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Abstract: This work elucidates the manufacturing of lithium titanate (Li4Ti5O12, LTO) electrodes
via the aqueous process using sodium carboxymethylcellulose (CMC), guar gum (GG) or pectin as
binders. To avoid aluminum current collector dissolution due to the rising slurries’ pH, phosphoric
acid (PA) is used as a pH-modifier. The electrodes are characterized in terms of morphology, adhesion
strength and electrochemical performance. In the absence of phosphoric acid, hydrogen evolution
occurs upon coating the slurry onto the aluminum substrate, resulting in the formation of cavities
in the coated electrode, as well as poor cohesion on the current collector itself. Consequently,
the electrochemical performance of the coated electrodes is also improved by the addition of PA
in the slurries. At a 5C rate, CMC/PA-based electrodes delivered 144 mAh¨g´1, while PA-free
electrodes reached only 124 mAh¨g´1. When GG and pectin are used as binders, the adhesion of the
coated layers to the current collector is reduced; however, the electrodes show comparable, if not
slightly better, electrochemical performance than those based on CMC. Full lithium-ion cells, utilizing
CMC/PA-made Li[Ni0.33Mn0.33Co0.33]O2 (NMC) cathodes and LTO anodes offer a stable discharge
capacity of ~120 mAh¨g´1

(NMC) with high coulombic efficiencies.
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1. Introduction

The worldwide trend to develop light weight and high performance devices, such as smartphones,
personal computers and tablets, demands designable and reliable power supplies. In this respect,
lithium-ion batteries (LIBs) are well-established systems to power such devices. Additionally, LIBs are
also used as the main or secondary energy supply, respectively, in pure electric or hybrid vehicles,
thus reducing the dependence of fossil fuels.

Nowadays, a major requirement of new battery technologies is, besides key factors, like high
performance, safety and low cost, the sustainability and environmental friendliness of the used
components [1,2]. From this point of view, aqueous processing of LIB electrodes, i.e., utilizing
only water-soluble binders, is an extremely promising approach. The binder is a fundamental
electrode component, since it ensures a firm binding of the active material and the conductive
carbon, as well as of the electrode layer to the current collector. Moreover, binders have
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the additional function to provide appropriate slurry rheology for coating. The state of the
art binders for LIBs are poly(vinylidene-di-fluoride) (PVdF) for cathodes and styrene-butadiene
rubber (SBR)/sodium-carboxymethylcellulose (CMC) mixtures for graphite-based anode electrodes.
Despite being well established in commercial electrodes, the synthetic PVdF binder exhibits some
drawbacks, for instance the higher cost compared to natural binders and the necessity of using toxic
solvents, particularly N-methyl-2-pyrrolidon (NMP), during electrode processing. As an alternative,
aqueous processed electrodes are under development, offering significantly-reduced electrode costs
and an environmentally-friendly process without compromising the battery performance [3].

Aside from graphite, spinel-structured lithium titanate Li4Ti5O12 (LTO) is commercially used as
the anode for LIBs, providing remarkable advantages, such as stable cycling performance even at high
C-rates, low toxicity and enhanced safety [4]. Those characteristics render LTO suitable for large-scale
LIBs as those used in electric and hybrid vehicles. Moreover, the combination of the LTO desirable
properties with the aqueous electrode manufacturing would lead to LIB anodes with enhanced safety
and performance properties. Nevertheless, the alkaline nature of aqueous LTO slurries favors the
corrosion of the aluminum current collector upon electrode coating [5]. To avoid this issue, the use of
mild acids, i.e., phosphoric (PA) and formic (FA) acids, as pH modifiers of Li[Ni0.33Mn0.33Co0.33]O2

(NMC) electrodes has been earlier investigated in our laboratories [6]. It was reported that both
acids can reduce the pH of the electrode slurry to values of about nine, thereby preventing corrosion.
Moreover, better cyclability was shown for electrodes prepared with the addition of PA due to the
formation and deposition of highly insoluble phosphate compounds on the active material surface of
NMC, which reduce the transition metal leaching and enhance the electrochemical performance.

