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Abstract

High-resolution Nuclear Magnetic Resonance (NMR) spectroscopy is one of the most
important analytical methods in order to study dynamic and structural aspects of molecules.
It is highly complementary to X-ray di�raction and mass spectrometry. Whereas mass
spectrometry excels at the detection of slightest amounts of material, NMR spectroscopy
can provide atomic resolution. The latter also holds for X-ray structures, but via NMR
spectroscopy molecules can be studied in solution, so that dynamic processes can be
observed to a greater extent.

To improve resolution and sensitivity is the main motivation behind NMR method
development. The Fourier transform (FT) technique, advances in the development of
superconducting magnets with ever-increasing �eld strengths as well as novel probe tech-
nologies and for quite some time also hyperpolarization methods facilitated to lower the
detection threshold to a few parts per million (ppm) down to a single nuclear spin. Higher
static magnetic �elds and the ability to spread NMR spectra across additional frequency
dimensions are the main sources of increased resolution. But there is still a demand for the
development of new pulse sequences to be able to measure standard NMR parameters like
chemical shifts and spin couplings but also relaxation phenomena and dynamic processes
with increasing reliability. The same holds for anisotropic structure parameters such as
Residual Dipolar Couplings (RDCs), Residual Quadrupolar Couplings (RQCs) or Residual
Chemical Shift Anisotropy (RCSA), for which molecules have to be partially aligned along a
principal axis with the help of aligning media. In recent years it was shown for a multitude
of examples that this methodology can address problems concerning the conformation,
con�guration and constitution of molecules where conventional approaches fail.

The development of radio frequency (RF) pulses, the backbone of every NMR experiment,
is also subject of research. The variety of known pulse shapes is re�ected in the extensive
amount of design methods, extending from geometric intuition to numerical optimization
algorithms. Optimal Control Theory (OCT), a gradient-based approach related to the
Euler-Lagrange formalism, is highly suitable to optimize trajectories of dynamic systems
with known equations of motion. For high-resolution NMR spectroscopy, it could be
shown that optimal control algorithms can be used to explore the physical limits of many
spin systems and that even for many thousands of independent optimization variables and
a �ve-dimensional parameter grid, optimal solutions can be found. The basic mathematical
principles of spin dynamics simulations and optimal control algorithms will be outlined in
chapter 1 of this thesis.

The subject matter of this thesis is the optimization of decoupling experiments. Even if
line splittings and coupling constants can hold valuable structural information, resonance
lines collapsed to singlets lead to improved resolution and increased interpretability of
the spectra. At the same time this can lead to higher signal intensities and therefore
improved sensitivity. The main part of this thesis is organized in two parts. Chapter 2 deals
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with heteronuclear decoupling which aims to suppress the interactions of di�erent spin
species, typically 1H and 13C. A historical overview over the most common decoupling
schemes serves to introduce mechanisms to obtain spectra as artifact-free as possible and
to derive criteria for optimizations. The proposed algorithms are studied with respect to
the underlying mathematical formalism, generality, e�ciency and convergence. The pulse
sequences obtained as a result will be simulated and experimentally veri�ed on a simple
spin system. Two experimentally relevant aspects of decoupling sequences, namely the
signal to artifact (S/A) ratio and the achievable resolution which is limited by restrictions
of the energy deposition on the acquisition time (AQ), are investigated on examples of
small organic molecules.

Chapter 3 deals with homonuclear decoupling, the suppression of couplings amongst
the same spin species, whose methodology is far more complex. It is motivated by the
accurate measurement of anisotropic NMR parameters, RDCs in particular. A heteronu-
clear correlation experiment is proposed where heteronuclear couplings can be measured
without the in�uence of homonuclear couplings on the signal shape. It shall be determined
on several examples whether the accuracy of the extracted coupling constants can be
improved by homonuclear decoupling. The in�uence of several spin system parameters
on the sensitivity of the experiments will be characterized and the identi�ed weak spots
will be compensated by optimizations of novel pulse sequence elements.

Given that both topics were subject of research by other groups in parallel to this thesis,
the results obtained here will be discussed in the current framework.
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Zusammenfassung

Die hochau�ösende Kernmagnetresonanzspektroskopie, aus dem Englischen Nuclear
Magnetic Resonance (NMR)-Spektroskopie, ist eine der wichtigsten Analysemethoden,
um Dynamik- und Strukturaspekte von Molekülen zu untersuchen. Die Methode ist in
hohem Maße komplementär zur Röntgenbeugung und massenspektrometrischen Analysen.
Während die Massenspektrometrie für kaum zu überbietende Emp�ndlichkeit bei der
Detektion kleinster Substanzmengen steht, kann mit der NMR-Spektroskopie atomare
Au�ösung erzielt werden. Letzteres gilt auch für Röntgenstrukturanalysen, jedoch erlaubt
die NMR-Spektroskopie die Untersuchung von Molekülen in Lösung, so dass dynamische
Prozesse in größerem Umfang messbar sind.

Die Verbesserung von Au�ösung und Emp�ndlichkeit ist die grundlegende Motivati-
on der NMR-Methodenentwicklung. Die Fouriertransformationstechnik, Fortschritte bei
der Entwicklung supraleitender Magnete immer höherer Feldstärken sowie neuartiger
Probenkopftechnologien und seit einiger Zeit auch Hyperpolarisationsmethoden trugen
in großem Maße dazu bei, Detektionsschwellen von wenigen ppm bis hin zu einem ein-
zelnen Kernspin zu erreichen. Größere statische Magnetfelder und die Au�ächerung von
NMR-Spektren entlang zusätzlichen Frequenzachsen gehören zu den Hauptquellen verbes-
serter Au�ösung. Von hohem Interesse ist jedoch nach wie vor die Entwicklung neuartiger
Pulssequenzen, um Standard-NMR-Strukturparameter wie chemische Verschiebungen
und Kopplungen von Spins, aber auch Relaxationsphänome und dynamische Prozesse
immer zuverlässiger messen zu können. Dasselbe gilt für anisotrope Strukturparameter
wie dipolare oder quadrupolare Restkopplungen und residuale chemische Verschiebungsa-
nisotropie, für deren Messung Moleküle mithilfe von Orientierungsmedien partiell entlang
einer Vorzugsachse ausgerichtet werden müssen. In den letzten Jahren konnte anhand
einer Vielzahl von Beispielen gezeigt werden, dass mit dieser Methodik Probleme im Be-
reich der Aufklärung von Konformation, Kon�guration und Konstitution von Molekülen
adressiert werden können, wo konventionelle Ansätze versagen.

Auch die Entwicklung von Radiofrequenzpulsen, den fundamentalen Bestandteilen aller
NMR-Experimente, ist Gegenstand aktueller Forschung. Die Vielfalt an bekannten Pulsfor-
men steht dabei im Verhältnis zur umfangreichen Methodenpalette, die von geometrischer
Intuition bis zu numerischen Optimierungsalgorithmen reicht. Die Theorie der optimalen
Kontrolle, ein dem Euler-Lagrange-Formalismus verwandtes Gradientenverfahren, eignet
sich in besonderem Maße dazu, Trajektorien dynamischer Systeme mit bekannten Bewe-
gungsgleichungen zu optimieren. Im Bereich der hochau�ösenden NMR-Spektroskopie
konnte gezeigt werden, dass sich durch auf Kontrolltheorie basierenden Algorithmen die
physikalischen Grenzen vieler Spinsysteme ausloten lassen und selbst für viele tausend
unabhängige Optimierungsvariablen in bis zu fünfdimensionalen Parameterräumen opti-
male Lösungen gefunden werden können. Die mathematischen Grundlagen zur Simulation
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der Dynamik von Spinsystemen sowie Algorithmen zur optimalen Kontrolle werden in
Kapitel 1 dieser Arbeit skizziert.

Der Gegenstand dieser Arbeit ist die Optimierung von Entkopplungsexperimenten.
Auch wenn Aufspaltungsmuster und Kopplungen wertvolle Strukturinformationen bergen,
bedeuten zu Singuletts zusammengefallene Resonanzlinien oft eine verbesserte Au�ösung
und somit erhöhte Interpretierbarkeit der Spektren. Gleichzeitig kann sich die Signalin-
tensität und somit die Emp�ndlichkeit steigern lassen. Der Hauptteil dieser Arbeit ist in
zwei Teile gegliedert. Kapitel 2 beschäftigt sich mit heteronuklearer Entkopplung und
somit der Unterdrückung von Wechselwirkungse�ekten unterschiedlicher Spinspezies,
typischerweise 1H und 13C. Ein historischer Abriss über die gängigsten Entkopplungsse-
quenzen dient dazu, methodische Ansätze um möglichst artefaktfreie Spektren zu erhalten,
aufzuzeigen und daraus Kriterien für eine Optimierung abzuleiten. Die vorgestellten Al-
gorithmen werden untersucht im Hinblick auf den zugrundeliegenden mathematischen
Formalismus, Allgemeingültigkeit, E�zienz und Konvergenzverhalten. Die als Ergebnis
erhaltenen Pulssequenzen werden an einem einfachen Spinsystem simuliert und experi-
mentell getestet. Zwei experimentell relevante Aspekte von Entkopplungssequenzen, das
Signal-zu-Artefakt-Verhältnis und die zu erreichende Au�ösung im Hinblick auf durch
Energieeintrag begrenzte Akquisititonszeiten, werden an Beispielen kleiner organischer
Moleküle untersucht.

Kapitel 3 befasst sich mit homonuklearer Entkopplung, also der Unterdrückung von
Kopplungen innerhalb derselben Spinspezies, deren Methodik wesentlich komplexer ist.
Als Motivation dient hier die genaue Messung von anisotropen NMR-Parametern, genau-
er von dipolaren Restkopplungen. Es wird ein heteronukleares Korrelationsexperiment
vorgeschlagen, um heteronukleare Kopplungen ohne den Ein�uss von homonuklearen
Kopplungen auf die Signalform messen zu können. Dabei soll an mehreren Beispielen
untersucht werden, ob die Genauigkeit der extrahierten Kopplungskonstanten durch
homonukleare Entkopplung erhöht werden kann. Der Ein�uss diverser Parameter der
Spinsysteme auf die Emp�ndlichkeit der Experimente wird charakterisiert und identi�-
zierte Schwachstellen werden durch die Optimierung neuartiger Pulssequenzbausteine
ausgeglichen.

Da an beiden Themenkomplexen während der Anfertigung dieser Arbeit durch andere
Arbeitsgruppen parallel geforscht wurde, werden die hier erhaltenen Ergebnisse auch im
Kontext dieser Arbeiten diskutiert.
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1. Theory

Oh what is my theory that it is. [...]
Well, this is what it is - my theory that
I have, that is to say, which is mine, is
mine. [...] This is it. My theory that
belongs to me is as follows. This is how
it goes. The next thing I’m going to say
is my theory. Ready? [...] This theory
goes as follows and begins now. [...]
That is my theory, it is mine, and
belongs to me and I own it, and what it
is too.

Anne Elk (Miss) - Monty Python’s
Flying Circus 31: The All-England

Summarize Proust Competition

1.1. Spin Dynamics

This section deals with the introduction of all necessary concepts and formalisms which are
required for a mathematical treatment of nuclear spins. They will be used to numerically
evaluate NMR pulse sequences and predict spectra as well as to subject spin dynamics to
optimization algorithms. Reference to most of the theory presented here can be found in
comprehensive textbooks[1]. Further references are indicated.

1.1.1. Nuclear Magnetism

The origin of nuclear magnetism is not yet fully understood. Combinations of quarks with
di�erent charges and spin yield the proton and the neutron carrying a positive and neutral
charge respectively. Both have half-integer spin and a magnetic moment. Their spin is a
type of angular momentum that is no result of orbit or collision but an intrinsic property
of the nuclear particles. The same holds for their magnetic moment which is no result
of circulating currents. Nuclei can interact with magnetic �elds in the same manner as
electrons. In general the potential energy Emag of an object exposed to a magnetic �eld B
is given by

Emag = −µ · B (1.1)
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1. Theory

with µ being the magnetic moment (bold symbols denote vectors). For atomic nuclei their
magnetic moment is linked to the spin angular momentum via

− µ = γ · I (1.2)

with I denoting the nuclear spin angular momentum operator and the proportionality
constant γ corresponding to the so-called gyromagnetic ratio. The gyromagnetic ratio is
one of the key �gures to de�ne the sensitivity of a given nuclear isotope towards an NMR
measurement next to the natural abundance. With a natural abundance of >99.9% and
γ of 42.576 MHz T−1, 1H, whose nucleus consists of a single proton, is among the most
sensitive probes for NMR. Only 3H has a higherγ than 1H but is far less abundant and not a
stable hydrogen isotope. The gyromagnetic ratio can assume positive and negative values.
Most nuclei have γ > 0 and a magnetic moment parallel to the angular momentum. For
particles with γ < 0, the magnetic moment has the opposite direction to the angular
momentum.

1.1.2. Spin Precession

To understand the behavior of nuclear spins, many analogies to the quantum mechanical
description of rotation and angular momentum may be drawn. For a given quantum
number l there exist 2l+1 degenerate energy levels El ,m which are the energy eigenstates
of the system under a given Hamiltonian H and that can be described by wave functions
|ψl ,m〉:

H |ψl ,m〉 = El ,m |ψl ,m〉 (1.3)

For nuclei with a spin quantum number I = 1/2 such as 1H (and heteronuclei such as 13C,
15N, 19F or 31P) this leads to two degenerate eigenstates. If a static magnetic �eld is applied,
this degeneracy is broken. In NMR spectroscopy this magnetic �eld is aligned along the
z-direction of the laboratory frame and is referred to as B0. It induces the so-called Zeeman
interaction which is described by the following Hamiltonian:

H0 = −γB0Iz (1.4)

The solution of the time-independent Schrödinger equation yields the two eigenstates |α〉
and |β〉 which form the Zeeman eigenbasis with the following energy levels:

H0 |α〉 = −
1
2~γB0 |α〉 (1.5)

H0 |β〉 =
1
2~ γB0︸︷︷︸

ω0

|β〉 (1.6)

The magnetic energy is minimized if the spin is in the |α〉 state which means parallel
alignment of the spin and the magnetic �eld. The less-favored |β〉 state corresponds to
opposite alignment. The energy di�erence is given by ~ω0 with ω0 generally being called
the Larmor frequency ωL. Since the population of these quantum states is governed by a
Boltzmann distribution, a higher value of ωL corresponds to a larger population di�erence
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1.1. Spin Dynamics

of the two eigenstates at a given temperature. Therefore the macroscopic magnetization
after cancellation of opposite-aligned magnetic moments, which determines the sensitivity
of an NMR experiment, increases with ωL and ultimately with B0. The fact that spins can
not all align parallel to B0 once it is applied (turn like a compass needle in the earth’s
magnetic �eld) becomes evident if the time-dependent Schrödinger equation is solved. For
simplicity H is divided by ~ to obtain the HamiltonianH in natural units:

∂ |ψ 〉

∂t
= −iH |ψ 〉 (1.7)

For time-independent Hamiltonians like the Zeeman termH0 this is a �rst-order di�erential
equation and easily solved by an exponential:

|ψ 〉(t ) = exp(−iH t ) |ψ 〉(0) (1.8)

If |ψ 〉 corresponds to a Zeeman eigenstate the eigenvalues of the exponential operator can
be obtained by exponentiation of the eigenvalues of the original operator. This can be
done because the exponential of an operator commutes with the operator itself. ForH0
this yields

exp(−iH0t ) |ψ 〉 = exp(− i2ωLt ) |ψ 〉. (1.9)

This shows that the Zeeman interaction does not change the spin states but a time-
dependent phase factor is introduced. These phase factors are the result of an induced
motion of the spins. Without the in�uence of B0 the vectors representing the angular
momentum and magnetic moment point in all possible directions. In other words, the
spin polarization axes are isotropically distributed. Once B0 is applied, the spins start to
move around the �eld on a precession cone keeping a constant angle. This precession
movement happens due to the spins having an angular momentum as well as magnetic
moment. There are several classical analogues to spin precession. A rotating spinning top
that is given a push will start to precess rather than falling over under the e�ect of earth’s
gravitational pull. The same holds for a bicycle that will turn a corner rather than falling
over once the cyclist leans to one side (although there are contributions from other forces
in this particular case).

1.1.3. Nuclear Spin Hamiltonian

Typical molecules consist of multiple atoms with several protons, neutrons and electrons
each. Realistically, the full Schrödinger equation of such a system can not be solved. But to
a very good degree of approximation the behavior of the nuclear spins can be decoupled
from all other degrees of freedom of a given molecule since the energy scale is far from
being relevant to the motion of the electrons (the NMR energy scale being in the RF regime).
A time-averaged contribution of electronic properties to the spin dynamics can be taken
into account by modifyingH0. For spin-1/2-nuclei, the interaction with the electrical �eld
of the surrounding electrons is completely independent of the nucleus’ orientation because
its charge distribution is spherical and therefore can be compared to a point charge. This
means for I = 1/2 there are no electric in�uences on the nuclear energy levels and all
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1. Theory

internal and external interactions are purely magnetic. The remarkable situation for NMR
is that the spins interact more strongly with externally applied magnetic �elds than with
its natural environment. The by far biggest contribution to the Hamiltonian is the Zeeman
interaction caused by B0 which has been discussed in section 1.1.2.

In order to probe the spins an oscillating transverse magnetic �eld has to be applied. This
is often referred to as B1 and is ideally exactly perpendicular to B0 to avoid longitudinal
contributions. In order to achieve resonance and tilt the macroscopic magnetization to the
transverse plane where it can be detected, B1 has to be modulated with ωL (it may have
an additional phase ϕ; ensemble spin dynamics are discussed in section 1.1.4). In contrast
to B0, this RF �eld couples to the transverse components of the spin angular momentum
operator:

H1 = −
1
2γB1

{
cos(ωreft + ϕ)Ix + sin(ωreft + ϕ)Iy

}
(1.10)

As will be discussed further below, the actual ωL of individual spins can deviate from γB0.
Given that the B1 �eld according to equation 1.10 can only be matched to a single frequency
ωref , the resonance condition is only ful�lled perfectly for ωL = ωref . The product in front
of the brackets of equation 1.10 is synonymously being called nutation frequency or RF
amplitude ωRF:

ωRF = −
1
2γB1 (1.11)

The factor 1/2 is re�ecting the fact that if an oscillating RF �eld is represented by the sum
of two �elds rotating in opposite directions, only one component can be in resonance with
the spins precessing in only one direction.

Due to the large amplitudes of the B0 and B1 �elds, the external magnetic �elds dominate
the spin dynamics and certain contributions to internal spin interactions are overcom-
pensated or hidden. This so-called secular approximation often leads to a signi�cant
simpli�cation ofH0. Further, rapid molecular motion leads to the replacement of many
interactions by a time-averaged value, which is often zero in gases or isotropic liquids or
assumes a scalar value. This becomes evident for the chemical shift. Electrons surrounding
the nuclei are also a�ected by B0 and the currents that are induced in turn induce �elds
that perturb B0 locally. Nuclear spins interact with these induced �elds in the same way
as with B0:

HCS,full = −µ · δ · B0 (1.12)

The so-called chemical shift tensor δ is a 3 × 3 matrix taking into account that local �elds
are induced in all possible directions in the laboratory frame. Given that local �elds can
not be measured from a reference of naked nuclei, the chemical shift has to be de�ned
with respect to a reference shift δ0 of a given substance, e.g. TMS for 1H and 13C NMR
spectroscopy. Further, it is common to dissect the chemical shift tensor further into an
isotropic contribution δiso and a contribution from Chemical Shift Anisotropy (CSA) ∆δ .
Thus, equation 1.12 can be modi�ed according to

HCS,full = −µ · (δ0 · 1 + δiso · 1 + ∆δ ) · B0. (1.13)
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1.1. Spin Dynamics

Given that B0 is applied along the z-axis ∆δ · B0 at a speci�c nuclear site yields

*.
,

∆δxx ∆δxy ∆δxz
∆δyx ∆δyy ∆δyz
∆δzx ∆δzy ∆δzz

+/
-
·

*.
,

0
0
B0

+/
-
=

*.
,

∆δxzB0
∆δyzB0
∆δzzB0

+/
-
. (1.14)

The matrix elements ∆δij generally depend on the molecule’s orientation Θ and contribute
to the Hamiltonian according to

HCSA = −γ∆δxz (Θ)B0Ix − γ∆δyz (Θ)B0Iy − γ∆δzz (Θ)B0Iz . (1.15)

In the secular approximation the �rst and second term in equation 1.15 are neglected and
HCS simpli�es to

HCS = −γ (δ0 + δiso + ∆δzz (Θ)) B0Iz . (1.16)

The time-average of element ∆δzz (Θ) amounts to zero in liquids due to the random
molecular motion and the chemical shift is thus dominated by δiso. It can be used to correct
ωL at each individual nuclear site to take the local chemical surrounding into account and
modifyH0 according to

H0 = ω0(δ0 + δiso)Iz = ω
local
L Iz . (1.17)

From the considerations above, it becomes clear that the magnitude of the chemical shift
is dependent on B0. In order to unambiguously identify the position of resonance lines
in NMR spectra, the ppm scale was introduced, which is also referenced to the chemical
shift of a reference compound and normalized to B0 and is then independent of the static
magnetic �eld. Other than the exact frequency, a ppm value allows a rough conclusion
about chemical moieties. Nevertheless, the ability to express the chemical shift as a
frequency has advantages in the context of formulating control problems (see section 1.2).

The theoretical treatment of NMR experiments greatly bene�ts from a further simpli�ca-
tion concerning the B0 �eld. To separate the e�ects of B0 from all other contributions toH0
(and most importantly fromH1), the Hamiltonian is transformed into a coordinate system
that is rotating with ωref around the z-axis of the laboratory frame. One of the immediate
bene�ts is thatH1 according to equation 1.10 becomes time-independent. Precession in
this rotating frame can be further simpli�ed if ωref is again subtracted from the local ωL in
equation 1.17 which can be rewritten as

H0 = ωIz . (1.18)

This Hamiltonian now only contains a single frequency ω which is generally called o�set
frequency or resonance o�set (with respect to ωref ) and can also be denoted as 2πν with ν
representing a frequency measured in Hz which will be used in the following chapters.

Spins can also mutually interact with each other via the magnetic �elds generated
by themselves which is referred to as coupling. The strength of a direct interaction of
magnetic dipoles through space is dependent on the orientation of the spins’ angular
momenta with respect to a unit vector which joins the centers of the nuclei as well as
their distance rjk . In the secular approximation the direct dipole-dipole couplingHDD is

5



1. Theory

predominantly determined by the orientation Θjk of the vector connecting the nuclei with
respect to B0 and simpli�es to

HDD(Θjk ) = Djk (rjk ,Θjk ) · (3IjzIkz − Ij · Ik ) (1.19)

with Djk being the dipolar coupling constant with a characteristic distance and orientation
dependence given by

Djk (rjk ,Θjk ) = −
~µ0
4π ·

γjγk

r 3
jk

·
1
2 (3 cos2 Θjk − 1). (1.20)

The dipolar coupling constant is further de�ned by the gyromagnetic ratios γj and γk and
the magnetic constant µ0 (4π · 10−7 N · A−2). In a heteronuclear spin system (ωL of spin j
and k are signi�cantly di�erent as a result of a di�erent γ ) even more terms are discarded
to obtain

HDD(Θjk ) = Djk (rjk ,Θjk )2IjzIkz . (1.21)
Since large parts of this thesis deal with heteronuclear two-spin systems, a common
shorthand notation is used for the corresponding bilinear operators. The single-spin
operators for the heteronucleus are denoted S instead of I and the operator 2IjzIkz may be
rewritten as 2IzSz . Equation 1.20 implies the existence of an angle Θ where D is e�ectively
zero. This angle is called the magic angle Θmagic ≈ 54.74◦ and is of major importance for
solid-state NMR. Since molecules can move freely in isotropic liquids it is easily recognized
that HDD has to average to zero because all angles Θ can be realized. To ensure equal
probability of all orientations the factor sinΘjk is introduced in the following integral
since a portion of surface area on a sphere is proportional to sinΘjk which leads to

π∫
0

sinΘjk (3 cos2 Θjk − 1)dΘ = 0. (1.22)

Even in isotropic liquids spins show couplings which are caused by changes in the
local magnetic �eld at a nuclear site due to in�uences of neighboring spins mediated by
the bonding electrons. This indirect dipole-dipole interaction is mostly called J -coupling
and provides insights into molecular bonding topologies. The involvement of chemical
bonds causes the manifestation of these couplings even in the presence of rapid molecular
motion. The full J -coupling HamiltonianHJ is given by

HJ = 2πIj · Jjk · Ik . (1.23)

Just like the chemical shift tensor δ , the J -coupling tensor Jjk is averaged to a scalar value
Jjk (measured in Hz) if the molecules undergo motional averaging. Therefore it is also
called scalar coupling and the secularHJ simpli�es to

HJ = 2π JjkIj · Ik . (1.24)

Similar toHDD,HJ can be further simpli�ed for heteronuclear spin systems:

HJ = 2π JISIzSz (1.25)
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1.1. Spin Dynamics

The same simpli�cation can be applied to homonuclear spin systems when ωL of spin j
and k di�er signi�cantly as a result of a large di�erence in chemical shift (weak coupling
limit).

If nuclei possess I > 1/2 the charge distribution within the nucleus is no longer spherical
which gives rise to a nuclear quadrupole moment Q . Quadrupole moments can interact
with the electric �eld gradients generated by electrons surrounding the nucleus which
are described by the electric �eld gradient tensor V (Θ). The full Hamiltonian of this
interaction is given by

HQ(Θ) =
eQ

2I (2I − 1)~I ·V (Θ) · I . (1.26)

The magnitude of the quadrupolar coupling is often quite large compared to other interac-
tions so the secular approximation may not be applicable to full extent and higher-order
quadrupolar coupling terms have to be considered in the Hamiltonian. The �rst-order
contribution is given by

HQ(Θ) = ωQ
1
6

(
3I 2

z − I (I + 1)1
)

(1.27)

with the �rst-order quadrupolar coupling ωQ given by

ωQ(Θ) =
3eQVzz (Θ)
2I (2I − 1)~ (1.28)

and Vzz (Θ) being the motional average of the secular electric �eld gradient component
comparable to an isotropic chemical shift with the di�erence being thatVzz (Θ) is averaged
to zero in liquids and thereforeHQ vanishes.

All contributions to H0 which have been discarded so far contribute to relaxation.
The remaining local magnetic �elds experienced randomly by individual spins drive
the ensemble back to their equilibrium state. To describe the fundamental relaxation
mechanisms, the concepts of populations and coherence have to be introduced which need
a formalism to depict the dynamics of spin ensembles.

1.1.4. Ensemble Dynamics

Single spin-1/2 particles can be described by a wave function that is a superposition of the
two Zeeman eigenstates |α〉 and |β〉 with complex superposition coe�cients cα and cβ :

|ψ 〉 = cα |α〉 + cβ |β〉 (1.29)

The coe�cients in equation 1.29 have to ful�ll the normalization condition for any given
state |ψ 〉. Any state |ψ 〉 can be written as a two-dimensional column vector with the
superposition coe�cients as complex components. In this notation the Zeeman eigenstates
can be written as

|α〉 =

(
1
0

)
|β〉 =

(
0
1

)
. (1.30)
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1. Theory

It is now useful to look at the matrix representations of the di�erent angular momentum
operators and their e�ects on |α〉 and |β〉. In analogy to regular angular momentum, shift
operators can be de�ned for the spin which change the spin quantum number:

I+ = Ix + iIy (1.31)
I− = Ix − iIy (1.32)

These operators act on the Zeeman eigenstates according to

I+ |α〉 = 0 I+ |β〉 = |α〉 (1.33)
I− |α〉 = |β〉 I− |β〉 = 0. (1.34)

Furthermore, so-called projection or polarization operators can be de�ned using the unity
matrix and the spin angular momentum operator Iz :

Iα =
1
21 + Iz (1.35)

I β =
1
21 − Iz (1.36)

In terms of their action on the |α〉 and |β〉 states, they have the following properties:

Iα |α〉 = |α〉 I β |α〉 = 0 (1.37)
Iα |β〉 = 0 I β |β〉 = |β〉 (1.38)

The matrix representations of the aforementioned operators can be obtained by forming the
direct product (or tensor product) of all possible combinations of the Zeeman eigenstates:

I+ = |α〉〈β | I− = |β〉〈α | (1.39)
Iα = |α〉〈α | I β = |β〉〈β | (1.40)

Equating these direct products yields

I+ =

(
0 1
0 0

)
I− =

(
0 0
1 0

)
Iα =

(
1 0
0 0

)
I β =

(
0 0
0 1

)
. (1.41)

From the considerations above the matrix representations of the Cartesian components of
the spin angular momentum operator and the unity matrix can be obtained from linear
combinations of the direct products given above:

Ix =
1
2 (I
+ + I−) (1.42)

Iy =
1
2i (I

+ − I−) (1.43)

Iz =
1
2 (I

α − I β ) (1.44)
1
21 =

1
2 (I

α + I β ) (1.45)
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1.1. Spin Dynamics

The matrix representations of the three angular momentum operators in the Zeeman
eigenbasis yield

Ix =
1
2

(
0 1
1 0

)
Iy =

1
2i

(
0 1
−1 0

)
Iz =

1
2

(
1 0
0 −1

)
. (1.46)

In order to describe the ensemble behavior of spins, macroscopic expectation values of the
angular momentum operators need to be evaluated. Expectation values of spins in a given
superposition state are given by

〈O〉 = 〈ψ |O |ψ 〉

=
(
cα
∗ cβ

∗
) (

Oαα Oαβ

Oβα Oββ

) (
cα
cβ

)
= cαcα

∗Oαα + cαcβ
∗Oαβ + cβcα

∗Oβα + cβcβ
∗Oββ .

(1.47)

Asterisks denote complex conjugates. To be able to describe the state of the system only
by the the quadratic products of the superposition coe�cients a matrix can be constructed
according to the direct product

|ψ 〉〈ψ | =

(
cαcα

∗ cαcβ
∗

cβcα
∗ cβcβ

∗

)
. (1.48)

Expectation values of operators O can be obtained from |ψ 〉〈ψ | via

〈O〉 = Tr(O† |ψ 〉〈ψ |) (1.49)

with the trace operation being the sum of the diagonal elements after a matrix multipli-
cation. To obtain the macroscopic expectation value of Operator O for an ensemble of a
massive number of spins all individual contributions have to be summed up. If the state of
individual spins is denoted as |ψ 〉〈ψ | it is su�cient to use the trace operation to project
the following operator onto O :

ρ = |ψ 〉〈ψ | =

(
cαcα ∗ cαcβ ∗

cβcα ∗ cβcβ ∗

)
(1.50)

with ρ being called the spin density operator and presenting the possibility to predict
the outcome of macroscopic observations of quantum systems via the de�nition of an
ensemble state which has been deduced from spin operators. The shorthand notation of
〈O〉 may be written as

〈O〉 = Tr
(
O†ρ

)
. (1.51)

The matrix elements given in equation 1.50 are of fundamental importance for NMR
spectroscopy. Their meaning becomes evident when ρ is rewritten using the shift and
polarization operators:

ρ = cαcα ∗I
α + cβcβ ∗I

β + cαcβ ∗I
+ + cβcα ∗I

− (1.52)

Diagonal elements of ρ correspond to the populations of the eigenstates. For NMR only
the di�erence of populations has a physical signi�cance since it gives rise to a macroscopic
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1. Theory

spin polarization along the z-axis. Any state with a population of the |α〉 states which is
larger than the |β〉 states indicates polarization along B0. If the |β〉 is higher populated,
the polarization points against the direction of B0. The o�-diagonal elements are called
coherences between states. In the simplest case of uncoupled spin-1/2-nuclei there can
only exist coherence between the |α〉 and |β〉 states. It can be classi�ed by a quantum
number de�ned by the di�erence between the Iz angular momentum eigenvalues of the
interconnected states with cβcα ∗ representing the most important −1 coherence which can
be detected by a quadrature NMR receiver. This quantum number is called coherence order
p. Coherences indicate transverse magnetization components of a given state. Therefore
the spins have to be in superposition states with magnetization vectors partially aligned
in the transverse plane. Otherwise no coherence will be observable.

The density operator not only allows to analyze a given state of a spin ensemble but
also to predict its temporal evolution. This is in large parts facilitated by the fact that the
spin systems in NMR allow for a very simple description of a thermal equilibrium state to
an exceptionally good degree of approximation. Assuming that there is no coherence at
thermal equilibrium the population of the Zeeman eigenstates is governed by a Boltzmann
distribution:

ρ0,j =
exp(−Ej/kBT )∑

k
exp(−Ek/kBT )

(1.53)

The ratio of energy of the eigenstates (Ej) and the available thermal energy (kBT ) can be
rewritten as a Boltzmann factor

B =
~γB0
kBT

(1.54)

and yields a very small number in the case of the NMR energy scale which indicates a very
small population di�erence. This allows for the so-called high-temperature approximation
where a power series expansion of the exponentials in equation 1.53 may be aborted after
the term that is linear in B. Due to the small values of B the denominator of equation 1.53
equates to two. The density operator at thermal equilibrium is therefore given by

ρ0 =
1
2

(
1 + 1

2B 0
0 1 − 1

2B

)
=

1
2 (1 + BIz ). (1.55)

Given that the unity matrix and the value of B are not manipulated by any interaction
described in section 1.1.3, or synonymously only the net polarization is relevant for an
NMR measurement, it is su�cient to describe ρ0 as Iz .

The equation of motion of the density operator is called the Liouville-von-Neumann
equation and can be derived from the Schrödinger equation via

∂ρ

∂t
=
∂

∂t
( |ψ 〉〈ψ |)

=
∂ |ψ 〉

∂t
· 〈ψ | + |ψ 〉 ·

∂〈ψ |

∂t
= −iH |ψ 〉〈ψ | + i |ψ 〉〈ψ |H

(1.56)

∂ρ

∂t
= −i[H , ρ]. (1.57)
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1.1. Spin Dynamics

It can be solved by expanding the integral of the commutator in equation 1.57 in a Dyson
series[2] which yields

ρ (t ) = U (t )ρ0U
†(t ) (1.58)

with U (t ) denoting the unitary propagator (and U † its adjoint) given by

U (t ) = exp(O)
*.
,
−i

t∫
0

H (τ )dτ+/
-

(1.59)

where exp(O) indicates Dyson’s time-ordered exponential. For time-independent Hamilto-
nians equation 1.59 simpli�es to

U (∆t ) = exp(−iH∆t ). (1.60)

The Liouville-van-Neumann equation is su�cient to describe the trajectory of density
operators under any given Hamiltonian so far. However, it is not suitable to describe
relaxation processes where both coherences need to be destroyed and the equilibrium state
Iz has to be repopulated. Although the density operator has analogies to a macroscopic
magnetization vector, unitary transformations according to equation 1.58 can not change
the norm of the matrices representing density operators. This is due to their corresponding
Lie algebras. Hamiltonians and density operators are de�ned in Hilbert space and the
matrices are members of the su(N ) Lie algebra with N = 2n wheren is the number of spins.
The propagators belong to the Lie group SU (N ) which is connected to its Lie algebra via
the exponential comparable to the connection of Hamiltonians and propagators. Therefore
unitary transformations are length-preserving upon action on their vector space[3].

The traditional approach to describe macroscopic magnetization is the three-component
magnetization vector whose temporal evolution is governed by the semi-classical Bloch
equations which can be written in matrix form:

∂

∂t
*.
,

Mx

My

Mz

+/
-
=

*.
,

0 −ω ωRF sinϕ
ω 0 −ωRF cosϕ

−ωRF sinϕ ωRF cosϕ 0
+/
-

*.
,

Mx

My

Mz

+/
-
−

*.
,

Mx/T2
My/T2

(Mz − 1)/T1

+/
-

(1.61)

Bloch equations are not only capable to describe the e�ects of RF irradiation and free
precession simultaneously, but further encompass relaxation properties using only two
empirically observable and measurable numbers. T2 corresponds to the so-called transverse
relaxation time and is connected to an exponential decay rate which limits the time window
where coherence and hence the NMR signal may be observed. It is also referred to as
spin-spin relaxation. T1 is the so-called longitudinal relaxation time and is connected to
a rate of exponential build-up of equilibrium polarization along the z-axis and therefore
limits the repetition rate of NMR experiments. The shortcoming of the Bloch equations is
the restriction to a three-dimensional space which is not su�cient to depict the dynamics
of coupled spin systems.

