 

ESI-MS of [C142H253N7O23Na]+: calculated: 2447.8735, found: 2447.8809. 

IR (ATR platinum diamond): [cm-1] = 3304.4, 2922.0, 2851.7, 1740.0, 1651.6, 1536.1, 

1462.4, 1370.0, 1232.3, 1160.1, 1106.9, 721.0, 699.6. 

 

 



  Experimental Section 

 

235 

8th Passerini reaction: 

65 

3.12 g 64 (1.29 mmol, 1.00 eq.) were dissolved in 2.50 mL DCM (0.63 M) and 0.23 g 3-

cyclohexene-1-carboxaldehyde 50h (2.11 mmol, 1.64 eq.) and 0.58 g of monomer 49 

(1.94 mmol, 1.50 eq.) were added. The mixture was stirred at room temperature for 

40 hours and subsequently the solvent was removed under reduced pressure. The 

crude product was purified by column chromatography (hexane/ethyl acetate 4:1  1:2) 

to afford product 65 as viscous oil in a yield of 94 % (3.46 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.39 – 7.09 (m, 10H, 10 H aromatic, 1), 6.10 (m, 7H, 

7 NH, 2), 5.81 – 5.48 (m, 3H, 1 NH, 2 CH, 3), 5.35 – 4.88 (m, 10H, CH2, 8 CH, 4), 3.49 – 

3.35 (m, 1H, CH, 5), 3.34 – 2.90 (m, 16H, 8 CH2, 
6), 2.49 – 2.12 (m, 19H, 9 CH2, CH, 7), 

2.11 – 0.96 (m, 200H, 2 CH3, 95 CH2, 4 CH, 8), 0.94 – 0.63 (m, 24H, 8 CH3, 
9). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.8, 172.7, 172.6, 172.6, 172.5, 172.4, 

172.3, 170.4, 170.3, 169.9, 169.8, 169.3, 169.3, 169.1, 169.0, 168.8, 168.6, 141.7, 

141.2, 136.2, 128.6, 128.4, 128.2, 128.2, 127.9, 127.0, 127.0, 126.8, 125.6, 77.9, 75.0, 

74.0, 72.7, 70.5, 66.1, 60.4, 43.5, 41.5, 41.2, 40.9, 40.0, 39.3, 39.2, 36.2, 36.0, 34.4, 

34.3, 34.2, 32.0, 31.7, 30.6, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 29.2, 29.1, 

29.1, 29.1, 29.0, 27.7, 27.4, 26.9, 26.9, 26.1, 26.0, 26.0, 25.2, 25.1, 25.0, 25.0, 24.9, 

24.8, 24.6, 23.6, 23.2, 22.7, 22.6, 22.3, 22.0, 21.8, 18.8, 18.0, 17.6, 17.0, 15.2, 14.3, 

14.2, 14.1, 11.7, 11.6. 

FAB-MS of [C168H290N8O26]
+: calculated: 2837.2, found: 2837.4. 

ESI-MS of [C168H290N8O26Na]+: calculated: 2859.1509, found: 2859.1558. 

IR (ATR platinum diamond): [cm-1] =3305.2, 2922.3, 2851.8, 1739.1, 1652.0, 1534.4, 

1455.8, 1370.1, 1233.8, 1158.1, 1106.2, 721.5, 698.3. 

Rf: (hexane/ethyl acetate (1:1.5)) = 0.64. 
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8th Deprotection: 

66 

3.27 g 65 (1.15 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.32 M) and 0.28 g (8.51 wt%) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 66 was obtained as a 

viscous oil in a yield of 98 % (3.08 g) and was used without further purification. 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.31 – 7.08 (m, 5H, 5 H aromatic, 1), 6.29 – 5.92 (m, 

7H, 7 NH, 2), 5.79 (m, 1H, NH, 3), 5.34 – 4.92 (m, 8H, 8 CH, 4), 3.48 – 3.36 (m, 1H, CH, 
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5), 3.34 – 2.89 (m, 16H, 8 CH2, 
6), 2.29 (m, 19H, 9 CH2, CH, 7), 2.04 – 0.94 (m, 204H, 2 

CH3, 97 CH2, 4 CH, 8), 0.86 (m, 24H, 8 CH3, 
9). 

13C NMR (75 MHz, CDCl3) δ /ppm: 176.7, 172.7, 172.7, 172.6, 172.6, 172.5, 172.4, 

170.5, 170.4, 170.0, 169.9, 169.4, 169.4, 168.9, 168.7, 141.6, 141.2, 128.4, 128.2, 

127.9, 127.0, 127.0, 78.0, 77.7, 75.1, 74.0, 72.7, 70.5, 43.5, 41.5, 41.2, 40.9, 40.0, 39.3, 

39.2, 34.4, 34.3, 34.0, 32.0, 31.7, 30.6, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.3, 

29.2, 29.1, 29.0, 27.4, 26.9, 26.9, 26.8, 26.7, 26.1, 26.1, 25.9, 25.1, 25.1, 25.0, 25.0, 

24.9, 24.8, 24.8, 24.6, 23.2, 22.7, 22.6, 22.3, 22.0, 21.9, 18.8, 18.0, 17.6, 17.0, 15.3, 

14.2, 14.1, 11.7, 11.6. 

FAB-MS of [C161H286N8O26]
+: calculated: 2748.1, found: 2748.2. 

ESI-MS of [C161H286N8O26Na]+: calculated: 2771.1196, found: 2771.1306. 

IR (ATR platinum diamond): [cm-1] = 3305.7, 2921.8, 2851.7, 1740.2, 1651.5, 1536.0, 

1462.6, 1369.9, 1230.7, 1160.0, 1103.4, 720.9, 699.6, 430.5, 398.5. 
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9th Passerini reaction: 

67 

2.63 g 66 (0.96 mmol, 1.00 eq.) were dissolved in 1.50 mL DCM (0.64 M) and 0.28 g 2-

methyl-3-(p-isopropylphenylpropionaldehyde 50i (1.48 mmol, 1.54 eq.) and 0.44 g of 

monomer 49 (1.46 mmol, 1.52 eq.) were added. The mixture was stirred at room 

temperature for 20 hours and subsequently the solvent was removed under reduced 

pressure. The crude product was purified by column chromatography (hexane/ethyl 

acetate 4:1  1:2) to afford product 67 as viscous oil in a yield of 95 % (2.97 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.34 – 6.87 (m, 14H, 14 H aromatic, 1), 6.04 - 6.24 

(m, 8H, 8 NH, 2), 5.66 - 5.72 (m, 1H, NH, 3), 5.29 – 4.84 (m, 11H, CH2, 9 CH 4), 3.43 – 

3.29 (m, 1H, CH, 5), 3.27 – 2.87 (m, 18H, CH2, 
6), 2.85 – 2.55 (m, 2H, 2 CH, 7), 2.46 – 

2.11 (m, 23H, 11 CH2, CH, 8), 2.03 – 0.90 (m, 226H, 4 CH3, 105 CH2, 4 CH, 9 ), 0.90 – 

0.50 (m, 27H, 9 CH3, 
10). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.7, 172.6, 172.6, 172.6, 172.4, 172.4, 

170.4, 170.3, 169.9, 169.8, 169.4, 169.3, 169.0, 168.8, 168.6, 146.7, 146.6, 141.6, 

137.1, 137.0, 136.2, 129.2, 129.1, 128.7, 128.4, 128.4, 128.1, 77.8, 75.0, 74.0, 72.6, 

71.0, 70.6, 66.1, 43.5, 40.0, 39.3, 39.2, 34.5, 34.4, 34.2, 32.0, 29.7, 29.6, 29.6, 29.4, 

29.3, 29.2, 27.4, 26.9, 26.1, 26.0, 25.0, 24.5, 22.7, 22.6, 22.6, 18.8, 18.0, 15.3, 14.2, 

14.1, 11.7, 11.6. 

FAB-MS of [C193H332N9O29]
+: calculated: 3242.5, found: 3242.6. 

ESI-MS of [C193H331N9O29Na]+: calculated: 3262.4595, found: 3262.4719. 

IR (ATR platinum diamond): [cm-1] = 3305.4, 2922.3, 2851.8, 1739.1, 1651.7, 1534.7, 

1455.3, 1370.7, 1236.1, 1159.1, 1102.7, 721.5, 698.5. 

Rf: (hexane/ethyl acetate (1:1.5)) = 0.68. 
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9th Deprotection: 

68 

2.76 g 67 (0.85 mmol, 1.00 eq.) were dissolved in a 2:1 mixture of ethyl acetate and 

methanol (0.28 M) and 0.20 g (7.88 %w) palladium on activated charcoal were added. 

Subsequently, the mixture was purged with hydrogen (balloon) and stirred under 

hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and the 

solvent was evaporated under reduced pressure. The product 68 was obtained as 

viscous oil in a yield of 94 % (2.52 g) and was used without further purification. 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.36 – 6.92 (m, 9H, 9H aromatic, 1), 6.34 – 5.93 (m, 

8H, 8 NH, 2), 5.77 - 5.68 (m, 1H, NH, 3), 5.13 - 5.02 (m, 9H, 9 CH, 4), 3.42 - 3.45 (m, 1H, 
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CH, 5), 3.32 – 2.93 (m, 18H, 9 CH2, 
6), 2.91 – 2.55 (m, 2H, 2 CH, 7), 2.50 – 2.17 (m, 21H, 

10 CH2, CH, 8), 1.98 – 0.97 (m, 228H, 4 CH3, 106 CH2, 4 CH, 9), 0.86 - 0.75 (m, 27H, 9 

CH3, 
10). 

