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1 Introduction

1.1 Motivation and Historical Overview

The theory of optimal stopping deals with the problem of finding an optimal time to
take a given action based on observable stochastic processes in order to maximize an
expected reward. Problems of this kind can arise for a variety of different situations.
Typical examples can be found in operations research, where an owner of a company
has to decide for the right moment to replace some machinery before it breaks down, or
where a manager has to decide between sequentially arriving applicants for a job position.
The latter is well-known as the “secretary problem”. Other famous stopping problems
can be found by names like “bandit problem”, “job search problem” or “house selling
problem”. One can imagine, there are a lot of situations where a decision maker has to
choose one of sequentially arriving offers, or in a continuous-time context, where he has
to find the optimal time to execute an action.

Optimal stopping problems first arose in the context of statistics in Wald [1945], where the
sequential analysis of statistical observations was studied. A few years later, Snell [1952]
generalized the sequential analysis to pure mathematical stopping problems without the
statistical context. It followed an increased interest in this new subject, as more and more
research developed around the topic of optimal stopping. Especially the work of Chow &
Robbins [1961, 1963, 1965] contributed greatly to the theory of optimal stopping and
designed techniques to solve such problems. The theory developed so far was summarized
in Chow et al. [1971] and further refined in various publications, like for example Gugerli
[1986] or Davis [1993].

However, all these problems were formulated to maximize some expected reward gained by
optimal stopping. They do not account for the individual preference relation or attitude
towards risk of a given investor or decision maker. Such effects can be considered by
studying utility functions, which were first introduced by von Neumann & Morgenstern
[1944]. He showed that such effects, as the behavior of investors under risk, can be
modelled by utility functions. Later, Pratt [1964] and Arrow [1965] refined this connection
and introduced the Arrow-Pratt measure of absolute risk aversion, which allowed to
quantify and compare the risk aversion of two investors using different utility functions.
Among all possible utility functions, a particular one came in the focus of interest. The
exponential utility was especially highlighted and investigated. As discussed in Pratt
[1964] and Fishburn [1970], this utility function provides a lot of attractive properties
that simplify many expected utility optimization problems. Due to this prominence,
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1 Introduction

optimization probems for expected utility functions are very often referred to as risk-
sensitive. Such optimization problems can be seen in various publications, like for example
Howard & Matheson [1972] and Chung & Sobel [1987] for risk-sensitive control of Markov
decision processes, Ghosh & Saha [2014] for risk-sensitive control of continuous-time
Markov chains or Denardo & Rothblum [1979] and Hall et al. [1979] for risk-sensitive
optimal stopping.

Literature on expected utility optimization or on optimal stopping problems for other
utility functions is more scarce. And literature dealing with general utility without
confining itself on a particular utility function is even harder to find. Some examples
are Rieder [1991] for stochastic games, Kadota et al. [2001] for optimal stopping of
discrete-time decision processes, Bäuerle & Rieder [2011] and Bäuerle & Rieder [2014]
for optimal control of discrete-time Markov decision processes. Most of the publications
concerning general utility functions deal with discrete-time settings. Especially for the
context of optimal stopping under general utility functions, we can name Müller [2000],
where the expected utility maximization of optimal stopping problems is studied for
a discrete-time sequence of independent and identically distributed random variables,
or Bäuerle & Rieder [2015] for partially observable risk-sensitive stopping problems in
discrete time. Kadota et al. [1996] considered optimal stopping for denumerable Markov
chains under general utility, but also in a discrete-time setting.

In this thesis, we want to consider optimal stopping problems for continuous-time Markov
chains under general utility. In view of the terminology risk-sensitive for exponential
utility, we will call our problem the generalized risk-sensitive stopping problem for
continuous-time Markov chains. To the best of our knowledge, such optimal stopping
problems for general utility and continuous-time stochastic processes were not considered
in literature until now.

Continuous-time Markov chains are a special class of Markov processes, which are
constant between random jump times. Only at these jump times the value of the chain
will change into a new random state. The choice of a continuous-time Markov chain as
underlying process will allow for a piecewise approach to the problem and for convenient
interpretability of our results. Moreover, as discussed in Kushner & Dupuis [1992], a great
class of diffusion processes can be approximated arbitrarily closely using continuous-time
Markov chains.

As already mentioned, utility functions can be used to represent the preference relation
and attitude towards risk of a decision maker or an investor who employs it. They can
also be used to quantify the level of risk aversion and thus describe the behavior of an
investor under risk. By permitting general utility functions and not confining ourselves
to a specific one, like for expample the exponential utility, we allow for a variety of
different risk preferences and can thus model the behavior under risk of a lot of various
investors. But since the exponential utility is that prominent in a lot of applications, we
will accompany every chapter and main result of this thesis by comparing the general
case with the exponential one. We will see that the exponential utility leads indeed to a
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1.2 Outline of the Thesis

considerable simplification in contrast to the general case and yields results which are
similar to stopping problems for discrete-time Markov chains.

1.2 Outline of the Thesis

This thesis is divided into nine chapters. In chapter 2, chapter 3 and chapter 4 we
give a brief introduction to continuous-time Markov chains, filtrations, stopping times
for Markov chains and utility functions. These chapters lay the foundation for the
generalized risk-sensitive stopping problem for continuous-time Markov chains, which
will be introduced in chapter 5. In chapter 6 we will express this stopping problem in
terms of value functions. Chapter 7 forms the main part of this thesis and contains a
discrete-time approach to the stopping problem. In chapter 8 conditions will be given
which guarantee the optimality of special stopping times. Lastly, chapter 9 gives an
alternative continuous-time approach to the stopping problem.

In the following, we outline the thesis and give a brief overview of the results in each
chapter. A more detailed description will be given at the beginning of each chapter.

Chapter 2:
In section 2.1 continuous-time Markov chains will be introduced. Moreover, in section 2.2
known properties and results are summarized. Section 2.3 will discuss that continuous-
time Markov chains can be fully described knowing two of its characteristic quantities:
The jump times and the embedded discrete-time Markov chain.

Chapter 3:
In section 3.1 we will discuss suitable filtrations for a continuous-time Markov chain
X and describe them using jump times and post-jump states of X. Lastly, we will
give a useful decomposition characterization for stopping times τ with respect to these
filtrations. It will allow for a piecewise representation of stopping times between each
jump of X, which will be of great importance for subsequent chapters.

Chapter 4:
We aim to establish continuous-time stopping problems, which also account for individual
preferences or attitudes towards risk of a given investor. Such preference relations can be
modelled by using utility functions. In particular, we will distinguish between two classes
of utility functions: The ones which are and those which are not classically defined on
the whole real line. The latter have to be extended manually on the whole real line to
become suitable for the stopping problem introduced in the subsequent chapter.

Chapter 5:
In section 5.1 the central optimization problem for this thesis, the generalized risk-sensitive
stopping problem for continuous-time Markov chains

E [U (−cτ + g(Xτ ))]→ max
τ∈Σ

!
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is introduced. It can be interpreted as follows: Suppose an investor can receive a reward
g(Xt), based on a reward function g and on the actual state Xt of a continuous-time
Markov chain X at time t ≥ 0. He can observe the evolution of the Markov chain and
wait for it to attain more favorable states, which yield a higher reward. But by waiting
up to time t ≥ 0, he will be charged with a fee of −ct, based on some cost rate c > 0.
Given a utility function U , his goal is thus to maximize the expected utility of the reward
he can achieve, over the set Σ of all feasible stopping times τ . The prefix “generalized”
stems from the fact that the considered utility function does not have to be a particular
one but can be chosen arbitrarily.

Section 5.2 will cover the introduction of similar stopping problems, the generalized
risk-sensitive n–step stopping problems. These can be seen as a modification of the
above-mentioned problem by assuming that for n ∈ N0, an n–step stopping problem will
stop at the latest after n jumps of the underlying Markov chain. These n–step stopping
problems will be the key elements for tackling the unrestricted stopping problem using
the discrete-time approach in chapter 7. In section 5.3 and section 5.4 we will impose
conditions under which these stopping problems are well-posed and allow for an analytical
connection, which will be discussed in the subsequent chapter. Lastly, the special case of
exponential utility functions will be covered in section 5.5 and serves as a comparison
between the general case and the exponential case, which is a very common and often
used utility function in utility maximization theory.

Chapter 6:
Section 6.1 introduces the concept of value functions, which are closely connected to the
stopping problems introduced in the previous chapter. We will define an unrestricted
value function for the unrestricted stopping problem, as well as n–step value functions for
the n–step stopping problems. Moreover, we will see that the unrestricted value function
turns out to be the limit function of the n-step ones, if n→∞. Studying these functions
will help us in our attempt to characterize or even solve the generalized risk-sensitive
stopping problem for continuous-time Markov chains. The second part of this chapter,
section 6.2, will treat again the special case of exponential utility. We will see that this
particular choice of utility function will lead to a significant simplification of the stopping
problem.

Chapter 7:
This chapter forms the main part of this thesis. Section 7.2 will cover the so-called reward
iteration formula, which will allow us to calculate an n–step value function for a fixed
stopping time τ , given that the preceding (n − 1)–step value function for τ is known.
This allows for a recursive approach over n ∈ N0. Section 7.3 will again compare the case
of general utility with the case of exponential utility.

In section 7.4 we will again establish a iteration type formula, the so-called Bellman
equation. This equation makes it possible to recursively calculate every n–step value
function from the previous one, without having to fix a particular stopping time. Fur-
thermore, we will see that calculating one step of this Bellman equation will involve the
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solving of a deterministic one-dimensional optimization problem. This solution on the
other hand yields a piecewise instruction how the optimal stopping time for an n–step
stopping problem can be constructed. The procedure of iteratively calculating an n–step
value function from the preceding one can be interpreted as a discrete-time approach over
all steps n ∈ N0. As for n→∞ the n–step value functions converge to the unrestricted
value function, the Bellman equation yields a method to approximate a solution to the
unrestricted stopping problem using the sequence of n–step value functions. Following
this, section 7.5 will again treat the special case of exponential utility.

In section 7.6 we will go a step further and transform the aforementioned iteration type
Bellman equation into a fixed-point equation. Instead of calculating every n–step value
function recursively and considering the limit of these functions to gain the unrestricted
value function, we will show that this value function can also be obtained as a solution of
the fixed-point equation. Again, solving this equation will require to solve a deterministic
optimization problem, which will provide a candidate for the optimal stopping time for the
unrestricted stopping problem. We will see in section 7.7, that under certain conditions
this candidate is indeed optimal and thus provides the solution to the generalized risk-
sensitive stopping problem for continuous-time Markov chains. Finalizing this chapter,
section 7.8 will discuss the particular choice of exponential utility as utility function. We
will see that the fixed-point equation from the previous section will simplify tremendously.
The optimal stopping time for this specific case will only be able to stop at discrete but
random times, namely the jump times of the underlying Markov chain.

Chapter 8:
The discrete-time approach established in chapter 7 required the iterative solving of the
Bellman equation to gain the n–step value functions and their corresponding optimal
stopping times. Analogously, we need to solve a fixed-point equation to gain the unre-
stricted value function and its corresponding optimal stopping time. In general, solving
these equations is a difficult and tedious task. In this chapter, we will give conditions
which will guarantee the optimality of certain stopping times, without having to solve
the aforementioned equations.

After a brief outline in section 8.1, we will discuss in section 8.2 under which conditions
it is never optimal to stop in certain states of the underlying Markov chain. We will see
that we have to treat the cases of classical and extended utility functions separately, as
they lead to different results. For extended utility functions we will show that it is never
optimal to wait arbitrarily long in a given state of the Markov chain. If the jump into a
subsequent state does not occur before a certain threshold, a rational investor will always
stop at this threshold. On the other hand, for classical utility functions this has not to
be true. We will give an explicit condition that allows for an identification of states for
which it is indeed never optimal to stop, as long as the Markov chain resides in this state.

Analogously, we will discuss in section 8.3 under which conditions it is optimal to stop
immediately, as soon as the underlying Markov chain hits a certain state. Again, we
will differentiate between classical and extended utility functions. Both will lead to
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1 Introduction

similar, but not identical conditions for which the optimality of immediate stopping can
be guaranteed.

In section 8.4, we will discuss our results in this chapter for the special case of exponential
utility. The conditions given in section 8.2 and section 8.3 will lead in this case to the
optimality of so-called one-step look ahead stopping times. These stopping times compare
the actual utility an investor would gain by immediate stopping with the expected utility
he would gain, if he waits exactly for one change of state of the underlying markov chain.
We will show that comparing these two values is sufficient to derive an optimal stopping
time for the unrestricted stopping problem under exponential utility.

Chapter 9:
In contrast to the discrete-time approach in chapter 7 we want to discuss a different
approach to tackle the generalized risk-sensitive stopping problem for continuous-time
Markov chains. After a brief introduction into this method in section 9.1 we will establish
a partial differential equation in section 9.2, the Hamilton-Jacobi-Bellman equation. As
customary for such dynamic programming approaches, the goal will be to prove that
a solution of this Bellman equation is indeed the value function corresponding to the
generalized risk-sensitive stopping problem for continuous-time Markov chains. This
procedure is known as verification. Given that the requirements of this verification are
fulfilled, the optimal stopping time for our stopping problem turns out to be a first hit
time.

Having both the discrete-time and the continuous-time approach to tackle the generalized
risk-sensitive stopping problem for continuous-time Markov chains, we can compare
both methods and discuss their advantages and disadvantages. As it turns out, the
discrete-time approach requires less assumptions on the regularity of the considered
value functions, making it viable for stopping models that can not be tackled using the
continuous-time approach via the Hamilton-Jacobi-Bellman equation and the verification
technique.

At the end, we will discuss the continuous-time approach in section 9.3 for the special
choice of exponential utility. We will see that the Hamilton-Jacobi-Bellman equation
degenerates to a simpler fixed-point equation. In fact, we will show that for this particular
utility function, both approaches will lead to an almost similar solution technique.
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2 Continuous-Time Markov Chains

Let (Ω,F ,P) be a probability space with sample space Ω, σ–field F and probability mea-
sure P. Furthermore, let S be a countable state space. We now want to consider a special
class of continuous-time stochastic processes, namely the (homogeneous) continuous-time
Markov chains:

2.1 Definition of Continuous-Time Markov Chains

Definition 2.1 (continuous-time Markov chain)

A continuous-time stochastic process X := (Xt)t≥0 taking values in S is called a continu-
ous-time Markov chain, if for every n ∈ N, h > 0, each 0 ≤ t0 < t1 < . . . < tn and every
x0, . . . , xn, xn+1 ∈ S, such that

P (Xtk = xk, 0 ≤ k ≤ n) > 0,

the Markov property

P (Xtn+h = xn+1|Xtk = xk, 0 ≤ k ≤ n) = P (Xtn+h = xn+1|Xtn = xn) (2.1)

holds.

Furthermore, the continuous-time Markov chain X is called homogeneous, if the additional
condition

P (Xtk+h = xk+1|Xtk = xk) = P (Xt+h = xk+1|Xt = xk) (2.2)

holds for every 0 ≤ k ≤ n and t ≥ 0.

Remark 2.2 (notes on the name Markov chain and alternative definitions)

(a) Stochastic processes which exhibit the Markov property (2.1) are generally called
Markov processes. In this work we study a special class of Markov processes, namely
those with denumerable state space S. In this case of an S–valued Markov process,
it is common to use the word “chain” rather than “process”. Thus, we call the class
of considered stochastic processes “Markov chains”.

(b) Let X be an continuous-time S–valued stochastic process. Then the following
statements are equivalent and thus serve as alternative definitions for a Markov

7



2 Continuous-Time Markov Chains

chain:

(i) X is a Markov chain according to Definition 2.1.

(ii) For each n ∈ N, h > 0, every 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn and each bounded(
P(S)− B(R)

)
–measurable function f : S → R the equation

E [f(Xtn+h)|σ(Xt0 , . . . , Xtn)] = E [f(Xtn+h)|σ(Xtn)] (2.3)

holds.

(iii) For each t ≥ 0 and every bounded
(
σ(Xs, s ≥ t)−B(R)

)
–measurable random

variable Y the equation

E [Y |σ(Xs, 0 ≤ s ≤ t)] = E [Y |σ(Xt)] (2.4)

holds.

For further reference, these equivalences can be found in [Brémaud, 1981, Appendix
A1, Theorem T40].

The Markov property (2.1) ensures that for every discrete set of points in time
0 ≤ t0 < t1 < . . . < tn, the distribution of X at time tn + h does only depend on
the last “observation” at time tn, but not on the whole history at t0, . . . , tn. In this
sense, the Markovian structure legitimates the name of the Markov chain. In addition,
the homogeneity condition (2.2) ensures that the above-mentioned distributions do not
depend on the exakt points in time, but rather on the duration since the last observation.
Thus, the probability that a homogeneous Markov chain changes its state from some
x ∈ S to some j ∈ S does only depend on the elapsed time h > 0, but not on any explicit
point in time.

Definition 2.3 (transition probabilities of a continuous-time Markov chain)

(a) Given a continuous-time Markov chain X, the transition probability pxj(s, t) from
state x ∈ S at time s ≥ 0 to state j ∈ S at time t ≥ s is defined by

pxj(s, t) := P (Xt = j|Xs = x) . (2.5)

(b) In the case of a homogeneous continuous-time Markov chain, the definition of a
transition probability simplifies to

pxj(t) := P (Xt = j|X0 = x) (2.6)

for every x, j ∈ S and t ≥ 0.

8



2.2 Transition Functions and Intensity Rates

Note that in the homogeneous case the transition probability from state x ∈ S at time
s ≥ 0 to state j ∈ S at time t ≥ s can be expressed as

pxj(s, t) = P (Xt = j|Xs = x) = P (Xt−s = j|X0 = x) = pxj(t− s),

since the only knowledge needed is the difference in time between t and s and thus
only one argument is required. Hence, the definition for transition probabilities for
homogeneous Markov chains is consistent with the general one.

Notation 2.4

To simplify notation, we will write Px(·) in lieu of P( · |X0 = x). Thus, the transition
probability of a homogeneous continuous-time Markov chain X from state x ∈ S to j ∈ S
after a duration of t ≥ 0 can be expressed as

pxj(t) = P (Xt = j|X0 = x) = Px (Xt = j) .

2.2 Transition Functions and Intensity Rates

Definition 2.5 (transition function of a homogeneous continuous-time Markov chain)

Let X be a homogeneous continuous-time Markov chain.

(a) Consider the transition probabilities in Definition 2.3. For every x, j ∈ S, the
mapping pxj : [0,∞)→ [0, 1] with

pxj(t) = Px (Xt = j)

is called transition function of X, if t 7→ pxj(t) is right-continuous in 0, i.e.

lim
t↓0

pxj(t) = δxj. (2.7)

(b) If the corresponding transition functions exist, i.e. the mappings t 7→ pxj(t) are
right-continuous in 0 for all x, j ∈ S, then the mapping P : [0,∞) → [0, 1]S×S

defined by
P (t) := (pxj(t))x,j∈S (2.8)

is called the transition matrix function of X.

9



2 Continuous-Time Markov Chains

Assumption 2.6

From now on, we will assume that for every homogeneous continuous-time Markov chain
the corresponding transition functions exist. By writing Markov chain X with transition
matrix function P we will always refer to a homogeneous continuous-time Markov chain
with existing transition functions.

Proposition 2.7

Let X be a Markov chain with transition matrix function P . Then the following statements
hold:

(a) P satisfies the Chapman-Kolmogorov equation

pxj(t+ s) =
∑
k∈S

pxk(s)pkj(t) ∀x, j ∈ S, s, t ≥ 0, (2.9)

respectively written as matrix-multiplication:

P (t+ s) = P (s)P (t) ∀s, t ≥ 0. (2.10)

(b) pxj(t) ≥ 0 and pxx(t) > 0 for all x, j ∈ S and t ≥ 0.

(c) P (t) is a stochastic matrix for every t ≥ 0.

(d) t 7→ pxj(t) is uniformly continuous for every x, j ∈ S and the right-hand derivative
exists for t = 0. More precisely, the following right-handed limits exist:

qxx := lim
h↓0

pxx(h)− 1

h
∈ [−∞, 0] for all x ∈ S,

qxj := lim
h↓0

pxj(h)

h
∈ [0,∞) for all x, j ∈ S, x 6= j.

(e) For all t ≥ 0 and x ∈ S we get

pxx(t) ≥ e−qxxt. (2.11)

Proof of Proposition 2.7

(a)-(c) The proofs of this statements can be found, for example, in [Liggett, 2010, Theorem
2.12 + Theorem 2.13].

(d) This statement is proven, for example, in [Brémaud, 1999, Theorem 2.1].

(e) A proof of this assertion is given in [Liggett, 2010, Theorem 2.14 (a)].

10



2.2 Transition Functions and Intensity Rates

Definition 2.8 (intensity matrix, stability and conservation)

Let X be again a Markov chain with transition matrix function P .

(a) The right-hand derivatives qxj from Proposition 2.7 (d) are called intensity rates of
X.

(b) The matrix Q := (qxj)x,j∈S is called intensity matrix of X.

(c) P is called conservative, if

−qxx =
∑
j∈S,
j 6=x

qxj <∞ for all x ∈ S. (2.12)

(d) P is called stable, if

0 < λ := sup
x∈S

{
− qxx

}
<∞. (2.13)

Notation 2.9

Since the intensity rate qxx is always non-positive, it is convenient to define

qx := −qxx ∈ [0,∞]

for every x ∈ S. The notation of qx will often appear in the remainder of this work and
thus legitimates this small notational abbreviation.

Sometimes, instead of P , we will call the intensity matrix Q stable, respectively conser-
vative, and will not distinguish between the two terminologies.

Remark 2.10 (interpretation of intensity rates)

(a) Although permitted by definition, the case of qx =∞ for some x ∈ S is explicitly
excluded for stable or conservative transition matrix functions P . An infinitely high
intensity rate qx would imply an infinitely high value of the right-hand derivative
at point 0 and would cause the Markov chain X to instantaneously leave state x
as soon as it is attained. By assuming stability or conservativity we can ensure a
strictly positive sojourn time in every state x ∈ S.

(b) By demanding the intensity matrix to be stable we can guarantee the existence
of an upper bound for all intensity rates qx, x ∈ S. This will imply that for any
given finite time interval, the Markov chain X will not exhibit an infinitely high
number of jumps. This property is often referred to as non-explosivity-property
and is adressed to in Proposition 2.21.

11



2 Continuous-Time Markov Chains

(c) The case of qx = 0 for some x ∈ S has also a clear interpretation. Knowing
pxx(0) = 1 and concluding from inequality (2.11) of Proposition 2.7 (e) that
pxx(t) ≥ eqxt = 1, implies that pxx(t) = 1 for all t ≥ 0. The Markov chain will never
leave such a state x. A state x ∈ S with qx = 0 is thus called absorbing.

Remark 2.11 (infinitesimal description)

The intensity matrix Q of a Markov chain X with transition matrix function P is
sometimes called infinitesimal generator of X. The main reason for this denomination
is one of the main features of Markov chains: Under certain conditions to the intensity
matrix Q, it is possible to reconstruct the whole transition matrix function P using the
so-called Kolmogorov’s backward differential system as stated in the next theorem. Thus,
we do not need to know the actual transition probabilities of a Markov chain for every
transition duration t ≥ 0. An infinitesimally small part of this information (namely
the intensity rates, the right-handed derivatives of the transition functions in t = 0) is
sufficient to generate all the transition rates, provided Kolmogorov’s backward differential
system can be solved.

Theorem 2.12 (Kolmogorov’s backward differential system)

Let X be a Markov chain with a stable and conservative transition matrix function P .
Then Kolmogorov’s backward differential system is satisfied:{

d
dt
P (t) = QP (t), for all t ≥ 0,

P (0) = E.
(2.14)

with E := (δxj)x,j∈S ∈ RS×S being the identity matrix. An alternative formulation uses
the component-wise notation:

d
dt
pxj(t) = −qj pxj(t) +

∑
k∈S,
k 6=x

qxk pkj(t), for all t ≥ 0,

pxj(0) = δxj,

(2.15)

for every x, j ∈ S.

12



2.2 Transition Functions and Intensity Rates

Proof of Theorem 2.12
For a complete proof, the reader may be referred to [Brémaud, 1999, Chapter 8, Theorem
3.1].

Note that in the case of a finite state space S, the solution of (2.14) always exists and is
uniquely given by

P (t) =
∞∑
n=0

tnQn

n!
=: etQ. (2.16)

In general, the existence and uniqueness of a solution of (2.14) cannot be guaranteed
without imposing additional conditions on Q. This case shall not be discussed any further
in this work. For additional reference, see again in Brémaud [1999].

Assumption 2.13 (standing assumptions for the intensity matrix of a Markov chain)

From now on, we will assume that given a Markov chain X with transition matrix
function P , the corresponding intensity matrix Q satisfies the stability and conservation
conditions (2.13) and (2.12). We will call X a Markov chain with intensity matrix Q.

Example 2.14 (reconstruction of the transition matrix function P )

Let S = {0, 1} be the state space of the system and X a continuous-time Markov chain
with intensity matrix Q given by

Q =

(
q00 q01

q10 q11

)
=

(
−α α
β −β

)
for some α, β > 0. Clearly Q is conservative and stable and thus fulfills Kolmogorov’s
backward differential system (2.14). Since the state space S is finite, the transition matrix
function P is uniquely determined by (2.16)

P (t) = e

−αt αt
βt −βt


.

We omit the details for calculating P explicitly by referring to [Liggett, 2010, Example
2.6]. The corresponding transition functions are then given by

p00(t) =
β

α + β
+

α

α + β
e−(α+β)t,

p01(t) =
α

α + β
− α

α + β
e−(α+β)t,

p10(t) =
β

α + β
− β

α + β
e−(α+β)t,

p11(t) =
α

α + β
+

β

α + β
e−(α+β)t.

13



2 Continuous-Time Markov Chains

As we have seen we were able to reconstruct the whole transition matrix function P using
only the infinitesimal generator Q.

2.3 Jump Times and Embedded Discrete-Time Markov
Chains

For a given Markov chain X with transition matrix function P , the transition probability
pxx(0) is obviously 1. Due to the right-hand continuity for t = 0, we can conclude that
pxx(t) > 0 for every x ∈ S and sufficiently small t ≥ 0. Thus, being in a state x ∈ S the
Markov chain will Px–almost surely stay a positive period in this state before changing
to another one. Hence, we can describe the behavior of the Markov chain X in the
following way: Starting in an initial state x0 ∈ S, the Markov chain remains in this state
for a certain time before “jumping” into another state in which it will remain again for a
certain duration bigger than zero. A natural question arising from this observation would
be whether the Markov chain can be fully characterized using the knowledge of the time
points at which X changes its states and the probability distribution of these transitions.
To answer this question rigorously, we need to define the above-mentioned quantities.

Definition 2.15 (jump and sojourn times of Markov chains, embedded chains)

Let X be a Markov chain with intensity matrix Q. Then we define

(a) the jump times of X by

S0 := 0, Sn := inf{t > Sn−1|Xt 6= XSn−1}, n ∈ N, (2.17)

(b) the sojourn times of X by

Tn := Sn − Sn−1, n ∈ N, (2.18)

(c) the embedded Markov chain (Zn)n∈N0 of X by

Zn := XSn , n ∈ N0. (2.19)

The discrete-time stochastic process (Zn)n∈N0 defined above is indeed a discrete-time
Markov chain, as the following theorem will show.
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2.3 Jump Times and Embedded Discrete-Time Markov Chains

Theorem 2.16 (transition probabilities of the embedded chain and distribution of
sojourn times)

Let X be a Markov chain with intensity matrix Q. Then the following statements are
true:

(a) The embedded Markov chain (Zn)n∈N0 of X is a homogeneous discrete-time Markov
chain with transition probabilities pxj, s.t.

pxj :=


δxj , if qx = 0,{
qxj
qx
, if x 6= j

0, if x = j
, if qx > 0

(2.20)

for every x, j ∈ S. We denote the corresponding discrete-time transition matrix P̃
by

P̃ =
(
pxj
)
x,j∈S.

(b) Given (Zn)n∈N0 , the sequence of sojourn times (Tn)n∈N is independent and each Tn
is exponentially distributed with

Tn ∼ Exp(qZn−1). (2.21)

Proof of Theorem 2.16
A proof of this theorem can be found in [Brémaud, 1999, Chapter 8, Theorem 4.2].

Definition 2.17 (n–step transition probabilities of the embedded Markov chain)

The probability of a Markov chain X to change its state from x ∈ S to some j ∈ S after
exactly n ∈ N0 jumps is given by

p
(n)
xj :=

(
P̃ n
)
x,j∈S for n ∈ N (2.22)

and
p

(0)
xj := δxj.

We call p
(n)
xj the n–step transition probability from x ∈ S to j ∈ S of the embedded

Markov chain.

15



2 Continuous-Time Markov Chains

Assumption 2.18 (irreducibility of Markov chains)

If not stated otherwise, we will assume for the remainder of this thesis that every
considered Markov chain X is irreducible. This means that for every x, j ∈ S, there
exists an integer n ∈ N such that

p
(n)
xj > 0.

As a consequence, we can conclude that

qx > 0 for all x ∈ S,

since we always find an n ∈ N such that the n–step transition probability of leaving any
state x ∈ S into another state is non-negative. Thus, every state of X is not absorbing,
exhibiting a positive probability to reach and also leave this state.

Remark 2.19 (alternative characterization of the irreducibility property)

Instead of considering the n–step transition probabilities of the embedded Markov
chain in order to check the irreducibility of a Markov chain, we can use the following
characterization:

A Markov chain X is irreducible, if and only if the transition functions satisfy

pxj(t) > 0

for all t > 0 and every x, j ∈ S such that x 6= j.

Corollary 2.20 (on the distribution of sojourn times and joint densities)

Let X be a Markov chain with intensity matrix Q.

(a) Due to the memorylessness property of the exponential distribution we can easily
formulate the following conclusion of Theorem 2.16 (b):

Suppose that the Markov chain X is in some state x ∈ S at time t ≥ 0, i.e. Xt = x.
Then the sojourn time τ in this state until the next jump is also exponentially
distributed with

τ ∼ Exp(qx).

(b) Suppose again that the Markov chain X is in some state x ∈ S at time t ≥ 0 and
assume qx > 0. Let τ denote the sojourn time until the next jump, i.e. the Markov
chain will change into a new state at τ + t. Since the sojourn time τ is independent
of the actual time t, the joint distribution of τ and Xτ+t conditioned by Xt = x is

16



2.3 Jump Times and Embedded Discrete-Time Markov Chains

given by

P(τ ≤ s,Xτ+t = j | Xt = x) = P(τ ≤ s,Xτ = j | X0 = x)

= Px(τ ≤ s,Xτ = j)

= Px(τ ≤ s) · Px(Z1 = j)

=


(

1− exp(−qx · s)
)
· pxj, if x 6= j,

0, if x = j.

for every s ≥ 0 and j ∈ S.

As a consequence, the joint density of τ and Xτ+t conditioned by Xt = x is given
by

fτ,Xτ+t(s, j | Xt = x) = fτ,Xτ (s, j | X0 = x)

= fτ (s | X0 = x) · fXτ (j | X0 = x)

=

{
qx · exp(−qx · s) · pxj, if x 6= j,

0, if x = j

=

{
qx · exp(−qx · s) · qxjqx , if x 6= j,

0, if x = j

=

{
exp(−qx · s) · qxj, if x 6= j,

0, if x = j
(2.23)

for every s ≥ 0 and j ∈ S.

(c) A special case of (2.23) for t = 0 and τ = T1 = S1 will play an important role in
subsequent chapters, stating

fS1,Z1(s, j | X0 = x) =

{
exp(−qx · s) · qxj, if x 6= j,

0, if x = j
(2.24)

for every s ≥ 0, j ∈ S and x ∈ S such that qx > 0.

An obvious property of the sequence of jump times (Sn)n∈N0 , emerging from Definition 2.15
and Theorem 2.16, is its P–almost sure strict monotonicity

S0 < S1 < S2 < S3 < . . . , P–a.s.. (2.25)

Considering a Markov chain X with intensity matrix Q (and thus assuming the validity
of the stability condition due to Assumption 2.13), we can guarantee that qZn−1 ≤ λ <∞
for every n ∈ N (where λ is given as in (2.13)) and thus state the following proposition:
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2 Continuous-Time Markov Chains

Proposition 2.21 (non-explosivity)

Let X be a Markov chain with intensity matrix Q. Due to the stability condition (2.13)
the sequence of jump times (Sn)n∈N0 converges P–almost surely to infinity:

lim
n→∞

Sn =∞ P–a.s. (2.26)

Proof of Proposition 2.21
For every n ∈ N, we get qZn−1 ≤ λ < ∞. By choosing a small but arbitrary ε > 0,
Theorem 2.16 yields (given (Zn)n∈N0)

P (Tn < ε) = 1− exp
(
−qZn−1 · ε

)
≤ 1− exp (−λε) =: C < 1

for every n ∈ N. Thus, using the independence of the sequence (Tn)n∈N we get

P (T1 < ε, . . . , Tn < ε) =
n∏
k=1

P (Tk < ε) ≤ Cn n→∞−→ 0.

Hence, the sequence (Tn)n∈N is P–almost surely no null sequence. As a consequence, the
series

∑
n∈N Tn diverges P–almost surely and yield

lim
n→∞

Sn = lim
n→∞

n∑
k=1

Tk =
∑
n∈N

Tn =∞ P–a.s.

In this sense, the Markov chain does not “explode”. For any given compact interval of
time, the number of jumps of a Markov chain with with intensity matrix Q remains finite.

As we have seen, for every homogeneous Markov chain X, its sequence of jump times
(Sn)n∈N0 and its embedded Markov chain (Zn)n∈N0 can always be constructed and are
well-defined. On the other hand, we can obviously use these jump times and the embedded
chain to find a characterization for the Markov chain:

Xt =
∑
n∈N0

Zn · 1{Sn≤t<Sn+1}. (2.27)

Alternatively, using the identity 1{Sn≤t<Sn+1} = 1{Sn≤t}
(
1− 1{Sn+1≤t}

)
for every t ≥ 0

and n ∈ N0, the Markov chain can also be characterized by

Xt =
∑
n∈N0

Zn · 1{Sn≤t}
(
1− 1{Sn+1≤t}

)
. (2.28)
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3 Filtrations and Stopping Times for
Markov Chains

In order to define the stopping problem for continuous-time Markov chains rigorously
and derive further results, we need to introduce the class of admissible stopping times for
the stopping problem and thus specify the filtrations for which the stopping times are
defined.

3.1 Filtrations for Markov Chains

In this section we want to study the natural filtration generated by a Markov chain X with
intensity matrix Q and try to characterize this filtration using the information given by
the jump times (Sn)n∈N0 and the embedded Markov chain (Zn)n∈N0 of X. Furthermore,
we want to introduce a new family of filtrations using stopped processes of X and
characterize them as well.

Definition 3.1 (natural filtration and filtrations of stopped processes)

Let X be a Markov chain with intensity matrix Q.

(a) The Filtration (FXt )t≥0 defined by

FXt := σ (Xs, 0 ≤ s ≤ t) , t ≥ 0 (3.1)

is called the natural filtration of X.

(b) Fix an n ∈ N0 and consider the stopped process
(
XSn
t

)
t≥0

defined by

XSn
t := Xt∧Sn . (3.2)

Define the n–step filtration
(
Fn,Xt

)
t≥0

of X by

Fn,Xt := σ
(
XSn
s , 0 ≤ s ≤ t

)
, t ≥ 0. (3.3)
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3 Filtrations and Stopping Times for Markov Chains

Remark 3.2 (interpretation of (FXt )t≥0 and (Fn,Xt )t≥0)

The n–step filtration
(
Fn,Xt

)
t≥0

models the information of X up to the n–th jump of the

Markov chain and thus contains obviously less information than the natural filtration(
FXt
)
t
≥ 0. Clearly, these n–step filtrations increase in n ∈ N:

Fn,Xt ⊆ Fn+1,X
t ⊆ FXt for all t ≥ 0, n ∈ N0. (3.4)

Furthermore, since Sn →∞ for n→∞ according to Proposition 2.21, we can conclude
that this increasing sequence of n–step filtrations converges to the natural filtration in
the sense that ∨

n∈N0

Fn,Xt = FXt for all t ≥ 0. (3.5)

Another possibility to interpret a Markov chain is by means of marked point processes,
using the jump times (Sn)n∈N0 and the embedded Markov chain (Zn)n∈N0 as marks. We
will now define the corresponding filtrations using these quantities.

Definition 3.3 (filtrations generated by jump times and embedded Markov chain)

Let X be a Markov chain with intensity matrix Q, jump time sequence (Sn)n∈N0 and
embedded Markov chain (Zn)n∈N0 . We then define the filtrations (Dt)t≥0 and (Dnt )t≥0 for
every n ∈ N0 by

Dnt :=
n∨
k=1

(
σ
(
1{Sk≤s}, 0 ≤ s ≤ t

)
∨ σ

(
Zk · 1{Sk≤s}, 0 ≤ s ≤ t

))
, n ∈ N0, (3.6)

Dt :=
∨
k∈N

(
σ
(
1{Sk≤s}, 0 ≤ s ≤ t

)
∨ σ

(
Zk · 1{Sk≤s}, 0 ≤ s ≤ t

))
. (3.7)

For a more elaborate discussion of this topic, we may refer to Pham [2010], [Protter,
2005, Chapter 6] or [Last & Brandt, 1995, Chapter 2]

Remark 3.4 (interpretation of (Dt)t≥0 and (Dnt )t≥0)

By construction, the following statements hold:

(a) For all n ∈ N, (Dnt )t≥0 is the smallest filtration, such that

(i) S0, . . . , Sn are (Dnt )t≥0–stopping times,

(ii) Z0, . . . , Zn are
(
DnSn , P(S)

)
–measurable.

(b) (Dt)t≥0 is the smallest filtration, such that
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3.1 Filtrations for Markov Chains

(i) S0, S1, . . . are (Dt)t≥0–stopping times,

(ii) For all n ∈ N0, Zn is (DSn , P(S))–measurable.

(c) Analoguously to Remark 3.2, the sequence of filtrations
(

(Dnt )t≥0

)
n∈N0

is again

monotonically increasing in n

Dnt ⊆ Dn+1
t ⊆ Dt for all t ≥ 0, n ∈ N0. (3.8)

(d) Furthermore, this sequence converges to (Dt)t≥0∨
n∈N0

Dnt = Dt for all t ≥ 0. (3.9)

For further reference on part (a), this statement is treated more elaborately in Pham
[2010].

The next proposition will show that the natural filtration (FXt )t≥0 of X coincides with the
filtration (Dt)t≥0, whereas the n–step filtrations (Fn,Xt )t≥0 coincide with the filtrations
(Dnt )t≥0.

Proposition 3.5 (filtration equivalences)

For every t ≥ 0

(a) FXt = Dt,

(b) Fn,Xt = Dnt for all n ∈ N0.

Proof of Proposition 3.5
Let t ≥ 0. Then it holds:

(a) For all s ∈ [0, t] and every k ∈ N0 the mappings

ω 7→ 1{Sk+1(ω)≤s} and

ω 7→ Zk(ω) · 1{Sk(ω)≤s}

are Ds–measurable and thus Dt–measurable.

As a consequence of the representation (2.28), the mapping

ω 7→ Xs(ω)

is also Ds–measurable and thus Dt–measurable. Hence, we get{
X−1
s (A) , 0 ≤ s ≤ t

}
∈ Dt for every A ∈ P(S)
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3 Filtrations and Stopping Times for Markov Chains

and thus
FXt ⊆ Dt.

On the other hand, the jump times Sn are for every n ∈ N0 defined as the first
hitting times of the n–th jump of X (cf. Definition 2.15) and thus (FXt )t≥0–stopping
times. In addition, we know that for every n ∈ N0, the state of X after the n–th
jump is given by Zn = XSn and thus FXSn–measurable. Since we know that (Dt)t≥0

is the smallest filtration fulfilling these two properties (cf. Remark 3.4), we can
conclude

Dt ⊆ FXt
and altogether

FXt = Dt.

(b) Analoguously to the characterizations (2.27), respectively (2.28) for the Markov
chain X, we can represent the stopped process

(
XSn
t

)
t≥0

by

XSn
t =

n−1∑
k=0

Zk · 1{Sk≤t<Sk+1} + Zn · 1{Sn≤t}

=
n−1∑
k=0

Zk · 1{Sk≤t}
(
1− 1{Sk+1≤t}

)
+ Zn · 1{Sn≤t} (3.10)

for every n ∈ N0. Again, the mappings

ω 7→ 1{Sk+1(ω)≤s} for every k ∈ {0, 1, . . . , n− 1} and

ω 7→ Zk(ω) · 1{Sk(ω)≤s} for every k ∈ {0, 1, . . . , n}

are Dns –measurable and thus Dnt –measurable for all s ∈ [0, t]. Hence, XSn
s itself is

Dnt –measurable for every s ∈ [0, t]. We get

Fn,Xt ⊆ Dnt .

On the other hand, we know that for every k ∈ {0, 1, . . . , n} the jump times Sk are
(Fn,Xt )t≥0–stopping times. Furthermore, the random variables

Zk = XSk = XSn
Sk

are Fn,XSk
-measurable and thus Fn,XSn

-measurable for every k ∈ {0, 1, . . . , n}. By
Remark 3.4, we know that (Dnt )t≥0 is the smallest filtration fulfilling these properties
above. This leads to

Dnt ⊆ F
n,X
t

and finally
Fn,Xt = Dnt

for every n ∈ N0.
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3.2 Stopping Times for Markov Chains

3.2 Stopping Times for Markov Chains

In this section we want to introduce the class of stopping times which will be treated in
the subsequent sections and chapters. Considering the special structural properties of
continuous-time Markov chains and the corresponding natrual filtrations, the question
arises whether these properties lead to a simpler representation of this class of stopping
times.

Definition 3.6 (Px–almost surely finite stopping times)

(a) A mapping τ : Ω → [0,∞] is called a stopping time with respect to a filtration
(Ft)t≥0, if

{τ ≤ t} ∈ Ft for all t ≥ 0.

We say τ is a (Ft)t≥0–stopping time.

(b) Let X be a Markov chain with intensity matrix Q and (FXt )t≥0 denote the corre-
sponding natrual filtration. The set of all (FXt )t≥0–stopping times shall by denoted
by Σ.

(c) Let X be a Markov chain with intensity matrix Q and (FXt )t≥0 denote the cor-
responding natrual filtration. We define for every x ∈ S the set of all Px–almost
surely finite (FXt )t≥0–stopping times by Σx. Every τ ∈ Σx is a (FXt )t≥0–stopping
time such that Px(τ < ∞) = 1, provided that the Markov chain X starts in an
initial value X0 = x ∈ S.

(d) Let X be a Markov chain with intensity matrix Q and (Fn,Xt )t≥0 denote the
corresponding n–step filtration for some n ∈ N0. The set of all (Fn,Xt )t≥0–stopping
times shall by denoted by Σn.

Remark 3.7 (monotonicity of the stopping sets)

Let x ∈ S. According to (3.4), every (Px–almost surely finite) (Fn,Xt )t≥0–stopping time is
also a (Px–almost surely finite) (Fn+1,X

t )t≥0–stopping time and also a (Px–almost surely
finite) (FXt )t≥0–stopping time for all n ∈ N0. Hence we get the monotonicity property

Σn ⊆ Σn+1 ⊆ Σ for all n ∈ N0. (3.11)

Example 3.8 (jump times are stopping times)

It follows directly from Proposition 3.5 that the jump times Sn, n ∈ N0 of an continuous-
time Markov chain X are stopping times. More precisely:

• Sn is an (FXt )t≥0–stopping time for every n ∈ N0 and

• for a fixed n ∈ N0, Sk is an (Fn,Xt )t≥0–stopping time for every k ∈ {0, 1, . . . , n}.

23



3 Filtrations and Stopping Times for Markov Chains

3.2.1 Characterization of Stopping Times with respect to the
n–Step Filtration

Let X be a Markov chain X with intensity matrix Q. The first step for characterizing
stopping times will be a decomposition result for stopping times with respect to the
n–step filtration (Fn,Xt )t≥0. This result, as stated in the following theorem, can be found
for instance in Bayraktar & Zhou [2014]. For further literature on the structure of
stopping times, the reader may be referred to Pham [2010] or [Davis, 1993, Appendix
A2].

Theorem 3.9 (decomposition of (Fn,Xt )t≥0–stopping times)

Let n ∈ N0. A mapping τ : Ω→ [0,∞] is an (Fn,Xt )t≥0–stopping time, if and only if it
has the following decomposition:

τ = τ 0
1{τ<S1} +

n−1∑
k=1

τ k1{Sk≤τ<Sk+1} + τn1{Sn≤τ} (3.12)

where for every k ∈ {0, 1, . . . , n}:
(i) τ k ≥ Sk,

(ii) τ k is an (Fk,Xt )t≥0–stopping time,

(iii) There exists a measurable mapping hk : [0,∞)k × Sk+1 → [0,∞], such that hk ≥ 0
and

τ k = hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk. (3.13)

This decomposition (3.12) is unique in the sense that every term in the sum of (3.12) is
uniquely determined on the set {Sk ≤ τ < Sk+1} and independent of the structure of τ k

after the jump Sk+1.

Notation 3.10

Due to the equivalency in Theorem 3.9, every (Fn,Xt )t≥0–stopping time τ is uniquely deter-
mined by the piecewise description using the (Fk,Xt )t≥0–stopping times τ k, respectively the
corresponding mappings hk for k ∈ {0, 1, . . . , n}. We will refer to this (Fk,Xt )t≥0–stopping
times as stopping rules and use the notations

τ = (τ 0, τ 1, . . . , τn) (3.14)

or
τ = (h0, h1, . . . , hn) (3.15)

for the decomposition representation (3.12). Also note that for every k ∈ {0, 1, . . . , n}
the stopping rules τ k and the corresponding mappings hk are connected by equation
(3.13) and differ in the additive term Sk.
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3.2 Stopping Times for Markov Chains

Remark 3.11 (alternative representation of decomposition (3.12))

Another representation of decomposition (3.12) is given by [Bayraktar & Zhou, 2014,
Proposition 2.3]:

τ = τ 0
1{τ0<S1} +

n−1∑
k=1

τ k1{τ0≥S1}∩···∩{τk−1≥Sk}∩{τk<Sk+1} + τn1{τ0≥S1}∩···∩{τn−1≥Sn}. (3.16)

Proof of Theorem 3.9
By Proposition 3.5 we know that the filtrations (Fn,Xt )t≥0 and (Dnt )t≥0 are equivalent.
According to [Bayraktar & Zhou, 2014, Theorem 2.1 and Lemma 3.2], a mapping τ
is a (Dnt )t≥0–stopping time and thus an (Fn,Xt )t≥0–stopping time, if and only if it has
the decomposition (3.16) with mappings τ k, k ∈ {0, 1, . . . , n} fulfilling the properties
required in Theorem 3.9. Furthermore [Bayraktar & Zhou, 2014, Proposition 2.3] states
the equivalence of the decompositions (3.16) and (3.12) and thus yield the desired
assertion.

Remark 3.12 (interpretation of decomposition (3.12))

(a) Considering decomposition (3.16), an interpretation for every (Fn,Xt )t≥0–stopping
time τ = (τ 0, τ 1, . . . , τn) can be given in the following way: At first, the stopping
time τ follows the stopping rule τ 0. If the stopping rule τ 0 does not trigger before
the first jump time S1, the stopping rule τ 0 is discarded and τ starts to follow the
new stopping rule τ 1. Inductively, the stopping time τ will follow the stopping rule
τ k, provided that every single previous stopping rule τ 0, . . . , τ k−1 did not trigger
before the corresponding jump time S1, . . . , Sk. Stopping rule τ k stays in effect as
long as it will not stop itself or the next jump Sk+1 didn’t occur so far. If the jump
time Sk+1 is reached, τ k will be discarded again and the stopping time τ starts to
follow the stopping rule τ k+1. In the case that τ did not stop beforehand and all
stopping rules τ 0, . . . , τn−1 are discarded, τ will follow stopping rule τn indefinitely.

(b) For every (Fn,Xt )t≥0–stopping time τ , the stopping rule τ 0 is an (Fn,Xt )t≥0–stopping
time such that there exists a mapping h0 : S → [0,∞] with τ 0 = h0(Z0). Given an
arbitrary initial value X0 = Z0 = x ∈ S of our Markov chain X, the stopping rule
τ 0 is given by τ 0 = h0(x) and thus a deterministic constant, depending only on x.

(c) Given a Markov chain X with intensity matrix Q and an (Fn,Xt )t≥0–stopping time
τ , the event of stopping before the first jump of the Markov chain occurs at time
S1 is given by

{τ < S1} = {τ 0 < S1}.

Hence, the probability of stopping before this first jump time, given an initial value
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x ∈ S, can be calculated by

Px(τ < S1) = Px(τ 0 < S1) = 1− Px (S1 ≤ h0(Z0)) = 1− P (S1 ≤ h0(x))

= 1− P (T1 ≤ h0(x)) = exp (−qx · h0(x)) . (3.17)

Example 3.13 (example for a decomposition of n–step stopping times)

Let n ∈ N0. Continuing Example 3.8, an (Fn,Xt )t≥0–stopping time τ = Sj for j ∈
{0, 1, . . . , n} can be decomposed such that

τ = τ 0
1{τ0<S1} +

n−1∑
k=1

τ k1{τ0≥S1}∩···∩{τk−1≥Sk}∩{τk<Sk+1} + τn1{τ0≥S1}∩···∩{τn−1≥Sn}

for (Fk,Xt )t≥0–stopping times τ k ≥ Sk, k ∈ {0, 1, . . . , n}. Since we know that the stopping
time τ will trigger exactly at the j–th jump of the underlying Markov chain and neither
before nor after it, we can conclude that the involved stopping rules are given by

τ k =

{
Sj, for k = j,

∞, for k ∈ {0, 1 . . . , j − 1, j + 1, . . . , n}.