The most general formalism to cover coupled many-spin dynamics in the presence of
relaxation is the Liouville superoperator formalism[4]. Equation 1.57 can be transformed
to yield the Liouville equation

∂ρ̂

∂t
= −iĤ ρ̂ − Γ̂ (ρ̂ − ρ̂0) (1.62)
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1. Theory

where hats denote superoperators. The relaxation superoperator Γ̂ has been introduced
to include all dissipative processes which contribute to T1 and T2 as well as chemical
exchange and kinetics. Density operators in Liouville space are denoted as 22n-element
vectors and are obtained by stacking the columns of the matrix representations. The
matrix representation of the Hamilton superoperator (and all other angular momentum
superoperators) is obtained via

Ĥ = H ⊗ 1 − 1 ⊗ HT (1.63)

with ⊗ denoting the tensor product in analogy to equation 1.48 andHT being the transpose
of the Hamiltonian. This yields 22n × 22n matrices. Equation 1.62 can easily be solved for
time-independent Hamiltonians excluding relaxation and yields

ρ̂ (∆t ) = L̂(∆t )ρ̂0. (1.64)

L̂ denotes the propagator in Liouville space and is connected to the Hamilton superoperator
by exponentiation:

L̂(∆t ) = exp(−iĤ∆t ) (1.65)

The matrix representation of L̂ in the case of a unitary transformation can be derived from
the corresponding unitary propagator via

L̂ = U ⊗ U ∗. (1.66)

All formalisms introduced above can readily be transferred and applied in the rotating
frame. Since this thesis deals with coupled spin systems in small organic molecules with
comparably long relaxation times, calculations are mostly carried out in Hilbert space and
relaxation is neglected. In the case of the very well conditioned spin systems in chapter 2,
a reduced Liouville space is used.

1.1.5. Coupled Spin Dynamics

Section 1.1.3 already introduced Hamiltonians which describe couplings among spins
and make use of products of operators to describe the corresponding interactions. The
density operator formalism can serve as the basis of a depiction of coupled spin dynamics
that reintroduces a part of the simplicity of the magnetization vector. This formalism
is called the product operator formalism and is a common tool to analyze NMR pulse
sequences without too much loss of generality. Microscopically, the state of a pair of
coupled spin-1/2-nuclei can be described by a superposition of four Zeeman product states
according to

|ψ 〉 = cαα |αα〉 + cαβ |αβ〉 + cβα |βα〉 + cββ |ββ〉. (1.67)

In analogy to the formalism to derive the operator basis of uncoupled spins, the state |ψ 〉 in
equation 1.67 could be represented as a four-element vector and a 4 × 4 density operator
matrix containing the 16 possible products of superposition coe�cients could be formed.
The corresponding density operator may be rewritten comparable to equation 1.52 using
combinations of shift and polarization operators. This indicates the existence of several
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possible coherence orders depending on the transitions between eigenstates. A two-spin
system allows for double- (p = ±2), single- (p = ±1) and zero-quantum coherences
(p = 0).

However, the use of the Cartesian components of the spin angular momentum operator
to construct an orthogonal operator basis is more advantageous due to their commutation
properties:

[Ix , Iy] = iIz
[Iz, Ix ] = iIy
[Iy, Iz] = iIx

(1.68)

The relationship between these operators is called cyclic commutation. If any given three
operators A, B and C cyclically commute, the unitary transformation of operator B under
the e�ect of operator A is given by the so-called sandwich formula

exp(−iθA)B exp(iθA) = B cosθ +C sinθ . (1.69)

This transformation can be understood as a rotation of B around an axis A by an angle θ .
In NMR, the angles θ are always de�ned by products of frequencies which originate from
Hamiltonians and their period of action on the spin system. The matrix representations of
operators of a two-spin system can be derived from the two sets of single-spin operators
according to

2I1jI2k = 2 · I1j ⊗ I2k (1.70)
where each single-spin component may also be 1

21. The 16 resulting product operators each
have cyclic commutation relationships and the sandwich formula may be used to describe
NMR pulse sequences consisting of a series of RF pulses and delays of free evolution with
only very few assumptions. If product operators are transformed under the action of
several Hamiltonians simultaneously, the corresponding transformations can be applied
consecutively

exp(A + B) = exp(A) · exp(B) if [A,B] = 0 (1.71)
holds. Therefore, for periods of free evolution where both the chemical shift and couplings
are active, weak coupling has to be assumed (which is generally the case in heteronuclear
spin systems) since

[I1z, 2I1zI2z] = 0 but [I1z, 2I1x I2x ] , 0. (1.72)

RF pulses may have arbitrary �ip angles θ but must have a pure phase which corresponds
to applying the pulse strictly along the x or y axis. This will lead to one of the terms in
equation 1.10 vanishing which is necessary to apply the sandwich formula due to

[Ix , Iy] , 0. (1.73)

Further, RF pulses have to be assumed to be short and strong so that the e�ects of resonance
o�sets can be neglected during the pulse. This assumption is made because of

[Iz, Ix ] , 0. (1.74)
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Product operator transformations are typically written according to

Iz
ωRFIxτ
−−−−−→ Iz cos(ωRFτ ) − Iy sin(ωRFτ ) excitation of transverse magnetization, (1.75)

Ix
ωIzτ
−−−→ Ix cos(ωτ ) + Iy sin(ωτ ) evolution of resonance o�set, (1.76)

Ix
π J2IzSzτ
−−−−−−−→ Ix cos(π Jτ ) + 2IySz sin(π Jτ ) evolution of J -couplings. (1.77)

It immediately follows from equation 1.75 that the �ip angles ωRFτ equaling π/2 (90◦) and
π (180◦) carry signi�cance for NMR since they correspond to the excitation of transverse
magnetization from equilibrium polarization and population inversion, respectively. In
general, any product operator transformation can be described by a general recipe which
is referred to as the magic formula given by

exp(−iθB)A exp(iθB) =



A if [A,B] = 0
A cosθ + i [A,B] sinθ if [A,B] , 0.

(1.78)

1.2. Optimal Control Theory

1.2.1. Definition

OCT can be seen as a generalization of the Euler-Lagrange formalism[5] to �nd extrema
of constrained functions. In order to �nd an extremum of a given function f (x ,y) with a
constraint given by д(x ,y) = c , the Lagrangian Λ needs to be evaluated:

Λ(x ,y, λ) = f (x ,y) + λ (д(x ,y) − c ) (1.79)

The Lagrange multipliers λ provide means to couple the constraints д to the function f . To
�nd the extremum ∇x ,y,λΛ(x ,y, λ) = 0 has to be ful�lled and the extremal coordinates are
found by solving the system of equations formed by the partial derivatives of equation 1.79.

OCT extends this formalism to the problem of �nding optimal trajectories of dynamic
systems[6]. The primary objective is to �nd an optimal set of user-controllable parameters
(controls) which are denoted by the control vector u (t ), that yield an optimal trajectory
which is denoted by the state vector x (t ). These optimal controls and trajectories yield an
extremum of a user-de�ned scalar quality criterion or performance index L(x (t ),u (t )). A
set of constraints f such as bounds for the possible values of u may be connected to L via
a vector of Lagrange multipliers λ so that a quality criterion J can be de�ned according
to

J = L(x (t ),u (t )) + λT f (x (t ),u (t )). (1.80)
The most apparent constraint for a dynamic system is its equation of motion which largely
de�nes its trajectory:

∂x (t )

∂t
= f (x (t ),u (t ), t ) (1.81)

For a continuous system, equation 1.80 can be rewritten as

J = h(x (t f ), t f ) +

tf∫
t0

д(x (t ),u (t ), t )dt (1.82)
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where д and h are scalar functions and h evaluates the endpoint of the trajectory at time
point t f . The second term in equation 1.82 corresponds to a running cost and judges the
path how the �nal state x (t f ) was reached. In examples where only the �nal state is of
interest the running cost may be dropped from J . In general, optimality is reached when
∇uJ = 0 which corresponds to maximum target �delity and minimum expenditure of
e�ort.

1.2.2. Optimal Control of Quantum Systems

This section is in large parts deduced from a comprehensive online lecture series on spin
dynamics by Ilya Kuprov[7]. In order to control the trajectories of quantum systems, the
solution of the Schrödinger equation (1.7) has to be known and the system has to be
governed by a Hamiltonian given by

H = H0 +H1(t ) (1.83)

where H0 denotes the free evolution or drift Hamiltonian and H1 corresponds to the
control Hamiltonian given by

H1(t ) =
∑
k

uk (t )Hk (1.84)

with a set of k time-dependent control variables which couple to their corresponding
control operatorsHk . A typical problem for optimal control may be to �nd a set of controls
which generates a unitary propagator that transforms a given state |ψ 〉 to a desired target
state |σ 〉. An according cost functional may be de�ned such as

J = 〈σ | exp(O)

*..
,
−i

tf∫
t0


H0 +

∑
k

uk (t )Hk


dt

+//
-
|ψ 〉 + д [uk (t )] (1.85)

where д denotes constraints on the admissible controls. The problem can be simpli�ed
if the controls are assumed to be discontinuous. In practice, this is often a very suitable
assumption since hardware devices like NMR waveform generators can generate piecewise-
constant output. Similar to equation 1.60, the unitary propagator in equation 1.85 for a
time point tj simpli�es to

Uj = exp *
,
−i


H0 +

∑
k

uk (tj )Hk


∆t+

-
(1.86)

where ∆t is an equal spacing on the time grid. The cost functional is now dependent on
an e�ective propagator formed by a product of discrete propagators

J = 〈σ |UN · · ·Uj · · ·U1 |ψ 〉. (1.87)

The penalty term has been dropped for simplicity. To approach the target as closely as
possible a maximum of J needs to be found with respect to the controls. The evaluation
of control derivatives according to

∂J

∂uk (tj )
=

∂

∂uk (tj )
〈σ |UN · · ·Uj · · ·U1 |ψ 〉 (1.88)
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indicates that all terms in the derivative of this product vanish except

∂J

∂uk (tj )
=

〈
σ

�����
UN · · ·Uj+1

∂Uj

∂uk (tj )
Uj−1 · · ·U1

�����
ψ

〉
. (1.89)

Therefore the main task of optimization schemes is to e�ciently obtain propagator deriva-
tives.

1.2.3. Pulse Classes

One assumption in section 1.1.5 to apply the product operator formalism to pulse sequence
analysis was that RF pulses needed to be strong so that o�-resonance e�ects could be
neglected. In practice, they can not be neglected since RF energy dissipation has to be
limited in order to prevent damage to the sample and the instruments. Therefore, pulses
have to have a �nite RF amplitude and length. This yields a rectangular amplitude pro�le
which is why these pulses are traditionally called rectangular or simply hard pulses. The
limitations of these pulses can easily be recognized from the FT. A rectangular function
with �nite width in the time domain will yield a sinc function with �nite width in the
frequency domain. In practice, the rotation axis of rectangular pulses is tilted as a function
of the resonance o�set and the e�ective rotation frequency is also altered[1]. This leads
to decreased transfer e�ciencies and is most severe in the case of spin inversion by 180◦
pulses where the magnetization has to pass through the transverse plane.

The �rst attempt to have an error-compensated 180◦ pulse was the 90◦x180◦y90◦x inversion
pulse (x and y denoting the phases of the individual pulses)[8]. This work prompted the
term composite pulses since a self-compensated rotation was obtained by combining
multiple imperfect rotations. Numerous composite pulses were developed in the following
either by rational design or numerical optimization procedures[9, 10] (The signi�cance and
manifold of composite pulses is further elaborated on in chapter 2). Hence, some composite
rotations are susceptible to geometric intuition whereas the mechanism of others is more
intricate. Further, since di�erent pulses may be obtained via di�erent methods, pulses
with di�erent properties are the result. This led to a classi�cation of the rotations which
the corresponding pulses are able to generate[9] and which can also be extended to the
formulation of optimal control problems.

• A: Type A composite pulses produce fully compensated rotations over a range of
imperfections. Any given state of a spin system would undergo a rotation according
to the desired ideal propagator. Such pulses will be referred to as universal rotation
(UR) pulses in the following.

• B1: Type B1 composite pulses produce a partially compensated rotation and approach
the ideal propagator up to a given phase factor

• B2: Type B2 composite pulses yield a fully compensated rotation for a single de�ned
initial spin state and leaves the �nal states of other magnetization components
unde�ned. Such pulses will be referred to as point-to-point (PP) pulses in the
following.
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1.2. Optimal Control Theory

• B3: Type B3 composite pulses act like B2 pulses but can not facilitate a uniform
phase of the �nal state.

The design of all these types can be subject to an optimization by OCT methods if the
cost functionals are de�ned accordingly. Type A/UR pulses aim to create an e�ective
propagator

Ue� =
N∏
j=1

Uj = UN · · ·Uj · · ·U1 (1.90)

that approaches a desired target propagator UF as closely as possible. Any pulse which
would minimize an error functional given by

‖UF −Ue� ‖
2 = ‖UF‖

2 − 2<〈UF |Ue�〉 + ‖Ue� ‖
2 (1.91)

can be called a UR pulse. Since the �rst and last term of equation 1.91 are constant, a
minimum is found when the �delity measure

ΦUR = <〈UF |Ue�〉 = < Tr
(
U †FUe�

)
(1.92)

is maximized. In fact, an arbitrary phase factor exp(iϕ) is occasionally a�ordable in
practical NMR applications and a cost functional taking this into account can be formulated
as

Φ2
UR = |〈UF |Ue�〉|

2. (1.93)

Meanwhile it is recognized that the use of Φ2
UR may seem more �exible than ΦUR but

it su�ers hindered convergence[11, 12]. Pulses obtained by an optimization using a high
ΦUR as their target produce the so-called Broadband Universal Rotation By Optimized
Pulses (BURBOP) family[11–18]. They have been used in a variety of NMR experiments
where they are mostly applied to refocus transverse magnetization in a very robust manner
to form spin echoes[19].

In analogy to B2 pulses, if a pulse is only required to transform a given initial magneti-
zation denoted by ρ0 into a de�ned target state ρF the �delity of a PP transformation is
given by

ΦPP = 〈ρF |ρN〉 = Tr
(
ρ†FρN

)
(1.94)

with ρN being the initial density operator after a set of N unitary transformations according
to

ρN = UN · · ·Uj · · ·U1ρ0U
†

1 · · ·U
†

j · · ·U
†

N. (1.95)

ρ0 and ρF are assumed to be Hermitian operators. Optimizations with ΦPP as their target
yield for example the Broadband Excitation By Optimized Pulses (BEBOP) and Broadband
Inversion By Optimized Pulses (BIBOP) families[13, 15–18, 20–28]. They can be used to reliably
excite transverse magnetization or invert the sign of longitudinal magnetization. By
exploiting symmetry principles it is possible to create UR from PP pulses[29] and further
relations between the pulse families are outlined in [12]. The di�erences between UR and
PP pulses are illustrated and summarized in �gure 1.1.
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A

B

Figure 1.1.: Illustration of the di�erence between UR and PP pulses. A UR pulse is de�ned
by a rotation axis and angle (here 90◦ around the y-axis) and will therefore transform any
given magnetization components accordingly (A). A PP transformation is de�ned by a
speci�c initial and �nal state (here the orientation of the magnetization is turned from z
to x ) and leaves magnetization components orthogonal to the initial state at an unde�ned
place on the plane orthogonal to the target state. This is depicted by the gray disc (B).
(Graphic taken and modi�ed from [12])

1.2.4. The GRAPE algorithm

Gradient ascent algorithms based on principles of OCT were already proposed in the 1980s
to target the problem of band-selective pulses[30–32]. These studies have been limited to
the steering of the dynamics of uncoupled spin systems governed by the Bloch equations
and approaches applicable to very general spin systems have been sparse for a long a time.
With one exception[33], gradient-based optimizations relied largely on di�erence methods
where control derivatives are approximated by �nite di�erences

∂Φ

∂u
≈

Φ(u + ∆u) − Φ(u)

∆u
. (1.96)

Here, in order to obtain gradients for N independent parameters, 2N evaluations of the
performance index Φ are necessary. First, it has to be evaluated with the current controls,
and secondly with controls modi�ed by a slight excursion ∆u.

However, the de�nition of quality factors in section 1.2.3 allows for a more elegant way
to obtain gradients. According to the de�nition of inner products (compare equation 1.51)
and the fact that a trace of a product does not change upon cyclic permutation of its factors,
equation 1.92 can be rewritten as

ΦUR = <
〈
U †j+1 · · ·U

†

NUF
���︸            ︷︷            ︸

Pj

Uj · · ·U1
〉︸     ︷︷     ︸

X j

. (1.97)
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X j corresponds to the e�ective propagator at time tj and Pj can be understood as an
e�ective propagator corresponding to a rotation backwards in time starting from UF. If
the pulse was optimal, X j and Pj would be identical at each point in time. Gradients that
improve ΦUR are therefore proportional to the overlap of these propagators and are given
by

∂ΦUR
∂uk (tj )

=
∂

∂uk (tj )
<〈Pj |X j〉

= <

〈
Pj

�����
∂Uj

∂uk (tj )
X j−1

〉
.

(1.98)

Just as in equation 1.89, all terms except a single product vanish and the remaining task
is to �nd the propagator derivative. These considerations can be transferred to ΦPP.
Equation 1.94 can be rewritten as

ΦPP =
〈
U †j+1 · · ·U

†

NρFUN · · ·Uj+1
���︸                           ︷︷                           ︸

λj

Uj · · ·U1ρ0U
†

1 · · ·U
†

j

〉︸                     ︷︷                     ︸
ρ j

(1.99)

where ρj is the density operator propagated forward from ρ0 and λj can be imagined as
the target operator ρF propagated backwards in time. Again, the pulse would be optimal,
if ρj and λj were identical at each point in time. Hence, gradients that improve ΦPP are
proportional to the overlap of these density operators and are given by

∂ΦPP
∂uk (tj )

=
∂

∂uk (tj )
〈λj |ρj〉

=

〈
λj

�����
∂

∂uk (tj )
Ujρj−1U

†

j

〉
.

(1.100)

Evaluating the derivative of the product in equation 1.100 indicates that only propagator
derivatives are non-zero:

∂

∂uk (tj )
Ujρj−1U

†

j =
∂Uj

∂uk (tj )
ρj−1U

†

j +Ujρj−1
∂U †j

∂uk (tj )
(1.101)

The only additional e�ort compared to ΦUR derivatives is therefore to �nd the derivatives
of U †j . These can be obtained by deriving the product

∂(UjU
†

j )

∂uk (tj )
=
∂1
∂uk (tj )

= 0 (1.102)

which yields

Uj

∂U †j

∂uk (tj )
= −

∂Uj

∂uk (tj )
U †j ⇐⇒

∂U †j

∂uk (tj )
= −U †j

∂Uj

∂uk (tj )
U †j . (1.103)

It was shown that with the considerations above, an iterative scheme can be formulated
that only needs two trajectories of the spin system to obtain gradient information for
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Figure 1.2.: Gradients for all control parameters are obtained by evaluating the overlap
of two trajectories at each point in time. In the case of ΦPP, ρj is obtained by a forward
propagation of the initial state ρ0. λj corresponds to the backward trajectory of the �nal
state ρF (bold lines). If the pulse sequence facilitates a perfect transfer both trajectories
match (dashed line).

all control parameters independent of the total number N . The concept of forward and
backward propagation is further illustrated in �gure 1.2. In order to achieve robustness
towards a range of imperfections, these can be arranged in sets of discrete values. This
way, pulses can be made robust towards a range of resonance o�sets ∆ν by choosing a
reasonable number Nν of values along this range. Deviations from an ideal B1 �eld to
generate the pulse can be taken into account by choosing a set of NB1,rel values for the
nominal magnitude B1,rel to scale ωRF. To �t the shape of equation 1.84, equation 1.11 can
be rewritten as

H1(tj ) = 2πB1,rel(ux (tj )Ix + uy (tj )Iy ). (1.104)
Parameter ranges can be molded into any type of quality factor by expanding it to the
total average over a set of local quality factors:

Φ(ν ,B1,rel) =
1

NνNB1,rel

∑
ν

∑
B1,rel

Φ(ν ,B1,rel) (1.105)

Gradients can be generalized the same way according to

∇uk (tj )Φ(ν ,B1,rel) =
1

NνNB1,rel

∑
ν

∑
B1,rel

∂Φ(ν ,B1,rel)

∂uk (tj )
. (1.106)

These mean gradients can be used to update the pulse sequence parameters in an iterative
manner. The most general update rule for iteration s is given by

us+1 = us + ϵ · ∇uΦ (1.107)

with ϵ being an arbitrarily chosen or optimized step length. The considerations above
form the basis of the GRadient Ascent Pulse Engineering (GRAPE) algorithm[13] which in
the simplest guise can be formulated as follows (The recipe is given for ΦPP. For ΦUR see
the content in brackets):
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1.2. Optimal Control Theory

Figure 1.3.: Schematic representation of a control sequence uk (tj ), consisting of N piece-
wise constant steps with a duration of ∆t . Vertical arrows represent the sign and magnitude
of the gradients which indicate in which way individual controls need to change in order
to improve the quality factor Φ.

1. Make a guess for initial controls u.

2. Starting from ρ0 (unity), compute the forward trajectory ρj (X j) .

3. Starting from ρF (UF), compute the backward trajectory λj (Pj).

4. Evaluate ∇uΦ for all possible combinations of parameters and form the mean value.

5. Update the controls according to equation 1.107.

6. Repeat steps 2-5 until convergence.

If ϵ is chosen as one, the algorithm performs the simplest version of steepest descent (or
ascent in this case) with guaranteed (but slow) convergence to the closest local optimum.
More informed ways to derive a step length are given in section 1.2.8. Figure 1.3 illustrates
how the controls are updated using the gradient information.

1.2.5. Optimal tracking

So far, only optimization approaches for pulse sequences were discussed where terms in
the cost functional corresponding to the running cost in equation 1.82 have been discarded
and only the target �delity has been evaluated. However, for several applications in
NMR, the behavior of spin systems during multi-pulse sequences is of the essence. The
historically most relevant theoretical tool to describe such pulse sequences is coherent
averaging or Average Hamiltonian Theory (AHT) [34], since the focus is on the e�ective
Hamiltonian during a pulse train. E�ective Hamiltonians are also achievable by means of
OCT [35], but this approach does not exploit the full �exibility of the algorithms available.
The general task of �nding controls that facilitate a desired output trajectory can be
transferred to spin dynamics, where a pulse sequence is required to steer the evolution of
a density operator along a chosen trajectory. In terms of Optimal Control, this is called
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Figure 1.4.: Schematic representation of the trajectories necessary for a GRAPE tracking
iteration with respect to the chosen time grid. The trajectory is digitized into N detection
points Tn with M time slices of the pulse sequence, digitized into NM steps, between two
subsequent detection points. As shown in equation 1.113, N backward trajectories λj (n)
can be combined to a single trajectory Λj . (Graphic taken and modi�ed from [36])

a tracking problem[6]. A generalized version of the GRAPE algorithm, called optimal
tracking, that has been tailored towards this kind of problems, was introduced in the
context of low-power heteronuclear decoupling[36] (which is a main part of this thesis, see
chapter 2).

The desired trajectories are no longer de�ned by a single target state ρF but by several
target states spread over the time grid of the pulse sequence. In the most simple case
N discrete way points would be equally distributed over the sequence with an equal
spacing of ∆T . These points could correspond to data acquisition points of NMR spectra
which are also recorded with an equal spacing called the dwell time (in the case of linear
sampling). Typically, the digitization of a pulse sequence ∆t can be chosen smaller than
the digitization of the detected signal so that the number M = ∆T /∆t corresponds to the
number of pulse sequence increments between detection points. The performance of the
sequence is evaluated at each detection point via local quality factors

ϕn = 〈ρF(Tn ) |ρ (Tn )〉. (1.108)

If all local quality factors are weighted equally they can be molded into a global quality
factor given by

Φ =
1
N

N∑
n=1

ϕn =
1
N

N∑
n=1
〈ρF(Tn ) |ρ (Tn )〉. (1.109)

In order to obtain gradients that modify the controls with respect to the improvement of
each of the N local quality factors, N backward trajectories have to be evaluated alongside
one forward trajectory. The propagation scheme and the according time grid is depicted
in �gure 1.4. The average gradients are therefore given by
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∂Φ

∂uk (tj )
=

1
N

N∑
n=1

∂ϕn
∂uk (tj )

=
1
N

N∑
n=1

∂

∂uk (tj )
〈λj (n) |ρj〉. (1.110)

It becomes obvious from �gure 1.4 that pulse increments at early time points a�ect all
future detection points but at the same time there is no control that can a�ect its past.
Therefore several contributions to the sum in equation 1.110 can be dropped and a combined
backward trajectory may be written as

Λj =
∑
n>l

λj (n) (1.111)

where l is an integer number given by bj/Mc ensuring that control derivatives at each
increment j only a�ect detection points in the future. Therefore equation 1.110 simpli�es
to

∂Φ

∂uk (tj )
=

1
N

∂

∂uk (tj )
〈Λj |ρj〉. (1.112)

Although this is suggested by the equations above and �gure 1.4, there is no actual need to
compute N backward trajectories consecutively. It is possible to replace a sum of unitary
propagations by a single propagation of a sum according to

∑
n

UAnU
† = U *

,

∑
n

An
+
-
U † (1.113)

which allows for an extremely e�cient calculation of Λj and retains the bene�t of the
GRAPE algorithm that only two full trajectories are necessary to obtain gradients for all
controls. The GRAPE-based tracking algorithm for a desired density operator trajectory
can be summarized as follows:

1. Make a guess for initial controls u.

2. Starting from ρ0, compute the forward trajectory ρj .

3. Starting from ρF(TN), compute the backward trajectory Λj according to

Λj−1 =




U †j ΛjUj

if bj/Mc = b(j − 1)/Mc
U †j ΛjUj + ρF (Tn )

if bj/Mc > b(j − 1)/Mc

(1.114)

4. Evaluate ∇uΦ for all possible combinations of parameters and form the mean value.

5. Update the controls according to equation 1.107.

6. Repeat steps 2-5 until convergence.
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1.2.6. Cooperativeness

However compensated a single RF pulse or sequence of pulses may be against experimental
imperfections, each transformation will lead to small amounts of unwanted magnetization
components that will not follow the desired pathway. This will give rise to spectral
artifacts, diminished signal to noise (S/N) ratios and imperfect line shapes. Composite
pulses or shaped pulses (SPs) in general can only compensate their own imperfections
to a certain extent. Nevertheless, if NMR spectra are accumulated using several scans,
unwanted magnetization components can be canceled in the averaged signal by phase
cycling procedures[37]. Typically in repeated experiments, identical pulses are used but
their phases are systematically altered mostly by multiples of 90◦. These restrictions on the
phase alteration may be lifted by designing a whole set of pulses which can compensate
each others imperfections using Optimal Control methods. A cycle of such pulses can be
referred to as cooperatively acting or simply COOP pulses[38]. Cooperativeness can be
exploited in multiple[39] and even the same scan[40] with the focus of this thesis being on
multi-scan experiments.

For a set of NCOOP pulses it is straightforward to de�ne an average density operator
according to

ρ (tj ) =
1

NCOOP

NCOOP∑
m=1

ρ (m) (tj ). (1.115)

Extensive care has to be taken on the formulation of quality factors so that cooperativeness
can take e�ect. It has been shown by previous studies using OCT on the subject of
broadband excitation with minimal phase error[23] that quality factors with quadratic
terms prove advantageous. If magnetization shall be transferred from Iz to Ix , any residual
Iy magnetization will be observable as a phase error in the resulting signal. This can be
taken into account via

Φ = 1 − (1 − 〈Ix〉)2 − 〈Iy〉2. (1.116)
This quality factor will reach the maximum of Φ = 1 when 〈Ix〉 = 1 and 〈Iy〉 = 0. The
gradient with respect to the controls enforces this via

∇uΦ = 2(1 − 〈Ix〉) · ∇u〈Ix〉 − 2〈Iy〉 · ∇u〈Iy〉. (1.117)

In contrast to the simple de�nition of ΦPP, the expectation values of the operators in
question (so basically the �delity of the transformation itself) is fed back to the gradient and
acts as a scaling proportional to the transfer e�ciency already reached. This principle can
readily be transferred to cooperativeness. Equation 1.116 needs to be modi�ed according
to

ΦCOOP = 1 −
(
1 − 〈Ix〉

)2
− 〈Iy〉

2
. (1.118)

To adjust the controls of individual pulses u (m) in order to improve ΦCOOP, the average
density operator needs to be derived with respect to individual controls. The gradients of
any ΦPP-type contribution to ΦCOOP are given by

∇u (m)

〈
ρF ��ρN

〉
=

1
NCOOP

NCOOP∑
m=1
∇u (m)

〈
ρF

���ρ
(m)
N

〉
=

1
NCOOP

∇u (m)

〈
ρF

���ρ
(m)
N

〉
. (1.119)
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Figure 1.5.: Simulated and experimental o�set pro�les for the average excited magneti-
zation 〈Ix〉 (upper panels) and the average phase error ϕ (lower panels) for an individual
pulse (NCOOP = 1, dotted and dashed line) and sets of COOP pulses with NCOOP = 3 (bold
gray line) and NCOOP = 6 (bold black line). With an increasing number of pulses both the
excitation and phase error homogeneously improve. Pulses were optimized for ∆ν = 40 kHz
using ωRF = 17.5 kHz with a duration of 50 µs . (Graphic taken and modi�ed from [39])

If the result of equation 1.119 is plugged into the derivative of equation 1.118 this yields

∇u (m)ΦCOOP =
2

NCOOP

((
1 − 〈Ix〉

)
· ∇u (m)〈Ix〉

(m) − 〈Iy〉 · ∇u (m)〈Iy〉
(m)

)
. (1.120)

It becomes clear from equation 1.120 that the average �delity of the whole set of pulses
is fed back to the gradients of individual pulses. Only this way cooperativeness can take
action. Apart from broadband excitation with minimal phase error, examples for total
elimination of magnetization, band-selective excitation, Inherent Coherence Evolution
optimized Broadband Excitation Resulting in constant phase Gradients (ICEBERG)-type
pulses[26], and water suppression are given in the seminal work [39]. Excitation pro�les
for the former are depicted in �gure 1.5. The pro�les show increasing homogeneity of the
intensity of the excited magnetization across the given o�set range with decreasing phase
errors if NCOOP is increased.

1.2.7. Control derivatives

It has been shown in section 1.2.4 that obtaining propagator derivatives is the key to
the gradients which are the mathematical core of each iteration of the GRAPE algorithm.
Derivatives of matrix exponentials with the shape of equation 1.86 are given by

∂

∂x
eA+xB ���x=0 = eA

1∫
0

eAτBe−Aτdτ . (1.121)
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Applied to the unitary propagator this yields

∂Uj

∂uk (tj )
= −iUj

∆t∫
0

Uj (τ )HkUj (−τ )dτ . (1.122)

If the step size ∆t is su�ciently short in comparison to the period of the largest frequency
component in the Hamiltonian (∆t � ‖H ‖

−1 is ful�lled) the integral in equation 1.122
simpli�es toHk∆t and the propagator derivative to �rst order is given by

∂Uj

∂uk (tj )
= −i∆tHkUj . (1.123)

Plugged into equation 1.98 the control derivative of ΦUR to �rst order is given by
∂ΦUR
∂uk (tj )

= −<〈Pj |i∆tHkX j〉. (1.124)

The control derivative of ΦPP can be obtained by applying equation 1.123 to equation 1.101:
∂ΦPP
∂uk (tj )

= −
〈
λj

��� i∆t
[
Hk , ρj

]〉
(1.125)

Applying this approximation causes a convergence slowdown close to the optimum since
the approximation error starts to dominate the decreasing gradients. However, equa-
tion 1.123 can be seen as the �rst term of the power series de�nition of the exponential
derivative[41]. SinceH andHk often not commute the power series can be expressed more
conveniently as a commutator series[42] according to

∂Uj

∂uk (tj )
= Uj

(
−i∆tHk +

∆t2

2 [H ,Hk] + i∆t3

6 [H , [H ,Hk]]

−
∆t4

24 [H , [H , [H ,Hk]]] + · · ·
)
.

(1.126)

This way propagator derivatives are obtained which approach the accuracy of exact
gradients up to machine precision at the computational cost of the matrix exponential.
Yet a far more elegant way to obtain the exact solution for the integral in equation 1.121
exists. According to the work of van Loan[43], an augmented matrix can be constructed
which yields a variety of integrals involving the matrix exponential upon exponentiation.
To obtain propagator derivatives to �rst order with respect to the controls a triangular
matrix has to be evaluated according to the following

exp
(
A B
0 C

)
=

*..
,

eA eA
1∫

0
eAτBe−Cτdτ

0 eC

+//
-
. (1.127)

Propagators and their derivatives are therefore available if the right Hamiltonians are
plugged into the blocks of the augmented matrix[44]. From equation 1.127 follows

exp
(
−iH∆t −iHk∆t

0 −iH∆t

)
= *

,
Uj

∂Uj
∂uk (tj )

0 Uj

+
-
. (1.128)

26



1.2. Optimal Control Theory

These derivatives are exact to the same degree as the Padé approximation used to compute
the matrix exponential[43]. True analytical derivatives in the context of NMR pulse se-
quence optimization were only used by Levante et al.[33] who made use of an eigensystem
di�erentiation proposed by Aizu[45]. Given that exact matrix exponentiation is only possi-
ble for diagonal matrices,H has to be transformed to its eigenbasis by a transformation
matrix V consisting of the eigenvectors ��ξl

〉 according to

V †HV = D . (1.129)

The matrixD now only contains the eigenvalues ξl on its diagonal. They can be connected
to the eigenvalues of the propagator ζl via

ζl (j ) = exp(−iξl∆t ). (1.130)

Although the optimization approach of Levante et al. was centered around the eigenvectors
of a desired average Hamiltonian[33] it was necessary to obtain propagator eigenvalue
derivatives which are related to propagator derivatives via

∂ζl (j )

∂uk (tj )
=

〈
ζl (j )

�����
∂Uj

∂uk (tj )

�����
ζl (j )

〉
. (1.131)

This can be transferred to the propagator derivative in the eigenbasis of the Hamiltonian.
The general form of derivatives with the shape of equation 1.86 according to [45] is given
in terms of the matrix elements by

〈
ξl

�����
∂

∂x
eA+xB

�����
ξm

〉
=




〈
ξl ��B ��ξm

〉
eξl

if ξl = ξm〈
ξl ��B ��ξm

〉 eξl −eξm

ξl−ξm

if ξl , ξm

(1.132)

if ��ξl
〉 are eigenvectors and ξl are eigenvalues of operator A and therefore obey

A ��ξl
〉
= ξl ��ξl

〉
. (1.133)

For all calculations and optimizations presented in this thesis which are performed in
Hilbert space, the eigensystem di�erentiation approach was used.

1.2.8. Update methods

After gradients have been obtained to a desired degree of accuracy, the next crucial step
in the basic GRAPE algorithm presented in section 1.2.4 is the update of the control vector
according to equation 1.107. For this section, a common literature jargon is adopted that
denotes the optimization problems introduced above as minimization. In order to reach a
minimum of a given Φ the sign in the update rule needs to be reversed which will give
physically meaningful results if all quality factors are translated from �delities to error
functionals (1 − Φ). Most of the methods discussed here are freely available as minimizers
and are incorporated in the renowned spin dynamics simulation library Spinach[46].
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As already mentioned, basic steepest descent guarantees monotonic convergence but is
often slow close to the optimum. The step size ϵ can be modi�ed by line search procedures
according to

ϵs = arg min
ϵ

(Φ (us − ϵ∇uΦ (us ))) . (1.134)

There are a variety of line search methods available which mostly di�er in the way
tolerances with respect to the change of Φ are applied during the search for an optimal
step size. They shall not be further discussed.