13C NMR (75 MHz, CDCl3) δ /ppm: 176.6, 172.7, 172.6, 172.6, 172.5, 172.5, 172.4, 

172.3, 170.4, 170.3, 169.9, 169.8, 169.4, 169.3, 169.3, 169.1, 168.8, 168.6, 146.6, 

146.5, 141.5, 141.1, 137.0, 136.9, 129.0, 128.9, 128.5, 128.3, 128.2, 126.4, 126.3, 77.7, 

75.0, 74.9, 72.5, 70.4, 70.3, 43.4, 40.8, 40.8, 39.9, 39.4, 39.2, 39.2, 39.1, 38.9, 34.4, 

34.3, 34.2, 34.2, 34.0, 33.6, 31.9, 30.5, 30.4, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 28.9, 

27.4, 27.3, 27.3, 26.8, 26.1, 26.0, 26.0, 25.8, 25.8, 25.0, 24.9, 24.8, 24.8, 24.7, 24.5, 

24.1, 24.0, 22.7, 22.5, 18.0, 17.8, 16.9, 13.9, 11.5, 11.2. 

FAB-MS of [C186H325N9O29]
+: calculated: 3152.4, found: 3152.5. 

ESI-MS of [C186H325N9O29Na]+: calculated: 3172.4125, found: 3172.4177. 

IR (ATR platinum diamond): [cm-1] = 3303.0, 2922.2, 2851.8, 1739.8, 1651.1, 1535.5, 

1461.2, 1370.3, 1231.3, 1159.5, 1103.1, 1018.3, 720.9, 699.7. 
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10th Passerini reaction: 

69 

2.25 g 68 (0.71 mmol, 1.00 eq.) were dissolved in 1.20 mL DCM (0.59 M) and 0.13 g cis-

4-heptenal 50j (1.15 mmol, 1.61 eq.) and 0.35 g of monomer 49 (1.15 mmol, 1.61 eq.) 

were added. The mixture was stirred at room temperature for 48 hours and 

subsequently the solvent was removed under reduced pressure. The crude product was 

purified by column chromatography (hexane/ethyl acetate 4:1  1:1.5) to afford product 

69 as viscous oil in a yield of 95 % (2.40 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.36 – 6.87 (m, 14H, 14 H aromatic, 1), 6.31 – 5.90 

(m, 9H, 9 NH, 2), 5.85 – 5.66 (m, 1H, NH, 3), 5.44 – 4.86 (m, 14H, CH2, 12 CH, 4), 3.48 – 

3.34 (m, 1H, CH, 5), 3.33 – 2.90 (m, 20H, 10 CH2, 
6), 2.90 – 2.59 (m, 2H, 2 CH, 7), 2.49 – 

2.17 (m, 23H, 11 CH2, CH, 8), 2.14 – 0.95 (m, 250H, 4 CH3, 117 CH2, 4 CH, 9), 0.95 – 

0.59 (m, 30H, 10 CH3, 
10). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.7, 172.6, 172.5, 172.5, 172.4, 172.3, 

170.4, 170.3, 169.9, 169.8, 169.7, 169.4, 169.3, 169.3, 169.0, 168.8, 168.6, 146.7, 

146.6, 141.7, 141.2, 137.1, 136.9, 136.2, 132.9, 129.1, 129.0, 128.5, 128.4, 128.2, 

128.2, 128.1, 127.9, 127.2, 127.0, 126.9, 126.4, 126.3, 77.9, 76.3, 75.0, 73.9, 73.5, 

72.7, 70.4, 66.1, 43.5, 41.5, 41.2, 40.9, 40.0, 39.2, 39.2, 37.6, 37.5, 37.3, 34.3, 34.3, 

34.2, 33.7, 31.9, 31.6, 30.9, 30.5, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 

29.1, 28.9, 27.4, 26.9, 26.8, 26.8, 26.7, 26.1, 26.0, 25.9, 25.1, 25.0, 25.0, 24.9, 24.8, 

24.8, 24.6, 24.1, 23.1, 22.7, 22.6, 22.5, 22.3, 21.9, 21.8, 20.5, 18.8, 18.0, 17.6, 17.0, 

15.5, 15.2, 14.3, 14.1, 14.1, 11.6, 11.6. 

FAB-MS of [C212H364N10O32]
+: calculated: 3564.7, found: 3564.7. 

ESI-MS of [C212H364N10O32Na2]
2+: calculated: 1804.3474, found: 1804.3574. 

IR (ATR platinum diamond): [cm-1] = 3292.6, 2922.5, 2851.8, 1739.4, 1651.8, 1534.8, 

1455.2, 1370.4, 1231.7, 1158.9, 1102.7, 698.3. 
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Rf: (hexane/ethyl acetate (1:1.2)) = 0.64. 

 

 

Self-metathesis of the decamer: 

70 

0.41 g 69 (0.11 mmol, 1.00 eq.) were dissolved in 2.0 mL DCM (0.06 M), and 

subsequently, 14.2 mg p-benzoquinone (0.13 mmol, 1.19 eq.) and 14.1 mg Hoveyda-

Grubbs 2nd generation catalyst (0.02 mmol, 19.7 mol%) were added and the reaction 

mixture was refluxed at 40 ° C for 5 hours under an argon atmosphere. This mixture was 

filtered over silica, redissolved in 2.0 mL DMC (0.06 M), and again, 16.3 mg 

benzoquinone (0.15 mmol, 1.36 eq.) and 12.8 mg Hoveyda-Grubbs 2nd generation 
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catalyst (0.02 mmol, 18.2 mol%) were added and the reaction mixture was refluxed for 

another 5 hours. The product was then isolated by column chromatography 

(hexane/ethyl acetate 4:1  1:3) to afford the sequence-defined 20-mer 70 as a viscous 

oil in a yield of 48 % (0.18 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.41 – 6.98 (m, 28H, 28 H aromatic, 1), 6.53 (t, J = 

5.6 Hz, 1H, NH, 2), 6.25 – 5.86 (m, 19H, 19 NH, 2), 5.78 - 5.60 (m, 2H, 2 CH, 3), 5.42 – 

4.93 (m, 26H, 2 CH2, 22 CH, 4), 3.52 - 3.38 (m, 2H, 2 CH, 5), 3.36 – 2.95 (m, 40H, 20 

CH2, 
6), 2.94 – 2.63 (m, 4H, 4 CH 7), 2.52 – 2.19 (m, 46H, 22 CH2, 2 CH), 2.14 – 0.99 

(m, 494H, 8 CH3, 231 CH2, 8 CH, 9), 0.95 – 0.57 (m, 54H, 27 CH3, 
10). 

ESI-MS of [C418H716N20O64Na2]
2+: calculated: 3543.6586, found: 3543.6765. 

Rf: (hexane / ethyl acetate (1:1.2)) =0.24. 
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6.3.4 Experimental Procedures Chapter 4.3 

Synthesis of the Isocyanide Building Blocks 

1st P-3CR of the 1st building block: 

 76 

0.51 g of thiolactone carboxylic acid 71 (2.20 mmol, 1.00 eq.) were dissolved in 3.3 mL 

of a 4:1 mixture of THF and water (0.67 M). Subsequently, 0.56 g of 10-undecenal 2 

(3.30 mmol, 1.50 eq.) and 0.26 g of tert-butyl isocyanide 3b (3.13 mmol, 1.42 eq.) were 

added and the reaction mixture was stirred for 24 hours at room temperature. Then, 

80 mL of ethyl acetate and 50 mL of water were added and the mixture was extracted. 

The organic layer was separated, washed with brine (50 mL) and dried over sodium 

sulfate. The solvent was evaporated and the residue was recrystallized from 

hexane/ethyl acetate 7:1. The product 76 was obtained as white solid in a yield of 93 % 

(0.99 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.21 (dd, J = 8.1, 3.8 Hz, 1H, NH, 1), 7.51 (d, J = 

4.4 Hz, 1H, NH, 2), 5.90 - 5.65 (m, 1H, CH, 3), 5.07 – 4.84 (m, 2H, CH2, 
4), 4.76 (t, J = 

6.3 Hz, 1H, CH, 5), 4.67 – 4.48 (m, 1H, CH, 6), 3.49 – 3.16 (m, 2H, CH2, 
7), 2.44 – 0.98 

(m, 33H, 3 CH3, 12 CH2, 
8). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 205.4, 172.1, 171.7, 168.7, 138.8, 114.6, 73.4, 

58.1, 50.2, 34.1, 33.2, 32.6, 31.5, 30.1, 28.8, 28.7, 28.6, 28.5, 28.4, 28.3, 26.7, 24.5, 

20.7. 

FAB-MS of [C25H43N2O5S]+: calculated:483.2887, found: 483.2889. 

ESI-MS of [C25H43N2O5SNa]+: calculated: 505.2707, found: 505.2698. 
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IR (ATR platinum diamond): [cm-1] = 3269.2, 3078.7, 2925.9, 2855.3, 1742.4, 1702.9, 

1646.2, 1559.7, 1532.4, 1448.9, 1360.8, 1339.0, 1274.0, 1214.0, 1190.1, 1155.7, 

1055.6, 1020.8, 915.1, 855.8, 679.9, 618.4, 537.0, 482.1, 432.2. 

 

 

2nd P-3CR of the 1st building block: 

 77 

2.01 g of 76 (4.16 mmol, 1.00 eq.) were dissolved in 8.0 mL stabilized THF (0.52 M). 

Subsequently, 0.53 g of 3-mercaptopropionic acid 4 (5.02 mmol, 1.21 eq.) and 18.4 mg 

of DMPA 5 (0.07 mmol, 1.72 mol%) were added and the reaction mixture was irradiated 
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with UV light at room temperature for one hour. The solvent was removed under 

reduced pressure and the residue was redissolved in 4.3 mL DCM (0.99 M). 

