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ABSTRACT

Molecular sequences in public databases are mostly
annotated by the submitting authors without further
validation. This procedure can generate erroneous
taxonomic sequence labels. Mislabeled sequences
are hard to identify, and they can induce downstream
errors because new sequences are typically anno-
tated using existing ones. Furthermore, taxonomic
mislabelings in reference sequence databases can
bias metagenetic studies which rely on the taxon-
omy. Despite significant efforts to improve the qual-
ity of taxonomic annotations, the curation rate is
low because of the labor-intensive manual curation
process. Here, we present SATIVA, a phylogeny-
aware method to automatically identify taxonomi-
cally mislabeled sequences (‘mislabels’) using sta-
tistical models of evolution. We use the Evolution-
ary Placement Algorithm (EPA) to detect and score
sequences whose taxonomic annotation is not sup-
ported by the underlying phylogenetic signal, and
automatically propose a corrected taxonomic classi-
fication for those. Using simulated data, we show that
our method attains high accuracy for identification
(96.9% sensitivity/91.7% precision) as well as cor-
rection (94.9% sensitivity/89.9% precision) of misla-
bels. Furthermore, an analysis of four widely used mi-
crobial 16S reference databases (Greengenes, LTP,
RDP and SILVA) indicates that they currently contain
between 0.2% and 2.5% mislabels. Finally, we use
SATIVA to perform an in-depth evaluation of alterna-
tive taxonomies for Cyanobacteria. SATIVA is freely
available at https://github.com/amkozlov/sativa.

INTRODUCTION

Taxonomy is the science of classifying and naming groups
of organisms, usually based on shared characteristics
and/or presumed natural relatedness. Taxonomies are of
fundamental importance for biological, medical and envi-
ronmental research. Furthermore, they play a key role in
areas such as invasive species management (1) or trade fa-
cilitation (2).

Although first attempts to classify living organisms can
be traced back to antiquity (e.g. Aristotle), modern taxon-
omy has its origin in the work of Carl Linnaeus. His unique
binomial system, that is still being used today, standardized
species naming across all domains of life, from bacteria to
animals. However, taxonomic classification methods have
witnessed a paradigm change over the last decades, driven
by progress in molecular biology and bioinformatics. In-
stead of exclusively relying on, e.g. morphological or phys-
iological similarities among organisms, taxonomists now
typically also take into account their phylogenetic relation-
ships as inferred from molecular data (DNA or amino acid
sequences).

While molecular phylogenies offer a more robust frame-
work for devising taxonomies, they do exhibit some poten-
tial pitfalls. Firstly, a phylogeny essentially represents an
evolutionary hypothesis, which is subject to the amount and
quality of sequence data, the alignment quality as well as the
inference method and parameters. Therefore, taxonomies
that are based on phylogenies need to be updated as new se-
quences and methods become available. This is often not the
case. Furthermore, problems inherent to molecular data,
such as chimeric and/or low quality sequences (3,4), may af-
fect phylogenetic inferences. Finally, human error is always
present; wrong cultures for organisms or mislabels in public
databases can further complicate the phylogenetic analysis
and the subsequent taxonomic annotation.
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Microbial organisms, collectively Bacteria, Archaea and
microscopic Eukaryota, represent the most diverse group
of living organisms. Unfortunately, microbial organisms are
notoriously difficult to characterize as less than 1% of the
microbes have been successfully cultivated so far (5). There-
fore, a major breakthrough in the field of microbial tax-
onomies was the use of the ribosomal rRNA gene (particu-
larly the small subunit thereof, the SSU which is called 16S
rRNA for Bacteria and Archaea and 18S rRNA for Eukary-
ota). Carl Woese recognized that molecular evidence would
revolutionize the field of bacterial phylogeny and taxonomy,
since the approach could replace the rather uninformative
comparative anatomy and physiology approaches (6) used
at that time. Molecular methods allowed researchers to elu-
cidate the evolutionary relationships among distant micro-
bial lineages, leading to a unified classification of life into
three domains (the ‘three-domain system’).

Norman R. Pace (7) further extended Woese’s work
through the development of environmental PCR, enabling
the amplification of rRNAs directly from environmental
samples and assessments of microbial diversity at a molecu-
lar scale (8,9). Moreover, recent studies correlated changes
in the gut microbial composition with human conditions
such as obesity, diabetes and inflammatory bowel disease
(10–12). The prerequisite for carrying out such environmen-
tal studies is the availability of a reliable taxonomic classifi-
cation of the environmental sequences. In turn, this requires
a stable and well-curated taxonomy for the corresponding
reference database sequences.

From a computational point of view, there are two
distinct approaches to microbial taxonomy. First, knowl-
edge bases such as the List of Prokaryotic names with
Standing in Nomenclature (LPSN) (13), the Index Fun-
gorum (www.indexfungorum.org) or the Integrated Tax-
onomic Information System (www.itis.gov) provide infor-
mation about taxonomy and nomenclature. Second, se-
quence databases such as SILVA (14), RDP-II (Ribosomal
Database Project, 15), Greengenes (16), EzTaxon (17), PR2
(18) or UNITE (19) maintain reference collections of tax-
onomically annotated sequences. Mislabels are especially
problematic for sequence databases, where incorrect an-
notations are commonly associated with the classification
algorithm being used or with low-quality sequence data.
However, taxonomic errors may also occur in knowledge
bases, e.g. due to initial misidentification of a species, or due
to insufficient external sequence data for correctly arrang-
ing taxa. These errors are then propagated to the sequence
databases which rely on the knowledge bases for their tax-
onomies. The iterative update procedures can further am-
plify the problem, since potentially incorrect annotations
of existing sequences are used to classify new sequences. Of
course, such errors can be eliminated by means of manual
curation and continuous re-assessment of old classifications
based on the new data. However, growing database size
makes this approach less practical: some erroneous annota-
tions might escape the curator’s attention, and thus persist
in the database and propagate into further releases (see Sup-
plementary Methods for an example). Therefore, we think
that computational methods based on de novo phylogenies,
such as tax2tree (16) and the method proposed here, can
be of great value for preventing error propagation.

For some organism groups, a community-driven ap-
proach to curation has proved to be successful. Notably,
UNITE provides a web platform for third-party annotation
of fungal ITS sequences (20). Within such a system, work
sharing and improved support via appropriate software al-
low to speed up curation substantially (21). However, this
approach is subject to the willingness of the respective com-
munity to invest time and effort into taxonomic curation.
Although changing taxonomic labels per se is fairly easy in
systems like UNITE, the most time-consuming part still re-
mains: the identification of problematic sequences as well as
coming up with the new, corrected labels for them. There-
fore, we believe that tools offering automatic recommenda-
tions for those two fundamental tasks will be beneficial for
online and offline curation alike.