Signi�cant e�ort has been put in attempts to exploit the predicted quadratic convergence
behavior of the Newton-Raphson method[47]. If Φ is assumed to be locally quadratic then
the e�ect of changing controls can be approximated by a second order Taylor expansion
according to

Φ(u + ∆u) ≈ Φ(u) + ∇uΦ(u)
T∆u +

1
2∆u

TH∆u (1.135)

with H being the Hessian matrix. The change of controls that will lead to a minimum is
found by evaluating

∇uΦ(u + ∆u) ≈ ∇uΦ(u) + H∆u
!
= 0 (1.136)

and yields the optimal Newton step according to

us+1 = us − H−1∇uΦ(u
s ). (1.137)

Hessians may be di�cult to handle depending on the size of the control vector but an
exceptional bene�t of the GRAPE algorithm is that the computational e�ort to obtain
gradients is comparable to the calculation of trajectories. In order to obtain the Hessian of
J according to equation 1.87, ∇2

uJ needs to be evaluated. The (block-)diagonal elements
of the Hessian are available via

∂2J

∂uk (tj )∂ul (tj )
=

〈
σ

�����
UN · · ·Uj+1

∂2Uj

∂uk (tj )∂ul (tj )
Uj−1 · · ·U1

�����
ψ

〉
(1.138)

and o�-diagonal elements (mixed second derivatives) are given by

∂2J

∂uk (tj )∂ul (tm )
=

〈
σ

�����
UN · · ·Uj+1

∂Uj

∂uk (tj )
Uj−1 · · ·Um+1

∂Um

∂ul (tm )
Um−1 · · ·U1

�����
ψ

〉
. (1.139)

The propagator derivatives in equation 1.138 could be obtained in the eigenbasis of Uj or
the Hamiltonian[45] but a more elegant way based on auxiliary matrices has been proposed
recently[44]. Propagators and derivatives to �rst and second order with respect to the
controls can be obtained via

exp *.
,

−iH∆t −iHk∆t 0
0 −iH∆t −iHl∆t
0 0 −iH∆t

+/
-
=

*...
,

Uj
∂Uj
∂uk (tj )

1
2 ·

∂2Uj
∂uk (tj )∂ul (tj )

0 Uj
∂Uj
∂ul (tj )

0 0 Uj

+///
-

. (1.140)

In the context of other non-linear optimization theories, Hessians are often too expensive
to be calculated explicitly and second order derivatives are approximated from the gradient
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history by so-called quasi-Newton methods. A popular approach is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update[47] which has been successfully applied to the GRAPE
algorithm[42]. Starting from a unity matrix, the Hessian is build up according to

HBFGS
s+1 = Hs +

дsд
T
s

дT
s ∆us

−
(Hs∆us ) (Hs∆us )

T

∆us
THs∆us

(1.141)

using the gradient history дs given by

дs = ∇uΦ(u
s+1) − ∇uΦ(u

s ) (1.142)

and the history of the controls ∆us given by

∆us = u
s+1 −us . (1.143)

To avoid inversion, the Hessian can also be updated via its initial inverse[42]. In cases where
Hessian and gradient storage are not feasible for the entire optimization (or the landscape
of Φ has noisy regions) the limited-memory BFGS (L-BFGS) method can be applied where
the history is erased after a given number of iterations[48]. Equation 1.135 implies that since
a minimum is sought after which leaves a zero gradient, the Hessian in equation 1.137 has
to be positive de�nite. Otherwise negative Hessian eigenvalues would invert the search
direction. Modifying the Hessian in a way that the spectral decomposition is maintained
but negative or small eigenvalues are avoided is the subject of so-called regularization
methods, studied recently with regard to the GRAPE algorithm[49].

A good compromise between the speed of �rst-order and the convergence properties
of second-order updates is reached by the use of conjugate gradients (CGs) [50]. It makes
use of the gradient information from the past iteration to �nd an optimal step along a
direction amongst a set of search directions which are orthogonal or conjugate to each
other:

us+1 = us − ϵsds (1.144)
The step size ϵs is found by line search according to

ϵs = arg min
ϵ

(Φ (us − ϵds )) (1.145)

and the search direction is given by

ds = ∇uΦ(u
s ) + βsds−1. (1.146)

The initial search direction d0 is given by the gradient with respect to the initial controls
and is corrected by a factor βs which is dependent on the implementation of the CG method.
Two important versions are the Fletcher-Reeves method

βs =
|∇uΦ(us ) |2

��∇uΦ(us−1)��2
(1.147)

and the Polak-Ribière method

βs =

(
∇uΦ(us ) − ∇uΦ(us−1)

)T
∇uΦ(us )

��∇uΦ(us−1)��2
(1.148)
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which become identical if the landscape of Φ is quadratic. The convergence behavior of
CGs can be compared to steepest descent far away from the optimum and a second-order
method once the optimum is approached without as much slowdown as pure �rst-order
methods and without the need to compute Hessian information. It should be noted that
all second order or hybrid update methods rely on exact �rst-order gradients.

All optimizations described in the following chapters of this thesis are carried out using
the Fortran-based OCTOPUSSI software package developed by Sebastian Ehni[51]. It relies
on memory preallocation according to the CPU cache size for maximum speed of �oating
number operations. Although it is equipped with an L-BFGS module, the large number
of variables necessary for the pulse sequences in chapter 2 render the handling of the
according Hessians unfeasible. Hence, CGs o�ered the apparently best available alternative.
OCTOPUSSI makes use of the Fletcher-Reeves-Polak-Ribière-minimization (FRPRMN)
routine available for Fortran. For exhaustive details on the organization and features of
OCTOPUSSI, the reader is referred to [51]. All modi�cations to the existing software that
go beyond merely adding new de�nitions of quality factors and gradient functions (see
appendix A.3) are mentioned throughout this work.

1.2.9. RF constraints

Looking at the way di�erent �avors of the GRAPE algorithm are formulated in sections 1.2.4
and 1.2.5, one could assume that the controls may be updated to whatever extent to reach
convergence. Depending on the problem at hand, this could lead to an in�nite amount of
RF energy being dissipated into the system. But the reality of running NMR experiments
is far from it. The peak RF loading and the ratio of irradiation time and periods without
irradiation (duty-cycle) is regulated to prevent damage from the coils in the probe and
undue heating of the sample. Most importantly, if measurements are performed on living
tissue such as humans in an Magnetic Resonance Imaging (MRI) scanner, limits of RF
exposure are given by law.

Constraints on the amount of RF dissipation can be applied in di�erent ways. They may
act as penalties on the quality factor[13, 46] (see equation 1.85) or may be applied as bounds
at each iteration of the algorithm after the control update. The latter is straightforward
to implement and does not hinder convergence in most cases. The most immediate
restriction corresponds to a local amplitude limit which applies to each increment of the
pulse sequence. ωRF according to equation 1.11 is connected to the Cartesian components
(real and imaginary parts, see equation 1.104) of the pulse shape via

ωRF(tj )/2π = uRF(tj ) =
√
u2
x (tj ) + u

2
y (tj ). (1.149)

A maximum amplitude umax
RF can be enforced as a bound[21, 22] via

uk (tj ) → uk (tj ) ·
umax

RF
uRF(tj )

if uRF(tj ) > umax
RF (1.150)

which will leave the phase of the increment unaltered. Equation 1.150 can also be used to
explicitly demand thatumax

RF is used at each increment in order to obtain constant amplitude
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phase-modulated pulses[24]. A more �exible approach is to limit the overall power envelope
given by

P =
1
tN

tN∫
t0

u2
RF(t )dt (1.151)

which simpli�es to a sum for piece-wise constant output according to

P =
1
N

N∑
j

u2
RF(tj ). (1.152)

Pulses with limited RF power can be compared to constant amplitude pulses using
√
P as

a measure which corresponds to the often used B1,RMS. Power limits Pmax can be enforced
as a bound via

uk (tj ) → uk (tj ) ·

√
Pmax
P

if P > Pmax. (1.153)

Using limited RF power over limited RF amplitude can lead to increased �delity using the
same pulse length, since amplitude modulation introduces further degrees of freedom[27].
Power limits were added as a feature to OCTOPUSSI during the course of this thesis. To
have a measure of RF exposure which is independent of time, local and overall amplitudes,
the total energy of pulses can be compared. Devoid all natural constants, the energy
transferred from the probe coil to the sample is given by

ERF ∼ P · tN. (1.154)

It can be used as a bound[52] in the same way as power and amplitude according to

uk (tj ) → uk (tj ) ·
Emax

RF
ERF

if ERF > Emax
RF . (1.155)

Both power and energy limits leave the phase of the increment unaltered. Energy limits
were not used in this thesis, but equation 1.154 was employed as a measure to see which
combinations of B1,RMS and AQs are feasible for experiments described in chapter 2.

1.2.10. Pulse shape analysis

The pulse shapes obtained by means of OCT can be regarded as extremely complex
composite pulses. However, the trajectories describing 2n-dimensional spin dynamics
are often complicated and optimal pulses contain a seemingly arbitrary succession of
�ip angles due to the intricate phase and amplitude modulations which leave the user to
interpret an almost noise-like pulse shape. Distinguished authors have drawn comparisons
to sheep herding. Trying to understand the mode of action of optimal control pulses
corresponded to watching a dog running around randomly barking and biting at the sheep
whereas the sheep are steered along a trajectory rather orderly. In terms of spin dynamics
the sheep may be analyzed by using projection superoperators P̂Lk to deconstruct the state
space L of a given density operator according to a desired criterion[53] according to

pk =



P̂Lk

��ρ
〉


 . (1.156)
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Figure 1.6.: The seemingly noise waveforms applied to 1H, 13C and 15N (left panel, control
amplitudes given as fractions of a nominal power level) steer magnetization from the Hα

proton to the carbonyl carbon CO of the same residue in a protein backbone. Analyzing the
trajectories using the methods described in [53] with respect to correlation orders reveals
that single-spin order is �rst depleted and via largely two-spin order and for a short period
also three-spin order is regenerated at last (middle panel). Correlation orders higher than
three are hardly populated. Focusing on single-spin orders (right panel) reveals a smooth
transition from Hα to CO via Cα . (Graphic taken and modi�ed from [53])

The portion pk is the part of the spin system that belongs to the subspace selected by the
projection operation. Several modes of projection are proposed in [53], such as coherence
order (see sections 1.1.4 and 1.1.5) or correlation order. Correlation orders can be obtained
evaluating the number of non-unit spin operators contributing to a given state. Further, the
single-spin correlation and coherence order is of particular interest since it can be further
deconstructed to identify contributions of individual spins. An illustrative example for a
noisy pulse shape creating smooth dynamics is given in �gure 1.6 where magnetization is
moved along a protein backbone. Note that correlation orders above three are avoided
almost throughout the trajectory.

However, even pulses acting on an isolated single-spin system where trajectories can
be followed on a Bloch sphere may be di�cult to interpret. To solve this problem, the
perspective of the dog has to be assumed. An NMR pulse shape s in the time domain
is usually represented in terms of its real and imaginary parts (Cartesian components)
according to

s (t ) = ux (t ) + iuy (t ) (1.157)
or by the temporal amplitude and phase:

s (t ) = uRF(t )e
iϕ (t ) (1.158)

It can readily be converted to the frequency domain via the FT where the shape S (ν ) is
given by spectral amplitude and phase

S (ν ) = uRF(ν )e
iϕ (ν ) . (1.159)
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In many cases the means of representation given above are not particularly informative
given that they do not correlate irradiation time and frequency. One approach would be
to evaluate the temporal frequency given by

ν (t ) =
∂ϕ (t )

∂t
(1.160)

but here the information about the intensity is lost. To accommodate these shortcomings,
the short-time Fourier transform (STFT) or spectrogram representation has been applied
to the analysis of optimal control pulses recently[54]. The spectrogram provides a joint
time-frequency representation and is given by

S (t ,ν ) =

∞∫
−∞

s (τ )д(t − τ )e−i2πντdτ (1.161)

with д(t ) being a gate function to de�ne the section of the pulse shape under analysis
at a given time. To suppress the pulse outside the window [t − ∆t , t + ∆t], a normalized
Gaussian window function can be used according to

д(τ ) =



1
N e
− τ 2

2σ 2 for τ ∈ [−∆t ,∆t]
0 else

(1.162)

where the variance σ is proportional to the full width at half maximum (FWHM) of the
Gaussian. In order to analyze at which time the pulse deposits energy at a given frequency,
the spectrogram amplitude

uRF(t ,ν ) =
√
<2 [S (t ,ν )] + =2 [S (t ,ν )] (1.163)

needs to be evaluated. Information about the time and frequency-dependent phases may
also be extracted but is of minor interest for this thesis. The insights and drawbacks of
di�erent pulse sequence representations is illustrated in �gure 1.7 choosing a BIBOP shape
as an example which was developed as part of a bigger study[22]. Whereas the control
amplitudes are not informative, the phase and amplitude representation reveal a constant
amplitude shape with a smoothly swept phase. The irradiation frequency is also swept
with two large swings at the beginning and end. Looking at the spectrogram however, it
can be recognized that the majority of uRF is deposited in the optimized region and the
swings correspond to a small leakage into large frequencies due to the pulses’ rectangular
amplitude pro�le.
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A B

C D

E F

Figure 1.7.: Comparison of temporal and joint time-frequency representations of an
example BIBOP shape[22]: The Cartesian control amplitudes (A and B) do not reveal the
pulse’s mode of action. Converting the controls to phase (C) and amplitude (D) leads to the
recognition of a smooth phase modulation with constant uRF. The phase derivative with
respect to time (E) hints at a smooth frequency sweep with sharp swings towards high
frequencies at the extremities of the shape. However, the spectrogram (F) unmasks this
observation as artifacts of the rectangular amplitude pro�le. Parameters of the spectrogram
were chosen according to the BIBOP example given in [54].
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2. Heteronuclear Decoupling: The
BROCODE

Certainty of death. Small chance of
success. What are we waiting for?

Gimli - The Lord of the Rings:
The Return of the King (Movie)

2.1. Introduction

2.1.1. Historical concepts

In a heteronuclear spin system where resonance frequencies are well-separated, the evolu-
tion of the density operator under the e�ect of J -coupling is governed by the Hamiltonian
according to equation 1.25. If spin I is probed in an NMR experiment and is connected to
spin S via a chemical bond, the Hamiltonian for spin I is given by

HI = 2πνIIz + π
1JIS2IzSz (2.1)

with νI being the resonance o�set of I and 1JIS corresponding to the one-bond coupling
constant between I and S , which is simply called J in the following. With equation 1.72 in
mind, the real expectation value of the detectable I− coherence is given by

<
〈
I−

〉
(t ) = cos (2πνIt ) cos (π Jt )

= cos
(
2π

[
νI ±

J

2

]
t
) (2.2)

so that the resonance line at νI will be split by the J -coupling. The wealth of information
contained in these splittings will be elaborated on in chapter 3. Already in the early days of
NMR spectroscopy it was recognized that these splittings may prove to be a disadvantage
in terms of sensitivity and interpretability of spectra. This becomes evident for more dilute
nuclei like 13C with its usually large number of couplings to the abundant 1H nuclei. The
removal of these couplings by a second RF �eld (decoupling) was proposed by Bloch[55],
later proved experimentally[56] and became known as double resonance[57]. If spin I is
observed and assumed to be on resonance while spin S is continuously irradiated with a
constant amplitude and constant phase RF �eld, the e�ective Hamiltonian is given by

HJe� = π Je�2IzSz . (2.3)
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Figure 2.1.: Simulated decoupling pro�le for a heteronuclear two-spin system under CW
irradiation with uRF = 2 kHz. The coupling of J = 140 Hz is reasonably suppressed only
close to νS = 0 and is otherwise scaled according to equation 2.5. Ten contours equally
spaced between 5 and 100% of the maximum achievable intensity were plotted.

The e�ective J -coupling Je� is given by

Je� = λCWJ (2.4)

where the original J -coupling is scaled by a characteristic factor for continuous-wave (CW)
irradiation as a function of the spin S resonance o�set νS and uRF:

λCW =
νS√

ν2
S + u

2
RF

(2.5)

Apart from o�sets very close to resonance this only corresponds to a scaling since still over
70% of the total coupling are observable for equal values of νS and uRF. The characteristic
o�set pattern of CW decoupling is depicted in �gure 2.1. Decoupling is only achieved for
S o�sets close to resonance.

If not otherwise mentioned the following simulation parameters were used for the
generation of the decoupling pro�les in the following sections. The coupling constant was
set to J = 140 Hz as a typical value for 1JCH in aliphatic CHn groups of organic molecules.
Theoretical spin I spectra were sampled for 128 ms with a real dwell time of 100 µs . The
resulting free induction decays (FIDs) were damped according to an assumed transverse
relaxation rate corresponding to a line width of 6 Hz and apodized using a cosine-squared
window function. Time-domain data was zero-�lled to 8192 points prior to FT and spectra
were simulated using 101 o�sets distributed equally over the given range.

The limited bandwidth of CW decoupling severely hampered 13C NMR spectroscopy
and it was realized that the RF �eld used for decoupling has to be modulated. Several
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modulation schemes have been suggested, starting with single-freqency modulation[58],
pseudorandom phase modulation (noise decoupling)[59], square-wave phase modulation[60]

and chirp frequency modulation[61]. However, non of these methods can be considered
broadband decoupling by today’s standards.

2.1.2. Composite Pulse Decoupling

A major leap towards broadband decoupling was taken by replacing continuous RF irradi-
ation by a repeated set of 180◦ pulses. Decoupling is achieved when the pulses on S are
applied at the midpoints between acquisition points of the I spectrum since it will lead to
a refocusing of the coupling evolution:

Ix
π J2IzSzτ
−−−−−−−→ Ix cos(π Jτ ) + 2IySz sin(π Jτ )

πSx
−−−→ Ix cos(π Jτ ) − 2IySz sin(π Jτ )

π J2IzSzτ
−−−−−−−→ Ix (2.6)

Scaling can be achieved in a similar manner by a slight temporal displacement of the
pulses[62]. The method is mostly limited by the inability to place reasonably short 180◦
pulses in between acquisition points that correspond to common spectral widths especially
for 13C. An inversion pro�le for an ordinary rectangular 180◦ pulse is depicted in �gure 2.2.
It can only provide reasonable inversion e�ciency close to resonance and the nominal
B1 value. The 90◦x180◦y90◦x composite pulse was already mentioned in section 1.2.3. It is
obtained by splitting a conventional 180◦ pulse in the middle and inserting a correction
180◦ pulse phase-shifted by 90◦ [8]. The inversion pro�le is given in �gure 2.3. Close
to resonance, it excels at B1 compensation, but at the nominal value for B1 the o�set
pro�le within �gure 2.3 is rather wavy. Given that it gets more homogeneous at higher
RF amplitudes, the 90◦x240◦y90◦x composite pulse was proposed, where the length of the
correction pulse is simply extended[63]. The corresponding inversion pro�le is shown in
�gure 2.4. This modi�ed composite pulse o�ers a more homogeneous inversion pro�le for
the nominal B1 value without sacri�cing too much robustness against B1 variations.

The use of Composite Pulse Decoupling (CPD) instead of spin �ip decoupling using
uncompensated pulses indicated that refocusing the coupling evolution at each detection
point is not necessary for e�cient decoupling as long as the magnetization is manipulated
rapidly with respect to the magnitude of the coupling constant. Moreover, supercycles
were developed to compensate imperfections of individual inversion elements. They can be
obtained by recursive expansion with the MLEV series being the pioneering example[64–66].
Theoretical justi�cation for this approach was delivered retrospectively using both AHT [34]

and a more explicit spin rotation operator-based treatment[67, 68]. Practical implementations
of MLEV supercycles are given in table 2.1. The e�ects of more and more compensated
cycles is illustrated in �gure 2.5 using the 90◦x180◦y90◦x composite pulse. Using no or a
primitive supercycle leads to a more or less direct translation of the pulses’ wavy o�set
pro�le into the decoupling pro�le whereas higher expansions provide a homogeneous and
more broadband performance. Although the 90◦x240◦y90◦x composite pulse was suggested as
an inversion element in the seminal work[64], the e�ect of its more homogeneous inversion
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Figure 2.2.: Simulated inversion pro�le of a rectangular 180◦ pulse. Only values of 〈Iz〉 ≤ 0
are plotted which correspond to �ip angles ≥ 90◦. Optimal inversion is only facilitated for
the slightest deviations from exact resonance and the nominal B1.

Figure 2.3.: Simulated inversion pro�le of a 90◦x180◦y90◦x composite pulse. It allows for
large deviations from the nominal B1 value close to resonance and o�ers rudimentary
compensation against resonance o�set.
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Figure 2.4.: Simulated inversion pro�le of a 90◦x240◦y90◦x composite pulse. The o�set
pro�le is more homogeneous at the nominal B1 value and compensation against B1 inho-
mogeneities is maintained in particular for lower values.

Supercycle Pulse sequence
none R = 90◦x180◦y90◦x or 90◦x240◦y90◦x

MLEV-4 RRRR

MLEV-16 RRRR RRRR RRRR RRRR

MLEV-64 RRRR RRRR RRRR RRRR
RRRR RRRR RRRR RRRR
RRRR RRRR RRRR RRRR
RRRR RRRR RRRR RRRR

Table 2.1.: Practical implementations of MLEV supercycles for CPD using di�erent com-
posite pulses as inversion element R. Bars indicate phase reversal.
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90◦x180◦y90◦x

MLEV-4

MLEV-16

MLEV-64

Figure 2.5.: Simulated decoupling pro�les for MLEV cycles using the 90◦x180◦y90◦x compos-
ite pulse: Using only the pulse repeatedly or in a simple cycle leads to a wavy decoupling
pro�le comparable to the inversion pro�le in �gure 2.3. When more compensated super-
cycles with more steps are used, a homogeneous decoupling pro�le can be obtained. Only
peak intensities above 50% are plotted to indicate collapsed doublets.
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90◦x240◦y90◦x

90◦x180◦y90◦x

Figure 2.6.: Comparison of simulated MLEV-64 decoupling pro�les using the 90◦x240◦y90◦x
and 90◦x180◦y90◦x composite pulses: Since the irregular o�set pro�le of the 90◦x180◦y90◦x pulse
is overcompensated by the MLEV-64 supercycle, it o�ers an about 40% broader decoupling
range compared to the 90◦x240◦y90◦x pulse using the same cycle.

pro�le (see �gure 2.4) compared to the 90◦x180◦y90◦x pulse is clearly overcompensated by
the error correction capabilities of the supercycle as depicted in �gure 2.6.

Another very important composite pulse tailored towards a broad inversion pro�le is the
90◦x180◦−x270◦x or simply 123 pulse, giving rise to the Wideband, Alternating-phase, Low-
power Technique for Zero-residual-splitting (WALTZ) decoupling scheme. The numbers
represent the multiples of 90◦ pulses and the bar denotes a phase reversal[69]. Figure 2.7
shows the inversion pro�le of the 123 pulse, which outperforms its competitors presented
so far. Several modi�cations to expand the WALTZ sequence have been proposed. Beyond
phase reversal and recursive expansion, individual 90◦ pulses can be shifted to compensate
net rotation errors of individual MLEV-4 portions of a supercycle[69]. More recently, adding
further 90◦ pulses to induce a corresponding net rotation of 90◦ after each repetition of the
cycle has been proposed along with further expansions[70]. The known cycles are given in
table 2.2.

Important improvements could be achieved by pulse sequence design via numerical
optimizations with the Globally optimized Alternating-phase Rectangular Pulses (GARP)
sequence being the �rst seminal example[71]. The basic inversion element is given by

R = 30.5 55.2 257.8 268.3 69.3 62.2 85.0 91.8 134.5 256.1 66.4 45.9 25.5
72.7 119.5 138.2 258.4 64.9 70.9 77.2 98.2 133.6 255.9 65.6 53.4

(2.7)

with all numbers representing �ip angles around the x-axis and bars denoting phase
reversal. Expanded in a simple MLEV-4 cycle this yields the GARP-1 scheme but most
commonly the GARP-4 implementation is used which has a second MLEV-4 expansion.
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Figure 2.7.: Simulated inversion pro�le of a 90◦x180◦−x270◦x composite pulse. A better com-
promise between o�set and B1 compensation is achieved compared to previous composite
pulses.

Supercycle Pulse sequence Basic element
WALTZ-4 RRRR R = 123
WALTZ-16 QQQQ Q = 342312423
WALTZ-17 QQQQ 90◦x
WALTZ-64 QQQQ QQQQ QQQQ QQQQ

WALTZ-65 QQQQ QQQQ QQQQ QQQQ 90◦x

Table 2.2.: Practical implementations of WALTZ supercycles for CPD using di�erent
expansions of the 123 composite pulse as inversion element. Numbers between one and
four represent multiples of 90◦ pulses and bars indicate phase reversal.
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Pulse sequence Flip angles
DIPSI-1 365 295 65 305 350
DIPSI-2 320 410 290 285 30 245 375 265 370
DIPSI-3 245 395 250 275 30 230 360 245 370

340 350 260 270 30 225 365 255 395

Table 2.3.: Di�erent DIPSI pulse sequences for CPD. All numbers represent �ip angles
around the x-axis and bars denote phase reversal. The pulse sequences are typically
expanded in a RRRR supercycle.

Further, the Decoupling In the Presence of Scalar Interactions (DIPSI) sequences have
been proposed for better quality decoupling in more complex spin system where scalar
couplings among protons are involved[72]. The three known sequences are given in
table 2.3 but due to their reduced decoupling bandwidth, the DIPSI sequences only gained
signi�cance as isotropic mixing sequences for TOtal Correlation SpectroscopY (TOCSY)-
related experiments[73]. A bandwidth comparison for the most common implementations
of relevant CPD schemes is given in �gure 2.8. The reason that for high-resolution NMR
of 13C WALTZ is chosen over GARP is the su�cient decoupling bandwidth for 1H on the
one hand. On the other hand, extremely low residual splittings are necessary since very
small line widths are achievable in 13C NMR, where WALTZ is superior to GARP [71].

Moreover, a central issue are the cycling sidebands. The theoretical treatment of de-
coupling assumes synchronous sampling of the data points with respect to the pulse
sequence[68]. This is impractical due to the longer supercycles or sometimes long basic
inversion elements con�icting with the requirement of fast sampling for large spectral
widths. Therefore sampling has to occur also during an inversion element where periods
of e�ectively free precession may introduce a modulation of the signal depending on the
magnitude of the J -coupling[74]. These artifacts appear symmetrically distributed around
the decoupled center peak at frequencies which are multiples of the inverse cycle time.
Example sideband pro�les for the e�ective regions of both GARP-4 and WALTZ-65 are
given in �gure 2.9 where an expanded vertical scale of the spectra from �gure 2.8 reveals
an abundance of cycling or decoupling sidebands. In general, WALTZ-65 decoupling yields
lower sideband amplitudes which is of particular interest for quantitative NMR. The in-
creased bandwidth of GARP-4 on the other hand is exploited in 1H-detected heteronuclear
correlation experiments like Heteronuclear Single-Quantum Correlation (HSQC) [75] and
Heteronuclear Multiple-Quantum Correlation (HMQC) [76] given that heteronuclei have
larger chemical shift ranges than 1H. Since decoupling schemes with a variety of origins
are discussed in this thesis, these artifacts will be generally referred to as sidebands from
here on. The origin of the signal modulation leading to sidebands is easily recognized
looking at the spectrogram representation of the decoupling sequence. This is illustrated
in �gure 2.10 for the basic GARP inversion element of equation 2.7. Phase modulation in
general allows for RF dissipation at di�erent o�set frequencies at di�erent points during
the pulse sequence which in turn leads to periods of e�ectively free precession for spins
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DIPSI-2

MLEV-64

WALTZ-65

GARP-4

Figure 2.8.: Simulated decoupling pro�les for the most common CPD schemes. WALTZ-65
presents the best compromise between the e�ective bandwidth and quality of decoupling
for 13C-detected heteronuclear NMR whereas GARP is mostly used for 1H-detected exper-
iments.

at any given frequency. These short periods lead to an unwanted signal modulation that is
the cause of the spurious sidebands in the resulting spectra.

Some more decoupling schemes based on composite pulses have been proposed such
as frequency-switched pulses[77, 78] or the Spin decoupling employing Ultra-broadband-
inversion sequences generated via Simulated ANnealing (SUSAN) sequence[79]. But either
they could not provide sideband levels as low as GARP-4 or were outperformed in terms
of bandwidth by the pulses discussed in section 2.1.3.
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WALTZ-65
GARP-4

Figure 2.9.: Simulated sideband pro�les for WALTZ-65 and GARP-4. Theoretical spectra
for the o�sets where decoupled peak intensities exceed 90% of the theoretical maximum are
overlaid and expanded to 2% of the maximum achievable center peak intensity. Since the
sidebands are symmetrically distributed around the center peak, only positive frequencies
are plotted.

Figure 2.10.: Spectrogram representation of the GARP inversion element. Parameters of
the spectrogram were chosen according to the GARP-4 example given in [54] with a 15%
baseline of zeros added at the beginning and end of the pulse sequence.
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2.1.3. Shaped Pulse Decoupling

With respect to the development of CPD techniques, it was realized rather early that
adiabatic fast passage should be the most robust way to invert spins[80, 81]. Spin inversion
can be called adiabatic if the e�ective �eld Be� caused by B1 and the resonance o�set ν is
tilted slow enough to ful�ll the adiabatic condition given by

�����
∂θ

∂t

�����
� Be� (2.8)

where θ is the angle between Be� and the x-axis. This is mostly achieved by a frequency
sweep which will lead to a consecutive inversion of the spins at a given frequency at a given
point in time during the sweep. Mostly in parallel, competing researchers have proposed
di�erent implementations of adiabatic sweeps to be used as the inversion element for
broadband decoupling. The Hyperbolic Secant (HS) pulse, originally designed for selective
inversion[82–84], led to the Sech/Tanh Universal Decoupling (STUD) technique[85, 86]. Its
tangential frequency sweep is given by

ν (t ) =
∆ν

2 · tanh 5.3
(2t
T
− 1

)
(2.9)

where ∆ν is the swept bandwidth, T the pulse length and the factor 5.3 ensures RF trunca-
tion at the 1% level at the extremities of the sweep. Frequency sweeps are typically realized
by phase-modulation which can be obtained by integrating the frequency modulation
yielding

ϕ (t ) =
360T
10.6 ·

∆ν

2 · ln
(
cosh 5.3

(2t
T
− 1

))
. (2.10)

The amplitude envelope is given by a HS function according to

uRF(t ) = u
max
RF · sech 5.3

(2t
T
− 1

)
. (2.11)

A linear frequency sweep would be the most simple implementation and is represented
by the (smoothed) frequency-chirped pulses[87, 88] and the method is simply referred to
as CHIRP decoupling[89, 90]. Another widely-used shape for adiabatic decoupling using a
linear frequency sweep which simply di�ers in the amplitude envelope are the Wideband,
Uniform Rate, and Smooth Truncation (WURST) pulses[91, 92]. Whereas with the CHIRP
pulses the �rst quarter of a sine wave is used to apodize a given percentage of the shape,
the WURST envelope is given by

uRF(t ) = u
max
RF

(1 − ��sin (βt )��n
) (2.12)

where −π/2 < βt < π/2 and the power index n indicates the steepness of the RF cuto�
and can be appended to the acronym, like in WURST-40. The phase-modulation for both
CHIRP and WURST is obtained by integration of a linear function and therefore resembles
a parabolic pro�le.

The relationship between swept bandwidth, inversion bandwidth and e�ective decou-
pling bandwidth as well as the e�ects of RF power levels and pulse lengths on the sideband
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amplitudes has been studied extensively[93–96] and a fair comparison is cumbersome. There
is no unifying set of parameters that could compare all three di�erent shapes but some
have proven reliable such as the adiabaticity factor Q given by

Q =
Be�
|∂θ/∂t |

=

(
u2

RF + ν
2
) 3

2

uRF (∂ν/∂t ) − ν (∂uRF/∂t )
(2.13)

which should be larger than unity and is recommended as �ve[91]. The R-factor given by
∆ν ·T can also be evaluated and should not drop below 20. Whereas Q may serve as an
indicator how much energy is necessary for an e�cient sweep, the R-factor becomes low
if the sweep is too long to be truly adiabatic. Analysis of the di�erent sweeping modes
reveals a constant adiabaticity throughout the shape for the HS, but for linear sweeps Q
has a crucial minimum at ν = 0. Evaluating equation 2.13 at ν = 0 yields

Q =
u2

RF
|∂ν/∂t |

(2.14)

which led to the proposal of optimized frequency sweeps to obtain constant-adiabaticity
WURST (caWURST) pulses with a desired value for Q by integrating the amplitude
pro�le[97]. For the recommended caWURST-2 shape this corresponds to

ν (t ) =

(
umax

RF

)2

Q

∫
cos4(βt )dt =

(
umax

RF

)2

32βQ (12βt + 8 sin(2βt ) + sin(4βt )) . (2.15)

A comparison of the di�erent shapes and sweeping modes is given in �gure 2.11. As
the sweeps get increasingly non-linear, the more the frequencies are e�ectively swept
at the center of the shape. In combination with the increased umax

RF when the pulses go
through resonance, more rectangular inversion pro�les are obtained going from CHIRP
over caWURST-2 to HS.

Adiabatic decoupling bene�ted from the development of new iterative methods to obtain
phase cycles[98–100]. The most common phase cycle is an MLEV-4 expansion of the 5-step
phase cycle which was �rst presented for frequency-switched composite pulses[77] and is
generally referred to as M4P5. These phase cycles follow a general recipe which is depicted
in table 2.4. Di�erent values for d are commonly used for the di�erent phase cycles which
are given in the third column of table 2.4. Decoupling pro�les for the shapes depicted in
�gure 2.11 using a M4P5 cycle are shown in �gure 2.12. The o�sets used in the simulations
were equally distributed over 110% of the sweep-width of the corresponding shapes. More
non-linear sweeps allow for an increased translation of sweep-width into decoupling
bandwidth (left panels of �gure 2.12) which was obtained by evaluating the o�set range
where the peak intensities surpass 90% of the theoretical maximum. This way, relative
decoupling bandwidths of 79.2% for a 20%-smoothed CHIRP, 94.6% for caWURST-2 and
96.8% for STUD were extracted for the given parameters. For an analysis of the sidebands,
the frequency scale of the spin I spectrum was converted to multiples of the inverse pulse
length T −1. The sideband pro�les (right panels of �gure 2.12) show the most abundant
and spurious sidebands at 1/T and 1/2T . Going from CHIRP over caWURST-2 to STUD,
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A B

C D

E F

Figure 2.11.: Comparison of di�erent adiabatic pulse shapes and sweeping modes. The
Cartesian components of the pulses are given on the left and the corresponding frequency
sweeps on the right. The CHIRP shape (A) is apodized at the �rst and �nal 20% and
employs a linear frequency sweep (B). The caWURST shape follows a squared cosine
envelope (C) and has an optimized frequency sweep according to equation 2.15 (D). The
shape with the highest peak RF amplitude is the HS pulse with the amplitude envelope
given by equation 2.11 (E) and a tangential frequency sweep according to equation 2.9 (F).
R = 60 for all cases and the RF levels were chosen to yield Q = 5. B1,RMS for the HS pulse
was chosen to match caWURST-2. All shapes were digitized into 1000 increments.
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Phase cycle Phases / ◦ Recommended value for d / ◦

P5 0, d , 120 + 2d , 60 + 3d , 120 + 4d 150[77]

P7 0, d , 90 + 2d , 300 + 3d , 240 + 4d , 300 +
5d , 90 + 6d

none[86]

P9 0, d , 150 + 2d , 120 + 3d , 210 + 4d , 90 +
5d , 90 + 6d , 270 + 7d , 240 + 8d

15[101]

Table 2.4.: Phase cycles used in conjunction with MLEV-4. All three examples show slight
variations in their performance depending on the exact value of d . M4P5, which is an
MLEV-4 expansion of the �ve-step phase cycle P5, is most commonly used for adiabatic
decoupling.

the sidebands at 1/2T show decreasing intensity, sidebands at 1/T become more in-phase
and sidebands very close to the center peak become less abundant. The origin, intensity
and phase behavior of sidebands caused by adiabatic decoupling is discussed extensively
in section 2.1.4.

To suppress these sidebands di�erent approaches were proposed. The authors of the
STUD method tried to improve the quality of decoupling by more complex phase cycles
using a single scan. A combination of M4P5 and M4P9 with cycles where the variable
d in table 2.4 is incremented by 180◦ (shorthand notation M4P5’ and M4P9’) yielded the
M4P5-M4P9-M4P5’-M4P9’ cycle, which is referred to as STUD+[101, 102]. The potential of
sideband suppression using multiple scans and a comparison with STUD+ is discussed in
the following sections.
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A B

C D

E F

Figure 2.12.: Simulated decoupling pro�les for typical adiabatic decoupling schemes.
CHIRP can only provide 79.2% decoupling range with respect to the sweep-width (A)
and sideband intensities above 2% can be observed (B). Using caWURST-2 the decoupling
bandwidth is increased to 94.6% (C) and sidebands fall below 2% (D). STUD provides the
highest e�ective bandwidth of 96.8% (E) and the least sidebands of about 1% (F). Ten contour
levels for positive and negative sidebands were plotted distributed equally between the
extreme values of ±0.2 and ±2% respectively. Peak contours were plotted using ten levels
between the maximum sideband and 100% intensity.
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2.1.4. Bilevel Decoupling

Sidebands in adiabatic decoupling are well understood[103]. The reason why desynchronisa-
tion-based approaches known for CPD [74, 104] can not be applied to adiabatic decoupling
lies in the inversion mode of adiabatic pulses. However, the known positions and phase
gradients of the sidebands allow for targeted suppression schemes. These principles
are exploited in Eliminate Cycling Oscillations (ECO)-WURST decoupling[105] and the
modi�ed so-called ECHO-WURST method[106]. The advantages of both methods were
molded into the standard implementation to suppress sidebands in adiabatic decoupling
which will be simply referred to as bilevel decoupling and will be discussed in the following.

