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Abstract(English Version)

The topic of this dissertation are multi-period overlapping generations growth model. In the

literature, these models are usually considered for two-period lived generations. If there is

the consideration of equilibria in an economy with more lifetime periods, either prices are

not endogenous or they are solved only numerically.

The present thesis presents the analytical approach for multi-period models with production.

Here, first the model is introduced with a general structure and there is the description of a

general approach to determine an equilibrium. This approach is applied in the following to

the common economy with logarithmic utility and Cobb-Douglas production function. Here,

we first consider particular labor distributions among the generations such that the equi-

librium can be determined uniquely. For a lifetime of three periods the general approach

combined with an assumption of a solution’s structure allows to prove the existence of a

unique equilibrium of that structure.

Even for particular distributions of labor supply there are phenomena that are not known in

the two-period model. Hence, during the present work both the equilibrium dynamics and

the results of the following analysis with respect to ling-run behavior, dynamic efficiency and

optimality are compared to the well-known results of the two-period mode. For the main

part the analysis takes place for the particular distributions of labor supply. Therefore, the

applicability of efficiency and optimality criteria to the present model is shown in general.

Altogether this work paves the way for a theoretical existence result for many numerical

studies and it is basic for future research in this area.
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Abstract (German Version)

Gegenstand dieser Dissertation sind mehrperiodige Wachstumsmodelle mit überlappenden

Generationen. Diese Modellklasse wird in der Literatur vorwiegend für Generationen mit

einer Lebenszeit von zwei Perioden betrachtet. Bei längeren Lebensdauern wird entweder

auf endogen bestimmte Preise verzichtet oder eine rein numerische Vorgehensweise gewählt

um eine Gleichgewichtslösung zu bestimmen.

In der vorliegenden Arbeit erfolgt die analytische Betrachtung der mehrperiodigen Modelle

mit Produktion. Dazu wird zunächst das Modell in einer allgemeinen Struktur eingeführt

und die allgemeine Herangehensweise zur Bestimmung einer Gleichgewichtslösung erläutert.

Die Anwendung dieses Vorgehens findet im Folgenden an der gängigen Ökonomie mit log-

arithmischer Nutzenfunktion und Cobb-Douglas-Produktionsfunktion statt. Hier werden

zunächst spezielle Verteilungen des Arbeitsangebots über verschiedene Generationen be-

trachtet, in denen eine Gleichgewichtslösung eindeutig bestimmt werden kann. Für die

Lebenszeit von drei Perioden wird die allgemeine Herangehensweise mit der Annahme einer

speziellen Lösungsstruktur verknüpft und so die Existenz eines eindeutigen Gleichgewichts

dieser Struktur bewiesen.

Bereits für spezielle Verteilungen des Arbeitsangebotes lassen sich Phänomene erkennen,

die aus dem zweiperiodigen Modell nicht bekannt sind. Daher werden im Rahmen der Ar-

beit sowohl die Gleichgewichtslösung als auch die Ergebnisse der anschließenden Analyse

der Gleichgewichtsdynamik bezüglich Langzeitverhalten, dynamischer Effizienz und Opti-

malität mit den bekannten Resultaten des zweiperiodigen Modells verglichen. Die Analyse

erfolgt in erster Linie für spezielle Verteilungen des Arbeitsangebots im Fall von drei Peri-

oden lebenden Agenten. Dafür wird zunächst allgemein die Anwendbarkeit von Effizienz-

und Optimalitätskriterien auf das vorliegende Modell gezeigt.

Diese Arbeit ist damit ein Türöffner zur Erschaffung einer theoretischen Existenzgrundlage

für viele numerische Untersuchungen und stellt eine Basis für zukünftige Forschung in diesem

Bereich dar.
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Chapter 1

Introduction

30 years are a quite large time span. If you think about your life 30 years ago many things

will have changed significantly over time. Looking into history it is approximately the time

span during which in the beginning of the 20th century two world wars took place or later

the Berlin Wall divided Germany. During the last 30 years there were multiple crises as the

Dot-com bubble or the financial crises in 2007. These are just some examples what happened

during a longer time period in the last century.

Why do I think about a span of 30 years? This is approximately the length of one period

in the general two-period overlapping generations model. In this model a generation is born

at the beginning of one period and dies at the end of the following period. In the general

model the action of a generation reduces to one decision in the first period. Assuming that

agents enter the economy at about 20 years of age and die at the age of about 80, one period

corresponds to a 30-year period. So there is the critique that making only one decision

during such a long time period is not realistic (cf. Molnár and Simonovits [17]).

Reducing the length of one period requires an increase of the number of lifetime periods if a

reduction of total lifetime is not desired. The theoretical analysis of the overlapping gener-

ations model with more than two periods, which is insufficiently considered in the literature

yet, is the topic of the present work. We consider an overlapping generations economy with

production where agents live for an arbitrary but fixed number of periods. The objective

is to define and determine an inter-temporal competitive equilibrium. The definition takes

place in a very general context while the analysis and determination is limited to a particular

economy.

In the literature, overlapping generations models have been very popular ever since their

introduction by Samuelson [21] more than 50 years ago. This paper focuses on the efficiency

paradox, that competitive equilibria may be pareto inefficient. More recently overlapping

generations models have often been used to explain bubbles and to analyze their impacts.
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2 1 Introduction

Bubbles in overlapping generations economies have been introduced by Tirole [25].

Several economists concentrated on the efficiency paradox (see Shell [22] or Cass and Yaari

[9] for example). The consumption-loan model introduced by Samuelson has been extended

in many ways. The question about existence of equilibria and their properties has been

considered by Balasko and Shell [3] or Gale [14] just to mention two examples. Balasko

et al. [5] analyze the overlapping generations economy as a pure exchange economy with

fewer requirements on the utility functions and heterogeneous commodities. This paper

provides an algorithm how an economy with long-lived agents can be transformed into a

two-period economy with multiple heterogeneous commodities. As in the economy with

production prices depend on each period’s capital stock this transformation is not possible

in the economy considered in this thesis. Thus, for the considered economy another approach

is necessary. The idea of increasing the number of periods in general is not new as well. One

of the first multi-period overlapping generations model was presented by Auerbach and

Kotlikoff [2]. They provide a model where agents live for 55 periods. They do not only

extend the number of periods, they also introduce a government sector and endogenous

labor supply. While considering the decision problem of one household they state that

there is no closed form solution for the decision variables, therefore they solve the model

numerically. Prices are determined endogenously such that expectations and realized values

coincide. In his work Colucci [10] provides a detailed overview over articles on overlapping

generations. He considers a multi-period pure exchange overlapping generations model with

government where he restricts the number of steady states. Molnár and Simonovits [17]

consider a multi-period overlapping generations economy that they call ’overlapping cohort’

economy because they argue that generation in its usual sense would only allow to consider

up to four generations to live at the same time. Their focus is on different possibilities to

generate expectations about the future. Again there is no production sector in their work.

In Bullard [7] a n-period version of Samuelson’s model is analyzed. In this model Bullard

states that the aggregate savings function complicated. Although this paper considers a

particular logarithmic utility function, he is able to show that in his economy there are at

most two stationary equilibria, “the autarkic one and the monetary one” (Bullard [7]), that

coincide with those in the two period model with money. Furthermore he gives some possible

extensions that are worth to be discussed. One of them is introducing production.

Production in the two-period model was first introduced in Diamond [13]. His work focuses

on the two-period economy and shows that introducing debt could solve the inefficiency

problem. Since then there have been many publications on overlapping generation models

that refine or extend the structure of the model. Galor and Ryder [15] provide the two-

period overlapping generations model in a very clear and well-structured notation. They

focus on the question of stability of steady states and in a later work the dynamic efficiency
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is regarded as well (see Galor and Ryder [16]). Ŕıos-Rull [20] considers a very general

model with labor-leisure choice, a neoclassical production function with productivity shock

and uncertain lifetime limited to a maximal age. He gives a definition of a temporary

equilibrium and analyzes numerically how an economy’s different market structures affect

the equilibrium allocation. An approach to determine an inter-temporal equilibrium is not

given there.

As it is for example stated in the work of Auerbach and Kotlikoff [2] increasing the number

of periods leads to a complicated framework. Therefore, today mostly these models are

considered numerically. Simulating the model shifts the main focus from the existence and

properties of equilibria to impacts of different features of the model. The structure of the

overlapping generations model is used to evaluate social security systems themselves (see

Wrede [26] for example) or impacts on those as it is done in de la Croix et al. [12]. In actual

simulations often an uncertain lifetime is assumed. In general there is a benchmark solution

that is the steady state solution, but to the best of my knowledge there is no existence result

for an equilibrium.

This thesis presents a first step towards filling this gap. It provides a theoretical framework

for the multi-period overlapping generation models with productive capital and defines the

corresponding equilibrium conditions. Moreover, a particular economy is presented, that

may serve as a reference model for future research.

The dissertation is organized as follows. Chapter 2 presents the general model’s structure

as well as the decision problems and the equilibrium concept. Chapters 3 and 4 consider

the benchmark economy with particular utility and production functions. Chapter 3 derives

properties of a dynamic equilibrium under the general assumption of a particular equilibrium

structure. Moreover, it shows the existence and uniqueness of such an equilibrium in the

three-period economy. Chapter 4 then analyzes the derived dynamic of the three-period

economy with respect to long-run behavior and optimality. Furthermore, the results are

compared to the well-known two-period dynamics. Finally, Chapter 5 gives a short summary

and outlook.





Chapter 2

The General Model

The objective of this chapter is to give a detailed description of the model’s general struc-

ture.

The outline of this chapter is as follows: Section 1 introduces the production sector and

describes the firm’s decision problem. Section 2 explains the structure of the population.

Section 3 introduces the decision problem of an arbitrary consumer. Section 4 gives the defi-

nition of an equilibrium in the underlying economy. Finally, Section 5 provides an approach

to determine an equilibrium.

2.1 Decision Problem of the Firm

The production side of the economy is given by a representative firm that uses capital and

labor to produce the single consumption good, which is the numeraire. The input factors are

denoted byK for capital and L for labor while Y denotes output. The underlying production

function is

F : R+ × R+ → R+, (K,L) 7→ F (K,L) = Y.

F is assumed to be C2 and homogeneous of degree one.

In each period t ≥ 0 the firm pays a wage per unit of labor and return per unit of capital.

Let wt denote the wage and rt the return. Profit of the firm in period t ≥ 0 is given by

Πt(K,L) = F (K,L)− wtL− rtK.

In each period t ≥ 0 the firm decides about labor and capital demand, taken wage and

return as given. So the decision problem of the firm reads

max
(Kt,Lt)>0

Πt(Kt, Lt).

5



6 2 The General Model

Let kt =
Kt

Lt
be the capital-labor-ratio and define the gross production function in intensive

form

f(kt) := F (kt, 1).

f is assumed to satisfy the following properties:

f(k) ≥ 0, f ′(k) > 0, f ′′(k) < 0 (2.1)

The first order conditions of the firm’s decision problem lead to the following optimality

conditions on kt:

wt = f(kt)− ktf
′(kt) (2.2a)

rt = f ′(kt) (2.2b)

Thus, each sequence {(Kt, Lt)}t≥0 which capital-labor-ratio satisfies equations (2.2) for all

t ≥ 0 is an optimal plan of capital and labor demand of the firm. Note that wt, rt ≥ 0 by

the properties of f (rt > 0 is obvious, wt ≥ 0 follows by the concavity).

2.2 Population Structure

The considered economy is a classical overlapping generations economy that is assumed to

be perfectly competitive and all decisions and activities are done in infinite discrete time. In

each period t ≥ 0 a new generation is born which lives for I+1 consecutive periods (I ∈ N),

i.e., an agent born at the beginning of period t dies at the end of period t + I. Lifetime

I+1 is given exogenously. The number of agents born in each period t ≥ 0 is assumed to be

constant over time and denoted by N . Without loss of generality it is normalized to N = 1.

Each generation is indexed by i ∈ {0, . . . , I} =: I, where i denotes the remaining lifetime.

That is in period t the agent born in period t is indexed by ’I’, the agent born in period t−1

with ’I − 1’ and so forth. Thus, in each period there are I + 1 agents alive. Note that for

I = 1 the model describes the well-known model where agents live for two periods. Thus,

the two-period model constitutes a benchmark for the multi-period model.

Figure 2.1 visualizes the population structure. The markings on the timeline illustrate the

beginning of a new period and thus the end of the previous period.

2.3 Decision Problem of a Single Household

This section studies the behavior of a single consumer. Without loss of generality set t = 0

here. The consumer is a member of an arbitrary generation i ∈ I. For purposes of simpler
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... ✲

timet-1 t t+1 .............. t+I t+I+1 t+I+2 ..............

lifetime of generation born in t-1
︷ ︸︸ ︷

lifetime of generation born in t
︷ ︸︸ ︷

lifetime of generation born in t+1
︷ ︸︸ ︷

..............

Figure 2.1: Generational structure of the model

indexation drop the generational index in this section.

In each period the consumer is endowed with wealth. Let ωn denote the wealth in period

n = 0, ..., i which is defined by

ωn = ℓnŵn + r̂nkn. (2.3)

Wealth is a composition of labor and capital income. In each period n ∈ {0, ..., i} the con-

sumer supplies a specific amount of labor to the labor market, that is given exogenously and

denoted by ℓn. Supplied labor in period n is refunded with wage ŵn. Analogously, capital

kn ∈ R is supplied to the capital market and refunded with return r̂n. The prices ŵn and r̂n

are given or expected by the consumer.

The consumer has to decide how to divide up wealth between consumption and investment.

Invested capital coincides with capital supply in the following period. Let (cn)
i
n=0 denote the

consumption plan and (kn)
i
n=1 the investment plan of the consumer. Initial capital k0 ∈ R is

given and together with prices it determines the consumer’s wealth ω0 in the initial period.

Given prices, ŵi = (ŵn)
i
n=0 and r̂

i = (r̂n)
i
n=0, and initial capital k0 the agent decides about its

consumption plan and an investment plan for the remaining lifetime periods. Consumption

is required to be positive.

Note that in contrast to the two-period economy it is not sufficient to have expectations

about the prices of the following period. Expectations are required up period i, the last

period the agent is alive. So the consumer faces to the following budget constraints:

cn + kn+1 ≤ ωn n = 0, ..., i, ki+1 := 0 (2.4a)

cn ≥ 0 n = 0, ..., i (2.4b)

Thus, the budget set is given in dependence of the prices and initial capital

B(ŵi, r̂i, k0) :=
{(

(cj)
i
j=0, (kj)

i
j=1

)
|(2.4) are satisfied for all j

}

.
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In the two-period economy capital supply is required to be positive as well. In general

investment may be negative as well, but negative investment reduces future wealth. By

construction in the last period a consumer is alive, she consumes all her wealth and has

no opportunity to make an investment. So wealth needs to be positive in that period and

infinitely negative investment must be excluded by introducing a lower bound. This is

presented in the following lemma.

Lemma 2.3.1. Given price vectors ŵ and r̂ and initial capital k0, an investment plan (kn)
i
n=1

satisfying (2.4) also satisfies

kn +
i∑

j=n

ℓjŵj

j∏

m=n

r̂m

> 0 ∀n = 1, .., i.

In particular the constraint must hold for initial capital k0. As it can be seen in the proof of

Lemma 2.3.1, consumption in period i would be negative if there was capital supply below

the lower bound in one period. Obviously, this holds for n = 0 as well.

Lemma 2.3.2. There is a no-bankruptcy condition for initial capital k0:

k0 +
i∑

j=0

ℓjŵj

j∏

m=0

r̂m

> 0 (2.5)

After the definition of boundaries for capital supply, consider the decision problem of the

consumer. The objective of the consumer is to maximize lifetime utility. Consumer i ∈ I

faces the following ’remaining lifetime’ utility function

U
(

(cn)
i
n=0

)

=
i∑

n=0

βnu (cn)

with discount factor β ∈ (0, 1) and period-wise utility function

u : R+ → R+, c 7→ u(c).

The following assumption states the properties of u.

Assumption 2.3.1. The utility function u : R+ → R+ is C1, strictly increasing and strictly

concave. Moreover, it satisfies the Inada conditions

lim
cց0

u′(c) = ∞

lim
c→∞

u′(c) = 0.



2.4 Equilibrium 9

In the following assume that Assumption 2.3.1 holds. Now, the decision problem of a single

household can be defined:

max
((cn)in=0

,(kn+1)
i−1

n=0)

{

U
(

(cn)
i
n=0

)

|
(

(cn)
i
n=0 , (kn+1)

i−1
n=0

)

∈ B(ŵi, r̂i)
}

(2.6)

Taking into account that utility is strictly increasing in consumption constraint (2.4a) is

binding and the upper and lower bound of investment are non-maximizing by Assumption

2.3.1. So the first order conditions describe the consumer’s optimal decision:

βr̂n+1 =
u′(ℓnŵn + r̂nkn − kn+1)

u′(ℓn+1ŵn+1 + r̂n+1kn+1 − kn+2)

(

=
u′(cn)

u′(cn+1)

)

(2.7)

for all n ∈ {0, . . . , i− 1} with ki+1 := 0 for purposes of a compact notation.

Even in the three-period economy the equations are much more complex than in the two-

period economy, where the first order conditions reduce to one simple equation when there

is no investment in the following period. Obviously, this simple equation is part of the

equilibrium equations for each number of periods. But already in the three-period economy

there is a second equation that depends on capital supply of three different periods. Thus,

knowing current capital supply it is not possible to decide about next period’s capital supply

without an assumption about further decisions. However, the following lemma states a

uniqueness result.

Lemma 2.3.3. Suppose initial capital k0 and prices ŵ, r̂ satisfy the no-bankruptcy constraint

k0 > −
i∑

j=0

ℓjŵj

j∏

m=0

r̂m

.

Then, there exists a unique utility-maximizing consumption-investment plan (c⋆0, .., c
⋆
i , k

⋆
1, .., k

⋆
i )

which is characterized by the equations

c⋆n + k⋆n+1 = ℓi−nŵn + k⋆nr̂n, n = 0, . . . , i, k⋆i+1 := 0

r̂nβu
′(c⋆n) = u′(c⋆n−1), n = 1, . . . , i.

In spite of the additional complexity Lemma 2.3.3 guarantees that given prices the con-

sumer’s decision is uniquely defined by equations (2.7). Thus, the first order conditions are

an optimality condition for each consumption-investment plan.

2.4 Equilibrium

The previous sections have shown that given initial capital supply for all generations, the

economy, now denoted by E , is described by the lifetime of the agents, the labor profile, the
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utility function, the agent’s discount factor and the production function of the firm. That

is E = 〈I, ℓ, u, β, f〉 plus initial values.
So far, the single decisions have been considered. As the equilibrium links decisions over

the generations and over time, in the following the generational index will be necessary as

well as the general time index. The economy contains three markets: the labor market, the

capital market and the consumption good market. It is sufficient to focus on the labor and

the capital market as by Walras’ law the third is cleared if these two are cleared.

Labor supply in period t ≥ 0, is defined by the so-called labor profile. As mentioned

in Section 2.3 the specific amount of labor a consumer supplies is given exogenously and

constant over time, i.e., labor supply of generation i, i ∈ I, is the same for all periods t ≥ 0.

The labor profile describes the fraction of total labor supply a generation supplies and is

defined as

ℓ : I → R+, i 7→ ℓi.

Total labor supply can be normalized to one without loss of generality, i.e.,
∑

i∈I
ℓi = 1.

Total capital supply in period t ≥ 0 is defined as the sum of individual capital supply, kit, of

the different generations i ∈ I.

Thus, total labor and capital are given by

1 = Lt

∑

i∈I
kit = Kt

and by equations (2.2), the market clearing factor prices are

wt = W(kAt ) = f(kAt )− ktf
′(kAt ) (2.8)

rt = R(kAt ) = f ′(kAt ) (2.9)

with kAt = Kt

Lt
=
∑

i∈I
kit denoting aggregated capital.

Note that the definition of the decision problem of the firm requires kA to be positive. So far,

a temporary equilibrium is described. The economy’s set-up requires a dynamic structure

of equilibrium. The assumption of rational consumers with perfect foresight fills this gap.

So together with the optimality conditions (2.7) a general definition of equilibrium can be

given:

Definition 2.4.1. Let initial values for the number of agents born in period t = 0 and capital

supply k0 = (ki0)
I−1
i=0 satisfying kA0 > 0 and the no-bankruptcy constraint for all i be given.

An equilibrium for E is a price sequence {wt, rt}t≥0 together with an allocation {(ct,kt)}t≥0

with kt = (kit)
I−1
i=0 and ct = (cit)i∈I ≫ 0 satisfying the equilibrium equations, such that
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wt = W(kAt ) (2.10a)

rt = R(kAt ) (2.10b)

βu′(ci−1
t+1)R(kAt+1) = u′(cit), i ∈ I\{o} (2.10c)

cit + ki−1
t+1 = ωi(kt), i ∈ I. (2.10d)

For purposes of a compact notation, let kit ≡ 0 for i = −1.

Before continuing with the description how equilibria will be constructed, there is one labor

profile that has to be excluded. There is one generation that does not participate in capital

building: the old. If all labor would be supplied by this generation, the generations par-

ticipating in this process, need to invest a negative amount of capital to generate positive

consumption. Thus, in sum capital supply would be negative.

Lemma 2.4.1. There is no equilibrium for the labor profile ℓ0 = 1, ℓi = 0, i = 1, ..., I.

Assumption 2.4.1. The labor profile ℓ : I → R+, i 7→ ℓi, satisfies
I∑

i=1

ℓi > 0.

As the objective is to define and analyze equilibria in the following it will be assumed that

Assumption 2.4.1 holds.

2.5 Recursive Structure

The assumption of rational agents with perfect foresight together with the equilibrium con-

ditions makes the construction of an equilibrium extensive. So in general computing an

equilibrium amounts to solving an infinite number of coupled equations. This complexity is

captured by the following functional approach. Focus on a special type of equilibria, Markov

equilibria, where the following state only depends on the current state. In the two-period

economy this holds, as the dynamical system defining capital supply evolution is one di-

mensional and of degree one: As it can be seen in Appendix A next period’s capital stock

is a function of the current capital stock, which defines all other variables in the model. A

recursive structure is also very helpful if the model is simulated.

So following the two-period economy, capital supply is the state variable in the general

multi-period economy as well. The state space is denoted by K and it is a subset of RI .

The elements k ∈ K, with k = (ki)
I−1
i=0 , describe the distribution of capital supply over the

generations. The generation, that has just been born, is not included as it does not supply

any capital by construction. Specifying the state space exactly will be one of the challenges

during this thesis. The main problem here is to state the lower bound for generational cap-

ital supply. In Lemma 2.3.1 a lower bound is defined, but it depends on future prices. As
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the prices are not given, but are determined by future capital, this result cannot easily be

transferred to the definition of the state space.

Wealth of generation i ∈ I is determined by a function of capital supply ωi : K → R

k 7→ ωi(k) := ℓiW(kA) + kiR(kA). (2.11)

Now, the concept of Markov equilibrium can be defined formally:

Definition 2.5.1. A Markov equilibrium for E is a mapping K : K −→ K such that
{{

(cit)i∈I, (k
i
t)i∈I\{I}

}

t≥0

}

defined as kt+1 = K(kt), t ≥ 0 and cit = ωi(kt) − ki−1
t+1 for i ∈ I

together with the price sequence {wt, rt}t≥0 defined as in (2.10) is an equilibrium.

Note that any Markov Equilibrium K = (Ki)i∈I\{I} for E defines an induced function

C = (Ci)i∈I : K −→ R
I

++

Ci(k) := ωi(k)−Ki−1(k), (2.12)

such that given initial capital supply, k0 ∈ K,
{

(K(k0))
t
, C
(
(K(k0))

t)
}

t≥0
is an equilibrium

allocation. Obviously, the wealth function is a key factor in the equilibrium equations.

Hence, it is the topic of the following subsection.

2.5.1 Properties of the Wealth Function

The analysis of the wealth function’s (2.11) properties mainly focuses the behavior of indi-

vidual wealth with respect to capital supply of the different generations. First look at the

monotonicity properties of the wealth function.

Before considering the derivatives of the wealth function of agent i, ωi
t, with respect to cap-

ital supply of different generations, that is kit and k
j
t with j 6= i, analyze the properties of

aggregated capital, kA =
I−1∑

i=0

ki, and prices (2.10) with respect to individual capital supply:

∂kA

∂ki
= 1

∂W(kA)

∂ki
= −kAf ′′(kA)

∂R(kA)

∂ki
= f ′′(kA)

Now, the monotonicity properties are analyzed:

∂ωi(k)

∂ki
= ℓi(−(kAf ′′(kA)) + f ′(kA) + kif ′′(kA) (2.13)

∂ωi(k)

∂kj
= ℓi(−kAf ′′(kA)) + kif ′′(kA) (2.14)
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As the production function is assumed to be strictly increasing (cf. (2.1)), it is obvious that

for all k ∈ K it is
∂ωi(k)

∂ki
>
∂ωi(k)

∂kj
∀ i 6= j.

Thus, ωi(k) is rather increasing in ki than in kj, j 6= i. The reason is that an increase of

ki has an increasing as well as a decreasing effect on capital income of generation i while

an increase of kj has only a decreasing effect on capital income of generation i as return is

decreasing in each kn, n ∈ I\ {I}. In addition, labor income only depends on aggregated

capital. The effects of an increase of ki and kj, j 6= i, on aggregated capital are the same.

Equation (2.14) shows that for ki < ℓikA wealth ωi(k) is strictly increasing in kj and oth-

erwise it is decreasing as the production function is also assumed to be strictly concave (cf.

(2.1)). The following example illustrates the fact that there is no general monotonicity result:

Assume an economy where all labor is supplied by generation I, the young. Thus, ωI only

consists of labor income while ωi, i < I, only consist of capital income. As wage is increasing

and return is decreasing in ki, for all i ∈ I\ {I}, generation I benefits from any increase

of capital supply independently of the generation. Otherwise, an increase of capital supply

of any generation different from i reduces capital income, and thus generational wealth, of

generation i. Summarized, it can be said that the monotonicity properties of generational

wealth with respect to other generations capital supply highly depend on the labor profile

and the distribution of capital supply.

Considering the behavior of wealth with respect to the own capital supply (2.13) a stronger

statement can be achieved:

f ′(kA) + f ′′(kA)(ki − ℓikA)







>

=

<







0

⇔ ki







<

=

>







(

ℓi − f ′(kA)

f ′′(kA)kA

)

kA (2.15)

Here again equation (2.15) shows that the labor profile plays a key role in the properties

of the wealth function. But with an additional assumption on the production function

monotonicity can be guaranteed.

Assumption 2.5.1. Let f satisfy

f ′′(kA)kA

f ′(kA)
≥ −1.