Subsequently, 1.27 g of 10-undecenal 2 (7.56 mmol, 1.82 eq.) and 0.74 g 1-pentyl 

isocyanide 3c (7.60 mmol, 1.83 eq.) were added and the reaction mixture was stirred at 

room temperature for 28 hours. The solvent was evaporated and the crude product was 

purified by column chromatography (hexane/ethyl acetate 3:11:4). Product 77 was 

obtained as slightly yellow oil in a yield of 88 % (3.10 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.21 (dd, J = 8.3, 4.0 Hz, 1H, NH, 1), 7.90 (t, J = 

5.6 Hz, 1H, NH, 2), 7.51 (d, J = 4.5 Hz, 1H, NH, 3), 5.89 – 5.65 (m, 1H, CH, 4), 5.07 – 

4.70 (m, 4H, CH2, 2 CH, 5), 4.69 – 4.50 (m, 1H, CH, 6), 3.50 – 3.15 (m, 2H, CH2, 
7), 3.14 

- 2.92 (m, 2H, CH2, 
8), 2.80 – 2.60 (m, 4H, 2 CH2, 

9), 2.43 – 1.08 (m, 59H, 3 CH3, 25 

CH2, 
10), 0.85 (t, J = 6.8 Hz, 3H, CH3, 

11). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 205.4, 172.0, 171.7, 171.0, 168.9, 168.7, 138.8, 

114.6, 73.4, 58.1, 50.2, 38.2, 34.4, 34.1, 33.2, 32.6, 31.6, 31.4, 31.0, 30.1, 29.1, 29.0, 

28.9, 28.9, 28.7, 28.7, 28.6, 28.5, 28.4, 28.3, 28.2, 26.7, 26.3, 26.1, 24.5, 24.4, 21.8, 

20.7, 13.9. 

ESI-MS of [C45H79N3O8S2Na]+: calculated: 876.5201, found: 876.5211. 

IR (ATR platinum diamond): [cm-1] = 3291.8, 2923.2, 2852.6, 1737.3, 1711.0, 1651.8, 

1534.8, 1453.4, 1363.2, 1223.0, 1149.0, 1052.9, 910.1, 847.2, 615.0, 533.6, 432.7. 

Rf: (hexane/ethyl acetate (1:1)) = 0.21. 
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3rd P-3CR of the 1st building block: 

 78 

1.51 g of 77 (1.77 mmol, 1.00 eq.) were dissolved in 3.5 mL stabilized THF (0.51 M). 

Subsequently, 0.23 g of 3-mercaptopropionic acid 4 (2.18 mmol, 1.23 eq.) and 13.1 mg 

of DMPA 5 (0.05 mmol, 2.88 mol%) were added and the reaction mixture was irradiated 

with UV light at room temperature for one hour. The solvent was removed under 

reduced pressure and the residue was redissolved in 1.8 mL DCM (0.96 M). 

Subsequently, 0.55 g of 10-undecenal 2 (3.29 mmol, 1.91 eq.) and 0.34 g cyclohexyl 
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isocyanide 3a (3.15 mmol, 1.83 eq.) were added and the reaction mixture was stirred at 

room temperature for 24 hours. The solvent was evaporated and the crude product was 

purified by column chromatography (hexane/ethyl acetate 3:1 ethyl acetate). Product 

77 was obtained as slightly yellow oil in a yield of 82 % (1.73 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.21 (dd, J = 8.2, 4.1 Hz, 1H, NH, 1), 7.89 (t, J = 

5.6 Hz, 1H, NH, 2), 7.73 (d, J = 7.9 Hz, 1H, NH, 3), 7.50 (d, J = 4.5 Hz, 1H, NH, 4), 5.88 - 

5.67 (m, 1H, CH, 5), 5.05 – 4.69 (m, 5H, CH2, 3 CH, 6), 4.67 – 4.49 (m, 1H, CH, 7), 3.62 

– 3.19 (m, 3H, CH2, CH, 8), 3.16 - 2.90 (m, 2H, CH2, 
9), 2.79 - 2.56 (m, 8H, 4 CH2, 

10), 

2.44 – 0.94 (m, 89H, 3 CH3, 40 CH2, 
11), 0.84 (t, J = 6.8 Hz, 3H, CH3, 

12). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 205.3, 172.0, 171.7, 170.9, 168.9, 168.8, 168.1, 

138.8, 114.6, 73.4, 50.2, 38.2, 34.4, 34.1, 33.2, 32.6, 32.3, 31.6, 31.5, 31.0, 30.1, 29.1, 

29.0, 28.9, 28.7, 28.5, 28.4, 28.3, 28.3, 26.9, 26.7, 26.3, 26.3, 26.1, 25.7, 25.2, 24.6, 

24.4, 21.8, 20.6, 13.9. 

ESI-MS of [C66H116N4O11S3Na]+: calculated: 1259.7695, found: 1259.7716. 

IR (ATR platinum diamond): [cm-1] = 3292.3, 2922.8, 2852.1, 1737.8, 1651.2, 1533.7, 

1451.5, 1363.3, 1225.5, 1148.4, 1053.5, 910.7, 846.6, 721.4, 534.2, 433.3. 

Rf: (ethyl acetate) = 0.58. 
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1st P-3CR of the 2nd building block: 

 79 

1.01 g of thiolactone carboxylic acid 71 (4.36 mmol, 1.00 eq.) were dissolved in 6.6 mL 

of a 4:1 mixture of THF and water (0.66 M). Subsequently, 1.02 g of 10-undecenal 2 

(6.03 mmol, 1.38 eq.) and 0.73 g of cyclohexyl isocyanide 3a (6.71 mmol, 1.53 eq.) were 

added and the reaction mixture was stirred for 48 hours at room temperature. Then, 

100 mL of ethyl acetate and 50 mL of water were added and the mixture was extracted. 

The organic layer was separated, washed with brine (80 mL) and dried over sodium 

sulfate. The solvent was evaporated and the residue was recrystallized from 
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hexane/ethyl acetate 3:1. The product 79 was obtained as white solid in a yield of 90 % 

(2.01 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.19 (dd, J = 8.3, 2.4 Hz, 1H, NH, 1), 7.79 (d, J = 

6.2 Hz, 1H, NH, 2), 5.90 - 5-68 (m, 1H, CH, 3), 5.06 – 4.87 (m, 2H, CH2, 
4), 4.79 (t, J = 

6.3 Hz, 1H, CH, 5), 4.68 – 4.50 (m, 1H, CH, 6), 3.61 – 3.17 (m, 3H, CH2, CH, 7), 2.46 – 

0.95 (m, 34H, 17 CH2, 
8). 

13C NMR (101 MHz, DMSO-D6) δ /ppm: 205.4, 172.1, 171.8, 168.4, 138.8, 114.6, 73.2, 

58.1, 47.5, 34.1, 33.2, 32.6, 32.3, 32.2, 31.5, 30.1, 28.8, 28.7, 28.6, 28.5, 28.3, 26.7, 

25.2, 24.6, 24.4, 20.6. 

ESI-MS of [C27H44N2O5SNa]+: calculated: 531.2863, found: 531.2861. 

IR (ATR platinum diamond): [cm-1] = 3283.1, 3076.4, 2923.3, 2851.4, 1730.1, 1701.3, 

1646.1, 1544.9, 1447.5, 1368.9, 1301.7, 1249.0, 1217.0, 1186.0, 1149.5, 1090.9, 

1053.6, 1021.5, 977.0, 909.2, 846.0, 676.4, 621.2, 590.1, 551.0, 484.3, 427.5, 405.7. 

 



  Experimental Section 

 

251 

2nd P-3CR of the 2nd building block: 

 80 

1.59 g of 79 (4.16 mmol, 1.00 eq.) were dissolved in 6.0 mL stabilized THF (0.52 M). 

Subsequently, 0.41 g of 3-mercaptopropionic acid 4 (3.90 mmol, 1.25 eq.) and 12.1 mg 

of DMPA 5 (0.05 mmol, 1.52 mol%) were added and the reaction mixture was irradiated 

with UV light at room temperature for one hour. The solvent was removed under 

reduced pressure and the residue was redissolved in 3.2 mL DCM (0.93 M). 

Subsequently, 0.96 g of 10-undecenal 2 (5.69 mmol, 1.90 eq.) and 0.43 g tert-butyl 

isocyanide 3b (5.02 mmol, 1.74 eq.) were added and the reaction mixture was stirred at 

room temperature for 48 hours. The solvent was evaporated and the crude product was 

purified by column chromatography (hexane/ethyl acetate 4:11:3). Product 80 was 

obtained as slightly yellow oil in a yield of 86 % (2.24 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.28 – 8.10 (m, 1H, NH, 1), 7.79 (d, J = 7.6 Hz, 

1H, NH, 2), 7.44 (d, J = 13.7 Hz, 1H, NH, 3), 5.90 - 5.64 (m, 1H, CH, 4), 5.07 – 4.87 (m, 

2H, CH2, 
5), 4.79 (t, J = 6.1 Hz, 2H, 2 CH, 6), 4.69 – 4.49 (m, 1H, CH, 7), 3.64 – 3.16 (m, 

3H, CH2, CH, 8), 2.79 – 2.55 (m, 4H, 2 CH2, 
9), 2.43 – 0.76 (m, 67H, 3 CH3, 29 CH2, 

10). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 205.3, 172.1, 171.7, 170.9, 168.5, 168.3, 138.8, 

114.6, 73.6, 73.2, 58.1, 50.2, 47.4, 34.4, 34.1, 33.2, 32.5, 32.3, 31.5, 31.0, 30.1, 29.1, 

29.0, 28.9, 28.7, 28.7, 28.6, 28.5, 28.4, 28.3, 28.2, 26.7, 26.3, 25.2, 24.6, 24.5, 20.6. 

ESI-MS of [C46H79N3O8S2Na]+: calculated: 888.5201, found: 888.5209. 