Here, we propose a novel method for identifying pu-
tative mislabels in taxonomies. Motivated by the current
phylogeny-aware approach to taxonomy, we consider topo-
logical incongruence between the taxonomic and the phylo-
gentic tree as an indication that some of the sequences might
be mislabeled. Hence, we use the Evolutionary Placement
Algorithm (EPA) (22) to identify sequences whose taxo-
nomic and phylogenetic placements are inconsistent.

MATERIALS AND METHODS

SATIVA pipeline for taxonomy curation

We implemented our taxonomic curation method in
a pipeline called SATIVA (Semi-Automatic Taxonomy
Improvement and Validation Algorithm, see Figure 1). It is
open-source and freely available under https://github.com/
amkozlov/sativa. In this section, we briefly describe the
method and provide some implementation details.

Building a taxonomically-labeled reference tree. Using an
aligned set of sequences with taxonomic annotations, we
initially build a rooted, multifurcating tree that represents
the underlying taxonomy. In this tree (which we call tax-
onomic tree henceforth), leaf nodes correspond to the se-
quences and inner nodes to higher taxonomic ranks such
as genus and family. Then, we use RAxML (23) to perform
a Maximum Likelihood (ML) tree inference using the taxo-
nomic tree as a topological constraint. Thereby, we obtain a
strictly bifurcating tree (a reference tree) that is fully congru-
ent with the original taxonomic tree. Further, we label each
inner node of the strictly bifurcating reference tree by the
lowest common rank of its corresponding child nodes (see
Figure 2A). For instance, given annotations (‘Escherichia’,
‘E.coli’) and (‘Escherichia’, ‘E.albertii’) at the child nodes,
the parent node will be labeled as (‘Escherichia’).

Taxonomic assignment. We use the following approach
to assign a taxonomic annotation to a so-called query se-
quence (QS), that is, a sequence which is not present in the
reference tree. First, we use the EPA (as implemented in
RAxML) to calculate the most likely placement(s) of the
query in the reference tree (see Figure 2B). In particular, for
each branch of the reference tree we obtain a expected like-
lihood weight (ELW) value (24,25). The ELW is calculated
as the ratio of the likelihood of the tree including the QS
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Figure 1. SATIVA (Semi-Automatic Taxonomy Improvement and
Validation Algorithm) processing workflow.

placed into the current branch bk to the sum of likelihoods
for all possible QS placements:

ELW(bk) = LH(bk)
∑

i
LH(bi)

(1)

Once all likelihood weights for a QS have been com-
puted, we use them to calculate the accumulated ELW
(aELW) for each taxonomic rank (see Figure 2C). In or-
der to map branches to taxonomic ranks, we make use of
the taxonomically-labeled reference tree constructed in the
previous step. In particular, for each branch bk, we analyze
the taxonomic annotations ru and rl of the nodes adjacent
to this branch. We distinguish two cases:

(a) If both taxonomic annotations are identical (ru = rl =
ri), then the entire likelihood weight of the branch will
contribute to the aELW of this annotation:

aELW(ri) := aELW(ri) + ELW(bk) (2)

(b) If the taxonomic annotations differ, then the likelihood
weight is distributed between both annotations:

aELW(ru) := aELW(ru) + c · ELW(bk) (3)

aELW(rl) := aELW(rl) + (1 − c) · ELW(bk) (4)

where parameter c defines the distribution ratio. In the
current implementation, we distribute weights (almost)

equally by setting c := 0.49 (a small imbalance is needed
to avoid ties).

By applying this procedure to all branches with the place-
ments, we obtain a single aELW score for each taxonomic
annotation. Thereafter, we select the taxonomic annotation
with the highest aELW as new, phylogeny-aware annotation
for the QS.

Note that ‘nested’ taxonomic annotations such as (‘Es-
cherichia’, ‘E.coli’) and (‘Escherichia’) are considered as dis-
tinct at this step of our algorithm. This allows to directly
compare competing annotations at different taxonomic lev-
els to each other and select the most likely one according to
the aELW.

Finally, we calculate an overall assignment confidence
score for the QS by summing over the aELWs for all an-
notations that are in concordance with the proposed tax-
onomic annotation of the QS. So, if (‘Enterobacteriaceae’,
‘Escherichia’) is selected as the most likely QS assignment,
the aELW for the annotation (‘Enterobacteriaceae’, ‘Es-
cherichia’, ‘E.coli’) will also contribute to the assignment
confidence score at both, the family and genus level. At the
same time, aELWs for (‘Enterobacteriaceae’, ‘Klebsiella’)
or (‘Enterobacteriaceae’) annotations will contribute to the
family assignment confidence score, but not to the genus
level assignment confidence score (see Figure 2D).

Identification of mislabels. The mislabel identification pro-
cess consists of two steps:

1. Leave-one-out test. We prune one sequence at a time from
the reference tree, and use EPA to place it back into all
branches of the remaining reference tree. Then, we use
the taxonomy assignment approach described above to
calculate a new taxonomic label for the pruned sequence.
If there is a disagreement between the new and the orig-
inal taxonomic label, we put the sequence into the pre-
liminary mislabels list. Note that, when comparing tax-
onomic labels, we do not consider missing rank annota-
tions as disagreements. For instance, given that the orig-
inal annotation is (‘Enterobacteriaceae’, ‘Escherichia’),
new annotations (‘Enterobacteriaceae’, ‘Klebsiella’) or
(‘Enterobacteriaceae’, ‘Klebsiella’, ‘K.pneumoniae’) will
be reported as a mislabel, whereas (‘Enterobacteriaceae’,
‘Escherichia’, ‘E.coli’) and (‘Enterobacteriaceae’) will
not.

