

Novel electrolytes for lithium-ion cells with improved safety characteristics

Dr. Andreas Hofmann

Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

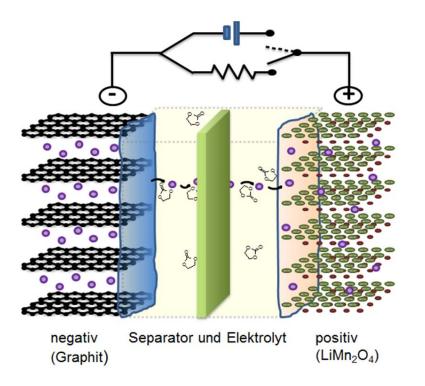
www.kit.edu

Outline

Electrolytes in Li-ion cells

Development of electrolyte with high flash points

Cell tests against commercial electrode materials


Electrolytes for Li-ion cells: basics

"Chemical compounds which are able to form ionic crystals in solid state and are composed of ions under liquid or molten conditions or when dissolved in a solvent.

lithium salt + matrix + additives

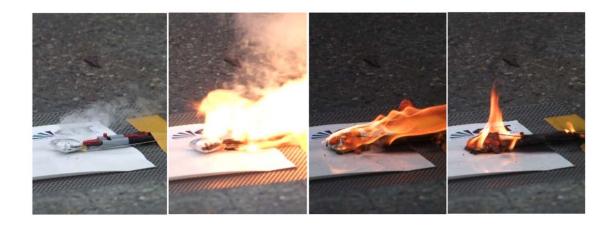
- Enable the lithium transport through the cell
- Basis for the current flow
- Solid electrolyte interface
- Interact with all parts inside the cell

Electrolytes for Li-ion cells: requirements

- Nonflammable liquid electrolytes with adequate Li ion conductivity
- Inherent safety
- Infinite cycling
- Low cost
- Non-toxic salts and solvents
- Improved low-temperature performance
- Effective redox shuttles for overcharge protection
- Electrolyte additives for effective SEI layer formation
- Stable ionic liquids and solid polymer electrolytes with acceptable conductivity

Electrolytes in Li-ion cells: state of the art

State of the art:


- Carbonate-based electrolytes (z.B. EC/DMC + 1M LiPF₆)
- Gel polymer electrolytes with liquids (carbonate based)

Composition:

- Mixture of organic carbonates
- LiPF₆ (1 mol/l)
- Additives

Properties:

- Stable up to 4.2 V vs. Li/Li+
- Highly flammable (flash point EC/DMC: 24°C)
- Temperatures up to 60 °C

Electrolytes for Li-ion cells: research

- Replacement of LiPF₆
- Use of electrolytes
 - New electrolytes for new electrode materials
 - Electrolyte uptake
 - Range of temperature
 - Intercalation of solvents (graphite)
- Electrolytes for high voltage applications
 - New solvents at E > 4.2 4.5 V vs. Li/Li⁺
 - Electrolyte decomposition, gas formation
- Safety issues
 - High toxicity of LiPF₆
 - Intrinsic fire safety
 - Reduce of leakage

Dimethylcarbonat

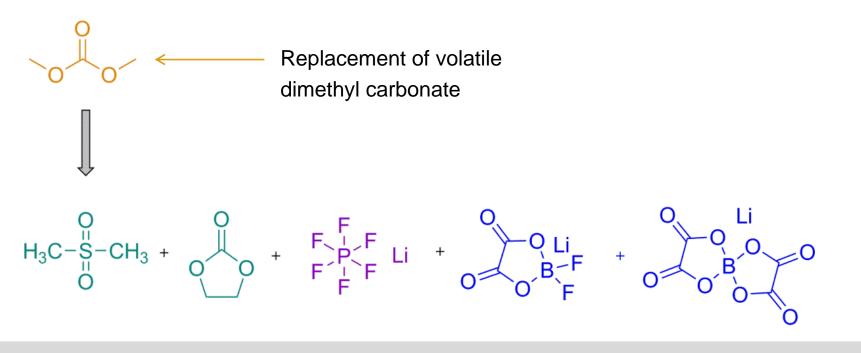
Interaction of the electrolyte with all parts inside the cell

6 08.08.2016 Dr. Andreas Hofmann

Li-ion cell improvement by additives (≤ 5 wt.-%)

- Possibility to improve the lithium cell properties with only few percentage of material:
 - Forming and protection of the solid electrolyte interface (SEI)
 - Overcharging protection by redox shuttle additives
 - Additives as flame retardants
 - Improve of the wetting characteristics and electrolyte filling
 - Increase of battery performance and lifetime
 - Water protection of the electrolyte
- Difficult to increase the lithium mobility in liquid electrolytes based on limiting factors caused by the solvent mixture (viscosity)
- Under development:
 - Replacement of toxic additives
 - Novel concepts for cell safety