Every stopping rule τ k is obviously an (Fk,Xt )t≥0–stopping time such that τ k ≥ Sk and
by defining the measurable mappings hk as

hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) =

{
0, for k = j,

∞, for k ∈ {0, 1 . . . , j − 1, j + 1, . . . , n}

we get

τ k = hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk.

Note that the first j stopping rules τ 0, . . . , τ j−1 are set to infinity to guarantee that the
stopping time τ does not trigger before the j–th jump. On the other hand, setting the
stopping rules τ j+1, . . . , τn to infinity is not mandatory. Since the stopping rules only
have to be uniquely determined on the sets {Sk ≤ τ < Sk+1} and

{Sk ≤ Sj < Sk+1} = ∅ Px–a.s. for k 6= j,

the stopping rules τ k for k > j will never trigger and can be chosen arbitrarily.

Using equation (3.14) in Notation 3.10, the decomposition representation from (3.16) for
Sj yields

Sj = (∞, . . . ,∞, Sj,∞, . . . ,∞).

Using equation (3.15) on the other hand, the decomposition representation can be written
as

Sj = (∞, . . . ,∞, 0,∞, . . . ,∞).
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Before we now address ourselves to the next step, namely the characterization of stopping
times with respect to the natural filtration, we first restate a result from Bayraktar &
Zhou [2014], which was already used and cited in the proof of Theorem 3.9, but which
also will come handy on its own in later chapters:

Lemma 3.14 (charaterization of stopping rules)

For every k ∈ N0, a random variable τ k is a (Fk,Xt )t≥0–stopping time such that τ k ≥ Sk
if and only if there exists a measurable mapping hk : [0,∞)k × Sk+1 → [0,∞], such that
hk ≥ 0 and

τ k = hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk.

This Assertion is taken from [Bayraktar & Zhou, 2014, Lemma 3.2.], basicly stating that
the properties of the stopping rules from decomposition (3.12) in Theorem 3.9 are not
independent of one another, but rather that properties (i)+(ii) imply (iii) and vice versa.

3.2.2 Characterization of Stopping Times with respect to the
Natural Filtration

In the previous section we discussed a decomposition result for (Fn,Xt )t≥0–stopping times,
given a Markov chain X with a intensity matrix Q. Since we are primarily interested
in (FXt )t≥0–stopping times, a characterization by a similar decomposition result like
(3.12) from Theorem 3.9 would be desirable. In fact, such a decomposition is possible
for stopping times from the class Σx (for some x ∈ S), i.e. Px–almost surely finite
(FXt )t≥0–stopping times, as stated in the next proposition.
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Proposition 3.15 (decomposition of (FXt )t≥0–stopping times)

Let x ∈ S and τ : Ω → [0,∞] be a mapping such that Px(τ < ∞) = 1. Then τ is an
(FXt )t≥0–stopping time, if and only if it has the following decomposition:

τ = τ 0
1{τ<S1} +

∞∑
k=1

τ k1{Sk≤τ<Sk+1} Px–a.s. (3.18)

where for every k ∈ N0:

(i) τ k ≥ Sk,

(ii) τ k is an (Fk,Xt )t≥0–stopping time,

(iii) There exists a measurable mapping hk : [0,∞)k × Sk+1 → [0,∞], such that hk ≥ 0
and

τ k = hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk.

This decomposition (3.18) is Px–almost surely unique in the sense that every term in the
sum of (3.18) is – up to a Px–nullset – uniquely determined on the set {Sk ≤ τ < Sk+1}
and independent of the structure of τ k after the jump Sk+1.

Proof of Proposition 3.15

Let x ∈ S and τ : Ω → [0,∞] be a mapping such that
Px(τ <∞) = 1.

1. Assume that τ is an (FXt )t≥0–stopping time.

(i) Define for every n ∈ N0 the mapping τn : Ω→ [0,∞] by

τn := τ ∧ Sn.

τn is then a Px–almost surely finite (Fn,Xt )t≥0–stopping time such that

τn ↗ τ for n→∞.

Now Theorem 3.9 becomes applicable for τn and yields the decomposition

τn = τ 0
n1{τn<S1} +

n−1∑
k=1

τ kn1{Sk≤τn<Sk+1} + τnn1{Sn≤τn} (3.19)

for mappings τ kn , k ∈ {0, 1, . . . , n} such that

• τ kn ≥ Sk,

• τ kn is an (Fk,Xt )t≥0–stopping time,
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• There exists a measurable mapping hk,n : [0,∞)k × Sk+1 → [0,∞], such
that hk ≥ 0 and

τ kn = hk,n(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk.

(ii) Furthermore, for every n ∈ N0 we get

• {τn < S1} = {τ ∧ Sn < S1} = {τ < S1},
• For all k ∈ {1, . . . , n− 1}:
{Sk ≤ τn < Sk+1} = {Sk ≤ τ ∧ Sn < Sk+1} = {Sk ≤ τ < Sk+1} and

• {Sn ≤ τn} = {Sn ≤ τ ∧ Sn} = {Sn ≤ τ} = {Sn = τ}.
Hence, decomposition (3.19) can be expressed as

τn = τ 0
n1{τ<S1} +

n−1∑
k=1

τ kn1{Sk≤τ<Sk+1} + τnn1{Sn≤τ} (3.20)

(iii) Theorem 3.9 states the uniqueness of the decomposition in the sense that for
every n ∈ N0 the k–step stopping times τ kn are uniquely determined

• on {τn < S1} = {τ < S1} for k = 0,

• on {Sk ≤ τn < Sk+1} = {Sk ≤ τ < Sk+1} for k ∈ {1, . . . , n− 1},
• on {Sn ≤ τn} = {Sn ≤ τ} for k = n.

Thus we get

τ k := τ kn = τ kn+1 for all n ∈ N0, k ∈ {0, 1, . . . , n} (3.21)

on the corresponding sets {τ < S1}, {Sk ≤ τ < Sk+1}, k ∈ {1, . . . , n −
1}, respectively {Sn ≤ τ}. This leads for every n ∈ N0 to an equivalent
representation of (3.20):

τn = τ 0
1{τ<S1} +

n−1∑
k=1

τ k1{Sk≤τ<Sk+1} + τn1{Sn≤τ}, (3.22)

where the mappings τ k, k ∈ {0, 1, . . . , n} defined by (3.21) do not depend on
n and fulfill

(i) τ k ≥ Sk,

(ii) τ k is an (Fk,Xt )t≥0–stopping time,

(iii) There exists a measurable mapping hk : [0,∞)k × Sk+1 → [0,∞], such
that hk ≥ 0 and

τ k = hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk.
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3 Filtrations and Stopping Times for Markov Chains

(iv) We know that Sn < Sn+1 and thus

{Sn+1 ≤ τ} ⊆ {Sn ≤ τ}

for every n ∈ N0. Additionally, we get Sn →∞ for n→∞ by Proposition 2.21
and hence ⋂

n∈N0

{Sn ≤ τ} = {τ =∞}.

Since Px(τ =∞) = 0 by assumption, we get

1{Sn≤τ} → 0 Px–a.s. for n→∞.

(v) Using the steps (i)− (iv) above, we can conclude that

τ = lim
n→∞

τn

= lim
n→∞

(
τ 0
1{τ<S1} +

n−1∑
k=1

τ k1{Sk≤τ<Sk+1} + τn1{Sn≤τ}

)
= τ 0

1{τ<S1} +
∞∑
k=1

τ k1{Sk≤τ<Sk+1} Px–a.s.

where τ k fulfills the required properties for every k ∈ N0.

2. Assume now that decomposition (3.18) holds with τ k fulfilling the required proper-
ties for every k ∈ N0.

(i) Let n ∈ N0 and define τn by

τn := τ 0
1{τ<S1} +

n−1∑
k=1

τ k1{Sk≤τ<Sk+1} + τn1{Sn≤τ}. (3.23)

Clearly, since Sn →∞ Px–almost surely for n→∞ and τ being Px–almost
surely finite, we get

τn → τ Px–a.s. for n→∞.

Theorem 3.9 states that τn is an (Fn,Xt )t≥0–stopping time for every n ∈ N0.
Since Fn,Xt ⊆ FXt for every n ∈ N0 and t ≥ 0, we can conclude that each τn is
also an (FXt )t≥0–stopping time.

(ii) According to the step above, we have a sequence (τn)n∈N0 of (FXt )t≥0–stopping
times with decomposition (3.23) for every n ∈ N0, which all use the same
stopping rules τ k. We will now show that the sequence (τn)n∈N0 is increasing.
To this end we observe that for every n ∈ N0

τn ≤ τn+1 ⇔ τn1{Sn≤τ} ≤ τn1{Sn≤τ<Sn+1} + τn+1
1{Sn+1≤τ}

⇔ τn1{Sn+1≤τ} ≤ τn+1
1{Sn+1≤τ}

⇔ τn ≤ τn+1 on {Sn+1 ≤ τ}.
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3.2 Stopping Times for Markov Chains

We know by assumption that for every n ∈ N0, the stopping rule τn is Px–
almost surely uniquely determined on the set {Sn ≤ τ < Sn+1} and can be
arbitrary otherwise. Thus, by setting

τn := Sn+1 on {Sn+1 ≤ τ}

and noting that τn+1 ≥ Sn+1 we can conclude that

τn ≤ τn+1 on {Sn+1 ≤ τ}

and thus
τn ≤ τn+1

for every n ∈ N0.

(iii) Since τn → τ Px–almost surely for n→∞ and (τn)n∈N0 being an increasing
sequence, we get

{τ > t} =
⋃
n∈N0

{τn > t} ∈ FXt

for every t ≥ 0 and hence know that τ is an (FXt )t≥0–stopping time.

Notation 3.16

Analogously to Notation 3.10, every (Fn,Xt )t≥0–stopping time τ is uniquely determined
by the piecewise description using the stopping rules τ k, respectively the corresponding
mappings hk for k ∈ N0. We will use the notations

τ = (τ 0, τ 1, . . . ) (3.24)

or
τ = (h0, h1, . . . ) (3.25)

for the decomposition representation (3.18).

Remark 3.17 (interpretation of decomposition (3.18))

The statements made in Remark 3.12 remain valid for the decomposition in Proposi-
tion 3.15. Briefly outlined, the stopping time τ will follow the stopping rules τ k, k ∈ N0

on the corresponding sets {Sk ≤ τ < Sk+1}. As long as a stopping rule τ k does not stop
before the (k + 1)th jump, it will be discarded after Sk+1 and the next stopping rule τ k+1

takes effect.

Some useful and imminent consequences concerning the relationship between (Fn,Xt )t≥0–
stopping times and (FXt )t≥0–stopping times that can be concluded from Proposition 3.15
and its proof, are stated in the following corollary.
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Corollary 3.18

(a) Let τ = (τ 0, τ 1, . . . ) be an (FXt )t≥0–stopping time. Then the random variable τ ∧Sn
is an (Fn,Xt )t≥0–stopping time for every n ∈ N0 such that

τ ∧ Sn = τ 0
1{τ<S1} +

n−1∑
k=1

τ k1{Sk≤τ<Sk+1} + Sn1{Sn≤τ}

or simply
τ ∧ Sn = (τ 0, τ 1, . . . , τn−1, Sn)

for suitable τ 0, . . . , τn−1 from decomposition (3.12).

(b) On the other hand, let n ∈ N0 and τ = (τ 0, τ 1, . . . , τn) be an (Fn,Xt )t≥0–stopping
time. Then there exists an (FXt )t≥0–stopping time τ̃ such that

τ̃ = (τ 0, τ 1, . . . , τn, Sn+1, Sn+2, . . . ).

(c) Let n ∈ N0 and consider the (Fn,Xt )t≥0–stopping time τ = (τ 0, τ 1, . . . , τn−1, Sn).
This stopping time fulfills

τ = τ ∧ Sn
and there exists an (FXt )t≥0–stopping time τ̃ such that

τ = τ̃ ∧ Sn.

A possible choice for such a τ̃ would be

τ̃ = (τ 0, τ 1, . . . , τn−1, Sn, Sn+1, . . . ).

Since stopping times of the form τ ∧ Sn will play an important role in chapter 7, it is
convenient to define a suitable set for such stopping times.

Definition 3.19 (stopping times stopped before the n–th jump)

Let n ∈ N0 and x ∈ S. Define the set

Σn,x :=
{
τ ∈ Σx

∣∣ ∃τ̃ ∈ Σx, such that τ = τ̃ ∧ Sn
}
. (3.26)

By Corollary 3.18 (a), every τ ∈ Σn,x is an (Fn,Xt )t≥0–stopping time fulfilling the
decomposition representation τ = (τ 0, τ 1, . . . , τn−1, Sn). On the other hand, every
(Fn,Xt )t≥0–stopping time τ , such that τ = (τ 0, τ 1, . . . , τn−1, Sn) permits by Corollary 3.18
(c) the representation τ = τ̃ ∧ Sn for a stopping time τ̃ ∈ Σx. Thus the set Σn,x can
alternatively be represented as

Σn,x =
{
τ ∈ Σn

∣∣ τ can be represented as τ = (τ 0, τ 1, . . . , τn−1, Sn)
}
. (3.27)
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Lemma 3.20 (monotonicity of the stopping sets)

For every n ∈ N0 and x ∈ S the following monotonicity property is valid:

Σn,x ⊆ Σn+1,x ⊆ Σx. (3.28)

Proof of Lemma 3.20
Let n ∈ N0, x ∈ S and τ ∈ Σn,x. By definition, there exists a stopping time τ̃ ∈ Σx such
that τ = τ̃ ∧ Sn. Hence it holds τ = τ ∧ Sn and Sn < Sn+1 yields τ = τ ∧ Sn = τ ∧ Sn+1.
Thus, by definition we get τ ∈ Σn+1,x and therefore

Σn,x ⊆ Σn+1,x.

The second part of the assertion follows directly from the definition of Σn,x as

Σn,x ⊆ Σx

for every n ∈ N0.
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4 Utility Functions

In this chapter we will briefly introduce the utility functions we want to consider in this
thesis. The concept of value functions is very common and wide spread in the field of
optimization theory. Especially some prominent representives like exponential utility,
power utility or logarithmic utility are quite popular choices for utility functions and
are very often found in a lot of papers from various research fields, particularly in those
with connections to finance, as the concept of utility functions has a clear economical
interpretation.

Utility functions are strongly connected to preferences and preference relations. We
assume that an investor, who has the decision between two different offers, is always
able to determine which of these two alternatives he prefers more. These preferences are
also captured in the concept of utility functions. At least under certain assumptions on
the preference relations, one can establish an one-to-one connection between preference
relations and utility functions. This relation was first established by John von Neumann
and Oskar Morgenstern in 1944 in von Neumann & Morgenstern [1944].

We say that using a utility function U an investor prefers an offer A over an offer B, if and
only if U(A) > U(B). In this case offer A is said to yield a higher utility for the investor
than offer B. In case of U(A) = U(B) we say that the investor is indifferent between
these two offers, as they yield the same utility. In general, an “offer” can be almost
everything: A general good, like food or a car, a promise of a future reward, or especially
common in finance: some cash flow. In the later case of a cash flow, the modelling of
a preference relation is rather canonical. An economically rational investor will always
prefer the greatest cash flow. Thus a utility function which maps this preference onto
some utility has to exhibit some monotonicity property, meaning that a higher cash
flow will result in a higher utility. This monotonicity is the most important property
for utility functions. Another often desired property is concavity. Roughly spoken, the
marginal utility gain is the smaller the higher the considered cash flow. An additional
unit of cash yields a higher additional gain of utility, if the investor has a low endowment
to begin with. The richer the investor gets the lower the surplus of utility gained by an
additional unit. For a further reading on the topic of utility functions and the connection
to preference relations we may refer to [Föllmer & Schied, 2004, chapter].

In the context of this thesis, we want to consider some revenue, consistent of some cost
and reward functional, and evaluate it under some utility function. The details will be
discussed elaborately in the subsequent chapter 5. Based on the reasoning above, we will
now define the utility functions we will want to consider in the rest of this work:
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Definition 4.1 (utility function)

Let U : D → R and D ⊆ R be the maximal domain of the mapping. U is called utility
function if it is strictly increasing and strictly concave on D and twice differentiable on
the interior of D.

As usual in the theory of utility optimization the absolute values a utility function can
attain do not have an economical interpretation. According to the strictly increasing
monotonicity of a utility function, a higher utility is always preferred over a lower utility
value. Thus if we are in the next chapter interested in maximizing some expected utility
over some set of feasible stopping times, we are not truly interested in its value itself, but
rather in finding – if existent – the maximizer of this set, namely the optimal stopping
time for which the maximal expected utility is attained at. This maximizer gives an
investor explicit rules for stopping the process optimally and thus maximizing some total
reward in the sense of achieving the highest expected utility possible. Clearly, this optimal
stopping time depends heavily on the chosen utility function. As mentioned before, the
absolute values such a utility function can attain are rather uninteresting. As a result to
this observation, two utility functions are often identified with each other and are said
to be equivalent, if they are equal up to an affine transformation. A more significant
property of a utility function is its risk aversion. A prominent measure therefore is the
Arrow-Pratt measure of absolute risk aversion (ARAU):

ARAU(x) := −U
′′(x)

U ′(x)
, x ∈ int(D), (4.1)

which was developed by John W. Pratt and Kenneth J. Arrow and published in Pratt
[1964], respectively Arrow [1965].

This measure is commonly used in literature to model the attitude of an investor towards
risk. The higher the ARAU–value, the more risk avoiding is an investor with utility
function U . As one can simply see, the Arrow-Pratt measure doesn’t use any absolute
value if U itself, but instead it’s first two derivatives, describing the monotonicity and
curvature of U . Obviously, this measure is invariant under affine transformations. Thus,
any utility functions, which are equal up to an affine transformation, have the same
absolute risk aversion. Any such investors using these utility functions are said to have
the same attitude towards risk and are treated equivalently.

Example 4.2 (examples for utility functions)

Prominent and commonly used utility functions are

• the exponential utility:

U : R→ R, U(x) := −e−γx for some γ > 0,

having a constant absolute risk aversion (CARA): ARAU(x) ≡ γ,
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• the power utility:

U : [0,∞)→ R, U(x) := xγ for some γ ∈ (0, 1),

having a decreasing absolute risk aversion (DARA): ARAU(x) = (1− γ) 1
x
,

• the logarithmic utility:

U : (0,∞)→ R, U(x) := ln(γx) for some γ > 0.

having a decreasing absolute risk aversion (DARA): ARAU(x) = 1
x
.
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exponential utility U(x) = − exp(x)
power utility          U(x) = 3x0.5

logarithmic utility  U(x) = ln(9x)

Figure 4.1: some examples for utility functions

As already mentioned at the beginning of this chapter, we want to use the definition of
utility functions to evaluate some revenue, given as the sum of some cost and reward
functional. Without supplementary assumptions we cannot control this revenue in the
sense that it can’t be bounded from below. As we will allow for the costs to become
arbirarily high, the corresponding reward term may not be able to compensate for it,
rendering the total revenue unbounded from below. Using a utility function defined
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according to Definition 4.1 on some domain D ( R, like for example the power- or
logarithmic utility, will not allow to account for arguments which are not bounded from
below. Of course we would be able to confine ourselves to the case of utility functions
with domain R, but then we would lose some well-known and prominent cases shuch
as the above-mentioned power or logarithmic utility functions. To this end we want to
generalize the definition of a utility function by extending its domain to the whole real
line:

Definition 4.3 (extended utility function)

Let Ũ be a utility function according to Definition 4.1 with domain D ( R. We then
define the extended utility function U : R→ R ∪ {−∞} by

x 7→ U(x) =

{
Ũ(x), if x ∈ D,
−∞, if x /∈ D.

(4.2)

Basically for every argument x /∈ D, we set the value of the utility function to −∞.
We thus have to extend the range of U by adding −∞. Note that an extended utility
function defined according to Definition 4.3 is still monotone and concave, but loses the
strict monotonicity, the strict concavity as well as the differentiability in general. But
restricted on the set D these properties obviously still hold. We summarize this in the
following lemma:

Lemma 4.4 (properties of extended utility functions)

Let U be an extended utility function from Definition 4.3, derived from a classical utility
function Ũ : D → R. Then U is increasing and concave on R and strictly increasing,
strictly concave on D, as well as twice differentiable on int(D).

Note that this concept of extended utility functions is only needed if the maximal domain
of a classical utility function according to Definition 4.1 does not coincide with the whole
real line. If on the other hand we have a classical utility function with maximal domain
R, like for example the exponential utility, then Definition 4.1 and Definition 4.3 coincide.
In this case the given utility function does never attain the value −∞.

Remark 4.5 (interpretation of extended utility functions)

We can interpret extended utility functions in the following way: Suppose that an investor
expresses his preferences using a classical utility function Ũ : D → R which is not defined
on the whole real line. This maximal domain D of Ũ represents the solvency region
of the investor. Going below this solvency region will result in bankruptcy, which is
the worst case scenario for an investor. By extending this classical utility function to
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U : R→ R ∪ {−∞} according to Definition 4.3, we assign this case of bankruptcy the
worst possible utility, namely −∞. Note again that the actual values of utility functions
do not have any economical meaning. The main purpose is to compare different cash
flows in terms of provided utitily. Clearly, defaulting should never be preferable for any
investor. Thus, setting the utility of such cases to −∞ is economically meaningful.

Utility functions like power or logarithmic utility are for example only defined for non-
negative, respectively positive domains. In such cases the investor is solvent as long as
he owns non-negative, respectively positive amounts of money. He is not able to borrow
money in order to go below these defaulting points.

The exponential utility on the other hand is defined on the whole real line and doesn’t
need to be extended. We can interpret this case in the way that an investor using an
exponential utility does not have the risk of defaulting and can borrow any amount of
money.

Example 4.6 (examples for extended utility functions)

With respect to Example 4.2, the following functions are extended utility functions:

• The extended power utility

U : R→ R ∪ {−∞}, U(x) :=

{
xγ, x ≥ 0,

−∞, x < 0

for γ ∈ (0, 1).

• The extended logarithmic utility

U : R→ R ∪ {−∞}, U(x) :=

{
ln(γx), x > 0,

−∞, x ≤ 0

for γ > 0.

Notation 4.7 (designation of utility functions)

In the following chapters we will always consider utility functions defined on the whole
real line. If the utility function in question is given by Definition 4.1 with maximal
domain D = R, we will call it classical utility function on R. If on the other hand
the considered utility function is given by Definition 4.3, we will call it extended utility
function. In case there is no danger of confusion and no distinction necessary, we will
just say utility function.
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5 Generalized Risk-Sensitive Stopping
Problems for Continuous-Time
Markov Chains

In this chapter we want to introduce the main problem of this work, the generalized
risk-sensitive stopping problem for homogeneous continuous-time Markov chains. A key
feature in this work is the renunciation of a fixed predetermined utility function. Instead,
the formulation of the stopping problem will be made under an arbitrary and general
utility function. As discussed in the previous chapter, we do not want to restrict ourselves
to the classical criterion of optimizing the expected reward under exponential utility.
Thus, the term risk-sensitive refers to the general case of an arbitrary utility function in
the sense of Definition 4.3.

5.1 Setup for the Stopping Problem for
Continuous-Time Markov Chains

The generalized risk-sensitive stopping problem for continuous-time Markov chains forms
the main object of interest in this thesis and will be defined in this section. Every theory
we will develop serves the purpose to solve this problem and characterize its solutions as
good as possible. To this end, we agree upon the following model setup for the generalized
risk-sensitive stopping problem for continuous-time Markov chains, that will be used
throughout the subsequent chapters and sections.
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5 Generalized Risk-Sensitive Stopping Problems for Continuous-Time Markov Chains

Definition 5.1 (generalized risk-sensitive stopping problem for continuous-time Markov
chains)

Suppose that the model setting consists of the following elements:

• The Markov chain X with intensity matrix Q. Recalling Assumption 2.13, this
means having a homogeneous continuous-time Markov chain taking values in S, with
a transition matrix function which is right-continuous in zero and a corresponding
intensity matrix which is stable and conservative.

• An initial value x ∈ S such that X0 = x.

• The set of all Px–almost surely finite (FXt )t≥0–stopping times Σx.

• An arbitrary utility function U : R→ R ∪ {−∞} as specified in Definition 4.3.

• A constant cost rate c > 0.

• A lower bounded reward function g : S → R, specifying the reward gained upon
stopping the problem.

Then the generalized risk-sensitive stopping problem for continuous-time Markov chains
is given by

Ex [U (−cτ + g(Xτ ))]→ max
τ∈Σx

! (5.1)

Given the continuous-time Markov chain X an investor or controller of this stopping
problem can observe the evolution of the process at any given time t ≥ 0 and thus knows
the reward g(Xt) he would gain from it by stopping the process at this point in time.
Waiting and observing the process is penalized by a running cost rate c > 0. Hence,
stopping the Markov chain at time t ≥ 0 nets the investor a total reward of −ct+ g(Xt)
monetary units. This total reward shall be evaluated under the individual utility function
of the controller, given by his personal preferences and attidute towards risk. We shall
suppose that this utility is chosen from a general class of utility functions as defined
in Definition 4.3 and do not restrict ourselves to a certain type of utility function. As
usual in the theory of utility optimization, we cannot hope for maximizing every possible
random outcome of such utility. Instead, we restrict ourselves to the maximization of
the expectation of the utility. The resulting stopping problem consists of maximizing
this expected utility over all feasible stopping times, namely all Px–almost surely finite
(FXt )t≥0–stopping times, and trying to find – if possible – the optimal stopping time for
which this maximum is attained at.
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Remark 5.2 (interpretation of the stopping problem for continuous-time Markov chains)

We can interpret the stopping problem for a continuous-time Markov chain X in the
following way:

(a) Xt represents an offer the investor receives at time t ≥ 0. He then has to decide
whether he wants to accept this offer or not. Observing the process X and thus
having the possibility to accept an offer is not free of charge. The investor has
to pay the cummulative costs −ct (according to the running cost rate c > 0) for
observing the income of offers up to time t ≥ 0. If he doesn’t accept, the flow of
offers just as the cummulative running costs continue. If he accepts an offer, the
whole process stops and terminates the stopping problem. By stopping at some
time t ≥ 0, the investor then gains the reward g(Xt) and has to pay a fee of −ct.
This revenue is evaluated under the individual utility function U modelling his
personal preferences and attidute towards risk.

(b) The stopping problem represents a special kind of control problem. For any time
t ≥ 0, the investor has to choose his actions to control the process. In this case
his set of actions consists of stopping or not stopping the process by accepting or
declining the current offer.

(c) For a general process Y the observed offers Yt can change randomly for every
moment t ≥ 0. Even for a compact time intervall [a, b] ⊂ [0,∞) the investor could
observe an uncountably infinity number of different offers. This would make the
stopping problem extremely difficult to handle. As we restrict ourselfs to the case
of continuous-time Markov chains, we get a more tractable situation. Using the
notation of jump times and embedded Markov chains according to Definition 2.15,
changes in the state of the Markov chain X occur only at designated jump times
(Sn)n∈N0 . Between these jumps the chain remains in its last state. Furthermore,
according to Proposition 2.21 the number of jumps within a compact interval of
time [a, b] ⊂ [0,∞) remains P–almost surely finite. Thus, a continuous-time Markov
chain X can be interpreted as a discrete sequence of offers observable to the investor,
represented by the states (Zn)n∈N0 of X immediately after a change of state. Since
the sojourn times between two jumps are exponentially distributed, we can say
that the investor receives an offer at some random jump time Sn, which remains
valid and can be accepted for an exponentially distributed duration until the next
jump occurs, replacing the current offer Zn irrevocably by the next one Zn+1.

(d) The optimization over the set Σx of all Px–almost surely finite (FXt )t≥0–stopping
times is economically meaningful. Using a stopping time which is not necessarily
(Px–almost surely) finite, will potentially cause an investor to observe the given
stopping problem indefinitely, rejecting every single offer and never terminating the
process. Such a behavior can of course not be realized in any real life application.
Thus, the restriction on (Px–almost surely) finite stopping times is neccessary to
guarantee econmical meaningfulness.

(e) One of the main goals is to find an optimal stopping time which maximizes the
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5 Generalized Risk-Sensitive Stopping Problems for Continuous-Time Markov Chains

expected utility given in this context. An economically rational investor will try
to apply this optimal stopping rule. Despite of optimizing over (Px–almost surely)
finite stopping times, the desired supremum has not to be attained by such a
(Px–almost surely) finite stopping time. To avoid such situations, we will impose
additional conditions to guarantee for the optimal stopping time to be (Px–almost
surely) finite.

5.2 Generalized Risk-Sensitive n–Step Stopping
Problem

The risk-sensitive stopping problem for continuous-time Markov chains exhibits an infinite
time horizont. The investor doesn’t have to accept any incoming offer in any given finite
interval of time. The only restriction on his choice of a stopping time he wants to apply
is whether it lies in the set of feasible stopping times Σx (for a given initial value X0 = x).
Using the interpretation of continuous-time Markov chains as a countable sequence of
offers with an exponentially distributed period of validity given in Remark 5.2, we can
argue that the investor has the opportunity to observe a countably infinite number of
incoming offers.

Of course it is sometimes reasonable to restrict this infinite number of incoming offers
by an upper bound for the maximal numbers of possible offers. Since the offers appear
randomly, namely at the moments of the jump times of the Markov chain, we cannot
restrict the infinite time horizont of the stopping problem. Instead, we reformulate the
general risk-sensitive stopping problem for continuous-time Markov chains (5.1) to a
version which allows the investor to receive at most n ∈ N0 different offers. If he doesn’t
accept any of these offers and thus doesn’t stop the problem himself, it will terminate
itself by the time of the n-th jump, forcing the investor to take the n-th incoming offer. In
terms of the continuous-time Markov chain X, we will now consider the stopped version
of it by considering the new process (XSn

t )t≥0.

Definition 5.3 (generalized risk-sensitive n–step stopping problem)

Using the same notation as in section 5.1 and denoting the sequence of jump times of the
Markov chain X by (Sn)n∈N0 we define the general risk-sensitive n-step stopping problem
for continuous-time Markov chains by

Ex [U (−c(τ ∧ Sn) + g(Xτ∧Sn))]→ max
τ∈Σx

! (5.2)
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Remark 5.4 (alternative formulation of the n–step stopping problem (5.2))

As discussed before, the stopping problem (5.2) terminates at the latest after the n-th
jump of the Markov chain. Thus by applying Corollary 3.18, for all x ∈ S and every
feasible stopping time τ ∈ Σx we can conclude that τ ∧ Sn is a Px–almost surely finite
(Fn,Xt )t≥0–stopping time for all n ∈ N0. Using the notation in Definition 3.19 we can write
τ ∧Sn ∈ Σn,x. On the other hand, every stopping time in Σn,x permits the representation
τ ∧ Sn for a suitable stopping time τ ∈ Σx. Thus, the general risk-sensitive n-step
stopping problem for continuous-time Markov chains (5.2) can be expressed as

Ex [U (−cτ + g(Xτ ))]→ max
τ∈Σn,x

! (5.3)

As we will see in chapter 7 studying the n–step stopping problem (5.2) will be essential in
order to tackle the unrestricted version (5.1) for countably infinite incoming offers. These
two problems are closely connected. Analysing problem (5.2) will give us the necessary
tools to tackle problem (5.1) by means of limit results by letting n converge to infinity.

5.3 Well-Posedness of the Stopping Problems

Before we tackle the stopping problems (5.1), respectively (5.2) and try to find optimal
stopping times for them, we first address to the question of well-posedness of this problems.
We want to call a stopping problem well-posed, if the maximum of the expected utility
over all feasible stopping times (or at least the supremum of it) can be attained by a
value less than infinity. In that way we can guarantee that there exists no stopping time
which leads to an arbitrarily high expected utility. Thus we can ensure that this stopping
problem remains economically meaningful. A model, which allows an investor to achieve
arbitrarily high amounts of utility does not reflect any realistic situation in any financial
market.

To ensure the well-posedness of the stopping problems for every utility function, a possible
way is to impose a certain integrability condition on the Markov chain X and the reward
function g. We will formulate this condition as a standing assumption, which will hold
throughout the remainder of this thesis.
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5 Generalized Risk-Sensitive Stopping Problems for Continuous-Time Markov Chains

Assumption 5.5 (integrability condition)

We will assume that every combination of Markov chain X, reward rate g and cost
rate c studied in context of the stopping problem (5.1) fulfills the following integrability
condition:

Mx := sup
τ∈Σx

Ex

[
− cτ + g+(Xτ )

]
<∞ for every x ∈ S, (5.4)

where the mapping g+ : S → [0,∞) is defined as g+ := max{g, 0}.

This assumption guarantees the well-posedness of the stopping problems for any untility
function as shown in the following Lemma.

Lemma 5.6 (well-posedness of the stopping problems)

Under the validity of Assumption 5.5 the stopping problems (5.1) and (5.2) for every
n ∈ N0 are well-posed.

Proof of Lemma 5.6
Let U : D → R be a utility function with domain D ⊆ R. With U being strictly concave
and strictly increasing, there exists an affine linear function D → R, x 7→ mx + d for
some constants m > 0 and d ∈ R such that

U(x) ≤ mx+ d (5.5)

for every x ∈ D. Using (5.4), this yields

sup
τ∈Σx

Ex [U (−cτ + g(Xτ ))] ≤ m · sup
τ∈Σx

Ex
[
−cτ + g+(Xτ )

]
+ d = mMx + d <∞

and thus the well-posedness of the stopping problem (5.1). Furthermore, the monotonicity
of the feasible stopping time sets in equation (3.28) of Lemma 3.20 provides, together
with the alternative version of the n–step stopping problem (5.3), the ineqality

sup
τ∈Σx

Ex [U (−c(τ ∧ Sn) + g(Xτ∧Sn))] = sup
τ∈Σn,x

Ex [U (−cτ + g(Xτ ))]

≤ sup
τ∈Σx

Ex [U (−cτ + g(Xτ ))]

<∞

and hence the second part of the assertion.
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Remark 5.7 (sufficient conditions for the validity of Assumption 5.5)

The integrability condition (5.4) in Assumption 5.5 is obviously fulfilled if

g+(Xτ ) = max{g(Xτ ), 0}

is upper bounded by a constant independent of x ∈ S and τ ∈ Σx. There are mainly
two situations which imply the above-mentioned boundedness from above and which are
quite common in real life applications:

(a) The reward function g : S → R is bounded and thus especially upper bounded.
This reflects the situation where the reward an investor can receive (based on the
actual state of the underlying Markov chain) is not allowed to be arbitrarily high.
Instead the reward is chosen from a given finite interval within the bounds of the
function g.

(b) The state space S of the underlying Markov chain is finite. In this case the upper
bound can be chosen to be the maximal value the reward function g : S → R can
attain:

g+(Xτ ) ≤ max{gmax, 0},

where gmax := max
x∈S

g(x). In this situation there is only a finite number of reward

values an investor can achieve, depending on the finite states the underlying Markov
chain can attain.

5.4 Additional Assumptions Imposed on the Stopping
Problems

In order to be able to compare the two stopping problems (5.1) and (5.2) analytically,
we will make the following general assumption:

Assumption 5.8

We will assume that every choice of utilty function U , Markov chain X, reward rate
g and cost rate c studied in context of the stopping problem (5.1) fulfills the following
inequality:

lim inf
n→∞

Ex [U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))] ≥ Ex [U (−ct− cτ + g(Xτ ))] (5.6)

for all x ∈ S and every τ ∈ Σx.

This assumption is rather technical and hard to verify. Following the ideas given in
[Bäuerle & Rieder, 2011, Remark 10.2.1] we will now give sufficient conditions under
which Assumption 5.8 is valid.

47



5 Generalized Risk-Sensitive Stopping Problems for Continuous-Time Markov Chains

Lemma 5.9 (sufficient conditions for Assumption 5.8)

(a) The inequality (5.6) in Assumption 5.8 is valid, if the following condition is satisfied:

lim inf
n→∞

Ex
[
U (−ct− cSn + g(Zn))1{τ>Sn}

]
≥ 0 for all x ∈ S, τ ∈ Σx. (5.7)

(b) Inequality (5.7) and thus (5.6) are valid, if the following condition is satisfied:

lim sup
n→∞

Ex
[
U− (−ct− cSn + g(Zn))1{τ>Sn}

]
= 0 for all x ∈ S, τ ∈ Σx, (5.8)

where the mapping U− : R→ R is defined as U− := −min{U, 0}.

Proof of Lemma 5.9

(a) Suppose (5.7) holds. Then we get for every x ∈ S and every τ ∈ Σx that

lim inf
n→∞

Ex [U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))]

= lim inf
n→∞

(
Ex
[
U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))1{τ>Sn}

]
+ Ex

[
U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))1{τ≤Sn}

] )
≥ lim inf

n→∞
Ex
[
U (−ct− cSn + g(XSn))1{τ>Sn}

]
+ lim inf

n→∞
Ex
[
U (−ct− cτ + g(Xτ ))1{τ≤Sn}

]
(?)
= lim inf

n→∞
Ex
[
U (−ct− cSn + g(Zn))1{τ>Sn}

]
+ Ex [U (−ct− cτ + g(Xτ ))]

(5.7)

≥ Ex [U (−ct− cτ + g(Xτ ))] .

Thus (5.6) is valid. The equality in (?) holds due to the monotone convergence
theorem by decomposing the utility into positive and negative part:

U+ (−ct− cτ + g(Xτ )) := max
{
U (−ct− cτ + g(Xτ )) , 0

}
,

U− (−ct− cτ + g(Xτ )) := max
{
− U (−ct− cτ + g(Xτ )) , 0

}
.

Therefore we get

lim inf
n→∞

Ex
[
U (−ct− cτ + g(Xτ ))1{τ≤Sn}

]
= lim inf

n→∞
Ex
[
U+ (−ct− cτ + g(Xτ ))1{τ≤Sn} − U− (−ct− cτ + g(Xτ ))1{τ≤Sn}

]
= lim

n→∞
Ex
[
U+ (−ct− cτ + g(Xτ ))1{τ≤Sn}

]
− lim

n→∞
Ex
[
U− (−ct− cτ + g(Xτ ))1{τ≤Sn}

]
=Ex

[
U+ (−ct− cτ + g(Xτ ))

]
− Ex

[
U− (−ct− cτ + g(Xτ ))

]
=Ex [U (−ct− cτ + g(Xτ ))] ,
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since (
U+ (−ct− cτ + g(Xτ ))1{τ≤Sn}

)
n∈N0

and (
U− (−ct− cτ + g(Xτ ))1{τ≤Sn}

)
n∈N0

are non-negative increasing sequences.

(b) Suppose (5.8) holds. Note that for every function U the decomposition U = U+−U−
into a positive part U+ := max{U, 0} and a negative part U− := −min{U, 0} is
valid. Then we get for every x ∈ S and every τ ∈ Σx that

lim inf
n→∞

Ex
[
U (−ct− cSn + g(Zn))1{τ>Sn}

]
= lim inf

n→∞
Ex
[
U+ (−ct− cSn + g(Zn))1{τ>Sn} − U− (−ct− cSn + g(Zn))1{τ>Sn}

]
≥ lim inf

n→∞
Ex
[
U+ (−ct− cSn + g(Zn))1{τ>Sn}

]
+ lim inf

n→∞
Ex
[
−U− (−ct− cSn + g(Zn))1{τ>Sn}

]
= lim inf

n→∞
Ex
[
U+ (−ct− cSn + g(Zn))1{τ>Sn}

]
− lim sup

n→∞
Ex
[
U− (−ct− cSn + g(Zn))1{τ>Sn}

]
≥0,

where the last inequality holds due to (5.8) and the positivity of the first summand.
Thus (5.7) is valid.
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5.5 Stopping Problems for Exponential Utility Functions

Among all utility functions the exponential utility is probably the most common. It
arises in a lot of different kinds of optimization problems where some cost or reward
functionals are evaluated under utility functions. Due to this special role, many authors
call optimization problems with applied exponential utility risk-sensitive. In case of
stopping problems wuch problems could be called (classical) risk-sensitive stopping
problems.

As already mentioned in the beginning of this chapter, a key feature of this thesis is
that we did not restrict ourselves to any special choice of a utility function. Therefore
we called the problems we want to consider generalized risk-sensitive stopping problems.
But as the name already suggests, we see our problems as generalization of the classicas
risk-sensitive case. It is therefore reasonable to treat the well-known case of classical
risk-sensitive stopping problems as a special case of the theory we want to establish.
Hence we will consistenly compare the generalized case with the special choice of the
exponential utiltiy as underlying utility function for our stopping problem and discuss
the resulting simplifications with respect to the general theory.

We will begin with a reformulation of the stopping problem (5.1), respectively the n–step
stopping problem (5.2) for the special choice of exponential utility as utility function.
Hence we suppose that the underlying utility function U is a classical one regarding
Definition 4.1 and given by

U : R→ R, U(x) := −e−γx

for some γ > 0.

The (classical) risk-sensitive stopping problem for continuous-time Markov chains is then
given by

Ex

[
− ecγτ−γg(Xτ )

]
→ max

τ∈Σx
! (5.9)

Analogously the classical risk-sensitive n–step stopping problem for continuous-time
Markov chains can be expressed as

Ex

[
− ecγ(τ∧Sn)−γg(Xτ∧Sn )

]
→ max

τ∈Σx
! (5.10)

This does not look special at first glance, but we will see in the subsequent chapters that
problems (5.9) and (5.10) are much easier to solve than their general versions (5.1) and
(5.2).
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6 Value Functions

In this chapter we will introduce the concept of so-called value functions which are closely
connected to the stopping problems (5.1) and (5.2). We will see that studying these value
functions will help us in our attempt to characterize or even solve the n–step stopping
problem (5.2). On the other hand, the knowledge about (5.2) will help to tackle the
unrestricted problem (5.1).

Section 6.1 of this chapter will cover the general theory for value functions under arbitrary
utility functions. This will be the main part of this chapter and will lay the foundation
for the theory in the subsequent chapters. In section 6.2 we will cover the special case
where the stopping problem is formulated for the choice of exponential utility as utility
function. We will see that this will lead to a considerable simplification of the theory
made in the first section.

6.1 Value Functions for General Utility Functions

For the remainder of this section we will assume the setup made for the generalized
risk-sensitive stopping problem for continuous-time Markov chains as in section 5.1.

Definition 6.1 (value functions)

Considering the generalized risk-sensitive stopping problem for continuous-time Markov
chains (5.1), we define

(a) the value function V ( · , τ) : [0,∞)× S → [−∞,∞) for stopping time τ ∈ Σ by

V (t, x, τ) := Ex [U (−ct− cτ + g(Xτ ))] ,

(b) the value function V : [0,∞)× S → [−∞,∞) by

V (t, x) := sup
τ∈Σx

V (t, x, τ).

For (t, x) ∈ [0,∞) × S the value V (t, x, τ) of the value function V (·, τ) expresses the
expected utility of the “reward”−ct− cτ + g(Xτ ) the investor gains, if he applies stopping
time τ ∈ Σ. V (t, x) therefore expresses the maximal expected utility the investor can
achieve by optimizing over all feasible stopping times in Σx. Thus, for any initial value
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x ∈ S the value V (0, x) of the value function V (·) represents the generalized risk-sensitive
stopping problem for continuous-time Markov chains (5.1). V (0, x) constitutes the optimal
attainable expected utility of the problem (5.1), whereas the stopping time τ ? ∈ Σx, for
which the supremum in V (0, x) (if existent) is attained at, depicts the optimal stopping
time and thus the solution to the stopping problem (5.1). For an arbitrary t ≥ 0, the
main difference of V (t, x) to the stopping problem (5.1) is the additional cost term −ct.
This can be interpreted in the way that our stopping problem is already running for a
period of t time units without being stopped and has thus acummulated the additional
costs of ct. After time t the investor “starts” to observe the problem and treats it as
if it was started anew at time t. Hence, the initial value of the Markov chain X is set
to X0 = x. Stopping the problem at time s ≥ 0 after “resetting” it yields a reward of
−ct−cs+g(Xs), where the costs are composed of the cumulated costs with respect to the
elapsed times t and s before, respectively after resetting. In this sense V (t, x) poses for
t > 0 an slightly different stopping problem than (5.1), which is – in the above-mentioned
sense – equivalent to V (0, x). We will see that in order to calculate V (0, x) we also have
to know every other value V (t, x) for all t ≥ 0. Thus, the goal will be to find a useful
characterization for the whole value function which will allow us to calculate its values
for some (t, x) ∈ [0,∞) × S in a more effective way than maximizing over the set of
feasible stopping times.

The term solving V (t, x) is thereby defined as the attempt to find the optimal stopping
time τ ? ∈ Σx for which the supremum in V (t, x) is attained at. We will see that in order
to solve (5.1), respectively V (0, x) for any x ∈ S, we will need to solve V (t, x) for every
(t, x) ∈ [0,∞)× S.

Definition 6.2 (n–step value functions)

Let n ∈ N0. Considering the generalized risk-sensitive n–step stopping problem for
continuous-time Markov chains (5.2), we define

(a) the n-step value function Vn( · , τ) : [0,∞)×S → [−∞,∞) for stopping time τ ∈ Σ
by

Vn(t, x, τ) := Ex [U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))] ,

(b) the n-step value function Vn : [0,∞)× S → [−∞,∞) by

Vn(t, x) := sup
τ∈Σx

Vn(t, x, τ).

Again, for every x ∈ S and n ∈ N0 the value Vn(0, x) of the n–step value function
Vn(·) is equivalent to the generalized risk-sensitive n–step stopping problem (5.2). The
interpretation above about the additional term −ct remains analogously valid for n–step
value functions. Additionally, for solving Vn(0, x) and thus problem (5.2) for any x ∈ S
and n ∈ N0, we will need to solve Vn(t, x) for every (t, x) ∈ [0,∞) × S. Thus we are
again interested in the whole value function, rather than just some single values of it.
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Remark 6.3 (notation and existence of value functions)

(a) With a slight abuse of notation, we will call both functions (t, x) 7→ V (t, x, τ) for
τ ∈ Σ and (t, x) 7→ V (t, x) value functions. Analogously, we call (t, x) 7→ Vn(t, x, τ)
for τ ∈ Σ and (t, x) 7→ Vn(t, x) n–step value functions for every n ∈ N0. It will be
clear from the corresponding contexts which functions are meant.

(b) Under the integrability condition (5.4) of Assumption 5.5

Mx := sup
τ∈Σx

Ex

[
− cτ + g+(Xτ )

]
<∞ for every x ∈ S

Lemma 5.6 guarantees the well-posedness of the stopping problems. Due to

sup
τ∈Σx

Ex [U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))] ≤ sup
τ∈Σx

Ex [U (−c(τ ∧ Sn) + g(Xτ∧Sn))] ,

sup
τ∈Σx

Ex [U (−ct− cτ + g(Xτ ))] ≤ sup
τ∈Σx

Ex [U (−cτ + g(Xτ ))] (6.1)

and using (5.5), we can find constants m > 0 and d ∈ R such that

Vn(t, x) ≤ mMx + d <∞ and (6.2)

V (t, x) ≤ mMx + d <∞. (6.3)

Both value functions take finite values for every (t, x) ∈ [0,∞)× S and thus are
well-defined. In this sense, the existence of the value functions is always guaranteed
under Assumption 5.5.

(c) The 0–step value functions are trivially given by

V0(t, x, τ) = Ex [U(−ct− c(τ ∧ S0) + g(Xτ∧S0))] = Ex [U(−ct+ g(X0))]

= U(−ct+ g(x)) and (6.4)

V0(t, x) = sup
τ∈Σx

V0(t, x, τ) = U(−ct+ g(x)) (6.5)

for every τ ∈ Σ, t ≥ 0 and x ∈ S, since S0 = 0.

(d) Note that we explicitly allow for a value function V (· , τ) or an n–step value
function Vn(· , τ) for any n ∈ N and some τ ∈ Σ to take an arbitrarily small
negative value. Thus the value range [−∞,∞) for the value functions is intentional.
It symbolizes the worst expected utility an investor can possibly achieve by applying
the stopping time τ .

(e) For every n ∈ N0, t ≥ 0 and x ∈ S we get a lower estimate for Vn(t, x) and V (t, x)
by using the special constant stopping time τ = 0:

Vn(t, x) ≥ Vn(t, x, 0) = Ex [U(−ct+ g(X0))] = U(−ct+ g(x)),

V (t, x) ≥ V (t, x, 0) = Ex [U(−ct+ g(X0))] = U(−ct+ g(x)).
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Hence, Vn(t, x) and V (t, x) are bounded from below by U(−ct+ g(x)) and are only
allowed to take arbitrarily small values if the associated utility function is set to
−∞ for these fixed t ≥ 0 and x ∈ S. The difference to Vn(t, x, τ) or V (t, x, τ) lies
in the fact that the expectation operator is not responsible for Vn(t, x) or V (t, x)
to take the value −∞.

(f) Note that U is a measurable function. Therefore, the mappings t 7→ V (t, x, τ) and
t 7→ Vn(t, x, τ) are also measurable for every x ∈ S, τ ∈ Σx and n ∈ N0.

