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Abstract

Districting is the problem of grouping small basic areas into larger districts, subject to a

number of relevant planning criteria. Balance describes the requirement for districts to have

approximately the same size with respect to a quantifiable activity measure, e.g., number of

inhabitants or working time. A district is said to be geographically compact if it is closely and

firmly packed together. Contiguity means that it is possible to travel between the basic areas

of a district without leaving the district. The basic areas can be represented by polygons

(e.g., cities), lines (e.g., streets), or points (e.g., customers). In the literature, polygonal

representations are predominant. However, there are many practical applications for points

or lines. Therefore, this thesis mainly focuses on these representations and applications.

The least well defined planning criterion is compactness. Many compactness measures have

been proposed, but none of them has proven to be comprehensive. The first part of this thesis

summarizes and compares existing measures, and enhances some measuring approaches in

order to make them applicable in the case of point or line representations.

Point representations arise for example in the context of sales or service districting. In the

second part, this thesis focuses on solution approaches that utilize the problem’s underlying

geometrical information. It improves the already existing Recursive Partitioning Algorithm

(RPA) significantly, especially in terms of compactness. Moreover, it presents an approach

based on Power Diagrams that either can be used as a stand-alone algorithm or as a post-

processing of the RPA. The Power Diagram based approach improves compactness even

further, however, the RPA performs better in terms of balance. Although both approaches

are geometrically motivated, distances on a road network can be incorporated.

Line representations occur in districting problems on road networks, for example for mail or

leaflet delivery. Usually, the service of a district is provided within one tour. In the third part,

this thesis introduces a corresponding algorithm combining features of geometric approaches,

tabu search, and adaptive randomized neighborhood search. It is the first approach that

includes compactness as well as routing distances explicitly. Computational tests on real-

world data confirm the efficiency of this approach and the quality of its solutions.
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1 Introduction

We all come into contact with districts in our daily lives, directly or indirectly. The postman

delivering our mails every morning has a delivery area he is responsible for, the team picking

up our waste every week has a sector it is responsible for, or in the case of snowfall, each

truck is responsible for removing the snow within a district, just to mention some examples.

Catholic communities divide their regions into smaller districts in order to organize the carol

singers visiting church members, or a supermarket defines districts for each leaflet deliverer.

Moreover, when there is an election, e.g., in Germany for the Landtag or the Bundestag,

each of us is assigned to an electoral district where we have to vote. In our business lives,

we come into contact with districts as well. A company may divide its trading area into

smaller sales regions and locate a branch office within each region. In the field of public

administration, each public office has an area of responsibility and the inhabitants of that

area should go to this office.

All of these examples have something in common: A large geographical area is partitioned

into smaller districts. Other terms for district are territory, sector, zone, region, or area of re-

sponsibility. These sub-divisions usually follow some constraints. Especially, there are small

geographic areas that are indivisible, so-called basic areas. For example, the border between

two regions of responsibility for garbage trucks does not normally lie in in the middle of a

street, instead each street is assigned to one district as a whole. In the context of electoral

districts, usually whole city quarters are assigned to the same district. Hence, beside the

top-down view there is a bottom-up view. A district can be interpreted as a composition of

basic areas. Moreover, the process of designing these districts takes some further require-

ments into account depending on the application. Often, there are fairness requirements

on the size according to a quantifiable measure. For example, each postman should have

approximately the same expected workload, each electoral district approximately the same

number of voters, or each sales region approximately the same sales volume. Moreover, in

many contexts for organizational and economic reasons each district should be connected.

From an organizational point of view, connected districts induce clearly defined areas of re-

sponsibility. From an economical point of view, a connected district prevents unproductive
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travel times between the connected components. Furthermore, in general there are further

requirements on the shapes of the districts. They should be visually appealing, for exam-

ple, nearly round-shaped or square. On the one hand, most likely the travel times within

a nearly round-shaped or square district are smaller than in a long-shaped district. On the

other hand, in the context of electoral districts, the requirement for regularly shaped districts

helps to prevent manipulations.

Altogether, these observations lead to the following definition: Districting is the problem of

grouping small geographic areas, called basic areas, into larger geographic clusters, called

districts, subject to a number of relevant planning criteria. Typical examples for basic

areas are cities, zip-code areas, streets, and single customer locations. The most important

planning criteria are balance, compactness and contiguity. Balance describes the requirement

for districts to have approximately the same size with respect to a quantifiable activity

measure, such as number of inhabitants, sales potential, or working time. A district is said

to be geographically compact if it is closely and firmly packed together, e.g., nearly round-

shaped or square and undistorted. In a contiguous district it is possible to reach every basic

area within this district from every other without having to leave the district.

Districting problems also occur as part of other problems in the context of operations re-

search. For example, concerning routing problems many approaches utilize the principle of

“cluster first – route second”, i.e., in the first step they group the customers into clusters,

after that, in the second step they determine a route through this set of customers. In this

context, the “cluster first” step can be seen as districting step.

Often, in the context of facility location problems the question of where to locate facilities

comes along with the question of how to allocate the customers to these facilities. Especially,

if the facilities should be equally sized, the problem can be solved by firstly determining sets

of customers served by the same facility and secondly locating the corresponding facilities.

Moreover, there exists a problem looking similar to districting, called clustering. Clustering

is the problem of grouping objects such that the objects of the same group, called cluster, are

more similar to each other than to those in other clusters. Assume the objects as located in

a plane, for example, by interpreting their properties as coordinates. In this case, similarity

can be interpreted as spatial closeness. However, there is a main difference between clustering

and districting. The general clustering problem does not take the size of the clusters into

account. Hence, the obtained clusters are allowed to be very unbalanced.
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1.1 Districting Applications

There is a broad range of practical applications for districting. This section outlines the

four main categories of districting problems: Political districting, sales districting, service

districting, and distribution districting. The categorization is based on Kalcsics [26].

1.1.1 Political Districting

The design of electoral districts is the application that has received most attention in dis-

tricting literature [6, 7, 11, 17, 18, 23, 32, 38, 39, 40, 45, 46]. Typically, a governmental area

has to be divided into a given number of electoral districts and each of these districts elects

one political representative in order to send him to a parliament. For example, the voting

system for the German Bundestag is known as personalized proportional representation.

That is a combination of proportional representation and plurality vote. Each of the 299

districts elects one representative using a first-past-the-post voting. In order to respect the

principle of “one man – one vote”, i.e., every vote should have the same power, the number

of voters should be approximately equal within each electoral district. In other words, the

districting plan should be balanced. For example, for the election of the German Bundestag

the deviation of a district from the average size should be at most 15%. If the deviation is

more than 25% a redistricting is required [35]. Therefore, due to population changes between

the elections of 2009 and 2013 there were changes to 21 districts. The deviations for the

election of the U.S. congress are noticeably smaller. After the census in 2000 the deviation

was at most 0.60% [45].

Often, in the context of political districting, basic areas correspond to cities or quarters, i.e.,

each city (-quarter) needs to be assigned to one district as a whole. Hence, the basic areas

are most commonly represented by polygons. Sometimes, further prescribed borders have

to be taken into account during the planning process. For example, for the election of the

German Bundestag the borders of the 16 federal states are respected.

In order to prevent gerrymandering other important criteria are contiguity and compactness.

Gerrymandering is the practice of designing districts in order to prefer a particular party. The

term is a combination of the terms “Gerry” and “Salamander”. In 1812 governor Elbridge

Gerry redistricted Massachusetts for the election of the state senate where one of the electoral

districts was said to look like a salamander. Figure 1.1 shows a cartooned illustration of this

district [44]. The main idea of Gerrymandering is the usage of the “the winner takes it all”

principle. If a party wins the election within a district it does not matter if this party has

only a few more votes than another party or if almost everybody votes for this party. In

contrast to this, if a party loses the election within a district, actually every vote is useless for
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Figure 1.1: Cartoon illustration of gerrymandering [44]

the losing party. Thus, if a party wins many districts barely, but loses some districts clearly,

it may obtain a majority in the parliament, even though it has no majority according to the

voters in total. Lewyn [31] gives more details about gerrymandering. However, Garfinkel

and Nemhauser [17] argue that compactness is of smaller relevance for algorithmic planning.

Manipulations are more or less impossible if an algorithm that does not consider political

data generates the districting plan.

In contrast to this Puppe and Tasnádi [37] propose taking political data into account ex-

plicitly. They define a districting plan as unbiased if for each party the number of seats

is proportional to the corresponding share of voters. In other words, the result of a plu-

rality vote should be as close as possible to the result of proportional representation. In

order to obtain an unbiased districting plan, the authors consider the problem from a game

theoretical point of view.

Some approaches include additional planning criteria. For example, the consideration of

socio-economic homogeneity within the generated districts [6], a fair representation of minori-

ties [46], the consideration of geographic obstacles [18], or similarity to an existing districting

plan [6].

Williams [46] and Ricca et al. [40] give more details about criteria and approaches in the

context of political districting. Webster [45] presents a reflection on current evaluation

criteria.
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1.1.2 Sales Districting

Zoltners and Sinha [49] report that in the US about 11% of the full-time employees are field or

retail salespersons. Companies pay more than a trillion dollars per year to these employees.

They argue, that with better planning, there is a potential for improving sales profit by 2% to

7% in many companies. Hence, the planning of sales districts is an economically important

field.

The aim of sales districting is the allocation of customers to salespersons. Typically, each

district corresponds to the area of responsibility for one salespersons or one team. Hence,

the districts should be contiguous and non-overlapping in order to obtain geographically

clearly defined sales districts and to avoid competitions between the salespersons of the

same company. In general, a salesperson has to visit his customers regularly. Unfortunately,

in most cases it is very hard to determine the corresponding travel times explicitly since visit

frequencies, time windows, overnight trips, and so on, make the problem extensive. Using

compact districts is a good compromise because compactness can be seen as a proxy for the

requirement of small travel times.

Usually, balance is a planning criterion in the context of sales districting. First, the salesper-

sons should have approximately the same workload for servicing the customers. Moreover,

most commonly each salesperson is rewarded based on the sales volume of his customers.

Hence, the salespersons should have approximately the same income opportunities in order

to avoid discontent among them. Zoltners and Sinha [48] model these two balance criteria,

while Ŕıos-Mercado and Fernández [41] model actually three balance criteria, namely num-

ber of customers, product demand and workload. Hess and Samuels [22] and Fleischmann

and Paraschis [16] require that the districts are balanced according to one activity measure,

regardless of which one is used. However, in general, the main goal of a company is profit

maximization, while other criteria are of minor importance. That is the reason why Drexl

and Haase [14] and Haase and Müller [19] do not take balance into account explicitly, but

they define a maximum feasible working time for each salesperson.

Some authors present approaches where a customer’s sales volume depends on the time the

service person invested on this customer [14, 19]. Also the sales force size, i.e., the number

of required districts, can be part of the planning [24, 49]. Zoltners and Sinha [48, 49] present

comprehensive overviews of the proposed sales districting approaches in the literature.

Most commonly, the presented approaches aggregate the single customers, e.g., according to

their zip-codes, and treat these aggregations as basic areas. In contrast to this, Chapters 4

and 5 of this thesis present approaches where the customers are directly treated as basic

areas.
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1.1.3 Service Districting

Applications in the context of service districting are numerous. These applications can be

divided into two sub-classes differing in whether a customer has to visit a fixed service lo-

cation or the service is provided at a customer’s home. The design of school districts is

an application where the service is provided at fixed locations, i.e., at the existing schools.

In some countries, the school district a student lives in defines the school the student has

to go to. Common criteria in the context of school districting are the satisfaction of ca-

pacity constraints and contiguity constraints, the minimization of the total distances the

students have to travel, the fulfillment of maximal feasible travel times for single students,

the consideration of which students have to take a school bus, and the consideration of racial

balance [10, 15, 42, 43]. Further examples are regions for hospitals or public utilities, where

each inhabitant is allocated to a location.

Due to the aging society the field of home-care services is gaining in importance. A home-

care district corresponds to the area of responsibility for one team of health-care staff, such

as nurses. These districts should be connected, compact, respect administrative boundaries,

have approximately the same workload, and there should be a good accessibility within each

district, especially by public transport services [2, 4].

There are some further applications where the service is provided on-site. For example,

municipal solid waste collection [20], salt spreading, or road maintenance [33, 34], and snow

disposal [36]. Typically, there is one district for each truck. These districts should be

compact, contiguous, have approximately the same workload, and allow a good routing. In

the context of meter reading [13], mail delivery [5], or leaflet delivery [8] the requirements

are similar. The difference is that for these applications the service is generally provided by

foot. Chapter 6 of this thesis addresses these applications in more detail.

In addition, the following applications are mentioned in the districting literature: Bergey

et al. [3] deal with the problem of dividing a physical power grid into districts for electricity

companies. The background of this application is the transformation from a monopolistic

governmental company to competitive private companies. D’Amico et al. [12] focus on the

planning of command districts for the police. In this case, there are further requirements

on the maximal response time to calls for service. In a similar context, Camacho-Collados

et al. [9] address the problem of designing patrol sectors.
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1.1.4 Distribution Districting

In the field of pickup and delivery planning every requesting costumer has to be serviced.

Typically, their demands vary from day to day. In this context, some approaches propose to

determine districts on a tactical level and routes on an operational level, i.e., these approaches

utilize the principle of “cluster first – route second” [1, 21, 25, 28, 29, 30]. Usually, there is a

one-to-one relation between a district and a driver. In this case, the driver becomes familiar

with his district and increases his performance. Zhong et al. [47] model this correlation

explicitly. Jarrah and Bard [25] argue that the customer also becomes familiar with his

driver which results in an enhanced client loyalty. In contrast to this, Zhong et al. [47]

propose to allow some customers that have no fixed assignment to a district in order to

balance the workload for each day.

The districts should be contiguous and compact in order to allow good routes on the day-

to-day basis. Moreover, the districts should be balanced in terms of working time or satisfy

a maximal feasible working time within a given time horizon. Actually, the working time

contains both the service times and the travel times. Hence, the majority of the approaches

includes at least an approximation of the travel times. Chapter 4 of this thesis describes

some of these approaches in more detail.
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1.2 Scope of this Thesis

This thesis is organized as follows: The first part focuses on modelling of districting problems.

Chapter 2 provides an overview of the most common components and planning criteria and

points out why it is necessary to apply heuristics in order to solve practical districting

problems. The main challenge in this context is the assessment of compactness. It seems to

be impossible to define a comprehensive compactness measure. Hence, Chapter 3 describes

compactness and measures proposed so far in detail, evaluates these measures, and enhances

some measuring approaches. In particular, Chapter 3 analyzes the application of these

measures to basic areas that are represented as points.

There are three common representations of basic areas in the districting literature: Polygons,

points and (poly-)lines. Polygonal representations mainly occur if the basic areas correspond

to cities, quarters or zip-code cial areas. Hence, the majority of the literature concerning

political districting utilizes polygonal representations. Thus, this case is well studied in the

literature. In contrast to this, the districting literature concerning basic areas represented

by points explicitly is rather limited, although point representations are the common case if

single customers are considered as basic areas, for example in the context of sales or service

districting. Typically, approaches proposed in the literature aggregate these customers and

treat these aggregations as basic areas. In contrast to this, the second part of this thesis deals

directly with point representations. First, Chapter 4 enhances an approach of Kalcsics et al.

[27], called Recursive Partitioning Algorithm (RPA). Especially, in terms of compactness

it improves the RPA significantly. Subsequently, Chapter 5 presents an approach based

on Power Diagrams. This approach can either be used as a stand-alone algorithm or as a

post-processing step applied to the solutions of the RPA. Both approaches have in common

that they utilize the districting problem’s underlying geometrical information. The main

difference is the treatment of balance. The former uses balance both as a soft and a hard

criterion, whereas the latter uses it only as a hard criterion.

The literature concerning line representations is also not extensive. In this context, typically

each line requires a service and the service of a district is provided within one tour. Typical

examples are the delivery of mail or leaflets. In this context, Chapter 6 introduces an

algorithm combining features of tabu search and adaptive randomized neighborhood search.

In contrast to former approaches, it considers compactness as well as routing distances

explicitly.

This thesis concludes with a presentation of our C++ library for solving districting problems,

called “Lizard” (LIbrary of optimiZation AlgoRithms for Districting), and an outlook to

future research.
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This chapter gives a general overview of our model used for districting problems. There-

fore, it summarizes the most common components (cf. Section 2.1) and planning criteria

(cf. Section 2.2) of districting problems. Depending on the application or on the used algo-

rithm some additional components or criteria may have to be taken into account or some

adaptations are necessary. After that, Section 2.3 states some variations of a mathematical

model. This chapter concludes with a short overview of existing solution approaches, mainly

focusing on location-allocation approaches.

2.1 Components

At first, the following subsections will introduce the components of our general model.

2.1.1 Basic Areas

A Districting problem comprises a set BA of basic areas , sometimes also called basic units,

(sales) coverage areas, or geographical units. A basic area is the smallest considered geo-

graphic area and it is represented by a point (e.g., geo-coded customer location), a (poly-)line

(e.g., street) or a polygon (e.g., city or zip-code area). For purposes of a simple notation,

this model assumes that each basic area i ∈ BA can be represented by a point bi = (xi, yi).

In the case of non-point objects this can be for example the center of gravity (polygons) or

the middle-point (streets). In the following bi denotes this representative point as well as its

basic area.

Moreover, one or more quantifiable activity measures, or activities for short, are associated

with each basic area. Let wa
i ∈ IR+ denote the a-th activity and A denote the number of

activities. Depending on the application these activities can be the number of people or

voters living within the basic area, the (total) sales potential of the people or customers

within the basic area, or the time that is necessary to serve the (total) demand of them. In

the (most common) case of one activity measure, i.e., A = 1, write wi or w(i) for short.

In general, for a subset B ⊆ BA of basic areas its a-th activity measure is defined as

sum of the a-th activity measures of its basic areas, i.e., wa(B) :=
∑

i∈B wa
i . However, for

certain applications it can be defined as wa(B) :=
∑

i∈B wa
i +W a(B), with W a(B) being an

additional value depending on the subset B, e.g., the travel time of a TSP-tour visiting all

basic areas of B. For short, wa(B) is called the size or activity of B. Again, write w(B) if

A = 1.
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2.1.2 Centers

Sometimes a center is associated to each district. This can either be a specified location,

e.g., an office of a company or a location of a social institution, or a representative point, e.g.,

the center of gravity. The latter might be helpful for evaluating the district, for example in

terms of compactness. The definition or location of a center for each district is often part of

the planning process. In this case, the centers are located in a second step after generating

the districts.

However, the set CE of centers can also be given in advance, for example by residences of

salespersons or by locations of already existing schools. In this case, the model assumes that

each center h ∈ CE can be represented by a point ch = (xh, yh) as well.

Moreover, for certain applications capacities can be associated with each of these centers, for

example the maximum number of students for a school. Let capah ∈ IR+ denote the capacity

of center h ∈ CE according to the a-th activity.

2.1.3 Distances

The distance between two basic areas i, j ∈ BA is denoted by di,j := d(bi, bj). Depending on

the application, d(· , ·) can be for example the Euclidean distance, or the distance or travel

time on a road network. Note that a distance function defined on a road network is not

necessarily a metric since the existence of one-way-streets can yield di,j 6= dj,i. However, we

assume that each used distance function satisfies the triangle inequality and the coincidence

axiom.

Moreover, the distance between a basic area i and a set of basic areas B ⊆ BA is defined as

d(i, B) := minj∈B di,j or d(B, i) := minj∈B dj,i, respectively. For non-point representations,

the distance between two basic areas is either defined as distance between their representative

points or as their shortest surface-to-surface distance.

In the case of predefined centers, the distance between a basic area i ∈ BA and a center

h ∈ CE is denoted by di,h := d(bi, ch). The distance between a basic area i (center h)

and a set of centers C ⊆ CE (basic areas B ⊆ BA) is defined as: d(i, C) := minh∈C di,h

(d(B, h) := mini∈B di,h) or d(C, i) := minh∈C dh,i (d(h,B) := mini∈B dh,i), respectively.

2.1.4 Districts

A district Dg consists of a set of basic areas Bg ⊆ BA. Sometimes a district is also called

territory or sector. The district containing basic area i is denoted by D(i), i.e., D(i) = Dg if

and only if i ∈ Bg. For short, one can say i is assigned or allocated to Dg.
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Depending on the application a district Dg may contain a center ceng ∈ CE in addition,

i.e., Dg := (Bg, ceng). In this case, cen(i) denotes the center of the district containing basic

area i. Here, one can say i is assigned to cen(i).

Furthermore, the a-th activity of the set of assigned basic areas defines the a-th activity of

the district, i.e., wa(Dg) := wa(Bg).

2.1.5 Districting Plan

Finally, a districting plan consists of a set of districts S := {D1; . . . ;Dp} where p is the

number of districts. In most applications p is given in advance, however, it can also be part

of the planning process. Other terms for districting plan are districting layout, territory

plan, territory layout or solution . This work uses the terms districting plan and solution

interchangeable.
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2.2 Planning Criteria

The districting problem can be described as follows: Partition all basic areas BA into p

districts that are balanced, contiguous, and compact. This section describes these criteria

in detail and introduces how a district or solution, respectively, is evaluated with respect to

them.

2.2.1 Complete and Exclusive Assignment

In general, each basic area must be assigned to exactly one district, i.e., the sets B1, . . . , Bp

define a partition of the set BA:

B1 ∪ · · · ∪ Bp = BA and Bg ∩ Bh = ∅, 1 ≤ g, h ≤ p .

Sometimes, this criterion is called integrity.

2.2.2 Balance

A district Dg is called perfectly balanced in terms of the a-th activity measure if its size

wa(Dg) is equal to the average district size µa := wa(BA)/p according to this activity

measure. Without loss of generality, in the following the case of only one activity measure

is considered. Since perfectly balanced districts can usually not be achieved, a common way

to measure the balance of Dg is to compute the relative percentage deviation of its size from

the average size [29], that is

bal(Dg) :=
|w(Dg)− µ|

µ
. (2.1)

The larger this deviation the worse the balance. Note that if an additional value depending

on the assigned basic areas is included in w(Dg) the balance of a district Dg can be different

in different solutions.

Another approach includes a prescribed relative threshold τ > 0 and evaluates each deviation

smaller than or equal to this threshold by bal(Dg) = 0, while each deviation exceeding this

threshold is evaluated as before [6, 7], i.e.,

balτ (Dg) :=
max{w(Dg)− (1 + τ) · µ; (1− τ) · µ− w(Dg); 0}

µ
.

This threshold can be given for example by law in the context of political districting or by

working time restrictions in the context of sales districting.
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The balance of a solution is mainly defined as the maximal balance of a single district [21],

i.e.,

balmax(S) := max
g=1,...,p

bal(Dg) . (2.2)

This approach has the drawback that only the worst balanced district is considered and the

further districts are not taken into account. Hence, it does not matter if they are perfectly

balanced or nearly as worse balanced as the worst one. Therefore, another less common

approach is the definition as sum of balances of all districts, for example used by Bozkaya

et al. [7],

balsum(S) :=

p
∑

g=1

bal(Dg)

or as average of them

balave(S) :=

p
∑

g=1

bal(Dg)

p
. (2.3)

In this case a few highly unbalanced districts could be compensated by some well balanced

districts. Hence, we suggest combining both approaches using a convex combination of

them [8], i.e.,

balcc,α(S) := α · 1
p
·

p
∑

g=1

bal(Dg) + (1− α) · max
g=1,...,p

bal(Dg) ,

where α ∈ [0, 1].

2.2.3 Compactness

A district is compact if it is nearly round-shaped or square, undistorted, without holes,

and has a smooth boundary. In the context of political districting the main motivation is

to prevent gerrymandering. In many other applications such as sales districting or school

districting compact districts help to reduce travel distances within the districts. Although,

compactness seems to be a very intuitive concept no comprehensive definition exits. Main

difficulties are the dependence on the geometrical representation of the basic areas and the

consideration of all dimensions of compactness. Many authors have proposed compactness

measures in literature, but unfortunately, all of them have some weaknesses. Therefore, the

reader is referred to Chapter 3, where these measures are analyzed and developed.
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2.2.4 Contiguity

Figuratively spoken, a district is contiguous if within a district the travelling from each basic

area to every other basic area without leaving this district is possible. The motivation is

similar to compactness: Preventing gerrymandering in the context of political districting or

reducing travel distances within the districts. In the context of sales or services districting it

also helps to obtain clearly defined areas of responsibility since no salesperson has to travel

through another district, and thereby may passing customers of other salespersons.

If basic areas are represented by polygons or lines, neighborhood information is implicitly

given. Two polygons are neighbored if they share a common border, while two lines are

neighbored if they meet in a crossroad. Based on this neighborhood information a neigh-

borhood graph can be derived, and a district is defined straightforwardly as contiguous if

its basic areas induce a connected sub-graph of this graph. Thus, this criterion is often also

called connectedness.

If basic areas are represented by points, there is no straightforward definition for contiguity,

not even for neighboring basic areas. Hence, a surrogate how to ensure contiguity is necessary.

One idea is the usage of a proximity graph. Then, a district can be defined as contiguous if

its basic areas induce a connected sub-graph of this proximity graph. In the literature some

different approaches, how to define a proximity graphs, are proposed.

2.2.4.1 Delaunay Triangulation

In the Delaunay Triangulation (DT) of BA two basic areas i and j are neighbored if and only

if their Voronoi regions have a common border within an enclosing figure of BA. Figure 2.1a

depicts an example, for more details about Voronoi regions see Section 5.1. The DT has

the property that for each Delaunay triangle there is no further vertex located within its

circumscribing circle. Figure 2.1b depicts the circumscribing circles for the example presented

in Figure 2.1a. The DT can be computed in O(n · log n) [1].

2.2.4.2 Gabriel Graph

The so-called Gabriel Graph (GG) is an undirected proximity graph proposed by Gabriel

and Sokal [14]. In the GG of BA two basic areas i and j are neighbored if and only if no

other basic area k is located within the closed disc having the line segment between i and j

as diameter. For example, i and j depicted in Figure 2.2a are neighbored, whereas i and j in

Figure 2.2b are not neighbored since k is located within the illustrated closed disc. The GG

is a sub-graph of the DT and it can be computed in O(n) if the DT is already given [26].
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Figure 2.1: Illustrations of the Delaunay Triangulation
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Figure 2.2: Illustrations for proximity graphs

2.2.4.3 Relative Neighborhood Graph

Another approach was proposed by Toussaint [36]. The Relative Neighborhood Graph

(RNG) is an undirected proximity graph, where two basic areas i and j of BA are neighbored

if and only if no other basic area k exists that is closer to both i and j than they are to each

other. For example, in Figure 2.2c k is closer to i and j than they are to each other, so i

and j are not neighbored. One can easily see that the RNG is a sub-graph of the GG since

no pair of basic areas can be neighbored within the RNG but not within the GG. The RNG

can also be computed O(n) if the DT is already given [24].

2.2.4.4 Urquhart Graph

The so-called Urquhart Graph (UG) is another undirected proximity graph introduced by

Urquhart [37]. It is a sub-graph of the DT and obtained by removing the longest edge from

each triangle. The computation can be done in O(n · log n) as well. The UG is not the same
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(a) Set of basic areas BA (b) DT of BA (c) GG of BA

(d) RNG of BA (e) UG of BA (f) HG of BA

Figure 2.3: Proximity graphs

as the RNG, although Urquhart assumed it wrongly while proposing this approach.

2.2.4.5 Haugland Graph

The Haugland Graph (HG) is also an undirected graph and was introduced by Haugland

et al. [17]. In contrast to the former approaches it is based on a complete graph. For each

pair of intersecting edges in the planar representation of the complete graph the longer (more

costly) edge is removed.

Figure 2.3 illustrates the presented proximity graphs for the set of basic areas introduced in

Figure 2.3a. Each of these approaches results in a connected planar graph. These illustrations

show that the GG depicted in Figure 2.3c, the RNG depicted in Figure 2.3d and the UG

depicted in Figure 2.3e are sub-graphs of the DT illustrated in Figure 2.3b. Moreover,

comparing Figures 2.3c and 2.3d one can see that the RNG is a sub-graph of the GG.

Furthermore, the UG illustrated in Figure 2.3e is obviously not equivalent to the RNG

presented in Figure 2.3d.

The RNG and the UG are very thin, i.e., many of their vertices have a very small degree.
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Figure 2.4: Illustrations of the contiguity measure

Hence, the number of feasible partitions is very restricted. In contrast to this, within the DT

and the HG the degree of their vertices is rather high. Hence, some basic areas are declared as

neighbored although they are far away from each other, what is quite counter-intuitive. Thus,

the GG seems to be a good compromise since it restricts the number of feasible partitions

not as strong as the RNG and the UG, and it contains less counter-intuitive neighboring

pairs of basic areas than the DT and the HG.

2.2.4.6 Intersection of Convex Hulls

Another idea to define contiguity if the basic areas are represented by points is the usage of

geometrical definitions. Kalcsics et al. [21] and Jarrah and Bard [20] call a district contiguous

if the convex hull ch(Bg) of the basic areas comprising district Dg does not intersect the

convex hull of the basic areas of any other district Dh. Within a contiguous district for

each pair of basic areas there exists a path that does not leave this district. Moreover,

using Euclidean distances even the shortest path between them does not leave this district.

Hence, no shortest path between two basic areas of one district passes a basic area of another

district.

However, this definition is very restrictive. Depending on the application a planner might

accept some (small) intersections between basic areas. Therefore, the contiguity measure we

suggest determines the contiguity of a solution as sum of the areas of intersection between

their convex hulls, normalized by the area of the convex hull of BA, that is

ctg(S) :=

p−1
∑

g=1

p
∑

h=g+1

area(ch(Bg) ∩ ch(Bh))

area(ch(BA))
.
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Figure 2.4 illustrates this measure. The set of basic areas is partitioned into three districts,

illustrated by white circles, black circles and circles filled by a plus. Solution S1 presented in

Figure 2.4a is contiguous according to the restrictive definition since there is no intersection

between the convex hulls of the corresponding districts, i.e., ctg(S1) = 0. In contrast to this,

solution S2 illustrated in Figure 2.4b is not contiguous since there are intersections between

the corresponding convex hulls. Figure 2.4c shows the corresponding areas of intersection

by the two dark gray polygons, whereas the convex hull of BA is illustrated as light gray

polygon. In order to obtain ctg(S2), the total area of the dark gray polygons is set in relation

to the area of the light gray polygon.
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2.3 Mathematical Modelling

In the literature there are some approaches that model the districting problem as a math-

ematical program. The first formulation as mixed integer program was proposed by Hess

et al. [19] in 1965. They model the districting problem as p-median warehouse location

problem. The decision variable xij states whether basic area i is assigned to the district

having basic area j as center or not. A basic area i is defined as center if and only if xii = 1

holds. Hence, there is a one-to-one relation between centers and districts. Recall that p is

the given number of districts, µ denotes the average activity measure of a district and τ

represents the feasible percentage deviation from µ. The model of Hess et al. [19] is given as

follows:

min
∑

i∈BA

∑

j∈BA

wi · d2i,j · xij (O1)

s.t.
∑

j∈BA

xij = 1 ∀ i ∈ BA (C2)

∑

i∈BA

xii = p (C3)

(1− τ) · µ · xjj ≤
∑

i∈BA

wi · xij ∀ j ∈ BA (C4a)

(1 + τ) · µ · xjj ≥
∑

i∈BA

wi · xij ∀ j ∈ BA (C4b)

xij ∈ {0; 1} ∀ i, j ∈ BA (C5)

The objective function (O1) minimizes the Weighted Moment of Inertia (cf. Section 3.3.5.1).

Hence, the program treats compactness as optimization goal, whereas it treats balance as

a hard criterion by defining a lower (C4a) and an upper bound (C4b) for the activity of a

district. Moreover, constraints (C4b) guarantee that if xjj = 0 holds, xij equals zero for

each basic area j. In other words, if basic area i is assigned to the district having basic area

j as center, basic area j has to be defined as center. Constraints (C2) together with the

domain restrictions (C5) ensure that each basic area is completely and exclusively assigned

to one district. Finally, constraint (C3) guarantees that exactly p basic areas are defined

as centers, and, hence, that exactly p districts exist. Surprisingly, the model contains no

contiguity constraints.

However, this program is not practical applicable for larger problems. Already a small

instance, having 231 basic areas that should be partitioned into 5 districts, is not solvable

in reasonable time. CPlex 12.6 shows still a gap of 15.93% after 12 hours on a PC running
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Windows 7 with a Pentium i7−4500U processor with 2.80 GHz and 8 GB RAM. Therefore,

in order to solve the problem, Hess et al. [19] propose a location-allocation method.

Since Hess et al. [19] do not model contiguity explicitly, some authors have proposed ap-

proaches that add contiguity constraints to the original model. These approaches are mainly

based on a given neighborhood relation, where N i denotes the set of basic areas neighbored

to basic area i.

One way to model contiguity introduced by Drexl and Haase [12] is the following:

∑

i ∈ ⋃

k∈B

(Nk\B)

xij −
∑

i∈B
xij ≥ 1− |B| ∀ j ∈ BA,B ⊂ [BA\(N j ∪ {j})] (C6)

For each center j, the constraints (C6) consider each subset of basic areas B not containing

basic area j and the neighbors of j. If all basic areas of B are assigned to center j, there

must be at least one basic area not included in B but neighbored to B that is also assigned

to center j. Unfortunately, since each subset has to be taken into account, there is an

exponential number of these contiguity constraints. Thus, for example Ŕıos-Mercado and

López-Pérez [30] and Salazar-Aguilar et al. [31] apply a cut generation approach that adds

the needed constraints iteratively.

Shirabe [35] presents an approach based on network flows. For each district, each basic area

except the center is a source having a supply of one, whereas the center is a sink having the

total demand. Figuratively spoken, within a district each basic area sends one unit to the

center. Let fikj the (non-negative) flow from basic area i to basic area k within the district

having j as center. Shirabe [35] models the contiguity as follows:

∑

k∈N(i)

fikj −
∑

k∈N(i)

fkij = xij ∀ j ∈ BA, i ∈ BA\{j} (C7)

∑

k∈N(i)

fkij ≤
[(

∑

l∈BA

xlj

)

− 2

]

· xij ∀ j ∈ BA, i ∈ BA\{j} (C8)

∑

k∈N(j)

fkjj ≤
[(

∑

l∈BA

xlj

)

− 1

]

· xjj ∀ j ∈ BA (C9)

Constraints (C7) ensure that each basic area has a supply of one within the corresponding

district if it is assigned to center j and no supply or demand otherwise. Constraints (C8)

guarantee that the corresponding flow into a basic area not assigned to j is zero. Moreover,

if j is no center, there is no flow according to the district having j as center at all. Finally,

according to constraints (C8) the flow into a center corresponds to the number of assigned
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basic areas except the center itself.

There are some variations of the original model of Hess et al. [19] in the literature. Especially

the compactness measure used as objective function varies between different proposals. Ŕıos-

Mercado and Fernández [29] use the maximum distance between a center and one of its

assigned basic areas as objective function, i.e.,

min max
i,j∈BA

di,j · xij (O2)

and Salazar-Aguilar et al. [31] propose the sum of (single) distances from the basic areas to

the corresponding centers, i.e.,

min
∑

i∈BA

∑

j∈BA

di,j · xij (O3)

to give two examples.

Moreover, the integration of balance constraints for more than one activity measure is

straightforward [29]:

(1− τa) · µa · xjj ≤
∑

i∈BA

wa
i · xij ∀ j ∈ BA, a ∈ A (C9a)

(1 + τa) · µa · xjj ≥
∑

i∈BA

wa
i · xij ∀ j ∈ BA, a ∈ A (C9b)

Salazar-Aguilar et al. [32] state the districting problem as bi-objective programming model,

where minimizing balance is the second objective beside compactness:

min W (O3)

s.t.

(
∑

i∈BA

wi · xij)− µ · xjj ≤ W ∀ j ∈ BA (C10a)

µ · xjj − (
∑

i∈BA

wi · xij) ≤ W ∀ j ∈ BA (C10a)

Constraints (C10a) and (C10a) together with the objective function O3 describe the balance

measure defined in Equations (2.1) and (2.2). This formulation is necessary in order to

replace the absolute value in Equation (2.1). The authors apply a ǫ-constraint method

where compactness is used as the primary objective and solve instances up to 150 basic

areas in reasonable time. Unfortunately, instances having 150 basic areas are rather small

instances and the approach is still not applicable for larger problems.
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A quadratic formulation is introduced by Salazar-Aguilar et al. [31]. This model needs two

sets of decision variables zig and yjg. The former represents the assignment of basic area i

to district Dg, whereas the latter defines whether basic area j is the center of district Dg or

not. Hence, the number of decision variables is 2 · p · |BA| instead of |BA|2 for the linear

formulation.

min

p
∑

g=1

∑

i∈BA

∑

j∈BA

di,j · zig · yjg (O4)

s.t.
∑

j∈BA

yjg = 1 ∀ g = 1, . . . , p (C11)

p
∑

g=1

zig = 1 ∀ i ∈ BA (C12)

zjg ≥ yjg ∀ j ∈ BA, g = 1, . . . , p (C13)

(1− τa) · µa ≤
∑

i∈BA

wa
i · zig ∀ g = 1, . . . , p, a ∈ A (C14a)

(1 + τa) · µa ≥
∑

i∈BA

wa
i · zig ∀ g = 1, . . . , p, a ∈ A (C14b)

p
∑

g=1

∑

i ∈
⋃

k∈B

(Nk\B)

zig · yjg −
p
∑

g=1

∑

i∈B
zig · yjg ≥ 1− |B| ∀ j ∈ BA,B ⊂ [BA\(N j ∪ {j})]

(C15)

zig ∈ {0; 1} ∀ i ∈ BA, g = 1, . . . , p (C16a)

yjg ∈ {0; 1} ∀ j ∈ BA, g = 1, . . . , p (C16b)

Constraints (C11) ensure that each district has a center. Naturally, if a basic area is defined

as district center it has to be assigned to the district (C13). The constraints (C12), (C14a),

(C14b) and (C15) correspond to the constraints (C2), (C9a), (C9a) and (C6). Finally, (C16a)

and (C16a) are domain restrictions.

The authors solve the problem by an iterative procedure using branch and bound and cut

generations. However, in order to solve the quaratic problem in reasonable time, they use a

local optimum method.
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2.4 Heuristic Solution Approaches

The previous section has shown that the mathematical program formulations are not solvable

in reasonable time by exact approaches. Hence, typically heuristics are applied to districting

problems.

2.4.1 Location-Allocation

Already Hess et al. [19] have proposed a location-allocation heuristic that splits the problem

into two independent problems. The location problem is the problem of determining a set

of p centers, whereas the allocation problem is the problem of assigning the basic areas to

these centers. Both problems are solved alternatingly until there is no further noticeable

improvement. One way to solve the location problem is to determine the center of gravity

for each district of the previous allocation phase. For the allocation problem the number of

decision variables is only p · |BA| since the centers are prescribed. Recall, that the districting
problem needs |BA|2 decision variables. Now, CPlex needs less than one second to solve the

described instance having 231 basic areas if the 5 centers are prescribed, while the districting

problem is not solvable to optimality within 12 hours. Even for large instances, this problem

is solvable in reasonable time.

The location-allocation procedure was applied and enhanced by several authors over the

years. For example, Hess and Samuels [18] and Fleischmann and Paraschis [13] solve a re-

laxed problem in the allocation phase where τ is set to zero and xij is relaxed, i.e., xij ∈ [0, 1].

Hence, the solution may contain so-called splits, i.e., basic areas which are assigned partly

to different centers. Thus, in order to resolve these splits a subsequent step is necessary.

Moreover, Ŕıos-Mercado and López-Pérez [30] integrate contiguity constraints and incor-

porate the similarity to an existent plan. In recent approaches, López et al. [25] apply a

location-allocation procedure in the context of territory planning for micro financing insti-

tutions, and Yanık et al. [38] to determine sustainable energy regions.

2.4.2 Further Approaches

Over the years many further heuristics have been proposed. For example, Garfinkel and

Nemhauser [16] present a set-partitioning approach. Firstly, this approach determines a set

of feasible districts. After that, it chooses a subset of these districts in order to obtain a

good overall solution.

Seed-growing approaches choose some basic areas as seeds and assign the further basic areas

to these seeds taking the required planning criteria into account, i.e., each seed leads to a

district. The districts are either treated sequentially or simultaneously. In the context of
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districting, many authors propose such approaches, for example Bodin and Levy [5], Bozkaya

et al. [6, 7], and Lei et al. [22, 23]. Mainly, these authors use seed-growing approaches in

order to generate initial solutions for meta-heuristics.

A broad range of meta-heuristics haven been proposed in the context of districting. Meta-

heuristics have in common that they are very flexible for integrating different requirements

and planning criteria. D’Amico et al. [10] apply a simulated annealing approach in order to

design police districts, Bergey et al. [2] solve an electrical power districting problem by means

of simulated annealing and Ricca and Simeone [27] political districting problems. In related

works Ŕıos-Mercado and Fernández [29], Salazar-Aguilar et al. [34], and Ŕıos-Mercado and

Escalante [28] present different variations of GRASP approaches in order to determine sales

districts for a beverage company, while de Assis et al. [11] determine districts for meter

reading. In the context of the beverage company, Salazar-Aguilar et al. [33] use a scatter

search approach. For example, Bozkaya et al. [6, 7] and Ricca and Simeone [27] propose

tabu search procedures in the context of political districting, while Blais et al. [4] apply a

tabu search approach on a home-care districting problem. Lei et al. [22, 23] apply kinds

of (adaptive) large neighborhood search procedures. In different districting contexts, for

example Bergey et al. [2, 3] and Chou [9] present evolutionary or genetic algorithms.

Another class of solution approaches are geometric approaches, for example proposed by

Kalcsics et al. [21], Galvão et al. [15], or Ricca and Simeone [27]. These approaches utilize

the districting problem’s underlying geometrical information.

This thesis focuses on geometric approaches in the context of point representations of basic

areas. Chapter 4 continues the work of Kalcsics et al. [21]. Chapter 5 proposes an approach

based on Power Diagrams. In the context of line representations Chapter 6 introduces an

algorithm based on tabu search and adaptive randomized neighborhood search.





33

Bibliography

[1] F. Aurenhammer, R. Klein, and D. L. Lee. Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific, 2013. ISBN 978-9814447638.

[2] P. K. Bergey, C. T. Ragsdale, and M. Hoskote. A Simulated Annealing Genetic Algo-
rithm for the Electrical Power Districting Problem. Annals of Operations Research, 121
(1):33–55, 2003.

[3] P. K. Bergey, C. T. Ragsdale, and M. Hoskote. A decision support system for the
electrical power districting problem. Decisison Support Systsems, 36:1–17, September
2003.

[4] M. Blais, S. D. Lapierre, and G. Laporte. Solving a home-care districting problem in
an urban setting. Journal of the Operational Research Society, 54(11):1141–1147, 2003.

[5] L. D. Bodin and L. Levy. The arc partitioning problem. European Journal of Operational
Research, 53(3):393–401, 1991.

[6] B. Bozkaya, E. Erkut, and G. Laporte. A tabu search heuristic and adaptive memory
procedure for political districting. European Journal of Operational Research, 144(1):
12–26, 2003.

[7] B. Bozkaya, E. Erkut, D. Haight, and G. Laporte. Designing new electoral districts for
the city of Edmonton. Interfaces, 41(6):534–547, 2011.

[8] A. Butsch, J. Kalcsics, and G. Laporte. Districting for arc routing. INFORMS Journal
on Computing, 26(4):809–824, 2014.

[9] C.-I. Chou. A Knowledge-based Evolution Algorithm approach to political districting
problem. Computer Physics Communications, 182(1):209–212, 2011.

[10] S. J. D’Amico, S.-J. Wang, R. Batta, and C. M. Rump. A simulated annealing approach
to police district design. Computers & Operations Research, 29(6):667–684, 2002.

[11] L. S. de Assis, P. M. Franca, and F. L. Usberti. A redistricting problem applied to
meter reading in power distribution networks. Computers & Operations Research, 41
(1):65–75, 2014.

[12] A. Drexl and K. Haase. Fast Approximation Methods for Sales Force Deployment.
Management Science, 45(10):1307–1323, 1999.

[13] B. Fleischmann and J. N. Paraschis. Solving a large scale districting problem: a case
report. Computers & Operations Research, 15(6):521–533, 1988.



34 Bibliography

[14] K. R. Gabriel and R. R. Sokal. A New Statistical Approach to Geographic Variation
Analysis. Systematic Zoology, 18(3):259–278, 1969.

[15] L. C. Galvão, A. G. N. Novaes, J. E. Souza de Cursi, and J. C. Souza. A multiplicatively-
weighted Voronoi diagram approach to logistics districting. Computers & Operations
Research, 33:93–114, 2006.

[16] R. S. Garfinkel and G. L. Nemhauser. Optimal Political Districting by Implicit Enu-
meration Techniques. Management Science, 16(8):495–508, 1970.

[17] D. Haugland, S. C. Ho, and G. Laporte. Designing delivery districts for the vehicle
routing problem with stochastic demands. European Journal of Operational Research,
180(3):997–1010, 2007.

[18] S. W. Hess and S. A. Samuels. Experiences with a Sales Districting Model: Criteria
and Implementation. Management Science, 18(4-part-ii):41–54, 1971.

[19] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan
Political Redistricting by Computer. Operations Research, 13(6):998–1006, 1965.

[20] A. I. Jarrah and J. F. Bard. Large-scale pickup and delivery work area design. Computers
& Operations Research, 39(12):3102–3118, 2012.
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[28] R. Z. Ŕıos-Mercado and H. J. Escalante. GRASP with path relinking for commercial
districting. Expert Systems with Applications, 44:102–113, 2016.



Bibliography 35

[29] R. Z. Ŕıos-Mercado and E. Fernández. A reactive GRASP for a commercial territory de-
sign problem with multiple balancing requirements. Computers & Operations Research,
36(3):755–776, 2009.
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Compactness is an important criterion in the context of districting. Nearly every approach

presented in Chapter 1.1 take compactness into account as a planning criterion for different

reasons. In the context of political districting the main motivation is the prevention of

gerrymandering. In many other applications such as sales districting or school districting

compact districts reduce the travel distances within the districts. Although compactness

seems to be a very intuitive concept a rigorous definition does not exist. But, why is it so

hard or even impossible to define a comprehensive compactness measure? First of all, it

is very hard to take all dimensions of compactness into account. Moreover, the definition

depends on the geometric representation of the basic areas. Finally, it is often subjective to

decide whether a district is more compact than another one or not.

This chapter presents a current review on compactness measures. It starts with a definition

of compactness, followed by an analysis of requirements on compactness measures. Then,

Section 3.3 presents and discusses a couple of existing measures. Afterwards, Section 3.4

evaluates these measures to their correlation with a visual test. Since most of the proposed

measures are based on polygonal representations, Section 3.5 extends these measures in order

to make them applicable to further representations of basic areas. The chapter concludes

with a short summary.

3.1 Definition

Before discussing requirements on compactness measures as well as proposed measures in

detail, this section states some compactness definitions given in the literature:

Young [37] cites ‘Webster’s Third New International Dictionary’ from 1961. It says that

“a compact figure is homogenous and located within a limited

definite space without straggling or rambling over a wide area”.

Niemi et al. [29] cite ‘The American Heritage Dictionary’. It defines a figure as compact

“if it is packed into a relatively small space

and if its parts are closely packed together”.

A current online dictionary, ‘TheFreeDictionary.com’ [35], defines compactness as

“closely and firmly united or packed together and

occupying little space compared with others of its type”.

Bringing these definitions and our intuition together, we conclude that

“a district is compact if it is nearly round-shaped or square,

undistorted, without holes, and has a smooth boundary”.
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3.2 Requirements

After defining compactness, this section summarizes and annotates some properties and

requirements on compactness measures proposed in the districting literature.

3.2.1 Use of Local and Global Compactness

First of all, local compactness and global compactness can be distinguished. If a compactness

measure is applied to a single district, the literature speaks of local compactness. In contrast

to this, if the measure is applied to a districting plan as a whole, the literature speaks of

global compactness.

Exclusively considering global compactness may allow some non-compact districts. For ex-

ample, minimizing the total length of districts’ boundaries allows some small non-compact

urban districts as long as the large rural districts are compact. See Section 3.3.3.1 for more

details. Exclusively considering local compactness can fail due to the fact that the reason

for a non-compact district can be an irregular boundary of the overall area. Young [37] pro-

poses that a compactness measure should apply for local compactness as well as for global

compactness. However, Horn et al. [21] contradict this conclusion. They remark that one

can obtain an evaluation for a districting plan by combining the evaluations of the single

districts, for example, by using the average or the minimum of them. But, they agree that

the other way around is not possible.

We also think that using global compactness exclusively is not suitable. However, it can

be useful to apply a global measure combined with other local measures. In our opinion,

combining the evaluations of the single districts is reasonable. However, in order to prevent

that a few non-compact districts are compensated by some compact districts, we suggest

that the worst evaluated district should be considered as part of the evaluation function in

any case.

3.2.2 Use of Multiple Measures

It is very hard or even impossible to define a measure that takes all required dimensions

of compactness into account. For example, a comprehensive compactness measure should

incorporate the dispersion of a district as well as its perimeter. Moreover, the achieved

results should be correlated with the visual impression whether this district is compact or

not. As described later, each measure published so far has some drawbacks. Thus, Niemi

et al. [29] advise that multiple measures should be used whenever possible.
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We agree that for comparing different solutions the usage of different measures is reasonable.

However, these measures should cover various dimensions of compactness. Mainly in the

context of political districting, this helps preventing gerrymandering since it is very difficult

to generate a manipulated districting plan that is not detected by at least one of the proposed

measures. Nevertheless, for designing a simple and efficient heuristic it may make sense that

the heuristic is restricted to use of only one measure.

3.2.3 Compare Plans

The best possible evaluation of a district or a solution, respectively, depends on the given

data set. For example, close to the boundary of the regarded overall area it can be hard or

even impossible to achieve a visually compact district. Thus, compactness should be used

to compare different solutions, but no single threshold should be used that defines whether

a district or a solution is compact or not. This is concluded by Young [37] as well as by

Niemi et al. [29]. Nevertheless, Horn et al. [21] see a justification for using a threshold in

order to prevent manipulations in the context of political districting. However, they remark

that in this case it must be guaranteed that a district does not fail at predefined shapes of

basic areas.

We agree with Young and Niemi et al.: An evaluation value is only an indicator and the

definition of a threshold is actually impossible since the transition from non-compact to

compact is fuzzy. Furthermore, the best reachable evaluation depends on the given data set.

Hence, in order to obtain a meaningful compactness evaluation it is necessary to compare a

result to other competitive solutions.

3.2.4 Evaluation Between 0 and 1

Niemi et al. [29] propose that evaluation values should vary between 0 and 1, with 1 being

most compact. They assume that this property simplifies the interpretation of compactness

evaluations.

We agree in principle that it is easier to get an indication whether a district or a solution,

respectively, is compact or not if the results are in a prescribed limited range. Nevertheless,

one must have in mind the problem described above that a determined evaluation has to be

seen in relation to its competitive solutions.
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3.2.5 Ignore Shapes of Basic Areas

The boundary and shape of a district depends on the shapes of the basic areas located on the

border to neighboring districts. Since these shapes are predefined, it is (nearly) impossible

to achieve visually compact districts in some cases. Hence, Young [37] suggests that these

shapes should be irrelevant. In contrast to this, Horn et al. [21] assume that these shapes

will not affect the ranking anyway if different districting plans are compared.

In our opinion this is only true for the boundary of the overall area. If there is an irregular

boundary between two neighboring basic areas assigned to the same district, there is at

most only a marginal effect on the compactness evaluation. On the other hand, if these

basic areas are assigned to different districts, this boundary is part of the boundaries of both

districts, and, hence, the effect is significantly higher. Thus, a districting plan that assigns all

basic areas sharing an irregular boundary to the same district is most likely evaluated more

compact than one that assigns them to different districts. This result can be quite desired

since it correlates with the visual impression. Nevertheless, we agree with Horn et al. that

predefined irregular boundaries can result in problems if a fixed threshold defines whether a

district is compact or not. In order to overcome this problem, Horn et al. propose to smooth

the boundaries of the basic areas. Section 3.3.2.1 will present an approach how this can be

done.

3.2.6 Do not Discriminate Rural or Urban Areas

In some real-world instances the regarded overall area contains rural areas as well as urban

areas. Usually, urban areas have a higher concentration of people, voters, customers, or

students than rural areas. Hence, in a districting plan urban districts are typically noticeably

smaller than rural districts. However, Young [37] proposes that a compactness measure

should neither prefer nor discriminate urban areas against rural areas. He concludes that a

measure should take the shape into account, but not the size of a district. In other words,

a measure should be independent of scale. Niemi et al. [29] support this conclusion.

We want to regard this point a bit more differentiated. In the context of political districting

a measure that is not independent of scale would either prefer a solution with nearly equally

sized districts containing urban and/or rural areas, or a partition into some large rural and

few small urban districts. If this decision should not be affected by the applied measure, this

measure should fulfill this requirement. However, in the context of sales districting the total

travel time of a salesperson within a district depends on the size of this district. Hence, in

this context compactness is a kind of proxy for travel times and consequently it might be

useful to abstain from this requirement.
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3.2.7 Use of Verifiable Data

Young [37] suggests that a compactness measure should be simple and require only data that

can be collected and verified easily. Horn et al. [21] complement that a measure should be

easy to understand.

We agree with Horn et al. since planners and decision-makers will more likely trust an

understandable measure. Furthermore, there is higher transparency if anyone can reproduce

the evaluation of a districting plan. For example, in the context of political districting this

can result in a higher acceptance of a current districting plan. In terms of required data we

agree that they should be easily collectable and verifiable. Fortunately, today the availability

of data is noticeably better than in 1988 when Young published his work. For example,

today, shapes of cities or distances between different locations can be derived comparatively

easily by using geographic information systems. Moreover, a lot of statistical data such as

population distributions are freely available on the Internet. Furthermore, current computers

can do complex calculations in a fraction of a second. Today’s situation is not comparable

to that in 1988. Calculations and used data can be noticeably more complex today, but for

proposing or applying a measure one should still have in mind the comprehensibility.
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3.3 Proposed Measures

So far this chapter has defined compactness and has pointed out requirements on compact-

ness. This section presents and discusses a couple of proposed measures. Many of these

measures that have been published in the 60s, 70s and 80s of the last century were set in the

context of political districting. Sometimes they are based on ideas published much earlier. It

also happened that similar or even identical approaches were published by different authors

independently of each other. Especially in the 80s and 90s, some authors have summarized

and categorized compactness measures published so far. In 1985, Maceachren [27] described

15 measures and categorized them into four categories:

1. Perimeter-area measures

2. Parameters of related circles

3. Direct comparison to standard shape

4. Dispersion of elements of area

Independently of this work, Young [37] published an overview over eight compactness mea-

sures in 1988. In 1990, Niemi et al. [29] continued this work by describing 24 measures and

categorizing them into four categories:

1. Dispersion measures

2. Perimeter measures

3. Population measures

4. Other measures

Finally, in 1993 Horn et al. [21] revised this work. Their overview comprises 32 measures

categorized in only two main categories, differentiating whether the population of the basic

areas and districts is incorporated or not. However, they have defined some sub-categories:

1. Shape-population measures

1.1. District population compared with population of compact figures

1.2. Other population measures

2. Shape-only measures

2.1. Area-only measures

2.2. Perimeter-only measures

2.3. Dispersion measures

2.4. Angular measures

2.5. Area-perimeter-quotients

2.6. Relative Moment of Inertia
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To the best of our knowledge, no comprehensive overview article has been published since

1993. Hence, in the following this section will summarize previous works and newer ap-

proaches. It uses the following notation

• area(F ): area of figure F

• per(F ): perimeter of figure F

• radius(C): radius of circle C

• sec(F ): smallest enclosing circle of figure F

• cla(F ): circle having a diameter equal to the longest axis of figure F

• lic(F ): largest inscribed circle of figure F

• serh(F ): smallest enclosing regular hexagon of figure F

• ch(F ): convex hull of figure F

• er(F ): enclosing rectangle of figure F

• le(R): length of rectangle R

• wi(R): width of rectangle R

Moreover, for purposes of simplification, Dg denotes a district as well as the shape of this

district. If the basic areas are represented by polygons, the shape of a district is straight-

forwardly defined as union of the corresponding polygons. Otherwise, it is more difficult to

define a district’s shape. Some approaches for this will be presented in Section 3.5.3.

The remainder of this section presents an overview of existing compactness measures, the

classification is inspired by the (sub)-categorizes proposed by Horn et al. [21].

3.3.1 Shape-Only-Dispersion Measures

A measure categorized as shape-only-dispersion measure mainly takes the dispersion of a

district into account. More precisely it focuses on the dispersion of the outer boundary,

whereas the dispersion within the district as well as the perimeter length are of minor

importance or not taken into account.

3.3.1.1 Reock-Test

The so-called Reock-Test is a local compactness measure proposed by Reock [31]. It calculates

the ratio of the area of a district and the area of its smallest enclosing circle, i.e.,

compreock(Dg) :=
area(Dg)

area(sec(Dg))
. (3.1)

Obviously, this ratio is always between 0 and 1. The best possible evaluation of 1 achieves

a circle since in this case both areas are equal. Moreover, the Reock-Test is independent of
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(a) Reock-Test (b) Gibbs-Test (c) Haggett-Test

Figure 3.1: Different measures for a meandering district looking like a snake

scale. The area of a district is easy to obtain if the basic areas are represented by polygons.

Otherwise, an approximation of the shape is necessary, a situation which will be discussed

later in more detail.

The Reock-Test considers the smallest enclosing circle and the area of a district, but not the

dispersion within this circle. Hence, a non-compact district that nearly fills out the enclosing

circle is evaluated favorably. Figure 3.1a illustrates an example: Here, the district’s shape

looks like a snake. Obviously, this shape is visually non-compact. However, it is evaluated

favorably in terms of the Reock-Test since it almost has the same area as its enclosing circle.

Nevertheless, Horn et al. [21] conclude that the Reock-Test is better in practice than it seems

to be in theory.

In addition, Niemi et al. [29] mention two variants of the Reock-Test:

• The first variant uses the smallest enclosing regular hexagon instead of the smallest

enclosing circle, i.e.,

compreock−hex(Dg) :=
area(Dg)

area(serh(Dg))
.

The idea behind this measure is the fact that it is possible to divide a plane completely

into equally sized regular hexagons, whereas it is not possible to do this with circles.

• The second variant uses the smallest enclosing convex figure instead of the smallest

enclosing circle. Note that this figure is the convex hull of the polygon points defining

the district. This implies

compreock−convex(Dg) :=
area(Dg)

area(ch(Dg))
. (3.2)
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(a) Reock-Test

(b) Variation of the Reock-Test us-
ing the smallest enclosing reg-
ular hexagon

(c) Variation of the Reock-Test us-
ing the convex hull

Figure 3.2: Variations of the Reock-Test applied to an long-shaped rectangular district

This approach has the following drawback: A convex figure is not necessarily visually

compact, for example, a long rectangle such as the one illustrated in Figure 3.2 is

rather non-compact. However, this test evaluates it with the highest score of 1 since

its shape corresponds to its convex hull, as Figure 3.2c shows. The original Reock-Test

(variation described above) evaluates this district as bad since the area of this rectangle

is considerably smaller than the area of its enclosing circle (hexagon), as Figure 3.2a

(3.2b) shows.

3.3.1.2 Gibbs-Test

Another approach to measure local compactness is the so-called Gibbs-Test described by

Gibbs [15]. However, Niemi et al. [29] mention that Horton [22] also described this approach

before. It determines the ratio of the area of the district and the area of a circle defined by

having a diameter equal to the longest axis of the district. It is feasible that this axis leaves

the district, i.e.,

compgibbs(Dg) =
area(Dg)

area(cla(Dg))
.

Hence, for shapes described by polygons determining the length of this axis is equivalent

to determining the largest distance between two polygon points. Again, the results are

always between 0 and 1, the best shape according to this measure is a circle, and this test is

independent of scale.

The evaluation of an equilateral triangle points out the difference between the Reock-Test

and the Gibbs-Test. Figure 3.3a depicts its smallest enclosing circle. Each edge is the longest

axis of this triangle. Hence, one possible circle having a diameter equal to the longest axis
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(a) Reock-Test (b) Gibbs-Test

Figure 3.3: Illustration of the difference between the Reock-Test and the Gibbs-Test

is the one illustrated in Figure 3.3b. This figure also shows that the achieved circle is not

necessarily an enclosing circle. Nevertheless, the area of the district is always smaller than

or equal to the area of this circle.

The Gibbs-Test fails at the same example as the Reock-Test: The snake-shaped district

shown in Figure 3.1b is evaluated very favorably. Nevertheless, Horn et al. [21] conclude

that the Gibbs-Test performs better in practice than expected by theoretical results.

3.3.1.3 Haggett-Test

The Haggett-Test is a local compactness measure introduced by Haggett [18]. It computes

the ratio of the radii of the largest inscribed circle and the smallest enclosing circle of a

district, i.e.,

comphaggett(Dg) :=
radius(lic(Dg))

radius(sec(Dg))
. (3.3)

This ratio is always between 0 and 1 and it is 1 if and only if both circles are identical, i.e.,

the district itself is also circular. The Haggett-Test is also independent of scale. In order to

apply the Haggett-Test to a district only its shape is necessary. In contrast to the Reock-Test

and the Gibbs-Test, the evaluation of the district illustrated in Figure 3.1c is poor since its

largest inscribed circle is very small in relation to its smallest enclosing circle.

However, the main problem of this test is that the largest inscribed circle is very hard to

determine. Moreover, an indentation on the boundary influences the result more than it

does for the tests described before. Unfortunately, an indentation on a district’s boundary

may be prescribed by the shape of a basic area.
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Frolov [13] lists a variant of the Haggett-Test. It computes the ratio of the area of the largest

inscribed circle and the area of the smallest enclosing circle, i.e.,

compfrolov(Dg) :=
area(lic(Dg))

area(sec(Dg))
.

Since the area of a circle is defined as the square of its radius multiplied with π, it can also

be stated as

compfrolov(Dg) =
radius(lic(Dg))

2

radius(sec(Dg))2
.

Hence, the values of compfrolov(·) and comphaggett(·) differ, whereas the ranking for a set of

districts is equal.

3.3.1.4 Length-Width-Test

Several authors propose Length-Width-Tests. All of them have in common that they firstly

determine an enclosing rectangle of the evaluated district, and after that measure the com-

pactness based on the length and width of this rectangle. The most compact rectangle

is a square since in this case length and width are equal. Hence, the closer the enclos-

ing rectangle is to a square, the better its compactness evaluation. The following overview

of Length-Width-Tests starts with tests which define compactness as a ratio of width and

length, i.e.,

complength−width−ratio(Dg) :=
wi(er(Dg))

le(er(Dg))
. (3.4)

These tests are called more specifically Length-Width-Ratio-Tests. The difference between

the following variations is the kind of enclosing rectangle:

a) Young [37] presents a test that determines the enclosing rectangle such that it touches

the district on all four sides and its ratio of length to width is maximal. In other words,

this test regards the most non-compact enclosing rectangle that touches the district

on all four sides.

b) Niemi et al. [29] mention the idea of defining the rectangle as the one having the

minimal perimeter.

c) Niemi et al. [29] list another approach and refer to Harris Jr. [19] as original source.

It defines the rectangle such that its length is defined as the length of the longest

axis of the district and its width is defined as the maximum length of the district

perpendicular to this longest axis.
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(a) Snake (b) Axis-parallel rectangle (c) Rotated rectangle

Figure 3.4: Applying various Length-Width-Tests to different shapes

d) Furthermore, Niemi et al. [29] cite an approach by Eig and Seitzinger [12]. Here,

the rectangle is defined as the smallest axis-parallel enclosing rectangle. In other

words: The edges of the rectangle have to be orientated in north-south and in east-

west direction.