2. EPA test. Once all sequences have been subjected to the
leave-one-out test, we now prune all sequences in the pre-
liminary mislabels list from the reference tree at once.
Then, we use EPA to independently place each of them
back into the remaining tree and re-calculate the annota-
tions. Once again, we compare the new annotations with
the original ones, and put sequences in the final misla-
bels list if they differ. In addition, the calculated taxo-
nomic annotation for each final mislabel sequence will
be reported as a suggested correction. Further, we re-
port the mislabel confidence score, which is equal to the
assignment confidence score (see above) at the highest
taxonomic rank level for which the original and the new
taxonomic labels differ.
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Figure 2. Example illustrating the taxonomic assignment method implemented in SATIVA. (A) We start with a resolved, bifurcating reference tree which
has taxonomic annotations at the tips (i.e. sequence annotations). First, we perform a post-order tree traversal and assign taxonomic labels to internal
nodes (shown in red) by taking the longest common annotation of the respective child nodes. Then, we enumerate the branches and store the mapping
between the branch numbers and the taxonomic annotations of their adjacent nodes. (B) We use the RAxML-EPA algorithm to obtain the most likely
placements of the query sequence (QS) on the reference tree. For our purposes, each placement is represented by a pair (branch number, likelihood weight).
(C) We compute the accumulated likelihood weight (aELW) for each taxonomic rank by summing over the weights of the corresponding branches. The
branches in parentheses have two competing annotations, and their weights contribute partially to both respective aELWs (see main text for details). (D)
We assign the QS to the taxonomic rank with the highest aELW. At each taxonomic level, we compute a confidence score by summarizing aELWs of all
annotations which do not contradict the assigned one at this level.

Although we could have used a single leave-one-out test
to identify mislabels, our initial experiments showed that
this yielded a higher false positive rate. We assume that this
is due to the noise introduced by the mislabels in the ref-
erence phylogeny. Note that, in this first step, all but one
mislabel are still contained in the reference phylogeny. In
particular, we observed a phenomenon which we call ‘recip-
rocal’ mislabels: if one out of two highly similar (‘buddy’)
sequences was taxonomically mislabeled (and thus placed
in a remote clade of the reference tree), both of them were
incorrectly reported as mislabels. For each sequence, a re-
classification into the rank of its buddy was proposed in
the leave-one-out test. In other words, suggested corrections
were reciprocal. This situation can be resolved by simul-
taneously pruning both sequences from the reference tree

and placing them back independently. Therefore, we use the
two-step approach presented above.

Implementation details and ARB integration. The tool is
implemented in a Python pipeline, which calls the RAxML
executable to calculate the taxonomically constrained ref-
erence phylogeny and to perform evolutionary placements
(see Figure 1). The remaining workflow steps (e.g. branch
labeling and taxonomic assignment) are implemented in
Python using the Environment for Tree Exploration (ETE)
library (26). The framework requires two input files: a mul-
tiple sequence alignment (FASTA or PHYLIP) and a list of
taxonomic annotations with matching sequence identifiers.
The output is a tab-delimited text file which contains the
putative mislabel identifiers as well as the original and sug-
gested taxonomic annotations including confidence values.
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To make the tool easy-to-use for taxonomists, we inte-
grated SATIVA with the ARB software (27), which is a
widely used tool for maintaining and curating large rRNA
databases. ARB is built around an efficient sequence stor-
age engine, it provides a Graphical User Interface (GUI)
for editing sequences and associated metadata as well as
import/export tools, and offers advanced tree visualization
capabilities. SATIVA is currently available in the develop-
ment version of ARB, which can be downloaded at http:
//www.arb-home.de/downloads.html. Within ARB, the user
can invoke SATIVA by simply marking a subset of se-
quences in the GUI and selecting ‘Validate taxonomy’ from
the menu. The results of the analysis are written back to the
ARB database fields, and putatively mislabeled sequences
will be highlighted on the tree (see Figure 3). ARB can be
used to easily visualize results and customize the visualiza-
tion using ARB features such as ‘search by field value’ and
‘set field value’. For instance, mislabeled sequences can be
highlighted with different colors based on their rank level
incongruence (e.g. phylum, class etc.) or mislabel confidence
value. Finally, ARB can also write SATIVA results to an ex-
ternal file.

The standalone as well as ARB-integrated versions of
SATIVA provide parameters which allow to set the trade-off
between runtime and the thoroughness of mislabel detec-
tion. SATIVA can perform multiple RAxML tree searches
(with different starting trees) to find the best-scoring refer-
ence tree. The number of tree searches can be set by the user
and affects the runtime linearly. SATIVA can also be run in
the ‘fast’ mode, in which a topological convergence crite-
rion is used to stop the tree search earlier (corresponds to
-D option of RAxML (28)). Conversely, in the ‘thorough’
mode (default) SATIVA uses a likelihood-based stopping
criterion, which is typically 1.5 to 2.1 times slower (28).

Alternative methods

To the best of our knowledge, there are no established
tools for automatic mislabel identification. Thus, a direct
accuracy and performance comparison is not feasible at
present. However, since with SATIVA we introduce a novel
method for taxonomic assignment of new sequences, we in-
cluded two widely used taxonomic classification methods
(UCLUST (29) and RDP classifier (30)) into our perfor-
mance evaluation. To perform an as fair as possible com-
parison, we emulated a leave-one-out approach for assess-
ing both tools, which is analogous to the one implemented
in SATIVA. For this, we remove one sequence at a time
from a database with n sequences and use the remaining se-
quences and taxonomic labels as new reference. Then, we
use RDP and UCLUST to assign a new taxonomic label
for the removed sequence using the new reference with n −
1 sequences. If the new taxonomic label is different from the
existing one, we consider it as mislabel and the inferred tax-
onomic label as the proposed new classification. For both
RDP and UCLUST, we used the implementations that are
available in the QIIME v1.8.0 (31) pipeline with default pa-
rameters.

Simulated data

In order to test the performance of different mislabel identi-
fication approaches, we generated simulated trees and data
sets. We superimposed a ‘true’ taxonomic classification that
is fully congruent with the phylogeny used to simulate the
data (for further details, see below). We then randomly mis-
labeled a small fraction of the sequences at each taxonomic
rank (for details, see below), and subsequently tested if the
algorithms can identify these mislabels and suggest the cor-
rect rank.

We used the LTP (version 123) data set as the basis for
our simulations. First, we generated a ML-based fully bi-
furcating tree with RAxML that uses the LTP taxonomy
as constraint tree and the LTP reference alignment as in-
put. Next, we partitioned the alignment in order to reflect
the known secondary structure of the 16S rRNA gene: we
defined nine partitions for variable regions V1–V9, one for
all conserved regions, and one for the ‘flanking’ regions
not found in the reference E.coli sequence. We estimated
the GTR (General Time Reversible substitution matrix) pa-
rameters and branch lengths for each partition individually.
These parameters as well as the ML tree topology were sub-
sequently used to simulate sequence alignments with IN-
DELible (32). We tuned the INDELible simulation parame-
ters (insertion/deletion rate and sequence length at the root)
such that for each partition, the length and proportion of
gaps approximately match the corresponding region of the
empirical alignment.