Electrolyte formulation



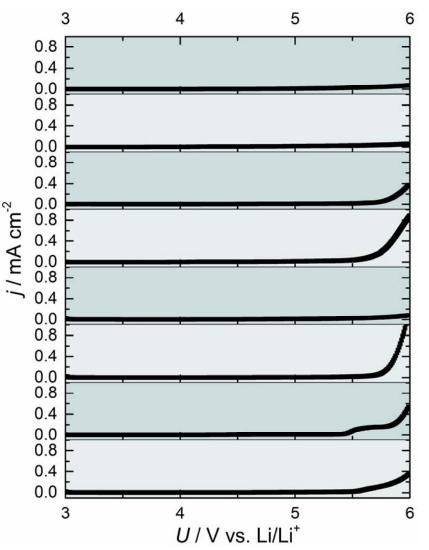
- Solvent composition:
 Ethylene carbonate, Dimethyl sulfone
- Conducting salt:

LiPF₆, LiBF₄, Lithium bis(trifluoromethanesulfonyl)azanide (LiTFSA)

Additives:

Lithium bis(oxalato)borate (LiBOB), Lithium difluoro(oxalato)borate (LiDFOB)

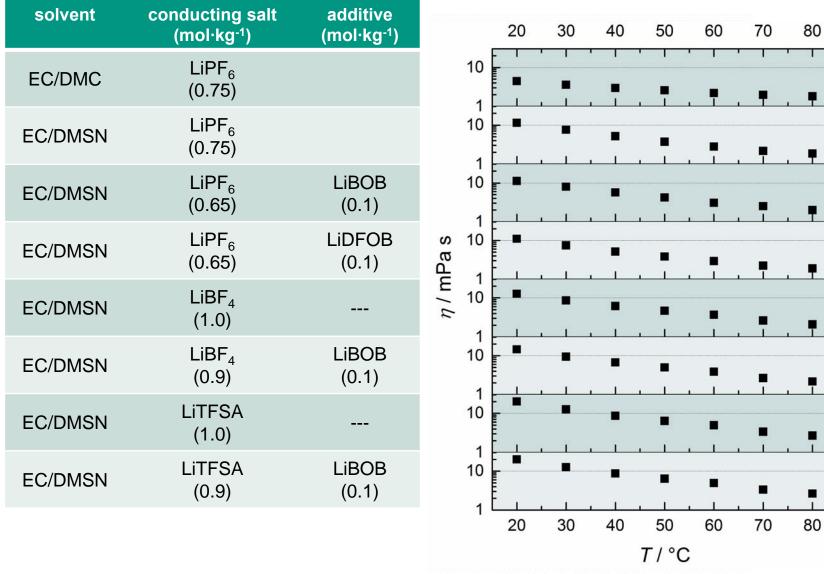
Physicochemical properties of the electrolytes



- Liquid at room temperature (freezing point (DSC) ~ -15 °C)
- Liquid in Li-ion cell down to 0 5 °C
- Increase of flash points of novel solvent mixture from 24 °C (ethylene carbonat/dimethyl carbonate)
 - to 142 °C (ethylene carbonate/dimethyl sulfone)
- **Density values** of the mixtures (25 °C): 1.3 1.4 g·cm⁻³
- Viscosity values at 20 °C: 11 20 mPa·s in dependence of the conducting salt
- Fast wettability of ceramic coated separators (contact angle of < 20° within 5 minutes)</p>

Electrochemical stability (oxidative, Pt//Li)

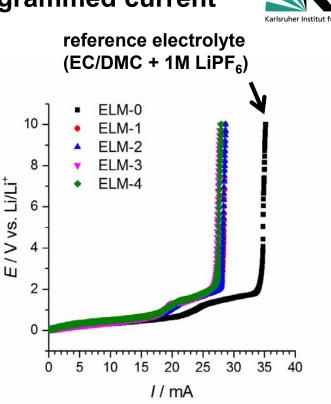
solvent	conducting salt	additive
EC/DMC	LiPF ₆	
EC/DMSN	LiPF ₆	
EC/DMSN	LiPF ₆	LiBOB
EC/DMSN	LiPF ₆	Lidfob
EC/DMSN	LiBF ₄	
EC/DMSN	LiBF ₄	LiBOB
EC/DMSN	LiTFSA	
EC/DMSN	LiTFSA	LiBOB


Electrolyte stability against aluminum (Al//Li)