Advantages of (all variants of) this test are the independence of scale and the usability for

all kind of representations. Actually, polygon points or end-points of lines are sufficient to

determine an enclosing rectangle. For variant a) and c) length and width are defined such

that the achieved result is between 0 and 1. The best possible evaluation is 1 achieved if

and only if the rectangle is a square, i.e., length and width are equal. For variant b) and d),

length and width can be defined such that length is greater than or equal to width. In this

case, the achieved result is also between 0 and 1.

However, these tests regard only the enclosing rectangle, but no spatial dispersion within this

rectangle. So, again the snake-shaped district illustrated in Figure 3.4a shows one weakness

of these tests since this visually non-compact shape is evaluated very favorably. Moreover,

for variant d) the evaluation depends on the orientation of the district, i.e., two equally

shaped districts are evaluated differently if they differ in their orientation. For example, the

evaluation of the axis-parallel rectangle depicted in Figure 3.4b is worse compared to that

of the rotated rectangle in Figure 3.4c since the enclosing rectangle for the latter is nearly

square.

It should also be mentioned that, for example, Papayanopoulos [30] proposes the usage of

Length-Width-Difference-Tests which determine the difference of length and width instead

of the ratio, i.e.,

complength−width−ratio(Dg) := le(er(Dg))− wi(er(Dg)) .
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(a) Snake (b) Original radial lines (c) Rotated radial lines

Figure 3.5: Applying the Boyce-Clark-Test to different shapes

Obviously, this approach can be used for all definitions of enclosing rectangles stated in a)

to d). However, it has further drawbacks: First, obtained values are not restricted to be in

the range between 0 and 1. Second, its evaluation is not independent of scale.

3.3.1.5 Boyce-Clark-Test

The so-called Boyce-Clark-Test, proposed by Boyce and Clark [4], utilizes a set of equally-

spaced radial lines from the center of gravity to the outer boundary in order to measure local

compactness. It is feasible that such a radial line leaves the district and returns to it. Note

that for polygons as well as for a set of points a closed formula to determine the center of

gravity exists. At first, this test determines for each line the percentage of its length over

the total length of all lines. Thereafter, it determines the absolute differences to the average

percentage and adds them up. Let ri,g be the length of the i-th radial line of district Dg

and n the total number of considered lines. Then, the Boyce-Clark-Test is defined by the

following equation:

compboyce−clark(Dg) :=
n
∑

i=1

| ri,g
n
∑

i=1

ri,g

· 100− 100

n
| .

For a compact shape such as a circle the lengths of all radial lines are equal, whereas for a

non-compact shape such as an elongated rectangle these lengths differ noticeably. Thus, a

result close to 0 indicates a compact district. Unfortunately, the results are not limited to be

between 0 and 1. Moreover, this measure is independent of scale, but unfortunately number

and orientation of the radial lines influence its results highly. Figure 3.5b and Figure 3.5c

show the same district, but the radial lines differ. The corresponding evaluation values

are 30 and 0, respectively. The same effect occurs for fixing the angles of the radial lines,

but rotating the district. In order to increase the probability that the two indentations
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are detected in this special case, or more generally spoken, to reduce the effect of different

evaluations for identical but rotated shapes, the number of considered radial lines can be

increased. A further drawback is that only the outer boundary is taken into account. Hence,

the snake illustrated in Figure 3.5a is once more evaluated well, because all radial lines have

approximately the same length.

3.3.1.6 Relative Moment of Inertia

Kaiser [23] proposes a local compactness measure that determines the second moment of

inertia of a district about its center of mass divided by the second moment of inertia of a

circle having the same area. This measure is called Relative Moment of Inertia and is defined

as follows:

comprmoi(Dg) :=

∫

Dg

∫

Dg
(x2 + y2)dxdy

area(Dg)2

2·π
. (3.5)

It is independent of scale, but unfortunately its results are not limited within a given range.

Moreover, Niemi et al. [29] criticize that the Relative Moment of Inertia is more difficult to

determine and to understand than other measures. Even Kaiser [23] remarks that in practice

Equation (3.5) has to be approximated by numerical integration.

However, for polygons the numerator can be stated as closed formulation. Let district Dg

be represented by a polygon. This polygon has the clockwise counted polygon vertices

(xg,1, yg,1), . . . , (xg,ng
, yg,ng

). Let (xg,ng+1, yg,ng+1):=(xg,1, yg,1), then, the polygon’s center of

gravity (xg,cog, yg,cog) results in

xg,cog :=
1

6 · area(Dg)

ng
∑

j=1

(xg,j + xg,j+1) · (xg,j · yg,j+1 − xg,j+1 · yg,j)

and

xg,cog :=
1

6 · area(Dg)

ng
∑

j=1

(yg,j + yg,j+1) · (xg,j · yg,j+1 − xg,j+1 · yg,j) .

Let (x
′

g,j, y
′

g,j) be the coordinates of the j-th polygon vertex relative to the polygon’s center

of gravity. In this case, the second moment of inertia of this district about its center of mass

results in

1

12
·

ng
∑

j=1

(x
′2

g,j + x
′

g,jx
′

g,j+1 + x
′2

g,j+1 + y
′2

g,j + y
′

g,j · y
′

g,j+1 + y
′2

g,j+1) · (y
′

g,j · x
′

g,j+1 − y
′

g,j+1 · x
′

g,j) .
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Horn et al. [21] conclude that this measure comes close to a theoretically perfect compactness

measure. However, as Section 3.4 will present in more detail, in practice this measure does

not outperform some other measures.

Note that Section 3.3.5.1 presents another measure that utilizes the moment of inertia. In

contrast to this approach it does not normalize the moment of inertia and it only considers

a set of discrete points within the district instead of the entire shape.

Finally, Horn et al. [21] lists two correlated measures:

• By using the reciprocal, i.e.,

comprmoi−inv(Dg) :=
1

comprmoi(Dg)
, (3.6)

the values are bounded in the range between 0 and 1.

• Horn et al. [21] refer to Blair and Biss [3] as source of the following version:

compblair−biss(Dg) :=
1

√

comprmoi(Dg)
.

However, they do not see an advantage compared to the version before.

3.3.2 Shape-Only-Area-Perimeter Measures

A measure classified as shape-only-area-perimeter measure tries to take into account two

dimensions of compactness: Dispersion and perimeter. However, these measures do not

really take dispersion into account, but the area. In order to be independent of scale, they

determine some kind of relation between perimeter and area.

3.3.2.1 Schwartzberg-Test

Schwartzberg [33] describes the first measure of this class. Thus, this compactness measure

is most commonly called Schwartzberg-Test, although Niemi et al. [29] quote Horton [22] as

additional origin. It determines the ratio of the perimeters of the district and of a circle

having equal area, i.e.,

compschwartzberg(Dg) :=
per(Dg)

2 ·
√

π · area(Dg)
. (3.7)

This measure is based on the idea that for a given area, regarding all figures having this

area, a circle has the smallest perimeter.
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(a) Non-smooth boundary (b) Smooth boundary

Figure 3.6: Illustration of the Schwartzberg-Test

The Schwartzberg-Test is independent of scale. Moreover, the required data, precisely

perimeter and area, are easy to determine if the basic areas are represented by polygons. An

evaluation value obtained for applying the Schwartzberg-Test is always greater than or equal

to 1, where 1 is the best possible evaluation, reached if and only if the evaluated district is

circular. In order to transform the obtained result into the 0 to 1 range we suggest using

the reciprocal value, i.e.,

compschwartzberg−inv(Dg) :=
2 ·
√

π · area(Dg)

per(Dg)
. (3.8)

The most noticeable drawback is the fact that the Schwartzberg-Test focuses on the perime-

ter. A nearly-quadratic district having a winding non-smooth boundary evaluates to a poor

result. For example, Figure 3.6a depicts a district having an evaluation value of 1.77 (recip-

rocal value of 0.56). In contrast to this, Figure 3.6b depicts a quadratic district having an

evaluation value of 1.13 (reciprocal value of 0.88).

However, cities or zip-code areas often have non-smooth boundaries. In order to overcome

this problem Schwartzberg [33] recommends using an adjusted boundary. He proposes to

take the constituent units into account, e.g., basic areas, forming the districts and to identify

“trijunctions” on them. These are points on the boundaries of the districts where three or

more constituent units of all districts meet. Finally, he defines an adjusted boundary by

connecting these trijunctions by straight lines. Figure 3.7 illustrates this approach exem-

plarily. Take a look on the gray-colored district in Figure 3.7a. Figure 3.7b highlights the

corresponding trijunctions. Moreover, the dashed line defines the obtained adjusted bound-

ary. On the one hand, by applying this adjustment the prescribed shapes of the basic areas

become more irrelevant. On the other hand, this approach usually reduces the lengths of the
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(a) Original boundary

b

bb
b

b b
b

b

bb

(b) Adjusted boundary

Figure 3.7: Approach to determine an adjusted parameter according to [33]

boundaries. Note that other measures can be applied to such an adjusted boundary as well.

Especially, the Taylor-Test defined in Section 3.3.4.1 explicitly refers to this adjustment.

Besides the Schwartzberg-Test defined in Equation (3.7), Horn et al. [21] list three similar

measures:

• compschwartzberg−inv−adv(Dg) := 1− 2·
√

π·area(Dg)

per(Dg)

• compschwartzberg−per(Dg) :=
100·per(Dg)

2·
√

π·area(Dg)

• compgrofman(Dg) :=
per(Dg)√
area(Dg)

The first one is simply the reversion of the reciprocal values of the Schwartzberg-Test in the

range between 0 and 1, such that 0 becomes the best evaluation. The second measure states

the ratio of the perimeters as percentage value. The third one multiplies the result of the

Schwartzberg-Test with 2 · √π. Horn et al. [21] refer to Grofman [17] as origin of the latter.

Hence, the listed variations are all transformations of the original Schwartzberg-Test stated

in Equation (3.7).

3.3.2.2 Cox-Test

Cox [9] suggests determining the ratio of the district’s area and the area of a circle having

an equal perimeter. Hence, the Cox-Test results in

compcox(Dg) :=
4 · π · area(Dg)

per(Dg)2
. (3.9)

For a given perimeter a circle is the figure having the largest possible area. Thus, the

obtained results are always between 0 and 1 and the best possible evaluation of 1 is achieved
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by a circle. The Cox-Test is also independent of scale. Analogously to the Schwartzberg-

Test, a district shaped such as the one in Figure 3.6a is poorly evaluated since it has a

very long boundary. Of course, the same approach for smoothing a boundary as for the

Schwartzberg-Test can be applied.

Comparing Equations (3.7) and (3.9) one can observe a relation between the Schwartzberg-

Test and the Cox-Test, because compcox(Dg) =
1

compschwartzberg(Dg)2
holds.

Additionally, Horn et al. [21] list two similar measures:

• compcox−var1(Dg) :=
area(Dg)

per(Dg)2

• compcox−per(Dg) :=
400·π·area(Dg)

per(Dg)2

The first variant divides the evaluation value of the Cox-Test by 4 ·π. The second one states

the ratio of the areas as a percentage value. Hence, both variants are correlated with the

original Cox-Test introduced in Equation (3.9).

3.3.3 Shape-Only-Perimeter Measures

A shape-only-perimeter measure focuses on the districts’ perimeters. In contrast to the

approaches described before, it takes the entire districting plan into account. To the best of

our knowledge, there are only two proposed measures falling under this category, the second

measure can be interpreted as a variation of the first one.

3.3.3.1 Perimeter-Test

The Perimeter-Test is a global compactness measure that determines the total boundary

length of all districts:

compperimeter(S) :=

p
∑

g=1

per(Dg) .

According to Young [37] several authors mention and recommend this measure. The idea

behind this approach is that a short total boundary length indicates a compact districting

plan.

Unfortunately, this is not always the case. On the one hand, a large total boundary length

can be caused by prescribed irregular boundaries of basic areas. In this case, the evaluation

is noticeably better if these boundaries are not part of the districts’ boundaries, i.e., all basic

areas sharing such a border are assigned to the same district. On the other hand, a non-

compact urban district can be compensated by some compact rural districts having smooth
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(a) 4 compact districts containing rural and
urban parts

(b) 1 small non-compact urban district and
3 districts containing mainly rural parts

Figure 3.8: Dividing an overall area having a central urban region into 4 districts

boundaries. Figure 3.8 illustrates an example: The solution depicted in Figure 3.8b has a

smaller total boundary length than the one depicted in Figure 3.8a, even though Figure 3.8a

is visually more compact than Figure 3.8b.

The boundary length or perimeter, respectively, of a district is easy to compute if the basic

areas are represented by polygons. Unfortunately, the Perimeter-Test is not independent of

scale and its result is positive, but unlimited. Nevertheless, it can be reasonable to apply

this measure in combination with a local compactness measure.

3.3.3.2 Bozkaya-Test

Bozkaya et al. [5] apply a further measure that can be seen as an enhancement of the

Perimeter-Test, i.e.,

compbozkaya(S) :=

p
∑

g=1

per(Dg)− per(BA)

2 · per(BA)
,

where per(BA) is the perimeter of the regarded overall area. Hence, the Bozkaya-Test does

not determine the total boundary length. It restricts itself to the common boundaries of

two districts and ignores the outer boundary of the overall area. Since the authors use this

global compactness as part of an additively weighted multi-criteria function, they normalize

this length by the length of the outer boundary of the overall area.

Hence, this variation is independent of scale now. Unfortunately, this normalization does

not necessarily limit the results to be between 0 and 1. Moreover, the problem that a shorter

boundary does not necessarily indicate a more compact solution is still present. Nevertheless,

due to the combination with other evaluation functions, mainly with a local compactness

measure, this problem does not occur as strongly as before.
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Figure 3.9: Illustration of the Taylor-Test

3.3.4 Convexity Measures

Convexity measures address the question of how convex a district is. This class consists of

“Angular measures”, a subcategory in the classification of Horn et al. [21], as well as of the

comparably new “Bizarreness Measure”. These measures have in common that they focus

on convexity, whereas dispersion and perimeter are of minor importance.

3.3.4.1 Taylor-Test

Taylor [34] proposes a measure that uses the number of reflexive and non-reflexive interior

angles of a district’s shape. An angle is reflexive if it has more than 180 degrees. Taylor [34]

states that each indentation of a boundary has at least one reflexive angle. He concludes

that a small number of reflexive angles indicates a compact district. Let Rg be the set of

reflexive angles and Ng be the set of non-reflexive angles for district Dg. Then, the original

Taylor-Test determines the difference of the numbers of non-reflexive and reflexive angles,

normalized by the total number of angles, i.e.,

comptaylor−original(Dg) :=
|Ng| − |Rg|
|Ng|+ |Rg|

.

Due to the normalization its result is always smaller than or equal to 1. Taylor [34] states

wrongly that it is always greater than or equal to 0. Figure 3.9a illustrates a shape having

four reflexive (illustrated by squares) and three non-reflexive (illustrated by points) angles

that yields an evaluation value of −1
7
. In Beth and Taylor [2] the following approach corrects

this error: For each angle α it introduces an additional weight w(α) defined as total length

of both sides defining the angle. Instead of the number of reflexive and non-reflexive angles
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it uses the sum of the corresponding weights, i.e.,

comptaylor−corrected(Dg) :=

∑

α∈Ng

w(α)− ∑

α∈Rg

w(α)

∑

α∈Ng

w(α) +
∑

α∈Rg

w(α)
.

Both equations are independent of scale and their results are 1 if and only if no reflexive

angle exists, i.e., if the shape is convex. This demonstrates the drawback of this approach:

It is more a convexity measure than a compactness measure. Each district having a convex

shape, e.g., the elongated rectangle depicted in Figure 3.9b, evaluates to the optimal value

of 1. Moreover, Figure 3.9c shows a nearly square shape having four reflexive and four non-

reflexive angles, where all eight sides have equal length. Hence, this shape evaluates to 0,

i.e., according to the Taylor-Test this shape is totally non-compact.

Since a prescribed irregular boundary has many angles that may distort the evaluation, Tay-

lor [34] proposes applying the idea of Schwartzberg [33] in order to smooth the boundary.

3.3.4.2 Bizarreness-Test

Chambers and Miller [6] propose a “measure of Bizarreness”. This comparably new local

compactness measure has the goal of determining the “convexity” of a district. The authors

argue that bizarrely shaped districts such as the famous gerrymander (cf. Section 1.1.1)

are highly non-convex. They acknowledge that an elongated convex district is not detected

as non-compact by their measure, but this should be evaluated by another measure. The

Bizarreness-Test calculates the probability that a district contains the whole shortest path

between two randomly selected points within this district. Let x and y be two arbitrary points

of district Dg. Moreover, let sp(x, y,Dg) be the length of the shortest path between x and

y within district Dg and sp(x, y, BA) be the length of the shortest path within the regarded

overall area. The following definition states a discrete version using one representative point

bi for each basic area i:

compbizarreness(Dg) :=

∑

i∈Bg

∑

j∈Bg

χ(
sp(bi,bj ,BA)

sp(bi,bj ,Dg)
)

∑

i∈Bg

∑

j∈Bg

1
,

with χ(z) = 1 iff z = 1 and 0 otherwise. In other words, for a district Dg it determines the

ratio of pairs of its basic areas with the shortest path between them lying completely within

this district. In addition, Chambers and Miller [6] propose a continuous version, but in this

case an integral has to be computed.
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b b b b

(a) Using Euclidean distances (b) Nearly squared shape

b b

(c) Using road distances

Figure 3.10: Illustration of the Bizarreness-Test

Figure 3.10a shows a partition of an overall area into three districts. Both districts located

in the south are equally shaped. Nevertheless, the one located in the west is better evaluated

than the other. For each pair of points of the first one the shortest path within this district

is always equal to the shortest paths within the overall area. Hence, in a wider sense this

district is “convex” since the non-convexity is caused by the outer boundary of the overall

area. In contrast to this, there are pairs of points of the second district having a shortest path

that is not located completely within this district. For example, the dashed line illustrates

the shortest path within the overall area between the depicted points. This path leaves the

district. In addition, the dotted line illustrates the shortest path between them within the

district.

This measure is independent of scale and its results are always between 0 and 1. In contrast

to the Taylor-Test a nearly-squared district such as the one depicted in Figure 3.10b is well

evaluated. However, an optically non-compact district having an elongated convex shape is

evaluated very favorably again.

The non-convexity of a district can be caused by an irregular boundary between two basic

areas that are assigned to different districts. This case is not covered by the proposed

measure. Thus, Chambers and Miller [7] introduce an extension where road distances instead

of Euclidean distances are used to determine the shortest path between two basic areas.

That reduces the negative effect of irregular boundaries caused by obstacles such as rivers

or mountains on compactness evaluation. Figure 3.10c shows an example where a boundary

is prescribed by a river. Concerning the two depicted points, the dashed line illustrates

the shortest road path, whereas the dotted line illustrates the shortest Euclidean path.

The shortest road path is completely located within the corresponding district, whereas the

Euclidean path partly leaves the district. However, the usage of road distances reduces
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the comprehensibility of the obtained results. Moreover, the correlation between visual

impression and evaluation can decrease.

In addition, Chambers and Miller [6] propose a version that incorporates the activity mea-

sures of the basic areas as well:

compbizarreness−weighted(Dg) :=

∑

i∈Bg

∑

j∈Bg

wi · wj · χ( sp(bi,bj ,B)

sp(bi,bj ,Dg)
)

∑

i∈Bg

∑

j∈Bg

wi · wj

.

Figuratively spoken, it determines the probability that a shortest path between two units of

activity of the same district is completely located within this district. A unit of activity can

be, for instance, a single voter in the context of political districting.

3.3.5 Distance-Based Measures

Distance-based measures focus on the dispersion of basic areas within a district, but they

do not take the exact shape into account. The main idea is to add up distances between

basic areas or from these basic areas to a specified location, where smaller distances indicate

more compact districts. These distances can either be used unweighted or weighted by the

corresponding activity measures. Moreover, distance-based measures can be defined as local

compactness measures as well as global compactness measures.

3.3.5.1 (Weighted) Moment of Inertia

The first distance-based measure is based on distances between basic areas and centers. For

each district this measure adds up the squared distances between all assigned basic areas

and its center weighted by the basic areas’ activity measures, i.e.,

compwmoi(Dg) :=
∑

i∈Bg

wi · d2(bi, ceng) . (3.10)

The center is chosen such that compwmoi(Dg) is minimized. Thus, it corresponds to the

center of gravity, given by

ceng :=







∑

i∈Bg

wi · xi

∑

i∈Bg

wi

,

∑

i∈Bg

wi · yi
∑

i∈Bg

wi






. (3.11)
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The global compactness of a districting plan is defined straightforwardly as the sum of the

compactness values of its districts, i.e.,

compwmoi(S) :=

p
∑

g=1

compwmoi(Dg) .

The origin of this measure is in Weaver and Hess [36]. The authors use it as the objective

function in the first proposed integer program for districting problems. It is also known as

the Moment of Inertia or Population Moment of Inertia in the literature [21, 29, 37]. It is

directly applicable to different kind of geometric representations since only a representative

point for each basic area is taken into consideration. For example, for polygons this can be

the geographical center, or for lines the middle-point. Another advantage is that the shapes

of the assigned basic areas are irrelevant.

However, this measure also has some weaknesses. First of all, it is not independent of scale.

Actually, the size of a district strongly affects the obtained result. Moreover, its result is

not limited to be in the range between 0 and 1. Recall that the Relative Moment of Inertia

described in Section 3.3.1.6 tries to overcome these drawbacks. However, it regards the total

area instead of discrete points.

Additionally, setting wi to 1 for all basic areas defines an unweighted version. In this case,

the center results in

cenun
g :=







∑

i∈Bg

xi

|Bg|
,

∑

i∈Bg

yi

|Bg|






(3.12)

and the compactness measure leads to

compmoi(Dg) :=
∑

i∈Bg

d2(bi, cen
un
g ) . (3.13)

In order to distinguish between these two variants, from now on the term Weighted Moment

of Inertia denotes the measure defined in Equation (3.10) and Moment of Inertia denotes

the one defined in Equation (3.13).

In addition, there is a similar measure that normalizes the obtained result such that it is

between 0 and 1, called Normalized Moment of Inertia. However, this test is more a measure

of the activity distribution within a district than a distance-based measure. Hence, it is listed

as activity-based-Measure below.
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3.3.5.2 (Weighted) Pairwise Distances

Papayanopoulos [30] also proposes a distance-based measure. For each district this measure

determines the sum of distances between all pairs of assigned basic areas, weighted by the

corresponding activity measure, i.e.,

compwpd(Dg) :=
∑

i∈Bg

∑

j∈Bg

wi · di,j . (3.14)

Hence, this measure is called Weighted Pairwise Distances. Analogously to the Moment of

Inertia, the sum of the compactness values of all districts defines the compactness measure

of a districting plan, i.e.,

compwpd(S) :=

p
∑

g=1

compwpd(Dg) .

The advantages and disadvantages are similar to the ones of the Moment of Inertia. It is

applicable to all types of representations of basic areas and the shapes of the basic areas are

irrelevant. However, this measure is not independent of scale and its result is not necessarily

between 0 and 1.

Finally, this measure can be varied as well:

• The first variation sets wi to 1 for all basic areas, i.e., it defines an unweighted version,

called Pairwise Distances. It leads to

comppd(Dg) :=
∑

i∈Bg

∑

j∈Bg

di,j . (3.15)

• Another variation, called Squared Pairwise Distances, is derived by an approach of

Fryer Jr. and Holden [14]. It results in

comppd−squared(Dg) :=
∑

i∈Bg

∑

j∈Bg

d2i,j

and

comppd−squared(S) :=

p
∑

g=1

comppd−squared(Dg) .

Note that this variation is correlated with the Moment of Inertia; the proof is given by

Fryer Jr. and Holden [14].
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Figure 3.11: Maximum Distance applied to different districts

In fact, the authors introduce a Relative Proximity Index, that is the ratio between the

Squared Pairwise Distances of S and S∗, where S∗ is the optimal solution in terms of

the Squared Pairwise Distances. Unfortunately, this index is greater than or equal to

1. Moreover, finding the optimal solution in terms of the Squared Pairwise Distances

is NP-hard [14]. Thus, the authors use an approximation of the optimal solution.

Consequently, it is more or less a comparison with the “best known solution” instead

of a comparison with the optimal solution.

3.3.5.3 Maximum Distance

Ŕıos-Mercado and Fernández [32] present another measure that can be used as objective

function of an integer program: The Maximum Distance between two basic areas of the

same district. For a single district this measure is defined as follows:

compmd(Dg) := max
i,j∈Bg

di,j . (3.16)

Consequently, the compactness of a solution is defined as maximum compactness of one

single district:

compmd(S) := max
g=1,...,p

compmd(Dg) .

This measure has the same advantages as the other distance-based measures. It is directly

applicable to different representation types of basic areas. Moreover, it does not take shapes

of basic areas into account.

The drawbacks are also similar. It is not independent of scale and the obtained result is not

bounded in a specified range. Moreover, this measure takes only two extremal basic areas

into account, and does not consider the dispersion of the other basic areas. Figure 3.11
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illustrates this issue. The plotted point within each basic area is its geographic center. The

two points defining the maximum distance are highlighted by squares. Although the district

illustrated in Figure 3.11b looks more compact than the one depicted in Figure 3.11a, both

districts are measured equally since for both districts the maximum distance between two of

its assigned basic areas are equal.

3.3.6 Activity-Based Measures

Niemi et al. [29] argue that there is a difference between geographic dispersion and population

dispersion, and, hence, it may make sense to regard the dispersion of the population within

a district. The argumentation of Niemi et al. [29] is focused on political districting. In

order to be more general the term activity substitutes the term population. So, activity-

based measures have in common that they take activities into account. Thus, the weighted

versions of distance-based measures described above as well as the weighted version of the

Bizarreness-Test can also be categorized as activity-based measures.

3.3.6.1 Hofeller-Grofman-Test

Hofeller and Grofman [20] propose a measure that has some similarities to the Reock-Test.

It computes the ratio of the activities of the district and of the smallest enclosing circle.

Hence, the Hofeller-Grofman-Test results in

comphofeller(Dg) :=
w(Bg)

w(sec(Dg))
.

Obviously, this ratio is always between 0 and 1. A district has an evaluation value of 1 if

and only if the total existing activity of the enclosing circle is assigned to this district, in

other words, if there is no basic area that is located within the enclosing circle of a district,

but not assigned to this district. Another advantage of this measure is the independence of

scale. Moreover, this measure is applicable even if basic areas are represented by points or

lines.

One problem can be the computation of the enclosing circle’s activity. In general, the activity

for each basic area is given, but its distribution within this basic area is not necessarily given

and may hard to derive from the given data. Unfortunately, the Hofeller-Grofman-Test needs

activities for parts of basic areas. Actually, for point representations this problem does not

occur since a point is either located completely within or completely outside the enclosing

circle.
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(a) Total activity of the enclosing
circle is located within the dis-
trict

(b) Activity outside the district is
concentrated at the border of
the enclosing circle

(c) Activity outside the district is
meandering within the enclos-
ing circle

Figure 3.12: Illustration of the Hofeller-Grofman-Test

Compared to the Reock-Test, the Hofeller-Grofman-Test has the advantage that it consid-

ers areas located within the enclosing circle, but not within the district, more differenti-

ated. For each example depicted in Figure 3.12 the activity is equally distributed within

the gray-colored area, whereas no activity exists on the white-colored area. The Hofeller-

Grofman-Test evaluates the district depicted in Figure 3.12a as perfectly compact since the

total activity of the enclosing circle is assigned to this district. In contrast to this, the

district illustrated in Figure 3.12b is worse evaluated compared to the prior since a part of

the enclosing circle’s activity is not assigned to it. The Reock-Test does not differentiate

Figure 3.12a and Figure 3.12b since their respective ratio of district’s area and enclosing

circle’s area are identical.

The Hofeller-Grofman-Test considers only the proportion of activity within the enclosing

circle that is not assigned to the district, but not its distribution within this circle. Thus, it

makes no difference if this activity is located concentrated at the border of the circle, such

as in the example shown in Figure 3.12b, or if it meanders through this circle such as in

Figure 3.12c.

In addition, Hofeller and Grofman [20] present a variation of this measure that uses the

convex hull instead of the enclosing circle, i.e.,

comphofeller−convex(Dg) =
w(Dg)

w(ch(Dg))
.

However, the problem of this approach is again the fact, that an elongated rectangular

district is evaluated as perfectly compact.
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Figure 3.13: Illustration of the Normalized Moment of Inertia

3.3.6.2 Normalized Moment of Inertia

Horn et al. [21] list another measure, defined by

compnmoi(Dg) :=

∑

i∈Bg

wi · d2(bi, ceng)

∑

i∈Bg

wi · d2(bi, cenun
g )

.

Hence, it determines the ratio between the Weighted Moment of Inertia (cf. Section 3.3.5.1)

and the weighted sum of squared distances to the unweighted center of gravity defined in

Equation (3.12). Due to the definition of compwmoi(Dg) (cf. Equation (3.10)) and ceng

(cf. Equation (3.11)), respectively, this measure results in a value smaller than or equal to

1. In other words, this measure normalizes the Weighted Moment of Inertia such that its

result falls between 0 and 1. Thus, it is called Normalized Moment of Inertia. Moreover, the

measure becomes independent of scale by applying this normalization.

Unfortunately, a district Dg is compact in terms of this measure if ceng and cenun
g , defined

in Equations (3.11) and (3.12), respectively, are close to each other, independently of the

shape of the district.

Figure 3.13 illustrates some examples. For each basic area it illustrates the representative

point and states its activity. For a district Dg it illustrates ceng as filled black square and

cenun
g as white square. If the activity is more or less uniformly distributed within a district,

this district is well evaluated. Figure 3.13a shows an example where ceng and cenun
g are even

identical, i.e., this district is evaluated as perfectly compact. Since ceng and cenun
g are also

close to each other for the district illustrated in Figure 3.13b, the obtained evaluation value

is 0.96. That means, the district is well evaluated, although it is optically not compact and

its activity is concentrated on opposite corners. In contrast to this, the district depicted

in Figure 3.13c is optically compact. However, its activity is concentrated in one corner.
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Therefore, its evaluation value is only 0.89, that means according to this test it is less

compact than the district regarded before.

In conclusion, this test is more a measure of activity (population) distribution within a

district than a compactness measure.
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3.4 Evaluation

After presenting a couple of proposed measures, this section analyzes their suitability in

theory and practice. First of all, Table 3.1 summarizes the properties of these measures

according to the requirements discussed in Section 3.2. Since these results are mainly based

on theoretical considerations and on constructed counterexamples, this section studies how

these measures work in practice. We have designed our evaluation as a Visual-Test followed

by a correlation analysis between this Visual-Test and a few selected measures. These results

are based on the Bachelor thesis of Ludwig [26]. In addition, the results presented here

contain some more measures, describe some aspects in more detail, and insert some further

analysis. The data are the 70 electoral districts for the Landtag of Baden-Württemberg in

2011. Figure 3.14 shows these districts.

Figure 3.14: Electoral districts of Baden-Württemberg in 2011 c©Statistisches Landesamt
Baden-Württemberg, Stuttgart, 2011
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measure
local or 0 to 1 ignore shapes independent verifiable data

global range of basic areas of scale and comprehensibility

Reock-Test local yes no yes yes

Gibbs-Test local yes no yes yes

Haggett-Test local yes no yes average1

Length-Width-
local yes no yes yes

Ratio-Test

Length-Width-
local no no no yes

Difference-Test

Boyce-Clark-Test local no no yes yes

Relative Moment
local no no yes average2

of Inertia

Schwartzberg-Test local no3 yes4 yes yes

Cox-Test local yes yes4 yes yes

Perimeter-Test global no no no yes

Bozkaya-Test global no no yes yes

Taylor-Test (original) local no yes4 yes vey

Taylor-Test (corrected) local yes yes4 yes yes

Bizarreness-Test local yes average5,6 yes yes7

(Weighted) Moment
both no yes no yes

of Inertia

(Weighted) Pairwise
both no yes no yes

Distances

Maximum Distance both no yes no yes

Hofeller-Grofman-Test local yes average5 yes average8

(Normalized) Moment
local yes yes yes yes

of Inertia

1 Largest inscribed circle hard to compute

2 In general an integral must be calculated; approach might be non-intuitive

3 Yes if the reciprocal value is used

4 If adjusted perimeter is used

5 Shape of overall area is ignored

6 If road distances are used, shapes are more likely to be ignored

7 Use of road distances reduces the comprehensibility

8 Activities of parts of basic areas may be necessary

Table 3.1: Properties of proposed compactness measures
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3.4.1 Visual-Test

We have conducted a survey where the participants should evaluate these electoral districts

by German school marks between 1 (best) and 6 (worst). In total 185 persons have partic-

ipated in this survey [26]. For each district our Visual-Test defines the evaluation value as

the average mark by these participants. The first column of Table 3.2 states the obtained

results.

Moreover, Table 3.2 presents the results for applying a few selected compactness measures

to the electoral districts as well, namely: The Reock-Test (cf. Equation (3.1)), a variation of

the Reock-Test using the convex hull as reference object (cf. Equation (3.2)), the Haggett-

Test (cf. Equation (3.3)), the Length-Width-Ratio-Test applied to the smallest axis-parallel

enclosing rectangle (cf. Equation (3.4)), a variation of the Relative Moment of Inertia using

the reciprocal value (cf. Equation (3.6)), a variation of the Schwartzberg-Test using the

reciprocal value (cf. Equation (3.8)), and the Cox-Test (cf. Equation (3.9)). In order to

obtain the necessary data we have used ArcGIS 101.

As additional information, for each measure the bottom rows of Table 3.2 state the minimum,

maximum and average evaluation value over all districts. This points out that the ranges

of the evaluations differ noticeably. For example, the variation of the Reock-Test evaluates

all districts in the comparatively small range between 0.55 and 0.88. In contrast to this,

the Relative Moment of Inertia results lie in the range between 0.35 and 0.96. Moreover,

the best evaluated district according to the Cox-Test has an evaluation value of 0.63. The

Cox-Test evaluates the worst district by 0.15. The obtained results confirm again that it is

very hard to define a threshold for whether a district is compact or not.

A result obtained for applying a compactness measure to a district should be correlated with

our visual impression whether this district is compact or not. Hence, the results of a suitable

compactness measure should be correlated with the results of this Visual-Test.

1ESRIr, www.esri.com



72 3 A Current Review on Compactness

d
is
tr
ic
t

V
is
u
al
-T
es
t

R
eo
ck
-T
es
t
(c
ir
cl
e)

R
eo
ck
-T
es
t
(c
on

ve
x
h
u
ll
)

H
ag
ge
tt
-T
es
t

L
en

gt
h
-W

id
th
-T
es
t

R
el
at
iv
e
M
om

en
t
of

In
er
ti
a

S
ch
w
ar
tz
b
er
g-
T
es
t

C
ox
-T
es
t

1 2.9 0.48 0.71 0.47 0.97 0.80 0.64 0.42

2 3.6 0.35 0.85 0.36 0.55 0.59 0.60 0.36

3 3.9 0.33 0.61 0.27 0.79 0.65 0.57 0.32

4 3.4 0.50 0.75 0.49 1.00 0.78 0.72 0.51

5 3.4 0.55 0.77 0.52 0.87 0.89 0.62 0.39

6 5.2 0.27 0.55 0.21 0.61 0.38 0.42 0.18

7 3.3 0.45 0.78 0.45 0.96 0.76 0.64 0.41

8 3.9 0.40 0.70 0.37 0.71 0.65 0.55 0.30

9 4.0 0.31 0.74 0.26 0.76 0.60 0.58 0.33

10 4.0 0.44 0.73 0.41 0.60 0.74 0.55 0.30

11 3.6 0.43 0.70 0.37 0.79 0.76 0.53 0.28

12 2.9 0.45 0.78 0.37 0.64 0.88 0.67 0.44

13 4.5 0.33 0.67 0.34 0.57 0.48 0.49 0.24

14 3.4 0.41 0.69 0.39 0.65 0.86 0.52 0.27

15 3.4 0.46 0.70 0.45 0.97 0.74 0.66 0.43

16 4.2 0.42 0.66 0.33 0.76 0.69 0.51 0.26

17 4.3 0.47 0.73 0.46 0.87 0.73 0.50 0.25

18 2.7 0.48 0.81 0.48 0.84 0.89 0.72 0.52

19 4.6 0.33 0.57 0.31 0.70 0.51 0.45 0.20

20 4.2 0.44 0.64 0.39 0.81 0.69 0.49 0.24

21 3.4 0.39 0.76 0.43 0.64 0.75 0.52 0.27

22 3.5 0.44 0.74 0.37 0.83 0.75 0.50 0.25

23 4.1 0.30 0.69 0.28 0.75 0.61 0.46 0.21

24 4.0 0.44 0.71 0.44 0.74 0.78 0.56 0.31

25 3.8 0.50 0.70 0.42 0.85 0.83 0.53 0.29

26 2.8 0.58 0.80 0.60 0.89 0.93 0.63 0.40

27 2.8 0.54 0.81 0.51 0.87 0.84 0.71 0.51

28 2.8 0.40 0.83 0.47 0.99 0.81 0.74 0.55

29 3.9 0.44 0.70 0.35 0.78 0.69 0.61 0.37

30 4.7 0.36 0.63 0.27 0.60 0.49 0.49 0.24

31 4.3 0.43 0.64 0.39 0.99 0.69 0.56 0.31

32 4.5 0.33 0.64 0.25 0.63 0.48 0.51 0.26

33 2.4 0.67 0.86 0.59 0.90 0.92 0.76 0.59

34 3.1 0.57 0.76 0.52 0.73 0.83 0.63 0.40

35 2.9 0.49 0.85 0.48 0.96 0.77 0.78 0.62

36 3.5 0.50 0.66 0.44 0.99 0.83 0.66 0.44

37 2.2 0.68 0.88 0.71 0.90 0.96 0.80 0.63

38 3.3 0.50 0.77 0.44 0.90 0.81 0.60 0.36
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39 3.6 0.47 0.70 0.48 0.76 0.72 0.65 0.42

40 3.1 0.48 0.79 0.47 0.76 0.82 0.67 0.45

41 4.8 0.24 0.62 0.28 0.66 0.61 0.42 0.18

42 3.0 0.56 0.73 0.48 0.89 0.88 0.59 0.35

43 3.0 0.46 0.77 0.52 0.84 0.88 0.60 0.36

44 5.0 0.40 0.61 0.30 0.92 0.60 0.44 0.20

45 3.5 0.48 0.77 0.47 0.91 0.84 0.60 0.36

46 3.4 0.51 0.78 0.46 0.94 0.84 0.58 0.33

47 2.6 0.59 0.80 0.57 0.90 0.87 0.73 0.53

48 4.4 0.34 0.71 0.36 0.53 0.59 0.56 0.31

49 3.1 0.41 0.77 0.37 0.59 0.68 0.62 0.39

50 4.1 0.40 0.69 0.35 0.64 0.56 0.55 0.30

51 4.3 0.44 0.69 0.33 0.77 0.71 0.58 0.34

52 2.7 0.55 0.80 0.48 0.91 0.86 0.71 0.51

53 3.7 0.56 0.70 0.43 0.92 0.83 0.56 0.32

54 4.0 0.51 0.75 0.43 0.84 0.79 0.53 0.28

55 4.4 0.48 0.70 0.41 0.89 0.69 0.50 0.25

56 5.0 0.33 0.63 0.20 0.65 0.52 0.44 0.19

57 3.9 0.43 0.73 0.38 0.75 0.74 0.49 0.24

58 4.5 0.38 0.66 0.37 0.99 0.58 0.54 0.29

59 5.0 0.20 0.56 0.21 0.46 0.35 0.38 0.15

60 3.0 0.51 0.76 0.49 0.94 0.77 0.71 0.51

61 3.4 0.46 0.71 0.44 0.77 0.78 0.62 0.38

62 3.6 0.43 0.74 0.39 0.87 0.78 0.63 0.40

63 2.9 0.51 0.78 0.46 0.88 0.81 0.68 0.46

64 4.5 0.24 0.55 0.25 0.62 0.53 0.51 0.26

65 4.5 0.35 0.65 0.29 0.96 0.54 0.51 0.26

66 3.4 0.45 0.74 0.40 0.61 0.69 0.61 0.37

67 4.2 0.26 0.77 0.30 0.78 0.57 0.62 0.38

68 3.2 0.33 0.65 0.38 0.68 0.71 0.57 0.32

69 3.4 0.42 0.82 0.40 0.64 0.71 0.67 0.45

70 4.0 0.53 0.68 0.50 0.97 0.83 0.55 0.31

min 2.2 0.20 0.55 0.20 0.46 0.35 0.38 0.15

max 5.2 0.68 0.88 0.71 1.00 0.96 0.80 0.63

ave 3.7 0.44 0.72 0.41 0.80 0.72 0.59 0.35

Table 3.2: Compactness measures applied to electoral districts of Baden–Württemberg
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3.4.2 Correlation Analysis

This section analyzes the correlation between the stated measures and the Visual-Test by

means of the Pearson Correlation Coefficient. Let comp1(Dg) and comp2(Dg) be evalua-

tion values of two compactness measures applied to a district Dg. Furthermore, let comp1

and comp2 be the average values of them over all districts D1, . . . , Dp. Then, the Pearson

Correlation Coefficient is defined by

pear(comp1, comp2) :=

p
∑

g=1

(comp1(Dg)− comp1) · (comp2(Dg)− comp2)

√

p
∑

g=1

(comp1(Dg)− comp1)2 ·
√

p
∑

g=1

(comp2(Dg)− comp2)2

.

An evaluation value obtained by the Visual-Test is smaller, the more compact the evaluated

district is. In contrast to this, for the further measures presented in Table 3.2 a small

evaluation value indicates a non-compact district. Hence, a negative Pearson Correlation

Coefficient close to −1 between the latter and the Visual-Test indicates a high correlation.

The first row of Table 3.3 states for each measure its correlation coefficient with the Visual-

Test. In addition, the second row presents the respective correlation coefficients obtained by

using ranking positions instead of absolute values. In this case, the best evaluated district

according to a measure is ranked on position 1, whereas the worst one is ranked on position

70. Therefore, a high correlation is indicated by a positive coefficient close to 1.

Reock Reock Haggett- Length- Relative Schwartz- Cox-
-Test -Test Test Width- Moment berg- Test
(circle) (conv.) Ratio-Test of Inertia Test

absolute values −0.73 −0.82 −0.82 −0.40 −0.84 −0.87 −0.86

ranking values 0.69 0.80 0.79 0.37 0.82 0.84 0.84

Table 3.3: Correlation between various compactness measures and the Visual-Test

Take a closer look at these coefficients. As expected, the results of the Length-Width-Ratio-

Test are not sufficient, compared to other measures they are noticeably worse. Moreover,

altogether shape-only-area-perimeter measures are more highly correlated with the Visual-

Test than shape-only-dispersion measures. As also expected, the Haggett-Test has a higher

correlation with the Visual-Test than the original Reock-Test since the Haggett-Test addi-

tionally utilizes the geographic dispersion within the enclosing circle. More surprising is the

fact that the Reock-Test using the convex hull as reference object performs better than the

original version using the smallest enclosing circle, although a convex figure is not necessarily

visually compact. Furthermore, the Relative Moment of Inertia correlates slightly more with



3.4 Evaluation 75

(a) District 9 (b) District 22 (c) Districts 67, 68, and 70

Figure 3.15: Enlarged illustration of some selected districts

the Visual-Test than the other shape-only-dispersion measures. In conclusion, this analysis

shows that shape-only-area-perimeter measures as well as shape-only-dispersion measures

work better in practice as it might be expected in light of their theoretical drawbacks.

Nevertheless, there are also examples for each measure where a computed evaluation value

does not coincide with the visual impression. The districts regarded in the following are

illustrated in Figure 3.15. The Reock-Test (Haggett-Test) evaluates district 70 comparatively

well, its corresponding ranking position is 11 (9), whereas the Visual-Test ranks this district

on position 48. Also the Relative Moment of Inertia ranks this district on position 18 as

rather compact. The reason why this district looks less compact than others is its bulge in

the northern part.

The survey’s participants evaluate district 68 as rather compact, it is ranked on 19th position.

However, the applied measures evaluate this district as (rather) non-compact. Especially, its

large indentation from north-west to north-east causes a comparatively large enclosing circle

or convex hull, respectively. Hence, both versions of the Reock-Test evaluate this district

as poor in terms of compactness. The corresponding ranking positions are 60 for using the

enclosing circle and 57 for using the convex hull. Moreover, the Haggett-Test ranks it on

Position 42, the Schwartzberg-Test (Cox-Test) on position 37 and the Relative Moment of

Inertia on position 53.

Due to its elongated shape, district 67 is visually non-compact, and, hence, it is ranked only

on position 53 by the Visual-Test. However, its shape is nearly convex and the Reock-Test

using the convex hull evaluates it comparatively well and ranks it on position 18. Moreover,

since its boundary is smooth, mainly on the southern part, the Schwartzberg-Test (Cox-Test)

also evaluates it noticeably better by ranking it on position 26.

According to the Schwartzberg-Test district 22 seems to be non-compact on ranking position

59 since it has a non-smooth boundary. However, the survey’s participants evaluate it as

average and rank it on position 31.

Finally, consider district 9. Its shape is elongated, and, hence, its largest inscribed circle is
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relatively small compared to its smallest enclosing circle. Thus, the Haggett-Test ranks it

on position 65 as one of the worst districts in terms of compactness. Its visual impression is

not as bad and it is ranked on position 44 by the survey’s participants.

In order to overcome the described problems it can be useful to combine different mea-

sures. For example, a combination of two compactness measures can be defined as a convex

combination of their results:

comp(Dg) := α · comp1(Dg) + (1− α) · comp2(Dg) ,

with α ∈ [0, 1]. Since the combined measures should cover various dimensions of compact-

ness, the next analysis focuses on combinations of one shape-only-area-perimeter measure

and one shape-only-dispersion-measure. According to Table 3.3 the former outperforms the

latter, so this analysis uses the relations 1:1, 2:1, 3:1, and 4:1, i.e., it sets α to 0.5, 0.67,

0.75, and 0.8. Table 3.4 presents the correlation coefficients between the Visual-Test and the

combined measures obtained in the described way. In addition, it states the coefficients for

exclusively using comp1(·) and comp2(·), respectively, i.e., for setting α = 1 and α = 0, re-

spectively. Moreover, Table 3.5 shows the correlation coefficients between the corresponding

ranking positions.

comp1(·) comp2(·) α = 1 α = 0 α = 0.5 α = 0.67 α = 0.75 α = 0.8

Schwartzberg Reock (circle) −0.87 −0.73 −0.87 −0.89 −0.89 −0.89

Cox Reock (circle) −0.86 −0.73 −0.88 −0.89 −0.88 −0.88

Schwartzberg Reock (convex) −0.87 −0.82 −0.89 −0.89 −0.89 −0.88

Cox Reock (convex) −0.86 −0.82 −0.89 −0.88 −0.88 −0.87

Schwartzberg Haggett −0.87 −0.82 −0.90 −0.90 −0.90 −0.90

Cox Haggett −0.86 −0.82 −0.90 −0.90 −0.89 −0.88

Schwartzberg RMoI −0.87 −0.84 −0.92 −0.93 −0.92 −0.92

Cox RMoI −0.86 −0.84 −0.93 −0.93 −0.92 −0.91

Table 3.4: Correlation between absolute values of combined measures and the Visual-Test

Although the Schwartzberg-Test and the Cox-Test are highly correlated with the Visual-Test,

the combination of them with shape-only-dispersion-measure yields further improvements.

Setting α to 0.67, i.e., combining them with a relation of 2:1 seems to be a good choice.

For example, the combined measure of the Schwartzberg-Test and the original Reock-Test

again ranks district 67 on position 44, while the Schwartzberg-Test ranks it on position 26;

the Visual-Test ranks it on position 53. Thus, the result of the combination is closer to the

visual impression than the result of the Schwartzberg-Test.
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comp1(·) comp2(·) α = 1 α = 0 α = 0.5 α = 0.67 α = 0.75 α = 0.8

Schwartzberg Reock (circle) 0.84 0.69 0.85 0.86 0.87 0.87

Cox Reock (circle) 0.84 0.69 0.86 0.86 0.87 0.87

Schwartzberg Reock (convex) 0.84 0.80 0.87 0.86 0.86 0.86

Cox Reock (convex) 0.84 0.80 0.87 0.87 0.86 0.86

Schwartzberg Haggett 0.84 0.79 0.88 0.88 0.87 0.87

Cox Haggett 0.84 0.79 0.88 0.88 0.87 0.87

Schwartzberg RMoI 0.84 0.82 0.92 0.92 0.91 0.90

Cox RMoI 0.84 0.82 0.92 0.92 0.90 0.90

Table 3.5: Correlation between ranking positions of combined measures and the Visual-Test

However, there are still examples where a combination also fails. For example, a measure

that combines the Cox-Test and the Reock-Test using the convex hull as reference object

ranks district 67 still on position 26. Nevertheless, a combination of one shape-only-area-

perimeter measure and one shape-only-dispersion-measure is a reasonable way to measure

compactness of a district. It takes different dimensions of compactness into account and

its result is close to our visual impression. Especially, a measure combining the Relative

Moment of Inertia and the Schwartzberg-Test (Cox-Test) results in correlation coefficients

with the Visual-Test up to 0.93.

The compactness measures regarded up to now have in common that they are defined such

that their computed results fall into the range of 0 to 1, with 1 being the best evaluation.

Unfortunately, this is not the case for distance-based measures which are analyzed next.

Here, the compactness values are greater than or equal to 0, but no general upper bound can

be defined. Moreover, a small result indicates a compact district. Typically, in the context

of electoral districting basic areas correspond to cities or communities. However, an electoral

district can consist of only one city, sometimes even only of a part of a large city. In the case

of Baden-Württemberg the largest city, Stuttgart, is partitioned into four electoral districts

(1, 2, 3, 4). Moreover, Karlsruhe (Mannheim) is partitioned into two districts, namely 27, 28

(35, 36). District 34 consists only of the city of Heidelberg. Since distance-based measures

are defined on distances between basic areas or between basic areas and specified centers,

the corresponding results would be 0. Thus, the following analysis excludes these districts

from the set of included districts. Therefore, the number of included electoral districts is

reduced to 61.

This analysis uses the Moment of Inertia in a weighted version (cf. Equation (3.10)) as well

as in an unweighted version (cf. Equation (3.13)), Pairwise Distance weighted (cf. Equa-

tion (3.14)) and unweighted (cf. Equation (3.15)), and the Maximum Distance (cf. Equa-
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tion (3.16)). Table 3.6 presents the correlation coefficients between these measures and the

Visual-Test, both for comparing absolute values and ranking values.

Weighted Moment Moment Weighted Pairwise Pairwise Maximum
of Inertia of Inertia Distances Distances Distance

absolute values 0.27 0.18 0.26 0.18 0.34

ranking values 0.34 0.27 0.31 0.22 0.33

Table 3.6: Correlation between various distance-based measures and the Visual-Test

Since a distance-based measure focuses more on the size than on the shape of the district,

the correlation with the Visual-Test is expected to be rather small. The coefficients stated

in Table 3.6 confirm this expectation. For distance-based measures as well as for the Visual-

Test small values indicate compact districts. Hence, according to the absolute values a

positive coefficient close to 1 indicates a high correlation. However, the stated correlations are

noticeably smaller than for shape-only-area-perimeter measures and shape-only-dispersion

measures, respectively. Nevertheless, in the context of sales districting the usage of distance-

based measures can be useful since compact districts should help to reduce travel times of

salespersons. In this case, the correlation with the visual impression is of minor importance.

The final analysis determines the correlations between pairs of measures based on the re-

sults for applying them to the 61 districts. Table 3.7 presents the results achieved for using

absolute values, while Table 3.8 presents the results for using relative values. These results

confirm some assumptions and statements given in Section 3.3.

Regarding shape-only-dispersion measures, there is a high correlation of 0.9 between the

Haggett-Test and the Reock-Test. This can be explained by the fact that both measures set

something in relation to the smallest enclosing circle. The Relative Moment of Inertia is also

correlated to both of them, having correlation coefficients of 0.86 and 0.87. The correlation

to the variation of the Reock-Test using the convex hull as reference object is noticeably

smaller for all of them. Concerning the Length-Width-Test no noticeable correlation to any

other measure is identifiable.

Regarding shape-only-area-perimeter measures, unsurprisingly, there is a correlation of 1.0

between the Schwartzberg-Test and the Cox-Test since compcox(Dg) = 1
compschwartzberg(Dg)2

holds.

The stated coefficients also show that shape-only-dispersion measures (expect the Length-

Width-Test) and shape-only-area-perimeter measures are rather correlated. Since the mea-

sures of both classes also show good results concerning the correlation to the Visual-Test,
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Reock (circle) 1.00 0.72 0.90 0.63 0.86 0.71 0.70 -0.38 -0.22 -0.34 -0.15 -0.42

Reock (conv.) 0.72 1.00 0.78 0.37 0.78 0.83 0.82 -0.29 -0.18 -0.22 -0.13 -0.30

Haggett 0.90 0.78 1.00 0.56 0.87 0.76 0.76 -0.30 -0.18 -0.27 -0.15 -0.35

Length-Width 0.63 0.37 0.56 1.00 0.56 0.41 0.40 -0.18 0.04 -0.17 0.08 -0.20

Relative MoI 0.86 0.78 0.87 0.56 1.00 0.71 0.69 -0.36 -0.23 -0.33 -0.20 -0.40

Schwartzberg 0.71 0.83 0.76 0.41 0.71 1.00 1.00 -0.42 -0.26 -0.34 -0.22 -0.46

Cox 0.70 0.82 0.76 0.40 0.69 1.00 1.00 -0.42 -0.27 -0.35 -0.23 -0.47

Weighted MoI -0.38 -0.29 -0.30 -0.18 -0.36 −0.42 −0.42 1.00 0.83 0.89 0.70 0.91

MoI -0.22 -0.18 -0.18 0.04 -0.23 −0.26 −0.27 0.83 1.00 0.71 0.95 0.82

Weighted PD -0.34 -0.22 -0.27 -0.17 -0.33 −0.34 −0.35 0.89 0.71 1.00 0.61 0.81

Pairwise Dist. -0.15 -0.13 -0.15 0.08 -0.20 −0.22 −0.23 0.70 0.95 0.61 1.00 0.70

Maximum Dist. -0.46 -0.30 -0.35 -0.20 -0.40 −0.46 −0.47 0.91 0.82 0.81 0.70 1.00

Table 3.7: Correlation between evaluation values of various compactness measures
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Reock (circle) 1.00 0.65 0.90 0.62 0.86 0.64 0.64 0.37 0.25 0.37 0.22 0.34

Reock (conv.) 0.65 1.00 0.71 0.30 0.74 0.80 0.80 0.31 0.22 0.24 0.18 0.25

Haggett 0.90 0.71 1.00 0.57 0.86 0.69 0.69 0.33 0.20 0.32 0.19 0.31

Length-Width 0.62 0.30 0.57 1.00 0.50 0.37 0.37 0.16 0.08 0.20 0.07 0.19

Relative MoI 0.86 0.74 0.86 0.50 1.00 0.66 0.66 0.40 0.30 0.39 0.26 0.39

Schwartzberg 0.64 0.80 0.69 0.37 0.66 1.00 1.00 0.45 0.37 0.35 0.34 0.40

Cox 0.64 0.80 0.69 0.37 0.66 1.00 1.00 0.45 0.37 0.35 0.34 0.40

Weighted MoI 0.37 0.31 0.33 0.16 0.40 0.45 0.45 1.00 0.94 0.94 0.89 0.94

MoI 0.25 0.22 0.20 0.08 0.30 0.37 0.37 0.94 1.00 0.89 0.96 0.94

Weighted PD 0.37 0.24 0.32 0.20 0.39 0.35 0.35 0.94 0.89 1.00 0.85 0.88

Pairwise Dist. 0.22 0.18 0.19 0.07 0.26 0.34 0.34 0.89 0.96 0.85 1.00 0.88

Maximum Dist. 0.34 0.25 0.31 0.19 0.39 0.40 0.40 0.94 0.94 0.88 0.88 1.00

Table 3.8: Correlation between ranking positions of various compactness measures
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these results are not surprising.

Concerning distance-based measures, there are noticeable differences between the values

stated in Table 3.7 on the one side and those stated in Table 3.8 on the other side. Regard-

ing ranking positions there are high correlations of at least 0.85 between pairs of distance-

based measures. The coefficients concerning absolute values are noticeably smaller, e.g.,

the coefficient between the Pairwise Distances and the Weighted Moment of Inertia is 0.61,

whereas it is 0.85 concerning ranking positions. Nevertheless, there is a high correlation of

0.89 between the Weighted Moment of Inertia and the Weighted Pairwise Distances. The

unweighted versions are correlated with a coefficient of even 0.95.

3.4.3 Summary

The presented theoretical analysis and experimental tests have confirmed that it is hard or

even impossible to define a comprehensive compactness measure. Each measure has some

weaknesses, for example, its results are not correlated with the visual impression or they are

hard to determine or to comprehend. Nevertheless, some shape-only-dispersion measures

and some shape-only-area-perimeter measures have large correlations with the Visual-Test.

For example, the Reock-Test, Gibbs-Test, Haggett-Test, Schwartzberg-Test, and Cox-Test,

are better in practice than they seem to be in theory. The Relative Moment of Inertia also

performs very well, but it does not outperform them, although from a theoretical point of

view it is close to a perfect compactness measure. Furthermore, there are some further

improvements if these measures are combined.

Some measures cover other aspects such as convexity, spatial distribution of the activity,

short or smooth boundaries, or total distances for a routing within a district. Hence, de-

pending on the application, it can also be useful to apply one of these measures as part of

an overall evaluation function for a solution.
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3.5 Extension to Point or Line Representations

Most of the measures described in the section above were published in literature concerning

political districting. Thus, it is not surprising that they are based on polygonal representa-

tions of basic areas and districts. However, in other applications basic areas can either be

represented by points, e.g., in the context of sales districting, or by (poly-) lines, e.g., in the

context of districting for mail delivery. This section analyzes which measures are adaptable

or even directly usable for point or (poly-) line representations. For purposes of simplifica-

tion, in the following the terms “point”, “line” and “polygon” are used for the geometric

representations as well as for the corresponding basic areas. Moreover, the term “line” is

used for short, even if a polyline is meant. This section depicts four possible approaches:

1. Direct use of measures: In some cases a proposed measure is more or less directly

usable for other representations.

2. Adaptation of measures: In some cases the underlying idea of a proposed measure

can be adapted in order to make it usable for other representations.

3. Definition of the districts’ shapes: The main idea of this approach is to generate

a representative polygon for each district in order to apply an existing measure to this

polygon afterwards.

4. Definition of the basic areas’ shapes: The last approach uses individual basic

areas instead of districts. The main idea is to generate a representative polygon for

each basic area. Based on these polygons the districts’ shapes are determined and

existing measure are applied to them.

In the following these approaches are examined in more detail.

3.5.1 Direct Use of Measures

Obviously, a measure using area or perimeter of a district is not directly applicable to non-

polygonal representations since no straightforward definition of shape for districts consisting

of points or lines exists. Unfortunately, the majority of the presented measures use either area

or perimeter. Hence, there are only a few measures directly applicable to other geometric

representations.

3.5.1.1 Length-Width-Test

Measuring compactness by the Length-Width-Test described in Section 3.3.1.4 is based on

an enclosing rectangle of a district. More precisely, it is based on an enclosing rectangle of
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Figure 3.16: Axis-parallel enclosing rectangle for different representations
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Figure 3.17: Different districts having identical enclosing rectangles

the geometric representations of the basic areas defining this district. Hence, this measure

can directly be applied to all regarded kind of representations as Figure 3.16 illustrates.

However, the main drawback is that many districts ranging from visually less compact to

visually highly compact have identical enclosing rectangles. Figure 3.17 shows an example

where the district depicted in Figure 3.17a is visually less compact than those depicted in

Figure 3.17b and Figure 3.17c. The decision which of the latter is more compact is not as

clear. Nevertheless, the Length-Width-Test evaluates all of them as perfectly compact since

all of their axis-parallel enclosing rectangles are quadratic.

3.5.1.2 Distance-Based Measures

Distance-based measures have in common that they determine a district’s compactness by

using distances between pairs of basic areas or between basic areas and specified points, as

described in detail in Section 3.3.5. Most commonly, the distance between two basic areas is

defined as distance between two representative points, one for each basic area. Thus, these

measures are directly applicable to points. Note that this simplification of polygons to points

can be interpreted as an inversion of the fourth approach. The same idea can be applied to

a line, for example, by using the middle-point as representative point.
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Figure 3.18: Hofeller-Grofman-Test for different representations of basic areas

3.5.1.3 Normalized Moment of Inertia

The same argumentation as for distance-based measures holds for the Normalized Moment

of Inertia explained in Section 3.3.6.2.

3.5.1.4 Hofeller-Grofman-Test

The Hofeller-Grofman-Test presented in Section 3.3.6.1 computes the ratio between the

activities of the evaluated district and of an enclosing figure. This figure can be, for example,

the convex hull or the smallest enclosing circle and is readily computable for points or lines.

However, the total activity within this figure also has to be computed. This is actually easier

for points than for polygons or lines since a point is either located within a figure or not.

Figure 3.18a shows an example: The dark gray points define a district. The light gray points

are located within its enclosing circle, whereas the white points are located outside. A line

as well as a polygon may only be partly located within an enclosing figure. Hence, the test

has to determine the ratio of its activity that is located within this figure. In Figure 3.18c

(3.18b) the dark gray polygons (lines) define a district. Parts of other basic areas located

within its enclosing circle are colored light gray, whereas parts located outside are colored

white (black). Obviously, some basic areas have parts located within this circle as well as

outside.

3.5.2 Adaptation of Measures

Each proposed compactness measure has an underlying idea how compactness can be mea-

sured. Thus, this idea can be utilized in order to develop a measure based on point repre-

sentations, even if the proposed measure is based on polygonal representations.
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(a) 1 circle (b) 7 circles arranged in 1 sphere (c) 19 circles arranged in 2 spheres

Figure 3.19: Arrangements of circles in spheres

3.5.2.1 Adapted Relative Moment of Inertia

The Relative Moment of Inertia described in Section 3.3.1.6 determines the second moment

of inertia of a district about its center of mass divided by the second moment of inertia of

a circle having the same area. The idea behind this approach is that a circle is the most

compact figure for a given area. In order to adapt this measure on point representations a

definition of the most compact spatial distribution of a given number of points is necessary:

A set of points seems to be compact if it is embedded in an enclosing circle, i.e., the shape

looks like a circle. Moreover, a uniform spatial distribution of the points is an indicator for

compactness.

The following idea for using this observation in order to develop a measure has already

been presented in the Bachelor thesis of Marquardt [28]. Let ng be the number of given

points. The idea for obtaining a uniform spatial distribution comprises the location of ng

non-overlapping equally sized circles. The middle-points of these circles define a compact

spatial distribution of ng points. This definition yields the questions of how these circles can

be arranged and of how the size of these circles can be defined. Concerning the first question,

the idea is to arrange the circles in spheres around one circle having its middle-point in the

origin. The middle-points of all circles located in the same sphere have the same distance to

the origin. The number of circles that can be arranged non-overlapping in the l-th sphere

is 6 · l, i.e., 6 circles can be arranged in the first sphere, 12 in the second sphere, and so

on. Hence, the number of circles that can be arranged non-overlapping in the origin and

in s spheres in this way results in 3 · (s + 1)2 − 3 · (s + 1) + 1. That means that 7 circles

can be arranged in 1 sphere, 19 circles in 2 spheres, and so on. Figure 3.19 illustrates the

corresponding arrangements.