Finally, we set the target overall percentage of mislabels
as well as an error probability at each taxonomic rank (e.g.
1% of mislabels in total, of which 5% have an incorrect phy-
lum, 10% an incorrect class etc.). Then, we randomly se-
lected a subset of sequences and substituted their original
labels with different (‘incorrect’) ones according to the per-
centages defined above. We generated two simulated data
sets, which have 1% and 5% mislabels, respectively. For each
mislabel rate, we generated 3 replicates with different ran-
dom number seeds.

Further details on simulation are available in the Supple-
mentary Material. Scripts and data files can be downloaded
from https://github.com/amkozlov/mislabels16-data.

Real-world data sets

We analyzed four established databases of taxonomically
annotated 16S rRNA sequences of Bacteria and Archaea:
RDP-II (15), Greengenes (16), the ‘All-Species’ Living Tree
Project (LTP) (33) and SILVA (14). These databases have
different underlying taxonomies, and vary in their size and
taxonomic composition. In particular, LTP is a highly cu-
rated 16S and 23S rRNA gene sequence database, which
includes bacterial and archaeal type strains only, and thus
has a moderate number of sequences (11 939 as of release
123, September 2015). RDP-II, Greengenes, and SILVA,
however, contain all rRNA sequences available in public
databases that passed a quality check. Hence, they con-
tain orders of magnitude more entries (1.2–3 million se-
quences). Furthermore, SILVA and Greengenes provide
non-repetitive (NR) subsets of sequences clustered with a
99% identity threshold, referred to as ‘NR99’ henceforth.

http://www.arb-home.de/downloads.html
https://github.com/amkozlov/mislabels16-data
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Figure 3. SATIVA results displayed in ARB. Two sequences annotated as Clostridiales species in LTP123 have been identified as mislabels (marked in red).
The suggested re-classification as Fusobacterium is consistent with the SILVA123 annotation (placement in the tree).

In order to make results for different taxonomies com-
parable and to maximize the coverage of each individual
database, we divided our analysis into two parts. First, we
evaluate taxonomic annotations of type strains only, us-
ing the same sequence set and alignment (LTP v123) for
all four databases (data sets GG13 T, LTP123 T, RDP11 T
and SLV123 T in Table 1). Second, we evaluate the NR99
subsets (that is, representatives of the 99% identity clus-
ters) for Greengenes and SILVA (data sets GG13 NR99 and
SLV123 NR99), thereby also including environmental se-
quences into our analysis.

For the type strain data sets, we executed SATIVA in
‘thorough’ mode, using 10 RAxML runs to infer the refer-
ence tree. For the NR99 data sets, we used ‘fast’ mode and
1 RAxML run, for computational reasons. The confidence
cut-off was set 0.51 for all data sets.

Further details on empirical data set assembly are avail-
able in the Supplementary Material.

Case study: Cyanobacteria

In addition to the simulated and full Bacteria/Archaea
data sets, we also examined a single bacterial phylum, the
Cyanobacteria, more extensively. This phylum is known
to be taxonomically challenging, and several alternative
taxonomic frameworks have been proposed to classify
Cyanobacteria (34).

With this case study we intend to assess to which extent
SATIVA is useful in practice for evaluating and improving
‘difficult’ taxonomies.

First, we analyzed four existing taxonomies: European
Nucleotide Archive/GenBank (EMBL), SILVA, Green-
genes, and RDP-II. Then, we used the ‘Candidate Tax-
onomic Unit’ (CTU) recognition process as proposed
by Yarza et al. (35) to construct a novel, unified taxo-
nomic framework for the cyanobacterial sequences (called
CyanoCTU henceforth). The CTU method offers a simple
procedure to devise phylogeny-aware taxonomies by over-
laying a phylogenetic tree with OTU (Operational Taxo-
nomic Unit) information.

To infer a phylogenetic tree, we used an alignment of 1050
quality-checked, full-length (>1400 bases) 16S rRNA se-
quences from the SILVA SSU Ref database (selected based
on the organism name and strain metadata field). This
alignment was produced by SINA (36) and is available from
SILVA. We filtered this alignment with a 10% cyanobacte-
rial base conservation threshold. Then, we ran RAxML (v.
7.7.2 (37)) to generate 1000 rapid bootstrap replicates and
performed a subsequent search for the best-scoring ML tree
under the GTR+� model.

To generate OTUs, we performed a hierarchical furthest
neighbor clustering using MOTHUR v1.20.3 (38) with spe-
cific sequence identity thresholds for each taxonomic rank
level (75% phylum, 78.5% class, 82% order, 86.5% family
and 94.5% genus (35)). Then, we applied a custom Perl
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Table 1. Real microbial 16S data sets

Data set Taxonomy Alignment # sequences

Typestrains only
GG13 T Greengenes 13.8 LTP v123 10 635
LTP123 T LTP v123 LTP v123 11 939
RDP11 T RDP v11 LTP v123 11 775
SLV123 T SILVA v123 LTP v123 11 939

Non-repetitive subsets (99% identity filter)
GG13 NR99 Greengenes 13.8 Greengenes 13.8 203 452
SLV123 NR99 SILVA v123 SILVA v123 536 224

script (Supplementary File 3) to assign each sequence to five
distinct OTUs, one per taxonomic rank level. This informa-
tion was imported into ARB (27), such that each sequence
in the phylogeny is annotated with the assigned OTU labels.

In the last step, we used the ARB tree editing func-
tions to manually assign taxonomic rank names to mono-
phyletic clades on the phylogenetic tree, taking into ac-
count both, the tree topology and the OTU labels of in-
dividual sequences. For naming taxonomic ranks, we used
the nomenclature that follows the format Rank NameN-M.
Here,Rank name is simply the name of the taxonomic rank
level, that is, ‘Genus’, ‘Family’, ‘Order’, ‘Class’ or ‘Phylum’.
The number N is used as an identifier for an OTU at a par-
ticular taxonomic rank level. For instance, Class10 denotes
the 10th OTU found at the class level or Genus126 the 126th
OTU found at the genus level. M is an optional number used
to discriminate between multiple taxonomic ranks derived
from one and the same OTU if this OTU is polyphyletic (e.g.
Family5-1 or Family5-2).