				-			
solvent	conducting s	alt additive	0	5	10	15	20
EC/DMC	LiPF ₆		0.01 1E-3 1E-4		· · · ·		-
EC/DMSN	LiPF ₆		0.01 1E-3 1E-4				-
EC/DMSN	LiPF ₆	LiBOB	0.01 1E-3 1E-4				-
EC/DMSN	LiPF ₆	Lidfob	0.01 1E-3 1E-4	1			
EC/DMSN	LiBF ₄		²⁻ 1E-4 0.01 1E-3 1E-4				- - - - -
EC/DMSN	LiBF ₄	LiBOB	· 0.01 1E-3 1E-4				
EC/DMSN	LITFSA		0.01 1E-3 1E-4	1			-
EC/DMSN	LiTFSA	LiBOB	0.01 1E-3 1E-4				-
		Chronopotentior	o metry at 4.7 V v	5 s. Li/Li+	10 <i>t /</i> h	15	20
08.08.2016	Dr. Andreas Hofmann						10M-\//K

Conductivity and viscosity values

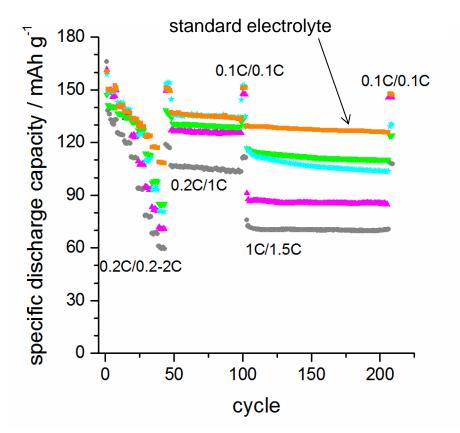
Electrochemical properties of the electrolytes


- Stable against oxidation (Pt as cathode material) up to 5 V vs. Li/Li+
- High resistance against aluminum dissolution with exception of LiTFSA containing mixtures
- **Conductivity values** at 20 °C: 4 6 mS·cm⁻¹ in dependence of the conducting salt
- Diffusion constants for LiBF₄ and LiTFSA containing electrolytes:
 - D(Li) = $4.7 6.5 \cdot 10^{-11} \text{ m}^2\text{s}^{-1}$ (standard electrolyte with LiPF₆: D(Li) = $22.4 \cdot 10^{-11} \text{ m}^2\text{s}^{-1}$)
 - **D**(F) = $5.9 9.3 \cdot 10^{-11} \text{ m}^2\text{s}^{-1}$ (standard electrolyte with LiPF₆: D(F) = $25.5 \cdot 10^{-11} \text{ m}^2\text{s}^{-1}$)

Medium cell performance can be expected from the electrochemical measurements

Measuring the lithium mobility with programmed current derivative chronopotentiometry

- Applying a time-dependent current $I(t) = \beta \cdot t \quad (\beta = 100 \ \mu \text{As}^{-1})$
- cell configuration:
 - working electrode: lithium,
 - counter/reference electrode: lithium
 - four-layer glass fiber separators GF/B
- Performing a pre-polarization for same ionic polarization at the electrodes
- Determining the current limit
- It can be shown that neither the deposition nor the dissolution of lithium is ratedependent


Potential (vs. Li/Li⁺) *versus* current during programmed-current chronopotentiometry (ELM 1-4: LiPF₆ based electrolytes with ethylene carbonate and dimethyl sulfone)

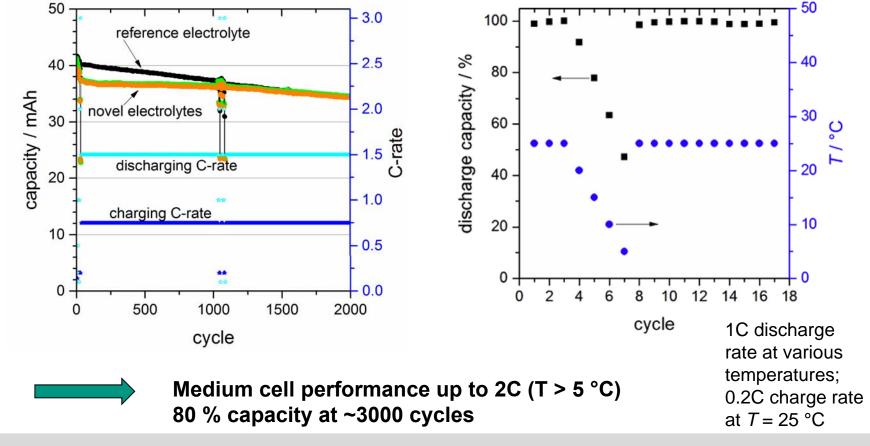
Similar performance of the novel electrolytes is expected based on these measurements

Evaluation of the electrolytes via cell testings

- Coin cells
- No additional additives are needed
- High capacity retention, even under stressed conditions
- Use of >90% of specific discharge capacity at 0.5 C (discharge) at 5 °C
- Comparable results in pouch bag cells with ceramic coated separator
- Small irreversible capacity loss
- Best results for LiBOB/LiDFOB mixed additive system