Since the number of points is prescribed, the number of required spheres s∗g is given by means
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Figure 3.20: Arrangements of circles in 2 spheres

of the inequation

3 · (s∗g + 1)2 − 3 · (s∗g + 1) + 1 ≥ ng > 3 · s∗g2 − 3 · s∗g + 1 .

Thus, the sphere sg(j) of the j-th circle is given by

3 · (sg(j) + 1)2 − 3 · (sg(j) + 1) + 1 ≥ j > 3 · sg(j)2 − 3 · sg(j) + 1 .

Let dig be the diameter of the circles, then the distance between the origin and the middle-

point of the j-th circle is dig · sg(j). Moreover, its position posg(j) in the sg(j)-th sphere

is

posg(j) := j − 3 · sg(j)2 − 3 · sg(j) + 1 .

The first middle-point of each sphere is located on the positive x-axis. Each further point

has an angle of

α(j) := (posg(j)− 1) · π

3 · sg(j)

according to the x-axis. Figure 3.20 presents some arrangements exemplarily.

Finally, the question of how to define the diameter dig of the circles is left. The Relative

Moment of Inertia based on polygons compares the district’s second moment of inertia with

that of a circle having the same area. Now, the idea is to compare the district’s Moment of

Inertia according to Equation (3.13), with the Moment of Inertia of a compact rearrangement

having the same Pairwise Distances (cf. Equation (3.15)). By requiring equal Pairwise

Distances, dig can be computed. Let D∗
g be the rearrangement of the points defining district

Dg, then the adapted Relative Moment of Inertia results in

comparmoi(Dg) :=
compmoi(D

∗
g)

compmoi(Dg)
.
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Note that D∗
g does not necessarily induce a lower bound of compmoi(·) for arrangements

of ng points having the same Pairwise Distances. For example, Figure 3.19c shows an

arrangement of 19 circles having open spaces between these circles. Hence, there might be

an arrangement where 20 circles are located within the same area. Arrangements having

smaller open spaces might be better according to the Moment of Inertia. However, the

corresponding middle-points are not distributed uniformly, and, hence, most likely visually

rather compact. Consequently, the results of the adapted Relative Moment of Inertia are

not limited to be between 0 and 1.

As the previous subsection has shown, a few measures can be applied directly or adapted

to non-polygonal representations. However, there remain many measures where other ap-

proaches are necessary in order to make them applicable for non-polygonal representation.

Since many proposed measures take a district’s shape into acoount in some way, an obvi-

ous approach is the definition of districts’ shapes for non-polygonal representations. In the

following, some possible approaches how this can be done are presented and compareed.

3.5.3 Definition of the Districts’ Shapes

The following approaches have in common that they define a shape for each district, without

taking its neighboring districts into account. Hence, there can be intersections between the

shapes of different districts as well as open spaces on the regarded overall area. Thus, the

Perimeter-Test and the Bozkaya-Test are not applicable since they use lengths of the common

districts’ boundaries.

A straightforward approach to define a district’s shape is the usage of an enclosing figure such

as a circle, a rectangle or the convex hull. However, one should have in mind that the districts’

shapes are generated in order to apply existing compactness measures to them. If the shape

is specified in advance too much, the result of the subsequent compactness evaluation is

already more or less predefined, and, hence, the corresponding evaluation contradicts the

visual impression.

3.5.3.1 Enclosing Circle

Using enclosing circles is not recommendable since in this case almost every measure eval-

uates every district as perfectly compact. Note that the Taylor-Test considers the interior

angles, and, hence, strictly spoken, it is not applicable to a circle. However, if the circle

is approximated by a regular polygon, the Taylor-Test is applicable and also evaluates this

polygon as perfectly compact.
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Figure 3.21: Different compactness measures applied to rectangles having a width of 1

3.5.3.2 Enclosing Rectangle

Let er(Dg) be the enclosing rectangle of district Dg. Assume without loss of generality that

its length is greater than or equal to its width. In this case, applying selected compactness

measures to such a rectangle result in the following equations:

• Reock-Test: compreock(er(Dg)) =
area(er(Dg))

area(sec(er(Dg)))
= le(er(Dg))·wi(er(Dg))

0.25·π·(le(er(Dg))2+wi(er(Dg))2)

• Gibbs-Test: compgibbs(er(Dg)) =
area(er(Dg))

area(cla(er(Dg)))
= le(er(Dg))·wi(er(Dg))

0.25·π·(le(er(Dg))2+wi(er(Dg))2)

• Haggett-Test: comphaggett(er(Dg)) =
radius(lic(er(Dg)))

radius(sec(er(Dg)))
= wi(er(Dg))√

le(er(Dg))2+wi(er(Dg))2

• Relative Moment of Inertia:

comprmoi−inv(er(Dg)) =
area(Dg)

2

2·π∫
er(Dg)

∫
er(Dg)

(x2+y2)dxdy
= 6·le(er(Dg))·wi(er(Dg))

π · (le(er(Dg))2+wi(er(Dg))2)

• Schwartzberg-Test:

compschwartzberg−inv(er(Dg)) =
2·
√

π·area(er(Dg))

per(er(Dg))
=

√
π·le(er(Dg))·wi(er(Dg))

le(er(Dg))+wi(er(Dg))

• Cox-Test: compcox(er(Dg)) =
4·π · area(er(Dg))

per(er(Dg))2
= π·le(er(Dg))·wi(er(Dg))

(le(er(Dg))+wi(er(Dg)))2

Figure 3.21 plots the evaluation values for setting the rectangle’s width without loss of

generality to 1 and varying its length for each of them. In addition, Figure 3.21 plots the

evaluation values for the Length-Width-Test. Obviously, the presented measures have in

common that the best evaluated rectangle is a square. Moreover, their evaluation values

decrease strictly monotonically when increasing the length. This means that for a set of

districts these measures differ in their evaluation values for each district, but not in their

ranking of them. Hence, no test will give more informative results than those obtained by
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Figure 3.22: Illustration of convex hulls

the Length-Width-Test. In addition to the drawbacks of the Length-Width-Test, other tests

have the further drawbacks that their evaluation values are not normalized to be between 0

and 1. Moreover, applying convexity measures to an enclosing rectangle is not suitable since

each rectangle is convex, and thus perfectly compact according to these measures.

3.5.3.3 Convex Hull

A third approach uses the convex hull as enclosing figure. Figure 3.22a (3.22b) illustrates

the convex hull for basic areas represented by points (lines). Kalcsics et al. [24] use this

approach to validate whether the districts of a solution are overlapping or not. The exact

shapes of convex hulls are not specified in advance as much as shapes of circles or rectangles.

Nevertheless, convexity is often an indicator for compactness, some measures even define a

convex shape as perfectly compact (cf. Section 3.3.4). Moreover, the convex hull is only

a rough approximation. Take a look on the district depicted in Figure 3.22c. The visual

impression is that this district is shaped similarly to the letter ‘U’, and, hence, rather non-

compact. However, its convex hull looks significantly more compact. Most measures evaluate

this district, and, hence, the corresponding point set, as rather compact.

In general, convex hulls have smooth boundaries and their perimeter lengths are relatively

small compared to perimeters of shapes which coincide more with the visual impression.

Thus, the Schwartzberg-Test, the Cox-Test or the Boyce-Clark-Test on convex hulls has

some weaknesses. Since convex hulls have no indentations, the largest inscribed circle is

comparatively large. Hence, applying the Haggett-Test to the convex hull of a point (line)

set mostly yields in a good evaluation, even if this point (line) set is visually non-compact.

While the perimeter achieved by defining a district’s shape in this way is rather too small,

the achieved area is generally too large. So, the Reock-Test and the Gibbs-Test evaluate a

district as more compact than it seems to be.

Nevertheless, the concept of convex hulls is easy to understand and in many cases the convex
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(a) Delaunay Triangulation (b) Graph for lχ = 0.7 (c) χ-shape for lχ = 0.7

(d) χ-shape for lχ = 0.6 (e) χ-shape for lχ = 0.5 (f) Graph for lχ = 0.3

Figure 3.23: Illustration of the computation of χ-shapes

hull of a district is close to the visual impression of how the shape of this district looks like.

The computation of a convex hull can be done in O(n · log n), for example, by Graham-

Scan [16] or in O(n · log k) by Chans-Algorithm [8], where n is the number of points and k

is the number of points on the convex hull. Hence, this approach can be helpful in order to

obtain a first impression of how compact a district is.

3.5.3.4 χ-Shapes

In order to overcome the described drawbacks of convex hulls and to obtain more accurate

shapes of the districts the concept of χ-shapes can be used. A χ-shape is a non-convex

polygon that describes the shape of a set of points. Duckham et al. [10] present the follow-

ing algorithm to compute them: At first, the Delaunay Triangulation of the set of points is

determined. An example is illustrated in Figure 3.23a. In a Delaunay Triangulation there is

no point of the regarded point set that is inside the circumcircle of any other triangle of this

Triangulation. Another property is the fact that the Delaunay Triangulation corresponds to

the dual graph of the Voronoi Diagram. For more properties and details see, for example,

Aurenhammer et al. [1]. Afterwards, this algorithm normalizes the lengths of the triangula-

tions’ edges such that the normalized length of the longest edge becomes 1. The next step
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depends on a length parameter lχ between 0 and 1. Each edge having a normalized length

greater than lχ is removed, unless when the corresponding graph becomes disconnected by

removing it. Figure 3.23b shows the resulting graph for setting lχ=0.7. Finally, the outer

edges of the obtained graph define the χ-shape. Figure 3.23c illustrates the χ-shape for

lχ=0.7. The complexity of this algorithm is O(n · log n).

Obviously, the achieved shape depends on the length parameter. For lχ=1 the χ-shape

coincides with the convex hull. The smaller lχ, the more indentations has the obtained

boundary. Figuratively spoken, by decreasing the length parameter “one lets the air out of

the convex hull”. Figure 3.23d (3.23e) depicts the obtained χ-shapes for setting lχ to 0.6

(0.5). Figure 3.23f shows an example where the graph would be disconnected if all edges

having a normalized length greater than 0.3 would be removed. Hence, the dashed edges

remain in the graph.

In contrast to other approaches such as α−shapes [11], χ-shapes have no holes. However, as

the χ-shapes presented in Figure 3.23 demonstrate, there can be single points on a χ-shape’s

boundary which are connected with only one other point. For well-chosen length parameters

the visual impression of how the shape of a district looks like comes close to the obtained

χ-shape. However, the main difficulty is the choice of this parameter. Moreover, this choice

also affects the result of the compactness measure that is applied to the resulting χ-shape.

Therefore, area and perimeter depend on this choice as follows: The smaller lχ is, the smaller

the area of the χ-shape and the larger the perimeter of the χ-shape.

In contrast to convex hulls, for different point sets the obtained χ-shapes are more likely

not to be identical. Furthermore, a χ-shape can have indentations, and each of them in-

creases the perimeter length compared to the convex hull. Hence, χ-shapes are able to

detect indentations or open spaces at the outer area of the point set. Thus, applying the

Schwartzberg-Test or Cox-Tests to χ-shapes is more suitable than applying it to the shapes

obtained by using one of the approaches discussed earlier. The same holds for the Boyce-

Clark-Test since the determined outer χ-shapes’ boundaries are not as smooth as for convex

hulls. However, χ-shapes have no holes by construction that means that open spaces in the

interior of the point set are not represented by them. Thus, the approximation of the largest

inscribed circle is maybe inaccurate. Hence, the applicability of the Haggett-Test still has

some weaknesses. However, due to the detection of indentations they are smaller than for

applying the Haggett-Test to convex hulls. The convex hull is only a rough approximation of

a district’s shape having no indentations. Thus, the center of mass is often located centrally

and a district’s area fills out large parts of an enclosing circle. Thus, the Relative Moment of

Inertia, the Reock-Test and the Gibbs-Test often evaluate shapes approximated in this way
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(a) Set of lines (b) Corresponding set of points (c) Delaunay Triangulation

(d) Corresponding graph including
the underlying set of lines

(e) χ-shape for lχ = 0.7 (f) χ-shape for lχ = 0.3

Figure 3.24: Illustration of the computation of a χ-shape for a set of lines

as compact, even if the underlying set of points is visually non-compact. Applying these

measures to χ-shapes is also more suitable since the corresponding approximation of the

districts’ shapes is more exact.

In summary, there are some reasons for defining the shape of a point set by a χ-shape.

However, a computed shape, and, hence, also the result of a compactness evaluation of

this shape, highly depends on the choice of the length parameter. In the case of convexity

measures this dependency is especially obvious since by reducing the length parameter the

non-convexity of a shape increases.

The described construction of χ-shapes is based on point sets. We can also extend this idea

in order to construct χ-shapes on sets of lines. At first, for a given set of lines, this extension

infers a set of points by looking at the start and end points of each line. Figure 3.24b depicts

the obtained set of points for the set of lines shown in Figure 3.24a. Now, it determines the

Delaunay Triangulation for this set of points as before. The resulting graph is depicted in

Figure 3.24c. The next step incorporates the prescribed set of lines. For each line (segment)

it adds an edge between its start- and end-point to this graph and marks it. Figure 3.24d

illustrates these edges as dashed lines. Thus, the graph obtained so far consists of two sets

of edges: The first set is defined by the prescribed set of lines, the second set is defined

by the Delaunay Triangulation. Afterwards, the lengths of the edges of the second set are
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normalized as before. Hence, the removal of edges depending on lχ concerns only the edges

of this set. The edges of the first set remain in the graph in any case. Again, each edge

of the first set is removed if its normalized length is greater than lχ and if the graph stays

connected after removing it. Finally, the outer edges of the graph achieved after the removing

step define the χ-shape of the set of lines. For the presented example, Figure 3.24e shows

exemplarily the χ-shape for setting lχ to 0.7, while Figure 3.24f shows the χ-shape for setting

lχ to 0.3.

3.5.3.5 Summary

There are different approaches for defining an approximated shape based on a set of points or

lines. Our aim is to apply a compactness measure to the resulting shape, therefore, the shape

should coincide with the visual impression of how this shape looks like. Hence, the usage of

prescribed figures such as circles or rectangles is not suitable. Also the usage of convex hulls

has some drawbacks, mainly the prescribed restriction on convex shapes. Thus, the usage

of more flexible approaches such as χ-shapes is recommendable. Table 3.9 summarizes the

theoretical results of the (sub-)sections above, where the applicability is evaluated from good

to worse by ‘++’, ‘+’, ‘0’, ‘-’, whereas ‘E’ denotes that the approach is not applicable at all.

This table only lists measures that are not directly applicable to point sets. Section 3.5.5

will present results for using these measures in practice.

measure enclosing circle enclosing rectangle convex hull χ-shape

Reock-Test E (result always 1) - (Length-Width-Test) + ++

Gibbs-Test E (result always 1) - (Length-Width-Test) + ++

Haggett-Test E (result always 1) - (Length-Width-Test) 0 +

Boyce-Clark-Test E (result always 1) - (Length-Width-Test) 0 ++

Relative Moment of Inertia E (result always 1) - (Length-Width-Test) 0 ++

Schwartzberg-Test E (result always 1) - (Length-Width-Test) 0 ++

Cox-Test E (result always 1) - (Length-Width-Test) 0 ++

Perimeter-Test not applicable

Bozkaya-Test not applicable

Taylor-Test (corrected) not applicable E (result always 1) E (result always 1) 0

Bizarreness-Test E (result always 1) E (result always 1) E (result always 1) 0

Table 3.9: Compactness measures applied to different definitions of districts’ shapes
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Figure 3.25: Voronoi region for a set of basic area

3.5.4 Definition of the Basic Areas’ Shapes

In contrast to the approaches described in the previous section the following approaches treat

each basic area independently of its assignment to prescribed or computed districts. Hence,

its shape can be determined before a districting algorithm is executed. After computing a

polygonal shape for each point or line, each measure based on polygonal representations can

be applied. The approaches presented in the following have in common that the complete

overall area is taken into account for computing the basic areas’ shapes. Each point within

this overall area is assigned to the area of exactly one basic area that means that there are

no intersections between shapes of different basic areas and no open spaces on the overall

area. Hence, the Perimeter-Test and the Bozkaya-Test are applicable in this case.

3.5.4.1 Voronoi Regions

The first approach is based on Voronoi Diagrams. For a given set of generator points

a Voronoi Diagram partitions an area into so-called Voronoi regions such that each region

contains all points that are closer to the corresponding generator than to any other generator.

For more details about Voronoi regions see Section 5.1. Here, each basic area is defined as

a generator. Figuratively spoken, each point of the regarded overall area is assigned to its

closest basic area. The approach uses the smallest axis-parallel enclosing rectangle or the

convex hull of the set of basic areas as the overall area. Figure 3.25a depicts an example

for the former, whereas Figure 3.25b illustrates an example for the latter considering the

same basic areas. The main problem of this approach is that the obtained shape for a basic

area depends on the locations of its neighboring basic areas and the boundary of the overall

area. In regions having a high density of points the obtained polygons are noticeably smaller

than in regions having a small density of points. For example, if the points correspond to

customer locations, most likely the obtained polygons in rural areas are noticeably larger

than in urban regions. Although having in mind that a compactness measure should be
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Figure 3.26: Districts varying on the assignment of a basic area and on the overall area

independent of scale, in the context of sales districting the size of an obtained polygon can

be interpreted as a proxy for the travel time that is necessary to reach the corresponding

customer from a neighbored customer.

For a polaygon, it is not only the size that depends on the neighboring basic areas, but

also its boundary line and its number of the vertices. Furthermore, the definition of the

overall area highly influences the shape of the outer basic areas. For example, the shapes of

the dark gray (light gray) polygons in Figure 3.25a and 3.25b differ noticeably. Especially,

the shape of an outer basic area influences the shape of its district, and, hence, it also

influences the result of a compactness measure applied to this district. Figure 3.26 shows

an example based on the basic areas introduced in Figure 3.25. Take a closer look on the

light gray polygon located in the north-west. Figure 3.26 illustrates its corresponding point

as square and regards two possible assignments of this basic area to a district: Figure 3.26a

and Figure 3.26b illustrate these assignments for the case that the overall area is defined as

an enclosing rectangle, whereas Figure 3.26c and Figure 3.26d illustrate them for the case

that the overall area is defined as a convex hull. Table 3.10 states the results for applying

selected compactness measures to these districts.

measure
enclosing rectangle convex hull

District D1 District D2 District D1 District D2

Reock-Test (circle) 0.36 0.34 0.27 0.60

Reock-Test (convex) 0.97 0.90 0.95 0.96

Gibbs-Test 0.36 0.34 0.27 0.60

Haggett-Test 0.40 0.37 0.23 0.54

Schwartzberg-Test (recipr.) 0.77 0.74 0.70 0.86

Cox-Test 0.59 0.55 0.49 0.74

Table 3.10: Compactness measures applied to the districts depicted in Figure 3.26
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Figure 3.27: Approach of Lei et al. [25]

Obviously, the district depicted in Figure 3.26a is evaluated as more compact than the one

depicted in Figure 3.26b. In contrast to this, these measures evaluate the district illustrated

in Figure 3.26d as more compact than the district illustrated in Figure 3.26c. Note that the

original set of points defining the districts in Figure 3.26a (3.26b) and Figure 3.26c (3.26d)

are identical. Hence, depending on the definition of the overall area the ranking of a set of

districts can differ.

In summary, each compactness measure based on polygons is applicable to basic areas and

districts obtained by using Voronoi regions, but the results are influenced by the definition

of the overall area and by the spatial distribution of the points. Hence, some results may

not coincide with the visual impression.

3.5.4.2 Grid Regions

Lei et al. [25] propose a similar approach. At first, they define the overall area as the

smallest axis-parallel enclosing rectangle. Then, they compute d as the minimum of the

smallest positive distance between two points in x-direction and y-direction. Afterwards,

they partition the enclosing rectangle into quadratic cells having length d. Figure 3.27a

exemplarily depicts such a grid. If no points have the same x-value or y-value, there is at

most one point located in each cell. Each cell having no point is merged with its closest

cell having a point. Details on how to handle the case of two or more cells having the same

distance are not given. Figure 3.27b illustrates the obtained polygons of the basic areas

introduced in Figure 3.27a. The authors define basic areas and districts in this way and

apply the Bozkaya-Test to solutions of their districting algorithm.

Figure 3.27c compares the boundaries obtained by this approach (dashed lines) to Voronoi

regions (solid lines). Obviously, the obtained boundaries are mostly larger and non-smoother

than those obtained by using Voronoi regions. Each boundary of a district is a subset of
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Figure 3.28: Shapes of districts obtained by grid regions

these boundaries. Finally, Figure 3.28 shows the grid regions for the examples depicted

in Figure 3.10. Applying the Schwartzberg-Test results in 0.68 for district 1 and 0.65 for

district 2. As expected, these results are noticeably worse compared to the results stated

in Table 3.10, namely 0.77 for district 1 and 0.74 for district 2 since the boundaries are

noticeably longer.

Again, each compactness measure based on polygonal representations is applicable to the

polygons achieved in this way. However, the non-smooth and long boundaries may influence

the results of the applied measures. Hence, this approach has the same disadvantage as the

approach before, namely that some results may not coincide with the visual impression.

3.5.5 Evaluations

Finally, this subsection assess the presented approaches of measuring compactness of dis-

tricts where the basic areas are represented by points. It is based on the Bachelor thesis of

Marquardt [28] with the addition of some more measures and extra detail. We have con-

ducted a survey where the participants should evaluate 30 districts depicted in Figure 3.29

by means of German school marks. A total of 170 participants have participated in the

survey. Table 3.11 shows the average marks for each district.

district mark district mark district mark district mark district mark

1 3.7 7 4.2 13 3.9 19 4.0 25 4.3

2 3.8 8 3.6 14 3.2 20 3.5 26 2.1

3 3.2 9 1.9 15 2.9 21 3.0 27 3.1

4 1.6 10 3.6 16 3.3 22 2.9 28 2.7

5 2.8 11 3.4 17 2.7 23 4.2 29 3.5

6 3.9 12 4.5 18 2.8 24 4.1 30 3.0

Table 3.11: Results of the Visual-Test applied to the districts depicted in Figure 3.29
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7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

Figure 3.29: Districts used for the presented Visual-Test
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Look at some of the results in more detail. Between district 3 and 4, the latter is evaluated

noticeably better than the former, with an average mark of 1.6 compared to 3.2. Also district

8 is evaluated as rather non-compact with an average mark of 3.6. Hence, for the survey’s

participants a large open space in the interior of a set of points seems to be an indicator for

non-compactness, even if the corresponding outer boundary is nearly squared.

Table 3.11 also shows an average mark of 2.7 for district 17, whereas district 9 has an average

mark of 1.9. The first one looks a bit like a snake, whereas the points of the second one are

distributed more or less uniformly. Hence, for the participants uniformly distributed points

look more compact than non-uniformly distributed points.

However, the stated results also show that the higher the density of the points is, the higher

the visual impression of compactness. For example, the points in district 26 are denser than

those in district 27 and district 30. Even the points in district 22 are denser than those of

them. In both cases the denser districts have received higher marks in the Visual-Test.

In order to summarize the results of this Visual-Test we can conclude:

“A district is compact if its points are distributed uniformly with a high density

within a squared or circular hull and if there is no open space within this hull.”

Unfortunately, distance-based measures add up the distances between all pairs of basic areas

or between the basic areas and specified points, or they use only the maximum distance

between a pair of basic areas. Hence, for the former the evaluation deteriorates if the number

of points increases. For example, district 26 is well evaluated by the Visual-Test; however

in terms of Pairwise Distances its evaluation is very poor. For the latter the distribution

of the points does not matter at all. In order to overcome the first problem, measures that

are independent of the number of points can be formulated by using the average Pairwise

Distance

compapd(Dg) :=
1

|Bg|2
·
∑

i∈Bg

∑

j∈Bg

di,j ,

or the average squared distance to the center of gravity

compamoi(Dg) :=
1

|Bg|
·
∑

i∈Bg

d2(bi, ceng) ,

respectively.

Table 3.12 summarizes the correlation coefficients between different distance-based measures

and the Visual-Test. Recall that for distance-based measures a coefficient of 1 indicates total

correlation. The table shows that the adapted measures using average distances outperform
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the original versions. Again, distance-based measures and the Visual-Test are not correlated;

unfortunately, they are sometimes even negatively correlated. However, in general distance-

based measures are not applied in order to compare single districts but to compare different

solutions, i.e., they are used as global compactness measures. Hence, some of the weaknesses

pointed out in this analysis do not occur in this case.

Pairwise Average Moment Average Maximum Adapted Relative

Distances Pairwise of Moment of Distance Moment of

Distances Inertia Inertia Inertia

absolute values −0.34 0.23 −0.35 0.24 −0.25 −0.31

ranking values −0.26 0.18 −0.21 0.17 −0.11 0.46

Table 3.12: Correlation between compactness measures and the Visual-Test

Table 3.12 also states the correlation between the Visual-Test and the adapted Relative

Moment of Inertia introduced in Section 3.5.2.1. Here, concerning the absolute values a

correlation of 1 indicates a total correlation. Hence, this measure outperforms the distance-

based measures. However, a correlation coefficient of 0.46 does not really indicate a high

correlation.

The approaches presented in Section 3.5.3 focus on the outer boundary. According to their

definitions no holes within the determined shapes are possible. Hence, different districts are

equally evaluated if their outer basic areas are identical, independently of the distribution

of their interior basic areas. For example, the shapes of district 3 and district 4 are best

approximated as an ellipse. Actually, both districts evaluate to nearly equal results, although

all points of district 3 are located on the boundary of this elliptical shape, whereas the points

of district 4 are located all over this elliptical shape. The nearly equal evaluation of them

contradicts the visual impression. Thus, as expected the correlation coefficients stated in

Tables 3.13 to 3.16 are not very high. Note that for absolute values again −1 indicates

a total correlation. Therefore, it may make sense to apply shape approximations allowing

holes, for example α-shapes. However, it is even desirable, for point representations open

spaces within the overall area can occur, for example, if no customer is located within a

region. In general for polygonal representations no open space within the overall area exists.

Hence, the open space within district 3 can be caused by the non-existence of points within

this region as well. In this case, it is not really a fault if the evaluation values of district

4 and district 3 are nearly equal, it is even desirable. Moreover, the density of the points

within a district may also be caused by the spatial distribution of the prescribed set of points.

However, without information about an entire solution a measure is not able to detect if a



100 3 A Current Review on Compactness

low density or an open space within a district is given externally or achieved as result of a

districting approach.

Now, the different approaches of defining districts’ shapes are examined in more detail,

namely the smallest enclosing axis-parallel rectangle, the convex hull and different χ-shapes

differing in the setting of lχ (cf. Section 3.5.3). Table 3.13 states the correlation coefficients

between the Visual-Test and the original Reock-Test (cf. Equation (3.1)). Table 3.14 shows

the coefficients between the Visual-Test and the reciprocal value of the Schwartzberg-Test

(cf. Equation (3.8)) and Table 3.15 shows those between the Relative Moment of Inertia

(cf. Equation (3.5)) and the Visual-Test.

Enclosing χ-shape Convex

rectangle 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 hull

absolute values 0.11 −0.36 −0.38 −0.42 −0.54 −0.53 −0.52 −0.47 −0.46 −0.28

ranking values −0.04 0.36 0.37 0.40 0.53 0.56 0.56 0.49 0.52 0.40

Table 3.13: Correlation between the Reock-Test and the Visual-Test

Enclosing χ-shape Convex

rectangle 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 hull

absolute values 0.11 0.02 −0.01 −0.10 −0.50 −0.53 −0.55 −0.48 −0.47 −0.20

ranking values −0.04 −0.03 0.03 0.26 0.46 0.53 0.57 0.53 0.55 0.38

Table 3.14: Correlation between the Schwartzberg-Test and the Visual-Test

Enclosing χ-shape Convex

rectangle 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 hull

absolute values 0.11 −0.19 −0.17 −0.22 −0.41 −0.41 −0.40 −0.36 −0.35 −0.03

ranking values −0.04 0.21 0.19 0.28 0.46 0.53 0.58 0.53 0.50 0.27

Table 3.15: Correlation between the Relative Moment of Inertia and the Visual-Test

For a variation of the Reock-Test using the convex hull Table 3.16 states the coefficients.

In this case, the evaluation value for defining a district’s shape by an enclosing rectangle

or by the convex hull is 1 in any case. Hence, no correlation coefficient can be determined.

As expected, the results for applying compactness measures to enclosing rectangles do not

coincide with the visual impression. For χ-shapes the highest correlation is achieved if lχ is

defined in the range between 0.5 and 0.7. For larger values of lχ the approximated shape is

often non-intuitive and too rough. Hence, the obtained result for applying a compactness

measure does not coincide with the visual impression.
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(a) S-shaped district (b) District 8 (c) District 22

Figure 3.30: χ-shapes of some selected districts

Enclosing χ-shape Convex

rectangle 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 hull

absolute values E −0.29 −0.29 −0.36 −0.53 −0.52 −0.51 −0.46 −0.46 E

ranking values E 0.29 0.29 0.38 0.55 0.55 0.53 0.52 0.56 E

Table 3.16: Correlation between the Reock-Test using the convex hull and the Visual-Test

Figure 3.30a depicts an example for setting lχ=1.0, i.e., for using the convex hull. Espe-

cially, applying the Schwartzberg-Test to convex hulls is not suitable, as the corresponding

correlation coefficient of only −0.19 shows. On the other side, for small values of lχ the

achieved shapes are often very irregular. This can be positive in some cases, for example

the χ-shape for district 8 obtained by setting lχ=0.25 depicted in Figure 3.30b is most likely

evaluated as non-compact. Unfortunately, a small value of lχ may lead to a poor evaluation

of a visual compact district. For example, the χ-shape of district 22 obtained by setting

lχ=0.25 illustrated in Figure 3.30c is also visually non-compact.

Nevertheless, applying one of the presented tests to χ-shapes defined by setting lχ in the

range between 0.5 and 0.7 is the most suitable way to measure the compactness of a district

consisting of a set of points without considering the total set of basic areas.

Finally, the following analysis investigates different combinations of selected measures. Ta-

ble 3.17 presents the correlation coefficients with the Visual-Test for using χ-shapes and set-

ting lχ=0.6, while Table 3.19 states these coefficients for setting lχ=0.7. The corresponding

coefficients based on the ranking values are stated in Table 3.18 and Table 3.20, respectively.

In this case, these results often indicate no benefit for combining two measures compared to

the usage of one single measure.



102 3 A Current Review on Compactness

comp1(·) comp2(·)
α

1 0 0.25 0.33 0.5 0.67 0.75

Schwartzberg Reock (circle) −0.53 −0.53 −0.55 −0.55 −0.55 −0.55 −0.55

Cox Reock (circle) −0.56 −0.53 −0.57 −0.57 −0.56 −0.56 −0.55

Adapted RMoI Reock (circle) −0.31 −0.53 −0.47 −0.49 −0.51 −0.52 −0.52

Schwartzberg Reock (convex) −0.53 −0.52 −0.54 −0.53 −0.53 −0.53 −0.53

Cox Reock (convex) −0.56 −0.52 −0.56 −0.56 −0.55 −0.54 −0.54

Adapted RMoI Reock (convex) −0.31 −0.52 −0.50 −0.52 −0.52 −0.52 −0.52

Schwartzberg RMoI −0.53 −0.41 −0.51 −0.50 −0.48 −0.46 −0.45

Cox RMoI −0.56 −0.41 −0.54 −0.53 −0.51 −0.48 −0.46

Adapted RMoI RMoI −0.31 −0.41 −0.42 −0.42 −0.42 −0.42 −0.42

Schwartzberg Adapted RMoI −0.53 −0.31 −0.50 −0.52 −0.53 −0.54 −0.54

Cox Adapted RMoI −0.56 −0.31 −0.52 −0.54 −0.55 −0.56 −0.56

Table 3.17: Correlation between absolute values of the Visual-Test and combined measures
applied to χ-shapes (lχ=0.6)

comp1(·) comp2(·)
α

1 0 0.25 0.33 0.5 0.67 0.75

Schwartzberg Reock (circle) 0.53 0.56 0.55 0.55 0.55 0.56 0.56

Cox Reock (circle) 0.53 0.56 0.54 0.55 0.54 0.56 0.54

Adapted RMoI Reock (circle) 0.46 0.56 0.58 0.57 0.56 0.56 0.56

Schwartzberg Reock (convex) 0.53 0.55 0.54 0.54 0.55 0.54 0.54

Cox Reock (convex) 0.53 0.55 0.55 0.54 0.53 0.54 0.54

Adapted RMoI Reock (convex) 0.31 0.55 0.57 0.60 0.58 0.56 0.57

Schwartzberg RMoI 0.53 0.53 0.51 0.51 0.52 0.54 0.55

Cox RMoI 0.53 0.53 0.52 0.51 0.51 0.52 0.54

Adapted RMoI RMoI 0.46 0.53 0.51 0.52 0.52 0.51 0.52

Schwartzberg Adapted RMoI 0.53 0.46 0.53 0.53 0.55 0.56 0.54

Cox Adapted RMoI 0.53 0.46 0.53 0.54 0.55 0.54 0.53

Table 3.18: Correlation between ranking values of the Visual-Test and combined measures
applied to χ-shapes (lχ=0.6)
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comp1(·) comp2(·)
α

1 0 0.25 0.33 0.5 0.67 0.75

Schwartzberg Reock (circle) −0.55 −0.52 −0.55 −0.55 −0.55 −0.54 −0.54

Cox Reock (circle) −0.58 −0.52 −0.58 −0.57 −0.57 −0.56 −0.55

Adapted RMoI Reock (circle) −0.31 −0.52 −0.46 −0.48 −0.50 −0.51 −0.51

Schwartzberg Reock (convex) −0.55 −0.51 −0.54 −0.54 −0.53 −0.52 −0.52

Cox Reock (convex) −0.58 −0.51 −0.57 −0.57 −0.56 −0.54 −0.53

Adapted RMoI Reock (convex) −0.31 −0.51 −0.50 −0.51 −0.51 −0.51 −0.51

Schwartzberg RMoI −0.55 −0.40 −0.51 −0.50 −0.47 −0.45 −0.44

Cox RMoI −0.58 −0.40 −0.55 −0.54 −0.51 −0.47 −0.46

Adapted RMoI RMoI −0.31 −0.40 −0.41 −0.41 −0.41 −0.41 −0.40

Schwartzberg Adapted RMoI −0.55 −0.31 −0.51 −0.53 −0.54 −0.55 −0.55

Cox Adapted RMoI −0.58 −0.31 −0.53 −0.55 −0.57 −0.57 −0.58

Table 3.19: Correlation between absolute values of the Visual-Test and combined measures
applied to χ-shapes (lχ=0.7)

comp1(·) comp2(·)
α

1 0 0.25 0.33 0.5 0.67 0.75

Schwartzberg Reock (circle) 0.55 0.52 0.58 0.59 0.60 0.58 0.56

Cox Reock (circle) 0.58 0.52 0.59 0.58 0.59 0.59 0.58

Adapted RMoI Reock (circle) 0.31 0.52 0.58 0.57 0.55 0.56 0.56

Schwartzberg Reock (convex) 0.55 0.51 0.57 0.56 0.56 0.55 0.55

Cox Reock (convex) 0.58 0.51 0.57 0.57 0.56 0.56 0.56

Adapted RMoI Reock (convex) 0.31 0.51 0.55 0.56 0.58 0.58 0.58

Schwartzberg RMoI 0.55 0.40 0.56 0.57 0.56 0.55 0.56

Cox RMoI 0.58 0.40 0.56 0.56 0.56 0.55 0.56

Adapted RMoI RMoI 0.31 0.40 0.52 0.52 0.55 0.58 0.58

Schwartzberg Adapted RMoI 0.55 0.31 0.56 0.57 0.57 0.59 0.58

Cox Adapted RMoI 0.58 0.31 0.56 0.56 0.58 0.58 0.57

Table 3.20: Correlation between ranking values of the Visual-Test and combined measures
applied to χ-shapes (lχ=0.7)
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In order to define a district’s shape according to one of the approaches presented in Sec-

tion 3.5.4, the shapes of its basic areas have to be defined previously. However, to define

these shapes the total set of basic areas is necessary. That means, for the examples depicted

in Figure 3.29 the definition of the shapes is not possible since no information about the

further basic areas within the overall area are given. In order to evaluate these approaches

it would be necessary that the survey’s participants evaluate solutions instead of single dis-

tricts. Nevertheless, these approaches overcome one problem described before. The shape of

district 3 differs in dependence of whether there are points of other districts located within

the large open space or not. Hence, it is expected that in some cases these approaches out-

perform the approaches described before. However, there is still the problem that obtained

results depend on the definition of the overall area.

The presented results show the difficulties for applying measures to point or line represen-

tations. At first, distance-based measures do not coincide with the visual impression of

compactness. Nevertheless, depending on the application the visual impression is of minor

importance compared to other criteria such as travel distances within a district. In this case,

distance-based measures are useful. Moreover, distance-based measures are most commonly

applied in order to evaluate solutions and not to compare single districts. In this case, the

usage is more recommendable. Despite some weaknesses, using a common measure such as

the Reock-Test, the Schwartzberg-Test and the Cox-Test on χ-shapes is the most suitable

way if only single districts are evaluated. For evaluating entire solutions, the definition of

the basic areas’ shapes has some advantages.
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3.6 Conclusions

This chapter has addressed compactness very much in detail. After defining compactness and

listing requirements for compactness measures it has presented the most common measures.

The majority of them are based on polygonal representations of basic areas. The theoretical

and practical analysis of these measures has confirmed that it is (nearly) impossible to define

a comprehensive compactness measure. Nevertheless, some measures mainly shape-only-

dispersion measures and shape-only-area-perimeter measures perform very well in practice.

Others can be useful depending on the application. Altogether, combining different measures

has proven to be a successful strategy.

Finally, this chapter has introduced and summarized some ideas on how compactness for

point or line representations can be measured. In this case, it is very hard to define com-

pactness on single districts without considering the solution as a whole. If the districts are

non-overlapping, we suggest defining the districts’ shapes to which existing compactness

measures can be applied. In order to define the districts’ shapes χ-shapes seem to be most

suitable. If overlapping districts can occur, replacing point representations with polygonal

basic areas seems to be useful. Depending on the application it is advisable to apply further

measures and combine their results. For example, in the context of sales districting the usage

of distance-based measures is suitable.
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Considering applications such as the design of service districts, sales districts, or pickup

and delivery districts a basic area may be interpreted as a single point in the plane. These

problems are examined in the current chapter. Usually, each basic area corresponds to a

single customer requiring a service, e.g., technical support, visits by a salesperson, or delivery

of parcels. These customers are for example people, branch offices, supermarkets, but also

machines. Most commonly, their locations are given as geo-coded addresses.

Typically, each district corresponds to the area of responsibility for one person, e.g., a single

technician, salesperson or driver, or a team of them. Let the term “service person” denote

this person or team in the following. Each customer should be assigned to exactly one

service person. This increases the familiarity of the service person with his customers or

their systems as well as its knowledge of the surrounding areas of the customers, for example

to find alternative routes in the case of traffic jams. Moreover, in order to avoid competition

between different service persons and to reduce unproductive travel times, these areas should

be clearly defined geographically, i.e., they should be contiguous and compact. Furthermore,

for the reasons of fairness, each service person should have approximately the same workload

and/or income opportunity, i.e., the districts should be balanced.

4.1 Related Literature

The districting literature concerning basic areas represented by points explicitly is rather

limited. For example, Kalcsics et al. [16] present a purely point based, application indepen-

dent, geometric solution approach. It recursively sub-divides the districting problem and

results in balanced and non-overlapping districts.

Haugland et al. [11] address the problem of designing districts for stochastic vehicle routing

problems. The authors refer to applications such as parcel delivery where demands of the

customers vary from day to day. Here, the customers should be grouped into fixed districts,

one for each driver. By doing so, the drivers become familiar with their customers and their

districts. The aim is to minimize the total expected routing costs. Moreover, the authors

include an upper bound for the routing costs within a district. A district is feasible if each

realization of the stochastic demands of the customers does not exceed this bound. In order

to obtain contiguous districts, the authors use the Haugland-Graph (see Section 2.2.4.5)

and ensure that each district is a connected sub-graph of this graph. They propose a tabu

search approach in order to solve this districting problem. However, their approach includes

balance only implicitly and does not take compactness into account.



116 4 Recursive Partitioning Algorithm

In contrast to this, Lei et al. [18] examine the vehicle routing and districting problem with

uncertain customer locations. However, these customers are only a subset of the total set

of customers. The authors propose an objective function containing the number of districts,

the expected routing costs, and compactness. The authors approximate the routing costs

using the Beardwood-Halton-Hammersley theorem [2] and an overtime rate. However, they

do not consider balance explicitly as well. For each deterministic customer (basic area) they

determine a shape according to the approach described in Section 3.5.4. Then, compactness

is measured in terms of the Bozkaya-Test (cf. Section 3.3.3.2) and contiguity is ensured by

means of these determined shapes as well. The authors apply a large neighborhood search

procedure in order to solve this districting problem.

A related work of Lei et al. [19] addresses the multiple traveling salesperson and district-

ing problem with multiple periods and multiple depots, where the set of customers varies

dynamically over time. However, at the beginning of each period, the number and the loca-

tions of the customers are available. Different planning criteria are merged in the objective

function: The minimization of the number of districts, the optimization of the compactness

with respect to the Bozkaya-Test, the minimization of the balance in terms of profit, and the

minimization of the dissimilarity between the solutions over time. The profit of a salesperson

consists of the income by visiting the customers minus the traveling costs approximated by

the Beardwood-Halton-Hammersley theorem. Hence, the authors assume a travelling sales-

person problem (TSP) within each period. In order to solve the entire problem, the authors

propose an adaptive large neighborhood search meta-heuristic.

In addition, Lei et al. [20] include stochastic customers and obtain a multi-objective dynamic

stochastic districting and routing problem. The authors present an enhanced multi-objective

co-evolutionary algorithm with mating restrictions.

Bard and Jarrah [1] focus on pickup and delivery applications. Their aim is the determina-

tion of a minimal set of contiguous districts where each district corresponds to the area of

responsibility for one single vehicle. Hence, capacity and time constraints have to be satis-

fied. In the context considered here practical instances have up to 50.000 customer. Thus,

the authors apply a pre-processing step firstly that aggregates some customers in order to

reduce the complexity of the problem. After that, they determine a grid of balanced clus-

ters. In order to estimate the routing times of the vehicles, the authors incorporate for each

customer the probability that he needs service as well as the probabilities which customer

is visited next to this customer. The determination of the grids contains random decisions.

Therefore, the authors determine a set of solutions and combine them by using a set covering

approach.

Jarrah and Bard [14] continue this work and propose a column-generation approach com-
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bined with ideas of tabu search in order to limit the number of considered sub-problems.

They introduce a set of geometric constraints that ensure that each cluster spans a sym-

metric rectangle centered at a predetermined seed. However, the proposed model contains

capacity constraints according to the working time and the vehicle capacity, but no balance

constraint. Moreover, running times of several hours are reported for instances of some

thousand basic areas.

Zhong et al. [25] deal with the driver learning within a region explicitly. However, in contrast

to other approaches they differ between core areas and flex areas. The customers of a core

area are permanently assigned to a service person, whereas the customers of a flex area are

assigned to a service person whenever they require service. By allowing this flexibility for

some customers, the workload can be balanced better for every day.

Since a service person has to visit its district regularly, its location, e.g., office, depot or

residence, is an important factor according to the obtained travel times. However, there is

no consensus in literature whether these locations are predetermined [1, 14, 18, 19, 20, 25]

or be subject of the planning process [6, 10].

In the mentioned applications, single customers are often grouped by exogenously given

properties such as zip-codes, city quarters or company trading areas, and these groups are

treated as basic areas [6, 8, 10, 12, 21, 22, 23, 24, 25]. Hence, in fact, they do not treat the

basic areas as points.

In most of the respective applications a service person has to visit the customers and provide

the service on-site. Hence, his travel times are a part of his total working time. Many of

the described approaches are motivated by the underlying routing problem. They include

capacity constraints according to the tour duration or to the vehicle capacity. However,

they mainly do not explicitly model balance as planning criteria. Moreover, the presented

approaches often assume a TSP tour through all existent customers within a time period.

Unfortunately, taking a closer look on possible applications, the travel times may differ

noticeably.

In the context of technical support, a technician may solve many problems remotely. Hence,

he visits its customers only rarely and typically at most one or two customers per day. Thus,

the fraction of the travel times on the total working time is rather small. However, the

maximum travel time to an associated customer should not be too large.

In contrast to this, a service person that fills up ticket machines or cigarette machines visits

(almost) every customer every day. Hence, his working day mainly consists of travelling. In

this case, his daily travel time corresponds to the length of a TSP tour through all assigned

customers.
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In the context of planning for field staff members, the visit frequency often differs from

customer to customer. Some customers have to be visited two or three times per week,

whereas others have to be visited only once per quarter. Moreover, some customers want

to be visited every week on the same weekday, some others may have time windows, and so

on. Thus, for a given district the planning of daily districts or daily tours, respectively, is a

problem on its own.

In the context of pickup and delivery planning there is also a significant uncertainty on the

daily demand. Hence, the workload of a service person differs from day to day. Therefore,

in order to balance the workload of different service persons, a longer time period such as

weeks or months have to be taken into account.

In summary, during the planning process of districts it is almost impossible to determine

the total travel times in a given time horizon. However, the hope is that geographically

compact districts result in smaller travel times on a day-to-day basis compared to non-

compact districts.

The goal of this chapter is to present an algorithm that considers the problem in a more

generalized way focusing on the districting part of the problem. The aim is to partition the

set of customers into a given number of districts such that each district is balanced, compact

and contiguous. The presented approach is based on an approach of Kalcsics et al. [16]. It

generates contiguous and almost perfectly balanced districts, but in terms of compactness it

has some weaknesses. In order to overcome them, this chapter will present some extensions

and improvements. Moreover, it introduces a way to integrate prescribed centers into this

algorithm. The following description is based on Butsch et al. [4].

The remainder of this chapter is organized as follows. The next section will adapt our gen-

eral model for point based districting problem. Section 4.3 presents a geometrical divide and

conquer heuristic to solve this problem. After that, Section 4.4 presents the results of exten-

sive computational tests that confirm the efficiency and the quality of the obtained solution.

Since the residences of the service persons are sometimes prescribed, Section 4.5 shows how

to incorporate them into the heuristic. After that, Section 4.6 deals with multiple activity

measures. Moreover, Section 4.7 presents a variation of this approach used to determine

Emergency Medical Services regions. The chapter concludes with a summary and a short

outlook.
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4.2 The Model

Chapter 2 already has presented our general model for districting problems. This subsection

specifies this model in order to make it applicable in the context of sales or service districting,

where the basic areas correspond to single customers. Based on these applications, the

following assumptions can be made:

• The number of required districts p is given in advance. If this is not the case, the

problem is solved for different values of p and the solutions are compared according to

a set of desired criteria.

• Neither an existing districting plan nor prescribed centers need to be taken into ac-

count. However, Section 4.5 describes how to incorporate existing centers.

• The planning process contains only one time period, i.e., the assignments should be

fixed for this time. For example, a company often plans the visits of its customers for

a quarter or a year.

• The customers are deterministic, i.e., their locations and activities are given in advance.

For many applications it is difficult or even impossible to determine the daily travel

time anyway. Hence, small changes of the set of customers during the time period will

most likely not deteriorate the districting plan too much.

4.2.1 Components

The description starts with the specification of the general model (cf. Chapter 2).

4.2.1.1 Basic Areas

Here, each basic area i ∈ BA corresponds to a single (customer) location represented by

a point in the plane, e.g., a geo-coded address. For purposes of simplification bi = (xi, yi)

denotes this point as well as the corresponding basic area.

Moreover, only one activity measure wi is associated with each basic area. In most cases

this activity is the (estimated) sales potential or the time needed to serve the total demand

of the customer within the planning horizon.

4.2.1.2 Districts

A district Dg consists of a set of basic areas Bg ⊆ BA that is serviced by a single service

person. Hence, in this case, there is a one-to-one relation between Dg and Bg.
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The activity of a district is defined as the sum of the activities of its assigned basic areas,

i.e.,

w(Dg) :=
∑

i∈Bg

wi .

Unfortunately, the shape of Dg is not directly defined. Hence, surrogates have to be used if

necessary.

4.2.1.3 Districting Plan

A districting plan or solution is a set of districts S := {D1; . . . ;Dp}, where p is the given

number of districts.

4.2.1.4 Distances

The distance di,j := d(bi, bj) between two basic areas is either the Euclidean distance, or the

distance or travel time on a road network.

4.2.2 Planning Criteria

The aim of the considered districting problem is the following: Partition all basic areas BA

into p districts that are balanced, contiguous, and compact.

This model treats complete and exclusive assignment as a hard criterion, whereas it treats

compactness and contiguity as a soft criterion. Moreover, it treats balance as a soft and also

as a hard criterion.

4.2.2.1 Complete and Exclusive Assignment

The sets B1, . . . , Bp define a partition of the set of basic areas BA.

4.2.2.2 Balance

Recall (cf. Section 2.2.2) that one way to measure the balance of a district is to compute the

relative percentage deviation of its size from the average size, i.e.,

bal(Dg) :=
|w(Dg)− µ|

µ
.

Our model defines the balance of a solution as the maximal balance of a single district, i.e.,

balmax(S) := max
g=1,...,p

bal(Dg) . (4.1)
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In order to treat balance as a hard criterion as well, this model defines a maximal feasible

balance τ , i.e., a solution is feasible if balmax(S) ≤ τ holds. Thus, LD := (1− τ) · µ defines

a lower bound for the size of a district, while UD := (1 + τ) · µ defines an upper bound.

4.2.2.3 Compactness

According to Chapter 3 a district is compact if it is nearly round-shaped or square, undis-

torted, without holes, and has a smooth boundary. There are several compactness measures

proposed in the literature. However, most of them are based on polygonal representations of

the basic areas. One exception are distance-based measures, which can easily be adapted to

point representations (cf. Section 3.5.1.2). Another reason for using distance-based measures

is the fact that compactness should be a proxy for expected travel times. Depending on the

application’s underlying routing problem, the different distance-based measures are more or

less recommendable. For each district,

• the Weighted Moment of Inertia is the weighted sum of squared distances from all

basic areas to the center, i.e.,

compwmoi(Dg) :=
∑

i∈Bg

wi · d2(bi, ceng) . (4.2)

• the Moment of Inertia is the (unweighted) sum of squared distances from all basic

areas to the center, i.e.,

compmoi(Dg) :=
∑

i∈Bg

d2(bi, ceng) . (4.3)

• the Pairwise Distances are the distances between all pairs of basic areas added up, i.e.,

comppd(Dg) :=
∑

i∈Bg

∑

j∈Bg

di,j . (4.4)

• the Weighted Pairwise Distances are the weighted distances between all pairs of basic

areas added up, i.e.,

compwpd(Dg) :=
∑

i∈Bg

∑

j∈Bg

wi · di,j . (4.5)

• the Maximum Distance is the maximum distance between two basic areas, i.e.,

compmd(Dg) := max
i,j∈Bg

di,j . (4.6)
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Note that these formulations are also usable if d(· , ·) is not symmetric, and, hence, not a

metric.

The (Weighted) Moment of Inertia as well as the (Weighted) Pairwise Distances define the

compactness of a solution S straightforwardly as the sum of its districts, i.e.,

comp∗(S) :=

p
∑

g=1

comp∗(Dg) ,

where ∗ ∈ {wmoi; moi; pd; wpd}. In contrast to this, the Maximum Distance defines the

compactness of a solution S as the maximal compactness of a single district, i.e.,

compmd(S) := max
g=1,...,p

compmd(Dg) .

4.2.2.4 Contiguity

Figuratively spoken, a district is contiguous if it is possible to travel to each basic area within

the district from every other basic area within the district without leaving the district. Since

the basic areas are represented by points, no implicitly given neighborhood information is

available. Moreover, the shape of a district Dg is not defined directly. Hence, in this context

another definition is necessary. According to Kalcsics et al. [16] a district is contiguous if

the convex hull ch(Bg) of the basic areas comprising district Dg does not intersect with the

convex hull of the basic areas of any other district Dh.

Since this model treats contiguity as a soft criterion, it does not forbid these intersections,

but it tries to minimize them. In order to do so, the contiguity measure computes the sum

of the areas of intersection between their convex hulls, normalized by the area of the convex

hull of BA, that is

ctg(S) :=

p−1
∑

g=1

p
∑

h=g+1

area(ch(Bg) ∩ ch(Bh))

area(ch(BA))
.
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4.3 The Algorithm

The so-called Recursive Partitioning Algorithm (RPA) is based on the work of Kalcsics

et al. [16] and utilizes the underlying geographical information of the districting problem.

Its main idea was already sketched by Forrest [9] without giving details. This main idea

is to recursively sub-divide the problem into smaller and smaller sub-problems, until an

elementary level is reached where the districting problem can be solved efficiently. Therefore,

the basic operation is to divide a subset B ⊆ BA of the basic areas into two “halves” Bl and

Br. In other words, the algorithm splits the districting problem for B into two disjoint sub-

problems, one for Bl and one for Br. Then, it solves these two sub-problems independently

in the same way. The solutions to these sub-problems directly yield a solution for the original

problem.

Figure 4.1 illustrates an example, where a set B is firstly sub-divided into the subsets Bl and

Br, and afterwards Bl and Br are sub-divided into the subsets Bll and Blr , and, respectively,

Brl and Brr .

b

b

b

b

b

b

b

b

b

bB b

b

b

b

b

b

b

b

b

bBl

Br

b

b

b b

b b

Bll

Blr

b

b b

b

Brl Brr

Figure 4.1: Recursive sub-division of a problem

The basic version of Kalcsics et al. [16] generates very fast contiguous, non-overlapping

and almost perfectly balanced districts. However, in terms of compactness it has some

weaknesses. This section presents some extensions and improvements in order to overcome

them. But first, the next subsection will give some basic definitions.

4.3.1 Basic Definitions

Definition 4.3.1 A partition problem PP := (B, q) is the problem of sub-dividing a set

of basic areas B ⊆ BA into 1 ≤ q ≤ p districts.
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PP is called trivial if q = 1 since in this case B directly defines a district. A partition

problem that still has to be sub-divided is called an unsolved partition problem and UPP

denotes the set of unsolved partition problems.

Definition 4.3.2 A bisecting partition BP := (Bl, Br, ql, qr) of a PP is defined by two

sets Bl, Br ⊂ B such that Bl ∪ Br = B and Bl ∩ Br = ∅, and two numbers 1 ≤ ql, qr < q

with ql + qr = q.

A bisecting partition sub-divides a non-trivial partition problem PP into two smaller par-

tition problems PPl := (Bl, ql) and PPr := (Br, qr), where PPl (PPr) is called left (right)

sub-problem of PP .

4.3.2 Algorithm Overview

Algorithm 4.3.1 outlines and summarizes the RPA. Starting from the original partition prob-

lem (BA, p) it chooses an unsolved partition problem (B, q) from UPP in each iteration. If

q = 1 holds, the set of basic areas B already defines a district. Hence, the algorithm adds B

to the solution S and deletes the partition problem (B, q) from UPP . Otherwise, it divides

(B, q) into two sub-problems (Bl, ql) and (Br, qr). Accordingly, it replaces (B, q) by (Bl, ql)

and (Br, qr) in UPP . The RPA repeats this procedure until no unsolved partition problem

is left.

Algorithm 4.3.1: Recursive Partitioning Algorithm

Input: Set of basic areas BA, number of districts p.
Output: Districting plan S.

1 Set UPP = {(BA, p)} and S = ∅.
2 while UPP 6= ∅ do

Choose PP = (B, q) ∈ UPP .
if q = 1 then

set S = S ∪ {B}, UPP = UPP\{PP}.
else

Determine a set FBP of feasible bisecting partitions of PP .
Choose the best bisecting partition BP ∗ := (B∗

l , B
∗
r , q

∗
l , q

∗
r) ∈ FBP .

Set UPP = UPP\{PP} ∪ {(B∗
l , q

∗
l ); (B

∗
r , q

∗
r)}.

end

end

3 return S.
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Until here, there are some questions that remain open:

• How to determine a set of possible bisecting partitions?

• How to decide whether a bisecting partition is feasible or not?

• How to evaluate a bisecting partition?

The objective of the next subsections is to formulate answers to these questions.

4.3.3 Generating Bisecting Partitions

This section addresses the question of how to generate bisecting partitions. Let PP , LD

and LU be given. Each iteration looks for a bisecting partition BP := (Bl, Br, ql, qr) of

(B, q) such that the resulting two sub-problems (Bl, ql) and (Br, qr) are balanced, compact

and contiguous. In the following, two approaches to determine bisecting partitions are

presented.

4.3.3.1 Line Partitions

One approach, already presented by Kalcsics et al. [16], places a line that divides the set of

basic areas B into two subsets Bl and Br. If a basic area i lies on the line, the approach

defines i ∈ Bl. A line L(z, α) is defined by a footpoint z := (xz, yz) ∈ IR2 and an angle

α ∈ [0, 2π) of the line with the positive x-axis.

In order to determine a set of bisecting partitions, the algorithm uses K ∈ N+ equally spaced

line (search) directions having the angles αk := k · π
K

(k = 0, 1, . . . , K− 1) with the positive

x-axis.

The algorithm rotates the coordinate system for each angle αk such that the line through

the origin with angle αk becomes the y-axis, i.e.,

xk
i = xi · sinαk − yi · cosαk

and

yki = xi · cosαk + yi · sinαk.

Figure 4.2 illustrates this rotation, where Figure 4.2a shows the (original) set of basic areas,

whereas Figure 4.2b depicts the rotated set of basic areas. Note that the dashed line in

Figure 4.2a corresponds to the y-axis in Figure 4.2b.
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Figure 4.2: Generating line partitions

Next, the algorithm sorts the basic areas in B by non-decreasing xk-values of their repre-

sentative points. Let bk1, b
k
2, . . . , b

k
n, where n := |B|, denote the basic areas as well as the

representative points of this sorted sequence. Furthermore, without loss of generality, let

no two basic areas lie on a common line with respect to αk. Consider two successive points

bki and bki+1. Each line, parallel to the y-axis, having an x-value greater than or equal to

the x-value of bki , but smaller than the x-value of bki+1, divides the set of basic areas B into

the same two subsets Bl and Br. Therefore, between each pair of successive points only

one line needs to be examined. Thus, the algorithm restricts itself to the lines through the

points bk1, b
k
2, . . . , b

k
n−1. Figure 4.2c depicts these lines for the rotated points illustrated in

Figure 4.2b. Note that a line parallel to the y-axis through bkn must not take into account

since it implies Br = ∅.

Finally, the main idea of this approach is to choose one line of these lines such that the

average size of the districts in the left sub-problem is nearly equal to the average size in the

right sub-problem. If w(Bl)
ql

equals w(Br)
qr

, the average size is equal for both sub-problems.

Since equality usually can not be achieved, the algorithm determines the line that minimizes

the difference between the average sizes, i.e., that minimizes

sd(Bl, Br, ql, qr) :=

∣

∣

∣

∣

w(Bl)

ql
− w(Br)

qr

∣

∣

∣

∣

.

The following lemma addresses the question of how to choose w(Bl) such that sd(Bl, Br, ql, qr)

is minimized. The corresponding proof and the proofs of the subsequent lemmata are inspired

by Kalcsics [15].
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Lemma 4.3.1 Setting w(Bl) = w(B) · ql
ql+qr

minimizes sd(Bl, Br, ql, qr).

Proof

The minimum of sd(Bl, Br, ql, qr) is 0 and is obtained if and only if w(Bl)
ql

= w(Br)
qr

:

w(Bl)

ql
=

w(Br)

qr
=

w(B)

qr
− w(Bl)

qr
⇐⇒ w(Bl)

ql
+

w(Bl)

qr
=

w(B)

qr
·ql⇐⇒ w(Bl) + w(Bl) ·

ql
qr

= w(B) · qr
ql

⇐⇒ w(Bl) ·
ql + qr
qr

= w(B) · ql
qr

· qr
qr+ql⇐⇒ w(Bl) = w(B) · ql

qr + ql

2

Let Wl := w(B) ql
qr+ql

. Moreover, let

Bk
li
:=
{

bk1; . . . ; b
k
i

}

(4.7)

and

Bk
ri
:=
{

bki+1; . . . ; b
k
n

}

, (4.8)

i.e., Bk
li
(Bk

ri
) consists of the first i (last n − i) elements of the sorted sequence of rotated

basic areas. Since wi > 0 holds for all i, the activity of Bk
li
is

w(Bk
li
) < w(Bk

li+1
) = w(Bk

li
) + w(bki+1)

and the activity of Bk
ri
is

w(Bk
ri
) > w(Bk

ri+1
) = w(Bk

ri
)− w(bki+1) . (4.9)

Let a′ denote the index that satisfies

w(Bk
la′
) < Wl and w(Bk

la′+1
) ≥ Wl . (4.10)

The following lemma shows that w(Bl)
ql

< w(Br)
qr

only holds for w(Bl) < Wl. In addition, this

implies w(Bl)
ql

≥ w(Br)
qr

for w(Bl) ≥ Wl.
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Lemma 4.3.2 It holds that w(Bl)
ql

< w(Br)
qr

iff w(Bl) < Wl.

Proof

Some transformations lead to the following result:

w(Bl) < Wl = w(B) · ql
ql + qr

= (w(Bl) + w(Br)) ·
ql

ql + qr
(4.11)

·(ql+qr)⇐⇒ w(Bl) · ql + w(Bl) · qr < w(Bl) · ql + w(Br) · ql
⇐⇒ w(Bl) · qr < w(Br) · ql

⇐⇒ w(Bl)

ql
<

w(Br)

qr

2

The next three lemmata show that sd(Bl, Br, ql, qr) decreases along the sequenceB
k
l1
, . . . , Bk

la′
,

and increases along the sequence Bk
la′+1

, . . . , Bk
ln
.

Lemma 4.3.3 This lemma consists of two parts:

a) For i ≤ a′,

∣

∣

∣

∣

w(Bk
li
)

ql
− w(Bk

ri
)

qr

∣

∣

∣

∣

>

∣

∣

∣

∣

w(Bk
li+1

)

ql
− w(Bk

ri+1
)

qr

∣

∣

∣

∣

holds.

b) For i > a′,

∣

∣

∣

∣

w(Bk
li
)

ql
− w(Bk

ri
)

qr

∣

∣

∣

∣

<

∣

∣

∣

∣

w(Bk
li+1

)

ql
− w(Bk

ri+1
)

qr

∣

∣

∣

∣

holds.