(g) Another property that emerges immediately from the definition of value functions
is that for all n ∈ N0, x ∈ S and τ ∈ Σ

t 7→ Vn(t, x, τ), t 7→ Vn(t, x),

t 7→ V (t, x, τ), t 7→ V (t, x)

are decreasing functions.

Example 6.4 (example for explicitly calculable value functions)

Let S = {0, 1} and X a continuous-time Markov chain with intensity matrix Q given by

Q =

(
q00 q01

q10 q11

)
=

(
−α α
β −β

)
for some α, β > 0 (cf. Example 2.14) and initial value X0 = x ∈ S. Furthermore, let
U : R→ R, x 7→ −e−γx be an exponential utility function with γ > 0, c > 0 the cost rate
and g : S → R the reward function in this setting.

Consider now the stopping time τ := S2 ∈ Σ, where Sn denotes the n–th random jump
time of X. Then the n–step value functions Vn(t, x, τ) for n ∈ N0 as well as the value
function V (t, x, τ) are given by

V0(t, x, τ) = −eγct−γg(x),

V1(t, x, τ) =


−eγct−γg(1) · α

α−γc , for x = 0 and α > γc,

−eγct−γg(0) · β
β−γc , for x = 1 and β > γc,

−∞, otherwise

Vn(t, x, τ) = V (t, x, τ)

=

{
−eγct−γg(x) · α

α−γc ·
β

β−γc , for α > γc and β > γc,

−∞, otherwise

for n ≥ 2.
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Proof
The corresponding embedded Markov chain (Zn)n∈N0 of X is given by the deterministic
sequence

Zn =
1

2

(
1− (−1)n+x

)
,

which alternates between the states 0 and 1, depending on the initial value X0 = Z0 = x.
(Zn)n∈N0 is deterministic, since the transition probabilities for (Zn)n∈N0 are given by

p00 = p11 = 0, p01 =
q01

−q00

= 1 and p10 =
q10

−q11

= 1.

The Markov chain thus changes continuously between the two states 0 and 1 using random
exponentially distributed sojourn times between these jumps. To be more precise, the
sojourn times (Tn)n∈N are (given (Zn)n∈N0) independent and

Tn ∼ Exp(qZn−1).

This information can now be used to calculate the desired value functions:

The 0–step value function can be obtained very easy. It holds

V0(t, x, τ) = Ex [U (−ct− c(τ ∧ S0) + g(Xτ∧S0))] = U (−ct+ g(x)) = −eγct−γg(x).

For the other value functions, we will differentiate between the two possible initial values
x = 0 and x = 1.

(i) Let x = 0. The embedded Markov chain (Zn)n∈N0 is then given by the sequence

(Z0, Z1, Z2, Z3, . . . ) = (0, 1, 0, 1 . . . )

and the first two sojourn times are independent and fulfill

T1 ∼ Exp(qZ0) = Exp(q0) = Exp(α) and T2 ∼ Exp(qZ1) = Exp(q1) = Exp(β).

Calculating the distribution function for eγcT1 yields

P0(eγcT1 ≤ t) =

{
1− t−

α
γc , t ≥ 1,

0, t < 1

and leads to the expectation

E0

(
eγcT1

)
=

∫ ∞
1

α

γc
· t−

α
γc
−1 · t dt =

α

γc
·
∫ ∞

1

t−
α
γcdt

=

{
− α
γc
· 1
− α
γc

+1
, for α > γc,

∞, for α ≤ γc

=

{
α

α−γc , for α > γc,

∞, for α ≤ γc.
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Analogously we get

E0

(
e−cT2

)
=

{
β

β−γc , for β > γc,

∞, for β ≤ γc.

Using the indepenence of T1 and T2 as well as the relations S1 = T1 and S2 = T1 +T2

yields

E0

(
eγcS1

)
=

{
α

α−γc , for α > γc,

∞, for α ≤ γc
and

E0

(
eγcS2

)
= E0

(
eγcT1

)
· E0

(
eγcT2

)
=

{
α

α−γc ·
β

β−γc , for α > γc and β > γc,

∞, otherwise.

We can now calculate the 1–step value function:

V1(t, 0, τ) = E0 [U (−ct− c(τ ∧ S1) + g(Xτ∧S1))]

= E0 [U (−ct− cS1 + g(Z1))]

= E0

[
−e−γ(−ct+g(1)−cS1)

]
= −eγct−γg(1) · E0

(
eγcS1

)
=

{
−eγct−γg(1) · α

α−γc , for α > γc,

−∞, for α ≤ γc.

Since τ = S2 = τ ∧ S2 = τ ∧ Sn for all n ≥ 2, all n–step value functions Vn(t, 0, τ)
for n ≥ 2 and the value function V (t, 0, τ) are equal. We get

V2(t, 0, τ) = Vn(t, 0, τ) = V (t, 0, τ)

= E0 [U (−ct− cS2 + g(Z2))]

= −eγct−γg(0) · E0

(
eγcS2

)
=

{
−eγct−γg(0) · α

α−γc ·
β

β−γc , for α > γc and β > γc,

−∞, otherwise

for every n ≥ 2.

(ii) Now let x = 1. The embedded Markov chain (Zn)n∈N0 is then given by the sequence

(Z0, Z1, Z2, Z3, . . . ) = (1, 0, 1, 0 . . . )
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and the first two sojourn times fulfill

T1 ∼ Exp(β) and T2 ∼ Exp(α).

The calculations above can be used analogously and yield

E1

(
eγcS1

)
=

{
β

β−γc , for β > γc,

∞, for β ≤ γc
and

E1

(
eγcS2

)
= E1

(
eγcT1

)
· E1

(
eγcT2

)
=

{
α

α−γc ·
β

β−γc , for α > γc and β > γc,

∞, otherwise.

Using g(XS1) = g(Z1) = g(0) and g(XS2) = g(Z2) = g(1) thus leads to

V1(t, 1, τ) = E1 [U (−ct− c(τ ∧ S1) + g(Xτ∧S1))]

=

{
−eγct−γg(0) · β

β−γc , for β > γc,

−∞, for β ≤ γc

and

Vn(t, 1, τ) = V (t, 1, τ)

= E1 [U (−ct− cS2 + g(Z2))]

=

{
−eγct−γg(1) · α

α−γc ·
β

β−γc , for α > γc and β > γc,

−∞, otherwise

for every n ≥ 2.

Proposition 6.5 (properties of value functions)

(a) By definition we get

V (t, x, τ) ≤ V (t, x) for all t ≥ 0, x ∈ S, τ ∈ Σx,

Vn(t, x, τ) ≤ Vn(t, x) for all t ≥ 0, x ∈ S, τ ∈ Σx, n ∈ N0.

(b) Using the reasoning in Remark 5.4 and the alternative formulation (5.3) of the
n–step stopping problem (5.1), the n–step value function Vn can be expressed as

Vn(t, x) = sup
τ∈Σn,x

Ex [U (−ct− cτ + g(Xτ ))] (6.6)
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(c) An immediate consequence of (6.1) is

Vn(t, x) ≤ V (t, x) for all n ∈ N0, t ≥ 0, x ∈ S. (6.7)

Any n–step value function Vn is always dominated by the value function V . Thus,
the optimal expected utility derived from the n–step stopping problem (5.2) is
always smaller than the optimal expected utility derived from the stopping problem
(5.1). This is intuitively clear, since the n–step stopping problem (5.2) terminates
at the latest after n changes of the state of the Markov chain and does not permit
the possibility to observe the system indefinitely.

(d) The monotonicity (3.28) of the set of feasible stopping times

Σn,x ⊆ Σn+1,x for all n ∈ N0

coupled with the alternative representation (6.6) for the n–step value function
yields the monotonicity property

Vn(t, x) ≤ Vn+1(t, x) for all n ∈ N0, t ≥ 0, x ∈ S. (6.8)

Remark 6.6 (no monotonicity of value functions for fixed stopping times)

The monotonicity property (6.8) is generally not valid a fixed stopping time τ ∈ Σ, as
the following example illustrates:

Consider the situation in Example 6.4, where we were able to explicitly calculate the
n–step value functions for the stopping time τ = S2 ∈ Σ. The 1–step and 2–step value
functions are given by

V1(t, x, τ) =


−eγct−γg(1) · α

α−γc , for x = 0 and α > γc,

−eγct−γg(0) · β
β−γc , for x = 1 and β > γc,

−∞, otherwise

V2(t, x, τ) =

{
−eγct−γg(x) · α

α−γc ·
β

β−γc , for α > γc and β > γc,

−∞, otherwise.

It is immediately evident that for α, β, γ > 0 such that α > γc ≥ β, t ≥ 0 and x = 0 we
get

V1(t, 0, τ) = −eγct−γg(1) · α

α− γc
> −∞ = V2(t, 0, τ).

But even by excluding the cases of infinitely negative value functions the monotonicity
property (6.8) could be violated:
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Let now t ≥ 0, x = 0 and α, β, γ > 0 such that α > γc and β > γc. We get

V1(t, 0, τ) > V2(t, 0, τ)

⇐⇒− eγct−γg(1) · α

α− γc
> −eγct−γg(0) · α

α− γc
· β

β − γc

e−γg(1) < e−γg(0) · β

β − γc

⇐⇒g(1)− g(0) >
ln
(

β
β−γc

)
−γ

⇐⇒g(1) > g(0)−
ln
(

β
β−γc

)
γ

.

V1(t, 0, τ) sybmolizes the expected utility an investor gains by applying stopping time
τ = S2, if he is forced to stop before τ , namely immediately after the first jump of X
from state X0 = 0 into state 1. The reward which influences this expected utility is
g(1). One can just as well interpret V1(t, 0, τ) as the expected utility an investor gains
by applying stopping time S1 deliberately, since V1(t, 0, S2) = V (t, 0, S1) holds. On the
other hand, we compare this value with V2(t, 0, S2) = V (t, 0, S2), the expected utility an
investor gains by applying τ = S2. The inequality above states that the decision whether
to stop after the first change of state or after the second (given that the initial value was
x = 0), depends on the exact reward values g(0) and g(1) the investor could gain. If g(1)
is greater than g(0) (minus some correction term dependent on the model data β, γ and
c), then there is no incentive to wait for the second jump of the Markov chain back into
state 0.

Proposition 6.7 (relation between value functions and n–step value functions, inter-
changeability of limits)

(a) For every t ≥ 0, x ∈ S and τ ∈ Σ the inequality

V (t, x, τ) ≤ lim inf
n→∞

Vn(t, x, τ) (6.9)

holds.

(b) For every t ≥ 0 and x ∈ S, the limit

V∞(t, x) := lim
n→∞

Vn(t, x) = lim
n→∞

sup
τ∈Σx

Ex [U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))] (6.10)

exists.

(c) The limit and the supremum in (6.10) are interchangeable and yield

V∞(t, x) = lim
n→∞

Vn(t, x) = V (t, x). (6.11)
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Proof of Proposition 6.7

(a) Let t ≥ 0 and x ∈ S, τ ∈ Σ. The desired inequality

V (t, x, τ) ≤ lim inf
n→∞

Vn(t, x, τ).

is just a reformulation of Assumption 5.8.

(b) For every t ≥ 0 and x ∈ S, (Vn(t, x))n∈N0 is an increasing sequence, dominated by
V (t, x) < ∞ (according to (6.8) and (6.7) in Proposition 6.5). Hence, the limit
limn→∞ Vn(t, x) exists.

(c) Let n ∈ N0, t ≥ 0 and x ∈ S be fixed. Using the alternative representation
Equation (6.6) of n–step value functions in Proposition 6.5 and the monotonicity
property Σn,x ⊆ Σx in Lemma 3.20, we get

Vn(t, x) = sup
τ∈Σx

Ex [U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))]

= sup
τ∈Σn,x

Ex [U (−ct− cτ + g(Xτ ))]

≤ sup
τ∈Σx

Ex [U (−ct− cτ + g(Xτ ))]

= V (t, x)

and thus
V∞(t, x) = lim

n→∞
Vn(t, x) ≤ V (t, x).

On the other hand we know that

Vn(t, x) ≥ Vn(t, x, τ)

for every τ ∈ Σ and hence

V∞(t, x) = lim
n→∞

Vn(t, x) = lim inf
n→∞

Vn(t, x) ≥ lim inf
n→∞

Vn(t, x, τ)
(a)

≥ V (t, x, τ)

for every τ ∈ Σx. This leads to

V∞(t, x) ≥ sup
τ∈Σx

V (t, x, τ) = V (t, x)

and ultimately
V∞(t, x) = V (t, x).
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Remark 6.8 (finiteness of optimal stopping times)

As mentioned in Remark 5.2 (e), the supremum of the value function V (t, x, τ) over all
τ ∈ Σx does neither have to be a real maximum nor does it have to be attained by a
Px–almost surely finite stopping time.

On the other hand, the case for n–step value functions is a different one. We will show
that for every non-finite (FXt )t≥0–stopping time for which the supremum in Vn(t, x) is
attained at, there exists another (FXt )t≥0–stopping time which is Px–almost surely finite
and yields the same value as the supremum. To this end, let n ∈ N0, t ≥ 0, x ∈ S and τ
be a (possibly infinite) (FXt )t≥0–stopping time such that

Vn(t, x, τ) = Vn(t, x).

Since
Vn(t, x, τ) = Ex [U (−ct− c(τ ∧ Sn) + g(Xτ∧Sn))]

utilizes the term τ̃ := τ ∧ Sn ∈ Σn,x, we can replace τ by τ̃ knowing that τ ∧ Sn = τ̃ ∧ Sn
and thus

Vn(t, x, τ̃) = Vn(t, x, τ) = Vn(t, x).

Because τ̃ ∈ Σn,x is a Px–almost surely finite (FXt )t≥0–stopping time, the assertion is
shown.

6.2 Value Functions for Exponential Utility Functions

We will now consider value functions for the special choice of exponential utility as utility
function. Again, we suppose that the underlying utility function U is given by

U : R→ R, U(x) := −e−γx

for some γ > 0.

We can easily see that for given t ≥ 0, x ∈ S and τ ∈ Σx, the value functions V (t, x, τ)
and V (t, x) are given by

V (t, x, τ) = Ex

[
− ecγt+cγτ−γg(Xτ )

]
= ecγt · Ex

[
− ecγτ−γg(Xτ )

]
and

V (t, x) = sup
τ∈Σx

Ex

[
− ecγt+cγτ−γg(Xτ )

]
= ecγt sup

τ∈Σx

Ex

[
− ecγτ−γg(Xτ )

]
.

Due to the multiplicative structure of U , the cost term −ct can be isolated from the
remaining parameters, the expectation and even the supremum operator. Looking at the
value function V (t, x), we can see that in this particular case the time parameter t ≥ 0
does not have any influence on the optimization over feasible stopping times. Thus we
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can suspect that the solution of this optimization (if existent) has to be independent of t.
As an obvious consequence we can reduce the value functions to

Ṽ (x, τ) := Ex

[
− ecγτ−γg(Xτ )

]
(6.12)

and
Ṽ (x) := sup

τ∈Σx

Ex

[
− ecγτ−γg(Xτ )

]
. (6.13)

Note that in oder to get the original value functions, we need the relations

V (t, x, τ) = ecγtṼ (x, τ) and V (t, x) = ecγtṼ (x). (6.14)

Analogously to the case of unrestricted value functions we can also simplify the n–step
value functions Vn(t, x, τ) and Vn(t, x) for every n ∈ N0, t ≥ 0, x ∈ S and τ ∈ Σx by
defining

Ṽn(x, τ) := Ex

[
− ecγ(τ∧Sn)−γg(Xτ∧Sn )

]
, (6.15)

respectively

Ṽn(x) := sup
τ∈Σx

Ex

[
− ecγ(τ∧Sn)−γg(Xτ∧Sn )

]
(6.16)

and noting the relation

Vn(t, x, τ) = ecγtṼn(x, τ) and Vn(t, x) = ecγtṼn(x). (6.17)

As we have seen, the choice of exponential utility leads to a reduced value function in
the sense that the optimization over all feasible stopping times τ ∈ Σx does not depend
on the time parameter any more. The maximal expected utility gained by optimally
terminating the stopping problem thus only depend on the initial value x ∈ S of the
underlying continuous-time Markov chain. This independence from the time parameter
t ≥ 0 is one of the main reasons why exponential utility is so popular for a lot of
different optimization problems and especially stopping problems. Also note that only by
neglecting an evaluation of the given reward under any utility function, which would be
equivalent to taking U to be the identity, would allow us to get a similar situation where
the optimization over all feasible stopping times is independent of the time parameter.
But this mapping U would not fulfill the conditions of strict monotonicity and strict
concavity as we required in Definition 4.1 and is therefore not a feasible utility function.
Hence the exponential utility is the only classical utility function which exhibits such a
property.
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7 Discrete-Time Approach for the
Generalized Risk-Sensitive Stopping
Problem for Continuous-Time
Markov Chains

7.1 Introduction

This chapter forms the main part of this thesis. Here, we want to establish a discrete-time
approach in order to tackle the unrestricted stopping problem (5.1), respectively its
corresponding unrestricted value function from Definition 6.1. To this end we want to
utilize the n–step stopping problems introduced in (5.2), respectively their corresponding
n–step value functions from Definition 6.2. We will proceed in several steps:

In section 7.2, we address to n–step value functions for a given stopping time τ ∈ Σx and
initial value x ∈ S. We will be able to establish the so-called reward iteration formula,
which will allow for an recursive approach to solve an n–step value function Vn(t, x, τ)
for n ∈ N0, t ≥ 0, x ∈ S and τ ∈ Σx by applying the knowledge about the preceding
(n− 1)–step value function for the given τ ∈ Σx. Section 7.3 will compare the case of
general utility with the case of exponential utility.

In section 7.4 we will omit the need of a fixed stopping time τ ∈ Σx for initial value x ∈ S.
This will also lead to an iteration type equation, the so-called Bellman equation. This
makes it possible for n ∈ N, t ≥ 0 and x ∈ S to recursively calculate every n–step value
function Vn(t, x) from the previous one, without having to fix a particular stopping time.
Furthermore we will see that calculating one step of this Bellman equation will involve
the solving of a deterministic one-dimensional optimization problem. This solution on
the other hand will yield a mapping which fulfills the requirements of Theorem 3.9.
Solving n steps of this Bellman equation will therefore yield a piecewise description of an
(Fn,Xt )t≥0–stopping time. As it turns out, this stopping time will be the solution to the
n–step stopping problem and the corresponding n–step value function. As we already
know from Proposition 6.7, knowing the sequence of n–step value functions allows for
an arbitrarily good approximation of the unrestricted one. This legitimates the name
discrete-time approach of this chapter, as we can interpret V (t, x) to be the limit of a
discrete sequence of functions, which can be attained in an interative way. Following this,
section 7.5 will again treat the special case of exponential utility.
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In section 7.6 we will transform the aforementioned Bellman equation into a fixed-point
equation. Instead of calculating every n–step value function recursively and considering
the limit of these functions to gain the unrestricted value function, we will show that
this value function can also be obtained as a solution to the fixed-point equation. Again,
solving this equation will require to solve a deterministic optimization problem. This
solution will provide us with a mapping which can be used to construct an (FXt )t≥0–
stopping time using Proposition 3.15. This yields a candidate for the optimal stopping
time for the unrestricted stopping problem. We will see in section 7.7, that under certain
conditions this candidate is indeed optimal and thus provides us with the solution to the
generalized risk-sensitive stopping problem for continuous-time Markov chains. Finalizing
this chapter, section 7.8 will discuss the particular choice of exponential utility. We will
see that the fixed-point equation from the previous section will simplify in the sense
that the corresponding deterministic optimization problem degenerates to the problem of
choosing the greater of two values. The optimal stopping time for this specific utility
function will only be able to stop at the jump times of the underlying Markov chain. More
precisely, at every jump time, the optimal stopping time will either stop immediately
after attaining the new state or will never stop as long as the Markov chain remains in
this state.

7.2 Reward Iteration

In the previous chapter the concept of value functions and n–step value functions was
introduced and their meaning in context of the stopping problems (5.1) and (5.2) was
discussed. Furthermore a lot of connections between the various kinds of value functions
were established. In particular, Proposition 6.7 stated the convergence

Vn(t, x)→ V (t, x) as n→∞

for every t ≥ 0 and x ∈ S. Additionally, the 0–step value function can always be trivially
calculated by

V0(t, x) = U(−ct+ g(x))

for every t ≥ 0 and x ∈ S, as shown in Remark 6.3 (c).

Thus, a feasible approach for obtaining the value function V (t, x) would be to calculate all
n–step value functions Vn(t, x) and use them to gain V (t, x) as the corresponding limit for
n→∞. And in order to gain the n–step value functions Vn(t, x), we could try to calculate
Vn(t, x, τ) for every given τ ∈ Σx. A possible course of action would be the attempt to
establish a recursive formula in order to calculate the desired functions iteratively. We
will show that this idea is viable and formulate such a formula, the so-called reward
iteration. To this end we will excessively utilize the special structure of feasible Px–almost
surely finite stopping times in Σx by using the characterization of (FXt )t≥0–stopping
times given in section 3.2. As a remainder, Proposition 3.15 stated that for every x ∈ S
a mapping τ : Ω→ [0,∞] such that Px(τ <∞) = 1 is an (FXt )t≥0–stopping time, if and
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only if it has the decomposition

τ = τ 0
1{τ<S1} +

∞∑
k=1

τ k1{Sk≤τ<Sk+1} Px–a.s.

or in short

τ = (τ 0, τ 1, τ 2, . . . ),

respectively

τ = (h0, h1, h2, . . . ),

where for every k ∈ N0:

(i) τ k ≥ Sk,

(ii) τ k is an (Fk,Xt )t≥0–stopping time,

(iii) There exists a measurable mapping hk : [0,∞)k × Sk+1 → [0,∞], such that hk ≥ 0
and

τ k = hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk.

An important fact to be reminded of, as stated in Remark 3.12 (b), is that for x ∈ S and
every Px–almost surely finite (FXt )t≥0–stopping time τ the corresponding stopping rule
τ 0 is characterized by

τ 0 = h0(Z0) = h0(x)

for a measurable mapping h0 : S → [0,∞] and is thus deterministically given.

In order to establish the desired reward iteration formula for n–step value functions as
mentioned above, we will need a new concept of shifted stopping times, which will be
introduced in the following definition. The basic underlying idea will be for t ≥ 0 and a
non-absorbing state x ∈ S to look at an n–step value function Vn(t, x, τ) for an arbitrary
τ ∈ Σx and at the corresponding expected utility an investor would gain by utilizing
this particular stopping time. Now fix such a τ = (τ 0, τ 1, . . . ) ∈ Σx and suppose that
the investor decides not to stop before the first jump time S1 of the Markov chain X
and resolves to ignore τ (and thus in particular τ 0) until this first jump time. After
the jump however, he wants to behave according to τ (using the remaining stopping
rules τ 1, τ 2, . . . ). This situation can be interpreted as restarting the Markov chain after
S1 anew. Under this condition of not stopping before the first jump, the investor will
then know at which concrete time S1 = s ≥ 0 this first jump occured and into which
state the Markov chain changed after the jump from the initial state x. This state
will mark the new initial state j ∈ S\{x} of the Markov chain after the “restart”. The
remaining stopping rules will then form a new stopping time – the shifted stopping time –
conditioned on the informations the investor gained up to time s. This shall be defined
rigoroulsy in the subsequent definitions.
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Definition 7.1 (restarted continuous-time Markov chain)

Let X be a continuous-time Markov chain with jump times (Sn)n∈N0 , embedded Markov
chain (Zn)n∈N0 and initial value X0 = x ∈ S.

(a) Suppose that the time S1 of the first jump of X as well as the state Z1 of the
Markov chain after the jump are known:

S1 = s ≥ 0 and Z1 = j ∈ S.

Then we define the restarted Markov chain (X̃t)t≥0 by

X̃t := Xs+t for all t ≥ 0 and X̃0 := Xs = j. (7.1)

(b) Define the sequence of shifted jump times (S̃n)n∈N0 of (Sn)n∈N0 , respectively the
shifted embedded Markov chain (Z̃n)n∈N0 of (Zn)n∈N0 by

S̃n := Sn+1, respectively (7.2)

Z̃n := Zn+1. (7.3)

Note that by Assumption 2.18, we defined the restarted Markov chain only for initial
values x ∈ S such that qx > 0. In other words, these states x are not absorbing. In
this case we can expect the next jump to occur in a finite time interval. A definition of
restarted Markov chains for absorbing initial states are not meaningful, as the Markov
chain never leaves such states.

Lemma 7.2 (properties of restarted Markov chains)

(a) Since we restricted ourselves to the case of homogeneous continuous-time Markov
chains we can conclude (cf. Definition 2.1) that for every s ≥ 0, n ∈ N, h > 0, each
0 ≤ t0 < t1 < . . . < tn and every x0, . . . , xn, xn+1 ∈ S, such that

P
(
X̃tk = xk, 0 ≤ k ≤ n

)
> 0,

the Markov property (2.1)

P
(
X̃tn+h = xn+1|X̃tk = xk, 0 ≤ k ≤ n

)
= P (Xs+tn+h = xn+1|Xs+tk = xk, 0 ≤ k ≤ n)

= P (Xtn+h = xn+1|Xtk = xk, 0 ≤ k ≤ n)

= P (Xtn+h = xn+1|Xtn = xn)

= P (Xs+tn+h = xn+1|Xs+tn = xn)

= P
(
X̃tn+h = xn+1|X̃tn = xn

)
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holds. Thus, the restarted Markov chain X̃ is indeed a homogeneous continuous-time
Markov chain and possesses (up to a different initial value) the same distribution
as X.

(b) Let n ∈ N0, s ≥ 0, x ∈ S such that qx > 0 and j ∈ S\{x}. Using the restarting
result above we then get

Px(S̃n ≤ t|S1 = s,XS1 = j) = Px(Sn+1 ≤ t|S1 = s,XS1 = j)

= Px(Sn+1 ≤ t|S1 = s,Xs = j)

= Px(Sn+1 ≤ t|S1 = s, X̃0 = j)

= P(Sn + s ≤ t|X0 = j)

= Pj(Sn + s ≤ t)

and thus

S̃n |S̃0=s,Z̃0=j = S̃n |S1=s,Z1=j
D
= Sn + s |Z0=j. (7.4)

(c) Similarly, for each n ∈ N0, x ∈ S such that qx > 0, j ∈ S\{j} and l ∈ S we get

Px(Z̃n = l|Z̃0 = j) = Px(Zn+1 = l|Z1 = j)

= P(Zn+1 = l|Z1 = j)

= P(Zn = l|Z0 = j)

= Pj(Zn = l)

and thus

Z̃n |Z̃0=j = Z̃n |Z1=j
D
= Zn |Z0=j. (7.5)
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Definition 7.3 (shifted stopping times)

Let x ∈ S, s ≥ 0 and τ = (τ 0, τ 1, τ 2, . . . ) = (h0, h1, h2, . . . ) ∈ Σx such that

τ k = hk(S1, . . . , Sk, x, Z1, . . . , Zk) + Sk.

Then define the shifted stopping time
⇀
τ s,x of τ by

⇀
τ s,x := (τ̃ 0, τ̃ 1, τ̃ 2, . . . ) = (h̃0, h̃1, h̃2, . . . ), (7.6)

where

h̃k : [0,∞)k × Sk+1 → [0,∞],

h̃k(s, x; s̃1, . . . , s̃k, z̃0, z̃1, . . . , z̃k) := hk+1(s, s̃1, . . . , s̃k, x, z̃0, z̃1, . . . , z̃k) (7.7)

and

τ̃ k := h̃k(s, x; S̃1, . . . , S̃k, Z̃0, Z̃1, . . . , Z̃k) + S̃k − s (7.8)

= hk+1(s, S̃1, . . . , S̃k, x, Z̃0, Z̃1, . . . , Z̃k) + S̃k − s

= hk+1(s, S2, . . . , Sk+1, x, Z1, Z2, . . . , Zk+1) + Sk+1 − s (7.9)

for every k ∈ N0.

Proposition 7.4 (shifted stopping times are well-defined)

Let s ≥ 0, x ∈ S, j ∈ S\{x} and τ ∈ Σx. Assume again that

S1 = s and Z1 = j.

Then the shifted stopping time
⇀
τ s,x of τ is a Pj–almost surely finite stopping time with

respect to the natural filtration of the restarted Markov chain (X̃t)t≥0 as introduced in
Definition 7.1, equation (7.1).

Remark 7.5 (interpretation of shifted stopping times)

Note that the mappings h̃k defined in (7.7) are again non-negative and that the shifted
stopping rules τ̃ k defined in (7.8) yield τ̃ k ≥ Sk+1 − s for every k ∈ N0. Assuming that
the first jump time of a Markov chain X occurs at S1 = s ≥ 0 we get τ̃ 0 ≥ 0 and
τ̃ k ≥ Sk+1 − S1 for every k ∈ N.

Thus, under the assumption that X changes its state for the first time at S1 = s ≥ 0
from Z0 = x ∈ S, such that qx > 0, into Z1 = j ∈ S\{x} and under the condition that

a stopping time τ ∈ Σx did not stop before this first jump occured,
⇀
τ s,x denotes the
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stopping time which behaves exactly like τ , beginning after the first jump time S1 = s
and knowing that Z1 = j.

This makes it possible to observe a stopping time and to “restart” it in the sense above,
if it didn’t stop until the first change of state of the underlying Markov chain X.

Also note that the concept of shifted stopping times was defined for x ∈ S such that
qx > 0, according to Assumption 2.18. Analogously to the definition of restarted Markov
chains we can guarantee that the shift occurs at a Px–almost surely finite time S1.

Lemma 7.6 (properties of shifted stopping times)

Let x ∈ S, j ∈ S\{x}, τ ∈ Σx, s ≥ 0 and n ∈ N0. Assume that S1 = s, Z1 = j and that
τ did not stop before S1. Then the following statements about shifted stopping times
can be made:

(a) According to (7.9) we get

τ̃ k + s = hk+1(s, S2, . . . , Sk+1, x, Z1, Z2, . . . , Zk+1) + Sk+1 = τ k+1
|S1=s.

As a consequence and as stated in Remark 7.5 about the interpretation of shifted
stopping times, such a

⇀
τ s,x represents the stopping time τ itself (“restarted” after

the first jump time) under the additional condition that this first jump time and
the subsequent state of the Markov chain are known and τ did not stop before this
change occured. This event can be characterized by the set {S1 < τ} = {S1 < τ 0}
and leads to

Px
(
τ · 1{S1≤τ0} ≤ t

∣∣∣ S1 = s, Z1 = j
)

= Pj
(

(
⇀
τ s,x + s) · 1{s≤τ0} ≤ t

)
(7.10)

for all t ≥ 0.

(b) Combining (7.4) with (7.10) immediately yields

Px
(

(τ ∧ Sn+1) · 1{S1≤τ0} ≤ t
∣∣∣ S1 = s, Z1 = j

)
= Pj

(
(
⇀
τ s,x ∧ Sn + s) · 1{s≤τ0} ≤ t

)
(7.11)

for all t ≥ 0.

(c) Using the right-continuity of X and the definition of the restarted Markov chain X̃
with X̃t = Xs+t for S1 = s and every t ≥ 0 leads for all y ∈ R to

Px
(
g(Xτ∧Sn+1) · 1{S1≤τ0} = y

∣∣∣ S1 = s, Z1 = j
)

= Pj
(
g(X

(
⇀
τ s,x∧Sn)+s

) · 1{s≤τ0} = y
)

= Pj
(
g(X̃⇀

τ s,x∧Sn) · 1{s≤τ0} = y
)

= Pj
(
g(X⇀

τ s,x∧Sn) · 1{s≤τ0} = y
)
. (7.12)
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Now we gathered the necessary tools to formulate the reward iteration formula mentioned
at the beginning of this section, whose proof and interpretation will utilize the above-
mentioned restarting techniques.

Theorem 7.7 (reward iteration)

Let x ∈ S, t ≥ 0 and τ ∈ Σx. Then the following reward iteration formula holds:

Vn+1(t, x, τ) = U
(
−ct−cτ 0+g(x)

)
·e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj ·Vn(t+s, j,
⇀
τ s,x) ds (7.13)

for every n ∈ N0, where the initial value function V0 is given by

V0(t, x, τ) = U
(
− ct+ g(x)

)
. (7.14)

Remark 7.8 (interpretation of Theorem 7.7)

Theorem 7.7 states that every consecutive n–step value function for given x ∈ S, t ≥ 0
and stopping time τ ∈ Σx can be calculated using its predecessor in an appropriate
way. Clearly, the 0–step value function corresponds to the case of immediate stopping,
independent of the choice of the stopping time. The 0–step value function thus coincides
with the utility gained by receiving a reward g(x) based on the initial value of the
underlying Markov chain and paying the inevitable costs −ct.

The two summands in the reward iteration formula itself, on the other hand, can be
interpreted based on the observation whether the considered stopping time τ does stop
before the first jump time S1 of the Markov chain or not. This will also be the main idea
in the proof of this theorem.

The first summand contributes to the value function Vn+1(t, x, τ) for stopping time τ with
the utility an investor would gain, if the corresponding stopping problem stops before
the first change of state of the underlying Markov chain, weighted by the probability
of this event to happen. This event to occur means for the stopping time τ to behave
according to the stopping rule τ 0, which is a deterministic stopping time in the sense
that it only depends on the initial value of the Markov chain by a suitable mapping h0

such that τ 0 = h0(x).

The second summand contributes to Vn+1(t, x, τ) with the expected utility the investor
would gain, conditioned on the event that the corresponding stopping problem does
not terminate before the first jump time of the Markov chain. The following auxiliary
lemma will show that this expectation is given in terms of the integral expression of
the reward iteration formula. This integral requires the preceding n–step value function
Vn, evaluated for the corresponding shifted stopping time

⇀
τ s,x of τ for an appropriate
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7.2 Reward Iteration

choice s ≥ 0. This originates from the idea that conditioned on the knowledge that τ
did not stop before the first jump time S1, the underlying Markov chain and the whole
stopping problem can be restarted after S1. Since τ did not stop beforehand, the actual
jump time as well as the new state of the Markov chain can be observed. Knowing this,
the stopping problem can be continued after the reset by applying

⇀
τ s,x, which exactly

represents τ under this additional information, given that the jump time S1 = s is known.
Since the (n + 1)–step value function Vn+1(t, x, τ) corresponds to a stopping problem
which allows at the most for n+ 1 jumps of the Markov chain, restarting the stopping
problem exactly after the first jump results in at most n remaining jumps that still can
be considered. Thus after restarting, the shifted stopping time has to be applied for an
appropriate n–step value function Vn, where the term “appropriate” refers to the right
choice of applied time and state for Vn. The integral and sum enveloping this n–step
value function accommodate for these (weighted) choices of time and state, depending
on the actual time at which the first change of state occured and which successive state
the Markov chain took after the initial value x.

Now as stated in the remark above we will formulate the following auxiliary lemma in
order to prove Theorem 7.7:

Lemma 7.9

Let x ∈ S, t ≥ 0, τ ∈ Σx and n ∈ N0. Then the following statement holds:

Ex

[
U
(
−ct− c(τ ∧ Sn+1) + g(Xτ∧Sn+1)

)
1{S1≤τ0}

]
=

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj·Vn(t+s, j,
⇀
τ s,x) ds.

(7.15)

Proof of Lemma 7.9
Let x ∈ S, τ ∈ Σx and n ∈ N0 and recall decomposition (3.18)

τ = τ 0
1{τ<S1} +

∞∑
k=1

τ k1{Sk≤τ<Sk+1} Px–a.s.

As stated in Remark 3.12 (b), the stopping rule τ 0 = h0(Z0) = h0(x) is deterministically
given by the initial value x of the Markov chain X. Furthermore, up to the first jump time
S1 of the Markov chain the stopping time τ is fully characterized by this deterministic
stopping rule τ 0 and thus

{τ < S1} = {τ 0 < S1}.

Conditioned on the set {S1 ≤ τ 0} = {S1 ≤ τ} we know that the stopping time τ will
never trigger before S1, guaranteeing at least one change of state of the underlying
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7 Discrete-Time Approach for the Generalized Risk-Sensitive Stopping Problem

Markov chain before τ stops. The probability for this event to happen is given by

Px(S1 ≤ τ) = Px(S1 ≤ τ 0) = 1− exp(−qx · τ 0),

since S1 ∼ Exp(qx) according to Theorem 2.16.

Assume now that X changes its state for the first time at S1 = s for some s ≥ 0 from
Z0 = x into Z1 = j for some j ∈ S\{x} and assume additionally that τ does not stop
before this first jump time. Appying Lemma 7.6 then leads to

Ex

[
U
(
− ct− c(τ ∧ Sn+1) + g

(
Xτ∧Sn+1

) )
1{S1≤τ0}

∣∣∣S1 = s, Z1 = j
]

= Ej

[
U
(
− ct− c(⇀τ s,x ∧ Sn + s) + g

(
X⇀
τ s,x∧Sn

))
1{s≤τ0}

]
= Ej

[
U
(
− c(t+ s)− c(⇀τ s,x ∧ Sn) + g

(
X⇀
τ s,x∧Sn

))]
1{s≤τ0}.

Remembering the joint density of S1 and Z1

fS1,Z1(s, j | X0 = x) =

{
exp(−qx · s) · qxj, if x 6= j and s ≥ 0,

0, otherwise

as given in Corollary 2.20 (c) finally leads to

Ex

[
U (−ct− c(τ ∧ Sn+1) + g(Xτ∧Sn))1{S1≤τ0}

]
= Ex

[
Ex

[
U
(
− ct− c(τ ∧ Sn+1) + g

(
Xτ∧Sn+1

) )
1{S1≤τ0}

∣∣∣S1, Z1

]]
=

∫ ∞
−∞

∑
j∈S

e−qx·s · qxj · 1{j 6=q, s≥0}

· Ex
[
U
(
− ct− c(τ ∧ Sn+1) + g

(
Xτ∧Sn+1

) )
1{S1≤τ0}

∣∣∣S1 = s, Z1 = j
]
ds

=

∫ ∞
0

e−qxs
∑
j∈S,
j 6=x

qxj · Ej
[
U
(
− c(t+ s)− c(⇀τ s,x ∧ Sn) + g

(
X⇀
τ s,x∧Sn

))]
1{s≤τ0} ds

=

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · Ej
[
U
(
− c(t+ s)− c(⇀τ s,x ∧ Sn) + g

(
X⇀
τ s,x∧Sn

))]
ds

=

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j,
⇀
τ s,x) ds

and thus concludes the proof.
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We are now able to prove Theorem 7.7 rigorously, justifying the interpretation given in
Remark 7.8.

Proof of Theorem 7.7
Let x ∈ S, t ≥ 0, τ ∈ Σx and n ∈ N0. The initial equation for the 0–step value function
stated in Theorem 7.7 are simply given by equation (6.4) from Remark 6.3 (c):

V0(t, x, τ) = U
(
− ct+ g(x)

)
.

As for the reward iteration formula itself, we will use the following reasoning:

The event that τ doesn’t stop before the first jump of the underlying Markov chain is
given by

{S1 > τ} = {S1 > τ 0}

for the deterministic stopping rule τ 0 of τ . The probability for this event to happen is
given by

Px(S1 > τ) = Px(S1 > τ 0) = exp(−qx · τ 0),

since S1 ∼ Exp(qx) according to Theorem 2.16 and τ 0 being deterministic. Consequen-
tially the event of τ stopping before the first jump time S1 is

{S1 ≤ τ} = {S1 ≤ τ 0}.

The main idea to prove the desired reward iteration formula is to differentiate between
these two events and to decide whether the stopping time did stop before S1 or not. If τ
did stop before S1, the underlying Markov chain never changed its state and still remains
in its initial state x. On the other hand, if τ did not stop before S1, at least one change of
state occured, enabling us to restart the Markov chain and to consider the corresponding
shifted stopping time

⇀
τ S1,x after S1. This leads to the following calculation, allowing the

application of Lemma 7.9:

Vn+1(t, x, τ) = Ex
[
U
(
−ct− c(τ ∧ Sn+1) + g(Xτ∧Sn+1)

)]
= Ex

[
U
(
−ct− c(τ ∧ Sn+1) + g(Xτ∧Sn+1)

)
· 1{S1>τ}

]
+ Ex

[
U
(
−ct− c(τ ∧ Sn+1) + g(Xτ∧Sn+1)

)
· 1{S1≤τ}

]
= Ex

[
U
(
−ct− cτ 0 + g(Xτ0)

)
· 1{S1>τ0}

]
+ Ex

[
U
(
−ct− c(τ ∧ Sn+1) + g(Xτ∧Sn+1)

)
· 1{S1≤τ0}

]
= Ex

[
U
(
−ct− cτ 0 + g(X0)

)
· 1{S1>τ0}

]
+

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j,
⇀
τ s,x) ds

= U
(
−ct− cτ 0 + g(x)

)
· Px

(
S1 > τ 0

)
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+

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j,
⇀
τ s,x) ds

= U
(
−ct− cτ 0 + g(x)

)
· e−qxτ0

+

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j,
⇀
τ s,x) ds.

This shows (7.13) and thus finalizes the proof.

7.3 Reward Iteration for Exponential Utility Functions

We will now consider value functions for the special choice of exponential utility as utility
function. Again, we suppose that the underlying utility function U is given by

U : R→ R, U(x) := −e−γx

for some γ > 0.

As seen in section 6.2 of chapter 6, we can reduce the n–step value functions Vn(t, x, τ) for
every n ∈t ≥ 0, x ∈ s by ommiting the time parameter t and consider the new reduced
n–step value functions Ṽn(x, τ) given in (6.15), which does not depend on time t anymore.
The connection between Vn(t, x, τ) and Ṽ (x, τ) is given by (6.17):

Vn(t, x, τ) = ecγtṼn(x, τ).

This allows us to paraphrase Theorem 7.7 for this special choice of exponential utility:

Corollary 7.10 (reward iteration for exponential utility functions)

Let x ∈ S and τ ∈ Σx. Then the following reward iteration formula holds:

Ṽn+1(x, τ) = −e(cγ−qx)τ0−γg(x) +

∫ τ0

0

e(cγ−qx)s
∑
j∈S,
j 6=x

qxj · Ṽn(j,
⇀
τ s,x) ds (7.16)

for every n ∈ N0, where the initial value function Ṽ0 is given by

Ṽ0(x, τ) = −e−γg(x). (7.17)

Proof of Corollary 7.10
Let t ≥ 0, x ∈ S and τ ∈ Σx. The initial 0–step value function V0(t, x, τ) is in case of
exponential utility given by

V0(t, x, τ) = −ecγt−γg(x) = −e−γg(x) · ecγt.
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Applying (6.17) therefore yields

Ṽ0(x, τ) = −e−γg(x).

For the reward iteration formula (7.16) itself, we get for every n ∈ N0 by applying the
original Theorem 7.7 and (6.17):

Ṽn+1(x, τ)

= e−cγt · Vn+1(t, x, τ)

= e−cγt · U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0 + e−cγt ·

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j,
⇀
τ s,x) ds

= − ecγτ0−γg(x) · e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · ecγs · Ṽn(j,
⇀
τ s,x) ds

= − e(cγ−qx)τ0−γg(x) +

∫ τ0

0

e(cγ−qx)s
∑
j∈S,
j 6=x

qxj · Ṽn(j,
⇀
τ s,x) ds.

7.4 The Bellman Equation and Optimal Stopping Times
for the n–Step Stopping Problem

Definition 7.11

Let x ∈ S, d ∈ R and c > 0. Then we can recursively define the sequence
(
T

(n)
d (x)

)
n∈N0

by

T
(0)
d (x) := min

 inf
j∈S\{x},
qxj>0

g(j) + d

c
,
g(x) + d

c

 and (7.18)

T
(n)
d (x) := min

 inf
j∈S\{x},
qxj>0

T
(n−1)
d (j) ,

g(x) + d

c

 , n ∈ N. (7.19)

Note that the reward function g is by definition lower bounded. Thus the infima in (7.18)
and (7.19) exist.
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Lemma 7.12

Let x ∈ S, d ∈ R and c > 0. Then the the sequence
(
T

(n)
d (x)

)
n∈N0

can be expressed

explicitly using n–step transition probabilities given in Definition 2.17:

T
(n)
d (x) = inf

j∈A(n)(x)

g(j) + d

c
, n ∈ N0, (7.20)

where

A(n)(x) :=
{
j ∈ S

∣∣∣ ∃k ∈ {0, 1, . . . , n+ 1} : p
(k)
xj > 0

}
. (7.21)

Proof of Lemma 7.12
Let x ∈ S, d ∈ R and c > 0. We will show Lemma 7.12 by induction. For n = 0 we
note that since qx 6= 0, we get pxx = p

(1)
xx = 0. On the other hand, for j ∈ S\{x}, the

inequality qxj > 0 is equivalent to pxj = p
(1)
xj > 0. Additionally, the 0–step transition

probability from x to j ∈ S is given by p
(0)
xj = δxj. This leads to

T
(0)
d (x) = min

 inf
j∈S\{x},
qxj>0

g(j) + d

c
,
g(x) + d

c


= min

 inf
j∈S,
p
(1)
xj >0

g(j) + d

c
, inf

j∈S,
p
(0)
xj >0

g(j) + d

c


= inf

j∈S,
p
(0)
xj >0 or p

(1)
xj >0

g(j) + d

c

= inf
j∈A(0)(x)

g(j) + d

c
.

Now for the induction step, suppose that

T
(n)
d (x) = inf

j∈A(n)(x)

g(j) + d

c

for some arbitrary but fixed n ∈ N0. Additionally note that for the n–step transition
probabilities of the embedded Markov chain, the discrete-time version of the Chapman-
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Kolmogorov equation holds and yields for every x, l ∈ S and k ∈ N0:

p
(k+1)
xl =

∑
j∈S

pxjp
(k)
jl

=
∑

j∈S\{x}

pxjp
(k)
jl

=
∑

j∈S\{x},
pxj>0,p

(k)
jl >0

pxjp
(k)
jl .

As a consequence we get p
(k+1)
xl > 0, if and only if there exists a state j ∈ S\{x} such

that pxj>0 and p
(k)
jl > 0. This leads together with the induction hypothesis to

inf
j∈S\{x},
qxj>0

T
(n)
d (j)

= inf
j∈S\{x},
pxj>0

inf
l∈A(n)(j)

g(l) + d

c

= inf
j∈S\{x},
pxj>0

inf
l∈S,

∃k∈{0,1,...,n+1}
s.t. p

(k)
jl >0

g(l) + d

c

= inf
l∈S,

∃k∈{0,1,...,n+1}
s.t. p

(k+1)
xl >0

g(l) + d

c

= inf
l∈S,

∃k∈{1,...,n+2}
s.t. p

(k)
xl >0

g(l) + d

c
.

Furthermore due to p
(0)
xl = δxl, we have again

g(x) + d

c
= inf

l∈S,
p
(0)
xl >0

g(l) + d

c
.

Therefore we get

T
(n+1)
d (x) = min

 inf
j∈S\{x},
qxj>0

T
(n)
d (j) ,

g(x) + d

c


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= min

 inf
l∈S,

∃k∈{1,...,n+2}
s.t. p

(k)
xl >0

g(l) + d

c
, inf

j∈S,
p
(0)
xj >0

g(j) + d

c


= inf

l∈S,
∃k∈{0,1,...,n+2}

s.t. p
(k)
xl >0

g(l) + d

c

= inf
l∈A(n+1)(x)

g(l) + d

c
.

This concludes the induction step and thus finalizes the proof.

Lemma 7.13

Let n ∈ N0, t ≥ 0 and x ∈ S. Then it holds:

(a) The mapping mn,t,x : [0,∞)→ R ∪ {−∞}, defined by

mn,t,x(ϑ) := U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds (7.22)

is bounded from above by a constant, which only depends on x.

(b) Suppose that the associated utility function U is a classical utility function on the
whole real line and does not take the value −∞. Then it holds:

(i) If the mapping t 7→ Vn(t, j) is measurable for every j ∈ S, then mn,t,x is
continuous and almost everywhere differentiable on [0,∞) such that

m′n,t,x(ϑ) (7.23)

=

(∑
j∈S,
j 6=x

qxjVn(t+ ϑ, j)− cU ′
(
− ct− cϑ+ g(x)

)
− qxU

(
− ct− cϑ+ g(x)

))

· e−qxϑ

almost everywhere. Note that t 7→ V0(t, j) = U(−ct+ g(j)) is always measur-
able by definition of U .

(ii) Suppose that t 7→ Vn(t, j) is measurable for every j ∈ S. Then the supremum

sup
ϑ≥0

mn,t,x(ϑ)

is either a maximum and is attained by a finite maximizer ϑ?n or is an unattain-
able (finite) supremum, in which case the maximizer is set as ϑ?n =∞.
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Furthermore, there exists a measurable mapping f ?n : [0,∞)× S → [0,∞] such
that ϑ?n = f ?n(t, x).

Moreover, the mapping

[0,∞)→ R ∪ {−∞}, t 7→ sup
ϑ≥0

mn,t,x(ϑ)

is measurable for every x ∈ S.

(c) Suppose now that the associated utility function U is an extended utility function,
derived from a classical utility function with maximal domain of the form [−d,∞) (
R. Then it holds:

(i) For every t ≥ 0 and x ∈ S the mapping ϑ 7→ m0,t,x(ϑ) is continuous on[
0, T

(0)
d (j)− t

]
, differentiable on

[
0, T

(0)
d (x)− t

)
and

m0,t,x(ϑ)

{
> −∞, if ϑ ∈

[
0, T

(0)
d (x)− t

]
,

= −∞, if ϑ ∈
(
T

(0)
d (x)− t,∞

)
.