IR (ATR platinum diamond): [cm-1] = 3281.4, 3078.2, 2921.8, 2851.4, 1733.2, 1701.9, 

1646.8, 1544.0, 1450.8, 1363.7, 1215.9, 1175.9, 1054.6, 1021.1, 910.5, 845.8, 721.4, 

678.1, 620.7, 549.6, 482.7, 433.9. 

Rf: (hexane/ethyl acetate (1:3)) = 0.53. 
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3rd P-3CR of the 2nd building block: 

 81 

1.78 g of 80 (2.06 mmol, 1.00 eq.) were dissolved in 4.0 mL stabilized THF (0.52 M). 

Subsequently, 0.27 g of 3-mercaptopropionic acid 4 (2.54 mmol, 1.23 eq.) and 14.4 mg 

of DMPA 5 (0.06 mmol, 2.73 mol%) were added and the reaction mixture was irradiated 

with UV light at room temperature for one hour. The solvent was removed under 

reduced pressure and the residue was redissolved in 2.4 mL DCM (0.84 M). 

Subsequently, 0.63 g of 10-undecenal 2 (3.73 mmol, 1.85 eq.) and 0.48 g p-
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methoxyphenyl isocyanide 3i (3.61 mmol, 1.79 eq.) were added and the reaction mixture 

was stirred at room temperature for 26 hours. The solvent was evaporated and the 

crude product was purified by column chromatography (hexane/ethyl acetate 2:1 1:2). 

Product 81 was obtained as slightly yellow oil in a yield of 84 % (1.98 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 9.86 (s, 1H, NH, 1), 8.27 – 8.14 (m, 1H, NH, 2), 

7.80 (d, J = 7.2 Hz, 1H, NH, 3), 7.56 – 7.36 (m, 3H, NH, 2 CH aromatic, 4), 6.87 (d, J = 

8.9 Hz, 2H, 2 CH aromatic, 5), 5.88 - 5.66 (m, 1H, CH, 6), 5.09 - 4.86 (m, 3H, CH2, CH, 

7), 4.79 (t, J = 6.0 Hz, 2H, 2 CH, 8), 4.69 – 4.49 (m, 1H, CH, 9), 3.71 (s, 3H, OCH3, 
10), 

3.58 – 3.18 (m, 3H, CH2, CH, 11), 2.85 – 2.57 (m, 8H, 4 CH2, 
12), 2.42 – 0.71 (m, 83H, 3 

CH3, 37 CH2, 
13). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 205.3, 172.1, 171.7, 171.1, 170.9, 168.5, 168.3, 

167.6, 155.5, 138.8, 131.5, 121.1, 114.6, 113.8, 73.7, 73.6, 73.2, 59.7, 58.1, 55.1, 50.2, 

47.4, 34.4, 34.1, 33.2, 32.5, 32.3, 31.5, 31.4, 31.0, 30.1, 29.1, 29.0, 28.9, 28.8, 28.7, 

28.5, 28.4, 28.3, 28.2, 26.7, 26.3, 25.2, 24.6, 24.5, 20.8, 20.6, 14.1. 

ESI-MS of [C68H112N4O12S3Na]+: calculated: 1295.7331, found: 1295.7340. 

IR (ATR platinum diamond): [cm-1] = 3303.7, 3076.1, 2922.9, 2851.8, 1737.9, 1653.1, 

1530.3, 1510.3, 1452.5, 1414.3, 1363.5, 1298.3, 1233.7, 1148.0, 1034.7, 912.1, 829.5, 

721.7, 684.6, 524.5, 431.8. 

Rf: (hexane/ethyl acetate (1:3)) = 0.57. 
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1st P-3CR of the 3rd and 4th building block: 

 82 

2.00 g of thiolactone carboxylic acid 71 (8.67 mmol, 1.00 eq.) were dissolved in 17.5 mL 

of a 4:1 mixture of THF and water (0.50 M). Subsequently, 2.18 g of 10-undecenal 2 

(12.98 mmol, 1.50 eq.) and 1.03 g of n-butyl isocyanide 3d (12.45 mmol, 1.44 eq.) were 

added and the reaction mixture was stirred for 24 hours at room temperature. Then, 

200 mL of ethyl acetate and 100 mL of water were added and the mixture was extracted. 

The organic layer was separated, washed with brine (160 mL) and dried over sodium 

sulfate. The solvent was evaporated and the residue was purified by column 
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chromatography (hexane/ethyl acetate 3:1  ethyl acetate). The product 82 was 

obtained as white solid in a yield of 95 % (3.97 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.21 (d, J = 8.0 Hz, 1H, NH, 1), 7.94 (t, J = 5.5 

Hz, 1H, NH, 2), 5.90 - 5.66 (m, 1H, CH, 3), 5.08 – 4.87 (m, 2H, CH2, 
4), 4.81 (t, J = 6.1 

Hz, 1H, CH, 5), 4.68 - 4.48 (m, 1H, CH, 6), 3.50 – 3.17 (m, 2H, CH2, 
7), 3.14 – 2.91 (m, 

2H, CH2, 
8), 2.46 – 1.00 (m, 28H, 14 CH2, 

9), 0.85 (t, J = 7.2 Hz, 3H, CH3, 
10). 

13C NMR (101 MHz, DMSO-D6) δ /ppm: 205.4, 172.1, 171.7, 169.1, 138.8, 114.6, 73.2, 

58.1, 38.0, 34.1, 33.2, 32.6, 31.5, 31.1, 30.1, 28.8, 28.7, 28.6, 28.5, 28.3, 26.7, 24.5, 

20.5, 19.4, 13.6. 

FAB-MS of [C25H43N2O5S]+: calculated: 483.2887, found: 483.2887. 

ESI-MS of [C25H42N2O5SNa]+: calculated: 505.2707, found: 505.2700. 

IR (ATR platinum diamond): [cm-1] = 3281.7, 2922.3, 2851.9, 1715.5, 1699.1, 1650.9, 

1544.1, 1364.2, 1307.9, 1218.2, 1185.7, 1056.8, 1022.3, 909.0, 846.7, 680.7, 550.8, 

403.2. 

Rf: (ethyl acetate) = 0.55. 
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2nd P-3CR of the 3rd and 4th building block: 

 83 

3.54 g of 82 (7.33 mmol, 1.00 eq.) were dissolved in 14.0 mL stabilized THF (0.52 M). 

Subsequently, 1.00 g of 3-mercaptopropionic acid 4 (9.47 mmol, 1.29 eq.) and 42.0 mg 

of DMPA 5 (0.16 mmol, 2.32 mol%) were added and the reaction mixture was irradiated 

with UV light at room temperature for one hour. The solvent was removed under 

reduced pressure and the residue was redissolved in 7.5 mL DCM (0.96 M). 

Subsequently, 2.19 g of 10-undecenal 2 (13.00 mmol, 1.80 eq.) and 1.34 g methyl 

isocyanoacetate 3e (14.67 mmol, 2.03 eq.) were added and the reaction mixture was 
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stirred for 24 hours at room temperature. The solvent was evaporated and the crude 

product was purified by column chromatography (hexane/ethyl acetate 5:1 ethyl 

acetate). Product 83 was obtained as slightly yellow oil in a yield of 85 % (5.27 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.40 (s, 1H, NH, 1), 8.21 (d, J = 6.4 Hz, 1H NH, 

2), 7.94 (s, 1H, NH, 3), 5.90 - 5.66 (m, 1H, CH, 4), 5.08 – 4.87 (m, 3H, CH2, CH, 5), 4.81 

(t, J = 5.9 Hz, 1H, CH, 6), 4.70 - 4.47 (m, 1H, CH, 7), 3.84 (d, J = 5.6 Hz, 2H, CH2, 
8), 

3.62 (s, 3H, OCH3, 
9), 3.47 – 3.18 (m, 2H, CH2, 

10), 3.16 – 2.89 (m, 2H, CH2, 
11), 2.80 – 

2.59 (m, 4H, 2 CH2, 
12), 2.44 – 0.97 (m, 48H, 24 CH2, 

13), 0.85 (t, J = 7.1 Hz, 3H, CH3, 

14). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 205.4, 172.1, 171.7, 170.9, 167.0, 169.9, 169.1, 

138.8, 114.6, 73.2, 73.0, 58.1, 51.7, 38.0, 34.4, 34.1, 33.2, 32.6, 31.4, 31.1, 31.0, 30.1, 

29.1, 29.0, 28.9, 28.9, 28.8, 28.7, 28.6, 28.5, 28.3, 28.2, 26.7, 26.2, 24.5, 24.2, 20.5, 

19.5, 13.6. 

FAB-MS of [C43H74N3O10S2]
+: calculated: 856.4810, found: 856.4811. 

ESI-MS of [C43H73N3O10S2Na]+: calculated: 878.4630, found: 878.4630. 

IR (ATR platinum diamond): [cm-1] = 3284.6, 2921.9, 2851.5, 1736.2, 1716.1, 1651.1, 

1540.8, 1436.2, 1365.8, 1215.8, 1185.0, 1056.7, 1022.2, 910.8, 847.5, 682.4, 550.0. 