As an alternative to SBR/CMC and PVdF binders, natural polysaccharides, such as guar gum
(GG), have been investigated as potential binders for graphite [7], silicon [8,9] and LTO [10] electrodes.
Yoon et al. reported the use of pectin as a binder for silicon anodes and compared their electrochemical
performance with CMC and amylose-based electrodes correlating the electrochemical performance,
in particular cycle life, with the polysaccharides’ backbone structure [11]. In a different approach,
this work focuses on the development of an aqueous process to prepare LTO electrodes, using CMC
as the binder, but with the addition of phosphoric acid (PA) as the pH modifier. Additionally, we
investigated different polysaccharides, i.e., guar gum (GG, branched mannose:galactose 2:1 chain)
and pectin (α-linking galacturonic acid chain), as binders for LTO electrodes, assessing the adhesion
strength, thermal stability, electrode morphology and electrochemical performance. Finally, we report
our investigation of full cells comprising NMC as the cathode and LTO as the anode, both prepared
via aqueous processing using natural polymeric binders.

2. Materials and Methods

2.1. Electrode Processing

Lithium titanate (Li4Ti5O12, Hombitec LTO5; average primary particle size: 250 nm, Huntsman,
Duisburg, Germany) and Li[Ni0.33Mn0.33Co0.33]O2 (NMC; average particle size d90 = 10 µm,
TODA, Battle Creek, MI, USA) were used as, respectively, anode and cathode active materials.
Sodium carboxymethylcellulose (Walocel CRT 2000 PPA 12, Dow Wolff Cellulosics, Bomlitz, Germany)
with a degree of substitution of 1.2, guar gum (GG, Lamberti SpA, Albizzate, Italy) and pectin (from
citrus peel, Alfa Aesar, Ward Hill, MA, USA) were used as binders for the anodes. The conducting
carbon black was always C-NERGY Super C45 (Imerys, Bironico, Switzerland). NMC electrodes
were prepared using only CMC as the binder, but with the addition of PA (Bernd Kraft GmbH,
Duisburg, Germany) as the pH modifier [6]. All electrodes (NMC or LTO) were prepared with
the same methodology. At first, the binder was dissolved in deionized water by magnetic stirring,
and subsequently, a predetermined amount of Super C45 was added. After 3 h of continuous mixing,
the active material was added, and the electrode slurries were stirred for 2 h. Further dispersion at
medium stirring speed (5000 rpm) was performed with a high-speed mixer (4000-4/65, DREMEL,



Polymers 2016, 8, 276 3 of 9

Mount Prospect, IL, USA). For all electrode formulations (NMC, LTO-CMC-PA, LTO-pectin-PA and
LTO-GG-PA), 1% of PA by weight of active material (LTO) was added in the slurry to prevent aluminum
current collector corrosion [5,6]. To evaluate the influence of PA, a PA-free, LTO-CMC slurry was
also prepared. The slurries were cast on aluminum foil (thickness: 20 µm) using a laboratory-scale
doctor blade coater with a wet thickness ranging between 150 and 180 µm. The coated aluminum
foils were pre-dried in an atmospheric oven at 80 ˝C, then under vacuum at 180 ˝C for 12 h prior to
performing electrochemical investigations. The electrode formulation was 88 wt% active electrode
material (LTO or NMC), 7 wt% Super C45 and 5 wt% binder. To homogenize the surface, reduce the
thickness and, therefore, the porosity, the electrodes were pressed at 10 tons¨cm´2 using a manual
press (Atlas manual hydraulic press 15T, Specac, Orpington, UK) for 30 s. This process also enhanced
the adhesion of the active material layer to the current collector.

2.2. Electrode Characterization

The thermal properties of CMC, GG, pectin and LTO were evaluated by thermogravimetric
analysis (TGA). The TGA experiments were carried out on a Q 5000 IR TGA instrument
(TA Instruments, New Castle, DE, USA) by heating the respective specimen from 30 ˝C up to 500 ˝C
with a heating rate of 5 ˝C¨min´1 under a nitrogen gas flow (25 mL¨min´1) using open aluminum pans.
The samples (10–20 mg) were evaluated without any pre-treatment. The electrode morphology was
investigated using the ZEISS LEO 1550VP Field Emission SEM (Carl Zeiss, Oberkochen, Germany),
while energy dispersive X-ray spectroscopy (EDX) experiments were performed using an EDX X-MaxN
(50 mm2), 10 kV (Oxford Instruments, Abingdon Oxfordshire, England).

The electrode adhesion strength was evaluated using a Z2.5 Zwick/Roell machine (Zwick Roell,
Ulm, Germany). Figure 1 displays the basic measurement principle. Briefly, an electrode of defined
area (6.45 cm2) is fixed between two planar and parallel plates with the help of double-sided adhesive
tape (3M). After a start phase, in which the specimen is approached before contact is established,
the compression phase takes place. Within the compression phase, the compression stress rises until a
defined pressure level (2000 N) is achieved and then kept constant during dwell time (120 s), in order
to allow the adhesive to contact the electrode. Afterwards, the pull-off phase (1000 mm¨min´1) takes
place, and the maximum tensile force is detected. The adhesion strength σn is calculated, by using
Equation (1), from the maximum tensile force |Ft, max| or pull-off force related to the sample area A.