Lemma 2.5.1. If Assumption 2.5.1 holds, ωi(k) is strictly increasing in ki, i = 0, ..., I − 1.
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Besides the monotonicity behavior, now consider which values wealth takes. Obviously,

there is no upper bound as individual capital supply can be infinitesimal high. As it has

been shown in Section 2.3 there is a no-bankruptcy constraint for consumers capital supply,

depending on future prices. This constraint implies a lower bound for wealth.

Lemma 2.5.2. Given price vectors wI and rI for the next I periods, in each period t ≥ 0

and for each generation i ∈ I there is a critical value for wealth (ωi
t)

crit, defining a lower

bound with

(ωi
t)

crit := −
i∑

j=1

ℓi−jwt+j

j∏

m=1

rt+m

(2.16)

Proof. The result follows by setting the no-bankruptcy constraint of Lemma 2.3.1 in the

definition of wealth.

For i = 0 the critical value turns out to be constant and equal to 0. Moreover, it is obvious

that (ωi
t)

crit does not only depend on future capital supply but also on the labor profile ℓ.

So there exist special labor profiles, such that the dependance of future values vanishes and

the critical value is zero as well:

Lemma 2.5.3. Let ℓj = 0 for j ≤ i, i ∈ I. Then, ωj := (ωj
t )

crit = 0 for j = 0, ..., i+ 1.

Proof. The result follows directly by computing the critical values with the labor profile

ℓj = 0 for j ≤ i, i ∈ I.

The meaning of the labor profile described in Lemma 2.5.3 is that from the age of I − j on

there is no labor supply. Thus, this labor profile represents retirement.

2.5.2 The State Space

As it has already been indicated, the definition of the state space is not straightforward. The

state space needs to represent all possible values of the capital evolution that satisfy some

kind of feasibility. Following the two-period economy the intuition is to define K = R
I
++. If

each generation supplied a positive amount of capital, there is no conflict with bankruptcy

(2.5). But as Lemma 2.3.1 has shown that the lower bound of generational capital supply

may be negative depending on labor profile and prices. Thus, the solution to the decision

problem of the consumer might be negative for some generations. In this case it would be

necessary to include zero investment and to deal with boundary solutions as there is a conflict

with the requirement of representing optimal capital evolution. Moreover, the opportunity

for inter-generational exchange of capital is a property that can lead to effects that are not
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usual in an overlapping generations economy yet. This central benefit of the multi-period

economy should not be excluded by the definition of the state space. Introducing the option

of negative capital supply requires further restrictions. By construction aggregated capital

needs to be positive. But if only aggregated capital is required to be positive, the definition

is too rough. By choosing one generation’s capital supply infinitely large, the other’s could

be very small and violate the no-bankruptcy constraint (2.5). Hence, there is a conflict with

feasibility. So obviously, it is optimal to define the state space as a subset of RI such that

aggregated capital is positive and the no-bankruptcy constraint (2.5) holds. In contrast to

Section 2.3 prices are not given or expected exogenously and by the assumption of perfect

foresight the lower bound depends on future prices and thus on future capital supply. Using

Lemma 2.3.1 it is obvious that the definition of the lower bound of capital supply can be

transferred into a lower bound of wealth. Hence, using Lemma 2.5.3 it is possible to define

a superset of the state space:

K ⊂






k : I\ {I} → R

∣
∣
∣
∣
∣
∣

∑

i∈I\{I}
ki > 0, ω0(k) > 0







Note that this restriction is consistent with the assumptions in the model as the old gen-

eration consumes all its wealth and consumption is required to be positive. The definition

of the state space turns out to be that complex, that even in the benchmark economy in

Chapter 3 it will be done after the construction of optional Markov equilibria.

2.5.3 Constructing Markov Equilibria

This subsection describes a functional approach to obtain Markov equilibria as fixed points

of an operator T defined on a suitably chosen function space K similar to Barbie and

Hillebrand [6]. In the following, there is guidance how to proceed in this approach.

First define a function space K . Note that any Markov equilibrium, that is determined

later, is an element of K . Thus, depending on the generality of the set there may be further

Markov equilibria that are not in K .

The construction is as follows:

Suppose a mapping K̂ : K −→ K, K̂ ∈ K is given, that defines capital evolution in the

following period. Given next period’s capital supply k1 = (ki1)
I−1
i=0 ∈ K, capital supply k2

is defined by k2 = K̂(k1). So given capital supply k of the current period, next period’s

capital supply is defined by the equilibrium equations (2.10) in an implicit function:

βu′(ωi(k1)− K̂i−1(k1))R(kA1 ) = u′(ωi+1(k)− ki1), i ∈ I\{I}. (2.17)

Any solution for k1 implies a mapping K(k) = k1, that determines next period’s capital

stock in dependance of current capital stock. If the definition of the function space K
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guarantees that K(k) ∈ K and the definition of K(k) is unique, a well-defined operator

T : K −→ K can be defined such that T (K̂) = K. By construction any fixed point of T

defines a Markov equilibrium. Note that the uniqueness of a solution of equations (2.17) is

crucial and it may lead to further restrictions on the function space.

The complexity of multi-period overlapping generations models and the construction of their

equilibria were pointed out in the current section. Moreover, it gave an instruction to derive

equilibria. The next chapter treats a particular well-known economy, where the concepts are

implemented.

2.6 Mathematical Appendix

Proofs of Lemma 2.3.1 and Lemma 2.3.2 . The result follows by the fact that con-

sumption is required to be positive. The conjecture is that given prices ŵi, r̂i

kn +
i∑

j=n

ℓjŵj

j∏

m=0

r̂m

> 0 n = 1, ..., i. (2.18)

The argument is an induction argument. If the inequality holds for some n ∈ {1, ..., i}, it
holds for n− 1 as well.

Recall the budget constraints (2.4), requiring positive consumption, i.e., cn > 0, ∀n = 0, ..., i

and the sum of consumption and investment must not exceed wealth, i.e., ωn ≥ cn + kn+1,

∀n = 0, ...i. For purposes of compact notation set ki+1 := 0.

First consider n = i:

By construction the consumer consumes all her wealth in that period, as she dies at the end

of the period and has no opportunity for further investment, i.e., ci = ωi. Together with the

budget constraints it is

0 < ci = ωi = ℓiŵi + kir̂i

⇔ ki > −ℓiŵi

r̂i







=

i∑

j=i

ℓjŵj

j∏

m=i

r̂m








Thus, (2.18) holds for n = i.

Assume that the inequality holds for n+ 1 with n ∈ {1, ..., i− 1}, i.e.,

kn+1 +
i∑

j=n+1

ℓjŵj

j∏

m=n+1

r̂m

> 0.
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Now, consider index n:

By the budget constraints (2.4) the inequality can be concluded:

0 < cn ≤ ωn − kn+1

⇔ 0 < ℓnŵn + knr̂n − kn+1

⇔ kn >
kn+1

r̂n
− ℓnŵn

r̂n
> − 1

r̂n

i∑

j=n+1

ℓjŵj

j∏

m=n+1

r̂m

− ℓnŵn

r̂n
= −

i∑

j=n

ℓjŵj

j∏

m=n

r̂m

By continuing the induction the conjecture must hold for the initial value k0 as well. This

proves Lemma 2.3.2.

Proof of Lemma 2.3.3. First note that given the optimal investment decisions (k⋆1, . . . , k
⋆
i ),

consumption is directly defined by

c⋆n = ℓi−nŵn + k⋆nr̂n − k⋆n+1, n = 0, ..., i.

Again set ki+1 := 0 to simplify notation.

Therefore it is sufficient to show that the tupel (k1, . . . , ki) is uniquely defined by the first

order conditions of the maximization problem of the consumer:

r̂nβu
′(ℓnŵn + knr̂n − kn+1)− u′(ℓn−1ŵn−1 + kn−1r̂n−1 − kn) = 0, n = 1, . . . , i.

Define an auxiliary function

r̂nβu
′(ℓnŵn + knr̂n − kn+1)− u′(ℓn−1ŵn−1 + kn−1r̂n−1 − kn) =: Hn(kn−1, kn, kn+1, ŵ

i, r̂i),

n = 1, . . . , i.

Obviously, the zeros of Hn, n = 1, . . . , i, define the optimal investment plan (k⋆1, . . . , k
⋆
i ).

Here again it can be seen very clearly that there are three investment decisions that need to

be taken into account to solve the decision problem.

The idea of the proof is solving the problem backwards. As kn+1 = 0, Hi only depends on

two investment decisions. So first focus on that function:

For n = i, it is

Hi(ki−1, ki, 0, w
i, ri) = r̂iβu

′(ℓiŵi + kir̂i)− u′(ℓi−1ŵi−1 + ki−1r̂i−1 − ki).
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Conjecture:

Given ki−1 there is ki ∈ (− ℓiŵi

r̂i
, ℓi−1ŵi−1 + ki−1r̂i−1) that solves Hi(ki−1, ki, 0, ŵ

i, r̂i) = 0. In

particular ki−1 is defined uniquely.

So now, assume ki−1 to be fixed.

Existence:

For the proof of existence consider the boundary behavior of Hi. As the utility function

satisfies the Inada conditions (see Assumption 2.3.1) it is:

lim
kiց− ℓiŵi

r̂i

Hi(ki−1, ki, 0, ŵ
i, r̂i)

= lim
kiց− ℓ0ŵi

r̂i

r̂iβu
′(ℓiŵi + kir̂i
︸ ︷︷ ︸

→0

)− u′(ℓi−1ŵi−1 + ki−1r̂i−1 − ki)
︸ ︷︷ ︸

→ const

= ∞
and

lim
kiրℓi−1ŵi−1+ki−1r̂i−1

Hi(ki−1, ki, 0, ŵ
i, r̂i)

= lim
kiրℓi−1ŵi−1+ki−1r̂i−1

r̂iβu
′(ℓiŵi + kir̂i
︸ ︷︷ ︸

→ const

)− u′(ℓi−1ŵi−1 + ki−1r̂i−1 − ki)
︸ ︷︷ ︸

→0

= −∞

Altogether, given ki−1 the intermediate value theorem shows the existence of

ki ∈ (− ℓiŵi

r̂i
, ℓi−1ŵi−1 + ki−1r̂i−1) satisfying H

i(ki−1, ki, 0, w
i, ri) = 0.

Uniqueness:

Uniqueness follows by the monotonicity properties of Hi(−) with respect to ki:

∂Hi(−)

∂ki
= r̂iβu

′′(ℓiŵi + kir̂i)r̂i + u′′(ℓi−1ŵi−1 + ki−1r̂i−1 − ki) < 0

The monotonicity of Hi with respect to ki implies the existence of at most one zero of

Hi. As existence has already been proven it follows that there exists a unique solution

ki ∈ (− ℓiwi

ri
, ℓi−1wi−1 + ki−1ri−1) to Hi(−) = 0, depending only on ki−1. Thus, ki can be

written as a function: ki = Ki(ki−1). By the implicit function theorem it follows that

∂Ki

∂ki−1

= − r̂i−1u
′′(ℓiŵi−1 + ki−1r̂i−1 − ki)

r̂iβu′′(ℓiŵi + kir̂i)r̂i + u′′(ℓi−1ŵi−1 + ki−1r̂i−1 − ki)
< 0.

Therefore, Hi−1 is given by Hi−1(ki−2, ki−1, Ki(ki−1), ŵ
i, r̂i).
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For the following observation define

kn = −
i∑

j=n

ℓjŵj

j∏

m=0

r̂m

as the lower bound for investment in period n ∈ {1, ..., i}. Note that by the requirement of

positive consumption it is

kn → kn ⇒ kn+1 → kn+1. (2.19)

Choosing investment near its lower bound (see Lemma 2.3.1), investment in the following

period is near its lower bound as well. The reason is that kn corresponds to all future

income taking into account future returns. If the agent consumes (almost) total income of

the remaining lifetime in one period, she needs to go into debt in all future periods. In each

following period she repays all labor income and investment again is the negative remaining

lifetime income to avoid negative (or zero) consumption. Note that this is a key observation

for the proof of existence of future capital supply.

Now, assume that for an arbitrary but fixed n+1 ∈ {0, ..., i− 1} there is a function Kn+1(kn)

with ∂Kn+1

∂kn
< 0 as it has been shown for n = i and show that the property holds for n as

well:

Hn(kn−1, kn, kn+1, ŵ
i, r̂i)) = r̂nβu

′(ℓnŵn + knr̂n − kn+1)− u′(ℓn−1wn−1 + kn−1r̂n−1 − kn)

The conjecture is that given kn−1 there is a unique kn ∈ (kn, ℓn−1wn−1 + kn−1r̂n−1) such that

Hn(kn−1, kn, kn+1, ŵ
i, r̂i) = 0. Again existence follows by the Inada conditions and (2.19):

lim
knցkn

Hi(kn−1, kn, kn+1, ŵ
i, r̂i)

= lim
knցkn

r̂nβu
′(ℓnŵn + knr̂n − kn+1)− u′(ℓn−1ŵn−1 + kn−1r̂n−1 − kn)

(2.19)
= lim

kn+1ցkn+1

r̂nβu
′(kn+1 − kn+1
︸ ︷︷ ︸

→0

)− u′(ℓn−1ŵn−1 + kn−1r̂n−1 − kn)

= ∞
and

lim
knրℓn−1wn−1+kn−1r̂n−1

Hn(kn−1, kn, kn+1, ŵ
i, r̂i)

= lim
kiրℓn−1wn−1+kn−1r̂n−1

r̂nβu
′(ℓnŵn + knr̂n
︸ ︷︷ ︸

→ const

)− u′(ℓn−1ŵn−1 + kn−1r̂n−1 − kn)
︸ ︷︷ ︸

→0

= −∞
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So again, the existence is ensured by the intermediate value theorem. For the proof of

uniqueness use kn+1 = Kn+1(kn):

Hn(kn−1, kn, kn+1, ŵ
i, r̂i) = Hn(kn−1, kn, Kn+1(kn), ŵ

i, r̂i)

Similar to the first part of the proof uniqueness follows by the monotonicity of Hn:

∂Hn(−)

∂kn
= r̂nβu

′′(ℓnŵn + knr̂n
)






r̂n −

∂Kn+1(kn)

∂kn
︸ ︷︷ ︸

>0







+ u′′
(
ℓ1ŵn−1 + k1n−1r̂n−1 − kn

)
< 0

Thus, kn−1 defines kn uniquely. The induced function Kn(kn−1) is strictly decreasing:

∂Kn(kn−1)

∂kn−1

= − r̂n−1u
′′(ℓn−1ŵn−1 + kn−1r̂n−1 − kn

)

r̂nβu′′
(
ℓnŵn + knr̂n

) (

r̂n − ∂Kn+1(kn)
∂kn

)

+ u′′
(
ℓ1ŵn−1 + k1n−1r̂n−1 − kn

) < 0

So kn has the same properties as kn+1 and by induction summarized it can be said that

knowing the initial value k0 (satisfying the no-bankruptcy constraint), the future decisions

(k⋆1, . . . , k
⋆
i ) are uniquely defined.

Proof of Lemma 2.4.1. Without loss of generality consider an arbitrary period t = 0.

The labor profile leads to a contradiction to kA2 > 0. Exemplary consider the three-period

economy. Wealth is given by

ω2(k) = 0 ω1(k) = k1R(kA) ω0(k) = W(kA) + k0R(kA)

Initial capital is irrelevant for the young generation. By the budget constraints (2.4) it

follows for the young generation:

c20 = ω2(k0)− k11 > 0 ⇒ k11 < 0 ⇒ ω1(k1) < 0

By the same argumentation in the following period it is

c11 = ω1(k1)− k02 > 0 ⇒ k02 < 0 :

As this holds for all periods t ≥ 0, k12 < 0 holds as well and thus kA2 = k12 + k02 < 0.
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Proof of Lemma 2.5.1. If and only if ki <
(

ℓi − f ′(kA)
f ′′(kA)kA

)

kA, the wealth function is

strictly increasing in ki. In addition it is

f ′′(kA)kA

f ′(kA)
≥ −1 ⇔ 1 ≤ − f ′(kA)

f ′′(kA)kA
(as f ′′(·) < 0).

It follows, that

(1 + ℓi)kA ≤
(

ℓi − f ′(kA)

f ′′(kA)kA

)

kA

and therefore

ki < (1 + ℓi)kA ⇒ ki <

(

ℓi − f ′(kA)

f ′′(kA)kA

)

kA.

So it is sufficient to show that ki < (1 + ℓi)kA.

Define kA−i :=
∑

j∈I
j 6=i

kj. As k ∈ K it is clear that ki > −kA−i. Having a labor profile ℓ, all ℓi are

defined to be greater or equal than 0. That is −kA−i > −1+ℓi

ℓi
kA−i. Therefore it is

ki > −1 + ℓi

ℓi
kA−i

⇔ − ℓiki < (1 + ℓi)kA−i

⇔ ki < (1 + ℓi)kA





Chapter 3

The Benchmark Economy

In this chapter, the focus is on the special case where utility is the logarithmic function

and the production function is of the Cobb-Douglas type. The corresponding two-period

economy is well-known and well-analyzed. The objective of this chapter is to understand

how equilibria qualitatively change when the number of lifetime periods is increased. Besides

the form of equilibria, the chapter addresses the questions which input factors mainly affect

the equilibrium and which effects occur that the two-period model does not capture. But

as a first step it is necessary to characterize conditions for equilibria of the model with this

special structure.

Considering this particular economy is quite common. Balasko and Shell [4] describe for the

two-period economy that the logarithmic structure simplifies the equilibrium equations very

much. Beyond that the economy often is used in numerical approaches (see for example

Ascari and Rankin [1]). So the particular model structure presents a benchmark for future

research in multi-period overlapping generations economies. As we will often refer to the

two-period benchmark economy, this economy is described in Appendix A.

The chapter is organized as follows: Section 1 introduces the general benchmark economy

where equilibria are determined for particular labor profiles. Section 2 focuses on the three-

period economy where an equilibrium for an arbitrary labor profile can be determined.

Section 3 compares the results of Section 2 to the two-period economy.

3.1 The I + 1-Period Economy

Already in the previous chapter we recognized that the labor profile plays a crucial role

in determining equilibria. Therefore, this section considers the general labor profile and

particular labor profiles separately.

23
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3.1.1 The general labor profile

An equilibrium is defined by a consumption and investment sequence such that the equilib-

rium equations (2.10) are satisfied as the capital stock directly determines the prices (see

(2.10)). In this particular economy when u(c) = ln c and f(k) = kα the equilibrium equations

read:

βα(kAt+1)
α−1cit = ci−1

t+1, i ∈ I\{0} (3.1a)

cit + ki−1
t+1 = ωi(kt), i ∈ I (3.1b)

with ωi(k) = ℓi(1 − α)(kA)α + kiα(kA)α−1. The equilibrium equations must be satisfied in

all periods t ≥ 0.

As the sequence
{
(cit)i∈I

}

t≥0
is induced by the sequence

{
(kit)

I−1
i=0

}

t≥0
, see equation (2.12),

the objective is to find a recursive structure of K(kt) = kt+1, such that

βα(kAt+1)
α−1(ωi+1(kt)− kit+1) = ωi(kt+1)−Ki−1(kt+1), i ∈ I\{I}. (3.2)

The construction of the recursive function K will be done as provided in Section 2.5.3. First

have a look on the restriction on the state space and the function space. Section 2.5.2 has

already determined a superset of K:

K ⊂






k : I\ {I} → R

∣
∣
∣
∣
∣
∣

∑

i∈I\{I}
ki > 0, ω0(k) > 0







Besides positive aggregated capital, elements of K guarantee, that the no-bankruptcy con-

straint (see Lemma 2.3.1) for each generation is satisfied. Obviously, each generation’s wealth

needs to be greater than a critical value, see Lemma 2.5.2. Besides positive aggregated cap-

ital, elements of K guarantee, that the no-bankruptcy constraint (see Lemma 2.3.1) for each

generation is satisfied. Obviously, each generation’s wealth needs to be greater than a critical

value, see Lemma 2.5.2.

K :=

{

k : I\ {I} → R

∣
∣
∣
∣
∣

∑

i

ki > 0, ωi(k) > ωi(k), ω0(k) = 0

}

Note that the lower bound is not necessarily constant. By construction it is ωi(k) ≤ 0. If

each generation had positive wealth in each period, there would not be any problem with

future bankruptcy. But as Section 2.3 shows negative wealth may occur in general and

can be compensated by sufficient capital supply by the remaining generations concerning

total capital supply and by future income concerning the single consumer. That is, the

requirement of non-negative wealth is sufficient but not necessary.

Thus, the set
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K0 :=

{

k : I\ {I} → R

∣
∣
∣
∣
∣

∑

i

ki > 0, ωi(k) > 0, i = 0, ..., I − 1

}

(3.3)

is a subset of K.

Note that positive wealth is a very different requirement than positive capital supply. As

long as agents have labor income, capital supply certainly may be negative as long as capital

income is not smaller than negative labor income. In addition note that there is no restric-

tion on ωI(k) as i = I is excluded in K. But by definition ωI(k) ≥ 0 holds, as aggregated

capital needs to be positive, such that there will be no problem. Refining the definition of

the state space will be done for particular economies.

The elements of the function space are the first candidates for the Markov equilibrium. For

its definition follow the two-period economy where capital evolution is a function of capital,

and in particular it is a constant fraction on current wealth. So the main assumption in this

chapter is, that the equilibrium is a linear function of wealth. Thus, the function space K

is subset of

K ⊂ K̃ := {K : K → R|K(k) =Mω(k)}

where ω(k) := (ωi(k))⊤i=0,...,I denotes the vector containing all generations’ wealth functions

andM ∈ R
I×I+1 is the linear factor. Therefore, the evolution of capital supply of generation

i is given by

Ki(k) =
I∑

j=0

a
j
iω

j(k) i = 0, . . . , I − 1.

The wealth functions for given capital k ∈ K are given by

ωI(k) = ℓI(1− α)(kA)α

ωi(k) = ℓi(1− α)(kA)α + αki(kA)α−1 i = 0, . . . , I − 1.

Note that the given production function satisfies Assumption 2.5.1 such that ωi(k) is strictly

increasing in ki by Lemma 2.5.1.

To proceed with the construction of an equilibrium, assume that K̂(k) ∈ K̃ defines the

capital evolution in the following period. Thus, K̂ is a linear function of wealth, i.e., it

is K̂(k) =
(
Mω(k)⊤

)
with M =

(
a
j
i

)

i=0,...,I−1
j=0,...,I

∈ R
I×I+1. Applying this assumption in

the equilibrium equations k1 can be determined in dependance of k as the solution of the

following system of equations:
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βα(kA1 )
α−1(ωi+1(k)− ki1) = ωi(k1)− K̂i−1(k1), i = 0, ..., I − 1 (3.4)

Thus, the solution k1 defines the mapping K as described in Section 2.5.3. The operator

T (compare Section 2.5.3) maps K̂ on K. The following lemma guarantees that, under the

assumption on K̂(k) to be an element of K̃ , the solution k1 also is an element of the function

space K̃ .

Lemma 3.1.1. The operator T maps K̃ into itself: T (K̃ ) ⊂ K̃ .

Hence, Lemma 3.1.1 implies that if K̂(k) = (Mω(k)), the solution to the equilibrium equa-

tions can be written as k1 = M̃ω(k), M̃ ∈ R
I×I+1, without losing a solution. Define an

additional operator φ : RI×I+1 → R
I×I+1 such that φ(M) = M̃ . Note that φ defines T

uniquely. The equilibrium equations 3.4 define the components of M̃ . First, determine the

implicit function, that characterizes φ. After having discussed the question about φ being

well-defined, we look for fixed points. Fixed points of φ define what we will call equilibrium

candidates in the following. The problem is that there is no guarantee that the mapping

K generated by such a fixed point is a mapping on K. An equilibrium will be a mapping

such that this can be verified. So in the following equilibrium candidates may be determined

without an explicit definition of the state space. Summarized, proceed as follows:

Given

M :=







a00 . . . aI0
...

. . .
...

a0I−1 . . . aII−1







∈ R
I×I+1

that defines capital evolution in the following period by K̂(k) = (Mω(k)) ∈ K̃ , the task is

to find

M̃ =







ã00 . . . ãI0
...

. . .
...

ã0I−1 . . . ãII−1







∈ R
I×I+1

defining k1 = M̃ω(k) such that the equilibrium equations 3.4 are satisfied.

First derive the conditions for ãji setting K̂i(k) =
I∑

j=0

a
j
iω

j(k), i = 0, ..., I−1, and k1 = M̃ω(k)

in the equilibrium equations (3.4). The equations defining M̃ are:

βαω1(k)− α(1 + β)
I∑

j=0

ã
j
0ω

j(k)− ℓ0(1− α)
(

M̃ω(k)
)A

= 0

βαωi+1(k)− α(1 + β)
I∑

j=0

ã
j
iω

j(k)− ℓi(1− α)
(

M̃ω(k)
)A

+ ℓI(1− α)
(

M̃ω(k)
)A

aIi−1
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+
I−1∑

n=0

ai−1

(

ℓn(1− α)
(

M̃ω(k)
)A

+ α

I∑

j=0

ãjnω
j(k)

)

= 0

i = 1, ..., I − 1

Using
(

M̃ω(k)
)A

=
I∑

j=0

ωj(k)
I−1∑

i=0

ã
j
i leads to

I∑

j=0

ωj(k)

[

−α(1 + β)ãj0 − ℓ0(1− α)
I−1∑

n=0

ãjn

]

+ αβω1(k) = 0 (3.5a)

I∑

j=0

ωj(k)

[

−α(1 + β)ãji − ℓi(1− α)
I−1∑

n=0

ãjn + ℓI(1− α)aIi−1

I−1∑

n=0

ãjn

+
I−1∑

n=0

ãjn(1− α)
I−1∑

m=0

ami−1ℓ
m + α

I−1∑

m=0

ami−1ã
j
m

]

+ βαωi+1(k) = 0 (3.5b)

i = 1, ..., I − 1.

The system of equations is satisfied if the coefficients of ωj(k) for all j = 0, ..., I in (3.5a)

and (3.5b) are equal to 0. Then, the components of M̃ are the solution to a linear system

of equations. Denoting M̃ =
(
ã0, ..., ãI

)
where ãj =

(
ã
j
0, ..., ã

j
I−1

)T ∈ R
I and

m̃ =







ã0

...

ãI







∈ R
I(I+1),

m̃ is the solution to the linear system of equations BMm̃ = b with b = (bn)
I(I+1)
n=0 ∈ R

I(I+1),

b =

{

−βα n = l(I + 1) (l = 1, ..., I)

0 otherwise
(3.6)

and

BM =









B̃M 0 . . . 0

0 B̃M . . . 0
...

...
. . .

...

0 0 . . . B̃M









∈ R
I(I+1)×I(I+1)

where B̃M = (bln)l,n=0,...,I−1 ∈ R
I×I with

bln =

{

bl + α(all−1 − 1− β) l = n

bl + αanl−1 l 6= n

bl := −ℓl(1− α) + (1− α)
I∑

j=0

a
j
l−1ℓ

j. (3.7)
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Additionally, a−1 := 0 is used for purposes of a compact notation. The implicit function

BMm̃ = b defines M̃ . Whether the operator φ, mapping M on M̃ , is well-defined, depends

on the existence and uniqueness of the solution of the implicit function. In the following the

properties of φ, respectively the number of solutions depending on the properties of BM , are

considered.