Looking at the left panels of �gure 2.12 indicates that the only signi�cant sidebands
at decoupler o�sets close to resonance of the heteronucleus appear at the frequency 1/T .
They are referred to as principal or harmonic sidebands are simply called harmonics in
the following. Harmonics arise because spins close to resonance are inverted near the
center of the adiabatic sweep. Up to that point the signal of spin I is modulated by the
heteronuclear coupling. After inversion of the heteronucleus the coupling evolution will
be refocused after T has passed, at the end of the sweep. O�-resonance, sidebands at a
second frequency are introduced. Since spins far o�-resonance are either inverted rather
at the beginning or end of the sweep this signal modulation can only refocus after 2T
which is why this second type of sidebands appear at 1/2T . They are called subharmonic
sidebands or simply subharmonics.

This inversion behavior also induces the phase gradients which cause the particular line
shapes of the sidebands depicted in the right panels of �gure 2.12. The closer spins are
inverted near the middle of the sweep, the more in-phase the harmonics will appear. At the
same time the intensity of the subharmonics will drop or di�erently put, the subharmonics
will only gain signi�cant intensity at higher frequencies. This is re�ected in the progression
of sideband pro�les from CHIRP over caWURST-2 to STUD since the amplitude envelope
in combination with the sweeping mode allows for a more focused energy disposition in the
swept frequency range. The phase gradients can be turned into pure intensity gradients
by averaging two scans using adiabatic pulses with opposite sweep directions[105, 106].
Then, all sidebands will appear as in-phase lines with maximum harmonic intensity near
the center and maximum subharmonic intensity at the edges of the sweep, but with a
sum remaining mostly constant. As a consequence, the sideband intensity can be shifted
between harmonics and subharmonics[105] on the one hand or distributed over several
frequencies by the frequency-unspeci�c accordion averaging technique[85].

However, the phase gradients are the key to e�cient sideband suppression. Bilevel
decoupling is based on the averaging of scans where the signal modulation leading to
the sidebands has an onset to achieve a 180◦ phase shift between successive scans. This
is facilitated by applying adiabatic pulses with a pulse length T /2 at the beginning of
the decoupling period. To achieve reasonable adiabaticity, these pulses typically employ
higher RF levels. Adding a single pulse of T /2 leads to a 180◦ phase shift of the harmonics
which therefore can be canceled using two scans. In order to also cancel subharmonics
the T /2-incrementation has to be done over four scans so an e�ective 180◦ phase shift by
an onset of T is introduced. Practically, this is not achieved by averaging scans with no to
three high-power pulses at the beginning of the acquisition period but one to four. These

51



2. Heteronuclear Decoupling: The BROCODE

A

C

B

D

Figure 2.13.: Sideband cancelling mechanism of bilevel decoupling illustrated by simulated
time- and frequency domain data for two scans on resonance and four scans o� resonance
bilevel decoupling. Averaging two scans where the signal modulation has an onset of T /2
(A) leads to cancellation of harmonic sidebands (B), νS = 0. Using four scans with onsets of
multiples of T /2 (C) introduces the necessary phase shifts to cancel both harmonics and
subharmonics (D), νS = 1/2 of the highest swept frequency. Individual scans are shown as
colored dashed lines and the average is shown as a solid black line. caWURST-2 pulses
according to �gure 2.11 C and D were used. The same shape was used for the high-power
pulse with pulse length T /2 and umax

RF was chosen to yield Q = 5.

principles are illustrated in �gure 2.13 using the caWURST-2 shape. The cancellation of the
sidebands is shown for an on resonance example where harmonics are the only signi�cant
sidebands and an o�set half-way towards the positive edge of the sweep where both types
of sidebands are present. The colored dashed lines indicate individual scans with their
individual signal modulations and the resulting phase shifts of the sidebands. Solid black
lines depict the averaged signal. In both cases the most obtrusive sidebands are suppressed
but a residual signal modulation is left at higher frequency and lower intensity which
may be negligible. The reason why the caWURST-2 shape is used here is the common
notion to shy away from decoupling schemes like STUD that rely on relatively high peak
RF amplitudes. A combination of bilevel decoupling and the HS shape would imply an
even higher value of umax

RF if reasonable adiabaticity is required for the T /2 pulse. An

52



2.2. Broadband Decoupling by Optimal Control Theory

additional reason might be that the same authors championed both the WURST shapes
and the bilevel technique.

A bilevel approach to decoupling was also proposed for quantitative 13C NMR. Here,
CW irradiation serves as the high-power component for WALTZ decoupling using as
much as 256 scans to average sidebands to a level below the detection limit so that the
dynamic range in the spectrum allows for the quantitative study of polymer branching[70].

2.2. Broadband Decoupling by Optimal Control Theory

2.2.1. Motivation

Broadband decoupling by means of OCT has been the subject of work done in parallel and
independently from this thesis. The Broadband Uniform Sideband Suppression (BUSS)
pulse was proposed for heteronuclear decoupling in biomolecular NMR at extremely high
magnetic �elds[107]. In order to distinguish the motivation behind the BUSS pulse from
this work the relative speci�cations for the decoupling schemes of the past sections has to
give way to absolute numbers. The BUSS pulse was optimized to cover an o�set range of
45 kHz using B1,RMS = 4.4 kHz. This corresponds to a 13C chemical shift range of 150 ppm
on a spectrometer operating at 28.2 T corresponding toωL = 1.2 GHz for 1H. Spectrometers
operating at such high magnetic �elds are not yet commercially available and on the
far more common 14.1 T magnets the BUSS pulse would cover 300 ppm which is more
than enough for small molecule NMR. To compare di�erent decoupling schemes it is
advantageous to distill the most important �gures into a single number. Figures of merit
have been proposed for CPD [108] and adiabatic decoupling[91, 95] and are generally de�ned
as simple as

Ξ =
∆νS

B1,RMS
. (2.16)

The e�ective bandwidth ∆νS in equation 2.16 is de�ned as the bandwidth where 80% of the
theoretically possible peak decoupled peak intensity is achieved. Using this criterion the
BUSS pulse would provide Ξ = 10.7 since the actual ∆νS demanded in the optimizations
was set to 47 kHz. In this work, the desired decoupling bandwidth is 40 kHz which would
safely encompass 37.5 kHz that correspond to 250 ppm on a 14.1 T device (ωL = 600 MHz
for 1H). Conversely, here the aim is set to cover this bandwidth using only B1,RMS = 2 kHz,
yielding Ξ = 20. For the various implementations of adiabatic decoupling, �gures of merit
ranging from slightly above 10[91] to over 70[97] have been reported. However, all of these
values neglect the important ratio J/B1,RMS which is key for e�ective decoupling. The
decoupling schemes given above can be reevaluated using a slightly modi�ed �gure of
merit given by

Ξ∗ =
∆νS · J

B2
1,RMS

. (2.17)

Values for Ξ∗ for the decoupling schemes under investigation are given in table 2.5. The
only reported example of a value for Ξ∗ approaching the target value of 1.4 given in this
thesis is a caWURST-240 implementation. Nevertheless, with B1,RMS chosen so that the
value of J corresponds to 7% of B1,RMS, the target parameters chosen here pose a more
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challenging optimization task than other reported methods. Moreover, the caWURST-240
sequence proposed in [97] operates at B1,RMS = 5.6 kHz which is above the limit for typical
cryogenically cooled probeheads of modern NMR spectrometers corresponding to 4.4 kHz
for acquisition periods of about 140 ms. Further, apart from the caWURST-2 example
given in table 2.5, none of the methods given above can be scaled up. By halving the
digitization of all pulse increments and doubling all RF amplitudes, the frequencies and
corresponding frequency ranges double as well. In table 2.5 only the caWURST-2 can
be reasonably scaled up without exceeding the RF limitations of common cryo-probes.
However, even up-scaling by a factor of ten would only cover J -couplings of about 110 Hz,
which is below typical values of 1JCH couplings. These couplings serve as the standard
test case for broadband decoupling. However, with this scaling factor caWURST-2 would
already operate at unfeasible 9.2 kHz. At the same time, none of the “high-power” methods
can be scaled down to B1,RMS = 2 kHz since the covered values for J would fall below
typical values for 1JCH couplings. Given that the aim of this work is operation at mean RF
levels of 2 kHz at a target J of 140 Hz, the resulting sequences can be scaled up by a factor
of 2.2 without violation of common RF constraints to yield uncompromised decoupling
performance over 88 kHz for J couplings larger than 300 Hz. Since the latter is untypical
for 1JCH couplings, an improved quality of decoupling can be expected for the lower more
typical values.

In order to work towards meaningful comparisons of state-of-the-art decoupling schemes
with sequences developed in this thesis, the sideband suppression capabilities of the BUSS
pulse and the STUD+ implementation discussed in [107] has to be reassessed with respect
to bilevel decoupling each tailored towards the target parameter settings de�ned above.
For this comparison, caWURST-2 pulses with T = 1.5 ms and B1,RMS = 4.4 kHz digitized
in 300 steps of 5 µs were used. To ensure an e�cient sweep over the desired bandwidth
of about 40 kHz, the total sweep was set to 42 kHz. This yields Q = 4.36 and requires
umax

RF = 7.19 kHz. For the high-power component necessary for bilevel decoupling the
caWURST-2 shape was calibrated to T = 750 µs and umax

RF = 10.5 kHz to obtain Q = 4.66
using the same digitization. Simulations were backed up with experiments on a sample
of 13C-labeled methanol (1JCH = 141 Hz) using the same parameters given in section 2.1.1
for the simulations except that the time-domain data was zero-�lled to 16384 points to
achieve a digital resolution below 1 Hz to allow for a more exact evaluation of relative
intensities. The value for J has been adjusted to 141 Hz in the simulations and 101 o�sets
were sampled across an o�set range of 60 kHz. To allow for a critical evaluation of the
sideband amplitudes, all peak intensities were normalized to the maximum peak intensity
which was achieved across the given o�set range. Further experimental details are given in
section 2.2.7. Simulated and experimental decoupling pro�les for one to four scans of the
bilevel implementation discussed in section 2.1.4 using the caWURST-2 shape along with
a M4P5 supercycle are given in �gure 2.14. Experiments agree well with the simulations
in terms of position and phase gradients of the sidebands. Using two scans the harmonics
appearing at 1/T can e�ciently be suppressed whereas the subharmonics appearing at
1/2T cancel using four scans just in the way it is depicted in �gure 2.13. For a more detailed
look at the sidebands, the spectra are overlaid with an expanded vertical scale in �gure 2.15.
Again, experiments and simulations agree well as far as harmonics and subharmonics are
concerned. The deviations are mainly posed by sidebands closer to the center peak which
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1 scan

2 scans

4 scans

Figure 2.14.: Comparison of simulated (left panels) and experimental (right panels) o�set
pro�les for caWURST-2 bilevel decoupling at B1,RMS = 4.4 kHz using one to four scans.
Ten contour levels for positive and negative sidebands were plotted distributed equally
between the extreme values of ±0.2 and ±2% respectively. Peak contours were plotted
using ten levels between the maximum sideband and 100% intensity. The number of scans
are given as insets. The M4P5 cycle was used throughout.
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1 scan

2 scans

4 scans

Figure 2.15.: Comparison of simulated (left panels) and experimental (right panels) side-
band amplitudes for caWURST-2 bilevel decoupling at B1,RMS = 4.4 kHz using one to four
scans. Spectra are overlaid and expanded to 2% of the maximum decoupled center peak
intensity across the desired o�set range of 40 kHz. Since the sidebands are symmetrically
distributed around the center peak, only positive frequencies are plotted. The number of
scans are given as insets. The M4P5 cycle was used throughout.
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STUD+
Bilevel caWURST-2

BUSS (scaled)
BUSS (unscaled)

Bilevel caWURST-2

Figure 2.16.: Comparison of simulated sideband amplitudes for caWURST-2 bilevel de-
coupling using 4 scans with state-of-the-art single-scan methods. To further emphasize the
negligible sidebands of adiabatic bilevel decoupling, spectra were expanded to 1% of the
maximum decoupled center peak intensity across the experimentally relevant core o�set
region of 37.5 kHz where the frequency sweep is close to perfection. Bilevel decoupling
(black) generally outperforms STUD+ (red, left panel) as well as scaled (red, right panel)
and unscaled (blue, right panel) versions of the BUSS pulse.

di�er in phase and intensity. It can be seen from looking at �gure 2.14 that these sidebands
only occur at the edges of the given o�set range, where the decoupled peak intensity is
still reasonable but an increased abundance of sidebands is observable before decoupling
collapses. These sidebands are discussed further below.

The e�ciency of sideband suppression using bilevel decoupling shall now be compared
to STUD+ as well as scaled and unscaled versions of the BUSS pulse. For STUD+, HS
pulses with T = 500 µs and umax

RF = 10.15 kHz were used. Given that the sweep width was
also set to 42 kHz, decreased adiabaticity can be expected. However, simulations and
experiments show that this is overcompensated by the STUD+ supercycle[107]. The BUSS
pulse is digitized in 28672 increments which are 4.3 µs long each. This allows a maximum
acquisition period of about 123.3 ms. To allow a similar resolution as in the simulations
above, the theoretical spin I spectra were sampled for 123.2 ms with a real dwell time of
98.9 µs and processed in the same way as given above. Scaled to the target o�set range of
40 kHz, the digitization is increased to 5 µs allowing for a real dwell time of 100 µs and
the BUSS pulse can be attenuated to 25600 increments necessary for a 128 ms AQ. B1,RMS
is now reduced to 3.78 kHz. Simulated sideband pro�les for the implementations given
above are depicted in �gure 2.16. Clearly, bilevel decoupling outperforms the single-scan
methods if the corresponding o�set frequency is e�ciently swept by the adiabatic pulse.
STUD+ su�ers from residual sidebands even if no particularly spurious harmonics or
subharmonics are discernible. BUSS decoupling shows no signi�cant sidebands at a given
frequency but can not provide baselines as smooth as bilevel decoupling. Therefore, the
multi-scan approach has to be "gold standard" for comparisons in this thesis.

This superiority dramatically comes to a halt as soon as B1,RMS is reduced to 2 kHz.
Simulations and experiments with the same setup as in �gures 2.14 and 2.15 were repeated
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with umax
RF of the caWURST-2 shapes reduced to 3.27 kHz to yield B1,RMS = 2 kHz. If

the same scaling is applied to the high-power component this leaves the shorter pulses
with umax

RF = 4.77 kHz. Simulated and experimental decoupling pro�les for one to four
scans of bilevel decoupling using the caWURST-2 shape at B1,RMS = 2 kHz embedded
in the M4P5 supercycle are given in �gure 2.17. Generally, an increased abundance of
sidebands can be observed in both simulations and experiments which also have a higher
intensity. The range where sideband amplitudes are plotted has been increased to 0.5-
5% to allow for a more dynamic representation. Additional sidebands can mostly be
observed closer to the center peak with frequencies lower than 1/T . The general sideband
patterns predicted by the simulations could be reproduced experimentally although it
appears as if experimental sideband amplitudes are lower than predicted. Expanded and
overlaid spectra are given in �gure 2.18. It can be seen that the canceling mechanism for
the harmonics and subharmonics is still functional since the former can be su�ciently
suppressed and all sidebands in the vicinity of 1/2T are largely attenuated using four scans.
However, the most obtrusive sidebands remain at frequencies below 1/2T and cannot be
eliminated. They are referred to as inner sidebands[92, 106] and appear at 1/pT where p are
repetition elements in the supercycle. In the case of M4P5 p takes values of 4, 5 and 20.
They can only gain signi�cant intensity when the individual adiabatic spin �ips su�er
from substantial imperfections which become apparent upon reducing B1,RMS to 2 kHz.
Figure 2.18 indicates that the position of each sideband is reproduced correctly but the
apparent intensity di�erences seen in �gure 2.17 turn out to be di�erences in the phase
gradients. Whereas the two most intensive and low-frequency sidebands show signi�cant
anti-phase contributions in the simulations, they appear rather in-phase in the experiments
and slowly gain phase shifts upon acquiring multiple scans. As with the acquisition of all
NMR signals, the phase of a resonance line at a given frequency is determined by how well
the beginning of acquisition is synchronized with the beginning of the FID. As a result of
modern digital data acquisition techniques, there is a transient oscillation at the beginning
of each FID which has to be recti�ed in the processing pipeline by a so-called group delay
compensation routine. Given that data is collected using oversampling in the MHz range,
group delays may have a duration corresponding to a non-integer number of points on
the desired �nal time grid. This is why it cannot be made sure that the beginning of the
acquisition and hence the decoupling sequence is matching the time grid in simulations
and experiments alike. The di�erences of the inner sidebands in �gure 2.15 might therefore
be caused by the same phenomenon.

From the most simple perspective, the arising of inner sidebands is rooted in a �ip angle
undershoot of 180◦ due to the dramatic reduction of B1,RMS. It can also be understood by a
drop of the adiabaticity factor Q . Using equations 2.14 and 2.15, an adiabaticity map as
a function of B1,RMS and the pulse length T can be created. Q is plotted in �gure 2.19 for
pulse lengths between 100 µs and 5 ms and B1,RMS ranging from 0 to 5 kHz where results
higher than 5 were attenuated since no inner sidebands need to be expected at this levels of
adiabaticity. As mentioned above, the caWURST-2 pulses used in �gures 2.14 and 2.15 as
the low-power component of bilevel decoupling reach Q = 4.36 (black circle). When B1,RMS
is reduced to 2 kHz, Q drops down to 0.9 (white circle) which is far below recommended
values. Adiabaticity can be recovered using longer pulse durations but even doubling the
pulse length to 3 ms can only provide Q = 1.8 (dashed white circle). Using such prolonged
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1 scan

2 scans

4 scans

Figure 2.17.: Comparison of simulated (left panels) and experimental (right panels) o�set
pro�les for caWURST-2 bilevel decoupling at B1,RMS = 2 kHz using one to four scans.
Ten contour levels for positive and negative sidebands were plotted distributed equally
between the extreme values of ±0.5 and ±5% respectively. Peak contours were plotted
using ten levels between the maximum sideband and 100% intensity. The number of scans
are given as insets. The M4P5 cycle was used throughout.
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1 scan

2 scans

4 scans

Figure 2.18.: Comparison of simulated (left panels) and experimental (right panels) side-
band amplitudes for caWURST-2 bilevel decoupling at B1,RMS = 2 kHz using one to four
scans. Spectra are overlaid and expanded to 5% of the maximum decoupled center peak
intensity across the desired o�set range of 40 kHz. Since the sidebands are symmetrically
distributed around the center peak, only positive frequencies are plotted. The number of
scans are given as insets. The M4P5 cycle was used throughout.
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Figure 2.19.: Adiabaticity factor Q as a function of the pulse length T and B1,RMS for
the caWURST-2 shape. Values higher than 5 were attenuated. For T = 1.5 ms and
B1,RMS = 4.4 kHz, Q reaches 4.36 (black circle). Reducing B1,RMS to 2 kHz using the same
pulse length results in Q = 0.9 (white circle) which can only be recovered to 1.8 using
sweeps twice as long (dashed white circle). 25 contours were plotted equally distributed
between 0 and 5.

pulses poses several drawbacks for e�cient (bilevel) decoupling. These drawbacks are
rooted in the prolonged refocusing periods of the heteronuclear couplings. The resulting
sideband patterns are depicted in �gure 2.20. Using a single-scan allows for an analysis of
the full variety of sidebands. Given that the pulse lengths have doubled, the frequencies of
harmonics and subharmonics was halved and they can be found close to the center peak.
Increased adiabaticity leads to fewer and less intensive inner sidebands. However, the
�rst integer multiple of the harmonics can be observed as distinct sidebands at 2/T Hz.
If bilevel decoupling was restricted to the averaging of four scans, either the harmonics
and subharmonics could be suppressed using a T /2 incrementation of the high-power
component, or the harmonics and their �rst integer multiple could be canceled using aT /4
incrementation. In order to eliminate all three types of sidebands the T /4 incrementation
has to be expanded to eight scans. In each case, inner sidebands remain and the general
picture can not be improved beyond what is given in �gure 2.17. A more detailed look
at the sidebands is given in �gure 2.21. It can be seen that harmonics and subharmonics
have greatly increased intensity. Using longer adiabatic sweeps, longer periods of free
precession are introduced for each given decoupler o�set leading to larger oscillations of
the signal. These oscillations also lead to signi�cant intensity losses upon averaging of
the individual scans as can be seen by the wavy baselines obtained by four scans of the
T /2 incrementation. Using four scans of the T /4 incrementation leaves the subharmonics
uncanceled since only a 90◦ degree phase shift is introduced leaving the subharmonics at
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A
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B

D

Figure 2.20.: Simulated o�set pro�les for caWURST-2 bilevel decoupling at B1,RMS = 2 kHz
using pulses with T increased to 3 ms (Q = 1.8). Decoupling pro�les are given for a
single scan (A), four scans using a T /2 (B) and T /4 (C) incrementation of the high-power
component. 8 scans using a T /4 incrementation are depicted in (D). Ten contour levels
for positive and negative sidebands were plotted distributed equally between the extreme
values of ±0.5 and ±5% respectively. Peak contours were plotted using ten levels between
the maximum sideband and 100% intensity. The M4P5 cycle was used throughout.

about 5% intensity. If eight scans of the T /4 incrementation were to be collected, inner
sidebands would still remain at the same intensity of about 5%.

It has been demonstrated that the most common and most reliable sideband suppression
technique used in low-power broadband heteronuclear decoupling is mostly limited by
the adiabaticity constraint of the individual inversion elements. The main task of the
optimization studies of this thesis using OCT is therefore to �nd pulse sequences that can
overcome this limit in a single or multiple scans.
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Figure 2.21.: Simulated sideband amplitudes for caWURST-2 bilevel decoupling at
B1,RMS = 2 kHz using pulses with T increased to 3 ms (Q = 1.8). Sideband pro�les are
given for a single scan (A), four scans using a T /2 (B) and T /4 (C) incrementation of the
high-power component. 8 scans using a T /4 incrementation are depicted in (D). Spectra
are overlaid and expanded to 5% of the maximum decoupled center peak intensity across
the desired o�set range of 40 kHz. Since the sidebands are symmetrically distributed
around the center peak, only positive frequencies are plotted. The M4P5 cycle was used
throughout.
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2.2.2. General approach

Already prior to OCT studies, pulses were known that bypass adiabaticity constraints. The
Broadband Inversion Pulses (BIPs) [109] are the only reported pulse shapes that approach the
physical limits established by OCT [22, 27]. Whereas BIPs are designed as rather short high-
power inversion pulses, RF power-limited BIBOPs might be candidates for building blocks
of periodic decoupling sequences. However, the optimal tracking algorithm introduced
in section 1.2.5 poses the ultimate means to exploit the �exibility of optimal control
algorithms. The application to broadband decoupling as presented in [36] shall be outlined
in the following.

The Hamiltonian H of a heteronuclear spin system under the e�ect of a decoupling
sequence similarly to equation 1.83 contains a drift and a control component with the
decoupling sequence being the control part. The drift component of the I spin species
which is sampled (see equation 2.1) is now accompanied by the chemical shift of the
heteronucleusHS. For the sake of clarity, the heteronuclear coupling termHJ has been
separated from the spin I chemical shiftHI to yield

H (t ) = HI +HS +HJ +H
S
RF(t ) (2.18)

with the individual components given by

HI = 2πνIIz

HS = 2πνSSz

HJ = π J2IzSz
H S

RF(t ) = 2πB1,rel(ux (t )Sx + uy (t )Sy ).

(2.19)

Given that the Iz operator commutes with all other components of equation 2.18, decoupling
performance is independent of the spin I o�set andHI can be dropped from equation 2.18
yielding

H (t ) = 2πνSSz + π J2IzSz + 2πB1,rel(ux (t )Sx + uy (t )Sy ). (2.20)
This means spin I can be assumed on resonance and without loss of generality the initial
density operator can be assumed to be

ρ0 = Ix . (2.21)

Without the in�uence of the decoupling sequence the evolution of ρ0 would solely be
governed by HJ since HS commutes with both HJ and ρ0. The free evolution density
operator is given by

ρ (t ) = Ix cos(π Jt ) + 2IySz sin(π Jt ). (2.22)
Sampling the theoretical spin I spectra now requires the evaluation of expectation values
of the Ix operator which are given by

〈Ix〉 (t ) = cos(π Jt ). (2.23)

This cosine modulation causes the splitting of resonance lines after FT as decribed in
section 2.1.1. Since decoupling means e�ectively reducing J to zero, perfect decoupling
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corresponds to equation 2.23 resulting in unity at all times. If the decoupling sequence is
organized as outlined in section 1.2.5, the local target states are given by

ρF(Tn ) = Ix for 0 ≤ n ≤ N (2.24)

which would result in local quality factors according to

ϕn = 〈Ix ��ρ (Tn )
〉
. (2.25)

The global quality factor would therefore yield

Φ =
1
N

N∑
n=1

ϕn =
1
N

N∑
n=1
〈Ix ��ρ (Tn )

〉
. (2.26)

All considerations of section 1.2.5 still apply to the computation of gradients so that the
tracking algorithm tailored towards heteronuclear decoupling can be formulated as

1. Make a guess for initial controls u.

2. Starting from Ix , compute the forward trajectory ρj .

3. Starting from Ix , compute the backward trajectory Λj according to

Λj−1 =




U †j ΛjUj

if bj/Mc = b(j − 1)/Mc
U †j ΛjUj + Ix

if bj/Mc > b(j − 1)/Mc

(2.27)

4. Evaluate ∇uΦ for all possible combinations of parameters and form the mean value.

5. Update the controls according to equation 1.107.

6. Apply RF limits according to amplitude, power or energy.

7. Repeat steps 2-6 until convergence.

Preliminary optimizations using the algorithm above were carried out using the setup
proposed in [36] for decoupling using a single scan. The pulse shape was digitized into
5120 increments with variable ux and uy amplitudes and 25 µs step size each (T = 128 ms
using 10240 variables in total). The period between the individual tracking/detection
points ∆T (corresponding to the real dwell time) was set to 1 ms. This results in a rather
reduced spectral width of 1 kHz but should allow for a su�cient spin inversion in between
detection points if the RF power is su�cient. All optimizations are targeted towards
decoupling of spins over an o�set range ∆νS = 40 kHz using J = 140 Hz. umax

RF was limited
at each step to 2 kHz. For the optimizations described in [36], ∆νS = 1 kHz was discretized
in 21 steps. If the same ratio was to be applied here, NνS needs to be scaled up to 801.
However, it was found empirically that NνS = 384 can be used without signi�cant losses.
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A B

Figure 2.22.: Simulated decoupling pro�les using a single optimized pulse sequence
obtained by the standard tracking algorithm discussed in this section. The quality factor
according to equation 2.26 was used. For the o�set pro�le (A) ten contour levels for
positive and negative sidebands were plotted distributed equally between the extreme
values of ±1 and ±10% respectively. Peak contours were plotted using ten levels between
the maximum sideband and 100% intensity. For the sideband pro�les (B) spectra are
overlaid and expanded to 10% of the maximum decoupled center peak intensity across the
desired o�set range of 40 kHz. Since the sidebands are symmetrically distributed around
the center peak, only positive frequencies are plotted.

The converged algorithm resulted in a non-repetitive decoupling sequence which was
used for the simulations depicted in �gure 2.22. The simulated spectra were processed as
described in section 2.1.1 apart from zero-�lling only to 1024 points since this is su�cient
for reasonable resolution at the reduced spectral width. Although the heteronuclear
doublet could be collapsed to a single peak, the decoupled signals su�er from massive
sidebands exceeding 10% at the edges of the desired o�set range and even exceeding 5%
below the baseline. In the following, di�erent sources of additional degrees of freedom for
the optimizations shall be explored.

2.2.3. Cooperativeness

Multi-scan cooperativeness[39] as discussed in section 1.2.6 was recently �led under a
patent[38] where the application to heteronuclear decoupling and sideband suppression
was hinted at. Therein, a preliminary quality factor was suggested which was found
independently and developed further as a part of this thesis. It is assumed that sideband
suppression can be achieved if the quality factors according to equation 1.118 and 2.26 are
combined to yield

ΦCOOP =
1
N

N∑
n=1

1 −
(
1 − 〈Ix〉(Tn )

)2
. (2.28)
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It can be deduced from �gure 1.5 that the o�set pro�les of excitation pulses become
increasingly homogeneous upon increasing NCOOP. However, although the values for 〈Ix〉
are fed back to the individual pulses at each given resonance o�set, there is no discernible
force that drives the optimization towards low overall deviations from the average of all
o�sets. The same should apply to equation 2.28 in that 〈Ix〉 for individual detection points
Tn is fed back to the individual pulses but not the average over the whole pulse length T
(which is given by the quality factor according to equation 2.26 which shall be referred
to as Φmean in the following). Since these very deviations from Φmean are the source of
the spurious sidebands, modi�cations of ΦCOOP shall be explored that allow for explicit
sideband suppression.

The �rst alternative toΦCOOP under investigation is also derived from equation 1.118. It is
based on the assumption that the homogeneous pro�le of 〈Ix〉 is achieved by demanding the
cancellation of 〈Iy〉. Since a single pulse can not ful�ll the goals given in the optimization[39],
several pulses have to produce a matching set of non-zero values for 〈Iy〉 in order to cancel
it. At the same time, non-zero values for 〈Iy〉 involve values for 〈Ix〉 deviating from unity.
Therefore, for ΦCOOP to reach high values, values for 〈Ix〉 close to unity are sacri�ced
for e�ective nulli�cation of 〈Iy〉. The latter can be achieved rather homogeneously over
the desired o�set range leaving a homogeneous pro�le of 〈Ix〉 as a byproduct. From the
considerations in section 2.2.2 it becomes apparent that the set of operators involved in an
imperfect heteronuclear decoupling scenario is rather limited. According to equation 2.22,
the unperturbed evolution of the density operator only involves the Ix and 2IySz operators
since the in�uence of HI can be neglected. Given that the decoupling sequence only
acts on spin S , it can only convert the 2IySz into the 2IySx and 2IySy operators, which are
themselves converted into each other byHS. This leaves only four operators to describe
the dynamics of a heteronuclear decoupling scenario with three of them needed to be
suppressed. The modi�ed ΦCOOP is therefore de�ned as

ΦCOOP =
1
N

N∑
n=1

1 −
(
1 − 〈Ix〉(Tn )

)2
− 〈2IySx〉

2
(Tn ) − 〈2IySy〉

2
(Tn ) − 〈2IySz〉

2
(Tn ). (2.29)

Gradients of ΦCOOP with respect to the controls of individual pulses can be obtained by
combining equations 1.111 and 1.120 to obtain

∇u (m)ΦCOOP =
1
N

∑
n>l

2
NCOOP

((
1 − 〈Ix〉(Tn )

)
· ∇u (m)〈Ix〉

(m) (Tn )

− 〈2IySx〉(Tn ) · ∇u (m)〈2IySx〉(m) (Tn ) − 〈2IySy〉(Tn ) · ∇u (m)〈2IySy〉(m) (Tn )
− 〈2IySz〉(Tn ) · ∇u (m)〈2IySz〉(m) (Tn )

)
. (2.30)

The tracking algorithm needs to be modi�ed in order to concurrently optimize a set of
decoupling sequences which compensate their own imperfections by maximizing ΦCOOP
according to equation 2.29 which will be referred to as the full penalty approach in the
following:

1. Make a guess for initial controls u (m) .
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2. Starting from Ix , compute the forward trajectories ρ (m)j for all pulses.

3. At each point Tn, compute ρ (Tn ) and evaluate 〈Ix〉(Tn ), 〈2IySx〉(Tn ), 〈2IySy〉(Tn ) and
〈2IySz〉(Tn )

4. Starting from

ΛNM =
2

NCOOP

((
1 − 〈Ix〉(TN )

)
· Ix − 〈2IySx〉(TN ) · 2IySx

− 〈2IySy〉(TN ) · 2IySy − 〈2IySz〉(TN ) · 2IySz
)
, (2.31)

compute the backward trajectory Λ(m)
j for all pulses according to

Λ(m)
j−1 =




U (m)†
j ΛjU

(m)
j

if bj/Mc = b(j − 1)/Mc

U (m)†
j ΛjU

(m)
j +

2
NCOOP

((
1 − 〈Ix〉(Tn )

)
· Ix − 〈2IySx〉(Tn ) · 2IySx

− 〈2IySy〉(Tn ) · 2IySy − 〈2IySz〉(Tn ) · 2IySz
)

if bj/Mc > b(j − 1)/Mc

(2.32)

5. Evaluate ∇u (m)Φ for all possible combinations of parameters and form the mean
value.

6. Update the controls according to equation 1.107.

7. Apply RF limits according to amplitude, power or energy.

8. Repeat steps 2-7 until convergence.

Proof-of-principle optimizations with 1000 iterations of the algorithm above were carried
out for NCOOP = 1-6 using the parameters given in section 2.2.2. The resulting sets of
decoupling sequences were subject to simulations which yielded the decoupling pro�les
depicted in �gure 2.23. Theoretical spectra were processed as described for �gure 2.22. The
simulations clearly show progressive sideband reduction upon increasing NCOOP. First,
a trend can be observed where sidebands exceeding 10% are pushed outside the desired
40 kHz bandwidth. Secondly, sidebands can in the end be suppressed well below the 5%
threshold across the entire bandwidth. This is illustrated in more detail in �gure 2.24. The
sideband pro�les con�rm that going from one to two scans, even if individual sidebands
may have larger amplitudes than in the single-scan case, a generally lower abundance of
sidebands can be observed. However, slightly increased sidebands may occur for several
reasons. Incomplete convergence may leave the pulse below its physical potential or an
o�set may have been sampled in the simulations which su�ers decreased �delity due
to a too sparsely sampled grid in the optimization. Nevertheless, since the algorithms
aim for an optimal global quality factor, decreased local quality factors can be accepted if
this is overcompensated by a better overall average. Further, due to the variety of terms
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Figure 2.23.: Simulated decoupling pro�les using sets of self-compensating decoupling
sequences obtained by the modi�ed tracking algorithm. The quality factor according
to equation 2.29 was used (full penalty approach). Ten contour levels for positive and
negative sidebands were plotted distributed equally between the extreme values of ±1 and
±10% respectively. Peak contours were plotted using ten levels between the maximum
sideband and 100% intensity.
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NCOOP = 1 2
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Figure 2.24.: Simulated decoupling pro�les using sets of self-compensating decoupling
sequences obtained by the modi�ed tracking algorithm. The quality factor according to
equation 2.29 was used (full penalty approach). Spectra are overlaid and expanded to 10%
of the maximum decoupled center peak intensity across the desired o�set range of 40 kHz.
Since the sidebands are symmetrically distributed around the center peak, only positive
frequencies are plotted.
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in the quality factor for the full penalty approach, some terms can be traded o� against
each other. This could lead to less e�cient sideband suppression in favor of higher signal
intensity. Apart from that, a higher number of scans indeed corresponds to lower sideband
amplitudes.