σn “
|Ft,max|

A
(1)
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2.3. Electrochemical Characterization

Half-cells, i.e., cells made with the Li metal anode (Rockwood Lithium, battery grade, Frankfurt
am Main, Germany), were assembled in pouch bag configuration in order to evaluate the effect of PA
and the different binders (CMC, GG and pectin) on the LTO electrodes’ performance. The cells were
assembled in a dry-room (R.H. <0.01% at 20 ˝C ˘ 1 ˝C), using commercial electrolyte consisting of a
1 mol solution of lithium hexafluorophosphate (LiPF6) in a mixture of ethylene carbonate and dimethyl
carbonate (EC:DMC (1:1 w/w)) (LP30, BASF, Ludwigshafen, Germany). The porous polyethylene
membrane from Asahi Kasei (Hipore SV718, Tokyo, Japan) was used as the separator. Full-cells were
also assembled to evaluate the potential of the aqueous processed electrodes in Li-ion cells. For such
tests, coin cells (2032) were assembled in an argon-filled glove box (O2 < 0.1 ppm, H2O < 0.1 ppm)
using NMC and LTO electrode discs (area = 1.13 cm2). As the separator, a glass felt (GF/D, Whatman,
Maidstone, England) was placed between the electrodes and soaked with the electrolyte (LP30).
The cells were tested using a MACCOR Battery tester 4300 (Tulsa, OK, USA) at controlled temperature
in climatic chambers (Binder KB 400) at 20 ˝C ˘ 0.1 ˝C. The galvanostatic charge/discharge tests
of LTO half-cells were performed between 1.0 V and 2.5 V vs. Li/Li+. The galvanostatic tests were
performed at different C-rates (0.1C, 0.5C, 1C, 2C, 3C and 5C). The full cell (NMC/LTO) tests were
carried out between 1.3 V and 2.8 V.

3. Results and Discussion

3.1. Thermal Stability

Figure 2 displays the TGA results in N2 atmosphere of LTO, CMC, GG and pectin. LTO particles
are stable to 500 ˝C since no material degradation is detected up to this temperature. The three
binders, on the other hand, show comparable weight loss profiles up to 200 ˝C. The weight decrease at
200 ˝C is related to water desorption from the polymers since they were not pre-dried. Above 200 ˝C,
pectin exhibits a sharp decomposition, thus showing a lower thermal stability than CMC and GG,
in line with previous reports [12]. In contrast, CMC and GG start to decompose only at temperatures
above 250 ˝C [10,13]. The decomposition mechanism of all three polymers is determined by the
breakdown of the main polymer chain [7,10,12–14]. Overall, all binders showed thermal stability at
least up to 200 ˝C, which allows the high temperature (180 ˝C) drying of the coated electrode without
thermal decomposition.
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3.2. Electrode Surface Characterization

SEM images from the unpressed electrodes are shown in Figure 3. Panel (a) shows the micrograph
of the LTO-CMC electrode prepared without PA addition. The electrode surface is dominated by
cavities generated by the gas evolution, which originates from the reaction of the alkaline slurry with
the aluminum current collector during the casting and drying step. In fact, without the addition of PA,
the slurry achieves a pH of 11.4 (see Figure S1), leading to aluminum (current collector) corrosion and
H2 bubble formation [15]. For a detailed investigation of the Al current collector corrosion, energy
dispersive X-ray spectroscopy EDX experiments were performed on several spots of the LTO-CMC
electrode. Table S1 shows the elemental composition and Figure S2 the SEM micrograph of the spots
evaluated. Spots 1 (Spectrum 1) and 2 (Spectrum 2) are in the depth of the cavity, while Spot 3
(Spectrum 3) is on the electrode surface. The high fraction of Al detected on Spots 1 (87.69%) and 2
(66.12%) reveals the exposure of the current collector at the bottom of the observed cavities. In Spot 3,
a small fraction of Al was detected (1.2%), which is a side product of the Al corrosion, mainly Al2O3,
which after solubilization from the current collector, is redeposited onto the solid electrode components
after solvent evaporation. Thus, the high pH value of the aqueous LTO slurry corrodes the aluminum
current collector, and traces of Al can be detected in the composite electrode layer. Its influence will be
discussed in the next sections.