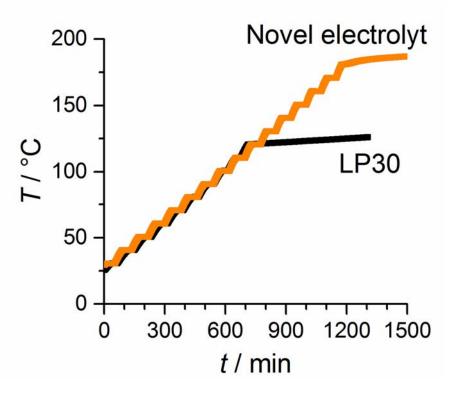
Different cell performance due to electrode interactions (SEI)

15 08.08.2016 Dr. Andreas Hofmann



Evaluation of the electrolytes via cell testings

Pouch bag cells


Parameters: 50 x 50 mm; 42 mAh nominal capacity; cathode material: LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂; anode material: graphite; ceramic coated separator; T = 26 °C)

Safety aspects of the electrolytes

- Heat test measured in an accelerating rate calorimeter
- U = 4.2 V cell voltage
- Coin cells
- NMC against graphite
- Ceramic coated separator
- Temperature is detected when the cell temperature rise itself
- Temperature increase (thermal runaway) with novel electrolyte is delayed
- Large format cells are under study

Conclusions

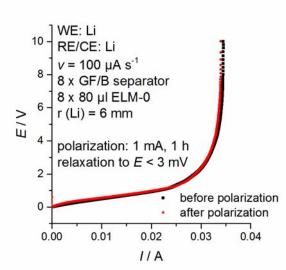
- Development of novel electrolyte formulations based on ethylene carbonate and dimethyl sulfone
- High intrinsic safety based on high flash point of >140 °C
- Physicochemical properties support a well-working electrolyte
- High electrochemical stabilities are proved
- Novel lithium mobility test is evaluated
- In the full cell, the performance can not be predicted entirely based on lithium mobility tests
- It is supposed that the electrode materials and the SEI influence the lithium mobility significantly
- Cell tests demonstrate that the electrolyte can be used at medium C-rates and at T > 5°C
- Calorimetric tests with promising safety features

Acknowledgement

- Prof. Dr. Thomas Hanemann
- Zengqi Wang
- Katharina Giemza
- Friedrich Wacker
- Matthias Migeot
- Dr. Jörg Kaiser
- Ramona Hahn
- Olivia Wiegang
- Dr. Sylvio Indris
- Dr. Ralf Heinzmann
- Dr. Carlos Ziebert
- Boxia Lei

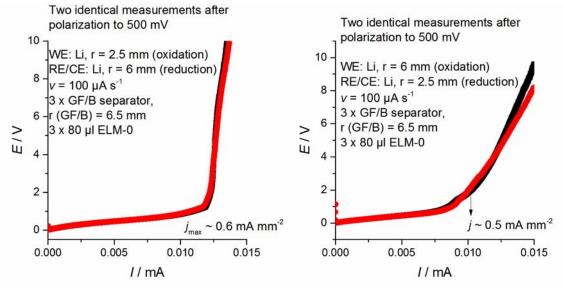
Rockwood Lithium A HELMHOLTZ GEMEINSCHAFT Bundesministerium für Bildung und Forschung DFG Deutsche Forschungsgemeinschaft

Thank you for your attention!


Dr. Andreas Hofmann Karlsruhe Institut of Technology Institute of Applied Science (IAM-WK) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen

Phone: ++49-(0)721-608-25920 e-Mail: **andreas.hofmann2@kit.edu**

Measuring of the lithium mobility with programmed current derivative chronopotentiometry



Potential (vs. Li/Li⁺) versus current plots:

Cell parameters:

- working electrode: lithium
- counter/reference electrode: lithium
- separator: GF/B glass fiber separator
- *b* = 100 µA s⁻¹.
- electrolyte: EC/DMC + 1M LiPF₆

- Results independent from pre-polarisation
- Current density of r = 6 mm/6 mm lithium ~ 0.3 mA mm⁻²
- Current density of r = 2.5 mm/6 mm lithium ~ 0.4-0.6 mA mm⁻²
- a larger current density is presumably obtained by a larger electrolyte/separator area (d = 13 mm) compared to the lithium area (d = 5 mm).
- Lithium dissolution and lithium plating not rate determining effects

Electrolyte research at IAM-WK

Issues	High voltage electrolytes	Impro Saf		Interfaces		
Î	Structure-property relationships			Structure-activity relationships		
Focus of research	Ionic liquids and new solvents		Int	Interaction of cell parts		
research	Additives			collectors		
	Conducting sa			yte formulation		
Systems	Liquid electrolytes	•	olymer olytes	New materials		
	Li-ion cells		solar cells			