Lemma 3.1.2. The operator φ is well-defined if and only if det(B̃M) 6= 0.

Proof. φ is well-defined if the system of equations BM ã = b has a unique solution. That is

equivalent to det(BM) 6= 0.

As BM is a block matrix with entries only in the diagonal, det(BM) = (det(B̃M))I+1 holds.

Therefore, det(BM) 6= 0 ⇔ det(B̃M) 6= 0.

By Lemma 3.1.2 m̃ is uniquely defined if the determinant of BM is different from zero. So

far, there is no restriction on the function space that guarantees that property. In particular

note that even if M satisfies the non-zero determinant of BM , the image M̃ may not. Hence

it is necessary to consider mappings that do not satisfy that property. If the determinant

vanishes, detBM = 0, there are two possibilities: Either there is no solution or there are

multiple. Multiple solutions would be a first indication that there are multiple equilibria.

That is what concerns the following lemma.

Lemma 3.1.3. The linear system of equations BM ã = b has at most one solution. In

particular there is no solution for det(B̃M) = 0.

Obviously, this source of multiplicity of equilibria does not occur. In particular the result

implies that each fixed point of φ necessarily leads to a Matrix B with non-zero determinant.

Under this condition the following corollary concludes the present findings.

Assumption 3.1.1. Assume that M is chosen such that det(BM) 6= 0.

Corollary 3.1.1. Any fixed point of the operator φ :
{
M ∈ R

I×I+1| det(BM) 6= 0
}
→ R

I×I+1

satisfies Assumption 3.1.1.

Note again that this corollary does not mean that the codomain is equal to the domain. A

restriction of the domain or the codomain reduces the set that contains fixed point candi-

dates (φ(M) = M). In the following we focus on the restricted sets as the objective here is

to find fixed points.

The following lemma answers the question if and how the the codomain of φ under assump-

tion 3.1.1, where the image of M under φ is uniquely defined, may be restricted.

Lemma 3.1.4. Let Assumption 3.1.1 hold. The codomain of φ can be restricted to

{
M ∈ R

I×I+1|a0i = 0 ∀i = 0, ..., I − 1
}
.
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For the following proof Cramer’s rule will be used. It gives an instruction in the case of a

non-vanishing determinant for computing the solution of a linear system of equations Ax = b

using the determinant. The l-th entry in the solution vector (x) is given by the fraction of

the determinant of the matrix (A) where the l-th column is replaced by the ”result” (b) and

the determinant of the matrix (A) itself. For a better understanding you find Cramer’s rule

applied to the three-period economy in Section 3.4.1.

Before proving the lemma, consider matrix BM when one column is replaced by b. Obviously,

the new matrix (BM)l (0 ≤ l ≤ I(I + 1)) is no longer a diagonal block matrix. But still

the determinant can be determined by the product of the block matrices in the diagonal.

Obviously, as det(BM) 6= 0 is equivalent todet(B̃M) 6= 0 B̃I has rank I. Adding columns

to other columns does not change the value of the determinant, so each block, except that

where the replacement took place, can be transformed to a diagonal matrix without changing

the value of the determinant by Gaussian elimination. Finally, use the columns where the

entries are different from 0 in the same row where b has −βα as entry to eliminate these.

The result again is a diagonal block matrix and the determinant is given by the product of

the determinants of the entries.

For example, if the l− th column is in block i (totally there are I+1 blocks), the determinant

of (BM)l is given by det((BM)l) = (det(M̃A))
I det(B̃Mij), where (B̃M)ij is matrix B̃M where

the j − th column is replaced by −βαei and again ei is the i-th unit vector.

With these explanations about Cramer’s rule the following proof is straightforward.

Proof. The values ã0i , i = 0, ..., I−1 are the first I entries of the solution vector. So keeping

the notation from above it is

ã0i =
det((BM)i)

det(BM)
=

(det(B̃M))I det((B̃M)0i)

(det(B̃M))I+1
=

det((B̃M)0i)

det(B̃M)
.

As the first I entries of b are equal to 0, (B̃M)0i has a 0-column in column i. Thus,

det((B̃M)0i) = 0 and therefore ã0i = 0 for all i = 0, ..., I − 1.

Before considering particular scenarios, focus on the coefficients aji . In the end the interest

is in fixed points of φ. As Lemma 3.1.4 restricts the codomain of φ, obviously, it is sufficient

to consider functions

K(k) = Aω−0(k), ω−0(k) =
(
ωi(k)

)I

i=1

with

A ∈ R
I×I , A =







a10 . . . aI0
...

. . .
...

a1I−1 . . . aII−1






.
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In addition, the definitions of BA, B̃A, ã and φ are suitably adapted as well.

Lemma 3.1.4 states that the coefficient of the wealth of generation ’0’, the oldest, is 0. That

is, wealth of the oldest generation has no impact on future capital. The explanation is that

ω0(k) is consumed completely and generation ’0’ does not invest any capital and thus do

not take part in building future capital.

Before characterizing the fixed points, address the question what can be expected about the

coefficients in equilibrium. First clarify the meaning of coefficient aji . It describes how an

increase in ωj(k) in the current period affects capital supply of generation i in the following

period. That is, the coefficients determine the influence of each generation’s wealth on next

period’s individual capital supply. Note that for generation i ωj(k), j 6= i, has nothing to

do with future or former income of generation ’i’.

The interpretation suggests that in equilibrium ai+1
i should be positive. Any other result

would be counterintuitive because it describes the ’own’ capital supply in the following pe-

riod. The reason is that one would assume that additional wealth in one period is divided

up between consumption and investment analogously to wealth in general. Hence, if there

is more wealth, that can be distributed, the chosen allocation intuitively is greater or equal

the former decision in the sense that consumption as well as investment are greater or equal.

Concerning the other coefficients intuition is not that clear. As aggregated capital supply

influences both next period’s wage (positive) and return (negative) the question is which

change is more valuable. That depends on different factors for example the labor profile ℓ.

Hence, one possible scenario is that ai+1
i > 0 and a

j
i ≤ 0 for all j 6= i + 1. This scenario

can be interpreted as follows: Take a look on an arbitrary generation. The higher its wealth

is the higher is its investment. The other agents wealth influences the investment decision

negatively, i.e., the higher the wealth of another generation the lower is the investment of

the regarded generation. If wealth of another generation would be negative, investment

increases compared to positive wealth of this other generation. That would make sense as

the generation with negative wealth needs to go into debt to have positive consumption. As

aggregated capital supply needs to be positive, the other generations compensate that by

higher investment.

Obviously, the image of A under φ strongly depends on the labor profile. Thus, there

are labor profiles that admit statements about explicit structure of equilibria. In the next

subsection the focus is on these particular labor profiles.

3.1.2 Special labor profiles

This subsection focuses on labor profiles with retirement. Retirement is defined as follows:

there is N ∈ I such that ℓn = 0, ∀n < N . That is, from a particular age on the generations
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do not supply labor any more. The definition implies that retired generations’ wealth only

consists of capital income. Retirement leads to strong statements about the structure of the

equilibrium.

Lemma 3.1.5. Let Assumption 3.1.1 hold. If there is N ∈ I such that ℓn = 0, ∀n < N ,

the set containing all fixed points of φ can be restricted such that for each element Ã of the

codomain ãji = 0 for j 6= i+ 1, i < N .

In particular, for i < N it is ãi+1
i =

β
i
∑

m=0

βm

i+1
∑

m=0

βm

< 1.

Thus, dividing the matrix A into 4 block matrices

A =

(

A1 A2

A3 A4

)

where A1 ∈ R
N×N , A2 ∈ R

N×I−N , A3 ∈ R
I−N×N and A4 ∈ R

I−N×I−N , A1 is a diagonal

matrix with diagonal entries as determined in Lemma 3.1.5 and A2 is the 0-matrix. None of

that holds for A3 and A4. The extreme case is if N = I holds. N = I means that all labor

is supplied by the young. Obviously, in this case the matrix A is a diagonal matrix.

Corollary 3.1.2. If labor is supplied only by the young, i.e., ℓI = 1, the equilibrium is

defined by

K(k) =







β
i∑

m=0

βm

i+1∑

m=0

βm

ωi+1(k)







I−1

i=0

.

In this particular economy each generation’s next period’s capital supply only depends on

its current wealth. Wealth of the other generations does not affect the decision. This is a

result that we know from the two-period economy. Moreover, by the construction of the

economy it turns out that the restrictions on the function space are not necessary.

Lemma 3.1.6. In the overlapping generations economy where all labor is supplied by the

young, i.e., ℓI = 1, the recursive equilibrium K(k) = Āω−0(k) is unique. In particular, the

equilibrium is unique on a general function space that is not restricted to linear combinations

of the wealth functions.

Note the importance of that result. This particular economy has a unique equilibrium that

is a Markov equilibrium. The following lemma defines the state space of this economy.

Lemma 3.1.7. For ℓI = 1 the state space is RI
++.

Proof. The result follows easily with Lemma 2.3.1.
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The reason is that all future income consists only of capital income. It is necessary to save

and there is no opportunity to borrow, as wealth from generation ’I − 1’ on only consists of

the capital income. Thus, savings must be big enough to compensate future consumption up

to the last lifetime period. Knowing the dynamics, obviously, there is the question whether

there are stationary points of the dynamics. In this economy, where all labor is supplied by

the young, even a uniqueness result can be presented:

Lemma 3.1.8. The dynamical system K(k) = (Ki(k))
I−1
i=0 , Ki(k) =





β
i−1
∑

j=0

βj

i
∑

j=0

βj

ωi+1(k)





I−1

i=0
has a unique steady state.

Next consider the economy where N = I − 1, i.e., ℓI + ℓI−1 = 1. The economy is more

general than that considered before, but it has still a particular structure such that it is

possible to determine the equilibrium dynamics explicitly. The reason is that most entries

of the equilibrium matrix Ā are determined by Lemma 3.1.5 and at the same time the

coefficients generating next period’s capital supply of generation ’I − 1’ do not play a role

in the equilibrium equations by construction.

It is clear that in this general context retirement after two time periods economically is not

very interesting. The reason why it is not skipped here is that it is one of the models where an

equilibrium can be determined explicitly and within the analysis of the three-period model

in the following section, this context is a very useful extension of the two-period model. The

three-period economy is one example that shows that in general, from N = I − 2 on the

explicit computation of an equilibrium is no longer possible.

Lemma 3.1.9. Let ℓI + ℓI−1 = 1. Then, φ is well-defined and has a (unique) fixed point

Ā =



















β
1+β

0 . . . 0

0
. . . . . .

...

... 0
β

I−2
∑

m=0

βm

I−1
∑

m=0

βm

0

−
β

1+β
ℓI−1(1−α)

ℓI−1(1−α)+α
I
∑

m=0

βm

. . . −
ℓI−1(1−α)

I−2∑

m=0

βm

I−1∑

m=0

βm

ℓI−1(1−α)+α
I
∑

m=0

βm

βα
I−1
∑

m=0

βm

ℓI−1(1−α)+α
I
∑

m=0

βm



















Note that the equilibrium dynamics of that economy satisfies the intuition about the coef-

ficients of the wealth function in the general part was right (see Section 3.1.1). Each gen-

eration’s wealth has positive impact on their own next period’s capital supply, the wealth

of the others has a negative impact if it plays any role. Moreover, note that in this matrix
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∣
∣a

j
i

∣
∣ < 1, for all i = 0, ..., I − 1; j = 1, ..., I holds.

The dynamics reflect that the economy is a generalization of the economy considered before.

Setting ℓI−1 = 0 the dynamics coincide. The result demonstrates very well that introducing

labor supply of the next generation leads to cross-wealth effects. The decision about capital

supply in the following period now does not only depend on the own current wealth but also

on the wealth of the other generations. In this particular case the decision of generations ’1’

to ’I − 1’ about capital supply for the next period equals the former result, where all labor

is supplied by the young. The decision of the young (generation ’I’) about capital supply in

the next period differs. It depends on current wealth of all generations except the old. Note

that the economy shows that cross-wealth effects are not excluded if all labor is supplied by

one arbitrary generation. The only labor profile without these effects is if all labor is sup-

plied by the young. By the argumentation done above the signs of the coefficients are very

intuitive as next period’s capital supply corresponds to the savings decision of the currently

young generation. Having higher wealth the savings are higher as well. The savings also

depend on next period’s prices that are determined by all generation’s decisions.

Moreover, it is obvious that negative capital supply of generation ’I − 1’ can be realized.

The assumption that increasing the number of periods in the overlapping generations econ-

omy allows borrowing, in contrast to the two-period model, is not only hypothetical. In

an extreme case, when ℓI = 0, it is clear that the young need to borrow to realize positive

consumption as their wealth is zero.

Obviously, it is not necessary to consider the general model with an arbitrary labor profile

to get effects that cannot occur in the two-period economy. Already in this quite simple

modification of the model’s structure, it is obvious that in the two-period model some effects

are eliminated by construction.

The difficulties with the definition of the state space have been stated before. In this par-

ticular economy, ℓI + ℓI−1 = 1, Lemma 2.5.3 defines it.

K := K0,

where K0 is defined as in (3.3). Intuitively, the definition makes sense as well. Think of

an arbitrary generation i ∈ I\ {0, I}, i.e., not the youngest and not the oldest generation.

If wealth was negative, next period’s capital supply necessarily would be negative as well,

as consumption needs to be positive. This continues for the following i periods and when

the generation is old capital supply is still negative as there is no labor income over all

the periods and thus wealth when old would be negative as well. As wealth coincides with

consumption when old, that states a contradiction. Note that here K0 6= R
I
++ as generation
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’I − 1’ has both labor and capital income. Thus negative capital supply of that generation

is compensated by labor income to a certain degree. In contrast to that in the economy

where all labor is supplied by the young this set coincides with the set that requires positive

capital supply as it has been defined above as for ℓi = 0 it is

ωi(k) > 0 ⇔ ki > 0, i = 0, ..., I − 1.

With the exact definition of the state space it is possible to show that the dynamics define

an equilibrium, i.e., they map K into itself.

Lemma 3.1.10. Let ℓI−1 + ℓI = 1. The fixed point derived in Lemma 3.1.9 determines

equilibrium dynamics. That is, for k ∈ K it is K(k) := (Āω−0(k)) ∈ K holds as well.

The implementation so far stresses that the two-period economy is very special. By con-

struction almost all difficulties in the model vanish. With the introduction of more periods

intuitively it became clear that one of the central steps, concerning the properties of the

equilibrium dynamics, is from the two- to the three-period economy. Thus, the three-period

economy is the topic of the following section.

3.2 The Three-Period Economy

The previous section presented the benchmark economy with an arbitrary number of lifetime

periods. Now, the focus is on the three-period economy, where agents live for exactly three

periods, i.e., I = 2, I = {0, 1, 2}. In the following, the generations will often be called

’old’ (i = 0), ’middle-aged’ (i = 1) and ’young’ (i = 2). As we have mentioned before the

structural generalization of the two-period economy starts with three periods. This economy

shows changes and allows interpreting them very nicely. Obviously, the dimension of the

equilibrium dynamics changes in comparison to the two-period economy. But as Section

3.1.1 has shown there are some more effects in the multi-period economy that do not occur

in the two-period economy. Do these arise already in the three-period economy?

We already have stated that the labor profile has a great impact on the equilibrium and thus,

this section also investigates how the equilibrium properties change with respect to structural

changes of the labor profile. In the three-period economy three cases are considered. First

there are the labor profiles where the old are retired. As already mentioned in Section 3.1.2

here two possibilities are worth to consider separately: Labor is only supplied by the young

as it is often the case in the two-period economy and labor supply is divided up between the

young and the middle-aged. The third case is the general economy with an arbitrary labor

profile.
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3.2.1 Case I: Young Agents supply Total Labor

If only the young supply labor, the labor profile is ℓ = (0, 0, 1). Thus, the middle-aged and

the old do not have labor income and therefore, their wealth only consists of capital income:

ω2(k) =(1− α)(kA)α

ω1(k) =αk1(kA)α−1

ω0(k) =αk0(kA)α−1

By the results of Section 3.1.2, the model’s dynamics is given by

K(k) =

(
β

1 + β
ω1(k),

β(1 + β)

(1 + β + β2)
ω2(k)

)

. (3.8)

Section 3.1.2 has already given an interpretation and description of the dynamics.

Knowing the dynamics, the next step is to derive its properties. Even the existence and

uniqueness of a steady state could be derived for the arbitrary number of lifetime periods.

Here, because of the reduced number of lifetime periods the unique steady state can be

determined explicitly.

Lemma 3.2.1. The dynamical system defined in (3.8) has a unique steady state k̄ ∈ K. In

particular it is

k̄ = (k̄0, k̄1) =

(
β2

1 + β + β2
(1− α)(k̄A)αα(k̄A)α−1,

β(β + 1)

1 + β + β2
(1− α)(k̄A)α

)

with k̄A =

(

β
(1+β)(1−α)+

√
(1−α)((1+β)2(1+2α)+2α(1+β2))

2(1+β+β2)

) 1

1−α

.

In the two-period economy qualitatively there is no difference in the dynamics if there is

old age labor supply or not (compare Appendix A). Already in the description of particular

labor profiles in Section 3.1.2, it is obvious that this does not hold in the economy where

agents live for more than two periods. So far there is no statement about steady states. First

we will give a short overview over the economy where labor supply is divided up between

the young and the middle-aged. Finally, the different results will be compared.

3.2.2 Case II: Retirement of the Old

This particular economy has an intuitive economic interpretation. In the two-period economy

the length of one period is often assumed to be roughly 30 years. Increasing the number of

periods naturally reduces their length if the total lifetime stays constant. In the three-period
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economy the interpretation is as follows: An agent enters the economy at the age of 20. She

supplies labor for two periods, while the fraction of labor supply can change at the age of

40, until she is 60. In the last period she is retired and dies approximately at the age of 80.

Thus, in that context the labor profile is given by ℓ = (0, ℓ1, 1− ℓ1). The results of Section

3.1.2 are shortly repeated here. Again, first have a look at the wealth functions. Given

capital stock k ∈ K, K is defined in Section 3.1.1, they are given by

ω2(k) =(1− α)(1− ℓ1)(kA)α

ω1(k) =ℓ1(1− α)(kA)α + αk1(kA)α−1

ω0(k) =αk0(kA)α−1.

Compared to the previous subsection, now, there is one generation, the middle-aged, that

gets both capital income and labor income. Thus, the main difference to the previous

subsection is that in the definition of the state space, negative capital supply for the middle-

aged is possible as the only restriction is positive wealth.

Recall the results of Section 3.1.2, the dynamics is given by

K(k) =

(

β

1 + β
ω1(k),

αβ(1 + β)ω2(k)− ℓ1(1− α) β
1+β

ω1(k)

α(1 + β + β2) + ℓ1(1− α)

)

. (3.9)

In this, compared to Section 3.1.1, less complex economy the results discussed before are

even more clear. As the old still have no labor income the decision of the middle-aged

is not affected compared to the first case (Section 3.2.1). But the decision of the young

changes significantly because of the additional labor income. The occurrence of cross-wealth

effects shows this change. Unsurprisingly, the coefficient of wealth of the young in the

equilibrium dynamics changes compared to the capital evolution in the first case. Moreover,

the coefficients of both wealth functions, ω1 and ω2, depend on the labor profile. This

property again stresses the importance of the labor profile. It not only affects wealth but

also the linear factor. Increasing labor supply of the middle-aged decreases the investment

decision of the young. As wealth of the young gets smaller and wealth of the middle-aged

increases this property coincides with intuition.

Section 3.1.2 has already shown the feasibility for the economy with an arbitrary number of

lifetime periods. Similar to the previous subsection, the dynamics has a unique steady state

that can be defined explicitly. That is shown in the following lemma.

Lemma 3.2.2. The dynamics defined in 3.9 has a unique steady state k̄, namely:

k̄ =

(

β

1 + β
ω1(k̄),

αβ(1 + β)ω2(k̄)− ℓ1(1− α) β
1+β

ω1(k̄)

α(1 + β + β2) + ℓ1(1− α)

)

(3.10)
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with

ω1(k̄) =
(
k̄A
)α
(

ℓ1(1− α) + α
αβ(1 + β)(1− ℓ1)(1− α)(k̄A)α−1 − ℓ1(1− α)

α(1 + β + β2)

)

ω2(k̄) = (1− α)(1− ℓ1)
(
k̄A
)α

k̄A =

(
αβ(1 + β − ℓ1)(1− α)

2 (α(1 + β + β2) + ℓ1(1− α))

+

√
(

αβ(1 + β − ℓ1)(1− α)

2 (α(1 + β + β2) + ℓ1(1− α))

)2

+
α2β2(1− ℓ1)(1− α)

α(1 + β + β2) + ℓ1(1− α)





1

1−α

.

Obviously, the dynamics and the steady state are more complex here than in the previous

section. Unsurprisingly, this evolution continues when there are no restrictions on the labor

profile.

3.2.3 Case III: General Labor Profile

The previous two subsections have considered particular three-period economies where equi-

libria can be determined explicitly. Now, turn to the general three period model where

labor supply is divided up between all three generations ℓ = (ℓ0, ℓ1, ℓ2). Here, an explicit

computation of the equilibrium is no longer possible. Note that this is the smallest economy

with this property by the results of Sections 3.2.1 and 3.2.2. Given k ∈ K, where K ⊂ R
2

needs to be specified later, the wealth functions are given by

ω2(k) =ℓ2(1− α)(kA)α

ω1(k) =ℓ1(1− α)(kA)α + αk1(kA)α−1

ω0(k) =ℓ0(1− α)(kA)α + αk0(kA)α−1

as Section 3.1.1 has already shown. Note that here two generations have both labor and

capital income and thus, negative capital supply is possible for both the middle-aged and

the old generation.

Now, specify the conditions on the equilibrium dynamics that have been derived in Sec-

tion 3.1.1. The operator φ with φ(A) = Ã is defined by the implicit function BAã = b with

b = (−βα, 0, 0,−βα)T and BA ∈ R
4×4,

BA :=









b00 b01 0 0

b10 b11 0 0

0 0 b00 b01

0 0 b10 b11











38 3 The Benchmark Economy

where

b00 = −(α(1 + β) + ℓ0(1− α)) (3.11a)

b01 = −ℓ0(1− α) (3.11b)

b10 = −ℓ1(1− α) +
(
(e21)

⊤Aℓ
)
(1− α) (3.11c)

b11 = −ℓ1(1− α) +
(
(e21)

⊤Aℓ
)
(1− α) + αa10 − α(1 + β). (3.11d)

with e21 = (1, 0)⊤. Here we already make use of the fact that the wealth function of the old

does not occur in the equilibrium dynamics (cf. Lemma 3.1.4). The solution of this system

of equations defines Ã.

Recall the definition

B̃A :=

(

b00 b01

b10 b11

)

such that BA can be defined as diag(B̃A, B̃A). Applying Cramer’s rule Ã can be determined

explicitly (see Section 3.4.1) and it is:

ã10 = − βαb11

b00b11 − b01b10
∧ ã11 =

βαb10

b00b11 − b01b10
(3.12)

ã20 =
βαb01

b00b11 − b01b10
∧ ã21 = − βαb00

b00b11 − b01b10

It is worth to note that all entries of the image Ã only depend on a10 and a20, because the

entries of BA only depend on them. Thus, in search of a fixed point Ā of the operator φ it

is sufficient to find ā10 and ā20. Then, the other entries of Ā of φ are uniquely determined by

(3.12).

On closer inspection of the coefficients in (3.12) it is noticeable that ã20 and ã
2
1 have different

signs as long as ã20 6= 0. Both b00 and b01 are independent of the matrix A and negative. So

if det B̃A > 0, it is ã20 < 0 and ã21 > 0 and if det B̃A < 0, it is the other way around.

To obtain a well-defined operator φ it is necessary to restrict R2×2 such that Assumption 3.1.1

holds. Define Ã := {A ∈ R
2×2 |A satisfies Assumption 3.1.1}. If A ∈ Ã holds, still the

problem is that the image, φ(A), is not necessarily an element of Ã as it has already been

stated prior to Assumption 3.1.1. As the objective is to find fixed points of φ, it is sufficient to

consider the restricted set as the superset of the fixed point set Ā := {A ∈ R
2×2 |φ(A) = A}.

The existence of a fixed point will be derived as follows: The idea is to restrict the function

space by restricting Ã to a subset A. The set A ⊂ Ã needs to guarantee that there is a fixed

point on A and that φ maps A into itself. The following lemma represents the result.

Lemma 3.2.3. There is a fixed point on A := {A ∈ R
2×2|a10 ≤ 1 ∧ a20 ≤ 0}.
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Corollary 3.2.1. Any fixed point Ā described in Lemma 3.2.3 satisfies ā11, ā
2
0 ∈ [−1, 0] and

ā10, ā
2
1 ∈ [0, 1].

Note that the set A defined in Lemma 3.2.3 contains the coefficient matrices of the equilibria

in the two previous subsections. Moreover, it coincides with the guess in Section 3.1.1 about

the sign of the coefficients. Together with Corollary 3.2.1 it becomes obvious that the

coefficients determine a fraction of wealth that is invested. In particular for the positive

coefficients this means that investment may not exceed wealth what coincides with the

requirements of the budget constraints (2.4). The definition of A implies the exact definition

of the function space K :

K = {K : K → K |K(k) = Aω−0(k), A ∈ A}

In the beginning it has been stated that fixed points of the operator are equilibrium can-

didates. It remains to show that the dynamics maps the state space into itself. The state

space will be defined in dependance of the (general) coefficients aji in the function space K ,

using the critical values for ωj(k) defined in Lemma 2.5.2. So the state space is defined as:

K :=

{

k = (k0, k1) ∈ R
2

∣
∣
∣
∣
k0 + k1 > 0, ω0(k) > 0, ω1(k) > − ℓ0(1− α)β

−b11 + ℓ0(1− α)(1 + β − a10)
ω2(k)

}

Obviously, the basic state space K0, when the lower bound is equal to 0 for all ωi(k), is a

subset of K as required.

The definition of the state space is sufficient as the condition on ω1(k) can be rewritten such

that the lower bound is independent of k:

ω1(k) > − ℓ0(1− α)β

−b11 + ℓ0(1− α)(1 + β − a10)

⇔ k1

kA
> − ℓ0ℓ2(1− α)2β

α (−b11 + ℓ0(1− α)(1 + β − a10))
− ℓ1(1− α)

α

Definition 3.2.1. A dynamical system is called feasible if it maps the state space into itself.

Following the definition of feasibility 3.2.1 it is obvious that a feasible equilibrium candidate

is an equilibrium. In the following, we present a criterion for feasibility, such that some

equilibrium candidates may be excluded as equilibrium.