Finally, we applied SATIVA to evaluate the phyloge-
netic consistency of the novel CyanoCTU taxonomy and
compare it to the existing taxonomies mentioned above.
SATIVA was run with the following parameters: thorough
inference, 10 RAxML searches, and a confidence cut-off
of 0.51. Out of the 1050 cyanobacterial sequences used
in phylogenetic inference, only 900 were used, as 150 se-
quences were listed as ‘Unclassified’ by either RDP-II or
Greengenes. Species level mislabels were only considered
for EMBL taxonomy, as this is the only taxonomy where
species names are consistently always present.

RESULTS

Performance on simulated data

We deployed two metrics to quantify the ability of compet-
ing tools to identify mislabels on simulated data. Firstly, we
used the accuracy of mislabel identification. To this end, we
compared the output of each program to the true list of mis-
labels: each sequence was counted as true positive (TP) if it
was present in both lists, and as false negative (FN) or false
positive (FP) if it was missing from the inferred or ground
truth list, respectively. Then, we used the standard formulas
to calculate precision and recall values at each taxonomic
level (Table 2). Secondly, we evaluated the correction accu-
racy by comparing the suggested taxonomic annotation for
mislabels with the true one (Table 3). If a mislabel was not
identified as such, we assumed its inferred annotation to
be equal to the original, uncorrected one. In other words,

such sequences were counted as FNs at taxonomic levels
that were (deliberately) mislabeled in the respective simu-
lations.

Since all three methods provide confidence values for tax-
onomic placements (RDP, UCLUST) or identified misla-
bels (SATIVA), it is possible to use a threshold to exclude
results with low confidence. For each method, we empiri-
cally evaluated several confidence thresholds and chose the
value which yielded the highest F-measure value (i.e. the
best precision/recall trade-off). Specifically, we set the con-
fidence threshold to 0.7 for UCLUST, 0.8 for RDP and 0.51
for SATIVA.

Among the three algorithms tested, SATIVA shows the
best mislabel identification accuracy: at least 96.9% of all
mislabels with wrong annotations are recognized, while
the false positive rate is less than 9%. The RDP classifier
achieved similar recall values to SATIVA (e.g. 97.7% ver-
sus 98.4% on the data set with 1% mislabels). However, its
precision was unacceptably low (12.0%/38.2%). Finally, the
UCLUST algorithm shows higher precision, but lower re-
call than RDP, and is clearly inferior to SATIVA in terms
of both precision and recall.

Our measurements of precision for UCLUST and RDP
might appear contradictory to earlier studies (e.g. (30)),
where much higher values have been reported. Note that,
here we measure the precision of mislabel identification,
which is different from the precision of taxonomic classi-
fication. Specifically, in the latter case all sequences with
correctly inferred taxonomic annotation are considered
true positives. In our test, however, only those sequences
that were deliberately mislabeled and correctly identified by
the method are counted as true positives. All other, non-
mislabeled sequences, which were recognized as such, repre-
sent true negatives. And since in our test data sets mislabeled
sequences constitute only a small fraction of the data (1% or
5%), the impact of false positives on precision is much more
pronounced. This also explains the significantly higher pre-
cision values for the 5% data set as compared to the 1% data
set.

In the correction accuracy test, SATIVA and RDP per-
formed almost equally well, achieving precision and recall
of around 95% (although precision drops to ∼90% on the
data set with 5% mislabels for both methods). UCLUST
showed higher recall (98.8% / 98.0%), but this comes at the
expense of a substantially lower precision (81.2% / 74.2%).
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Table 2. Accuracy of mislabel identification. Taxonomic levels are the levels where sequences were deliberatly misclassified in the ground truth. That is, a
recall value of 0.974 at the family level means that 97.4 % of sequences with an incorrect family label were successfully identified

Level Percentage of mislabeled sequences

1 % 5 %

Precision Recall Precision Recall

RDP UCLUST SATIVA RDP UCLUST SATIVA RDP UCLUST SATIVA RDP UCLUST SATIVA

Phylum 0.625 1.000 1.000 1.000 0.933 1.000 0.813 0.947 1.000 1.000 0.828 1.000
Class 0.675 0.958 0.900 1.000 0.852 1.000 0.785 0.896 0.983 0.989 0.793 1.000
Order 0.409 0.796 1.000 1.000 0.867 1.000 0.661 0.860 0.977 0.995 0.726 0.995
Family 0.311 0.657 0.965 0.973 0.811 0.991 0.605 0.833 0.971 0.976 0.745 0.987
Genus 0.054 0.130 0.893 0.965 0.832 0.965 0.217 0.416 0.822 0.949 0.757 0.928
Total 0.120 0.274 0.939 0.977 0.836 0.984 0.382 0.619 0.917 0.971 0.757 0.969

Table 3. Accuracy of the suggested taxonomic annotation for mislabels. Note that, errors are propagated down the taxonomy, i.e an incorrect family label
also implies an incorrect genus label, etc

Level Percentage of mislabeled sequences

1 % 5 %

Precision Recall Precision Recall

RDP UCLUST SATIVA RDP UCLUST SATIVA RDP UCLUST SATIVA RDP UCLUST SATIVA

Phylum 1.000 0.997 1.000 1.000 1.000 1.000 1.000 0.991 1.000 1.000 1.000 1.000
Class 1.000 0.984 1.000 1.000 1.000 1.000 0.999 0.968 1.000 0.999 0.999 0.999
Order 1.000 0.965 1.000 1.000 1.000 1.000 0.997 0.931 0.999 0.999 0.999 0.999
Family 0.984 0.894 0.994 1.000 1.000 0.997 0.981 0.843 0.992 0.997 0.999 0.996
Genus 0.930 0.812 0.946 0.959 0.988 0.949 0.919 0.742 0.899 0.964 0.980 0.954

Figure 4. Percentage of mislabels by rank (cumulative) for widely-used 16S
taxonomies.

Retrospective assessment of established 16S taxonomies

We used our approach to assess the phylogenetic con-
sistency and identify mislabels in four widely-used 16S
databases. We ran SATIVA on the representative data sets
(see Real-world data sets for details) and evaluated the per-
centage of mislabels reported for each taxonomic rank (see
Figure 4) as well as for several major bacterial phyla (Figure
5).

Among type strain data sets, GG13 T exhibits by far
lowest percentage of identified mislabels (0.27%), followed
by RDP11 T (1.27%), SLV123 T (1.54%) and LTP123 T
(2.52%). In all taxonomies but Greengenes, the vast ma-
jority of mislabels was detected at the genus level. There-
fore, the estimated percentage of mislabels at higher taxo-

Figure 5. Percentage of per-phylum mislabels for widely-used 16S tax-
onomies.

nomic levels (family and above) is more similar across data
sets:GG13 T 0.20%,SLV123 T 0.31%,RDP11 T 0.41% and
LTP23 T 1.37%.