It can be argued that the sideband canceling mechanism discussed so far is rather
implicit. Given that it relies on the 2IySx , 2IySy and 2IySz operators, which are not or only
indirectly measurable, the focus is not on the main source of sidebands (oscillations of
〈Ix〉). In order to achieve explicit sideband suppression, a suitable quality factor has to
include a term that penalizes oscillations of 〈Ix〉. A quality factor according to

ΦCOOP =
1
N

N∑
n=1

1 −
(
1 − 〈Ix〉(Tn )

)2
−

(
Φmean − 〈Ix〉(Tn )

)2
(2.33)

now contains a term that penalizes excursions from the temporal average of the signal
(Φmean, see above). Therefore the second term in equation 2.33 serves as an evaluation of
the standard deviation of 〈Ix〉. Ultimately, a low standard deviation of the signal should
result in low sideband amplitudes. Therefore, ΦCOOP according to equation 2.33 should
provide the means of explicit sideband suppression which shall be referred to as the
homogenizing approach in the following. Gradients of ΦCOOP with respect to the controls
of individual pulses can be obtained via

∇u (m)ΦCOOP =
1
N

∑
n>l

2
NCOOP

((
1 − 〈Ix〉(Tn )

)
· ∇u (m)〈Ix〉

(m) (Tn )

+
(
Φmean − 〈Ix〉(Tn )

)
· ∇u (m)〈Ix〉

(m) (Tn )
)
. (2.34)

It should be noted that Φmean itself is not subject to the formation of the gradient since
it serves as a feedback value and only carries information of the past iteration. The sum
within Φmean should not be mixed with the superordinate sum in equation 2.34 because
Φmean has in�uence on each local quality factor. This is why equation 2.34 can be further
simpli�ed:

∇u (m)ΦCOOP =
1
N

∑
n>l

2
NCOOP

(
1 + Φmean − 2〈Ix〉(Tn )

)
· ∇u (m)〈Ix〉

(m) (Tn ) (2.35)

Now it can be directly deduced from equation 2.35 that the homogenizing approach
aims at the perfect trade-o� between maximum signal intensity and low deviations from
Φmean. The tracking algorithm has to be further modi�ed for the homogenizing approach
according to:

1. Make a guess for initial controls u (m) .

2. Starting from Ix , compute the forward trajectories ρ (m)j for all pulses.

3. At each point Tn, compute ρ (Tn ) and evaluate 〈Ix〉(Tn ).

4. Use 〈Ix〉(Tn ) to obtain Φmean according to equation 2.26.
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5. Starting from

ΛNM =
2

NCOOP

(
1 + Φmean − 2〈Ix〉(TN )

)
· Ix , (2.36)

compute the backward trajectory Λ(m)
j for all pulses according to

Λ(m)
j−1 =




U (m)†
j ΛjU

(m)
j

if bj/Mc = b(j − 1)/Mc
U (m)†
j ΛjU

(m)
j +

2
NCOOP

(
1 + Φmean − 2〈Ix〉(Tn )

)
· Ix

if bj/Mc > b(j − 1)/Mc

(2.37)

6. Evaluate ∇u (m)Φ for all possible combinations of parameters and form the mean
value.

7. Update the controls according to equation 1.107.

8. Apply RF limits according to amplitude, power or energy.

9. Repeat steps 2-8 until convergence.

Another set of proof-of-principle optimizations was carried out for the homogenizing
approach which used conditions identical to the full penalty approach. The decoupling
pro�les yielded by the di�erent decoupling cycles are depicted in �gure 2.25. The results
for the homogenizing approach show a signi�cant improvement over the full penalty
approach. Even using a single scan, there are no sidebands occurring which exceed 10%
intensity. In addition, sideband amplitudes well below 5% can be achieved with already
four scans using the modi�ed quality factor. It can be observed that using more than four
scans, there is only slight further improvement. Nevertheless, it can be stated that the
homogenizing approach o�ers the more promising sideband suppression capabilities. This
is con�rmed by the sideband pro�les given in �gure 2.26. It can be seen that the �nal
improvement brought about by the homogenizing approach amounts to about 1% if a full
cycle of six decoupling sequences are used. For a quantitative comparison the trend in
sideband reduction upon increasing NCOOP is illustrated in �gure 2.27 by contrasting the
maximum observable sideband amplitude for the two approaches and the given number
of scans. The result of the sequence individually optimized as a part of section 2.2.2 is
given as a reference. It becomes obvious that a reasonable choice of the quality factor
alone can result in roughly a factor of two in sideband reduction compared to using the
standard Φmean. Moreover, it can be con�rmed now that for each number of scans the full
penalty approach is outperformed by the homogenizing approach. However, for both cases
there is apparently a single occurrence of increasing sideband amplitudes when NCOOP is
increased. This is due to singular sidebands at a given value of νS and νI which appear for
reasons discussed above despite an improved overall average. These situations shall be
ameliorated in the following section. The improvement of sideband suppression that can
be attributed to cooperativeness can be amounted to a factor between two and three.
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NCOOP = 1 2

3 4

5 6

Figure 2.25.: Simulated decoupling pro�les using sets of self-compensating decoupling
sequences obtained by the modi�ed tracking algorithm. The quality factor according to
equation 2.33 was used (homogenizing approach). Ten contour levels for positive and
negative sidebands were plotted distributed equally between the extreme values of ±1 and
±10% respectively. Peak contours were plotted using ten levels between the maximum
sideband and 100% intensity.
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NCOOP = 1 2

3 4

5 6

Figure 2.26.: Simulated decoupling pro�les using sets of self-compensating decoupling
sequences obtained by the modi�ed tracking algorithm. The quality factor according to
equation 2.33 was used (homogenizing approach). Spectra are overlaid and expanded to
10% of the maximum decoupled center peak intensity across the desired o�set range of
40 kHz. Since the sidebands are symmetrically distributed around the center peak, only
positive frequencies are plotted.
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Figure 2.27.:Comparison of the maximum positive sideband amplitudes within the desired
o�set range ∆νS = 40 kHz obtained by the sets of decoupling sequences optimized following
the full penalty and homogenizing approach described in this section. The reference pulse
was optimized as described in section 2.2.2.

A B

Figure 2.28.: Sideband canceling mechanism of the homogenizing approach illustrated by
simulated time- (A) and frequency domain (B) data for four scans (NCOOP = 4) with zero
decoupler o�set (νS = 0 Hz). Individual scans are shown as colored dashed lines and the
average is shown as a solid black line.

Finally, the mechanism of sideband suppression by the homogenizing approach shall
be illustrated for a single value of νS using a decoupling cycle consisting of four self-
compensating pulse sequences in �gure 2.28. Individual scans now reveal massive temporal
signal oscillations that would lead to severely high sideband amplitudes after FT. These
oscillations are greatly reduced upon averaging so that in most cases a particularly intensive
positive sideband is opposed by a negative sideband amplitude in the next scan. Moreover,
in contrast to bilevel decoupling, the averaging is e�ective for the entire FID so that the
sideband suppression is not limited to distinct frequencies νI. Nonetheless, the results of
this section are not yet fully competitive with bilevel decoupling at the given RF constraints
but the potential of cooperative decoupling was hinted at.
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2.2.4. Optimizations

So far, the limiting factor of the optimizations were the computational resources. The
optimization package OCTOPUSSI[51] was designed to (concurrently) optimize pulse shapes
acting on two (heteronuclear) coupled spins in Hilbert space. This implies the storage of
two pulse shapes and complex-numbered 16-element matrix representations of density
operator trajectories. The computational limit using OCTOPUSSI was reached when six
pulses with T = 128 ms with ∆t = 25 µs were optimized using ux and uy controls which
yields a sum of 61440 variables. Conversely, it has been discussed in the previous sections
that only four operators are needed to describe a heteronuclear decoupling scenario which
facilitates the use of a four-state vector representation of the density operator as an element
within a reduced Liouville space[36]. The expectation values of the operators 2IySx , 2IySy ,
2IySz and Ix form the real-valued elements of the reduced state vector given by

ρ̂ (tj ) =

*......
,

〈2IySx〉(tj )
〈2IySy〉(tj )
〈2IySz〉(tj )
〈Ix〉(tj )

+//////
-

=

*......
,

ρ2IySx (tj )

ρ2IySy (tj )

ρ2IySz (tj )

ρIx (tj )

+//////
-

. (2.38)

Initial and �nal magnetization Ix are thus written (0, 0, 0, 1)T. Forward and backward
trajectories of the density superoperator which are necessary to obtain the gradients for
the GRAPE algorithm are de�ned as

ρ̂j = Ûj · · · Û1ρ̂0 (2.39)

and
λ̂j = Û

T
j+1 · · · Û

T
N ρ̂F (2.40)

where Ûj are the generalized rotation matrices corresponding to the unitary propaga-
tors in Hilbert space and Û T

j is the transpose of Ûj . The matrix elements of these rota-
tion superoperators are given by explicit scalar functions that no longer involve matrix
exponentiation[36]. They are computed according to the following recipe:

Û11(j ) = a+a− − b+b− − c+c− + d+d−

Û12(j ) = a+b− + b+a− + c+d− + d+c−

Û13(j ) = a+c− − b+d− + c+a− − d+b−

Û14(j ) = −a+d− − b+c− + c+b− + d+a−

Û21(j ) = a+b− + b+a− − c+d− − d+c−

Û22(j ) = −a+a− + b+b− − c+c− + d+d− (2.41)
Û23(j ) = a+d− + b+c− + c+b− + d+a−

Û24(j ) = a+c− − b+d− − c+a− + d+b−

Û31(j ) = a+c− + b+d− + c+a− + d+b−

Û32(j ) = −a+d− + b+c− + c+b− − d+a−

Û33(j ) = −a+a− − b+b− + c+c− + d+d−
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Û34(j ) = −a+b− + b+a− − c+d− + d+c−

Û41(j ) = a+d− − b+c− + c+b− − d+a−

Û42(j ) = a+c− + b+d− − c+a− − d+b− (2.41)
Û43(j ) = −a+b− + b+a− + c+d− − d+c−

Û44(j ) = a+a− + b+b− + c+c− + d+d−

The constituents of Ûj are given by

a± = −
B1,rel · ux (j )

ν±
· sin(πν±∆t ) (2.42)

b± = −
B1,rel · uy (j )

ν±
· sin(πν±∆t ) (2.43)

c± = −
νS ± J/2

ν±
· sin(πν±∆t ) (2.44)

d± = cos(πν±∆t ) (2.45)

and

ν± =

√(
B1,rel · ux (tj )

)2
+

(
B1,rel · uy (tj )

)2
+

(
νS ± J/2

)2
. (2.46)

In analogy to equation 1.125, gradients of local quality factors ϕ can be obtained to �rst
order via

∂ϕ

∂ux (tj )
= 2πB1,rel∆t

(
ρ

2IySy
j λ

2IySz
j − ρ

2IySz
j λ

2IySy
j

)
(2.47)

and
∂ϕ

∂uy (tj )
= 2πB1,rel∆t

(
ρ

2IySz
j λ

2IySx
j − ρ

2IySx
j λ

2IySz
j

)
. (2.48)

In order to obtain the gradients of Φmean in this formalism, equations 2.47 and 2.48 have to
be combined with equation 1.111 to yield

∂Φmean
∂ux (tj )

= 2πB1,rel∆t ·
1
N

(
ρ

2IySy
j Λ

2IySz
j − ρ

2IySz
j Λ

2IySy
j

)
(2.49)

and
∂Φmean
∂uy (tj )

= 2πB1,rel∆t ·
1
N

(
ρ

2IySz
j Λ

2IySx
j − ρ

2IySx
j Λ

2IySz
j

)
. (2.50)

As mentioned in section 1.2.8, to exploit the bene�cial convergence behavior of second-
order update methods, exact gradients are needed. Hence, exact derivatives of Ûj need
to be evaluated which can be done element-wise. All derivatives of the elements given
in equation 2.41 can be evaluated using the sum and product rule and boil down to the
derivatives of equations 2.42 to 2.45. Here, the derivatives of c± and d± with respect to ux
and uy only vary in derivatives of ν±. The latter are given by

∂ν±
∂ux (tj )

=
B2

1,rel · ux

ν±
(2.51)
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and
∂ν±
∂uy (tj )

=
B2

1,rel · uy

ν±
(2.52)

so that
∂d±
∂uk (tj )

= −π∆t
∂ν±
∂uk (tj )

· sin(πν±∆t ) (2.53)

and
∂c±
∂uk (tj )

=
νS ± J/2

ν±
·
∂ν±
∂uk (tj )

(
sin(πν±∆t )

ν±
− π∆t · cos(πν±∆t )

)
. (2.54)

When it comes to a± and b±, the derivatives with respect to ux and uy vary signi�cantly so
that

∂a±
∂ux (tj )

=
B1,rel
ν±

( [
ux
ν±
·
∂ν±
∂ux (tj )

− 1
]
· sin(πν±∆t ) − πux∆t

∂ν±
∂ux (tj )

· cos(πν±∆t )
)

(2.55)

and
∂a±
∂uy (tj )

=
B1,rel · ux

ν±
·
∂ν±
∂uy (tj )

(
sin(πν±∆t )

ν±
− π∆t · cos(πν±∆t )

)
. (2.56)

This can be transferred to b± where

∂b±
∂ux (tj )

=
B1,rel · uy

ν±
·
∂ν±
∂ux (tj )

(
sin(πν±∆t )

ν±
− π∆t · cos(πν±∆t )

)
(2.57)

and

∂b±
∂uy (tj )

=
B1,rel
ν±

( [
uy

ν±
·
∂ν±
∂uy (tj )

− 1
]
· sin(πν±∆t ) − πuy∆t

∂ν±
∂uy (tj )

· cos(πν±∆t )
)
. (2.58)

These newly derived equations can be plugged into the recipe for Ûj to obtain exact
gradients for Φmean via

∂Φmean
∂uk (tj )

=
1
N

〈
Λ̂j

������

∂Ûj

∂uk (tj )
ρ̂j−1

〉
. (2.59)

Gradients ∇uΦ can be benchmarked against a �nite di�erence approximation ∇FD
u Φ (see

equation 1.96) by evaluating

σ∇ =
�����
1 −
∇FD
u Φ

∇uΦ

�����
(2.60)

as a function of ∆u. This di�erence was evaluated for a randomly generated pulse using
gradients according to equations 2.49 and 2.50 (�rst order approximate) as well as equa-
tions 2.51 to 2.59 (exact). Further, a single pulse optimized comparable to as given in [36]
(T = 128 ms, ∆t = 25 µs , ∆T = 1 ms, J = 140 Hz, umax

RF = 500 Hz, ∆νS = 1 kHz, NνS = 21) was
also analyzed accordingly. The converged pulse yielded Φmean = 0.956 whereas the random
pulse yields Φmean = −0.009. The resulting gradient errors are depicted in �gure 2.29. In
general, the gradient error should decrease as ∆u decreases, since the �nite di�erence
approximation more and more approaches an exact gradient. Conversely, the curves
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Figure 2.29.: Benchmark of �rst order approximate and exact gradients for Φmean against a
�nite di�erence approximation according to equation 2.60. Both gradients were applied to a
randomly generated pulse (Φmean =−0.009) as well as a converged sequence (Φmean = 0.956).

for the exact gradients in �gure 2.29 show a distinct dip. This is due to a threshold in
machine number precision. At some point, the change of control amplitudes ∆u becomes
too insigni�cant to cause a substantial change in the quality factors so that the �nite
di�erences in equation 1.96 become very small. In terms of machine number precision,
there are increasingly less places after the decimal point which can contribute to a mean-
ingful di�erence. This source of numerical noise causes the gradient error to increase if
∆u decreases below a certain threshold. The dip is more pronounced for the randomly
generated pulse since closer to the optimum the same change in control amplitude causes
less response in �delity. At the same time, a Φmean > 0.9 also takes away one signi�cant
digit for the �nite di�erence. For each case of the �rst order approximate gradient the
gradient accuracy is by orders of magnitude worse and shows a �at region where the exact
gradients show the dip.

With access to exact gradients in the reduced state space formalism, a feasibility study
of optimal single and cycles of decoupling sequences is now possible. Given that there
is no more need to store complex numbers and far less arrays of matrices have to be
stored, the newly available memory can be invested in a more �nely digitized time grid
of the pulse shapes. In addition, depending on the particular optimization problem and
whether the computation is performed in parallel or not, a gain in speed between 5
and 20 can be accomplished (see appendix �gure A.1). To give an overview about the
computational resources and to be able to correlate the feasibility of optimizations with
the hardware con�guration, the available machines for this work are listed in table 2.6.
Prior to a systematic study of the problem outlined in section 2.2.1, possibilities to boost
convergence were explored. The most important second order update methods discussed
in section 1.2.8 assume at least locally quadratic behavior of the quality factor landscape.
Since this assumption can not be made a priori, a periodical refreshment of the CGs
comparable to the limited gradient history in the L-BFGS update has been tested on the
optimization procedure given in section 2.2.2. The CG reinitialization can be performed
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Pet name CPU
vendor

CPU model Clock
frequency /

GHz

Cores CPU
cache /
MHz

Ork Intel® Pentium®4 2.66 1 0.5
Sodom AMD Athlon™MP 2800+ 2.13 2 0.5
Goblin AMD Athlon™II X2 240e 2.8 2 1

U� Intel® Core™2 Quad Q8200 2.33 4 2
Cybershot Intel® Core™2 Quad Q6600 2.4 4 4
Sandstone Intel® Core™2 Quad Q6600 2.4 4 4

Server Intel® Core™2 Quad Q9650 3 4 6
Wanderlust Intel® Core™i7 950 3.07 4 8

JP Intel® Xeon®E5-2470 2.3 16 20

Table 2.6.: Overview of the computational resources available in this thesis. All machines
are Linux-based except for Goblin, which is a Windows® workstation which was not used
for optimizing pulse sequences.

when a convergence criterion is met to avert premature termination or at �xed intervals
as depicted in �gure 2.30. Here the quality factor as a function of the iteration number
is given as an error functional (deviation from unity) on a logarithmic scale which leads
to this representation infamously being called spaghetti plots. For ten di�erent starting
pulses spaghetti plots are given for CG reinitialization after 500, 250, 100 and 50 iterations
as well as no refreshment. Each optimization ran for 1000 iterations. It can clearly be
seen that without reinitialization, after 1000 iterations almost full convergence is reached
whereas each additional instance of CG refreshment results in consecutively improved
overall convergence rates. It can be deduced from the slope at the �nal iteration that
further improvements can be expected for CG reinitialization after 50 iterations which
was found to be an optimal value for this problem. Resetting the CG trajectory after 25
and 10 iterations leads to impaired convergence (see appendix �gure A.2). Looking at the
spread of results, the variance within one group of optimizations is markedly marginal
leading to hardly any overlap between the di�erent groups. Therefore it can be stated
that CG reinitialization at a given interval allows access to a whole set of new (or better)
solutions which are out of reach for a conventional unperturbed search.

To a�rm the results obtained so far, a series of optimizations was performed to �nd the
best possible individual decoupling sequence. For a single sequence, the smallest possible
digitization ∆t was found to be 2 µs which was still feasible on Ork on a single CPU as well
on U� in parallel. For T = 128ms this amounts to 128000 variables. Ten optimizations
with 1000 iterations each were performed using both Φmean and ΦCOOP (homogenizing
approach) as a quality factor for ∆t = 25, 20, 10, 5, 4 and 2 µs . Further, the e�ect of applying
and omitting CG reinitialization after 50 iterations was examined for each setting so that
a total of 240 optimizations contribute to this study. In order to provide a more reasonable
spectral width, ∆T was reduced to 100 µs . Otherwise, all parameters were kept the same
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Figure 2.30.: Convergence benchmark (spaghetti plots) for di�erent frequencies of CG
reinitialization during optimizations of pulse sequences as described in section 2.2.2. The
CG trajectory was refreshed after 500 (blue), 250 (red), 100 (green) and 50 (orange) and
compared to the reference (black). The plot was expanded to the region with the most
signi�cant di�erences.

as described in the previous sections. The decoupling sequences thus obtained were
analyzed with respect to the maximum positive and negative as well as the root mean
square (RMS) sideband amplitudes within the desired o�set range ∆νS = 40 kHz. For each
digitization, the average sideband amplitudes of the four possible settings are illustrated in
�gure 2.31. All three modes of evaluation share common trends. It is globally a�rmed that
the homogenizing approach provides reduced sideband amplitudes compared to relying on
Φmean alone. In addition, CG reinitialization proves bene�cial in each case so that further
sideband suppression can be achieved compared to using no convergence boost. The
quality factor landscape is thus seemingly not locally quadratic. It can be observed that
there is no signi�cant improvement beneath 5 µs . Therefore it can be assumed that the
physical limits are approached rather than a speed limit in terms of phase modulation due
to the coarse digitization. In particular for cases where no CG reinitialization is applied
there are instances where the error bars or even the mean values indicate that the sideband
amplitudes increase for a �ner digitization. This could be attributed to the convergence
behavior which is illustrated for the case of ΦCOOP and CG reinitialization in �gure 2.32.
Two in�uences can be deduced from the two subplots. First, at the initial steps a �ner
digitization results in slightly impaired convergence due to a larger space of possibilities
given that there are more variables (there is only one outlier for ∆t = 2 µs with drastically
faster convergence but with a worse result than the rest of the set). This will later largely
be compensated for by the fact that overall better solutions can be achieved which leads to
the sets of ∆t < 20 µs to overtake the optimizations with a more coarse time grid after about
50 iterations. After about 100 iterations, the sets of ∆t < 10 µs overtake the latter. Secondly,
the spread between the individual sets of optimizations still increases between iteration
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Figure 2.31.: Sideband statistics for individual decoupling sequences with varying digiti-
zation. Sideband amplitudes are given for Φmean and ΦCOOP (homogenizing approach) as
well as with and without CG reinitialization. The bars indicate the mean value and error
bars correspond to the standard deviation. The legend applies to all graphs.

200 and 1000 so that the state of convergence is not guaranteed to be reached within the
frame of these optimizations, which can lead to occasionally increased sidebands for a
�ner digitization. These �uctuations are almost exclusively observed when the positive
and negative sideband amplitudes are evaluated. The trend can be recti�ed if the sideband
amplitudes are averaged over ∆νS at each frequency νI within the observed window of
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A B

Figure 2.32.: Spaghetti plots for di�erent digitizations of pulse shapes using ΦCOOP and
CG reinitialization. Optimizations were logged for ∆t = 25 (black), 20 (blue), 10 (red), 5
(green), 4 (orange) and 2 µs (purple). The plots were expanded to bring the regions of the
initial 200 (A) and the �nal 800 iterations (B) into focus.

1 kHz. Although the RMS sideband intensities carry less physical meaning, they appear to
con�rm the statements derived from the data obtained so far. Although the RMS sidebands
can be suppressed below 1%, the real sidebands which would be apparent in the measured
spectra would still be in range of 2-3%. The decoupling sequences obtained in this part of
the study are therefore only on the cusp of being competitive with bilevel decoupling.

In the second part of the study, COOP decoupling sequences were optimized to �nd the
best possible tradeo� between NCOOP and ∆t with regard to the computational resources
given in table 2.6. The most exhaustive combinations which could be achieved were
NCOOP = 6 for ∆t = 10 µs (153600 variables), NCOOP = 4 for ∆t = 5 µs (204800 variables)
and NCOOP = 3 for ∆t = 4 µs (192000 variables). These optimizations were only feasible
on Wanderlust and JP. The 256000 variables necessary for NCOOP = 2 and ∆t = 2 µs could
not be handled on any of the available machines. Again, ten optimizations were carried
out until the maximum ratio between NCOOP and ∆t was reached for every digitization
using CG reinitialization after every 50 of the 1000 iterations. The resulting cycles of
decoupling sequences were analyzed according to �gure 2.31 and compared with individual
sequences which is shown in �gure 2.33. Here, an increase in NCOOP consistently provides
an improvement in the sideband suppression capabilities of the decoupling cycle at a given
digitization for all three modes of evaluation. Most strikingly, decoupling cycles with a
rather coarse digitization but higher number of pulses can outperform individual pulses
with a �ner digitization, which can be understood quantitatively be evaluating the ratios
NCOOP/∆t . This quotient can be imagined as a pseudo-digitization which can be inversely
correlated with the degrees of freedom for the optimization. For the ratios given above it
equates from coarse to �ne to 1.67, 1.34 and 1.25 for 153600, 192000 and 204800 variables,
respectively. This can in parts explain the drastic improvements of COOP cycles over
individual pulses with ∆t = 2 µs as well as allow for a guess which setting may yield the
optimal result. Indeed, the three sets of decoupling sequences only vary by nuances in
terms of the resulting sideband amplitudes. However, by absolute numbers NCOOP = 6 for
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Figure 2.33.: Sideband statistics for COOP decoupling sequences with varying ratios of
NCOOP and the digitization ∆t . ΦCOOP (homogenizing approach) and CG reinitialization
after 50 iterations were used for all optimizations. The bars indicate average sideband
amplitudes of ten optimizations and error bars denote the standard deviation. The legend
applies to all graphs.

∆t = 10 µs and NCOOP = 4 for ∆t = 5 µs o�er a slight advantage with the latter providing
the lowest RMS sideband intensities. At best, average sideband amplitudes of about 0.6%
with apparent maximum sidebands of 1.5% can be achieved so that NCOOP = 4 and ∆t = 5 µs
is chosen to be developed further in the following sections since it not only poses the most
promising but also the most reasonable and fair comparison to the bilevel implementation
discussed in section 2.2.1.
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A B

Figure 2.34.: Spaghetti plots for di�erent COOP decoupling sequences using the homoge-
nizing approach and CG reinitialization. Optimizations were logged for ∆t = 10 µs and
NCOOP = 1 (black), 2 (blue), 3 (red), 4 (green), 5 (orange) and 6 (purple). The plots were
expanded to bring the regions of the initial 200 (A) and the �nal 800 iterations (B) into
focus.

Cooperativeness is also re�ected in the convergence behavior. This is illustrated for
∆t = 10 µs going from NCOOP = 1 to 6 in �gure 2.34. In contrast to �gure 2.32, already
from the initial state of the optimizations, cycles with more pulses (and therefore more
degrees of freedom) show improved convergence and �delities compared to individual
pulses or cycles with fewer members. This is due to fact that the average trajectory has
the same complexity for each value of NCOOP given that the additional degrees of freedom
are condensed in the same increment. This is why at each step the available solutions
improve with increasing NCOOP. Moreover, in the later stages of the optimizations, the
spread between the di�erent sets remains rather constant so that it can be assumed that
all sets of optimizations reach a similar state of convergence.

2.2.5. The BROCODE

Now the search for the best possible comparison to the bilevel implementation discussed in
section 2.2.1 is going to be further re�ned. This section therefore solely focuses on cycles
of decoupling sequences with ∆t = 5 µs and NCOOP = 1, 2 and 4. From the sets optimized
so far, the best candidate in terms of the value of ΦCOOP was chosen to be optimized
until full convergence was reached. The dwell time ∆T was set to be equal to ∆t just as
proposed for the BUSS pulse[107]. This practically demands a refocusing of the coupling
evolution after each of the 5 µs increments. Although this is physically impossible, the
algorithm will be forced to �nd a solution that approximates the demanded behavior to
the best of its capabilities. In practice, performance in terms of continuous decoupling
throughout the grid was already generally satisfactory for all pulses which were optimized
for ∆t = 100 µs beforehand. Thus, a su�cient robustness against di�erent dwell times
can be expected. The o�set grid was discretized in 501 increments rather than 384 to
make sure that the on resonance case is sampled as well as spurious oscillations in the
o�set behavior of the sequences are avoided. To make sure that the pulse sequences make
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use of the available umax
RF = 2 kHz at each increment, the individual control amplitudes

were adjusted to the maximum value after each iteration according to equation 1.150. CG
reinitialization was only applied when the di�erence in ΦCOOP between two iterations
was below 10−7. Convergence in each case was generally reached within 10000 iterations.
Simulated decoupling pro�les are given in �gure 2.35. Simulation parameters were chosen
as in �gures 2.14 and 2.17 to be set up for a later comparison with experiments. The
pro�les clearly show a reduction in maximum sideband intensities from about 3% to below
2% going from NCOOP = 1 to 4. However, the average 1.5% sideband amplitudes given in
�gure 2.33 could not be retained. On the one hand, given that ΦCOOP has multiple terms,
it is not guaranteed that the pulse sequences with the highest numerical quality factor
provide the lowest sideband amplitudes. On the other hand the o�set grid was more dense
than for the preliminary optimizations in section 2.2.4, so that the �delity at some o�sets
might slightly su�er from the fact that individual frequencies which were o� the grid
before have to be signi�cantly improved in order to yield a more homogeneous broadband
behavior for the new grid.

Although the sequences obtained so far are already competitive with bilevel decoupling,
there are still degrees of freedom available to be exploited. In a �nal set of optimizations,
RF amplitude modulation was allowed by restricting the overall RF power according to
equation 1.153 to ensure that B1,RMS = 2 kHz is not exceeded. Sets of 10 optimizations were
carried out for NCOOP = 1, 2 and 4 using ∆t = 5 µs . Continuous decoupling was demanded
throughout all shapes. 384 equally spaced checks across the o�set grid with ∆νS = 40 kHz
were used and CG reinitialization was applied after every 50 of the initial 1000 iterations.
Subsequently, the best candidate according to the value of ΦCOOP was chosen for further
optimizing with 501 o�set checks and resetting the CG trajectory only when the change
in ΦCOOP between two iterations was less than 10−7. The converged algorithm resulted in
a family of self-compensating decoupling sequences with the best performance achieved
in this work. Simulations and experiments on a sample of 13C-labeled methanol were
performed according to the protocol used for �gures 2.14 and 2.17. Decoupling pro�les are
given in �gure 2.36. It is easily recognizable that allowing for amplitude modulation alone
provides a boost in sideband reduction comparable to cooperativeness. Upon increasing
NCOOP up to 4, sidebands can with few exceptions be suppressed down to 0.5%. The
general sideband pattern of the simulations can be reproduced rather reasonably in the
experiments. Apparently the di�erences seem to focus very close to the center peak.
The sideband pro�les given in �gure 2.37 con�rm that already a single RF power-limited
decoupling sequence is competitive with a cycle of four purely phase-modulated sequences.
Di�erences between simulations and experiments entail a signal systematically appearing
at about 70 Hz right of the center peak. This peak appears throughout all experiments and
can be attributed to an impurity in the purchased methanol which was not further puri�ed.
Further, it appears that at a speci�c range of frequencies (namely right of the impurity
signal and up to 500 Hz), sideband intensities and the overall spread from maximum
positive to maximum negative sideband amplitudes is smaller in the experiments than
predicted by the simulations. At the same time, at frequencies left of the impurity signal
(maybe due to it) the sideband intensities exceed those of the simulations. These deviations
amount to 0.1 to 0.4% of absolute sideband intensity so that the spread between positive
and negative sidebands varies by up to 0.5%. Sources of systematic errors may be RF
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NCOOP = 1

2

4

Figure 2.35.: Simulated decoupling pro�les using the fully converged constant amplitude
COOP decoupling sequences (∆t = 5 µs). For the o�set pro�les (left panels) ten contour
levels for positive and negative sidebands were plotted distributed equally between the
extreme values of ±0.5 and ±5% respectively. Peak contours were plotted using ten levels
between the maximum sideband and 100% intensity. For the sideband pro�les (right
columns) spectra are overlaid and expanded to 5% of the maximum decoupled center peak
intensity across the desired o�set range of 40 kHz. Since the sidebands are symmetrically
distributed around the center peak, only positive frequencies are plotted.
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NCOOP = 1

2

4

Figure 2.36.: Comparison of simulated (left panels) and experimental (right panels) o�set
pro�les using the fully converged power-limited COOP decoupling sequences (∆t = 5 µs).
Ten contour levels for positive and negative sidebands were plotted distributed equally
between the extreme values of ±0.5 and ±5% respectively. Peak contours were plotted
using ten levels between the maximum sideband and 100% intensity.
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NCOOP = 1
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4

Figure 2.37.: Comparison of simulated (left panels) and experimental (right panels) side-
band amplitudes using the fully converged power-limited COOP decoupling sequences
(∆t = 5 µs). Spectra are overlaid and expanded to 5% of the maximum decoupled center peak
intensity across the desired o�set range of 40 kHz. Since the sidebands are symmetrically
distributed around the center peak, only positive frequencies are plotted.
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inhomogeneity or miscalibration which can theoretically a�ect heteronuclear decoupling
favourably in cases of overshooting the nominal umax

RF or at least not be detrimental[107].
Since all experiments for �gures 2.36 and 2.37 were performed using a single calibration
(see section 2.2.7), they would all be a�ected equally. Another experimental imperfection
that might work in favor of decoupling performance are smoothing e�ects on the pulse
shapes since the amplitude and phase modulation happens on a 5 µs grid which is rather
coarse compared to other OCT studies (see the references in section 1.2.3). From the
statistics given in �gure 2.31, there might be slight improvements to be expected from
an even smoother modulation, but these e�ects are hard to predict and to measure. In
addition to these subtle e�ects, it has to be mentioned that the signal of residual 12C-bound
protons was not suppressed so that it can add up to the total signal intensity but it should
only add a relative 1-2% and therefore be rather negligible. Moreover, e�ects from digital
�ltering and group delay compensation have already been discussed in section 2.2.1 and
may have a strong in�uence if particularly severe oscillations appear at the beginning
of the FIDs which might hence get retouched. Probably the most profound source of
deviations between simulations, given that basically the course of the baseline is analyzed,
are the di�erences in the signal processing procedure. Due to the fact that the experimental
data is processed by TopSpin©software, the e�ects of elaborate digital �lter functions and
baseline correction algorithms on the line shape can not be reproduced in the simulations
so that this could be a viable contribution to the observed di�erences.

Even with the decoupling pro�les at hand, it has to be proven that COOP decoupling
sequences outperform sets of randomly assorted sequences which were optimized individ-
ually. Hence, simulations were performed for sets of individually optimized decoupling
sequences obtained during the series of optimizations discussed above and compared with
the results for the COOP sequences. Figure 2.38 contains the data for both amplitude-
and power-limited sequences evaluated using the same criteria as in �gures 2.31 and 2.33.
The data clearly show how in each case power-limited pulse sequences outperform their
purely phase-modulated counterparts for each value of NCOOP. Moreover, by whatever
metric the sideband amplitudes are evaluated, a set of randomly compiled decoupling
sequences never reaches the sideband levels of speci�cally optimized COOP cycles. The
e�ect is more pronounced with amplitude-modulated pulses than with their exclusively
phase-modulated counterparts as well as more pronounced with four instead of two pulses.
The di�erences are the least signi�cant for the RMS sideband intensities which is due
to the fact that at the frequencies where the sideband levels are extracted, obviously a
limit set by the line shape is approached which amounts to about 0.3%. Quantitatively, in
terms of positive and negative sidebands, the absolute improvement ranges from 0.3-0.6%
which corresponds to a relative gain of 14-64%. This proves that cooperativeness can by
design bene�t from additional degrees of freedom provided by more pulses or amplitude
modulation beyond mere statistical averaging.

As a �nal aspect of this study, the e�ect of the amplitude-modulation on the drastic
improvement of decoupling performance shall be elucidated. Figure 2.39 depicts amplitude
and phase pro�les as well as a spectrogram representation of the �rst 5 ms of a single
constant amplitude and an amplitude modulated decoupling sequence. Whereas the phase
pro�les are rather similar in showing a rather noise-like modulations the amplitude pro�les
clearly resemble the di�erent mechanisms by which constraints are applied to the RF
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Figure 2.38.: Sideband statistics for COOP decoupling sequences versus sets of individually
optimized sequences as a function of NCOOP. Decoupling sequences with limited RF
amplitude are marked with umax

RF and pulses with limited RF power are marked with B1,RMS.
The bars for individually optimized sequences indicate the mean value and error bars
correspond to the standard deviation. The legend applies to all graphs.

92



2.2. Broadband Decoupling by Optimal Control Theory

A B

C D

E F

Figure 2.39.: Visual representation of di�erently modulated pulse shapes for decoupling.
Phase, amplitude and spectrogram representations of a single optimized pure-phase modu-
lated decoupling sequence (A, C and E respectively) and an amplitude-modulated sequence
(B, D and F respectively). Parameters of the spectrogram were chosen according to the
BUSS example given in [54] with a 15% baseline of zeros added at the beginning and end
of the shape.
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control amplitudes. It can be deduced from �gure 2.39 D that for several hundred µs at the
beginning of the sequence the RF amplitude slowly builds up since heteronuclear coupling
evolution on this timescale does not necessitate signi�cant RF expenditure. Nevertheless,
prior to oscillating again seemingly chaotic around B1,RMS = 2 kHz there are bursts of more
than 6.5 kHz which can compensate for such a build-up behavior (further experimental
details of the individual pulses are given in section 2.2.7). It has been shown in [54]
that the apparently random modulation of the pulse sequence serves a distinct purpose
which is revealed by the spectrogram. For the power-limited sequence (�gure 2.39 F) it
is easily shown that all the RF energy is being dissipated in the desired range of o�sets
∆νS = 40 kHz with rapidly changing frequency ranges of RF deposition. Conversely, the
purely phase-modulated sequence has a spillover outside the desired o�set range for the
same reason as discussed with the BIBOP shape of �gure 1.7. As can be seen by the
corresponding contour levels, this leaves less energy available to span a dense web of RF
irradiation over the desired frequency range and over the timescale of the sequence. This
causes more abundant periods of e�ectively free coupling evolution which gives rise to
more pronounced sidebands as discussed for the GARP inversion element (see �gure 2.10).
Another more phenomenological evidence for the RF spillover can be found at the edges
of the o�set pro�les in �gure 2.35 (left side) where there is no visible transition from a
singlet (inside the optimized region) to a doublet (outside the optimized region) as can be
observed in �gure 2.36. The RF energy deposition at these frequencies leads to a di�use
and distorted doublet with an abundance of sidebands.