Lemma 3.2.4. A feasible dynamics K ∈ K̃ satisfies
I∑

i=0

a
j
i > 0 ∀j = 1, ..., I.

The result of Lemma 3.2.4 might be surprising but the problem is that the wealth of the

old is not included in capital evolution (see Lemma 3.1.4). Thus, capital supply can always

be chosen such that aggregated capital is positive by increasing k0 without an impact on
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future capital supply. Hence, if the sum of coefficients would be negative for one j = 1, ..., I

it is possible to choose initial capital in the state space such that ωj is quite large and

ωi, i 6= j are very small and the choice of k0 guarantees that aggregated capital is greater

than zero. Finally, it may happen, that aggregated capital supply in the upcoming periods

gets negative. The positive sum of coefficients has another implication.

Corollary 3.2.2. A feasible dynamics K = Aω−0(k) in the three-period economy satisfies

detA > 0.

Now, the state space is defined and we derived feasibility criteria. Thus, it can be shown

that the equilibrium candidate is an equilibrium.

Lemma 3.2.5. Any fixed point of φ on the set A generates a feasible dynamics.

Lemma 3.2.5 together with Lemma 3.2.3 states an existence result for the general three-

period economy. By the structure or the manageable dimension of the three-period economy,

respectively, it is possible to state a uniqueness result as well:

Lemma 3.2.6. The fixed point described in Lemma 3.2.3 is the only equilibrium of the

structure K(k) = Aω−0(k). In general, there are three equilibrium candidates.

Finally, the results so far are summarized: In the three-period economy there is a unique

Markov equilibrium that is a linear function of wealth. As long as the old generation is

retired equilibria can be determined explicitly and constitute the unique equilibrium without

an assumption on the equilibrium structure or the function space.

As in the previous sections a final result is the existence of a unique steady state in the

general three-period economy.

Lemma 3.2.7. The equilibrium dynamics K(k) = Āω−0(k) with Ā ∈ A has a unique steady

state.

The derivation of an equilibrium is now finished. The question how it differs structurally from

the equilibrium of the corresponding two-period economy is the topic of the next section.

3.3 Comparison of Two-Period and Three-Period Sce-

nario

This section compares the three-period economies considered in Section 3.2 to the two-period

economy with old age labor supply. There, capital evolution is denoted by K2(k) and given

by

K2(k) =
αβ

α(1 + β) + ℓ0(1− α)
ω1(k)
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as it is shown in Appendix A. The three-period economy’s capital evolution is given by

K3(k) =
(
a10ω

1(k) + a20ω
2(k), a11ω

1(k) + a21ω
2(k)

)

where the coefficients aji , i = 0, 1, j = 1, 2 highly depend on the labor profile. Assuming

ℓ = (0, 0, 1) capital evolution of the three period model structurally does not differ from that

of the two-period model. The coefficients a20 and a11 are zero. Thus, in both cases future

capital supply is a constant fraction of the own wealth, i.e., 0 < ai+1
i < 1, i = 0, 1.

Distributing labor supply among the young and the middle-aged in the three-period econ-

omy, it is obvious that capital evolution changes structurally. In contrast to the two-period

economy introducing labor supply of one more generation has a great impact. In this econ-

omy it is a20 = 0, 0 < ai+1
i < 1, i = 0, 1, −1 < a11 < 0. Thus, while the old again supply

a constant fraction of wealth when middle-aged, cross wealth effects occur in capital supply

of the middle-aged. By the property that wealth of the currently old has no influence on

building capital in the two-period model there is no possibility to obtain effects like this even

if the number of working generations is equal. Moreover, even in this very simple extension

of the two-period economy where the equilibrium is determined explicitly negative savings

occur.

Extending the economy to an arbitrary labor profile emphasizes the findings of the previous

observations. Here cross-wealth effects occur in both capital supply functions. Structurally,

again own wealth is evaluated positively and the other generations wealth negatively, i.e.

0 < ai+1
i < 1, i = 0, 1, a20, a

1
1 < 0 , as it has been assumed.

The existence of a unique steady state is guaranteed in all economies. Thus, there is no dif-

ference so far. The next chapter considers the properties of the dynamics of these economies.

3.4 Mathematical Appendix

3.4.1 Applying Cramer’s rule in the Three-Period Economy

Cramer’s rule tells that if the solution of a linear system of equations Ax = b is unique

the solution is given by xi =
detAi

detA
where Ai is equal to A except the i − th column that is

replaced by b.

Thus, here the first column of B is replaced by b (3.6).
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ã00 =
1

(x1y2 − x2y1)3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 x2 0 0 0 0

0 y2 0 0 0 0

−βα 0 x1 x2 0 0

0 0 y1 y2 0 0

0 0 0 0 x1 x2

−βα 0 0 0 y1 y2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

The determinant is equal to zero, as the first and the second row are multiples of each other.

The determination of ã01 leads to the same result. Thus, next consider another example with

a non-vanishing determinant:

ã10 =
1

(x1y2 − x2y1)3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 x2 0 0 0 0

y1 y2 0 0 0 0

0 0 −βα x2 0 0

0 0 0 y2 0 0

0 0 0 0 x1 x2

−βα 0 −βα 0 y1 y2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
1

(x1y2 − x2y1)3

(∣
∣
∣
∣
∣

x1 x2

y1 y2

∣
∣
∣
∣
∣

)2 ∣
∣
∣
∣
∣

−βα x2

0 y2

∣
∣
∣
∣
∣

=
−βαy2(x1y2 − x2y1)

2

(x1y2 − x2y1)3

=− βαy2

(x1y2 − x2y1)

The other components of Ã can be computed analogously.

3.4.2 Proofs of Chapter 3

Proof of Lemma 3.1.1. Let ˆK(k) = Mω(k). The idea of the proof is as follows: Show

that each ki1 defined by the equilibrium equations is a linear combination of ωj(k), j = 0, ..., I

and kj1, I − 1 ≥ j > i. Then, it can be concluded that kI−1
1 is a linear combination of the

wealth functions as there is no capital supply with greater upper index.

As kI−2
1 is a linear combination of the wealth functions and kI−1

1 it follows that it is a linear

combination of the wealth functions as well. This can be continued up to k01 and thus the

lemma is proven. The equilibrium equations (3.4) under the assumption are
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βα(kA1 )
α−1(ω1(k)− k11)− ω0(k1) = 0

βα(kA1 )
α−1(ωi+1(k)− ki1)− ωi(k1) +

I∑

j=0

a
j
iω

j(k) = 0

i = 1, ..., I − 1

⇔ βα(ω1(k)− k11)− ℓ0(1− α)kA − αk01 = 0 (3.13a)

βα(ωi+1(k)− ki1)− ℓi(1− α)kA − αki1 +
I∑

j=0

a
j
i (ℓ

j(1− α)kA + αk
j
1) = 0 (3.13b)

i = 1, ..., I − 1

Thus, from the first equation (3.13a) it follows

k01 =

αβω1(k)− ℓ0(1− α)
I−1∑

j=1

k
j
1

α(1 + β) + ℓ0(1− α)

Obviously, k01 is a linear combination of ω1(k) and kj1, j > 0. The result follows by induction.

Assume that the conjecture holds for all kj1 with j < i. From the i-th equilibrium equation

(3.13b) it follows that

ki1(−α(1 + β)− ℓi(1− α) + aii(ℓ
i(1− α) + α))

= ℓi(1− α)(
∑

n<i

kn1 +
∑

n>i

kn1 )−
∑

n<i

kn1 (α +
I∑

l=0

(ani ℓ
l(1− α)))

+
∑

n>i

kn1 (α +
I∑

l=0

(alnℓ
l(1− α)))− ωi+1(k)

Substituting step by step all kj1 with j < i in the end there is a linear combination ωj(k),

j = 0, ..., I and kj1, j > i. The substitution is exemplary done only for k01 here:

ki1(−α(1 + β)− ℓi(1− α) + aii(ℓ
i(1− α) + α))

=
∑

0<n<i

kn1 (ℓ
i(1− α)− α−

I∑

l=0

(ani ℓ
l(1− α))) +

∑

n>i

kn1 (ℓ
i(1− α)− α−

I∑

l=0

(ani ℓ
l(1− α)))

−
αβω1(k)− ℓ0(1− α)

I−1∑

j=1

k
j
1

α(1 + β) + ℓ0(1− α)
(ℓi(1− α)− α−

I∑

l=0

(ani ℓ
l(1− α)))− ωi+1(k)
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⇔

ki1







−α(1 + β)− ℓi(1− α) + aii(ℓ

i(1− α) + α) +

ℓ0(1− α)(ℓi(1− α)− α−
I∑

l=0

(ani ℓ
l(1− α)))

ℓ0(1− α) + α(1 + β)








=
∑

0<n<i

kn1

(

ℓi(1− α)− α−
I∑

l=0

(ani ℓ
l(1− α))

)

+
∑

n>i

kn1

(

ℓi(1− α)− α−
I∑

l=0

(ani ℓ
l(1− α))

)

−
αβω1(k)− ℓ0(1− α)

(
∑

1<n<i

kn1 +
∑

n>i

kn1

)

α(1 + β) + ℓ0(1− α)
(ℓi(1− α)− α−

I∑

l=0

(ani ℓ
l(1− α)))− ωi+1(k)

The other substitutions are completely analogous, such that in the end all kj1, j = 0, ..., I−1

are proven to be linear combinations of the wealth functions ωi(k), i = 0, ..., I.

Proof of Lemma 3.1.3. As seen in Lemma 3.1.2 the system of equations has exactly one

solution for det(B̃A) 6= 0.

Now, assume det(B̃A) = 0. It is a well-known result of analytical geometry that if the rows

in a matrix are linear independent, the determinant is different from 0. Negating that result

implies that the rows of B̃A, noted as b̃i, i = 0, ..., I − 1 here, are linear dependent. That

is, there are constants xi, i = 0, ..., I − 1, xi 6= 0 for at least one i such that
I−1∑

i=0

xib̃i = 0 or

alternatively spoken there is at least one row that can be written as a linear combination of

the others.

Looking at the linear system of equations:

BAã = b ⇔

B̃Aã
0 = 0

B̃Aã
1 = −βαe1

...

B̃Aã
I = −βαeI

where ei ∈ R
I denotes the i− th unit vector.

Without loss of generality assume b̃0 =
I−1∑

n=1

κnb̃n. Look at the equations B̃Aã
1 = −βαe1.

Obviously, for n = 1, ..., I − 1 b̃nã
1 = 0 holds.

Then, for the first equation it is

b̃0ã
1 =

I−1∑

n=1

κnb̃nã
1 = 0 6= −βα.

That leads to a contradiction. Therefore there is no solution if det(B̃A) = 0.
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Proof of Lemma 3.1.5. Assume N > 0. Otherwise the statement is trivial.

First look at ℓ0 = 0. This implies b0 = −ℓ0(1−α) = 0, defined in (3.7) , as ai−1 is defined to

be zero. Therefore,

b00 = −α(1 + β) b0j = 0, j = 1, ..., I − 1

The values ãi0, i = 1, ..., I − 1 can be determined by Cramer’s rule again. By the argumen-

tation about computing the determinant of the matrix where one column of BA is replaced

by b it follows:

ãi0 =
det((B̃A)1i)

det(B̃A)

Taking into account that b0j = 0, j = 1, ..., I − 1, det((B̃A)1i) = 0, i = 2, ..., I as the first row

is the 0-vector. So the only value that is different from 0 is ã10. Its value can be computed

directly as well:

ã10 =
det((B̃A)11)

det(B̃A)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−βα 0 . . . 0

0 b11 . . . b1(I−1)

...
...

. . .
...

0 b(I−1)1 . . . b(I−1)(I−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−α(1 + β) 0 . . . 0

b01 b11 . . . b1(I−1)

...
...

. . .
...

b(I−1)1 b(I−1)1 . . . b(I−1)(I−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

−βα

∣
∣
∣
∣
∣
∣
∣
∣

b11 . . . b1(I−1)

...
. . .

...

b(I−1)1 . . . b(I−1)(I−1)

∣
∣
∣
∣
∣
∣
∣
∣

−α(1 + β)

∣
∣
∣
∣
∣
∣
∣
∣

b11 . . . b1(I−1)

...
. . .

...

b(I−1)1 . . . b(I−1)(I−1)

∣
∣
∣
∣
∣
∣
∣
∣

=
β

1 + β

So for ℓ0 = 0 the restriction of the set of fixed point candidates is verified.

Proceed by induction. Assume that the conjecture holds for m− 1 ≤ n < N . Then, it is

bm = −ℓm(1− α) + (1− α)
I∑

j=0

a
j
m−1ℓ

j = (1− α)
I∑

j=N

a
j
m−1ℓ

j j≥N>n≥m
= 0.
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This implies

bmm = α(amm−1 − 1− β) bmj = 0, j ∈ I\ {m, I} .

As before the entries of Ã are given by

ãim =
det((B̃A)(m+1)i)

det(B̃A)

and det((B̃A)(m+1)i) = 0, with i = 1, ...,m,m+ 2, ..., I by the same argumentation (0-row in

row m+ 1) as above. Thus, it follows that

ãim = 0 ∀i = 1, ...,m,m+ 2, ..., I.

If the conjecture holds for all values 0, ...,m− 1, again ãm+1
m can be computed directly:

ãm+1
m =

det((B̃A)(m+1)(m+1))

det(B̃A)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b00 0 . . . 0 0 0 . . . 0

0
. . . . . .

...
...

...
. . .

...
...

. . . . . . 0
...

...
...

0 . . . 0 b(m−1)(m−1) 0 0 . . . 0

0 . . . 0 −βα 0 . . . 0

b(m+1)0 . . . b(m+1)(m−1) 0 b(m+1)(m+1) . . . b(m+1)(I−1)

...
. . .

...
...

...
. . .

...

b(I−1)0 . . . b(I−1)(m−1) 0 b(I−1)(m+1) . . . b(I−1)(I−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b00 0 . . . 0 0 . . . 0

0
. . . . . .

...
...

. . .
...

...
. . . . . .

...
...

. . .
...

0 . . . 0 bmm 0 . . . 0

b(m+1)0 . . . . . . . . . b(m+1)(I−1)

...
. . . . . .

...

b(I−1)0 . . . . . . . . . b(I−1)(I−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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=

−βα
m−1∏

l=0

bll

∣
∣
∣
∣
∣
∣
∣
∣

b(m+1)(m+1) . . . b(m+1)(I−1)

...
. . .

...

b(I−1)m+1 . . . b(I−1)(I−1)

∣
∣
∣
∣
∣
∣
∣
∣

m∏

l=0

bll

∣
∣
∣
∣
∣
∣
∣
∣

b(m+1)(m+1) . . . b(m+1)(I−1)

...
. . .

...

b(I−1)(m+1) . . . b(I−1)(I−1)

∣
∣
∣
∣
∣
∣
∣
∣

= − βα

bmm

= − β

amm−1 − 1− β

What is left to show is the exact value for ãi+1
i .

Obviously,

ã10 =
β

1 + β
=

β
0∑

m=0

βm

1∑

m=0

βm

satisfies the formula. Again, we will proceed by induction. Assume the conjecture holds for

ãii−1. Then, it is shown above that

ãi+1
i = − β

aii−1 − 1− β

= − β

β
i−1
∑

m=0

βm

i
∑

m=0

βm

− 1− β

= −
β

i∑

m=0

βm

β

i−1∑

m=0

βm −
i∑

m=0

βm

︸ ︷︷ ︸

=−1

−β
i∑

m=0

βm

=

β
i∑

m=0

βm

i+1∑

m=0

βm

Proof of Lemma 3.1.6. Recall the wealth functions and the equilibrium equations 3.4:
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ωI(k) =(1− α)(kA)α

ωi(k) =αk1(kA)α−1 i = 0, ..., I − 1.

and

βα(kA1 )
α−1(ω1(k)− k01)− ω0(k1) = 0 (3.14a)

βα(kA1 )
α−1(ωi+1(k)− ki1)−

(

ωi(k1)− K̂i−1(k1)
)

= 0 i = 1, ..., I − 1 (3.14b)

From the first equilibrium equation (3.14a) it follows that k01 = β
1+β

ω1(k) and thus, as the

solution must hold for any period, that K0(k) = β
1+β

ω1(k) .

Then, for i = 1 in (3.14b) it is:

βα(kA1 )
α−1(ω2(k)− k11)−

(

ω1(k1)− K̂0(k1)
)

= 0

⇔ βα(kA1 )
α−1(ω2(k)− k11) = ω1(k1)−

β

1 + β
ω1(k1)

⇔ βα(kA1 )
α−1(ω2(k)− k11) =

1

1 + β
k11α(k

A
1 )

α−1

⇔ k11 =
β(1 + β)

1 + β + β2
ω2(k)

Hence, by the same argumentation as above it follows that K1(k) = β(1+β)
1+β+β2ω

2(k).

Now, proceed by induction. Assume that Ki(k) =
β

i
∑

j=0

βj

i+1
∑

j=0

βj

ωi+1(k). Using the equilibrium

equation (3.14b) for i+ 1, it is

βα(kA1 )
α−1(ωi+2(k)− ki+1

1 )−
(

ωi+1(k1)− K̂i(k1)
)

= 0

⇔ βα(kA1 )
α−1(ωi+2(k)− ki+1

1 ) = ωi+1(k1)−
β

i∑

j=0

βj

i+1∑

j=0

βj

ωi+1(k1)

⇔ βα(kA1 )
α−1(ωi+2(k)− ki+1

1 ) =
1

i+1∑

j=0

βj

ki+1
1 α(kA1 )

α−1

⇔ βωi+2(k) =

1 + β
i+1∑

j=0

βj

i+1∑

j=0

βj

ki+1
1

⇔ ki+1
1 =

β
i+1∑

j=0

βj

i+2∑

j=0

βj

ωi+2(k)
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Thus, for each i ∈ I\ {I}, it is Ki(k) =
β

i
∑

j=0

βj

i+1
∑

j=0

βj

ωi+1(k). In this proof, the assumption that the

equilibrium dynamics is a linear function of wealth was not used. The equilibrium equations

(3.14a) and (3.14b) could directly be solved for individual capital supply with some kind of

backwards induction. Therefore, there is no other equilibrium.

Proof of Lemma 3.1.8. First, for purposes of a simple notation define Bm
n :=

m∑

j=n

βj. A

steady state of K(k) must satisfy

k̄I−1 =
βBI−1

0

BI
0

(1− α)(k̄A)α

k̄i =
βBi

0

Bi+1
0

α(k̄A)α−1k̄i+1 i = 0, ..., I − 2

by Lemma 3.1.6. Proceed by induction to show that each k̄i, i ∈ I\ {I} can be written in

terms of k̄A.

Obviously, the conjecture is satisfied for k̄I−1 by definition. For k̄I−2 it is

k̄I−2 = α(k̄A)α−1k̄I−1βB
I−2
0

BI−1
0

= α(k̄A)α−1β
2BI−2

0

BI
0

(1− α)(k̄A)α.

Now, the conjecture is that

k̄I−j = αj−1βjB
I−j
0

BI
0

(1− α)(k̄A)α
(
(k̄A)α−1

)j−1
,

which is satisfied for j = 2. Assume it is satisfied for j. Then, for k̄I−j−1 it is

k̄I−j−1 = α(k̄A)α−1βB
I−j−1
0

B
I−j
0

αj−1βjB
I−j
0

BI
0

(1− α)(k̄A)α
(
(k̄A)α−1

)j−1

︸ ︷︷ ︸

=k̄I−j

= αjβj+1B
I−j−1
0

BI
0

(k̄A)α
(
(k̄A)α−1

)j
(1− α).

As entries in the steady state vector only depend on the aggregated steady state value, it is

sufficient to determine k̄A.

k̄A =
I∑

j=1

k̄I−j = (1− α)
I∑

j=1

αj−1βjB
I−j
0

BI
0

(k̄A)α
(
(k̄A)α−1

)j−1

⇔
(
k̄A
)1−α

=
I∑

j=1

k̄I−j = (1− α)
I∑

j=1

αj−1βjB
I−j
0

BI
0

(
(k̄A)α−1

)j−1
.



50 3 The Benchmark Economy

Substituting x :=
(
k̄A
)1−α

leads to

x =
I∑

j=1

k̄I−j =
I∑

j=1

αj−1βjB
I−j
0

BI
0

(1− α)x1−i

⇔xI −
I∑

j=1

αj−1βjB
I−j
0

BI
0

(1− α)xI−i = 0.

The positive roots of the polynomial define the steady state values for k̄A. In the resubsti-

tution it is necessary to extract a root. Thus, negative roots of the polynomial do not lead

to a steady state value.

On closer inspection of the coefficients in the polynomial, it turns out that all coefficients

are negative except the leading coefficient. By Descartes’ rule of signs (cf. Struik [24]), it

follows that if there is only one change of signs in the coefficients of a polynomial it has

exactly one positive real root x0.

Thus, there is a unique steady state determined by k̄A = (x0)
1

1−α .

Proof of Lemma 3.1.9. First note that φ is well-defined on A. Consider the structure of

B̃A = (bmn)m,n=0,...,I−1. For m = 0, ..., I − 2 it is

bm = −ℓm(1− α) + (1− α)
I∑

j=0

a
j
m−1ℓ

j

= (1− α)(ℓI−1aI−1
m−1 + ℓIaIm−1)

= 0 as aI−1
m−1 = aIm−1 = 0 ∀m = 0, ..., I − 2

and thus

bmn =

{

α(amm−1 − 1− β) n = m

0 otherwise

⇒ det(B̃A) =
I−1∏

n=0

bnn 6= 0.

Now, check if φ maps A into A By Lemma 3.1.5 given A ∈ A it is

ã0i = 0 i = 0, ..., I − 1

ã
j
i = 0 j 6= i+ 1 i = 0, ..., I − 2 ; j = 0, ..., I

ãi+1
i =

β
i∑

m=0

βm

i+1∑

m=0

βm

i = 0, ..., I − 2



3.4 Mathematical Appendix 51

Therefore the coefficients that are left to determine are

a
j
I−1 j = 1, ..., I.

Keeping the notation from above and using Cramer’s rule it is

a
j
I−1 =

det(B̃A)Ij

detB̃A

,

where det((B̃A)Ij) is given by

det((B̃A)Ij) =







βα
I−2∏

n=0
n 6=j−1

bnn · bI−1j−1 j = 1, ..., I − 1

−βα∏I−2
n=0 bnn j = I

The formula for j = I is obvious. For j < I it can be derived as follows. The last column of

B̃A is replaced by the j − th unit vector multiplied with −βα. The first step is the Laplace

expansion along this last column. Afterwards the last column and the j− th row are crossed

out, such that in column j there remains only the entry in the last row bI−1j−1 (it is j − 1

as the rows are counted from 0 on):

det((B̃A)Ij) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b00 0 . . . . . . 0

0
. . . . . .

...

0
. . . b(j−2)(j−2) 0 0

...
. . . b(j−1)(j−1)

. . . −βα
...

. . . bjj
. . . 0

...
. . . . . . . . .

...

0 . . . . . . 0 b(I−2)(I−2) 0

b(I−1)0 . . . . . . b(I−1)(I−2) 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)I+j(−βα)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b00 0 . . . 0 . . . 0

0
. . . . . .

...
...

0
. . . b(j−2)(j−2) 0 0

...
. . . 0 bjj

. . . 0
...

. . . . . . . . .
...

0 . . . . . . 0 b(I−2)(I−2)

b(I−1)0 . . . b(I−1)(j−1) . . . b(I−1)(I−2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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= (−1)I+j(−βα)(−1)I−1+jb(I−1)(j−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b00 0 . . . . . . 0

0
. . . . . .

...

0
. . . b(j−2)(j−2) 0 0

...
. . . bjj

. . . 0
...

. . . . . . . . .
...

0 . . . . . . 0 b(I−2)(I−2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= βαb(I−1)(j−1)

I−2∏

n=0
n 6=j−1

bnn

What is left to determine to be able to compute ajI−1 are the remaining components of B̃A,

bI−1·:

bI−1 = −ℓI−1(1− α) + (1− α)
(
aI−1
I−2ℓ

I−1 + aII−2ℓ
I
)

= −ℓI−1(1− α) + (1− α)aI−1
I−2ℓ

I−1

= (1− α)ℓI−1







β
I−2∑

m=0

βm

I−1∑

m=0

βm

− 1







= −ℓ
I−1(1− α)
I−1∑

m=0

βm

b(I−1)(I−1) = −ℓ
I−1(1− α
I−1∑

m=0

βm

+ α







β
I−2∑

m=0

βm

I−1∑

m=0

βm

− 1− β







= −
ℓI−1(1− α) + α

I∑

m=0

βm

I−1∑

m=0

βm

b(I−1)(j−1) = bI−1 + αa
j−1
I−2 = bI−1

So for ãjI−1 it is

ãII−1 =
−βα
bI−1I−1

=

βα
I−1∑

m=0

βm

ℓI−1(1− α) + α
I∑

m=0

βm

< 1
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ã
j
I−1 =

−βα ℓI−1(1−α)
I−1
∑

m=0

βm

ℓI−1(1−α)+α
I
∑

m=0

βm

I−1
∑

m=0

βm

· α ·
j
∑

m=0

βm

j−1
∑

m=0

βm

= −

ℓI−1(1− α)

j−1
∑

m=0

βm

j
∑

m=0

βm

ℓI−1(1− α) + α
I∑

m=0

βm

< 1

As this fixed point can be computed directly it is unique. But it is only unique in the general

notation of A as long as ℓI > 0. Otherwise ωI(k) = 0 and its coefficients are arbitrary. In

this case it is possible to reduce the general problem such that the values aIi , i = 0, .., I − 1

are eliminated and therefore, BA ∈ R
I2×I2 where exactly one block matrix is missing. In

this problem again it is possible to find a unique fixed point. This shows the uniqueness,

which was stated in brackets in the lemma.

Proof of Lemma 3.1.10. In the following the different conditions on elements of K are

verified. The first is that aggregated capital has to be positive:

(K(k))A =
I−1∑

j=0

ωj(k)

β
j−1∑

m=0

βm

j∑

m=0

βm






1− ℓI−1(1− α)

ℓI−1(1− α) + α
I∑

m=0

βm







+

ωI(k)βα
I−1∑

m=0

βm

ℓI−1(1− α) + α
I∑

m=0

βm

=

I−1∑

j=0

ωj(k)
β

j−1
∑

m=0

βm

j
∑

m=0

βm

α
I∑

m=0

βm + ωI(k)βα
I−1∑

m=0

βm

ℓI−1(1− α) + α
I∑

m=0

βm

> 0

The second condition is that wealth needs to be positive. The proof is separated into two

parts. First ωI−1 is proven to be positive and second the other wealth functions are consid-

ered.

