

The QUENCH Program at KIT

M. Grosse

KIT / Institute for Applied Materials / Program NUSAFE

KIT - The research university in the Helmholtz Association

www.kit.edu

Outline

Introduction

- The QUENCH facility
- Previous tests

Main outcome

Planned future tests

Introduction

Investigation of hydrogen source term and materials interactions during LOCA and early phase of severe accidents including reflood

Pohang (Rep. Korea) July 22 2016

- Bundle with 21-32 fuel rod simulators of ~2,5 m length
- Electrically heated: ~1 m; max 70 kW
- Fuel simulator: ZrO₂ pellets
- Quenching (from bottom or top) with water or saturated steam
- Off-gas analysis by mass spectrometer (H₂, steam ...)
- Extensive instrumentation for T, p, flow ^{ine}_{containment} rates, water level, etc.
- Removable corner rods during test
- Separately pressurized rods for LOCA tests

Pre/injection system

Power supply

Bund

Water quench

QUENCH test bundle

Unsufficient cooling

Quenching with temperature escalation

sufficient cooling

Quenching without temperature escalation

Pohang (Rep. Korea) July 22 2016

Previous tests

- Different temperature scenarios:
 - Different pre-oxidation
 - Cool down by water quenching or in steam
 - Boil off
- Control rod behaviour:
 - **B**₄C or Ag-In-Cd
 - with or without control rod
 - with or without steam starvation phase
- Different cladding materials:
 - Zry-4, E110, M5[™], ZIRLO[®]
- Air ingress:
 - Different pre-oxidation and T_{max}
- Debris bed formation:
- LOCA:

QUENCH-6, -12, -14, -15

QUENCH-10, -16

QUENCH-17

QUENCH-L0 ... -L5, -3HT

- Different materials: Zry-4, M5[™], ZIRLO[®], prehydrided M5[™] and ZIRLO[®]
- Different temperature scenarios

QUENCH-1 ... -5, -11

QUENCH-7 ... -9, -13

Main outcome

- For successful quenching a minimum water injection rate per fuel rod of 1 g/s is necessary. The hydrogen release is small (< 10 g H₂ in the QUENCH test). This is not a sufficient condition!
- Insufficient quenching occurs if the cladding melts (up to 400 g H₂ in the QUENCH test):
 - Not enough water is injected.
 - Temperatures at which quenching was initiated is too high.
 - Temporary steam starvation
 - Eutectic reactions between absorber material steels zirconium
 - Pronounced breakaway oxidation occurs over a large axial range
 - Air or steam/nitrogen oxidation
- Debris bed formed is very inhomogeneous
- During LOCA: Band shaped hydrogen enrichments non-perpendicular to the rod axis are formed if the temperatures exceed 1000°C

Planned future tests

More or less fixed tests will be performed until end of 2018

- Air ingress test in the framework of the China EU program ALISA
- QUENCH test with BWR geometry and B₄C control blade in the framework of the EU SAFEST project
- QUENCH-FeCrAl in cooperation with ORNL

Further tests in discussion

- 2.. 4 additional tests can be performed until end of 2020.
- QUENCH-LOCA test in cooperation with CEA
- QUENCH-SiC test in cooperation with Westinghouse
- Interest of Korean institutions?

Termination of the QUENCH-program at the end of 2020?

Summary and Conclusions

- The QUENCH facility is world-wide unique to simulate accidents at fuel rod bundle scale
- 17 severe accident and 7 design basis LOCA simulation tests were performed.
- Insufficient quenching is connected with high hydrogen release and temperature escalation. It occurs if :
 - Temperatures at which quenching was initiated is too high
 - Temporary steam starvation
 - Eutectic reactions between absorber material steels zirconium
 - Non-protective oxide layers are formed at the claddings
- During LOCA: Band shaped hydrogen enrichments non-perpendicular to the rod axis are formed if the temperatures exceed 1000°C

Thanks to the whole QUENCH team at KIT and to all teams cooperating in preparation and analyses of the test as well as in the post test examinations in particular the colleagues from PSI, GRS, EdF, CEA, IRSN, KFKI, RUB, IBRAE, AREVA, WESTINGHOUSE, TWEL, ...

Thank you for your attention.

Questions?

Pohang (Rep. Korea) July 22 2016

Summary and Conclusions

- The QUENCH facility is world-wide unique to simulate accidents at fuel rod bundle scale
- 17 severe accident and 7 design basis LOCA simulation tests were performed.
- Insufficient quenching is connected with high hydrogen release and temperature escalation. It occurs if :
 - Temperatures at which quenching was initiated is too high
 - Temporary steam starvation
 - Eutectic reactions between absorber material steels zirconium
 - Non-protective oxide layers are formed at the claddings
- During LOCA: Band shaped hydrogen enrichments non-perpendicular to the rod axis are formed if the temperatures exceed 1000°C

Temporary steam starvation

Formation of metallic islands in the oxide layer results in an enhanced oxidation.

Eutectic reactions between absorber material - steels – zirconium

Fe – B eutectic

melting point at 1450 K

Fe – Zr eutectic, Melting points at 1610 K for Fe10%Zr and 1201 K for Zr₃Fe

H stabilices β-Zr with lower melting point (2128 K) than α-Zr (2248 K)

Pronounced breakaway oxidation occurs over a large axial range

Air or steam/nitrogen oxidation

Strong effect of nitrogen on the oxidation kinetics

Debris bed formed is very inhomogeneous

Appearance of a debris bed formed after complete oxidation of the claddings

QUENCH-L0, rod 06

Hydrogen enrichments only were found if the temperatures exceeded 1000°C

Pohang (Rep. Korea) July 22 2016