In summary, it has been shown that the seemingly noise-like but apparently highly-
orchestrated RF modulation scheme in combination with multi-scan cooperativeness as
introduced in section 2.2.3 does in principle provide the ultimate sideband canceling
mechanism for broadband heteronuclear decoupling. Given that the decoupling scheme is
non-repetitive, there is no predetermined or dominant signal modulation which will lead to
a dominant sideband at a given frequency which makes the method more attractive in the
low-power regime as it is not subject to adiabaticity constraints. This is proven by the very
homogeneous sideband pro�les in �gure 2.37. At the same time broadband operation is
maintained beyond the capabilities of CPD methods. The sideband canceling mechanism as
depicted in �gure 2.28 is more general and straight-forward than any frequency-unspeci�c
desynchronisation[74, 104] or averaging techniques[85] and is independent of a minimum
required number of scans (or maximum for that matter). It is therefore nearby to refer to this
method in the most general way as BROadband COoperative DEcoupling (BROCODE) [110]

in the following.

2.2.6. Experiments

Finally, two experimental aspects of the BROCODE shall be elucidated. First, the con�dence
levels given in terms of the maximum sideband amplitudes in section 2.2.5 shall be tested
with regard to the dynamic ratio that is de�ned by the signal and the corresponding
sidebands. Therefore, a sample of imidacloprid, a widely-used insecticide[111] was doped
with its synthetic precursor 2-chloro-5-chloromethyl-pyridine as an impurity (referred to
simply as pyridine precursor in the following) to approximately yield a concentration ratio
of 100:1. The synthetic pathway to imidacloprid which employs the pyridine precursor is
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one of the two common methods to obtain the insecticide[112] and is depicted in �gure 2.40.
To characterize the compounds for decoupling experiments, one-dimensional 1H and 13C
as well as two-dimensional CLean In-Phase-HSQC (CLIP-HSQC) [113] experiments were
recorded to obtain relevant information about the labeled atoms in �gure 2.40. Chemical
shifts of 1H and 13C nuclei and their corresponding 1JCH couplings are given in table 2.7.
Decoupled two-dimensional HSQC spectra of the aforementioned 100:1 compound mixture
were recorded with AQs of 128 ms using the BROCODE pulses (B1,RMS = 2 kHz) and bilevel
decoupling employing caWURST-2 pulses at B1,RMS = 4.4 kHz as well as 2 kHz. Further,
following equation 1.154 the RF energy scales quadratically with B1,RMS so that a reduction
of the latter by more than 50% (as is the case for BROCODE) a�ords an AQ prolonged
by a factor more than four. Therefore, additional spectra were recorded with AQs of
512 ms using the BROCODE pulses and bilevel decoupling employing caWURST-2 pulses
at B1,RMS = 2 kHz. Four scans have been averaged in each case. For the �rst comparison,
spectra using the BROCODE and caWURST-2 bilevel decoupling (both with AQ = 128 ms,
the latter with B1,RMS = 4.4 kHz) were evaluated with regard to whether the impurity can
be identi�ed. In all experiments stated above, position 1 is very easily discerned in the
mixture (see �gure 2.40 B for atom numbering). On the contrary, position 4 poses several
problems. The spectral regions of 6 ppm for the 1H and 125 ppm for the 13C dimension are
sampled with a resolution of 7.8 and 294 Hz, respectively. This is su�cient for the pure
compounds, but given that the chemical shift di�erences for position 4 amount to 18 Hz for
both dimensions, a signi�cant challenge has to be met. At the given resolution, the 3JHH
coupling to position 3a is not resolved so the line width achieved after apodization using a
cosine-squared window function also amounts to about 18 Hz. This is why several line

A

B

Figure 2.40.: Reaction schemes of the synthetic pathway to obtain imidacloprid using the
pyridine precursor. The necessary substrate 2-nitro-amino-imidazoline (*the tautomeric
form would be called 2-nitroimine-imidazolidine) is obtained starting from ethylene di-
amine (A). The reaction with the pyridine precursor yields the desired compound with the
atom numbering corresponding to the number of bonds between the given carbon atom
and the moiety which distinguishes the compounds from each other (B).
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Imidacloprid
position

δ (1H) / ppm δ (13C) / ppm 1JCH/ Hz -

1 4.48 44.94 141.0 -
3a 7.80 139.85 164.9 -
3b 8.37 149.78 182.1 -
4 7.53 124.79 172.5 -

Pyridine
position

δ (1H) / ppm δ (13C) / ppm 1JCH/ Hz -

1 4.83 42.61 154.3 -
3a 7.95 140.77 166.0 -
3b 8.50 150.37 183.2 -
4 7.56 124.91 173.1 -

Chemical shift
di�erences

∆δ (1H) / ppm ∆δ (1H) / Hz ∆δ (13C) / ppm ∆δ (13C) / Hz

1 0.35 210 2.33 349.5
3a 0.15 90 0.92 138
3b 0.13 78 0.59 88.5
4 0.03 18 0.12 18

Table 2.7.: Characterization of imidacloprid and the pyridine precursor. Chemical shifts
were determined for both compounds in order to calculate the corresponding di�erences
for each position which yields an HSQC cross peak (position 2 is a quaternary carbon).
The values in Hz are calculated for a 1H resonance frequency corresponding to 600 MHz.

shape distortions overlap with the signal of the impurity component. These are the wiggles
due to incomplete nulli�cation of the FID at its end as well as residual distortions due to
lock phase misadjustment. It is hard to judge if these distortions are symmetric around
the main signal since bilevel decoupling introduces a baseline wave due to the intensity
drop at the beginning of each FID upon averaging of the individual scans (see �gure 2.13)
which makes it hard to thoroughly phase the signal to the necessary accuracy at the
given intensity levels. This baseline wave can be observed in the simulations depicted
in �gure 2.16. The spectra using the BROCODE can be phased more reliably and reveal
asymmetric line shape distortions which may be caused by the signal of the impurity
component. However, given that such statements involve a fair amount of speculation,
position 4 shall not be further discussed and positions 3a and 3b shall be further elucidated.
Excerpts of the HSQC spectra showing signals for position 3a and 3b for both compounds
are depicted in �gure 2.41. A highly-resolved one-dimensional 1H spectrum was added on
top of the spectrum to pinpoint the position where the impurity signals can be expected.
Integration of the signals reveals a concentration ratio between 100:1.3 and 100:1.4. Errors
during the sample preparation happen most likely due to di�culties with the handling
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Figure 2.41.: HSQC comparison for signals 3a and 3b of the imidacloprid/pyridine pre-
cursor mixture. Experiments using the BROCODE pulses (black and gray contours) and
caWURST-2 bilevel decoupling (B1,RMS = 4.4 kHz, red and blue contours) were collected
for 128 ms. Eight positive and negative contour levels are plotted with an 1.8-fold incre-
mentation starting at 1% of the maximum intensity of signal 3a at 7.8 ppm belonging to
imidacloprid. This corresponds to 0.6% of the maximum intensity of signal 3b at 8.37 ppm.
A highly-resolved one-dimensional 1H spectrum was added on top of the spectrum.

of the solid substances at the given dynamic ratio in terms of mass, particularly given
that the pyridine precursor is hygroscopic. However, the contour levels were plotted with
an 1.8-fold incrementation starting from 1% of the maximum intensity of signal 3a of
imidacloprid, so that the representation of the spectra is not substantially a�ected. The
�rst contour level of signal 3b corresponds to 0.6% of the maximum intensity. As expected,
bilevel decoupling with B1,RMS = 4.4 kHz allows for the identi�cation of cross peaks for
positions 3a and 3b. Additionally, an artifact due to long-range transfer between the 3b
carbon to the 3a proton yields a further cross peak. All this information content is retained
when the BROCODE is used despite the drastically reduced RF levels of 2 kHz. Sidebands
remain below 1% for signal 3a and 0.6% for signal 3b despite the fact that the 1JCH couplings
for the aromatic moieties exceed 140 Hz which is the value used in the optimizations and
despite the fact that the RF levels were calibrated by automated routines. Nevertheless,
the poor resolution in the 1H dimension does not allow for a discrimination of impurity
signals and typical HSQC artifacts at a �rst glance. Therefore, longer AQs are desirable.

The experiments described above were repeated with AQ = 512 ms where B1,RMS for
caWURST-2 bilevel decoupling had to be reduced to 2 kHz according to probehead spec-
i�cations. Due to the extended AQ the resolution could be boosted to 1.95 Hz. Even so,
this did not lead to the unambiguous identi�cation of an impurity signal at position 4
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for several reasons. The prolonged AQ requires a repetition of the BROCODE sequences.
Since the sequences are non-cyclic and according to the categorization of section 1.2.3
behave like PP pulses, each repetition impairs the decoupling performance, which can lead
to a slight increase in sideband intensities and the introduction of distinct sidebands very
close to the center peak. Enhanced resolution also may a�ect sideband intensities such that
the individual sidebands are better resolved and may have increased intensity at the given
frequency. Another method to boost resolution is linear forward-prediction (LFP). The full
FID can in principle be used to predict another chunk of data up to the same amount as
the FID itself. For the spectra presented in this section, LFP worked more reliably with the
spectra which provided an already increased resolution due to 512 ms AQ. At the same
time, slightly higher sideband amplitudes may be a spurious byproduct. Nevertheless, LFP
is attractive in this context since it can lead to resolved resonance line splittings due to
3JHH couplings and occasionally even 4JHH couplings (another example will be discussed
further below). Resolved line splittings are in principle bene�cial in order to distinguish
impurity signals from sidebands, but in the case of position 4 did not help to resolve the
signal belonging to the pyridine precursor. Excerpts of the HSQC spectra showing signals
for position 3a and 3b for both compounds are depicted in �gure 2.42. With the help
of LFP, the time-domain data corresponds to an experiment with more than 1 s of AQ
yielding a resolution below 1 Hz. Again, eight positive and negative contour levels were
plotted with an 1.8-fold incrementation but this time starting from 1.2% of the maximum
intensity of signal 3a of imidacloprid. Obviously the intensity threshold where only the
signal of the pyridine precursor is observable had to be lifted in the higher resolved spectra
using the BROCODE. The same contour levels correspond to about 0.7% of the maximum
intensity at position 3b of imidacloprid where the impurity signal would be hidden among
the sidebands which is why the contours in the lower panel of �gure 2.42 had to be raised
to 1% to identify the pyridine precursor. When caWURST-2 bilevel decoupling is used,
sidebands are more abundant and obtrusive so that the impurity signals have to be sought
after among the sidebands.

For a more detailed analysis, 1D slices were extracted for signals 3a and 3b for both
resolutions. The digital resolution of the 13C dimension was increased to about 74 Hz
using a zero-�lling factor of four so that 1D slices can be extracted closer to the actual
13C chemical shift of the impurity signal. This facilitates a more reliable identi�cation
of impurity resonances. Slices of signal 3a extracted from the spectra acquired with the
di�erent decoupling schemes as well as di�erent resolutions are given in �gure 2.43. At the
resolution achieved by AQ = 128 ms, no J -couplings can be resolved so that the impurity
signal at position 3a can only be distinguished from the long-range transfer artifact at the
chemical shift of position 4 on a closer look. Nevertheless, using only B1,RMS = 2 kHz also
the BROCODE can provide sideband amplitudes which are marginal enough to identify
signals of the impurity component. Upon increasing the resolution by applying LFP to
datasets acquired with AQ = 512 ms, both the 3JHH and the 4JHH couplings of the signals
at position 3a can be resolved. Unluckily, this also applies to the sidebands caused by the
bilevel method, which are still spurious at the 13C chemical shift of the impurity signals
such that they equal the latter. However, it is now easily possible to at least discern transfer
artifacts from all other signals appearing in the spectrum. This is particularly bene�cial
when the BROCODE is used at this resolution, since now the only relevant signal is easily
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Figure 2.42.: HSQC comparison for signals 3a and 3b of the imidacloprid/pyridine pre-
cursor mixture. Experiments using the BROCODE pulses (black and gray contours)
and caWURST-2 bilevel decoupling (red and blue contours) were collected for 512 ms
(B1,RMS = 2 kHz in both cases). Eight positive and negative contour levels are plotted
with an 1.8-fold incrementation starting at 1.2% of the maximum intensity of signal 3a
at 7.8 ppm belonging to imidacloprid (upper panel) and 1% of the maximum intensity of
signal 3b at 8.37 ppm (lower panel). A highly-resolved one-dimensional 1H spectrum was
added on top of the spectrum.

identi�able due to its line shape de�ned by J -couplings. The most signi�cant remaining
sidebands are directly next to the center peak which are most likely due to the repetition
of the BROCODE sequences. This appears plausible since these sidebands are found about
8 Hz away from the center peak which corresponds to 1/128 ms. A similar trend can be
observed for position 3b. 1D Slices of signal 3b extracted from the same spectra are given
in �gure 2.44. Again, looking at the spectra recorded with AQ = 128 ms, the information
content of the experiment using bilevel decoupling at B1,RMS = 4.4 kHz can be retained
when the BROCODE is employed at the much reduced RF power levels. At the higher
resolution and equal RF power as the BROCODE, bilevel decoupling su�ers from very
obtrusive sidebands which exceed the intensity of the impurity signal by far. Using the
BROCODE however, the signal of position 3b of the pyridine precursor can be identi�ed
with the 4JHH coupling moderately resolved.

The aspect of increased 1H resolution in decoupled HSQC spectra due to extended AQ
facilitated by the extremely low-power BROCODE sequences and the possible synergy
with LFP was further studied on a sample of (+)-borneol. The compound class of bornanes
and norbonanes is well studied[114] and is a good example for molecules that have cyclic
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A B

Figure 2.45.: Structure (A) and overlapping signals 5n and 6x (B) of (+)-borneol. Atom
numbering was chosen according to [114].

moieties or aliphatic chains which are either not highly- or not diversely substituted
so that CH2 groups can form rather complex spin systems. In the case of (+)-borneol,
proton 5-endo (here denoted 5n) and 6-exo (here denoted 6x) both resonate at 1.25 ppm
and are coupled which results in a higher order spectrum. The atom numbering and
particular 1H signal are shown in �gure 2.45. Such multiplets can not be deconvolved by
homonuclear correlation spectra such as COrrelation SpectroscopY (COSY) [115] or TOCSY.
Figure 2.46 shows a Double-Quantum-Filtered COSY (DQF-COSY) [116] spectrum (methyl
groups were excluded) of (+)-borneol with annotated 1D 1H spectra used as projections.
The assignment of the resonances was adopted from [114]. The signal at about 2 ppm
stems from the hydroxyl group. The diagonal peak of protons 5n and 6x shows only
three correlations to signals 2x, 5x, and 6n. Without knowing the structure, it can not
be said a priori if these cross peaks are due to 2JHH, 3JHH or even 4JHH couplings and
which of the two protons in question gives rise to these correlations. An HSQC spectrum
reveals that the two protons at 1.25 ppm are not attached to the same carbon atom, so
they can in principle be deconvolved using the 13C dimension in heteronuclear correlation
experiments. The signals of position 3 are assigned rather easily. With the help of COSY
and HSQC correlations as well as some values for homonuclear J -couplings, signals 5n
and 6x can be solved indirectly as soon as the signals for 5x and 6n are unambiguously
assigned. Nevertheless, in complex spectra (regardless whether the complexity is caused
by the structure of a single compound or overlap is caused by a mixture of compounds)
it might be necessary to directly solve multiplets such as 5n and 6x. Given that due to
the use of heteronuclear decoupling, the resolution in the 1H dimension is usually very
limited, several spectra using the BROCODE were recorded. Experiments were conducted
with AQ = 128 ms and 512 ms both with and without the use of LFP so that datasets with
e�ective AQs of 128, 256, 512 and 1024 ms were obtained. For the 1H spectral width of
4 ppm this yielded resolutions of 7.84, 3.92, 1.95 and 0.98 Hz, respectively. Corresponding
spectra for the former and the latter showing the CH2 region of (+)-borneol is depicted in
�gure 2.47. It is easily recognizable from the contours that the spectrum reveals a lot more
�ne structure of the individual cross peaks upon the fourfold increase brought about using
the BROCODE and LFP. A more detailed analysis of the cross peaks was performed by a
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Figure 2.46.: Two-dimensional DQF-COSY for (+)-borneol. A highly-resolved 1D 1H
spectrum was used for the projections. Resonance assignment was adopted from [114].

comparison with simulations of simple spin systems. 1D slices of the HSQC spectra for all
four resolutions as well as simulated spectra of signals 5n and 6x are given in �gure 2.48.
The experiments with AQ = 128 ms show no discernible �ne structure and the cross peaks
obtained by LFP only reveal a triplet-like envelope. Even the extended AQ of 512 ms only
reveals a quantitative di�erence between both signals which can be explained by di�erent
magnitudes of the 2JHH coupling within the CH2 groups, the 3JHH couplings between 5n
and 6x themselves and the 3JHH couplings to 5x and 6n, respectively. When LFP is applied
to the experiment with AQ = 512 ms, a qualitative di�erence is revealed as the signal of
proton 6x shows a further �ne structure which can only be explained by an additional
coupling. The COSY correlation to proton 2x therefore must be due to a 4JHH coupling
between the former and proton 6x. The four protons at positions 5 and 6 were plugged into
the simulation for signal 5n using their respective chemical shifts and 2J5n5x = −12.2 Hz,
3J5n6x = 4.6 Hz and 3J5n6n = 9.4 Hz. For signal 6x, a �ve-spin system using the protons at
positions 5 and 6 as well as 2x was simulated using the respective chemical shifts and
2J6n6x = −12.7 Hz, 3J5n6x = 4.6 Hz, 3J5x6x = 12.4 Hz and 4J2x6x = 1.9 Hz. The assignment of
the overlapping resonances 5n and 6x is thus also more directly possible. Resolving the
full multiplet structure of overlapping signals is not only useful for strongly coupled spin
systems but can also facilitate a direct multiplet analysis in weakly coupled spin systems.
More importantly, it is highly desirable to exploit the simplicity of HSQC spectra to the
highest possible extent in terms of extraction of homonuclear coupling constants as it
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Figure 2.47.: Two-dimensional HSQC spectra showing the CH2 region of (+)-borneol.
Experiments are given for AQ = 128 ms (red contours) and 512 ms using LFP (black
contours). A highly-resolved 1D 1H spectrum was used for the projection. Resonance
assignment was adopted from [114].

5n: 128 ms

6x

LFP 512 ms LFP 1024 ms

Figure 2.48.: 1D HSQC slices for signals 5n (upper panels) and 6x (lower panels) of (+)-
borneol. Signals obtained from experiments with AQ = 128 ms and 512 ms are given in
red and black, respectively. Simulations of spectra with AQ = 1024 ms are shown in blue.
The values for AQ and the use of LFP are indicated as insets.
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may render in terms of information theory more complex experiments like Heteronuclear
Multiple-Bond Correlation (HMBC) [117] or HSQC-TOCSY [118] expendable.

In summary, the BROCODE was presented as the possibly most general and universal
approach for sideband suppression in low-power broadband heteronuclear decoupling.
Within the established con�dence limits of residual sideband amplitudes, the information
content of the decoupled HSQC spectra can be retained using the lower levels of RF energy
dissipation. By using the BROCODE repetitively in experiments with AQ = 512 ms (and
LFP), homonuclear J -couplings could be extracted which increased the information content
of the HSQC spectra discussed in this section. This was not possible using adiabatic bilevel
decoupling within usual adiabaticity constraints (B1,RMS = 4.4 kHz) given that the same
net RF energy dissipation according to equation 1.154 ensues much shorter AQs.

2.2.7. Materials &methods

Simulations were performed using the MATLAB®software package with either self-written
scripts and functions (see appendix A.2.1) or code developed during the theses of Sebas-
tian Ehni[51] and Martin Koos as well as modi�cations of the latter with the following
exceptions: Spectrograms[54] shown in �gures 1.7, 2.10 and 2.39 were obtained from a
software package provided by Thomas Heydenreich, Technical University Munich. The
data for the experimental decoupling pro�les given in �gures 2.14, 2.15, 2.17, 2.18, 2.36
and 2.37 was processed using a MATLAB®Metabolomics toolbox provided by the Bruker
Biospin GmbH. Adiabatic shapes used in the simulations discussed in sections 2.1.3, 2.1.4
and 2.2.1 as well as in corresponding experiments in section 2.2.1 were generated using
the Shapetool of the Bruker TopSpin®software package. The BUSS shape[107] used in
the simulations of �gure 2.16 was provided by Dr. Franz Schilling, Technical University
Munich.

Experimental decoupling pro�les shown in the �gures referenced above were obtained
from spectra recorded on a 600 MHz Bruker Avance III spectrometer equipped with an
inversely detected 1H,13C,15N-triple-resonance cryogenically cooled TCI probehead using
a 500 mM sample of 13C-enriched methanol dissolved in CDCl3. 1D 1H spectra with
synchronized inverse gated 13C decoupling were acquired with spectral widths of 10 kHz
corresponding to 16.7 ppm with the carrier frequency set to the methyl resonance at
3.49 ppm. The 13C resonance at about 50.75 ppm which served as the zero decoupler o�set
for the decoupling experiments was determined individually for each series of experiments
within 0.01 Hz accuracy from a highly-resolved 1D 13C spectrum. Data was collected
for 128 ms corresponding to 2560 complex data points which were zero-�lled to 16384
points. Time-domain data was apodized using a cosine-squared window function and an
exponential line broadening of 6 Hz prior to FT. The frequency-domain data was then
phased and subject to an automated baseline correction procedure. Four dummy scans
were used in each series of experiments with a recovery delay of 30 s. Experiments using
bilevel decoupling with two or four scans made use of the CPD program bi_p5m4sp_4sp
whereas for the single-scan experiments the p5m4sp180 program was used as implemented
in Bruker TopSpin® 3.0 (and above). Measurements using the BROCODE required self-
written CPD programs using bilevel syntax (see appendix A.5). The temperature was
set to 300 K. RF levels for the decoupler channel were calibrated using the o�-resonance
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scaling of the 1JCH coupling of methanol under CW irradiation according to equation 2.5.
The coupling constant of about 141 Hz was determined individually for each series of
experiments within 0.6 Hz accuracy from a non-decoupled 1D 1H spectrum. O�-resonance
scaling was used to determine the power levels corresponding to uRF = 4 kHz (62.5 µs pulse
length) within±1% accuracy. For experiments using caWURST-2 pulses at B1,RMS = 4.4 kHz,
the shapes had to be calibrated toumax

RF = 7.19 kHz (34.77 µs pulse length) for the low-power
component and 10.5 kHz (23.81 µs pulse length) for the high-power component. The shapes
had to be calibrated toumax

RF = 3.27 kHz (76.45 µs pulse length) for the low-power component
and 4.77 kHz (52.41 µs pulse length) for the high-power component to achieve equal scaling
for operation at B1,RMS = 2 kHz. The optimization of the BROCODE pulses resulted in
shapes with di�erent values for umax

RF . Upon conversion from the three-column ux , uy , ∆t
into the two-column amplitude/phase format of Bruker shapes, the amplitudes which
will serve as the 100% reference in the Bruker format were determined from rounding
umax

RF up to the nearest multiple of 0.5 kHz. These values and the corresponding pulse
lengths were then used to calibrate the actual power levels. The individual pulse requires
umax

RF = 6623.50 Hz which was referenced to 7 kHz (35.71 µs pulse length). The two-step
BROCODE pulses require umax

RF = 6192.08 and 7049.91 Hz which were referenced to 6.5
and 7.5 kHz, respectively (38.46 and 33.33 µs pulse length, respectively). For the four-
step BROCODE cycle, pulses were obtained with umax

RF = 6478.45, 6578.45, 5977.50 and
5759.49 Hz which were referenced to 6.5, 7, 6 and 6 kHz, respectively (38.46, 35.71, 41.67
and 41.67 µs pulse length, respectively). Power levels for 1H pulses were calibrated by
automated routines.

Experiments to obtain the spectral information about imidacloprid and the pyridine
precursor given in table 2.7 were recorded on a 500 MHz Bruker Avance III HD spectrometer
equipped with a CryoProbe Prodigy™using 100 mM samples of imidacloprid and 2-chloro-
5-chloromethyl-pyridine dissolved in DMSO-d6. 1H chemical shifts were extracted from
1D spectra acquired with spectral widths of 4 kHz corresponding to 8 ppm with the carrier
frequency set to 6 ppm. Data was collected for 1024 ms corresponding to 8192 complex data
points which were zero-�lled to 16384 points. Experiments were recorded using a single
scan. 13C chemical shifts were extracted from 1D spectra using WALTZ-65 1H decoupling
at uRF = 2.5 kHz (100 µs pulse length) throughout the experiments which were collected
from 16 scans using four dummy scans and a recovery delay of 1.5 s. Spectral widths of
17.5 kHz corresponding to 140 ppm with the carrier frequency set to 100 ppm were used.
Data was collected for 1.87 s corresponding to 65536 complex data points which were
zero-�lled to 131072 points. Time-domain data for all experiments was apodized using an
exponential line broadening of 0.3 Hz prior to FT and phase correction. RF levels were
calibrated automatically. The temperature was set to 298 K. 1JCH couplings were determined
according to the method described in [119] from two-dimensional CLIP-HSQC [113] spectra.
Spectral widths were adopted from the corresponding 1D spectra and data matrices of
8192 × 512 complex data points were collected. Time-domain data was zero-�lled to
16384 × 1024 points and apodized using a cosine-squared window function prior to FT
and phase correction. Experiments were recorded using two scans and 16 dummy scans
with a recovery delay of 1 s. Delays for magnetization transfer via 1JCH couplings were
set for a 145 Hz coupling constant. The pulse sequence was adopted from the hsqcetgpsp.2
sequence provided in the standard Bruker library and uses SPs for inversion and refocusing
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of 13C spins. OCT-derived pulses were used for these purposes. The pulse parameters of
the corresponding BIBOP and BURBOP shapes such as bandwidth (∆ν ), RF levels (umax

RF ),
pulse length (T ), compensation of B1 variations (ϑ ) and the number of pulse increments
are given in accordance to the nomenclature introduced in [12] such as BURBOP-α (∆ν ,
umax

RF , T , ϑ , #points). The 180◦ pulses acting on 13C were replaced by BIBOP (37.5 kHz,
10 kHz, 600 µs , ±5%, 1200) for inversion and BURBOP-180(37.5 kHz, 10 kHz, 1100 µs , ±5%,
2200) for refocusing. Both were introduced in [15].

Decoupled HSQC experiments on the imidacloprid/pyridine precursor mixture were
recorded on a 600 MHz Bruker Avance III spectrometer equipped with an inversely detected
1H,13C,15N-triple-resonance cryogenically cooled TCI probehead using a sample of the
compound mixture dissolved in DMSO-d6 at a concentration ratio of 500/5 mM. Spectra
were acquired with spectral widths of 3.6 and 18.9 kHz for 1H and 13C, respectively,
corresponding to 6 and 125 ppm with the carrier frequencies set to 6 and 97 ppm. For the
spectra shown in �gure 2.41, data was collected for 127.9 ms and 3.40 ms in the 1H and
13C dimension, respectively. This corresponds to a data matrix of 920 × 128 complex data
points which was zero-�lled to 16384 × 256 points and apodized using a cosine-squared
window function prior to FT and phase correction. Experiments were recorded using four
scans and 16 dummy scans with a recovery delay of 3 s. Delays for magnetization transfer
via 1JCH couplings were set for a 145 Hz coupling constant. The pulse sequence was
adopted from the hsqcetgpsp.2 sequence provided in the standard Bruker library using the
same pulse shapes for inversion and refocusing as given above. RF levels were calibrated
automatically and the temperature was set to 300 K. The shapes for bilevel decoupling
at B1,RMS = 4.4 kHz and the four-step BROCODE cycle were calibrated according to the
speci�cations given above. The spectra shown in �gure 2.42 employed bilevel decoupling
at B1,RMS = 2 kHz and the BROCODE using the same parameters as given for �gure 2.41
except as follows: Data was collected for 511.80 ms in the 1H dimension (the same 3.40 ms
were recorded in the 13C dimension) which resulted in a data matrix of 3682 × 128 complex
data points. LFP in the 1H dimension was applied using 18 coe�cients to obtain a data
matrix of e�ectively 7364 × 128 complex data points which were zero-�lled to 16384 × 256
points. For repetitive application of the BROCODE it was necessary to acquire a series
of single-scan experiments and add up the time-domain data afterward. This is due to
memory limitations of the spectrometer hardware and strongly depends on the console
but can in principle be automated. The projection of both �gures was taken from a highly-
resolved 1D 1H spectrum acquired using a spectral width of 4.8 kHz corresponding to
8 ppm with the carrier frequency set to 6 ppm. Data was collected in a single scan for 1.7 s
corresponding to 16384 complex data points which were zero-�lled to 32768 points. The
time-domain data was apodized using an exponential line broadening of 0.3 Hz prior to
FT and phase correction.

Experiments on (+)-borneol were also recorded on a 600 MHz Bruker Avance III spec-
trometer equipped with an inversely detected 1H,13C,15N-triple-resonance cryogenically
cooled TCI probehead using a sample dissolved in CDCl3 at a 500 mM concentration. The
DQF-COSY shown in �gure 2.46 was acquired with spectral widths of 2.4 kHz in both 1H
dimensions corresponding to 4 ppm with the carrier frequency set to 2.5 ppm. Data was
collected for 1.71 s and 106.75 ms in the direct and indirect dimensions, corresponding to
a data matrix of 8192 × 512 complex data points which was zero-�lled to 16384 × 1024.

107



2. Heteronuclear Decoupling: The BROCODE

Time-domain data was apodized using a sine-squared window function prior to FT. The
spectrum was recorded using eight scans and 16 dummy scans with a recovery delay of
1 s. The cosydfetgp.2 sequence provided in the standard Bruker library was employed. RF
levels were calibrated automatically and the temperature was set to 300 K.

Decoupled HSQC experiments on (+)-borneol shown in �gures 2.47 and 2.48 used
spectral widths of 2.4 and 11.3 kHz for 1H and 13C, respectively, corresponding to 4 and
75 ppm with the carrier frequencies set to 2.5 and 45 ppm. Data was collected for 127.6 ms
(red contours and slices), 511.66 ms (black contours and slices) in the 1H and 3.40 ms in
the 13C dimensions, respectively. This corresponds to data matrices of 612 × 128 (red
contours and slices) and 2454 × 128 (black contours and slices) complex data points
which were zero-�lled to 8192 × 256 points. Time-domain data was apodized using a
cosine-squared window function prior to FT and phase correction. Experiments were
recorded using four scans and 16 dummy scans with a recovery delay of 3 s. Delays for
magnetization transfer via 1JCH couplings were set for a 145 Hz coupling constant. The
pulse sequence was adopted from the hsqcetgpsp.2 sequence provided in the standard
Bruker library using the same pulse shapes for inversion and refocusing as given above.
The Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) transfer element[120]

prior to acquisition was replaced by a perfect echo INEPT (PE-INEPT) element to remove
the e�ects of homonuclear J -couplings during heteronuclear magnetization transfer[121].
RF levels were calibrated automatically and the temperature was set to 300 K. The shapes
for the four-step BROCODE cycle were calibrated according to the speci�cations given
above. In cases where LFP in the 1H dimension was applied, 33 coe�cients were used to
obtain data matrices of e�ectively 1224 × 128 (red contours and slices) and 4908 × 128
(black contours and slices) complex data points which were zero-�lled to 8192 × 256
points. For repetitive application of the BROCODE a series of single-scan experiments
was acquired and added up in the time-domain afterward. The projection of both the
COSY and HSQC spectra was taken from a highly-resolved 1D 1H spectrum acquired using
the same spectral width as in the two-dimensional experiments. Data was collected in a
single scan for 3.4 s corresponding to 16384 complex data points which were zero-�lled to
32768 points. The time-domain data was apodized using an exponential line broadening
of −0.1 Hz and a Gaussian multiplier with a maximum position at 0.6 relative to the FID
prior to FT and phase correction. The same spectrum was used for �gure 2.45 B.

Imidacloprid, 2-chloro-5-chloromethyl-pyridine and (+)-borneol were purchased from
Sigma-Aldrich®. Deuterated solvents and 13C-enriched methanol were purchased from
Eurisotop®. All compounds were used without further puri�cation.
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I want us to face the shape we’re in
A world of confusion awaits our sons
and kin
Let’s reset it all

Karnivool - We Are (Asymmetry)

3.1. Introduction

3.1.1. Motivation

NMR structure parameters accessible in isotropic media such as chemical shifts, J -couplings
and Nuclear Overhauser Enhancement (NOE) distances have their limits as far as the elu-
cidation and veri�cation of structure models of small to medium-sized organic molecules
is concerned given that they are rather short-ranged. Therefore, high-resolution NMR
spectroscopy experienced a major boost when weakly-orienting media were introduced to
induce partial alignment upon the analyte molecule so that anisotropic structure param-
eters become available. Contributions to the Hamiltonian which exhibit an orientation
dependence (see equations 1.16, 1.20 and 1.28) resurface to a small extent and become
observable as RCSA [122], RQCs [123] and RDCs [124–128] in NMR spectra. The latter proved
to be especially potent for solving structural problems. For small molecules in particular,
heteronuclear one-bond RDCs, notably 1DCH couplings, are highly interesting since they
can correlate C-H vectors (the most basic spin systems in organic compounds) over longer
distances than the NOE by using the B0 �eld as an external orientational reference.

Already in isotropic liquids, 1JCH couplings carry a wealth of information. They indicate
the degree of hybridization of carbon atoms[129], serve as a measure of the con�guration-
relevant anomeric e�ect in saccharides[130] and can be used for the conformational re-
�nement of peptides[131]. Together with 1DCH couplings however, challenges with the
structural elucidation of many di�erent kinds of molecules in terms of conformation[132–136],
relative con�guration[119, 137–142] and constitution[143] could be met. Using chiral align-
ment media, enantiomers show di�erences in alignment so that questions concerning
enantiomeric excess and absolute con�guration of molecules can be addressed[144–147].

RDCs in general are obtained by evaluating the di�erences between isotropic J -couplings
and the total couplings under anisotropic conditions given by

T = J + 2D. (3.1)
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Figure 3.1.: Pulse sequence of the CLIP-HSQC. Narrow and wide bars correspond to
90◦ and 180◦ pulses, respectively. Phases are x unless indicated otherwise. Transfer
delays are calibrated to match ∆ = 1/(21JCH). Phases are ϕ1 = x , −x ; ϕ2 = x , x , −x , −x and
ϕrec = x , −x , −x , x . The narrow gray rectangle indicates a 90◦ pulse to ensure anti-phase
removal which can be cycled according to ϕ1. Delays δ accommodate for the applications
of PFGs. Coherence order selection is applied with the gradients of ratio G1:G2 = 80:20.1
for 13C as the heteronucleus. Phase-sensitive detection in the 13C dimension is achieved
by using an Echo/antiEcho-TPPI protocol.

In the case of 1DCH couplings, a massive interest in 1H,13C-HSQC-type experiments
emerged, from which 1JCH and 1TCH couplings could be reliably extracted either from the
direct[15, 113, 148–153] or indirect dimension[154–157]. All these experiments have shifted their
emphases between sensitivity, resolution, robustness, line shape, speed and the multiplet
structure of often notorious diastereotopic CH2 groups. A good compromise between all
those aspects and probably the most-widely used experiment is the CLIP-HSQC [113]. The
pulse sequence is depicted in �gure 3.1. The 90◦ pulse acting on 13C prior to acquisition
(indicated by a gray bar in �gure 3.1) is meant to convert residual anti-phase magnetization
(e.g. 2IySz) from incomplete INEPT back transfer to non-detectable multiple-quantum
coherence (e.g. 2IySy) to prevent the former to introduce a dispersive contribution to
the heteronuclear doublet. This yields purely absorptive signals with respect to the 1JCH
coupling which can readily be extracted from in-phase doublets.