Consider

ωI−1(K(k)) =
(
K(k))A

)α
(

ℓI−1(1− α) + α
KI−1(k)

(K(k))A

)

.
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Obviously, it is positive if and only if the term in brackets is positive:

ℓI−1(1− α) + α
KI−1(k)

(K(k))A

= ℓI−1(1− α) + α

−
I−1∑

j=0

ωj(k)
β

j−1
∑

m=0

βm

j
∑

m=0

βm

ℓI−1(1− α) + ωI(k)βα
I−1∑

m=0

βm

I−1∑

j=0

ωj(k)
β

j−1
∑

m=0

βm

j
∑

m=0

βm

α
I∑

m=0

βm + ωI(k)βα
I−1∑

m=0

βm

=

I−1∑

j=0

ωj(k)
β

j−1
∑

m=0

βm

j
∑

m=0

βm

ℓI−1(1− α)

(
I∑

m=0

βm − 1

)

+ ωI(k)β
I−1∑

m=0

βm(α + ℓI−1(1− α))

I−1∑

j=0

ωj(k)
β

j−1
∑

m=0

βm

j
∑

m=0

βm

I∑

m=0

βm + ωI(k)β
I−1∑

m=0

βm

> 0

For all the other wealth functions j = 0, ..., I − 2 it is:

ωj(K(k)) =
(
K(k))A

)α
α

>0
︷ ︸︸ ︷

Kj(k)

(K(k))A

> 0

as Kj(k) is a positive fraction of ωj+1(k) which is positive for each feasible k.

So in sum K maps into K.

Proof of Lemma 3.2.1. A steady state is a fixed point in each component of the dynam-

ical system. So the following equations must be satisfied

k̄1 =
β(β + 1)

1 + β + β2
(1− α)(k̄A)α

k̄0 =
β

1 + β
k̄1α(k̄A)α−1

⇔ k̄1 =
β(β + 1)

1 + β + β2
(1− α)(k̄A)α

k̄0 =
β2

1 + β + β2
(1− α)(k̄A)αα(k̄A)α−1
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Obviously, both steady state variables are uniquely defined by the aggregated value. There-

fore it is sufficient to consider the aggregated capital in the steady state:

k̄A = k̄1 + k̄0 = (k̄A)α
(
β(β + 1)

1 + β + β2
(1− α) +

β2

1 + β + β2
(1− α)α(k̄A)α−1

)

⇔ (k̄A)1−α − β(β + 1)

1 + β + β2
(1− α)− β2

1 + β + β2
(1− α)α(k̄A)α−1 = 0

The last transformation can be done as for k̄ ∈ K the aggregated capital must be greater

than zero.

Now, substitute x := (k̄A)1−α. So the equation reads:

x2 − β(β + 1)

1 + β + β2
(1− α)x− β2

1 + β + β2
(1− α)α = 0

So what needs to be done is to solve that simple quadratic equation:

x1/2 =
β(1 + β)(1− α)

2(1 + β + β2)
± β

2(1 + β + β2)

√

(1 + β)2(1− α)2 + 4α(1 + β + β2)(1− α)

= β
(1 + β)(1− α)±

√

(1− α)((1 + β)2(1 + 2α) + 2α(1 + β2))

2(1 + β + β2)

Note that resubstituting only allows values that are greater than zero. As, obviously, the

root is greater than the first summand and both summands are positive, there is a unique

steady state value for aggregated capital

k̄A =

(

β
(1 + β)(1− α) +

√

(1− α)((1 + β)2(1 + 2α) + 2α(1 + β2))

2(1 + β + β2)

) 1

1−α

and thus, there is a unique steady state.

Proof of Lemma 3.2.2. The proof is analogous to the proof of Lemma 3.1.8. The equa-

tions describing a steady state k̄ are:

k̄0 =
β

1 + β
ω1(k̄) (3.15)

k̄1 =
αβ(1 + β)ω2(k̄)− ℓ1(1− α) β

1+β
ω1(k̄)

α(1 + β + β2) + ℓ1(1− α)
(3.16)

k̄0 + k̄1 = k̄A (3.17)

Using equation (3.15) in (3.16) leads to:
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k̄1 =
αβ(1 + β)ω2(k̄)− ℓ1(1− α)k̄0

α(1 + β + β2) + ℓ1(1− α)

⇔ α(1 + β + β2)k̄1 + ℓ1(1− α)k̄1 = αβ(1 + β)ω2(k̄)− ℓ1(1− α)k̄0

⇔ α(1 + β + β2)k̄1 + ℓ1(1− α)k̄A = αβ(1 + β)ω2(k̄)

⇔ k̄1 =
αβ(1 + β)(1− ℓ1)(1− α)(k̄A)α − ℓ1(1− α)k̄A

α(1 + β + β2)

Thus, k̄1 is uniquely determined by the steady state value for aggregated capital k̄A. As

ω1(k) is determined by aggregated capital and capital supply of the middle-aged it follows

that k̄0 is also uniquely determined by k̄A. So it is sufficient to find a solution to the following

equation:

k̄A = k̄0 + k̄1 = α
β(1 + β)ω2(k̄) + (1 + β + β2) β

1+β
ω1(k̄k)

α(1 + β + β2) + ℓ1(1− α)

with

ω2(k̄) = (1− α)(1− ℓ1)(k̄A)α

ω1(k̄) = (k̄A)α
(

ℓ1(1− α) +
αβ(1 + β)(1− ℓ1)(1− α)(k̄A)α−1 − ℓ1(1− α)

1 + β + β2

)

Thus,

(k̄A)1−α
(
α(1 + β + β2) + ℓ1(1− α)

)
= α

(
β(1 + β)(1− ℓ1)(1− α)

+
β(1 + β + β2)

1 + β
ℓ1(1− α) +

β

1 + β

(
αβ(1 + β)(1− ℓ1)(1− α)(k̄A)α−1 − ℓ1(1− α)

)
)

⇔ (k̄A)1−α
(
α(1 + β + β2) + ℓ1(1− α)

)
= αβ

(
(1 + β)(1− ℓ1)(1− α)

+βℓ1(1− α) + αβ(1− ℓ1)(1− α)(k̄A)α−1
)

Now, substitute x := (k̄A)1−α. Then, it is

x
(
α(1 + β + β2) + ℓ1(1− α)

)
− αβ(1− α)(1 + β − ℓ1)− α2β2(1− ℓ1)(1− α)

1

x
= 0

⇔ x2 − αβ(1 + β − ℓ1)(1− α)

α(1 + β + β2) + ℓ1(1− α)
x− α2β2(1− ℓ1)(1− α)

α(1 + β + β2) + ℓ1(1− α)
= 0

As for x = 0 the term on the left hand side is negative, there are two roots, one positive

and one negative. As it is necessary to extract a root to perform the back substitution,

the negative root does not define a steady state. So the unique steady state is defined by

k̄A = x
1

1−α with x > 0.
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Proof of Lemma 3.2.3. The proof makes use of the Schauder fixed point theorem.

The mapping φ : R2×2 → R
2×2, φ(A) = Ã is defined by

φ(A) =

(

−b11 b10

b01 −b00

)

βα

det B̃A

with bij defined in 3.11. Obviously, φ is uniquely determined by a10, a
2
0. Thus, it is sufficient

to find a fixed point of a mapping φ̃ : R2 → R
2, (a10, a

2
0) 7→ (−b11, b10) βα

det B̃A
.

Set Ã := {(a1, a2)|a1 ≤ 1 ∧ a2 ≤ 0}. R2 satisfies all requirements of the Schauder fixed point

theorem and obviously, Ã is compact and convex and φ̃ is continuous. What is left to be

shown is that φ̃ maps Ã into itself.

For a0 ∈ Ã it is

b10 = −(1− a10)ℓ
1(1− α) + a20ℓ

2(1− α) ≤ 0 ⇒ b11 = b10 − α(1 + β − a10) < 0

and

det B̃A = b11b00 − b01b10 = (b01 − α(1 + β))(b10 − α(1 + β − a10))− b01b10

= α
(
α(1 + β)(1 + β − a10)− (1 + β)b10 − b01(1 + β − a10)

)
> 0

That implies that Assumption 3.1.1 holds and thus φ̃ is well-defined. Now, φ̃(a0) ∈ Ã can

be concluded:

φ̃1(a
1
0, a

2
0) = β

α(1 + β − a10)− b01

(1 + β)(α(1 + β − a10)− b10)− b01(1 + β − a10)
≤ 1

φ̃2(a
1
0, a

2
0) = βα

b10

det B̃A

≤ 0

Thus, there is a fixed point of φ̃ on Ã and therefore, there is a fixed point of φ on A as

well.

Proof of Lemma 3.2.4. Let ω−0(k) = (ωi(k))
I
i=1. The conjecture is that ω−0(K0) = R

I

++.

If the conjecture holds and there is a tuple of coefficients
(
a
j
i

)

i=0I
such that

∑

i∈I
a
j
i < 0, it

is possible to choose k ∈ K0 such that ωj(k) is very large and ωn(k), n ∈ I\ {0, j} is

infinitetisimal small. Thus, aggregated capital in the following period is or may be negative,

which is excluded for feasible dynamics.

As K0 ⊂ K and the condition that aggregated capital needs to be positive is not relaxed in
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the definition of the state space, this leads to a contradiction.

It remains to show that the conjecture holds. Let x ∈ R
I
++ be arbitrary but fixed. Set

x1 = ω1(k)

x2 = ω2(k)

...
... ⇔ ki =

xi − ℓ1(1− α)(kA)α

α(kA)α−1
i = 1, ..., I − 1

xI−1 = ωI−1(k)

xI = ωI(k) ⇔ kA =

(
xI

ℓI(1− α)

) 1

α

Thus, k is uniquely defined by x. If k ∈ K0 holds the conjecture is proven.

The properties kA > 0 and ωi(k) > 0, respectively, hold by xI and xi with i = 1, ..., I − 1

being positive. The only condition that has not been proven yet is that ω0(k) > 0 holds:

k0 = kA −
I∑

i=1

ki =

α(kA)α − (1− α)
I−1∑

i=1

ℓi +
I−1∑

i=1

xi

α(kA)α−1

Thus,

ω0(k) = ℓ0(1− α)(kA)α + α(kA)α − (1− α)
I−1∑

i=1

ℓi +
I−1∑

i=1

xi

= (kA)α
(
ℓ0(1− α) + α− (1− ℓ0 − ℓI)(1− α)

)
+ f(k)− ω0(k)− ωI(k)

= (kA)α
(
ℓ0(1− α) + α− (1− α) + (ℓ0 + ℓI)(1− α)− ℓI(1− α) + 1

)
− ω0(k)

⇔ 2ω0(k) = (kA)α
(
ℓ0(1− α) + α + α + ℓ0(1− α)

)
> 0

where f(k) =
I∑

i=0

ωi(k) has been used. Dividing the last inequality by two leads to the

required result that ω0(k) > 0. Thus, k ∈ K0.

Proof of Lemma 3.2.5. Before checking the conditions on aggregated capital and the

wealth function, make a note of the properties on the coefficients of a fixed point on A. As

elements of A lead to a matrix BA with positive determinant, Cramer’s rule can be applied

and for a fixed point it is:

a10 = − βαb11

b00b11 − b01b10
∧ a11 =

βαb10

b00b11 − b01b10

a20 =
βαb01

b00b11 − b01b10
∧ a21 = − βαb00

b00b11 − b01b10
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with

b00 = −(α(1 + β) + ℓ0(1− α))

b01 = −ℓ0(1− α)

b10 = −ℓ1(1− α) +
(
(e21)

⊤Aℓ
)
(1− α)

b11 = −ℓ1(1− α) +
(
(e21)

⊤Aℓ
)
(1− α) + αa10 − α(1 + β).

So now check the conditions. Let k ∈ K and k1 = K(k).

kA1 > 0:

kA1 = (a10 + a11)ω
1(k1) + (a20 + a21)ω

2(k) = α
(1 + β − a10)ω

1(k) + (1 + β)ω2(k)

b00b11 − b01b10

which is positive if and only if

ω1(k) > − 1+β
1+β−a1

0

ω2(k)

which is satisfied by the definition of K as − 1+β
1+β−a1

0

> − ℓ0(1−α)β

−b11+ℓ0(1−α)(1+β−a1
0
)
.

ω0(k1):

ω0(k1) > 0

⇔ k01
kA1

> −ℓ
0(1− α)

α

⇔ −b11ω1(k) + b01ω
2(k)

α((1 + β − a10)ω
1(k) + (1 + β)ω2(k))

> −ℓ
0(1− α)

α

⇔− b11ω
1(k)− ℓ0(1− α)ω2(k) > −ℓ0(1− α)

(
(1 + β − a10)ω

1(k)− (1 + β)ω2(k)
)

⇔ω1(k) > − ℓ0(1− α)β

−b11 + ℓ0(1− α)(1 + β − a10)
ω2(k)

That exactly is satisfied by the definition of K.

ω1(k1):

Verify the following inequality:

ω1(k1) = ℓ1(1− α)(kA1 )
α +

k11
kA1

(kA1 )
αα > − ℓ2ℓ0(1− α)2β

−b11 + ℓ0(1− α)(1 + β − a10)
(kA1 )

α

⇔ℓ1(1− α) +
b10ω

1(k)− b00ω
2(k)

(1 + β − a10)ω
1(k) + (1 + β)ω2(k)

> − ℓ0ℓ2(1− α)2β

−b11 + ℓ0(1− α)(1 + β − a10)

⇔(ℓ1β + a20ℓ
2)(1− α)ω1(k) + (ℓ0(1− α) + (1 + β)(ℓ1(1− α) + α))ω2(k)

> − ℓ0ℓ2(1− α)2β

−b11 + ℓ0(1− α)(1 + β − a10)

(
(1 + β − a10)ω

1(k) + (1 + β)ω2(k)
)
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⇔
[
(ℓ1β + a20ℓ

2)(1− α)(−b11 + ℓ0(1− α)(1 + β − a10)) + ℓ0ℓ2(1− α)2β(1 + β − a10)
]
ω1(k)

> −
[
ℓ0ℓ2(1− α)2β(1 + β)

−
(
ℓ0(1− α) + (ℓ1(1− α) + α)(1 + β)

)
(−b11 + ℓ0(1− α)(1 + β − a10))

]
ω2(k)

Now, use that k ∈ K:

[
(ℓ1β + a20ℓ

2)(1− α)(−b11 + ℓ0(1− α)(1 + β − a10)) + ℓ0ℓ2(1− α)2β(1 + β − a10)
]
ω1(k)

>−
[

(ℓ1β + a20ℓ
2)ℓ0(1− α)2β +

ℓ0ℓ0ℓ2(1− α)3β2(1 + β − a10)

−b11 + ℓ0(1− α)(1 + β − a10)

]

ω2(k)

>−
[
(ℓ1β + a20ℓ

2)ℓ0(1− α)2β + ℓ0ℓ2(1− α)2β2
]
ω2(k)

Hence, it can be concluded that:

−
[
(ℓ1β + a20ℓ

2)ℓ0(1− α)2β + ℓ0ℓ2(1− α)2β2
]
ω2(k)

> −
[
ℓ0ℓ2(1− α)2β(1 + β)

−
(
ℓ0(1− α) + (ℓ1(1− α) + α)(1 + β)

)
(−b11 + ℓ0(1− α)(1 + β − a10))

]
ω2(k)

⇔− (ℓ1β + (a20 − 1)ℓ2)ℓ0(1− α)2β

> −b11
(
ℓ0(1− α) + (ℓ1(1− α) + α)(1 + β)

)
− (ℓ0(1− α) + α(1 + β))ℓ0(1 + β − a10)

− ℓ0ℓ1(1− α)2(1 + β)(1 + β − a10)

⇔(1− a20)ℓ
2ℓ0(1− α)2β + ℓ0ℓ1(1− α)2(1 + β + β2 − (1 + β)a10)

> −b11
(
ℓ0(1− α) + (ℓ1(1− α) + α)(1 + β)

)
− (ℓ0(1− α) + α(1 + β))ℓ0(1 + β − a10)

As the first term is greater than zero and the last term is smaller than zero the inequality is

satisfied.

Proof of Lemma 3.2.6. The existence and even uniqueness of such an equilibrium for

ℓ0 = 0 is shown in Section 3.2.2. So here ℓ0 6= 0 is assumed.

As the dimension of the economy is not that high all fixed points of φ can be described,

which is done first in a straightforward computation.

A matrix Ā is required such that

BĀā = b.

Following Corollary 3.1.1 it can be assumed that detBA 6= 0 without losing any solution.

The image Ã of an arbitrary matrix A under φ has been characterized in equation (3.12).

As the entries of BA only depend on the first row of A, any image and in particular a fixed

point of φ is characterized by a10 and a
2
0. If these two entries coincide with the corresponding
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values of the image, there is one fixed point defined by the remaining entries of the image.

So the existence of a fixed point is ensured if there are ā10 and ā20 such that:

ā10 = − βαb̄11

detBĀ

∧ ā11 =
βαb̄10

detBĀ

where b̄ij denote the entries of BĀ. As detBĀ 6= 0 and b̄01 6= 0 as ℓ0 6= 0, ā20 is different from

zero as well. So it can be concluded:

detBĀ =
b̄01βα

ā20

⇒ b̄01βα

ā20
ā10 = −αβb̄11

⇔ ā10b̄01 = −ā20b̄11
⇔ − ā10ℓ

0(1− α) = −ā20
(
ℓ1(1− α)− (ℓ1ā10 + ℓ2ā20)(1− α) + α(1 + β − ā10)

)

⇔ ā10 =
ℓ1(1− α) + α(1 + β)− ℓ2(1− α)ā20

(ℓ1(1− α) + α)ā20 − ℓ0(1− α)
ā20

So the determinant can be quoted in terms of ā20. In general, it is

detBA = α
[
(1 + β − a10)

(
α(1 + β) + ℓ0(1− α)

)
+ (1 + β)(1− α)

(
(1− a10)ℓ

1 − a20ℓ
2
)]
.

Before regarding the final equation consider the following:

(1 + β − ā10)

=
(ℓ1(1− α) + α) (1 + β)ā20 − ℓ0(1 + β)(1− α)− (ℓ1(1− α) + α(1 + β)) ā20 + ℓ2(1− α)(ā20)

2

(ℓ1(1− α) + α)ā20 − ℓ0(1− α)

=
(ℓ1(1− α)β + ℓ2(1− α)ā20) ā

2
0 − ℓ0(1− α)(1 + β)

(ℓ1(1− α) + α)ā20 − ℓ0(1− α)

Combining the previous results in the equation detBĀ = b̄01βα
ā2
0

leads to

ā20
[
(1 + β)ℓ1(1− α)

(
(ℓ1(1− α) + α)ā20 − ℓ0(1− α)

)

+
(
α(1 + β) + ℓ0(1− α)

) [(
ℓ1(1− α)β + ℓ2(1− α)ā20

)
ā20 − ℓ0(1− α)(1 + β)

]

− (1 + β)ℓ1(1− α)
[(
α(1 + β) + ℓ1(1− α)

)
ā20 − (ā20)

2ℓ2(1− α)
]

−ā20ℓ2(1− α)(1 + β)
(
(ℓ1(1− α) + α)ā20 − ℓ0(1− α)

)]

= −βℓ0(1− α)
(
ℓ1(1− α) + α)ā20 − ℓ0(1− α)

)
.
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Thus, ā20 is defined by the roots of

(ā20)
3
((
α(1 + β) + ℓ0(1− α)

)
ℓ2(1− α) + (1 + β)ℓ2ℓ1(1− α)2 − (1 + β)ℓ2(1− α)(ℓ1(1− α) + α)

)

+(ā20)
2
((
α(1 + β) + ℓ0(1− α)

)
ℓ1(1− α)β − αβ(1 + β)(1− α)ℓ1 + ℓ2(1− α)(1 + β)

)

+ā20
(
−
(
α(1 + β) + ℓ0(1− α)

)
ℓ0(1− α)(1 + β)− ℓ0(1− α)2(1 + β)ℓ1 + βℓ0(1− α)(ℓ1(1− α) + α)

)

−ℓ0ℓ0(1− α)2β = 0

⇔
(ā20)

3ℓ2(1− α)2ℓ0 + (ā20)
2ℓ0(1− α)2

(
ℓ1β + ℓ2(1 + β)

)

+ā20ℓ
0(1− α)

(
−α(1 + β + β2)− ℓ0(1− α)(1 + β)− ℓ1(1− α)

)
− ℓ0ℓ0(1− α)2β = 0

⇔
(ā20)

3ℓ2(1− α) + (ā20)
2(1− α)

(
ℓ1β + ℓ2(1 + β)

)

−ā20
(
α(1 + β + β2) + ℓ0(1− α)(1 + β) + ℓ1(1− α)

)
− ℓ0(1− α)β = 0

Note that in the last step ℓ0(1−α) can be crossed out as it is assumed to be different from

0. Otherwise the equation is fulfilled automatically as it reads ′0 = 0′.

As this is a cubic equation the existence of a real root is ensured. Having a closer look at

the coefficients the roots can be characterized a little bit:

Obviously, there is one positive root as the leading coefficient is greater than zero and the

constant term is negative. But it can easily be shown that there are three real roots:

(i) As already mentioned the polynomial converges to infinity for ā20 → ∞

(ii) For ā20 = 0 the polynomial is smaller than zero (−ℓ0(1− α)β).

(iii) Setting ā20 = −1 the polynomial is equal to

(1− α)
(
ℓ1β + ℓ2β

)
+ α(1 + β + β2) + ℓ0(1− α) + ℓ1(1− α) > 0.

(iv) For ā20 → −∞ the polynomial converges to −∞ as well.

Thus, the three roots lie in the intervals (−∞,−1), (−1, 0), (0,∞). These roots define the

three equilibrium candidates. Obviously, the second root, a20 ∈ (−1, 0), defines the equilib-

rium that has already been considered. It remains to show, that the other roots define an

infeasible dynamics. Both candidates contradict Lemma 3.2.4.

First consider a20 > 0:

a20 + a21 = α2β(1+β)

det B̃A
. By the definition of a20 by Cramer’s rule a20 > 0 ⇔ det B̃A < 0. Thus,

the sum of the coefficients of ω2(k) is negative and the fixed point defined by a20 > 0 may

not be feasible.
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Now, consider a20 < −1:

First the upper bound will be redefined. Show that for (a20)
⋆ = −βℓ1+

√
β2ℓ1ℓ1−4ℓ0ℓ2(1+β)

2ℓ2
the

polynomial above is greater than zero as well, thus the considered interval changes to(

−∞,−βℓ1+
√

β2ℓ1ℓ1−4ℓ0ℓ2(1+β)

2ℓ2

)

. In the following, set κ := β2ℓ1ℓ1 − 4ℓ0ℓ2(1 + β).

((ā20)
⋆)3ℓ2(1− α) + ((ā20)

⋆)2(1− α)
(
ℓ1β + ℓ2(1 + β)

)

− (ā20)
⋆
(
α(1 + β + β2) + ℓ0(1− α)(1 + β) + ℓ1(1− α)

)
− ℓ0(1− α)β

=−
(
βℓ1 +

√
κ
)3

8ℓ2ℓ2
(1− α) +

(
βℓ1 +

√
κ
)2

4ℓ2ℓ2
(1− α)

(
ℓ1β + ℓ2(1 + β)

)
− ℓ0(1− α)β

+

(
βℓ1 +

√
κ
)

2ℓ2
(
α(1 + β + β2) + ℓ0(1− α)(1 + β) + ℓ1(1− α)

)

=
2βℓ1 − βℓ1 −√

κ

8ℓ2ℓ2
(
βℓ1 +

√
κ
)2

(1− α) +
2β2ℓ1ℓ1 + 2βℓ1

√
κ+ 4ℓ0ℓ2(1 + β)

4ℓ2
(1 + β)(1− α)

+

(
βℓ1 +

√
κ
)

2ℓ2
(
α(1 + β + β2) + ℓ0(1− α)(1 + β) + ℓ1(1− α)

)
− ℓ0(1− α)β

=βℓ1(1− α)
β2ℓ1ℓ1 + βℓ1

√
κ+ 2ℓ0ℓ2(1 + β)

4ℓ2ℓ2
−
√
κ(1− α)

β2ℓ1ℓ1 + βℓ1
√
κ+ 2ℓ0ℓ2(1 + β)

4ℓ2ℓ2

+ βℓ1(1 + β)(1− α)
βℓ1 +

√
κ

2ℓ2
+ ℓ0(1 + β)2(1− α)− ℓ0(1− α)

+
βℓ1 +

√
κ

2ℓ2
(
α(1 + β + β2) + ℓ0(1− α)(1 + β) + ℓ1(1− α)

)

=β2ℓ1ℓ1
βℓ1 +

√
κ

4ℓ2ℓ2
+

ℓ1β(1− α)ℓ0(1 + β)

2ℓ2
− β2ℓ1ℓ1

√
κ(1− α)

4ℓ2ℓ2

− βℓ1(1− α)
β2ℓ1ℓ1 + 4ℓ0ℓ2(1 + β)

4ℓ2ℓ2
−

√
κ(1− α)ℓ0(1 + β)

2ℓ2

+ ℓ0(1− α)(1 + β + β2) +
βℓ1 +

√
κ

2ℓ2
(
α(1 + β + β2) + ℓ0(1− α)(1 + β) + ℓ1(1− α)(1 + β + β2)

)

=
ℓ1β(1− α)ℓ0(1 + β)

2ℓ2
− βℓ1ℓ0(1− α)(1 + β) +

√
κ(1− α)(1 + β)

2ℓ2

+ ℓ0(1− α)(1 + β + β2) +
βℓ1 +

√
κ

2ℓ2
(
α(1 + β + β2) + ℓ0(1− α)(1 + β) + ℓ1(1− α)(1 + β + β2)

)

=ℓ0(1− α)(1 + β + β2) +
βℓ1 +

√
κ

2ℓ2
(1 + β + β2)(ℓ1(1− α) + α)

The conjecture is that a10 + a11 < 0. Obviously, is det B̃A > 0, as a20 < 0, by the same

argumentation as above. Thus,

a10 + a11 =
α2β(1 + β − a10)

det B̃A

< 0 ⇔ (1 + β − a10) < 0
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With a10 defined above in dependence of a20 it is

1 + β − a10 =
βℓ1(1− α)a20 − (1 + β)ℓ0(1− α) + ℓ2(1− α)(a20)

2

(ℓ1(1− α) + α)a20 − ℓ0(1− α)
< 0

a2
0
<0⇔ βℓ1(1− α)a20 − (1 + β)ℓ0(1− α) + ℓ2(1− α)(a20)

2 > 0

Obviously, the left polynomial in the last inequality has a positive and a negative root. As

βℓ1(1 − α) > 0 the inequality is satisfied for all a20 that are smaller than the negative root.

The negative root in fact is (a20)
⋆ and a20 < (a20)

⋆ by assumption. Thus, the coefficients of

ω1(k) contradict Lemma 3.2.4.