(7.24)

On
[
0, T

(0)
d (x) − t

)
the derivative m′0,t,x is given by (7.23). In case that

t > T
(0)
d (x) and thus

[
0, T

(0)
d (x) − t

]
= ∅, the mapping ϑ 7→ m0,t,x(ϑ) is

constantly −∞.

(ii) Let t ≥ 0, x ∈ S and n ∈ N. If the mapping t 7→ Vn(t, j) is continuous on[
0, T

(n−1)
d (j)

]
for every j ∈ S and

Vn(t, j)

{
> −∞, if t ∈

[
0, T

(n−1)
d (j)

]
,

= −∞, if t ∈
(
T

(n−1)
d (j),∞

) (7.25)

for every j ∈ S, then ϑ 7→ mn,t,x(ϑ) is continuous on
[
0, T

(n)
d (x)

]
, differentiable

on
[
0, T

(n)
d (x)− t

)
and

mn,t,x(ϑ)

{
> −∞, if ϑ ∈

[
0, T

(n)
d (x)− t

]
,

= −∞, if ϑ ∈
(
T

(n)
d (x)− t,∞

)
.

(7.26)

On
[
0, T

(n)
d (x) − t

)
the derivative m′n,t,x is given by (7.23). In case that

t > T
(n)
d (x) and thus

[
0, T

(n)
d (x) − t

]
= ∅, the mapping ϑ 7→ mn,t,x(ϑ) is

constantly −∞.

(iii) Let t ≥ 0, x ∈ S and n ∈ N0 and let assumption (7.25) be fulfilled. We then
get

sup
ϑ≥0

mn,t,x(ϑ)

{
> −∞, if t ∈

[
0, T

(n)
d (x)

]
,

= −∞, if t ∈
(
T

(n)
d (x),∞

)
.

(7.27)
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In case that T
(n)
d (x) < 0 and therefore

[
0, T

(n)
d (x)

]
= ∅, we get

(t, x) 7→ sup
ϑ≥0

mn,t,x(ϑ) ≡ −∞.

Furthermore we get for every t ∈
[
0, T

(n)
d (x)

]
that

sup
ϑ≥0

mn,t,x(ϑ) = max
ϑ∈
[

0,T
(n)
d (x)−t

]mn,t,x(ϑ). (7.28)

The supremum is always attained by a finite maximizer ϑ?n ∈
[
0, T

(n)
d (x)

]
,

which depends on the actual choice of x ∈ S and t ∈
[
0, T

(n)
d (x)

]
.

Note that for t > T
(n)
d (x), mn,t,x is constantly given by −∞. In this case every

ϑ ≥ 0 is a maximizer of supϑ≥0 mn,t,x(ϑ). We will choose the smallest one and
set ϑ?n := 0.

(iv) Let x ∈ S, n ∈ N0 and let the assumption (7.25) of (ii) be fulfilled. Then the
mapping

[0,∞)→ R ∪ {−∞}, t 7→ sup
ϑ≥0

mn,t,x(ϑ)

is continuous on
[
0, T

(n)
d (x)

]
.

Furthermore, there exists a measurable mapping f ?n : [0,∞) × S → R such
that ϑ?n = f ?n(t, x).

If the maximizer ϑ?n for supϑ≥0mn,t,x(ϑ) is unique for t ∈
[
0, T

(n)
d (x)

]
, then

t 7→ f ?n(t, x) is even continuous.

Proof of Lemma 7.13

(a) For all n ∈ N0 and t ≥ 0 the value function Vn(t, x) is bounded from above by some
constant Mx depending only on x ∈ S, as stated in Remark 6.3 (b). Hence, the
following calculation will show that mn,t,x is also bounded from above in ϑ, where
the upper bound only depends on the initial state x ∈ S, but not on n ∈ N0 or
t ≥ 0. To this end, note that by Definition 6.2 there exists for every n ∈ N0, t ≥ 0,
x ∈ S and ε > 0 a stopping time τ ε ∈ Σx, such that

Vn(t, x) ≤ Vn(t, x, τ ε) + ε.
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Now let n ∈ N0, t ≥ 0, x ∈ S, ϑ ≥ 0 and ε > 0. By setting τ 0 :≡ ϑ and interpreting
τ ε as the shifted stopping time

⇀
τ s,x (cf. Definition 7.3) of some stopping time

τ ∈ Σx, such that

τ := τ 0
1{τ<S1} +

(
τ ε + S1

)
1{τ≥S1},

we thus can apply the reward iteration formula Equation (7.13) from Theorem 7.7
and hence conclude that

mn,t,x(ϑ) = U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

≤ U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj

(
Vn(t+ s, j, τ ε) + ε

)
ds

= Vn+1(t, x, τ) +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · ε ds

≤Mx +

∫ ϑ

0

e−qxs ds
∑
j∈S,
j 6=x

qxj · ε

= Mx +
∑
j∈S,
j 6=x

qxj ·
(
− 1

qx

)(
e−qx·ϑ − 1

)
· ε

= Mx +
∑
j∈S,
j 6=x

qxj
qx
·
(
1− e−qx·ϑ

)
· ε

≤Mx + ε <∞.

Since ϑ ≥ 0 was arbitrary, we get the desired upper boundedness for mn,t,x.

Let ϑ ≥ 0 and define the mapping f : [0, ϑ]→ R,

f(s) := e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j).

We will now show the Lebesgue integrability of f on [0, ϑ]. To this end we denote
the positive part of a function f by f+ := max{f, 0} ≥ 0 and the negative part by
f− := max{−f, 0} ≥ 0. Therefore it holds that

f = f+ − f− and |f | = f+ + f− = f + 2f−.
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Using the monotonicity of the utility function U leads to

U
(
− ct− cϑ+ g(x)

)
· e−qxϑ ≤ U

(
g(x)

)
=: Bx

and thus ∫ ϑ

0

f(s) ds ≤ |Mx|+ |Bx| =: Cx <∞

for all ϑ ≥ 0.

Note that mn,t,x has not to be bounded from below. But since Vn(t, x) ≥ Vn(t, x, 0)
for the special stopping time τ = 0, we can conclude that

Vn(t+ s, j) ≥ Vn(t+ s, j, 0) = U
(
− c(t+ s) + g(j)

)
and thus

f(s) ≥ e−qxs
∑
j∈S,
j 6=x

qxj · U
(
− c(t+ s) + g(j)

)
=: h(s)

holds for every s ≥ 0. We do not know whether f is a continuous mapping or not,
but h on the other hand is continuous on [0,∞) and thus integrable on the compact
interval [0, ϑ]. This leads to∫ ϑ

0

f−(s) ds ≤
∫ ϑ

0

h−(s) ds <∞.

In summary, we get∫ ϑ

0

|f(s)| ds =

∫ ϑ

0

f(s) ds+ 2

∫ ϑ

0

f−(s) ds <∞

and thus the Lebesgue integrability of f on [0, ϑ].

(b) Let U be a classical utility function on the whole real line.

(i) By assumption, s 7→ Vn(t+ s, j) for j ∈ S and thus s 7→ f(s) are measurable
mappings. Since f is Lebesgue integrable on [0, ϑ], the Lebesgue differentiation
theorem (cf. [Elstrodt, 1996, Theorem 4.14]) yields the absolute continuity

and thus the almost everywhere differentiability of ϑ 7→
∫ ϑ

0
f(s) ds such that

∂

∂ϑ

∫ ϑ

0

f(s) ds = f(ϑ).

This yields together with the differentiability of the utility function U the
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continuity and almost everywhere differentiability of mn,t,x and

m′n,t,x(ϑ)

=
∂

∂ϑ

(
U
(
− ct− cϑ+ g(x)

)
· e−qxϑ

)
+ f(ϑ)

= − cU ′
(
− ct− cϑ+ g(x)

)
· e−qxϑ − qxU

(
− ct− cϑ+ g(x)

)
· e−qxϑ

+ e−qxϑ
∑
j∈S,
j 6=x

qxj · Vn(t+ ϑ, j)

=

(∑
j∈S,
j 6=x

qxjVn(t+ ϑ, j)− cU ′
(
− ct− cϑ+ g(x)

)
− qxU

(
− ct− cϑ+ g(x)

))

· e−qxϑ

almost everywhere.

(ii) For every n ∈ N0, x ∈ S and t ≥ 0 we know that mn,t,x is an upper bounded
mapping on [0,∞) according to part (a). Hence, the supremum

sup
ϑ≥0

mn,t,x(ϑ)

exists and takes a finite value for every n ∈ N0, x ∈ S and t ≥ 0. Since mn,t,x

is continuous on [0,∞), we can differentiate between two possible cases:

• The supremum is attained within a compact interval. It is thus a maximum
and is attained at a finite value 0 ≤ ϑ?n <∞. Note that this maximum
does not have to be unique, but we can guarantee its existence.

• The supremum is not attained within a compact interval and can thus not
be attained by any finite argument. We set the corresponding maximizer
ϑ?n =∞ and say that the supremum is attained at infinity, extending the
positive real line to [0,∞].

In both cases this supremum depends explicitly on the choice of n ∈ N0, t ≥ 0
and x ∈ S. Thus we can interpret the maximizer ϑ?n as the function value of
some mapping [0,∞) × S → [0,∞] such that (t, x) 7→ ϑ?n. To see that this
mapping can be chosen in a measurable way, we will distinguish between two
different situations:

Define the set

I :=
{

(t, x) ∈ [0,∞)×S
∣∣∣ ∃ϑ?n ∈ [0,∞) such that sup

ϑ≥0
mn,t,x(ϑ) = mn,t,x(ϑ

?
n)
}
.
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I contains all pairs (t, x) ∈ [0,∞)× S such that the supremum

sup
ϑ≥0

mn,t,x(ϑ)

is attained at a finite value 0 ≤ ϑ?n <∞. Then a measurable selection theorem
from [Brown & Purves, 1973, Corollary 1] yields that I is a measurable set
and that there exists a measurable mapping f̃ ?n : [0,∞) × S → [0,∞) such
that f̃ ?n(t, x) = ϑ?n for (t, x) ∈ I and

sup
ϑ≥0

mn,t,x(ϑ) = mn,t,x(f̃
?
n(t, x)) for all (t, x) ∈ I.

Now denote the set of pairs (t, x) ∈ [0,∞)× S such that the supremum

sup
ϑ≥0

mn,t,x(ϑ)

is not attained by any finite argument by

Ic :=
(
[0,∞)× S

)
\I

=
{

(t, x) ∈ [0,∞)× S
∣∣∣ @ϑ?n ∈ [0,∞) such that sup

ϑ≥0
mn,t,x(ϑ) = mn,t,x(ϑ

?
n)
}
.

Clearly the set Ic is measurable, since I was also measurable. In this case of
the supremum being unattainable, we have set the corresponding maximizer
to ϑ?n =∞.

Define now the mapping f ?n : [0,∞)× S → [0,∞] by

f ?n(t, x) =

{
f̃ ?n(t, x), (t, x) ∈ I,
∞, (t, x) ∈ Ic.

By construction we know that

(f ?n)−1({−∞}) = Ic

is a measurable set, yielding the measurability of f ?n on [0,∞)× S. Moreover
we get f ?n(t, x) = ϑ?n for all t ≥ 0 and x ∈ S and

sup
ϑ≥0

mn,t,x(ϑ) = mn,t,x(f
?
n(t, x)) for all (t, x) ∈ I.

In particular, we get the measurability of

[0,∞)→ R ∪ {−∞}, t 7→ sup
ϑ≥0

mn,t,x(ϑ)

for all x ∈ S.
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(c) Now assume that U is an extended utility function, derived from a classical utility
function with maximal domain of the form [−d,∞) ( R.

(i) Let t ≥ 0 and x ∈ S. Consider now

m0,t,x(ϑ)

= U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V0(t+ s, j) ds

= U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ︸ ︷︷ ︸

=:P 1(t,x,ϑ)

+

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · U
(
− ct− cs+ g(j)

)
ds

︸ ︷︷ ︸
=:P 2(t,x,ϑ)

.

Note that according to part (a), both terms P 1(t, x, ·) and P 2(t, x, ·) are
bounded from above by a constant only depending on x ∈ S. We will now
first discuss for which parameters t ≥ 0 and x ∈ S we get m0,t,x(ϑ) = −∞ for
all ϑ ≥ 0. To this end we observe that

U(−ct+ g(x)) = −∞⇔ −ct+ g(x) < −d

⇔ t >
g(x) + d

c

and since ϑ 7→ U(−ct − cϑ + g(x)) is a decreasing mapping, we get

U(−ct− cϑ+ g(x)) ≡ −∞, if and only if t > g(x)+d
c

. Hence we know that

P 1(t, x, ·) ≡ −∞⇔ t >
g(x) + d

c
.

Now for P 2, we know that for any ϑ ≥ 0 the integral over the compact interval
[0, ϑ] yields −∞, if and only if the integrand equals −∞ for any s ∈ [0, ϑ].
This however is the case, if and only if there exists at least one state j ∈ S\{x},
such that

U(−ct− cs+ g(j)) = −∞.

Since s 7→ U(−ct− cs+ g(j)) is a decreasing function, we need to require

U(−ct+ g(j)) = −∞

for at least one j ∈ S\{x} such that qxj 6= 0, in order to guarantee that

P 2(t, x, ·) ≡ −∞. This however is the case, if t > g(j)+d
c

for at least one
j ∈ S\{x} such that qxj 6= 0.

In summary we get
m0,t,x(ϑ) = −∞ for all ϑ ≥ 0
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if and only if t > g(x)+d
c

or there exists a state j ∈ S\{x} with qxj 6= 0 such

that t > g(j)+d
c

. On the other hand, it holds

m0,t,x(ϑ) 6= −∞ for some ϑ ≥ 0

⇔ ∀j ∈ S\{x} such that qxj 6= 0 : t ≤ g(j) + d

c
and t ≤ g(x) + d

c

⇔ t ≤ min

 inf
j∈S\{x},
qxj>0

g(j) + d

c
,
g(x) + d

c


⇔ t ≤ T

(0)
d (x).

This shows the last assertion of (i).

Now for (7.24), assume that t ∈
[
0, T

(0)
d (x)

]
. We can say that

U(−ct− cϑ+ g(x)) > −∞⇔ −ct− cϑ+ g(x) ≥ −d

⇔ ϑ ≤ g(x) + d

c
− t.

The same reasoning as above yields immediately that

P 1(t, x, ϑ) > −∞⇔ ϑ ≤ g(x) + d

c
− t.

In addition

P 2(t, x, ϑ) > −∞⇔ ∀j ∈ S\{x} such that qxj 6= 0 : ϑ ≤ g(j) + d

c
− t.

Thus, we get

m0,t,x(ϑ) > −∞

⇔ ∀j ∈ S\{x} such that qxj 6= 0 : ϑ ≤ g(j) + d

c
− t and ϑ ≤ g(x) + d

c
− t

⇔ ϑ ≤ min

 inf
j∈S\{x},
qxj>0

g(j) + d

c
,
g(x) + d

c

− t
⇔ ϑ ≤ T

(0)
d (x)− t

and therefore

m0,t,x(ϑ)

{
> −∞, if ϑ ∈

[
0, T

(0)
d (x)− t

]
,

= −∞, if ϑ ∈
(
T

(0)
d (x)− t,∞

)
.
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Hence (7.24) is shown.

For the remaining statements of part (i), note that U is continuous on [−d,∞)
and differentiable on (−d,∞). As a consequence the mapping (t, ϑ) 7→
P 1(t, x, ϑ) is also continuous on the set D0, where

D0 :=
{

(t, ϑ) ∈ [0,∞)2| t ∈
[
0, T

(0)
d (x)

]
, ϑ ∈

[
0, T

(0)
d (x)− t

]}
(7.29)

=
{

(t, ϑ) ∈ [0,∞)2| ϑ ∈
[
0, T

(0)
d (x)

]
, t ∈

[
0, T

(0)
d (x)− ϑ

]}
and differentiable on the set D◦0, where

D◦0 := D0\
{

(t, ϑ) ∈ [0,∞)2
∣∣ t+ ϑ = T

(0)
d (x)

}
.

For the integral part P 2 we remind ourselves that for t ∈
[
0, T

(0)
d (x)

]
and

ϑ ∈
[
0, T

(0)
d (x)− t

]
the mapping

s 7→ U(−ct− cs+ g(j))

is decreasing on [0, ϑ] for every j ∈ S\{x}. It is continuous and bounded from
below by U(−ct− cϑ+ g(j)) and bounded from above according to part (a)
of this proof. As a consequence

s 7→ e−qxs
∑
j∈S,
j 6=x

qxj · U
(
− ct− cs+ g(j)

)
is integrable on the compact set [0, ϑ]. This yields by the fundamental theorem

of calculus the differentiability of ϑ 7→ P 2(t, x, ϑ) on
[
0, T

(0)
d (x)− t

)
.

Furthermore, we know that for every ϑ ∈
[
0, T

(0)
d (x)

]
and s ∈ [0, ϑ] the

mapping

t 7→ e−qxs
∑
j∈S,
j 6=x

qxj · U
(
− ct− cs+ g(j)

)
is continuous on

[
0, T

(0)
d (x)− ϑ

]
and (by the same arguments as above) also

bounded in t. A standard continuity argument for parameterized integrals
(see for example [Klenke, 2013, Theorem 6.27]) yields the continuity of

t 7→
∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · U
(
− ct− cs+ g(j)

)
ds

on
[
0, T

(0)
d (x)− ϑ

]
. In summary we know that P 2(t, x, ·) is differentiable on[

0, T
(0)
d (x)− t

)
and P 2(·, x, ·) is continuous on D0 as defined in (7.29).
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Putting P 1 and P 2 together we ultimately get the desired differentiability of
m0,t,x on

[
0, T

(0)
d (x)− t

)
and additionally the continuity of

(t, ϑ) 7→ m0,t,x(ϑ)

on D0.

On the set
[
0, T

(0)
d (x)− t

)
the derivative m′0,t,x is clearly given by (7.23).

(ii) Let t ≥ 0, x ∈ S, n ∈ N and assume that the mapping t 7→ Vn(t, j) is

continuous on
[
0, T

(n−1)
d (j)

]
for every j ∈ S and

Vn(t, j)

{
> −∞, if t ∈

[
0, T

(n−1)
d (j)

]
,

= −∞, if t ∈
(
T

(n−1)
d (j),∞

)
for every j ∈ S, as required in (7.25). Consider now

mn,t,x(ϑ) = U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ︸ ︷︷ ︸

=:P 1(t,x,ϑ)

+

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

︸ ︷︷ ︸
=:P 2(t,x,ϑ)

.

For P 1 we can use the results in (i) to conclude

P 1(t, x, ·) ≡ −∞⇔ t >
g(x) + d

c

and for fixed t ∈
[
0, g(x)+d

c

]
P 1(t, x, ϑ) > −∞⇔ ϑ ≤ g(x) + d

c
− t.

Since g(x)+d
c
≥ T

(n)
d (x), the continuity of (t, ϑ) 7→ P 1(t, x, ϑ) on the set Dn,

where

Dn :=
{

(t, ϑ) ∈ [0,∞)2| t ∈
[
0, T

(n)
d (x)

]
, ϑ ∈

[
0, T

(n)
d (x)− t

]}
(7.30)

=
{

(t, ϑ) ∈ [0,∞)2| ϑ ∈
[
0, T

(n)
d (x)

]
, t ∈

[
0, T

(n)
d (x)− ϑ

]}
and its differentiability on the set D◦n, where

D◦n := Dn\
{

(t, ϑ) ∈ [0,∞)2
∣∣ t+ ϑ = T

(n)
d (x)

}
are analogeous to (i).
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7.4 The Bellman Equation for the n–Step Stopping Problem

For P 2 we can state by assumption that if t > T
(n−1)
d (j), then Vn(t+s, j) = −∞

for every s ≥ 0 and j ∈ S\{x} and thus

P 2(t, x, ·) ≡ −∞⇔ ∃j ∈ S\{x} with qxj 6= 0, such that t > T
(n−1)
d (j).

On the other hand if t+s ≤ T
(n−1)
d (j) for some s ≥ 0, then we get Vn(t+s, j) >

−∞. Analogously, we can conclude that

P 2(t, x, ϑ) > −∞⇔ ∀j ∈ S\{x} such that qxj 6= 0 : ϑ ≤ T
(n−1)
d (j)− t.

By Definition 7.11 we get

T
(n)
d (x) ≤ T

(n−1)
d (j)

for all j ∈ S\{x} such that qxj 6= 0. Therefore, the assumed continuity of

Vn(·, j) on
[
0, T

(n−1)
d (j)

]
is also valid on

[
0, T

(n)
d (x)

]
and yields analogously to

(i) the continuity of

s 7→ e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j)

on the compact set [0, ϑ], where t ∈
[
0, T

(n)
d (x)

]
and ϑ ∈

[
0, T

(n)
d (x)− t

]
. Then

again the fundamental theorem of calculus yields the differentiability of

ϑ 7→ P 2(t, x, ϑ) =

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

on
[
0, T

(n)
d (x)− t

)
.

Furthermore, the same argument for parametrized integrals (cf. [Klenke, 2013,
Theorem 6.27]) as in (i) also provides the continuity of

t 7→ P 2(t, x, ϑ) =

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

on
[
0, T

(n)
d (x)− ϑ

]
. In summary we know that ϑ 7→ P 2(t, x, ϑ) is differentiable

on
[
0, T

(n)
d (x)− t

)
and (t, x) 7→ P 2(t, x, ϑ) is continuous on Dn as defined in

(7.30).
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Now we can put P 1 and P 2 back together. For mn,t,x(ϑ) to be greater than
−∞, we need to guarantee this finiteness for P 1 and P 2 simultaneously. Thus,
we get

mn,t,x(ϑ) > −∞

⇔ ∀j ∈ S\{x} such that qxj 6= 0 : ϑ ≤ T
(n−1)
d (j)− t and ϑ ≤ g(x) + d

c
− t

⇔ ϑ ≤ min

 inf
j∈S\{x},
qxj>0

T
(n−1)
d (j) ,

g(x) + d

c

− t
⇔ ϑ ≤ T

(n)
d (x)− t.

Thus we get mn,t,x(ϑ) > −∞, if and only if t ∈
[
0, T

(n)
d (x)

]
and ϑ ∈[

0, T
(n)
d (x) − t

]
, respectively (t, ϑ) ∈ Dn, where Dn is given according to

(7.30). This shows (7.26) of part (ii).

For the remaining statements of part (ii) we can combine the differentiablity
and continuity results of P 1 and P 2 to ultimately get the desired differentiability
of mn,t,x on

[
0, T

(n)
d (x)− t

)
and additionally the continuity of

(t, ϑ) 7→ mn,t,x(ϑ)

on Dn.

The derivative m′n,t,x is again obviously given by (7.23) on
[
0, T

(n)
d (x)− t

)
.

In fact, in (i) and (ii) we proved the continuity on the set Dn, n ∈ N0, instead

of just for ϑ ∈
[
0, T

(n)
d (x)− t

]
. But we will need this stronger result for the

following part (iii).

(iii) Suppose t ≥ 0, x ∈ S and n ∈ N0. If n ≥ 1, let assumption (7.25) of part (ii)
be fulfilled. Then the equations (7.24) and (7.26) from part (i), respectively
part (ii), immediately yield

sup
ϑ≥0

mn,t,x(ϑ) = sup
ϑ∈
[

0,T
(n)
d (x)−t

]mn,t,x(ϑ)

for t ∈
[
0, T

(n)
d (x)

]
. Since ϑ 7→ mn,t,x(ϑ) is additionally continuous on[

0, T
(n)
d (x) − t

]
the supremum can be attained by a maximum, providing

equation (7.28)

sup
ϑ≥0

mn,t,x(ϑ) = max
ϑ∈
[

0,T
(n)
d (x)−t

]mn,t,x(ϑ).
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7.4 The Bellman Equation for the n–Step Stopping Problem

We call the value ϑ?n at which the maximum is attained at a maximizer and
get

sup
ϑ≥0

mn,t,x(ϑ) = mn,t,x(ϑ
?
n).

This maximizer is obviously dependent on n ∈ N0, x ∈ S and t ≥ 0.

In addition we know that mn,t,x ≡ −∞ for any x ∈ S, n ∈ N0, if and only if
t > Td. This immediately leads to

sup
ϑ≥0

mn,t,x(ϑ)

{
> −∞, if t ∈

[
0, T

(n)
d (x)

]
,

= −∞, if t ∈
(
T

(n)
d (x),∞

)
.

Just as stated in Lemma 7.13 (c) (iii) itself, we set ϑ?n = 0 if t > T
(n)
d (x) but

every other ϑ ≥ 0 would also be a valid maximizer.

In case that T
(n)
d (x) < 0 and thus

[
0, T

(n)
d (x)

]
= ∅, we get supϑ≥0mn,t,x(ϑ) =

−∞ for every t ≥ 0.

(iv) We will now show the continuity of

[0,∞)→ R ∪ {−∞}, t 7→ sup
ϑ≥0

mn,t,x(ϑ)

on
[
0, T

(n)
d (x)

]
. To this end we will utilize a result from Bäuerle & Rieder [2011]

to show that taking the supremum of mn,t,x(ϑ) over all ϑ ≥ 0 (which in this case

is equivalent to taking the maximum of mn,t,x(ϑ) over all ϑ ∈
[
0, T

(n)
d (x)− t

]
)

preserves the continuity of mn,t,x in t. At first we remind ourselfes that in (i)
and (ii) we were able to show the continuity of

(t, ϑ) 7→ mn,t,x(ϑ)

on the compact set

Dn =
{

(t, ϑ) ∈ [0,∞)2| t ∈
[
0, T

(n)
d (x)

]
, ϑ ∈

[
0, T

(n)
d (x)− t

]}
as defined in (7.30).

Define now

Dn(t) :=
{
ϑ ≥ 0| (t, ϑ) ∈ Dn

}
=
[
0, T

(n)
d (x)− t

]
.

Clearly Dn(t) is a compact set for every t ∈
[
0, T

(n)
d (x)

]
. Consider now the

set-valued mapping

t 7→ Dn(t).
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7 Discrete-Time Approach for the Generalized Risk-Sensitive Stopping Problem

This set-valued mapping assigns every t ∈
[
0, T

(n)
d (x)

]
to a non-empty subset

of
[
0, T

(n)
d (x)

]
. Without going into detail, we refer to [Bäuerle & Rieder, 2011,

Appendix A.2] for a more detailed study of set-valued mappings and use
Definition A.2.1 and Lemma A.2.2 (d) of Bäuerle & Rieder [2011] to conclude
that t 7→ Dn(t) is continuous. This allows the application of Proposition 2.4.8
Bäuerle and Rieder established to guarantee the continuity of

t 7→ sup
ϑ≥0

mn,t,x(ϑ)

on
[
0, T

(n)
d (x)

]
. Furthermore, Proposition 2.4.8 also provides the existence

of a measurable mapping f ?n :
[
0, T

(n)
d (x)

]
× S → R such that ϑ?n = f ?n(t, x).

This emerges basicly from a selection theorem (Theorem A.2.3) of Bäuerle &
Rieder [2011] which originated from Kuratowski & Ryll-Nardzewski [1965].

In addition, Proposition 2.4.8 of Bäuerle & Rieder [2011] also yields the

continuity of t 7→ f ?n(t, x) on
[
0, T

(n)
d (x)

]
, given that the maximizer ϑ?n is

unique for every t ∈
[
0, T

(n)
d (x)

]
.

Now for t > T
(n)
d (x), we have set ϑ?n to zero, according to part (iii). Thus we

can easily extend f ?n in a measurable way to f ?n : [0,∞)× S → R by setting

f ?n(t, x) = 0 for x ∈ S and t > T
(n)
d (x). Of course we will never have uniqueness

of ϑ?n for t > T
(n)
d (x) as the maximizing function is constantly set to −∞. But

by setting the maximizers to ϑ?n = f ?n(t, x) = 0 for t > Td we can extend the

continuity of t 7→ f ?n(t, x) to [0,∞), since f ?n(T
(n)
d (x), x) = 0 by (7.28).

This concludes the proof of Lemma 7.13, as all assertions are shown.

Theorem 7.14 (Bellman equation)

Let x ∈ S, t ≥ 0 and n ∈ N0. Then it holds:

(a) The Bellman equation

Vn+1(t, x) = sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ

+

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}
(7.31)

is valid. The initial value function V0 is given by

V0(t, x) = U
(
− ct+ g(x)

)
. (7.32)
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(b) If U is a classical utility function on the whole real line, then the supremum in
(7.31) exists, depending on x ∈ S and t ≥ 0. It is either a maximum and is attained
by a finite maximizer ϑ?n or is an unattainable (finite) supremum, in which case the
maximizer is set as ϑ?n =∞.

Furthermore, there exists a measurable mapping f ?n : [0,∞)× S → [0,∞] such that
f ?n(t, x) = ϑ?n.

(c) If U is an extended utility function derived from a classical utility function with
maximal domain of the form [−d,∞) ( R, then the supremum in (7.31) exists
and is even a maximum, depending on x ∈ S and t ≥ 0. It is attained by a finite
maximizer ϑ?n ∈

[
0, T

(n)
d (x)− t

]
with T

(n)
d (x) given in Definition 7.11.

Moreover, there exists a measurable mapping f ?n : [0,∞)× S →
[
0, T

(n)
d (x)

]
such

that f ?n(t, x) = ϑ?n. If the maximizer ϑ?n is unique for every t ∈
[
0, T

(n)
d (x)

]
, then

t 7→ f ?n(t, x) is even continuous on [0,∞).

(d) For n ∈ N the optimal stopping time τ ?n ∈ Σx for Vn(t, x) = supτ∈Σx Vn(t, x, τ) such
that Vn(t, x) = Vn(t, x, τ ?n) is given by

τ ?n :=
(
f ?n−1(t, x), f ?n−2(S1+t, Z1)+S1, . . . , f

?
0 (Sn−1+t, Zn−1)+Sn−1, Sn, Sn+1, . . .

)
.

(7.33)

For n = 0 the optimal stopping time τ ?0 ∈ Σx for V0(t, x) = U
(
− ct + g(x)

)
is

trivially given by
τ ?0 := 0.

(e) If U is a classical utility function like in (b), then the value functions Vn(t, x) are
measurable in t ≥ 0 for every n ∈ N0 and x ∈ S.

(f) If U is an extended utility function like in (c), then the value function V0(t, x) is

continuous in t ∈
[
0, g(x)+d

c

]
and

V0(t, x)

{
> −∞, if t ∈

[
0, g(x)+d

c

]
,

= −∞, if t ∈
(g(x)+d

c
,∞
)
.

(7.34)

For n ∈ N the value functions Vn(t, x) are continuous in t ∈
[
0, T

(n−1)
d (x)

]
. Further-

more

Vn(t, x)

{
> −∞, if t ∈

[
0, T

(n−1)
d (x)

]
,

= −∞, if t ∈
(
T

(n−1)
d (x),∞

)
.

(7.35)
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Remark 7.15

(a) The optimal stopping time in (7.33) is given using notation (3.24) in Notation 3.16.
By using the piecewise description via stopping rules, the optimal stopping time
would read

τ ?n =
(
τ ?,0n , τ ?,1n , τ ?,2n , . . .

)
, (7.36)

where the stopping rules τ ?,kn are given by

τ ?,kn :=

{
f ?n−1−k(Sk + t, Zk) + Sk, k < n,

Sk, k ≥ n.
(7.37)

(b) Note, that the optimal stopping time in equation (7.33) is not only a Px–almost
surely finite (FXu )u≥0–stopping time but even a Px–almost surely finite (FX,nu )u≥0–
stopping time and can be represented by

τ ?n =
(
f ?n−1(t, x), f ?n−2(S1 + t, Z1) + S1, . . . , f

?
0 (Sn−1 + t, Zn−1) + Sn−1, Sn

)
, (7.38)

respectively

τ ?n =
(
τ ?,0n , τ ?,1n , . . . , τ ?,n−1

n , Sn

)
. (7.39)

More precisely, the choice of the stopping rules τ ?,kn for k ≥ n is absolutely arbitrary,
since we optimize a corresponding n–step stopping problem which terminates itself
at the latest immediately after the n–th jump of the underlying Markov chain.
Thus the only stopping rules τ ?,kn of τ ?n that influence Vn(t, x, τ ?n) are

τ ?,0n , τ ?,1n , . . . , τ ?,n−1
n ,

respectively

f ?n−1(t, x), f ?n−2(S1 + t, Z1) + S1, . . . , f
?
0 (Sn−1 + t, Zn−1) + Sn−1.

(c) The optimal stopping time τ ?n for Vn(t, x) depends explicitly on the choice of t ≥ 0
and x ∈ S. To be absolutely precise, one could add these two parameters to the
notation of the optimal stopping time, writing τ ?n,t,x instead of just τ ?n. But in
order to keep the notation simpler and more readable, we omitted these additional
arguments. Of course, this dependency always has to be kept in mind nonetheless.

(d) For a general stopping time τ ∈ Σx, the corresponding stopping rules τ k for k ∈ N0

are given by

τ k = hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk

for measurable mappings hk with k ∈ N0. They depend on the whole history of
jump times S1, . . . , Sk and of post-jump states Z0, Z1, . . . , Zk.
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The optimal stopping time τ ?n for Vn(t, x) = supτ∈Σx Vn(t, x, τ) has an even simpler
structure. The stopping rules

τ ?,kn =

{
f ?n−1−k(Sk + t, Zk) + Sk, k < n,

Sk, k ≥ n.

do not depend on the whole history, but solely on the last jump time Sk and the last
state Zk which the Markov chain attained. In this sense, we say that the optimal
stopping time exhibits a Markovian structure.

(e) Due to the fact that the considered problem terminates at the latest immediately
after the n–th jump as well as the optimal stopping problem terminates not later
than reaching the n–th jump time Sn, we can conclude that τ ?n is indeed a Px–
almost surely finite stopping time (this will be rigorously proven in the proof of
Theorem 7.14).

(f) Note that in the setting of Theorem 7.14 (b), the Px–almost sure finiteness is
generally not true for the single stopping rules τ ?,kn of which τ ?n is composed. Since
Theorem 7.14 (b) explicitly allows for the maximizer to be infinite for some t ≥ 0
and x ∈ S, the corresponding mapping f ?n can also attain infinity. This allows for
some stopping rules τ ?,kn with k < n to reach infinity with positive probability due
to

Px(τ ?,kn =∞) = Px(f ?n−1−k(Sk + t, Zk) =∞) > 0.

(g) In the setting of Theorem 7.14 (b) we set the maximizer ϑ?n =∞, if the supremum
in (7.31) is not a maximum which can be attained by a finite value. In this case
equation (7.31) reads

Vn+1(t, x)

= sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}

= lim sup
ϑ→∞

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}
.

Proof of Theorem 7.14
The proof will be divided into three parts. Step 1 will adress to the existence of the
maximizer as well as the existence of a measurable mapping for both cases (b) and (c).
Step 2 will treat with the part of (d) which claims τ ?n ∈ Σx, whereas step 3 will cover the
validity of the Bellman equation (7.31) in part (a), as well as the optimality of τ ?n in (d),
the measurability of Vn(t, x) in (e) and the continuity of Vn(t, x) in addition to (7.34)
and (7.35) in case of an extended utility function in (f):
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1. For every n ∈ N0, x ∈ S and t ≥ 0 the supremum in (7.31) can be expressed in
terms of

sup
ϑ≥0

mn,t,x(ϑ),

using the definition of mn,t,x in (7.22) of Lemma 7.13. As shown in part (a) of the
same lemma, mn,t,x is an upper bounded mapping on [0,∞). Hence, the supremum
exists and takes a finite value for every n ∈ N0, x ∈ S and t ≥ 0.

Suppose that U is a classical utility function on the whole real line. Then the
assertions from (b) follow directly from Lemma 7.13 (b) (ii).

Now assume that U is an extended utility function derived from a classical utility
function with maximal domain of the form [−d,∞) ( R. We suppose for the

moment that the value functions Vn(t, x) are continuous in t on
[
0, T

(n−1)
d (x)

]
for

every n ∈ N0 and x ∈ S (Analogously we assume that V0(t, x) is continuous in t

on
[
0, g(x)+d

c
] for every x ∈ S). This continuity is part of assertion (e) and will be

shown iteratively in step 3.

By Lemma 7.13 (c) (iii) and especially equation (7.28) we know that for every t ≥ 0
and x ∈ S, the supremum in (7.31) is attained by a finite maximizer

ϑ?n ∈
[
0, T

(n)
d (x)− t

]
.

The existence of a measurable mapping f ?n : [0,∞)× S →
[
0, T

(n)
d (x)− t

]
as well as

its continuity in t stems directly from Lemma 7.13 (c)(iv).

2. As already stated in Remark 7.15, the representation (7.33) of the stopping time
τ ?n is equivalent to (7.38)

τ ?n =
(
τ ?,0n , τ ?,1n , . . . , τ ?,n−1

n , Sn

)
,

where

τ ?,kn = f ?n−1−k(Sk + t, Zk) + Sk

for all k < n. Furthermore, set τ ?,kn := Sk for all k ≥ 0 such that

τ ?n = τ ?,0n 1{τ?n<S1} +
∞∑
k=1

τ ?,kn 1{Sk≤τ?n<Sk+1} Px–a.s. (7.40)

and define the mappings hk : [0,∞)k × Sk+1 → [0,∞], k ∈ N0 such that

hk(s1, . . . , sk, z0, z1, . . . , zk) =

{
f ?n−1−k(sk + t, zk), k < n,

0, k ≥ n.

96



7.4 The Bellman Equation for the n–Step Stopping Problem

Clearly, all hk are measurable mappings and hk ≥ 0 for all k ∈ N0, since f ?n−1−k ≥ 0
are measurable for every k ∈ N0. Additionally, we obviously get

τ ?,kn = hk(S1, . . . , Sk, Z0, Z1, . . . , Zk) + Sk ≥ Sk.

To show that τ ?,kn is indeed an (FX,ku )u≥0–stopping time, we apply Lemma 3.14 which
yields the desired result, since τ ?,kn can be represented by a measurable mapping
hk ≥ 0, depending on S1, . . . , Sk, Z0, . . . , Zk. Hence τ ?,kn is an (FX,ku )u≥0–stopping
time.

In addition, we get by construction in (7.40) that τ ?n stopps at the latest at τ ?,nn = Sn.
Due to Px(Sn <∞) = 1, we can conclude that Px(τ ?n <∞) = 1.

Overall, the decomposition result for (FXu )u≥0–stopping times in Proposition 3.15
yields the desired assertion that τ ?n ∈ Σx.

3. We will show the validity of the Bellman equation (7.31), the optimality of τ ?n ∈ Σx

and part (e) of Theorem 7.14 by induction over n ∈ N0:

Induction basis:

To show the statements for n = 0, we recall Remark 6.3 (c), stating

V0(t, x) = U
(
− ct+ g(x)

)
= V0(t, x, τ)

for all x ∈ S, t ≥ 0 and every τ ∈ Σx. Thus by applying the reward iteration
formula (7.13) from Theorem 7.7, the following calculation holds for every x ∈ S
and t ≥ 0:

V1(t, x) = sup
τ∈Σx

V1(t, x, τ)

= sup
τ∈Σx

{
U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0

+

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · V0(t+ s, j,
⇀
τ s,x) ds

}

= sup
τ∈Σx

{
U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · V0(t+ s, j) ds

}
.

This implies that for the optimization over all τ ∈ Σx only the first stopping rule
τ 0 of τ ∈ Σx does have any influence. Recalling that for every x ∈ S and τ ∈ Σx

the corresponding stopping rule τ 0 only depends deterministically on x, we can
conclude that the maximization over all τ ∈ Σx is equivalent to the maximization
over all deterministic (F0,X

u )u≥0–stopping times τ ≥ 0. This on the other hand is
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equivalent to a maximization over all non-negative real numbers ϑ ≥ 0. Hence we
conclude

V1(t, x) = sup
τ∈Σx

{
U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · V0(t+ s, j) ds

}

= sup
τ0≥0

{
U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · V0(t+ s, j) ds

}
(7.41)

= sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V0(t+ s, j) ds

}

= sup
ϑ≥0

m0,t,x(ϑ) (7.42)

for all x ∈ S, t ≥ 0 and m0,t,x as defined in (7.22). This yields the induction basis
for the Bellman equation.

Of course we know that every stopping rule τ 0 depends explicitly on the choice of
x ∈ S and thus the maximizer ϑ?0 in (7.42) must also have this intrinsic dependency,
regardless of m0,t,x itself. On the other hand, step 1 of this proof implies that due
to m0,t,x, the optimal choice of an ϑ?0 does also have to depend on the time t ≥ 0.

For the optimality of the stopping time

τ ?0 = (f ?0 (t, x), S1, S2, . . . )

for V1(t, x) we refer again to the reasoning above, stating that the optimization over
all τ ∈ Σx is reduced to the optimization over all (deterministic) 0–step stopping
rules (as seen in (7.41)), respectively all non-negative real numbers. Due to step
1 of this proof we know of the existence of such a maximizer ϑ?0, as well as the
existence of a measurable mapping f ?0 such that the optimal 0–step stopping rule is
given by

τ ?,00 = ϑ?0 = f ?0 (t, x).

Since only the first stopping rule is relevant and the 1–step stopping problem
terminates anyway at the latest at the first jump time S1, we set τ ?,k0 = Sk for all
k > 0. This leads to the optimality of

τ ?0 = (f ?0 (t, x), S1, S2, . . . ) = (τ ?,00 , S1, S2, . . . )

for V1(t, x) = supτ∈Σx V1(t, x, τ) = V1(t, x, τ ?0 ).
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Moreover, in case of an extended utility function derived from a classical utility
function with maximal domain of the form [−d,∞), we can apply Lemma 7.13 (c)
(iv) to conclude that

t 7→ V1(t, x) = sup
ϑ≥0

m0,t,x(ϑ)

is continuous on
[
0, T

(0)
d (x)

]
for every x ∈ S and that equation Equation (7.35) is

valid for n = 1. This concludes the induction basis.

Induction hypothesis:

Assume that for some n ∈ N the Bellman equation (7.31)

Vn(t, x) = sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ

+

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn−1(t+ s, j) ds

}

is valid for all t ≥ 0 and x ∈ S and the optimal stopping time τ ?n,t,x ∈ Σx for
Vn(t, x) = supτ∈Σx Vn(t, x, τ) such that Vn(t, x) = Vn(t, x, τ ?n,t,x) is given by

τ ?n,t,x =
(
f ?n−1(t, x), f ?n−2(S1+t, Z1)+S1, . . . , f

?
0 (Sn−1+t, Zn−1)+Sn−1, Sn, Sn+1, . . .

)
respectively

τ ?n,t,x =
(
τ ?,0n,t,x, τ

?,1
n,t,x, τ

?,2
n,t,x, . . .

)
, (7.43)

where

τ ?,kn,t,x =

{
f ?n−1−k(Sk + t, Zk) + Sk, for k ∈ {0, . . . , n− 1},
Sk, for k ≥ n

(7.44)

for all t ≥ 0 and x ∈ S. As usual, we set S0 = 0 and Z0 = x. Also note that we
will use the extended notation for the optimal stopping time τ ?n,t,x to clarify its
dependence on the actual choice of t and x, as this will be needed in the remainder
of this proof.

Furthermore in case of an extended utility function, we additionally assume that
t 7→ Vn(t, x) is continuous on

[
0, T

(n−1)
d (x)

]
for all x ∈ S and fulfills equation (7.35).

Induction step:

Fix now some t ≥ 0 and x ∈ S. We will show that the induction step for the
validity of the Bellman equation (7.31) and the optimality of the stopping time in
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(7.33) holds for n+ 1 and for the fixed but arbitrary parameters t and x. To this
end, consider the stopping time

τ ?n+1,t,x =
(
τ ?,0n+1,t,x, τ

?,1
n+1,t,x, τ

?,2
n+1,t,x, . . .

)
, (7.45)

where

τ ?,kn+1,t,x =

{
f ?n−k(Sk + t, Zk) + Sk, for k ∈ {0, . . . , n},
Sk, for k ≥ n+ 1.

(7.46)

Note that τ ?n+1,t,x ∈ Σx according to step 2 of this proof and that τ ?,0n+1,t,x = f ?n(t, x)
is a deterministic stopping rule.

For further convenience, we will additionally use the description of stopping rules
as given in the decomposition result of Proposition 3.15:

τ ?,kn+1,t,x = hk(S1, S2, . . . , Sk, Z0, Z1, Z2, . . . , Zk) + Sk,

with hk such that

hk(s1, s2, . . . , sk, z0, z1, z2, . . . , zk) :=

{
f ?n−k(sk + t, zk), k ∈ {0, . . . , n},
0, k ≥ n+ 1

(7.47)

for all k ∈ N0. Note that s0 := 0 and z0 := x. Thus, τ ?n+1 can be written in short as

τ ?n+1,t,x =
(
h0, h1, h2, . . .

)
.

Now fix an s ≥ 0 and a j ∈ S\{x}. Consider the shifted stopping time
⇀
τ
?

n+1,t,s,x of

τ ?n+1,t,x. According to Definition 7.3,
⇀
τ
?

n+1,t,s,x is defined by

⇀
τ
?

n+1,t,s,x = (τ̃ 0, τ̃ 1, τ̃ 2, . . . ) = (h̃0, h̃1, h̃2, . . . ) (7.48)

where

h̃k : [0,∞)k × Sk+1 → [0,∞],

h̃k(s, x; s̃1, . . . , s̃k, z̃0, z̃1, . . . , z̃k) := hk+1(s, s̃1, . . . , s̃k, x, z̃0, z̃1, . . . , z̃k)

and

τ̃ k = h̃k(s, x; S̃1, . . . , S̃k, Z̃0, Z̃1, . . . , Z̃k) + S̃k − s

= hk+1(s, S̃1, . . . , S̃k, x, Z̃0, Z̃1, . . . , Z̃k) + S̃k − s

for every k ∈ N0. Note that we use again the notation of shifted jump times
S̃k = Sk+1 and the shifted embedded Markov chain (Z̃k)k∈N0 , Z̃k = Zk+1 for k ∈ N0,
as introduced in Definition 7.1 (b).
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Appliying (7.47), this leads to

τ̃ 0 = h1(s, x, Z̃0) + S̃0 − s

= f ?n−1(s+ t, Z̃0) + S̃0 − s and

τ̃ k = hk+1(s, S̃1, . . . , S̃k, x, Z̃0, Z̃1, . . . , Z̃k) + S̃k − s

=

{
f ?n−1−k(S̃k + t, Z̃k) + S̃k − s, for all k ∈ {1, . . . , n}
S̃k − s, for k ≥ n+ 1.

Assume now that the first jump time and the subsequent state of the underlying
Markov chain are known and given by S1 = s, respectively Z1 = j. Using now
the properties of shifted jump times (7.4) and the shifted embedded Markov chain
(7.5) from Lemma 7.2 (b) and (c), as well as utilizing representation (7.44) for the
optimal n–step stopping rules from the induction hypothesis, we can conclude that

τ̃ 0
|S1=s,Z1=j = f ?n−1(s+ t, Z̃0) + S̃0 − s |S1=s,Z1=j

= f ?n−1(s+ t, j)

= τ ?,0n,t+s,j

and

τ̃ k|S1=s,Z1=j = f ?n−1−k(S̃k + t, Z̃k) + S̃k − s |S1=s,Z1=j

D
= f ?n−1−k(Sk + s+ t, Zk) + Sk + s− s |Z0=j

= f ?n−1−k(Sk + s+ t, Zk) + Sk |Z0=j

= τ ?,kn,t+s,j

for k ∈ {1, . . . , n}, as well as

τ̃ k|S1=s,Z1=j = S̃k − s |S1=s,Z1=j

D
= Sk + s− s |Z0=j

= Sk |Z0=j

= τ ?,kn,t+s,j

for k ≥ n+ 1.

In summary, we were able to establish a connection between the stopping rules of

the shifted stopping time
⇀
τ
?

n+1,t,s,x of τ ?n+1,t,x and the stopping rules of the optimal
stopping time τ ?n,t+s,j from the induction hypothesis, given that the first jump
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time and the subsequent state of the underlying Markov chain are known. By
construction in (7.48), respectively (7.43), this leads ultimately to the following

relation of
⇀
τ
?

n+1,t,s,x and τ ?n,t+s,j:

⇀
τ
?

n+1,t,s,x |S1=s,Z1=j
= τ ?n,t+s,j.

Using the induction hypothesis about the optimality of the stopping time τ ?n,t+s,j
for Vn(t+ s, j) thus yields

Vn(t+ s, j) = Vn
(
t+ s, j, τ ?n,t+s,j

) D
= Vn

(
t+ s, j,

⇀
τ
?

n+1,t,s,x

)
. (7.49)

Now we are able to prove the optimality of stopping time τ ?n+1,t,x for Vn+1(t, x) as
well as the validity of the Bellman equation (7.31) for the (n+ 1)–th step.

To this end, we remind ourselves of the 0–step stopping rule τ ?,0n+1,t,x = f ?n(t, x) of
τ ?n+1,t,x being deterministic and non-negative. Furthermore,

ϑ?n = f ?n(t, x) = τ ?,0n+1,t,x

was the maximizer of

sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}

in the n–th step of the Bellman equation.