Proof

Both parts are based on some transformations:

a)

w(Bk
li
) < w(Bk

li+1
)

·−1
ql⇐⇒ −w(Bk

li
)

ql
> −

w(Bk
li+1

)

ql

⇐⇒ w(Bk
ri
)

qr
− w(Bk

li
)

ql
>

w(Bk
ri
)

qr
−

w(Bk
li+1

)

ql

(4.9)
=⇒ w(Bk

ri
)

qr
− w(Bk

li
)

ql
>

w(Bk
ri
)

qr
−

w(Bk
li+1

)

ql
>

w(Bk
ri+1

)

qr
−

w(Bk
li+1

)

ql

Lemma4.3.2
=⇒

∣

∣

∣

∣

w(Bk
li
)

ql
− w(Bk

ri
)

qr

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

w(Bk
li+1

)

ql
−

w(Bk
ri+1

)

qr

∣

∣

∣

∣

∣
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b)

w(Bk
li
) < w(Bk

li+1
)

· 1
ql⇐⇒ w(Bk

li
)

ql
<

w(Bk
li+1

)

ql

⇐⇒ w(Bk
li
)

ql
− w(Bk

ri
)

qr
<

w(Bk
li+1

)

ql
− w(Bk

ri
)

qr

(4.9)
=⇒ w(Bk

li
)

ql
− w(Bk

ri
)

qr
<

w(Bk
li+1

)

ql
− w(Bk

ri
)

qr
<

w(Bk
li+1

)

ql
−

w(Bk
ri+1

)

qr

Lemma4.3.2
=⇒

∣

∣

∣

∣

w(Bk
li
)

ql
− w(Bk

ri
)

qr

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

w(Bk
li+1

)

ql
−

w(Bk
ri+1

)

qr

∣

∣

∣

∣

∣

2

Thus, sd(Bl, Br, ql, qr) is minimized by setting Bl = Bk
la′

or Bl = Bk
la′+1

. Hence, there is one

question left: Which of them minimizes sd(Bl, Br, ql, qr)?

Lemma 4.3.4 The inequation

∣

∣

∣

∣

w(Bk
l
a′
)

ql
− w(Bk

r
a′
)

qr

∣

∣

∣

∣

≤
∣

∣

∣

∣

w(Bk
l
a′+1

)

ql
−

w(Bk
r
a′+1

)

qr

∣

∣

∣

∣

is satisfied if and

only if Wl − w(Bk
la′
) ≤ 1

2
· w(bka′+1).

Proof

Some transformations lead to the result:

∣

∣

∣

∣

∣

w(Bk
la′
)

ql
−

w(Bk
ra′
)

qr

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

w(Bk
la′+1

)

ql
−

w(Bk
ra′+1

)

qr

∣

∣

∣

∣

∣

(4.12)

Lemmata 4.3.3a) and 4.3.3b)⇐⇒
w(Bk

ra′
)

qr
−

w(Bk
la′
)

ql
≤

w(Bk
la′+1

)

ql
−

w(Bk
ra′+1

)

qr
·qr⇐⇒ w(Bk

ra′
)− w(Bk

la′
) · qr

ql
≤ w(Bk

la′+1
) · qr

ql
− w(Bk

ra′+1
)

⇐⇒ w(B)− w(Bk
la′
)− w(Bk

la′
)
qr
ql

≤ (w(Bk
la′
) + w(bka′+1)) ·

qr
ql

− w(B) + w(Bk
la′
) + w(bka′+1)

⇐⇒ 2 · w(B)− 2 · w(Bk
la′
) · (ql + qr

ql
) ≤ w(bka′+1) · (

ql + qr
ql

)

· 1
2
· ql
ql+qr⇐⇒ w(B) · ql

ql + qr
− w(Bk

la′
) ≤ 1

2
· w(bka′+1)

⇐⇒ Wl − w(Bk
la′
) ≤ 1

2
· w(bka′+1)

2
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Figure 4.3: Line partitions (Example 4.3.1)

The practical implementation works as follows. After sorting the basic areas, the RPA sums

up their activities in order to determine the index a′ defined in Equation (4.10). Figuratively

spoken, it sweeps a line over the sorted sequence of basic areas until the sum of the activities

on the left side of the line is greater than or equal to Wl. After that, it determines

a∗ :=







a′ if Wl − w({bk1; . . . ; bka′}) ≤ 1
2
· w(bka′+1)

a′ + 1 otherwise
(4.13)

the index of the last basic area that is element of Bl. Altogether, the approach determines

the bisecting partition LP (k, a∗, ql) := (Bk
la∗
, Bk

ra∗
, ql, qr). This kind of bisecting partition is

called line partition .

Example 4.3.1 Let the set of basic areas BA specified in Table 4.1 be given. Figure 4.3a

illustrates this set.

i 1 2 3 4 5 6 7 8 9 10

xi 0.5 1 2 2.5 3 3.5 4 4.5 5 5

yi 5 2 4 1 3.4 2.5 5.5 3 1.5 5

wi 5 3 4 4 4 6 3 5 7 9

Table 4.1: basic areas BA

Let ql = qr = 2. This implies w(B) = 50 and Wl = 25. Exemplarily, let K = 2, i.e., α0 = 0

and α1 = π/2.

For the vertical line α = π/2, sorting the basic areas leads to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

This approach results in the subsets Bl = {1; 2; 3; 4; 5; 6} and Br = {7; 8; 9; 10}, because
w({1; . . . ; 5}) = 20 < 25 and w({1; . . . ; 6}) = 26 > 25 holds, and, thus, a∗ = 6 (bka∗ = 6)
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Figure 4.4: Illustration of the flex-zone partition approach

holds. Figure 4.3b depicts the resulting line partition LP (1, 6, 2) = (Bl, Br, 2, 2).

For α = 0, i.e., a horizontal line, the sorting results in 7, 1, 10, 3, 5, 8, 6, 2, 9, 4. Then,

it holds that a∗ = 5 (bka∗ = 5), and, hence, Bl = {7; 1; 10; 3; 5} and Br = {6; 8; 2; 9; 4}.
Figure 4.3c illustrates the resulting line partition LP (0, 5, 2) = (Bl, Br, 2, 2).

Remark 4.3.1 A solution S obtained by using line partitions for each sub-division is a

contiguous solution in any case, i.e., ctg(S) = 0. Furthermore, an upper bound for the

balance of S is given by 2·wmax

µ
, where wmax := maxi∈B wi (see Kalcsics [15] for details).

Especially in the presence of geographic obstacles such as rivers or mountains, or if BA

has a very irregular outer boundary, a sub-division based on lines is sometimes too rigid,

resulting in non-compact districts. Therefore, the following subsection presents an approach

that allows the border between the left and right sub-problem to be more flexible compared

to line partitions. This, however, comes at the expense of contiguity, which can no longer

be guaranteed.

4.3.3.2 Flex-Zone Partitions

The main idea of the flex-zone approach is to divide the set of basic areas B into three

contiguous zones using lines, where the basic areas of the left (right) zone are directly assigned

to the left (right) sub-problem, whereas the basic areas of the third zone, the so-called flex-

zone, are assigned individually to the sub-problems in a subsequent step. Thus, each zone

corresponds to a subset of B. Let Bll, Bfz and Brr denote these zones from left to right.

Moreover, let Ll and Lr denote the two lines dividing the basic areas into three zones.

Figure 4.4a sketches the main idea of this approach.
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This subsection explains the flex-zone approach in more detail. For each angle αk it uses

a sorted sequence of basic areas bk1, b
k
2, . . . , b

k
n defined analogously to the line partition ap-

proach and also uses K equally spaced line (search) directions. Furthermore, let Bk
li
and

Bk
ri
be defined as in Equations (4.7) and (4.8). In addition, let Bll (Brl) denote the set of

basic areas to the left (right) of Ll, and, analogously, Blr (Brr) the set of basic areas to the

left (right) of Lr. Moreover, let Bll ⊆ Blr, i.e., Ll is left to Lr (or both lines are equal).

Since balance is treated as a hard criterion as well, the average size of a district in both

sub-problems has to be in the interval between LD and UD, that means the following four

constraints have to be satisfied:

1. w(Bll) ≥ ql · LD

2. w(Brl) ≤ qr · UD ⇒ w(B)− w(Bll) ≤ qr · UD ⇒ w(Bll) ≥ w(B)− qr · UD

3. w(Blr) ≤ ql · UD

4. w(Brr) ≥ qr · LD ⇒ w(B)− w(Blr) ≤ qr · LD ⇒ w(Blr) ≤ w(B)− qr · LD

An obvious approach to define Ll (Lr) is the usage of the first (last) line satisfying these four

constraints. Later, this subsection will describe and discuss further approaches. In order to

efficiently determine Ll and Lr, let

LL := max{ql · LD;w(B)− qr · UD} (4.14)

and

LU := min{ql · UD;w(B)− qr · LD} . (4.15)

In this case, LU und LL have the property, that LU is smaller than or equal to LL.

Lemma 4.3.5 If LD ≤ w(B)
q

≤ UD holds, then LL ≤ LU holds.

Proof

First, since LD ≤ UD holds, the inequalities

ql · LD ≤ ql · UD and w(B)− qr · UD ≤ w(B)− qr · LD

are satisfied.

Furthermore, LD ≤ w(B)
q

= w(B)
ql+qr

holds. This implies

w(B) ≥ LD · (ql + qr) = LD · ql + LD · qr .
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Thus, w(B)− LD · qr ≥ LD · ql is satisfied as well.

Finally, UD ≥ w(B)
q

= w(B)
ql+qr

holds. Analogously to the latter case, this implies that also

w(B)− qr · UD ≤ ql · UD holds. Summarized, LL ≤ LU holds. 2

After sorting the basic areas, the flex-zone approach determines the lines Ll := L(bkl∗ , αk)

and Lr := L(bkr∗ , αk) such that

w(Bk
ll∗−1

) < LL and w(Bk
ll∗
) ≥ LL (4.16)

and

w(Bk
lr∗
) ≤ LU and w(Bk

lr∗+1
) > LU . (4.17)

As explained above, these lines partition B into three zones. The left zone contains the set of

basic areas Bll := {bk1; . . . ; bkl∗}, the flex-zone (middle zone) contains Bfz := {bkl∗+1, . . . , b
k
r∗},

and the right zone contains Brr := {bkr∗+1; . . . ; b
k
n}. Defining Bll ⊆ Bl and Brr ⊆ Br implies

w(Bl) ∈ [ql ·LD , ql ·UD] and w(Br) ∈ [qr ·LD , qr ·UD], i.e., the average size of a district for

both sub-problems is within the feasible interval, independently of the decisions which basic

areas of the flex-zone are assigned to which sub-problem. Hence, the bisecting partition

will always be feasible in terms of balance. Thus, this approach focuses on compactness

while assigning the basic areas of Bfz to the sub-problems. A straightforward idea is the

assignment of each basic area i ∈ Bfz to the sub-problem that contains its closest basic area

j which is not located in the flex-zone, i.e.,

Bl := Bll ∪
{

i ∈ Bfz

∣

∣

∣

∣

∣

argmin
j∈(Bll∩Brr)

di,j ∈ Bll

}

(4.18)

and

Br := Brr ∪
{

i ∈ Bfz

∣

∣

∣

∣

∣

argmin
j∈(Bll∩Brr)

di,j ∈ Brr

}

. (4.19)

Here, each assignment is based on the initial sets Bll and Brr. This subsection later will

present and compare some further ideas for assigning the basic areas of the flex-zone to

the sub-problems. Altogether, the flex-zone approach determines the bisecting partition

FZP (k, l∗, r∗, ql) := (Bl, Br, ql, qr), called flex-zone partition .

Example 4.3.1 (cont.) Consider the example specified in Table 4.1 and illustrated in

Figure 4.3a. Let τ = 0.2. This implies LD = 10, UD = 15, LL = 20, and LU = 30.
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Figure 4.5: Flex-zone partitions (Example 4.3.1)

For α = π/2 (cf. Figure 4.5a), it holds that l∗ = 5 (bkl∗ = 5) and r∗ = 7 (bkr∗ = 7)

since w({1; . . . ; 4}) = 16 < 20, w({1; . . . ; 5}) = 20 ≥ 20, w({1; . . . ; 7}) = 29 ≤ 30, and

w({1; . . . ; 8}) = 34 > 30. The resulting subsets are Bll = {1; 2; 3; 4; 5}, Bfz = {6; 7} and

Brr = {8; 9; 10}. The flex-zone approach assigns basic area 6 (7) to the left (right) sub-

problem since argminj∈(Bll∩Brr) d6,j = 5 ∈ Bll (argminj∈(Bll∩Brr) d7,j = 10 ∈ Brr) holds. It

results in the flex-zone partition FZP (1, 5, 7, 2) = ({1; 2; 3; 4; 5; 6}, {7; 8; 9; 10}, 2, 2).
For α = 0 (cf. Figure 4.5b), the obtained subsets are Bll = {7; 1; 10; 3}, Bfz = {5; 8}, and
Brr = {6; 2; 9; 4}. The basic areas of the flex-zone are both assigned to the right sub-problem

since argminj∈(Bll∩Brr) d5,j = 6 ∈ Brr and argminj∈(Bll∩Brr) d8,j = 6 ∈ Brr holds. Thus, the

sub-division of the basic areas leads to BPl = {7; 1; 10; 3} and BPr = {5; 8; 6; 2; 9; 4}.

The following subsections will present different definitions of the lines Ll and Lr, and further

assignment rules for the basic areas of the flex-zone.

Defining Ll and Lr

As a sub-division that nearly exploits the feasible balance deviation may yield lower flexibility

for solving its sub-problems, this subsection introduces two additional approaches of defining

the flex-zone a bit more rigorously.

The first approach restricts the feasible balance deviation for each sub-problem (B, q) de-

pending on the number of further sub-divisions and on the maximum activity of one basic

area wmax := maxi∈B wi. Starting from (BA, p) the number of sub-division levels is given by

⌈log2 p⌉. In order to restrict the feasible balance deviation, this approach adds (subtracts)

the number of levels multiplied by wmax to (from) the minimal (maximal) feasible activity
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of the sub-problems induced by LD (UD). For example, ql · Ld + ⌈log2 ql⌉ · wmax should be

the minimum activity of the left zone.

Unfortunately, the case where the minimal required activity of the left zone is greater than

the maximum required activity of the union of left zone and flex-zone may not be excluded,

i.e., the sub-problem would be non-solvable. In order to avoid this, this approach defines an

upper bound for the minimal activity of the left zone and a lower bound for the maximal

activity of the union of the left zone and the flex-zone, such that the former is always smaller

than or equal to the latter. Therefore, it uses w(B)·ql
ql+qr

− wmax

2
and w(B)·ql

ql+qr
+ wmax

2
.

Unfortunately, w(B)·ql
ql+qr

− wmax

2
< LL is possible, i.e., using an upper bound for the minimal

required activity of the left zone defined in this way can result in an infeasible sub-problem
according to the balance. Analogously, w(B)·ql

ql+qr
+ wmax

2
> LU is possible. Therefore, this ap-

proach includes LL and LU when defining the described upper and lower bound. Altogether,
it defines

LL1 := min

{

max {ql · LD + lim(ql);w(B)− qr · UD + lim(qr)} ; max

{

w(B) · ql
ql + qr

− wmax

2
;LL

}}

(4.20)

and

LU1 := max

{

min {ql · UD − lim(ql);w(B)− qr · LD − lim(qr)} ; min

{

w(B) ql
ql + qr

+
wmax

2
;LU

}}

(4.21)

with lim(q) = ⌈log2 q⌉ · wmax.

Example 4.3.1 (cont.) Continue the example specified in Table 4.1 and illustrated in

Figure 4.3a. Here, LL1 and LU1 result in LL1 = min {max{29; 29},max{20.5; 20}} = 20.5

and LU1 = max {min{21; 21},min{29.5; 30}} = 29.5. In this case, without defining the

bounds for the minimal (maximal) activity in the left zone (union of the left zone and flex-

zone), LL1 > LU1 would hold. Figuratively spoken, Ll would be to the right of Lr, i.e., the

sub-problem would be non-solvable.

Example 4.3.2 Assume an additional problem, where w(B) = 200, q = 4, τ = 0.2, and

wmax = 9 holds. This implies ql = 2, qr = 2, LD = 40, UD = 60, LL = 80, and LU = 120.

This leads to LL1 = min {max{89; 89},max{95.5; 80}} = 89. Moreover, LU1 results in

111 since LU1 = max {min{111; 111},min{104.5; 120}} = 111. In this case, the additional

definition of an upper (lower) bound for LL1 (LU1) is not needed. This also holds for most

practical examples since in general the number of basic areas is very large compared to the

number of districts and wmax is most likely (very) small compared to w(B).
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The second approach defines a dynamic feasible deviation that starts with a given start
deviation τstart and converges towards the maximum feasible deviation τ . In other words,
the higher the number of required sub-problems, the smaller the feasible deviation. Analo-
gously to the previous approach, the approach uses an upper (lower) bound for the minimal
(maximal) activity on the left side of Ll (Lr). This implies

LL2 := min

{

max {µ · (1− τ(ql)) · ql;w(B)− µ · (1 + τ(qr)) · qr} ; max

{

w(B) · ql
ql + qr

− wmax

2
;LL

}}

(4.22)

and

LU2 := max

{

min {µ · (1 + τ(ql)) · ql;w(B)− µ · (1− τ(qr)) · qr} ; min

{

w(B) · ql
ql + qr

+
wmax

2
;LU

}}

(4.23)

with τ(q) = τstart + (τ − τstart) · ⌈log2 p⌉−⌈log2 q⌉−1
⌈log2 p⌉−1

.

This dynamic deviation requires a consideration in more detail. Assume τ = 0.2, τstart = 0.1

and p = 10. Thus, the first sub-division sets ql = qr = 5, and, hence, as expected it leads to

τ(ql) = τ(qr) = 0.1 = τstart. The next sub-divisions compute τ(2) = 0.17 and τ(3) = 0.13,

i.e., the feasible deviations are higher than those of the first sub-division. Finally, for ql = 1

(qr = 1), the deviation results in τ(ql) = 0.2 (τ(qr) = 0.2). In this case, no further sub-

division is necessary, and, hence, the sub-division can exploit the total feasible deviation.

Example 4.3.1 (cont.) Continue the example depicted in Table 4.1 and Figure 4.3a,

and let τstart = 0.1. This implies, LL2 = min {max{22.5; 22.5},max{20.5; 20}} = 20.5 and

LU2 = max {min{27.5; 27.5},min{29.5; 30}} = 29.5. Again, without defining the upper

(lower) bound for the minimal (maximal) activity in the left zone (union of the left zone and

flex-zone), Ll would be to the right of Lr.

Example 4.3.2 (cont.) Let w(B) = 200, q = 4, τ = 0.2 and wmax = 9, and assume

τstart = 0.1. Hence, LL2 = min {max{90; 90},max{95.5; 80}} = 90 holds. Moreover, it holds

that LU2 = max {min{110; 110},min{104.5; 120}} = 110. So, the flex-zone is a bit more

restricted than in the previous approach.

Section 4.4.1 will give some results for the performance of these approaches.

Assigning the Basic Areas of Bfz:

The flex-zone approach focuses on compactness while assigning the basic areas of Bfz to the

two sub-problems. Since there are different compactness measures, there are also different
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concepts to assign these basic areas. Note that for the application of the assignment, the

usage of road distances instead of Euclidean distances is possible. In this case, obstacles may

be regarded implicitly.

1. The first concept assigns each basic area i ∈ Bfz to the sub-problem that contains its

closest basic area j which is not located in the flex-zone. See Equations (4.18) and

(4.19) for a formal description. Note that this concept always uses the initial sets Bll

and Brr to determine the closest basic area. Let flexca denote this concept.

2. In contrast to the previous concept the second concept updates Bfz and Bl or Br,

respectively, after each assignment. It initializes Bl = Bll and Br = Brr. Then, in

each iteration, it regards one basic area i ∈ Bfz and assigns it to one sub-problem, i.e.,

Bl = Bl ∪ {i} if minj∈Bl
di,j ≤ minj∈Br

di,j or Br = Br ∪ {i} otherwise. Furthermore,

it deletes i from Bfz, i.e., Bfz = Bfz\{i} and alternately chooses the first and the last

element of the flex-zone according to the sorted sequence of basic areas. Let flexca,i

denote this concept.

3. The next concept starts with determining the centers of gravity

Lcog :=







∑

j∈Bll

wj · xj

∑

j∈Bll

wj

,

∑

j∈Bll

wj · yj
∑

j∈Bll

wj






and Rcog :=







∑

j∈Brr

wj · xj

∑

j∈Brr

wj

,

∑

j∈Brr

wj · yj
∑

j∈Brr

wj







for both sub-problems. Then, the assignment decision of a basic area i ∈ Bfz is based

on its distance to these centers as well as on the number of districts, the corresponding

sub-problem has to be divided into. The latter is necessary in order to prevent that

basic areas of the flex-zone are mainly assigned to the sub-problem having the smaller

number of districts since usually its center of gravity is located closer to the flex-zone.

Formally, the obtained sub-problems are given by

Bl := Bll ∪
{

i ∈ Bfz

∣

∣

∣

∣

d(i, Lcog)

ql
≤ d(i, Rcog)

qr

}

(4.24)

and

Br := Brr ∪
{

i ∈ Bfz

∣

∣

∣

∣

d(i, Lcog)

ql
>

d(i, Rcog)

qr

}

. (4.25)

Of course, the usage of an unweighted version, i.e., wi = 1 ∀i, is possible. If road

distances are used, usually the center of gravity is located outside the road network, so
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this concept uses the closest basic area (Euclidean distances) to the center of gravity

as a proxy. Let flexcog denote this concept.

4. Analogously to the second concept, the next concept updates the center of gravity

after each assignment. It alternately assigns the basic areas from the beginning and

from the end of the sorted sequence of basic areas. Let flexcog,i denote this concept.

5. The last concept includes the maximum distance to a basic area of each sub-problem

as well as the number of districts the sub-problem has to be divided into. The main

idea is to assign each basic area i ∈ Bfz to the sub-problem where its furthest basic

area is closer. Formally,

Bl := Bll ∪







i ∈ Bfz

∣

∣

∣

∣

∣

∣

max
j∈Bll

di,j

ql
≤

max
j∈Brr

di,j

qr







(4.26)

and

Br := Brr ∪







i ∈ Bfz

∣

∣

∣

∣

∣

∣

max
j∈Bll

di,j

ql
>

max
j∈Brr

di,j

qr







(4.27)

describe the subsets. Again, this concept always uses the initial sets Bll and Brr. In this

case the usage of the updated sets most likely would result in the same sub-problems

since the furthest basic area most likely is not located in the flex-zone. Let flexmd

denote this concept.

Example 4.3.1 (cont.) Consider the example specified in Table 4.1 again. As described

before, the resulting zones are Bll = {1; 2; 3; 4; 5}, Brr = {8; 9; 10} and Bfz = {6; 7} for

αk = π/2.

1. The first concept assigns basic area 6 to the left sub-problem and basic area 7 to the

right sub-problem (see above).

2. The second concept results in the same sub-division since it firstly assigns 6 to the left

sub-problem and afterwards the closest basic area not located in the flex-zone for 7 is

still 10, and, hence, this concept assigns 7 to the right sub-problem.

3. The third concept at first determines Lcog = (1.78, 3.23) and Rcog = (4.88, 3.36). This

implies d(6,Lcog)

2
= 0.94 > d(6,Rcog)

2
= 0.81 and d(7,Lcog)

2
= 1.59 > d(7,Rcog)

2
= 1.16, so both

basic areas are assigned to the right sub-problem.
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4. The fourth concept determines the same assignment as concept 3 for basic area 6.

Then, it updates Rcog resulting in (4.57, 3.17). Now d(7,Lcog)

2
= 1.59 > d(7,Rcog)

2
= 1.20

holds, and, hence, in this case this concept assigns 7 to the right sub-problem.

5. Finally, for basic area 6 the furthest basic area in Bll is 1 with d(6, 1) = 3.91 and in

Brr it is 10 with d(6, 10) = 2.92. Since 3.91
2

> 2.92
2

holds, the fifth concept again assigns

basic area 6 to the right sub-problem. For 7 the furthest basic area in Bll is 4 with

d(7, 4) = 4.74 and in Brr it is 9 with d(7, 9) = 4.12. Since 4.74
2

> 4.12
2

holds, this concept

also assigns basic area 7 to the right sub-problem.

These concepts differ in the quality of their solutions in terms of the different compactness

measures. Section 4.4.2 will give a further consideration.

4.3.3.3 Set of Bisecting Partitions

For each search direction and each definition of ql and qr the algorithm generates a line

partition and/or a flex-zone partition. Recall that the parameter K defines the number

of search directions. For each search direction 0 ≤ k ≤ K − 1 the corresponding angle is

αk := k · π
K
.

The question of how to define ql and qr is still open. The algorithm objective is to halve

the problem, half of the districts should be in the left sub-problem and half of the districts

should be in the right sub-problem. Hence, if q is even, the algorithm applies the sub-division

ql = qr =
q

2
. If q is odd, the algorithm considers the sub-division ql =

q+1
2

and qr =
q−1
2

as

well as the sub-division ql =
q−1
2

and qr = q+1
2
, i.e., it generates a line partition and/or a

flex-zone partition for each search direction for both sub-divisions of q.

4.3.4 Feasibility of Bisecting Partitions

Now, this section addresses the question of how to decide whether a generated bisecting

partition is feasible or not.

Definition 4.3.3 A bisecting partition (Bl, Br, ql, qr) is feasible if and only if (Bl, ql) and

(Br, qr) are feasible.

Since each district needs at least one basic area, for each partition problem, the number of

basic areas must be greater than or equal to the number of districts. Moreover, since balance

is treated as a hard criterion, each partition problem must be feasible in terms of balance.
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A partition problem ist feasible if the average size of the districts is in the interval between

LD and UD. This leads to the following definition.

Definition 4.3.4 A partition problem (B, q) is feasible if |B| ≥ q and LD ≤ w(B)
q

≤ UD

holds.

4.3.5 Choosing a Bisecting Partition

Finally, this section explains how to evaluate a bisecting partition in terms of the planning

criteria and how to choose a bisecting partition out of the set of generated bisecting partitions.

In the following, let a partition problem PP and a corresponding bisecting partition BP be

given.

4.3.5.1 Evaluating Balance

Following Section 4.2.2.2 the balance of a district is defined as relative percentage deviation

of its activity from the average activity µ. Thus, the algorithm straightforwardly defines the

balance of a partition problem as

bal(B, q) :=
|w(B)− q · µ|

q · µ .

Moreover, it defines the balance of a bisecting partition as the maximal balance of one of

its sub-problems since the balance of a solution is in defined as maximum balance of one

district, see Equation (4.1), i.e.,

bal(BP ) := max{bal(Bl, ql); bal(Br, qr)} .

4.3.5.2 Evaluating Compactness

The compactness measures stated in Section 4.2.2.3 only work for the final districts. Hence,

the algorithm has to adapt them or find surrogates in order to evaluate partition problems.

Length of Intersection

The first approach is the one already proposed by Kalcsics et al. [16]. It is not directly related

to any of the measures described in Section 4.2.2.3, but based on the measure proposed

by Bozkaya et al. [3]. They use the total length of all boundaries between the districts

(cf. Section 3.3.3.2). Here, the basic areas are represented by points and not by polygons.

Thus, the districts’ boundaries are not given directly. Therefore, this approach uses the
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Figure 4.6: Measuring the compactness according to the length of intersection

sub-dividing line(s) as a proxy. It determines the length of intersection between this (these)

line(s) and the convex hull ch(B) of the basic areas comprising B. By making this (these)

intersection(s) short, the approach hopes to end up with a small total border length and

therefore with a compact plan. It distinguishes line partitions and flex-zone partitions:

Line Partition: This compactness measure uses the line L(bka∗ , αk) in order to evaluate the

line partition LP (k, a∗, ql). Note that by convexity, L intersects ch(B) in at most two points

c1 and c2, where c1 = c2 is possible. The Euclidean distance between c1 and c2 defines the

length of intersection between L and ch(B), and, hence, the compactness of LP :

comploi(LP ) := l2(c1, c2).

Flex-Zone Partition: This compactness measure uses the lines Ll(b
k
l∗ , αk) and Lr(b

k
r∗ , αk)

in order to evaluate the flex-zone partition FZP (k, l∗, r∗, ql). It determines the points of

intersection cl1 and c2l , and cr1 and cr2, respectively, with ch(B). The average length of

intersection of ch(B) with Ll and Lr defines the compactness of the flex-zone partition:

comploi(FZP ) :=
1

2
·
(

l2(c
l
1, c

l
2) + l2(c

r
1, c

r
2)
)

.

Example 4.3.1 (cont.) Figure 4.6 illustrates this measure for the bisecting partitions

depicted in Figure 4.3b and Figure 4.5a. The length of the dashed line in Figure 4.6a

corresponds to the compactness of the line partition, whereas the average length of the two

dashed lines in Figure 4.6b corresponds to the compactness of the flex-zone partition.
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Weighted Moment of Inertia

The next approach is based on the Weighted Moment of Inertia. This compactness measure

defined in Equation (4.2) is based on the distances to a center. Since it is too time consum-

ing to approximate q representative points as centers, this approach restricts itself to one

representative point as center of a partition problem. This representative point is the basic

area cena
PP that is the closest to the center of gravity of B, i.e.,

cena
PP := argmin

i∈B

[

l2

(

bi, (
∑

j∈B

wj · xj

w(B)
,
∑

j∈B

wj · yj
w(B)

)

)]

.

This computation can be done in O(|B|) time.

As a consequence of this, the compactness of a partition problem is given by

compwmoi(B, q) :=
∑

i∈B
wi · d2(bi, bcena

PP
) .

The compactness of a bisecting partition BP =(Bl, Br, ql, qr) is defined straightforwardly

as the sum of the compactness values of its sub-problems, i.e.,

compwmoi(BP ) := compwmoi(Bl, ql) + compwmoi(Br, qr) .

In addition, an unweighted version can be defined by setting wi = 1 ∀i. This leads to

cena
PP := argmin

i∈B

[

l2

(

bi, (
∑

j∈B

xj

|B| ,
∑

j∈B

yj
|B|)

)]

and

compmoi(B, q) :=
∑

i∈B
d2(bi, bcena

PP
) ,

and

compmoi(BP ) := compmoi(Bl, ql) + compmoi(Br, qr) .

Remark 4.3.2 For Euclidean distances, the center of gravity (
∑

j∈B
wj ·xj

w(B)
,
∑

j∈B
wj ·yj
w(B)

) min-

imizes the function argmin(x,y)∈IR2

[

∑

j∈B wj · d2 (bj, (x, y))
]

.
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Example 4.3.1 (cont.) Figure 4.3b shows a bisecting partition for the basic areas spec-

ified in Table 4.1, where Bl = {1; 2; 3; 4; 5; 6} and Br = {7; 8; 9; 10}. There, the center of

gravity of the left sub-problem is the point (2.17, 3.05). Obviously, cena
(Bl, ql)

corresponds to

basic area 5. For the right sub-problem, the point (4.77, 3.63) is the center of gravity and

cena
(Br, qr)

corresponds to basic area 8. Computing the Weighted Moment of Inertia results in

compwmoi(Bl, Br, ql, qr) = compwmoi(Bl, ql) + compwmoi(Br, qr) = 99.73 + 75.25 = 174.98.

Figure 4.3c illustrates another bisecting partition for the same set of basic areas. Here, the

subsets are Bl = {1; 3; 5; 7; 10} and Br = {2; 4; 6; 8; 9}. The corresponding centers of gravity

are the points (3.18, 4.64) and (3.66, 2.00). Thus, cena
(Bl, ql)

= 7 and cena
(Br, qr)

= 6 holds,

and, hence, compwmoi(Bl, Br, ql, qr) = 120.39 + 62.74 = 183.13.

Hence, comparing these results, with respect to the Weighted Moment of Inertia, the line

partition obtained for the angle α = π/2 is better than the line partition obtained for the

angle α = 0.

Pairwise Distances

Another approach is based on the Pairwise Distances between the basic areas of the same

district defined in Equations (4.4) and (4.5). Adding up all (weighted) distances for a

partition problem requires O(|B|2) time. However, if q > 1 holds, this sum contains many

distances between basic areas which are not in the same district in the final solution.

Therefore, for each basic area i this approach only sums up the distances to a number of

its closest basic areas within this partition problem. Figuratively spoken, it determines a

“good” district for this basic area with respect to the Pairwise Distances. To that end,

bi1, b
i
2, . . . , b

i
n denote the sorted sequence of basic areas of B with respect to their distance

to basic area i. Note that the first element of this sequence is the considered basic area

itself. A “good” district has a size that is approximately equal to the average size within the

partition problem. Based on this idea, this approach includes the closest basic areas such

that the corresponding sum of activities is just smaller than or equal to the average activity

of a district. Formally,

η(i)
∑

j=1

wbij
≤ w(B)

q
and

η(i)+1
∑

j=1

wbij
>

w(B)

q

defines the number η(i) of considered basic areas for i.
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Finally, this approach evaluates the compactness of a partition problem by

comppd(Bl, ql) :=
∑

i∈B

η(i)
∑

j=2

d(bi, b
i
j)

or

compwpd(Bl, ql) :=
∑

i∈B

η(i)
∑

j=2

wi · wbij
· d(bi, bij) ,

respectively. Moreover, it evaluates the compactness of a bisecting partition as the sum of

the compactness evaluations of its sub-problems, i.e.,

comppd(BP ) := comppd(Bl, ql) + comppd(Br, qr)

or

compwpd(BP ) := compwpd(Bl, ql) + compwpd(Br, qr) ,

respectively. Since this measure does not have to sort the closest basic areas, comppd(PP )

or compwd(PP ), respectively. can be computed in O(|B|2) time, see Hochbaum [13].

Remark 4.3.3 The values of comppd(PP ) and compwpd(PP ) are no lower bounds for the

compactness of the final solution for PP .

Example 4.3.1 (cont.) Consider the example illustrated in Figure 4.3b again, where

Bl = {1; 2; 3; 4; 5; 6}. Here, the corresponding average size of a district is w(Bl)
ql

= 26
2
= 13.

For example, for basic area 1 sorting the basic areas according to their distances to basic

area 1 leads to the sequence 1, 3, 5, 2, 6, 4. This implies
∑3

j=1wb1j
= 5+ 4+ 4 = 13 ≤ 13 and

∑4
j=1 wb1j

= 5 + 4 + 4 + 3 = 16 > 13, and, hence, η(1) = 3.

As a further example, sorting the basic areas concerning basic area 5 results in 5, 6, 3, 2, 4, 1.

This leads to η(5) = 2 since
∑2

j=1 wb5j
= 4+6 = 10 ≤ 13 and

∑3
j=1 wb5j

= 4+6+4 = 14 > 13

holds.

Finally, the left sub-problem evaluates compwpd(Bl, ql) = 335.37, and the right sub-problem

evaluates compwpd(Br, qr) = 140.87. Hence, the compactness of the bisecting partition

results in compwpd(Bl, Br, ql, qr) = 335.37 + 140.87 = 476.24.
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Evaluating the bisecting partition depicted in Figure 4.3c results in the Weighted Pairwise

Distances 328.72. Thus, with respect to the Weighted Pairwise Distances the line partition

obtained for α = 0 is better than the one obtained for α = π/2.

Maximum Distance

Finally, the last approach regards the measure based on the maximum distance between

two basic areas of the same district, stated in Equation (4.6). Consequently, in order to

define a measure for a partition problem this approach incorporates the maximum distance

between two basic areas within this partition problem. In order to approximate the maximum

distance within a final district this measure divides this distance by the root of the number

of districts the problem has to be divided into, i.e.,

compmd(B, q) :=
max
i,j∈B

di,j
√
q

.

Then, it evaluates the compactness of a bisecting partition as the maximum compactness

evaluation of one sub-problem, i.e.,

compmd(BP ) := max{compmd(Bl, ql); compmd(Br, qr)} .

This computation is time consuming since it can be made in O(|B|2) time. For Euclidean

distances the running time can be reduced significantly utilizing that the maximal distance

between two points of a set B corresponds to the maximal distance between two vertices

of the convex hull ch(B). However, the complexity is still O(|B|2) since it can occur that

ch(B) contains all points of B as vertices.

Example 4.3.1 (cont.) Consider the bisecting partitions depicted in Figure 4.3b and

Figure 4.3c once again, where ql = qr = 2.

First, for the line partition obtained for α = π/2 the maximum distance between two basic

areas in Bl (Br) is 4.56 (4.50) between basic area 1 (7) and basic area 4 (9). This implies

compmd(Bl, Br, ql, qr) = max{4.56√
2
; 4.50√

2
} = 3.22.

Next, for α = 0 the basic areas 1 (2) and 10 (9) induce the maximum distance between

two basic areas in the left (right) sub-problem. This implies d1,10 = 4.50 and d2,9 = 4.03.

This results in compmd(Bl, Br, ql, qr) = max{4.50√
2
; 4.03√

2
} = 3.18. Hence, according to the

maximum distance α = 0 performs better than α = π/2.
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4.3.5.3 Evaluating Contiguity

The contiguity of a solution is based on the area of intersection between the convex hulls of

its districts. Hence, an obvious approach to define the contiguity of a bisecting partition is

the usage of the area of intersection between the convex hulls of the sub-problem, i.e.,

ctg(BP ) := area(ch(Bl) ∩ ch(Br)) .

A line partition LP generates two non-overlapping sub-problems, i.e., it always holds that

ctg(LP ) = 0. The sub-problems generated by the flex-zone approach may intersect. How-

ever, these intersections are always fairly small, as Section 4.4.3 will show. For that reason,

the algorithm usually does not explicitly evaluate contiguity.

4.3.5.4 Ranking

Among the feasible bisecting partitions in FBP , the RPA chooses the “best” one and im-

plements it. Since some introduced measures determine absolute values (e.g. compactness),

whereas others determine relative values (e.g. balance) the obtained results have to be nor-

malized in order to make them comparable in a ranking function. To that end, for each

applied measure measm the RPA determines the minimal and maximal values

measmin
m := min

BP∈FBP
measm(BP ) and measmax

m := max
BP∈FBP

measm(BP )

in order to scale the evaluation values. Let MEA denote the set of used measures.

The ranking values of a bisecting partition BP ∈ FBP is a weighted combination of these

scaled values:

rk(BP ) :=

|MEA|
∑

m=1

βm · measm(BP )−measmin
m

measmax
m −measmin

m

, (4.28)

where meas1, . . . ,meas|MEA| are the applied measures and β1, . . . , βM are user-given weight-

ing factors with
∑|MEA|

m=1 βm = 1 and βm ≥ 0 ∀m. As from a theoretical point of view all

bisecting partitions can be evaluated equally in terms of one criterion, the algorithm applies

0/0 =: 0. Finally, the algorithm sorts the bisecting partitions of FBP in non-decreasing

order of their ranking value and implements BP ∗ := argminBP∈FBP rk(BP ), i.e., the best

ranked bisecting partition.
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4.3.6 Exploring the Set of Partition Problems

The previous section has explained how to generate and rank bisecting partitions. The

straightforward “greedy” approach that just chooses the best bisecting partition according to

this ranking is, however, sometimes not sufficient. Even though the algorithm only chooses

feasible bisecting partitions, there is no guarantee that it does not develop an infeasible

sub-problem later. In order to overcome this problem, the RPA includes a backtracking

mechanism that allows to revisit an already solved partition problem. There, it revises the

sub-division decision and chooses the next best bisecting partition according to the ranking,

and continues with it. Thus, each partition problem has a counter pos(PP ) that marks the

currently implemented bisecting partition in the sorted list of bisecting partitions.

Without backtracking the RPA solves 2p−1 partition problems until the districting problem

is finally solved. However, due to backtracking operations, this number can be much larger

since it is exponential in K and p in general. For this reason, it is necessary to limit the

search. Unfortunately, there is no guarantee the RPA generates a feasible solution, but

instead of reporting no result the RPA reports an infeasible solution in this case. The

generation of this solution is based on a relaxation of the balance. After a given number

PPMax of examined partition problems, the RPA decreases LD and increases UD such that

the difference between UD and LD is doubled. However, the RPA does not restart at this

point, i.e., the relaxed bounds are only applied to solve the currently unsolved or newly

generated partition problems. In the worst case there is no solution after PPMax further

solved partition problems. The RPA then repeats this relaxation until a given maximal

number RelMax of relaxations is reached. At this point, the RPA sets LD = 0 and UD = ∞,

i.e., from now on all bisecting partitions are feasible with respect to the balance. Hence, the

algorithm performs no more backtracking and terminates quickly. According to Kalcsics [15]

PPMax = 10p and RelMax = 3 are suitable values. Recall that p denotes the number of

required districts.

The RPA does not specify the sequence of solving the problems in UPP . Our practical

implementation applies a first-in first-out strategy. Nevertheless, further strategies such as a

last-in first-out strategy or a random based strategy are possible. However, if no backtracking

occurs, the solutions are identical. Only if backtracking is necessary, the solutions can

differ.

Algorithm 4.3.2 summarizes the Recursive Partitioning Algorithm including the described

backtracking mechanism.
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Algorithm 4.3.2: The Recursive Partitioning Algorithm
Input: Set of basic areas BA, number of districts p, a set of measures MEA, a set of approaches

to determine bisecting partitions PA, parameters τ , LD, UD, K, β1, . . . , β|MEA|,
PPMax, RelMax.

Output: Districting plan S = {D1; . . . ;Dp}.
1 Set UPP = {(BA, p)}, S = ∅, pos(BA, p) = 0, PPCtr = 0, and RelCtr = 0.

while UPP 6= ∅ do

Choose PP = (B, q) ∈ UPP and set PPCtr = PPCtr + 1.

2 if q = 1 then
Set S = S ∪ {B}, UPP = UPP\{PP}, and GOTO 5.

3 if pos(PP ) = 0 then
Determine FBP depending on K and PA.
Rank the bisecting partitions in FBP according to Equation (4.28) using β1, . . . , β|MEA|
and MEA.

end

4 if |FBP | > pos(PP ) then
Set pos(PP ) = pos(PP ) + 1.
Choose the pos(PP )-th ranked bisecting partition BP ∗ = (B∗

l , B
∗
r , q

∗
l , q

∗
r ) in FBP .

Set UPP = UPP\{PP} ∪ {(B∗
l , q

∗
l ); (B

∗
r , q

∗
r )}.

else

if PP = (BA, p) then
if relCtr ≥ RelMax then

Set LD = 0 and UD = ∞.

else
Set LD = max{0;LD − (UD − LD)/2} ; UD = UD + (UD − LD)/2.
Set RelCtr = RelCtr + 1.

end

Set pos(PP ) = 0 and PPCtr = 0.
else

Set UPP = (UPP\Des(PPf )) ∪ {PPf}.
end

5 if PPCtr = PPMax then

if relCtr ≥ RelMax then
Set LD = 0 and UD = ∞.

else
Set LD = max{0;LD − (UD − LD)/2} ; UD = UD + (U − LD)/2.
Set RelCtr = RelCtr + 1.

Set PPCtr = 0.
end

end

6 return S.
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4.3.7 Complexity

This subsection closes with an analysis of the complexity of the RPA.

4.3.7.1 Complexity of Determining FBP

The analysis starts with the approaches of generating bisecting partitions. For a partition

problem (B, q) the sorted sequence bk1, . . . , b
k
n of basic areas according to an angle αk can be

computed in O(|B| · log |B|) time. The further computation depends on the kind of bisecting

partitions.

Line Partitions

After sorting the, basic areas computing the line partition LP (k, a∗, ql) requires O(|B|) time.

So, the total computation of a line partition can be done in O(|B| · log |B|) time.

Flex-Zone Partitions

On a sorted sequence of basic areas determining Bll, Bfz and Brr requires O(|B|) time. The

assignment of the basic areas of the flex-zone depends on the applied assignment concept,

see Section 4.3.3.2.

Computing the closest or furthest basic area within one sub-problem requires O(|B|) time

for each basic area. Since there is no general restriction of the number of basic areas located

in the flex-zone, the total computation of a flex-zone partition FZP (k, l∗, r∗, ql) can be done

in O(|B|2) time for the concepts flexca, flexca,i and flexmd.

Computing the center of gravity of one sub-problem requires O(|B|) time. Moreover, de-

ciding which center of gravity is closer to a basic area can be done in O(1) time. Since the

concept flexcog determines the center of gravity only once for each sub-problem, the total

computation time for this concept is O(|B| · log |B|).
In contrast to this, the concept flexcog,i determines a new center of gravity for the corre-

sponding sub-problem after each assignment. Thus, in this case, the total computation time

is O(|B|2).

Although the worst case complexity for the most concepts of the flex-zone approach is larger

than for line partitions, from a practical point of view the running times are still good (see

Section 4.4.3). On the one hand, Bfz typically only contains a small subset of B. On the

other hand, for each basic area the sorted list of basic areas according to the distance to this

basic area can be stored after computing it for the first time.
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4.3.7.2 Complexity of Choosing a Bisecting Partition

The RPA evaluates each bisecting partition in terms of each applied measure. Hence, the

following analysis addresses the complexity of the presented measures.

Balance

Evaluating balance takes O(|B|) time.

Length of Intersection

Computing the convex hull of B can be done in O(|B| · log |B|) time, see Klein [17]. Inter-

secting the line(s) with the hull requires O(|B|) time. Hence, evaluating a bisecting partition

in terms of the length of intersection takes O(|B| · log |B|) time.

Weighted Moment of Inertia

Determining the center of gravity as well as computing its closest basic areas can be done

in O(|B|) time. Moreover, computing the sum of the distances to this center needs O(|B|)
time. Hence, in total, evaluating a bisecting partition in terms of the Weighted Moment of

Inertia requires O(|B|) time.

Pairwise Distances

As described in Section 4.3.5.2, the Pairwise Distances can be computed in O(|B|2) time.

Maximum Distance

Determining the Maximum Distance needs O(|B|2) time, as described in Section 4.3.5.2.

Contiguity

For each sub-problem, determining the convex hull requires O(|B| · log |B|) time. Computing

the area of intersection between two convex polygons ch1 and ch2 needs O(p1 + p2) time,

where p1 and p2 are the number of vertices of ch1 and ch2. Here, the number of vertices is

limited to the number of basic areas, i.e., ch(Bl) (ch(Br)) has at most |Bl| (|Br|) vertices.
Since |Bl|+ |Br| = |B|, this measure requires O(|B| · log |B|) time.

For given results of the single measures, determining all ranking values can be done in O(K)

time. Finally, sorting the bisecting partitions according to their ranking values requires

O(K · logK) time.
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4.3.7.3 Overall Complexity

Finally, this subsection analyzes the complexity of the entire algorithm. The most time

consuming operation is the generation and the ranking of all feasible bisecting partitions of

a partition problem.

T (B) denotes the complexity of computing and evaluating one bisecting partition for one

partition problem. T (B) depends on the approach of generating the bisecting partition

as well as on the applied evaluation measures afterwards. Table 4.2 gives an overview for

different combinations of generating and evaluating bisecting partitions.

bal comploi
compwmoi comppd compmd ctg
compmoi compwpd

flex∗ O(|B|2) O(|B|2) O(|B|2) O(|B|2) O(|B|2) O(|B|2)
flexcog O(|B| · log |B|) O(|B| · log |B|) O(|B| · log |B|) O(|B|2) O(|B|2) O(|B| · log |B|)
line O(|B| · log |B|) O(|B| · log |B|) O(|B| · log |B|) O(|B|2) O(|B|2) O(|B| · log |B|)
∗ ∈ {ca; ca, i; cog, i; md}

Table 4.2: Complexity of generating and evaluating a bisecting partition

In general, more than one measure is applied and sometimes more than one kind of bisecting

partitions is used. Thus, T (B) is the maximal entry of the corresponding combinations.

Hence, for a partition problem generating and ranking all feasible bisecting partitions and

choosing the best one requires O(K · T (BA) + K · logK) time, where K is the number

of different search directions. In order to determine the overall complexity, two cases are

distinguished:

1. LD = 0 and UD = ∞: In this case, no backtracking occurs. Let the root problem be

on sub-division level 0, its left and right sub-problem on level 1, and so on. For each

sub-division level l, the sets of basic areas Bl
s, 1 ≤ s ≤ S, of the partition problems

PP i
1, . . . , PP i

S, S ≤ 2l, are pairwise disjoint. Hence, generating the feasible bisecting

partitions of all partition problems on level i and determining their ranking value takes

O(K · T (Bl
1) + . . . + K · T (Bl

S)) = O(K · T (BA)) time. There are at most log p sub-

division levels and at most 2p − 1 considered partition problems. For each partition

problem these bisecting partitions have to be sorted. Thus, the time complexity of the

algorithm results in O(K · T (BA) · log p+ p ·K · logK).

2. LD > 0 and UD < ∞: In this case, backtracking could occur. The complexity depends

on the actual number of partition problems explored in the search for a feasible solution.

For choosing PPMax = 10p and RelMax = 3, the maximal number of examined sub-

divisions is linear in p and the time complexity results in O(p ·K · (T (BA) + logK)).
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4.4 Computational Results

This section presents the results of our computational tests. First, note the technical con-

ditions: The algorithm was coded in C++ and executed on a PC running Windows 7 with

a Pentium(R) E5500 processor with 2.80 GHz and 2 GB RAM. The tests are mainly con-

ducted on two datasets. The first one, denoted by PPS, is based on real-world data and is

provided by a project partner. Here, the basic areas correspond to customer locations and

the associated activity measures to the expected service times. Furthermore, the number

of required districts is part of the input. This dataset contains 33 test instances where the

number of basic areas varies from 284 to 4971 while the number of required districts varies

from 2 to 50. Moreover, for 23 of these instances street distances between the basic areas are

available and for 12 of them travel times between the basic areas are available. The second

dataset, denoted by ZCA, contains 50 test instances based on German zip-code areas. For

each zip-code area, its center of gravity defines the location of the corresponding basic area

and its number of inhabitants defines the activity measure. The number of basic areas varies

from 94 to 1036. Here, we have determined 5 to 10 districts for each instance. A distinction

between these two data sets is the range of activity measures for each instance, which is

much larger for ZCA than for PPS. For ZCA (PPS ), the average ratio between the largest

and the smallest activity measure in a problem instance is 453.7 (13.9).

This section compares the solutions obtained by the usage of different parameter settings in

terms of balance, compactness, contiguity and running time. Before evaluating the results,

a detailed description of the evaluation parameters is necessary.

Throughout this section, the presented results in terms of balance and compactness are

average values over all instances. In terms of balance, balmax denotes the maximum balance

defined in Equation (2.2) and balave the average balance defined in Equation (2.3). For

purposes of readability, the results are stated as percentage values, i.e., an entry of 4.00

describes a balance of 4% or bal(·) = 0.04, respectively.

In terms of compactness, compmoi denotes the Moment of Inertia, compwmoi the Weighted

Moment of Inertia, comppd the Pairwise Distances, and compwpd the Weighted Pairwise

Distances (cf. Section 3.3.5). Since these measures have absolute values as outcomes, the

results are stated in relation to a reference solution. This reference solution is the result

of the basic version of the RPA using line partitions exclusively (cf. Section 4.3.3) and the

length of intersection as compactness measures (cf. Section 4.3.5.2). For example, an entry

of −5.00 describes an improvement of 5% compared to the reference solution.

In terms of contiguity, ctgave denotes the average contiguity over all instances, while ctgmax

denotes the maximum contiguity of one single instance. The contiguity measure is defined

in Equation (2.2.4). For purposes of readability, the results are stated as percentage values
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as well.

Finally, in terms of running times, an entry states the total time in seconds necessary to

solve all instances.

Unless specified otherwise, we use the following parameter settings: τ = 0.05, K = 8,

PPMax = 10p, and RelMax = 3.

4.4.1 Flex-Zone Bounds

This test compares the different approaches to define LL and LU while using flex-zone

partitions. The objective is to determine the best approach that implies the best results. The

first approach, denoted by V 1 does not further restrict the bounds induced by the maximum

feasible deviation τ (cf. Equations (4.14) and (4.15)). The second approach restricts the

bounds depending on the number of further sub-divisions and the maximum weight of one

basic area. It is denoted by V 2 and introduced in Equations (4.20) and (4.21). The third

approach, denoted by V 3, uses a deviation starting with τstart and converging against the

maximum feasible deviation τ (cf. Equations (4.22) and (4.23)). This test incorporates two

different values of τstart: τstart =
1
2
· τ = 0.025 denoted by V 3-1, and τstart =

1
10

· τ = 0.005

denoted by V 3-2.

The set of bisecting partitions exclusively consists of flex-zone partitions using the flexcog

concept (cf. Equations (4.24) and (4.25)). Since the flex-zone approach is mainly constructed

in order to improve compactness, the realization of a bisecting partition is only based on

compactness. Hence, balance is only a hard criterion in this case.

Tables 4.3 and 4.4 present the results while using different compactness measures for evalu-

ating bisecting partitions, namely, the Moment of Inertia denoted by MoI (rows 1 to 4), the

Weighted Moment of Inertia denoted by WMoI (rows 5 to 8), the Pairwise Distances (rows

9 to 12) denoted by PD, and the Weighted Pairwise Distances denoted by WPD (rows 13 to

16).

For PPS, the approach V 3 is slightly better than the others in terms of balance. However,

for ZCA, there is no clear trend whether V 2 or V 3 performs better in terms of balance.

Comparing the variations of V 3 there are small advantages for V 3-2.

In terms of contiguity, the results are ambiguous. However, V 3 performs well in any case.

Moreover, V 3-2 performs better than V 3-1.

Finally, in terms of compactness V 3 outperforms the competing approaches. Comparing

V 3-1 and V 3-2, V 3-1 implies noticeably better results. For example, for PPS using the

Weighted Moment of Inertia during the execution of the RPA and V 3-1, the results in terms

of the Weighted Moment of Inertia are 6.48% better than the reference solutions, whereas
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compactness
bound

bal comp ctg

measure max ave moi wmoi pd wpd max ave

MoI V 1 5.06 4.04 −0.56 −0.90 −1.49 −1.47 0.008 0.107

MoI V 2 4.97 3.55 −5.29 −5.08 −3.55 −3.21 0.006 0.107

MoI V 3-1 4.76 3.15 −6.06 −6.09 −3.93 −3.70 0.006 0.107

MoI V 3-2 4.49 2.92 −5.19 −5.28 −3.44 −3.20 0.005 0.020

WMoI V 1 5.03 4.05 0.05 −1.09 −1.40 −1.75 0.107 0.008

WMoI V 2 4.97 3.57 −3.97 −4.71 −3.08 −3.17 0.107 0.007

WMoI V 3-1 4.72 3.12 −5.87 −6.48 −3.99 −3.98 0.107 0.006

WMoI V 3-2 4.49 2.94 −5.05 −5.66 −3.37 −3.42 0.025 0.003

PD V 1 4.81 3.64 −3.95 −4.01 −3.87 −3.50 0.573 0.036

PD V 2 4.78 3.22 −7.37 −7.43 −5.45 −5.02 0.107 0.013

PD V 3-1 4.58 2.98 −8.74 −8.82 −6.05 −5.55 0.244 0.023

PD V 3-2 4.50 2.98 −8.77 −8.40 −5.83 −5.26 0.025 0.002

WPD V 1 4.94 3.32 −7.45 −8.10 −5.30 −5.44 0.204 0.019

WPD V 2 4.93 3.33 −7.14 −7.93 −5.22 −5.48 0.204 0.017

WPD V 3-1 4.76 3.09 −9.26 −10.15 −5.87 −6.18 0.295 0.031

WPD V 3-2 4.54 3.33 −8.20 −8.32 −5.25 −5.40 0.204 0.017

Table 4.3: Dataset PPS : Comparing flex-zone bounds

compactness
bound

bal comp ctg

measure max ave moi wmoi pd wpd max ave

MoI V 1 4.79 3.55 0.72 1.50 −3.08 −0.15 0.744 0.038

MoI V 2 4.57 2.70 −0.45 0.59 −3.55 −0.62 1.017 0.029

MoI V 3-1 4.59 2.87 −2.50 −1.87 −3.96 −1.56 0.504 0.019

MoI V 3-2 4.57 2.68 −2.43 −1.65 −4.11 −1.47 0.819 0.015

WMoI V 1 4.82 3.63 3.34 0.91 −1.36 −0.78 0.856 0.027

WMoI V 2 4.57 2.73 1.93 −0.12 −1.85 −1.22 0.918 0.027

WMoI V 3-1 4.64 2.90 −0.53 −3.02 −2.59 −2.36 0.647 0.013

WMoI V 3-2 4.61 2.72 −0.53 −2.97 −2.49 −2.27 0.398 0.010

PD V 1 4.75 3.40 7.79 9.41 −4.50 2.63 1.331 0.065

PD V 2 4.49 2.61 8.83 10.44 −4.43 3.06 1.210 0.053

PD V 3-1 4.51 2.73 7.55 9.43 −5.07 2.67 0.706 0.037

PD V 3-2 4.47 2.57 7.62 9.48 −4.99 2.68 0.602 0.036

WPD V 1 4.79 3.55 2.01 −0.97 −2.27 −1.91 1.246 0.042

WPD V 2 4.62 2.73 1.03 −2.07 −2.22 −2.51 0.918 0.039

WPD V 3-1 4.64 2.84 −0.85 −4.39 −2.88 −3.46 0.744 0.025

WPD V 3-2 4.58 2.70 −0.78 −4.32 −2.67 −3.37 0.523 0.017

Table 4.4: Dataset ZCS : Comparing flex-zone bounds
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using V 3-2 the results are only 5.66% better. Using V 1 (V 2) the improvements are only

1.09% (4.71%).

In summary, V 3 is the most promising alternative. Since the results of V 3-1 are noticeably

better in terms of compactness, even if V 3-2 performs slightly better in terms of contiguity

and balance, the following tests use this approach whenever flex-zones are used.

4.4.2 Assignment of Basic Areas

This test focuses on the different concepts of assigning the basic areas located in the flex-

zone to the sub-problems. The concept flexca assigns each basic area to the sub-problem of

its closest basic area not located in the flex-zone. Equations (4.18) and (4.19) describe this

assignment formally. The concept flexca,i updates the sub-problems after each assignment,

whereas flexca always uses the initial sub-problems. The next concepts assign each basic

area to the sub-problem of the closest center of gravity. Equations (4.24) and (4.25) give

a formal description. Again, flexcog uses the initial centers of gravity, whereas flexcogi

updates these centers after each assignment. Finally, flexmd assigns each basic area to the

sub-problem where the furthest basic area is closer. Equations (4.26) and (4.27) provide the

corresponding assignment rule.

We apply V 3-2 to determine the flex-zone bounds, and we set meas1 = comp∗ and β1 = 1

again. Tables 4.5 and 4.6 state the corresponding results. First of all, comparing the results

for both variants of the assignment to the closest basic area, they are almost identical. Hence,

there is no advantage of updating the sub-problems incrementally.

The difference between the concepts flexca and flexcog is more significantly. The former

implies noticeably better results in terms of balance, whereas the latter performs noticeably

better in terms of compactness and slightly better in terms of contiguity. For example, for

PPS using the Moment of Inertia flexca evaluates 3.51 in terms of balance, whereas flexcog

evaluates 4.49. In terms of compactness, more precisely in terms of the Moment of Inertia,

the latter results in solutions that perform 5.19% better than reference solutions. In contrast

to this, the results of the former concept are only 4.09% better. Table 4.5 shows the same

observations for the further compactness measures. The solutions obtained for applying the

flexcog concept have an average (maximal) overlap of 0.005% (0.020%) compared to 0.090%

(0.428%) for applying the flexca concept. Hence, there is a trade-off between the different

optimization goals. If there is a focus on compactness the usage of flexcog is recommendable.

The results of flexcog and flexcogi are comparable. In terms of balance and contiguity the

differences are only minimal and it is ambiguous which one performs better. In terms of

compactness flexcog seems to be slightly better. However, for PPS using the Moment of
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Compactness
flex-zone

bal comp ctg
measure max ave moi wmoi pd wpd max ave

MoI flexca 3.51 1.94 −4.09 −4.14 −2.78 −2.54 0.428 0.090
MoI flexca,i 3.51 1.94 −4.09 −4.14 −2.78 −2.54 0.428 0.090
MoI flexcog 4.49 2.92 −5.19 −5.28 −3.44 −3.20 0.020 0.005
MoI flexcog,i 4.51 2.98 −5.22 −5.36 −3.44 −3.23 0.056 0.006
MoI flexmd 4.49 3.03 −5.04 −5.10 −3.45 −3.10 0.684 0.047

WMoI flexca 3.82 2.11 −3.97 −4.75 −2.68 −2.89 0.718 0.152
WMoI flexca,i 3.82 2.11 −3.97 −4.75 −2.68 −2.89 0.718 0.152
WMoI flexcog 4.72 3.12 −5.87 −6.48 −3.99 −3.98 0.107 0.006
WMoI flexcog,i 4.72 3.10 −5.68 −6.29 −3.89 −3.90 0.107 0.007
WMoI flexmd 4.72 3.12 −4.65 −5.33 −3.35 −3.35 0.073 0.012

PD flexca 3.97 2.09 −8.12 −8.25 −5.33 −4.99 0.718 0.172
PD flexca,i 3.97 2.09 −8.12 −8.25 −5.33 −4.99 0.718 0.172
PD flexcog 4.58 2.98 −8.74 −8.82 −6.05 −5.55 0.244 0.023
PD flexcog,i 4.65 3.02 −8.33 −8.49 −5.91 −5.41 0.300 0.023
PD flexmd 4.77 3.18 −7.68 −7.86 −5.64 −5.22 0.169 0.025

WPD flexca 3.77 1.93 −7.87 −8.85 −5.06 −5.48 0.665 0.176
WPD flexca,i 3.77 1.93 −7.87 −8.85 −5.06 −5.48 0.665 0.176
WPD flexcog 4.76 3.09 −9.26 −10.15 −5.87 −6.18 0.295 0.031
WPD flexcog,i 4.78 3.10 −9.31 −10.22 −5.89 −6.22 0.351 0.032
WPD flexmd 4.78 3.15 −8.63 −9.32 −5.74 −5.90 0.174 0.022

Table 4.5: Dataset PPS : Comparing assignment rules

compactness
flex-zone

bal comp ctg
measure max ave moi wmoi pd wpd max ave

MoI flexca 3.85 2.05 −1.53 −0.84 −2.60 −0.88 1.038 0.162
MoI flexca,i 3.85 2.05 −1.53 −0.84 −2.60 −0.88 1.038 0.162
MoI flexcog 4.59 2.87 −2.50 −1.87 −3.96 −1.56 0.504 0.019
MoI flexcog,i 4.59 2.85 −2.52 −1.81 −3.97 −1.53 0.504 0.021
MoI flexmd 4.60 2.88 −2.57 −1.72 −4.20 −1.53 1.193 0.067

WMoI flexca 3.95 2.08 0.33 −2.28 −1.04 −1.72 1.760 0.176
WMoI flexca,i 3.95 2.08 0.33 −2.28 −1.04 −1.72 1.760 0.176
WMoI flexcog 4.64 2.90 −0.53 −3.02 −2.59 −2.36 0.647 0.013
WMoI flexcog,i 4.63 2.90 −0.55 −3.04 −2.60 −2.37 0.647 0.018
WMoI flexmd 4.66 2.92 −0.45 −2.90 −2.71 −2.36 0.733 0.041

PD flexca 3.91 2.09 9.49 11.78 −4.18 3.74 1.136 0.183
PD flexca,i 3.91 2.09 9.49 11.78 −4.18 3.74 1.136 0.183
PD flexcog 4.51 2.73 7.55 9.43 −5.07 2.67 0.706 0.037
PD flexcog,i 4.52 2.74 7.55 9.43 −5.04 2.68 0.637 0.040
PD flexmd 4.62 2.86 7.13 9.65 −5.41 2.78 1.313 0.046

WPD flexca 3.91 2.09 0.23 −3.54 −1.54 −2.83 1.760 0.202
WPD flexca,i 3.91 2.09 0.23 −3.54 −1.54 −2.83 1.760 0.202
WPD flexcog 4.64 2.84 −0.85 −4.39 −2.88 −3.46 0.744 0.025
WPD flexcog,i 4.65 2.85 −0.81 −4.36 −2.87 −3.44 0.672 0.027
WPD flexmd 4.66 2.92 −0.69 −3.94 −3.08 −3.23 1.189 0.047

Table 4.6: Dataset ZCA: Comparing assignment rules
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Inertia, the solutions of flexcogi are marginally better. Hence, this test shows no advantage

of updating the centers of gravity after each assignment.