The most signi�cant drawback of all HSQC experiments where couplings are obtained
from the 1H dimension are the abundant nJHH and nDHH couplings which can cause overlap
and asymmetric doublets due to line shape distortions arising from strong coupling. Both
can impair an accurate determination of 1JCH and 1TCH couplings. In aligned samples in
particular, 1H nuclei can form highly complex networks due to nDHH couplings which
lead to a decrease in sensitivity and resolution. This e�ect is illustrated in �gure 3.2. The
gray contours indicate that under anisotropic conditions, resolution is lost. Therefore,
possibilities to apply homonuclear 1H decoupling to HSQC experiments in order to enable
a more accurate extraction of one-bond couplings are explored in the following. It has to
be noted that an approach based on dipolar decoupling was proposed some time ago[158].
However, it has not found as widespread applications and is far less general as the methods
which will be discussed in section 3.1.2.
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Figure 3.2.: Excerpts of an annotated CLIP-HSQC spectrum presented in [139] illustrating
the e�ects on the line shape going from an isotropic environment (black contours) to
an anisotropic environment (gray contours). 1TCH couplings can either be increased or
decreased by the dipolar contribution compared to the 1JCH coupling. (Graphic taken and
modi�ed from [139])

3.1.2. Broadband Homonuclear Decoupling

Sensitivity and resolution are main concerns of NMR method and instrumentation devel-
opments. Higher static magnetic �elds and novel probe technologies signi�cantly boosted
sensitivity but despite the increased chemical shift dispersion due to higher �eld strengths
and the possibility to spread resonance lines across multiple dimensions, the resolution
in 1H spectroscopy poses a challenge in terms of signal overlap. Therefore, methods that
collapse homonuclear multiplets to singlets have been pursued almost from the get go.
Homonuclear decoupling approaches can be grouped in several categories. One of the
oldest methods is a projection from a 2D J -resolved spectrum tilted by 45◦ in frequency
space[159]. Unluckily, due to the phase-twist line shape of the traditional J -resolved experi-
ment, the projection has to be taken from an absolute-value spectrum which limits the �nal
resolution because of large feet next to the signals caused by the dispersive contributions.
Apart from processing techniques (e.g. [160] and references therein), several experimental
approaches towards absorptive line shapes have been proposed. Dispersive contributions
can be removed from the spectrum by zero-quantum �ltering[161] followed by the applica-
tion of a multiplet reduction algorithm[162]. Alternatively, a conventional J -spectrum can
be combined with a so-called anti-J -spectrum of same intensity that has a reversed tilt
and is mirrored along the J -dimension in order to cancel dispersive signal components
and yield the desired line shape[163]. The possibility to remove homonuclear splittings
via J -evolution periods was exploited in Di�usion-Ordered SpectroscopY (DOSY) where
reduced signal overlap facilitates more reliable extraction of di�usion coe�cients[164, 165].

In general, phase-sensitive homonuclear decoupled spectra can be obtained in various
ways. The e�ect of homonuclear J couplings during evolution periods can either be
kept constant (and therefore practically hidden) or be refocused. A constant-time (CT)
period allows for the evolution of chemical shifts for a variable period while the evolution
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of J couplings is kept constant by shifting a 180◦ pulse in an indirect dimension of a
multi-dimensional NMR experiment[166, 167]. In addition to homonuclear decoupled 1D 1H
spectra, CT evolution is the only possibility to obtain COSY spectra with homonuclear
decoupling in the indirect dimension[168, 169]. Direct J -refocusing approaches fail for COSY
as they would collapse the anti-phase multiplets to zero intensity (unless an experiment
is chosen that produces in-phase cross peaks[170]). CT experiments are widely used in
biomolecular NMR to suppress homonuclear couplings among heteronuclei in isotopically
enriched materials[171].

The most relevant methods to achieve broadband homonuclear 1H decoupling employ J -
refocusing elements using RF pulses. Since decoupling among the abundant 1H nuclei can
not be achieved by RF irradiation in the sense of chapter 2, the pulse sequences are based
on the selection of sub-ensembles of spins. The result is an inherent sensitivity penalty
given that a small set of active spins has to be selected which can then be decoupled from
a larger set of passive spins to a�ord the decoupling and therefore increased resolution.
This methodology became known as pure shift (PS) NMR and exploded into a plethora
of experiments during the course of this thesis and which has already been extensively
reviewed[172–174]. The fundamental principles at the core of all those experiments, however,
are rather old. The �rst of the reported building blocks which can serve as what can be
referred to as a single-spin inversion (SSI) element is the BIlinear Rotation Decoupling
(BIRD) isotope �lter element[175]. It acts as an e�ective 180◦ rotation on protons directly
bound to a heteronucleus (e.g. 13C) while leaving more remotely connected protons
una�ected. Since the discrimination is facilitated by a di�erence of the magnitudes of
heteronuclear J -couplings, the 13C spin can be regarded as a local decoupling �eld. If
13C-bound 1H magnetization is selected, broadband homonuclear decoupling is achieved by
the combination of the BIRD �lter with a hard 180◦ pulse in the middle of a free evolution
period as it will allow the chemical shift evolution of the active spins while refocusing
the homonuclear J -couplings to the remotely-bound passive spins. By incrementing this
evolution period and concatenating the �rst points of the resulting FIDs, a PS FID can
be obtained. The sensitivity of this experiment depends on the natural abundance of the
heteronucleus which is 1.1% in the case of 13C. Although the BIRD element was introduced
as a PS method, up until recently it was mostly used as a building block in heteronuclear
correlation experiments[154–157, 176, 177].

A second pulse sequence building block that can be used in a PS context (although not
necessarily a SSI element) is a succession of two small-�ip-angle pulses (β < 90◦). The fact
that the e�ciency of di�erent coherence transfer pathways (CTPs) depends on the �ip angle
of a mixing pulse was �rst presented for the Exclusice COrrelation SpectroscopY (E.COSY)
experiment[178], where cross peaks are simpli�ed and appear as if COSY spectra with
di�erent selected coherence orders were combined. The same e�ect can be achieved by
two successive 90◦ pulses, phase-shifted by β , which was also the basis of the less-used
time-reversal method[179]. However, if a small-�ip-angle pulse pair is used instead of a
90◦ mixing pulse, COSY peaks are simpli�ed in a way that is more suitable to obtain PS
1H spectra. In the z-COSY experiment[180], diagonal and cross peaks of the active spins
only retain those multiplet components where the passive spins have the same spin state
in both the direct and indirect dimension and the remaining transitions are suppressed
if β is su�ciently small. The resulting diagonal peaks therefore completely lie along the
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diagonal. The anti-z-COSY provides diagonal peaks where all multiplet components lie
perpendicular to the diagonal by inserting an additional 180◦ rotation prior to the β pulse
pair. Now only multiplet components are retained in which the spin states of passive spins
in the indirect dimension was di�erent from the direct dimension. Therefore the spectrum
can be tilted by 45◦ just as a J -resolved spectrum and the diagonal peaks can be used to
obtain an absorption-mode PS spectrum from a projection[181]. Also the possibilities to
decouple via small-�ip-angle pulses has not been taken up again until recently.

Certainly the most signi�cant approach was presented by Zangger and Sterk[182] and
their seminal work of 1997 introduced two major concepts at once. First, the sub-ensemble
selection can be achieved by spatial frequency encoding. A combination of a band-selective
90◦ pulse with a PFG leads to broadband excitation of each resonance at a given sample
volume. J -refocusing is achieved by the combination of a hard and selective 180◦ pulse
while a PFG is applied simultaneously so that the active spins of a given slice of the sample
experience a 360◦ rotation and are decoupled from all passive spins by the hard 180◦
pulse. This Zangger-Sterk (ZS) SSI also sits in the middle of an indirect 1H chemical shift
evolution period but the second novelty that was introduced concerns the data acquisition.
It is not mandatory to restrict the collection of data to the single point in time where
homonuclear couplings are refocused. Chunks of data can be recorded for as long as
AQ � J−1 is ful�lled, which corresponds to several ms in the case of nJHH couplings
which are typically below 20 Hz. The result is a reduced time requirement to obtain a PS
FID since it can be concatenated from usually only a few dozen chunks which is why this
and related methods are referred to as interferogram-based or pseudo-2D experiments.
Now that only a few increments of an indirect dimension are needed, PS spectra can be
acquired in minutes rather than hours. The sensitivity is clearly reduced since only a small
portion of spins contribute to the signal at a given resonance frequency. More speci�cally,
this depends on the minimum chemical shift di�erence of spins that need to be decoupled
as it de�nes the necessary selectivity ∆ν of the selective pulse which in turn de�nes the
slice thickness ∆z in combination with the slice selection gradient Gs via

∆z =
∆ν

γ
·Gs . (3.2)

The ZS element resurfaced in the context of DOSY experiments where signal overlap
is a signi�cant impediment for the determination of di�usion coe�cients[183]. Several
modi�cations to the original pulse sequence were proposed and the term PS NMR was
established[184]. A modi�ed ZS pulse sequence is depicted in �gure 3.3 A. For simplicity,
slice-selective excitation was replaced by a hard 90◦ pulse. This necessitates selection of the
active spins by CTP gradients to obtain clean spectra. Further, the newly-introduced delays
τ not only accommodate for PFGs and recovery delays. The additional echo time around
the hard 180◦ pulse can delay the refocusing of homonuclear couplings optimally until the
center of the data chunk while chemical shifts are refocused at the beginning of data acqui-
sition. In terms of the PS trajectory, now not only the very �at initial region of the cosine
wave but also the �at region of the terminal sine build-up can be monitored, e�ectively
doubling the tolerable chunk length[184]. Such a ZS-based PS pseudo-dimension can readily
be appended to two-dimensional experiments. The PS information of the direct dimension
obtained from such pseudo-3D experiments can readily be transferred to the indirect
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dimension of the �nal spectrum by means of covariance processing[185], as was proposed
for 2D-TOCSY [186, 187] and Nuclear Overhauser Enhancement SpectroscopY (NOESY) [188].
As mentioned above, SSI elements fail for COSY but covariance processing can be used
to transfer the PS information of the indirect dimension of a CT-COSY spectrum to the
direct dimension[188]. The general shortcoming of the ZS method is that the sensitivity
is connected to the slice thickness. An improved version has been proposed, where the
o�sets of the band-selective pulses are shifted after each scan, so that fresh reservoirs of
polarization are available and relaxation delays can be shortened[189].

The improved ZS data sampling scheme could successfully be applied to the BIRD
method[190]. The pulse sequence is depicted in �gure 3.3 B. Again, a combination of a
hard 180◦ pulse and an SSI, here a BIRD �lter, facilitates the decoupling. Many di�erent
BIRD �lters were proposed[191], using the spin species they a�ect with a 180◦ rotation as a
superscript. This can be either combination of protons directly (d) or remotely (r) bound
to the heteronucleus (X). The BIRD element in the gray box of �gure 3.3 B corresponds
to a BIRDd,X �lter which refocuses chemical shifts and homonuclear couplings but not
heteronuclear couplings for the directly coupled CH group. Given that 13C-bound protons
are selected by a stimulated echo and omitting the �rst 13C pulse on alternate transients, the
1H 180◦ pulse has to be timed so that heteronuclear couplings are refocused at the beginning
of acquisition, homonuclear couplings 2τ later, and chemical shifts have evolved for t1.
Since 13C-bound protons are observed, heteronuclear decoupling has to be applied during
acquisition. The correct CTP is enforced by PFGs. A major advantage of the BIRD method
is that it can bypass strong coupling (where the ZS-based experiment would fail) if the 13C
satellite of a given signal is only weakly coupled to the passive proton. The downside is
that geminal couplings within a diastereotopic CH2 group can not be suppressed because
both 1H nuclei are attached to the same 13C atom. It would further fail for isotopically
enriched compounds. A BIRD pseudo-dimension is predestined to be incorporated into
heteronuclear correlation experiments, where the sensitivity penalty has already been
paid and only a loss of S/N per unit time has to be condoned. A similar approach has
been pursued with the Reducing nuclEar Spin multiplicitiEs to singuleTs (RESET) HSQC
[192], although the data sampling scheme is di�erent in a way that a full 3D dataset is
recorded and each FID acquired contributes to the �nal S/N. Any BIRD-based PS approach
to long-range correlation experiments also has to fail since BIRD �lters can not distinguish
between di�erent remotely-bound protons. A PS HMBC experiment was proposed using
a J -resolved dimension[193].

From all PS methods discussed in this thesis, the double-β pulses were the latest bloomer.
The approach was revived by the Pure Shift Yielded by CHirp Excitation (PSYCHE)
experiment[194]. Figure 3.3 C illustrates the pulse sequence. Hard β pulses were replaced by
swept-frequency pulses in the presence of a weak PFG. The sub-ensemble of active spins
that is refocused by this stimulated echo and selected for the PS trajectory statistically
depends on sin2 β while the signal contribution of the passive spins depends on cos2 β
and needs to be suppressed. Since frequency sweeps are used instead of hard pulses,
CTPs which would lead to cross peaks in a corresponding anti-z-COSY experiment as well
as zero-quantum coherence evolution are blocked. Signals with di�erent zero-quantum
coherence evolution times can be superimposed across the sample just as described by
Keeler[161]. Spurious signals from cross peak pathways are also dephased since the corre-
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Figure 3.3.: Interferogram-based pulse sequences for PS 1D 1H NMR. Narrow and wide
bars correspond to hard 90◦ and 180◦ pulses, respectively. Phases are uniformly x . The SSI
in each sequence is indicated by a gray box. The sinc shape corresponds to a band-selective
180◦ pulse which facilitates J -refocusing in the ZS sequence (A). Heteronuclear transfer
delays in the BIRD sequence (B) are calibrated to match ∆ = 1/(21JCH). The dashed 180◦
pulse is omitted in alternate transients. Trapezoids with diagonal arrows indicate low-
power frequency-swept CHIRP pulses with low �ip angles used in the PSYCHE sequence
(C). They can be replaced by pulses which sweep frequencies in opposite directions
simultaneously as indicated by dotted arrows. Delays τ accommodate for the applications
of CTP gradients and allow for prolonged data chunks if τA (A, C) and τ (B) are chosen as
AQ/4n with n being the number of data chunks.

sponding spins are on resonance at di�erent times during the two sweeps. A unique feature
of the PSYCHE element is that spectral purity can be tuned according to the choice of β
since the intensity of the PS signals depends on sin2 β whereas the intensity of spurious
signals depends on sin4 β . PSYCHE shares almost none of the weaknesses of other PS
methods and is far less prone to strong coupling. S/N can be further improved when double
frequency sweeps are used as indicated by dotted arrows in �gure 3.3 C. The PSYCHE
element can be incorporated in the indirect dimension of a TOCSY sequence so that the
resulting spectrum can be subjected to covariance processing to yield a PS TOCSY without
a penalty in S/N per unit time[195] (apart from having to record enough t1 increments to
bene�t from decoupling). Further, it can be used to remove dispersive signal components
in J -resolved spectra[196] or to speci�cally reintroduce couplings to a chosen spin in a
related experiment[197].
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In parallel to the interferogram-based experiments, methods were proposed that cir-
cumvent the biggest disadvantage of PS techniques so far, which is the increased time
consumption a pseudo-dimension ensues. The �rst experiment that incorporated real-
time (RT) broadband homonuclear decoupling was based on BIRD elements in the middle
of short acquisition windows[198]. RT PS acquisition relies on stopping the acquisition and
internal spectrometer clock, inserting an SSI to achieve homonuclear J -refocusing, leaving
the chemical shift trajectory in the same state as it has been when acquisition was stopped
and then resume the collection of data points. These acquisition windows should be
reasonably short to ful�ll the condition AQ/n � J−1 just as in interferogram-based exper-
iments with n being the number of acquisition windows. All FID segments can be stitched
together on the �y by the spectrometer software afterwards and do not require additional
processing. The original pulse sequence to obtain BIRD-based RT PS 1D 1H spectra is
depicted in �gure 3.4 A. This sequence also relies on selecting 13C-bound 1H magnetization
and on an e�cient suppression of 12C-bound 1H signals. This is achieved by purging
heteronuclear spin states 2IzSz by a PFG and inverting these states in alternate transients
by omitting the dashed 13C 180◦ pulse in �gure 3.4 A. Further, a BIRD element �anked by
gradients ensures that solely 2IzSz states are excited. XY-supercycling[199] can be used to
increase the tolerance of BIRD �lters towards a variation of 1JCH couplings. To bene�t
from the improved data-chunking introduced in [184], the �rst acquisition period has to be
half as long as all subsequent ones. The replacement of such a homospoil-sequence with a
traditional HSQC-sequence creates an unrivaled situation among PS experiments. Given
that the sensitivity penalty is paid by the selection of dilute heteronuclei via the HSQC
transfer, RT homonuclear decoupling increases resolution and sensitivity at the same time
due to the collapse of homonuclear multiplets[200]. Doublets within diastereotopic CH2
groups remain as an irreducible multiplicity and are the only drawback that is speci�c to
this method. A general downside that can be observed in all RT PS experiments is a loss
in resolution due to broadened lines. Since acquisition is stopped but relaxation remains
in e�ect, an arti�cial source of damping is introduced which causes the line broadening.
Just recently, RT BIRD acquisition and 13C-editing was proposed to replace the multiplet
reduction algorithm (see [162]) in zero-quantum-�ltered J -resolved spectroscopy[201].

RT acquisition was soon after proposed for the ZS approach[202]. Selection of the active
spins resembles the original experiment and is achieved by slice-selective excitation.
The FID is then periodically interrupted to apply the ZS SSI as described above. The
corresponding pulse sequence is depicted in �gure 3.4 B. This sequence a�ords ZS-based
PS spectra in a reduced amount of time although sensitivity is still lost due to the slice-
selection procedure. RT ZS acquisition can readily replace conventional acquisition in
two-dimensional experiments as has been demonstrated for TOCSY [202], DOSY [203] and
Rotating frame nuclear Overhauser Enhancement SpectroscopY (ROESY) [204]. A drawback
which is speci�c to RT ZS decoupling is that the length of the selective 180◦ pulse has
to be limited in order to prevent severe discontinuities in the resulting FID, so that the
selectivity can be hampered. Several modi�cations to the RT ZS acquisition scheme have
been proposed. Couplings with respect to a single spin can be reintroduced by adding an
additional selective pulse to the ZS SSI, which removes the signal of the corresponding
spin from the spectrum[205, 206]. Given that very small splittings may be hidden due to the
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Figure 3.4.: Pulse sequences for RT PS 1D 1H NMR. Narrow and wide bars correspond to
hard 90◦ and 180◦ pulses, respectively. Phases are x unless indicated otherwise. Heteronu-
clear transfer delays in the BIRD sequence (A) are calibrated to match ∆ = 1/(21JCH). The
dashed 180◦ pulse is omitted on alternate transients. Narrow and wide sinc shapes respec-
tively correspond to band-selective 90◦ and 180◦ pulse in the ZS sequence (B). To obtain
the HOBS sequence (C), the slice-selection gradientGs has to be omitted and slice-selective
excitation is replaced by broadband excitation of the whole sample before refocusing only
the frequency region which shall contribute to the �nal spectrum.

line broadening introduced by RT ZS decoupling, an interferogram-based version of the
same experiment was proposed soon after[207].

A very important o�spring of RT ZS decoupling (although it can not be considered
broadband) are the Homodecoupled Band-Selective (HOBS) experiments, sometimes re-
ferred to as Band-Selective Homonuclear (BASH) decoupling[208–210]. Here, the subset of
active spins is a whole frequency region, which is decoupled from all spins outside that re-
gion by region-selective pulses. Unique to all PS methods, the active spins can be observed
with the full sensitivity but mutual couplings within the selected frequency region can
not be decoupled. Further, passive spins are completely removed from the spectrum, so
that it might be necessary to acquire several spectra in succession. Therefore the method
lends itself to be applied to types of molecules where the spectra can be easily divided
in distinct regions such as peptides and proteins[208, 209]. The pulse sequence is shown in
�gure 3.4 C. By omitting the slice-selection gradient Gs , observation is restricted to spins
which are refocused by the band-selective pulses, which may be far less selective now.
The HOBS approach could be applied to TOCSY [208], NOESY [209], ROESY [204] and HSQC
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experiments[208, 209] as well as measurements of relaxation times[211]. The sensitivity and
resolution achieved in the selected regions of HOBS experiments is competitive to PSYCHE
although the method is not as general. However, the SSI of the PSYCHE experiment is
too long to be applied in RT experiments so that HOBS experiments are unrivaled with
respect to the S/N per unit time ratios for the decoupled spins.

3.2. RESET Experiments

3.2.1. Basic principle

The most promising starting point to work towards broadband homonuclear decoupled
CLIP-HSQC spectra is the RESET HSQC [192]. According to the nomenclature introduced
in [191], it uses a BIRDr,X �lter to refocus all homonuclear couplings to 12C-bound pro-
tons and 1JCH couplings, while the chemical shift evolution of 13C-bound 1H nuclei is
monitored during an indirect evolution period. If a BIRDr �lter was inserted, the 13C
nuclei would remain e�ectively unperturbed and 1JCH couplings can freely evolve as
only 12C-bound protons experience a 180◦ rotation. To bene�t from the improved ZS
data-chunking proposed in [184], the BIRDr element can be replaced by a combination
of a hard 180◦ pulse and a BIRDd element with according delays as described in [190].
The resulting pulse sequence, which is referred to as CLIP-RESET HSQC in the following
is depicted in �gure 3.5. It di�ers from the conventional RESET HSQC as follows: the
90◦ pulse, indicated by the narrow gray rectangle, removes anti-phase coherences after
incomplete heteronuclear transfer. It can be omitted alongside the 180◦ pulse in the gray
box to obtain CLean Anti-Phase-HSQC (CLAP-HSQC)-type spectra[113]. These can be
combined with their CLIP-RESET counterparts to allow the extraction of couplings from
overlapping signals in an In-Phase Anti-Phase (IPAP) fashion[213]. After this, n FID chunks
are collected in a PS pseudo-dimension which is incremented by AQ/n. Delays τ are chosen
so that chemical shifts and 1JCH couplings evolve for t2 and the refocusing of homonuclear
couplings is delayed for AQ/2n until the middle of each chunk. The FID chunks are then
concatenated by the use of processing software[214]. This enables the user to drop points
from the beginning of each data chunk to avoid distortions from digital signal processing
and digital-to-analogue conversion[184]. The delay τ ∗ can be used to compensate for this
in the pulse sequence. The correct CTP during the pseudo-dimension is enforced by PFGs.
If HSQC spectra fully-decoupled in all frequency dimensions are desired, the dashed 180◦
pulse and a heteronuclear decoupling sequence during acquisition can be applied to obtain
RESET-type spectra by the ZS data sampling scheme.

A CLIP-RESET HSQC spectrum obtained by using the experiment from �gure 3.5 on a
sample of (−)-menthol dissolved in CDCl3 is shown in comparison with a conventional
CLIP-HSQC spectrum in �gure 3.6. A gain in resolution due to a collapse of homonu-
clear multiplets can be seen for practically all cross peaks. However, on a closer look it
can be seen that a PS heteronuclear doublet is only achieved for CH and CH3 moieties.
The homonuclear doublets due to 2JHH couplings within diastereotopic CH2 groups are
retained as an irreducible multiplicity. Figure 3.7 compares slices extracted from the
two-dimensional spectra for all carbon multiplicities and also shows examples for failed
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Figure 3.5.: Pulse sequence for the CLIP-RESET HSQC. Narrow and wide bars correspond
to hard 90◦ and 180◦ pulses, respectively. Phases are x unless indicated otherwise. Het-
eronuclear transfer delays are calibrated to match ∆ = 1/(21JCH). Phases are ϕ1 = x , −x ;
ϕ2 = x , x , −x , −x and ϕrec = x , −x , −x , x . The narrow gray rectangle indicates a 90◦ pulse
to ensure anti-phase removal which can be cycled according to ϕ1. Pulses in the gray box
can be omitted to obtain CLAP-HSQC-type spectra. For the acquisition of CLAP spectra,
ϕrec has to be changed to y, −y, −y, y. If only the 90◦ pulse in the gray box is omitted
and the dashed 180◦ pulse is applied along with broadband heteronuclear decoupling
during acquisition, fully decoupled RESET HSQC-type spectra can be obtained in a more
time-e�cient manner. The delay τ is set to AQ/4n with n being the number of data chunks.
AQ/n corresponds to the length of each FID chunk and therefore corresponds to the t2
increment. Delay τ ∗ allows for the compensation of phase distortions introduced by
dropping points at the beginning of each FID chunk (see text). Delays δ accommodate
for the applications of PFGs. Coherence order selection is applied with the gradients of
ratio G1:G2:G3 = 80:20.1:20 for 13C as the heteronucleus. Phase-sensitive detection in the
13C dimension is achieved by using an Echo/antiEcho-TPPI protocol. Graphic taken and
modi�ed from [212].

decoupling due to strong coupling. Whereas CH3 and CH moieties can be fully homonu-
clear decoupled, diastereotopic CH2 groups show the above-mentioned doublet-structure.
The latter also display dispersive lineshapes given that 2JHH couplings do not evolve in
synchronicity with chemical shifts because homonuclear couplings are active during all
heteronuclear transfer delays and delays τ . The result of strong coupling can be observed
for the cross peaks obtained for position 4 (�gure 3.7 D). Signals show severe line shape
distortions so that the heteronuclear doublets become asymmetric.

The S/N ratios of CLIP-RESET HSQC spectra can improve compared to the conventional
CLIP-HSQC as far as the �nal data matrix is concerned. This gain as well as the gain in
resolution comes at the cost of the time required to build up the �nal spectrum from the
initial interferogram. So the S/N per unit time ratios drop by

√
n and improve at best by

the original multiplicity of the fully-coupled resonance line. In practice, slightly more
moderate drops can be expected since the AQ in the detection dimension can be drastically
reduced. Since the �nal FIDs are concatenated from chunks of length AQ/n, CLIP-RESET
HSQC spectra show weak artifacts similar to decoupling sidebands at frequency multiples
of n/AQ distributed around the signals. This is due to the modulation of each FID chunk by
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Figure 3.6.: Comparison of CLIP (red contours) and CLIP-RESET HSQC spectra (black
contours) of (−)-menthol. The structure of (−)-menthol and atom numbering is given as
an inset. Graphic taken and modi�ed from [212].

signal evolution under the in�uence of cos(πnJHHt ) terms. These discontinuities give rise
to artifacts which in favorable cases stay at about 1-2% intensity if AQ/n is chosen so that
cos(πnJHHAQ/n) does not signi�cantly drop below 0.9 for representative nJHH couplings.
As far as the extraction of 1JCH coupling constants is concerned, these sidebands do
not hamper the accuracy of the extracted couplings as long as the overall line shape
is una�ected. The measurement of couplings is easily possible for all weakly coupled
spins. This also holds for CH2 groups if all relevant homonuclear couplings lie in the weak
coupling limit as the resulting heteronuclear doublets are symmetric and 1JCH couplings can
reliably be extracted. For strongly coupled spins however, the line shape distortions render
the measurement of coupling constants erroneous just as in conventional CLIP-HSQC
spectra. On the other hand, CLIP-RESET HSQC spectra are simpli�ed in a way that at least
allows unambiguous identi�cation of higher-order spectra from deviations from expected
line shapes. The reliability of the extracted couplings will be further elaborated on in the
following sections.

An experiment closely related to the one discussed in this section was developed in
parallel and independently from this thesis[215].
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Figure 3.7.: Slices from CLIP (red) and CLIP-RESET HSQC spectra (black) of (−)-menthol.
Heteronuclear doublet components can be reduced to single resonance lines for CH3 (A)
and CH (B) moieties. Weakly coupled diastereotopic CH2 groups show a remaining splitting
and dispersive lineshapes due to non-refocused 2JHH couplings (C). Strong couplings can
not be suppressed by a single BIRD �lter and lead to line shape distortions and asymmetric
heteronuclear doublets (D). These allow for the immediate identi�cation of strongly-
coupled spins. Atoms are numbered according to �gure 3.6. Graphic taken and modi�ed
from [212].
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3.2.2. CT-RESET Experiments

As already discussed, BIRD-based PS methods fail to refocus the coupling evolution within
CHn groups. This retains the coupling evolution due to 2JHH couplings for CH2 but also
for CH3 groups under anisotropic conditions. In order to suppress couplings within
CHn groups in RESET-type experiments, the BIRD element has to be combined with
an additional source of decoupling from the ones discussed in section 3.1.2. Given that
the CLIP/CLAP-RESET HSQC experiments rely on a pseudo-dimension to achieve J -
refocusing, the t2 evolution period can readily be replaced by a CT version. The PS
acquisition scheme depicted in �gure 3.5 can be replaced by the pulse sequence shown in
�gure 3.8 to yield CT-CLIP/CLAP-RESET HSQC experiments. Several subtleties had to be
taken into account for the design of CT-RESET experiments. An echo period of AQ/2n
had to be introduced to delay the refocusing of all nJHH couplings (n>2) until the middle of
each FID chunk. Chemical shifts and heteronuclear couplings have to evolve for t2/2 on
either side of the BIRD element and �nally, the total �ip angle of 13C-bound and 12C-bound
has to di�er by 180◦ so that homonuclear decoupling is achieved. The sequence depicted
in �gure 3.8 is a possible solution that addresses all these issues. Given that it contains
an even number of non-selective 180◦ pulses, a BIRDr elements has to be used. Ideally, if
strong coupling can be neglected, the maximum signal intensity for a CH2 group should
be reached if the CT evolution period T is set according to

T =
m

2JHH + 2DHH
=

m
2THH

. (3.3)

Figure 3.8.: Pulse sequence for a CT pseudo-dimension of CLIP/CLAP-RESET HSQC
experiments. Narrow and wide bars correspond to hard 90◦ and 180◦ pulses, respectively.
Phases are x unless indicated otherwise. For the acquisition of CLAP spectra, ϕrec has to be
changed toy, −y, −y,y. Heteronuclear transfer delays are calibrated to match ∆ = 1/(21JCH).
If the dashed 180◦ pulse is omitted and broadband heteronuclear decoupling is applied
during acquisition, CT versions of the fully decoupled RESET HSQC experiment can be
obtained in a more time-e�cient manner. The delay τ is set to AQ/4n with n being the
number of data chunks. Decremented CT delays have to be corrected from the overall
evolution period T according to equation 3.4. Delays marked with an asterisk allow for
the compensation of phase distortions introduced by dropping points at the beginning of
each FID chunk. Graphic taken and modi�ed from [212].
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Figure 3.9.: Comparison of conventional (red contours) and CT-CLIP-RESET HSQC spec-
tra (black contours) of (−)-menthol. The structure of (−)-menthol and atom numbering is
given as an inset. Graphic taken and modi�ed from [212].

Odd integersm will lead to negative cross peaks while even integersm will lead to positive
cross peaks for CH2 groups. The actual delays T ′ that have to be decremented in the
pulse sequence shown in �gure 3.8 have to be corrected from the overall evolution period
according to

T ′ =
1
4 ·

(
T − 2∆ − 2τ −

∑
tp
)

(3.4)

since all couplings which can not be refocused by BIRD elements are active during all
heteronuclear transfer periods ∆, delays τ and the lengths of all individual pulses tp . The
cross peak intensities for CH2 groups therefore no longer primarily depend on weakly
coupled remote protons but are governed by their corresponding cos(π 2THHT ) terms, so
that it might be necessary to record a number of experiments with di�erent times T to
cover a possible distribution of 2JHH couplings within CH2 groups.

A CT-CLIP-RESET HSQC spectrum acquired on a sample of (−)-menthol dissolved
in CDCl3 is shown in �gure 3.9 together with a reference conventional CLIP-RESET
spectrum. The comparison clearly shows the additional decoupling of CH2 groups in the
case of position 6. However, several cross peaks only show one heteronuclear doublet
component at the chosen contour levels. Figure 3.10 compares slices extracted from the
two-dimensional spectra for the same cross peaks as in �gure 3.7. In this example, the
CT evolution period T was set to 333 ms, accommodating geminal coupling constants
2JHH = −12 Hz for m = 4. This period de�nes the relaxation losses which are visibly
su�ered for the CH3 and CH cross peaks depicted in �gure 3.10 A and B. These losses
can be overcompensated (or at least ameliorated) in cases where the doublets within
CH2 groups can be collapsed to singlets provided that the condition of equation 3.3 is
met. This could be achieved for the weakly coupled CH2 group at position 6 of (−)-
menthol (see �gure 3.10 C). However, CT incrementation can not prevent the dissipation
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Figure 3.10.: Slices from conventional (red) and CT-CLIP-RESET HSQC spectra (black)
of (−)-menthol. Collapse of heteronuclear doublet components to single resonance lines
can now be achieved for CH3 (A), CH (B) and weakly coupled diastereotopic CH2 groups
(C). As in conventional CLIP-RESET HSQC experiments, strong couplings can not be
circumvented and lead to line shape distortions and asymmetric heteronuclear doublets
(D). These allow for the immediate identi�cation of strongly-coupled spins. Atoms are
numbered according to �gure 3.9. Graphic taken and modi�ed from [212].

of magnetization due to strong coupling. Again, for position 4 (see �gure 3.10 D), only
one of the heteronuclear doublet components for each proton can be reduced to a single
resonance line. Here, the decoupling can not compensate for the relaxation losses and the
line shape distortions of the respective other doublet components clearly indicate that the
simple extraction of one-bond couplings will not lead to reliable data. Hypothetically, if
absorptive line shapes were obtained in fully decoupled CT-RESET HSQC spectra, they
could be used together with one absorptive heteronuclear doublet component obtained in
CT-CLIP-RESET HSQC spectra to extract the corresponding 1JCH coupling constant.

Table 3.1 compiles 1JCH coupling constants for (−)-menthol extracted from the spectra
shown so far. The accuracy of the measured couplings is determined by a maximum error
estimate as described in [119]. Generally, the values for 1JCH couplings can become more
accurate upon homonuclear decoupling in the case of weakly coupled spins systems. The
doublet C6-H6’ belongs to a weakly coupled CH2 group and serves as an example where
the accuracy is progressively improved going from conventional CLIP to CLIP-RESET
and CT-CLIP-RESET HSQC experiments. For strongly coupled spin systems, it is far from
trivial to predict the outcome of a manipulation by BIRD elements. For (−)-menthol, both
a decrease as well as an increase of the widths of heteronuclear doublet components can
be observed. This holds in particular among the spin systems containing CH2 groups. For
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Group 1JCH / Hz (CLIP) 1JCH / Hz (CLIP-RESET) 1JCH / Hz (CT-CLIP-RESET)
C1-H1 139.2 139.1 139.1
C2-H2* 126.2 ± 1.6 124.8 ± 3.5 126.6 ± 4.1
C3-H3* 128.4 ± 3.6 126.8 ± 0.8 128.0 ± 6.3
C3-H3’* 124.4 ± 0.4 124.8 ± 0.8 123.2 ± 1.8
C4-H4* 125.8 ± 2.0 126.9 ± 0.9 126.9 ± 15.3
C4-H4’* 118.6 ± 4.9 122.9 ± 1.1 122.8 ± 0.5
C5-H5 123.6 ± 0.3 124.0 ± 0.1 124.2 ± 0.2
C6-H6 127.6 ± 0.1 127.5 ± 0.2 127.7
C6-H6’ 123.4 ± 0.9 123.2 ± 0.6 124.0
C7-H7 127.2 ± 1.2 126.1 ± 0.1 126.1
C8-H8 124.9 ± 0.6 124.5 124.3
C9-H9 124.5 124.4 124.5 ± 0.1
C10-H10 124.5 ± 0.1 124.4 124.5

Table 3.1.: Comparison of 1JCH couplings for (−)-menthol extracted out of conventional
CLIP-HSQC spectra and spectra obtained by the RESET-type experiments developed in
this thesis. Groups marked with an asterisk are a�ected by strong coupling and the values
for the coupling constants are not fully reliable. In cases where no maximum error estimate
for the couplings is given, it was below 0.1 Hz.

group C3-H3’, the maximum error estimate shows a gradual increase whereas for group
C4-H4’ a gradual decrease can be observed. In the extreme case of group C4-H4 the error
estimate varies by an order of magnitude.

If this source of bias could be bypassed by the PSYCHE method, would be the topic of
subsequent work. The possible advantages of CHn decoupling and suppression of strong
couplings would meet the disadvantage of an additional sensitivity penalty since the
statistical sub-ensemble selection would further subdivide the portion of spins contributing
to the signal. Very recently, a method based on indirect covariance has been proposed[216]

that is completely insensitive to carbon multiplicity but depends on a priori PS input. It
still has to be proven if this approach can generate CLIP-HSQC-type spectra. In parallel
to this thesis, the perfectBIRD method was proposed[217] which makes use of the fact
that once the protons of a CH2 group have been reduced to an AX spin system, they
are susceptible to a perfect echo sequence[218]. Although the perfectBIRD experiment
allows for a distribution of 2JHH couplings, it usually fails for higher spin systems such as
CH3 groups under anisotropic conditions. The latter can in principle be adressed by CT-
CLIP-RESET HSQC experiments. The lack of generality of the perfect echo is the reason
why it is not per se considered a PS method but is limited to very speci�c applications
such as Carr-Purcell-Meiboom-Gill (CPMG) sequences[219], HMQC experiments[220] and
INEPT building blocks[121]. Finally, it has to be stated that both the perfectBIRD and the
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3. Homonuclear Decoupling: RESET experiments

CT-RESET approach fail for strong coupling and can either due to their complexity or
inherently not be applied to RT BIRD acquisition.