By application of the reward iteration formula from Theorem 7.7 and (7.49), this
eventually leads to

Vn+1(t, x, τ ?n+1,t,x)

= U
(
− ct− cτ ?,0n+1,t,x + g(x)

)
· e−qx·τ

?,0
n+1,t,x

+

∫ τ?,0n+1,t,x

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn
(
t+ s, j,

⇀
τ
?

n+1,t,s,x

)
ds

= U
(
− ct− cf ?n(t, x) + g(x)

)
· e−qx·f?n(t,x)

+

∫ f?n(t,x)

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn
(
t+ s, j,

⇀
τ
?

n+1,t,s,x

)
ds

= U
(
− ct− cf ?n(t, x) + g(x)

)
· e−qx·f?n(t,x) +

∫ f?n(t,x)

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds
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= U
(
− ct− cϑ?n + g(x)

)
· e−qx·ϑ?n +

∫ ϑ?n

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

= sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}

and finally to

Vn+1(t, x)

≥ Vn+1(t, x, τ ?n+1,t,x)

= sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}
. (7.50)

On the other hand, we get for every arbitrary choice of stopping times τ ∈ Σx that

Vn+1(t, x, τ)

= U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj

︸ ︷︷ ︸
≥0

·Vn(t+ s, j,
⇀
τ s,x)︸ ︷︷ ︸

≤Vn(t+s,j)

ds

≤ U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

≤ sup
τ0≥0

{
U
(
− ct− cτ 0 + g(x)

)
· e−qx·τ0 +

∫ τ0

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}

= sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}

by application of the reward iteration formula and by using the fact that a maximiza-
tion over all deterministic stopping rules τ 0 ≥ 0 is equivalent to the maximization
over all non-negative real numbers ϑ ≥ 0.

Since the choice of τ was arbitrary, we get

Vn+1(t, x) ≤ sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}
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and ultimately, together with (7.50)

Vn+1(t, x) = Vn+1(t, x, τ ?n+1,t,x)

= sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}
.

Thus, the Bellman equation (7.31) holds for the (n+ 1)–th step as well as τ ?n+1,t,x

is optimal for Vn+1(t, x).

Now assume that the underlying utility function is a classical one, defined on the
whole real line. By Lemma 7.13 (b) (ii) we know that

t 7→ V1(t, x) = sup
ϑ≥0

m0,t,x(ϑ)

is measurable. Applying the induction hypothesis about the measurability of
t 7→ Vn(t, j) for all j ∈ S, Lemma 7.13 (b) (ii) will lead to the measurability of

t 7→ Vn+1(t, x) = sup
ϑ≥0

mn,t,x(ϑ)

on [0,∞) for every x ∈ S.

As last course of action, assume that the underlying utility function is an extended
one derived from a utility function with maximal domain of the form [−d,∞).
Applying the induction hypothesis about the continuity of t 7→ Vn(t, j) for all j ∈ S,
coupled with Lemma 7.13 (c) (iv) yields the continuity of

t 7→ Vn+1(t, x) = sup
ϑ≥0

mn,t,x(ϑ)

on
[
0, T

(n)
d (x)

]
for every x ∈ S, as well as the validity of equation (7.35).

By the principle of induction, we get the desired assertions for every n ∈ N0. Due
to t ≥ 0 and x ∈ S being arbitrarily chosen, these assertions are also valid for every
t ≥ 0 and x ∈ S.
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An immediate conclusion from Theorem 7.14 under knowledge of the existence of the
maximizers ϑ?n = f ?n(t, x) in (7.31) for t ≥ 0 and x ∈ S can be stated as follows:

Corollary 7.16 (Bellman equation with applied maximizers)

Let n ∈ N0, x ∈ S and t ≥ 0. Then the Bellman equation (7.31) can be expressed as

Vn+1(t, x) = U
(
− ct− cf ?n(t, x) + g(x)

)
· e−qx·f?n(t,x) +

∫ f?n(t,x)

0

e−qxs
∑
j∈S,
j 6=x

qxj ·Vn(t+ s, j) ds.

(7.51)

Note that in case of f ?n(t, x) =∞ for given t ≥ 0, x ∈ S and n ∈ N0 equation (7.51) is
just a symbolic notation for

Vn+1(t, x) = lim sup
ϑ→∞

U
(
−ct−cϑ+g(x)

)
·e−qx·ϑ+

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj ·Vn(t+s, j) ds (7.52)

according to Remark 7.15 (g).

Example 7.17 (example for the application of the Bellman equation)

Let S = {0, 1} and X a continuous-time Markov chain with intensity matrix Q given by

Q =

(
q00 q01

q10 q11

)
=

(
−α α
β −β

)
for some α, β > 0 (cf. Example 2.14) and initial value X0 = x ∈ S. Furthermore, let

U : R→ R ∪ {−∞}, x 7→

{
ln(x), x > 0,

−∞, x ≤ 0

be an extended utility function, derived from a classical logarithmic utility. Moreover, let
c > 0 be the cost rate and g : S → R the reward function in this setting. Assume that

g(1) = K · g(0) (7.53)

for some K > 1. Then it holds:

(a) For every n ∈ N0 and every x ∈ S we get

T
(n)
d (x) =

g(0)

c
,

where T
(n)
d (x) is defined according to (7.19) of Definition 7.11.
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(b) For every n ∈ N0, t ≥ 0 and initial value x = 1, the n–step value function Vn(t, 1)
is given by

Vn(t, 1) = U
(
− ct+ g(1)

)
= ln

(
− ct+ g(1)

)
.

The corresponding optimal stopping time τ ?n will stop immediately, thus

τ ?n = 0.

(c) For every n ∈ N0, t ∈
[
0, g(0)

c

]
and initial value x = 0 the maximizer ϑ?n is either a

unique solution of the equation

e =

1 +
α
c

(
g(1)− g(0)

)
α
(
g(0)
c
− (t+ ϑ)

)
α(

g(0)
c
−(t+ϑ))

(7.54)

or set to zero. If

t ∈
[
0,
g(0)

c
− 1

α ln(K)

)
, (7.55)

then the maximizer is always a unique solution of (7.54) and takes values in

(0, g(0)
c
− t). In this case the maximizer ϑ?n is strictly greater than zero, yielding an

optimal stopping rule which does not stop immediately, but before the first jump
time S1 of the underlying Markov chain, if this jump does not occur fast enough.

For t ∈
[g(0)

c
− 1

α ln(K)
, g(0)

c

)
the time parameter t and the respective cumulated costs

−ct may have become too large. In this case the maximizer is again set to ϑ?n = 0.
The optimal stopping time would again stop immediately.

(d) Assume the specific case of

g(0) = 10, g(1) =
e10 + 99

10
≈ 2212.55 and α = β = c = 1.

For initial value x = 1, any n ∈ N0 and any t ≥ 0, the optimal stopping time would
stop immediately. The corresponding maximizer is thus given by

ϑ?n = f ?n(t, 1) = 0.

For initial value x = 0 and any n ∈ N0 the maximizer ϑ?n is set to zero, if t ≥ 9.9
and

ϑ?n = f ?n(t, 0) = 9.9− t
for t ∈ [0, 9.9).

In summary the optimal stopping time τ ?n for Vn(t, x) is given by

τ ?n =

{
0, x = 1 or x = 0 and t ≥ 9.9,

min{9.9− t, S1}, x = 0 and t ∈ [0, 9.9).
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This means that a rational investor will wait for the Markov chain to jump into
the superior state 1 (provided the initial value of the underlying Markov chain is
x = 0), as long as this change of state occurs before the break-point at 9.9. A
longer waiting period is not optimal and does not yield a higher expected utility.
Note that in this setting the default point is reached at T

(n)
d (x) = g(0)

c
= 10. If the

investor will wait for 10 time units and will thus cumulate costs of −c · 10 = −10,
he will achieve a utility value of −∞. Therefore the 10 time units are the maximal
period of time that the investor can possibly wait. The optimal value of 9.8902
is very close to this 10 time units. Hence we can say that the optimal behavior
for an investor with initial value x = 0 is to wait for a change into the better
state for nearly the maximal possible duration. If this change of state does not
happen before time t = 9.9, he will stop shortly before the default time to prevent
bankruptcy.

Proof

(a) Let n ∈ N0 and x ∈ S. Using Lemma 7.12, we can represent T
(n)
d (x) as

T
(n)
d (x) = inf

j∈A(n)(x)

g(j)

c
,

where

A(n)(x) :=
{
j ∈ S

∣∣∣ ∃k ∈ {0, 1, . . . , n+ 1} : p
(k)
xj > 0

}
.

In this setting the discrete-time embedded Markov chain (Zn)n∈N0 has the transition
matrix

P =

(
0 1
1 0

)
.

Just as stated in Example 6.4, we can express the transition probabilities for
jumping from state x ∈ S into state j ∈ S by

pxj = 1− δxj.

Furthermore the n–step transition probabilities, as defined in Definition 2.17, are
given by

p
(n)
xj =

{
δxj, for n even,

1− δxj, for n odd.

Now let x ∈ S and j ∈ S\{x}. Then we always get p
(0)
xx = 1 > 0 and p

(1)
xj = 1 > 0.

Thus both possible states are contained in every single set A(n)(x) for all n ∈ N0.
We therefore get

A(n)(x) = S
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and thus

T
(n)
d (x) = inf

j∈A(n)(x)

g(j)

c
= inf

j∈S

g(j)

c
= min

{
g(0)

c
,
g(1)

c

}
=
g(0)

c
,

since g(0) < g(1) and c > 0.

(b) In this example we only have two possible states the underlying Markov chain can
attain. If the initial value of the chain is thus given by x = 1 and we know that
this state yields the higher reward g(1) > g(0), then it is obviously clear that the
optimal stopping time for every n–step value function Vn(t, 1) is given by τ ?n = 0.
It is always optimal to stop immediately, if the initial value is given by the superior
state 1. Waiting in this state will only cumulate unnecessary costs. If the Markov
chain jumps into the inferior state 0, the reward will be even smaller. This holds
true for every single n–step value function Vn(t, x). As a result we can calculate
Vn(t, x) by

Vn(t, 1) = Vn(t, 1, τ ?n) = U
(
− ct+ g(1)

)
= ln

(
− cγt+ γg(1)

)
for every n ∈ N0.

(c) Let n ∈ N0 and x = 0. If t ≥ T
(n)
d (x) = g(0)

c
, then Lemma 7.13 (c) implies that

the mapping mn,t,0 from (7.22) is constantly given by −∞. The corresponding

maximizer in this case is therefore set to ϑ?n = 0. Now let t ∈
[
0, g(0)

c
). As a

consequence of Lemma 7.13 (c), as well as part (a) and (b) of this proof, mn,t,0 is

greater than −∞ on the intervall
[
0, g(0)

c
− t
)

and given by

mn,t,0(ϑ)

= U
(
− ct− cϑ+ g(0)

)
· e−q0·ϑ +

∫ ϑ

0

e−q0s
∑
j∈S,
j 6=0

q0j · Vn(t+ s, j) ds

= U
(
− ct− cϑ+ g(0)

)
· e−q0·ϑ +

∫ ϑ

0

e−q0sq01 · Vn(t+ s, 1) ds

= U
(
− ct− cϑ+ g(0)

)
· e−α·ϑ +

∫ ϑ

0

e−αsq01 · U
(
− ct− cs+ g(1)

)
ds

= ln
(
− cγ(t+ ϑ) + γg(0)

)
· e−α·ϑ +

∫ ϑ

0

e−αsq01 · ln
(
− cγ(t+ s) + γg(1)

)
ds

for ϑ ∈
[
0, g(0)

c
− t
)
. Moreover, U is differentiable on (0,∞) and the derivative U ′

of U is

U(x) =
1

x
, for all x > 0.
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Therefore, the derivative of m′n,t,0 is given by (7.23) as

m′n,t,0(ϑ)

= e−q0ϑ ·
(∑
j∈S,
j 6=0

q0jVn(t+ ϑ, j)− cU ′
(
− ct− cϑ+ g(0)

)
− q0U

(
− ct− cϑ+ g(0)

))

=

(
q01 ln

(
− cγ(t+ ϑ) + γg(1)

)
− c · 1

−c(t+ ϑ) + g(0)
− q0 ln

(
− cγ(t+ ϑ) + γg(0)

))
· e−αϑ

=

(
α ln

(
− cγ(t+ ϑ) + γg(1)

)
− c · 1

−c(t+ ϑ) + g(0)
− α ln

(
− cγ(t+ ϑ) + γg(0)

))
· e−αϑ

= e−αϑ ·
(
α ln

(
− cγ(t+ ϑ) + γg(1)

)
− α ln

(
− cγ(t+ ϑ) + γg(0)

)
− 1

g(0)
c
− (t+ ϑ)

)
for all ϑ ∈

[
0, g(0)

c
− t
)
.

According to Theorem 7.14, the maximizer ϑ?n for supϑ≥0 mn,t,0 exists and is given

by a finite value from
[
0, g(0)

c
− t
]
. We can calculate it by identifying the roots of

the derivative m′n,t,0. Let t < g(0)
c

and ϑ < g(0)
c
− t. Then it holds:

m′n,t,0(ϑ) = 0

⇔ 0 = α ln
(
− cγ(t+ ϑ) + γg(1)

)
− α ln

(
− cγ(t+ ϑ) + γg(0)

)
− 1

g(0)
c
− (t+ ϑ)

⇔ 1
g(0)
c
− (t+ ϑ)

= α ln

(
−cγ(t+ ϑ) + γg(1)

−cγ(t+ ϑ) + γg(0)

)
⇔ 1 = α

(
g(0)

c
− (t+ ϑ)

)
ln

(
g(1)− c(t+ ϑ)

g(0)− c(t+ ϑ)

)
⇔ 1 = α

(
g(0)

c
− (t+ ϑ)

)
ln

(
1 +

g(1)− g(0)

g(0)− c(t+ ϑ)

)

⇔ e =

[
1 +

g(1)− g(0)

g(0)− c(t+ ϑ)

]α( g(0)c −(t+ϑ))

⇔ e =

1 +
α
c

(
g(1)− g(0)

)
α
(
g(0)
c
− (t+ ϑ)

)
α(

g(0)
c
−(t+ϑ))

.

This shows the validity of (7.54). In order to determine the maximizer ϑ?n we thus
have to solve equation (7.54), provided that this yields indeed a maximum of mn,t,0.
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For the existence and uniqueness of the solution we define the mapping

h :

[
0,
g(0)

c
− t
)
→ [0,∞], h(ϑ) :=

1 +
α
c

(
g(1)− g(0)

)
α
(
g(0)
c
− (t+ ϑ)

)
α(

g(0)
c
−(t+ϑ))

.

Note that h is obviously continuous. Moreover h is of the form

x 7→
(

1 +
k

x

)x
for

k :=
α

c

(
g(1)− g(0)

)
> 0 and x := α

(
g(0)

c
− (t+ ϑ)

)
> 0.

We know from basic calculus that(
1 +

k

x

)x
< ek

for all x > 0, k > 0 and

lim
x↘0

(
1 +

k

x

)x
= 1

for all k > 0. Therefore we know that h is a strictly decreasing mapping such that

lim
ϑ↘ g(0)

c
−t
h(ϑ) = 1 < e.

Suppose now that 0 ≤ t < g(0)
c
− 1

α ln(K)
, as postulated in (7.55) of this example,

where K was a growth constant for g given in (7.53). We will now show that
h(0) > e:

h(0) =

1 +
α
c

(
g(1)− g(0)

)
α
(
g(0)
c
− t
)
α(

g(0)
c
−t)

≥

1 +
α
c

(
g(1)− g(0)

)
α
(
g(0)
c

)
α(

g(0)
c
−t)

=

(
g(1)

g(0)

)α( g(0)c −t)
>

(
g(1)

g(0)

)α( 1
α ln(K))
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=

(
g(1)

g(0)

) 1
ln(K)

≥ K
1

ln(K)

=
(
eln(K)

) 1
ln(K)

= e.

In summary we can find two arguments ϑ1 and ϑ2 such that h(ϑ1) < e < h(ϑ2).
Since h is continuous and strictly decreasing, an application of the intermediate
value theorem yields a unique solution ϑ?n to equation (7.54)

h(ϑ) = e

on
(

0, g(0)
c
− t
)

, if t ∈
[
0, g(0)

c
− 1

α ln(K)

]
. Since the solution has no dependency on

n ∈ N0 we can conclude that every maximizer ϑ?n = f ?(t, 0) is strictly greater than

zero and smaller than g(0)
c
− t.

(d) For g(0) = 10, g(1) = e10+99
10
≈ 2212.55 we can choose the growth factor K > 1

from (7.53) to be

K =
e10 + 99

100
≈ 221, 26.

Furthermore, the default time T
(n)
d (x) is given by

T
(n)
d (x) =

g(10)

c
= 10.

For t ≥ 10 we know that the maximizer ϑ?n is set to zero. Note that in this example,
there is no dependency on n ∈ N0.

Now let t < 10. We know from part (c) of Example 7.17 that if t fulfills the
inequality (7.55)

t <
g(0)

c
− 1

α ln(K)
= 10− 1

ln
(
e10+99

100

) ≈ 9.815,

then the corresponding maximizer ϑ?n is uniquely determined as the solution of
equation (7.54), which reads

e =

(
1 +

e10+99
10
− 10

10− t− ϑ

)10−t−ϑ

=

(
1 +

e10−1
10

10− t− ϑ

)10−t−ϑ

in this specific case. Substituting

u := t+ ϑ
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yields

e =

(
1 +

e10−1
10

10− u

)10−u

.

We now by part (c) and the intermediate value theorem that a unique solution
u? ∈ (0, 10) exists. Indeed we can easily check that

u? = 9.9

is the solution of the equation above:(
1 +

e10−1
10

10− u?

)10−u?

=

(
1 +

e10−1
10

0.1

)0.1

=
(
1 + (e10 − 1)

)0.1

= e.

Therefore the solution of (7.54) is given by

ϑ?n = f ?n(t, 0) = 9.9− t

for every n ∈ N0. We can easily see that in this case the solution ϑ?n exists and is
greater than zero, if and only if t < 9.9. This is even more than the general interval
[0, 9.815], as given in (7.55). On the other hand, for t ≥ 9.9 the maximizer is set to
ϑ?n = 0. By Theorem 7.14 (d) the optimal stopping time for Vn(t, x) is thus given
by

τ ?n :=
(
f ?n−1(t, x), f ?n−2(S1+t, Z1)+S1, . . . , f

?
0 (Sn−1+t, Zn−1)+Sn−1, Sn, Sn+1, . . .

)
.

For initial value x = 1 we know that f ?n−1(t, 1) = 0. Thus the stopping time always
terminates immediately and we can write τ ?n = 0. The same holds true for initial
value x = 0 and t ≥ 9.9.

For initial value x = 0 and t < 9.9 the situation is more interesting. We note that
in this setting the next state of the underlying Markov chain after the first jump
will always be the superior state 1 and hence Z1 = 1. By studying the first two
stopping rules of τ ?n we can see that

τ ?,0n = f ?n−1(t, 0) = 9.9− t and

τ ?,1n = f ?n−2(S1 + t, Z1) + S1 = f ?n−2(S1 + t, 1) + S1 = S1
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for all t < 9.9. The optimal stopping time will thus follow the 0–step stopping rule
τ ?,0n as long as the first jump does not occur. If the jump happens after τ ?,0n = 9.9−t,
then the stopping time will terminate at time 9.9− t. On the other hand, if the
jump happens before time 9.9 − t, then τ ?,0n will be discarded and τ ?,1n will take
effect. But τ ?,1n = S1 always terminates immediately. In summary, the optimal
stopping time τ ?n can be expressed as

τ ?n = min{9.9− t, S1}.

As we have seen the Bellman equation from Theorem 7.14 provides us with an iterative
approach to solve an n–step value function by reducing the problem into a deterministic
maximization problem (7.31), provided that the preceding (n− 1)–step value function is
fully solved for every x ∈ S and t ≥ 0. Furthermore, every iteration step yields structural
information about the stopping rules required to gain the optimal stopping time for the
n–step value function. As we were originally interested in the unrestricted value function
V (t, x), we can use the Bellman equation to calculate every single n–step value function
for every x ∈ s, t ≥ 0 and use the fact that

lim
n→∞

Vn(t, x) = V (t, x)

according to Proposition 6.7 (c). This will at least allow for a useful approximation of
V (t, x), even if we did not calculate all n–step value functions, but only up to some
sufficiently high step n.

But solving every iteration step and calculating the corresponding maximizers is a non-
trivial task. In the next section we will discuss an approach for the unrestricted stopping
problem and the corresponding unrestricted value function, which doesn’t require to
consider the limit of n–step value functions. Instead we will transform the already known
Bellman equation from Theorem 7.14 into a fixed-point type equation.

But before we tackle the unrestricted value function, we will first discuss this section
with regard to the special choice of an exponential utility as underlying utility function.
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7.5 The Bellman Equation for Exponential Utility
Functions

Again, we suppose that the underlying utility function U is given by

U : R→ R, U(x) := −e−γx

for some γ > 0.

Similarly to Corollary 7.10, where we were restated the reward iteration formula from
Theorem 7.7 for the case of exponential utility, we now want to discuss the Bellman
equation from Theorem 7.14 for this particular utility function. The next theorem will
cover the adaption of the Bellman equation to the particular n–step value functions Ṽn(x),
as defined in (6.16) of section 6.2 for exponential utility. We will see that the Bellman
equation will simplify tremendously. More precisely, the deterministic maximization
problem given in the general formulation (7.31) will degenerate into the simple task of
choosing the greater value out of two possibilities. Furthermore, we will see that the
corresponding maximizers for (7.31) can only take two values:

ϑ?n = 0 or ϑ?n =∞.

These two maximizers will correspond to the two possible arguments for the maximization
problem. This leads to optimal stopping rules which behave in only two possible ways,
depending on the current state of the underlying Markov chain. These optimal stopping
rules will either stop immediately as soon as a certain state is reached, or will never
terminate as long as the Markov chain resides in this state. In particular we will find
out that the optimal stopping rules, respectively the optimal stopping time consisting of
these rules, will never stop between two jumps of the Markov chain. This is of course
not surprising, but rather expected. Note that we already mentioned that in the case of
exponential utility the time parameter t ≥ 0, describing the cumulated costs −ct up to
time t, does not have any influence on the value functions or the corresponding stopping
problems. Since the choice of an optimal stopping time thus only depends on the initial
value x ∈ S of the underlying Markov chain, the decisions whether to stop or not, should
only be made at the jump times of the Markov chain at which the changes of state occur.

Before we will confirm the above-mentioned claims for optimal stopping of n–step value
functions in case of exponential utility, we first will address the Bellman equation (7.31)
of Theorem 7.14 itself. Note that the function, over which the supremum in (7.31) is
taken, can be expressed in terms of mn,t,x, as defined in (7.22) of Lemma 7.13.

Note that in case of exponential utility, we can express mn,t,x for every n ∈ N0, t ≥ 0
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and x ∈ S by applying (6.16)

mn,t,x(ϑ) = U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

= −ecγt+cγϑ−γg(x) · e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · ecγt+sṼn(j) ds

= ecγt

−e(cγ−qx)ϑ−γg(x) +

∫ ϑ

0

e(cγ−qx)s
∑
j∈S,
j 6=x

qxj · Ṽn(j) ds



= ecγt

−e(cγ−qx)ϑ · e−γg(x) +

∫ ϑ

0

e(cγ−qx)s ds ·
∑
j∈S,
j 6=x

qxj · Ṽn(j)



= ecγt

−e−γg(x) · e−(qx−cγ)ϑ − 1

qx − cγ
(
e−(qx−cγ)ϑ − 1

)
·
∑
j∈S,
j 6=x

qxj · Ṽn(j)



= ecγt

−e−γg(x) · e−(qx−cγ)ϑ +
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j) ·
(
1− e−(qx−cγ)ϑ

) .

Following the definition of the reduced n–step value function in (6.16), we define

m̃n,x(ϑ) := −e−γg(x) · e−(qx−cγ)ϑ +
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j) ·
(
1− e−(qx−cγ)ϑ

)
. (7.56)

Therefore, we can express mn,t,x as

mn,t,x(ϑ) = ecγt · m̃n,x(ϑ). (7.57)

Now for every n ∈ N0, t ≥ 0 and x ∈ S, the Bellman equation (7.31) in Theorem 7.14

Vn+1(t, x) = sup
ϑ≥0

mn,t,x(ϑ)

is equivalent to

Ṽn+1(x) = sup
ϑ≥0

m̃n,x(ϑ). (7.58)
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With this knowledge we can now formulate the Bellman theorem for exponential utility
functions. Note that we will differentiate the initial states x ∈ S between two cases

x ∈ S such that qx ≤ cγ and x ∈ S such that qx > cγ.

As we will see each case will lead to a different result concerning the optimality of n–step
value functions. The first case qx ≤ cγ will represent the situation where the cost rate
c > 0 is too high for the Markov chain (with initial value x) to compensate. As a result
the optimal stopping rule will be to stop immediately in such a state. On the other
hand if qx > cγ, then the question of optimality is not trivial but rather depends on the
bellman equation (7.60). Based on this equation the optimal course of action is to stop
immediately or not to stop at all.

Theorem 7.18 (Bellman equation for exponential utility functions)

(a) Let n ∈ N0 and x ∈ S such that qx ≤ cγ. Then it holds that

Ṽn(x) = −e−γg(x). (7.59)

(b) Let n ∈ N0 and x ∈ S such that qx > cγ. Then we get

Ṽn+1(x) = max

−e−γg(x),
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j)

 . (7.60)

The initial value function Ṽ0 is given by

Ṽ0(x) = −e−γg(x). (7.61)

(c) For n ∈ N the optimal stopping time τ ?n for Ṽn(x) is given by

τ ?n =
(
f̃ ?n−1(x), f̃ ?n−2(Z1) + S1, . . . , f̃

?
0 (Zn−1) + Sn−1, Sn, Sn+1, . . .

)
, (7.62)

where for every k ∈ {0, 1, . . . , n− 1}

f̃ ?k (x) =

0, if qx ≤ cγ or qx > cγ and Ṽk(x) = −e−γg(x),

∞, if qx > cγ and Ṽk(x) =
∑

j∈S,
j 6=x

qxj
qx−cγ Ṽk−1(j).

(7.63)

For n = 0 the optimal stopping time τ ?n for Ṽn(x) is trivially given by

τ ?0 = 0.
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Proof of Theorem 7.18

(a) Let n ∈ N0 and x ∈ S such that qx ≤ cγ. We thus know that ϑ 7→ e−(qx−cγ)ϑ is
increasing on [0,∞), which implies that

ϑ 7→ −e−γg(x) · e−(qx−cγ)ϑ

is a decreasing mapping. Moreover we know that ϑ 7→ 1− e−(qx−cγ)ϑ is decreasing
on [0,∞). Since

qxj
qx−cγ ≤ 0 and

Ṽn(j) = sup
τ∈Σj

Ej

[
− ecγ(τ∧Sn)−γg(Xτ∧Sn )

]
≤ 0

we can conclude that

ϑ 7→
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j) ·
(
1− e−(qx−cγ)ϑ

)
is also a decreasing mapping. In summary we know that by (7.56) the mapping
m̃n,x is decreasing on [0,∞). By (7.58) this yields

Ṽn+1(x) = sup
ϑ≥0

m̃n,x(ϑ) = m̃n,x(0) = −e−γg(x)

for every n ∈ N0. For n = 0 we trivially get Ṽ0(x) = −e−γg(x).

We see that the maximizer is given for every n ∈ N0 by ϑ?n = 0. By Theorem 7.14
(b) we set

f̃ ?n(x) = ϑ?n = 0.

(b) Now let n ∈ N0 and x ∈ S such that qx > cγ. This means that p := e−(qx−cγ)ϑ ∈
(0, 1] for ϑ ∈ [0,∞). We thus can interpret m̃n,x(ϑ) for every ϑ ≥ 0 as weighted
average

m̃n,x(ϑ) = −e−γg(x) · p+
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j) · (1− p)

of the two quantities

−e−γg(x) and
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j).

Therefore, the inequality

m̃n,x(ϑ) ≤ max

−e−γg(x),
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j)


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is valid for every ϑ ≥ 0 and hence

Ṽn+1(x) = sup
ϑ≥0

m̃n,x(ϑ) ≤ max

−e−γg(x),
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j)

 .

On the other hand we know that for ϑ = 0 we get m̃n,x(0) = −e−γg(x) and that

lim
ϑ→∞

m̃n,x(ϑ) =
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j)

due to e−(qx−cγ)ϑ → 0 as ϑ→∞.

This yields

Ṽn+1(x) = sup
ϑ≥0

m̃n,x(ϑ) ≥ max

−e−γg(x),
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j)


and altogether the Bellman equation (7.60)

Ṽn+1(x) = max

−e−γg(x),
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽn(j)

 .

As we have seen the maximization problem supϑ≥0 m̃n,x(ϑ) reduces to a maximiza-
tion over two arguments, where these arguments originated from

m̃n,x(0) for ϑ = 0 or lim
ϑ→∞

m̃n,x(ϑ) for ϑ→∞.

Hence the corresponding maximizers ϑ?n from Theorem 7.14 (b) can only take two
values:

ϑ?n = 0 or ϑ?n =∞.
More precisely, we get

f̃ ?n(x) = ϑ?n =

0, if Ṽn(x) = −e−γg(x),

∞, if Ṽn(x) =
∑

j∈S,
j 6=x

qxj
qx−cγ Ṽn−1(j).

(c) Let n ∈ N. By combining the cases qx ≤ cγ from part (a) and qx > cγ from part
(b) we gain

f̃ ?k (x) :=

0, if qx ≤ cγ or qx > cγ and Ṽk(x) = −e−γg(x),

∞, if qx > cγ and Ṽk(x) =
∑

j∈S,
j 6=x

qxj
qx−cγ Ṽk−1(j)
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7.5 The Bellman Equation for Exponential Utility Functions

for every k ∈ {0, 1, . . . , n− 1}. An application of Theorem 7.14 (d) thus yields the
optimal stopping time τ ?n for Ṽn(x) by

τ ?n =
(
f̃ ?n−1(x), f̃ ?n−2(Z1) + S1, . . . , f̃

?
0 (Zn−1) + Sn−1, Sn, Sn+1, . . .

)
.

The case for n = 0 is again trivial and also yields Ṽ0(x) = −e−γg(x) and τ ?0 = 0.

Remark 7.19 (implications of the Bellman equation for exponential utility)

(a) As we have seen, the case of exponential utility leads to a significantly easier
Bellman equation. Depending on the current state x ∈ S, we can decide whether
the costs are too high (fulfilling qx ≤ cγ) or low enough (yielding qx > cγ). In the
first case of high costs the question of optimal stopping is trivially answered by
immediate stopping. In the case of low costs we only need to compare two values
and take the greater one. Depending on the outcome the corresponding optimal
stopping rule stipulates immediate stopping or to never stop in this state. Any
other stopping rule is not optimal. In particular it will never be profitable to stop
between two jumps, contrary to the case of logarithmic utility in Example 7.17.

(b) Although we have chosen a specific utility function, we still can not give a general
closed form for the n–step value functions. These still depend on the specific choice
of the underlying Markov chain, its intensity rates and the reward function g in the
stopping model. Only for the case of an initial state x ∈ S such that qx ≤ cγ we
can infer the explicit closed form of Ṽn(x), since it is trivially given by the initial
utility gained by immediate stopping.

(c) Just as in the general case, the Bellman equation for exponential utility (7.60)
allows us to calculate every n–step value function Ṽn(x) in an iterative way. Each
iteration step also provides one stopping rule for the optimal stopping time τ ?n. On
the other hand, we can not construct these stopping rules without knowledge of
the preceding n–step value functions. Hence, even if we are solely interested in the
optimal stopping time τ ?n of the n–step value function, we still need to solve every
single k–step value function for k ∈ {0, 1, . . . , n− 1} in order to get access to τ ?n.
We will show in chapter 8 that this problem can be circumvented under certain
conditions and that under these conditions the decision whether or not we should
stop in a certain state can be made without any knowlede on the n–step value
functions themselves.
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7.6 The Fixed-Point Equation

Definition 7.20

Let d ∈ R and c > 0. We then define Td by

Td :=
ginf + d

c
, (7.64)

where
ginf := inf

j∈S
g(j).

Lemma 7.21

Let x ∈ S, d ∈ R and c > 0. Then the sequence
(
T

(n)
d (x)

)
n∈N0

from Definition 7.11 is

decreasing and

T
(n)
d (x)→ Td as n→∞. (7.65)

Proof of Lemma 7.21
Let x ∈ S, d ∈ R and c > 0. By Lemma 7.12 T

(n)
d (x) is given for every n ∈ N0 as

T
(n)
d (x) = inf

j∈A(n)(x)

g(j) + d

c
, n ∈ N0,

where

A(n)(x) =
{
j ∈ S

∣∣∣ ∃k ∈ {0, 1, . . . , n+ 1} : p
(k)
xj > 0

}
.

Clearly, we get A(n)(x) ⊆ A(n+1)(x) ⊆ S for every n ∈ N0 and thus

T
(n)
d (x) ≥ T

(n+1)
d (x) ≥ Td.

Therefore,
(
T

(n)
d (x)

)
n∈N0

is an decreasing sequence with lower bound Td.

For the convergence, we note that the increasing sequence of sets
(
A(n)(x)

)
n∈N0

converges
to

A∞(x) :=
⋃
n∈N0

A(n)(x) =
{
j ∈ S| ∃k ∈ N0 : p

(k)
xj > 0

}
.

But with respect to the irreducibility assumption 2.18, this immediately yields

A∞(x) = S.
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7.6 The Fixed-Point Equation

Therefore we get for every x ∈ S and n→∞:

T
(n)
d (x) = inf

j∈A(n)(x)

g(j) + d

c

→ inf
j∈A∞(x)

g(j) + d

c

= inf
j∈S

g(j) + d

c

=
ginf + d

c

= Td.

Similarily to section 7.4, we will first state an auxiliary lemma, which will be useful for
the subsequent Theorem 7.23 and for the following chapter.

Lemma 7.22

Let t ≥ 0 and x ∈ S. Then it holds

(a) The mapping mt,x : [0,∞)→ R, defined by

mt,x(ϑ) := U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds (7.66)

is bounded from above by a constant, which only depends on x.

(b) If in addition U is a classical utility function on the whole real line and does not
take the value −∞, then mt,x is continuous and almost everywhere differentiable
and

m′t,x(ϑ) (7.67)

= e−qxϑ
(∑
j∈S,
j 6=x

qxjV (t+ ϑ, j)− cU ′
(
− ct− cϑ+ g(x)

)
− qxU

(
− ct− cϑ+ g(x)

))

almost everywhere.

Furthermore, the supremum
sup
ϑ≥0

mt,x(ϑ)

exists. It is either a maximum and is attained by a finite maximizer ϑ? or is an
unattainable (finite) supremum, in which case the maximizer is set as ϑ? = ∞.
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7 Discrete-Time Approach for the Generalized Risk-Sensitive Stopping Problem

In addition there exists a measurable mapping f ? : [0,∞)× S → [0,∞] such that
f ?(t, x) = ϑ?.

Moreover, the mapping

[0,∞)→ R ∪ {−∞}, t 7→ sup
ϑ≥0

mt,x(ϑ)

is measurable for every x ∈ S.

(c) If U is an extended utility function derived from a classical utility function with
maximal domain of the form [−d,∞), the following assertions hold, where Td is
defined according to equation (7.64) of Definition 7.20 as

Td =
ginf + d

c
.

(i) We get for all x ∈ S and t ≥ 0:

V (t, x)

{
> −∞, if t ∈ [0, Td],

= −∞, if t ∈ (Td,∞).
(7.68)

(ii) ϑ 7→ mt,x(ϑ) is continuous on [0, Td − t] and almost everywhere differentiable
on [0, Td − t) and

mt,x(ϑ)

{
> −∞, if ϑ ∈ [0, Td − t],
= −∞, if ϑ ∈ (Td − t,∞).

(7.69)

On [0, Td − t) the derivative m′t,x is almost everywhere given by (7.67) and set
to zero otherwise. In case that t > Td and thus [0, Td − t] = ∅, the mapping
ϑ 7→ mt,x(ϑ) is constantly −∞.

(iii) We get

sup
ϑ≥0

mt,x(ϑ)

{
> −∞, if t ∈ [0, Td],

= −∞, if t ∈ (Td,∞).
(7.70)

In case that Td < 0 and thus [0, Td] = ∅, we get (t, x) 7→ supϑ≥0mn,t,x(ϑ) ≡
−∞.

Furthermore we get for every t ∈ [0, Td] that

sup
ϑ≥0

mt,x(ϑ) = max
ϑ∈[0,Td−t]

mt,x(ϑ). (7.71)

The supremum is always attained by a finite maximizer ϑ? ∈ [0, Td], which
depends on the actual choice of x ∈ S and t ∈ [0, Td].

Note that for t > Td, mt,x is constantly given by −∞. In this case every ϑ ≥ 0
is a maximizer of supϑ≥0mt,x(ϑ). We will choose the smallest one and set
ϑ? := 0.
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7.6 The Fixed-Point Equation

(iv) The mapping
[0,∞)→ R ∪ {−∞}, t 7→ sup

ϑ≥0
mt,x(ϑ)

is continuous on [0, Td].

Furthermore, there exists a measurable mapping f ? : [0,∞) × S → R such
that ϑ? = f ?(t, x).

If the maximizer ϑ? for supϑ≥0 mt,x(ϑ) is unique for t ∈ [0, Td], then t 7→ f ?(t, x)
is even continuous.

These statements are basically the unrestricted analogues to Lemma 7.13, replacing
Vn(t, x) with V (t, x), respectively mn,t,x with mt,x.

Proof of Lemma 7.22
Let t ≥ 0 and x ∈ S. The proof of parts (a) and (b) is analogeous to the proof of
Lemma 7.13 (a) and (b) and is omitted to avoid repetition. For part (c) assume now
that U is an extended utility function with maximal domain of the form [−d,∞).

(i) According to Proposition 6.7, respectively Proposition 6.5 we know that

V (t, x) = lim
n→∞

Vn(t, x)

as well as
Vn(t, x) ≤ V (t, x)

for all n ∈ N0, x ∈ S and t ≥ 0. Furthermore Theorem 7.14 (f) stated

Vn(t, x)

{
> −∞, if t ∈

[
0, T

(n−1)
d (x)

]
,

= −∞, if t ∈
(
T

(n−1)
d (x),∞

)
.

for all n ∈ N, x ∈ S and t ≥ 0.

Fix now an n ∈ N, x ∈ S and let t ∈
[
0, T

(n−1)
d (x)

]
. Since Td ≤ T

(n−1)
d (x) for all

x ∈ S and n ∈ N due to Lemma 7.21, we can conclude that t ∈ [0, Td]. Then it
holds that

V (t, x) ≥ Vn(t, x) > −∞.
On the other hand, if t > Td, then Lemma 7.21 allows us to find an N ∈ N such
that t > T

(n−1)
d (x) for all n ≥ N . Here (7.35) implies

Vn(t, x) = −∞

for all x ∈ S, n ≥ N and t > Td and hence

V (t, x) = lim
n→∞

Vn(t, x) = −∞
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7 Discrete-Time Approach for the Generalized Risk-Sensitive Stopping Problem

for x ∈ s and t > Td.

Im summary we get

V (t, x)

{
> −∞, if t ∈ [0, Td],

= −∞, if t ∈ (Td,∞).

(ii) Analogously to the proof of Lemma 7.13, we will divide mt,x into two parts:

mn,t,x(ϑ)

= U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ︸ ︷︷ ︸

=:P 1(t,x,ϑ)

+

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds

︸ ︷︷ ︸
=:P 2(t,x,ϑ)

.

Part P 1 is absolutely analogeous to the proof of Lemma 7.13 (c) (ii). We know that

ϑ 7→ P 1(t, x, ϑ) ≡ −∞⇔ t >
g(x) + d

c
≥ Td

and for t ∈
[
0, g(x)+d

c

]
we get

P 1(t, x, ϑ)

{
> −∞, if ϑ ∈ [0, g(x)+d

c
− t],

= −∞, if ϑ ∈ (g(x)+d
c
− t,∞).

Furthermore we know that ϑ 7→ P 1(t, x, ϑ) is differentiable on [0, g(x)+d
c
− t).

For P 2 we will differentiate two cases:

If t > Td then V (t+ s, j) = −∞ holds for all j ∈ S and all s ≥ 0. As a consequence,
we get

ϑ 7→ P 2(t, x, ϑ) ≡ −∞⇔ t > Td.

If t ∈ [0, Td] then
V (t+ s, j) > −∞⇔ s ∈ [0, Td − t].

This yields

P 2(t, x, ϑ)

{
> −∞, if ϑ ∈ [0, Td − t],
= −∞, if ϑ ∈ (Td − t,∞)

and thus together with P 1 the validity of (7.69), since g(x)+d
c
≥ Td by definition.

For the continuity and almost everywhere differentiability of mt,x we will use the
same reasoning as in Lemma 7.13 (b) (i) to state that the mapping

s 7→ f(s) := e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j)
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is integrable on [0, ϑ]. The Lebesgue differentiation theorem (cf. [Elstrodt, 1996,
Theorem 4.14]) now yields the continuity of ϑ 7→ P 2(t, x, ϑ) on [0, Td − t] as well as
the almost everywhere differentiability on [0, Td − t). The same is thus also valid
for mt,x itself and the derivative m′t,x is almost everywhere given by (7.67).

The assertions (iii) - (iv) are again analogeous to the proof of Lemma 7.13 (c) (iii) - (iv).

Theorem 7.23 (fixed-point equation)

Let x ∈ S and t ≥ 0. Then it holds:

(a) The fixed-point equation is valid:

V (t, x) = sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ

+

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds

}
(7.72)

(b) If U is a classical utility function on the whole real line, then the supremum in
(7.72) exists, depending on x ∈ S and t ≥ 0. It is either a maximum and is attained
by a finite maximizer ϑ? or an unattainable (finite) supremum, in which case the
maximizer is set as ϑ? =∞.

Furthermore, there exists a measurable mapping f ? : [0,∞)× S → [0,∞] such that
f ?(t, x) = ϑ?. In addition the value function V (t, x) is measurable in t ≥ 0 for
every x ∈ S.

(c) If U is an extended utility function derived from a classical utility function with
maximal domain of the form [−d,∞) ( R, then the supremum in (7.72) exists
and is even a maximum, depending on x ∈ S and t ≥ 0. It is attained by a finite
maximizer ϑ? ∈ [0, Td − t] with Td given by (7.64) in Definition 7.20.

Moreover, there exists a measurable mapping f ? : [0,∞)× S → [0, Td] such that
f ?(t, x) = ϑ?. If the maximizer ϑ? is unique for every t ∈ [0, Td], then t 7→ f ?(t, x)
is even continuous on [0,∞) for every x ∈ S.

In addition the value function V (t, x) is continuous in t ∈ [0, Td] for every x ∈ S
and

V (t, x)

{
> −∞, if t ∈ [0, Td],

= −∞, if t ∈ (Td,∞).
(7.73)
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Remark 7.24

Analogously to Remark 7.15 (g), we set the maximizer ϑ? =∞, if the supremum in (7.72)
is not a maximum which can be attained by a finite value. In this case (7.72) reads

V (t, x) = sup
ϑ≥0

mt,x(ϑ) = lim sup
ϑ→∞

mt,x(ϑ).

Now we can prove Theorem 7.23 rigorously.

Proof of Theorem 7.23
Due to the upper boundedness of mt,x by Lemma 7.22 (a) we can guarantee the existence
of the supremum in (7.72). By following the reasonings in step 1 of the proof of
Theorem 7.14 in which the existence of the maximizers ϑ?n as well as the existence of the
corresponding measurable mappings f ?n from Theorem 7.14 (b) and (c) are shown, we
can reapply the exact same arguments to ensure the existence of a maximizer ϑ? ∈ [0,∞]
in (b), respectively ϑ? ∈ [0, Td] in (c) for the optimization in (7.72). The existence of a
measurable mapping f ? : [0,∞)×S → [0,∞] for (b), respectively f ? : [0,∞)×S → [0,∞]
for (c) follows as well by the same arguments as given in the proof of Theorem 7.14. This
leads to the validity of parts (b) and (c) of Theorem 7.23.

For the fixed-point equation (7.72) itself, let n ∈ N0 be arbitrary and apply Theorem 7.14
to achieve

Vn+1(t, x) = sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}

≤ sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds

}
,

since Vn(t, x) ≤ V (t, x) for all n ∈ N0, t ≥ 0 and x ∈ S according to (6.7) in Proposition 6.5
(c).

Furthermore, we can now exploit relation (6.11) between value functions and n–step
value functions, stating

V (t, x) = lim
n→∞

Vn(t, x),

which was established in Proposition 6.7 (c). As a result of n being arbitrary, we thus
gain the inequality

V (t, x) ≤ sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds

}

for all t ≥ 0 and x ∈ S.
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To show the opposite inequality, let n ∈ N0 again be arbitrary. A reapplication of
Theorem 7.14 yields

Vn+1(t, x) = sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

}

≥ U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

for every t ≥ 0, x ∈ S and ϑ ≥ 0. Taking the limit n → ∞ and utilizing the relation
V (t, x) = limn→∞ Vn+1(t, x) leads to

V (t, x) = lim
n→∞

Vn+1(t, x)

≥ lim
n→∞

(
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds
)

= U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ + lim

n→∞

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

= U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · lim
n→∞

Vn(t+ s, j) ds

= U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds,

for every t ≥ 0, x ∈ S and ϑ ≥ 0. Here, the interchangeability of limit and integral as
well as the interchangeability of limit and sum is justified by the monotone convergence
theorem, since

Vn(t+ s, j)↗ V (t+ s, j) as n→∞

for all t ≥ 0, s ∈ [0, ϑ] and j ∈ S according to Proposition 6.7 (c) and (d). Also note that
Vn(t+ s, j) is lower bounded in n ∈ N0, s ∈ [0, ϑ] and j ∈ S for every t ≥ 0, meaning

Vn(t+ s, j) ≥ V0(t+ s, j) = U
(
− c(t+ s) + g(j)

)
≥ C for (s, j) ∈ [0, ϑ]× S

for some constant C ∈ R, since s 7→ U
(
− c(t+ s) + g(j)

)
is continuous on the compact

interval [0, ϑ] (thus exhibiting a minimum) and j 7→ U
(
− c(t + s) + g(j)

)
having

a minimum, because the reward function g was assumed to be bounded from below,
according to its definition in section 5.1.
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Continuing the reasoning above and the validity of the last calculation for every ϑ ≥ 0
finally leads to

V (t, x) ≥ sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds

}

for all t ≥ 0 and x ∈ S.

Hence, we were able to show both inequalities and thus gain the desired fixed-point
equation

V (t, x) = sup
ϑ≥0

{
U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds

}

for every t ≥ 0 and x ∈ S. This concludes the proof part (a) of Theorem 7.23.

An immediate conclusion from Theorem 7.23 under knowledge of the existence of the
maximizer ϑ? = f ?(t, x) in (7.72) for t ≥ 0 and x ∈ S can be stated as follows:

Corollary 7.25 (fixed-point equation with applied maximizer)

Let x ∈ S and t ≥ 0. Then the fixed-point equation (7.72) can be expressed as

V (t, x) = U
(
−ct−cf ?(t, x)+g(x)

)
·e−qx·f?(t,x)+

∫ f?(t,x)

0

e−qxs
∑
j∈S,
j 6=x

qxj ·V (t+s, j) ds. (7.74)

Note that in case of f ?(t, x) = ∞ for given t ≥ 0 and x ∈ S equation (7.74) is just a
symbolic notation for

V (t, x) = lim sup
ϑ→∞

U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds (7.75)

according to Remark 7.24.

As we have seen in the previous section, the problem of solving the value function V (t, x)
for t ≥ 0 and x ∈ S could be tackled by solving all n–step value functions Vn(t, x)
iteratively using for example Theorem 7.14 and letting Vn(t, x) converge to the desired
unrestricted value function V (t, x). But the tasks of iteratively finding a maximizer of
(7.31) and using it to express the next (n+ 1)–step value function in a hopefully closed
and manageable form for every iteration step of Theorem 7.14, are not easy in general.
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Now having Theorem 7.23 at ones disposal opens up another possiblity for obtaining
V (t, x). If we would be able to identify the maximizer ϑ? for the optimization in (7.72),
the problem of solving V (t, x) would be reduced to the problem of finding a fixed-point
of Equation (7.74) from Corollary 7.25.

In Theorem 7.14, we were additionally able to specify an optimal stopping time for
an n–step value function and derive some structural properties that have to be valid.
Theorem 7.23 on the other hand lacks this assertion about optimal stopping times for
the unrestricted value function V (t, x). This missing study of optimality will be covered
in the following section.

7.7 Optimal Stopping Times for the Unrestricted
Stopping Problem

By comparing the Bellman equation in Theorem 7.14 and the fixed-point equation
in Theorem 7.23 one can easily see that they are structurally quite similar. Roughly
spoken, the iteration type Bellman equation (7.31) converges to the fixed-point type
equation (7.72) as n tends to infinity. Due to this structural similarity, one could suspect
that an optimal stopping time for V (t, x) could be analgeously derived from (7.33) of
Theorem 7.14 by using the maximizer ϑ? = f ?(t, x) from Theorem 7.23. This leads to
the following definition:

Definition 7.26

Let t ≥ 0, x ∈ S and f ? : [0,∞) × S → [0,∞] be the maximizing function from
Theorem 7.23. Then define

τ ?t,x :=
(
f ?(t, x), f ?(S1 +t, Z1)+S1, f

?(S2 +t, Z2)+S2, f
?(S3 +t, Z3)+S3, . . .