Finally, consider the flexmd concept. Usually, with respect to the balance its results are

slightly worse than the results of the flexcog concept. In terms of contiguity, its solution

tends to result in marginally worse evaluations. In total, the results of flexcog also seem

to be a little better in terms of compactness, even if there are some counterexamples. For

example, for ZCA and evaluating bisecting partitions by Pairwise Distances, the solutions

obtained by applying flexmd are 5.41% better according to the Pairwise Distances than the

reference solutions, whereas the solutions achieved by using flexmd are only 5.07% better.

In order to obtain compact districts, we advise the usage of the flexcog concept. Hence,

the following tests, unless stated otherwise, use this approach whenever flex-zones are used.

Nevertheless, the usage of flexmd is also possible, its solutions are only slightly worse. If

there is a higher focus on balance, we suggest to use the flexca concept. In principle, it

is also possible to combine different approaches. However, by doing so, the set of feasible

bisecting partitions in FBP increases, and, thus, the running time for evaluating all bisecting

partitions increases, too.

4.4.3 Bisecting Partitions

Now, this test compares the two approaches of generating bisecting partitions introduced

in Section 4.3.3. It includes line partitions, flex-zone partitions and a combination of them,

i.e., the set of bisecting partitions FBP contains line partitions as well as flex-zone parti-

tions. The flex-zone approach considered here uses the flexcog concept and defines LL and

LU according to V 3-1. Moreover, this test evaluates bisecting partitions only in terms of

compactness again.

Tables 4.7 and 4.8 report the results. For each compactness measure, the corresponding first

row shows the results for using line partitions exclusively, the second row for using flex-zone

partitions, while the third row states the results for using the combination of them.

Taking a look at the results, first of all, it is obvious that the balance is noticeably better

when using just line partitions. This is not surprising since line partitions focus on balance.

More surprising is the observation, that sometimes the compactness is also better when

using line partitions instead of flex-zone partitions. For example, for the Moment of Inertia

as applied compactness measure Table 4.7 states an improvement in terms of the Moment of

Inertia of 5.63% compared to the reference solution for using line partitions, while it depicts

an improvement of 5.19% for flex-zone partitions. A possible explanation is that in trying to

obtain more compact sub-problems, a flex-zone partition might exploit the allowed balance
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bisecting comp.
time

bal comp ctg

partition measure max ave moi wmoi pd wpd max ave

line MoI 58 0.80 0.29 −5.63 −5.61 −3.17 −2.94 0.000 0.000

flex-zone MoI 57 4.49 2.92 −5.19 −5.28 −3.44 −3.20 0.020 0.005

both MoI 58 4.38 2.68 −6.75 −6.77 −4.09 −3.92 0.057 0.003

line WMoI 49 0.72 0.28 −4.82 −5.57 −2.91 −3.18 0.000 0.000

flex-zone WMoI 48 4.72 3.12 −5.87 −6.48 −3.99 −3.98 0.107 0.006

both WMoI 50 4.68 3.00 −6.96 −7.61 −4.34 −4.54 0.181 0.006

line PD 3208 0.81 0.35 −7.82 −8.12 −5.24 −4.90 0.000 0.000

flex-zone PD 3056 4.58 2.98 −8.74 −8.82 −6.05 −5.55 0.244 0.023

both PD 6991 4.53 2.86 −8.33 −8.49 −5.91 −5.41 0.107 0.011

line WPD 3215 0.72 0.29 −9.06 −9.90 −5.27 −5.73 0.000 0.000

flex-zone WPD 2612 4.76 3.09 −9.26 −10.15 −5.87 −6.18 0.295 0.031

both WPD 6739 4.54 2.82 −11.20 −12.13 −6.66 −7.09 0.052 0.006

Table 4.7: Dataset PPS : Comparing bisecting partitions

bisecting comp.
time

bal comp ctg

partition measure max ave moi wmoi pd wpd max ave

line MoI 55 1.97 0.94 −3.03 −2.21 −2.93 −1.30 0.000 0.000

flex-zone MoI 56 4.59 2.85 −2.52 −1.81 −3.97 −1.53 0.504 0.021

both MoI 92 4.48 2.67 −3.90 −3.46 −3.98 −2.16 0.648 0.010

line WMoI 43 1.91 0.90 −0.68 −3.50 −1.20 −2.19 0.000 0.000

flex-zone WMoI 48 4.64 2.90 −0.53 −3.02 −2.59 −2.36 0.013 0.647

both WMoI 44 4.55 2.72 −1.52 −4.21 −2.74 −2.86 0.007 0.647

line PD 1405 1.91 0.93 9.55 11.46 −4.21 3.79 0.000 0.000

flex-zone PD 1223 4.51 2.73 7.55 9.43 −5.07 2.67 0.706 0.037

both PD 2612 4.41 2.52 7.68 9.10 −5.47 2.49 0.637 0.040

line WPD 1176 1.96 0.92 −0.56 −4.60 −1.43 −3.06 0.000 0.000

flex-zone WPD 1183 4.64 2.84 −0.85 −4.39 −2.88 −3.46 0.744 0.025

both WPD 2699 4.56 2.72 −1.69 −5.36 −3.27 −3.86 0.537 0.012

Table 4.8: Dataset ZCA: Comparing bisecting partitions
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(a) Dataset PPS (b) Dataset ZCA

Figure 4.7: Worse districts in terms of contiguity

deviation. As a result, usually, in subsequent sub-divisions the set of feasible flex-zone

partitions, where the choice is made from, is small and possibly of lower quality. However,

in general, the combination of both approaches outperforms line partitions as well as flex-

zone partitions in terms of compactness. For example, for ZCA and using the Weighted

Moment of Inertia as compactness measure, the combination evaluates −4.21 in terms of the

Weighted Moment of Inertia, compared to −3.02 for flex-zone partitions.

Solutions obtained by using line partitions exclusively are always contiguous. Comparing

the flex-zone approach and the combination, there is no clear trend which of them performs

better with respect to contiguity. The solutions are nearly non-overlapping in any case. For

example, Figure 4.7a shows the worst solution in terms of contiguity for PPS. It is generated

by flex-zones and Weighted Pairwise Distances and has an overlap of 0.295%. There is an

overlap between the red district and the blue district in the north. Moreover, there are small

overlaps in the south-west. Figure 4.7b depicts a bad solution for ZCA. Here, there are small

overlaps between the light blue and dark blue districts in the south and between the orange

and red districts in the north. The combination of flex-zone partitions and line partitions

using Pairwise Distances results in this solution. Its contiguity is 0.637%.

The results show similar running times for line partitions and flex-zone partitions. Sur-

prisingly, if the (Weighted) Moment of Inertia measures the compactness of the bisecting

partitions, the running times for combining the bisecting partition approaches are more or

less identical to them for using one of them exclusively. However, if the algorithm uses the
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(a) Basic version (b) Weighted Pairwise Distances (c) Flex-zone approach

Figure 4.8: Improvements compared to the basic version of the RPA

(Weighted) Pairwise Distances the running times for combining the approaches are notice-

ably larger.

Figure 4.8 illustrates the improvements of the RPA compared to the basic version introduced

by Kalcsics et al. [16]. First, Figure 4.8a depicts the solution of the basic version of the RPA

using line partitions and the length of intersection as compactness measure. It contains

some long-shaped districts like the blue one in the central region or the green one in the

west. Replacing the compactness measure by the Weighted Pairwise Distances results in the

solution depicted in Figure 4.8b. In terms of the Weighted Pairwise Distances this solution

is 21.13% better than the previous solution. The visual impression confirms this result since

the shapes are more squared. Combining line partitions and flex-zone partitions improves

the compactness again, but only slightly. Figure 4.8c presents a solution that is 0.5% better

than the solution before.

This test points out that using flex-zone partitions exclusively is not advisable. Compared to

line partitions, the results are noticeably worse in terms of balance, slightly worse in terms of

contiguity and not clearly improved with respect to the compactness. However, combining

both approaches improves the compactness values noticeably, and, hence, justifies the usage

of flex-zone partitions. Thus, we recommend the usage of the combination.

4.4.4 Compactness Measures

This experiment compares the different approaches for measuring the compactness of a

bisecting partition introduced in Section 4.3.5.2. These measures are the Length of In-

tersection, the (Weighted) Moment of Inertia, the (Weighted) Pairwise Distances, and the
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Maximum Distance. Let Sloi, Smoi, Swmoi, Spd, Swpd, Smd denote the corresponding solu-

tions.

Here these solutions are compared among each other in terms of different distance-based

compactness measures comp∗(S). As comp∗(S) are absolute measures, the test determines

the relative percentage deviation between two values, i.e., comp∗(S1)−comp∗(S2)
comp∗(S2)

. Hence, for a

positive (negative) deviation, the first solution S1 is less (more) compact than the second

solution S2. According to the results of the previous section this test combines line partitions

and flex-zone partitions.

Sloi Smoi Swmoi Spd Swpd

Smoi −6.75 0.00

Swmoi −6.96 0.99 0.00

Spd −8.33 −2.45 −3.28 0.0

Swpd −11.20 −4.59 −5.33 −2.00 0.00

Smd 1.31 8.74 7.88 11.65 14.19

(a) Instances PPS and compmoi(S)

Sloi Smoi Swmoi Spd Swpd

Smoi −6.77 0.00

Swmoi −6.48 0.32 0.00

Spd −9.20 −2.62 −2.81 0.0

Swpd −12.13 −5.57 −5.70 −2.76 0.00

Smd 1.26 8.65 8.51 11.78 15.47

(b) Instances PPS and compwmoi(S)

Sloi Smoi Swmoi Spd Swpd

Smoi −4.09 0.00

Swmoi −3.99 0.11 0.00

Spd −6.31 −2.29 −2.38 0.0

Swpd −6.66 −2.63 −2.71 −0.33 0.00

Smd 0.08 4.40 4.32 6.89 7.26

(c) Instances PPS and comppd(S)

Sloi Smoi Swmoi Spd Swpd

Smoi −3.92 0.00

Swmoi −3.98 −0.06 0.00

Spd −5.94 −2.09 −2.02 0.0

Swpd −7.09 −3.25 −3.17 −1.13 0.00

Smd 0.20 4.34 4.43 6.62 7.94

(d) Instances PPS and compwpd(S)

Sloi Smoi Swmoi Spd Swpd

Smoi 3.33 0.00

Swmoi 6.47 3.70 0.00

Spd 4.25 1.50 −1.03 0.0

Swpd 3.63 0.67 −1.84 −0.42 0.00

Smd −4.36 −6.55 −8.89 −7.55 −6.62

(e) Instances PPS and compmd(S)

Table 4.9: Dataset PPS : Average relative percentage deviations in terms of compactness

Tables 4.9 and 4.10 show the results, where the rows correspond to S1 and the columns to

S2. The entries are percentage values. For example, the entry −6.75 in the first row and first

column of Table 4.9a states that according to the Moment of Inertia the solution obtained

for using the Moment of Inertia as compactness measure for bisecting partitions is on average

6.75% better than the solution obtained for using the Length of Intersection.

Table 4.9a depicts that using (Weighted) Pairwise Distances leads to better results with



162 4 Recursive Partitioning Algorithm

Sloi Smoi Swmoi Spd Swpd

Smoi −3.90 0.00

Swmoi −2.06 2.54 0.00

Spd 7.68 12.17 9.74 0.0

Swpd −1.69 2.57 0.21 −6.47 0.00

Smd 2.06 6.57 4.24 −2.53 4.61

(a) Instances ZCA and compmoi(S)

Sloi Smoi Swmoi Spd Swpd

Smoi −3.46 0.00

Swmoi −4.21 −0.66 0.00

Spd 9.10 13.18 14.15 0.0

Swpd −5.36 −1.75 −0.87 −10.98 0.00

Smd 3.43 7.53 8.60 −2.22 10.29

(b) Instances ZCA and compwmoi(S)

Sloi Smoi Swmoi Spd Swpd

Smoi −3.98 0.00

Swmoi −2.74 1.34 0.00

Spd −5.47 −1.48 −2.38 0.0

Swpd −3.27 0.85 −2.71 2.57 0.00

Smd −2.29 1.92 4.32 3.64 5.55

(c) Instances ZCA and comppd(S)

Sloi Smoi Swmoi Spd Swpd

Smoi −2.16 0.00

Swmoi −2.86 −0.69 0.00

Spd 2.49 4.79 5.56 0.0

Swpd −3.86 −1.69 −0.97 −5.79 0.00

Smd 1.31 3.63 4.42 −0.63 5.55

(d) Instances ZCA and compwpd(S)

Sloi Smoi Swmoi Spd Swpd

Smoi 2.70 0.00

Swmoi 4.89 2.46 0.00

Spd 13.42 11.08 8.90 0.0

Swpd 6.97 4.66 2.63 −4.14 0.00

Smd −2.24 −4.24 −6.01 −12.17 −7.69

(e) Instances ZCA and compmd(S)

Table 4.10: Dataset ZCA: Average relative percentage deviations in terms of compactness

respect to compmoi than using the Moment of Inertia. Table 4.9b reports similar results

in terms of compmoi for using the Weighted Moment of Inertia. A possible explanation for

this fact is that the (Weighted) Moment of Inertia simplifies the computation of a bisecting

partition’s compactness by using just one representative center for each partition problem

instead of determining q centers. Unfortunately, the advantage in terms of compactness

comes along with noticeably larger running times. Hence, there is a trade-off between the

quality of a solution and the corresponding running time. However, Table 4.9a does not

report this effect. Table 4.9b depicts this effect for using Weighted Pairwise Distances,

however, it is significantly smaller. Possibly, the considerably higher range of the activities

for the ZCA instances influences this effect. Moreover, Tables 4.9a to 4.9d state similar results

for Smoi and Swmoi, whereas Tables 4.10a to 4.10d report larger differences. Furthermore, they

show a similar effect for Spd and Swpd, where the differences for ZCA are more significant. For

example, in terms of compwmoi the solution Spd is 14.15% worse compared to Swmoi, whereas

Spd is 0.87% better. Again, the higher range of the activities for ZCA is the probable

reason for this observation. As expected, the results for Smd are well in terms of compmd

(see Tables 4.9e and 4.10e). However, they are poor in terms of the other compactness
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measures. The results show that no compactness measure leads to good results in terms of

all compactness measures. Hence, the user should select the compactness measure depending

on the data set and on his preferences.

4.4.5 Varying Criteria Weights

The next test discusses the influence of the criteria weights of the ranking function rk defined

in Equation (4.28). It restricts itself to two criteria, namely balance and compactness. In

this case, the ranking function reduces to

rk(BP ) := β · bal(BP )− balmin

balmax − balmin
+ (1− β) · comp∗(BP )− compmin

∗
compmax

∗ − compmin
∗

. (4.29)

This test evaluates the changes of the evaluations in terms of the planning criteria for chang-

ing β in steps of 0.1. It chooses the combination of line partitions and flex-zone partitions

on ZCA exemplarily.
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Figure 4.9: ZCA: Using the Weighted Moment of Inertia: Varying β

Figure 4.9 illustrates the results in terms of balance, compactness and contiguity for using

the Weighted Moment of Inertia as compactness measure in rk. The solid line in Figure 4.9a

depicts the trend of the balance. For β = 0, i.e., evaluating the bisecting partitions only

in terms of compactness, as expected, the balance is close to the maximal feasible balance

of 5%. In the following, the balance decreases (becomes better) if β increases. The evolu-

tion of the compactness with respect to β behaves inversely. The dashed line depicts this
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Figure 4.10: ZCA: Using Pairwise Distances: Varying β

evolution. For β = 1 compactness is more than 50% worse compared to the reference so-

lution, and, hence, very poor. For purposes of presentability the scale on the compactness

axis varies. Figure 4.9b shows the corresponding evaluations in terms of contiguity. The

solid line illustrates the average contiguity, whereas the dashed line depicts the maximum

contiguity. Again, note the different scales, per mill for the average contiguity and percent

for the maximum contiguity. Mainly, the solutions taking only one criterion into account are

comparatively poor. Nevertheless, even these solutions are almost non-overlapping having

overlaps smaller than 1%.

Figure 4.10 shows the results for using the Pairwise Distances as compactness measure in

rk. Figure 4.10a shows the same trends in terms of balance and compactness as the example

before. Figure 4.10b depicts the evaluations in terms of contiguity. The solutions for β = 0

and β = 1 are comparatively poor again. However, there is no clear trend for varying β

between 0.1 and 0.9.

As expected, the choice of β influences the solutions in terms of balance, compactness,

and contiguity. Balance is decreasing in β, whereas compactness is increasing. In terms of

contiguity the extremal settings of β lead to comparatively bad results, whereas the trend for

the further settings is ambiguous. Setting β to about 0.5 appears to be a good compromise

between balance, compactness and contiguity.
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Figure 4.11: ZCA: Varying K

4.4.6 Varying Number of Search Directions

This test evaluates the influence of the number of search directions on quality and run-

ning time. It chooses the combination of line partitions and flex-zone partitions on ZCA

exemplarily and compares the results for setting K ∈ {4; 8; 12; 16; 20; 24; 28; 32}.

Figure 4.11 illustrates the evaluation in terms of compactness and balance for different com-

pactness measures and different criteria weights. For example, Figure 4.11a shows the results

for using the Weighted Moment of Inertia in order to evaluate bisecting partitions and setting

β = 0.5 according to Equation (4.29), i.e., balance and compactness are weighted equally.

Both balance (solid lines) and compactness (dashed lines) improve in K ∈ [4, 28]. Using

32 search directions leads to slightly worse results than using 28 directions. Unsurprisingly,
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Figure 4.12: ZCA: Varying K for β = 0

Figure 4.11c shows the same trend for using pairwise distances in order to measure the com-

pactness of bisecting partitions. Figure 4.11b and 4.11d illustrate the corresponding results

for β = 0, i.e., for evaluating bisecting partitions only in terms of compactness. In this

case, balance marginally increases (becomes worse) in K, whereas compactness decreases

in K ∈ [4, 16]. The trend in terms of compactness for more than 16 search directions is

ambiguous.

In terms of contiguity there is no obvious correlation between the number of search directions

and the maximal contiguity. Figure 4.12a shows the corresponding trends for using differ-

ent compactness measures for bisecting partitions and setting β = 0. Finally, Figure 4.12b

states the running time for using the Pairwise Distances. The running time increases (ap-

proximately) linearly in the number of search directions. This result confirms the theoretical

complexity analysis in Section 4.3.7.3.

This test shows that usually the quality of a solution increases in the number of search

directions up to 16. However, for larger settings of K the quality improves only marginally

whereas the running times increases linearly. Hence, there is a trade-off between quality and

running time.

4.4.7 Running Times

Table 4.11 shows the running times for the largest instances from PPS. It consists of 4971

basic areas that have to be divided in 46 districts.
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LoI MoI WMoI PD WPD

line 1 6 6 542 538

flex-zone 5 6 5 521 417

both 6 6 6 1267 1156

Table 4.11: Running times partitioning 4971 into 46 districts

Surprisingly, the running times of using flex-zone partitions exclusively are better than the

ones of using line partitions exclusively. Combining both approaches leads to larger sets

of feasible bisecting partitions, and, hence, to larger running times. As already reported

in Section 4.4.3 the running time of the RPA highly depends on the used compactness

measure. Using the (Weighted) Pairwise Distances needs noticeably more time to solve the

districting problem than using the (Weighted) Moment of Inertia. However, the results are

also noticeably better (cf. Section 4.4.4). Thus, there is a trade-off between running time

and solution quality, again.

However, since the RPA solves a strategical (or a tactical) problem, running times of about

20 minutes are still acceptable. Moreover, using parallelization techniques for solving the

different sub-problems may lead to a further reduction of the running times.

4.4.8 Network Distances

This section focuses on the integration of distances or travel times on a road network into

the RPA. For purposes of readability, the term “network distances” describes both distances

and travel times on a road network. The main advantage of network distances is that they

reflect geographic obstacles like rivers or mountains implicitly.

This test compares solutions generated by using network distances to those generated by

using Euclidean distances. Note that the used distance function has effects on different

parts of the RPA. First, the assignment decision for a basic area located in the flex-zone

depends on the distances to the basic areas of the left and right sub-problem. Second, the

evaluation of a bisecting partition in terms of compactness depends on the distances to the

basic areas of the same sub-problem.

Further note the technical details. This test combines line partitions and flex-zone partitions

and uses only compactness in order to evaluate a bisecting partition. The number of search

directions is 8. A bisecting partition’s compactness evaluation is based on network distances,

where the basic version of the RPA provides the reference solution.

Table 4.12 shows the results for road distances. The underlying set of instances consists of
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comp.
distances

bal comp (road distances) ctg

measure max ave moi wmoi pd wpd max ave

MoI road 4.31 2.52 −9.63 −9.40 −4.83 −4.50 0.101 0.021

MoI Euclidean 4.58 2.76 −9.73 −9.46 −5.83 −5.72 0.003 0.000

WMoI road 4.34 2.48 −8.48 −8.85 −3.97 −4.34 0.351 0.032

WMoI Euclidean 4.77 2.94 −9.47 −9.55 −5.55 −5.64 0.003 0.000

PD road 4.39 2.64 −15.19 −14.99 −8.48 −8.23 0.236 0.036

PD Euclidean 4.64 2.83 −13.53 −13.58 −7.90 −7.85 0.107 0.012

WPD road 4.42 2.74 −13.39 −13.59 −8.00 −8.14 0.236 0.042

WPD Euclidean 4.56 2.79 −12.80 −13.62 −7.72 −8.01 0.052 0.005

Table 4.12: The RPA applied with road distances

comp.
distances

bal comp (times) ctg

measure max ave moi wmoi pd wpd max ave

MoI times 4.48 2.51 −4.43 −4.67 −2.27 −2.13 0.206 0.035

MoI Euclidean 4.37 2.55 −5.98 −6.23 −4.06 −4.29 0.002 0.000

WMoI times 4.39 2.43 −1.86 −3.10 −0.74 −1.04 0.043 0.007

WMoI Euclidean 4.73 2.89 −7.08 −7.97 −4.41 −5.06 0.002 0.000

PD times 3.79 2.14 −9.26 −10.49 −5.45 −5.23 0.131 0.016

PD Euclidean 4.45 2.71 −4.36 −4.73 −4.08 −3.84 0.107 0.018

WPD times 4.16 2.51 −11.11 −12.78 −6.18 −6.84 0.106 0.015

WPD Euclidean 4.32 2.66 −7.74 −9.59 −5.15 −5.93 0.020 0.020

Table 4.13: The RPA applied with travel times

23 instances from PPS. Table 4.13 presents the results for travel times on a road network.

The use 12 instances are also from PPS. In addition, both tables show the results for using

Euclidean distances during the execution of the RPA, but evaluating the final solutions in

terms of network distances.

Both tables show similar results. Unfortunately, using Euclidean distances implies better

results than using network distances when the (Weighted) Moment of Inertia measures the

compactness of bisecting partitions. For example, the first and second row of Table 4.12

present the results for using the Moment of Inertia as compactness measure for bisecting

partitions. In terms of the Moment of Inertia, the first row states an improvement of 4.43%

compared to the reference solution for using road distances during the execution of the RPA.

However, for using Euclidean distances the second row depicts an improvement of 5.98%.

Most likely, the approximation of a sub-problem’s center is too rough. The corresponding

measure uses the basic area closest to the center of gravity as center. Unfortunately, this
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center is not necessarily close to the center based on network distances.

In terms of (Weighted) Pairwise Distances network distances outperform Euclidean distances.

However, Euclidean distances are a good approximation for road distances. For example,

in terms of Weighted Pairwise Distances Table 4.12 states a compactness value of 8.01 for

Euclidean distances and of a compactness value 8.14 for road distances.

In terms of balance road distances lead to slightly better results than Euclidean distances.

In contrast to this, the solutions for road distances are slightly worse with respect to the

contiguity, but still very well. Table 4.12 states a maximal contiguity of 0.351%.

In summary, this test shows the following: Although the RPA is a geometric approach, it is

able to handle network distances.
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4.5 Incorporating Prescribed Centers

In contrast to Section 4.3, sometimes, the planning process has to take a given set of fixed

districts’ centers CE into account, e.g., because they correspond to residences of service

persons or to locations of already existing branch offices which may not be changed.

In order to incorporate these centers into the RPA, this section addresses the districting

problem with prescribed centers. In this context, each district Dg := (Bg, ceng) contains a

set of basic areas Bg and exactly one center ceng ∈ CE. A possible interpretation of this

problem is that the basic areas must be allocated to the centers.

In this context, the most common way to measure compactness is to apply the (Weighted)

Moment of Inertia (cf. Equations (4.2) and (4.3)), where a district’s center corresponds to

its prescribed center. This leads to

compmoi(Dg) :=
∑

i∈Bg

d2(bi, ceng) (4.30)

and

compwmoi(Dg) :=
∑

i∈Bg

wi · d2(bi, cenun
g ) . (4.31)

Moreover, in the applications considered here, there are interactions between the basic areas

and the center within each district. For example, a service person has to visit its customers

periodically. Hence, this extension additionally incorporates the locations of the centers with

respect to their districts. However, often, there are several centers packed in a small area.

For example, in many real-world examples the service persons’ residences are concentrated

in urban regions, sometimes even at the same address, whereas there are only few residences

in rural regions. Hence, requiring each center to be located within its district would be too

prohibitive. Nevertheless, at best each center should be located within its district, but at

least closely to its district.

A compact solution is not necessarily a good solution with respect to this criterion. Fig-

ure 4.13 depicts an example where two centers (illustrated by squares) are (approximately)

located at the same address and three possible districting layouts. In terms of compactness

these solutions are (approximately) equivalent. Figure 4.13a shows an example where both

centers are located very closely to their corresponding districts. In contrast to this, the black

center in Figure 4.13b lies within its district, whereas the white center is (far) away from
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Figure 4.13: Different solutions for two centers located at the same address

its district. Figure 4.13c depicts an example where both centers are located within their

districts. However, this solution is very poor in terms of contiguity.

The aim of the districting problem with prescribed centers is the following: Partition all basic

areas BA into p := |CE| districts that are balanced, contiguous, non-overlapping, compact,

and assign exactly one center g ∈ CE to each district such that the center is located within

(or close to) the district. The extension presented here treats the latter as a soft and not

as a hard criterion. However, Section 4.5.6.1 presents how to handle this criterion as a hard

criterion.

4.5.1 Basic Definitions

First, this subsection adapts the definitions given in Section 4.3.1 to prescribed centers.

Definition 4.5.1 A partition problem PPc := (B, C) is the problem of sub-dividing a set

of basic areas B ⊆ BA and a set of centers C ⊆ CE, into 1 ≤ q = |C| ≤ p districts.

Definition 4.5.2 A bisecting partition BPc := (Bl, Br, Cl, Cr) of a partition problem is

defined by two sets Bl, Br ⊂ B such that Bl ∪ Br = B and Bl ∩ Br = ∅, and two sets

Cl, Cr ⊂ C such that Cl ∪ Cr = C and Cl ∩ Cr = ∅ as well as ql = |Cl| and qr = |Cr|.

4.5.2 Generating Bisecting Partitions

Second, this subsection explains how to generate bisecting partitions in the case of prescribed

centers. Let PPc = (B, C), ql, qr, LD, LU , and αk be given. Analogously to Section 4.3.3

bk1, b
k
2, . . . , b

k
n denote the sorted sequence of basic areas according to the angle αk. Moreover,

ck1, c
k
2, . . . , c

k
q denote the sorted sequence of centers according to αk. For purposes of simpli-

fication, bki (ckh) denotes the basic area (center) as well as its representative point. Without
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loss of generality, do not let two centers lie on a common line with respect to αk. In the

following, this subsection presents necessary modifications of line partitions and flex-zone

partitions in order to incorporate prescribed centers.

4.5.2.1 Line Partition

In order to derive a line partition, the RPA firstly determines a∗ according to Equation (4.13)

and sub-divides the set of basic areas into the subsets Bk
la∗

and Bk
ra∗

(cf. Equations (4.7) and

(4.8)). Secondly, it assigns the first ql elements of the sorted sequence of centers to the left

sub-problem and the remaining centers to the right sub-problem, i.e.,

Clql
:=
{

ck1; . . . ; c
k
ql

}

and

Crql
:=
{

ckql+1; . . . ; c
k
q

}

.

Altogether, the RPA generates the line partition LPc(k, a
∗, ql) := (Bk

la∗
, Bk

ra∗
, Clql

, Crql
).

Example 4.5.1 Let the basic areas BA and centers CE be given as specified in Table 4.14.

i 1 2 3 4 5 6 7 8 9 10

xi 0.5 1 2 2.5 3 3.5 4 4.5 5 5

yi 5 2 4 1 3.5 2.5 5.5 3 1.5 5

wi 5 3 4 4 4 6 3 5 7 9

(a) Basic areas BA

h I II III IV

xh 0.5 3 4 4.5

yh 2 1.5 4.5 1

(b) Centers CE

Table 4.14: Specification of the example depicted in Figure 4.14a

Figure 4.14a illustrates this example. Moreover, let ql = qr = 2. This implies w(B) = 50

and Wl = 25.

For α = π/2, i.e., a vertical line, sorting the basic areas leads to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

The sub-division of the basic areas results in Bl = {1; 2; 3; 4; 5; 6} and Br = {7; 8; 9; 10} since

a∗ = 6 (bka∗ = 6). The sorting of the centers results in I, II, III, IV . Since ql = 2 holds,

the RPA assigns the first two centers of this sequence to the left sub-problem. This implies

Clql
= {I; II} and Crql

= {III; IV }. Figure 4.14b depicts the resulting line partition.

For α = 0, sorting the basic areas results in 7, 1, 10, 3, 5, 8, 6, 2, 9, 4. Since a∗ = 5

(bka∗ = 5), the RPA sub-divides the basic areas into the subsets Bl = {7; 1; 10; 3; 5} and
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Figure 4.14: The line partition approach incorporating prescribed centers

Br = {6; 8; 2; 9; 4}. In this case, the sorted sequence of centers is III, I, II, IV , and, hence

Clql
= {III; I} and Crql = {II; IV }. Figure 4.14c shows that center I is located on the

“wrong” side of the bisecting line. In this case, I is said to lie outside its sub-problem.

4.5.2.2 Flex-Zone Partition

In order to obtain a flex-zone partition the RPA firstly determines l∗ and r∗ according

to Equations (4.16) and (4.17), and the induced sets Bll, Bfz and Brr. Next, it assigns

the centers to the sub-problems analogously to the line partition approach, i.e., Clql
:=

{ck1; . . . ; ckql} and Crql
:= {ckql+1; . . . ; c

k
q}. Finally, the RPA assigns each basic area of the flex-

zone to one of the sub-problems. In this case, each assignment is based on the distances to

the prescribed centers. More precisely, each basic area i ∈ Bfz is assigned to the sub-problem

that contains its closest center, i.e.,

Bl := Bll ∪
{

i ∈ Bfz

∣

∣

∣

∣

argmin
h∈C

di,h ∈ Clql

}

and

Br := Brr ∪
{

i ∈ Bfz

∣

∣

∣

∣

argmin
h∈C

di,h ∈ Crql

}

.

Note that Euclidean Distances as well as road distances are usable to determine the closest

center. Altogether, this approach results in FZPc(k, l
∗, r∗, ql) := (Bl, Br, Cl,ql , Cr,ql).

Example 4.5.1 (cont.) Consider the example illustrated in Figure 4.14a and specified

in Table 4.14. Moreover, let τ = 0.2. This results in LD = 10, UD = 15, LL = 20, and

LU = 30.
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Figure 4.15: The flex-zone partition approach incorporating prescribed centers

For α = π/2, the zones are induced by l∗ = 5, i.e., bkl∗ = 5, and r∗ = 7, i.e., bkr∗ = 7

since w({1; . . . ; 4}) = 16 < 20, w({1; . . . ; 5}) = 20 ≥ 20, w({1; . . . ; 7}) = 29 ≤ 30 and

w({1; . . . ; 8}) = 34 > 30. This leads to the zones Bll = {1; 2; 3; 4; 5}, Bfz = {6; 7} and

Brr = {8; 9; 10}. Figure 4.15a depicts these corresponding sets. Since ql = 2 holds, the

RPA sub-divides the centers into the sets Clql
= {I; II} and Crql

= {III; IV }. It holds that
argminh∈C d6,h = II ∈ Clql

and argminh∈C d7,h = III ∈ Crql
. Thus, the approach results in

FZPc(5, 7, 2) = ({1; 2; 3; 4; 5; 6}, {7; 8; 9; 10}, {I; II}, {III; IV }).
For α = 0, it holds that Bll = {7; 1; 10; 3}, Bfz = {5; 8}, Brr = {6; 2; 9; 4}, Cl = {III; I}
and Cr = {II; IV }. Concerning the flex-zone, it holds that argminh∈C d5,h = III ∈ Clql

and argminh∈C d8,h = III ∈ Clql
. Thus, this approach partitions the basic areas into the

subsets BPl = {7; 1; 10; 3; 5; 8} and BPr = {6; 2; 9; 4}. Figure 4.15b illustrates the resulting

sub-division.

4.5.3 Choosing a Bisecting Partition

This subsection focuses on the evaluation of bisecting partitions containing prescribed cen-

ters and illustrates the differences to the case without centers (cf. Section 4.3.5). In the

following, let a partition problem PPc = (B, C) and a corresponding bisecting partition

BPc = (Bl, Br, Cl, Cr) be given.

4.5.3.1 Evaluating Balance

Since |Cl| = ql and |Cr| = qr holds, the measure described in Section 4.3.5.1 is directly

applicable in order to evaluate the balance of a bisecting partition.
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4.5.3.2 Evaluating Compactness

The goal of the compactness evaluation of a bisecting partition is the approximation of

the compactness of the final solution for generating this bisecting partition. In the case

of prescribed centers, the compactness of a district is based on the distances between its

center and its allocated basic areas. In contrast to the general case (cf. Section 4.3.5.2), the

centers are prescribed and a compactness measure uses them directly. Hence, it makes use

of |C| = q centers instead of one center in order to approximate the compactness of (B, C).

The RPA provides two approaches to approximate the compactness considering prescribed

centers. The first one looks at the problem from the side of the basic areas and allocates each

basic area to its closest center. The second approach takes a contrary view on the problem

and determines for each center a balanced district around this center.

Weighted Moment of Inertia - Closest Assignment: In order to evaluate a partition

problem, the first measure computes for each basic area the distance to its closest center

within this partition problem and determines the sum of all basic areas, i.e.,

compwmoi−ca(PPc) :=
∑

i∈B
wi · d2(i, C) .

Obviously, compwmoi−ca(PPc) is a lower bound for the compactness of a partition problem

according to the Weighted Moment of Inertia since no further improvement by reassigning

basic areas is possible.

The compactness of a bisecting partition is the sum of the compactness values of its sub-

problems, i.e.,

compwmoi−ca(BPc) :=: compwmoi−ca(Bl, Cl) + compwmoi−ca(Br, Cr) .

The main drawback of this measure is the fact that a closest assignment is usually very

unbalanced. Hence, most likely the final solution does not assign many basic areas to the

district of their closest center, and, thus, this approximation is very rough. The following

example points out this issue.

Example 4.5.2 Figure 4.16a shows a set of basic areas and a set of centers. Assume an

activity of one for all basic areas. Figures 4.16b and 4.16c depict two possible bisecting

partitions BPc1 and BPc2. The solid lines illustrate the allocations considered according to

this measure, whereas the dashed lines depict the allocations of the final solution.

In terms of compwmoi−ca(·) BPc1 is evaluated with 22, whereas BPc2 with 28. Hence, accord-

ing to this measure the RPA should prefer BPc1. However, the final solution of the partition
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Figure 4.16: Illustration of compwmoi−ca(·)

problem depicted in Figure 4.16b results in 52 according to the Weighted Moment of Inertia,

whereas the final solution of the partition problem depicted in Figure 4.16c results in 40.

Hence, BPc2 induces a better final solution, although this measure prefers BPc1. For exam-

ple, for the upper sub-problem of BPc1, this measure allocates all basic areas to center II,

whereas the final solution allocates basic areas 3 and 4 to center IV and the corresponding

distances are noticeably larger than the distances to center II.

That means, most likely this measure allocates no basic area to a center that is located away

from the basic areas. In other words, such a center is not considered in order to approximate

the compactness at all. In order to overcome this drawback, the second measure considers

all centers anyway.

Weighted Moment of Inertia - Surrounding districts: The main idea of this measure is

the approximation of “good” districts in terms of compactness containing for each center

h ∈ C its closest basic areas within the same sub-problem. In order to do so, it includes

the closest basic areas as long as the sum of the corresponding activities does not exceed

the average activity within this partition problem. Let bh1 , b
h
2 , . . . , b

h
n be the sequence of basic

areas in B sorted in non-decreasing order according to their distances to h. Let ah be the

index, such that

w({bh1 ; . . . ; bhah}) ≤
w(B)

|C|

and

w({bh1 ; . . . ; bhah+1}) >
w(B)

|C| .
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Figure 4.17: Illustration of compwmoi−st(·)

Then,

compwmoi−st(PPc) :=















∑

h∈C

ah
∑

i=1

w(bhi ) · d2(bhi , h) if |C| > 1

∑

i∈B
wi · d2(i, C) if |C| = 1

defines the compactness of a partition problem. The compactness of a bisecting partition is

the sum of the compactness values of its sub-problems, i.e.,

compwmoi−st(BPc) := compwmoi−st(Bl, Cl) + compwmoi−st(Br, Cr) .

Example 4.5.2 (cont.) Consider the example illustrated in Figure 4.16a. Figures 4.17a

and 4.17b present the bisecting partitions BPc1 and BPc2 again. A solid line depicts the

allocations considered according to this compactness measure, whereas a dashed line depicts

the allocations of the final solution.

The compactness values in terms of compwmoi−st(·) are 46 for BPc1 and 34 for BPc2. Hence,

with respect to this measure the RPA prefers BPc2. In this case, applying this measure

results in the better solution compared to the approach before.

Unfortunately, this measure also has drawbacks. The main drawback is the fact that some

basic areas are allocated multiple times to centers, whereas others are not taken into account

at all. For example, in order to evaluate BPc1 depicted in Figure 4.17a, this measure considers

the basic areas 3 and 4 twice, whereas it does not consider the basic areas 1 and 2 at all.

However, there are also examples where the first measure performs better than the second.
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Remark 4.5.1 The result of compwmoi−st(·) is not necessarily a lower bound for the com-

pactness of a bisecting partition.

Since both measures have advantages and drawbacks, an obvious approach is to combine

them, e.g., by using a weighted sum of their (normalized) evaluation values. Section 4.5.7

will present computational results that confirm the quality of this combination.

4.5.3.3 Evaluating Center Location

At best, the center is a central point of the district. But, since this extension deals with

existing centers, it may generate solutions where centers lie at the border or even outside their

districts. A center’s location within the “wrong zone” of a sub-division, i.e., outside its sub-

problem, implies a center’s location outside its final district. Hence, this measure penalizes

a center in this case. In order to define the penalization, the measure distinguishes between

line partitions and flex-zone partitions. Without loss of generality, assume α = π/2.

Line Partition: Let a∗ be defined according to Equation (4.13). Formally, a center h of

the left (right) sub-problem lies outside the respective sub-problem if its x-value is greater

(smaller) than the x-value of bka∗ . In this case, the measure penalizes this center by the

distance from ch to the closest basic area within its sub-problem, i.e.,

loc(h) :=



















0 if (h ∈ Cl and xh ≤ xa∗) or (h ∈ Cr and xh ≥ xa∗)

d(ch, Bl) if h ∈ Cl and xh > xa∗

d(ch, Br) if h ∈ Cr and xh < xa∗

.

Example 4.5.1 (cont.) Consider the line partition depicted in Figure 4.14b. It locates

all centers within their sub-problems, i.e., loc(I) = loc(II) = loc(III) = loc(IV ) = 0. In

contrast to this, consider the line partition illustrated in Figure 4.14c. Here, center I lies

outside its sub-problem since it is assigned to the left sub-problem, but located to the right

of the bisecting line. Its closest basic area within the left sub-problem is basic area 3, and,

thus, loc(I) = d(I, 3) holds. Moreover, loc(II) = loc(III) = loc(IV ) = 0 holds since this

line partition locates centers I, II and III within their sub-problems.

Flex-Zone Partition: Let l∗ and r∗ be defined according to Equations (4.16) and (4.17). In

this case, a center h of the left (right) sub-problem is defined as outside its sub-problem if

its x-value is greater (smaller) than the x-value of bkr∗ (bkl∗). In other words, a center of the
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left (right) sub-problem is outside its sub-problem if it is located in the right (left) zone.

Again, its penalty value corresponds to the distance to its closest basic area within the same

sub-problem. Usually, a center located in the flex-zone is close to some basic areas also

located in the flex-zone. Hence, most likely these basic areas are assigned to the same sub-

problem. That is the reason why a center located in the flex-zone is not defined as outside

its sub-problem. This implies that the measure does not penalize this center. Altogether,

loc(h) :=



















0 (h ∈ Cl and xh ≤ xr∗) or (h ∈ Cr and xh ≥ xl∗)

d(ch, Bl) g ∈ Cl and xh > xr∗

d(ch, Br) g ∈ Cr and xh < xl∗

.

defines the measure.

Example 4.5.1 (cont.) Consider the flex-zone partition illustrated in Figure 4.15a. It

locates the centers I and II in the left zone, center III in the flex-zone and center IV in

the right zone. Hence, this measure penalizes none of these locations.

In contrast to this, consider Figure 4.15b. This flex-zone partition locates center I in the

right zone but assigns it to the left sub-problem. This implies loc(I) = d(I, 3). Moreover,

evaluating the further location leads to loc(II) = loc(III) = loc(IV ) = 0.

In order to evaluate a bisecting partition as a whole this measure uses the sum of the

evaluations of all centers, i.e.,

loc(BPc) :=
∑

h∈C
loc(h) .

4.5.4 Algorithm Overview

The solution approach incorporating prescribed centers is largely identical to the one for the

basic model described in Algorithm 4.3.2. Thus, this section restricts itself to the changes.

First, C, Cl, and Cr replace q, ql, and qr, respectively. Second, allocating each basic area to

its closest center generates the best possible solution with respect to compactness according

to Equation (4.30) or (4.31), respectively. The algorithm has an optional feature activated

by the flag useCloseAss that utilizes this fact. If this closest assignment induces a feasible

solution for a partition problem, this feature directly uses it. Thus, Algorithm 4.5.1 replaces

Step 2 compared to Algorithm 4.3.2.
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Algorithm 4.5.1: Extended Recursive Partitioning Algorithms

1 Input: Set of basic areas BA, set of centers CE, a set of measures MEA, set of approaches to
determine bisecting partitions PA, parameters τ , LD, UD, K, β1, . . . , β|MEA|, PPMax,

RelMax, useCloseAss.
...

2 if |C| = 1 then
Set S = S ∪ {(B,C)}, UPP = UPP\{PPc} and GOTO 5.

if (useCloseAss = true) and (pos(PP ) = 0) then
forall the h ∈ C do

Determine Bh :=

{

i ∈ B

∣

∣

∣

∣

∣

h = argmin
g∈C

d(bi, cg)

}

.

if (w(Bh) < LD) or (w(Bh) > UD) then GOTO 3.

end

forall the h ∈ C do
Set S = S ∪ {(Bh, h)}.

end

Set UPP = UPP\{PPc} and GOTO 5.

end
...

4.5.5 Complexity

This subsection analyzes the complexity of this extension. In particular, it focuses on the

changes compared to the general case (cf. Section 4.3.7).

For each partition problem and each search direction the sorted sequence of centers is com-

puted in O(|C| · log |C|) time. Hence, computing a line partition needs O(|B| · log |B|+ |C| ·
log |C|) time. However, since |C| < |B| holds, a line partition is computed in O(|B| · log |B|)
time. Computing a flex-zone partition requires O(|B| · log |B|+ |C| · log |C|+ |B| · |C|) time.

Since the flex-zone approach considers all distances between basic areas and centers in the

worst case and since |C| < |B| holds, the required time is O(|B| · (log |B|+ |C|)).
Evaluating balance still requires O(|B|) time, whereas evaluating compactness as well as

evaluating the centers’ locations needs O(|B| · |C|) time. Hence, generally generating and

evaluating one bisecting partition for one partition problem takes O(|B| · (log |B| + |C|))
time. Determining a closest assignment is in O(|B| · |C|).
Thus, solving a partition problem requires O(K · |B| · (log |B|+ |C|)) +K · logK) time.

The overall complexity of the algorithm is O(|C| · K · (|B| · (log |B + |C|)) + logK) since

p = |C|.
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Figure 4.18: Making an infeasible line partition feasible

4.5.6 Extensions

This subsection describes two possible extensions. The first one treats the location of the cen-

ters within their corresponding districts as a hard criterion and the second one incorporates

different capacities of the districts.

4.5.6.1 Center Location as a Hard Criterion

A possible extension requires that each center must lie within its district. Hence, each cen-

ter must already lie within its sub-problem (cf. Section 4.5.3.3). Consequently, a bisecting

partition is now infeasible if loc(BPc) > 0 holds. However, instead of discarding an infea-

sible bisecting partition right away, this extension tries to make it feasible by reassigning

some basic areas. Let a partition problem and the numbers ql and qr be given. Without

loss of generality, assume αk = π/2. In order to reassign some basic areas this extension

distinguishes line partitions and flex-zone partitions.

Line Partitions: Let a∗ be defined according to Equation (4.13). If xba∗ is smaller (greater)

than xcql
(xcql+1

), this extensions shifts all basic areas with xbi ≤ xcql
(xbi ≥ xcql+1

) from

Br (Bl) to Bl (Br). Figuratively spoken, it sweeps the line unless each center lies within

its sub-problem. Unfortunately, the resulting line partition may be infeasible in terms of

balance.

Example 4.5.1 (cont.) Consider the line partition depicted in Figure 4.18a. This line

partition locates center I outside its sub-problem. Hence, this extension sweeps the line such

that center I lies within its sub-problem afterwards. Figure 4.18b illustrates the resulting

line partition. In this case, the balance is noticeably worse.
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Flex-Zone Partitions: Let l∗ and r∗ be defined according to Equations (4.16) and (4.17).

If xcql
≤ xbr∗ and xcql+1

≥ xbl∗ , the flex-zone partition is feasible according to this criterion.

Otherwise, the extension redetermines l∗ and r∗ using the bounds LL and LU defined in

Equations (4.14) and (4.15), i.e., it allows the flex-zone to exploit the feasible deviation

completely. If xcql
> xbr∗ or xcql+1

> xbl∗ still holds, the extension discards this search

direction.

4.5.6.2 Capacities

In addition, capacities can be associated with the centers, e.g., some service persons work

full-time, whereas others work part-time. In this case, a solution is infeasible if it contains at

least one district having an activity that exceeds the capacity of the corresponding center.

However, a solution where some districts nearly exploit their capacities and some others are

almost empty is non-satisfying in terms of balance. Therefore, a solution is balanced if the

utilizations of all districts are nearly equal. Let

uti(Dg) :=
w(Bg)

capceng

be the utilization of Dg and

µut :=

∑

i∈BA

wi

∑

h∈Cl

caph

the average utilization. Moreover, let τut define the feasible deviation from µut, i.e., a feasible

district in terms of utilization satisfies the inequalities

µut − τut ≤ uti(Dg) ≤ max{µut + τut; 1} .

Consequently, the balance of a solution is the maximum deviation of one district from µut,

i.e.,

balut(S) := max
h=1,...,|C|

|uti(Dg)− µut| .

Accordingly, for line partitions the activity of the left sub-problem should result in

Wl,ut := w(BA) ·

∑

h∈Cl

caph

∑

h∈C
caph

.
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A feasible activity of a partition problem(B, C) satisfies the inequalities

(µut − τut) ·
∑

h∈C
caph ≤ w(B) ≤ max{µut + τut; 1} ·

∑

h∈C
caph .

Hence, accordingly, this extension adapts LL and LU .

4.5.7 Computational Results

The following tests are conducted on a dataset containing 44 instances provided by a project

partner. The basic areas correspond to locations of customers whereas the prescribed centers

correspond to the locations of salespersons. The number of basic areas ranges from 284

to 38667 while the number of prescribed centers varies from 2 to 160. These tests use a

combination of line and flex-zone partitions and the parameter settings τ = 0.05, K = 16,

PPMax = 10p, and RelMax = 3.

In order to obtain a lower bound for the compactness, for each instance a solution is used

where each basic area is assigned to its closest center, regardless of balance. For purposes

of comparability, the values of compwmoi are stated as relative percentage deviations from

the values of this closest assignment solution. The balance and contiguity is evaluated

analogously to Section 4.4. Moreover, locpo states the percentage of the centers located

outside the convex hull of their associated basic areas. Note that a center could be located

outside this convex hull, although it lies within the same sub-problem.

The first test addresses the two compactness measures presented in Section 4.5.3.2. In order

to compare them, only compactness is used when evaluating a bisecting partition.

comp. bal comp ctg loc

measure max ave wmoi max ave po

wmoi− ca 4.83 3.40 68.79 0.509 0.108 10.23

wmoi− st 4.84 3.32 89.46 0.797 0.083 11.03

combination 4.84 3.39 57.00 0.494 0.063 10.45

Table 4.15: Comparing different compactness measures

Table 4.15 compares the exclusive use of compwmoi−ca, the exclusive use of compwmoi−st, and

an equally weighted combination of them. The results confirm the theoretical thoughts of

Section 4.5.3.2. In terms of compactness the combined measure outperforms the single use

of one measure having a compactness value of 57.00% compared to 68.79% and 89.46%,

respectively. Also in terms of contiguity the combination is slightly better. In terms of
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balance and according to the number of centers located outside their districts the results are

comparable. Hence, this test points out that combining both approaches in order to measure

compactness is advisable.

The second test addresses the evaluation of a bisecting partition. In this case the ranking

function (cf. Equation (4.28)) consists of three parts: Balance (cf. Section 4.5.3.1), compact-

ness, and center location (cf. Section 4.5.3.3). For measuring compactness, following the

result of the previous test, the combination of both measures is applied.

criteria weights

balance
compact- center bal comp ctg loc

ness location max ave wmoi max ave po

closest assignment 82.35 29.86 0.00 0.00 0.00 0.00

0.00 1.00 0.00 4.84 3.39 57.99 0.494 0.063 10.45

0.00 0.75 0.25 4.85 3.37 57.61 0.345 0.051 8.13

0.00 0.50 0.50 4.84 3.37 59.03 0.345 0.054 7.22

0.00 0.25 0.75 4.84 3.37 59.76 0.345 0.055 6.94

0.25 0.75 0.00 0.37 0.15 74.75 0.582 0.035 12.40

0.25 0.50 0.25 0.34 0.12 75.42 0.183 0.009 10.17

0.25 0.25 0.50 0.28 0.11 78.58 0.129 0.010 9.88

0.50 0.50 0.00 0.27 0.10 78.68 0.588 0.020 12.78

0.50 0.25 0.25 0.22 0.09 79.75 0.288 0.009 9.79

0.75 0.25 0.00 0.19 0.08 81.58 0.609 0.020 13.76

Table 4.16: Varying the weights for evaluating a bisecting partition

Table 4.16 compares the results for varying the weights of these three criteria. In addition,

the first row of Table 4.16 states the evaluations of the closest assignment solutions. As

expected, these solutions are very unbalanced with an average value of 82.35% for balmax.

However, these solutions exhibit no overlap, i.e., ctg(S) = 0, and all centers are located

within their districts.

Unsurprisingly, in terms of balance the solution improves for increasing the corresponding

weight. Even setting this weight to 0.25 results in nearly perfectly balanced districts. Usually,

with respect to compactness an increase of the corresponding weight leads to better results.

However, ignoring balance but incorporating the center location by setting the corresponding

weight to 0.25 slightly improves the solution’s compactness compared to exclusively using

compactness. Since there is also an improvement in terms of the number of centers located

outside, it is recommendable to incorporate the center location criterion into the evaluation

of bisecting partitions.
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4.6 Incorporating Multiple Activity Measures

Some applications incorporate multiple activities, a = 1, . . . , |A|, for example both working

time and sales potential. Therefore, a solution should be balanced with respect to all activity

measures. In this case, the ranking function contains one balance measure for each activity.

Moreover, in order to treat balance as a hard criterion this extension needs a feasible devi-

ation τa for each activity. A solution is feasible if for each activity measure its balance is

feasible with respect to this deviation, formally, if

(1− τa) · µa ≤ wa(Bg) ≤ (1 + τa) · µa ∀ g = 1, . . . , p , a = 1, . . . , A

holds. In the following, this subsection presents the necessary modifications of line partitions

and flex-zone partitions in order to incorporate multiple activities. All over this section, let

βa be the user-given weight of bala in the ranking function.

4.6.1 Line Partition

In a first step, for each activity this extension determines the first line and the last line that

is feasible according to the corresponding balance measure. The determination is analogous

to the determination of the flex-zone bounds using Equations (4.14) and (4.15). Next, the

extension examines only those lines that are feasible according to all dimensions of activity

in more detail and evaluates their corresponding line partition by

balma(LP ) :=
A
∑

a=1

βa · bala(LP ) .

Finally, it chooses the best one according to balma(·).

4.6.2 Flex-Zone Partition

In order to obtain a flex-zone partition the extension determines the corresponding flex-zone

Ba
fz for each activity. Then, it computes the intersection of these flex-zones, i.e.,

Bma
fz :=

⋃

a=1,...,|A|
Ba

fz .

All basic areas left (right) to this zone are assigned to the left (right) zone. The assignment

of the basic areas of the flex-zone to the sub-problems works as before.
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Finally, consider the backtracking mechanism (cf. Section 4.3.6). If a relaxation is necessary,

the extension relaxes the bounds in increasing order of their corresponding weights in the

ranking function.



4.7 EMS Regions 187

4.7 EMS Regions

The topic of this section is an application in medical services. Emergency Medical Services

(EMS) are responsible for the treatment of medical emergencies as well as for the transport

of patients that need medical assistance during the transport. Usually, the latter are no

emergency but scheduled transports. In general, they are transports from a hospital, to a

hospital or between hospitals. In Germany these transports are organized or coordinated

by EMS regions. Since each coordination center plans the transports within its region, two

coordination centers have to coordinate a transport between two different EMS regions.

Hence, the handling of so-called cross-border transports is more difficult. Currently, there

is a discussion about the reorganization of these regions. Mainly, a reduction of the number

of regions in order to reduce costs is desired. For example, in Baden-Württemberg there is

a discussion to reduce the number of EMS regions from 34 to just 8.

The problem of reorganizing the EMS regions can be interpreted as a districting problem.

In this context the basic areas are cities. The EMS regions should be balanced, contiguous

and compact. Another goal is the minimization of the number of cross-border transports.

Since each hospital or ambulance station is located in a city, the transports are merged to

transports between basic areas. Let tij be the number of expected transports between the

basic areas i and j. The number of cross-border transports of a solution S results in

cbt(S) :=

p−1
∑

g=1

p
∑

h=g+1

∑

i∈Dg

∑

j∈Dh

tij .

The number of cross-border transports of a bisecting partition results in

cbt(BP ) :=
∑

i∈Bl

∑

j∈Br

tij .

This section outlines the necessary modifications according to the generation of bisecting

partitions. A more detailed presentation of this topic is given by Butsch et al. [5]. After

determining a bisecting line this extension applies a step that shifts basic areas between the

sub-problems in order to reduce the number of transports between them. Let LP init be the

bisecting partition induced by the determined line. This step is based on an algorithm of

Fiduccia and Mattheyses [7]. The main idea is to shift basic areas from Bl to Br or vice

versa. The goals of this step are the maintenance of the balance and the compactness of the

initial line partition and the similarity to the initial line partition. Hence, this step uses a

threshold τrcb for the balance and a maximum deviation of the Weighted Moment of Inertia
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(a) Current EMS regions of Baden-Würt-
temberg [5]

(b) Proposed EMS regions for Baden-Württemberg [5]

Figure 4.19: Applying the extended RPA

υrcb, i.e., a bisecting partition BP cur is feasible if

bal(BP cur) ≤ min{τ ; bal(LP init) + τrcb}

and

compwmoi(BP cur) ≤ compwmoi(LP
init) · (1 + υrcb).

In order to obtain a bisecting partition similar to the initial line partition this extension fixes

the centers of the sub-problems to those of the initial line partition. Moreover, it shifts each

basic area at most once. In each iteration and for each basic area unshifted yet, it determines

the change in the number of cross-border transports for shifting this basic area. Next, it

computes the best candidate for both sub-problems and implements it, even if this shifting

increases the number of cross border transports. Moreover, it stores the resulting bisecting

partition in a list of feasible bisecting partitions. The approach stops if the candidates of

both sub-problems induce an infeasible bisecting partition or if there is no unshifted basic

area anymore. Finally, it chooses the bisecting partition of the stored list with the minimal

number of cross-border transports.

Since we had no real world transport data, we approximated the number of transports

based on the population distribution and the distances between the basic areas, i.e., cities or

communities, and the surrounding hospitals. Figure 4.19a presents the current EMS layout
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of Baden-Württemberg consisting of 34 EMS regions. Figure 4.19b presents a proposal of

a new EMS layout consisting of 8 EMS regions resulting from the extended RPA. With a

maximum deviation of 3% from the average number of inhabitants, this layout is much more

balanced than the current layout, which has a deviation of up to 216%. Furthermore, based

on the assumptions the number of cross-border transports reduces by over 66%.
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4.8 Conclusions

This chapter has presented the Recursive Partitioning Algorithm, a geometric heuristic for

districting problems considering point represented basic areas. Such problems arise for ex-

ample in the context of service and sales districting or the design of pickup and delivery

districts. The original version of this heuristic proposed by Kalcsics et al. [16] sub-divides

the districting problem into smaller and smaller problems recursively by means of lines.

However, the original version has some weaknesses in terms of compactness. That is why

this chapter has enhanced this approach, for example by presenting a more flexible way of

sub-division by introducing a flex-zone. Moreover, it has improved the evaluation of bisecting

partitions in terms of compactness. In contrast to many other approaches, the RPA treats

both compactness and balance as a soft criterion. Hence, the user defines his preferences by

setting weights to these criteria. Tests on real-world data have confirmed the efficiency of

this approach and the suitability for an interactive use.

In addition, this chapter has shown how to incorporate network distances into the RPA,

although the RPA is a geometric approach. Moreover, it has presented some practical

extensions, for example the incorporation of prescribed centers or multiple activity measures.

Furthermore, an adaptation of the RPA in order to determine emergency medical service

regions has been presented.

A possible extension could be a more exact approximation of the induced routing times

for each sub-division. However, several different approaches would be necessary since the

routing depends on the visit frequency of the customers, for example.

Some of the enhancements, mainly some compactness approximations for bisecting parti-

tions, lead to an increase of the running times. Hence, some approaches to keep the running

times small are possible. Especially the usage of parallelization techniques could be promis-

ing because the unsolved sub-problems can be solved independently of each other.
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The RPA presented in Chapter 4 is based on a geometric divide and conquer approach. It

puts more emphasis on contiguity and balance than on compactness. Therefore, this chapter

introduces another geometric approach focusing on compactness. It can either be used as a

stand-alone algorithm or as a post-processing step applied to the solutions of the RPA.

The so-called Power Diagram Districting Algorithm (PDDA) is based on generalized Voronoi

Diagrams, or more precisely on Power Diagrams. For a given set of generator points a

Voronoi Diagram partitions an overall area into so-called Voronoi regions such that each

region contains all points that are closer to the corresponding generator than to any other

generator. A more detailed description of Voronoi Diagrams is given in Aurenhammer [1] or

Klein [7]. The usage of Voronoi Diagrams for districting has two main problems. On the one

hand Voronoi regions are not necessarily balanced. On the other hand, a Voronoi Diagram

needs a set of generators, and, thus, the algorithm has to specify this set. Here, it should

be noted that the location of the generators has a significant impact on the solution, that is

for example pointed out by Moreno-Regidor et al. [8]. Section 5.5.4 will present some results

confirming this point.

In order to overcome the first problem generalized Voronoi Diagrams such as weighted

Voronoi Diagrams can be used. Here, an additional weight is associated with each gen-

erator. This weight is multiplied with or added to the distances between the corresponding

generator and the points of the overall area. More details about generalized Voronoi Dia-

grams can be found in Aurenhammer [1]. A skillful determination of these weights helps

to obtain more balanced regions. Moreover, Power Diagrams are a variation of additively

weighted Voronoi Diagrams using squared Euclidean distances. In contrast to multiplica-

tively weighted Voronoi Diagrams, for additively weighted Voronoi Diagrams or Power Dia-

grams, respectively, the connectivity of the achieved regions is guaranteed.

The remainder of this chapter is organized as follows. The first section gives some definitions

concerning solutions and districts in the context of generalized Voronoi Diagrams. Then,

Section 5.2 reviews the literature on districting approaches based on generalized Voronoi

Diagrams. Section 5.3 presents our Algorithm in detail followed by a multi-start variant in

Section 5.4. After that, Section 5.5 presents the results of extensive computational tests that

confirm the suitability of the proposed approach. Finally, Section 5.6 outlines some possible

extensions. The chapter concludes with a summary and a short outlook.
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5.1 Basic Definitions

A Voronoi Diagram partitions all points of an overall area into regions. Throughout this

chapter, let G := {g1; . . . ; gp} denote a set of points in R
2, the so-called generator points or

generators for short.

Definition 5.1.1 A Voronoi Diagram consist of a set RV o
1 (G), . . . , RV o

p (G) of Voronoi re-

gions, where a Voronoi region RV o
h (G) is formally defined by

RV o
h (G) :=

{

x ∈ R
2 | d(x, gh) < d(x, gj) ∀j 6= h

}

.

However, in order to solve a districting problem only a predefined set of points has to

be partitioned, namely the set of points corresponding to basic areas. In the following,

this section gives some definitions of districts and solutions in the context of (generalized)

Voronoi Diagrams.

Definition 5.1.2 A Voronoi districting plan (VDP) SV o(G) := {DV o
1 (G); . . . ;DV o

p (G)} for

BA with respect to G is defined by

DV o
h (G) := {i ∈ BA | d(bi, gh) < d(bi, gj) ∀1 ≤ j, h ≤ p, j 6= h} ,

where DV o
h (G) is called Voronoi district (VD).

Figuratively spoken, each basic area is assigned to the district of its closest generator.

Throughout this section, we assume without loss of generality that no basic area has ex-

actly the same (weighted) distance to two or more generators. Therefore, each basic area is

assigned to exactly one district. This assumption can be made, because if there would be

more than one generator having the same distance, an assignment rule for equal distances

satisfying the criterion of exclusive and total assignment can be defined. Note that for a

given set of generators a VDP optimizes the sum of the (weighted) (squared) distances from

the basic areas to the corresponding generators. This is similar to the optimization of the

(Weighted) Moment of Inertia, a compactness measure defined in Section 3.3.5.1, differing

only in the fact that the centers are predefined here. However, a VDP has not to be balanced,

even empty VDs are possible.

Example 5.1.1 Let the set of basic areas specified in Table 5.1a and the set of generators

specified in Table 5.1b be given.
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i 1 2 3 4 5 6 7 8 9 10

xi 0.5 1 2 2.5 3 3.5 4 4.5 5 5

yi 5 2 4 1 3.4 2.5 5.5 3 1.5 5

wi 5 3 4 4 4 6 3 5 7 9

(a) Set of basic areas BA

h 1 2 3

xh 1 3 4

yh 3 2 4

(b) Set of generators G

Table 5.1: Specification of the example depicted in Figure 5.1

Figure 5.1a presents the resulting VDP. It illustrates basic areas as circles, whereas it illus-

trates generators by squares. For purposes of clarity, this figure depicts the convex hulls of

the basic areas comprising the districts additionally. The corresponding activities measures

are w(DV o
1 (G)) = 12, w(DV o

2 (G)) = 17 and w(DV o
3 (G)) = 21. Here, the average district

size is 16.67. Hence, the maximum percentage deviation is 28%, i.e., the solution is not well

balanced. Note that often a maximum balance of 5% or 10% is required.