Proof of Lemma 3.2.7. The equilibrium dynamics is given by K(k) = Aω−0(k). The

objective is to find k̄ =
(
k̄0, k̄1

)
such that

k̄0 = a10ω
1(k̄) + a20ω

2(k̄)

k̄1 = a11ω
1(k̄) + a21ω

2(k̄)

k̄A = k̄0 + k̄1

with

ω1(k̄) = (k̄A)α
(

ℓ1(1− α) + α
k̄1

k̄A

)

ω2(k̄) = ℓ2(1− α)(k̄A)α

Using the definition of k̄1 in ω1(k̄) leads to:

ω1(k̄) = (k̄A)α
(

ℓ1(1− α) + α
a11ω

1(k̄) + a21ω
2(k̄)

k̄A

)

⇔ ω1(k̄)
(
1− a11α(k̄

A)α−1
)
= (k̄A)α

(

ℓ1(1− α) + α
a21ℓ

2(1− α)(k̄A)α

k̄A

)

⇔ ω1(k̄) = (k̄A)α
ℓ1(1− α) + α

a2
1
ℓ2(1−α)(k̄A)α

k̄A

1− a11α(k̄
A)α−1

As both ω1(k̄) and ω2(k̄) can be written in dependance of k̄A, now k̄A will be determined.

k̄A = k̄1 + k̄0 = (a10 + a11)ω
1(k̄) + (a20 + a21)ω

2(k̄)

⇔
(
k̄A
)1−α

= (a10 + a11)
ℓ1(1− α) + αa21ℓ

2(1− α)(k̄A)α−1

1− a11α(k̄
A)α−1

+ (a20 + a21)ℓ
2(1− α)



3.4 Mathematical Appendix 65

⇔
(
k̄A
)1−α − a11α = (a10 + a11)ℓ

1(1− α) + (a10 + a11)αa
2
1ℓ

2(1− α)(k̄A)α−1

+ (a20 + a21)(1− α)ℓ2 − a11α(a
2
0 + a21)ℓ

2(1− α)(k̄A)α−1

⇔
(
k̄A
)1−α −

(
(1− α)((a10 + a11)ℓ

1 + (a20 + a21)ℓ
2) + αa11

)

− αℓ2(1− α) (a10a
2
1 − a11a

2
0)

︸ ︷︷ ︸

=detA

(
k̄A
)α−1

= 0

Now, substitute
(
k̄A
)1−α

=: x:

x2 −
(
(1− α)((a10 + a11)ℓ

1 + (a20 + a21)ℓ
2) + αa11

)
x− αℓ2(1− α) detA = 0

Obviously, again only the positive roots are interesting as kA = x
1

1−α is a root of x. As

detA > 0 by Corollary 3.2.2 with Descartes’ rule of signs (cf. Struik [24]) the uniqueness of

this positive root is guaranteed.

In particular it is

kA =

(
(1− α)((a10 + a11)ℓ

1 + (a20 + a21)ℓ
2) + αa11

2

+

√
(
(1− α)((a10 + a11)ℓ

1 + (a20 + a21)ℓ
2) + αa11

2

)2

+ αℓ2(1− α) detA





1

1−α





Chapter 4

The Equilibrium Dynamics

The previous chapter analyzed the capital evolution of the benchmark economy. In the

three-period economy a uniqueness result has been achieved. Except for the existence of a

unique steady state there was no analysis of the dynamics’ properties so far. This chapter

will address the questions how the equilibrium dynamics behave in the long-run and if there

is some kind of optimality. For this analysis, the definitions need to be transferred from the

context of the two-period economy to the generalization as well as it needs to be checked if

the criteria that are known are applicable or transferable, respectively.

The chapter is organized as follows: Section 1 considers the stability properties of the equi-

librium dynamics. Section 2 treats dynamic efficiency and section 3 pareto optimality. These

sections first introduce the corresponding concepts for the general multi-period economy and

analyze the equilibrium derived in Chapter 3 with respect to these concepts.

4.1 Stability Properties and the Steady State

The objective of this section is the analysis of the stability-properties of the three-period

benchmark economy. Again, the section distinguishes the cases of the general economy and

the economy where the labor profile is restricted such that the old generation is retired.

4.1.1 Case I: The General Three-Period Economy

The three-period economy with an arbitrary labor profile has a unique equilibrium of the

type

K(k0, k1) =

(

a10 a20

a11 a21

)(

ω1(k)

ω2(k)

)

67
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(see 3.2.5). The previous chapter’s appendix (see Proof of Lemma 3.2.7) has given the explicit

characterization of the unique steady state k̄ = (k̄0, k̄1). The following lemma addresses the

stability of the dynamics. The existence of a unique steady state raises the question of

global and local long-run behavior. The criterion of local stability is a general criterion for

dynamical systems. Thus, it is applicable without conflicts.

Lemma 4.1.1. The steady state determined in Lemma 3.2.5 is either saddle path stable or

asymptotically stable.

Obviously, the convergence in the long-run is not proven in general. Lemma 4.1.1 states that

if instability occurs, it is of a particular type. A specification would only be possible if the

coefficients in the equilibrium dynamics were further restricted. Then, if instability occurs,

it might be possible to define critical values for the parameters α, β and the labor profile

such that the dynamics is stable or not. But saddle path stability at least guarantees that

for each k00 there is a k10 such that Kt(k0) converges towards the steady state k̄ for t→ ∞.

4.1.2 Case II: Retirement of the Old in the Three-Period Economy

This section considers the particular economy where labor is only supplied by the young

and the middle-aged. Section 3.2.2 shows that there is a unique steady state (see equation

(3.10)). Before analyzing the stability properties of the economy, focus on the behavior of

the steady state values depending on the labor profile and the other parameters. Figure 4.1

shows the steady values for ℓ1 = 1
2
. Naturally, the most interesting value is k̄1, because here

compared to the well-known two-period economy new effects may occur. The figure shows

that the decision of positive or negative capital supply does not only depend on the labor

profile. Furthermore, it is visible that negative savings are not only realized in the extreme

example where ℓ1 = 1. Figure 4.1(c) stresses that there are positive and negative values

for k̄1. Concerning the dependance on the parameters except the labor profile, Figure 4.1

emphasizes that at least the steady state value of aggregated capital supply, k̄A, is increasing

in β. k̄0 seems to be increasing in β as well. This result is intuitive as the higher β the

higher future utility is evaluated. Thus, future consumption is more valuable and it is more

attractive to invest capital. Regarding the parameter α no similar observation is made. The

value for ℓ1 is chosen exemplary here. In Appendix B there are similar considerations for the

values ℓ1 ∈
{
0, 1

3
, 2
3
, 1
}
. Figures B.1 until B.4 emphasize the observations for these values.

It is worth to note that in all cases the steady state may be very close to zero. Thus, when

plotting the dynamical behavior later, a numerical convergence to a value very close to zero

does not necessarily represent impoverishment of the economy.

Now, after closer inspection of the steady state’s properties regard the long-run behavior.

As in this economy the equilibrium dynamics is known explicitly, the stability result of
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Figure 4.1: Steady state values for ℓ1 = 1
2
in dependence of parameters α and β
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Figure 4.2: Dynamics with ℓ1 = 1
2
, α = 0.5 β = 0.5, k1 = (0.1, 0.1)

Lemma 4.1.1 may be specified.

Lemma 4.1.2. The steady state determined in Lemma 3.2.2 is locally asymptotically stable.

Lemma 4.1.2 states a very strong result. If the old generation is retired, the economy

converges towards its steady state.

Figures 4.2 to 4.4 show the convergence for different parameter values for α and β. Note

that for numerical reasons the initial value is denoted by k1 in the figures. As proven in

Lemma 4.1.2 the system converges for all parameter values. But the figures show that the

evolution differs structurally. While in Figure 4.2 the dynamics converges monotone to the

steady state in both components, zooming in the evolution in total of Figure 4.3(c) shows

that the convergence is not monotone at all (see Figure 4.3(d)). Here the convergence of

k0t as well as k1t is not monotone. Some values are greater and some are smaller than the
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Figure 4.3: Dynamics with ℓ1 = 1
2
; α = 0.1, β = 0.2; initial value k1 = (0.1, 0.1)

steady state value. In particular it is not alternating as Figure 4.3(a) for t = 1, 2, 3 shows.

In Figure 4.4 the convergence in total is little oscillating. In particular there is a repeating

pattern. The oscillating pattern is due to the evolution of k1t (Figure 4.4(b)). k0t seems to

converge monotone again. Again the figures in this subsection have been chosen exemplary.

In Appendix B figures B.5 to B.39, show the same figures for other values of ℓ1 ∈ {0, 1
3
, 2
3
, 1}.

For each parameter set the evolution of the dynamics has been visualized for at least three

initial values: (0.1, 0.1), (10, 10) and one near the steady state. Figures 4.5 and 4.6 show

that the pattern of dynamics depends on the initial value. Both initial values k1 are near

the steady state (k̄=̃(0.044, 0.011)), but in the first figure the convergence is oscillating in

both components (k0t and k1t ) and in the second it is monotone. All figures that show the

convergence for any parameter set, point out that the convergence is very fast. In most

economies it takes at most ten steps to be that near to the steady state value that in the
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Figure 4.4: Dynamics with ℓ1 = 1
2
, α = 0.33 β = 0.4; initial value k1 = (0.1, 0.1)

figure no difference in the values may be recognized. Figures 4.4 to 4.7 indicate for the

particular economy that convergence is independent of initial values. Thus, the steady state

probably is globally asymptotically stable as well. Computing the iterations for different

parameters and initial values substantiate this observation and shows the fast convergence

as well.

4.1.3 Comparison to the Two-Period Economy

Analogous to the equilibrium structure (see Section 3.3) this section compares the stability

properties of the two-period to the three-period economy. The previous Subsection 4.1.2

shows the properties of the three-period economy with retirement that are completed by the

considerations in Appendix B. Appendix A contains the corresponding results and figures
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Figure 4.5: Dynamics with ℓ1 = 1
2
, α = 0.33, β = 0.4, k1 = (0.05, 0.01)

of the two-period economy with old age labor supply. Comparing the steady state value of

aggregated capital k̄A for different parameter values of labor supply of the old respectively

the middle-aged there are some similarities: If all labor is supplied by the young k̄A seems

to be increasing in β and decreasing in α in both economies. For other values of ℓ0 in the

two-period respectively ℓ1 in the three-period economy it is at most increasing in β. The

maximum value of k̄A in total decreases in labor supply of the young in both economies. In

the two-period economy this fact is very intuitive: The higher the income of the young the

higher is their investment and thus capital supply. In the three-period economy one could

imagine that the deficit of investment of the young is compensated by investment of the

middle-aged when labor supply of the middle-aged increases. Obviously, though there is an

evolution in this direction, especially when individual capital supply of the middle-aged is

negative, but there is no compensation in total.
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, α = 0.33, β = 0.4, k1 = (0.04, 0.01)
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Figure 4.7: Dynamics with ℓ1 = 1
2
, α = 0.33, β = 0.4, k1 = (10, 10)

In the two-period economy aggregated capital is equal to capital supply of the old respectively

the second generation (started with the young). Naturally, a one to one comparison is not

possible because of the different dimensions. The most likely way is to compare aggregated

capital supply in the two-period economy to individual capital supply of the middle aged in

the three-period economy. Here the observation is that the visualization of the steady state

of the two-period economy (Figure A.1) and the three-period economy (Figures 4.1 and B.1

to B.4) are similar for small values of labor supply of the old respectively the middle-aged. In

case of high labor supply of the old respectively middle-aged the evolution of capital supply

differs very much. One problem in this comparison is that capital supply of the middle-aged

may be negative while this is forbidden in the two-period economy. Thus, the differences for

a shift of labor supply to the second generation is intuitive.

The stability properties of the two economies are similar as well. Both of them converge to-
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wards their unique steady state. With the graphical and numerical foundation, respectively,

we assume global stability for both economies. But while the two-period economy converges

monotonously a general description of the evolution in the three-period economy is not pos-

sible. There are economies where the figures suggest monotone convergence but there are

oscillating and other structures as well. Sometimes convergence seems to be monotone in at

least one component.

4.2 Dynamic Efficiency

As it is well-known there is a lack of efficiency in the two-period overlapping generations

economy. Regarding economies with more than two periods the question of efficiency natu-

rally raises. In the first part of this section there are some preparations for the analysis as

it needs to be checked which criterion is applicable in the multi-period context. The second

part applies the criterion to the tree-period economy with retirement and finally the results

are compared to the results of the two-period economy.,

4.2.1 Dynamic efficiency in the Multi-Period context

Dynamic efficiency in an overlapping generations economy is defined by the question if it

is possible to increase aggregated consumption in one period without having a reduction in

any other period. Efficiency is defined for the two-period economy for example in de la Croix

and Michel [11]. First of all the definition must be extended to the multi-period context.

Before considering dynamic efficiency itself there are some necessary preparations.

Definition 4.2.1. Given kA0 > 0 an aggregated capital allocation is a sequence
{
kAt
}

t≥0

with kAt ∈ R++, t ≥ 0. An aggregated capital allocation
{
kAt
}

t≥0
is called feasible, if

f(kAt )− kAt+1 ≥ 0

for all t ≥ 0.

The set of feasible allocations is denoted by A(kA0 ).

Obviously, each Markov equilibrium defines an aggregated capital allocation. Analogous to

aggregated capital supply, aggregated consumption in an arbitrary period t ≥ 0 is defined

as

cA :=
I∑

i=0

ci

Summed over the generations consumption and investment must not exceed output in each

period t ≥ 0. This condition is called aggregate resource constraint:

cAt ≤ f(kAt )− kAt+1 ∀t ≥ 0
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In particular in each equilibrium equality holds because of the monotonicity properties of the

utility function (see Assumption 2.3.1). In equilibrium aggregated consumption is defined in

terms of aggregated capital and feasibility implies that aggregated consumption is positive.

By the requirement of consumption to be positive the aggregated capital allocation defined by

a Markov equilibrium is feasible. Now, all preparations are in place to define a dynamically

efficient allocation.

Definition 4.2.2. Given kA0 > 0. A feasible aggregated capital allocation
{
kAt
}

t≥0
is called

dynamically efficient if there is no feasible allocation
{

k̃At

}

t≥0
such that

f(kAt )− kAt+1 ≤ f(k̃At )− k̃At+1 ∀t ≥ 0

where the inequality holds strictly for at least one t0.

Otherwise the allocation is called dynamically inefficient.

The definition represents the introducing question. Note that efficiency is independent of

preferences. In fact by definition dynamic efficiency only uses aggregated values of capital

and the capital distribution is irrelevant. This observation is crucial. As the objective of

this section is an analysis of the derived equilibrium with respect to dynamic efficiency the

interest is in an efficiency criterion. As it is known for the two-period economy there are

such criteria due to Cass [8] (Theorem 3 and Example 1). He exposes overaccumulation of

capital as the source of inefficiency. The requirements and proofs only depend on aggregated

capital.

Corollary 4.2.1. The criteria for efficiency are the same as in the two-period economy

where the capital evolution is replaced by the evolution of aggregated capital.

For completeness Theorems 4.2.1 and 4.2.2 repeat the criteria in the current context.

Theorem 4.2.1 (Efficiency for asymptotically stationary allocations). Let
{
kAt
}

t≥0
be a

feasible aggregated capital allocation that converges to a constant value k̄ > 0. Then it is

dynamically efficient if

f ′(k̄A) > 1

and dynamically inefficient if

f ′(k̄A) < 1.

Theorem 4.2.2. Let
{
kAt
}

t≥0
be a feasible aggregated capital allocation. It is dynamically

efficient if and only if
∞∑

t=0

1

Pt

<∞
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where P0 = 1 and

Pt+1 =
1

f ′
(
kAt+1

)Pt t ≥ 0.

Note that the consideration here is independent of the economy type. Hence, the criteria

may be applied to any equilibrium allocation.

4.2.2 Efficiency in the Retirement Economy

This subsection applies the efficiency criterion derived in the previous subsection to the

three-period benchmark economy where the old generation is retired. The main question

is, how labor supply of the middle-aged influences efficiency. As the steady state of the

equilibrium dynamics is shown to be globally asymptotically stable by Lemma 4.1.2 and the

simulation, the Cass-Criterion for stable systems is applied. In the following the aggregated

capital allocation induced by the equilibrium dynamics will be called equilibrium allocation.

Lemma 4.2.1. There is a critical value ℓ̃1 < 1 such that the equilibrium allocation is dy-

namically efficient for all ℓ1 > ℓ̃1. In particular, it is

ℓ̃1 =
β(1 + 2β)

1 + β + β2
− α

1− α
.

Obviously, ℓ̃1 determined in Lemma 4.2.1 may be negative. As individual labor supply is

required to be positive, let ℓ1 := max
{

0, ℓ̃1
}

denote the critical value in total.

Lemma 4.2.1 states that the more labor is supplied by the middle-aged the higher is the prob-

ability that the equilibrium allocation is dynamically efficient. The reason is that dynamic

inefficiency is caused by capital overaccumulation. That is, each reduction of investment

in total makes dynamic efficiency more probable. Compared to the economy where all la-

bor is supplied by the young the introduction of positive labor supply of the middle-aged

corresponds to a reduction of investment in total. The reason is that labor income is split

between two periods and lifetime consumption is not only financed by wealth when young,

that is divided up between the lifetime periods by investments.

Lemma 4.2.2. The critical value ℓ1 determined above is smaller than 1, but there is no

ℓ∗ < 1 such that ℓ1 < ℓ∗ for all α, β ∈ (0, 1).

Corollary 4.2.2. If all labor is supplied by the middle-aged, ℓ1 = 1, the equilibrium allocation

is dynamically efficient.

Figure 4.8 shows how the critical value evolves in dependance on α and β. It validates

Corollary 4.2.2.

By the structure of ℓ1 and Figure 4.8(a) it is obvious that the boundary condition ℓ1 ≥ 0 is

binding for many α and β. This observation leads to a critical value for α as well.
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Figure 4.8: Critical values of labor supply

Corollary 4.2.3. The equilibrium is dynamically efficient if α < β(1+2β)
β(1+2β)+1+β+β2 .

Obviously, this value is smaller than one for all β ∈ (0, 1). Thus, a continuation of this

principle, determining a critical value for β as well, is not possible.

4.2.3 Comparison of the Two-Period and the Three-Period Econ-

omy

As the same efficiency criterion is applied for both the two- and the three-period economy

the results may be compared very well. In both economies the introduction of labor supply

of more than one (the young) generation makes dynamic efficiency more probable. In each

economy there is a critical value for labor supply of the old respectively the middle-aged

such that the equilibrium allocation is dynamically efficient for labor supply above the crit-

ical value. Figure 4.8 shows the critical values for the three- and the two-period economy.

The figures (a) and (b) look similar. In total without the boundary condition the critical

values ℓ̃1 and the corresponding ℓ̃0 in the two-period economy would converge to −∞ for

α → 1, but as labor supply is between 0 and 1 figures 4.8(a) and 4.8(b) show that for many

α and β this condition is binding. Moreover, the image of the critical value in the two-

period economy seems to be more ’flat’ than in the three-period economy and the maximal

value is higher in Figure 4.8(a). In the two-period economy the critical value is smaller

than 1
2
(see Lemma A.0.1) while it is 1 in the three-period economy (see Lemma 4.2.2).

Thus, there is always at least one labor profile such that the equilibrium allocation is dy-

namically efficient. The following lemma validates the observation that the values of the

critical value in the two-period economy are smaller than in the three-period economy. Let
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E3 = 〈{0, 1, 2} , (0, ℓ, 1− ℓ), ln(c), β, kα〉 and E2 = 〈{0, 1} , (ℓ, 1− ℓ), ln(c), β, kα〉 define the

three- and the two-period economy with the same parameter set, while the old in the three-

period economy are retired. Thus besides the parameters α and β the division of labor

between the two-working generations is the same.

Lemma 4.2.3. Given feasible initial values k for both economies, the following holds: If E3
is dynamically efficient E2 is dynamically efficient as well.

The result is in some ways intuitive. Think of the special case where all labor is supplied by

the young and consider the lifetime behavior of one young agent. In the three-period model

investment, when the agent is young, must be large enough to handle consumption when

middle-aged and when old as well. The reason is that income during these two periods only

consists of capital income. In contrast to that in the two-period model only the consumption

of one following period must be taken into account. Thus, capital overaccumulation is more

likely in this three-period economy. Note that this observation only holds in the three-period

economy with retirement and not for the three-period economy in general.

Finally, there are a few words about the general benchmark economy. The observations in

the two-period and three-period economy with retirement suggest that in the general three-

period economy dynamic efficiency is even more probable. With the same argumentation as

above the intuition is that if the third generation supplies labor as well, overaccumulation

occurs less. In an economy with an arbitrary number of lifetime periods one would conjecture

that the less generations are retired, the more probable is dynamic efficiency. It is obvious

that not only the number of working generations but also the distribution of individual labor

supply among the generations influences dynamic efficiency.

4.3 Pareto Optimality

In contrast to dynamic efficiency pareto optimality describes optimality with respect to

individual utility. Is it possible to make one generation better off without reducing any

other agent’s utility? Remember that an equilibrium in an overlapping generations economy

is not necessarily pareto optimal as the first welfare theorem does not need to hold in this

context (cf. Samuelson [21]). The problem is that over time there is an infinite number

of agents and goods. Analogous to the previous section the definition of pareto optimality

is extended from the well-known two-period case (e.g. de la Croix and Michel [11]) to the

multi-period context in the first part before the application is possible. The second part

presents a general pareto optimal solution for the benchmark economy with an arbitrary

number of lifetime periods.
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4.3.1 Pareto Optimality in the Multi-Period context

Already the introducing question stresses that now at least the distribution of the consump-

tion is crucial for the inspection if an economy is pareto optimal or not. Hence, in contrast

to the previous section, now an allocation is defined that includes this information.

Definition 4.3.1. Given (c0, k
A
0 ) ∈ R

I+2
++ , a feasible consumption capital allocation is a

sequence
{
(cit)i∈I , k

A
t

}

t≥0
∈ R

I+2
++ satisfying

f(kAt ) = kAt+1 + cAt

for all t ≥ 0. The set of feasible consumption capital allocations is denoted by A
⋆
(
(c0, k

A
0 )
)
.

Again feasibility is defined in the context of aggregated values and analogous to the previous

section a Markov equilibrium implies a feasible consumption capital allocation. But as the

introduction hypothesizes the definition of pareto optimality is in terms of the preferences.

Definition 4.3.2. Given k0 ∈ K, an allocation a ∈ A
⋆((c0, k

A
0 )) is said to pareto dominate

ã ∈ A
⋆((c0, k

A
0 )) if

(i) Ui

(
(ci−n

t+n)
i
n=0

)
≥ Ui

(
(c̃i−n

t+n)
i
n=0

)
for all i = 0, ..., I − 1

(ii) U
(
(cI−i

t+i )
I
i=0

)
≥ U

(
(c̃I−i

t+i )
I
i=0

)
for all t ≥ 0

and for at least one t̂ ≥ 0 or one i ∈ I, respectively, one of the inequalities holds strictly.

A feasible allocation that is not dominated by any other feasible allocation is called pareto

optimal.

Obviously, a pareto optimal allocation is dynamically efficient. Otherwise aggregated con-

sumption could be increased in one period without a reduction in any other period. An

increase of aggregated consumption is equivalent to an increase of at least one individual

consumption. This increases lifetime utility by Assumption 2.3.1.

Lemma 4.3.1. A pareto optimal allocation a ∈ A
⋆((c0, k

A
0 )) is dynamically efficient and

satisfies

u′(cI−i
t+i ) = βu′

(
cI−i−1
t+i+1

)
f ′(kAt+i+1), ∀i = 0, ..., I − 1 (4.1)

Note that the equations (4.1) correspond to the first order conditions of the consumer. Thus,

each equilibrium satisfies these equations. In the case of a converging two-period economy

this states a criterion for pareto optimality as well: An equilibrium that is dynamically effi-

cient is pareto optimal (compare de la Croix and Michel [11]). This result can be transferred

to the multi-period economy.
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Lemma 4.3.2. Let
{
c⋆t , (k

A
t )

⋆
}

t≥0
be an consumption capital allocation induced by the equi-

librium dynamics of an economy that converges to (c̄, k̄A). Then this equilibrium is pareto

optimal if there is underaccumulation of capital and inefficient if there is overaccumulation.

As over- and underaccumulation of capital are also the criterion for dynamic efficiency in a

converging economy, the results how labor supply of the middle-aged influences efficiency in

Section 4.2.2 are the same for pareto optimality. Thus, a separate comparison of the two-

and the three-period economy for pareto optimality is not necessary.

4.3.2 A Pareto Optimal Solution

This subsection considers the general benchmark economy (cf. Section 3.1.1). In particular

here a pareto optimal allocation of this economy will be determined. Therefore, usually the

so called Social Planning Problem is used: How would a benevolent social planner decide

about consumption and investment, taking into account the resource constraint, that is,

which feasible allocation would he choose.

First the decision problem will be derived in general: Subject to the feasibility constraint

the social planner’s objective is to maximize a welfare function that takes into account

utility over all generations. Depending on a discount factor δ ∈ (0, 1) the welfare function

W (a, δ) : A(k0)× (0, 1) → R is given by

W (a, δ) =
I−1∑

i=0

δI−iUi

((
ci−n
n

)i

n=0

)

+
∞∑

t=0

δtU
((
cI−i
t+i

)I

i=0

)

=
I−1∑

i=0

δI−i

i∑

j=0

βj+I−iu
(
c
i−j
j

)
+

∞∑

t=0

δt
I∑

j=0

βju
(

c
I−j
t+j

)

=
∞∑

t=0

δt
I∑

i=0

((
β

δ

)I−i

u(cit)

)

.

Defining v
(

(ci)
I
i=0

)

:=
I∑

i=0

((
β
δ

)I−i
u(cit)

)

it is

W (a, δ) =
∞∑

t=0

δtv
((
cit
)I

i=0

)

. (4.2)

and the Social Planning Problem reads:

max
a

{W (a, δ), a ∈ A(k0)}

Now, consider the benchmark economy again.
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Lemma 4.3.3. Let kA0 > 0 be given, u(c) = ln(c) and f(k) = kα, α ∈ (0, 1). For each

discount factor δ ∈ (0, 1) there exists a solution a∗ of the Social Planning Problem that only

depends on aggregated capital. In particular it is

cj =

(
δ

β

)j
1− αδ
I∑

i=0

(
δ
β

)i
f(kA) (k′)A = αδf(kA)

where cj denotes consumption and k′ future capital.

Note that there are no structural assumptions, so it holds for all log utility economies.

Thus given capital supply k ∈ K there is a redistribution of capital supply such that for a

suitable labor profile ℓ the solution is pareto optimal. In general, the pareto optimal solution

is a mapping on K as the restrictions on the state space are based on the condition that

consumption is positive. This is guaranteed in this solution.