)
. (7.76)

τ ?t,x depends explicitly on the choice of t and x. If it is clear from the context, these two
arguments are omited, writing

τ ?t,x = τ ?.

This τ ? would indeed be the best availible candidate for an optimal stopping time for
the unrestricted value function V (t, x). Unfortunately, this τ ? is not optimal in general.
However, under certain additional conditions we will be able to show the optimality of
the very same stopping time.

At first we want to compare τ ? with the optimal stopping time τ ?n ∈ Σx for Vn(t, x). As
stated in Remark 7.15 (e) and (f), we can guarantee that τ ?n is a Px–almost surely finite
stopping time for every n ∈ N0. This property always holds despite the fact that for no
single stopping rule τ ?,kn of τ ?n, k ∈ {0, . . . , n− 1}, the Px–almost sure finiteness has to be
valid. This is owed to the fact that the stopping rules are set to τ ?,kn = Sk for every k ≥ n
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and thus forcing the stopping time τ ?n to stop at latest after n jumps of the underlying
Markov chain.

As for the unrestricted case, we cannot guarantee the Px–almost sure finiteness of τ ?.
Every stopping rule τ ?,k is given by

τ ?,k = f ?(Sk + t, Zk) + Sk (7.77)

for k ∈ N0, thus applying the very same function f ? for every single stopping rule.
As f ? : [0,∞) × S → [0,∞] originates from the maximization problem in (7.72) of
Theorem 7.23, it is explicitly allowed to attain infinitely high values for some (or even
all) arguments. Hence, there can be a positive probability for the stopping rules τ ?,k to
be infinite.

Opposed to the optimal stopping time τ ?n for Vn(t, x), τ ? exhibits no property which
forces it to stop after a finite number of jumps of the underlying Markov chain. Thus, the
Px–almost sure finiteness is generally not fulfilled. And even worse, due to the lacking
Px–almost sure finiteness, we cannot apply the decomposition result from Proposition 3.15
to conclude that this piecewise description of τ ? using the stopping rules τ ?,k, k ∈ N0,
leads to τ ? being an (FXt )t≥0–stopping time. Hence we get in general that τ ? /∈ Σx.
On the other hand, by assuming τ ? to be Px–almost surely finite we can conclude that
τ ? ∈ Σx. Of course, this assumption has to be manually verified in every application.

We will summarize this observation in the following lemma:

Lemma 7.27

Let t ≥ 0, x ∈ S and τ ? defined as in (7.76) of Definition 7.26. Then it holds:

Px (τ ? <∞) = 1 ⇔ τ ? ∈ Σx.

Even if we can show that τ ? ∈ Σx, we still need to show its optimality for the unrestricted
value function V (t, x). To this end the following proposition will prove to be useful:

Proposition 7.28 (value splitting)

Let t ≥ 0 and x ∈ S. Assume furthermore that τ ? ∈ Σx for τ ? from Definition 7.26.
Then it holds

V (t, x) = Ex
[
U
(
−ct− cτ ? + g

(
Xτ?

))
· 1{τ?<Sn} + V (Sn + t, Zn) · 1{τ?≥Sn}

]
(7.78)

for every n ∈ N.
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Under the assumptions of Proposition 7.28 we can guarantee that τ ? is indeed a Px–almost
surely finite (FXt )t≥0–stopping time. Equation (7.78) now states that for every t ≥ 0
and x ∈ S the value function V (t, x) can be splitted into the expectation of two parts,
depending whether the stopping time τ ? stops before or after the n–th jump of the
underlying Markov chain. If τ ? stops before Sn we gain the expected utility by applying
stopping time τ ?. On the other hand, if τ ? stops after Sn we can “restart” the underlying
Markov chain after Sn and take the expectation of the reapplied value function at Sn + t
and Zn.

Note that for n = 1 we get (as shown in the proof of Proposition 7.28)

V (t, x) = Ex
[
U
(
−ct− cτ ? + g

(
Xτ?

))
· 1{τ?<S1} + V (S1 + t, Z1) · 1{τ?≥S1}

]
= U

(
− ct− cf ?(t, x) + g(x)

)
· e−qx·f?(t,x) +

∫ f?(t,x)

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (t+ s, j) ds

from Corollary 7.25. Thus, the special case n = 1 leads to the already established
fixed-point equation with applied maximizers. As we have seen just now, the fixed-point
equation can be interpreted in terms of the decision whether or not τ ? has stopped before
the first jump time S1. Hence, Equation (7.78) in Proposition 7.28 can be seen as a
generalization of the fixed-point equation by interpreting the value function in terms of
the decision whether or not τ ? has stopped before an arbitrary Sn for n ∈ N.

Proof of Proposition 7.28
Let t ≥ 0 and x ∈ S. Using the notation with dependency of τ ? from t and x we will
prove

V (t, x) = Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn} + V (Sn + t, Zn) · 1{τ?t,x≥Sn}

]
for all n ∈ N by induction over n. Furthermore, we will denote

τ ?t,x =
(
τ ?,0t,x , τ

?,1
t,x , τ

?,2
t,x , . . .

)
,

where
τ ?,kt,x = f ?(Sk + t, Zk) + Sk

for k ∈ N0. Note that S0 = 0 and Z0 = x.

Induction basis: Let n = 1. Using the the decomposition result in Proposition 3.15 and
the fact that τ ?,0t,x = f ?(t, x) is deterministic, we get

{τ ?t,x < S1} = {τ ?,0t,x < S1} = {f ?(t, x) < S1} and

{τ ?t,x ≥ S1} = {τ ?,0t,x ≥ S1} = {f ?(t, x) ≥ S1}

and thus
Px
(
τ ?t,x < S1

)
= e−qxf

?(t,x)
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according to Corollary 2.20 (a). In addition, the joint density of (S1, Z1) given X0 =
Z0 = x equals

σS1,Z1(s, j | X0 = x) =

{
exp(−qx · s) · qxj, if x 6= j,

0, if x = j

for every s ≥ 0 and j ∈ S, due to Corollary 2.20 (c). Hence, we can conclude that

Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<S1} + V (S1 + t, Z1) · 1{τ?t,x≥S1}

]
= Ex

[
U
(
−ct− cf ?(t, x) + g

(
X0

))
· 1{τ?t,x<S1}

]
+

∫ ∞
0

e−qxs
∑
j∈S,
j 6=x

qxj · V (s+ t, j) · 1{f?(t,x)≥s} ds

= U
(
− ct− cf ?(t, x) + g(x)

)
· Px
(
τ ?t,x < S1

)
+

∫ f?(t,x)

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (s+ t, j) ds

= U
(
− ct− cf ?(t, x) + g(x)

)
· e−qxf?(t,x) +

∫ f?(t,x)

0

e−qxs
∑
j∈S,
j 6=x

qxj · V (s+ t, j) ds

= V (t, x)

where the last step ensues from Corollary 7.25.

Induction hypothesis: Assume that for some n ∈ N equation (7.78)

V (t, x) = Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1} + V (Sn−1 + t, Zn−1) · 1{τ?t,x≥Sn−1}

]
is valid for all t ≥ 0 and x ∈ S.

Induction step: For the induction step, we will show for all t ≥ 0 and x ∈ S that

Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn} + V (Sn + t, Zn) · 1{τ?t,x≥Sn}

]
= Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1} + V (Sn−1 + t, Zn−1) · 1{τ?t,x≥Sn−1}

]
(7.79)

= V (t, x),

where the last step holds by induction hypothesis, thus concluding the validity of
Equation (7.78) for all n ∈ N by induction.

The main difficulty will be to show Equation (7.79). To this end we will first gather the
required properties of jump times, embedded Markov chains and stopping times that will
be needed in the subsequent steps:
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(i) Suppose Sn−1 and Zn−1 are given and the Markov chain X is restarted after Sn−1.
The first jump time after the reset shall be denoted by S̃1, whereas the first new
state attained by X after Zn−1 shall be denoted by Z̃1. We thus get

S̃1 ∼ Exp(qZn−1)

and the joint density of S̃1 and Z̃1 given Zn−1 is thus given by

σ(s, j | Zn−1) := σS̃1,Z̃1
(s, j | Zn−1) :=

{
exp(−qZn−1 · s) · qZn−1j, if Zn−1 6= j,

0, if Zn−1 = j

according to Corollary 2.20 (c).

(ii) Given Sn−1 and Zn−1 we can define the stopping time τ ?Sn−1+t,Zn−1
by

τ ?Sn−1+t,Zn−1
=
(
τ ?,0Sn−1+t,Zn−1

, τ ?,1Sn−1+t,Zn−1
, τ ?,2Sn−1+t,Zn−1

, . . .
)
,

where
τ ?,0Sn−1+t,Zn−1

= f ?(Sn−1 + t, Zn−1)

and
τ ?,kSn−1+t,Zn−1

= f ?(S̃k + Sn−1 + t, Z̃k)

for k ∈ N. Analogously to (i), we assume the Markov chain to be restarted at Sn−1

and denote the k–th jump time and the k–th state taken after the restart by S̃k,
respectively Z̃k.

Most importantly, τ ?,0Sn−1+t,Zn−1
= f ?(Sn−1 + t, Zn−1) is again deterministic, given

Sn−1 and Zn−1. This leads to

{τ ?Sn−1+t,Zn−1
< S̃1} = {τ ?,0Sn−1+t,Zn−1

< S̃1} = {f ?(Sn−1 + t, Zn−1) < S̃1} (7.80)

given Sn−1 and Zn−1.

(iii) According to Definition 2.15 and Theorem 2.16 (b) we know that given the history
Z0, Z1, . . . , Zn−1, the sojourn time Tn = Sn−Sn−1 is independent of Sn−1 =

∑n−1
k=1 Tk

and
Tn ∼ Exp(qZn−1).

Furthermore, the state Zn of the Markov chain X after n jumps does only depend
on the previous state and is characterized by the distribution given by the transition
probabilities

(
pZn−1,j

)
j∈S, as stated in Theorem 2.16 (a). Altogether, we can reapply

Corollary 2.20 to formulate the joint density of Tn and Zn, given Zn−1:

σTn,Zn(s, j | Zn−1) :=

{
exp(−qZn−1 · s) · qZn−1j, if Zn−1 6= j,

0, if Zn−1 = j.

Hence we get σ(·|Zn−1) := σTn,Zn(·|Zn−1) = σS̃1,Z̃1
(·|Zn−1).
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(iv) By assumption we know that τ ?t,x ∈ Σx and thus fulfills the decomposition represen-
tation from Proposition 3.15. Hence, we get

τ ?t,x = τ ?,0t,x 1{τ?t,x<S1} +
∞∑
k=1

τ ?,kt,x 1{Sk≤τ?t,x<Sk+1} Px–a.s.

and thus

τ ?t,x = τ ?,kt,x on {Sk ≤ τ ?t,x < Sk+1}.

(v) We can utilize the relation from (iv) to conclude

{Sn−1 ≤ τ ?t,x < Sn} = {τ ?t,x ≥ Sn−1} ∩ {τ ?t,x < Sn}

= {τ ?t,x ≥ Sn−1} ∩ {τ ?,n−1
t,x < Sn}

= {τ ?t,x ≥ Sn−1} ∩ {f ?(Sn−1 + t, Zn−1) + Sn−1 < Sn}

= {τ ?t,x ≥ Sn−1} ∩ {f ?(Sn−1 + t, Zn−1) < Tn},

which implies

τ ?t,x = τ ?,n−1
t,x on {τ ?t,x ≥ Sn−1} ∩ {f ?(Sn−1 + t, Zn−1) < Tn}. (7.81)

(vi) Using (v), we get

{τ ?t,x < Sn} = {τ ?t,x < Sn−1}
·
∪ {Sn−1 ≤ τ ?t,x < Sn}

= {τ ?t,x < Sn−1}
·
∪
(
{τ ?t,x ≥ Sn−1} ∩ {f ?(Sn−1 + t, Zn−1) < Tn}

)
,

where A
·
∪B represents the union of two disjoint sets A and B. This leads to

1{τ?t,x<Sn} = 1{τ?t,x<Sn−1} + 1{τ?t,x≥Sn−1} · 1{f?(Sn−1+t,Zn−1)<Tn} (7.82)

(vii) Using the decomposition representation in Proposition 3.15 we can conclude that

{τ ?t,x ≥ Sn} = {τ ?,0t,x ≥ S1} ∩ · · · ∩ {τ ?,n−2
t,x ≥ Sn−1} ∩ {τ ?,n−1

t,x ≥ Sn}

= {τ ?t,x ≥ Sn−1} ∩ {τ ?,n−1
t,x ≥ Sn}

= {τ ?t,x ≥ Sn−1} ∩ {f ?(Sn−1 + t, Zn−1) + Sn−1 ≥ Sn}

= {τ ?t,x ≥ Sn−1} ∩ {f ?(Sn−1 + t, Zn−1) ≥ Sn − Sn−1}

= {τ ?t,x ≥ Sn−1} ∩ {f ?(Sn−1 + t, Zn−1) ≥ Tn}.

This yields

1{τ?t,x≥Sn} = 1{τ?t,x≥Sn−1} · 1{f?(Sn−1+t,Zn−1)≥Tn} (7.83)

134



7.7 Optimal Stopping Times for the Unrestricted Stopping Problem

(viii) We know that

{τ ?t,x ≥ Sn} = {τ ?,0t,x ≥ S1} ∩ {τ ?,1t,x ≥ S2} ∩ · · · ∩ {τ ?,n−1
t,x ≥ Sn}

= {f ?(t, x) ≥ S1} ∩ {f ?(S1 + t, Z1) + S1 ≥ S2}

∩ · · · ∩ {f ?(Sn−1 + t, Zn−1) + Sn−1 ≥ Sn}

Here we can see, that on the set {τ ?t,x ≥ Sn} the stopping time τ ?t,x only depends
on the history S1, . . . , Sn and Z0, Z1, . . . Zn−1, but not on any variables Sk and Zk
with higher index k > n, respectively k ≥ n.

We will show (7.79) now in 5 steps:

1. Using (7.82) in (vi) yields

Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn}

]
= Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1}

]
+ Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x≥Sn−1} · 1{f?(Sn−1+t,Zn−1)<Tn}

]
(7.84)

2. Due to (7.80) in (ii) we have

Xτ?Sn−1+t,Zn−1
= Xτ?,0Sn−1+t,Zn−1

= Zn−1

on the set {τ ?Sn−1+t,Zn−1
< S̃1} and thus

Ex

[
EZn−1

[
U
(
−ct− cSn−1 − cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
· 1{τ?Sn−1+t,Zn−1

<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
= Ex

[
EZn−1

[
U
(
− ct− cSn−1 − cf ?(Sn−1 + t, Zn−1) + g (Zn−1)

)
· 1{f?(Sn−1+t,Zn−1)<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
= Ex

[
U
(
− ct− cSn−1 − cf ?(Sn−1 + t, Zn−1) + g (Zn−1)

)
· EZn−1

[
1{f?(Sn−1+t,Zn−1)<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
.

Assuming that Sn−1 and Zn−1 are given and the Markov chain was restarted at
Sn−1 we have defined S̃1 in (i) as the first jump time after the reset. According to
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(iii), this is equivalent to the perspective of X not being restarted and interpreting
S̃1 as the sojourn time Tn between the given Sn−1 and Sn. This leads to

EZn−1

[
1{f?(Sn−1+t,Zn−1)<S̃1}

∣∣∣Sn−1

]
= E

[
1{f?(Sn−1+t,Zn−1)<S̃1}

∣∣∣Sn−1, X̃0 = Zn−1

]
=

∫ ∞
0

1{f?(Sn−1+t,Zn−1)<u}e
−qZn−1

u du

= Ex
[
1{f?(Sn−1+t,Zn−1)<Tn}

∣∣∣Sn−1, Zn−1

]
and thus

Ex

[
EZn−1

[
U
(
−ct− cSn−1 − cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
· 1{τ?Sn−1+t,Zn−1

<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
= Ex

[
U
(
− ct− cSn−1 − cf ?(Sn−1 + t, Zn−1) + g (Zn−1)

)
· Ex

[
1{f?(Sn−1+t,Zn−1)<Tn}

∣∣∣Sn−1, Zn−1

]
· 1{τ?t,x≥Sn−1}

]
= Ex

[
Ex

[
U
(
− ct− cSn−1 − cf ?(Sn−1 + t, Zn−1) + g (Zn−1)

)
· 1{f?(Sn−1+t,Zn−1)<Tn}

∣∣∣Sn−1, Zn−1

]
· 1{τ?t,x≥Sn−1}

]
= Ex

[
Ex

[
Ex

[
U
(
− ct− cSn−1 − cf ?(Sn−1 + t, Zn−1) + g (Zn−1)

)
· 1{f?(Sn−1+t,Zn−1)<Tn}

∣∣∣Sn−1, Zn−1

]
· 1{τ?t,x≥Sn−1}

∣∣∣S1, . . . , Sn−1, Z1, . . . , Zn−1

]]
,

where the last equality holds due to the tower property. Now given the history
S1, . . . , Sn−1, Z0 = x, Z1, . . . , Zn−1, we know by (viii) that τ ?t,x is fully described on
the set 1{τ?t,x≥Sn−1}. This and a reapplication of the tower property leads to

Ex

[
EZn−1

[
U
(
−ct− cSn−1 − cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
· 1{τ?Sn−1+t,Zn−1

<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
= Ex

[
Ex

[
Ex

[
U
(
− ct− cSn−1 − cf ?(Sn−1 + t, Zn−1) + g (Zn−1)

)
· 1{τ?t,x≥Sn−1}

· 1{f?(Sn−1+t,Zn−1)<Tn}

∣∣∣Sn−1, Zn−1

]∣∣∣S1, . . . , Sn−1, Z1, . . . , Zn−1

]]
= Ex

[
U
(
− ct− cSn−1 − cf ?(Sn−1 + t, Zn−1) + g (Zn−1)

)
· 1{f?(Sn−1+t,Zn−1)<Tn} · 1{τ?t,x≥Sn−1}

]
.
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On the other hand, we can utilize (7.81) from (v) to get

Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x≥Sn−1} · 1{f?(Sn−1+t,Zn−1)<Tn}

]
= Ex

[
U
(
−ct− cτ ?,n−1

t,x + g
(
Xτ?,n−1

t,x

))
· 1{τ?t,x≥Sn−1} · 1{f?(Sn−1+t,Zn−1)<Tn}

]
= Ex

[
U
(
− ct− c

(
f ?(Sn−1 + t, Zn−1) + Sn−1

)
+ g(XSn−1)

)
· 1{f?(Sn−1+t,Zn−1)<Tn} · 1{τ?t,x≥Sn−1}

]
= Ex

[
U
(
− ct− cSn−1 − cf ?(Sn−1 + t, Zn−1) + g(Zn−1)

)
· 1{f?(Sn−1+t,Zn−1)<Tn} · 1{τ?t,x≥Sn−1}

]
.

Finally we have

Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x≥Sn−1} · 1{f?(Sn−1+t,Zn−1)<Tn}

]
= Ex

[
EZn−1

[
U
(
−ct− cSn−1 − cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
· 1{τ?Sn−1+t,Zn−1

<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
. (7.85)

3. Suppose again that the history up to the (n− 1)–th jump is known. More precisely,
let S1 = s1, . . . , Sn−1 = sn−1 and Z0 = x, Z1 = z1, . . . , Zn−1 = zn−1. We know by
(viii) that τ ?t,x is fully described on the set 1{τ?t,x≥Sn−1}. Moreover, given this history
the joint distribution of Tn and Zn is given by σ(·|zn−1) according to (iii). By
additionally using (7.83) from (vii) we get

Ex

[
V (Sn + t, Zn)1{τ?t,x≥Sn}

∣∣∣∣S1=s1,...,Sn−1=sn−1,
Z1=z1,...,Zn−1=zn−1

]
= Ex

[
V (Sn−1 + Tn + t, Zn)1{τ?t,x≥Sn−1} · 1{f?(Sn−1+t,Zn−1)≥Tn}

∣∣∣∣S1=s1,...,Sn−1=sn−1,
Z1=z1,...,Zn−1=zn−1

]
= Ex

[
V (sn−1 + Tn + t, Zn)1{τ?t,x≥sn−1} · 1{f?(sn−1+t,zn−1)≥Tn}

∣∣∣∣S1=s1,...,Sn−1=sn−1,
Z1=z1,...,Zn−1=zn−1

]
= 1{τ?t,x≥sn−1} · Ex

[
V (sn−1 + Tn + t, Zn)1{f?(sn−1+t,zn−1)≥Tn}

∣∣∣∣S1=s1,...,Sn−1=sn−1,
Z1=z1,...,Zn−1=zn−1

]
= 1{τ?t,x≥sn−1} ·

∫ ∞
0

∑
j∈S

V (sn−1 + u+ t, j) · 1{f?(sn−1+t,zn−1)≥u} · σ(u, j|zn−1) du.
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Furthermore, given the history S1 = s1, . . . , Sn−1 = sn−1 and Z0 = x, Z1 =
z1, . . . , Zn−1 = zn−1 and knowing the joint distribution of S̃1 and Z̃1 is given
by σ(·|zn−1) according to (i), as well as applying the results in (ii) for the set
{τ ?Sn−1+t,Zn−1

≥ S̃1}, we can use the calculation above to conclude

Ex

[
EZn−1

[
V (S̃1 + Sn−1 + t, Z̃1) · 1{τ?Sn−1+t,Zn−1

≥S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

∣∣∣∣S1=s1,...,Sn−1=sn−1,
Z1=z1,...,Zn−1=zn−1

]
= Ex

[
Ezn−1

[
V (S̃1 + sn−1 + t, Z̃1) · 1{f?(sn−1+t,zn−1)≥S̃1}

]
· 1{τ?t,x≥sn−1}

∣∣∣∣S1=s1,...,Sn−1=sn−1,
Z1=z1,...,Zn−1=zn−1

]
= Ex

[ ∫ ∞
0

∑
j∈S

V (sn−1 + u+ t, j) · 1{f?(sn−1+t,zn−1)≥u} · σ(u, j|zn−1) du

· 1{τ?t,x≥sn−1}

∣∣∣∣S1=s1,...,Sn−1=sn−1,
Z1=z1,...,Zn−1=zn−1

]
= Ex

[
Ex

[
V (Sn + t, Zn)1{τ?t,x≥Sn}

∣∣∣S1,...,Sn−1,
Z1,...,Zn−1

]∣∣∣∣S1=s1,...,Sn−1=sn−1,
Z1=z1,...,Zn−1=zn−1

]
.

By applying the tower property we can ultimately establish the last formula in this
step:

Ex

[
EZn−1

[
V (S̃1 + Sn−1 + t, Z̃1) · 1{τ?Sn−1+t,Zn−1

≥S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
= Ex

[
Ex

[
EZn−1

[
V (S̃1 + Sn−1 + t, Z̃1) · 1{τ?Sn−1+t,Zn−1

≥S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

∣∣∣S1,...,Sn−1,
Z1,...,Zn−1

]]
= Ex

[
Ex

[
Ex

[
V (Sn + t, Zn)1{τ?t,x≥Sn}

∣∣∣S1,...,Sn−1,
Z1,...,Zn−1

]∣∣∣∣S1,...,Sn−1,
Z1,...,Zn−1

]]
= Ex

[
V (Sn + t, Zn)1{τ?t,x≥Sn}

]
. (7.86)

4. We have already shown the desired equation (7.78) for n = 1 and all t ≥ 0 and
x ∈ S in the induction basis. Using this formula on V (Sn−1 + t, Zn−1) for given
Sn−1 and Zn−1 yields
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V (Sn−1 + t, Zn−1)

= EZn−1

[
U
(
− c
(
Sn−1 + t

)
− cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
· 1{τ?Sn−1+t,Zn−1

<S̃1}

+ V (S̃1 + t, Z̃1) · 1{τ?Sn−1+t,Zn−1
≥S̃1}

]
.

Hence, we get

Ex

[
V (Sn−1 + t, Zn−1) · 1{τ?t,x≥Sn−1}

]
(7.87)

= Ex

[
EZn−1

[
U
(
− ct− cSn−1 − cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
· 1{τ?Sn−1+t,Zn−1

<S̃1}

+ V (S̃1 + t, Z̃1) · 1{τ?Sn−1+t,Zn−1
≥S̃1}

]
· 1{τ?t,x≥Sn−1}

]
.

5. In this last step we will combine equations (7.84) – (7.87) of all four previous steps
to show the desired equation (7.79) from the beginning of the induction step. To
this end, let t ≥ 0 and x ∈ S. Then it holds that

Ex

[
U
(
− ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1} + V (Sn−1 + t, Zn−1) · 1{τ?t,x≥Sn−1}

]
(7.84)
= Ex

[
U
(
− ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1}

]
− Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x≥Sn−1} · 1{f?(Sn−1+t,Zn−1)<Tn}

]
+ Ex

[
V (Sn−1 + t, Zn−1) · 1{τ?t,x≥Sn−1}

]
(7.85)
= Ex

[
U
(
− ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1}

]
− Ex

[
EZn−1

[
U
(
−ct− cSn−1 − cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
· 1{τ?Sn−1+t,Zn−1

<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
+ Ex

[
V (Sn−1 + t, Zn−1) · 1{τ?t,x≥Sn−1}

]
(7.87)
= Ex

[
U
(
− ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1}

]
− Ex

[
EZn−1

[
U
(
−ct− cSn−1 − cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
· 1{τ?Sn−1+t,Zn−1

<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
+ Ex

[
EZn−1

[
U
(
−ct− cSn−1 − cτ ?Sn−1+t,Zn−1

+ g
(
Xτ?Sn−1+t,Zn−1

))
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· 1{τ?Sn−1+t,Zn−1
<S̃1}

∣∣∣Sn−1

]
· 1{τ?t,x≥Sn−1}

]
+ Ex

[
EZn−1

[
V (S̃1 + t, Z̃1) · 1{τ?Sn−1+t,Zn−1

≥S̃1}

]
· 1{τ?t,x≥Sn−1}

]
= Ex

[
U
(
− ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1}

]
+ Ex

[
EZn−1

[
V (S̃1 + t, Z̃1) · 1{τ?Sn−1+t,Zn−1

≥S̃1}

]
· 1{τ?t,x≥Sn−1}

]
(7.86)
= Ex

[
U
(
− ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn−1}

]
+ Ex

[
V (Sn + t, Zn)1{τ?t,x≥Sn}

]
= Ex

[
U
(
−ct− cτ ?t,x + g

(
Xτ?t,x

))
· 1{τ?t,x<Sn} + V (Sn + t, Zn) · 1{τ?t,x≥Sn}

]
.

This proves the validity of (7.79) and thus concludes the proof.

We are now able to postulate the main theorem of this section, stating the conditions
needed for τ ? to be the optimal stopping time for the unrestricted value function V (t, x).

Theorem 7.29 (optimal stopping time for the unrestricted value function)

Let t ≥ 0 and x ∈ S. Assume that

τ ? =
(
f ?(t, x), f ?(S1 + t, Z1) + S1, f

?(S2 + t, Z2) + S2, f
?(S3 + t, Z3) + S3, . . .

)
from Definition 7.26 fulfills τ ? ∈ Σx and

lim
n→∞

Ex

[
V (Sn + t, Zn) · 1{τ?≥Sn}

]
= 0. (7.88)

Then τ ? is the optimal stopping time for V (t, x).

Proof of Theorem 7.29
Let t ≥ 0, x ∈ S and τ ? ∈ Σx such that (7.88) is satisfied. Since Sn → ∞ Px–almost
surely by Proposition 2.21, we know that

1{τ?<Sn} ↗ 1 Px–a.s.

An application of the monotone convergence theorem as well as condition (7.88) yields

V (t, x) = lim
n→∞

V (t, x)

= lim
n→∞

Ex
[
U
(
−ct− cτ ? + g

(
Xτ?

))
· 1{τ?<Sn} + V (Sn + t, Zn) · 1{τ?≥Sn}

]
= lim

n→∞
Ex
[
U
(
−ct− cτ ? + g

(
Xτ?

))
1{τ?<Sn}

]
+ lim

n→∞
Ex
[
V (Sn + t, Zn)1{τ?≥Sn}

]
= Ex

[
U
(
−ct− cτ ? + g

(
Xτ?

))]
.
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Hence, τ ? ∈ Σx fulfills

V (t, x) = sup
τ∈Σx

V (t, x, τ) = V (t, x, τ ?)

and thus is the optimal stopping time for V (t, x).

Remark 7.30 (structure of the optimal stopping time)

(a) Theorem 7.29 gives us the optimal stopping time τ ? for the unrestricted value
function V (t, x), provided that condition (7.88) is satisfied and that we were able
to guarantee the finiteness of τ ?. Therefore τ ? is a feasible stopping time from the
class Σx and maximizes the value function.

(b) Provided that the requirements of Theorem 7.29 are satisfied and τ ? is the optimal
stopping time for V (t, x), we can know that the main ingredient needed for τ ? is the
maximizing mapping f ? : [0,∞)× S → [0,∞], which stems from the maximization
problem of fixed-point equation (7.72) of Theorem 7.23. As we can clearly see the
stopping time τ ? consists of stopping rules τ ?,k, which all utilize the same function
f ?. The only difference lies in the current jump time and the current state of
the underlying Markov chain. Note again that provided f ? is known, a specific
stopping rule τ ?,k = f ?(t+ Sk, Zk) + Sk for some k ∈ N0 is fully determined by the
knowledge of Sk and Zk. In particular, we do not need to know any information
about preceding jump times or states before the k–th jump. An investor who
applies this stopping time is able to observe the last jump time as well as the last
state the Markov chain was in and therefore has every required information to
calculate the value of τ ?,k. All he has to do is to terminate the stopping problem,
if the next jump does not occur before this calculated value. On the other hand,
if this jump happens before, he will discard τ ?,k and will apply the next stopping
rule τ ?,k+1.

(c) Being able to solve the fixed-point equation (7.72) will provide us with both the
explicit form of the value function V (t, x) and a candidate for the optimal stopping
time for V (t, x). Even if we are not interested in the value function itself but only in
the optimal stopping time τ ?, we have in general no other means to get τ ? without
the knowledge of V (t, x). In chapter 8 we will derive conditions under which we
can at least identify the optimality of some special stopping rules without having
to know V (t, x) or solving the fixed-point equation (7.72).
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7.8 The Fixed-Point Equation for Exponential Utility
Functions

Again, we suppose that the underlying utility function U is given by

U : R→ R, U(x) := −e−γx

for some γ > 0.

Analogously to section 7.5 we want to study Theorem 7.23 and Theorem 7.29 for the
special case of exponential utility and analyze if we can again achieve a significant
simplification of the fixex-point equation. In fact we will see that the situation is
analogeous to Theorem 7.18. The iterative Bellman equation (7.60) will indeed transform
into a fixed-point equation of similar structure.

To this end we note that according to (6.14) and (6.13) we get the reduced unrestricted
value function Ṽ (x) by

Ṽ (x) = sup
τ∈Σx

Ex

[
− ecγτ−γg(Xτ )

]
,

which fulfills for every t ≥ 0 and x ∈ S that

V (t, x) = ecγtṼ (x).

Using the definition of the mapping mt,x in (7.66) we can rewrite the fixed-point equation
(7.72) from Theorem 7.23 in terms of

V (t, x) = sup
ϑ≥0

mt,x(ϑ).

Analogous to (7.56) and (7.57) we can define the mapping

m̃x(ϑ) := −e−γg(x) · e−(qx−cγ)ϑ +
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽ (j) ·
(
1− e−(qx−cγ)ϑ

)
(7.89)

and state the relation

mt,x(ϑ) = ecγt · m̃x(ϑ). (7.90)

Now for every t ≥ 0 and x ∈ S, the fixed-point equation (7.72) is equivalent to

Ṽ (x) = sup
ϑ≥0

m̃x(ϑ). (7.91)

This allows us to formulate the fixed-point equation for the case of exponential utility:
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Theorem 7.31 (fixed-point equation for exponential utility functions)

(a) Let x ∈ S such that qx ≤ cγ. Then it holds that

Ṽ (x) = −e−γg(x). (7.92)

(b) Let x ∈ S such that qx > cγ. Then we get

Ṽ (x) = max

−e−γg(x),
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽ (j)

 . (7.93)

(c) Define the mapping f̃ ? : S → {0,∞} by

f̃ ?(x) :=


0, if qx ≤ cγ or qx > cγ and Ṽ (x) = −e−γg(x),

∞, if qx > cγ and Ṽ (x) =
∑
j∈S,
j 6=x

qxj
qx−cγ Ṽ (j) (7.94)

and the stopping time τ ? by

τ ? :=
(
f̃ ?(x), f̃ ?(Z1) + S1, f̃

?(Z2) + S2, . . .
)
. (7.95)

If τ ? ∈ Σx and

lim
n→∞

Ex

[
Ṽ (Zn) · 1{τ?≥Sn}

]
= 0, (7.96)

then τ ? is the optimal stopping time for Ṽ (x).

Proof of Theorem 7.31
Parts (a) and (b) are absolutely analogous to the proof of Theorem 7.18, replacing Ṽn(x)
with Ṽ (x), m̃n,x with m̃x and applying Theorem 7.23 instead of Theorem 7.14. This will
also yield the form of the corresponding maximizers and thus (7.94).

Given (7.94), part (c) of Theorem 7.31 is a direct application of Theorem 7.29.

Remark 7.32 (discussion of Theorem 7.31)

(a) The fixed-point equation (7.93) is the unrestricted analogon to the iteration type
Bellman equation (7.60).

(b) As we can clearly see from (7.94), we absolutely need the explicit solution of the
unrestricted value function Ṽ (x) in order to calculate f̃ ?(x), if qx > cγ. Without
the knowledge of Ṽ (x) we can not compute the stopping rules of the candidate τ ?
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for the optimal stopping time. In the next chapter we will impose certain conditions
which allow us to identify the values of f̃ ? without knowing Ṽ (x).

(c) Just as in the general case the additional condition (7.96) can not be dropped. We
know that

1{τ?≥Sn} → 0 Px–a.s. as n→∞

provided that τ ? ∈ Σx. Therefore we can see (7.96) as a condition on the embedded
discrete time Markov chain (Zn)n∈N0 as well as the reward function g of the stopping
model, such that Ṽ (Zn) does not “grow to fast” in expectation.

(d) We know that we can express the intensity rates qxj in terms of the transition
probabilities pxj of the embedded discrete-time Markov chain (Zn)n∈N0 by

pxj =
qxj
qx
, for x, j ∈ S, x 6= j and pxx = 0.

We therefore get ∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽ (j) =
1

qx − cγ
∑
j∈S,
j 6=x

qxjṼ (j)

=
qx

qx − cγ
∑
j∈S,
j 6=x

pxjṼ (j)

=
qx

qx − cγ
∑
j∈S

pxjṼ (j)

=
qx

qx − cγ
Ex
[
Ṽ (Z1)

]
.

This allows for a different representation of the fixed-point equation (7.93) in terms
of the expected value function with initial value Z1:

Ṽ (x) = max

{
−e−γg(x),

qx
qx − cγ

Ex
[
Ṽ (Z1)

]}
. (7.97)

We can see in this representation that the maximum-operator in the fixed-point
equation compares the actual initial utility −e−γg(x) gained by immediate stopping
with the expected value function Ex

[
Ṽ (Z1)

]
weighted by the factor qx

qx−cγ , where
Z1 indicates the next state in which the underlying Markov chain will jump after
leaving the initial state x.
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Example 7.33 (example for the fixed-point equation for exponential utility functions)

Let S = {0, 1} and X a continuous-time Markov chain with intensity matrix Q given by

Q =

(
q00 q01

q10 q11

)
=

(
−α α
β −β

)
for some α, β > 0 (cf. Example 2.14). Furthermore, consider the exponential utility
function

U : R→ R, U(x) := −e−γx

for some γ > 0. Moreover, let c > 0 be the cost rate and g : S → R the reward function
in this setting. Assume that

α ≤ cγ < β. (7.98)

Then it holds:

(a) The value function Ṽ (x) is given by

Ṽ (0) = −e−γg(0)

and

Ṽ (1) =

−e
−γg(1), if g(0) ≤ g(1) + 1

γ
ln
(

β
β−cγ

)
,

− β
β−γce

γct−γg(0), if g(0) > g(1) + 1
γ

ln
(

β
β−cγ

)
.

(b) The optimal stopping time τ ? for Ṽ (x) is given by

τ ? =

0, if x = 0 or x = 1 and g(0) ≤ g(1) + 1
γ

ln
(

β
β−cγ

)
,

S1, if x = 1 and g(0) > g(1) + 1
γ

ln
(

β
β−cγ

)
.

(c) Depending on x and on the reward values g(0) and g(1), we get

Ṽ (x) = Ṽ (x, 0) for stopping time τ = 0 or

Ṽ (x) = Ṽ (x, S1) for stopping time τ = S1.

We have already calculated these value functions in Example 6.4 and can now verify
them again.

(d) Suppose now that γ = 1, c = 2, α = 1, β = 3 and g(0) = 10. If g(1) = 8, then the
optimal stopping time is given by τ ? = S1 for initial value 1 and τ ? = 0 for x = 0.
If on the other hand g(1) = 9, then it is always optimal to stop immediately.
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Proof

(a) Let x = 0. Theorem 7.31 (a) yields

Ṽ (0) = −e−γg(0)

for α = q0 ≤ cγ.

Now let x = 1. Since β = q1 > cγ, we use (7.93) of Theorem 7.31 (b) and compare

− e−γg(1) ≥
∑
j∈S,
j 6=x

q1j

q1 − cγ
Ṽ (j)

⇔− e−γg(1) ≥ q10

q1 − cγ
Ṽ (0)

⇔− e−γg(1) ≥ − β

β − cγ
e−γg(0)

⇔e−γ(g(1)−g(0)) ≤ β

β − cγ

⇔g(1)− g(0) ≥ −1

γ
ln

(
β

β − cγ

)
⇔g(0) ≤ g(1) +

1

γ
ln

(
β

β − cγ

)
.

This yields

Ṽ (1) =

−e
−γg(1), if g(0) ≤ g(1) + 1

γ
ln
(

β
β−cγ

)
,

− β
β−γce

γct−γg(0), if g(0) > g(1) + 1
γ

ln
(

β
β−cγ

)
.

(b) Using (7.94) and (7.95) of Theorem 7.31 (c) provides us with

f̃ ?(x) =

0, if x = 0 or x = 1 and g(0) ≤ g(1) + 1
γ

ln
(

β
β−cγ

)
,

∞, if x = 1 and g(0) > g(1) + 1
γ

ln
(

β
β−cγ

)
and

τ ? =
(
f̃ ?(x), f̃ ?(Z1) + S1, f̃

?(Z2) + S2, . . .
)
.

For x = 0 or x = 1 and g(0) ≤ g(1) + 1
γ

ln
(

β
β−cγ

)
we know that f̃ ?(x) = 0 and thus

τ ? = 0.

This stopping time is trivially Px–almost surely finite and fulfills (7.96).
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For x = 1 and g(0) > g(1) + 1
γ

ln
(

β
β−cγ

)
we know that f̃ ?(x) =∞. Therefore, the

stopping time τ ? will not stop before the first jump time S1. After the jump, the
new state is deterministically given by Z1 = 0, which leads to f̃ ?(Z1) = 0. Hence
we get

τ ? = S1.

This stopping time is also Px–almost surely finite. It is very easy to see that (7.96)
is fulfilled.

Therefore

τ ? =

0, if x = 0 or x = 1 and g(0) ≤ g(1) + 1
γ

ln
(

β
β−cγ

)
,

S1, if x = 1 and g(0) > g(1) + 1
γ

ln
(

β
β−cγ

)
is the optimal stopping time for Ṽ (x).

(c) In Example 6.4, we calculated

V (t, x, 0) = −eγct−γg(x)

and

V (t, x, S1) = V1(t, x, S2) = −eγct−γg(0) · β

β − γc
, for x = 1 and β > γc.

These two value functions coincide with the ones we calculated, if we reapply the
time parameter t ≥ 0 via

V (t, x) = ecγtṼ (x).

(d) Let g(0) = 10. We calculate

1

γ
ln

(
β

β − cγ

)
= ln(3) ≈ 1.098.

If g(1) = 8, then g(0) > ln(3) + g(1). If g(1) = 9, then g(0) ≤ ln(3) + g(1). Part
(b) of the example yields the desired assertion.
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8 Optimality of Special Stopping
Times

In our setting of generalized risk-sensitive stopping problems for continuous-time Markov
chains we derived several assertions for characterizations of optimal stopping times. In
this chapter we want to discuss the optimality of stopping times which exhibit special
structures and which have a clear interpretation. These special stopping times will mainly
consist of stopping rules which imply the optimality of immediate stopping or never
stopping in certain situations. Furthermore we will identify conditions under which the
optimality of such stopping rules is guaranteed.

Note that in the continuous-time setting the two cases of immediate stopping or never
stopping, if the Markov chain hits certain states, do not cover all possible stopping rules
for our continuous-time stopping problem. We will see that there are indeed situations in
which the question of optimality depends additionally on the actual sojourn time in a
given state of the Markov chain. Thus we will be able to construct situations for which
an optimal stopping rule between two jumps could read like this: If a certain state x ∈ S
is reached, do not stop at first but wait and hope for a short sojourn time until the next
change of state occurs. If this happens “fast enough” then apply the new appropriate
stopping rule for the next period. If this doesn’t happen “fast enough”, then stop after a
certain period of time. This accommodates for situations where an optimal policy would
consist at first of waiting for a “better” evolution of the underlying Markov chain. If this
does not happen fast enough the cumulated costs of additional waiting up to some point
outweigh the expected gain from future developments, making stopping and terminating
the problem between two jumps optimal.

In some sense this chapter can be seen as a continuous-time generalization of a paper
from Kadota et al. [1996], where optimal stopping under general utility, but discrete-
time Markov chains was considered. As a consequence of this discrete-time setting the
dependency of the value function on the time parameter is revoked. The question of
optimal stopping is reduced to the search of a discrete time point at which such jumps
can occur, but never between. In addition, Kadota, Kurano and Yasuda established
conditions under which special stopping times, the so-called one-step look ahead (OLA)
stopping times, are optimal. We will see that the conditions for immediate stopping or
never stopping, as given in the subsequent sections, can be seen as generalizations of
these OLA stopping times. In some special cases like the choice of an exponential utility
as utility function, our setting can be simplified to match the criteria of Kadota et al.
[1996].
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8 Optimality of Special Stopping Times

8.1 General Concepts

In chapter 7 we were able to establish the Bellman equation ((7.31) in Theorem 7.14),
which allowed us to calculate every n–step value function by iteratively solving all
preceding k–step value functions for k ∈ {0, 1, . . . , n}, instead of solving the n–step
stopping problem (5.2) directly by maximizing over all feasible stopping times in Σx.
In order to calculate all these value functions, it was required to solve a deterministic
maximization problem over all non-negative numbers ϑ ≥ 0 in (7.31). Using the notation
in (7.22) we can briefly recapitulate this deterministic problem by

mk,t,x(ϑ)→ sup
ϑ≥0

! (8.1)

The main feature was that the maximizers ϑ?k = f ?k (t, x) solving these maximization
problems for k ∈ {0, 1, · · · , n} were the key to construct the optimal stopping time

τ ?n =
(
f ?n−1(t, x), f ?n−2(S1 + t, Z1) + S1, . . . , f

?
0 (Sn−1 + t, Zn−1) + Sn−1, Sn, Sn+1, . . .

)
for the n–step value function Vn(t, x), as given in (7.33).

Similarily, we were able to extend this theory for the unrestricted value function by
establishing the fixed-point equation ((7.72) in Theorem 7.23), which translated the
task of solving the unrestricted stopping problem (5.1) by maximizing over all feasible
stopping times in Σx into the task of solving a deterministic fixed-point equation, coupled
with a deterministic maximization problem over all non-negative numbers ϑ ≥ 0 in (7.72).
Using (7.66), this problem can be expressed as

mt,x(ϑ)→ sup
ϑ≥0

! (8.2)

We have also shown in Theorem 7.29 that the maximizer ϑ? = f ?(t, x) in (7.72) can again
be utilized to construct

τ ? =
(
f ?(t, x), f ?(S1 + t, Z1) + S1, f

?(S2 + t, Z2) + S2, f
?(S3 + t, Z3) + S3, . . .

)
as formulated in (7.77). At least under the conditions of Theorem 7.29 we have shown
that this τ ? is an optimal stopping time for the unrestricted value function V (t, x).

Both methods require us to be able to solve the corresponding maximization problems
(8.1), respectively (8.2). In general it is quite difficult to solve these problems explicitly.
Thus the question arises, whether one would be able to derive at least certain optimal
stopping rules in a more computable way, without the need to solve the above-mentioned
problems (8.1) or (8.2) explicitly. By “certain optimal stopping rules” we mean stopping
rules, which stipulate an immediate stopping of the stopping problems (5.2) or (5.1)
as soon as a certain time or state is reached, or stopping rules, which imply that the
corresponding stopping problems will never terminate as long as the underlying Markov
chain remains in a certain state.
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8.1 General Concepts

Let us at first consider the unrestricted value function V (t, x). For the remainder of
this chapter we will assume that the requirements of Theorem 7.29 are fulfilled and the
optimal stopping time for V (t, x) is given by

τ ? =
(
f ?(t, x), f ?(S1 + t, Z1) + S1, f

?(S2 + t, Z2) + S2, f
?(S3 + t, Z3) + S3, . . .

)
∈ Σx.

As we can see from Proposition 3.15, the stopping time τ ? is uniquely determined between
two jumps Sk and Sk+1 by its corresponding stopping rule

τ ?,k = f ?(Sk + t, Zk) + Sk.

Moreover, this stopping rule is applied at the moment the k–th jump occures, given that
τ ? did not stop beforehand. But given that this case occured, the k–th jump time Sk, as
well as the k–th state Zk are known and determine τ ?,k completely on the whole interval
[Sk, Sk+1). As discussed in Remark 7.15 (d), these two quantities are the only ones
which control the actual value of τ ?,k. Every other jump time S1, . . . , Sk−1 or post-jump
state Z0, Z1, . . . , Zk−1 doesn’t have any influence on the stopping rule. Thus, τ ?,k is
independent of every preceding stopping rule τ ?,0, . . . , τ ?,k−1. Once the k–th jump time
and the k–th state of the underlying Markov chain are observed, the optimal stopping
time is completely determined up to the next jump.

Suppose now that the k–th jump time Sk, as well as the k–th state Zk are known and
the optimal stopping time τ ? did not stop before Sk. Since the stopping rule τ ?,k is given
by knowing the exact value of f ? evaluated at Sk + t and Zk, this maximizer function
is the object of interest to decide the evolution of the optimal stopping time. We are
especially interested in the following two cases:

If f ?(Sk + t, Zk) =∞, the corresponding stopping rule is set to τ ?,k =∞. Hence on the
interval [Sk, Sk + 1), the stopping time τ ? is constantly given by infinity and will thus
never be able to stop before the next jump time Sk+1. As a consequence we can say that
if f ?(Sk + t, Zk) =∞ for given Sk, Zk and t ≥ 0, then the optimal stopping policy would
be to wait until the next change of state of the underlying Markov chain occurs.

If f ?(Sk + t, Zk) = 0, the corresponding stopping rule is set to τ ?,k = Sk. Hence on
the interval [Sk, Sk + 1), the stopping time τ ? is given by Sk and will thus by definition
trigger immediately the moment the Markov chain jumps into state Zk at time Sk. As a
consequence we can say that if f ?(Sk + t, Zk) = 0 for given Sk, Zk and t ≥ 0, then the
optimal stopping policy would be to stop immediately once X reached Zk at time Sk.

This concept remains valid for the study n–step value functions. The special conditions
for the optimal stopping times for Vn(t, x) are quite similar. Given the optimal stopping
time

τ ?n =
(
f ?n−1(t, x), f ?n−2(S1 + t, Z1) + S1, . . . , f

?
0 (Sn−1 + t, Zn−1) + Sn−1, Sn, Sn+1, . . .

)
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8 Optimality of Special Stopping Times

for the n–step value function Vn(t, x) and stopping rules

τ ?,kn =

{
f ?n−1−k(Sk + t, Zk) + Sk, k < n,

Sk, k ≥ n,

we can again differentiate the two special cases:

If f ?n−1−k(Sk + t, Zk) = ∞ for some t ≥ 0, k ∈ {0, 1, . . . , n − 1} and Sk, Zk are known,
then the corresponding stopping rule, and thus the stopping time itself is given by
τ ?n = τ ?,kn =∞ on [Sk, Sk+1). Analogously to the reasoning above, this prevents τ ?n from
stopping before Sk+1 and leads to the optimal stopping policy to never stop as long as
the Markov chain remains in state Zk.

If on the other hand f ?n−1−k(Sk + t, Zk) = 0 for some t ≥ 0, k ∈ {0, 1, . . . , n − 1} and
given Sk and Zk, the stopping time τ ? is given by Sk and thus stops directly after the
Markov chain reached state Zk at Sk.

Note that for k = n we have τ ?,nn = Sn, regardless of any functions f ?0 , . . . , f
?
n−1. The

stopping time will therefore stop immediately after reaching the n–th jump time, if it
didn’t stop beforehand. This accommodates for the concept of n–step value functions,
respectively the n–step stopping problem (5.2), which terminates at latest after n jumps
of the underlying Markov chain.