A possible generalization of Voronoi Diagrams facilitating in order to obtain balanced solu-

tions are so-called multiplicatively weighted Voronoi Diagrams, where each generator has an

additional weight. Throughout this chapter, let V := {v(g1); . . . ; v(gp)} denote these weights.
In the case of multiplicatively weighted Voronoi Diagrams, these weights are non-negative,

i.e., v(gh) ∈ R+ ∀1 ≤ h ≤ p.

Definition 5.1.3 For BA, a multiplicatively weighted Voronoi districting plan (MWVDP)

SMV (G, V ) := {DMV
1 (G, V ); . . . ;DMV

p (G, V )} with respect to G and V is defined by

DMV
h (G, V ) := {i ∈ BA | v(gh) · d(bi, gh) < v(gj) · d(bi, gj) ∀ 1 ≤ j, h ≤ p j 6= h} ,

where DMV
h (G, V ) is called multiplicatively weighted Voronoi district (MWVD).

This approach differs from the former approach in the usage of weighted distances. The

weights control the spatial extension of the corresponding districts. The higher the weight

of a generator, the smaller the spatial extension of its district, as the following example

shows.

Example 5.1.1 (cont.) Let now the weights v(g1) = 1, v(g2) = 1 and v(g3) = 2 be given.

For basic area 5, d(5, g1) = 2.06, d(5, g2) = 1.5 and d(5, g3) = 1.12 holds. Incorporating the

generators’ weights leads to v(g2) ·d(5, g2) = 1.5 < v(g3) ·d(5, g3) = 2.24. Hence, basic area 5

is assigned to the district of generator g2, i.e., 5 ∈ DMV
2 (G, V ). Furthermore, in this case
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(d) MWVDP with V = {0.4; 1; 1}

Figure 5.1: Different (generalized) Voronoi districting plans

basic area 8 is also assigned to this district. Figure 5.1b illustrates the resulting MWVDP.

Here, the spatial extension of DMV
3 (G, V ) is noticeably smaller than the spatial extension of

DV o
3 (G) depicted in Figure 5.1a.

Therefore, in order to obtain a balanced solution, the weight of a generator has to be increased

if the size of its district is too large and it has to be decrease it if this size is too small.

Example 5.1.1 (cont.) Choosing the weights v(g1) = 1, v(g2) = 1.5, and v(g3) = 2 results

in the MWVDP presented in Figure 5.1c. Here, the district sizes are w(DWV
1 (G, V )) = 16,

w(DWV
2 (G, V )) = 17 and w(DWV

3 (G, V )) = 17. Hence, the maximum percentage deviation

from the average district size is only 4% now.
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(b) Multiplicatively weighted Voronoi Diagram
with V = {1; 2; 2}

Figure 5.2: Connectedness of (generalized) Voronoi Diagrams

However, multiplicatively weighted Voronoi Diagrams have one main drawback. The ob-

tained regions are not necessarily connected. Figure 5.2a depcits a Voronoi Diagram for

three generators. Assume v(g1) = 1, v(g2) = 2, and v(g3) = 2. Figure 5.2b illustrates the

resulting multiplicatively weighted Voronoi Diagram. In this case, the Voronoi region corre-

sponding to generator v1 is not connected. Thus, this approach may generate a MWVDP

that is very poor in terms of contiguity.

Example 5.1.1 (cont.) Let v(g1) = 0.4, v(g2) = 1, and v(g3) = 1. Figure 5.1d depicts the

resulting MWVDP. In this case, basic area 9 is assigned to the district of generator g1. The

distances from 9 to the generators are d(9, g1) = 4.27, d(9, g2) = 2.06 and d(9, g3) = 2.69.

Thus, v(g1) · d(9, g1) = 1.71 is smaller than v(g2) · d(9, g2) = 2.06 and v(g3) · d(9, g3) = 2.69.

Note that DMV
2 (G, V ) contains only one basic area, namely basic area 6. Obviously, basic

area 6 is located inside (the convex hull of) DMV
1 (G, V ). Hence, according to the criterion

of contiguity, this result is not sufficient.

Additively weighted Voronoi Diagrams overcome this drawback. Here, negative weights of

the generators are also possible, i.e., v(gh) ∈ R ∀1 ≤ h ≤ p.

Definition 5.1.4 For a set of basic areas BA, an additively weighted Voronoi districting

plan (AWVDP) SAV (G, V ) := {DAV
1 (G, V ); . . . ;DAV

p (G, V )} with respect to G and V is

defined by

DAV
h (G, V ) := {i ∈ BA | d(bi, gh) + v(gh) < d(bi, gj) + v(gj) ∀1 ≤ j, h ≤ p, j 6= h} ,

where DAV
h (G, V ) is called additively weighted Voronoi district (AWVD).
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Unfortunately, also an AWVD can be empty. Assume the condition vh > vj + d(gh, gj)

holds. This implies vj + d(bi, gj) < vh + d(bi, gh) ∀i ∈ BA, i.e., no basic area is assigned to

the district of generator gh.

Additively weighted Voronoi approaches in the context of districting have the aim to find

an AWVDP that is feasible in terms of balance and minimizes the additively weighted sum

of distances from the basic areas to the corresponding generators. In order to find a feasible

solution, analogously to the multiplicatively case, additively weighted Voronoi approaches

increase (decrease) the weight of a generator if the size of the corresponding district is too

large (small).

Example 5.1.1 (cont.) For choosing v(g1) = 0, v(g2) = 1, and v(g3) = 1.5, the resulting

AWVDP is also the one illustrated in Figure 5.1c.

Fortunately, for additively weighted Voronoi diagrams the obtained regions are guaranteed

to be connected as long as Euclidean distances are used. The following lemma and the

related proof are based on Sharir [12].

Lemma 5.1.1 For Euclidean distances and given generators G and weights V , each region

defined by RAV
h (G, V ) := {x ∈ R

2 | d(x, gh) + v(gh) < d(x, gj) + v(gj) ∀j 6= h} is connected.

Proof

Let x1 ∈ RAV
h (G, V ), and, hence, x1 /∈ RAV

j (G, V ) ∀j 6= h. Choose an arbitrary point x2

located on the segment gh, x1.

Assume that x2 /∈ RAV
h (G, V ): Hence, it has to exist another region containing x2, i.e.,

x2 ∈ RAV
j (G, V ), j 6= h .

According to the triangle inequality d(x1, gj)+w(gj) < d(x1, x2)+d(x2, gj)+v(gj) holds. Since

x2 ∈ RAV
j (G, V ) and x2 /∈ RAV

h (G, V ) holds, the inequality d(x2, gj)+v(gj) < d(x2, gh)+v(gh)

holds. Furthermore, since x2 is located on the segment ghx1, d(x1, x2) + d(x2, gh) equals

d(x1, gh). Take these considerations together:

d(x1, gj) + v(gj) ≤ d(x1, x2) + d(x2, gj) + v(gj)

< d(x1, x2) + d(x2, gh) + v(gh)

= d(x1, gh) + v(gh)
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Figure 5.3: Convexity of generalized Voronoi Diagrams

This means that x1 ∈ V AV
j (G, V ) contradicting the assumption.

Thus, each point on a segment between the generator and an arbitrary point of its region

has to be in its region, too. Thus, the region is connected. 2

Unfortunately, V AV
h (G, V ) is not necessarily convex. For example, Figure 5.3a depicts two

generators having the weights v(g1) = 1 and v(g2) = 0. Obviously, V AV
2 (G, V ) is not convex.

Concerning the districting problem, this observation implies that an achieved solution is not

necessarily contiguous according to the definition introduced in Section 2.2.4. Nevertheless,

the computational results in Section 5.5.8 will show that the solutions are quite acceptable

in terms of contiguity. In order to ensure a contiguous solution, i.e., ctg(S) = 0, a variation

of additively weighted Voronoi Diagrams can be used, the so-called Power Diagrams.

Definition 5.1.5 For a set of basic areas BA, a Power Diagram districting plan (PDDP)

SPD(G, V ) := {DPD
1 (G, V ); . . . ;DPD

p (G, V )} with respect to the generators G and V is de-

fined by

DPD
h (G, V ) :=

{

i ∈ BA
∣

∣ d2(bi, gh) + v(gh) < d2(bi, gj) + v(gj) ∀1 ≤ j, h ≤ p, j 6= h
}

,

where DPD
h (G, V ) is called Power Diagram district (PDD).

The main difference to the approach before is the usage of squared distances instead of

single distances. In the context of districting, a Power Diagram approach has the goal to

find the feasible solution minimizing the sum of squared distances from the basic areas to

the corresponding generators. This goal can be interpreted as minimizing the (Weighted)

Moment of Inertia (cf. Section 3.3.5.1) with predefined centers. There is a pleasant side-effect
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for Euclidean distances: If the number of basic areas is equal for every district, minimizing the

sum of squared distances from the basic areas to the corresponding generators is equivalent

to minimizing the sum of squared pairwise distances between the basic areas of the same

district. The following lemmata and the related proofs follow Fryer Jr. and Holden [3].

Lemma 5.1.2 Consider Euclidean distances: If |Dh| = |BA|
p

∀1 ≤ h ≤ p holds, minimizing

evspd(S) is equivalent to minimizing evmoi(S), with

evspd(S) :=
∑

Dh∈S

∑

i∈Dh

∑

j∈Dh

d2i,j and evmoi(S) :=
∑

Dh∈S

∑

i∈Dh

d2(bi, ch) ,

where ch := (chx, chy) :=

( ∑

i∈Dh

xi

|Dh| ,

∑

i∈Dh

yi

|Dh|

)

.

Proof

The proof shows that

∑

Dh∈S

∑

i∈Dh

∑

k∈Dh

d2i,k = 2 · |BA|
p

·
∑

Dh∈S

∑

i∈Dh

d2(bi, ch)

holds. Since 2 · |BA|
p

is a positive constant factor, minimizing evspd(S) is equivalent to mini-

mizing evmoi(S).

∑

Dh∈S

∑

i∈Dh

∑

j∈Dh

d2i,j

=
∑

Dh∈S

∑

i∈Dh

∑

j∈Dh

(

x2
i − 2 · xi · xj + x2

j + y2i − 2 · yi · yj + y2j
)

=
∑

Dh∈S

[

∑

i∈Dh

∑

j∈Dh

(x2
i+y2i )+

∑

i∈Dh

∑

j∈Dh

(x2
j+y2j )−

∑

i∈Dh

∑

j∈Dh

(2·xi·xj)−
∑

i∈Dh

∑

j∈Dh

(2·yi·yj)

]

=
∑

Dh∈S

[

|Dh|·
∑

i∈Dh

(x2
i+y2i )+|Dh|·

∑

j∈Dh

(x2
j+y2j )−

∑

i∈Dh

(2·xi·
∑

j∈Dh

xj)−
∑

i∈Dh

(2·yi·
∑

j∈Dh

yj)

]

=
∑

Dh∈S

[

2 · |Dh| ·
∑

i∈Dh

(x2
i + y2i ) +

∑

i∈Dh

(2 · xi · chx · |Dh|)−
∑

i∈Dh

(2 · yi · chy · |Dh|)
]

=
∑

Dh∈S

[

2 · |Dh| ·
∑

i∈Dh

(

x2
i + y2i

)

+ 2 · |Dh| ·
∑

i∈Dh

(xi · chx)− 2 · |Dh| ·
∑

i∈Dh

(yi · chy)
]

=
∑

Dh∈S

[

2 · |Dh| ·
∑

i∈Dh

(

x2
i + y2i − xi · chx − yi · chy

)

]
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=
∑

Dh∈S

[

2 · |Dh| ·
∑

i∈Dh

(

x2
i + y2i − 2 · xi · chx − 2 · yi · chy + xi · chx + yi · chy

)

]

=
∑

Dh∈S

[

2·|Dh|·
∑

i∈Dh

(x2
i+y2i −2·xi·chx−2·yi·chy)+2·chx·|Dh|·

∑

i∈Dh

(xi)+2·chy ·|Dh|·
∑

i∈Dh

(yi)

]

=
∑

Dh∈S

[

2 · |Dh| ·
∑

i∈Dh

(x2
i + y2i − 2 · xi · chx − 2 · yi · chy) + 2 · c2hx · |Dh|2 + 2 · c2hy · |Dh|2

]

=
∑

Dh∈S

[

2 · |Dh| ·
∑

i∈Dh

(

x2
i + y2i − 2 · xi · chx − 2 · yi · chy

)

+ 2 · |Dh| ·
∑

i∈Dh

(

c2hx + c2hy
)

]

=
∑

Dh∈S

[

2 · |Dh| ·
∑

i∈Dh

(

x2
i + y2i − 2 · xi · chx − 2 · yi · chy + c2hx + c2hy

)

]

=
∑

Dh∈S

[

2 · |Dh| ·
∑

i∈Dh

d2(bi, ch)

]

= 2 · |BA|
p

·
∑

Dh∈S

∑

i∈Dh

d2(bi, ch)

2

Note that |Dh| = |BA|
p

is a necessary precondition, i.e., if this condition is not satisfied, the

minimization of the functions evspd(S) and evmoi(S) are not equivalent.

Example 5.1.2 Assume four basic areas represented by the points b1 = (0, 0), b2 = (0, 1),

b3 = (0, 2) and b4 = (1, 1). For p = 2 there are seven possible solutions.

D1 D2 evmoi evspd

S1 {1} {2; 3; 4} 1.33 8

S2 {2} {1; 3; 4} 2.67 16

S3 {3} {1; 2; 4} 1.33 8

S4 {4} {1; 2; 3} 2.00 12

S5 {1; 2} {3; 4} 1.50 6

S6 {1; 3} {2; 4} 2.50 10

S7 {1; 4} {2; 3} 1.50 6

Table 5.2: Solutions of Example 5.1.2

Table 5.2 states these solutions and their evaluations in terms of evmoi(S) and evspd(S).

Obviously, there are two optimal solutions in terms of evspd(S), namely S5 = {{1; 2}; {3; 4}}
and S7 = {{1; 4}; {2; 3}} resulting in an evaluation value of 6. However, the optimal solutions
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in terms of evmoi(S) are S1 = {{1}; {2; 3; 4}} and S3 = {{3}; {1; 2; 4}}. The corresponding

evaluation value is 1.33.

If the set of feasible solutions is restricted to those satisfying |D1| = |D2| = 2, the set

of feasible solutions contains only the solutions S5, S6, and S7. In this case, the optimal

solutions in terms of evmoi(S) are S5 and S7. Hence, for requiring this restriction, the

optimal solutions in terms of evspd(S) and evmoi(S) are equal, as has been proven above.

However, if a solution is balanced the hope is that the number of basic areas per district is

approximately equal too. Then, the solution obtained by a Power Diagram approach is also

well in terms of the Squared Pairwise Distances, and, hence, very likely also in terms of the

Pairwise Distances described in Section 3.3.5.2.

Finally, the following lemmata addresses Power Diagrams in terms of connectivity and con-

vexity. Let RPD
h (G, V ) := {x ∈ R

2 : d2(x, gh) + w(gh) < d2(x, gj) + w(gj) ∀j 6= h} be the

Power Diagram region of generator gh. For Euclidean distances the Power Diagram regions

of two generators are divided by a line, and, hence, each Power Diagram region is convex.

This implies that a PDDP is always contiguous.

Lemma 5.1.3 Consider Euclidean distances: Two neighbored Power Diagram regions are

separated by a line.

Proof

Let g1 := (g1x, g1y) and g2 := (g2x, g2y) be the generators of two neighbored regions. A point

p := (x, y) is located on the border between the regions of g1 and g2 if and only if

d2(p, g1) + w(g1) = d2(p, g2) + w(g2) (5.1)

holds. Thus, in the next step, the proof validates that Equation (5.1) induces a line:

d2(p, g1) + v(g1) = d2(p, g2) + v(g2)

⇔ (x− g1x)
2 + (y − g1y)

2 + v(g1) = (x− g2x)
2 + (y − g2y)

2 + v(g2) (5.2)

⇔ − 2 · x · g1x + g21x − 2 · y · g1y + g21y + v(g1)

= −2 · x · g2x + g22x − 2 · y · g2y + g22y + v(g2)

⇔ y · (2 · g2y − 2 · g1y) = x · (2 · g1x − 2 · g2x)− g21x − g21y − v(g1) + g22x + g22y + v(g2)

⇔ y = x ·
(

g1x − g2x
g2y − g1y

)

+
−g21x − g21y − v(g1) + g22x + g22·y + v(g2)

2 · g2y − 2g1y
(5.3)
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Equation (5.3) defines a line since the two fractions are constants. For the sake of complete-

ness regard the case where g2y = g1y holds, and, hence, (y − g2y)
2 = (y − g1y)

2 holds:

(5.2) ⇔ − 2 · x · g1x + 2 · x · g2x = −g21x − v(g1) + g22x + g22y + v(g2)

⇔ x =
−g21x − v(g1) + g22x + g22y + v(g2)

2 · g2x − 2 · g1x
, (5.4)

i.e., the regions are divided by a vertical line, defined as in Equation (5.4). 2

Lemma 5.1.4 If Euclidean distances are used, for given G and V each Power Diagram

region is convex.

Proof

Let x1, x2 ∈ RPD
h (G, V ) and l(h, j) be the line separating RPD

h (G, V ) from RPD
j (G, V ) for

an arbitrary j 6= h. The assumption x1, x2 ∈ RPD
h (G, V ) implies that x1 and x2 are not

located on l(h, j). Thus, the segment x1, x2 is not a pitch line of l(h, j). Hence, there is at

most one point of intersection between l(h, j) and x1, x2. However, if there exists a point of

intersection, x1 and x2 have to be located on different sides of l(h, j) contradicting that both

points are elements of RPD
h (G, V ). Hence, there is no point of intersection, and this implies

that the whole segment x1, x2 is located on the same side of l(h, j), i.e., for all points x∗ of

x1, x2 the inequality d2(x∗, gh)+v(gh) < d2(x∗, gj)+v(gj) holds. This argumentation is valid

for every j 6= h. This implies x∗ ∈ RPD
h (G, V ), and, hence, RPD

h (G, V ) is convex. 2

Example 5.1.3 Recall Figure 5.3b. It depicts two generators g1 and g2. The corresponding

weights are v(g1) = 1 and v(g2) = 0. Obviously, the Power Diagram regions RPD
1 (G, V ) and

RPD
2 (G, V ) are divided by a (vertical) line and both regions are convex.

Hess et al. [5] apply the Weighted Moment of Inertia (cf. Section 3.3.5.1) in order to evaluate

a districting plan in terms of compactness. Therefore, the following definition introduces an

adapted version of Power Diagrams considering the activities of the basic areas:

Definition 5.1.6 For a set of basic areas BA, a weighted Power Diagram districting plan

(WPDDP) SWPD(G, V ) := {DWPD
1 (G, V ); . . . ;DWPD

p (G, V )} with respect to G and V is

defined by

DWPD
h (G, V ) :=

{

i ∈ BA
∣

∣wi · d2(bi, gh) + w(gh) < wi · d2(bi, gj) + w(gj) ∀1 ≤ j, h ≤ p, j 6= h
}

,

where DWPD
h (G, V ) is called weighted Power Diagram district (WPDD).
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Unfortunately, by including the activities, the described properties in terms of convexity,

connectivity and contiguity are not valid anymore.

Example 5.1.4 Assume a small example with two generators and three basic areas, all

located on one line. Let the generators g1 = (0, 0) and g2 = (10, 0) with v(g1) = 0 and

v(g2) = 150 and the basic areas b1 = (4, 0), b2 = (6, 0), and b3 = (8, 0) with w1 = 1, w2 = 10,

and w3 = 2 be given.

Since 1 · 42 + 0 = 16 < 1 · 62 + 150 = 186 and 2 · 82 + 0 = 128 < 2 · 22 + 150 = 158 holds, b1

and b3 are assigned to the district of g1. However, b2 is assigned to the district of g2 since

10 ·62+0 = 360 > 10 ·42+150 = 310 holds. Hence, the obtained WPDDP is not contiguous.

Since the various definitions introduced in this section are all based on distances between the

generators and the basic areas, the usage of street distances or travel times is straightforward.

However, in this case, the described properties in terms of connectivity or contiguity are not

necessarily valid any more.
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5.2 Literature Review

To the best of our knowledge, there are only a few approaches using Voronoi Diagrams in

the context of districting.

Galvão et al. [4] address a parcel delivery problem and propose a multiplicatively weighted

Voronoi approach. They assume an existing delivery pattern and define for each district the

center of gravity as a generator. The obtained set of generators is fixed during the whole

procedure, while the corresponding weights are updated in each iteration. Their update rule

includes for each district its total cargo, its total working time including the travel time from

the depot to this district, and the approximated travel time within this district.

Novaes et al. [9] continue this work while studying the applicability of (generalized) Voronoi

approaches on location-districting problems. They propose a Power Diagram approach and

integrate obstacles by re-defining the distance between a point and a generator. In their

approach, this distance is the shortest distance not traversing these obstacles.

Ricca et al. [11] apply multiplicatively weighted Voronoi Diagrams in order to solve political

districting problems. In a first step, they locate the generators and fix them. In each further

step, they update the distances between the generators and the basic areas depending on

the population within the corresponding districts. Moreover, by means of a neighborhood

graph they ensure connectedness.

Moreno-Regidor et al. [8] solve districting problems by applying an additively weighted

Voronoi approach. They also assume prescribed generators. Each iteration updates the

weights of the generators considering the current sizes of the districts. However, they con-

clude that the locations of the generators have a great impact on the resulting solution.

In contrast to other approaches, for each generator the required size of the corresponding

district can be defined separately, i.e., the districts are actually not balanced.

Finally, Fryer Jr. and Holden [3] focus on the problem of measuring compactness. They

propose a relative measure that determines the ratio between the compactness of a solution

and the optimal compactness for the same set of basic areas, where compactness is evaluated

in terms of Squared Pairwise Distances. Since it is NP-hard to derive the optimal compact-

ness, they propose an approximation approach based on Power Diagrams. This approach

determines the initial set of generators depending on a current solution, but in contrast to

other approaches it does not fix their locations. Therefore, this approach is a two-stage

iterative procedure where one stage relocates the generators and the other stage updates the

weights of the generators.
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5.3 The Algorithm Framework

After giving some basic definitions and reviewing the literature, this section presents our al-

gorithm framework based on generalized Voronoi Diagrams. The underlying model is already

presented in Section 4.2. Like the approach of Fryer Jr. and Holden [3] this approach is a

two stage iterative procedure. Since the quality of a districting plan based on (generalized)

Voronoi Diagrams highly depends on the generators’ locations, this algorithm does not fix

these locations, but updates them during each main-iteration. Moreover, each main-iteration

executes an iterative sub-process in order to determine a feasible solution. Therefore, each

sub-iteration updates the weights of the generators followed by the computation of a new

solution. This sub-process stops if the computed solution is feasible, i.e., the balance is

smaller than or equal to a given threshold µ. Since there is no guarantee to find a feasible

solution at all, a user-given parameter itsubmax limits the number of executed sub-iterations.

After determining a new feasible solution, the next main-iteration determines new generators

based on this solution. The algorithm stops, when one of the following conditions holds:

• There is no improvement in terms of an evaluation function.

• There is no feasible solution after the execution of a main-iteration.

• A maximum number of executed main-iterations itmain
max is reached.

Algorithm 5.3.1 outlines the general framework.

Algorithm 5.3.1: Algorithm Framework for Voronoi Based Districting Approaches

Input: Set of basic areas BA, number of districts p, parameters itsubmax, it
main
max .

Output: Districting plan S.

1 Initialize G, Scur, Sbest and set itmain
count := 0.

2 repeat
3 Set Slast := Scur, V := {0; . . . ; 0}, itsubcount := 0.
4 Determine Scur depending on G and V .

5 while
[

itsubcount < itsubmax

]

AND [Scuris not feasible] do
6 Update V depending on Scur and G.
7 Determine Scur depending on G and V .
8 Set itsubcount = itsubcount + 1.

end
9 Update G depending on Scur.

10 if
[

ev(Scur) < ev(Sbest)
]

then set Sbest := Scur.
11 Set itmain

count = itmain
count + 1.

until [Scuris not feasible] OR
[

ev(Scur) ≥ ev(Slast)
]

OR [itmain
count = itmain

max ]

12 return Sbest.
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This outline leaves some questions open:

• How to compute an initial set of generators?

• How to evaluate a solution?

• How to determine a new set of generators based on a current solution?

• How to update the weights of the generators iteratively?

The subsequent sections address these questions in detail.

5.3.1 Initial Set of Generators

In contrast to Fryer Jr. and Holden [3] our approach assumes that no existing districting

plan is available. Therefore, it has to define or determine, respectively, an initial set of

generators or an initial solution, respectively.

One option is the Recursive Partitioning Algorithm (RPA) introduced in Section 4. The

compactness measure used during the execution of the RPA is the Moment of Inertia with

a corresponding weight of 1, i.e., only compactness is used in order to evaluate a bisecting

partition. Moreover, the RPA uses exclusively line partitions in order to determine the set

of bisecting partitions since the obtained solutions are contiguous in this case. As number

of search directions K = 8 or K = 16 is recommendable. There are some reasons for doing

so. At first, this approach is very fast. Furthermore, the achieved solutions are feasible in

(almost) every case - during our tests no infeasible solution occurred. Finally, the determined

set of initial generators based on this solution has a good spatial distribution. For using line

partitions, the RPA requires O(|BA| · log |BA|) time (cf. Section 4.3.7.3). Moreover, since

K = 8 or K = 16, assume that logK << |B| · log |B|. Thus initializing G, Scur and Sbest

requires O(p ·K · |BA| · log |BA|) time. Algorithm 5.3.2 summarizes the described approach.

The tests presented in Section 5.5.4 will compare different kinds of initial solutions and will

confirm the suitability of this approach.

Algorithm 5.3.2: Initialize G, Scur and Sbest by the RPA

Input: Set of basic areas BA, number of districts p.
Output: G, Scur, Sbest.

1 Determine Scur by applying the RPA.
2 Set Sbest := Scur.
3 Determine G depending on Scur.
4 return G, Scur, Sbest.
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Of course, there are also other approaches to generate an initial set of generators. Algo-

rithm 5.3.3 outlines the general process for generating this set.

Algorithm 5.3.3: General Process for Initializing G, Scur and Sbest

Input: Set of basic areas BA, number of districts p, approach to determine the initial set
of generators DG.

Output: G, Scur, Sbest.

1 Determine G by applying DG and set V := {0; . . . ; 0}.
2 Determine Scur depending on G and V .
3 if [Scuris feasible] then set Sbest := Scur

else set Sbest := NULL
4 return G, Scur, Sbest.

A straightforward approach chooses these generators randomly. In order to obtain an initial

solution each basic area is assigned to its closest generator. Hence, the total process to

initialize G, Scur and Sbest requires O(p · |BA|) time.

A more sophisticated approach is based on the k-Means++ clustering algorithm [6]. At

first, it chooses one basic area randomly as first generator. Then, it determines the other

generators successively as follows: Each iteration computes for each basic area the distance

to its closest existing generator. Afterwards, it defines the probability that this basic area is

chosen as next generator proportional to the square of this distance. Hence, a good spatial

distribution of the generators is expected as well. This approach also needs O(p · |BA|)
time. Section 5.5.4 will show that this approach also delivers good results. Unfortunately,

this approach does not necessarily result in a feasible initial solution in terms of balance. In

this case, according Algorithm 5.3.3 Line 3 our approach sets Sbest := NULL and defines

ev(NULL) := ∞. Hence, in this case also Algorithm 5.3.1 does not necessarily determine

a feasible solution at all. This is another reason for preferring the RPA to initialize the

generators.

5.3.2 Evaluating a Solution

This subsection addresses the evaluation of a solution. As described above, for the assignment

of basic areas to generators classical additively weighted Voronoi Diagrams use (Euclidean)

single distances, whereas Power Diagrams use squared (Euclidean) distances. Thus, for

additively weighted Voronoi Diagrams the function

evAW (S) :=

p
∑

h=1

∑

i∈Dh

d(bi, gh) , (5.5)
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for Power Diagrams the function

evPD(S) :=

p
∑

h=1

∑

i∈Dh

d2(bi, gh) , (5.6)

and for weighted Power Diagrams the function

evWPD(S) :=

p
∑

h=1

∑

i∈Dh

wi · d2(bi, gh) (5.7)

evaluates a current solution S. Recall that the evaluation function for (weighted) Power

Diagrams corresponds to the (Weighted) Moment of Inertia. Thus, strongly spoken, the

solutions are only evaluated and compared in terms of compactness. Note that the usage

of network distances as distance function d(·, ·) is possible. Section 5.5.10 will present some

results for using distances and travel times on a road network.

In the following, additively weighted Voronoi Districting Approach, or AWVDA for short,

denotes Algorithm 5.3.1 if it uses the evaluation function introduced in Equation (5.5).

(Weighted) Power Diagram Districting Approach, or (W)PDDA for short, denotes the algo-

rithm if it uses the functions defined in Equation (5.6) or (5.7), respectively.

The complexity of evaluating a solution in terms of one of these functions is O(p · |BA|) since
the closest generator has to be found for each basic area.

5.3.3 Updating the Generators’ Locations

This subsection explains how to determine a new set of generators based on a current so-

lution S is determined, or more precisely, how a new generator gh for a district Dh of S is

determined. The approach restricts the set of candidates to the set of basic areas of Dh, i.e.,

it selects the location of an existing basic area as generator. Hence, the usage of network

distances is possible as well. Since the applied evaluation function should be minimized by

the selection of a new generator, the generator’s determination depends on this function.

• AWVDA: Equation (5.5) states the considered evaluation function. The new location

of gh is the location bi of the basic area i := argminj∈Dh

∑

k∈Dh
dj,k. In order to

determine this generator, the distances between all pairs of basic areas of Dh are

considered, so the computation for one district Dh needs O(|Dh|2) time.

• PPDA: Equation (5.6) states the considered evaluation function. The new location

of generator gh is the location bi of the basic area i := argminj∈Dh

∑

k∈Dh
d2j,k. For
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Figure 5.4: Updating the generators’ locations

Euclidean distances the computation for one district Dh needs O(|Dh|) time since i is

the closest basic area to the unweighted center of gravity of Dh. In contrast to this,

for network distances the computation needs O(|Dh|2) time.

• WPPDA: Equation (5.7) states the considered evaluation function. The new location

of generator gh is the location bi of the basic area i := argminj∈Dh

∑

k∈Dh
wj · d2j,k.

Again, for Euclidean distances this computation needs O(|Dh|) time, whereas for net-

work distances it needs O(|Dh|2) time for each district.

Example 5.3.1 Let the set of basic areas defined in Table 5.3 be given.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

xi 0 0 0 1 1 2 2 4 4 5 5 9 9 9 11 14 17 17 18 20

yi 3 5 12 4 14 10 15 6 16 7 9 9 13 18 5 13 11 19 15 8

Table 5.3: Set of basic areas BA

Moreover, let the locations of the generators g1, . . . , g4 correspond to basic areas 8, 12, 14,

and 17. Setting v(g1) = 30, v(g2) = 5, v(g3) = −15, and v(g4) = −20 leads to the PDDP

SPD(G, V ) := {{1; 2; 3; 4; 6; 8}; {10; 11; 12; 15}; {5; 7; 9; 13; 14}; {16; 17; 18; 19; 20}} := Scur

depicted in Figure 5.4a.

For DPD
1 (G, V ) the center of gravity is (1.2, 6.7) and the closest basic area to this point

is basic area 2. Hence, the new generator of this district is basic area 2. For the further
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districts the centers of gravity are (7.5, 7.5), (5, 15.2), and (17.2, 13.2). Thus, the updated

generators are the basic areas 12, 9 and 19. Figure 5.4b illustrates for each district its center

of gravity as white square and its new generator as black square.

5.3.4 Updating the Generators’ Weights

The last subsection addresses one of the main challenges of districting approaches based

on (generalized) Voronoi Diagrams, the update function for the weights of the generators.

If the update steps are too small, the changes between the solutions of two consecutive

sub-iterations are very small, even the case of no changes can occur. Hence, the number

of executed sub-iterations until a feasible solution is found would be quite large. If the

update steps are too large, for one generator the size of its district can change from too

large to too small in the succeeding solution or the other way around. This effect can result

in a deterioration of the balance or in oscillating solutions. Let St := {Dt
1, . . . , D

t
p} be the

current solution and vt(g1); . . . ; v
t(gp) the current weights of the generators in sub-iteration

t. Furthermore, the current absolute (balance) error of a district is defined by

aerth := w(Dt
h)− µ ,

where µ is the average district size. The current relative (balance) error is defined by

rerth :=
aerth
µ

.

In the following, three update rules are introduced. Rule 1 and 2 have already proposed in

the literature, this work introduces rule 3 additionally.

5.3.4.1 Update Rule 1

Moreno-Regidor et al. [8] use additively weighted Voronoi Diagrams for their districting

approach. They take the current relative errors, the distances between the generators and

a dynamic convergence parameter into account in order to update the generators’ weights

in each iteration. Moreover, they use a dynamic convergence parameter CP t, because they

conclude that it is impossible to find a universal convergence parameter that is applicable

to all instances. They propose the following update rule:

vt+1(gh) := vt(gh) + CP t ·
∑

j 6=h

rerth − rertj
d(gh, gj)

,
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where

CP t+1 := min
h=1,...,p

∣

∣

∣

∣

∣

∣

∣

∣

min
i,k∈Dh,i 6=k

di,k

∑

j 6=h

rertj−rert
h

d(gh,gj)

∣

∣

∣

∣

∣

∣

∣

∣

.

Since the proposed function is based on additively weighted Voronoi Diagrams, an adaptation

in order to make it usable for (weighted) Power Diagrams is necessary:

• Power Diagrams: vt+1(gh) := vt(gh) + CP t · ∑
j 6=h

rert
h
−rertj

d2(gh,gj)
,

where CP t+1 := min
h=1,...,p

∣

∣

∣

∣

∣

∣

min
i,k∈Dh,i 6=k

d2
i,k

∑

j 6=h

rert
j
−rert

h

d2(gh,gj)

∣

∣

∣

∣

∣

∣

.

• Weighted Power Diagrams: vt+1(gh) := vt(gh) + CP t
∑

j 6=h

rert
h
−rertj

d2(gh,gj)
,

where CP t+1 := min
h=1,...,p

∣

∣

∣

∣

∣

∣

min
i,k∈Dh,i 6=k

wi·wk·d2i,k
∑

j 6=h

rert
j
−rert

h

d2(gh,gj)

∣

∣

∣

∣

∣

∣

.

Unfortunately, Section 5.5.1 will show that the number of necessary sub-iterations to obtain

a feasible solution is comparatively high, while the quality of the solutions is comparatively

poor.

5.3.4.2 Update Rule 2

Fryer Jr. and Holden [3] use an update rule based on an algorithm of Aurenhammer et al.

[2] for their Power Diagram. This rule incorporates the current sizes of the districts and

the current evaluation of the solution. It should be mentioned that the authors do not take

activities of basic areas into account. They propose the following update rule:

vt+1(gh) := vt(gh) +

evPD − evPD(S)−
p
∑

j=1

vt(gj) · (|Dt
j| − |BA|

p
)

p
∑

j=1

|Dt
h|2

· (|Dt
j| −

|BA|
p

) (5.8)

where evPD is an overestimate of the minimum value of evPD(·). It can be initialized by

evPD(S
′) for any feasible solution S ′ and updated according to the current sizes of the

districts and the current evaluation of the solution. In order to integrate the activities of



214 5 Power Diagram Districting Algorithm

the basic areas, the rule defined in Equation (5.8) can be modified to

vt+1(gh) := vt(gh) +

evPD − evPD(S)−
p
∑

j=1

vt(gj) · aerth
p
∑

j=1

|w(Dt
h)|2

· aerth .

If (weighted) Power Diagrams or additively weighted Voronoi Diagrams are used, only the

functions evPD and evPD(S) have to be replaced by the corresponding evaluation functions.

The results presented in Section 5.5.1 are promising, however, the running times are notice-

ably higher than those of the following approach.

5.3.4.3 Update Rule 3

We propose an update rule based on the current absolute errors and on a dynamic conver-

gence parameter CP t. That rule is applicable to both additively weighted Voronoi Diagrams

and (weighted) Power Diagrams. Our rule says:

vt+1(gh) := vt(gh) + CP t · aerth (5.9)

The update of all weights needs O(|D1| + . . . + |Dh|) = O(|BA|) time. Since a universal

convergence parameter for all instances is (nearly) impossible to find or define, this rule

uses a dynamic parameter. The dynamic change of this parameter is based on the following

ideas:

• If the balance of two consecutive solutions is unchanged, the value of the parameter

has to be increased to speed up the convergence.

• If the balance increases, the value of the parameter has to be decreased to avoid further

balance increases or oscillations of the solution.

• If the balance decreases, the parameter is reset to an initial value CP 0.

These ideas result in the following update function for this dynamic parameter:

CP t :=



















2 · CP t−1 if bal(St) = bal(St−1)

1
2
· CP t−1 if bal(St) > bal(St−1)

CP 0 if bal(St) < bal(St−1)

(5.10)

Furthermore, this parameter is set to CP 0 at the beginning of each main-iteration. CP 0

depends on the spatial extension of the overall area, the number of basic areas and the total

activity measure. The main idea is to approximate an average distance between two basic
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areas and divide the resulting value through the total activity measure of all basic areas:

For the AWVDA, this leads to

CP 0 :=

√

max
i,j∈BA

|xi − xj|2 + max
i,j∈BA

|yi − yj|2
√

|BA| · w(BA)
,

and for both PDDA and the WPDDA, this leads to

CP 0 :=
max
i,j∈BA

|xi − xj|2 + max
i,j∈BA

|yi − yj|2

|BA| · w(BA)
. (5.11)

The determination of CP 0 requires also O(|BA|) time. The results presented in Section 5.5.1

will confirm the efficiency of this approach as well as the quality of the obtained solutions.

Example 5.3.2 Consider the basic areas defined in Table 5.3 and let the locations of the

generators g1, . . . , g4 correspond to the basic areas 8, 12, 14, and 17. Assume τ = 0.2

and equal activity measures of the basic areas, i.e., wi = 1 ∀i. This implies µ = 20
4

= 5,

Ld = (1− 0.2) · 5 = 4 and Ud = (1 + 0.2) · 5 = 6, i.e., a solution is feasible if the size of each

district is between 4 and 6. Moreover, for purposes of simplification let CP 0 = 10.

At first, Figure 5.5a depicts the PDDP S0 for v0(gh) = 0 ∀h. District D0
1 corresponds to g1

and consists of nine basic areas. This implies w(D0
1) = 9 and aer01 = 9 − 5 = 4, i.e., this

district is too large. Hence, the weight of the corresponding generator has to be increased.

According to rule 3 this weight results in v1(g1) = v0(g1) + CP 0 · aer01 = 0 + 10 · 4 = 40.

In contrast to this, district D0
2 is too small since w(D0

2) = 3 holds. Therefore, the weight

of generator g2 decreases as follows: v1(g2) = v0(g2) + CP 0 · aer02 = 0 + 10 · (−20) = −20.

Moreover, w(D0
3) = 3 and w(D0

4) = 5 holds and leads to v1(g3) = −20 and v1(g4) = 0.

Furthermore, balmax(S
0) results in 0.8.

Figure 5.5b illustrates the PDDP S1 for these updated weights. Here, basic area 8 corre-

sponds to the generator of D1, but it is assigned to D2. Obviously, the activities of the

resulting districts are w(D1
1) = 3, w(D1

2) = 8, w(D1
3) = 5 and w(D1

4) = 4. As required, by

updating the weights the activity of D1 decreases and the activity of D2 increases. Further-

more, the balance improves since balmax(S
1) = 0.6 holds. This implies CP 1 = CP 0 = 10.

Applying the update rule again results in v2(g1) = 20, v2(g2) = 10, v2(g3) = −20 and

v2(g4) = −10.

Figure 5.5c shows the obtained PDDP S2 for this set of weights. Now, the activities of the

districts are w(D2
1) = 7, w(D2

2) = 3, w(D2
3) = 6 and w(D2

4) = 4. Thus, the balance improves

again and results in balmax(S
2) = 0.4. This implies CP 2 = CP 1 = 10. Updating the weights
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Figure 5.5: Updating the generators’ weights
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of the generators leads to v3(g1) = 40, v3(g2) = −10, v3(g3) = −10 and v3(g4) = −20.

Figure 5.5d shows the corresponding PDDP S3. Here, the activities are w(D3
1) = 3,

w(D3
2) = 8, w(D3

3) = 4 and w(D3
4) = 5. Unfortunately, balmax(S

3) equals 0.6, i.e., the

balance is worse compared to the iteration before. Hence, this iteration reduces the con-

vergence parameter to CP 3 = 0.5 · CP 2 = 0.5 · 10 = 5. Next, it updates the weights to

v4(g1) = 30, v4(g2) = 5, v4(g3) = −15 and v4(g4) = −20.

Figure 5.5e depicts the resulting PDDP S4. Now, the activities are w(D4
1) = 6, w(D4

2) = 4,

w(D4
3) = 5 and w(D4

4) = 5. This implies that the solution is feasible, and, hence, the

execution of sub-iterations stops.

5.3.5 Overall Complexity

Finally, this subsection analyzes the complexity of the presented algorithm as a whole. The

complexity of the initialization step is O(p ·K · |BA| · log |BA|) for using the RPA, whereas

it is O(p · |BA|) for using one of the alternative approaches. Each sub-iteration at first

updates the generator weights in O(|BA|) time. After that, it determines a new solution

in O(p · |BA|) time. Finally, it verifies the feasibility of the solution in O(|BA|) time.

Hence, the complexity of each sub-iteration is O(p · |BA|). Each main-iteration consists

of executing at most itsubmax sub-iterations, generating a new set of generators, verifying the

feasibility and computing the evaluations of the current solution. Thus, for using (weighted)

Power Diagrams and Euclidean distances the total complexity of one single main-iteration

is O(itsubmax · p · |BA| + |BA| + |BA| + p · |BA|) = O(itsubmax · p · |BA|). However, in general

it is O(itsubmax · p · |BA| + p · |BA|2 + |BA| + p · |BA|) = O(p · |BA| · (itsubmax + |BA|)). The

algorithm executes at most itmain
max main-iterations, this implies the overall complexities stated

in Table 5.4 for the different versions, where IT := itmain
max · itsubmax Hence, the heuristic is sub-

quadratic in p, K, itmain
max , itsubmax and at most quadratic in |BA|.

approach initial solution complexity

(W)PDDA (Eucl. dist.) RPA O(p · |BA| · (IT +K · log |BA|)
(W)PDDA (Eucl. dist.) k-Means++ O(IT · p · |BA|)
(W)PDDA (Eucl. dist.) random O(IT · p · |BA|)
(W)PDDA RPA O(p · |BA| · (IT + itmain

max · |BA|+K · log |BA|))
(W)PDDA k-Means++ O(p · |BA| · (IT + itmain

max · |BA|))
(W)PDDA random O(p · |BA| · (IT + itmain

max · |BA|))
AWVDA RPA O(p · |BA| · (IT + itmain

max · |BA|+K · log |BA|))
AWVDA k-Means++ O(p · |BA| · (IT + itmain

max · |BA|))
AWVDA random O(p · |BA| · (IT + itmain

max · |BA|))

Table 5.4: Overall complexity
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5.4 Multi-Start Algorithm

The solution of an approach presented in the section before highly depends on the initial

set of generators, even if the locations of these generators change dynamically during the

execution of the algorithm. The computation results in Section 5.5.5 will confirm this.

Therefore, this section introduces a multi-start version of this approach in order to use

different initial sets of generators and combine their results. This multi-start version uses a

parameter itstartsmax that defines the number of starts. It is also conceivable to define a time

limit and generate solutions until this time limit is reached. Section 5.3.1 describes that the

RPA (nearly) always computes a feasible solution, whereas the random based approaches

sometimes determine no feasible solution. Therefore, the multi-start version uses the RPA

for one of the starts and the k-Means++ approach for the itstartsmax − 1 further starts. Note

that the k-Means++ approach has advantages in terms of the spatial distribution of the

generators over the approach that chooses the generators completely randomly. Of course,

the multi-start algorithm chooses the best solution determined during the itstartsmax runs. In

order to compare different solutions an evaluation function evms is necessary. Since Voronoi

approaches focus on compactness, the usage of a compactness measure as evaluation function

is recommendable. Nevertheless, further evaluation functions such as combinations of the

measures presented in Section 2.2 are possible. Algorithm 5.4.1 summarizes and outlines

this multi-start approach.

Algorithm 5.4.1: Voronoi Based Multi-Start Districting Algorithm

Input: Set of basic areas BA, number of districts p, evaluation function evms, parameters
itsubmax, it

main
max , itstartsmax .

Output: Districting plan S.

1 Determine Scur by applying Algorithm 5.3.1 (Input: BA, p, itsubmax, it
main
max , and

Algorithm 5.3.2).
2 Set Sbest := Scur and itstartscount := 1.
3 while [itstartscount < itstartsmax ] do
4 Determine Scur by applying Algorithm 5.3.1 (Input: BA, p, itsubmax, it

main
max , and

Algorithm 5.3.3).
5 if [Scuris feasible] AND

[

evms(Scur) < evms(Sbest)
]

then Set Sbest := Scur.
6 Set itstartscount = itstartscount + 1.

end

7 return Sbest.
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5.5 Computational Results

The presented algorithms were coded in C++ and executed on a PC running Windows 7

with a Pentium(R) E5500 processor with 2.80 GHz and 2 GB RAM. The tests were mainly

conducted on the datasets PPS and ZCA described in Section 4.4.

Unless specified otherwise, we choose τ = 5% as maximum feasible balance deviation, and

the initial solution is based on the solution of the RPA using 8 line directions, line partitions

as bisecting partitions, and the (unweighted) Moment of Inertia as compactness measure.

This section compares the solutions obtained by applying different algorithm or parameter

settings in terms of balance, compactness, contiguity and running times. The evaluation

parameters are the same as in Section 4.4. However, Power Diagram regions are always

convex, and, hence, the determined solutions are always contiguous (cf. Section 5.1), i.e.,

ctg(·) = 0. For that reason, the following tests state no contiguity results for the PDDA.

5.5.1 Update Rules

The first experiment addresses the different rules for updating the generators’ weights pre-

sented in Section 5.3.4. Note that rule 3 is the one we have proposed, while rules 1 and 2

have been proposed in the literature. Table 5.5 reports the results for PPS, while Table 5.6

reports the results for ZCA. The respective first row states the evaluation of the initial solu-

tion. The further rows compare the PDDA solutions obtained for setting itmain
max (maximum

number of executed main-iterations) to 50, and itsubmax (maximum number of sub-iterations)

to 1000 and 5000, while varying the update rule.

Algorithm
time

bal comp
rule itsubmax max ave moi wmoi pd wpd

RPA (MoI) 43 0.80 0.29 −5.63 −5.61 −3.17 −2.94

PDDA rule 1 1000 1669 0.88 0.35 −5.69 −5.66 −3.20 −2.96

PDDA rule 2 1000 219 4.37 2.39 −13.61 −13.71 −7.20 −7.14

PDDA rule 3 1000 90 4.48 2.43 −15.40 −15.52 −8.00 −8.03

PDDA rule 1 5000 7876 1.02 0.44 −5.75 −5.73 −3.23 −2.99

PDDA rule 2 5000 563 4.67 2.48 −15.09 −15.30 −7.83 −7.98

PDDA rule 3 5000 162 4.48 2.42 −15.64 −15.77 −8.06 −8.16

Table 5.5: Dataset PPS : Comparing different update rules

First of all, the results show that the running times for using our update rule (rule 3) is

noticeably smaller than the running times for using the other approaches. For PPS and



220 5 Power Diagram Districting Algorithm

Algorithm
time

bal comp
rule itsubmax max ave moi wmoi pd wpd

RPA (MoI) 48 1.97 0.94 −3.03 −2.21 −2.93 −1.30

PDDA rule 1 1000 3547 2.73 1.43 −5.18 −4.30 −4.02 −2.23

PDDA rule 2 1000 268 4.05 2.21 −7.88 −7.28 −5.43 −3.67

PDDA rule 3 1000 153 4.08 2.18 −7.64 −7.07 −5.32 −3.55

PDDA rule 1 5000 20185 3.74 2.03 −7.43 −6.68 −5.23 −3.32

PDDA rule 2 5000 1203 4.28 2.29 −8.60 −8.08 −5.84 −4.09

PDDA rule 3 5000 165 4.21 2.25 −8.08 −7.56 −5.57 −3.81

Table 5.6: Dataset ZCA: Comparing different update rules

itsubmax = 5000 (cf. Table 5.5) our approach determines the solutions of all instances in a total

time of 162 seconds, whereas the other approaches need 563 and 7876 seconds, respectively.

Nevertheless, the solutions obtained by using rule 1 are still very close to the initial solutions.

Thus, they are still balanced but not (very) well in terms of compactness. Table 5.6 depicts

that this effect is less pronounced, but still noticeable for ZCA. Hence, using rule 1 for the

PDDA is not advisable.

For PPS, with respect to the compactness, the solutions obtained by using our rule are

slightly better than those obtained by using rule 2. For example, for itsubmax = 5000 in terms

of the Weighted Moment of Inertia our rule achieves an average improvement of 15.77%

compared to the reference solutions, whereas rule 2 achieves 15.30%. However, for ZCA the

results are contrary. Here, for itsubmax = 5000 our rule achieves an improvement of 7.56%,

whereas rule 2 leads to an improvement of 8.08%.

Furthermore, the presented results indicate that our rule needs fewer sub-iterations to gener-

ate good results. For example, the results for using itsubmax = 1000 are slightly better in terms

of the Weighted Moment of Inertia than those obtained by using rule 2 and itsubmax = 5000.

Finally, in terms of balance the results for our rule and rule 2 are similar.

In summary, our update rule (rule 3) generates good results very fast. Hence, we suggest

using this rule for the PDDA. Therefore, the subsequent tests are based on this update

rule.

5.5.2 Number of Main-Iterations

This test verifies the advantage of updating the generators’ locations dynamically during

the execution of the algorithm in contrast to fixing them at the beginning. Therefore, it

compares the solutions obtained by allowing only one main-iteration to those obtained by
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allowing at most 50 main-iterations, i.e., itmain
max = 50. However, no instance has executed

50 main-iterations, the algorithm always stopped much earlier. This happens if there is no

further improvement of a solution during a main-iteration.

itmain
max itsubmax time

bal comp
max ave moi wmoi pd wpd

1 100 97 3.26 1.83 −9.51 −9.52 −5.16 −5.01

50 100 100 3.38 1.87 −11.03 −11.11 −5.91 −5.83

1 5000 104 4.34 2.32 −12.29 −12.29 −6.40 −6.25

50 5000 162 4.48 2.43 −15.64 −15.77 −8.06 −8.16

Table 5.7: Dataset PPS : Comparing fixed and dynamically changed generators’ locations

itmain
max itsubmax time

bal comp
max ave moi wmoi pd wpd

1 100 95 2.08 1.01 −3.36 −2.53 −3.12 −1.44

50 100 135 2.09 1.01 −3.38 −2.55 −3.14 −1.45

1 5000 125 4.11 2.14 −6.93 −6.35 −4.96 −3.16

50 5000 165 4.21 2.25 −8.08 −7.56 −5.57 −3.81

Table 5.8: Dataset ZCA: Comparing fixed and dynamically changed generators’ locations

Table 5.7 states the results for PPS . As expected, by executing more main-iterations the

running time increases. Moreover, the balance slightly deteriorates. For example, for setting

itsubmax = 5000 the maximum balance increases from 4.34% to 4.48%. However, this test

depicts noticeable compactness improvements, e.g., in terms of the Weighted Moment of

Inertia there is an improvement from −12.29 to −15.77. Table 5.8 shows similar results for

ZCA.

Figure 5.6 depicts exemplarily two developments during the execution of the PDDA for one

instance of PPS. At first, Figure 5.6a illustrates the initial solution. Here, the underlying

structure given by line partitions is observable. Figure 5.6b shows the solution after the first

main-iteration. Although the initial solution defines the generators, significant changes are

noticeable. Here, the improvement in terms of the Weighted Moment of Inertia is 12.58%.

After four further main-iterations the algorithm terminates with the solution shown in Fig-

ure 5.6c. This solution seems to be visually compact and the improvement compared to the

initial solution is 20.26%.

Figures 5.6d to 5.6f present the development of another instance of PPS. In this case, with

respect to the Weighted Moment of Inertia the final solution is 19.95% better than the
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(a) Example 1: Initial solution (b) Example 1: 1st main-iteration (c) Example 1: Final solution

(d) Example 2: Initial solution (e) Example 2: 1st main-iteration (f) Example 2: Final solution

Figure 5.6: Solutions during the execution of the PDDA

initial solution. For example, the orange colored district in the north-west indicates this

improvement. It is elongated in the initial solution (cf. Figure 5.6d). Even after executing

one main-iteration a small vertical reduction and a small horizontal growth is noticeable

(cf. Figure 5.6e). However, in the final solution the district is significantly more compact

than in the initial solution (cf. Figure 5.6f).

In summary, this test verifies that updating the locations of the generators dynamically leads

to noticeably better results in terms of compactness than working with fixed generators.

Therefore, the subsequent tests use itmain
max = 50.

5.5.3 Number of Sub-Iterations

This test addresses the parameter itsubmax that defines the maximum number of executed

consecutive sub-iterations, i.e., updates of the weights of the generators, until a feasible
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Figure 5.7: Dataset PPS : Comparing different numbers of sub-iterations

solution is found. For applying the PDDA, this test compares the obtained results for

setting itsubmax ∈ {100; 200; 300; 400; 500; 1000; 1500; 2000; 2500} while applying the PDDA.

Figure 5.7 presents the results for PPS. For purposes of presentability the scale on the number

of sub-iterations axis varies. Unsurprisingly, the running time (solid line in Figure 5.7a)

increases if the maximum number of sub-iterations increases. Surprisingly, the running

times is almost equal for choosing the maximum number of sub-iterations between 1500 and

2500. Hence, in most cases the number of executed sub-iterations until a feasible solution is

found is smaller than 1500. Moreover, the balance (dashed line in Figure 5.7a) deteriorates

for increasing itsubmax. In some instances the balance (nearly) exploits the maximum feasible

balance of 5%.

In contrast to this, the compactness becomes better if itsubmax increases. As already outlined

in Section 5.5.1, the PDDA using rule 3 generates a feasible solution very fast, i.e., it needs a

small number of iterations. Figure 5.7b illustrates the corresponding values for the Weighted

Moment of Inertia (solid line) and the Weighted Pairwise Distances (dashed line). Here, for

allowing more than 300 sub-iterations nearly no further improvement is observable.

Nevertheless, the subsequent tests use itsubmax = 5000 since the running times are still good

and there is most likely no further improvement for increasing itsubmax.
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5.5.4 Initial Set of Generators

The next test focuses on the initial set of generators. As already pointed out in Section 5.3.1

we prefer using the RPA if only one solution should be generated. Alternatively, the initial

generators can be chosen randomly or by an approach based on the k-Means++ algorithm.

Since these alternative approaches define the generators randomly, each instance is solved

ten times in this case.

Initial solution time
bal comp

max ave moi wmoi pd wpd

RPA 162 4.48 2.42 −15.64 −15.77 −8.06 −8.16

Random average 195 4.50 2.38 −12.60 −12.56 −6.71 −6.59

k-Means++ average 151 4.50 2.45 −13.97 −14.11 −7.44 −7.43

Random moibest 223 4.58 2.47 −15.44 −15.54 −8.08 −8.08

k-Means++ moibest 143 4.60 2.57 −17.27 −17.33 −9.03 −9.06

Random wmoibest 227 4.55 2.46 −15.43 −15.70 −8.08 −8.15

k-Means++ wmoibest 143 4.59 2.32 −17.07 −17.49 −8.87 −9.09

Table 5.9: Dataset PPS : Comparing different approaches for the initialization

Initial solution time
bal comp

max ave moi wmoi pd wpd

RPA 165 4.21 2.25 −8.08 −7.56 −5.57 −3.81

Random average 183 4.40 2.41 −5.12 −4.67 −4.26 −2.55

k-Means++ average 192 4.38 2.40 −5.51 −5.09 −4.47 −2.77

Random moibest 167 4.52 2.55 −10.89 −10.33 −7.20 −5.03

k-Means++ moibest 179 4.47 2.50 −11.17 −10.75 −7.35 −5.20

Random wmoibest 164 4.44 2.49 −9.90 −11.49 −5.98 −5.68

k-Means++ wmoibest 191 4.47 2.49 −10.40 −11.89 −6.45 −5.84

Table 5.10: Dataset ZCA: Comparing different approaches for the initialization

Table 5.9 presents the achieved results for PPS and Table 5.10 those for ZCA. The first row

states the results for using the RPA. The second (third) row presents the average results over

ten runs for the random (k-Means++) approach, taking only feasible solutions into account.

In addition, the further lines present the results for choosing the best feasible solution out

of the (at most) ten results according to the (Weighted) Moment of Inertia, where moibest

and wmoibest denote these solutions.
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Comparing the results, there are only small differences in terms of balance. The maximum

balance ranges from 4.48% (4.21%) to 4.60% (4.52%) while the average balance ranges from

2.32% (2.25%) to 2.57% (2.55%) for PPS (ZCA).

However, in terms of compactness the solutions using the RPA are noticeably better than

the average of the solutions using the random approach or the k-Means++ approach, respec-

tively. For example, for PPS in terms of the Weighted Moment of Inertia for PPS the RPA

solutions are on average 15.77% better than the reference solutions, whereas the k-Means++

solutions are only 13.97% better. Considering the best solutions using the random approach,

they are closer to the solutions using the RPA, but according to the (Weighted) Moment

of Inertia as well as to the Weighted Pairwise Distances still slightly worse. In terms of

Pairwise Distances they are actually slightly better.

Finally, the best solutions using k-Means++ are noticeably better than those using the

RPA. For example, in terms of the Weighted Moment of Inertia the best solutions are on

average 17.49% better than the reference solutions, whereas the solutions using the RPA

are only 15.77% better. For ZCA the best solutions of both the random approach and the

k-Means++ approach are more compact than those of the PPA approach, where the results

of the k-Means++ approach are better than the results of the random approach.

But keep in mind that for each instance the solution using the RPA is compared to the best

solution out of ten runs for the other approaches. Furthermore, the main disadvantage of

both the random and the k-Means++ approach is that they may not generate a feasible

solution at all. During our tests, for PPS this occurred on average in 2.52 runs for the

random approach and at most in nine of ten runs for a single instance. For the k-Means++

approach the average is only 0.58 infeasible runs per instance, however there is one single

instance with ten infeasible solutions after ten runs. For ZCA 24 instances are still unsolved

after ten runs.

For one instance of PPS, Figure 5.8a shows exemplarily the evaluations in terms of the

Weighted Moment of Inertia. The solutions using k-Means++ (illustrated by white circles)

show a high variance of their compactness values, containing one solution that is better

than the compactness value of the solution using the RPA (illustrated by the solid line).

The distribution for the random approach (illustrated by black squares) is smaller, but still

high. For this exemplary instance only nine of ten runs for the random approach generate

a feasible solution. The presented results confirm the assumption that the quality of the

obtained solution highly depends on the initial set of generators. Figure 5.8b presents for

another instance the evaluations in terms of Pairwise Distances. Here, the results using

k-Means++ are comparable to those using the RPA. Using the random approach only five
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Figure 5.8: Examples of compactness distribution for different initial sets of generators

runs have generated a feasible solution, where one solution is significantly worse than the

other solutions.

This comparison of different approaches for initializing the generators confirms that the

initial set of generators highly influences the quality of the solution. Using the RPA in order

to initialize the generators results (nearly) always in feasible solutions, usually doing well

in terms of compactness. Therefore, we suggest using the RPA if only one solution should

be determined. Moreover, for the multi-start approach, described in Section 5.4, we suggest

to determine one solution using the RPA and the further solutions using the k-Means++

approach.

5.5.5 Multi-Start Algorithm

This section examines the results for applying the multi-start Algorithm introduced in Sec-

tion 5.4. We choose itmain
max = 10, i.e., the algorithm starts ten times. The first time the initial

solution is generated using the RPA and subsequently using the k-Means++ approach. The

evaluation function corresponds to a compactness measure, i.e., for each instance the algo-

rithm chooses the best solution with respect to this measure.

Tables 5.11 and 5.12 present the results for using the (Weighted) Moment of Inertia as

well as (Weighted) Pairwise Distances as evaluation function. The respective first row states

the results of the single-start version, i.e., when only using the RPA. The further rows

present the results of the multi-start version for different evaluation functions. As additional

information, these tables state the attribute ss-sol describing the percentage of instances for
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version evms time
bal comp

ss-sol
max ave moi wmoi pd wpd

single-start 162 4.48 2.42 −15.64 −15.77 −8.06 −8.16 100.00

multi-start MoI 1564 4.62 2.59 −17.34 −17.30 −9.04 −8.98 15.15

multi-start WMoI 1531 4.68 2.50 −17.10 −17.49 −8.83 −9.07 27.27

multi-start PD 1490 4.62 2.58 −16.92 −16.85 −9.14 −8.04 15.15

multi-start WPD 1518 4.61 2.51 −16.77 −17.01 −9.06 −9.23 27.27

Table 5.11: Dataset PPS : Comparing single-start and multi-start approaches

version evms time
bal comp

ss-sol
max ave moi wmoi pd wpd

single-start 165 4.21 2.25 −8.08 −7.56 −5.57 −3.81 100.00

multi-start MoI 1602 4.35 2.40 −11.12 −10.40 −7.34 −5.08 30.67

multi-start WMoI 1534 4.45 2.44 −10.74 −11.93 −6.52 −5.91 26.00

multi-start PD 1642 4.35 2.41 −10.15 −18.58 −8.17 −4.24 25.00

multi-start WPD 1644 4.37 2.41 −10.01 −11.30 −6.05 −5.85 28.33

Table 5.12: Dataset ZCA: Comparing single-start and multi-start approach

which the solution using the RPA is the best overall solution. In about one quarter of the

instances the chosen solution is the single-start solution.

As expected, the running time of the multi-start version for ten runs is approximately ten

times higher as for the single-start version. In terms of the applied evaluation function the

multi-start solution is at least as good as the single-start solution since for each instance one

of the at most ten solutions is the single-start solution. In terms of balance the multi-start

solutions are similar but less bad than the single-start solutions.

In terms of compactness, Tables 5.11 and 5.12 point out noticeable improvements of the

multi-start solutions compared to the single-start solutions. For example, using the Weighted

Moment of Inertia as evaluation function the improvement in terms of the Weighted Moment

of Inertia compared to the reference solutions is 17.49%, whereas for the single-start solution

this improvement is only 15.64%

In summary, we recommend using the multi-start PDDA if the running time is not the

main criterion or the most critical point for the user. In the following, we always choose

itmain
max = 10.
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5.5.6 Running Times

Table 5.13 shows the running times for a selection of instances from PPS. Moreover, it

contains running times of some additional large instances provided by our project partner.

nb of basic areas 1092 2019 3531 4049 4971 9847 21315 38667

nb of districts 4 18 13 18 46 41 46 160

single-start 1 4 4 8 15 70 421 4038

multi-start 2 23 35 41 341 1005 7156 22232

Table 5.13: Running times for some instances (sec)

The running time for the instance having 4049 basic areas and 18 districts is eight seconds in

the single-start case, while it is 41 seconds in the multi start case. Even the instance having

9847 basic areas and 41 districts is still solved in about one minute in the single-start case

and in about 17 minutes in the multi-start case. For a really large instance having 38667

basic areas more than one hour is necessary in the single-start case and approximately 6.25

hours are necessary in the multi-start case. Usually, the running time for the multi-start

case is not ten times the running time of the single start case since the running time depends

on the initial set of generators and the induced number of executed iterations.