On the data sets which also include environmental se-
quences (GG13 NR99 and SLV123 NR99), the Greengenes
taxonomy shows less inconsistency (0.27% mislabels) com-
pared to SILVA (1.55%). Again, the difference becomes less
pronounced if genus-level mislabels are excluded (0.17%
versus 0.67%).

As Figure 5 shows, the distribution of mislabels among
individual phyla is non-uniform. In all taxonomies, Acti-
nobacteria and Bacteroidetes appears to contain less mis-
labels (0.15–1.15% and 0–1.92%, respectively) than Pro-
teobacteria (0.38–2.74%) and Firmicutes (0.34–3.89%).



5030 Nucleic Acids Research, 2016, Vol. 44, No. 11

The complete lists of identified mislabels for each 16S tax-
onomy are provided in the Supplementary File 1.

Cyanobacteria taxonomy

The EMBL taxonomy for Cyanobacteria recognizes six
orders as Chroococcales, Nostocales, Oscillatoriales, Pleu-
rocapsales, Prochlorales and Stigonematales. SILVA rec-
ognizes 5 subsections, which could be considered as or-
ders, while RDP-II has 13 families. The Greengenes taxon-
omy is more similar to the EMBL taxonomy, in the sense
that, it also recognizes six orders as Chroococcales, Nos-
tocales, Oscillatoriales, Pseudanabaenales, Stigonematales
and Synechococcales. These different taxonomic groups are
not necessarily congruent among the different taxonomies,
as shown by the superimposition with our reference phy-
logeny (see Section Case study: Cyanobacteria and Supple-
mentary Figure S1). Most groups, except for some smaller
groups in the RDP-II taxonomy, are polyphyletic. For the
EMBL and SILVA taxonomies, certain groups do overlap.

SATIVA runs on these reference taxonomies for
Cyanobacteria returned between 0% and 11.5% mislabels.
Specifically, 104 mislabeled sequences (11.5%) were de-
tected for the EMBL taxonomy, 9 (1%) for SILVA, 0 for
RDP-II and 1 (0.1%) for Greengenes. In all taxonomies,
most mislabels were identified at the genus level. The
mislabels were distributed across all orders in the EMBL
taxonomy, but were restricted to Nostocales in Greengenes
taxonomy, and FamilyI in SILVA taxonomy.

As explained above (see Case study: Cyanobacteria), the
CyanoCTU taxonomy was built using hierarchical clus-
tering. In particular, we obtained 1 class-level OTU, 2
order-level OTUs, 14 family-level OTUs and 171 genus-level
OTUs after clustering. These OTUs were further refined
manually to form taxonomic ranks. Specifically, we decided
to merge some OTUs together based on additional evidence
such as the phylogenetic tree topology, distances between
the sequences (calculated with the arbdist tool) or ex-
pert judgement. Finally, we included one class, 1 order, 5
families and 126 genera in our novel CyanoCTU taxonomy.
SATIVA reported only 2 mislabels for CyanoCTU, both at
genus level.

Full lists of identified mislabels for all evaluated
Cyanobacteria taxonomies are provided in the Supplemen-
tary File 2.

Memory consumption and running time

Computational complexity and memory requirements of
SATIVA are dominated by the phylogenetic methods it em-
ploys, and their specific implementation in RAxML. The
additional overhead induced by the remaining steps of the
pipeline is negligible.

Memory requirements of SATIVA are determined by the
EPA: due to its parallelization scheme (39), EPA mem-
ory footprint is approximately three times higher compared
to standard tree inference. SATIVA memory consumption
for a specific data set can be easily estimated using the
RAxML online calculator available under http://sco.h-its.
org/exelixis/web/software/raxml/index.html#memcalc.

The two largest contributions to run time are: the topo-
logically constrained ML tree search (to resolve multifurca-
tions in the taxonomic constraint tree) and the leave-one-
out test. Apart from the obvious dependence on alignment
dimensions, tree search run times are influenced by the de-
gree of resolution of the taxonomic constraint and also by
the phylogenetic signal in the alignment. As for ML tree in-
ference in general, run time prediction for this step is dif-
ficult. In contrast to this, the computational complexity of
the leave-one-out test depends solely on the data set dimen-
sions: namely, alignment width (linear) and number of se-
quences (quadratic, but can be reduced to quasi-linear using
the EPA heuristics (22), which is the default algorithm used
by SATIVA for data sets with more than 1000 sequences).

The real-world data sets analyzed in this study differ
greatly in their dimensions, in terms of both number of
taxa and alignment width. Hence, we chose experimen-
tal platform configuration according to computational re-
quirements and parallelization potential of each particular
data set.

We conducted the analysis of the small Cyanobacteria
data sets (∼1000 taxa) on an 8-core server, where it took
about 1 h to complete. For the type strain data sets (∼10 000
taxa), we used a single 28-core node of the SuperMUC su-
percomputer. The running time was between 34 h (GG13 T)
and 47 h (LTP123 T). For the largest NR99 data sets, we
used a HITS cluster node equipped with 32 CPU cores
and 512 GB of RAM (reference tree inference) as well as
multiple nodes of the SuperMUC (leave-one-out test). In
this configuration, the overall runtime was ∼100 h for the
GG13 NR99 data set and ∼480 h for the SLV123 NR99
data set.

In all experiments, SATIVA was executed with 1 thread
per physical CPU core (default setting). Additional details
on individual hardware configurations and running times
are provided in the Supplementary Methods.

DISCUSSION

Algorithm rationale and comparison to other approaches

As already mentioned, SATIVA performs an EPA-based
leave-one-out test based to detect inconsistencies between
taxonomic annotations and phylogenetic signal in the align-
ment. It was previously shown, that EPA can reliably re-
insert a pruned sequence into its original position on a best-
known ML tree (22). In our case, however, the reference
phylogeny is not the best-known ML tree, since a poten-
tially erroneous (inconsistent with the phylogenetic signal
in the data) taxonomy was used to constrain the tree in-
ference process. Intuitively, if the proportion of mislabels
is low (i.e. there is little conflict between taxonomy and
phylogeny), then, phylogenies obtained via a constrained
and unconstrained search will be mostly congruent. Con-
sequently, EPA placement accuracy on the taxonomically
constrained reference tree will be almost as high as on the
best-known ML tree. This hypothesis is confirmed by our
simulation results: SATIVA shows high accuracy on simu-
lated data sets with 1% and 5% mislabels.

