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Introduction 

High temperature oxidation of the zircaloy claddings in nitrogen/steam 

atmosphere can occur for instance:  

During severe accidents in BWR where the containment is inerted by 

nitrogen 

Spent fuel pool (SFP) accidents (The hydrogen released consumes the 

oxygen from the air and steam/nitrogen atmosphere remains at the fuel 

rods). 

 

The reaction 

  2 Zr + N2 = 2 ZrN  (very simplified) 

      occurs only under oxygen and steam starvation conditions. 

 

Modelling in severe accident simulation codes is unsatisfying 
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Experiments with contradictory results 
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Experiments with contradictory results 

0 100 200 300 400 500

0,00

0,01

0,02

0,03

0,04

0,05

 0% N
2

 1% N
2

 80% N
2

m
a
s
s
 i
n

c
re

a
s
e
, 
g

time, min

800°C

What make the difference? 

 

Main difference between the two furnaces is the gas flow! 
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oxidized at 800°C in 
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mixtures (annealing in 
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Atomistic description 

oxide 

 

 

 

 

metal 

Diffusion of oxygen 

vacancies into the oxide 

Diffusion of oxygen into 

the metal 

Oxygen or 

steam transport 

to the surface 
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oxygen or steam saturation conditions: 

Wagner (1968) 



Institute for Applied Materials  

Program NUSAFE 

Mirco Grosse et al  Pohang (Rep. Korea), July 22. 2016 

Atomistic description 

Oxygen and steam starvation conditions: 
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How many oxygen vacancies are available at the surface reaction zone? 

 

How many oxygen vacancies reach this zone per time unit? Do we know it? 

 

YES, we know! 

 

The molar amount of  oxygen vacancies is equal the molar amount of oxygen 

reacted under oxygen saturation conditions. 
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Atomistic description 

The nitrogen concentration  in the oxide is given by: 

 

 

 

 

 

 

If a critical nitrogen concentration is reached then zirconium nitride 

precipitations are formed. 
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Oxygen and steam starvation conditions: 
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Atomistic description 

Why exists a critical nitrogen concentration? 

 - formation enthalpy has to be greater than the interface energy 

    between nitride and oxide 

 - solubility of nitrogen in the oxide (possibly)  

 

If new oxygen becomes available then ZrN is re-oxidized. Zirconium 

nitride act as an “oxygen vacancy storage”. 

   

ZrN precipitation is connected with crack formation. 
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Atomistic description 

Cracks are barriers for oxygen 

vacancy diffusion 

 

Oxygen vacancies will be more 

or less completely consumed in 

the outer cells.  

→ reoxidation of ZrN 

 

High vacancy concentration in 

the cells between metal/oxide 

interface and first crack parallel 

(= reaction zone) to this 

interface.  

→ enhanced ZrN formation 

Nitrides in the oxide layer at Zry-4 (1100°C, 

40min, 20% steam + 80% nitrogen 

Placement work of Laetitia Ott 
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Experiments with contradictory results 

Metallographic image of the nitride containing layer at the metal/oxide interface 

(oxidation in air at 850°C, air and argon flow rates are 12 l/h and 4 l/h, respectively). 

Placement  work of  Yunhwan Maeng 

 



Institute for Applied Materials  

Program NUSAFE 

Mirco Grosse et al  Pohang (Rep. Korea), July 22. 2016 

Atomistic description 

2 cases for the spatial extension of the starvation: 

 

global (the whole sample surface) or  

local (e.g. in cracks) 

 

 

2 cases for the general degree of the starvation: 

 

partial (only oxygen and steam starvation + nitrogen saturation) or 

total    (oxygen and steam starvation + nitrogen starvation) 
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Atomistic description 

Air oxidation: 2 cases of 

starvation conditions in 

cracks: 

Case I:  Complete starvation (both, O2 and N2 are consumed completely) 

            -  Consumption of O2 and N2 in the reaction zone results in a total pressure 

  drop in the crack. To compensate it, the same amount of air as it was  

 consumed has to be sucked into the crack. 

  → The reaction rate is completely independent of the oxide layer  

       thickness as well as of shape, length and cross section of the 

        crack.  

  → It depends on the oxygen + nitrogen flux 
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Atomistic description 

Case II:  O2 starvation but N2 saturation (similar valid for steam/nitrogen oxidation) 

            -  Enrichment of N2 in the crack, Oxygen has to diffuse through the nitrogen 

 to the reaction zone. The same happens if other gases are in the mixture 

 (H2, Ar). However, the gas diffusion rate is high and the deceleration of the 

  process weak.  

 

  → The reaction rate slightly depends on the oxide layer thickness,  

       shape, length and cross section of the crack. 