Having in mind that a tactical or strategical problem is solved these running times are still

acceptable. Moreover, on a multi-core processor further improvements of the running time

are expected if the starts are parallelized.

5.5.7 Compactness

The previous sections have shown that the PDDA improves the compactness noticeably

during its execution. Furthermore, regarding the results presented in Figures 5.6 the fi-

nal solutions seem to be visually more compact than the initial solutions. This subsec-

tion wants to verify this impression by applying compactness measures, namely the Reock-

Test (cf. Section 3.3.1.1), the Gibbs-Test (cf. Section 3.3.1.2), and the reciprocal value of

the Schwartzberg-Test (cf. Section 3.3.2.1). These tests are originally defined for polygons

(cf. Chapter 3). However, here the basic areas are points. Hence, for each district its area

has to be approximated. Section 3.5 provides an overview how this can be done. The follow-

ing comparison uses convex hulls as well as χ-shapes setting lχ to 0.5 and 0.75 on solutions

obtained by applying the RPA, the PDDA and the multi-start PDDA. Note that an RPA

solution corresponds to the initial solution of the PDDA.
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(a) RPA (b) PDDA (c) Multi-start PDDA

Figure 5.9: χ-shapes for lχ = 0.5

(a) RPA (b) PDDA (c) Multi-start PDDA

Figure 5.10: χ-shapes for lχ = 0.75

(a) RPA (b) PDDA (c) Multi-start PDDA

Figure 5.11: Convex hulls
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Figure 5.9a illustrates the χ-shapes for lχ = 0.5 for the RPA solution of one instance of

PPS. Figure 5.9b (5.9c) illustrates the corresponding solution for the PDDA (multi-start

PDDA). First of all, this definition of lχ leads to non-intuitive shapes such as the shape

of the brown-colored district in the north of Figure 5.9b. Figure 5.10 shows the χ-shapes

lχ = 0.75 of the same solution. These shapes are more intuitive. Finally, Figure 5.11 depicts

the convex hulls for the same solutions. Recall that the evaluation of a district depends

on the shape approximation. For example, consider the yellow-colored district in the north

of the RPA solution and apply the Reock-Test. For using convex hulls (Figure 5.11a), it

is the best evaluated district of this solution; its evaluation is 0.666. For using lχ = 0.5

(Figure 5.9a), its evaluation is only 0.318, and, hence, it is worse than the average of 0.377

of this solution. A similar effect occurs for the blue-colored area in the south. However,

in each case (Figures 5.9 to 5.11), the multi-start PDDA solution is visually more compact

than the PDDA solution and noticeable more compact than the solution of the RPA.

Since the applied compactness measures are defined on single districts, for each instance

the minimum, maximum and average values of its districts have to be considered in order

to compare the different approaches. The results reported in the following tables are again

average values over all instances. For PPS, Table 5.14 presents the results for applying

the Reock-test to χ-shapes and convex hulls. Recall that the optimal evaluation by the

Reock-test is 1 if and only if the shape of the district is a circle.

algorithm
χ-shape lχ = 0.5 χ-shape lχ = 0.75 convex hull

min max ave min max ave min max ave

RPA 0.233 0.526 0.385 0.279 0.590 0.442 0.333 0.648 0.507

PDDA 0.273 0.573 0.427 0.328 0.652 0.498 0.399 0.714 0.567

multi-start PDDA 0.280 0.581 0.438 0.345 0.655 0.511 0.411 0.720 0.581

Table 5.14: Dataset PPS : Reock-Test

These results confirm the previous observations. For every kind of shape, the evaluations

of the multi-start PDDA solutions are slightly better than the evaluations of the PDDA

solutions. Moreover, both the multi-start PDDA solutions and the PDDA solutions are

noticeably better evaluated than the RPA solutions. These observations are valid for the

minimum, maximum and average values. For example, using convex hulls as the districts’

shapes and the average districts’ compactness to evaluate a solution, for PPS the result

is 0.507 applying the RPA, 0.567 applying the PDDA, and 0.581 applying the multi-start

PDDA.

As mentioned before, using convex hulls the yellow-colored district in the north is the best
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evaluated district of the solution illustrated in Figure 5.11a. Here, the average compactness

is 0.534 and the worst compactness is 0.325. Figure 5.11b depicts the PDDA solution where

the best evaluated district has an evaluation of 0.789, the worst an evaluation of 0.395. The

average is 0.556. Finally, in Figure 5.11c the best evaluated district of the multi-start PDDA

is the brown-colored in the north-east having an evaluation of 0.800. The worst evaluated

district is the red-colored in the south-east having an evaluation of 0.510. The average

evaluation of 0.661 is very good and corresponds to the visual impression.

algorithm
χ-shape lχ = 0.5 χ-shape lχ = 0.75 convex hull

min max ave min max ave min max ave

RPA 0.236 0.548 0.394 0.282 0.610 0.453 0.334 0.676 0.520

PDDA 0.275 0.592 0.437 0.334 0.669 0.510 0.403 0.736 0.581

multi-start PDDA 0.283 0.603 0.450 0.349 0.681 0.525 0.414 0.748 0.596

Table 5.15: Dataset PPS : Gibbs-Test

algorithm
χ-shape lχ = 0.5 χ-shape lχ = 0.75 convex hull

min max ave min max ave min max ave

RPA 0.499 0.798 0.664 0.633 0.874 0.775 0.768 0.925 0.866

PDDA 0.480 0.807 0.664 0.664 0.891 0.801 0.819 0.944 0.897

multi-start PDDA 0.486 0.814 0.668 0.660 0.897 0.807 0.822 0.945 0.901

Table 5.16: Dataset PPS : Schwartzberg-Test

Table 5.15 shows similar results for applying the Gibbs-Test. Mostly, the results for applying

the Schwartzberg-Test are similar, too. However, for example, for χ-shapes with lχ = 0.5

Table 5.16 states a minimal evaluation of 0.499 for the RPA, whereas the evaluation for

the PDDA is only 0.480 and for the multi-start PDDA 0.486. Nevertheless, for the average

values the multi-start version having an evaluation of 0.668 is slightly better than the PDDA

and the RPA, both having an evaluation of 0.664.

The presented results confirm the visual impression that the solutions obtained by using the

PDDA are more compact than the solutions achieved by using the RPA.

5.5.8 AWVDA and WPDDA

Until now, the tests have focused on the PDDA. However, Algorithm 5.3.1 presents a general

framework that is applicable to other kinds of generalized Voronoi Diagrams as well. This

subsection addresses the AWVDA based on additively weighted Voronoi Diagrams and the
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WPDDA based on weighted Power Diagrams, and compares their results to those of the

PDDA.

Algorithm time
bal comp ctg

max ave moi wmoi pd wpd max ave

PDDA 162 4.48 2.42 −15.64 −15.77 −8.06 −8.16 0.00 0.00

AWVDA 155 4.36 2.28 −14.21 −14.43 −7.78 −7.99 1.513 0.195

WPDDA 198 4.37 2.37 −10.57 −14.15 −4.08 −7.17 10.221 2.364

Table 5.17: Dataset PPS : Comparing the AWVDA and the (W)PDDA

Algorithm time
bal comp ctg

max ave moi wmoi pd wpd max ave

PDDA 165 4.21 2.25 −8.08 −7.56 −5.57 −3.81 0.000 0.000

AWVDA 169 4.29 2.35 −8.53 −8.31 −5.63 −4.69 0.099 1.244

WPDDA 120 4.13 2.20 2.30 −8.87 3.92 −4.58 9.200 42.419

Table 5.18: Dataset ZCA: Comparing the AWVDA and the (W)PDDA

Table 5.17 states the results for PPS and Table 5.18 for ZCA. In terms of balance the results

are comparable.

In terms of compactness the results differ. For PPS the PDDA outperforms both the

AWVDA and the WPPDA. For example, in terms of the Weighted Moment of Inertia

its solutions are 15.77% better than the reference solutions, whereas the solutions of the

AWVDA (WPDDA) are only 14.43% (14.15%) better. In contrast to this, for ZCA for each

compactness measure the AWVDA solutions are slightly better than the PDDA solutions.

However, the AWVDA solutions are not necessarily contiguous, for example there is one in-

stance having an overlap of more than 1.244%. Hence, there is a trade-off between contiguity

and compactness. The WPDDA solutions are noticeably better in terms of the Weighted

Moment of Inertia. The obtained solutions are 8.87% better than the reference solutions,

whereas the AWVDA (PDDA) solutions are only 8.31% (7.56%) better. This result is not

surprising since the definition of the WPDDA (cf. Definition 5.1.6) is based on the Weighted

Moment of Inertia. Also in terms of Weighted Pairwise Distances applying the WPDDA

results in good results. Unfortunately, in terms of the unweighted versions, the solution

quality is poor, even worse compared to the reference solutions. The instances of ZCA have

a noticeable higher variation of the basic areas’ activities than the instances of PPS. Hence,

optimizing the weighted version of a compactness measure does not necessarily lead to the

optimization of the unweighted version. Unfortunately, in this case the WPDDA solutions

are also very poor with respect to the contiguity. A basic area having a very small activity
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(a) PDDA (b) WPDDA

Figure 5.12: Comparison of different Voronoi based districting approaches

can be assigned to a generator far away, but having a small weight. Figure 5.12b depicts an

example. The weight of the generator corresponding to the blue district is very small com-

pared to the other weights. Moreover, the basic area in the south-west assigned to the blue

district has an activity of only 2.09, while the average activity is about 83. Obviously, this

assignment leads to a very large area of intersection between the districts, and, hence, the

solution is visually non-satisfying. In contrast to this, Figure 5.12a depicts the corresponding

PDDA solution having no intersections.

In summary, the usage of the WPPDA is not advisable since the achieved solutions are

very poor in terms of contiguity. If small intersections are acceptable and if there is a

high variation in the basic area’s activities, the usage of the AWVDP results in satisfactory

solutions. However, in general the usage of the PDDA is recommendable since it leads to

the best overall solutions.

5.5.9 Further Approaches

After comparing different parameter settings and different types of Voronoi based districting

approaches, this test compares the solutions of the PDDA to the solution of further districting

approaches.

The first row of Table 5.19 presents the results of the PDDA. The second row depicts the

results of the basic version of the RPA that is used as reference solution in terms of compact-

ness. The solutions are contiguous and well balanced, but rather non-compact. The third

row reports the evaluations for the solutions of an improved version of the RPA combining

flex-zone partitions and line partitions (cf. Section 4.3.3), and applying Weighted Pairwise

Distances for evaluating bisecting partitions in terms of compactness (cf. Section 4.3.5.2). In
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terms of balance, its solutions are similar to the PDDA solutions. However, they are worse

in terms of compactness and slightly worse in terms of contiguity.

The fourth row corresponds to a location-allocation approach (cf. Section 2.3). Here, the

balance is worse compared to the PDDA, especially the average balance is 4.08% compared

to 2.42%. Usually, the districts obtained by the location-allocation approach nearly exploit

the feasible balance tolerance. In terms of the (Weighted) Moment of Inertia the PDDA

solutions are slightly better, whereas in terms of the (Weighted) Pairwise Distances the

location-allocation solutions are slightly better. In contrast to the PDDA solutions, there

are small intersections of at most 0.303% between the districts of the location-allocation

solutions. In summary, the solutions of the PDDA seem to be slightly better than the

location-allocation solutions.

Algorithm
bal comp ctg

max ave moi wmoi pd wpd max ave

PDDA 4.48 2.42 −15.64 −15.77 −8.06 −8.16 0.000 0.000

RPA (basic) 0.78 0.31 0.00 0.00 0.00 0.00 0.000 0.000

RPA (improved) 4.54 2.82 −11.20 −12.13 −6.66 −7.09 0.052 0.006

loc-alloc 4.86 4.08 −14.95 −15.68 −8.16 −8.48 0.303 0.036

multi-start PDDA 4.68 2.50 −17.10 −17.49 −8.83 −9.07 0.000 0.000

multi-start loc-alloc 4.97 4.26 −17.79 −18.43 −9.62 −9.90 0.440 0.052

Table 5.19: Dataset PPS : Comparing different districting approaches

The last two rows compare the multi-start versions of the PDDA and the location-allocation

approach. In terms of compactness, both approaches show noticeable improvements com-

pared to the single-start versions. However, for the location-allocation approach these im-

provements come along with a further deterioration in terms of balance and contiguity. In

particular, the maximum balance comes close to the bound of 5%. Hence, the results of

the PDDA are again better in terms of balance and contiguity. However, in this case they

are worse in terms of compactness. Thus, there is a trade-off between different criteria

and it depends on the preferences of the user or on the application which solution is more

suitable.

In summary, this test confirms the quality of the solutions obtained by the PDDA. The

obtained solutions are balanced, very good in terms of compactness, and contiguous in any

case.
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5.5.10 Network Distances

This test evaluates the integration of network distances into the PDDA. On the one hand,

the distances measure has an effect on the evaluation of a solution since the evaluation is

based on the distances between the basic areas and the generators (cf. Section 5.3.2). On the

other hand, the distances measure influences the update of the generators’ locations. Since

the location of a generator corresponds to the location of a basic area the usage of network

distances is straightforward (cf. Section 5.3.3).

The first part of this test includes 23 instances of PPS where our practical partner provides

distances on a road network. The applied PDDA initializes the generators by the means

of RPA and executes at most 5000 sub-iterations and 50 main-iterations. The multi-start

approach uses ten starts. The distance-based compactness values are based on road distances.

The basic version of the RPA provides the reference solutions, again.

Algorithm distances
bal comp (road distances) ctg

max ave moi wmoi pd wpd max ave

PDDA road 4.41 2.42 −20.31 −20.01 −8.78 −8.71 2.549 1.206

PDDA Eucl. 4.51 2.47 −18.21 −18.28 −8.66 −8.74 0.000 0.000

multi-start PDDA road 4.68 2.63 −21.93 −21.60 −9.73 −9.60 2.398 1.146

multi-start PDDA Eucl. 4.65 2.58 −20.65 −20.92 −9.86 −10.14 0.000 0.000

RPA (basic) Eucl. 0.22 0.11 0.00 0.00 0.00 0.00 0.000 0.000

RPA (improved) road 4.42 2.74 −13.39 −13.59 −8.00 −8.14 0.236 0.042

loc-alloc road 4.95 4.20 −17.93 −18.23 −7.99 −8.13 4.809 1.505

multi-start loc-alloc road 4.98 4.20 −22.17 −22.57 −10.49 −10.51 3.126 1.216

Table 5.20: Different districting approaches incorporating road distances

Table 5.20 presents the results for applying different districting approaches on these in-

stances. The first row presents the results for the PDDA using network distances during

its execution, whereas the second row for using Euclidean distances. In this case, the for-

mer results are better in terms of the (Weighted) Moment of Inertia. Nevertheless, in this

case, Euclidean distances approximate network distances well. Unfortunately, in contrast to

Euclidean distances, networks distances results in overlaps between the districts. Here, the

contiguity evaluates at most 2.549%. For example, Figure 5.13 depicts solutions having a

contiguity of more than 2%.

Rows three and four compare the corresponding multi-start PDDA versions and show sim-

ilar results. Comparing the PDDA with the RPA and the location-allocation approach

leads to the same observations as in Section 5.5.9. The PDDA performs better than the

location-allocation approach in terms of balance and contiguity and comparable in terms
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Figure 5.13: PDDA incorporating road distances: Overlapping districts

of compactness. Here, the single-start version of the PDDA generates more compact solu-

tions than the single-start version of the location-allocation approach and vice versa for the

multi-start versions.

The second part of this test uses 12 instances of PPS where our practical partner provides

travel times on a road network.

Algorithm distances
bal comp ctg

max ave moi wmoi pd wpd max ave

PDDA travel 4.26 2.26 −18.44 −19.16 −6.91 −7.45 12.033 3.525

PDDA Eucl. 3.99 2.08 −11.32 −11.74 −6.02 −6.57 0.000 0.000

multi-start PDDA travel 4.33 2.31 −21.71 −22.47 −7.73 −8.17 6.439 2.732

multi-start PDDA Eucl. 4.56 2.47 −15.70 −16.81 −7.15 −8.07 0.000 0.000

RPA (basic) Eucl. 0.34 0.17 0.00 0.00 0.00 0.00 0.000 0.000

RPA (improved) travel 4.16 2.51 −11.11 −12.78 −6.18 −6.84 0.106 0.015

loc-alloc travel 4.95 3.87 −18.86 −20.16 −6.86 −7.35 12.094 4.861

multi-start loc-alloc travel 4.95 4.05 −22.49 −24.05 −8.11 −9.03 8.835 2.860

Table 5.21: Districting approaches according to travel times

Table 5.21 presents the corresponding results. Here, the differences between using network

distances and Euclidean distances are more significant. Hence, Euclidean distances do not

approximate network distances well. The fact, that the distance travelled in ten minutes

differs noticeably if the driver uses a highway or an inner-city road explains this observation.

For example, in terms of the Weighted Moment of Inertia using Euclidean distances leads

to solutions 11.74% better than the reference solution, whereas using travel times is 19.16%

better. However, the overlaps are significantly larger for travel times than for using road
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(a) Euclidean distances (b) Travel times

Figure 5.14: Illustration of the difference between using Euclidean distances and travel times

distances, i.e., the contiguity values are larger. This holds for both the PDDA and the

location-allocation approach. The corresponding single-start solutions have a contiguity of

at most about 12%. Altogether, Comparing the different approaches results in the same

observations as before.

Figure 5.14 illustrates the difference between applying the PDDA based on Euclidean dis-

tances and travel times. Figure 5.14a depicts a non-overlapping solution for Euclidean dis-

tances, whereas Figure 5.14b shows the corresponding solution for network distances. The

underlying dataset is taken from Baden-Württemberg. The orange district in the west of

Figure 5.14b is located along the highway A5, and, hence, rather long-shaped than square.

Moreover, the lake Constance leads to the overlap between the red and the light blue district

in the south-east since the red district contains the region south to it, whereas the blue one

contains the region north to it.

This test shows that the PDDA can handle network distances, although it is a geometri-

cally motivated approach. The usage of Euclidean distances as proxy for road distances is

sufficient, but the usage as proxy for travel times is unsatisfactory. The comparison to the

further districting approaches leads to the same results as for Euclidean distances, reported

in Section 5.5.9.
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5.6 Extensions

Both the RPA and the PDDA are based on the model presented in Section 4.2. However,

the basic model presented in Chapter 2 contains some additional components. This section

outlines extensions of the PDDA including some of these components.

5.6.1 Incorporating Prescribed Centers

The first extension addresses prescribed centers, e.g., existing residences of salespersons

(cf. Section 4.5). The integration of this extension is straightforward: It defines the set of

centers as initial set of generators and fixes them by setting itmain
max = 1, i.e., the generators

are unchanged during the execution of the algorithm.

In addition, capacities can be associated with these centers (cf. Section 4.5.6.2). In this case,

a solution is infeasible if the activity of at least one district is greater than the capacity of

its center and a solution is balanced if the utilizations of all districts are equal. A solution

is feasible if the maximum deviation of a district’s utilization is smaller than or equal to a

feasible deviation τut. Hence, the extension defines the current absolute (utilization) error

of a district as follows:

aertg := w(Bg)− µut · capceng
.

The remainder of Algorithm 5.3.1 stays as before.

5.6.2 Incorporating Multiple Activities

Some applications take multiple activities into account (cf. Section 4.6). A solution should

be balanced with respect to all activity measures.

This extension uses one weight for each generator, but it uses one dynamic convergence

parameter CP t,a for each activity measure a, defined analogously to Equations (5.10) and

(5.11). Each sub-iteration of the extended algorithm updates the weights of all generators

and the convergence parameters of all activity measures. According to Equation (5.9) the

update of a generator’s weight depends on the convergence parameter, but there is one

parameter for each activity. Therefore, each iteration uses for each generator gh the conver-

gence parameter corresponding to the currently worst balanced activity of district Dh. Let

a∗ = argmax
a=1,...,A

bala(Dh), then it is

vt+1
gh

:= vt+1
gh

+ CP t,a∗ · aert,ah .
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Unfortunately, it can occur that one district is too small with respect to one activity mea-

sure, but too large with respect to another activity measure. In this case, both decreasing

and increasing this generator’s weight leads to a further deterioration in terms of balance

for at least one activity measure. Therefore, if for one district one activity exceeds the cor-

responding upper bound and another activity falls below the lower bound, it is most likely

impossible to obtain a feasible solution using the corresponding generator. In this case, the

extended algorithm removes the respective generator(s) from the set of generators. Then,

it relocates the remainder generators according to the procedure described in Section 5.3.3.

Afterwards, it relocates the missing generators by the means of the k-Means++ algorithm

(cf. Section 5.3.1), resets all generator weights to zero, and starts a new main-iteration.
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5.7 Conclusions

This chapter has proposed an algorithm framework for districting problems based on gen-

eralized Voronoi Diagrams. The algorithm is a two-stage iterative approach, where one

stage relocates the generators and the other stage recalculates the corresponding weights.

By dynamically changing the locations of the generators it outperforms approaches that fix

the generators at the beginning. Even though the generator locations are dynamic, result

quality is still highly dependent on the initial set of generators. Therefore, this chapter

has introduced a multi-start variant in addition. In contrast to the RPA presented in the

previous chapter, this algorithm puts more emphasis on compactness than on balance. Its

optimization goal is mainly compactness, while it uses balance in order to decide whether a

solution is feasible or not. Moreover, this chapter has compared different generalized Voronoi

Diagrams and concluded that in the context of districting the usage of Power Diagrams is

recommendable. Power Diagrams are contiguous if Euclidean distances are used and the

allocation of the basic areas to generators is related to the Weighted Moment of Inertia.

A possible extension could address the evaluation functions comparing solutions of different

main-iterations or of different starts, respectively. They could combine the evaluations of

different planning criteria such as compactness and balance to reflect the user preferences

more precisely. In this case, the Pareto front of feasible solutions with respect to these

criteria could be approximated additionally, as it was done for example by Paquette et al.

[10].

Concerning to the execution of a main-iteration: After achieving a feasible solution the

update of the weights could be continued until there is no further improvement or until the

obtained solution is infeasible again.

Nevertheless, tests on two datasets comprising 56 instances in total and comparisons to

other approaches have confirmed the efficiency of the proposed algorithm framework and the

quality of the obtained solution.



241

Bibliography

[1] F. Aurenhammer. Voronoi Diagrams – A Survey of a Fundamental Geometric Data
Structure. ACM Computing Surveys, 23(3):345–405, 09 1991.

[2] F. Aurenhammer, F. Hoffmann, and B. Aronov. Minkowski-Type Theorems and Least-
Squares Clustering. Algorithmica, 20, 1998.

[3] R. G. Fryer Jr. and R. Holden. Measuring the Compactness of Political Districting
Plans. Journal of Law and Economics, 54(3):493–535, 2011.

[4] L. C. Galvão, A. G. N. Novaes, J. E. Souza de Cursi, and J. C. Souza. A multiplicatively-
weighted Voronoi diagram approach to logistics districting. Computers & Operations
Research, 33:93–114, 2006.

[5] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan
Political Redistricting by Computer. Operations Research, 13(6):998–1006, 1965.

[6] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. A local search approximation algorithm for k-means clustering. Computational
Geometry: Theory and Applications, 28(2-3 SPEC. ISS.):89–112, 2004.

[7] R. Klein. Algorithmische Geometrie. Addison-Wesely-Longman, Bonn, 1997. ISBN
978-3827311115.
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This chapter focuses on districting problems where the basic areas correspond to the edges

of a graph, for example, streets on a road network. Classical applications are the design of

districts for mail or leaflet delivery, waste collection, salt spreading, snow removal, or meter

reading. Typically, each street must be serviced exactly once and the required service time

as well as the deadheading time along each street is given. The deadheading time is the

time necessary to traverse the street without providing service. The aim is to partition the

set of edges into a given number of districts such that each district is balanced, compact,

connected, and has a small unproductive deadheading time. The balance of a district is

based on the total working time required to service all of its edges, including service times

and travel times.

6.1 Literature Review

In contrast to the literature concerning polygonal representations of basic areas, the literature

on algorithms based on edge representations of basic areas is rather limited.

Bodin and Levy [2] discuss the Arc Partitioning Problem. They have in mind applications

such as postal delivery or meter reading. In the given street network, each side of a street

requiring service is modeled as a separate arc having the working time that is necessary to

service it as its weight. If only one side of a street has to be serviced, the graph is augmented

by a parallel opposite arc having a weight of zero. Therefore, the resulting undirected multi-

graph is Eulerian. In their heuristic the authors firstly select a set of nodes which serve as

seeds for the districts. In each step then they assign a parallel pair of street sides to a district,

considering balance in terms of service times and connectedness. By adding parallel pairs of

streets sides the obtained sub-networks are also Eulerian. After all arcs have been assigned

to a district, they apply three exchange steps in order to improve the balance of the districts.

Connectedness is not affected by the exchange steps. If the balance is still unsatisfactorily,

the center of each district is chosen as seed and the heuristic restarts. The aim of this

approach is to find a feasible solution in terms of balance, not an optimal solution, i.e., the

service time of each district has to be between given lower and upper bounds. Moreover,

compactness is no planning criterion at all. Furthermore, finding a minimum deadheading

time Euler cycle is not part of this procedure.

In a second work, the authors refer to the Arc Oriented Location Routing Problem [1]. In

this case, an added parallel opposite arc has the deadheading time of the street as arc weight

and a depot is located within each district. Moreover, minimizing the number of depots and

minimizing the total deadheading time are further planning criteria.
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Hanafi et al. [14] consider a districting problem for municipal solid waste collection and

present local search methods in order to improve an already given districting plan. The

underlying road network is represented by a mixed multi-graph. The regarded problem

contains two special features: First, the districts are explicitly allowed to be disconnected.

Second, since the number of times a basic area is serviced per week differs, it contains daily

varying collection and districting plans. Thus, each basic area is exclusively assigned to a

district within each day, but it can be assigned to different districts on different days. The

authors consider the total working time of each district, i.e., the service times plus the routing

times. Their objectives are the minimizations of the working time imbalance, of the number

of connected components, and of the maximum workload of a single district. Furthermore,

they treat balance as a constraint by defining minimal and maximal working times for each

district. Their model does not take compactness into account. As they allow disconnected

districts, the resulting routing problem is a rural postman problem that is NP-hard. Thus,

they approximate the routing times based on travel times between the centers of gravity of

the connected components, the depot, and the dump site.

Muyldermans et al. [19] address the problem of designing districts for salt spreading or road

maintenance. They want to create connected, balanced, and compact sub-networks with

centralized depots that support good routing within these sub-networks. If the underlying

graph is not Eulerian, they match the odd degree vertices at minimal costs in a pre-processing

step. Their approach is similar to that of Bodin and Levy [2], but instead of considering

parallel edge pairs, they aggregate the edges into small cycles of edges and treat these cycles

as basic areas. Hence, the generated sub-networks by aggregating these cycles are Eulerian

in order to enable tours from the depots with no deadheading. For each district its seed

is its prescribed depot. If a cycle is close to one of these depots, an initial step assigns it

to this depot directly. Then, this approach assigns the further cycles to the districts, first

considering balance and closeness, later considering compactness, balance, and estimated

number of trucks. The applied assignment rules ensure connectedness.

In Muyldermans et al. [20] the authors present three further heuristics. In order to obtain

compact districts, two of these heuristics use a closest assignment rule to assign basic areas

to districts while ensuring that districts are connected and balanced. They differ in the

definition whether single edges or edge cycles are treated as basic areas. Their conducted

experiments show that the larger the vehicle capacity, the better the cycle approach. Most

likely, this is because they only consider the radial distances from edges to depots during

their assignment procedure, but not the routing costs within the districts. Thus, assigning

cycles tends to yield shorter tours than using single edges. For small capacities, the situation

is the reverse. The third heuristic reduces the augmented graph in size by directly allocating
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basic areas close to the depots and by merging basic areas using structural properties of

the graph. Then a mixed integer program is solved, focusing on minimizing the number

of required trucks and on compactness. However, this approach requires noticeable more

computation time than the former. They apply their approaches to real-world data in

Antwerp, Belgium.

An overview and some discussions about the approaches of Muyldermans et al. and some

former approaches are given by Perrier et al. [22, 23].

Perrier et al. [24] also focus on problems such as salt spreading and snow disposal on a

road network that is modeled as a mixed multi-graph. They deal with the partitioning of a

road network into sectors as well as the assignment of these sectors to depots. They assume

that each sector is serviced by a single tour. The main idea of their approach is to treat

both problems successively by solving mathematical programs. The first approach, called

assign first – partition second, first assigns street segments to depots, considering capacities,

contiguity, and transportation costs. Their formulation of considering transportation costs

can be interpreted as a compactness measure. After that, for each depot its streets are

partitioned into contiguous sectors while minimizing the number of trucks and considering

capacity constraints. The second approach, called partition first – assign second is the other

way around, i.e., it determines sectors in a first step and assigns these sectors to depots

in a second step. The proposed mathematical programs do not model balance explicitly,

however, they model different capacity constraints and try to minimize the number of trucks.

The authors apply both approaches to real-world street data of Montreal, Canada. They

conclude that the first approach outperforms the second one, mainly, the partition problem

is not suitable solvable in reasonable time for larger instances.

Mourão et al. [18] focus on a waste collection problem, where a road network should be

partitioned into sectors and a route in each sector should be determined. However, their

approach is applicable to other problems as well. The road network is modeled as a mixed

multi-graph, where each side of a street requiring service is modeled as a separate arc. If

both sides can be served simultaneously, the corresponding street is modeled as two opposite

arcs, but only one of them has to be visited within a route. The authors present different

heuristics that solve the stated problem. Partly, they augment the graph to be Eulerian in

a pre-processing step by adding arcs on the shortest path between odd degree vertices. In

an initial step they select a seed for each district. After that, at each iteration they either

add one single required arc or a small cycle to one district. In order to obtain balanced and

compact districts, they chose the smallest district in terms of workload and use a closest

assignment rule to add an arc or cycle to it, ensuring that capacity constraints are satisfied.

However, no compactness measure is used to evaluate an assignment. The corresponding
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routing within each district is either determined simultaneously with the generation of the

districts, or in a second phase after finishing the districting phase. In contrast to most other

approaches, the authors consider forbidden turns explicitly. However, they do not consider

contiguity explicitly, and, hence, the set of arcs defining a district may not be connected.

In the context of meter reading in power distribution networks de Assis et al. [6] address a

redistricting problem. In this context, there is a large variation on the set of customers over

time. Hence, from time to time a redistricting is necessary. The customers are aggregated on

edges of an undirected graph and each edge has two activities: A reading time and a number

of customers. The authors propose a bi-criteria mathematical programming formulation

that tries to maximize balance and compactness while ensuring connectedness and limiting

the number of reassignments. In order to solve the problem, they construct in a first step

the dual graph where demand occurs at nodes. Thus, the districting problem on edges is

transformed into a districting problem on nodes. In order to solve the latter, or more precisely

to approximate its Pareto Frontier, they apply a GRASP heuristic that uses multi-criteria

scalarization techniques.

Garćıa-Ayala et al. [10] discuss the problem of designing districts for implementing various

arc routing operations on them. They model the underlying road network as an undi-

rected graph, where each edge corresponds to a street. Moreover, they consider a set of

prescribed depots and there is a one-to-one relation between these depots and the generated

districts. The aim of their work is to present an integer linear programming model that in-

cludes contiguity (connectedness), compactness, deadheading times, and balance. As in the

mathematical districting model of Hess et al. [15], this model uses optimizing compactness

as objective function, while it treats restricting balance within a given tolerance as a con-

straint. However, it considers balance only in terms of service times, but not in terms of total

working times including travel times. It also models contiguity as a constraint, analogously

to Ŕıos-Mercado and Fernández [25] for example. However, the innovation of their approach

is the introduction of node parity constraints to facilitate Eulerian districts. They define

that a node having even (odd) degree in the overall graph loses parity if there is (are) at

least one (two) district (districts) where the degree of this node is odd in the corresponding

sub-graph (sub-graphs). They model the node parity constraints by limiting the ratio of

nodes loosing parity. In order to solve the presented model, they propose an exact solution

algorithm based on branch and bound with a cut generation strategy.

Some authors present school districting problems. However, most of the proposed models are

not based on streets as basic areas. Some authors aggregate streets to clusters and deal with

them as basic areas. These clusters are called residence tracts [27], planning polygons [7], or
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Additional criteria

Bodin and Levy (1989) [1] + - - + + minimizing number of depots

Bodin and Levy (1991) [2] + - - + -

Hanafi et al. (1999) [14] - + - - + minimizing number of connected components

Muyldermans et al. (2002) [19] + - + + 0 minimizing number of trucks

Muyldermans et al. (2003) [20] - - 0 + 0 minimizing number of trucks

Perrier et al. (2008) [24] 0 - 0 + - minimizing number of trucks

Mourão et al. (2009) [18] 0 0 0 - 0

de Assis et al. (2014) [6] + - + + - minimizing number of reassignments

Garćıa-Ayala et al. (2016) [10] + - + + +

Table 6.1: Districting based on edge representations of basic areas: Included criteria

blocks [4]. Chapleau et al. [5] define stopping points of the school bus and assign students to

the closest stop. To the best of our knowledge, only Ferland and Guénette [9] work directly

with streets as basic areas. They assign them to schools using an allocation procedure based

on closest assignments under consideration of capacity constraints.

Table 6.1 summarizes the presented districting approaches according to their included plan-

ning criteria. An entry of ‘+’ (‘-’) indicates the (non-)consideration of the corresponding

criterion. An entry of ‘0’ indicates that the corresponding criterion is considered only im-

plicitly. For example, a closest assignment rule is often used in order to achieve compact

districts, or the underlying graph is made Eulerian in a pre-processing step in order to obtain

districts inducing small deadheading times.

There is no approach that explicitly considers the total workload including the routing dis-

tances within the districts, as well as compactness. For example, Bodin and Levy [1, 2] do

not consider compactness, whereas other approaches consider compactness only implicitly

by using the closest assignment rule in order to obtain compact districts [14, 18, 20]. Some

former works do not include routing distances at all [1, 6, 24], whereas others make the

underlying graph in a pre-processing step Eulerian in order to obtain always Eulerian dis-

tricts [1, 18, 20]. Garćıa-Ayala et al. [10] consider compactness as well as routing distances,
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however, they try to achieve balanced districts in terms of service times, but not in terms of

total working times. Moreover, in fact, balance and deadheading times are not minimized,

they are treated as constraints, i.e., they are bounded to be in prescribed ranges.

The goal of this chapter is to present an algorithm that considers compactness as well as

routing distances explicitly. This algorithm tries to optimize compactness, total routing

distances, and balance in terms of total working times. It has already been published in

Butsch et al. [3] and the following description is based on this work.

The remainder of the chapter is organized as follows: The next section will introduce the

model for the arc districting problem. Section 6.3 describes the different components of

the proposed algorithm. Section 6.4 presents the results of extensive computational tests,

in order to assess the algorithm in terms of solution quality and running times. Moreover,

Section 6.5 outlines some possible extensions. This chapter concludes with a summary and

a short outlook.
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6.2 The Model

The underlying road network is modeled as a connected undirected multi-graph G = (V,BA)

called the street graph. Each edge of this graph corresponds to a street segment of the

underlying road network and the street is stored by means of a connected collection of line

segments, where each line segment is specified by the geographic coordinates of its end-

points. The node set V corresponds to street crossings or dead ends. A node having an even

degree is denoted as even node, whereas a node having an odd degree is denoted as odd node.

The focus is on applications where districts are serviced on foot or by bike. Classical examples

for such applications are mail and leaflet delivery, the reading of gas and electricity meters,

or door-to-door campaigning. Based on these applications, the following assumptions can

be made:

• Without loss of generality, the street graph is connected. If the graph is not connected,

each connected component can be considered separately.

• The street graph is undirected. The districts are serviced on foot or by bike since in

these cases one-way streets are not prohibitive.

• Each edge is fully serviced in one single traversal. If one street can be serviced in a

zig-zag pattern, this street can be modeled as one edge, otherwise, this street can be

modeled as two parallel edges since a multi-graph is used.

• Each edge is a required edge. Strongly spoken, an edge is required if there is at

least one household or mail box on the corresponding street segment. Streets without

households are most likely highways, where the traversing by foot or bike is prohibited.

Hence, these streets need not to be modeled. Within cities there are usually no further

non-required arcs.

• Each district corresponds to a single round tour. Hence, no specified start- or end-

points are defined.

• Depots are not considered since stem distances from a depot to the district are either

not an issue, such as in meter reading, or negligible compared to the working time in

the district, as, e.g., in mail and leaflet delivery. For example, in leaflet delivery, the

deliverer might pick up the leaflets at the supermarket before he distributes them in

the neighborhood.

• All kind of turns are feasible since the districts are serviced on foot or by bike.

• While servicing a district, the traversing of other districts is allowed. If necessary, a

service person will simply walk the shortest path between two edges he has to service,

even if some traversed streets are serviced by another service person.
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6.2.1 Components

Chapter 2 has presented a general model for the districting problem. This subsection pro-

vides an overview how its components are adapted for the usage in the context of edge

representations.

6.2.1.1 Basic Areas

Here, the basic areas correspond to edges of the street graph. Each basic area is fully

serviced in a single traversal and has two quantifiable activity measures: A service time

and a deadheading time. The service time si is the time needed to serve the demand of all

customers of the edge, whereas the deadheading time di corresponds to the time needed to

traverse the edge without providing service, obviously di ≤ si holds.

The underlying street is stored as a sequence of points (x1
i , y

1
i ), . . . , (x

m(i)
i , y

m(i)
i ) representing

the end-points of a connected collection of line segments, where m(i) is the number of end-

points.

6.2.1.2 Distances

The distance d(i, j) := di,j between two edges i and j is defined as the minimum distance

between the end-nodes of i and j. The distance between two nodes is the distance of a

shortest path between them with respect to the deadheading times of the edges.

6.2.1.3 Districts

A district Dg consists of the set of basic areas Bg ⊆ BA serviced in a single tour. Further-

more, the sub-graph H(Dg) of G induced by a district Dg is defined as H(Dg) := (Vg, Bg)

with Vg = {q ∈ V | ∃r : (q, r) ∈ Bg or (r, q) ∈ Bg }.
A basic area i is adjacent to district Dg if i is adjacent to at least one basic area j ∈ Bg.

The total working time w(Dg) of a district is defined as the total time required to serve the

demand of all of its basic areas including travel times. The first time an edge i is visited

it is serviced, i.e., its traversing time is si. If this edge is visited again, no service will be

provided, i.e., its traversing time is di.

In order to determine w(Dg) a Chinese postman problem (CPP) is solved. The CPP is to

find the shortest cycle that traverses every edge of a connected undirected graph at least

once. This cycle is called Chinese postman tour (CPT). The problem was introduced by

Guan [13] and a solution approach was proposed by Edmonds and Johnson [8].

If the graph is Eulerian, i.e., each node is an even node, the shortest cycle traverses every edge

exactly once. Thus, the total working time is the sum of the service times of all edges. For
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(a) Graph G1 (b) CPT on G1

Figure 6.1: CPT on a Eulerian graph
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(c) MCM on M(G2)
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Figure 6.2: CPT on a non-Eulerian graph

example, Figure 6.1a depicts a Eulerian graph and Figure 6.1b illustrates one corresponding

CPT.

If the original graph is not Eulerian, the CPT has to traverse some edges at least twice.

Obviously, these edges are on paths between odd nodes. Hence, the problem of finding a

CPT can be transformed into the problem of finding a set of pairs of odd nodes, such that

each odd node belongs to exactly one pair and the total length of the shortest paths of these

pairs is minimized. To this end, a complete graph called matching graph consisting of the

odd nodes of the original graph is defined, where the length of an edge is that of a shortest

path between its end-nodes in the original graph.

Considering the sub-graph H(Dg) the corresponding matching graph M(Dg) is formally

defined as follows:

M(Dg) := (V o
g , B

o
g) with







V o
g = {r | r has an odd degree in H(Dg)}

Bo
g =

{

(r, q)
∣

∣ r, q ∈ V o
g

}

(6.1)

The length of an edge (r, q) ∈ Bo
g of M(Dg) is that of a shortest path sp(r, q) between the

nodes r and q in G with respect to the deadheading times.

The problem mentioned above is the problem of finding a Minimum Cost Matching (MCM)

on the matching graph [12].

Example 6.2.1 Figure 6.2a depicts a non-Eulerian graph, i.e., this graph has odd nodes

(white) as well as even nodes (black). Figure 6.2b illustrates the corresponding matching
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(a) District Dg

bc bc

(b) CPT of Dg allowing traversing
edges of other districts

bc bc

(c) CPT of Dg without traversing
edges of other districts

Figure 6.3: CPT within a district

graph and Figure 6.2c shows the resulting MCM as double-lined edges. Finally, Figure 6.2d

depicts the corresponding CPT, where an edge that is serviced is illustrated as a solid

line, while an edge that is only traversed is illustrated as a dashed line, i.e., this edge is a

deadheaded edge.

In order to determine sp(r, q) not only the sub-graph H(Dg), but the entire graph G is

taken into account. Figure 6.3 illustrates this definition exemplarily: Figure 6.3a depicts

the edges of Dg true to scale as solid lines. Moreover, the edge illustrated as dashed lines is

assigned to another district. There are only two odd nodes in H(Dg), hence, a CPT traverses

the shortest path between them. In real-world applications the service person would most

probably choose the tour illustrated in Figure 6.3b since its total length is shorter than the

length of the tour illustrated in Figure 6.3c, although this tour traverses a street of another

district.

Finally, the total working time of Dg is the sum of the service times of its basic areas, plus

the deadheading time induced by the CPT. The corresponding set of deadheaded edges is

denoted by TSDg
. Therefore, the deadheading time DH(Dg) of Dg results in

DH(Dg) :=
∑

i∈TSDg

di

and the total working time w(Dg) results in

w(Dg) :=
∑

i∈Bg

si +DH(Dg) .

6.2.1.4 Districting Plan

A districting plan or solution S is a set of districts S := {D1; . . . ;Dp}, where p is the given

number of districts. The total deadheading time DH(S) of a districting plan is defined as
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the sum of the deadheading times of its districts, i.e.,

DH(S) :=

p
∑

g=1

DH(Dg) . (6.2)

Analogously, the total working time w(S) of a districting plan is defined as the sum of the

total working times of its districts, i.e.,

w(S) :=

p
∑

g=1

w(Dg) =
∑

i∈BA

si +DH(S) .

In general, the working times of two different districting plans are not equal since the total

deadheading times induced by the CPTs can be different for each plan.

6.2.2 Planning Criteria

The aim of the problem can be described as follows: Partition all basic areas (edges) BA

into p districts that are connected, balanced, locally and globally compact, and have a small

total deadheading time. Next, this section will explain the meanings of these criteria in

detail. These criteria can be classified as hard and soft criteria. When a hard criterion is

not satisfied, the solution is infeasible; the soft criteria are part of the objective function.

Hard Criteria

A feasible solution must satisfy the following two hard criteria.

6.2.2.1 Complete and Exclusive Assignment

Each basic area must be assigned to exactly one district. An edge is assigned to a district

Dg if it is serviced in the corresponding CPT, i.e., if it is an edge of the corresponding

sub-graph H(Dg). Note that an edge does not belong to a district if is only traversed in the

corresponding CPT without providing service.

Furthermore, a node of G can be assigned to more than one district or sub-graph, respec-

tively.

6.2.2.2 Connectedness

The sub-graph H(Dg) of G induced by a district Dg must be connected. Although dis-

connected districts are not explicitly forbidden in the applications mentioned above, such

districts are nevertheless perceived as highly undesirable by planners. For example, de Assis

et al. [6] enforce connected districts for meter reading.
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Soft Criteria

The following subsections describe the four considered soft planning criteria. Moreover,

they explain their formulations as relative measures in order to make them comparable and

applicable to an additively weighted objective function.

6.2.2.3 Balance

Recall (cf. Section 2.2.2) that a common way to measure the balance of a district is to

compute the relative percentage deviation of its working time from the average working time

µ := w(S)/p, that is

bal(Dg) :=
|w(Dg)− µ|

µ
.

The larger this deviation, the worse the balance. In order to measure the balance of an

entire districting plan, a classical approach is to use either the maximum relative percentage

deviation

balmax(S) := max
g=1,...,p

bal(Dg) (6.3)

or the sum (or the average) of all relative percentage deviations. However, both approaches

have drawbacks. Hence, our approach combines both ideas using a convex combination to

define the balance of a districting plan:

bal(S) = α · 1
p
·

p
∑

g=1

bal(Dg) + (1− α) · max
g=1,...,p

bal(Dg) , (6.4)

where α ∈ [0, 1].

Note that the average working time µ depends on the solution S since the total working

time w(S) depends on the deadheading times induced by the CPTs. That means, that by

applying an exchange operation the balance of all districts can change even if only a few

districts are involved directly.

6.2.2.4 Deadheading Time

A well balanced district does not necessarily have a small deadheading time. For example,

a solution with a service time of 30 minutes and a deadheading time of 30 minutes for each

district is perfectly balanced, but probably unsatisfactory from an economic point of view.



6.2 The Model 259

b

(a)

b

(b)

b

(c)

b

(d)

b

(e)

Figure 6.4: Assignments of a node having a degree of 4 in G
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Figure 6.5: Assignments of a node having a degree of 3 in G

Therefore, the minimization of the total deadheading time DH(S) is regarded as a separate

planning criterion.

In order to obtain a relative measure, the relative deviation to a lower bound on DH(S) can

be used. For purposes of simplification, in the following the term “district” denotes a district

Dg as well as its induced sub-graph H(Dg). At first, Figure 6.4 (6.5) shows exemplarily how

the edges incident to an even (odd) node of G can be assigned to districts. Figure 6.4a

as well as Figure 6.4b illustrates that an even node of G can be also an even node of all

districts it is assigned to. However, it can also be an odd node in some districts as depicted

in Figures 6.4c, 6.4d and 6.4e. In contrast to this, an odd node of G will be an odd node of at

least one district in any case. For example, the node depicted in Figure 6.5 is either an odd

node of one district (Figures 6.5a and 6.5b) or of three districts (Figure 6.5c). Hence, each

odd node of G belongs to at least one matching graph in every solution. Thus, a MCM on

the matching graph of G, and, hence, a CPT through all basic areas induces a lower bound

on DH(S).

Lemma 6.2.1 Let S be a solution and let TSBA be the set of deadheaded edges in a CPT

through all basic areas BA. Then

DH(BA) :=
∑

i∈TSBA

di ,

defines a lower bound of DH(S), i.e., the deadheading costs of a CPT through all basic areas

BA define a lower bound.
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Figure 6.6: Merging the CPTs of two districts

Proof

Assume that DH(BA) is not a lower bound on DH(S), i.e., a solution S
′

:= {D′

1; . . . ;D
′

p}
exists, such that DH(S

′

) is smaller than DH(BA). Let D
′

g and D
′

h be two arbitrary neigh-

boring districts, i.e., there is at least one node r belonging to H(D
′

g) as well as to H(D
′

h).

That means, r is visited at least once in a CPT in district D
′

g as well as in a CPT in dis-

trict D
′

h. Therefore, a merged tour visiting all edges of D
′

g and D
′

h can be constructed as

follows: Visit the edges of D
′

g according to the corresponding CPT until node r is reached

for the first time. Then interrupt this CPT and visit all edges of D
′

h according to the cor-

responding CPT starting and ending in node r. Recall that a CPT corresponds to a cycle.

After finishing the CPT in D
′

h, continue the CPT in D
′

g until all remaining edges are vis-

ited. For example, Figure 6.6c shows the resulting tour for merging the CPTs of D
′

g and D
′

h

illustrated in Figure 6.6b. Here, dh denotes a deadheaded edge. Obviously, the total work-

ing time of the merged tour results in w(D
′

g) + w(D
′

h) and its deadheading time results in

DH(D
′

g)+DH(D
′

h). Note that this merged tour is not necessarily the shortest tour visiting

all edges of D
′

g and D
′

h at least once.

In the next steps, this tour can be merged with a further CPT of a neighboring district, and

so on. Since G is connected, the CPTs of all districts can be merged to a tour T visiting

every edge of G at least once. Then, the total working time of T is the sum of the working

times of all districts and its deadheading time is

∑

g=1,...,p

DH(D
′

g) := DH(T ) .

According to Equation (6.2) DH(T ) equals DH(S
′

), and, hence, DH(T ) is smaller than

DH(BA). That means, a tour visiting every edge of G at least once and having a smaller

deadheading time than a CPT on G exists. This contradicts the definition of a CPT.

Hence, no solution S ′ exists such that the inequality DH(S
′

) < DH(BA) holds, i.e.,

DH(BA) is a lower bound on DH(S). 2
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Therefore, a relative measure to evaluate the deadheading time of a districting plan is the

relative deviation of the total deadheading time from this lower bound, i.e.,

dh(S) :=
DH(S)−DH(BA)

DH(BA)
. (6.5)

Hence, a solution S with dh(S) = 0 could have deadheaded edges, but the deadheading is

caused by the underlying street graph and not by the districting.

6.2.2.5 Local and Global Compactness

Finally, a district is said to be compact if it is nearly round-shaped or square, undistorted,

without holes, and has a smooth boundary. See Chapter 3 for a comprehensive overview

of proposed measures in the literature. In general, one can distinguish between relative

and absolute measures as well as between local and global measures. A relative measure

compares the compactness of a district to an ideal value and usually results in a score in

the interval [0, 1]. For absolute measures this is not the case. A local measure assesses the

compactness of a single district, whereas a global measure computes the compactness of the

entire districting plan. Based on the recommendations proposed in Section 3.2, the algorithm

presented in this chapter uses one local and one global measure for the compactness of a

districting plan.

Local Compactness

Most of the available local and global measures work with polygonal basic areas and do

not transfer to edges. One of the few exceptions are distance-based measures, which can

obviously be adapted to basic areas represented by points or lines (cf. Section 3.5.1.2). The

heuristic presented in this chapter uses a measure related to the Moment of Inertia introduced

in Section 3.3.5.1. It computes the compactness of a district Dg as the sum of the distances

from the assigned basic areas to the district center ceng:

comp(Dg) :=
∑

i∈Bg

d(i, ceng) ,

where

ceng := argmin
i∈Bg

∑

j∈Bg

di,j

is the basic area minimizing the sum of distances to all other basic areas.

Distance-based measures are absolute measures. Hence, they are not directly applicable to

an additively weighted objective function. Moreover, they are not independent of scale. In
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order to overcome these drawbacks, this approach normalizes the result by a factor based on

the set of basic areas. Therefore, it computes a global center

cenBA := argmin
i∈BA

∑

j∈BA

di,j

and uses the aggregated distance of all basic areas BA to this center as normalization factor.

Let

comp(BA) :=
∑

i∈BA

d(i, cenBA) ,

then, the local compactness of a district results in

lc(Dg) :=
comp(Dg)

comp(BA)
.

As for balance, the local compactness of the districting plan is defined as a convex combi-

nation of the average compactness of all districts and the maximum compactness of a single

district:

lc(S) := β · 1
p
·

p
∑

g=1

lc(Dg) + (1− β) · max
g=1,...,p

lc(Dg) , (6.6)

where β ∈ [0, 1].

Global Compactness

There is no straightforward definition of a district’s shape consisting of basic areas rep-

resented by line segments. Following Jarrah and Bard [16], our model uses the smallest

enclosing axis-parallel rectangle to approximate the shape of a district. Let xi (xi) define

the smallest (largest) x-value of the underlying street for basic area i, that means

xi := min
l=1,...,m(i)

xl
i and xi := max

l=1,...,m(i)
xl
i .

Moreover, let y
i
(yi) be defined analogously. Then, the smallest enclosing axis-parallel

rectangle ER(Dg) of a district Dg is described by the opposite vertices (xmin
g , ymin

g ) and

(xmax
g , ymax

g ) with

xmin
g := min

i∈Bg

xi , ymin
g := min

i∈Bg

y
i
, xmax

g := max
i∈Bg

xi and ymax
g := max

i∈Bg

yi .
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Figure 6.7: Defining an enclosing rectangle

Example 6.2.2 Figure 6.7a shows the underlying road network of a district Dg. Figure 6.7b

illustrates its corresponding axis-parallel enclosing rectangle and depicts its vertices.

Without loss of generality and for purposes of simplification, in the following illustrations

and examples each basic area consists of only one line segment.

The shape of each district is defined independently of the shape of any other district, hence,

there are no common borders in general. Thus, taking the total length of common boundaries

into account as it is done by Perimeter-Tests (cf. Section 3.3.3.1) is not applicable in this

case. Moreover, there can be intersections between the enclosing rectangles of the districts or

open spaces within the overall area. Unfortunately, intersections are visually not appealing.

Furthermore, in the case of intersections the areas of responsibility for the different service

persons are not clearly defined. Therefore, this model defines a districting plan to be globally

compact if these enclosing rectangles are non-overlapping. Since this is usually impossible

to achieve, the global compactness measure of a districting plan determines the sum of the

areas of intersection between pairs of these enclosing rectangles in relation to the area of the

enclosing axis-parallel rectangle of all basic areas, i.e.,

gc(S) :=
1

area(ER(BA))
·
p−1
∑

g=1

p
∑

h=g+1

area(ir(g, h)) , (6.7)

where ER(BA) denotes the smallest enclosing axis-parallel rectangle of BA having the

area

area(ER(BA)) := (max
i∈BA

xi − min
i∈BA

xi) · (max
i∈BA

yi − min
i∈BA

y
i
) .
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Figure 6.8: Measuring global compactness

Moreover, ir(g, h) denotes the intersection between ER(Dg) and ER(Dh). This intersection

is either empty or also an axis-parallel rectangle. Hence, the area of this intersection is given

by

area(ir(g, h)) = max{(xmax
(g,h) − xmin

(g,h)); 0} ·max{(ymax
(g,h) − ymin

(g,h)); 0}

with

xmin
(g,h) := max{xmin

g ; xmin
h } , ymin

(g,h) := max{ymin
g ; ymin

h } ,
xmax
(g,h) := min{xmax

g ; xmax
h } , ymax

(g,h) := min{ymax
g ; ymax

h } .

Note that gc(S) > 1 may occur if more than two areas overlap in a sufficiently large region.

Example 6.2.3 Table 6.2 defines the nodes of the graph depicted in Figure 6.8a.

node 1 2 3 4 5 6 7 8 9 10

x 0 0 0 1 1 2 2 1.8 4.5 4

y 1 3 5 0 6 1.3 3 4.7 1 5

Table 6.2: Nodes of the graph depicted in Figure 6.8a

Figure 6.8b shows a partition into two globally compact districts D1 and D2. The enclosing

rectangle of D1 is described by the vertices (0, 3) and (4, 6), while the enclosing rectangle of

D2 is described by the vertices (0, 0) and (4.5, 3). These enclosing rectangles do not overlap,

and as expected this implies area(ir(1, 2)) = max{(4− 0); 0} ·max{3− 3); 0} = 4 · 0 = 0.
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In contrast to this, Figure 6.8c depicts a partition into two districts having a large area of

intersection. In this case, the enclosing rectangle of D1 is described by (0, 1.3) and (4, 6), and

of D2 by (0, 0) and (4.5, 5). This implies xmin
(1,2) = 0, xmax

(1,2) = 4, ymin
(1,2) = 1.3, and ymax

(1,2) = 5, and,

hence, area(ir(1, 2)) = 14.8. The corresponding area is colored dark gray. The enclosing

rectangle of BA is described by the vertices (0, 0) and (4.5, 6). Consequently, it results in

area(ER(BA)) = 27 and cg(S) = 0.55.
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6.3 The Algorithm

This section presents our heuristic for the arc districting problem on an undirected graph.

In the first phase it constructs an initial solution and then it improves this solution by

means of a two-stage iterative approach combining tabu search and adaptive randomized

neighborhood search.

The neighborhood of the current solution consists of all solutions resulting from an operation

applied to the current solution. The heuristic applies three different operations which reas-

sign one or two basic areas to other districts. Since this neighborhood can be quite large,

we have developed four different strategies that restrict the search to specific subsets of the

neighborhood of the current solution. Each strategy focuses on neighboring solutions likely

to yield an improvement with respect to one of the four soft criteria. In order to explore

the different neighborhoods of the current solution determined by the strategies, we have

developed a set of sub-routines. There is one sub-routine per strategy, plus one that searches

the complete neighborhood of the current solution. Each sub-routine applies tabu search to

the respective neighborhood, and stops if no improvement has occurred for a certain number

of consecutive iterations. The best solution encountered during this search is the initial solu-

tion for the next sub-routine. The sub-routines are randomly selected according to a roulette

wheel mechanism, as in adaptive large neighborhood search [26]. The probability of selecting

a sub-routine depends on its past performance and on user-defined weights. The algorithm

stops after a certain number of consecutive sub-routine executions without improvement.

As explained above the algorithm evaluates a solution in terms of four soft criteria. Hence,

essentially, it solves a multi-criteria problem. However, in order to obtain a single objective

function, it merges the evaluations of these four criteria, defined in Equations (6.4), (6.5),

(6.6) and (6.7) into a weighted objective function:

F (S) := w1 · bal(S) + w2 · dh(S) + w3 · lc(S) + w4 · gc(S) , (6.8)

with wi ≥ 0 for all i and
∑4

i=1 wi = 1. The weights w1, . . . , w4 are specified by the user

and reflect the relative priorities of the corresponding criteria. The aim of the algorithm is

the generation of a solution satisfying both hard criteria and minimizing F . However, the

soft criteria are conflicting, a fact that Section 6.4 will examine. Thus, the algorithm also

determines and stores a set of alternative solutions, in addition to the best solution with

respect to F using the concept of Pareto-optimality. Defining the multi-criteria function

MF (S) := (MF 1(S), . . . ,MF 4(S)) := (bal(S), dh(S), lc(S), gc(S)) ,
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S dominates S ′ if MF c(S) ≤ MF c(S ′) for c = 1, . . . , 4 holds, and there exists one c such

that MF c(S) < MF c(S ′). A districting plan S is called locally Pareto with respect to a

given set of solutions if there is no solution in this set that dominates S. In order to obtain a

set of alternative solutions PS, the algorithm stores all locally Pareto solutions with respect

to the solutions encountered during its execution.

In the following, this section will explain the construction heuristic. After that, it describes

the operations applied in order to create new solutions and the strategies for a system-

atic search in the neighborhood. Finally, it explains the sub-routines and provides a full

description of the algorithm.

6.3.1 Construction Heuristic

The algorithm determines a feasible initial solution by applying a basic version of the Re-

cursive Partitioning Algorithm (RPA), described in detail in Chapter 4. Since the RPA is

based on basic areas represented as points and having one activity measure, for each edge

a proxy point is defined. Its location is the middle point of the edge and its activity mea-

sure is its service time. This middle point is defined as the point located on the collection

of line segments and having the same distance to (xi, yi) and (x
m(i)
i , y

m(i)
i ) measured along

these segments. The RPA quickly computes a well balanced and globally compact districting

plan.

Unfortunately, the resulting districts are not necessarily connected, because the neighbor-

hood information induced by the street graph is not taken into account. Therefore, in order

to obtain connected districts, the algorithm carries out the following post-processing-step:

For each disconnected district Dg it determines all of its connected components and the

corresponding service times. Let C1
g , . . . , C

c
g denote the sets of edges of these components.

Moreover, let Cmax
g denote the largest component in terms of service times. After that, the

algorithm reduces each disconnected district to its largest component, i.e., it removes from

Bg all edges except those of C
max
g . Let Bun denote the set of all unassigned basic areas. As a

result, all districts are now connected, but the criterion of complete assignment is no longer

satisfied.

In order to restore the complete assignment, the algorithm iteratively assigns the basic areas

of Bun to districts as follows: One iteration firstly determines the set of assignment candidates

AC ⊆ Bun × {1; . . . ; p}, where (i, g) ∈ AC if i ∈ Bun is adjacent to Dg. After that, it ranks

these candidates according to their objective value F (D1; . . . , Dg ∪{i}; . . . , Dp), and realizes

the best ranked assignment. The algorithm repeats this procedure until all basic areas are

assigned to districts. Although connectedness and full assignment are guaranteed by this



268 6 Districting for Arc Routing Applications

procedure, the solution needs no longer to be balanced.

Algorithm 6.3.1 summarizes the steps of the construction heuristic.

Algorithm 6.3.1: Construction Heuristic

Input: Set of basic areas BA, number of districts p.

Output: A feasible districting plan S.

1 Compute S = RPA(BA, p) and set Bun = ∅, AC = ∅.
2 for g = 1, . . . , p do

Calculate C1
g , . . . , C

c
g and Cmax

g .

Set Bg = Cmax
g .

foreach Cj
g 6= Cmax

g do Bun = Bun ∪ Cj
g .

end

3 while Bun 6= ∅ do

AC = ∅
foreach i ∈ Bun do

for g = 1, . . . , p do

if i is adjacent to g then Set AC = AC ∪ {(i, g)}.
end

end

Calculate (a, t) = argmin
(i,g)∈AC

F (D1; . . . ;Dg ∪ {i}, . . . , Dp).

Set Dt = Dt ∪ {a} and Bun = Bun\{a}.
end

4 return S.

Example 6.3.1 Figure 6.9 illustrates this procedure. The solution of the RPA contains

three disconnected districts, see Figure 6.9a. Assuming equal service times for each edge,

the districts are reduced to those illustrated in Figure 6.9b. Thus, basic areas 1, 2, 3, and

4 are unassigned, i.e., Bun = {1; 2; 3; 4}. Basic area 2 is adjacent to D1, 3 is adjacent to D3

and 4 is adjacent to D2. Since basic area 1 is only adjacent to unassigned basic areas, the

set of assignment candidates is AC = {(2, 1); (3, 3); (4, 2)}. First, the algorithm assigns 4 to

D2 since D2 is highly unbalanced. In the next two iterations, it assigns basic area 2 to D1

and basic area 3 to D3. The final outcome of the algorithm is depicted in Figure 6.9c.

6.3.2 Operations and Neighboring Solutions

The heuristic applies three operations in order to create alternative solutions. Two of them

are shift-operations, the last one is a swap-operation. All operations maintain the complete

and exclusive assignment of the basic areas to the districts.
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(a) Solution generated by the RPA

Bun
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(b) Solution after restoring con-
nectedness

Bun = ∅

(c) Final solution of the construc-
tion phase

Figure 6.9: Illustration of the construction heuristic

6.3.2.1 Shift-Operation

The operation shift(i, g) changes the assignment of basic area i from its current district

Dh = D(i) to another district Dg (g 6= h), i.e., Bh = Bh\{i} and Bg = Bg ∪ {i}.

6.3.2.2 Double-Shift-Operation

The operation double-shift(i, j, g) changes the assignment of basic areas i and j from their

current district Dh = D(i) = D(j) to another district Dg (g 6= h), i.e., Bh = Bh\{i; j} and

Bg = Bg ∪ {i; j}.

6.3.2.3 Swap-Operation

The operation swap(i, j) changes the assignment of basic area i from its current district

Dh = D(i) to district Dg = D(j) (g 6= h) and the assignment of basic area j from its district

Dg to district Dh. This leads to Bh = (Bh ∪ {j})\{i} and Bg = (Bg ∪ {i})\{j}.

An operation is feasible if

• the involved basic areas are not in the current tabu list (see Section 6.3.4);

• the involved districts are still connected after the execution of the operation.