Another characteristic of optimal stopping times for n–step value functions is the fact
that every single stopping rule τ ?,kn is characterized by a different function f ?n−1−k and
not by a single one like for optimal stopping times for unrestricted value functions. As a
consequence, the decisions whether a stopping rule stipulates immediate stopping, no
stopping or something different does not only depend on the last jump time and the last
attained state, but also on the actual number of preceding jumps.

In any case the decision, whether or not one of the two special stopping rules applies,
requires exact knowledge about the maximizer functions f ?k , respectively f ?. In the fol-
lowing sections we will investigate under which conditions we can conclude the optimality
of those special stopping rules without having to calculate these maximizers, respectively
the corresponding maximizing problems (8.1) or (8.2).

8.2 Conditions for the Optimality of Not Stopping in
Certain States

We will investigate the conditions of interest mainly for optimal stopping times for the
unrestricted value function V (t, x). Note that every result given is also valid for optimal
stopping times for n–step value functions. The main difference lies in the additional
dependency of the current step of the maximizers in (7.31) of Theorem 7.14. Note that if
not stated otherwise or explicitly mentioned, one can replace every statement for V (t, x),
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8.2 Conditions for the Optimality of Not Stopping in Certain States

mt,x, the corresponding unrestricted stopping problem and its optimal stopping time,
with the appropriate analogues Vn(t, x), mn,t,x, the n–step stopping problem and its
optimal n–step stopping times for any n ∈ N0.

Optimality of not Stopping under Extended Utility Functions

Assume that the underlying utility function U for the unrestricted value function V (t, x)
is given by Definition 4.3, but does not fulfill the requirements of Definition 4.1 on the
whole real line. This means that U is derived from a classical utility function Ũ , which
has a smaller maximal domain than R. Using Definition 4.3 Ũ is thus extended to R by
setting U to −∞ where Ũ is not defined. Thus by considering mappings of the form

ϑ 7→ U(−cϑ+ const.)

we can deduce that there exists a ϑ0 ≥ 0 such that U(−cϑ+ const.) = −∞ for all ϑ < ϑ0.
We can interpret this in the way that waiting for too long and cumulating too large costs
will inevitably result in the worst possible utility for an investor, namely −∞. According
to Remark 4.5, this can be seen as a defaulting case, where an investor cumulated such
high amounts of costs that he went bankrupt.

From intuition it should be evident that the optimality for V (t, x) to wait in certain
states as long as the underlying Markov chain resides in this state cannot be reasonable,
since there is always the danger of defaulting to account for. On the contrary, given any
jump time Sn and state Zn and knowing that the optimal stopping time did not stop
before Sn, the optimal stopping rule τ ?,n is given by a fixed deterministic and finite value.
If the next jump of the underlying Markov chain does not occure before τ ?,n, it is optimal
to stop. As Sn+1 ∼ Exp(qZn), given Zn, there is always a positive probability that τ ?

stops before the next change of state. We can say that up to this τ ?,n, it is optimal to
wait and hope for a change of X into a state which yields a higher reward. If this change
does not occur before τ ?,n, the cumulated costs grow too high, forcing a rational investor
to stop in order to avoid bankruptcy.

The same reasoning is also true for the n–step value functions Vn(t, x) and their optimal
stopping times, respectively optimal stopping rules. One only has to account for the
dependency of the maximizers of (8.1), respectively (7.31) of Theorem 7.14. Also note
that due to the nature of n–step value functions, the corresponding optimal stopping
times τ ?n given by (7.33) stop at the latest after the n–th jump of the underlying Markov
chain. Thus the only stopping rules of interest are the ones which are applied before this
n–th change of state.

The following proposition summarizes the reasonings above and proves them rigorously.
In case of the mainly discussed unrestricted stopping problem and its unrestricted value
function V (t, x), we will also be able to show the Px–almost sure finiteness of the potential
candidate τ ? from (7.77) for the optimal stopping time for V (t, x). This means that in
the setting of Theorem 7.29 the requirement of τ ? being Px–almost surely is automatically
fulfilled and does not have to be checked manually.
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8 Optimality of Special Stopping Times

Proposition 8.1 (optimality of finite stopping rules)

Let the underlying utility function U : R→ R∪{−∞} of V (t, x), respectively Vn(t, x) be
an extended utility function according to Definition 4.3, derived from a classical utility
function with maximal domain [−d,∞). Moreover let Td and T

(n)
d (x) for x ∈ S and

n ∈ N0 be defined by (7.64), respectively (7.19). Then it holds

(a) The mapping f ? is bounded from above by Td. For all t ≥ 0 and x ∈ S, every
stopping rule

τ ?,k = f ?(Sk + t, Zk) + Sk, k ∈ N0,

is Px–almost surely finite. As a consequence, it is never optimal to wait arbitrarily
long in any given state.

Furthermore, τ ? defined by

τ ? =
(
f ?(t, x), f ?(S1 + t, Z1) + S1, f

?(S2 + t, Z2) + S2, f
?(S3 + t, Z3) + S3, . . .

)
is Px–almost surely finite and thus τ ? ∈ Σx is automatically fulfilled.

(b) The mappings f ?0 , . . . , fn−1 are bounded from above. More precisely, we get

f ?k (t, x) ≤ T
(k)
d (x) for all t ≥ 0, x ∈ S, k ∈ {0, 1, . . . , n− 1}.

For all n ∈ N0, t ≥ 0 and x ∈ S, every stopping rule

τ ?,kn = f ?n−1−k(Sk + t, Zk) + Sk, k ∈ {0, 1, . . . , n− 1},

is Px–almost surely finite. For k ≥ n the optimal stopping rules are given by
τ ?,kn = Sk. As a consequence, it is never optimal to wait arbitrarily long in any
given state.

Proof of Proposition 8.1
We will prove part (a) of Proposition 8.1:

Suppose the domain on which U is bigger than −∞ is given by [−d,∞) and let t ≥ 0,
x ∈ S and k ∈ N0. Note that if t > Td where Td is defined as usual by (7.64)

Td =
ginf + d

c
,

then V (t, x) = −∞ and mt,x ≡ −∞ according to Lemma 7.22 (c)(i) and (ii). This
represents the case where the cumulated costs are already too high to begin with,
resulting in the bancruptcy of an investor independent of any choice he could make. As
any applied stopping time will yield the same expected utility of −∞, we will choose
τ ? = 0 as “optimal” stopping time by convention. This is also reflected in Lemma 7.22
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8.2 Conditions for the Optimality of Not Stopping in Certain States

(c)(iii), where we set ϑ? = f ?(t, x) = 0. Thus, every τ ?,k with

τ ?,k = f ?(Sk + t, Zk) + Sk

fulfills τ ?,k = Sk, implying that every stopping rule will terminate as soon as it is in effect,
rendering the optimal stopping time to be equal to zero.

Now let t ∈ [0, Td]. Then an application of Theorem 7.23 (c) yields

ϑ? = f ?(t, x) ≤ Td − t ≤ Td.

As a consequence we get f ?(Sk + t, Zk) ≤ Td for every k ∈ N0. Note that in case of
Sk + t > Td we get f ?(Sk + t, Zk) = 0 < Td. Thus every stopping rule

τ ?,k = f ?(Sk + t, Zk) + Sk ≤ Td + Sk

is Px–almost surely finite.

As long as the next jump time Sk+1 is not reached, stopping rule τ ?,k is in effect. It will
always terminate at the latest after a duration of Td measured from Sk. A longer waiting
period for the Markov chain to change its state is never optimal.

To prove the Px–almost surely finiteness of τ ? we fix an n ∈ N and consider

{τ ? ≥ Sn} = {τ ?,0 ≥ S1} ∩ {τ ?,1 ≥ S2} ∩ · · · ∩ {τ ?,n−1 ≥ Sn}

=
n⋂
k=1

{τ ?,k−1 ≥ Sk}

=
n⋂
k=1

{f ?(Sk−1 + t, Zk−1) + Sk−1 ≥ Sk}

=
n⋂
k=1

{f ?(Sk−1 + t, Zk−1) ≥ Sk − Sk−1}

=
n⋂
k=1

{f ?(Sk−1 + t, Zk−1) ≥ Tk}.

Given Zk−1 we get Tk ∼ Exp(qZk−1
) for the k–th sojourn time. Using the stability

condition of the underlying Markov chain, which was assumed in Assumption 2.13, we
know of the existence of a λ ∈ (0,∞) such that qj ≤ λ for all j ∈ S. This leads to

Px(Tk ≤ t) =
∑
j∈S

Px(Tk ≤ t|Zk−1 = j) · Px(Zk−1 = j)

=
∑
j∈S

(1− exp(−qjt)) · Px(Zk−1 = j)

≤ (1− exp(−λt))
∑
j∈S

Px(Zk−1 = j)

= 1− exp(−λt).
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8 Optimality of Special Stopping Times

Using the independence of the events
{
f ?(Sk−1 + t, Zk−1) ≥ Tk}, k ∈ {1, . . . , n

}
, we can

cunclude that

Px(τ ? ≥ Sn) = Px

(
n⋂
k=1

{f ?(Sk−1 + t, Zk−1) ≥ Tk}

)

=
n∏
k=1

Px ({f ?(Sk−1 + t, Zk−1) ≥ Tk})

≤
n∏
k=1

Px (Tk ≤ Td)

≤
n∏
k=1

1− exp(−λTd)

= [1− exp(−λTd)]n

→ 0 as n→∞.

Since {τ ? ≥ Sn} ↘ {τ ? =∞}, we finally get

Px(τ ? =∞) = lim
n→∞

Px(τ ? ≥ Sn) = 0

and thus
Px(τ ? <∞) = 1.

The stopping time τ ? is hence Px–almost surely finite and therefore fulfills τ ? ∈ Σx.
This finalizes the proof of part (a) of Proposition 8.1. For part (b) we note that every
given argument above also applies for the case in Proposition 8.1 (b). Just replace Td by

T
(n)
d (x), apply the results in Lemma 7.13 (c) as well as Theorem 7.14 (c) and (d) and

repeat the reasoning above to conclude the proof.

Optimality of not Stopping under Classical Utility Functions

Now suppose that the underlying utility function U for the unrestricted value function
V (t, x) is a classical one on the whole real line and does not take the value −∞. In
contrast to the upper case of an extended utility function, we do not have a bancruptcy
threshold. Regardless of the amount of cumulated costs caused by arbirarily high waiting
times, the corresponding utility given by U does not reach −∞. Even higher losses result
in even lower, but finite values of corresponding utility. In such cases it is a priori unclear,
if there is a threshold after which an additional waiting in a certain state is still optimal
or inefficient. As there is no bancruptcy treshold, a prolonged waiting in a certain state
of the underlying Markov chain could possibly be optimal, depending on the expected
state in which the Markov chain could jump as well as the expected time at which this
jump could occur. We will now establish a condition under which we can guarantee the
optimality of waiting in a given state, regardless of its duration. To this end we remind
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ourselves of the discussion at the beginning of this chapter, stating that indefinite waiting
in a certain state is optimal, if the optimization problem (8.2), respectively its original
problem (7.72) from Theorem 7.23 is solved for a maximizer set to infinity. As we are
in the setting of Theorem 7.23 (b) and know that ϑ 7→ mt,x(ϑ) is differentiable almost
everywhere, we can demand for mt,x to fullfill

m′t,x(ϑ) > 0

almost everywhere. This, together with the knowledge of mt,x being continuous on [0,∞)
according to Lemma 7.22 (b), will guarantee that

sup
ϑ≥0

mt,x(ϑ) = lim
ϑ→∞

mt,x(ϑ)

and the maximizer being ϑ? =∞. Of course we still have the same problem that was
discussed at the beginning of this chapter. In order to verify conditions like m′t,x ≥ 0
explicitly we need to know the value function V (t, x) itself. To avoid this difficulty, we
will now define a new set which will help us to find states for which it is optimal to wait
arbitrarily long for the next jump of the underlying Markov chain to occur.

Definition 8.2 (the S∞t –set)

Let t ≥ 0. Define the set S∞t by

S∞t :=
{
x ∈ S

∣∣∣ ∑
j∈S,
j 6=x

qxj
qx
U
(
− cϑ+ g(j)

)
> U

(
− cϑ+ g(x)

)
+

c

qx
U ′
(
− cϑ+ g(x)

)
for all ϑ ≥ t

}
. (8.3)

Remark 8.3 (properties of the S∞t –set)

Clearly, S∞t is a subset of the state space S for all t ≥ 0. Furthermore, if t ≤ t′ for some
t, t′ ≥ 0, then we immediately get

S∞t ⊆ S∞t′ ⊆ S. (8.4)

Thus if some state x ∈ S fulfills x ∈ S∞t for some t ≥ 0, it will never “leave” the set again
in the sense that x ∈ S∞t′ for every t′ ≥ t.

This S∞t –set will give us a sufficient condition to decide whether or not it is optimal
to wait arbitrarily long for the Markov chain to jump into a new state, given that the
stopping problem already cumulated costs for a period of t ≥ 0. The following theorem is
valid for both the unrestricted value function and any n–step value function for n ∈ N0.
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Theorem 8.4 (optimality condition for never stopping)

Let t ≥ 0 and x ∈ S. Then it holds:

(a) If x ∈ S∞t , then m′t,x > 0 for every ϑ ≥ 0. As a consequence, the maximizer of
(8.2), respectively (7.72) is given by

ϑ? = f ?(t′, x) =∞

for every t′ ≥ t.

If the underlying Markov chain will ever jump into state x after time t, then the
optimal stopping rules for the unrestricted stopping problem will never terminate
before the next jump time.

(b) Let n ∈ N. If x ∈ S∞t , then m′k,t,x > 0 for every ϑ ≥ 0 and every k ∈ {0, 1, . . . , n−1}.
As a consequence, the maximizers of (8.1), respectively (7.31) are given by

ϑ?k = f ?n−1−k(t
′, x) =∞

for any k ∈ {0, 1, . . . , n− 1} and every t′ ≥ t.

If the underlying Markov chain will ever jump into state x after time t, then the
optimal stopping rules for the n–step stopping problem will never terminate before
the next jump time, as long as the n–th jump did not occur.

Proof of Theorem 8.4
We will use the inequalities

Vn(t, x) ≥ U(−ct+ g(x)) and

V (t, x) ≥ U(−ct+ g(x))

given in Remark 6.3 (e) for all n ∈ N0, t ≥ 0 and x ∈ S.

Now fix a t ≥ 0 and x ∈ S and suppose x ∈ S∞t . Hence we know that∑
j∈S,
j 6=x

qxj
qx
U
(
− cϑ+ g(j)

)
> U

(
− cϑ+ g(x)

)
+

c

qx
U ′
(
− cϑ+ g(x)

)

is fulfilled for every ϑ ≥ t. Therefore we get∑
j∈S,
j 6=x

qxj
qx
U
(
− ct− cϑ+ g(j)

)
> U

(
− ct− cϑ+ g(x)

)
+

c

qx
U ′
(
− ct− cϑ+ g(x)

)
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for every ϑ ≥ 0. Applying the above-mentioned inequalities thus yields the validity of∑
j∈S,
j 6=x

qxj
qx
V (t+ ϑ, j) > U

(
− ct− cϑ+ g(x)

)
+

c

qx
U ′
(
− ct− cϑ+ g(x)

)
⇔
∑
j∈S,
j 6=x

qxjV (t+ ϑ, j) > qxU
(
− ct− cϑ+ g(x)

)
+ cU ′

(
− ct− cϑ+ g(x)

)
⇔
∑
j∈S,
j 6=x

qxjV (t+ ϑ, j)− cU ′
(
− ct− cϑ+ g(x)

)
− qxU

(
− ct− cϑ+ g(x)

)
> 0

for all ϑ ≥ 0 and therefore

m′t,x(ϑ) ≥ 0 for all ϑ > 0.

The same argument also yields

m′k,t,x(ϑ) ≥ 0 for all ϑ > 0

for every k ∈ {0, 1, . . . , n− 1} for a given n ∈ N.

As a consequence we immediately get

sup
ϑ≥0

mt,x(ϑ) = lim
ϑ→∞

mt,x(ϑ)

as well as
sup
ϑ≥0

mk,t,x(ϑ) = lim
ϑ→∞

mk,t,x(ϑ)

for all k ∈ {0, 1, . . . , n − 1}. The corresponding maximizers ϑ?, respectively ϑ?k, k ∈
{0, 1, . . . , n− 1} are therefore set to infinity.

An optimal stopping time τ ? for V (t, x) with stopping rules

τ ?,k = f ?(Sk + t, Zk) + Sk, k ∈ N0

will thus satisfy τ ?,k > Sk+1 and therefore never stop before the next change of state, if
for given Sk and Zk

Zk ∈ S∞Sk+t

is true. As a consequence, it is never optimal to stop in such a state.

Analogously, we get the same result for the stopping rules

τ ?,kn = f ?n−1−k(Sk + t, Zk) + Sk, k ∈ {0, 1, . . . , n− 1}

for the optimal stopping time τ ?n of the n–step value function Vn(t, x), n ∈ N0. Note
that this is only true for the first n stopping rules τ ?,0n , . . . , τ ?,n−1

n , as the n–step stopping
problem is terminated at the latest after the n–th jump of the underlying Markov
chain.
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Remark 8.5 (interpretation of S∞t –sets)

With respect to Theorem 8.4 we can interpret a state x ∈ S∞t for t ≥ 0 the following
way: Since stopping the unrestricted stopping problem, respectively an n–step stopping
problem, is never optimal as long as the underlying Markov chain resides in this state x,
an investor can classify such a state as “bad state”. The reward g(x) gained from x has
to be so unprofitable in comparison to other states which can be successors of x, that
despite of the sojourn time in x, as long as it may take, it is always more lucrative to
wait and hope for a “better” state with higher reward.

The monotonicity of S∞t in t ≥ 0 stated in Remark 8.3 is another interesting feature. It
states that if a state x ∈ S becomes “bad” for some t ≥ 0 in the sense that x ∈ S∞t , then
it will never be able to become a more profitable state again. Once the cumulated costs
−ct are high enough the investor will be more inclined to wait for subsequent changes of
state to compensate for the aggregated costs. This reflects in some way the attitude of
an investor towards risk as well as his preferences. As discussed in chapter 4 such effects
are indeed modelled utility functions. As we can see in Equation (8.3), the S∞t –set from
Definition 8.2 is heavily dependent on the choice of a particular utility function.

Note that if x ∈ S∞0 , then x ∈ S∞t for all t ≥ 0. Therefore the moment when the “bad”
state x is reached doesn’t play any role. Independent of t ≥ 0 and the cumulated costs
so far, it is never optimal to stop in state x. On the other hand, if there exists a t′ > 0
such that x /∈ S∞t for some t < t′ and x ∈ S∞t for t ≥ t′, then the state x doesn’t have
to be “bad” from the beginning. As Theorem 8.4 only yields a sufficient, but not a
necessary condition on the optimality of never stopping, there still exists the possibility
that stopping in such a state x before the jump of the underlying Markov chain into
another state can still be optimal, if the investor didn’t already wait too long in the sense
that the cumulated costs do not exceed −ct′. After time t′ the state x becomes definitely
“bad” and stopping in x will never again be optimal after this moment.

Note that the statements in Theorem 8.4 refer to fixed states x ∈ S and fixed time
values t ≥ 0. We will discuss the situation again for the unrestricted case, but the case
of n–step stopping problem is as always analogeous. According to Theorem 7.29, the
optimal stopping time is given by

τ ? =
(
f ?(t, x), f ?(S1 + t, Z1) + S1, f

?(S2 + t, Z2) + S2, f
?(S3 + t, Z3) + S3, . . .

)
,

where
τ ?,k = f ?(Sk + t, Zk) + Sk, k ∈ N0.

Thus before the k–th jump time Sk the stopping rules τ ?,k are random and do not permit
a clear a priori decision whether or not it is never optimal to stop in state Zk, if the
Markov chain attained this state at time Sk. But due to the piecewise description of
stopping times, an investor is very well able to observe the current state of the underlying
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Markov chain as well as the time at which this state was attained at. Based on this
information the investor can easily check whether the current state is part of the S∞t –set,
or not. Therefore he knows immediately whether or not the optimal policy he has to
apply up to the next jump is just to wait, independent of the possible duration of this
waiting period.

Also note that in order to make such decision the investor solely needs the information
required for S∞t , namely the model components for the stopping problem introduced
in section 5.1. Of course the set S∞t depends heavily on the choice of the underlying
utility function U , which represents the preference relation and attidute of a given
investor towards risk. In particular, an investor does not need to know the value function
V (t, x) itself, neither does he need to be able to solve the maximization problem (8.2),
respectively (7.72) explicitly.

8.3 Conditions for the Optimality of Immediate
Stopping in Certain States

Now we will investigate the conditions for which the optimal stopping policy of an investor
requires an immediate stopping, as soon as a certain state and time is reached. To this
end, we will again mainly focus on optimal stopping times for the unrestricted value
function V (t, x). Note that every result given is again also valid for optimal stopping
times for n–step value functions Vn(t, x). As we will see in the following sections, a
simply calculable condition for the optimality of immediate stopping is not as easy as for
the optimality of not stopping in a certain state. We will see that we need to impose
an additional assumption on the structural connection of underlying Markov chain and
utility function to deduce the validity of this condition. This assumption can be seen as
the continuous-time generalization of an assumption made by Kadota et al. [1996], where
optimal stopping times where also studied for arbitrary utility functions, but only in a
time-discrete setting with time-discrete Markov chains.

Optimality of Immediate Stopping under Classical Utility Functions

Suppose that the underlying utility function U for the unrestricted value function V (t, x)
is a classical one on the whole real line and does not take the value −∞. We will discuss
this case at first because of the beneficial property of U being differentiable on the whole
real line. We will also assume that the assumptions of Theorem 7.29 are fulfilled and
that the optimal stopping time has therefore the structure

τ ? =
(
f ?(t, x), f ?(S1 + t, Z1) + S1, f

?(S2 + t, Z2) + S2, f
?(S3 + t, Z3) + S3, . . .

)
given in (7.76).

Just as in the last section we know of the continuity and almost everywhere differentiability
of mt,x (and mn,t,x for any n ∈ N0). Therefore, an obvious approach to find a condition
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8 Optimality of Special Stopping Times

under which the optimality of immediate stopping in certain states at certain times would
be to demand the validity of

m′t,x(ϑ) ≤ 0

for all ϑ ≥ 0. This would immediately imply that the maximization problem (8.2),
respectively (7.72), is solved by the maximizer

ϑ? = f ?(t, x) = 0.

Given that the stopping problem was observed up to the k–th jump time Sk and knowing
the current state Sk in which the Markov chain resides will lead to the stopping rule

τ ?,k = f ?(Sk + t, Zk) + Sk = Sk

of the optimal stopping time τ ?, if f ?(Sk + t, Zk) = 0. Therefore the optimal stopping
rule will terminate immediately as soon as the time Sk + t has passed without stopping
and the state Zk was adopted. In this case it is never optimal to wait any additional
period of time in hope of a new jump of the underlying Markov chain into a state with
better reward. In some sense such a state x ∈ S, for which immediate stopping is optimal
as soon as it is reached, is an ideal or “good” state in comparison to every successive
state that could be attained at some point after x.

From intuition it should be plausible that if stopping in such a “good” state x ∈ S is
optimal at some time t ≥ 0, then it should also be optimal if this state is reached at
any later time point t′ ≥ t. In this case an investor has to deal with the extra costs
of −c(t′ − t), but still has no hope for a higher expected utility gained by waiting any
additional period of time.

Hence, for immediate stopping to be optimal, it has to be more rewarding than waiting
for any successive state to follow. In this sense immediate stopping has to yield a higher
actual utility than the expectation of every possible future utility that can be achieved
due to the evolution of the underlying Markov chain. Sadly, this is a rather strong
requirement that is not easy to check. Therefore we cannot simply repeat the approach
given in Theorem 8.4 for never stopping in a certain state. We will need to impose
an additional assumption on the structure of the underlying Markov chain in order to
construct a condition which is easy enough to check and which does not require the
knowledge of the value function V (t, x) itself, respectively the explicit solution of the
corresponding maximization problem (8.2). To this end we will define a new set similar
to the S∞t –set from Definition 8.2.

162



8.3 Conditions for the Optimality of Immediate Stopping in Certain States

Definition 8.6 (the S0
t –set)

Let t ≥ 0. Define the set S0
t by

S0
t :=

{
x ∈ S

∣∣∣ ∑
j∈S,
j 6=x

qxj
qx
U
(
− cϑ+ g(j)

)
≤ U

(
− cϑ+ g(x)

)
+

c

qx
U ′
(
− cϑ+ g(x)

)
for all ϑ ≥ t

}
. (8.5)

Remark 8.7 (properties of the S0
t –set)

Clearly, S0
t is a subset of the state space S for all t ≥ 0. Furthermore, if t ≤ t′ for some

t, t′ ≥ 0, then we immediately get

S0
t ⊆ S0

t′ ⊆ S. (8.6)

Thus if some state x ∈ S fulfills x ∈ S0
t for some t ≥ 0, it will never “leave” the set again

in the sense that x ∈ S0
t′ for every t′ ≥ t.

As mentioned before, we would like to ensure the validity of statements like

x ∈ S0
t ⇒ f ?(t, x) = 0

for some t ≥ 0 and x ∈ S, similar to Theorem 8.4. For this purpose we will impose the
subsequent assumption which establishes a connection between the structural properties
of the underlying Markov chain and other model components of the stopping problem
given in section 5.1, in particular the utility function U which reflects the preferences
and attitude of an investor towards risk. Note that if the above-mentioned implication is
indeed valid, then the monotonicity S0

t ⊆ S0
t′ for t′ ≥ t given in (8.6) yields the desired

fact that once immediate stopping is optimal for some state x ∈ S attained at some
t ≥ 0, it remains optimal if this state x is attained at any later moment t′ ≥ t.

Assumption 8.8 (closure assumption)

Suppose that for all t ≥ 0, x ∈ S0
t and j ∈ S\{x} the implication

qxj 6= 0 =⇒ j ∈ S0
t (8.7)

is valid.
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Remark 8.9 (variants and interpretation of the closure assumption)

(a) The monotonicity S0
t ⊆ S0

t′ for t′ ≥ t given in (8.6) indicates that Assumption 8.8
even holds, if the weaker assumption

for all t ≥ 0, x ∈ S0
t and j ∈ S\{x}

qxj 6= 0 =⇒ j ∈ S0
t (8.8)

is valid.

(b) The closure assumption can be reformulated using the contradiction of implication
(8.7):

For all t ≥ 0, x ∈ S0
t and j ∈ S\{x}

∃ t′ ≥ t such that j /∈ S0
t′ =⇒ qxj = 0. (8.9)

(c) In order to give a suitable interpretation of the closure condition, we remind
ourselves that using Theorem 2.16, an intensity rate qxj > 0 for some x ∈ S and
j ∈ S\{x} implies that the transition probability pxj of the corresponding embedded
discrete-time Markov chain is strictly positive. In other words, the probability that
the underlying Markov chain will change its state from x to some other state j is
strictly greater than zero. For all x ∈ S, all j ∈ S\{x} with qxj > 0 are thus direct
possible successors of x.

Therefore if x ∈ S0
t for some t ≥ 0, then assumption (8.7) claims that every possible

direct successor of x has also be in S0
t and every S0

t′ with t′ ≥ t. In other words,
once the Markov chain X hits the set S0

t for some t ≥ 0, it will never be able to
leave it any more. In this sense, the set S0

t is closed with respect to the evolution
of the process X.

(d) As we will see in the following theorem, the closure condition will account for the
fact that immediate stopping in a certain state can only be optimal, if waiting
in the same state is not profitable and if in addition waiting for any successive
state j ∈ S\{x} after x (and its successors themselves) does not provide a higher
expected utility.
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Theorem 8.10 (optimality condition for immediate stopping)

Let t ≥ 0, x ∈ S and Assumption 8.8 be valid. Then it holds:

(a) If x ∈ S0
t , then m′t,x ≤ 0 for every ϑ ≥ 0. As a consequence, the maximizer of (8.2),

respectively (7.72) is given by

ϑ? = f ?(t′, x) = 0

for every t′ ≥ t.

If the underlying Markov chain will ever jump into state x ∈ S0
t after time t ≥ 0,

then the optimal stopping rules for the unrestricted stopping problem will terminate
immediately after this state was attained.

If t ≥ 0 and x ∈ S0
t are the initial parameters of V , then

V (t, x) = V (t, x, 0) = U(−ct+ g(x))

and the optimal stopping time is given by

τ ? = 0.

(b) Let n ∈ N. If x ∈ S0
t , then m′k,t,x ≤ 0 for every ϑ ≥ 0 and every k ∈ {0, 1, . . . , n−1}.

As a consequence, the maximizers of (8.1), respectively (7.31) are given by

ϑ?k = f ?n−1−k(t
′, x) = 0

for any k ∈ {0, 1, . . . , n− 1} and every t′ ≥ t.

If the underlying Markov chain will ever jump into state x ∈ S0
t after time

t ≥ 0, then the optimal stopping rules for the n–step stopping problem will
terminate immediately after this state was attained. As the n–step stopping
problem terminated at the latest after the n–th jump, this property of immediate
stopping does not only apply for stopping rules τ ?,0n , . . . , τ ?,n−1

n , but even for every
stopping rule τ ?,kn with k ≥ n.

If t ≥ 0 and x ∈ S0
t are the initial parameters of Vn, then

Vn(t, x) = Vn(t, x, 0) = U(−ct+ g(x))

and the optimal stopping time is given by

τ ?n = 0.
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8 Optimality of Special Stopping Times

Proof of Theorem 8.10
Let t ≥ 0 and x ∈ S0

t . Due to Proposition 6.5 (c) and (d) we know that

V (s, j) ≥ Vn(s, j) ≥ U(−cs+ g(j))

for every n ∈ N0, s ≥ 0 and j ∈ S.

Furthermore the Bellman equation (7.31) from Theorem 7.14 (a) reads

Vn+1(t, x) = sup
ϑ≥0

mn,t,x(ϑ),

where

mn,t,x(ϑ) = U
(
− ct− cϑ+ g(x)

)
· e−qx·ϑ +

∫ ϑ

0

e−qxs
∑
j∈S,
j 6=x

qxj · Vn(t+ s, j) ds

according to (7.22).

In addition, we remind ourselves that due to Lemma 7.13 (b) in the case of a classical utility
function on the whole real line the mapping mn,t,x is differentiable almost everywhere and

m′n,t,x(ϑ)

=

(∑
j∈S,
j 6=x

qxjVn(t+ ϑ, j)− cU ′
(
− ct− cϑ+ g(x)

)
− qxU

(
− ct− cϑ+ g(x)

))
· e−qxϑ.

Thus we know that

m′n,t,x(ϑ) ≤ 0

⇐⇒
∑
j∈S,
j 6=x

qxj
qx
Vn(t+ ϑ, j) ≤ U

(
− ct− cϑ+ g(x)

)
+

c

qx
U ′
(
− ct− cϑ+ g(x)

)
for all ϑ ≥ 0.

We will now prove by induction over n ∈ N, that for any t ≥ 0 and x ∈ S such that
x ∈ S0

t , the equality
Vn(t, x) = Vn(t, x, 0) = U(−ct+ g(x))

holds and the optimal stopping time τ ?n for the n–step value function is given by

τ ?n = 0.

To this end, fix t ≥ 0, x ∈ S0
t and suppose that n = 1. In this case we know that

V0(t+ ϑ, j) = U(−ct− cϑ+ g(j))
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for all ϑ ≥ 0 and j ∈ S. By Definition 8.6, we thus get

x ∈ S0
t ⇔

∑
j∈S,
j 6=x

qxj
qx
U
(
− cϑ+ g(j)

)
≤ U

(
− cϑ+ g(x)

)
+

c

qx
U ′
(
− cϑ+ g(x)

)
∀ϑ ≥ t

⇔
∑
j∈S,
j 6=x

qxj
qx
U
(
− ct− cϑ+ g(j)

)
≤ U

(
− ct− cϑ+ g(x)

)
+

c

qx
U ′
(
− ct− cϑ+ g(x)

)
∀ϑ ≥ 0

⇔ m′0,t,x(ϑ) ≤ 0 ∀ϑ ≥ 0.

Thus the maximization problem (8.1) for n = 0 yields

sup
ϑ≥0

m0,t,x(ϑ) = m0,t,x(0)

and the corresponding maximizer is given by

ϑ?0 = f ?0 (t, x) = 0.

By Theorem 7.14 (d), the optimal stopping time τ ?0 for the 1-step value function V1(t, x)
is given by

τ ?1 =
(
f ?0 (t, x), S1, S2, . . .

)
= 0

and
V1(t, x) = V1(t, x, 0) = U(−ct+ g(x)).

Now suppose for the induction hypothesis that for a fixed but arbitrary n ∈ N we get:

Every s ≥ 0 and j ∈ S such that j ∈ S0
t imply

Vn(s, j) = Vn(s, j, 0) = U(−cs+ g(j))

and τ ?n = 0.

induction step:

Fix t ≥ 0, x ∈ S such that x ∈ S0
t and ϑ ≥ 0. Then we can decompose the state space S

into
S = S0

t+ϑ +
(
S0
t+ϑ

)c
.

Therefore we get∑
j∈S,
j 6=x

qxj
qx
U
(
− ct− cϑ+ g(j)

)
=

∑
j∈S0

t+ϑ
,

j 6=x

qxj
qx
U
(
− ct− cϑ+ g(j)

)
+
∑
j /∈S0

t+ϑ

qxj
qx
U
(
− ct− cϑ+ g(j)

)
.
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We know for every summand of the first sum, that

U
(
− ct− cϑ+ g(j)

)
= Vn(t+ ϑ, j)

by induction hypothesis, since j ∈ S0
t+ϑ. On the other hand, an analysis of the summands

of the second sum yields
qxj = 0

by Assumption 8.8, respectively the alternative version (8.9), since x ∈ S0
t and thus

x ∈ S0
t+ϑ, but j /∈ S0

t+ϑ. As a consequence we get

qxj
qx
U
(
− ct− cϑ+ g(j)

)
= 0 =

qxj
qx
Vn(t+ ϑ, j)

for every j /∈ S0
t+ϑ.

This leads to ∑
j∈S,
j 6=x

qxj
qx
U
(
− ct− cϑ+ g(j)

)
=

∑
j∈S0

t+ϑ
,

j 6=x

qxj
qx
U
(
− ct− cϑ+ g(j)

)
+
∑
j /∈S0

t+ϑ

qxj
qx
U
(
− ct− cϑ+ g(j)

)

=
∑

j∈S0
t+ϑ

,

j 6=x

qxj
qx
Vn(t+ ϑ, j) +

∑
j /∈S0

t+ϑ

qxj
qx
Vn(t+ ϑ, j)

=
∑
j∈S,
j 6=x

qxj
qx
Vn(t+ ϑ, j)

for every ϑ ≥ 0.

Now we can finally conclude our calculations by

x ∈ S0
t ⇔

∑
j∈S,
j 6=x

qxj
qx
U
(
− cϑ+ g(j)

)
≤ U

(
− cϑ+ g(x)

)
+

c

qx
U ′
(
− cϑ+ g(x)

)
∀ϑ ≥ t

⇔
∑
j∈S,
j 6=x

qxj
qx
U
(
− ct− cϑ+ g(j)

)
≤ U

(
− ct− cϑ+ g(x)

)
+

c

qx
U ′
(
− ct− cϑ+ g(x)

)
∀ϑ ≥ 0

⇔
∑
j∈S,
j 6=x

qxj
qx
Vn(t+ ϑ, j) ≤ U

(
− ct− cϑ+ g(x)

)
+

c

qx
U ′
(
− ct− cϑ+ g(x)

)
∀ϑ ≥ 0

⇔ m′n,t,x(ϑ) ≤ 0 ∀ϑ ≥ 0.

168



8.3 Conditions for the Optimality of Immediate Stopping in Certain States

The maximization problem (8.1) for the n–th step yields

sup
ϑ≥0

mn,t,x(ϑ) = mn,t,x(0)

and the corresponding maximizer is given by

ϑ?n = f ?n(t, x) = 0.

By Theorem 7.14 (d), the optimal stopping τ ?n for the (n+1)-step value function Vn+1(t, x)
is given by

τ ?n+1 =
(
f ?n(t, x), f ?n−1(S1 + t, Z1) + S1, . . . , f

?
0 (Sn + t, Zn) + Sn, Sn+1, . . .

)
=
(
0, f ?n−1(S1 + t, Z1) + S1, . . . , f

?
0 (Sn + t, Zn) + Sn, Sn+1, . . .

)
= 0

and
Vn+1(t, x) = Vn+1(t, x, 0) = U(−ct+ g(x)).

This concludes part (b) of Theorem 8.10, as x ∈ S0
t also implies x ∈ S0

t′ for every t′ ≥ t.

For part (a) we will utilize Proposition 6.7 (c), stating

V (t, x) = lim
n→∞

Vn(t, x).

Since Vn(t, x) = U(−ct + g(x)) for all t ≥ 0, x ∈ S such that x ∈ S0
t and n ∈ N0, we

immediately get
V (t, x) = U(−ct+ g(x))

for every t ≥ 0 and x ∈ S0
t . Looking at the fixed-point equation (7.72) of Theorem 7.23 (a),

this implies that the corresponding maximization problem of Equation (7.72), respectively
(8.2), reads

sup
ϑ≥0

mt,x(ϑ) = mt,x(0)

and is attained by
ϑ? = f ?(t, x) = 0.

As x ∈ S0
t implies x ∈ S0

t′ for every t′ ≥ t, we can also conclude

f ?(t′, x) = 0

for every t′ ≥ t.

The optimal stopping time τ ? according to Theorem 7.29, as given in Definition 7.26
assuming that the requirements of Theorem 7.29 are fulfilled, is therefore determined by

τ ? =
(
f ?(t, x), f ?(S1 + t, Z1) + S1, . . .

)
=
(
0, f ?(S1 + t, Z1) + S1, . . .

)
= 0.
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However if t ≥ 0 and x ∈ S0
t are not the initial parameters of the stopping problem, but

indicate a state x which the underlying Markov chain attains at some time t, then the
optimal stopping rule will still be to stop immediately.

Remark 8.11 (relation of the sets S0
t and S∞)

(a) By comparing the S∞t –set (given by (8.3) in Definition 8.2) with the S0
t –set (given

by (8.5) in Definition 8.6), we can easily see that for every t ≥ 0

S0
t ∩ S∞t = ∅ (8.10)

and in general

S0
t ∪ S∞t ( S. (8.11)

This means that a given state x ∈ S can be in the S0
t –set, implying optimality of

immediate stopping (at least under validity Assumption 8.8) in state x, or in the
S∞t –set, implying optimality of never stopping in state x, or in neither of them.
This accounts for the possibility of situations for which the optimal stopping rule
will terminate between two jumps of the underlying Markov chain.

(b) According to Remark 8.3 and Remark 8.7, both S∞t and S0
t are increasing in t ≥ 0.

As the time parameter t and thus the cumulated costs −ct rise, a greater number
of states x ∈ S are inclined to be in one of these two sets. This means that an
increasing time parameter and thus increasing cumulated costs will imply that the
optimal stopping rules for a growing number of states will attain one of the two
extreme cases: immediate stopping or never stopping. We can interpret this in the
following way. Suppose an investor did already cumulate a high amount of costs
and thus already exhibits a very unprofitable utility value. Furthermore, suppose
that the current state of the underlying Markov chain is mediocre. There are better
states than the current one, but also worse ones. The investor can now judge his
situation in two ways:

First, he can argue that the reward gained by stopping in this state – less the
cumulated costs he has to pay – yields no ample utility. The investor thus tends
to wait for a change of state, hoping that this will bring him a better reward and
thus utility value. Therefore he will tend to risk additional costs by waiting for a
(hopefully) better state.

On the other hand, we could argue that the investor suspects, based on the transition
probabilities of the underlying Markov chain, that there is a high probability that
no significantly better state will be attained within a reasonable period of time.
He thus fears to cumulate additional costs without gaining too much profit. The
investor will hence tend to terminate the stopping problem immediately to avoid
these additional costs.
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(c) We will see in section 8.4 that in case of exponential utility as underlying utility
function, the sets S∞t and S0

t will again simplify. In this case we will show that

S0
t ∪ S∞t = S

for every t ≥ 0. In fact we will even see that these sets do not depend on t at
all. This coincides with our results in section 7.5, respectively section 7.8, that the
optimal stopping time for n–step value functions as well as the unrestricted value
function only decide whether to stop immediately in a given state, or not to stop as
long as the underlying Markov chain resides in this state. Moreover, this decision
is independent of t ≥ 0.

Optimality of Immediate Stopping under Extended Utility Functions

Suppose now that the underlying utility function U for the unrestricted value function
V (t, x) is an extended one, derived from a classical utility function with maximal domain
of the form [−d,∞]. We will again assume that the assumptions of Theorem 7.29 are
fulfilled and that the optimal stopping time has therefore the structure

τ ? =
(
f ?(t, x), f ?(S1 + t, Z1) + S1, f

?(S2 + t, Z2) + S2, f
?(S3 + t, Z3) + S3, . . .

)
given in (7.76).

By Lemma 7.22 (c) we know that mt,x is continuous on [0, Td] as well as differentiable on
[0, Td), where Td is as always defined according to (7.64) of Definition 7.20.

Similar to the case of classical utility functions, an obvious approach to find conditions
under which immediate stopping is optimal in certain states at certain times would be to
demand the validity of

m′t,x(ϑ) ≤ 0

for all ϑ ∈ [0, Td]. This would immediately imply that the maximization problem (8.2),
respectively (7.72) is solved by the maximizer

ϑ? = f ?(t, x) = 0.

Given that the stopping problem was observed up to the k–th jump time Sk and knowing
the current state Sk in which the Markov chain resides will lead to the stopping rule

τ ?,k = f ?(Sk + t, Zk) + Sk = Sk

of the optimal stopping time τ ?, if f ?(Sk + t, Zk) = 0. Therefore the optimal stopping
rule will terminate immediately as soon as the time Sk + t has passed without stopping
and the state Zk was adopted. Analogeous to the case of classical utility functions, it
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is never optimal to wait any additional period of time in hope of a new jump of the
underlying Markov chain into a state with better reward.

Note that the sole difference between the case of classical utility functions and the case of
extended utility functions is the domain of the mapping mt,x, for which it attains values
greater than −∞ and for which the derivative m′t,x of mt,x is defined. Demanding

m′t,x(ϑ) ≤ 0

for all ϑ ∈ [0, Td] is a weaker requirement than demanding the validity of this inequality
for all ϑ ≥ 0, as it was the case for classical utility. We can therefore reapply the theory
for immediate stopping under classical utility.

To avoid too much repetition, we will give only a brief outline of the situation for extended
utility functions.

Definition 8.12 (the S0
t,d–set for extended utility functions)

Let t ≥ 0. Then the set S0
t,d is defined by

S0
t,d :=

{
x ∈ S

∣∣∣ ∑
j∈S,
j 6=x

qxj
qx
U
(
− cϑ+ g(j)

)
≤ U

(
− cϑ+ g(x)

)
+

c

qx
U ′
(
− cϑ+ g(x)

)
for all ϑ ∈ [t, Td]

}
. (8.12)

Remark 8.13 (properties of the set S0
t,d)

(a) S0
t,d is again a subset of the state space S for all t ≥ 0. Furthermore, if t ≤ t′ for

some t, t′ ≥ 0, then we immediately get

S0
t,d ⊆ S0

t′,d ⊆ S. (8.13)

(b) Note that for t > Td we get [t, Td] = ∅ and therefore

S0
t,d = S. (8.14)

In case of extended utility functions the closure assumption can be formulated by
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Assumption 8.14 (closure assumption for extended utility functions)

For all t ∈ [0, Td], x ∈ S0
t,d and j ∈ S\{x} the implication

qxj 6= 0 =⇒ j ∈ S0
t′,d for all t′ ∈ [t, Td] (8.15)

is valid.

Theorem 8.15 (optimality condition for immediate stopping under extended utility)

(a) Let x ∈ S and t > Td. Then the optimal stopping time is always given by τ ? = 0
and

V (t, x) = V (t, x, 0) = U(−ct+ g(x)).

(b) Let t ∈ [0, Td]. If x ∈ S0
t,d, then m′t,x ≤ 0 for every ϑ ∈ [0, Td− t]. As a consequence,

the maximizer of (8.2), respectively (7.72) is given by

ϑ? = f ?(t′, x) = 0

for every t′ ∈ [t, Td].

If the underlying Markov chain will ever jump into state x ∈ S0
t,d after time

t ∈ [0, Td], then the optimal stopping rules for the unrestricted stopping problem
will terminate immediately after this state was attained.

If t ∈ [0, Td] and x ∈ S0
t,d are the initial parameters of V , then

V (t, x) = V (t, x, 0) = U(−ct+ g(x))

and the optimal stopping time is given by

τ ? = 0.

Remark 8.16 (interpretation of Theorem 8.15)

(a) Note that the proof of Theorem 8.15 (b) is analogeous to the proof of Theorem 8.10.
Part (a) follows directly from Theorem 7.23, since the mapping mt,x is constantly
given by −∞ in this case. This yields that every ϑ ≥ 0 is a valid maximizer for
supϑ≥0mt,x(ϑ). In this case we agreed upon setting ϑ? = 0 for every x ∈ S. The
corresponding optimal stopping time τ ? is therefore set to zero. Due to the high
value of the time parameter t > Td, the investor stops immediately in this case to
avoid the possibility of bancruptcy, which can happen if −ct+ g(x) < −d.

(b) For t > Td the derivative m′t,x of mt,x does not exist anywhere. Thus the frameworks
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of part (a) and (b) are slightly different. On the other hand we know that for t > Td
we get S0

t,d = S according to Remark 8.13 (b). Therefore we still can interpret the
set S0

t,d as the set of states for which immediate stopping is optimal. If t > Td we
consistently get that every state leads to optimal immediate stopping.

In summary we have seen that in case of classical utility functions, we can identify certain
states in S0

t or S∞t , which lead to the optimality of immediate stopping or never stopping.
But in general, there is always the possibility that for some states x ∈ S, the optimal
stopping rule will follow a completely different policy and can stop between two states.
In the case of extended utility functions we have seen that it is never optimal to wait
arbitrarily long in a certain state. The case of optimality of never stopping will never
occur. For immediate stopping we have seen that we can again identify some states in
form of the set S0

t,d, for which it is optimal to stop instantly.

8.4 Optimality of One-Step Look Ahead Stopping
Times for Exponential Utility

We suppose in this section that the underlying utility function U is given by

U : R→ R, U(x) := −e−γx

for some γ > 0.

By Definition 4.1, this utility function is a classical one, defined on the whole real line.
We want now to study some conditions under which the optimal stopping time for the
unrestricted value function V (t, x) would stop immediately in certain states or never
stop in a given state at all. Following the outline of section 7.8, we know that the value
function V (t, x) can be reduced by considering (6.14) and (6.13), yielding

V (t, x) = ecγtṼ (x)

for every t ≥ 0, x ∈ S, where

Ṽ (x) = sup
τ∈Σx

Ex

[
− ecγτ−γg(Xτ )

]
for every x ∈ S.

By applying Theorem 7.31 we know that the value function Ṽ (x) fulfills

Ṽ (x) = −e−γg(x),
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if x ∈ S such that qx ≤ cγ and

Ṽ (x) = max

−e−γg(x),
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽ (j)

 ,

if x ∈ S such that qx > cγ. The optimal stopping time (provided that the assumptions of
Theorem 7.18 are satisfied) is given by (7.95)

τ ? =
(
f̃ ?(x), f̃ ?(Z1) + S1, f̃

?(Z2) + S2, . . .
)
,

where f ? is given by (7.94) as

f̃ ?(x) :=


0, if qx ≤ cγ or qx > cγ and Ṽ (x) = −e−γg(x),

∞, if qx > cγ and Ṽ (x) =
∑
j∈S,
j 6=x

qxj
qx−cγ Ṽ (j)

for every x ∈ S.

We already know from section 7.5 and section 7.8, that in case of exponential utility the
optimal stopping time does not depend on the time parameter t ≥ 0. As a consequence
the only dependency lies in the initial value x ∈ S, respectively the model setting for
the underlying continuous-time Markov chain. The optimal stopping time is thus fully
characterized, if the Markov chain and the maximizing function f̃ ? are known. We can
directly see from (7.94) that f̃ ? can only attain the values 0 and∞, leading to immediate
stopping in state x ∈ S, if f̃ ?(x) = 0, and not stopping in state x ∈ S, if f̃ ?(x) =∞. For
x ∈ S such that qx ≤ cγ we know that f̃ ?(x) = 0 is valid. But if x ∈ S such that qx > cγ
the situation is not that simple. In order to decide which of the two possible values f ?(x)
will attain, we need to know the value function and thus need to solve the fixed-point
equation (7.93).