4.4 Mathematical Appendix

Proof of Lemma 4.1.1. First of all derive the characteristic polynomial of the Jacobian

of K(k) = (a10ω
1(k) + a20ω

2(k), a11ω
1(k) + a21ω

2(k)):

DK(k) =






a10
∂ω1(k)
∂k0

+ a20
∂ω2(k)
∂k0

a10
∂ω1(k)
∂k1

+ a20
∂ω2(k)
∂k1

a11
∂ω1(k)
∂k0

+ a21
∂ω2(k)
∂k0

a11
∂ω1(k)
∂k1

+ a21
∂ω2(k)
∂k1






Using the following properties of the wealth functions

∂ω2(k)

∂k0
=
∂ω2(k)

∂k0
= ℓ2(1− α)α(kA)α−1

∂ω1(k)

∂k0
= ℓ1(1− α)α(kA)α−1 +

k1

kA
α(α− 1)(kA)α−1

∂ω1(k)

∂k1
=
∂ω1(k)

∂k0
+ α(kA)α−1

the characteristic polynomial C(λ,k) is given by:

C(λ,k) = λ2 − λ tr(DK(k)) + det (DK(k))

with



84 4 The Equilibrium Dynamics

tr(DK(k)) =a10
∂ω1(k)

∂k0
+
∂ω1(k)

∂k1
a11 + (a20 + a21)

∂ω2(k)

∂k1

=(a10 + a11)
∂ω1(k)

∂k0
+ a11α(k

A)α−1 + (a20 + a21)
∂ω2(k)

∂k1

=α(kA)α−1

(

(a10 + a11)

(

ℓ1(1− α)− (1− α)
k1

kA

)

+ a11 + (a20 + a21)(1− α)ℓ2
)

det (DK(k)) =

(

a10
∂ω1(k)

∂k0
+ a20

∂ω2(k)

∂k0

)(

a11
∂ω1(k)

∂k1
+ a21

∂ω2(k)

∂k1

)

−
(

a11
∂ω1(k)

∂k0
+ a21

∂ω2(k)

∂k0

)(

a10
∂ω1(k)

∂k1
+ a20

∂ω2(k)

∂k1

)

=a10
∂ω1(k)

∂k0

(

a11
∂ω1(k)

∂k0
+ a11α(k

A)α−1 + a21
∂ω2(k)

∂k1

)

+ a20
∂ω2(k)

∂k0

(

a11
∂ω1(k)

∂k0
+ a11α(k

A)α−1 + a21
∂ω2(k)

∂k1

)

− a10
∂ω1(k)

∂k0

(

a11
∂ω1(k)

∂k0
+ a21

∂ω2(k)

∂k0

)

− a10α(k
A)α−1

(

a11
∂ω1(k)

∂k0
+ a21

∂ω2(k)

∂k0

)

− a20
∂ω2(k)

∂k0

(

a11
∂ω1(k)

∂k0
+ a21

∂ω2(k)

∂k0

)

=a20a
1
1

∂ω2(k)

∂k0
(kA)α−1 − a10a

2
1α
∂ω2(k)

∂k0
(kA)α−1

=− α
∂ω2(k)

∂k0
(kA)α−1 det(A)

=− α2
(
(kA)α−1

)2
ℓ2(1− α) det(A)

<0

In sum it is

C(λ,k) =λ2 − λα(kA)α−1

(

(a10 + a11)

(

ℓ1(1− α)− (1− α)
k1

kA

)

+ a11 + (a20 + a21)(1− α)ℓ2
)

− α2
(
(kA)α−1

)2
ℓ2(1− α) det(A).

By the structure of the characteristic polynomial it is obvious that there is one positive

eigenvalue λ+ and a negative one λ−. Thus, it is of the following structure:

C(λ,k) = λ2 + p(k)λ− q(k)

with q(k) > 0 and the following estimation holds:

Case 1: p(k) ≥ 0

λ+ = −p(k)
2

+

√

p(k)2

4
+ q(k) ≤ −p(k)

2
+
p(k)

2
+
√

q(k) =
√

q(k)
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Case 2: p(k) < 0

λ− = −p(k)
2

−
√

p(k)2

4
+ q(k) ≥ −p(k)

2
− −p(k)

2
−
√

q(k) = −
√

q(k)

Obviously, for
√

q(k) < 1 one eigenvalue is necessarily smaller than one according to amount.

Note that in the stability criterion the eigenvalues in the steady state are evaluated. Thus,

the interest is in
√

q(k̄). Set κ := (1− α)((a10 + a11)ℓ
1 + (a20 + a21)ℓ

2) + αa11 to check the root

of the constant term:
√

q(k̄) = α(k̄A)α−1
√

ℓ2(1− α) det(A)

=
2α
√

ℓ2(1− α) det(A)

κ+
√

(κ)2 + 4αℓ2(1− α) det(A)

< 1

as in the equilibrium dynamics κ = (1− α)((a10 + a11)ℓ
1 + (a20 + a21)ℓ

2) + αa11 > 0 holds:

(1− α)((a10 + a11)ℓ
1 + (a20 + a21)ℓ

2) + αa11

=
βα

det(B̃A)

(
(1− α)

(
α(1 + β − a10)ℓ

1 + α(1 + β)ℓ2
)
+ α(1− α)(ℓ1(a10 − 1) + a20ℓ

2)
)

=
βα2(1− α)

det(B̃A)

(
βℓ1 + (1 + β + a20)ℓ

2
)

>0

by Corollary 3.2.1.

Proof of Lemma 4.1.2. The dynamical system is asymptotically stable if all eigenvalues

of the Jacobian matrix in the steady state are smaller than one according to amount (see

e.g. Sorger [23]). The characteristic polynomial of the Jacobian in the general three-period

economy has been derived in the proof of Lemma 4.1.1:

C(λ,k) =λ2 − λα(kA)α−1

(

(a10 + a11)

(

ℓ1(1− α)− (1− α)
k1

kA

)

+ a11 + (a20 + a21)(1− α)ℓ2
)

− α2
(
(kA)α−1

)2
ℓ2(1− α) det(A).

Here the coefficients are

a10 =
β

1 + β
a11 = −

β
1+β

ℓ1(1− α)

α(1 + β + β2) + ℓ1(1− α)

a20 = 0 a21 =
αβ(1 + β)

α(1 + β + β2) + ℓ1(1− α)
.
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Thus, it is

a10 + a11 =
αβ(1 + β + β1)

α(1 + β + β2) + ℓ1(1− α)

1

1 + β

a20 + a21 =
αβ(1 + β)

α(1 + β + β2) + ℓ1(1− α)

detA = a10a
2
1 − a11a

2
0 =

αβ2

α(1 + β + β2) + ℓ1(1− α)

ℓ2 = 1− ℓ1.

With these terms the trace and the determinant of the Jacobian are

tr (DK(k)) = α(kA)α−1

[

(a10 + a11)

(

ℓ1(1− α)− (1− α)
k1

kA

)

+ a11 + (a20 + a21)(1− α)ℓ2

]

=
αβ(kA)α−1

α(1 + β + β2) + ℓ1(1− α)

[

α(1 + β + β2)

1 + β

(

ℓ1(1− α)− (1− α)
k1

kA

)

− ℓ1(1− α)
1

1 + β
+ α(1 + β)(1− α(1− ℓ1)

]

=
αβ(kA)α−1(1− α)

α(1 + β + β2) + ℓ1(1− α)

[

ℓ1

1 + β

(
α(1 + β + β2)− 1− α(1 + β)2

)

− α(1 + β + β2)

1 + β
+ α(1 + β)

]

=
αβ(kA)α−1(1− α)

α(1 + β + β2) + ℓ1(1− α)

[

α(1 + β)− ℓ1(1 + αβ)

1 + β
− α(1 + β + β2)

1 + β

k1

kA

]

and

det (DK(k)) = −α2
(
(kA)α−1

)2
ℓ2(1− α) det(A)

= −α
3β2
(
(kA)α−1

)2
(1− ℓ1)(1− α)

α(1 + β + β2) + ℓ1(1− α)

Altogether the characteristic polynomial is given by

C(λ, k̄) =λ2 − α3β2
(
(k̄A)α−1

)2
(1− α)(1− ℓ1)

α(1 + β + β2) + ℓ1(1− α)

− λ
αβ(k̄A)α−1(1− α)

α(1 + β + β2) + ℓ1(1− α)

[

α(1 + β)− ℓ1(1 + αβ)

1 + β
− α(1 + β + β2)

1 + β

k̄1

k̄A

]
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In the steady state it is

k̄1

k̄A
=
αβ(1 + β)(1− α)(1− ℓ1)(k̄A)α−1 − ℓ1(1− α)

α(1 + β + β2)

(k̄A)α−1 =
2 (α(1 + β + β2) + ℓ1(1− α))

αβ ((1− α)(1 + β − ℓ1) +
√
κ )

√
κ :=

√

(1− α)2(1 + β − ℓ1)2 + 4(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α)

Thus, C(λ, k̄) can be written in terms of (k̄A)α−1:

C(λ, k̄) =λ2 − α3β2
(
(k̄A)α−1

)2
(1− α)(1− ℓ1)

α(1 + β + β2) + ℓ1(1− α)

− λ
αβ(1− α)(k̄A)α−1

α(1 + β + β2) + ℓ1(1− α)

(

α(1 + β)− ℓ1
1 + αβ

1 + β

−αβ(1 + β)(1− α)(1− ℓ1)(k̄A)α−1 − ℓ1(1− α)

1 + β

)

=λ2 − α3β2
(
(k̄A)α−1

)2
(1− α)(1− ℓ1)

α(1 + β + β2) + ℓ1(1− α)

− λ
α2β(1− α)(k̄A)α−1

α(1 + β + β2) + ℓ1(1− α)

(
1 + β − ℓ1 − β(1− α)(1− ℓ1)(k̄A)α−1

)

The characteristic polynomial is a quadratic polynomial with positive leading coefficient. As

the roots define the eigenvalues, all eigenvalues would be smaller than one if C(1, k̄) > 0.

Thus, have a look at C(1, k̄):

C(1, k̄) = 1− α2β(1− α)(1 + β − ℓ1)

α(1 + β + β2) + ℓ1(1− α)
(k̄A)α−1 +

α2β2(1− α)(1− ℓ1)(1− α− α)

α(1 + β + β2) + ℓ1(1− α)

(
(k̄A)α−1

)2

Set κ := 2
(

(1−α)(1+β−ℓ1)+
√

(1−α)2(1+β−ℓ1)2+4(1−α)(1−ℓ1)(α(1+β+β2)+ℓ1(1−α)
)2 > 0. Thus,

C(1, k̄) =κ

[

(1− α)2(1 + β − ℓ1)2 + (1− α)(1 + β − ℓ1)
√

(κ)

+ 2(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α)

− α(1− α)2(1 + β − ℓ1)2 − α(1− α)(1 + β − ℓ1)
√

(κ)

+ 2(1− α)(1− ℓ1)(1− 2α)(α(1 + β + β2) + ℓ1(1− α))

]

=κ

[

(1− α)3(1 + β − ℓ1)2 +
√

(κ) (1− α)2(1 + β − ℓ1)

+ 2(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α))(1 + 1− 2α)

]
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=κ

[

(1− α)3(1 + β − ℓ1)2 +
√

(κ) (1− α)2(1 + β − ℓ1)

+ 4(1− ℓ1)(1− α)(α(1 + β + β2) + ℓ1(1− α))

]

>0

Proceed analogously with C(−1, k̄) > 0. From the following transformation it can be con-

cluded that each eigenvalue is greater than −1:

C(−1, k̄) = 1 +
α2β(1− α)(1 + β − ℓ1)

α(1 + β + β2) + ℓ1(1− α)
(k̄A)α−1 − α2β2(1− α)(1− ℓ1)

α(1 + β + β2) + ℓ1(1− α)

(
(k̄A)α−1

)2

With k̄A and κ it is:

C(−1) =κ

[

(1− α)2(1 + β − ℓ1)2 + (1− α)(1 + β − ℓ1)
√

(κ)

+ 2(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α)

+ α(1− α)2(1 + β − ℓ1)2 + α(1− α)(1 + β − ℓ1)
√

(κ)

− 2(1− α)(1− ℓ1)(1− 2α)(α(1 + β + β2) + ℓ1(1− α))

]

=κ

[

(1 + α)
(

(1− α)2(1 + β − ℓ1)2 + (1− α)(1 + β − ℓ1)
√

(κ)
)
]

>0

Thus, each eigenvalue is greater than −1 and smaller than 1 and therefore the steady state

of the equilibrium dynamics is asymptotically stable.

Proof of Lemma 4.2.1. In a first step show that f ′(k̄A) is strictly increasing in ℓ1 for

ℓ1 ∈ [0, 1]:

f ′(k̄A) = α
(
k̄A
)α−1

=
2
(
α(1 + β + β2) + ℓ1(1− α)

)

β
(

(1 + β − ℓ1)(1− α) +
√

(1 + β − ℓ1)2(1− α)2 + 4(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α))
)

This term is deviated with respect to ℓ1. For purposes of a compact notation define

κ := (1 + β − ℓ1)2(1− α)2 + 4(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α)).

Then, the derivative of f ′ with respect to ℓ1 is given by:
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∂f ′(k̄A)
∂ℓ1

=
2

β

(

(1− α)
(
(1 + β − ℓ1)(1− α) +

√
κ
)

((1 + β − ℓ1)(1− α) +
√
κ)

2 +
(α(1 + β + β2) + ℓ1(1− α))(1− α)

((1 + β − ℓ1)(1− α) +
√
κ)

2

−
(α(1 + β + β2) + ℓ1(1− α))−2(1−α)2(1+β−ℓ1)+4(1−ℓ1)(1−α)2−4(1−α)(α(1+β+β2)+ℓ1(1−α))

2
√
κ

((1 + β − ℓ1)(1− α) +
√
κ)

2

)

=
2(1− α)

β
√
κ ((1 + β − ℓ1)(1− α) +

√
κ)

2

[

(1− α)(1 + β − ℓ1)
√
κ+ (1− α)2(1 + β − ℓ1)2

+ 4(1− ℓ1)(1− α)(α(1 + β + β2) + ℓ1(1− α))

+ (α(1 + β + β2) + ℓ1(1− α))
[√

κ+ (1− α)(1 + β − ℓ1)− 2(1− ℓ1)(1− α)

+2(α(1 + β + β2) + ℓ1(1− α))
] ]

=
2(1− α)

β
√
κ ((1− α)(1 + β − ℓ1) +

√
κ)

2

[√
κ
(
(1 + β)(1− α) + α(1 + β + β2)

)

+ (1− α)2(1 + β − ℓ1)2

+
(
α(1 + β + β2) + ℓ1(1− α)

)

·
(
2(1− α)(1− ℓ1) + (1− α)(1 + β − ℓ1) + 2(α(1 + β + β2) + ℓ1(1− α))

)]

> 0

By the monotonicity of f ′(k̄A) it follows that it is maximal for ℓ1 = 1. Setting ℓ1 = 1 it

reduces to

f ′(k̄A) =
(α(1 + β + β2) + 1− α)

β2(1− α)
>

(1− α)

β2(1− α)
=

1

β2
> 1

Thus, if all labor is supplied by the middle-aged, the economy is dynamically efficient.

Together with the monotonicity it follows that there is a value ℓ̃1 ∈ [0, 1) such that the

economy is dynamically efficient for all ℓ1 > ℓ̃1. Now, specify the critical value. The

economy is efficient if

2
(
α(1 + β + β2) + ℓ1(1− α)

)

β
(

(1 + β − ℓ1)(1− α) +
√

(1 + β − ℓ1)2(1− α)2 + 4(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α))
)

> 1

⇔

2
(
α(1 + β + β2) + ℓ1(1− α)

)
− β(1− α)(1 + β − ℓ1)

> β
√

(1 + β − ℓ1)2(1− α)2 + 4(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α)) (4.3)

Now, distinguish two cases.
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Case 1: ℓ1 < β(1+β)(1−α)−2α(1+β+β2)
(1−α)(2+β)

Note that

ℓ1 <
β(1 + β)(1− α)− 2α(1 + β + β2)

(1− α)(2 + β)

⇔ 2
(
α(1 + β + β2) + ℓ1(1− α)

)
− β(1− α)(1 + β − ℓ1) < 0

Thus, the inequality (4.3) is violated as

β
√

(1 + β − ℓ1)2(1− α)2 + 4(1− α)(1− ℓ1)(α(1 + β + β2) + ℓ1(1− α)) > 0.

In this case the economy is dynamically inefficient.

Case 2: ℓ1 ≥ β(1+β)(1−α)−2α(1+β+β2)
(1−α)(2+β)

Analogous to case one the condition implies that

2
(
α(1 + β + β2) + ℓ1(1− α)

)
− β(1− α)(1 + β − ℓ1) > 0.

Thus, inequality (4.3) can be transformed as follows:

(4.3)

⇔ 4
(
α(1 + β + β2) + ℓ1(1− α)

)2 − 4
(
α(1 + β + β2) + ℓ1(1− α)

)
β(1 + β − ℓ1)(1− α)

+ β2(1 + β − ℓ1)2(1− α)2

> β2(1− α)2(1 + β − ℓ1)2 + 4β2(1− α)(1− ℓ1)
(
α(1 + β + β2) + ℓ1(1− α)

)

⇔ α(1 + β + β2) + ℓ1(1− α)− β(1 + β − ℓ1)(1− α)− β2(1− α)(1− ℓ1) > 0

⇔ ℓ1 >
(1− α)β(1 + 2β)− α(1 + β + β2)

(1 + β + β2)(1− α)
= ℓ

What is left to show is that there is no contradiction with the two lower bounds. Obviously,

(1− α)β(1 + 2β)− α(1 + β + β2)

(1 + β + β2)(1− α)
>
β(1 + β)(1− α)− 2α(1 + β + β2)

(1− α)(2 + β)

holds.

Altogether, the equilibrium allocation is dynamically efficient if and only if

ℓ1 ∈
(

(1−α)β(1+2β)−α(1+β+β2)
(1+β+β2)(1−α)

, 1
]

.
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Proof of Lemma 4.2.2. It has already been seen that the equilibrium is dynamically

efficient if ℓ1 = 1. The critical value ℓ̃1 is strictly decreasing in α, which can easily be

verified with the derivation:

∂ℓ

∂α
=

−(+1 + 2β + 3β2)(1− α)(1 + β + β2) + (1 + β + β2)((1− α)(1 + 2β)β − α(1 + β + β2)

(1− α)2(1 + β + β2)2

= − 1

(1− α)2
< 0

Proof of Lemma 4.2.3. Recall that the equilibria of the economies are given by

K2(k) =
βα(1− ℓ)

α(1 + β) + ℓ(1− α)
(1− α)kα, k ∈ R+

K3(k) =

(

β

1 + β
ω1(k),

αβ(1 + β)ω2(k)− ℓ1(1− α) β
1+β

ω1(k)

α(1 + β + β2) + ℓ1(1− α)

)

By Lemma 4.1.2 and Appendix A it is known that the two-period economy converges globally

towards its unique steady state

k̄2 =
β

1 + β
(1− α)k

1

1−α

and together with the simulation it has been concluded that the three-period economy con-

verges globally as well. Recall that for efficiency only aggregated values are relevant. The

aggregated capital in the steady state is

k̄A3 =

(

β
(1 + β)(1− α) +

√

(1− α)((1 + β)2(1 + α) + 2α(1 + β2))

2(1 + β + β2)

) 1

1−α

.

First consider the two-period economy. It is dynamically efficient if and only if

f ′(k̄2) =
α(1 + β) + ℓ(1− α)

(1− α)β(1− ℓ)
> 1

⇔ ℓ >
(1− α)β − α(1 + β)

(1− α)(1 + β
=: ℓ2(< 1)

Now, show that ℓ2 < ℓ1 defined in Lemma 4.2.1:

(1− α)β(1 + 2β)− α(1 + β + β2)

(1− α)(1 + β + β2)
>

(1− α)β − α(1 + β)

(1− α)(1 + β)

⇔ (1− α)β(1 + β)(1 + 2β)− α(1 + β + β2)(1 + β)

> (1− α)β(1 + β + β2)− α(1 + β)(1 + β + β2)

⇔ (1 + β)(1 + 2β) > 1 + β + β2
X
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Proof of Lemma 4.3.1. The proof is analogous to that of the two-period economy (see

de la Croix and Michel [11]). The efficiency property has been motivated and explained

in the preparation of this lemma. So it remains to show that equations 4.1 are a necessary

condition for pareto optimality. Take consumption for all generations, except generation t, as

given, as well as aggregated capital supply kAt and kAt+I+1. There are I resource constraints:

f(kAt ) = kAt+1 + cAt

f(kAt+1) = kAt+2 + cAt+1

...

f(kAt+I) = kAt+I+1 + cAt+I

The derivative of lifetime utility with respect to kAt+i, i = 1, ..., I is

∂U

((

c
I−j
t+j

)I−1

j=0

)

∂kAt+i

=
I−1∑

j=0

βju′(cI−j
t+j )

∂c
I−j
t+j

∂kAt+i

= −u′
(

c
I−j+1
t+i−1

)

+ βu′
(
cI−i
t+i

)
βi

as
∂cI−j

t+j

∂kAt+i

= 0 for j 6= i− 1, i. The first order condition sets the equations equal to zero. This

leads to equations 4.1

Proof of Lemma 4.3.2. The following proof is in the style of the proof of Theorem 2

in Okuno and Zilcha [18] combined with the proof of the equivalent result for two-period

economies, Lemma 2.6, in de la Croix and Michel [11].

First note that in the multi-period overlapping generations economy considered here it is
∑

i∈I
ωi(kt) = f(kAt ) > 0

∥
∥f(kAt )

∥
∥ < N (4.4)

for a constant N > 0. The first inequality holds by definition, the second follows from the

fact that the economy converges. As f is an increasing function by (2.1), it holds if there is

a maximal respectively a supremum value for aggregated capital. If the convergence is such

that aggregated capital always is smaller than aggregated capital in the limit, the limit k̄A

is this value. Otherwise for each ε > 0 there is a t0 ≥ 0 such that the equilibrium aggregated

capital supply is at least smaller than k̄A+ε. As the set
{
kAt
}t0

t=0
is finite there is a maximum

k̃A. Now, define kAmax := max
{

k̄A + ε, k̃A
}

as the required value.

First, show the conjecture that if the equilibrium allocation is not pareto optimal it is

lim inf
t→∞

Pt > 0 with Pt+1 =
1

f ′((kAt+1
)⋆
Pt, P0 = 1.
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As the equilibrium allocation
{
c⋆t , (k

A
t )

⋆
}

t≥0
is not pareto optimal, there is a feasible alloca-

tion
{

ĉt, k̂
A
t

}

t≥0
that is a pareto improvement. Thus

U

((

ĉ
I−j
t+j

)I

j=0

)

≥ U

(((

c
I−j
t+j

)⋆)I

j=0

)

(4.5)

U

((

ĉ
i−j
t+j

)i

j=0

)

≥ U

(((

c
i−j
t+j

)⋆)i

j=0

)

i = 0, .., I − 1

where the strict inequality holds in at least one equation.

Now, define At :=
I∑

i=0

Pt+i

(

ĉI−i
t+i −

(
cI−i
t+i

)⋆
)

for t ≥ 0 and A−i :=
i∑

j=0

Pj

(

ĉ
i−j
j −

(
c
i−j
j

)⋆
)

for

i = 0, ..., I − 1. Next, show that At ≥ 0. The conjecture is without loss of generality shown

for t ≥ 0, the proof for A−i is analogous when the budget set at the end is taken as remaining

lifetime budget set.

Assume that At < 0. Thus

I∑

i=0

Pt+iĉ
I−i
t+i <

I∑

i=0

Pt+i

(
cI−i
t+i

)⋆

⇔
I∑

i=0

1
i∏

j=1

f ′
((
kAt+j

)⋆)
ĉI−i
t+i <

I∑

i=0

1
i∏

j=1

f ′
((
kAt+j

)⋆)

(
cI−i
t+i

)⋆
=

I∑

i=0

ℓI−iW(k⋆
t+i)

i∏

j=1

f ′
((
kAt+j

)⋆)
(4.6)

The equality in equation (4.6) holds as lifetime consumption discounted on its value in period

t must be equal to lifetime labor income discounted to the same period. Obviously, here

exists a value νt such that
(
ĉIt + νt, ĉ

I−1
t+1 , ..., ĉ

I
t+I

)
belongs to the budget set

Bt

((
kAt̃ )

⋆
)

t̃≥0

)

:=







(
cI−i
t+i

)I

i=0
∈ R++

∣
∣
∣
∣
∣
∣
∣
∣
∣

I∑

i=0

1
i∏

j=1

f ′
((
kAt+j

)⋆)

(
cI−i
t+i

)
=

I∑

i=0

ℓI−iW
(
(kAt+i)

⋆
)

i∏

j=1

f ′
((
kAt+j

)⋆)







This implies

U
(((

c
I−j
t+j

)⋆)I

j=0

)

= max
(cI−i

t+i )
I

i=0
∈Bt

(

(kA
t̃
)⋆)

t̃≥0

)

U

((

cI−i
t+i

)I

i=0

)

≥ U
(

ĉIt + νt, ĉ
I−1
t+1 , ..., ĉ

I
t+I

)

> U

((

ĉI−i
t+i

)I

i=0

)

.

This states a contradiction. Thus At ≥ 0 and there is at least one t0 where the strict

inequality holds by equation (4.5).

The second step is exactly the same as in de la Croix and Michel [11]. It is included here

for completeness. Define

Bt := Pt+1

[

f
((
kAt+1

)⋆)− f
(

k̂At+1

)]

− Pt(k̂
A
t+1 − (kAt+1)

⋆)
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Bt ≥ 0 holds as g(kA) := f(kA) − f
((
kAt+1

)⋆)
k is a concave function that has it maximum

in
(
kAt+1

)⋆
. Thus, it is

f
((
kAt+1

)⋆)− f ′ ((kAt+1

)⋆) (
kAt+1

)⋆ ≥ g(k̂At+1).

As Pt > 0 by definition, Bt is positive.

In the last step consider for T > t0:

0 <
T−1∑

t=0

At + Bt +
I−1∑

j=0

A−j

=P0

[
I∑

i=0

ĉi0 − (ci0)
⋆ − k̂A1 + (kA1 )

⋆

]

+
T−1∑

t=1

Pt

[
I∑

i=0

ĉit − (cit)
⋆ − k̂At+1 + (kAt+1)

⋆ + f
((
kAt+1

)⋆)− f
(

k̂At+1

)
]

+ PT

[
I−1∑

i=0

ĉiT − (ciT )
⋆ + f

((
kAT
)⋆)− f

(

k̂AT

)
]

+
T+I∑

t=T+1

Pt

T+I−t−1∑

i=0

ĉit − (cit)
⋆

=PT

[
I−1∑

i=0

ĉiT − (ciT )
⋆ + f

((
kAT
)⋆)− f

(

k̂AT

)
]

+
T+I∑

t=T+1

Pt

T+I−t−1∑

i=0

ĉit − (cit)
⋆

As the first coefficients of Pt are zero by the aggregate resource constraint (compare de la

Croix and Michel [11]).