Rf: (ethyl acetate) = 0.49. 
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Synthesis of furfurylisocyanide 3g: 

 3g 

5.08 g furfurylamine 84 (52.32 mmol, 1.00 eq.) were dissolved in 38.14 g ethyl formate 

(51.40 mmol, 9.84 eq.) and refluxed for eight hours. Subsequently, the excess of ethyl 

formate was evaporated under reduced pressure. The residue was redissolved in 

100 mL DCM (0.52 M) and 22 mL diisopropylamine 47 (30.47 g, 156.7 mmol, 3.00 eq.) 

were added and the mixture was cooled to 0 ° C. Then, 7 mL phosphorous oxychloride 

48 (4.26 g, 73.25 mmol, 1.40 eq.) were added dropwise. The mixture was allowed to 

warm to room temperature and was subsequently stirred for two hours. Then it was 

again cooled to 0 ° C and the reaction was quenched by addition of 250 mL water 

containing 60 g of potassium carbonate. The mixture was stirred for another 30 minutes 

at room temperature and then the organic layer was separated. The aqueous phase was 
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extracted twice with 100 mL of DCM. The combined organic layers were washed with 

water (2 x 100 mL) and with brine (100 mL) and dried over sodium sulfate. The solvent 

was evaporated under reduced pressure and the product was purified by column 

chromatography (hexane/ethyl acetate (10:1  8:1)) to afford the product 3g as a brown 

liquid in a yield of 67 % (3.74 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.42 (s, 1H, CH aromatic, 1), 6.37 (s, 2H, 2 CH 

aromatic, 2), 4.59 (s, 2H, CH2, 3). 

13C NMR (75 MHz, CDCl3) δ /ppm: 158.0, 145.6, 143.4, 110.8, 109.1, 38.9. 
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3rd P-3CR of the 3rd building block: 

 86 

2.01 g of 83 (2.35 mmol, 1.00 eq.) were dissolved in 5.0 mL stabilized THF (0.47 M). 

Subsequently, 0.30 g of 3-mercaptopropionic acid 4 (2.78 mmol, 1.18 eq.) and 20.4 mg 

of DMPA 5 (0.08 mmol, 3.38 mol%) were added and the reaction mixture was irradiated 

with UV light at room temperature for two hours. The solvent was removed under 

reduced pressure and the residue was redissolved in 2.5 mL DCM (0.94 M). 

Subsequently, 0.72 g of 10-undecenal 2 (4.27 mmol, 1.82 eq.) and 0.45 g furfuryl 

isocyanide 3g (4.21 mmol, 1.79 eq.) were added and the reaction mixture was stirred for 

24 hours at room temperature. The solvent was evaporated and the crude product was 

purified by column chromatography (hexane/ethyl acetate 3:1 ethyl acetate). Product 

86 was obtained as slightly yellow liquid in a yield of 79 % (2.31 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.43 (s, 2H, 2 NH, 1), 8.21 (d, J = 7.4 Hz, 1H, NH, 

2), 7.93 (t, J = 5.5 Hz, 1H, NH, 3), 7.55 (s, 1H, CH aromatic, 4), 6.37 (d, J = 1.4 Hz, 1H, 

CH aromatic, 5), 6.18 (d, J = 3.0 Hz, 1H, CH aromatic, 5), 5.87 – 5.67 (m, 1H, CH, 6), 

5.06 - 4.86 (m, 4H, CH2, 2 CH, 7), 4.81 (t, J = 6.2 Hz, 1H, CH, 8), 4.68 - 4.52 (m, 1H, CH, 

9), 4.26 (d, J = 5.6 Hz, 2H, CH2, 
10), 3.84 (d, J = 5.9 Hz, 2H, CH2, 

11), 3.62 (s, 3H, OCH3, 

12), 3.46 – 3.20 (m, 2H, CH2, 
13), 3.05 (d, J = 5.3 Hz, 2H, CH2, 

14), 2.69 (s, 8H, 4 CH2, 
15), 

2.43 – 1.00 (m, 68H, 34 CH2, 
16), 0.85 (t, J = 7.1 Hz, 3H, CH3, 

17). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 205.4, 172.2, 171.8, 171.0, 170.9, 170.0, 169.9, 

169.2, 152.1, 143.1, 138.8, 110.5, 106.6, 73.9, 72.5, 54.9, 52.7, 50.8, 38.0, 35.4, 34.9, 

34.4, 34.1, 33.2, 32.6, 31.4, 31.2, 31.0, 30.1, 29.3, 29.1, 29.0, 28.9, 28.8, 28.7, 28.6, 

28.4, 28.3, 28.2, 28.0, 27.8, 27.3, 26.8, 26.5, 26.3, 25.8, 24.5, 24.5, 24.3, 20.5, 19.5, 

14.3. 

ESI-MS of [C63H104N4O14S3Na]+: calculated: 1259.6603, found: 1259.6605. 
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IR (ATR platinum diamond): [cm-1] = 3285.6, 2919.6, 2849.7, 1735.6, 1654.3, 1540.3, 

1436.5, 1364.7, 1213.0, 1142.2, 1054.9, 1016.9, 911.5, 848.0, 721.8, 599.1, 430.7. 

Rf: (ethyl acetate) = 0.50. 

 

 

3rd P-3CR of the 4th building block: 

 87 

2.03 g of 83 (2.37 mmol, 1.00 eq.) were dissolved in 5.0 mL stabilized THF (0.47 M). 

Subsequently, 0.31 g of 3-mercaptopropionic acid 4 (2.89 mmol, 1.22 eq.) and 20.4 mg 

of DMPA 5 (0.08 mmol, 3.46 mol%) were added and the reaction mixture was irradiated 



Experimental Section 

 

262 

with UV light at room temperature for two hours. The solvent was removed under 

reduced pressure and the residue was redissolved in 2.5 mL DCM (0.86 M). 

Subsequently, 0.68 g of 10-undecenal 2 (4.04 mmol, 1.87 eq.) and 0.45 g naphthyl 

isocyanide 3h (2.91 mmol, 1.35 eq.) were added and the reaction mixture was stirred for 

30 hours at room temperature. The solvent was evaporated and the crude product was 

purified by column chromatography (hexane/ethyl acetate 3:1 ethyl acetate). Product 

87 was obtained as slightly yellow oil in a yield of 68 % (1.83 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 10.25 (s, 1H, NH, 1), 8.41 (t, J = 5.8 Hz, 1H, NH, 

2), 8.32 – 8.11 (m, 2H, CH aromatic, NH, 3, 4), 7.94 (t, J = 5.6 Hz, 1H, NH, 5), 7.90 - 7.69 

(m, 3H, 3 CH aromatic, 6), 7.66 – 7.53 (m, 1H, CH aromatic, 6), 7.44 (dt, J = 18.4, 6.8 

Hz, 2H, 2 H aromatic, 6), 5.87 - 5.63 (m, 1H, CH, 7), 5.12 - 4.85 (m, 4H, CH2, 2 CH, 8), 

4.80 (t, J = 6.2 Hz, 1H, CH, 9), 4.68 – 4.48 (m, 1H, CH, 10), 3.84 (d, J = 6.0 Hz, 2H, CH2, 

11), 3.62 (s, 3H, OCH3, 
12), 3.46 – 3.18 (m, 2H, CH2, 

13), 3.05 (dd, J = 11.1, 5.8 Hz, 2H, 

CH2, 
14), 2.80 - 2.60 (m, 8H, 4 CH2, 

15), 2.43 – 0.95 (m, 68H, 34 CH2, 
16), 0.85 (t, J = 7.2 

Hz, 3H, CH3, 
17). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 205.4, 172.1, 171.7, 171.2, 170.9, 167.0, 169.9, 

169.2, 168.4, 138.7, 136.0, 133.3, 129.9, 128.3, 127.4, 127.3, 126.4, 124.7, 120.1, 

115.8, 114.6, 73.8, 73.2, 73.0, 58.1, 51.7, 38.0, 34.4, 34.1, 33.2, 32.6, 31.5, 31.4, 31.3, 

31.1, 31.0, 30.1, 29.1, 29.1, 29.0, 28.9, 28.9, 28.8, 28.7, 28.6, 28.5, 28.3, 28.3, 26.7, 

26.3, 26.2, 24.7, 24.5, 24.3, 20.5, 19.4, 13.6. 

ESI-MS of [C68H106N4O13S3Na]+: calculated: 1305.6811, found: 1305.6818. 

IR (ATR platinum diamond): [cm-1] = 3290.9, 2923.0, 2851.8, 1738.4, 1654.6, 1586.1, 

1535.0, 1434.4, 1364.5, 1205.5, 1142.9, 1052.7, 911.7, 853.8, 815.1, 746.0, 720.5, 

474.2. 

Rf: (ethyl acetate) = 0.61. 
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Synthesis of acrylate-isocyanide 75: 

75 

8.70 g of 1,6-diisocyanohexane 73 (63.90 mmol, 3.09 eq.) were dissolved in 106 mL 

DCM (0.20 M) and subsequently, 1.49 g freshly distilled acrylic acid 74 (20.68 mmol, 

1.00 eq.) as well as 1.87 g acetaldehyde 50c (42.45 mmol, 2.05 eq.) were added. The 

mixture was stirred at room temperature for 30 hours and the solvent was evaporated 

under reduced pressure thereafter. The crude product was purified by column 

chromatography (hexane/ethyl acetate 3:1  1:3) to afford product 75 as a yellow oil in 

a yield of 77 % (4.01 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.53 – 6.38 (m, 1H, 0.5 CH2, 
1), 6.29 . 6.03 (m, 2H, 

CH, NH, 2), 5.98 – 5.85 (m, 1H, 0.5 CH2, 
3), 5.24 (q, J = 6.8 Hz, 1H, CH, 4), 3.45 – 3.30 
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(m, 2H, CH2, 
5), 3.25 (dd, J = 13.3, 6.9 Hz, 2H, CH2, 

6), 1.77 – 1.15 (m, 11H, CH3, 4 CH2, 

7). 

13C NMR (75 MHz, CDCl3) δ /ppm: 170.3, 164.8, 155.9, 132.3, 127.8, 70.8, 41.5, 39.1, 

29.4, 29.0, 26.0, 25.9, 17.9. 

ESI-MS of [C13H21N2O7]
+: calculated: 253.1547, found: 253.1546. 

IR (ATR platinum diamond): [cm-1] = 3306.5, 2934.9, 2859.7, 2146.7 (isocyanide), 

1725.6, 1655.4, 1535.4, 1448.3, 1405.0, 1371.3, 1291.8, 1260.5, 1182.5, 1081.0, 982.4, 

808.8, 673.1, 385.5. 