  → It depend s on the oxygen flux but not on the nitrogen flux  

  

Air oxidation: 2 cases of 

starvation conditions in 

cracks: 
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Proposed simplified model of the kinetics 

From the atomistic description of the process the following can be concluded: 

The deviation from the parabolic reaction kinetics occurs if a critical 

nitrogen concentration in the oxide is reached. 

 

 

 

 

 

 

Consequences: In the case of N saturation, the smaller the O2 flow rate, 

the earlier is the nitride formation and with it the transition of the 

kinetics. Otherwise it increases with the N2 flow rate. 

On the basis that the size of the nitrides does not depend on the nitrogen 

concentration, their number NZrN is linearly proportional to the amount of 

absorbed nitrogen.  
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- The number of cracks Ncracks in the oxide formed due to the ZrN 

precipitation is linear proportional to the number of nitrides and with  

     it its interface fraction. 

 

 

- The reaction rate in the cracks is exactly or nearly constant depending on 

the starvation conditions. 

 

 

 

 

 

 

 

 

 

 

 

Proposed simplified model of the kinetics 

.constncrack 

Ncracks nAIF 
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- The effective reaction rate is the sum of the reactions via the cracks and 

via a more or less undamaged oxide layer weighted by their interface 

fractions IFcracks  and (1 - IFcracks), respectively: 

 

 

 

with 

 

 

 

 

Proposed simplified model of the kinetics 
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Consequences: in the case of only partial starvation, the smaller the oxygen 

flux, the higher the reaction rate because        . 

 

In the case of total starvation  only the O2 + N2 gas flows determine the reaction 

rate. Therefore, the reaction rate is proportional to the O2 + N2 gas flow. 

paraboliccracks nn  
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First experimental validations 
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Experimental validation 
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Experimental validation 
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Experimental validation 
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Experimental validation 
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Experimental validation 
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Hydrogen uptake during oxidation in 

steam/nitrogen mixture 

Mirco Grosse et al. 

facility ICON 

neutron source SINQ 

institution PSI Villigen 

resolution ~ 25 µm 

time per image 300 s 
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Hydrogen uptake during oxidation in 

steam/nitrogen mixture 

Mirco 

Grosse et 

al. 

Correction of the effect of oxygen: 

 

(former work: 

M. Grosse et al.;  

Nucl. Instr.& Meth. In Phys. Res. 

 A 651, (2011), 253) 

 

 

Correction of the effect of nitrogen: 

 

Using the samples annealed in synthetic air: 
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Hydrogen uptake during oxidation in 

steam/nitrogen mixture 

Mirco 

Grosse et 

al. 
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Hydrogen uptake during oxidation in 

steam/nitrogen mixture 

Mirco 

Grosse et 

al. 
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Hydrogen uptake during oxidation in 

steam/nitrogen mixture 

Mirco 

Grosse et 

al. 
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Hydrogen uptake during oxidation in 

steam/nitrogen mixture 

Mirco 

Grosse et 

al. 

“Hydrogen pump” effect known for breakaway 

oxides: 

 

- Steam penetrates into the cracks and reaches the 

oxide/metal interface 

 

 

- Steam reacts at the interface, hydrogen remains in 

the cracks resulting in a high hydrogen partial 

pressure 

 

 

 

- Higher hydrogen partial pressure results in a 

stronger hydrogen uptake by the metallic Zry 

(Sieverts law). The total pressure in the cracks 

decreases. New steam is sucked into the cracks 

and the process continues at the beginning. 
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Summary and Conclusions 

• The reaction of zirconium in air and/or steam/nitrogen mixtures depends 

strongly on the quantitative amount of oxygen and steam starvation. 

 

• 2 times 2 cases can be divided: 

• by spatial extension: global or local starvation 

• by general degree of starvation: partial or total 

 

• Partial starvation:  The lower the oxygen flow rate, the earlier is the 

parabolic to linear kinetics transition and the higher is the reaction rate. 

 

• Total starvation: The higher the oxygen + nitrogen flow rates, the higher is 

the reaction rate. 
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Summary and Conclusions 

• In the model proposed three fitting parameters have to be determined: 

• The critical nitrogen concentration             at which ZrN precipitation starts 

• The constant reaction rate in the reaction zone at the crack tip  

• The coefficient A connecting nitrogen concentration and interface fraction of 

the cracks 

 

• Influence of oxygen partial pressure: 

Investigation by varying of the argon flow while the oxygen or steam flow 

was kept constant.  

Result: No clear influence of the reaction kinetics on the oxygen partial 

pressure. 

 

• The hydrogen uptake is enhanced by the crack formation. It shows a 

similar behaviour like the mass gain. 

 

critical

Nn

cracksn
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Thanks 
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understanding of the parameters influencing the reaction kinetics.  

Thanks to all colleagues in particular Sanggil Park for the fruitful discussions 
of  the mechanisms of the reactions of zirconium with air and steam/nitrogen 
mixture. 
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Proposed simplified model of the kinetics 
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