On the other hand, the electrodes prepared by adding 1 wt% PA (Figure 3b; LTO-CMC-PA) show
no cavities due to the pH adjustment at values around ~6.7, which avoids Al corrosion (see Figure S1).
Moreover, Figure 3c,d displays the surface of the electrodes prepared using pectin and GG as binders.
Cracks can be observed on the surface of the LTO-pectin-PA electrode. The LTO-GG-PA electrode
surface is much more homogeneous than that of LTO-pectin-PA, but small defects can also be detected.
The defects on the electrode are associated with the binder shrinkage during the final drying step.
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as the binder and phosphoric acid (PA) (LTO-CMC-PA); (c) pectin as the binder and PA (LTO-pectin-PA);
(d) and guar gum as the binder and PA (LTO-GG-PA).

3.3. Adhesion Strength

Electrode adhesion strength is a relevant factor for LIBs’ development [16]. The coated
composite electrode must, in fact, stand the mechanical stress upon cutting, winding, cell assembling
processes and for battery cycle life. Figure 4 displays the adhesion strength of the LTO electrodes.
The adhesion strength of the electrode prepared without PA (LTO-CMC) could not be determined,
due to cohesion-failure during the pull-off step, i.e., parts of the electrode layer remained on both
the adhesive tape and the current collector. This is an extremely negative phenomenon because the
delamination of small areas of the electrode layer during processing would reduce the electrode active
layer, strongly affecting the cell performance. As depicted in Figure 3a (LTO-CMC), the electrode’s
surface morphology is not homogeneous due to the aluminum corrosion. Even after electrode
compression (image not shown), the solid particles in the composite electrode do not adhere to
each other. On the other hand, the adhesion strength of electrodes coated from PA-containing slurries
was successfully measured. The LTO-CMC-PA electrodes exhibited the highest value of adhesion
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strength (>1100 kPa) compared to the LTO-pectin-PA (>600 kPa) and LTO-GG-PA (>450 kPa) electrodes.
The higher adhesion strength of CMC compared to GG electrodes can be explained by the linear
β-linkage polymer chain geometry. The interchain hydrogen bonds between the cellulose chains are
stronger than between the galactomannan branched chains [10]. Moreover, the linear α-linkage pectin
galacturonic acid chain seems to be weaker than the β-linkage of the CMC molecule. In fact, it has
been reported that α-linkage polysaccharides are flexible, whereas β-linkage polymers are stiff [11].
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Figure 4. Adhesion strength of LTO electrodes fabricated using PA as an additive and CMC, guar gum
and pectin as the binder.

3.4. Electrochemical Characterization

In order to evaluate the influence of the polymeric binders in LTO electrodes’ performance,
half-cells were assembled and tested at several C-rates. In the rate capability test, different current
densities are applied to the electrode under investigation, and the corresponding delivered capacities
are recorded. Thus, the cells were tested at low (0.1C and 0.5C) and high (2C, 3C and 5C) C-rates
(the C-rate is commonly used in battery testing, because it is independent of the electrode active
material mass; 1C rate corresponds to a specific current leading to the full discharge/charge of the
electrochemical cell in one hour).

In Figure 5a are depicted the discharge capacities of half-cells assembled with lithium metal and
LTO electrodes, these latter incorporating different binders (CMC, CMC-PA, GG-PA and pectin-PA).
During the first five cycles at low C-rate (0.1C), the electrodes made from PA-containing slurries
showed similar capacity values, while slightly lower discharge capacities were observed for the
electrode made without PA. Once the current density increases to 0.5C and subsequently to 1C,
the difference in cycling performance between CMC and CMC-PA electrodes becomes very obvious.
While both electrodes show a stable cycling performance, higher discharge capacities are delivered
from the CMC-PA electrode. At high C-rates (2C, 3C and 5C), the difference is even more pronounced.
At 5C (Figure 5a; 30th cycle), 144 mAh¨g´1 and 124¨mAh g´1 were delivered by the CMC-PA and
CMC electrodes, respectively. The lower discharge capacities of the CMC-based electrode are mostly
related to the lower conductivity of the loosely-packed coated layer.