Finally, assume that lim inf
t→∞

Pt = 0. This implies that
T−1∑

t=0

At + Bt +
I−1∑

j=0

A−j approaches to

zero for T → ∞ as
I−1∑

i=0

ĉiT − (ciT )
⋆ and f

((
kAT
)⋆) − f

(

k̂AT

)

are uniformly bounded by (4.4).

This states a contradiction.

Hence, the conjecture is proven and the final result can be shown. If the equilibrium is

dynamically inefficient, obviously pareto optimality fails by Lemma 4.3.1. The equilibrium

is efficient if f ′ ((k̄AT
)⋆)

> 1. Thus, the limit of the sequence Pt is zero as the limit of
1

f ′((kAT )
⋆
)
is less than one. Thus, by the conjecture proven before, the equilibrium is pareto

optimal.
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Proof of Lemma 4.3.3. Define

V (kA) := sup
a
{W (a, δ)|a ∈ A(k)}. (4.7)

First show that V is well-defined:

Define kAmax := max
{
kA0 , k̄

A
}
with f(k̄) = k̄A. By the monotonicity and the concavity of f

an upper bound for f(kt) can be defined: Starting with an initial value where the aggregation

is greater than the fixed point, the upper bound for next period’s aggregated capital supply

gets smaller. Otherwise it increases up to the fixed point. Thus, for all t ≥ 0 it is:

f(kAt ) ≤ f(kAmax) =: ymax

Using the aggregate resource constraint and taking into account that both aggregated capital

and aggregated consumption are assumed to be positive the upper bound holds for these

values as well. Moreover, it is even an upper bound for individual consumption as this is

positive as well. Thus, the welfare function can be estimated as follows:

⇒ W (a, δ) =
∞∑

t=0

δt
I∑

i=0

((
β

δ

)I−i

u(
(
cit
)

)

≤
(
β

δ

)I ∞∑

t=0

δt
I∑

i=0

((
β

δ

)−i

u(ymax)

)

=

(
β

δ

)I

u(ymax)
1−

(
δ
β

)I+1

1− δ
β

1

1− δ

As the welfare function is bounded the maximum exists, and thus V is well-defined.

V is solution to

V (kA) = sup
((cj)Ij=0)

{

v
((
cj
)I

j=0

)

+ δV

(

f(kA)−
I∑

j=0

cj

)}

Initial guess: V (kA) = A ln kA + B

⇒ V (kA) = sup
((cj)Ij=0)

{

v
((
cj
)I

j=0

)

+ δ

(

A ln

(

f(kA)−
I∑

j=0

cj

)

+ B

)}

So the first order conditions read:

1

cj

(
β

δ

)I−j

− δA

f(kA)−
I∑

i=0

ci
= 0 ⇔

(
β

δ

)I−j
(

f(kA)−
I∑

i=0

ci

)

= δAcj ∀j = 0, . . . , I

(4.8)
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Therefore, it is

c0 =

f(kA)−
I∑

i=1

ci

(
δ
β

)I

δA+ 1

and using that value of c0 leads to

f(kA)−
I∑

i=0

ci =

(
δ
β

)I

δA

(
δ
β

)I

δA+ 1
·
(

f(kA)−
I∑

i=1

ci

)

in (4.8)⇒ δAcj =

(
δ

β

)I−j

(
δ
β

)I

δA

(
δ
β

)I

δA+ 1

(

f(kA)−
I∑

i=1

ci

)

∀j = 1, . . . , I

⇔ cj =

(
δ

β

)j
1

(
δ
β

)I

δA+ 1

(

f(kA)−
I∑

i=1

ci

)

∀j = 1, . . . , I

Together it is

cj =

(
δ

β

)j
1

(
δ
β

)I

δA+ 1

(

f(kA)−
I∑

i=1

ci

)

∀j = 0, . . . , I

We continue with a kind of inductionary argument. Assume that for some l ∈ {0, . . . , I − 1}
the following holds:

cj =

(
δ

β

)j
1

(
δ
β

)I

δA+
l∑

i=0

(
δ
β

)i

(

f(kA)−
I∑

i=l+1

ci

)

∀j = 0, . . . , I

In the previous step it has been shown, that the assumption holds for l = 0.

In particular for cl+1 is:

cl+1 =

(
δ

β

)l+1
1

(
δ
β

)I

δA+
l∑

i=0

(
δ
β

)i

(

f(kA)−
I∑

i=l+1

ci

)

Solving for cl+1 leads to

cl+1

((
δ

β

)I

δA+
l∑

i=0

(
δ

β

)i

+

(
δ

β

)l+1
)

=

(
δ

β

)l+1
(

f(kA)−
I∑

i=l+2

ci

)

⇔ cl+1 =

(
δ

β

)l+1
1

(
δ
β

)I

δA+
l+1∑

i=0

(
δ
β

)i

(

f(kA)−
I∑

i=l+2

ci

)



4.4 Mathematical Appendix 97

⇒ 1
(

δ
β

)I

δA+
l∑

i=0

(
δ
β

)i

(

f(kA)−
I∑

i=l+1

ci

)

=
1

(
δ
β

)I

δA+
l∑

i=0

(
δ
β

)i








(
δ
β

)I

δA+
l+1∑

i=0

(
δ
β

)i

−
(

δ
β

)l+1

(
δ
β

)I

δA+
l+1∑

i=0

(
δ
β

)i








(

f(kA)−
I∑

i=l+2

ci

)

=
1

(
δ
β

)I

δA+
l+1∑

i=0

(
δ
β

)i

(

f(kA)−
I∑

i=l+2

ci

)

⇒ cj =

(
δ

β

)j
1

(
δ
β

)I

δA+
l∑

i=0

(
δ
β

)i

(

f(kA)−
I∑

i=l+2

ci

)

∀j = 0, . . . , I

That is, for all j = 0, . . . , I the boundary case is

cj =

(
δ

β

)j
1

(
δ
β

)I

δA+
I∑

i=0

(
δ
β

)i
f(kA)

So now V (k) can be determined.

v
({

cj
}I

j=0

)

=
I∑

j=0

(
β

δ

)I−i

ln cj

=
I∑

j=0

(
β

δ

)I−j
(

ln

(
δ

β

)j

+ ln f(kA)− ln

((
δ

β

)I

δA+
I∑

i=0

(
δ

β

)i
))

= α ln kA
I∑

j=0

(
β

δ

)I−j

+ (ln δ − lnβ)
I∑

j=0

(
β

δ

)I−j

· j − ln





(
δ

β

)I

δA+
I∑

j=0

(
β

δ

)I−j




⇒ V (kA) =α ln kA
I∑

j=0

(
β

δ

)I−j

+ (ln δ − lnβ)
I∑

j=0

(
β

δ

)I−j

· j − ln





(
δ

β

)I

δA+
I∑

j=0

(
β

δ

)I−j




+ δAα ln kA + δA ln

(
δ
β

)I
δA

(
δ
β

)I
δA+

I∑

j=0

(
β
δ

)I−j
+ δB

!
=A ln kA +B

⇒ A =α

I∑

j=0

(
β

δ

)I−j

+ δAα and B is a function of A

⇔ A =
α

1− αδ

I∑

j=0

(
β

δ

)I−j

B = B(A)
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⇒ ci =

(
δ

β

)i 1
(

δ
β

)I
δ α
1−αδ

I∑

j=0

(
β
δ

)I−j
+

I∑

j=0

(
δ
β

)j
f(kA)

=

(
δ

β

)j 1− αδ
(

δ
β

)I
δα

I∑

k=0

(
β
δ

)I−k
+

I∑

i=0

(
δ
β

)i
(1− αδ)

f(kA)

=

(
δ

β

)j 1− αδ

αδ
I∑

k=0

(
δ
β

)k
+

I∑

i=0

(
δ
β

)i
(1− αδ)

f(kA)

⇔ ci =

(
δ

β

)i 1− αδ

I∑

j=0

(
δ
β

)j
f(kA)

And for (k′)A it follows:

I∑

i=0

ci = (1− αδ)f(kA) ⇒ (k′)A = f(kA)−
I∑

i=0

ci = αδf(kA) (4.9)



Chapter 5

Conclusions and Outlook

The multi-period overlapping generations model introduced in this thesis provides a theoret-

ical base for equilibrium analysis. The general and comprehensive description of the model

leaves room for specifications as well as extensions. It describes an economy with an arbi-

trary number of lifetime periods where optimal decisions of all involved parties are explained.

Together with the assumption of perfect foresight an equilibrium is defined. The introduc-

tion of the concept of a forward-recursive equilibrium, a Markov equilibrium, provides an

approach how such an equilibrium may be determined. Already in the general approach the

challenges while proving the existence of such an equilibrium have been presented. Follow-

ing the result of Balasko and Shell [4] that logarithmic utility simplifies the structure of the

equilibrium equations the approach has been used for a particular utility and production

function . This economy states a benchmark for all future research on multi-period overlap-

ping generations economies. Here it has become obvious that the labor profile is a crucial

property of an economy, because for particular labor profiles it turned out to be possible to

determine equilibria explicitly. Regarding the two-period economy as a special case of the

presented model, we recognized that the two-period economy is captured by these particular

labor profiles in any case. From three periods on there are labor profiles such that this is no

longer possible. Moreover, three is the smallest number of lifetime periods such that in the

equilibrium dynamics cross wealth effects occur. For that reason the three-period economy is

analyzed in detail with the result that there is an equilibrium dynamics that can be written

as a linear combination of the wealth functions. As the resulting fixed point problem is still

manageable even a uniqueness result has been achieved. But already regarding the three-

period economy it becomes obvious that the presented approach is an existence approach.

In general uniqueness will stay another challenge.

After the derivation of the equilibrium its properties are analyzed. For the three-period econ-

omy with retirement local stability has been proven and global stability has been suggested

on the base of a numerical simulation, while for the general economy saddle-path stability
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has been proven. Local or even global stability depend on the coefficients in the equilibrium

capital evolution. In a second step the focus was on dynamical efficiency. As the criteria

that are commonly used for the two-period economy, only depend on aggregated values, it

is possible to transfer them to the present multi-period model without further effort. The

only change is that capital supply is replaced by aggregated capital supply. As these two

values coincide in the two-period economy, the generalization holds for all considered over-

lapping generations economies. In the three-period economy with retirement the allocation

induced by the Markov equilibrium is the more efficient the more labor is supplied in the

second period. This is intuitive as overaccumulation of capital is the source of inefficiency

and replacing capital income by labor income in later period reduces investment. By the

same reason the two-period economy is more efficient than the three-period economy if the

parameters are equal. As a consequence the intuition for the economy without retirement is

that efficiency gets even more probable. The consideration of pareto optimality completes

the analysis of the equilibrium dynamics. Here again the criteria could be transferred to the

general context even if it has been more challenging. As an equilibrium allocation is pareto

optimal if it is dynamically efficient, the analysis depending on the labor profile has not

been done again. Finally, we presented a pareto optimal allocation for the general bench-

mark economy with an arbitrary number of lifetime periods that only depends on aggregated

capital. In the analysis of the equilibrium dynamics the two- and the three-period economies

are compared to see if or how the properties change.

The results of the three-period economy encourage further research on these economies.

Besides extending the promising results of the three-period economy proving that there is

an equilibrium of the benchmark economy independent of the labor profile and the number

of lifetime periods, further utility functions may be looked at. For example, in the more

general case of a CES utility function the question would be if the Markov equilibrium

still is a function of the wealth functions. Moreover, from the two-period economy several

extensions are known. One popular extension of basic overlapping generations model to

capture the problem of inefficiency is to introduce a social security system. Note that this

extension is already incorporated in our general economy. In the beginning labor income is

also called labor and transfer income. That is because a transformation of the labor profile

is able to capture any redistribution of wage. The labor profile in its original sense describes

how total labor supply is distributed among the generations. A possible modification of the

model would be to introduce a social security system that is financed by a proportional tax

on labor income and the revenues of the tax are divided up between particular generations.

This scenario is equivalent to an economy with a different labor profile: Each generation that

pays the tax accounts for a smaller share of total labor supply, such that the labor income

is equal to the net income in the model with taxes, and each receiving generation accounts
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for a higher share, such that labor income equals the transfer income. For example look

at a three period economy with labor profile (0, 1
2
, 1
2
), i.e., the old generation is retired and

has no labor income and total labor is divided up between the young and the middle-aged

in equal parts. Assume there is a proportional tax on labor income of 1
3
, that finances a

transfer payment to the retired. Thus, both the young and middle-aged consumer pay 1
6

of the current wage as taxes and the old receive 1
3
of the wage as transfer income. That is

equivalent to the scenario when the labor profile is defined as
(
1
3
, 1
3
, 1
3

)
.

This property of the economy also seems to suggest that for the general three-period economy

there are several labor profiles such that the economy is dynamically efficient for all other

parameters as it is the case if all labor is supplied by the middle-aged. Indeed, efficiency has

been shown for the economy when all labor is supplied by the middle-aged, but introducing

old agent’s labor supply admits to hope for an equivalent result with labor supply of the

young for at least some labor profiles.

Obviously, the common extensions of the two-period economy are worth to consider as

well. For example here population is assumed to be constant. Introducing population

growth first raises the question if growth is constant or given by a growth function. In

the general notation of the model perhaps a growth function is more realistic to capture

the different length of periods when changing the number of lifetime periods. Another

way to counteract overaccumulation of capital is to introduce governmental consumption.

It is always worth to ask if the impact of an extension is smaller or larger in the two-

period or multi-period economy. Following the financial crises in 2007 interest in bubbles

has increased very much. As it can be seen for example in Barbie and Hillebrand [6],

overlapping generations models with stochastic may create bubbly Markov equilibria. A

theoretical framework for the analysis how these results evolve with an increase of the number

of lifetime periods will be a benefit with its first steps in this dissertation.





Appendix A

The Two-Period Economy

As in the thesis there are many comparisons to the two-period economy, take a short look

on this economy with old-age labor supply where utility is logarithmic and the production

function is of the Cobb-Douglas structure as in Chapter 3. The production side is exactly the

same as described in Section 2.1. As the model introduced in this thesis is a generalization of

the two-period economy this holds as well for the consumption side. But in the two-period

economy there is the possibility of solving the consumer’s decision problem directly as it

depends only on next period’s capital stock. The labor profile reads ℓ = (ℓ0, 1− ℓ0). Capital

supply is given by kt ≥ 0, which defines the prices

wt = W(kt) = (1− α)kαt ∧ rt = R(kt) = αk1−α
t

Taking into account expectations consistency the equilibrium equation reads:

βR(kt+1) =
ω0(kt+1)

ω1(kt)− kt+1

⇔ βR(kt+1) =
ℓ0W(kt+1) + kt+1R(kt+1)

(1− ℓ0)W(kt)− kt+1

⇔ βα =
ℓ0(1− α)kt+1 + αkt+1

(1− ℓ0)W(kt)− kt+1

⇔ kt+1 =
βα(1− ℓ0)

α(1 + β) + ℓ0(1− α)
W(kt) =

βα

α(1 + β) + ℓ0(1− α)
ω1(kt)

kt+1 will be chosen positive. Otherwise the economy would break down in the next period.

So the dynamics is given by kt+1 =
βα(1−ℓ0)

α(1+β)+ℓ0(1−α)
(1− α)(kt)

α =: ψ(kt). The dynamics has a

unique non-trivial steady state

k̄ =

(
βα(1− ℓ0)

α(1 + β) + ℓ0(1− α)
(1− α)

) 1

1−α

.

Figure A.1 shows how the steady state evolves for different values of ℓ0 depending on α and

β. Local stability can be proven with the following criterion. If
∣
∣ψ′(k̄)

∣
∣ < 1 the dynamics is
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Figure A.1: Steady state values for different ℓ0 in dependence of parameters α and β

locally stable:

ψ′(k) =
βα(1− ℓ0)

α(1 + β) + ℓ0(1− α)
(1− α)αkα−1

⇒
∣
∣ψ′(k̄)

∣
∣ =

βα(1− ℓ0)

α(1 + β) + ℓ0(1− α)
(1− α)α

(
βα(1− ℓ0)

α(1 + β) + ℓ0(1− α)
(1− α)

)−1

= α < 1

Global stability is demonstrated in the following figure: Obviously, as more labor is supplied

by the old, less capital is accumulated. As the economy converges towards its steady state

the Cass criterion for stationary allocations can be applied. The equilibrium is dynamically

efficient if

f ′ (k̄
)
> 1

⇔ αk̄α−1 > 1

⇔ α

1− α

α(1 + β) + ℓ0(1− α)

βα(1− ℓ0)
> 1 ⇔ ℓ0 >

β(1− α)− α(1 + β)

(1− α)(1 + β)
=: ℓ̃0

Thus, the equilibrium is first dynamically efficient in the presence of old agents labor supply

than when all labor is supplied by the young. In particular there is a critical value such that

the economy is dynamically efficient:

Lemma A.0.1. If labor supply of the old is greater than one half, ℓ0 ≥ 1
2
, the equilibrium is

dynamically efficient.
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Figure A.2: Global behavior of the two-period model

Proof. The critical value for labor supply of the old, ℓ = β(1−α)−α(1+β)
(1−α)(1+β)

is strictly decreasing

in α:
′ ∂ℓ

∂α

′
=

−(1 + ✁2β)(1− α)(1 + β) + (1 + β)(✘✘✘✘✘β(1− α)− α(1 + β))

(1− α)2(1 + β)2
< 0

Thus, the maximal value for ℓ with respect to α is for α = 0:

ℓ <
β

1 + β

β
1+β

is strictly increasing in β such that it is maximal for β = 1. Thus,

ℓ <
1

2





Appendix B

Simulation of the Dynamics of the

Three-Period Economy

This part of the thesis completes the analysis of Chapter 4. Chapter 4 shows the properties

of the steady state of the three-period economy with logarithmic utility and Cobb-Douglas

production function with retirement and analyzes the behavior of the dynamics for one labor

profile ℓ =
(
0, 1

2
, 1
2

)
. The present appendix validates the results for further suitably chosen

labor profiles, namely ℓ ∈
{
(0, 0, 1),

(
0, 1

3
, 2
3

)
,
(
0, 2

3
, 1
3

)
, (0, 1, 0)

}
. The first section shows the

steady states’ properties, the second the dynamics for different parameter values.

B.1 Steady States for different Labor Profiles

This section shows the steady states in dependence of the parameters α and β.
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Figure B.1: Steady state values for ℓ1 = 1 in dependence of parameters α and β

Figure B.1 shows the steady state for the labor profile (0, 1, 0). As it needs to be the case

by construction capital supply of the middle-aged (Figure B.1 (c)) is negative in any case.

The reason is that wealth of the young vanishes and there is the need to go into debt to
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Figure B.2: Steady state values for ℓ1 = 1
3
in dependence of parameters α and β
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Figure B.3: Steady state values for ℓ1 = 2
3
in dependence of parameters α and β

realize positive consumption. In contrast, Figure B.4 shows the other extreme labor profile

(0, 0, 1) where all labor is supplied by the young. Here, as well, the figure validates the result

that capital supply needs to be positive for both generations (Figure B.4 (b) and (c)). In

total, all Figures B.1 to B.4 show that aggregated capital is positive as well as old agents

capital supply. Unsurprisingly, the absolute values depend on the labor profiles as well as

the surface of the figures.

Moreover, note the evolution of the steady states with respect to β. As long as capital
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Figure B.4: Steady state values for ℓ1 = 0 in dependence of parameters α and β
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supply is positive it seems to be increasing in β. The higher future utility is evaluated the

higher is investment. As higher investment implies higher wealth, which can be used for

higher consumption, this result is intuitive (see Figures B.1 to B.4 (b)). But if there are

negative values for capital supply, the behavior changes. In Figure B.1 (c) k̄1 seems to be

decreasing in β. Thus, the higher future utility is evaluated the higher the young go into

debt. Figure B.3 shows that if there are positive and negative values of capital supply the

behavior with respect to β is not clear.
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B.2 Dynamics for different Labor Profiles

This appendix shows the dynamic behavior of the economies that correspond to those in

Chapter 4 with different labor profiles. For each parameter set we choose three initial values

k1: (0.1, 0.1), (10, 10) and one near the steady state. Again, the initial value is denoted by

k1 for numerical reasons.

Chapter 4 already showed that dynamical behavior does not coincide over parameters and

initial values. The observations in this appendix will validate these results. Figures B.5 to

B.7 show the dynamical behavior of the three-period economy where all labor is supplied by

the young and parameters α = 0.1 and β = 0.2 for the different initial values. Even in this

simple economy convergence is not necessarily monotone as it is the case in the two-period

economy. Figure B.5(a) and (b) show that there is at least one outlier that contradicts

monotonicity.

In general, note that all figures in this section show that convergence is very fast. A quan-

titative analysis is not possible because of the changing scaling. For example, Figure B.9(a)

suggests that from step four on k0 equals zero. There are two mistakes: First, the scaling is

that rough that it cannot be distinguished between convergence to zero and to a value near

zero, what happens here. Second, little variations in later values vanish as well because of

the rough scaling. Hence, it is not surprising that non-monotone convergence mostly seems

to be shown by figures that represent an initial value near the steady state. But in total all

figures converge. This is verified by the figures’ underlying computational results.

Finally, there is a short statement about the presented parameter values. The labor profiles

coincide with those considered in the section about steady states and they are chosen exem-

plary over the interval ℓ1 ∈ [0, 1]. The discount factor β usually is chosen near one, e.g., 0.99,

for models with infinitely lived consumers (see Prescott [19] for example) which in general

are calibrated with quarterly data. Transferring 0.99 to a 20 year period leads approximately

to 0.45, 0.98 to 0.2. Thus, we choose β ∈ {0.2, 0.4, 0.5}. 1 − α often is interpreted as the

labor share and thus, α usually is chosen smaller than 0.5. Hence, we take the common

value α = 0.33 (cf. Prescott [19]) plus a great and a small value for α.

Naturally, we regarded more than the presented parameter combinations and chose a repre-

sentative set this appendix presents.
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Figure B.5: Dynamics with ℓ1 = 0, α = 0.1, β = 0.2, k1 = (0.1, 0.1)
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Figure B.6: Dynamics with ℓ1 = 0, α = 0.1, β = 0.2, k1 = (10, 10)
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Figure B.7: Dynamics with ℓ1 = 0, α = 0.1, β = 0.2, k1 = (0.012, 0.144)
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Figure B.8: Dynamics with ℓ1 = 0, α = 0.33, β = 0.4, k1 = (0.1, 0.1)
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Figure B.9: Dynamics with ℓ1 = 0, α = 0.33, β = 0.4, k1 = (10, 10)
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Figure B.10: Dynamics with ℓ1 = 0, α = 0.33, β = 0.4, k1 = (0.04, 0.135)
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Figure B.11: Dynamics with ℓ1 = 0, α = 0.5, β = 0.5, k1 = (0.1, 0.1)
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Figure B.12: Dynamics with ℓ1 = 0, α = 0.5, β = 0.5, k1 = (10, 10)
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Figure B.13: Dynamics with ℓ1 = 0, α = 0.5, β = 0.5, k1 = (0.035, 0.07)
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Figure B.14: Dynamics with ℓ1 = 1
3
, α = 0.1, β = 0.2, k1 = (0.1, 0.1)
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Figure B.15: Dynamics with ℓ1 = 1
3
, α = 0.1, β = 0.2, k1 = (10, 10)
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Figure B.16: Dynamics with ℓ1 = 1
3
, α = 0.1, β = 0.2, k1 = (0.035, 0.001)
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Figure B.17: Dynamics with ℓ1 = 1
3
, α = 0.33, β = 0.4, k1 = (0.1, 0.1)
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Figure B.18: Dynamics with ℓ1 = 1
3
, α = 0.33, β = 0.4, k1 = (0.046, 0.035)



B.2 Dynamics for different Labor Profiles 125

0 2 4 6 8 10 12 14 16 18 20

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

k0t

(a) k0

0 2 4 6 8 10 12 14 16 18 20

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

k1t

t

(b) k1

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

k1t

k0

(c) k

Figure B.19: Dynamics with ℓ1 = 1
3
, α = 0.5, β = 0.5, k1 = (0.1, 0.1)
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Figure B.20: Dynamics with ℓ1 = 1
3
, α = 0.33, β = 0.4, k1 = (10, 10)
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Figure B.21: Dynamics with ℓ1 = 1
3
, α = 0.5, β = 0.5, k1 = (0.029, 0.023)
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Figure B.22: Dynamics with ℓ1 = 2
3
, α = 0.1, β = 0.2, k1 = (0.1, 0.1)
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Figure B.23: Dynamics with ℓ1 = 2
3
, α = 0.1, β = 0.2, k1 = (10, 10)



130 B Simulation of the Dynamics of the Three-Period Economy

0 2 4 6 8 10 12 14 16 18 20

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

t

k0t

(a) k0

0 2 4 6 8 10 12 14 16 18 20

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

k1t

t

(b) k1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

k1t

k0

(c) k

Figure B.24: Dynamics with ℓ1 = 2
3
, α = 0.1, β = 0.2, k1 = (0.042, −0.029)
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Figure B.25: Dynamics with ℓ1 = 2
3
, α = 0.33, β = 0.4, k1 = (0.1, 0.1)
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Figure B.26: Dynamics with ℓ1 = 2
3
, α = 0.33, β = 0.4, k1 = (10, 10)
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Figure B.27: Dynamics with ℓ1 = 2
3
, α = 0.33, β = 0.4, k1 = (0.039, −0.004)
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Figure B.28: Dynamics with ℓ1 = 2
3
, α = 0.5, β = 0.5, k1 = (0.1, 0.1)
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Figure B.29: Dynamics with ℓ1 = 2
3
, α = 0.5, β = 0.5, k1 = (10, 10)
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Figure B.30: Dynamics with ℓ1 = 2
3
, α = 0.5, β = 0.5, k1 = (0.019, 0.002)
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Figure B.31: Dynamics with ℓ1 = 1, α = 0.1, β = 0.2, k1 = (0.1, 0.1)
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Figure B.32: Dynamics with ℓ1 = 1, α = 0.1, β = 0.2, k1 = (10, 10)
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Figure B.33: Dynamics with ℓ1 = 1, α = 0.1, β = 0.2, k1 = (0.015, −0.014)
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Figure B.34: Dynamics with ℓ1 = 1, α = 0.33, β = 0.4, k1 = (0.1, 0.1)
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Figure B.35: Dynamics with ℓ1 = 1, α = 0.33, β = 0.4, k1 = (10, 10)
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Figure B.36: Dynamics with ℓ1 = 1, α = 0.33, β = 0.4, k1 = (0.012, −0.007)
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Figure B.37: Dynamics with ℓ1 = 1, α = 0.5, β = 0.5, k1 = (0.1, 0.1)
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Figure B.38: Dynamics with ℓ1 = 1, α = 0.5, β = 0.5, k1 = (10, 10)
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Figure B.39: Dynamics with ℓ1 = 1, α = 0.5, β = 0.5, k1 = (0.003, −0.001)
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