Rf: (ethyl acetate) = 0.55. 
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Aminolysis and Thiol-Michael addition of the 1st building block: 

88 

0.51 g of 78 (0.42 mmol, 1.00 eq.) were dissolved in 1.0 mL chloroform (0.42 M) and 

subsequently, 65.0 mg of benzylamine 24b (0.61 mmol, 1.55 eq.) were added and the 

mixture was stirred at room temperature for seven hours. Then, 0.16 g of the acrylate-

isocyanide 75 (0.63 mmol, 1.49 eq.), dissolved in 0.1 mL chloroform, were added and 

the mixture was stirred over night at room temperature. The product 88 was isolated by 

column chromatography (DCM/acetone 4:1  2:1) as a slightly yellow oil in a yield of 

69 % (0.43 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.42 (s, 1H, NH, 1), 8.08 (d, J = 7.6 Hz, 1H, NH, 

2), 7.91 (m, 2H, 2 NH, 3), 7.74 (d, J = 8.0 Hz, 1H, NH, 4), 7.51 (s, 1H, NH, 5), 7.37 – 7.10 

(m, 5H, 5 CH aromatic, 6), 5.87 – 5.67 (m, 1H, CH, 7), 5.07 - 4.68 (m, 6H, CH2, 4 CH, 8), 

4.43 - 4-17 (m, 3H, CH2, CH, 9), 3.47 (s, 3H, CH2, CH, 10), 3.15 - 2.92 (m, 4H, 2 CH2, 
11), 

2.83 – 2.58 (m, 12H, 6 CH2, 
12), 2.39 – 0.94 (m, 102H, 4 CH3, 45 CH2, 

13), 0.84 (t, J = 

6.7 Hz, 3H, CH3, 
14). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 172.1, 171.8, 171.3, 171.0, 170.8, 169.6, 169.0, 

168.7, 168.1, 139.4, 138.8, 128.2, 127.0, 114.6, 73.4, 69.9, 52.0, 50.2, 47.5, 42.0, 38.2, 

34.4, 34.2, 33.2, 32.3, 31.6, 31.5, 31.0, 29.1, 29.0, 28.9, 28.9, 28.8, 28.7, 28.7, 28.6, 

28.6, 28.5, 28.4, 28.3, 28.2, 27.5, 26.5, 26.4, 26.3, 25.9, 25.5, 25.4, 24.6, 24.5, 21.8, 

17.7, 13.9. 

ESI-MS of [C86H145N7O14S3Na]+: calculated: 1618.9904, found: 1618.9924. 

IR (ATR platinum diamond): [cm-1] = 3305.0, 2923.6, 2852.7, 2146.4 (isocyanide), 

1738.1, 1649.6, 1533.1, 1450.6, 1364.0, 1230.9, 1141.0, 1080.8, 913.3, 855.3, 725.5, 

698.1, 541.0, 472.0. 
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Rf: (DCM/acetone (2:1)) = 0.78. 

 

 

Aminolysis and Thiol-Michael addition of the 2nd building block: 

89 

1.59 g of product 81 (1.37 mmol, 1.00 eq.) were dissolved in 3.0 mL chloroform (0.46 M) 

and subsequently, 0.25 g of benzylamine 24b (2.37 mmol, 1.73 eq.) were added and the 

mixture was stirred at room temperature for nine hours. Then, 0.81 g of the acrylate-

isocyanide 75 (3.22 mmol, 2.35 eq.), dissolved in 0.4 mL chloroform, were added and 

the mixture was stirred over night at room temperature. The product 89 was isolated by 
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column chromatography (DCM/acetone 12:1  4:1) as a slightly yellow oil in a yield of 

55 % (1.16 g). 

1H NMR (300 MHz, DMSO-D6) δ /ppm: 9.87 (s, 1H, NH, 1), 8.52 - 8.32 (m, 1H, NH, 2), 

8.08 (d, J = 6.7 Hz, 1H, NH, 3), 7.91 (d, J = 5.2 Hz, 1H, NH, 4), 7.81 (d, J = 7.7 Hz, 1H, 

NH, 5), 7.56 – 7.39 (m, 3H, 2 CH aromatic, NH, 6), 7.36 – 7.13 (m, 5H, 5 CH aromatic, 7), 

6.87 (d, J = 8.9 Hz, 2H, 2 CH aromatic, 8), 5.88 – 5.66 (m, 1H, CH, 9), 5.06 – 4.85 (m, 

4H, CH2, 2 CH, 10), 4.78 (t, J = 6.1 Hz, 2H, 2 CH, 11), 4.43 – 4.17 (m, 3H, CH2, CH, 12), 

3.71 (s, 3H, OCH3, 
13), 3.59 - 3.40 (m, 3H, CH2, CH, 14), 3.16 – 2.93 (m, 2H, CH2, 

15), 

2.66 (dd, J = 23.0, 6.5 Hz, 12H, 6 CH2, 
16), 2.40 – 0.89 (m, 94H, 4 CH3, 41 CH2, 

17). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 172.2, 171.8, 171.3, 171.1, 170.8, 170.7, 169.6, 

168.5, 168.3, 167.6, 155.5, 139.4, 138.8, 131.5, 128.2, 127.0, 126.7, 121.1, 114.6, 

113.8, 73.6, 73.2, 69.9, 55.1, 50.2, 47.5, 42.0, 41.0, 38.2, 34.4, 34.2, 34.0, 33.2, 32.7, 

32.2, 31.5, 31.4, 31.0, 29.1, 29.0, 28.9, 28.8, 28.7, 28.6, 28.6, 28.5, 28.4, 28.3, 28.2, 

27.5, 26.3, 25.9, 25.4, 25.3, 25.2, 24.6, 24.5, 20.7, 17.7. 

ESI-MS of [C88H141N7O15S3Na]+: calculated: 1654.9540, found: 1654.9634. 

IR (ATR platinum diamond): [cm-1] = 3304.1, 2923.2, 2852.3, 2145.6 (isocyanide), 

1738.0, 1650.6, 1510.8, 1452.3, 1363.6, 1233.8, 1143.7, 1032.5, 830.1, 698.4, 429.2. 

Rf: (ethyl acetate) = 0.62. 
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Aminolysis and Thiol-Michael addition of the 3rd building block: 

90 

1.95 g of product 86 (1.57 mmol, 1.00 eq.) were dissolved in 4.0 mL chloroform (0.44 M) 

and subsequently, 0.36 g of benzylamine 24b (3.33 mmol, 1.89 eq.) were added and the 

mixture was stirred at room temperature for nine hours. Then, 1.13 g of the acrylate-

isocyanide 75 (4.46 mmol, 2.54 eq.), dissolved in 1.0 mL chloroform, were added and 

the mixture was stirred over night at room temperature. The product 90 was isolated by 

column chromatography (DCM/acetone 12:1  3:1) as a slightly yellow oil in a yield of 

50 % (1.25 g). 
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1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.43 (dd, J = 10.7, 5.5 Hz, 3H, 3 NH, 1), 8.08 (d, 

J = 6.5 Hz, 1H, NH, 2), 7.93 (d, J = 5.3 Hz, 2H, 2 NH, 3), 7.55 (s, 1H, CH aromatic, 4), 

7.39 – 7.11 (m, 5H, 5 CH aromatic, 5), 6.37 (s, 1H, CH aromatic, 6), 6.19 (s, 1H, CH 

aromatic, 6), 5.89 - 5.67 (m, 1H, CH, 7), 5.10 - 4.74 (m, 6H, CH2, 4 CH, 8), 4.47 - 4.13 (m, 

5H, 2 CH2, CH, 9), 3.84 (d, J = 5.5 Hz, 2H, CH2, 
10), 3.66 (s, 3H, OCH3, 

11), 3.47 (s, 2H, 

CH2, 
12), 3.19 - 2.91 (m, 4H, 2 CH2, 

13), 2.69 (s, 12H, 4 CH3, 
14), 2.42 – 0.97 (m, 81H, 

CH3, 39 CH2, 
16), 0.85 (t, J = 7.0 Hz, 3H, CH3, 

16). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 172.2, 171.8, 171.3, 171.3, 171.0, 170.9, 170.8, 

170.3, 170.0, 169.9, 169.6, 169.2, 169.1, 152.1, 142.0, 139.4, 138.8, 128.2, 127.0, 

126.7, 114.6, 110.4, 106.6, 73.2, 73.0, 69.9, 59.8, 52.0, 51.7, 42.0, 41.1, 38.2, 38.0, 

35.4, 34.4, 34.2, 34.1, 33.2, 32.8, 32.1, 31.5, 31.4, 31.1, 31.0, 29.1, 29.0, 28.9, 28.8, 

28.8, 28.7, 28.7, 28.5, 28.4, 28.3, 28.2, 27.5, 26.3, 26.2, 25.9, 25.4, 25.3, 24.5, 24.4, 

24.2, 20.8, 20.6, 19.4, 17.7, 14.1, 13.6. 

ESI-MS of [C83H133N7O17S3Na]+: calculated: 1618.8812, found: 1618.8799. 

IR (ATR platinum diamond): [cm-1] = 3285.7, 2921.3, 2851.0, 2147.1 (isocyanide), 

1736.1, 1655.3, 1535.8, 1436.8, 1364.9, 1174.2, 1142.5, 912.3, 722.6, 698.5, 446.2. 