As we show in simulation, SATIVA is superior to leave-
one-out tests relying on the RDP Classifier or UCLUST
with respect to mislabels identification. Additionally, the

http://sco.h-its.org/exelixis/web/software/raxml/index.html#memcalc
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RDP Classifier needs to be re-trained from scratch after
pruning each sequence. This makes it computationally in-
efficient even on medium-size data sets. In SATIVA, we cir-
cumvent this re-training overhead by assuming, that prun-
ing a single taxon will not induce substantial changes into
the reference phylogeny. So, instead of conducting a de novo
tree inference, we simply re-calculate the likelihood of the
remaining reference tree with one sequence less. Finally,
the UCLUST method, which is based on fast alignment
heuristic implemented in USEARCH (29), does not require
an explicit training step and was approximately as fast as
SATIVA in our experiments.

Mislabels in established 16S taxonomies

According to our analysis, Greengenes, RDP, SILVA, and,
to a lesser extent, LTP, are consistent at higher taxonomic
levels. The few sequences proposed for re-classification into
a different phylum or class are most probably due to an in-
correct culture in the collection. Although putatively mis-
labeled sequences are more common at lower ranks (e.g.
family or genus), their overall percentage is below 3% for
all taxonomies. This implies that current taxonomic frame-
works represent the phylogenetic signal of 16S rRNA well,
but that there is nevertheless room for improvement.

We identified the highest amount of putative mislabels in
the LTP taxonomy, especially at higher taxonomic ranks.
This can be explained by the fact, that the LTP classifica-
tion strictly follows Bergey’s taxonomic outlines and LPSN.
Conversely, the other three taxonomies adapt their classifi-
cations in order to better reflect the 16S tree topology, even
if it involves changes that violate the formal rules of tax-
onomic and nomenclature code. For instance, non-validly
published names are widely used to split non-monophyletic
taxa (e.g. ‘Clostridium III’ or ‘Bacillaceae 1’) or to repre-
sent uncertainty in classification (e.g. ‘Clostridiales Incertae
Sedis’). Although such changes might be justified from the
practical standpoint, they make direct comparison between
LTP and other taxonomies impossible. Therefore, we sug-
gest that LTP should be viewed as a ‘baseline’ in our com-
parison.

At the other end of the scale, the Greengenes taxonomy
shows an extremely low percentage of mislabeled sequences
(<0.3%). This suggests that this taxonomy is phylogenet-
ically very consistent, most likely owing to the fact that
it is based on a de novo phylogeny. On the other hand,
the anomalously few genus-level mislabels (0.08%) could
be partially explained by the lack of annotation at this
level. More specifically, as much as 29% of the sequences in
GG13 T and 54% inGG13 NR99 are not assigned to a genus.
For comparison: just 0.04% of the sequences in SLV123 T
and 16% in SLV123 NR99 do not have a genus-level anno-
tation.

Interestingly, the overall percentages of identified mis-
labels in full non-repetitive data sets (GG13 NR99 and
SLV123 NR99) and in the corresponding type strain data
sets (GG13 T and SLV123 T) are highly similar. However,
SILVA NR99 shows substantially more mislabels at higher
taxonomic levels compared to SLV123 T (0.12% versus
0.03% at the phylum level and 0.08% versus 0% at the class
level). This finding suggests that in the SILVA database, at

least the most obvious misannotations were fixed for type
strain sequences.

Cyanobacteria taxonomy

Cyanobacteria were chosen specifically as this phylum rep-
resents a classification challenge, due to the dual nomen-
clature code employed – the botanical and bacteriological
code (40), and due to numerous classification schemes being
in place. Komárek et al. have recently provided a compre-
hensive review of the current cyanobacterial classification
systems (34). Additionally, the authors have also proposed
a new classification based on a molecular phylogeny of 31
conserved proteins.

Given that the different groups each taxonomic hierarchy
recognizes are by no means monophyletic, the number of
mislabels found is surprisingly low, indicating that at least
each group is consistently defined. In case of EMBL, the
identified mislabels were most likely a result of incorrect or-
ganism names in the original sequence records. Addition-
ally, in case of the SILVA taxonomy, some sequences obvi-
ously had a suboptimal placement in the original guide tree,
thus leading to misclassifications.

As we identified few (or no) mislabels in SILVA, RDP-II
and Greengenes taxonomies, all of them can be considered
usable for Cyanobacteria. However, a taxonomic frame-
work ideally should aspire to have monophyletic taxa, and
none of the frameworks considered here satisfy this condi-
tion. Of the different taxonomic hierarchies considered and
tested, the system of the RDP-II rRNA database appears
to best fit current 16S rRNA sequence data for Cyanobacte-
ria. The 13 families reflect the tree topology better, and suf-
fer less from polyphyly. Nevertheless, the CTU-based taxo-
nomic hierarchy suggested here, further improves upon the
current RDP-II system. With less higher rank level groups
and more genera, our taxonomy better fits the current se-
quence data. Certainly, this taxonomy overlooks aspects of
the polyphasic approach which also takes into account mor-
phological and biochemical properties, or molecular mark-
ers other than 16S rRNA. Still, it is consistent, follows tax-
onomic group delineation rules that are not entirely subjec-
tive, and is easily extensible with new cultivated sequence
data. A possible option to carry this taxonomy to real life
could be to combine the species names with the numeric
rank names.

Applicability and limitations

Although we mainly focused on microbial 16S data sets,
SATIVA can be potentially used for any clade in the tree
of life and any set of genes. The only prerequisite is a reli-
able multiple sequence alignment of all taxa. Depending on
the clade, this might become a serious obstacle if no univer-
sal marker gene is available or when aligning homologues
from evolutionary distant organisms becomes challenging.
Furthermore, for markers which exhibit extremely high evo-
lution rates (like the ITS region commonly used as a fun-
gal barcode), even genus-level alignment might be problem-
atic (41). Conversely, slowly-evolving marker genes might
have identical sequences shared by multiple closely related
species. Obviously, such species would be indistinguishable
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for SATIVA (as for any other sequence-based approach),
and thus should either be excluded from analyses or merged
into a single representative pseudo-taxon. If two or more
species share a certain percentage of identical sequences (de-
fault: 60%), SATIVA will issue a warning and automatically
merge them into a pseudo-taxon.