Following the outline of section 8.2 and section 8.3 we will establish conditions under
which we can circumvent the need to know the explicit form of Ṽ (x). To this end we
remember the S0

t –set, as introduced in (8.5) of Definition 8.6. Adapting this set for the
special case of exponential utility leads for every t ≥ 0 to

S0
t =

{
x ∈ S

∣∣∣ ∑
j∈S,
j 6=x

qxj
qx
U
(
− cϑ+ g(j)

)
≤ U

(
− cϑ+ g(x)

)
+

c

qx
U ′
(
− cϑ+ g(x)

)
for all ϑ ≥ t

}
=
{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxj
qx
ecγϑ−γg(j) ≤ −ecγϑ−γg(x) +

cγ

qx
ecγϑ−γg(x) for all ϑ ≥ t

}
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=
{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxj
qx
e−γg(j) ≤ −e−γg(x) +

cγ

qx
e−γg(x) for all ϑ ≥ t

}

=
{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxj
qx
e−γg(j) ≤ −qx − cγ

qx
e−γg(x)

}

=
{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxje
−γg(j) ≤ −(qx − cγ)e−γg(x)

}
(8.16)

Note that the set S0
t does not depend on the parameter t ≥ 0 in this setting. Furthermore,

the left-hand side of the inequality in (8.16) is always smaller than zero, whereas the
right-hand side is greater or equal to zero, if qx ≤ cγ. Therefore we know that all x ∈ S
such that qx ≤ cγ satisfy the inequality and are thus part of this set. We can hence
rewrite (8.16) into

S0
t =

{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxje
−γg(j) ≤ −(qx − cγ)e−γg(x)

}

=
{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxje
−γg(j) ≤ −(qx − cγ)e−γg(x) and qx > cγ or qx ≤ cγ

}

=
{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxj
qx − cγ

e−γg(j) ≤ −e−γg(x) and qx > cγ or qx ≤ cγ
}

We will give this set a new name and will see very soon in Remark 8.22 that this name is
indeed meaningful and has a clear interpretation, which we can apply for our theory.

Definition 8.17 (the one-step look ahead set)

Define the one-step look ahead set S? by

S? :=
{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxj
qx − cγ

e−γg(j) ≤ −e−γg(x) and qx > cγ or qx ≤ cγ
}
. (8.17)

Lemma 8.18 (alternative representation and interpretation of the S?–set)

The set S? from Definition 8.17 can be written as

S? =
{
x ∈ S

∣∣∣Ex [−ecγS1−γg(Z1)
]
≤ −e−γg(x) and qx > cγ or qx ≤ cγ

}
. (8.18)
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Proof of Lemma 8.18
We will show that for x ∈ S such that qx > cγ the following assertion is true:∑

j∈S,
j 6=x

qxj
qx − cγ

e−γg(j) = Ex
[
−ecγS1−γg(Z1)

]
.

To this end we remind ourselves that the joint density fS1,Z1 of the random variables S1

and Z1, conditioned by X0 = Z0 = x, is according to Corollary 2.20 (c) given by

fS1,Z1(s, j | X0 = x) =

{
exp(−qxs) · qxj, if x 6= j,

0, if x = j

for every s ≥ 0, j ∈ S. This yields for x ∈ S such that qx > cγ

Ex
[
−ecγS1−γg(Z1)

]
= −

∫ ∞
0

e−qxs
∑
j∈S,
j 6=x

qxje
cγs−γg(j) ds

= −
∫ ∞

0

e−qxs
∑
j∈S,
j 6=x

qxje
cγse−γg(j) ds

= −
∫ ∞

0

e−(qx−cγ)s ds ·
∑
j∈S,
j 6=x

qxje
−γg(j)

=
1

qx − cγ
·
∑
j∈S,
j 6=x

qxje
−γg(j)

=
∑
j∈S,
j 6=x

qxj
qx − cγ

e−γg(j).

This implies the validity of (8.18) and thus concludes the proof.

Analogously, we can now consider the S∞t –set from (8.3) of Definition 8.2. Analogeous
to (8.16) we can simplify S∞t to

S∞t =
{
x ∈ S

∣∣∣ ∑
j∈S,
j 6=x

qxj
qx
U
(
− cϑ+ g(j)

)
> U

(
− cϑ+ g(x)

)
+

c

qx
U ′
(
− cϑ+ g(x)

)
for all ϑ > t

}
=
{
x ∈ S

∣∣∣ −∑
j∈S,
j 6=x

qxje
−γg(j) > −(qx − cγ)e−γg(x)

}
.

We see again that there is no dependency on t ≥ 0 in this context. Furthermore we can
easily check that a state x ∈ S such that qx ≤ cγ can never fulfill the inequality in the
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S∞t –set, since this would imply a negative left-hand side, but a positive right-hand side,
which is a contradiction. This allows us to see that S∞t is exactly the complementary set
of S0

t . We will summarize this observation in the following corollary:

Corollary 8.19

By definitions (8.5), (8.3) and (8.17), it holds:

(a) S? = S0
t for all t ≥ 0,

(b) S\S? = S∞t for all t ≥ 0,

(c) S0
t ∪ S∞t = S for all t ≥ 0.

Every state x ∈ S thus lies either in the set S? = S0
t or in the set S\S? = S∞t . Now

the question remains, whether we can use this one-step look ahead set S? in order to
determine states, for which the optimal stopping time would stop immediately or never.
We have seen in section 8.2, that this is indeed the case for states in S∞t = S\S?. For
states in S0

t = S?, we have shown in section 8.3, that we need an additional closure
condition in order to guarantee the optimality of immediate stopping. For the case of
exponential utility, this condition is again independent of the time parameter t ≥ 0 and
can be formulated as follows:

Assumption 8.20 (closure assumption for exponential utility)

Suppose that for all x ∈ S? and j ∈ S\{x} the implication

qxj 6= 0 =⇒ j ∈ S? (8.19)

is valid.

Now we can apply Theorem 8.4 and Theorem 8.10 for the case of exponential utility and
merge them into the following theorem:
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Theorem 8.21 (optimality of one-step look ahead stopping times)

Let x ∈ S and Assumption 8.20 be valid. Then it holds:

(a) If x ∈ S?, then the fixed-point equation (7.93) attains its maximum in the first
argument and

Ṽ (x) = −e−γg(x).

The corresponding maximizer is given by

f̃ ?(x) = 0.

If the underlying Markov chain will ever reach state x, the optimal stopping rule is
given by immediate stopping.

(b) If x /∈ S?, then the fixed-point equation (7.93) attains its maximum in the second
argument and

Ṽ (x) =
∑
j∈S,
j 6=x

qxj
qx − cγ

Ṽ (j).

The corresponding maximizer is given by

f̃ ?(x) =∞.

If the underlying Markov chain will ever reach state x, the optimal stopping rule
will never stop in x.

(c) Define
τ ? :=

(
f̃ ?(x), f̃ ?(Z1) + S1, f̃

?(Z2) + S2, . . .
)
, (8.20)

where

f̃ ?(x) =

{
0, if x ∈ S?,
∞, if x /∈ S?.

(8.21)

If τ ? is Px–almost surely finite and

lim
n→∞

Ex

[
Ṽ (Zn) · 1{τ?≥Sn}

]
= 0, (8.22)

then the one-step look ahead stopping time τ ? is the optimal stopping time for Ṽ (x)
and can be expressed in terms of a first hit time:

τ ? = inf{t ≥ 0|Xt ∈ S?}. (8.23)

Proof
The assertions follow directly from Theorem 7.23, Theorem 8.4 and Theorem 8.10. For
the representation (8.23) of the optimal stopping time τ ? as first hit time, note that by
definition of τ ? in (8.20) the optimal stopping rules τ ?,k for k ∈ N0 are either given by
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Sk, if Zk ∈ S?, or by ∞, if Zk /∈ S?. If τ ?,k = Sk for some k ∈ N0, then the stopping rule
will stop as soon as state Zk is reached (immediate stopping). This will terminate the
whole stopping problem. If τ ?,k =∞ for some k ∈ N0, then the stopping rule will never
stop in state Zk. In other words, the optimal stopping time terminates as soon as the
embedded discrete-time Markov chain (Zn)n∈N hits set S?. This is the case if and only if
the Markov chain itself hits the set S?. This yields representation (8.23).

Remark 8.22 (interpretation of the one-step look ahead set and one-step look ahead
stopping times)

In order to interpret the one-step look ahead set S?, we will use the representation (8.18)
given in Lemma 8.18:

S? =
{
x ∈ S

∣∣∣Ex [−ecγS1−γg(Z1)
]
≤ −e−γg(x) and qx > cγ or qx ≤ cγ

}
.

Also note that in terms of Theorem 8.21, the S?–set shall characterize the states x ∈ S
for which the optimal stopping rules are given by immediate stopping. There are exactly
two reasons for a state x ∈ S to be in the set S?:

It holds that qx ≤ cγ:

This case can be interpreted as the“high cost case”. The intensity rate qx, which influences
the sojourn time in state x, is too low in comparison to the cost rate c > 0, weighted by
the parameter γ > 0 which stems from the definition of the exponential utility. Note that
by Corollary 2.20 (a), the expected sojourn time in state is given by 1

qx
. This indicates

that the expected waiting time for the next change of state to happen is relatively high.
During this time an investor will cumulate relatively high costs. The condition qx ≤ cγ
thus gives a condition for which it is no longer profitable to wait for the next jump of
the underling Markov chain, tolerating the cumulated costs and hoping for a state which
yields a higher reward.

Note that in case of exponential utility, the absolute risk aversion ARAU , which was
introduced in (4.1) of chapter 4 is given by

ARAU(x) ≡ γ,

according to Example 4.2 (a). We have discussed in chapter 4 that the absolute risk
aversion models the attitude of an investor towards risk. The higher γ > 0, the more
risk averse an investor becomes. On the other hand, increasing γ will also increase the
number of states x ∈ S which fulfill qx ≤ cγ and thus are in the set S?. This coincides
with our intuition: An investor with a high absolute risk aversion level will more likely
refrain to wait in certain states for the next jump to happen, as he will more likely fear
the additional costs he will cumulate in comparison with the expected time he has to
wait in hope for a better state.
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It holds that qx > cγ and Ex
[
−ecγS1−γg(Z1)

]
≤ −e−γg(x):

This case can be interpreted as the “low cost case”. Analogously to the case above the
condition qx > cγ for a state x ∈ S implies that the expected sojourn time in state
x is low enough in comparison to the cost rate c > 0 and the risk aversion parameter
γ > 0. An investor is thus more inclined to risk the waiting period up to the next jump
of the Markov chain and to accept the additional costs he will cumulate doing this. The
decision whether he will do it or not depends on the second inequality

Ex
[
−ecγS1−γg(Z1)

]
≤ −e−γg(x).

Here, the investor compares two values: The utility −e−γg(x) he would gain by immediate
stopping and the expected utility Ex

[
−ecγS1−γg(Z1)

]
he would gain by waiting exactly

“one step”, i.e the next change of state of the underlying Markov chain. This explains the
name one-step look ahead. The investor compares the actual utility with the expected
utility by looking one step ahead, thus the expected utility under the stopping time
τ = S1. In terms of value functions, an investor thus compares

Ṽ (x, 0) for stopping time τ = 0 and Ṽ (x, S1) for stopping time τ = S1.

Clearly, if he expects a higher utility by waiting for the first jump time S1 than by
stopping immediately, he will not stop in state x. This leads to x /∈ S? and in terms of
Theorem 8.21 to the optimality of never stopping in state x.

On the other hand, if the acutal utility gained by immediate stopping is higher than the
expected utility for stopping at time S1, we can generally not expect that the investor
will stop immediately. By definition of the value function

Ṽ (x) = sup
τ∈Σx

Ṽ (x, τ)

the investor has to compare all feasible stopping times.

But if the closure assumption 8.20 is valid, then Theorem 8.21 shows us that it is indeed
sufficient to compare the utility gained by immediate stopping with the expected utility
by stopping at S1. In particular we do not need to analyse any other feasible stopping
times. This legitimates the name of the one-step look ahead stopping time τ in (8.23),
which is by Theorem 8.21 the optimal stopping time for the unrestricted stopping problem
in case of exponential utility.
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Example 8.23 (example for the optimality of one-step look ahead stopping times)

(a) Let S = N0 and X a homogeneous Poisson process with intensity rate λ > 0 and
initial value X0 = x ∈ N0. The intensity matrix Q = (qxj)x,j∈N0 of X is given by

qxj :=


−λ, for j = x,

λ, for j = x+ 1,

0, else.

The Poisson process is a simple example for a continuous-time Markov chain
with discrete, but not finite state space S. Note that at every single jump time
Sn, the value of the process increases by exactly one unit. The corresponding
embedded discrete-time Markov chain is therefore trivially given by (Zn)n∈N0 , where
Zn = n+ x.

Furthermore, consider the exponential utility function

U : R→ R, U(x) := −e−γx

for some γ > 0. Moreover, let c > 0 be the cost rate and g : S → R the reward
function in this setting.

We want now to apply Theorem 8.21 in order to find the optimal stopping time
τ ? for the value function Ṽ (x). For Theorem 8.21 to be applicable we need to
guarantee the validity of Assumption 8.20. That is, for all x ∈ S? and j ∈ N0\{x}
such that qxj 6= 0 we need to ensure that j ∈ S?. In this specific example with a
homogeneous Poisson process as continuous-time Markov chain, for every x ∈ N0

the only intensity rate qxj not equal to zero and j 6= x is given by qx,x+1 = λ > 0.
In other words, for every x ∈ S? the subsequent state x+ 1 has also to be in S?.
Therefore, Assumption 8.20 simplifies in case of a homogeneous Poisson process to

x+ 1 ∈ S? for all x ∈ S?. (8.24)

For (8.24) to be valid (and supposing S? 6= ∅), we thus need the existence of a
threshold x̃ ∈ N0, such that

x ∈ S? for all x ≥ x̃. (8.25)

In this case the one-step look ahead set S? has to be of the form

S? = {x̃, x̃+ 1, x̃+ 2, . . . }. (8.26)

The question remains, whether such a threshold x̃ ∈ N0 exists, such that Assump-
tion 8.20 is satisfied. We will therefore try to calculate the one-step look ahead set
S? explicitly. As a remainder, S? is given by (8.17) as

S? =
{
x ∈ N0

∣∣∣ −∑
j∈S,
j 6=x

qxj
qx − cγ

e−γg(j) ≤ −e−γg(x) and qx > cγ or qx ≤ cγ
}
.
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In this example the intensity rates qx are all homogeneous and given by qx = λ for
every x ∈ N0. Hence we get

S? =
{
x ∈ N0

∣∣∣ − λ

λ− cγ
e−γg(x+1) ≤ −e−γg(x) and λ > cγ or λ ≤ cγ

}
.

This allows us to differentiate between two global cases:

λ ≤ cγ:

The intensity rate λ > 0 is not higher than the cost rate c > 0, weighted by the
risk aversion parameter γ > 0. This leads to the one-step look ahead set

S? = N0.

Obviously the closure condition is satisfied and the threshold for (8.26) is set to
x̃ = 0. Theorem 8.21 becomes applicable and yields immediately that

Ṽ (x) = −e−γg(x)

for every x ∈ N0. The optimal stopping time is given by

τ ? = 0.

We can again interpret this case in terms of expected sojourn times. As λ is small
(relative to cγ), we expect a relatively long sojourn time of 1

λ
in every state. Thus

waiting for a higher state will accumulate too much additional costs in order to be
worthwhile. Thus the optimal strategy is to stop immediately to avoid additional
costs.

λ > cγ:

The intensity rate λ > 0 is higher than the cost rate c > 0, weighted by the risk
aversion parameter γ > 0. This leads to the one-step look ahead set

S? =
{
x ∈ N0

∣∣∣ − λ

λ− cγ
e−γg(x+1) ≤ −e−γg(x)

}
.

We get

x ∈ S? ⇔ − λ

λ− cγ
e−γg(x+1) ≤ −e−γg(x)

⇔ e−γ(g(x+1)−g(x)) ≥ λ− cγ
λ

⇔ g(x+ 1)− g(x) ≤ 1

γ
ln

(
λ

λ− cγ

)
.
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Therefore the one-step look ahead set is given by

S? =

{
x ∈ N0

∣∣∣ g(x+ 1)− g(x) ≤ 1

γ
ln

(
λ

λ− cγ

)}
. (8.27)

For the closure condition to be satisfied and thus exhibiting the form (8.26), we
hence need to assume that there exists a threshold x̃ ∈ N0 such thatg(x+ 1) > g(x) + 1

γ
ln
(

λ
λ−cγ

)
for all x < x̃,

g(x+ 1) ≤ g(x) + 1
γ

ln
(

λ
λ−cγ

)
for all x ≥ x̃.

(8.28)

Assuming that (8.28) is valid for a threshold x̃ ∈ N0, Theorem 8.21 becomes
applicable and yields that the optimal stopping time solving Ṽ (x) is given by (8.23)

τ ? = inf{t ≥ 0|Xt ∈ S?}

= inf{t ≥ 0|Xt ≥ x̃}.

The optimal stopping time will trigger, as soon as the value x̃ is reached. In this
case, the optimal stopping time is of reservation type. That means that the stopping
time terminates as soon as a certain threshold, or reservation level is reached.

We can interpret this case in the following way: As the intensity rate λ is greater
than cγ, we can heuristically argue that, due to the relatively high λ, the expected
sojourn times between two jumps of the underlying Markov chain are comparatively
small. As long as x < x̃ and thus x /∈ S?, the marginal gains by jumping from state
x with reward g(x) to state x + 1 with reward g(x + 1) are high. Thus waiting
for the next jump, which we expect to happen relatively soon, is profitable for an
investor, even if he has to pay additional cumulated costs. As soon as the threshold
x̃ is reached, the marginal gain from successive states diminishes. Therefore the
optimal stopping strategy is to stop as soon as the threshold is reached.

(b) Consider the special case of λ = 2, c = 3, γ = 1
2

and initial state x = 0. Cleary,
λ > cγ holds and we thus are in the case where we need to check if condition (8.28)
is satisfied. As reward function g : N0 → R we choose

g(x) := 14
√
x.

In this scenario we can calculate

1

γ
ln

(
λ

λ− cγ

)
= 2 ln (4) ≈ 2.77.

Knowing that g is a concave function with diminishing marginal gains, we easily
check for which argument x the increments are for the first time smaller than
2 ln(4).
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8.4 Optimality of One-Step Look Ahead Stopping Times for Exponential Utility

x 0 1 2 3 4 5 6 7 8
g(x+ 1)− g(x) 14.00 5.80 4.45 3.75 3.0 2.99 2.75 2.56 2.40

We can conclude that for the threshold x̃ = 6 condition (8.28) is satisfied. Thus,
the optimal stopping time is given by

τ ? = inf{t ≥ 0|Xt ≥ 6}.

An investor will therefore wait for 6 jumps of the Poisson process, before he will
terminate the stopping problem.

Assume now that we increase the risk aversion parameter from γ = 1
2

to γ = 3
5

and
let all other parameters untouched. This leads to

1

γ
ln

(
λ

λ− cγ

)
=

5

3
ln (10) ≈ 3.84.

Looking in the table above, we can immediately indentify the new threshold x̃ = 4.
The optimal stopping time is therefore given by

τ ? = inf{t ≥ 0|Xt ≥ 4}.

An investor with a higher risk aversion will thus terminate the stopping problem
earlier. He perceives the reward margins from jump 4 to 6 as to small to tolerate
the risk of high additional costs, if these jumps will not happen as soon as expected.
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9 Continuous-Time Approach for the
Generalized Risk-Sensitive Stopping
Problem for Continuous-Time
Markov Chains

9.1 Introduction

In this chapter we want to present an alternative approach to solve the unrestricted
generalized risk-sensitive stopping problem

Ex [U (−cτ + g(Xτ ))]→ max
τ∈Σx

!

for continuous-time Markov chains, as introduced in (5.1) of chapter 5. Just as in the
discrete-time approach of chapter 7 we will again mainly utilize the concept of value
functions in order to get access to a theory which allows us to find a solution to (5.1).
Note that the value functions for (5.1) are given by{

V ( · , τ) : [0,∞)× S → [−∞,∞),

(t, x) 7→ V (t, x, τ) = Ex
[
U (−ct− cτ + g(Xτ ))

]
for a given stopping time τ ∈ Σ, respectivelyV : [0,∞)× S → [−∞,∞),

(t, x) 7→ V (t, x) = sup
τ∈Σx

V (t, x, τ).

But in contrast to chapter 7 we will have no need to tackle the unrestricted value function
V (t, x) by introducing n–step value functions and interpret V (t, x) as a limit

V (t, x) = lim
n→∞

Vn(t, x)

of the discrete sequence of n–step value functions
(
Vn(t, x)

)
n∈N0

for t ≥ 0 and x ∈ S.
Instead we will use the popular dynamic programming approach in the field of optimal
control. Basically it states that under certain conditions, the value function of a given
stochastic optimization problem can be seen as a solution of a deterministic partial
differential equation, the so-called Hamilton-Jacobi-Bellman (HJB) equation. This HJB-
equation can be seen as a continuous-time analogon to the discrete-time Bellman equation,
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9 Continuous-Time Approach for the Generalized Risk-Sensitive Stopping Problem

which was introduced 1957 by Richard Bellman in his work Bellman [1957]. The Bellman
equation established in Theorem 7.14 serves as example. The HJB equation can also be
seen as an extension of the Hamilton-Jacobi equation, a first-order partial differential
equation which was established earlier by William Rowan Hamilton and Carl Gustav
Jacob Jacobi, thus explaining the name “HJB”.

One major downside of this theory is that in order for the value function to be a solution
of a partial differential equation, it has to exhibit the required differentiability in the
sense that every partial derivative stated in the HJB equation does have to exist. On the
other hand, by finding a solution of the HJB equation we need to verify if it is indeed the
wanted value function we sought. In fact, a classical smooth solution to an HJB equation
does not have to exist in general. In the past decades a rich theory was developed to
weaken the classical notion of solutions in order to generalize the dynamic programming
approach. One of the most prominent concepts would be the so-called viscosity solutions
to partial differential equations, introduced by Pierre-Louis Lions and Michael Crandall
in 1983 for non-linear first order partial differential equations (cf. Crandall & Lions
[1983]) and later extended by Robert Jensen (cf. Jensen [1988])and Hitoshi Ishii in 1989
(cf. Hitoshi [1989]) to non-linear second-order partial differential equations. At this point
we also want to mention Fleming & Soner [2006], where Wendell Helms Fleming and
Halil Mete Soner applied the concept of viscosity solutions to the optimal control of
Markov processes.

As the main emphasis of this work lies in the study of generalized risk-sensitive stopping
problems by using the discrete-time approach in chapter 7, we do not want to introduce
the generalized concept of viscosity solutions in detail, but rather confine ourselfes to the
existence of a classical smooth solution to the corresponding HJB equation, which will
be stated in this chapter.

In the following we will establish the HJB equation for unrestricted generalized risk-
sensitive stopping problem (5.1) and state a corresponding verification theorem to
guarantee that a classical solution to the HJB equation is indeed the sought-after value
function V (t, x) we are interested in. Furthermore we can express the optimal stopping
time to the unrestricted stopping problem in terms of a first hit time.

9.2 The Verification Theorem for Generalized
Risk-Sensitive Stopping Problems

As mentioned above in the introduction the main task in this section will be to establish
the HJB equation as well as formulate an appropriate verification theorem in order
to guarantee a solution of this HJB equation being the desired value function of the
corresponding stopping problem. To this end we first have to establish certain auxiliary
propositions which will be needed in order to prove the verification theorem rigorously.
This approach basicaly follows the standard procedure for verification of HJB equations
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for jump processes. For further literature on this topic the reader may be referred to
[Bäuerle & Rieder, 2004, Section II.A.].

One aspect that has to be dealt with beforehand, is the existence of jumps and thus
the discontinuity of the sample paths of the underlying continuous-time Markov chain.
As we will see in the proof of Theorem 9.6, the basic approach to such verification
theorems is an appropriate application of Itô’s formula. In our case the underlying
Markov process exhibits discontinuous jumps. Therefore, we need a version of Itô’s
formula which explicitly allows for such jumps:

Proposition 9.1 (Itô’s formula for continuous-time Markov chains)

Let X be a continuous-time Markov chain as defined in chapter 2 and G : [0,∞)×S → R
such that G ∈ C1,0([0,∞) × S). Then we get for every t, t′ ≥ 0 such that t′ ≥ t Itô’s
formula for continuous-time Markov chains :

G(t′, Xt′) = G(t,Xt) +

∫ t′

t

Gt(s,Xs−)ds+
∑
t<s≤t′

[
G(s,Xs)−G(s,Xs−)

]

= G(t,Xt) +

∫ t′

t

Gt(s,Xs−)ds+
∑
n∈N0,
t<Sn≤t′

[
G(Sn, Zn)−G(Sn, Zn−1)

]
. (9.1)

Note that (Sn)n∈N0 denotes the usual sequence of jump times of X and (Zn)n∈N0 represents
the corresponding embedded discrete-time Markov chain for X. As the sample paths
of X are càdlàg (right-continuous with existing left-hand limits), Xs− denotes such a
left-hand limit of X at time s ≥ 0.

Proof of Proposition 9.1
Due to its construction the Markov chain X and thus the process (t,Xt)t≥0 is a semi-
martingale. Therefore Itô’s formula for jump processes as given for example in [Protter,
2005, Theorem 33] or [Klebaner, 2012, Chapter 9.3, Equation (9.4)] becomes applicable:

G(t′, Xt′) = G(t,Xt) +

∫ t′

t

Gt(s,Xs−)ds+
∑
t<s≤t′

[
G(s,Xs)−G(s,Xs−)

]
for t′ ≥ t. As a continuous-time Marcov chain is constant up to discontinuities at jump
times, the last sum is not uncountably infinite, but indeed well-defined as its summands
differ only from zero if s is a jump time Sn in the compact intervall [t, t′]. Moreover as
we assumed for the Markov chain to be stable and conservative, Proposition 2.21 implies
almost surely a finite number of jumps in [t, t′]. The sum above is thus even finite and∑

t<s≤t′

[
G(s,Xs)−G(s,Xs−)

]
=

∑
n∈N0,
t<Sn≤t′

[
G(Sn, Zn)−G(Sn, Zn−1)

]
.

189



9 Continuous-Time Approach for the Generalized Risk-Sensitive Stopping Problem

In regard of Proposition 9.1, the sum in (9.1) interpreted as a function in t′ is discontinuous.
To compensate this discontinuity we will additionally introduce two additional processes
which are in some sense related to the Markov chain: the counting process for X and the
corresponding compensator.

Definition 9.2 (counting process for continuous-time Markov chains)

(a) Consider the mapping P : [0,∞)× P(S)× Ω→ N0,

P (t,M)(ω) :=
∑
n∈N0

1{Sn≤t}(ω)1{Zn∈M}(ω). (9.2)

For every M ⊆ S we call
(
P (t,M)

)
t≥0

the counting process (on M) corresponding

to X. P (t,M) counts the random number of times a Markov chain X hits some
set M ⊆ S up to time t ≥ 0.

(b) This counting process can be identified in a natural way with a random counting
measure ν : B

(
[0,∞)

)
× P(S)→ N0:

ν
(
A×M

)
:=
∑
n∈N0

δ(Sn,Zn)

(
A×M

)
, (9.3)

where δ(Sn,Zn) is a (random) Dirac-measure on B
(
[0,∞)

)
× P(S).

Clearly, these two definitions are equivalent in the sense that for every t ≥ 0 and
M ∈ P(S) we get

P (t,M) = ν
(
[0, t]×M

)
.

For every
(
B([0,∞) × P(S)

)
–measurable function f : [0,∞) × S → R and t ≥ 0,

M ∈ P(S) we get the integral representation

∫
[0,t]×M

f(s, j)P (ds, dj) =

∫
[0,t]×M

f(s, j)ν(ds, dj)

=
∑
n∈N0

∫
[0,t]×M

f(s, j)δ(Sn,Zn)(ds, dj)

=
∑
n∈N0

f(Sn, Zn) · 1{Sn≤t,Zn∈M}

=
∑
n∈N0,

0≤Sn≤t

f(Sn, Zn) · 1{Zn∈M}.
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For the special case M = S this equation simplifies to∫
[0,t]×S

f(s, j)P (ds, dj) =
∑
j∈S

∫ t

0

f(s, j)P (ds, {j}) =
∑
n∈N0,

0≤Sn≤t

f(Sn, Zn). (9.4)

Definition 9.3 (compensator for counting processes of continuous-time Markov chains)

(a) We define the mapping P̃ : [0,∞)× P(S)× Ω→ [0,∞) by

P̃ (t,M)(ω) :=
∑
j∈M

∫ t

0

∑
x∈S,
x 6=j

qxj · 1{Xs−=x}(ω)ds (9.5)

and call the stochastic process
(
P̃ (t,M)

)
t≥0

(for every M ∈ P(S)) the compensator

of the counting process
(
P (t,M)

)
t≥0

.

(b) Analogously to the previous definition we also define the random counting measure
ν̃ : B

(
[0,∞)

)
× P(S)→ N0 by

ν̃((s, t]×M) := P̃ (t,M)− P̃ (s,M) (9.6)

for every s ≤ t and M ∈ S.

Again, we get P̃ (t,M) = ν̃
(
(0, t]×M

)
for t ≥ 0 and M ∈ P(S).

The name “compensator” is justified by the following theorem, which states that the
discrete valued counting process

(
P (t,M)

)
t≥0

can be adjusted by using the corresponding
compensator to become a real-valued locale martingale:

Proposition 9.4 (compensated counting processes)

The process
(
Q(t,M)

)
t≥0

, defined by

Q(t,M) := P (t,M)− P̃ (t,M)

is a locale (FXt )t≥0–martingale for every M ∈ P(S).

Proof of Proposition 9.4
For a proof of this proposition the reader may refer to [Davis, 1993, Proposition (26.7)].
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9 Continuous-Time Approach for the Generalized Risk-Sensitive Stopping Problem

One last aspect needed for stating and proving the subsequent verification theorem is
the concept of restarting continuous-time Markov chains. In Definition 7.1 we already
introduced such restarted Markov chains for the special case that the restart happened
exactly at the first jump time S1. We will now generalize this by allowing for an arbitrary
restarting time.

Proposition 9.5 (restarted continuous-time Markov chain)

Let X be a homogeneuous continuous-time Markov chain with initial value X0 = x ∈ S.
Then it holds:

(a) For every restarting time u ≥ 0 the process(
Xt+u

)
t≥0

is again a homogeneous continuous-time Markov chain, given that the initial value
Xu is known.

(b) For every j ∈ S, u ≥ 0 and t ≥ 0 we get

P(Xt+u = j|Xu = x) = P(Xt|X0 = x).(
Xt+u

)
t≥0

and (Xt)t≥0 thus share the same distribution, given that the correspond-
ing initial values coincide.

Proof
Let X be a homogeneuous continuous-time Markov chain with initial value X0 = x ∈ S
and let u ≥ 0. Due to Definition 2.1 and the homogeneity property (2.2) we can
immediately conclude that

(
Xt+u

)
t≥0

is indeed a homogeneous continuous-time Markov
chain, given that the initial value Xu is known. The same homogeneity property also
implies the second part of Proposition 9.5.

Now we are able to state the HJB equation for the unrestricted generalized risk-sensitive
stopping problem for continuous-time Markov chains and formulate a correponding
verfication theorem to guarantee that the solution of the HJB equation is the wanted
value function V (t, x) for the stopping problem.
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Theorem 9.6 (verification theorem for the generalized risk-sensitive stopping problem)

Let G ∈ C1,0([0,∞)× S) be a solution of the Hamilton-Jacobi-Bellman equation (HJB)

0 = max

{
Gt(t, x) +

∑
j∈S

(
G(t, j)−G(t, x)

)
qxj , U(−ct+ g(x))−G(t, x)

}
(9.7)

and additionally fulfill the following growth-condition for all x ∈ S and t ≥ 0:

Ex

 ∑
n∈N0,

0≤Sn≤t

∣∣∣G(Sn, Zn)
∣∣∣
 <∞. (9.8)

Then it holds:

(a) For all t ≥ 0 and x ∈ S the value function V fulfills

V (t, x) ≤ G(t, x).

(b) If in addition the first hit time

τ ? := inf
{
s ≥ 0

∣∣∣ G(t+ s,Xt+s) = U
(
− ct− cs+ g(Xt+s)

)}
(9.9)

is Px–almost surely finite, then τ ? is the optimal stopping time for V (t, x) and

V (t, x) = G(t, x).

Proof
Let G ∈ C1,0([0,∞) × S) be a solution of the HJB equation (9.7) which fulfills the
additional condition (9.8).

(a) An application of Itô’s formula for Markov chains as given in Proposition 9.1 on G
and (t,Xt) for fixed time points t, t′ ≥ 0 such that t′ ≥ 0 yields

G(t′, Xt′) = G(t,Xt) +

∫ t′

t

Gt(s,Xs−)ds+
∑
n∈N0,
t<Sn≤t′

[
G(Sn, Zn)−G(Sn, Zn−1)

]
.

A more detailed analysis of the last sum shows that it can be written in terms
of the counting process P and the random counting measure ν, as introduced in
Definition 9.2, equation (9.2) and (9.3), respectively. Thus, using equation (9.4),
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we get ∑
n∈N0,
t<Sn≤t′

[
G(Sn, Zn)−G(Sn, Zn−1)

]

=
∑
t<s≤t′

[
G(s,Xs)−G(s,Xs−)

]
=

∫
[t,t′]×S

[
G(s, j)−G(s,Xs−)

]
P (ds, dj)

=
∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

]
P (ds, {j})

=
∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

]
P̃ (ds, {j})︸ ︷︷ ︸

(I)

+
∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

] (
P − P̃

)
(ds, {j})︸ ︷︷ ︸

(II)

,

where P̃ denotes the compensator of the counting process P , according to Defini-
tion 9.3. The two parts (I) and (II) will now be treated separately:

(I) With respect to equation (9.5), for every t ≥ 0 and j ∈ S the compensator P̃
is given by

P̃ (t, {j}) =

∫ t

0

∑
x∈S,
x 6=j

qxj · 1{Xs−=x} ds

and thus by using the stability assumption Assumption 2.13:

∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

]
P̃ (ds, {j})

=
∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

]
·
∑
x∈S,
x 6=j

qxj · 1{Xs−=x} ds

=
∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

]
· qXs− ,j · 1{Xs− 6=j} ds

=
∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

]
· qXs− ,j ds.
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(II) Defining the process (Mt)t≥0 by

Mt :=
∑
j∈S

∫ t

0

[
G(s, j)−G(s,Xs−)

] (
P − P̃

)
(ds, {j})

=
∑
j∈S

∫ t

0

[
G(s, j)−G(s,Xs−)

]
(ν − ν̃) (ds, {j})

we can rewrite the expression in (II) to

∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

] (
P − P̃

)
(ds, {j}) = Mt′ −Mt.

Note that according to Proposition 9.4, the compensated counting process

(
P (t, {j})− P̃ (t, {j})

)
t≥0

is a locale (FXt )t≥0–martingale for every j ∈ S. Thus, having a locale martin-
gale as integrator, this martingale property can be transferred to the whole
process (Mt)t≥0. Moreover, we can even get a stronger assertion due to [Davis,
1993, Thm. 26.12]:

Under the validity of condition (9.8) from the requirements of this verification
theorem, namely

Ex

 ∑
n∈N0,

0≤Sn≤t

∣∣∣G(Sn, Zn)
∣∣∣
 <∞

for all x ∈ S and t ≥ 0, the process (Mt)t≥0 becomes an (FXt )t≥0–martingale.
Therefore, taking the expectation for every t ≥ 0 and x ∈ S yields

Ex

[∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

] (
P − P̃

)
(ds, {j})

]

=Ex

[
Mt′ −Mt

]
= 0. (9.10)
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Going back to Itô’s formula and applying parts (I) and (II), we thus get

G(t′, Xt′)

= G(t,Xt) +

∫ t′

t

Gt(s,Xs−)ds+
∑
n∈N0,
t<Sn≤t′

[
G(Sn, Zn)−G(Sn, Zn−1)

]

= G(t,Xt) +

∫ t′

t

Gt(s,Xs−)ds+
∑
j∈S

∫ t′

t

[
G(s, j)−G(s,Xs−)

]
· qXs− ,j ds+Mt′ −Mt

= G(t,Xt) +

∫ t′

t

Gt(s,Xs−) +
∑
j∈S

[
G(s, j)−G(s,Xs−)

]
· qXs− ,j ds+Mt′ −Mt

(9.11)

≤ G(t,Xt) + 0 +Mt′ −Mt.

The last inequality holds due to the fact that G is assumed to be a solution of
the HJB equation (9.7). Therefore, the expression within the integral is always
bounded from above by zero for every t′ ≥ t.

On the other hand we know that G, being a solution to the HJB equation (9.7),
fulfills

U(−ct+ g(x))−G(t, x) ≤ 0

for all x ∈ S and t ≥ 0.

Now fix x ∈ S, t ≥ 0 and suppose we have a stopping time τ̃ ∈ Σx such that τ̃ ≥ t.
This yields

U(−cτ̃ + g(Xτ̃ )) ≤ G(τ̃ , Xτ̃ ) ≤ G(t,Xt) +Mτ̃ −Mt.

Taking the conditional expectation E[·|Xt = x] leads to

E
[
U(−cτ̃+g(Xτ̃ ))

∣∣Xt = x
]
≤ E

[
G(t,Xt)

∣∣Xt = x
]
+E
[
Mτ̃−Mt

∣∣Xt = x
]

= G(t, x),

where the last equality holds, since the optional sampling theorem (cf. for example
[Klenke, 2013, Satz 10.11]) for the (FXt )t≥0–martingale (Mt)t≥0 implies

E
[
Mτ̃ −Mt

∣∣Xt = x
]

= 0.

Now let τ ∈ Σx be arbitrary and define τ̃ := τ + t. Note that τ̃ is again a Px–almost
surely finite (FXt )t≥0–stopping time such that τ̃ ≥ t. Using Proposition 9.5 will
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now lead to

V (t, x, τ) = Ex
[
U(−ct− cτ + g(Xτ ))

]
= Ex

[
U(−ct− c(τ̃ − t) + g(Xτ̃−t))

]
= E

[
U(−cτ̃ + g(Xτ̃−t))

∣∣X0 = x
]

= E
[
U(−cτ̃ + g(Xτ̃ ))

∣∣Xt = x
]

(9.12)

≤ G(t, x).

Since τ ∈ Σx was arbitrarily chosen, we can conclude that

V (t, x) = sup
τ∈Σx

V (t, x, τ) ≤ G(t, x).

(b) Let x ∈ S and t ≥ 0. Now consider the special stopping time

τ ? = inf
{
s ≥ 0

∣∣∣ G(t+ s,Xt+s) = U(−ct− cs+ g(Xt + s))
}
.

Clearly, τ ? is a first hit time and thus an (FXt )t≥0–stopping time. By assumption
we know that τ ? is Px–almost surely finite and thus

τ ? ∈ Σx.

We will now show that this stopping time is indeed optimal for the value function
V (t, x) and that V (t, x) = G(t, x).

Note that as a solution of the HJB equation (9.7), G always fulfills

G(s, j) ≥ U(−cs+ g(j))

for all s ≥ 0 and j ∈ S.

By definition of the first hit time τ ? we know that any s < τ ? yields

G(t+ s,Xt+s) > U(−ct− cs+ g(Xt+s)).

Therefore, as a solution of the HJB equation (9.7), G has to fulfill

Gt(t+ s,X(t+s)−) +
∑
j∈S

(
G(t+ s, j)−G(t+ s,X(t+s)−)

)
qX(t+s)− ,j

= 0

for any s < τ ?.

On the other hand, the continuity of U and G, as well as the right-continuity of
the sample paths of X require

G(t+ τ ?, Xt+τ?) = U(−ct− cτ ? + g(Xt+τ?)).
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Hence, applying Itô’s formula and especially (9.11) yields for τ ? + t ≥ t:

U(−ct− cτ ? + g(Xt+τ?))

= G(t+ τ ?, Xt+τ?)

= G(t,Xt) +

∫ t+τ?

t

Gt(s,Xs−) +
∑
j∈S

[
G(s, j)−G(s,Xs−)

]
· qXs− ,j ds+Mt+τ? −Mt

= G(t,Xt) +

∫ τ?

0

Gt(t+ s,X(t+s)−) +
∑
j∈S

[
G(t+ s, j)−G(t+ s,X(t+s)−)

]
· qX(t+s)− ,j

ds

+Mt+τ? −Mt

= G(t,Xt) +Mt+τ? −Mt.

Taking again the conditional expectation E[·|Xt = x] thus yields

E
[
U(−ct− cτ ? + g(Xt+τ?))

∣∣Xt = x
]

= E
[
G(t,Xt)

∣∣Xt = x
]

+ E
[
Mt+τ? −Mt

∣∣Xt = x
]

= G(t, x)

and hence by using the same shifting arguments as in (9.12) we get

V (t, x, τ ?) = Ex [U(−ct− cτ ? + g(Xτ?))]

= E
[
U(−ct− cτ ? + g(Xt+τ?))

∣∣Xt = x
]

= G(t, x).

Finally, we can conclude that

V (t, x) = sup
τ∈Σx

V (t, x, τ) ≥ V (t, x, τ ?) = G(t, x)

and therefore together with part (a)

V (t, x) = G(t, x) = V (t, x, τ ?).

Remark 9.7 (comparison of Theorem 9.6 with Theorem 7.23)

We want now to compare the fixed-point equation stated in Theorem 7.31 of chapter 7
with the verification theorem in Corollary 9.8 of chapter 9.

A major difference between both approaches are definitely the assumptions made in
order to establish both theories. The continuous-time approach in this chapter using
the verification technique requires the differentiability of the value function in its time
parameter. As a solution of the HJB equation Equation (9.7), the value function V (t, x)
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has to possess its partial derivative in t. The fixed-point theorem in the discrete-time
approach does not need this differentiability assumption. In particular, we didn’t even
have to assume continuity for our value functions. Without requiring it we were able to
show in some cases, that the value functions we were looking for are indeed continuous.
This makes the discrete-time approach more viable to a variety of applications, since we
can even tackle stopping problems whose value fucntion is not differentiable at all.

Putting this difference aside, we can note that both approaches require similar additional
conditions for the optimality of the stopping time they propose. This candidate needs
to be Px–almost surely finite. This property needs to be manually verified in both
approaches. Moreover, both require an additional growth condition to be valid in order
to guarantee the optimality of the proposed stopping times. For the verification approach,
this would be condition (9.8), whereas for the fixed-point theorem condition (7.88) needs
to be shown.

Given the assumptions of both approaches, they are both viable to tackle the unrestricted
stopping problem and the corresponding value function Ṽ (x). Moreover, both provide us
with a candidate for the optimal stopping time in explicit form. Given the nature of both
approaches, this explicit form for the optimal stopping time τ ? differs a little bit. The
discrete-time approach allows for a piecewise description of stopping times using stopping
rules between two jumps of the underlying Markov chain. An investor who follows the
stopping policy given by τ ? gains at every single jump time of the underlying Markov
chain all information needed in order to know the optimal behavior up to the next jump.
After a jump, he immediately gains the knowledge needed for the next period up to
the subsequent jump. The continuous-time approach lacks this piecewise description.
Here the optimal stopping time is simply given in terms of a first hit time. An investor
following such a stopping time just waits for the first moment the hitting condition
is satisfied. Therefore we can conclude as summary, that both representations of the
optimal stopping time τ ? allow for a simple application and execution of this stopping
time.

We will see in the next section, that in the case of exponential utility, both approaches –
as different as they may look – are in some sense equivalent. We will ascertain that both
the fixed-point equation (7.72) as well as the HJB equation Equation (9.7) are describing
the same situation and contain the same information about the value function we are
looking for. Furthermore we will see that in case of exponential utility, the solution of
the HJB equation does not need to fulfill any differentiability assumptions.
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9 Continuous-Time Approach for the Generalized Risk-Sensitive Stopping Problem

9.3 Continuous-Time Approach for the Classical
Risk-Sensitive Stopping Problem under Exponential
Utility

We will now consider value functions for the special choice of an exponential utility
function. Again, we suppose that the underlying utility function U is given by

U : R→ R, U(x) := −e−γx

for some γ > 0.

As discussed in section 6.2, the value function V (t, x) can in this case be reduced by
(6.14) and (6.13) to

V (t, x) = ecγtṼ (x),

where
Ṽ (x) := sup

τ∈Σx

Ex

[
− ecγτ−γg(Xτ )

]
.

We want now to adapt the HJB equation (9.7) for the special case of exponential utility
and reformulate Theorem 9.6 for this situation. Since we are in search of a solution
G(t, x) of the HJB equation, which is – under validity of the assumptions of Theorem 9.6
– the value function V (t, x) itself, we choose the obvious ansatz

G(t, x) = ecγtG̃(x) (9.13)

for a suitable mapping G̃ : S → R. Hence, for G ∈ C1,0([0,∞)× S) we can calculate its
partial derivative by

Gt(t, x) = cγecγtG̃(x).

Therefore the HJB equation (9.7) can be expressed as

0 = ecγt ·max

{
cγG̃(x) +

∑
j∈S

(
G̃(j)− G̃(x)

)
qxj , −e−γg(x) − G̃(x)

}
.

Furthermore, we know that we can express the intensity rates qxj in terms of the transition
probabilities pxj of the embedded discrete-time Markov chain (Zn)n∈N0 by

pxj =
qxj
qx
, for x, j ∈ S, x 6= j and pxx = 0.

We therefore get∑
j∈S

(
G̃(j)− G̃(x)

)
qxj = qx

∑
j∈S

(
G̃(j)− G̃(x)

)
pxj

= qx

(∑
j∈S

G̃(j)pxj −
∑
j∈S

G̃(x)pxj

)
= qx

(
Ex
[
G̃(Z1)

]
− G̃(x)

)
.
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9.3 Continuous-Time Approach for Stopping Problems under Exponential Utility

This leads to the HJB equation

0 = max
{

(cγ − qx)G̃(x) + qxEx
[
G̃(Z1)

]
, −e−γg(x) − G̃(x)

}
.

Note that by definition, we get

Ṽ (x) = sup
τ∈Σx

Ex

[
− ecγτ−γg(Xτ )

]
< 0

for all x ∈ S. As a consequence we can search for solutions G̃ : S → R of the HJB
equation (9.16), which also fulfill

G̃(x) < 0

for all x ∈ S.

Note that a solution G̃ of (9.16) has to satisfy both conditions

− e−γg(x) − G̃(x) ≤ 0

⇔ G̃(x) ≥ −e−γg(x) (9.14)

and

(cγ − qx)G̃(x) + qxEx
[
G̃(Z1)

]
≤ 0

⇔ Ex
[
G̃(Z1)

]
≤ qx − cγ

qx
G̃(x). (9.15)

Moreover, for every single x ∈ S one of these two conditions has to be fulfilled with “=”.

We will now differentiate two cases:

• Let x ∈ S such that qx ≤ cγ. Since qx > 0 and we assumed that G̃(x) < 0 for all
x ∈ S, we can conclude that

Ex
[
G̃(Z1)

]
< 0 ≤ qx − cγ

qx
G̃(x).

In other words, for x ∈ S such that qx ≤ cγ condition (9.15) is never satisfied with
an “=”. Therefore

G̃(x) = −e−γg(x)

is valid.

• Let x ∈ S such that qx > cγ. In this case

qx − cγ
qx

> 0
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is true. We can therefore write (9.15) as

G̃(x) ≥ qx
qx − cγ

Ex
[
G̃(Z1)

]
.

This yields togehter with (9.14) a new form for the HJB equation:

G̃(x) = max

{
−e−γg(x) ,

qx
qx − cγ

Ex
[
G̃(Z1)

]}
.

Now we are able to postulate the verification theorem for exponential utility:

Corollary 9.8 (verification theorem for exponential utility)

Let G̃ : S → (−∞, 0) be a solution of the Hamilton-Jacobi-Bellman equation for expo-
nential utility

G̃(x) = max

{
−e−γg(x) ,

qx
qx − cγ

Ex
[
G̃(Z1)

]}
(9.16)

and additionally fulfill the following growth-condition for all x ∈ S and b > 0:

Ex

 ∑
n∈N0,

0≤Sn≤b

ecγSn ·
∣∣∣G̃(Zn)

∣∣∣
 <∞. (9.17)

Then it holds:

(a) For all x ∈ S the value function Ṽ fulfills

Ṽ (x) ≤ G̃(x).

(b) If in addition the first hit time

τ ? := inf
{
s ≥ 0 | G̃(Xt+s) = −e−γg(Xt+s)

}
(9.18)

is Px–almost surely finite, then τ ? is the optimal stopping time for Ṽ (x) and

Ṽ (x) = G̃(x).

Remark 9.9 (comparison of Corollary 9.8 with Theorem 7.31)

By comparing the fixed-point equation for exponential utility stated in Theorem 7.31
with the verification theorem for exponential utility in Corollary 9.8, we can clearly see
that these are in some sense equivalent.
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9.3 Continuous-Time Approach for Stopping Problems under Exponential Utility

The HJB equation (9.16) is equivalent to the fixed-point equation (7.97). The task of
finding a solution of the HJB equation is thus the same as to find a fixed-point for the
above-mentioned equations. Note that in case of exponential utility we do not need to
impose any additional differentiability assumption on the solution G̃. In both cases we
require to check whether the found candidate for the optimal stopping time is Px–almost
surely finite. Moreover, we need to verify in both cases certain growth conditions for
the value functions. Using the verification theorem of the continuous-time approach this
would be (9.17), whereas by using the fixed-point theorem in the discrete-time approach
the growth condition to check would be (7.96).

Here we see that both approaches are viable to tackle the unrestricted stopping problem
and the corresponding value function Ṽ (x) and lead to the same result. Given the theory
of both approaches the explicit form of the optimal stopping time differs a little bit. The
discrete-time approach allows for a piecewise description of stopping times using stopping
rules between two jumps of the underlying Markov chain. The continuous-time approach
lacks this possibility. Here the optimal stopping time is compactly given in terms of a
first hit time. Note that both representations of the optimal stopping time τ ? allow for a
simple application of this stopping time.
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