Upon the addition of PA in the slurry (Figure 5a), the electrodes exhibit remarkable electrochemical
performance, even at high C-rates. Additionally, the cells showed excellent capacity retention after
five cycles at 5C and the subsequent cycles at 1C. However, the LTO-CMC-PA electrode shows a
lower rate capability compared to those based on GG-PA and pectin-PA. This could be related to
the higher electrolyte uptake of, e.g., guar gum compared to CMC [9,10]. In fact, the motion of the
galactomannan and the ether oxygens’ lone-pair electrons of the GG molecule coordinate Li+ ions in
its structure, comparable to polyethylene oxide (PEO) in solid electrolytes, which accounts for the
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improvement in electrochemical performance [17,18]. However, CMC-PA electrodes show the highest
value of adhesion strength, due to the optimal binding of the solid material components resulting from
the homogeneous binder distribution, i.e., the optimal electrode preparation. Thus, it is reasonable
to assume that the better electrochemical performance of LTO electrodes made with guar gum and
pectin is rather related to increased ionic conductivities than solid particle adhesion. Additionally,
pectin-PA and GG-PA electrodes show comparable electrochemical performance at low C-rates of 0.1C,
0.5C and 1C. However, at 2C, 3C and especially 5C, electrodes using pectin as the binder showed the
highest capacity. As the adhesion strength is obviously not directly correlated with the electrochemical
properties of the herein presented electrodes, the best performance of pectin electrodes has to be
related to its different molecular structure and its affinity towards the electrolyte favoring lithium
ion transport.

Figure 5b displays the discharge capacity and the coulombic efficiency of a cathode-limited,
lithium-ion cell consisting of NMC and LTO electrodes, both made using CMC as the binder and PA
as the pH-modifier. Besides the first cycle at low current density (0.1C), the test was performed at
constant charge/discharge current densities of 1C. The cells showed an average discharge capacity
of ~120 mAh¨g´1 in the course of 190 consecutive charge/discharge cycles at a 1C rate. Moreover, high
values of coulombic efficiency (~99.8%) were achieved. These results confirm the validity of making
NMC and LTO electrodes using CMC and PA as the binder and the pH-modifier, respectively, resulting
in fully-aqueous processed LIBs with remarkable performance.
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Figure 5. Delivered discharge capacity of (a) LTO half-cells using CMC as the binder and CMC,
pectin and GG as the binder and PA as an additive at several current densities; LTO mass loading:
3.6–4.1 mg¨cm´2; electrolyte: 1 mol of LiPF6 in ethylene carbonate and dimethyl carbonate (EC:DMC
(1:1 w/w)); and (b) cathode-limited Li[Ni0.33Mn0.33Co0.33]O2 (NMC)/LTO full-cell using CMC as the
binder and PA as an additive at 1C; NMC mass loading: ~4.3 mg¨cm´2; electrolyte: 1 mol of LiPF6 in
EC:DMC (1:1 w/w).

4. Conclusions

The reported results prove the applicability of polymers from renewable sources as binders
for LTO electrodes, using PA as the pH-modifier. A small addition of the latter, in fact, leads to a
great performance improvement due to optimal composite electrode cohesion and adhesion to the
current collector.

In addition to carboxymethylcellulose, two natural binders, guar gum and pectin, were evaluated
for making LTO electrodes. Regarding the thermal stability, the decomposition of pectin was detected
near 200 ˝C, while GG and CMC are stable up to 250 ˝C. Thus, all three binders can support high
temperature drying (180 ˝C). Electrodes prepared using GG showed the lowest adhesion strength,
mostly due to its branched mannose polymer chain. CMC-PA electrodes (linear cellulose chain) were
more adhesive than pectin (linear galacturonic acid chain). The effect of the polymeric chain was also
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evident in the electrochemical test: guar gum- and pectin-based electrodes showed a slightly superior
rate capability compared to CMC electrodes. As discussed, the GG molecule offers a better affinity
for the organic electrolyte than CMC. Additionally, the binder ability to coordinate Li+ affects the
overall electrochemical performance. The Li+ coordination by GG and pectin polysaccharides may be
higher than that of the CMC molecule due to the lower motion of the linear cellulose chain. Moreover,
the pectin polymer might also have good affinity to organic electrolytes, such as the GG molecule,
due to the α-linking between the galacturonic acid rings, resulting in higher electrolyte absorption.

Finally, full lithium-ion cells were manufactured using NMC and LTO electrodes both prepared
via the aqueous process using CMC as the binder and PA as the pH-modifier. The full-cell delivered
a stable and remarkable discharge performance of ~120 mAh¨g´1 at 1C over 190 cycles with high
coulombic efficiency (99.8%). These results reaffirm the suitability of making LIB electrodes by simple
and inexpensive aqueous processes.

Supplementary Materials: Supplementary Materials can be found at www.mdpi.com/2073-4360/8/8/276/s1.
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