A further complication is the presence of synonyms, i.e.
different names which refer to the same taxon (e.g. anamor-
phic and teleomorphic names of fungal species). To deal
with this problem, SATIVA allows users to specify a list
of synonymous taxon names in a separate text file. Subse-
quently, SATIVA will internally treat all synonyms as one
single taxon.

Please note, that the presence of chimeric and/or poor-
quality sequences in the alignment might seriously affect
SATIVA results. Therefore, we recommend using state-of-
the-art chimera detection tool (e.g. UCHIME (42)), as well
as filtering/trimming methods based on sequence quality
scores (like those implemented in QIIME (31)) before run-
ning SATIVA.

Another practical limitation is the running time, which
grows rapidly with increasing tree size (i.e. number of se-
quences). In our tests, the Cyanobacteria phylum (∼1000
taxa) could be analyzed in acceptable times on a typical lap-
top, whereas core bacterial data sets (∼10 000 taxa) took
between 1.5 and 2 days on a multi-core node (see Memory
consumption and running time for details). Currently, we are
investigating ways to improve run-times and scalability for
larger data sets, such as full 16S rRNA databases or all avail-
able GenBank sequences for a certain taxonomic rank.

For single-gene 16S rRNA alignments, the multifurcation
resolution step represents a scalability bottleneck, since it
cannot be parallelized efficiently with the current RAxML
implementation due to the short alignment length. At the
same time, the leave-one-out test is straight-forward to par-
allelize across taxa and thus scales well. Furthermore, our
analysis of several microbial taxonomies suggests that inter-
phylum mislabels are extremely rare. For higher organisms,
we expect this effect to be even more pronounced, with most
conflicts occurring at the lower taxonomic ranks. This also
means that each phylum (or even class) can be analyzed in-
dependently, thus greatly reducing the computational bur-
den.

Finally, we want to emphasize that SATIVA mislabel
identification and re-annotation suggestions should be re-
garded as putative. Additional evidence including both
morphological and molecular data (e.g. other marker genes)
should be evaluated before taking a final decision to re-
annotate. Still, our tool can yield substantial savings in
man-hours by shortlisting putative mislabels. Therefore, vi-
sual tree inspection, an error-prone and labor-intensive pro-
cess, which can take up to several days even for an experi-
enced taxonomist, becomes obsolete.

Future directions

Apart from the aforementioned performance improve-
ments, we plan to evaluate SATIVA in distinct settings.
First, we intend to analyze marker gene databases for mi-
crobial organisms such as Fungi (19) and unicellular eu-
karyotes (18). Second, we consider assessing the consistency

between taxonomies and phylogenies built from multiple
marker genes or even whole genomes. At the same time,
we believe that sequence database maintainers could ben-
efit from using SATIVA (or similar approaches) to validate
their respective classifications. In particular, the results we
obtained in this study will be used to improve taxonomic an-
notations in the upcoming versions of the SILVA database.

Finally, we recognize that rather than correcting the er-
rors post hoc, it would be much more efficient to prevent
suboptimal taxonomic annotations from being deposited
in public databases. One way to deal with this problem
would be to encourage submitters to follow the best prac-
tices in sequence quality control (43). A more reliable solu-
tion could involve an automatic pre-submission plausibil-
ity check. This test can rely on fast to compute parsimony-
based placements as implemented in EPA, for instance.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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20. Kõljalg,U., Nilsson,R.H., Abarenkov,K., Tedersoo,L., Taylor,A.F.S.,
Bahram,M., Bates,S.T., Bruns,T.D., Bengtsson-Palme,J.,
Callaghan,T.M. et al. (2013) Towards a unified paradigm for
sequence-based identification of fungi. Mol. Ecol., 22, 5271–5277.

21. Nilsson,R., Hyde,K., Paw-lowska,J., Ryberg,M., Tedersoo,L., Aas,A.,
Alias,S., Alves,A., Anderson,C., Antonelli,A. et al. (2014) Improving
ITS sequence data for identification of plant pathogenic fungi. Fungal
Diversity, 67, 11–19.

22. Berger,S.A., Krompass,D. and Stamatakis,A. (2011) Performance,
accuracy, and web server for evolutionary placement of short
sequence reads under maximum likelihood. Syst. Biol., 60, 291–302.

23. Stamatakis,A. (2014) RAxML version 8: a tool for phylogenetic
analysis and post-analysis of large phylogenies. Bioinformatics, 30,
1312–1313.

24. Strimmer,K. and Rambaut,A. (2002) Inferring confidence sets of
possibly misspecified gene trees. Proc. R. Soc. B Biol. Sci., 269,
137–142.

25. von Mering,C., Hugenholtz,P., Raes,J., Tringe,S., Doerks,T.,
Jensen,L., Ward,N. and Bork,P. (2007) Quantitative phylogenetic
assessment of microbial communities in diverse environments.
Science, 315, 1126–1130.

26. Huerta-Cepas,J., Dopazo,J. and Gabaldón,T. (2010) ETE: a python
Environment for Tree Exploration. BMC Bioinformatics, 11, 1–7.

27. Ludwig,W., Strunk,O., Westram,R., Richter,L., Meier,H.,
Yadhukumar, Buchner,A., Lai,T., Steppi,S., Jobb,G. et al. (2004)
ARB: a software environment for sequence data. Nucleic Acids Res.,
32, 1363–1371.

28. Stamatakis,A. (2011) Phylogenetic Search Algorithms for Maximum
Likelihood. John Wiley & Sons, Inc., Hoboken, pp. 547–577.

29. Edgar,R.C. (2010) Search and clustering orders of magnitude faster
than BLAST. Bioinformatics, 26, 2460–2461.

30. Wang,Q., Garrity,G.M., Tiedje,J.M. and Cole,J.R. (2007) Naı̈ve
bayesian classifier for rapid assignment of rRNA sequences into the
new bacterial taxonomy. Appl. Environ. Microbiol., 73, 5261–5267.

31. Caporaso,J.G., Kuczynski,J., Stombaugh,J., Bittinger,K.,
Bushman,F.D., Costello,E.K., Fierer,N., Pena,A.G., Goodrich,J.K.,
Gordon,J.I. et al. (2010) QIIME allows analysis of high-throughput
community sequencing data. Nat. Methods, 7, 335–336.

32. Fletcher,W. and Yang,Z. (2009) INDELible: a flexible simulator of
biological sequence evolution.. Mol. Biol. Evol., 26, 1879–1888.

33. Yarza,P., Richter,M., Peplies,J., Euzeby,J., Amann,R.,
Schleifer,K.-H., Ludwig,W., Glöckner,F.O. and Rosselló-Móra,R.
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