Rf: (ethyl acetate) = 0.48. 
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Aminolysis and Thiol-Michael addition of the 4th building block: 

91 

1.32 g of product 87 (1.06 mmol, 1.00 eq.) were dissolved in 2.3 mL chloroform (0.46 M) 

and subsequently, 0.21 g of benzylamine 24b (1.97 mmol, 1.86 eq.) were added and the 

mixture was stirred at room temperature for nine hours. Then, 0.69 g of the acrylate-

isocyanide 75 (2.72 mmol, 2.57 eq.), dissolved in 1.0 mL chloroform, were added and 

the mixture was stirred over night at room temperature. The product 91 was isolated by 

column chromatography (DCM/acetone 12:1  3:1) as a slightly yellow oil in a yield of 

51 % (0.88 g). 
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1H NMR (300 MHz, DMSO-D6) δ /ppm: 10.24 (s, 1H, NH, 1), 8.49 - 8.33 (m, 2H, 2 NH, 2), 

8.28 (s, 1H, CH aromatic, 3), 8.08 (d, J = 7.4 Hz, 1H, NH, 4), 7.98 - 7.75 (m, 5H, 2 NH, 3 

CH aromatic, 5, 6), 7.60 (dd, J = 8.9, 1.7 Hz, 1H, CH aromatic, 6), 7.52 - 7.35 (m, 2H, 2CH 

aromatic, 6), 7.35 – 7.15 (m, 5H, 5 CH aromatic, 7), 5.89 - 5.62 (m, 1H, CH, 8), 5.13 – 

4.73 (m, 6H, CH2, 4 CH, 9), 4.48 - 4.18 (m, 3H, CH2, CH, 10), 3.93 – 3.74 (m, 2H, CH2, 

11), 3.62 (s, 3H, OCH3 
12), 3.52 – 3.39 (m, 2H, CH2, 

13), 3.19 – 2.88 (m, 4H, 2 CH2, 
14), 

2.85 – 2.59 (m, 12H, 6 CH2, 
15), 2.41 – 0.96 (m, 81H, CH3, 39 CH2, 

16), 0.84 (t, J = 7.2 

Hz, 3H, CH3, 
17). 

13C NMR (75 MHz, DMSO-D6) δ /ppm: 172.2, 171.8, 171.3, 171.3, 171.2, 170.9, 170.8, 

170.3, 170.0, 169.9, 169.6, 169.2, 168.4, 155.5, 155.4, 139.4, 138.7, 136.0, 133.3, 

129.9, 128.4, 128.2, 127.4, 127.3, 127.0, 126.7, 126.4, 124.7, 120.1, 115.8, 114.6, 73.8, 

73.2, 73.0, 69.9, 59.8, 52.0, 51.7, 42.0, 38.2, 38.0, 34.4, 34.2, 34.1, 33.2, 32.8, 32.7, 

32.2, 31.5, 31.4, 31.3, 31.1, 31.0, 29.1, 29.1, 29.0, 28.9, 28.9, 28.8, 28.8, 28.7, 28.6, 

28.5, 28.4, 28.3, 28.3, 27.5, 26.3, 26.2, 25.9, 25.4, 25.3, 24.7, 24.5, 24.2, 20.8, 20.6, 

19.4, 17.7, 14.1, 13.6. 

ESI-MS of [C88H135N7O16S3Na]+: calculated: 1664.9020, found: 1664.9134. 

IR (ATR platinum diamond): [cm-1] = 3286.0, 2922.5, 2851.9, 2147.2 (isocyanide), 

1736.4, 1655.3, 1632.9, 1537.2, 1434.8, 1362.9, 1173.1, 1141.8, 910.6, 855.9, 815.1, 

699.1, 474.1. 

Rf: (ethyl acetate) = 0.55. 
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Synthesis of the Carboxylic Acid Trimer by the Monomer Approach 

1st P-3CR: 

92 

2.07 g stearic acid 1a (7.28 mmol, 1.00 eq.) were dissolved in 8.0 mL DCM (0.91 M) and 

1.02 g isovaleraldehyde 50e (11.90 mmol, 1.63 eq.) as well as 3.31 g of monomer 49 

(11.0 mmol, 1.51 eq.) were added. The mixture was stirred at room temperature for 24 

hours and subsequently the solvent was removed under reduced pressure. The crude 

product was purified by column chromatography (hexane/ethyl acetate 10:1  5:1) to 

afford product 92 as a white solid in a yield of 85 % (4.01 g). Furthermore, the excess of 

the monomer 49 was partially recovered (0.53 g, 0.15 eq.) and can be reused. 
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1H NMR (300 MHz, CDCl3) δ /ppm: 7.37 – 7.28 (m, 5H, 5 CH aromatic, 1), 5.99 (t, J = 

5.3 Hz, 1H, NH, 2), 5.24 – 5.13 (m, 1H, CH, 3), 5.10 (s, 2H, CH2, 
4), 3.23 (dd, J = 13.4, 

6.7 Hz, 2H, CH2, 
5), 2.44 – 2.23 (m, 4H, 2 CH2, 

6), 1.78 – 1.04 (m, 49 H, 24 CH2, CH, 7), 

1.00 – 0.71 (m, 9H, 3 CH3, 
8). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.7, 170.3, 136.3, 128.6, 128.2, 72.7, 66.1, 

41.0, 39.3, 34.4, 32.0, 29.8, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.4, 29.4, 29.3, 29.2, 

29.2, 26.9, 25.0, 24.7, 23.2, 22.8, 21.9, 14.2. 

HRMS-FAB-MS of [C42H74NO5]
+: calculated: 672.5562, found: 672.5563. 

ESI-MS of [C42H74NO5Na]+: calculated: 694.5381, found: 694.5385 

IR (ATR platinum diamond): [cm-1] = 3262.7, 2916.4, 2849.6, 1736.9, 1654.9, 1560.6, 

1466.1, 1371.9, 1272.5, 1253.1, 1233.1, 1212.8, 1165.7, 1110.8, 722.7, 694.5. 

Rf: (hexane/ethyl acetate (5:1)) = 0.37. 
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2nd P-3CR: 

93 

3.12 g of 92 (4.64 mmol, 1.00 eq.) were dissolved in 18.0 mL of a 2:1-mixture of ethyl 

acetate and methanol (0.32 M) and 0.29 g (9.29 %w) palladium on activated charcoal 

were added. Subsequently, the mixture was purged with hydrogen (balloon) and stirred 

under hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and 

the solvent was evaporated under reduced pressure. The residue was redissolved in 

5.0 mL DCM (0.93 M) and 0.79 g heptaldehyde 50b (6.94 mmol, 1.50 eq.) as well as 

2.11 g of monomer 49 (7.00 mmol, 1.51 eq.) were added. The mixture was stirred at 

room temperature for 24 hours and subsequently the solvent was removed under 

reduced pressure. The crude product was purified by column chromatography 

(hexane/ethyl acetate 8:1  5:2) to afford product 93 as a white solid in a yield of 87 % 

(3.96 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.38 – 7.27 (m, 5H, 5 CH aromatic, 1), 6.13 – 5.94 

(m, 2H, 2 NH, 2), 5.21 – 5.04 (m, 4H, CH2, 2 CH, 3), 3.32 – 3.12 (m, 4H, 2 CH2, 
4), 2.46 - 

2.24 (m, 6H, 3 CH2, 
5), 2.03 – 1.09 (m, 75H, 37 CH2, CH, 6), 0.97 – 0.76 (m, 12H, 4 CH3, 

7). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.7, 172.5, 170.3, 169.9, 136.2, 128.6, 

128.2, 74.0, 72.7, 66.1, 40.9, 39.3, 34.4, 32.0, 31.7, 29.8, 29.7, 29.7, 29.6, 29.6, 29.5, 

29.5, 29.4, 29.3, 29.3, 29.2, 29.1, 29.0, 26.9, 25.0, 24.7, 24.6, 23.2, 22.8, 22.6, 21.9, 

14.2, 14.1. 

ESI-MS of [C61H108N2O8Na]+: calculated: 1019.7998, found: 1019.7997 
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IR (ATR platinum diamond): [cm-1] = 3268.5, 3089.6, 2917.0, 2850.1, 1738.3, 1658.7, 

1548.9, 1465.6, 1374.5, 1310.7, 1272.7, 1253.0, 1233.1, 1213.2, 1190.8, 1165.2, 

1112.1, 721.6, 696.3, 480.6. 

Rf: (hexane/ethyl acetate (5:2)) = 0.51. 
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3rd P-3CR: 

94 

3.66 g of 93 (3.72 mmol, 1.00 eq.) were dissolved in 11.2 mL of a 2:1-mixture of ethyl 

acetate and methanol (0.33 M) and 0.25 g (6.96 %w) palladium on activated charcoal 

were added. Subsequently, the mixture was purged with hydrogen (balloon) and stirred 

under hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and 

the solvent was evaporated under reduced pressure. The residue (3.04 g, 3.34 mmol, 

1.00 eq.) was redissolved in 3.5 mL DCM (0.95 M) and 0.32 g acetaldehyde 50c 

(7.27 mmol, 2.18 eq.) as well as 1.56 g of monomer 49 (5.17 mmol, 1.55 eq.) were 

added. The mixture was stirred at room temperature for 24 hours and subsequently the 

solvent was removed under reduced pressure. The crude product was purified by 

column chromatography (hexane/ethyl acetate 7:1  3:2) to afford product 94 as a 

white solid in a yield of 99 % (4.08 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 7.38 – 7.28 (m, 5H, 5 CH aromatic, 1), 6.26 - 5.89 

(m, 3H, 3 NH, 2), 5.27 – 4.97 (m, 5H, CH2, 3 CH, 3), 3.31 – 3.11 (m, 6H, 3 CH2, 
4), 2.45 – 

2.22 (m, 8H, 4 CH2, 
5), 1.96 – 1.00 (m, 94H, CH3, 45 CH2, CH, 6), 0.97 – 0.73 (m, 12H, 4 

CH3, 
7). 