The heuristic executes only feasible operations. The districting plan resulting from the

execution of an operation on S is called a neighboring solution of S. Assuming i < j

for swap-operations, there is a one-to-one correspondence between neighboring solutions

and feasible operations. Finally, the set NH(S) of all neighboring solutions of S resulting

from feasible operations is called the neighborhood of S. The majority of the strategies

abstains from using double-shift-operations. On the one hand a double-shift-operation can
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(b) Solution after applying shift(8, 2)

Figure 6.10: Illustration of an operation

be interpreted as consecutive execution of two shift-operations and on the other hand the

number of feasible double-shift-operations is most likely quite large. Therefore, NHs(S) is

the set of all neighboring solutions resulting from feasible shift- and swap-operations. If

the meaning is not ambiguous, for short (i, g), (i, j, g), and (i, j) denote shift(i, g), double-

shift(i, j, g), and swap(i, j), respectively.

Example 6.3.2 Figure 6.10a shows a districting plan. Assuming an empty tabu list there

are the following nine feasible shift-operations: (9, 1), (10, 1), (13, 1), (6, 2), (8, 2), (15, 2),

(20, 2), (7, 3), and (12, 3). For example, (14, 3) is not feasible. The execution of this operation

splits D1 into two connected components, one containing the basic areas 1, 2, 3, 4, 5, 6, 8

and the other containing basic areas 7.

Moreover, in this case the following four swap-operations are feasible: (6, 9), (6, 10), (8, 9),

and (8, 10).

Furthermore, the set of feasible double-shift-operations contains altogether 22 operations,

namely (9, 10, 1), (9, 12, 1), (10, 21, 1), (13, 15, 1), (13, 16, 1), (13, 17, 1), (2, 6, 2), (5, 6, 2),

(3, 8, 2), (4, 8, 2), (5, 8, 2), (6, 8, 2), (13, 15, 2), (15, 16, 2), (15, 17, 2), (15, 20, 2), (19, 20, 2),

(7, 14, 3), (9, 12, 3), and (11, 12, 3).

Finally, Figure 6.10b illustrates the districting plan after applying shift(8, 2).

6.3.3 Strategies

Depending on the number of required districts, the structure of the graph, and the length

of the tabu list, the cardinality of NH(S) can be very large. Therefore, the algorithm
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uses four specialized strategies in order to restrict the size of the neighborhood in the local

search phase of a sub-routine. These strategies reduce the running time of the algorithm and

can also be used to choose neighboring solutions which specifically improve on a particular

criterion. Next, these strategies are presented. Each strategy defines a subset CL ⊆ NH(S)

of neighboring solutions, called the candidate list.

6.3.3.1 Improve Balance

The improve balance strategy (BL) chooses neighboring solutions with the aim of improving

balance (cf. Section 6.2.2.3). To this end, it only includes operations that involve highly

unbalanced districts. A district is deemed to be highly unbalanced if its balance exceeds a

given threshold value balmax. If there are fewer than nbbal districts exceeding this threshold,

the nbbal worst balanced districts are considered. An unbalanced district is characterized by

a total working time which is either too small or too large. If the total working time of an

unbalanced district is too small (large), the heuristic restricts itself to those operations that

add (remove) a basic area to (from) this district. In the following, a district having a total

working time which is too small (large) is denoted as a small (large) district. In order to

allow some flexibility such an operation is not forbidden even if the second district involved in

the operation is highly unbalanced as well. Therefore, CL consists of all solutions resulting

from feasible shift-operations (i, g) which fulfill one of the following two conditions:

• D(i) is a large district and basic area i is adjacent to district Dg;

• Dg is a small district and basic area i is adjacent to district Dg.

This strategy does not use swap operations. Since a swap operation simultaneously adds

and removes a basic area to a district, its impact on balance is only marginal in general.

Double-shift operations are also not included.

6.3.3.2 Improve Deadheading Time

The choice of neighboring solutions for the improve deadheading time strategy (DH) is mo-

tivated by the goal of reducing the total deadheading time (cf. Section 6.2.2.4). As above,

this strategy considers the set LDT containing the nbdh districts of the current solution with

the largest deadheading times. In order to determine good candidate solutions, a look at the

minimal cost matching that determines the CPTs of these districts is necessary. The match-

ing graph M(Dg) is defined in Equation (6.1). The deadheading time of Dg corresponds to

the costs MC(Dg) of a MCM on M(Dg). A shift- or swap-operation that modifies H(Dg)

changes M(Dg) and, therefore, also the matching costs of Dg.
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Let H
′

(Dg) be the graph obtained from H(Dg) after adding an edge i = (r, q), maintaining

connectedness. Concerning the corresponding matching graph M
′

(Dg) the following effects

can occur (see Figure 6.11):

• Addition of two nodes compared to M(Dg): If r and q are even nodes in H(Dg),

they are odd nodes in H
′

(Dg). Hence, in contrast to M(Dg), M
′

(Dg) contains nodes

corresponding to r and q (see Figure 6.11b).

• Removal of two nodes compared to M(Dg): If r and q are odd nodes in H(Dg),

they are even nodes in H
′

(Dg). Hence, in contrast to M(Dg), M
′

(Dg) contains no

nodes corresponding to r or q, respectively (see Figure 6.11c).

• Replacement of one node compared to M(Dg): If r is an even node and q an odd

in H(Dg), then r is an odd node and q and even node in H
′

(Dg). Hence, in contrast

to M(Dg), M
′

(Dg) contains a node corresponding to r, but no node corresponding to

q. That means that r replaces q (see Figure 6.11d).

Removing an edge i = (r, q) from H(Dg) produces similar effects on H
′

(Dg) and M
′

(Dg),

respectively:

• Addition of two nodes compared to M(Dg): If r and q are even nodes in H(Dg),

they are odd nodes in H
′

(Dg). Hence, in contrast to M(Dg), M
′

(Dg) contains nodes

corresponding to r and q (see Figure 6.12b).

• Removal of two nodes compared to M(Dg): If r and q are odd nodes in H(Dg),

they are even nodes in H
′

(Dg). Hence, in contrast to M(Dg), M
′

(Dg) contains no

nodes corresponding to r or q, respectively (see Figure 6.12c).

• Replacement of one node compared to M(Dg): If r is an even node and q an odd

in H(Dg), then r is an odd node and q and even node in H
′

(Dg). Hence, in contrast

to M(Dg), M
′

(Dg) contains a node corresponding to r, but no node corresponding to

q. That means that r replaces q (see Figure 6.12d).

Unfortunately, there exists no general way of knowing which effect results in a reduction of

the matching costs.

Example 6.3.3 Figure 6.13a depicts a matching of cost 3 on a matching graph having two

nodes. In Figure 6.13c the addition of two nodes r and q to M(Dg) causes an increasing of

MC(Dg) to 6. Here, r and q are matched with each other in the resulting MCM. In this case,

the resulting MCM of MC(Dg) increases in any case. In contrast to this, in Figure 6.13b

the addition of two nodes r and q causes a decrease of MC(Dg) to 2. In this case, r and q

are matched with already existing nodes. However, such matchings do not necessarily result

in a decrease of MC(Dg), as Figure 6.13d shows, where MC(Dg) results in 4.
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Figure 6.11: Effects on M(Dg) after adding an edge i to H(Dg)
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Figure 6.14: Changes in MC(Dg) when removing two nodes from M(Dg)

The same effects result from the removal of two nodes.

Example 6.3.4 Removing two nodes from the matching graph depicted in Figure 6.14a

leads to the matching graphs illustrated in Figures 6.14b, 6.14c, and 6.14d. The correspond-

ing matching costs are 1, 3, and 1, compared to 2 of the original matching.

If two nodes matched with each other are removed, the matching costs decrease in any case

since the further matching remains unchanged. In the other case, an increase as well as a

decrease of the matching costs could occur.

Finally, replacing one node in the graph illustrated in Figure 6.13a causes an increase or

decrease of the matching costs depending on the distance of the added node to the remaining

node.

However, if there is no odd node in H(Dg), i.e., M(Dg) is empty, there are no deadheading

costs. Thus, reducing the number of nodes in M(Dg) seems to be advisable. Moreover, if two

nodes r and q are odd nodes in H(Dg) and close to each other, their corresponding nodes

are most likely matched in a MCM on MC(Dg). Due to the kind of operations applied,

the nodes in H(Dg), corresponding to two nodes added to (removed from) M(Dg), are most

likely close to each other. Thus, in most cases two nodes added to M(Dg) are matched in the

updated MCM, and, hence, MC(Dg) increases. Moreover, in most cases two nodes removed

from M(Dg) are matched in the previous MCM, and, hence, MC(Dg) decreases. Therefore,

it is more likely that removing nodes from M(Dg) induces a reduction in MC(Dg) than

exchanging nodes. Likewise, exchanging nodes more likely yields a decrease in MC(Dg) than

adding nodes to M(Dg). Therefore, for every Dg ∈ LDT the feasible operations that change

H(Dg) are partitioned into three disjoint sets REM(Dg), ADD(Dg), and REP (Dg).
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The set REM(Dg) is defined as follows:

• shift(i, g) ∈ REM(Dg) holds if the operation causes a removal of two nodes from

M(Dg);

• shift(i, h) ∈ REM(Dg) with D(i) = Dg holds if the operation causes a removal of two

nodes from M(Dg);

• swap(i, j) ∈ REM(Dg) with D(i) = Dg or D(j) = Dg holds if the operation causes a

decrease of the number of nodes in M(Dg).

The set REP (Dg) is defined as follows:

• shift(i, g) ∈ REP (Dg) holds if the operation causes a replacement of one node of

M(Dg);

• shift(i, h) ∈ REP (Dg) with D(i) = Dg holds if the operation causes a replacement of

one node of M(Dg);

• swap(i, j) ∈ REP (Dg) with D(i) = Dg or D(j) = Dg holds if the number of nodes in

M(Dg) stays unchanged after executing the operation.

The set ADD(Dg) is defined as follows:

• shift(i, g) ∈ ADD(Dg) holds if the operation causes an addition of two nodes to

M(Dg);

• shift(i, h) ∈ ADD(Dg) with D(i) = Dg holds if the operation causes an addition of

two nodes to M(Dg);

• swap(i, j) ∈ ADD(Dg) with D(i) = Dg or D(j) = Dg holds if the operation causes an

increase of the number of nodes in M(Dg).

The strategy firstly computes the change of MC(Dg) for every element of REM(Dg). Only

for those operations that cause a decrease of MC(Dg) the corresponding solutions are added

to CL. If there exists no such operation, the strategy examines the elements of REP (Dg)

and computes the respective variations of MC(Dg). Again, for the operations that cause a

decrease of MC(Dg), the solutions are added to CL. If there are still no such operations, it

finally considers the elements of ADD(Dg) and adds the respective solutions to CL if they

improve MC(Dg).

Again, this strategy does not include double-shift-operations since they can be interpreted

as a consecutive execution of two shift-operations.

Example 6.3.5 Figure 6.15a depicts the district D1 represented by solid lines. Odd nodes

of H(D1) are colored white, whereas even nodes are colored black. Hence, M(D1) consists

of two nodes. The remaining illustrations in Figure 6.15 show the feasible operations.



276 6 Districting for Arc Routing Applications

1

2

3

4

5

6

(a) Current D1

1

2

3

4

5

6

(b) shift(1, ·)

1

2

3

4

5

6

(c) shift(2, 1)

1

2

3

4

5

6

(d) shift(4, 1)

1

2

3

4

5

6

(e) shift(5, ·)

1

2

3

4

5

6

(f) shift(6, 1)

1

2

3

4

5

6

(g) swap(1, 4)

1

2

3

4

5

6

(h) swap(5, 6)

Figure 6.15: Removing two nodes from M(Dg)

The operation shift(4, 1) reduces the number of odd nodes. In this case, the resulting sub-

graph is actually Eulerian. There is no further operations that reduces the number of odd

nodes, this implies REM(D1) = {shift(4, 1)}.
After applying most of the possible operations the number of odd nodes stays unchanged,

i.e., REP (D1) = {shift(1, ·); shift(2, 1); shift(5, ·); swap(1, 4); swap(5, 6)}.
Finally, the operation shift(6, 1) results in a matching graph consisting of four nodes. Hence,

shift(6, 1) ∈ ADD(D1).

6.3.3.3 Improve Local Compactness

The neighboring solutions for the improve local compactness strategy (LC) are chosen with

the aim of reducing the sum of distances from all basic areas to the district center ceng

(cf. Section 6.2.2.5). The strategy defines the nblct districts with the largest local compactness

as highly non-compact, and it only considers these. Note that a change of district Dg may

imply a change of ceng.

In general, the larger the distance of a basic area i to ceng, the larger the improvement

in local compactness resulting from the removal of i from that district. Let LDg be the

set of the lcnr basic areas with the largest distances to ceng. The elements of LDg are

candidates to be moved from a district Dg with a poor compactness value to another district.

Furthermore, the operation swap(i, j) improves the local compactness of Dg = D(i) only

if d(j, ceng) < d(i, ceng) holds. Hence, this strategy considers such an operation only if

i ∈ LDg. Usually, adding basic area i to district Dg causes a deterioration of the local



6.3 The Algorithm 277

2

1

3

4

5

6
7

8

12

15

10
11

9

13

rs

rs

(xmin
g , ymin

g )

(xmax
g , ymax

g )

Xmin
g = {1; 2; 3; 4; 5; 6; 7}

Xmax
g = {9; 11; 15; 13}

Y min
g = {1}

Y max
g = {6; 8}

(a) ER(Dg)

2

1

3

4

5

7

12

15

10
11

9

13

(b) ER(Dg\Y max
g )

Figure 6.16: Change of the smallest enclosing axis-parallel rectangle

compactness of Dg since the corresponding measure sums up all distances to ceng. Thus,

the strategy omits operations that move a basic area to a district with a poor compactness.

CL contains all neighboring solutions resulting from the following feasible operations:

• shift(i, h) if Dg = D(i) is highly non-compact and i ∈ LDg;

• swap(i, j) if Dg = D(i) is highly non-compact, i ∈ LDg and d(j, ceng) < d(i, ceng);

• swap(i, j) if Dg = D(j) is highly non-compact, j ∈ LDg and d(i, ceng) < d(j, ceng).

6.3.3.4 Improve Global Compactness

Finally, the heuristic also uses a strategy to focus on solutions such that an improvement of

the global compactness is expected, the improve global compactness strategy (GC) (cf. Sec-

tion 6.2.2.5). Recall that ER(Dg) is described by its two opposite vertices (xmin
g , ymin

g ) and

(xmax
g , ymax

g ). For each bounding edge of ER(Dg) there exists at least one edge of Dg having

a point of contact with this edge. Therefore, the following sets are defined:

Xmin
g :=

{

i
∣

∣ i ∈ Bg and i has a point of contact with x = xmin
g

}

,

Xmax
g :=

{

i
∣

∣ i ∈ Bg and i has a point of contact with x = xmax
g

}

,

Y min
g :=

{

i
∣

∣ i ∈ Bg and i has a point of contact with y = ymin
g

}

,

Y max
g :=

{

i
∣

∣ i ∈ Bg and i has a point of contact with y = ymax
g

}

.

Obviously, the corresponding bounding edge moves if and only if all edges of such a set are

removed from Dg, and, hence, ER(Dg) shrinks.
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Figure 6.17: Area of intersection between two districts’ enclosing rectangles

Example 6.3.6 Figure 6.16a illustrates the sets Xmin
g , Xmax

g , Y min
g , and Y max

g . Moreover,

Figure 6.16b illustrates the result for removing all basic areas i ∈ Y max
g from Dg.

The intersection ir(g, h) between ER(Dg) and ER(Dh) is again a rectangle. In order to

reduce the area of intersection, one has to delete one of the sets that induce a bounding edge

of the intersection rectangle from Dg or Dh. For example, if xmin
(g,h) equals x

min
g and all edges

of Xmin
g are removed from Dg, then area(ir(g, h)) shrinks. IR(g, h) denotes the set of all

edges of Dg whose removal from Dg may result in a reduction of area(ir(g, h)). Note that

ir(g, h) = ir(g, h), but IR(g, h) 6= IR(g, h).

Example 6.3.7 Figure 6.17a shows two overlapping enclosing rectangles. The correspond-

ing sets IR(1, 2) and IR(2, 1) are illustrated in Figure 6.17b and 6.17c, respectively. Both

sets contain four edges. Unfortunately, in both cases only removing one edge does not

decrease the area of intersection.

Since the sets Xmin
g , Xmax

g , Y min
g , and Y max

g generally contain more than one edge, the

execution of the operation double-shift increases the probability of shrinking ER(Dg), and,

hence, of IR(g, h), h 6= g. As an operation shifting more than two basic areas at once

may cause a considerable deterioration of the balance, this strategy does not include such

operations. Moreover, a swap-operation deletes one basic area from a district, but adds

another one, thus, the change of the enclosing rectangle is in general rather small. Finally, in

order to compute solutions that improve global compactness, this strategy only incorporates

the pairs (g, h) with the largest area of intersection. Let LA denote the corresponding set of
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pairs. Then, CL contains all neighboring solutions resulting from the following operations:

• shift(i, g) with D(i) = Dh if i ∈ IR(h, g) and (h, g) ∈ LA;

• double-shift(i, j, g) with D(i) = D(j) = Dh if i ∈ IR(h, g) and (h, g) ∈ LA.

6.3.4 Sub-Routines

All sub-routines are based on tabu search. Tabu search is a neighborhood based local search

method proposed by Glover [11]. In order to escape from local minima and prevent cycling

during the neighborhood search, a move is declared tabu for a number of iterations. The set

of moves which are declared tabu define a tabu list (TL). Tabu search proceeds as follows:

Starting from an initial solution, during each iteration the heuristic chooses the best non-tabu

solution from the neighborhood of the current solution, even if this causes a deterioration

of the current solution. As a result, the heuristic is able to escape from local minima. The

heuristic ends if a given stopping criterion is fulfilled. In the following, the iterations of a

sub-routine are called sub-iterations, whereas the top-level iterations of the whole algorithm

are called main-iterations.

There is one sub-routine for each of the four strategies presented above. The notation of

these sub-routines uses the same abbreviations as for the strategies, i.e., BL, DH, LC, and

GC. In addition, there is one sub-routine that does not focus on a particular criterion,

but contains all neighbors of the current solution based on shift- and swap-operations, that

means CL = NHs(S). This sub-routine is called the brute force sub-routine (BF). Its usage

is sometimes useful for escaping from extremal solutions generated by the algorithm after

applying a particular sub-routine too often.

Starting from the current solution S and the corresponding tabu list TL, a sub-routine tries to

find a better solution SL ∈ CL. In order to evaluate the balance of a solution in CL correctly,

the algorithm has to recompute the average working time µ (cf. Section 6.2.2.3). Moreover,

for each involved district Dg its center ceng has to be recomputed (cf. Section 6.2.2.5) in

order to achieve the correct compactness evaluation. Since these computations are rather

time consuming, the algorithm does not update these two values for each solution. Therefore,

the obtained evaluations bala(S) and lca(S) are only approximations of the correct values

bal(S) and lc(S). However, this approximation is in general sufficiently close to the true

value (on average, the relative deviation is below 0.1%). Only at the end of an iteration of

the sub-routine the algorithm updates µ and ceng.

If a solution performs poorly for a specific criterion, the algorithm sometimes wants to put

more emphasis on it. To this end, a special feature of this algorithm is the usage of local
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weights wL
1 , wL

2 , wL
3 , wL

4 for each criterion in addition to the global user weights. The

objective function with respect to these local weights is

FL(S) := wL
1 · bal(S) + wL

2 · dh(S) + wL
3 · lc(S) + wL

4 · gc(S) ,

and the objective function using the approximations is

FL
a (S) := wL

1 · bala(S) + wL
2 · dh(S) + wL

3 · lca(S) + wL
4 · gc(S) .

More details on the local weights and their motivation will be provided in Section 6.3.5.

During each sub-iteration the algorithm chooses the neighboring solution S with the best

value according to FL
a . For this solution, it then determines FL(S) and tests whether the

solution improves upon the currently best solution SL with respect to FL. It also checks

whether the solution improves the objective value F of the currently best solution S∗ with

respect to the global weights. Furthermore, it updates the set of locally Pareto solutions

PS as follows. If a solution S ′ ∈ PS dominates S, S can be discarded. Otherwise, the

algorithm adds S to PS and deletes all solutions from PS that are dominated by S. A

sub-routine stops if there are maxIT successive sub-iterations without an improvement of

FL. The best solution SL with respect to FL and the corresponding tabu list are the result

of the sub-routine and the initial starting point for the next sub-routine.

Algorithm 6.3.2 provides a formal description of this procedure.

Algorithm 6.3.2: Outline of a Sub-Routine

Input: PS, S∗, S, TL, local weights wL
1 , . . . , w

L
4 .

Output: A feasible districting plan S.

Parameter: An iteration limit maxIt.

1 Set SL = S, TLL = TL, and it = 0.

2 while it < maxIt do
Determine CL and compute S = argmin

S′∈CL

FL
a (S

′).

Update TL.

if FL(S) < FL(SL) // update µ and ceng

then set SL = S, TLL = TL, and it = 0
else Set it = it+ 1.

Update PS with S.

if F (S) < F (S∗) then Set S∗ = S.

end

3 return PS, S∗, S, and TL.
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6.3.5 Local Weights

The main goal of this heuristic is the determination of a solution minimizing F , where F is

computed using the global user-defined weights w1, . . . , w4; see Equation (6.8). In order to

escape from local minima of F or to put temporarily a higher or lower emphasis on a certain

criterion during the execution of the heuristic, it can be useful to change the values of these

weights. To this end, the local weights wL
1 , . . . , w

L
4 are introduced in Section 6.3.4. Generally,

a large local weight wL
r means that an improvement with respect to the rth soft criterion is

desired. In addition, in order to use the local weights in the evaluation of a solution during

a sub-iteration, these weights are used to calculate the probabilities of applying the different

sub-routines; see Section 6.3.6 for details.

Since the local weights are used to focus on certain criteria, they are updated at the end of

each main-iteration. The update of a single local weight depends on its corresponding global

weight as well as on the variation of the evaluation of its corresponding criterion between

the current solution S and the solution S ′ of the previous main-iteration. If the evaluation

of the criterion for S is worse than for S ′, the local weight increases, and vice versa. More

precisely, the algorithm applies the following update rule:

wL
i := wL

i ·























1− wi ·min
{

1, 10 · MF i(S′)−MF i(S)
MF i(S′)

}

if MF i(S) < MF i(S ′)

1 if MF i(S) = MF i(S ′)

1 + wi ·min
{

1, 10 · MF i(S)−MF i(S′)
MF i(S′)

}

if MF i(S) > MF i(S ′)

(6.9)

Hence, for a relative improvement (deterioration) of up to 10% in the value of the crite-

rion between S and S ′, the change is proportional to the global weight and to the relative

improvement (deterioration). For a larger variation the change is only proportional to the

global weight.

6.3.6 Sub-Routine Selection

In each main-iteration the algorithm randomly selects one of the five sub-routines. The

probability p(BF ) of selecting the brute force sub-routine is fixed here by the parameter

pBF . The probability of selecting another sub-routine is proportional to the corresponding

local weight. For example, the probability for the improve balance sub-routine is determined

as

p(BL) := (1− pBF ) ·
wL

1

wL
1 + wL

2 + wL
3 + wL

4

. (6.10)
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The probabilities p(DH), p(LC), and p(GC) are defined analogously. In general, the higher

the value of wL
r is, the higher the probability of selecting the corresponding sub-routine.

If a sub-routine was executed without finding a better solution, the sub-routine is declared

inactive until another sub-routine can improve the solution. An inactive sub-routine may not

be selected, except for the brute force sub-routine which is never inactive. Let IS denote the

set of inactive sub-routines. Strongly spoken, declaring a sub-routine inactive changes the

probabilities according to Equation (6.10). Technically, the heuristic repeats the selection

step until a sub-routine is chosen that is not inactive.

Although balance is only a soft criterion, it is often desired to avoid highly unbalanced

solutions. Thus, if the balance of a district exceeds a user-given threshold balinf , the Improve

Balance sub-routine is always chosen, unless it is inactive. Note that for balinf = ∞ this rule

is invalid. Exceeding balinf especially occurs after the construction phase since the applied

post-processing usually causes a deterioration of the balance.

Algorithm 6.3.3 summarizes the selection step.

Algorithm 6.3.3: Selection of Sub-Routines

Input: A feasible districting plan S, local weights wL
1 , . . . , w

L
4 , a set of inactive sub-routines IS.

Output: A sub-routine R.

1 if ( max
g=1,...,p

bal(Dg) > balinf ) and BL /∈ IS then Select R = BL.

else

repeat

foreach R ∈ {BL;DH;LC;GC} do Calculate p(R).

Draw a random variable uniformly distributed over [0, 1] and select the corresponding

sub-routine R ∈ {BL;DH;LC;GC;BF}.
until R /∈ IS

end

2 return R.

6.3.7 Overview: Improvement Heuristic

This subsection provides an overview over the complete improvement heuristic; see also

Algorithm 6.3.4. The improvement phase starts with an initial solution S. During each

main-iteration, it randomly selects a sub-routine (Section 6.3.6) depending on the current

local weights (Section 6.3.5), and it applies this sub-routine to the current solution S using

the current tabu list TL. After the execution of a sub-routine, the heuristic updates the

local weights depending on the variations of the evaluations of the four soft criteria. After
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that, the heuristic checks whether the executed sub-routine has found a better solution with

respect to F or whether the set of locally Pareto solutions has changed. If neither of these

two events occurs for maxMIt consecutive main-iterations, the algorithm stops.

Algorithm 6.3.4: Outline of the Improvement Phase

Input: A feasible districting plan S, global weights w1, . . . , w4.

Output: A feasible districting plan S∗, the set of locally Pareto solutions PS.

Parameter: An iteration limit maxMIt.

1 Set TL = ∅, S∗ = S, PS = {S∗}, IS = ∅, it = 0, and wL
i = wi for i = 1, . . . , 4.

2 while it < maxMIt do
Randomly select a sub-routine R. // Algorithm 6.3.3

Execute R using PS, S∗, S, TL, and wL
1 , . . . , w

L
4 . // Algorithm 6.3.2

Update the local weights wL
1 , . . . , w

L
4 . // Equation (6.9)

if (S has improved or PS has changed) then
Set it = 0 and IS = ∅

else
Set it = it+ 1 and IS = IS ∪ {R} if R 6= BF .

end

3 return S∗, PS.
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6.4 Computational Results

This Section presents the results of our computational tests. The algorithm was coded

in C++ and executed on a PC running Windows 7 with a Pentium(R) Dual-Core E5500

processor with 2.80 GHz and 2 GB RAM. The calculation of a minimal cost perfect matching

is based on the blossom algorithm. Our implementation uses the blossom implementation

of Kolmogorov [17].

The tests are conducted on 24 different problem instances based on the German road network

generated as follows. Using the ArcView GIS1, all streets within a rectangular area were

selected and converted into a street graph, storing for each street the list of connected line

segments representing it. The instances differ in the number of streets, the aspect ratio of

the rectangle, and in whether they are situated in an urban (U) or in a rural (R) area. The

instances are labelled U∗ and R∗, respectively, where ∗ is the number of streets of the graph.

The deadheading times are taken to be proportional to the length of the streets, and the

service time of each street is a random multiple of the deadheading time.

The number p of districts ranges from four to eight for instances with fewer than 400 basic

areas. For 400 up to 600 basic areas five, seven, eight and ten districts are considered. Finally,

for more than 600 basic areas six, eight, ten and twelve districts are considered. With respect

to the other parameters, balmax = 0.1, balinf = 0.1, nbbal = nbdh = nblct = ⌊p/2⌋, nbgc = p,

lcnr = 15, pBF = 0.2, maxIT = 25, maxMIt = 5 is used. Since the algorithm contains a

random component, each instance is solved 10 times. The results present only the average

over these 10 runs. The percentage of the standard deviation from the mean objective

function value is just 6.26% on average (with a maximum of 20.4% for one instance).

6.4.1 Soft Criteria

The first test assesses the relevance of each criterion for obtaining a good overall solution. To

this end, it computes for each instance a solution for which the objective function contains

only one of the criteria, i.e., the user-given weight for the chosen criterion is set to one and all

other weights are zero. In the following, let S(BL), S(DH), S(LC), and S(GC) denote the

respective single criterion solutions for balance, deadheading, local compactness, and global

compactness. Afterwards, the test evaluates each single criterion solution with respect to the

other three criteria as well. Concerning the balance, it uses balmax(S) (cf. Equation (6.3))

instead of bal(S) (cf. Equation (6.4)) since it is easier to interpret this result. After that,

this test computes for each solution S(·) and each criterion the absolute difference in the

1ESRIr, www.esri.com
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value and the relative percentage deviation with respect to the value of the corresponding

single criterion solution. For example, for each instance it computes for S(BL) the difference

and relative deviation of lc(S(BL)) to lc(S(LC)) (cf. Equation (6.6)) and of gc(S(BL)) to

gc(S(LC)) (cf. Equation (6.7)). There is one exception: Concerning the deadheading times,

it computes the difference of dh(S(BL)) to dh(S(DH)) (cf. Equation (6.5)), but the relative

percentage deviation of DH(S(BL)) to DH(S(DH)) (cf. Equation (6.2)) since there are

some instances where dh(S(DH)) = 0. In other words, the absolute deadheading times are

used in order to determine the relative percentage deviation.

balance deadheading local comp. global comp.

S(BL) − 0.477 (46%) 0.022 (45%) 0.631 (682%)

S(DH) 0.198 (41180%) − 0.022 (50%) 0.340 (369%)

S(LC) 0.153 (39416%) 0.413 (39%) − 0.375 (414%)

S(GC) 0.463 (115790%) 0.283 (27%) 0.041 (82%) −

Table 6.3: Average absolute values and relative deviations (in brackets) between the single
criterion solutions

Table 6.3 shows the results, which are the averages over the 24 problem instances and the dif-

ferent values of p. Taking row one for example, the deadheading costs of the solution S(BL)

are 0.477 larger than the deadheading costs of S(DH), i.e., dh(S(BL))−dh(S(DH)) = 0.477.

This corresponds to an increase in the costs of 46%.

The results exhibit huge balance deviations. The reason is that the solutions S(BL) are

nearly perfectly balanced, with an average balance of only 0.4%. Note that a balance of

0.4% corresponds to bal(·) = 0.004, consequently a balance of 5%, i.e., bal(·) = 0.05, has

a percentage deviation of 1150%. Unfortunately, perfectly balanced solutions usually have

very high deadheading costs and induce larger overlaps of districts. Figuratively spoken, all

service persons work approximately the same, but very much. Hence, the achieved solutions

are not sufficient from an economic point of view. Moreover, the areas of responsibility are

not separated well. Namely, the average value of the global compactness criterion for these

solutions is 0.751, i.e., the total area of intersection between the districts is about three

quarter of the whole area.

Figure 6.18a depicts an example of an almost perfectly balanced solution with five districts

for the instance U132. The evaluations are balmax = 0.0008, dh = 0.88, lc = 0.103 and

gc = 1.491, while the corresponding values of the single criteria solutions are dh∗ = 0.03,

lc∗ = 0.100 gc∗ = 0.05. Especially in the north-east, the district illustrated by dotted lines
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(a) Solution (b) Enclosing rectangles

Figure 6.18: Optimizing balance (U132 with p = 5)

(a) Solution (b) Enclosing rectangles

Figure 6.19: Optimizing global compactness (U132 with p = 5)

and the district illustrated by double-lines are more or less totally overlapped. Figure 6.18b

illustrates the corresponding enclosing rectangles.

Considering global compactness, the districts of the solutions S(GC) are well separated

with an average value of 0.12 for this criterion. Unfortunately, the balance is often way off.

The average balance of the solutions considered in this test is 48%. Figure 6.19a depicts

an example for a globally compact solution (instance U132 with p = 5) with gc = 0.05.

Figure 6.19b illustrates the corresponding enclosing rectangles. The overlap is almost zero,

but the districts are highly unbalanced (balmax = 1.598). Especially the very small district

located in the west consists of only one street illustrated as dotted line. In contrast to this,

the large district located in the east contains more than half of the total demand. The

further evaluations are dh = 0.07 and lc = 0.323.

Another conflict exists between the goals of minimizing deadheading times and maximizing

global compactness. A solution with small deadheading times usually consists of districts
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(a) Solution (b) Enclosing rectangle

Figure 6.20: Optimizing deadheading (U212 with p = 7)

whose sub-graphs are nearly Eulerian. Hence, the algorithm tries to generate districts con-

sisting of cycles. These cycles are often interwoven with cycles of other districts, and, thus,

these solutions are unsatisfactory with respect to global compactness. Figure 6.20a shows

this effect on the instance U212 with p = 7 resulting in gc = 0.60. Figure 6.20b depicts the

corresponding enclosing rectangles.

Finally, the test points out similar observations for local compactness. Although the conflicts

are less pronounced, a local compact solution has some weaknesses in terms of the other

criteria.

Summarizing the results of this test, the various criteria pursue conflicting objectives and

none is fulfilled implicitly by another one. Therefore, the next tests focus on solutions that

try to achieve a good compromise between these conflicting criteria.

6.4.2 Equally Weighted Solutions

This set of tests starts with a test where the four soft criteria have the same weight, i.e.,

w1 = w2 = w3 = w4 = 0.25. Table 6.4 shows an extract of the results. A complete list

of the results can be found in the online appendix of Butsch et al. [3]. For each criterion,

Table 6.4 firstly presents the absolute values and secondly it compares these values to those

of the corresponding single criterion solutions. For example, for the instance U132 with

p = 5 the balance of the equally weighted solution is 0.110 larger than balmax(S(BL)), which

corresponds to a relative increase of 14093%. In contrast to this, the deadheading costs of

the equally weighted solution are identical to those of S(DH).
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Absolute values Deviations to the single criterion solutions

p BL DH LC GC BL DH LC GC

U132 5 0.111 0.030 0.093 0.194 0.110 (14093%) 0.000 (0%) 0.020 (28%) 0.145 (290%)

U132 6 0.136 0.142 0.079 0.299 0.133 (4966%) 0.142 (14%) 0.022 (39%) 0.217 (262%)

U132 7 0.130 0.112 0.057 0.112 0.127 (4048%) 0.077 (7%) 0.015 (37%) 0.037 (50%)

U212 5 0.067 0.163 0.094 0.260 0.067 (21512%) 0.163 (16%) 0.021 (28%) 0.175 (206%)

U212 6 0.048 0.111 0.068 0.256 0.047 (6974%) 0.059 (6%) 0.019 (38%) 0.142 (125%)

U212 7 0.036 0.181 0.060 0.303 0.035 (3547%) 0.144 (14%) 0.022 (56%) 0.120 (66%)

U448 5 0.045 0.082 0.091 0.325 0.045 (28008%) 0.082 (8%) 0.021 (30%) 0.245 (307%)

U448 7 0.052 0.167 0.053 0.425 0.051 (22548%) 0.167 (17%) 0.013 (32%) 0.293 (223%)

U448 8 0.093 0.211 0.050 0.415 0.093 (16191%) 0.179 (17%) 0.014 (38%) 0.203 (95%)

U627 6 0.108 0.125 0.078 0.407 0.108 (63106%) 0.104 (10%) 0.009 (13%) 0.298 (272%)

U627 8 0.118 0.243 0.054 0.346 0.118 (25434%) 0.144 (13%) 0.010 (22%) 0.124 (56%)

U627 10 0.182 0.182 0.034 0.426 0.182 (22412%) 0.180 (18%) 0.002 (5%) 0.197 (86%)

R412 5 0.091 0.223 0.037 0.114 0.091 (37353%) 0.199 (19%) 0.001 (3%) 0.069 (155%)

R412 7 0.076 0.133 0.024 0.087 0.076 (21195%) 0.117 (11%) 0.002 (10%) 0.037 (72%)

R412 8 0.266 0.346 0.023 0.072 0.266 (61445%) 0.346 (35%) 0.008 (52%) 0.041 (134%)

Table 6.4: Results for equally weighted criteria

The results show that equally weighted solutions constitute a good compromise between

deadheading times and local compactness. In terms of global compactness the relative

deviations are much larger, but still acceptable. Unfortunately, in terms of balance, already

the absolute values are unsatisfactory. Balance is usually a very important criterion and

deviations of up to 27% from the mean district size are not acceptable in many applications.

Often, it is desired that the maximum deviation, i.e., the balance, is at most than 10%.

6.4.3 Increasing Balance Weight

The next test discusses the effect on balance when the user weight w1 increases, while keeping

the other criteria equally weighted. Table 6.5 shows some results, which are again only an

extract of the conducted experiments.

As expected, balance improves with increasing weights w1. Already for w1 = 0.4 the solutions

are balanced, i.e., balmax ≤ 0.10, expect for U627 with p = 10 and for R412 with p = 8.

Fortunately, the deterioration with respect to the other three criteria is rather moderate.

Table 6.6 presents the corresponding relative deviations.

Figure 6.21 illustrates two respective solutions exemplarily, one for an urban area and one

for a rural area.



6.4 Computational Results 289

p BL DH LC GC BL DH LC GC BL DH LC GC

weight 0.4 0.2 0.2 0.2 0.5 0.17 0.17 0.17 0.57 0.14 0.14 0.14

U132 5 0.040 0.061 0.095 0.249 0.035 0.048 0.092 0.288 0.029 0.067 0.093 0.274

U132 6 0.049 0.255 0.069 0.343 0.018 0.379 0.071 0.429 0.022 0.373 0.068 0.421

U132 7 0.048 0.195 0.053 0.176 0.049 0.195 0.053 0.176 0.026 0.238 0.051 0.271

U212 5 0.027 0.136 0.097 0.301 0.015 0.187 0.098 0.298 0.015 0.216 0.098 0.281

U212 6 0.023 0.170 0.073 0.246 0.021 0.174 0.074 0.260 0.010 0.251 0.072 0.270

U212 7 0.033 0.169 0.054 0.300 0.021 0.179 0.054 0.328 0.013 0.285 0.055 0.334

U448 5 0.016 0.121 0.093 0.344 0.008 0.137 0.093 0.336 0.004 0.199 0.091 0.374

U448 7 0.031 0.220 0.054 0.337 0.020 0.230 0.056 0.373 0.008 0.264 0.056 0.370

U448 8 0.035 0.263 0.045 0.318 0.031 0.302 0.048 0.363 0.015 0.301 0.045 0.330

U627 6 0.073 0.147 0.075 0.407 0.031 0.115 0.073 0.480 0.071 0.144 0.078 0.588

U627 8 0.015 0.253 0.049 0.430 0.016 0.249 0.049 0.425 0.005 0.304 0.050 0.446

U627 10 0.147 0.198 0.049 0.419 0.101 0.211 0.048 0.467 0.010 0.309 0.042 0.535

R412 5 0.021 0.246 0.056 0.113 0.079 0.170 0.038 0.149 0.018 0.264 0.053 0.114

R412 7 0.023 0.167 0.028 0.108 0.009 0.202 0.028 0.103 0.018 0.202 0.027 0.106

R412 8 0.184 0.331 0.023 0.094 0.184 0.325 0.023 0.093 0.179 0.315 0.024 0.124

Table 6.5: Results for increasing the user weight for balance

p BL DH LC GC BL DH LC GC BL DH LC GC

weight 0.4 0.2 0.2 0.2 0.5 0.17 0.17 0.17 0.57 0.14 0.14 0.14

U132 5 64% −3% −1% −28% 69% −2% 1% −48% 74% −4% 0% −41%

U132 6 64% −10% 12% −15% 87% −21% 10% −43% 84% −20% 14% −41%

U132 7 63% −7% 8% −56% 62% −7% 8% −56% 80% −11% 10% −141%

U212 5 60% 2% −3% −16% 78% −2% −4% −14% 77% −5% −4% −8%

U212 6 51% −5% −7% 4% 55% −6% −9% −2% 78% −13% −6% −5%

U212 7 7% 1% 10% 1% 42% 0% 10% −8% 63% −9% 8% −10%

U448 5 63% −4% −2% −6% 82% −5% −1% −3% 91% −11% 1% −15%

U448 7 41% −5% −1% 21% 61% −5% −6% 12% 84% −8% −5% 13%

U448 8 63% −4% 9% 23% 66% −7% 4% 13% 83% −7% 9% 21%

U627 6 33% −2% 3% 0% 71% 1% 6% −18% 34% −2% 0% −44%

U627 8 88% −1% 10% −24% 86% 0% 9% −23% 95% −5% 7% −29%

U627 10 19% −1% −46% 2% 45% −3% −43% −10% 94% −11% −25% −26%

R412 5 77% −2% −51% 1% 13% 4% −1% −31% 80% −3% −43% −1%

R412 7 70% −3% −18% −24% 88% −6% −18% −19% 77% −6% −13% −22%

R412 8 6% −1% 1% 3% 6% 0% 0% 4% 8% 1% −6% −28%

Table 6.6: Results for increasing the user weight for balance



290 6 Districting for Arc Routing Applications

(a) U132 with five districts

(b) R412 with seven districts

Figure 6.21: Two solutions for w1 = 0.4

6.4.4 Varying Weights

Analogously to balance, the next tests addresses the effects of increasing the weights for the

other three criteria. Table 6.7 presents a summary of these results. It states average results

over all 24 instances.

weights deviations

BL DH LC GC BL DH LC GC

0.40 0.20 0.20 0.20 −50% 2% −1% 11%

0.50 0.17 0.17 0.17 −66% 5% 0% 19%

0.57 0.14 0.14 0.14 −76% 6% 1% 27%

0.20 0.40 0.20 0.20 72% −4% 1% 9%

0.17 0.50 0.17 0.17 81% −6% 2% 18%

0.14 0.57 0.14 0.14 91% −7% 3% 21%

0.20 0.20 0.40 0.20 4% −3% −7% −1%

0.17 0.17 0.50 0.17 5% −3% −9% −1%

0.14 0.14 0.57 0.14 9% −2% −10% 0%

0.20 0.20 0.20 0.40 104% 3% 0% −19%

0.17 0.17 0.17 0.50 176% 4% 1% −27%

0.14 0.14 0.14 0.57 228% 5% 4% −32%

Table 6.7: Average deviations to the equally weighted solutions

For example, the first row (w1 = 0.4, w2 = w3 = w4 = 0.2) describes that the balance (lo-

cal compactness) of these solutions is on average 50% (1%) smaller than the balance (local
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compactness) of the corresponding equally weighted solution. With respect to deadheading

and global compactness, these solutions are on average 2% and 11% worse than the equally

weighted ones. As already described before, if the weight of balance increases, the solution

becomes better with respect to the balance. The same effect occurs for the other criteria,

although the percentage improvements are smaller. Increasing the weight for local compact-

ness shows surprising effects. On average the deadheading times and the global compactness

slightly improves as well. Unfortunately, the equally weighted solutions are already unsat-

isfactory in terms of balance and the balance deteriorates again. However, altogether, the

user-given weights work as expected.

In addition, Table 6.8 shows extracts of the results for deadheading, Table 6.9 for local

compactness, and finally Table 6.10 for global compactness in more detail. The online

appendix of Butsch et al. [3] presents the complete results.

p BL DH LC GC BL DH LC GC BL DH LC GC

weight 0.4 0.2 0.2 0.2 0.5 0.17 0.17 0.17 0.57 0.14 0.14 0.14

U132 5 0.053 0.090 0.096 0.241 0.096 0.073 0.097 0.239 0.074 0.030 0.093 0.239

U132 6 0.106 0.078 0.071 0.325 0.149 0.075 0.079 0.317 0.184 0.046 0.083 0.315

U132 7 0.160 0.050 0.071 0.127 0.197 0.042 0.070 0.138 0.161 0.048 0.071 0.130

U212 5 0.072 0.080 0.097 0.280 0.085 0.050 0.098 0.331 0.095 0.039 0.095 0.379

U212 6 0.081 0.077 0.070 0.282 0.059 0.073 0.075 0.270 0.076 0.056 0.062 0.249

U212 7 0.056 0.083 0.055 0.308 0.067 0.078 0.058 0.329 0.085 0.077 0.059 0.338

U448 5 0.025 0.088 0.094 0.358 0.027 0.076 0.091 0.377 0.050 0.072 0.095 0.353

U448 7 0.071 0.109 0.059 0.344 0.051 0.067 0.056 0.337 0.030 0.012 0.056 0.352

U448 8 0.074 0.134 0.047 0.366 0.066 0.106 0.046 0.356 0.078 0.087 0.047 0.376

U627 6 0.025 0.085 0.071 0.410 0.043 0.036 0.072 0.485 0.071 0.028 0.077 0.528

U627 8 0.139 0.192 0.053 0.363 0.134 0.161 0.054 0.403 0.183 0.160 0.056 0.394

U627 10 0.135 0.158 0.049 0.467 0.131 0.157 0.048 0.540 0.064 0.171 0.044 0.577

R412 5 0.160 0.026 0.037 0.083 0.162 0.026 0.037 0.083 0.148 0.025 0.037 0.085

R412 7 0.085 0.061 0.025 0.082 0.083 0.059 0.024 0.083 0.083 0.060 0.025 0.087

R412 8 0.155 0.190 0.022 0.142 0.197 0.162 0.021 0.150 0.205 0.166 0.021 0.147

Table 6.8: Results for increasing the user weight for deadheading
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p BL DH LC GC BL DH LC GC BL DH LC GC

weight 0.4 0.2 0.2 0.2 0.5 0.17 0.17 0.17 0.57 0.14 0.14 0.14

U132 5 0.079 0.049 0.092 0.204 0.090 0.068 0.089 0.197 0.084 0.071 0.087 0.236

U132 6 0.082 0.239 0.065 0.280 0.067 0.229 0.064 0.315 0.066 0.246 0.062 0.185

U132 7 0.088 0.247 0.049 0.179 0.095 0.233 0.050 0.184 0.089 0.235 0.049 0.192

U212 5 0.059 0.061 0.087 0.204 0.029 0.062 0.088 0.243 0.038 0.079 0.087 0.235

U212 6 0.020 0.074 0.061 0.239 0.027 0.088 0.061 0.228 0.037 0.088 0.058 0.251

U212 7 0.034 0.064 0.050 0.205 0.045 0.056 0.048 0.204 0.047 0.059 0.048 0.201

U448 5 0.017 0.050 0.083 0.297 0.022 0.046 0.080 0.298 0.023 0.052 0.079 0.288

U448 7 0.033 0.065 0.051 0.256 0.032 0.062 0.052 0.270 0.039 0.055 0.051 0.266

U448 8 0.031 0.106 0.043 0.319 0.028 0.074 0.044 0.326 0.038 0.074 0.043 0.328

U627 6 0.011 0.062 0.070 0.237 0.011 0.064 0.070 0.240 0.014 0.064 0.070 0.242

U627 8 0.030 0.163 0.050 0.378 0.032 0.157 0.049 0.379 0.028 0.188 0.046 0.365

U627 10 0.181 0.192 0.034 0.394 0.182 0.198 0.035 0.406 0.100 0.201 0.034 0.428

R412 5 0.161 0.038 0.037 0.071 0.139 0.071 0.037 0.095 0.126 0.089 0.037 0.125

R412 7 0.107 0.082 0.024 0.080 0.081 0.122 0.024 0.083 0.073 0.135 0.024 0.096

R412 8 0.086 0.031 0.018 0.131 0.093 0.049 0.018 0.157 0.084 0.063 0.018 0.171

Table 6.9: Results for increasing the user weight for local compactness

p BL DH LC GC BL DH LC GC BL DH LC GC

weight 0.4 0.2 0.2 0.2 0.5 0.17 0.17 0.17 0.57 0.14 0.14 0.14

U132 5 0.092 0.129 0.096 0.210 0.090 0.053 0.090 0.179 0.123 0.177 0.098 0.170

U132 6 0.147 0.157 0.073 0.144 0.293 0.213 0.076 0.108 0.312 0.294 0.082 0.106

U132 7 0.197 0.112 0.063 0.114 0.228 0.118 0.065 0.113 0.303 0.269 0.065 0.112

U212 5 0.078 0.161 0.099 0.250 0.158 0.226 0.112 0.215 0.124 0.261 0.099 0.201

U212 6 0.117 0.196 0.068 0.222 0.175 0.225 0.072 0.227 0.226 0.339 0.070 0.192

U212 7 0.083 0.265 0.064 0.265 0.158 0.273 0.065 0.222 0.197 0.263 0.066 0.208

U448 5 0.042 0.182 0.096 0.317 0.066 0.190 0.095 0.296 0.066 0.190 0.101 0.283

U448 7 0.042 0.088 0.053 0.192 0.081 0.107 0.053 0.161 0.086 0.156 0.053 0.145

U448 8 0.089 0.329 0.046 0.297 0.176 0.312 0.045 0.255 0.208 0.333 0.046 0.235

U627 6 0.121 0.127 0.075 0.410 0.120 0.181 0.073 0.377 0.106 0.164 0.073 0.356

U627 8 0.193 0.262 0.058 0.282 0.270 0.268 0.059 0.251 0.275 0.268 0.062 0.241

U627 10 0.180 0.213 0.034 0.395 0.156 0.216 0.038 0.363 0.154 0.208 0.039 0.349

R412 5 0.071 0.231 0.041 0.091 0.084 0.232 0.040 0.083 0.052 0.251 0.053 0.102

R412 7 0.088 0.120 0.024 0.073 0.079 0.139 0.024 0.072 0.079 0.139 0.024 0.072

R412 8 0.246 0.289 0.025 0.104 0.252 0.360 0.023 0.065 0.259 0.347 0.027 0.072

Table 6.10: Results for increasing the user weight for global compactness
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6.4.5 Running Times

Finally, this subsection takes a look at the running times of the algorithm. Table 6.11

contains the average running times in seconds for solving the 24 equally weighted problem

instances. Since there is no clear trend in running times with respect to p, the results are

also averaged over p. Moreover, the tests do not show any significant differences in running

times with respect to different user weights.

Instance U132 U137 U147 U212 U264 U268 U269 U274

seconds 13 18 25 54 76 94 102 145

Instance R287 U325 U367 R412 U429 U448 U479 U485

seconds 26 91 145 93 173 346 347 255

Instance U509 R544 U584 U627 R629 U741 U771 U857

seconds 464 377 534 515 364 1096 1396 1237

Table 6.11: Average running times for equally weighted criteria

Taking into account that the heuristic solves a tactical problem, the running times are

acceptable.
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6.5 Extensions

This section outlines some extensions considering further requirements or variations of the

general model.

6.5.1 Incorporating Non-Required Edges

The model presented in Section 6.2 assumes that each edge is a required edge since most

likely there are no non-required edges within cities. This extension addresses non-required

edges, i.e., streets segments having no demand (si = 0). Let BAn denote the set of non-

required edges or streets segments, respectively. This extension distinguishes whether each

non-required street has to be assigned to exactly one district or not.

In the first case, the heuristic treats a non-required street just like a required street and ends

up with a solution, where each non-required street is visited at least once on a CPT.

However, there can be a better tour in terms of the total working time if this street has not

to be visited. Hence, in the second case, non-required streets are excluded from the complete

and exclusive assignment. That means, a non-required street needs not to be assigned to a

district. Therefore, a solution contains a set of unassigned streets Bun ⊆ BAn in addition.

Concerning the heuristic, there are additional shift-operations in order to assign unassigned

basic areas or the other way around:

Shift-Assignment: The operation shifta(i, g) assigns an unassigned basic area i ∈ Bun to

a district Dg, i.e., Bun = Bun\{i} and Bg = Bg ∪ {i}.

Shift-Unassignment: The operation shiftu(i) unassigns a basic area i ∈ BAn from a district

Dg = D(i), i.e., Bg = Bg\{i} and Bun = Bun ∪ {i}.

Both operations maintain connectedness and the complete and exclusive assignment of the

required streets.

6.5.2 Incorporating Depots

The next extension includes depots. Depending on the application either the location of

depots is part of the planning process, e.g., locating boxes where the deliverer picks up the

mail of one tour, or the depots are already existing, e.g., supermarkets where the deliverer

picks up the leaflets.

Since each tour is a round-trip, the depot can be located everywhere on this tour. Hence,

the first case is easy to handle.
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If the depots are prescribed, each tour is enlarged by the shortest path from the depot to a

point on the tour and back. Let C denote the set of depots. Moreover, let each district Dg

contain exactly one depot cg ∈ C. In this case, the total working time of Dg results in

w(Dg) :=
∑

i∈Bg

si +DH(Dg) + 2 · d(cg, Bg) ,

where d(cg, Bg) := min
i∈Bg

d(cg, i). Hence, in this case minimizing the total distances between

the depots and the tours is a further optimization goal. Therefore, the heuristic optimizes

an objective function consisting of five criteria and applies a further strategy in order to

improve these distances. For each district Dg having the depot not on the corresponding

tour, it defines neighbored basic areas, located closer to cg than the closest basic area i ∈ Bg,

as candidates that can be shifted to Dg. Note that this approach also works if more than

one tour is associated with each depot.

6.5.3 Incorporating One-Way-Streets

If districts are serviced by car, one-way streets have to be considered. Unfortunately, in

this case a tour within a district is not a CPT any longer. Hence, its computation is more

complex, and, hence, the running time increases. However, from a theoretical point of view

the presented approach is still applicable. Depending on the problem size an approximation

of the tour length for evaluating a neighbored solution is necessary.
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6.6 Conclusions

This chapter has proposed a heuristic for a districting problem arising in many arc routing

applications, but did not yet attract the attention of many researchers. The presented model

contains two hard criteria and four soft criteria which were weighted in a linear multi-criteria

objective function. The proposed heuristic solves the problem by combining features of tabu

search and adaptive randomized neighborhood search. Tests on graphs derived from real-

world street data confirm the quality of the solutions.

A possible extension of this work could be to approximate the Pareto front of all feasible

solutions with respect to these criteria, for example, as in Paquette et al. [21]. Moreover,

the variation of the local compactness measure could be an additional feature. Some further

measures are presented in Chapter 3.

In addition, some improvements according to the running times are possible. For example, for

updating the deadheading times some observations described in Section 6.3.3.2 could be used

in order to determine the MCM incrementally. Nevertheless, the current implementation

already has confirmed the efficiency of the proposed methodology.
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[14] S. Hanafi, A. Fréville, and P. Vaca. Municipal solid waste collection: An effective data
structure for solving the sectorization problem with local search methods. INFOR, 37:
236–254, 1999.

[15] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan
Political Redistricting by Computer. Operations Research, 13(6):998–1006, 1965.

[16] A. I. Jarrah and J. F. Bard. Large-scale pickup and delivery work area design. Computers
& Operations Research, 39(12):3102–3118, 2012.

[17] V. Kolmogorov. Blossom V: A new implementation of a minimum cost perfect matching
algorithm. Mathematical Programming Computation, 1:43–67, 2009.

[18] M. Mourão, A. Nunes, and C. Prins. Heuristic methods for the sectoring arc routing
problem. European Journal of Operational Research, 196:856–868, 2009.

[19] L. Muyldermans, D. Cattrysse, D. Van Oudheusden, and T. Lotan. Districting for salt
spreading operations. European Journal of Operational Research, 139(3):521–532, 2002.

[20] L. Muyldermans, D. Cattrysse, and D. Van Oudheusden. District design for arc-routing
applications. Journal of the Operational Research Society, 54(11):1209–1221, 2003.

[21] J. Paquette, J.-F. Cordeau, G. Laporte, and M. M. Pascoal. Combining multicriteria
analysis and tabu search for dial-a-ride problems. Transportation Research Part B:
Methodological, 52:1–16, 2013.

[22] N. Perrier, A. Langevin, and J. F. Campbell. A survey of models and algorithms for
winter road maintainance. Part I: System design for spreading and plowing. Computers
& Operations Research, 33:209–238, 2006.

[23] N. Perrier, A. Langevin, and J. F. Campbell. A survey of models and algorithms
for winter road maintainance.Part II: System design for snow disposal. Computers &
Operations Research, 33:239–262, 2006.

[24] N. Perrier, A. Langevin, and J. F. Campbell. The sector design and assignment problem
for snow disposal operations. European Journal of Operational Research, 189(2):508–
525, 2008.
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Part IV

Implementation of Districting Problems
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7 Lizard

Within the scope of this thesis we have developed an open source C++ library of algo-

rithms to solve districting problems called “Lizard” (LIbrary of optimiZation AlgoRithms

for Districting). Lizard is freely available under www.lizard.ior.kit.edu as a Windows

executable. Moreover, this homepage makes the source code and some exemplary problem

instances available. In addition, we have developed an interface to the geographic infor-

mation system OpenStreetMap1. This chapter provides an overview over the contents and

options of Lizard.

First of all, Lizard provides a module to load and visualize an existing instance. Figure 7.1a

depicts an exemplary instance after loading it. The graphical front-end is based on the library

GTKMM2. Moreover, Lizard contains some tools to visualize surrogates in the context of

compactness and contiguity evaluation. For example, Lizard can determine and display

the different kind of neighborhood graphs presented in Section 2.2.4 or of the basic areas’

shapes stated in Section 3.5.4. For the instance illustrated in Figure 7.1a, Figure 7.1b depicts

the corresponding Relative Neighborhood Graph and Figure 7.1c shows the corresponding

Voronoi Regions exemplarily.

After loading an instance, the user specifies the problem instance in more detail, chooses a

solution approach and defines the corresponding parameter settings. Figure 7.1d depicts the

interface for choosing the Recursive Partitioning Algorithm. Here, among other parameters,

the user can specify the compactness measure (cf. Section 4.2.2.3) and the kind of bisecting

partition (cf. Section 4.3.3).

After specifying and solving the districting problem, Lizard displays the solution. In order

to distinguish them, Lizard displays the different districts in different colours. Again, Lizard

provides some tools to analyze the solutions, both graphically and textually. For example,

the different approaches of determining shapes of districts are implemented. Figure 7.2a

depicts the convex hulls of the districts (cf. Section 3.5.3.3), whereas Figure 7.2b shows their

1http://www.openstreetmap.org
2http://www.gtkmm.org
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(a) Districting instance (b) Relative Neighborhood Graph

(c) Voronoi regions (d) Choosing an algorithm

Figure 7.1: Specifying a problem instance and a solution approach

χ-shapes (cf. Section 3.5.3.4). Moreover, the user can evaluate a solution or the corresponding

districts, respectively, in terms of a number of measures. Lizard provides different variations

of balance (cf. Section 2.2.2), compactness (cf. Chapter 3) and contiguity (cf. Section 2.2.4)

measures. Figure 7.2c shows the drop menu for choosing a measure and Figure 7.2d shows

some exemplary results.

In addition, Lizard contains a step-by-step version of the RPA in order to make it applicable

for teaching. For a better understanding, Lizard visualizes each sub-division and reports the

corresponding evaluations of the generated bisecting partitions. For example, Figure 7.3a

shows the first sub-division of a districting problem, where the two lines illustrate the borders

of the corresponding flex-zone. The window on the right provides information about the

generated bisecting partitions for all search directions. It states basic information such

as the angle, or further information details such as evaluations in terms of balance and

compactness. Figure 7.3b illustrates the situation some sub-divisions later. The window on

the right allows the user to navigate through the sub-division history.
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(a) Illustrated as convex hull (b) Illustrated as χ-shapes

(c) Choosing a measure (d) Resulting evaluations

Figure 7.2: Illustrations of a solution

(a) Illustration of the first sub-division (b) Illustration of a later sub-division

Figure 7.3: Step-by-step version
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(a) Web front-end (b) Illustration of a solution

Figure 7.4: GIS intergration of lizard (Map: c©OpenStreetMap)

Beside the offline version, we have developed an online version that can be called without any

local installation of software. The user interface is shown in the web browser. Here, the user

places basic areas on a map provided by OpenStreetMap and specifies the parameters using

an input mask. Figure 7.4a shows the described web front-end. After solving the problem,

the web browser shows the calculated result as well, as Figure 7.4b illustrates exemplarily.

Altogether, Lizard is an open source C++ library including a graphical front-end and a

GIS integration that allows solving districting problems and visualizing and analyzing the

obtained results.
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8 Conclusions and Outlook

This thesis has addressed different aspects of districting problems. In the first part, the most

common components and planning criteria have been reviewed. In particular, compactness

has been investigated in very much detail. Even if it is theoretically nearly impossible to

define a comprehensive compactness measure, this thesis has pointed out that some measures

proposed in literature perform well in practice. In addition, this thesis has introduced a

couple of practical approaches for measuring compactness when basic areas are represented

by lines or points. If a service person has to travel within a district, the requirement for

compact districts is based on the assumption that a compact district induces small expected

travel times. Future research could address this correlation in more detail and enhance

existing measures or develop new ones that incorporate an approximation of the travel

times. This approximation is challenging since travel times depend on requirements of the

customers such as visit frequencies or time windows, but also on stochastic factors such as

the day-to-day demand and traffic jams. Moreover, the developed measures should not relax

the requirement for visually compact districts.

This thesis has focused on solution approaches for applications where basic areas are repre-

sented by lines and points since these cases have not yet attracted the attention of several

researchers. The latter case is the content of the second part of this thesis, where the pre-

sented approaches are based on ideas from computational geometry. In particular, there is

a special feature of these presented approaches: Even though the presented approaches are

geometrically motivated, they are able to incorporate distances on a road network.

The Recursive Partitioning Algorithm (RPA) is an existing geometrically motivated heuris-

tic that yields in nearly perfectly balanced districts. This thesis has overcome the RPA’s

weaknesses in terms of compactness; the solutions of the improved RPA are considerably

more compact, while the quality in terms of balance and contiguity is still good. Hence, the

RPA delivers good overall solutions that are a compromise between the different planning

criteria. Furthermore, fast running times allow an interactive use.
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Concerning applications that focus on compactness during the planning process, the Power

Diagram Districting Algorithm (PDDA) introduced in this thesis achieves further improve-

ments. The compactness improvements come at a cost of deteriorations of balance, however,

the algorithm keeps balance within predefined limits. The algorithm has been evaluated for

many practical examples with a problem size of up to some thousand basic areas. Running

times for these problems are still within a few seconds.

The different versions and extensions of the RPA and the PDDA that have been developed

in this thesis have been made available as the library Lizard. When using this library, users

can determine districting plans depending on their specific requirements.

Beside the presented or outlined extensions, further planning scenarios could be addressed

in future research. For example, similarity to an existing districting plan is often sought. In

this case, the evaluation function for a solution should at least incorporate a similarity mea-

sure. Moreover, a way to integrate this requirement into the RPA could be the restriction to

currently unsatisfactory parts of the solution. For example, the RPA could be applied to a

sub-problem consisting of a district evaluated as poor and (a subset of) its neighboring dis-

tricts. In order to integrate this requirement into the PDDA, the locations of the generators

could be restricted to be in defined regions around their current locations.

For the case of line representations, the third part of this thesis has developed a heuristic for

districting problems where the edges of a road network have to be serviced. The proposed

heuristic focuses on problems where the service within each district is provided by bike

or foot. However, it can be adapted to further applications where the service is provided

by car or truck. This heuristic combines ideas from geometrical approaches, tabu search,

and adaptive randomized neighborhood search. Its innovation is the fact that it takes into

account both compactness and routing distances explicitly. Tests on real-world street data

confirm the efficiency of this approach. Hence, in future works the proposed methodology

can be integrated in further practical districting algorithms in the context of arc routing, for

example for snow removal, waste collection, and similar applications.

In conclusion, this thesis has developed the modelling and the solution of districting prob-

lems, mainly in the context of basic areas represented by points or lines. The proposed

approaches are applicable to many practical problems, for example in the context of the de-

sign of districts for field staff members or mail deliverers. Moreover, these algorithms can be

a basis of solution approaches where districting problems occur as part of another problem,

such as routing or facility location.
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