13C NMR (75 MHz, CDCl3) δ /ppm: 173.7, 172.7, 172.5, 172.3, 170.4, 170.3, 169.9, 

143.3, 136.2, 128.6, 128.2, 74.0, 72.7, 70.5, 66.1, 40.9, 39.3, 39.3, 39.2, 34.4, 32.0, 

31.7, 29.8, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.3, 29.3, 29.2, 29.0, 26.9, 25.0, 25.9, 

24.9, 24.8, 24.6, 23.2, 22.7, 22.6, 21.8, 18.0, 14.2, 14.1. 

ESI-MS of [C74H133N3O11Na]+: calculated: 1274.9832, found: 1274.9844. 
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IR (ATR platinum diamond): [cm-1] = 3270.2, 3089.6, 2917.3, 2850.2, 1738.5, 1658.2, 

1543.5, 1465.3, 1371.6, 1272.6, 1252.8, 1233.1, 1213.2, 1165.2, 1111.7, 721.4, 696.3, 

380.4. 

Rf: (hexane/ethyl acetate (2:1)) = 0.38. 

 

 

Deprotection of 94: 

95 

3.87 g 94 (3.13 mmol, 1.00 eq.) were dissolved in 10.0 mL of a 2:1 mixture of ethyl 

acetate and methanol (0.31 M) and 0.38 g (9.80 wt%) palladium on activated charcoal 
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were added. Subsequently, the mixture was purged with hydrogen (balloon) and stirred 

under hydrogen atmosphere overnight. The heterogeneous catalyst was filtered off and 

the solvent was evaporated under reduced pressure. The product 95 was obtained as a 

white solid in a yield of 98 % (3.53 g). 

1H NMR (300 MHz, CDCl3) δ /ppm: 6.26 - 5.84 (m, 3H, 3 NH, 1), 5.28 – 5.04 (m, 3H, 3 

CH, 2), 3.33 – 3.11 (m, 6H, 3 CH2, 
3), 2.49 – 2.23 (m, 8H, 4 CH2, 

4), 1.90 – 1.02 (m, 94H, 

CH3, 45 CH2, CH, 5), 0.99 - 0.58 (m, 12H, 4 CH3, 
5). 

13C NMR (75 MHz, CDCl3) δ /ppm: 177.8, 172.8, 172.6, 172.4, 170.6, 170.5, 170.2, 

74.0, 72.7, 70.5, 40.9, 39.3, 34.4, 34.0, 32.0, 31.7, 29.8, 29.8, 29.7, 29.6, 29.5, 29.5, 

29.4, 29.3, 29.3, 29.2, 29.2, 29.1, 29.0, 26.9, 25.1, 25.0, 24.9, 24.8, 24.6, 23.2, 22.8, 

22.6, 21.9, 18.0, 14.2, 14.1. 

FAB-MS of [C68H128N3O11]
+: calculated: 1162.9, found: 1162.1. 

ESI-MS of [C142H253N7O23Na]+: calculated: 1184.9363, found:1184.9381. 

IR (ATR platinum diamond): [cm-1] = 3280.4, 3084.4, 2915.7, 2848.1, 1743.2, 1653.2, 

1544.1, 1464.6, 1369.5, 1254.0, 1233.3, 1213.1, 1159.4, 1102.1, 720.0, 488.1, 397.5. 
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Coupling of the Carboxylic Acid Trimer 95 and the Isocyanide Building Block 88: 

 

96 

0.33 g of carboxylic acid trimer 95 (0.28 mmol, 1.00 eq.) were dissolved in 1.0 mL DCM 

(0.28 M). Subsequently, 0.47 g of the isocyanide-tetramer 88 (0.30 mmol, 1.05 eq.), as 

well as 0.17 g of propionaldehyde 50k (2.98 mmol, 10.60 eq.) were added and the 

reaction mixture was stirred for 48 hours at room temperature. The solvent was 

evaporated under reduced pressure and the residue was purified by column 

chromatography (hexane/ethyl acetate 6:1  1:2). The product 96 was obtained as 

viscous oil in a yield of 80 % (0.63 g). 
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1H NMR (300 MHz, DMSO-D6) δ /ppm: 8.41 (s, 1H, NH, 1), 8.07 (d, J = 8.1 Hz, 1H, NH, 

1), 7.99 - 7.80 (m, 6H, 6 NH, 1), 7.72 (d, J = 7.9 Hz, 1H, NH, 1), 7.50 (s, 1H, NH, 1), 7.35 

– 7.12 (m, 5H, 5 CH aromatic, 2), 5.89 – 5.67 (m, 1H, CH, 3), 5.01 - 4.63 (m, 10H, CH2, 8 

CH, 4), 4.44 – 4.18 (m, 3H, CH2, CH, 5), 3.49 (s, 1H, CH, 6), 3.17 - 2.87 (m, 12H, 6 CH2, 

7), 2.80 – 2.59 (m, 12H, 6 CH2, 
8), 2.41 – 0.95 (m, 206H, 5 CH3, 95 CH2, CH, 9), 0.85 (m, 

18H, 6 CH3, 
10). 

13C NMR (101 MHz, DMSO-D6) δ /ppm: 172.4, 172.2, 172.1, 171.8, 171.3, 170.9, 170.7, 

169.8, 169.6, 169.5, 169.1, 169.0, 168.7, 168.1, 139.4, 138.8, 128.2, 127.0, 114.6, 73.4, 

50.3, 38.2, 38.2, 34.4, 34.3, 33.4, 33.2, 32.3, 32.1, 31.5, 31.3, 31.2, 31.1, 29.1, 29.0, 

28.9, 28.8, 28.7, 28.6, 28.6, 28.5, 28.5, 28.4, 28.3, 28.3, 28.2, 28.2, 26.4, 26.3, 26.2, 

26.1, 26.0, 25.9, 25.2, 24.6, 24.5, 24.4, 24.3, 24.1, 22.9, 22.1, 22.0, 21.8, 21.6, 21.5, 

20.7, 17.7, 17.6, 13.9, 13.8. 

ESI-MS of [C157H278N10O26S3 Na]+: calculated: 2839.9827, found: 2839.9897. 

IR (ATR platinum diamond): [cm-1] = 3303.8, 2922.3, 2852.0, 1739.5, 1650.7, 1534.9, 

1435.9, 1365.7, 1231.5, 1148.1, 909.0, 722.0, 698.1, 397.3. 

Rf: (ethyl acetate) = 0.62. 
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7 Abbreviations 

3-CR three-component reaction 

4-CR four-component reaction 

5-CR five-component reaction 

ADMET acyclic diene metathesis polymerization 

ATRA Kharash reaction, atom transfer radical addition 

ATRP atom transfer radical polymerization 

B-3CR Biginelli three-component reaction 

Bn benzyl 

CPG controlled pore glass 

CuAAC Cu(I)-catalyzed azide-alkyne cycloaddition 

CuMCR copper catalyzed multicomponent reaction 

DAR Diels-Alder reaction 

DCC N-N'-dicyclohexylcarbodiimide 

DCM dichloromethane 

de diastereomeric excess 

DFT density functional theory 

DIBAL-H diisobutylaluminium hydride 

DIC diisopropylcarbodiimide 

DMAP 4-dimethylaminopyridine 

DMF dimethylformamide 

DMPA 2,2-dimethoxyphenyl-2-acetophenone 

DMTr dimethoxytrityl 

DNA desoxyribo nucleic acid 

DP degree of polymerization 
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DTS DNA-templated synthesis 

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

ee enantiomeric excess 

ESI-MS electrospray ionisation mass spectrometry 

FAB fast atom bombardement 

Fmoc 9-fluorenylmethyloxycarbonyl 

GC gas chromatography 

GPC gel permeation chromatography 

H-3CR Hanztsch three-component reaction 

H-4CR Hantzsch four-component reaction 

HBTU N-[(1H-benzotriazol-1-yl) (dimethylamino)methylene]-N-
methylmethan-aminium hexafluorophosphate  

HPLC high-performance liquid chromatography 

HRMS high resolution mass spectrometry 

HWE Horner-Wadsworth-Emmons 

IBX 2-iodoxybenzoic acid 

IEG iterative exonential growth 

IMCR(s) isocyanide-based multicomponent reaction(s) 

IR infrared 

kDA kilo Dalton 

M-3CR Mannich three-component reaction 

MCR(s) multicomponent reaction(s) 

MS mass spectrometry 

MWD molecular weight distribution 

NHS N-hydroxysuccinimidyl ester 

NMP nitroxide mediated polymerization 
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NMR nuclear magnetic resonance 

OPV oligo(phenylene-vinylene) 

P-3CR Passerini three-component reaction 

PDI polydispersity index 

PEG poly(ethylene glycol) 

PG protecting group 

PNA peptide nucleic acid 

PSS ortho-pyridyl-disulfide 

PyBOP benzotriazol-1-yl-oxytripyrrolidino phosphonium 
hexafluorophosphate  

pybox bis-(oxazolinyl)pyridine 

RAFT reversible addition fragmentation chain transfer polymerization 

RCM ring closing metathesis 

RDRP reversible deactivation radical polymerization 

RNA ribonucleic acid 

ROMP ring opening metathesis polymerization 

ROP ring opening polymerization 

S-3CR Strecker three-component reaction 

SEC size exclusion chromatography 

SM self metathesis 

SPPS solid phase peptide synthesis 

SUMI(s) single unit monomer insertion(s) 

TADDOL α,α,α',α'-tetraaryl-2,2-disubstituted 1,3-dioxolane-4,5-dimethanol 

TBAF tetra-n-butylammonium fluoride 

TBS tert-butyldimethylsilyl 

TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl 
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THF tetrahydrofuran 

TIPS triisopropylsilyl 

TOM triisopropylsilyl oxy methyl 

TS transition state 

U-4CR Ugi four-component reaction 

U-5CR Ugi five-component reaction 

UCST upper critical solution temperature 

UV ultra violet 
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