3.2.3. Robustness

The experiments discussed so far are not compensated against a variation in 1JCH couplings,
resonance o�sets or B1-inhomogeneities. Standard experiments nowadays contain at least
broadband inversion and refocusing pulses on the heteronucleus instead of rectangular
180◦ pulses. Further improvements can be expected if also 90◦ pulses are replaced by
broadband excitation pulses. Additional slight improvements of spectral quality can be
achieved if o�set- and B1-compensated pulses are also applied on 1H. The classi�cation
along with the graphical representation of the required pulse shapes is introduced in
�gure 3.11 A. Broadband excitation requires a PP 90 transfer facilitated by BEBOP shapes.
Broadband inversion and refocusing require PP 180 and UR 180 transfers facilitated by
BIBOP and BURBOP-180 shapes, respectively (see section 1.2.3). 90◦ pulses used in the
BIRDd elements require UR 90 transfers and were replaced by BURBOP-90 shapes. In cases
where RF pulses are applied simultaneously on both channels, J -compensated pulses for
concurrent excitation and time-reversed excitation (PP 90tr) and vice versa are used. The
corresponding pulse sandwiches are referred to as Broadband Excitation and time-reversed
Broadband Excitation (BEBEtr) and time-reversed Broadband Excitation and Broadband
Excitation (BEtrBE), respectively[17]. For concurrent refocusing of 1H and inversion of
13C, the J -compensated Broadband Universal Broadband Inversion (BUBI) pulse sandwich
is used[17]. Both types of pulse pairs aim at avoiding losses of magnetization due to the
evolution of 1JCH couplings during the pulses. If the rectangular 90◦ and 180◦ pulses
are replaced by the corresponding shapes, the SP-CLIP/CLAP-RESET HSQC experiments
depicted in �gure 3.11 B are obtained. These experiments e�ciently address experimental
issues such as large o�set e�ects and B1-inhomogeneities. To compensate the experiments
against a variation of 1JCH couplings, conventional INEPT transfer elements have to be
replaced with the more robust Couplings, O�sets, B1-deviation (COB)-INEPT building
block[15]. It uses odd-�ip angle pulses (UR α ) and a series of transfer delays to facilitate
uniform heteronuclear magnetization transfer spanning 1JCH = 120-250 Hz. If plugged
into the SP-CLIP/CLAP-RESET HSQC sequences, the COB-CLIP/CLAP-RESET HSQC
experiments depicted in 3.11 C are obtained. It has to be noted that a COB-BIRD element is
not yet known and will therefore become a topic in this thesis (see section 3.3). The pulse
shapes required to carry out the experiments described in this section were introduced
as part of [15] and [17] with the exception of the BURBOP-90 pulses required for the
BIRDd �lters. The optimization procedure for this particular pulse shape as well as all
experimental parameters for all other pulses are outlined in section 3.4. The newly-
designed 1H BURBOP-90 pulse is applied concurrently with a BIBOP shape on 13C and
was not matched according to the procedure described in [17]. This has to be kept in mind
when experimental imperfections are discussed in the following. Further, a rectangular 90◦
pulse is still used for anti-phase removal after INEPT steps, since preliminary experiments
indicated that the application of shaped CLIP pulses leaves the trajectory of the desired 1H
magnetization unde�ned during the pulse and leads to signal losses. The latter are kept
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A

B

C

Figure 3.11.: Pulse sequences for compensated CLIP/CLAP-RESET HSQC experiments.
Rectangular 90◦ and 180◦ pulses have been replaced by SPs according to their function
depicted in the legend (A) and as described in the text. In SP-CLIP/CLAP-RESET HSQC
experiments (B), heteronuclear transfer delays are calibrated to match ∆ = 1/(21JCH).
In COB-CLIP/CLAP-RESET HSQC experiments (C), transfer delays are set according to
∆1 = 1.469 ms, ∆2 = 2.135 ms and ∆3 = 0.394 ms to facilitate uniform INEPT-type transfer
spanning values for 1JCH of 120-250 Hz. Phases are x unless indicated otherwise and are
cycled according to ϕ1 = x , −x ; ϕ2 = x , x , −x , −x and ϕrec = x , −x , −x , x . The narrow
gray rectangle indicates a hard 90◦ pulse to ensure anti-phase removal which can be
cycled according to ϕ1. Pulses in the gray box can be omitted to obtain CLAP-HSQC-type
spectra. For the acquisition of CLAP spectra, ϕrec has to be changed to y, −y, −y, y and
for COB-CLAP-RESET experiments ϕ3 has to be set to y. If only the 90◦ pulse in the gray
box is omitted and the dashed 180◦ pulse is applied along with broadband heteronuclear
decoupling during acquisition, fully decoupled RESET HSQC-type spectra can be obtained.
The delay τ is set to AQ/4n with n being the number of data chunks. Delay τ ∗ allows for
the compensation of phase distortions introduced by dropping points at the beginning of
each FID chunk (see text). Delays δ accommodate for the applications of PFGs. Coherence
order selection is applied with the gradients of ratio G1:G2:G3 = 80:20.1:20 for 13C as the
heteronucleus. Phase-sensitive detection in the 13C dimension is achieved by using an
Echo/antiEcho-TPPI protocol. Graphic taken and modi�ed from [212].
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3. Homonuclear Decoupling: RESET experiments

to a minimum if the CLIP pulse is kept as short as possible. The pulse sequence for a CT
RESET acquisition scheme using SPs is given in appendix A.4.

To evaluate the performance of the experiments discussed so far, a compound mix-
ture that provides a particularly wide range of o�sets and 1JCH couplings was prepared.
Ethylvanillin, methylpropiolate and triethyl orthoformate were dissolved in DMSO-d6
and used as a test sample in the following. Triethyl orthoformate can easily decompose
into ethyl formate and ethanol and therefore gives rise to additional signals. Figure 3.12
shows example spectra obtained using the COB-CLIP/CLAP-RESET HSQC in compar-
ison to reference COB-CLIP/CLAP experiments. Already in this representation, it can
be deduced from signals of methylpropiolate (b2) and ethyl formate (d1), which display
high 1JCH values, that signi�cant intensity losses are observable in RESET experiments.
Those can be attributed to the BIRD elements which are not yet compensated for a large
variation in 1JCH couplings. To further break down the individual sources of signal losses,
also conventional as well as SP-CLIP/CLAP-RESET experiments were collected for the
compound mixture and compared to the reference spectra in �gure 3.12. Thus �gure 3.13
contains 1D slices from four di�erent experiments. Fully-coupled COB-CLIP/CLAP-HSQC
experiments provide 98% overall transfer with respect to the de�ned ranges of resonance
o�sets, B1-inhomogeneities and 1JCH couplings[15] and therefore de�ne the maximum
intensity achievable in the experiments under discussion. Whereas the signals shown
in �gure 3.13 A and A’ are examples for possible gains in sensitivity due to the collapse
of homonuclear multiplets, the subspectra B-E and B’-E’ per se show no homonuclear
splittings but allow for the examination of the di�erent in�uences of uncompensated
pulses and transfer elements on apparent intensity losses. Given that signals a1, a6 and
c3 appear at the edges of the corresponding spectra, the sensitivity primarily bene�ts
from the application of broadband pulses. Signal c1 lies rather in the center of the ob-
served frequency ranges and shows the steadiest progression from conventional over SP
to COB-CLIP/CLAP-RESET experiments. As expected, signals that bene�t the most from
the application of COB-INEPT elements, like d1 and in particular b2 of methyl propiolate
(1JCH = 258 Hz), su�er the most severe intensity losses in RESET experiments which
can be ascribed to uncompensated BIRDd elements. Further, anti-phase contributions to
the heteronuclear doublets can be observed for b2 which is most likely caused by the
BURBOP-90/BIBOP pulse pair that has not been matched with respect to the evolution of
1JCH couplings. In total, sensitivity losses greater than 90% can be expected if completely
uncompensated experiments are used on realistic natural abundance samples.

Another feature of the more robust COB-INEPT is the improved cancellation of heteronu-
clear doublet components when CLIP/CLAP-spectra are combined following the IPAP
procedure[213]. In order to completely suppress one of the multiplet components, CLIP and
CLAP spectra have to have identical signal magnitudes. Given that CLAP spectra do not
require a second INEPT-type magnetization transfer, they always provide maximum cross
peak intensities. In CLIP spectra however, J -mismatch leads to incomplete back-transfer
of magnetization during the second INEPT step. This is illustrated in �gure 3.14 where
subsprectra from adding and substracting CLIP/CLAP-RESET experiments on (−)-menthol
and the compound mixture from above using conventional and COB-INEPT are compared.
Incomplete cancellation of heteronuclear doublet components can be observed where the
heteronuclear coupling deviates from the nominal 1JCH = 145 Hz as can be seen for the
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A

B

Figure 3.12.: Comparison of 2D COB-CLIP/CLAP- and COB-CLIP/CLAP-RESET HSQC
spectra recorded on a mixture of ethylvanillin (a), methylpropiolate (b) and triethyl ortho-
formate (c) in DMSO-d6. The impurities ethyl formate (d) and ethanol (e) are the result of
the decomposition of (c). A reference COB-CLIP (red contours) and a COB-CLIP-RESET
HSQC spectrum (black contours) are compared in (A). Chemical structures as well as
labelling of the compounds and respective atom numbering are given as insets. The labels
are applied to the corresponding COB-CLAP (red contours) and COB-CLAP-RESET HSQC
spectra (black contours) shown in (B). The crowded region of the methyl groups inside the
dashed box is magni�ed and shown as an inset. Negative contours are indicated by single
contour lines (inset) or dashed lines (overview spectra). Graphic taken and modi�ed from
[212].
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A

B C

D E

A’

B’ C’

D’ E’

Figure 3.13.: Slices from altogether four spectra collected on the compound mixture
depicted in �gure 3.12 are shown: the fully-coupled COB-CLIP-HSQC (red solid lines)
serves as a reference for the COB-CLIP-RESET (black solid lines), the SP-CLIP-RESET
(black dashed lines) and the conventional hard pulse CLIP-RESET HSQC (black dotted
lines). Compound and atom labels as introduced in �gure 3.12 are added to subspectra
A-E as insets next to the value of 1JCH. The traces of corresponding CLAP experiments
(A’-E’) are indicated by a prime. Note the magni�cation of subspectra B and B’ given by
the legend shown as an inset. Graphic taken and modi�ed from [212].
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A A’

B B’

C C’

D D’

E

Figure 3.14.: Comparison of subspectra from addition and substraction of CLIP/CLAP-
RESET experiments using (−)-menthol (1) and a mixture of ethylvanillin (2), triethyl
orthoformate (3) and methylpropiolate (4). Spectra shown in the left column were recorded
using conventional INEPT (A-D) and delays set to ∆ = 1/(2 · 145 Hz) while the traces in
the right column employ COB-INEPT (A’-D’). Blue arrows indicate the positions of the
canceled heteronuclear doublet components. The values for 1JCH are given as insets. A
phase correction had to be applied to the signals in (D) and (D’) with the former being
magni�ed by a factor of four. The structures of the compounds and peak annotations are
given in (E). Graphic taken and modi�ed from [212].
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3. Homonuclear Decoupling: RESET experiments

Figure 3.15.: Comparison of COB-CLIP (red contours) and COB-CLIP-RESET HSQC spec-
tra (black contours) of sucrose in a stretched gelatin/D2O gel 30% (w/v) for a resulting
quadrupolar 2H splitting of the solvent of ∆νQ = 271 Hz. The structure of sucrose and
atom numbering is given as an inset. Graphic taken and modi�ed from [212].

CH3 group of (−)-menthol (see �gure 3.14 A) and even more pronounced for the CH group
of methylpropiolate (see �gure 3.14 D). If the coupling is closer to the nominal value for
INEPT or the COB-INEPT is used, which tolerates couplings between 120 and 250 Hz, only
very small artifacts remain adjacent to the positions of the canceled multiplet components
(see �gure 3.14 A’-D’). These appear most likely due to residual phase misadjustments or
correspond to sidebands caused by the PS acquisition scheme.

So far it has been shown that homonuclear decoupling can strongly improve the res-
olution for conventional isotropic samples. Partially aligned samples on the other hand
experience a multitude of homonuclear RDCs which result in complex coupling networks
among the spins such that hardly any homonuclear multiplet structure can be resolved.
To investigate the applicability of the PS methodology on RDC measurements, COB-CLIP-
RESET HSQC spectra were recorded on a sample of sucrose in gelatin/D2O (30% w/v)[154]

stretched to an extension corresponding to a quadrupolar 2H splitting of the solvent of
∆νQ = 271 Hz. A comparison with a conventional COB-CLIP-HSQC spectrum is given
in �gure 3.15. In general it can be recognized that a signi�cant line narrowing could
be achieved due to the partial refocusing of the homonuclear dipolar interactions. The
multiplicity of all CH cross peaks could be reduced to heteronuclear doublets whereas
the resolution could not be improved for the CH2 moieties. Figure 3.16 compares slices
extracted from the two-dimensional spectra for di�erent CH and CH2 groups. Whereas the
cross peak of the anomeric center (C1-H1) displays a symmetric shape and only a homonu-
clear doublet need to be decoupled, the heteronuclear doublet components of signal C2-H2
are distorted and result in an asymmetric doublet in the conventional COB-CLIP-HSQC
spectrum (see �gure 3.16 B). Here, BIRD-based homonuclear decoupling can circumvent
these e�ects as described in [190] and singlets are obtained for each component of the
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A B

C D

Figure 3.16.: Slices from COB-CLIP (red) and COB-CLIP-RESET HSQC spectra (black) of
partially aligned sucrose. Heteronuclear doublet components can be reduced to single
resonance lines for CH moieties (A) even in cases where distortions due to strong or
longe-range heteronuclear couplings are observable (B). Cross peaks of CH2 groups can
not be further simpli�ed (C) or even lead to highly distorted signals (D) which indicate
strong coupling networks. Atoms are numbered according to �gure 3.15. Graphic taken
and modi�ed from [212].

symmetric heteronuclear doublet. For CH2 groups, however, no simpli�cation of any cross
peaks can be observed. On the contrary, rather than discernable dispersive doublets, highly
distorted signals are obtained for the C6-H6 resonance (see �gure 3.16). Obviously, complex
coupling networks are formed which can not be deconvolved by the methods presented in
this work, including CT-RESET experiments. Values for 1TCH couplings could therefore
not reliably extracted for these moieties. The RESET experiments on sucrose su�er from
signi�cantly increased sideband amplitudes. These are introduced since each FID chunk
more severely deviates from a PS trajectory due to the more pronounced modulation by a
multitude of cos(πnTHHt ) terms. At a given degree of alignment, this can only to a limited
extent be ameliorated by shorter FID chunks. So the experiments presented here su�er
more from a reduced S/A rather than S/N ratio. The e�ect on the accuracy of the extracted
one-bond couplings will be discussed further below.

Another feature of BIRD-based homonuclear decoupling is the possibility to suppress
artifacts from long-range correlations. Figure 3.17 illustrates this e�ect for signal C8-H8
of sucrose. In conventional CLIP-HSQC spectra, the signal at position 8 is a�ected by
long-range correlations to position 7 and 9, which is easily recognized in the isotropic
case (see �gure 3.17 A). The e�ect is even more pronounced in the aligned sample (see
�gure 3.17 B) but not as easily discerned a priori. In RESET-type spectra, these artifacts
can be suppressed so that symmetric heteronuclear doublets can be obtained. In the case
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A B

C D

Figure 3.17.: Comparison of slices along the chemical shift of C8 of sucrose for the spectra
shown in �gure 3.15 and their isotropic counterparts. Couplings are extracted from the
original slices (black) by determination of the maximum overlap between the doublet
components with the help of a copy (red) as described in [119]. In conventional CLIP-HSQC
spectra artifacts due to long-range correlations may be introduced which is clearly visible
in the isotropic case (A). The e�ect is more dominant but less simple to recognize in the
partially aligned sample (B). These artifacts can be removed by the BIRD �lter (C and D),
which can bene�t the accuracy of the determined coupling as indicated by the insets. Note
that the subspectra shown in (B) and (D) are scaled by a factor of four. Graphic taken and
modi�ed from [212].

of position 8 of sucrose this means that the measurement of a 1DCH coupling with a wrong
sign is prevented. In general, apart from the anomeric center, no symmetric heteronuclear
doublets are obtained for sucrose under partially aligned conditions so that homonuclear
decoupling improves the line shapes for almost all signals. This leads to improved accu-
racy of the extracted 1DCH couplings in many cases and in particular when the spectral
quality is a�ected already under isotropic conditions. Table 3.2 compiles 1JCH, 1TCH and
thereby derived 1DCH couplings for sucrose obtained from conventional and homonuclear
decoupled CLIP-HSQC spectra. Generally, the accuracy of the obtained one-bond RDCs
is at least similar if not improved by CLIP-RESET-HSQC-type experiments at the cost of
no anisotropic information about the CH2 moieties in the case of sucrose. This holds in
particular for signals like position 7-9 where heteronuclear doublets appear asymmetric
due to being a�ected by long-range correlations or strong coupling also under isotropic
conditions. In summary, the family of CLIP/CLAP-RESET HSQC experiments developed
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3. Homonuclear Decoupling: RESET experiments

in this thesis present a rather robust method to obtain one-bond heteronuclear couplings
from reduced multiplets in a more simple and often more accurate manner. Strong coupling
e�ects can occasionally be bypassed and at least be identi�ed in a straightforward way by
deviations from expected line shapes.

The measurement of heteronuclear coupling constants employing PS methods has been
the subject of investigations in parallel and independently from this thesis (although not
exclusively focused on 1JCH couplings). The interferogram-based approaches to obtain PS
1D 1H spectra have been used to identify remote couplings to abundant heteronuclei that
would be otherwise hidden in complex 1H multiplets. The BIRD sequence (see �gure 3.3 B)
was used to extract nJHF couplings for �uorinated organic compounds[221] and a comparable
ZS example (see �gure 3.3 A) was given for nJHX (X = 19F, 31P) couplings[222]. It has to
be noted that such experiments primarily aim at identifying heteronuclei. They can not
provide the same information content as multi-dimensional correlation experiments. As
mentioned in section 3.1.2, BIRD-based PS methods fail for heteronuclear long-range
correlation experiments. Alternatively, a CPMG-Heteronuclear Single-Quantum Multiple-
Bond Correlation (HSQMBC) experiment employing ZS decoupling in a pseudo-dimension
was proposed to obtain nJHX (X = 13C, 31P, 77Se) couplings from simpli�ed anti-phase
doublets[223]. PSYCHE can readily be applied to this experiment[224].

It was further attempted in this thesis to combine CLIP-HSQC experiments with RT
BIRD-based homonuclear decoupling as in [200] but with only marginal success. The
extracted couplings deviate from those obtained via CLIP or CLIP-RESET HSQC experi-
ments by several %. It can only be speculated upon that periodical losses of magnetization
due to J -mismatch of individual BIRD �lters or the data acquisition scheme itself induce
some modulation of the FIDs so that frequency errors are introduced that render the
measurement of coupling constants erroneous. While it was reported that passive nJHX
and nJCX (X = 2H, 19F, 31P) couplings can be extracted from E.COSY-type cross peaks of
RT BIRD-decoupled 1H,13C-HSQC spectra[225], it is now general consensus among the
NMR community that the extraction of 1JCH couplings from simpli�ed multiplets depends
on an interferogram-based PS acquisition[226]. However, HOBS-HSQMBC experiments
apparently seem una�ected by such errors given that also values for 1JCH couplings were
reported[227]. As mentioned before, HOBS-experiments are less general, since mutual cou-
plings within a selected region are not suppressed and only a part of the whole spectrum
can be recorded at a time.

3.3. Optimal BIRD filters

3.3.1. General considerations

The original BIRD �lter was introduced as a means to use the 13C spin (or other het-
eronuclei) as a local decoupler �eld to achieve homonuclear 1H decoupling[175]. This
manipulation on a spin system can be described as a bilinear π -rotation on a heteronuclear
two-spin system, hence the acronym BIRD. With both spins on resonance, the heteronu-
clear coupling Hamiltonian sandwiched between two 90◦ pulses yields a propagator of the
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3.3. Optimal BIRD �lters

A B

Figure 3.18.: Pulse sequences discussed in the original BIRD publication [175]. Narrow
and wide bars correspond to 90◦ and 180◦ pulses, respectively. Phases are x unless indicated
otherwise. Transfer delays are calibrated to match ∆ = 1/(21JCH). The phases ϕ1 to ϕ3
in the original pulse sequence (A) can be set according to [191] to achieve BIRDd,X and
BIRDr,X manipulations. The dashed 180◦ pulse with phase ϕ4 can be set to achieve the
corresponding BIRDd and BIRDr manipulations. Originally, ϕ1 = y, ϕ2 = x and ϕ3 = −y
were proposed. The pulse sequence (B) facilitates a BIRDd,X rotation and is said to be less
sensitive towards a variation in J couplings.

form
UBIRD = exp

(
−iπ2Idp Sz

)
(3.5)

with p either x or y and Id being 1H magnetization of spins bound to the heteronucleus
following the nomenclature of [191]. However, the �ip angle only corresponds to 180◦
if the BIRD delays are matched to the value of the heteronuclear coupling. In the case
of delay mismatch magnetization dissipates which causes sensitivity losses. This matter
was seemingly addressed in the original publication[175] and the according pulse sequence
is depicted in �gure 3.18 along with the very basic BIRD �lter that allows for various
modi�cations[191] which will be discussed further below. The �delities of any of these pulse
sequence as a function of the magnitude of the heteronuclear coupling J can be assessed
just like any 180◦ rotation. As discussed in section 1.2.3 the degree of spin inversion can
be measured by ΦPP (Iz → −Iz) or ΦUR can be used to determine if the e�ective propagator
comparable to equation 3.5 is produced. Whereas the former is straightforward, propagator
analysis of a two-spin system hides certain subtleties. The fact that the phase factor of a
propagator does not a�ect the �nal state of the magnetization but plays a major role in
pulse sequence design was extensively discussed in [12] for isolated single-spin systems.
Allowed phase factors can be determined as follows. Given that

det(eA) = eTr(A) (3.6)

and the nuclear spin Hamiltonian is a traceless matrix, the determinant of any unitary
single-spin propagator has to yield unity. The same has to hold for propagators with a
phase factor eiϕ . Following

det(rA) = rndet(A) (3.7)

with n being the dimension of the matrix,

det(eiϕU ) = ei2ϕdet(U ) = 1 (3.8)
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A B

Figure 3.19.: Fidelities of the originally proposed BIRD elements as a function of J were
evaluated with respect to spin inversion (A) and synthesis of the desired propagator (B)
for the basic sequence depicted in �gure 3.18 A (red line in A, red circles in B) and the
J -compensated sequence depicted in �gure 3.18 B (black line). Delays for magnetization
transfer via heteronuclear J couplings were set for a 185 Hz coupling constant.

has to be ful�lled. This is the case if

ei2ϕ = cos 2ϕ + i · sin 2ϕ = 1 (3.9)

is ful�lled. Possible solutions for ϕ are integer multiples of π so that phase factors of ±1
are obtained for single-spin propagators[12]. For two-spin systems, n in equation 3.7 equals
4 so that

ei4ϕ = cos 4ϕ + i · sin 4ϕ = 1 (3.10)

has to hold. Here, solutions for ϕ are integer multiples of π/2 so that phase factors of ±1
as well as ±i are allowed. This has to be considered if the rotation properties of BIRD
elements are determined in the following. Another peculiarity that is not found at a
prominent place in the literature on this topic is that imaginary phase factors can be used
to transform a concurrent or even consecutive rotation around axes corresponding to
commuting operators into a single bilinear rotation via

exp(−iπ (I + S )) = −i · exp(−iπ2IS ). (3.11)

This relation will be a great boon in the following analysis. After the determination of ΦPP
for the single-spin operator transformations of both spins individually, the phase factor
of the bilinear rotation can be determined from a simple guess. This approach could be
used to analyze the rotation properties of the pulse sequences given in �gure 3.18. The
originally proposed simple BIRD �lter thus facilitates a rotation around 2IySy with phase
factor 1 when the delays are matched to J and 2IzSx with phase factor −i for J = 0. The J -
compensated sequence facilitates 2IxSy with phase factor −1 under the matching condition
and 2IzSx with phase factor −i for J = 0. The �delities of spin inversion according to ΦPP
and propagator synthesis according to ΦUR are given in �gure 3.19. As far as spin inversion
is concerned, the pulse sequence shown in �gure 3.18 B indeed provides robustness towards
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ϕ1 ϕ2 ϕ3 ϕ4 UHr eiϕ UHd eiϕ Descriptor
x x x - Sx −1 2IySy 1 d,X
x x x x 1 1 2IySz 1 d
x x x y Sz 1 2IySy + Sy 1 d
x x −x - 2IxSx −i 2IzSy −1 r,X
x x −x x Ix −1 2IzSz −1 r
x x −x y 2IxSz i 2IzSy + Sy −1 r
x y x - 2IySy −i Sx −i r,X
x y x x 2IySz −i 1 i r
x y x y Iy −1 Sz i r
x y −x - 2IzSy i 2IxSx 1 d,X
x y −x x 2IzSz i Ix −i d
x y −x y Iz 1 2IxSz −1 d

Table 3.3.: Known BIRD rotations characterized by their descriptor as introduced in [191]
as well as the rotation axes of the e�ective propagators acting on directly and remotely-
bound protons (UHd and UHr , respectively) with their respective phase factors eiϕ as a
function of the phases ϕ1 to ϕ4.

a variation in J -couplings, but in terms of the bilinear rotation it has the same pro�le
as the simple sequence given in �gure 3.18 A. It can therefore not be considered a fully
J -compensated bilinear rotation given that a BIRD element also needs to act as a refocusing
pulse. An overall robust bilinear rotation operation is thus desirable.

In order to provide the necessary information for a feasibility study by OCT, the propa-
gator analysis was extended to all BIRD variants proposed in [191] and the propagators
and phase factors which can serve as input for OCT optimizations are compiled in table 3.3.
From an OCT point of view, BIRD �lters are J -selective UR 180 pulses which need to max-
imize ΦUR with UF = UHd for a range of heteronuclear couplings as well as a contribution
to ΦUR from UF = UHr for J = 0. This can easily be plugged into the GRAPE algorithm to
carry out the optimization procedure introduced in [15]. First, SPs are optimized with
a rather coarse digitization of 100 µs to de�ne an upper threshold for ΦUR for the hard
pulse-delay (HPD) approximation[15, 18]. Ten optimizations with di�erent starting pulses
are used to �nd the optimal sequence for any given overall pulse length between 0.5 and
25 ms incremented in steps of 500 µs . The best sequence of each set will then contribute to
the time-optimal pulses (TOP) curve. However, even if protons are assumed to be on reso-
nance, the optimization of BIRD elements is not as straightforward as with other reported
transfer elements[15, 18]. Given that BIRDd,X and BIRDr,X �lters need to manipulate the S
spin, the corresponding propagators can not be created without concurrent RF irradiation
on both spins. Even BIRDd and BIRDr �lters require pulses on spin S in cases where ϕ2
di�ers from ϕ4 since this entails occasional composite rotations with a monolinear spin
S contribution that can not be created without RF pulses on the S spin. Bearing this in
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Figure 3.20.: Interpolated TOP curves for the optimizations of BIRD �lters as SPs with
e�ective propagators as given in table 3.3. Fidelities are given on a negative logarithmic
scale of the error functional 1−ΦUR to show a rather monotonous increase.

mind, pulse sequences that are tolerant to a typical range of 1JCH couplings of 120-250 Hz
could be obtained. The resulting TOP curves for all BIRD variants of table 3.3 are overlaid
in �gure 3.20. Since all basic BIRD sequences have the same structure, it can be assumed
that the underlying mode of action is the same for all BIRD variants and thus the GRAPE
algorithm can �nd similarly optimal solutions in each case. Therefore all TOP curves
should lay on top of each other if good convergence is assumed. They more or less do
with a single exception of a BIRDr element where ϕ2 di�ers from ϕ4 (RF controls on spin
S needed) and an e�ective propagator corresponding to unity with an imaginary phase
factor has to be created for the directly-bound protons. This particular TOP curve only
follows the others up to a �rst signi�cant dip around 5 ms and then hardly ever reaches
the level where all other curves are clustered again. To this remarkable extent, this can not
be attributed to convergence issues alone but maybe is due to the fact that spin systems
with a range of J -couplings can not be left unstirred to the same extent as demanded by
this particular set of target propagators.

The three distinct dips in the majority of the TOP curves in the logarithmic repre-
sentation are a familiar phenomenon in exploring the limits-type optimization studies,
where beyond a certain threshold in pulse length a new family of pulse shapes is made
available[12, 22]. Just as phase modulation can create the e�ect of a second irradiation
frequency, BIRD sequences of a certain length can behave as if they match two or more
distinct J -couplings.

3.3.2. Hard pulse-delay sequences

The sequences obtained in section 3.3.1 are exclusively compensated against a variation
in heteronuclear J -couplings. The next step towards sequences which are robust against
J -couplings, o�sets and B1-inhomogeneities is the HPD approximation[15, 18]. Continuous
pulse shapes are approximated by a set of hard pulses and evolution delays with varying
degrees of complexity. For the basic layout of CLIP/CLAP-RESET HSQC experiments
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presented in sections 3.2.1 and 3.2.3, a BIRDd rotation is used to facilitate homonuclear
decoupling. The speci�c pulse sequence according to table 3.3 uses phases ϕ1 to ϕ4 = x and
facilitates a π rotation around the 2IySz axis for protons directly-bound to 13C, and the unity
operation on remotely-bound protons. Given that the net rotation on 13C amounts to 360◦,
the pulse sequences can be optimized without RF pulses on 13C. For the optimization of
HPD sequences it is necessary to obtain gradients of propagators with respect to time since
a set of optimal delays is required in addition to optimal �ip angles. They are found more
trivially than control derivatives since the time derivative of the exponent in equation 1.60
commutes with the propagator itself so that

∂Uj

∂∆tj
= −iHjUj (3.12)

and gradients of ΦUR can be obtained via

∂ΦUR
∂∆tj

= −<〈Pj |iHjX j〉. (3.13)

Again, ten optimizations with di�erent starting pulses are used to �nd the optimal
sequence for any given overall pulse length between 0.5 and 25 ms incremented in steps
of 500 µs . The best sequence of each set will then contribute to the TOP curve. Given
that the complexity of pulse sequences with a few pulses and delays is very reduced, the
hypersurface of ΦUR is heavily jointed so that optimizations using CGs can end up stuck
in local extrema very quickly. This is why steepest ascent with constant values for ϵ in
equation 1.107 were performed using ϵ∆t = 10−7 and ϵu = 1010. These values were
found semiempirically given that the length of the hard pulses is set to ∆t = 0.5 µs and
arbitrary RF amplitude is allowed to facilitate any �ip angle while delays are in the range
of a few ms. Both values for the two variables were picked to achieve a signi�cant change
in the corresponding controls in each iteration so that optimizations can also bypass local
extrema[51]. Optimizations were aborted when the change in ΦUR between two iterations
was less than 10−10. TOP curves for pulse sequences which facilitate BIRDd rotations are
given in �gure 3.21. The continuous pulse shape obtained for the shaped BIRDd element
de�nes the upper threshold for the achievable �delities. To provide optimal transfer for
J -couplings in the range of 120-250 Hz, conventional BIRD elements need to have delays
calibrated to match 185 Hz. If the sequences depicted in �gure 3.18 are set up accordingly,
the standard BIRD sequence (�gure 3.18 A, T = 5.4 ms) and the sequence with improved
inversion properties (�gure 3.18 B, T = 10.8 ms), here labeled JC BIRD, both yield �delities
of approximately 0.945 and are included in �gure 3.21. HPD sequences with x pulses
and y delays are labeled as xpyd. The TOP curves can be interpreted rather easily. Up to
the length of a conventional BIRD sequence, which corresponds to a 2p1d sequence, all
TOP curves overlap. This threshold marks the �rst dip in the curve of the SPs which has
to correspond to a simple sequence roughly calibrated to match J = 185 Hz. Also 3p2d
sequences can not exceed the �delity of such a simple sequence. The second dip in the
TOP curve of SPs marks the point where the sequences are e�ectively matched to two
J -couplings at the same time which lie favorably within the desired range of 120-250 Hz.
4p3d sequences have the same complexity as the sequence depicted in �gure 3.18 B but can
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Figure 3.21.: Overlaid TOP curves for the optimizations of BIRDd elements as HPD
sequences with e�ective propagators corresponding to the sequence with all phases x in
table 3.3. The sequences depicted in �gure 3.18 A (BIRD) and B (JC BIRD) with delays
calibrated to match 185 Hz are inserted as a reference. Fidelities are given on a negative
logarithmic scale of the error functional 1−ΦUR.

approach the threshold of roughly 0.996 �delity at overall pulse lengths of about 15 ms but
can not improve any further. This �delity is desirable since it yields ΦPP �delities of about
0.99. Starting with 5p4d sequences, the second threshold can be exceeded but at higher
pulse lengths the TOP curves starts to scatter and interpolation is no longer meaningful.
This can be attributed to convergence issues. The continuous pulse shape obtained for the
shaped BIRDd element de�nes the upper threshold for the achievable �delities. To provide
optimal transfer for J -couplings in the range of 120-250 Hz, conventional BIRD elements
need to have delays calibrated to match 185 Hz. If the sequences depicted in �gure 3.18 are
set up accordingly, the standard BIRD sequence (�gure 3.18 A,T = 5.4 ms) and the sequence
with improved inversion properties (�gure 3.18 B,T = 10.8 ms), here labeled JC BIRD, both
yield �delities of approximately 0.945 and are included in �gure 3.21. HPD sequences with
x pulses and y delays are labeled as xpyd. The TOP curves can be interpreted rather easily.
Up to the length of a conventional BIRD sequence, which corresponds to a 2p1d sequence,
all TOP curves overlap. This threshold marks the �rst dip in the curve of the SPs which
has to correspond to a simple sequence roughly calibrated to match J = 185 Hz. Also 3p2d
sequences can not exceed the �delity of such a simple sequence. The second dip in the
TOP curve of SPs marks the point where the sequences are e�ectively matched to two
J -couplings at the same time which lie favorably within the desired range of 120-250 Hz.
4p3d sequences have the same complexity as the sequence depicted in �gure 3.18 B but can
approach the threshold of roughly 0.996 �delity at overall pulse lengths of about 15 ms but
can not improve any further. This �delity is desirable since it yields ΦPP �delities of about
0.99. Starting with 5p4d sequences, the second threshold can be exceeded but at higher
pulse lengths the TOP curves starts to scatter and interpolation is no longer meaningful.
This can be attributed to convergence issues.

For practical applications, sequences with as little complexity as possible are desirable.
Thus, only 4p3d and 5p4d sequences are discussed in the following which approach the
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A

B

C D

Figure 3.22.: Pulse sequences of COB-BIRD elements. Narrow and wide bars correspond to
odd-�ip angle and 180◦ pulses, respectively. Phases are uniformly x . Transfer delays of the
5p4d sequence (A) are set to ∆1 = 2.881 ms, ∆2 = 2.036 ms, ∆3 = 0.863 ms and ∆4 = 1.969 ms.
The 4p3d sequence (B) will be transformed into a BIRDr,X element by inserting 180◦ pulses
in the gray box according to (C) and will retain the properties of a BIRDd element by
inserting the building block according to (D). Delays are set to ∆1 = ∆2 = ∆3 = 2.583 ms.
Both delay settings ensure optimal transfer for J = 120-250 Hz.

�delity of continuous shapes the closest at T = 15.5 ms. The best candidates for both
implementations are given in �gure 3.22. The analysis of these pulse sequence hold certain
subtleties. It has to be noted that phases are uniformly x which will be discussed further
below. The sequences can be understood on a �rst glance from the perspective of the
12C-bound protons, since the sum of all �ip angles is either 0◦ or an integer multiple of
360◦. It can easily be proven that pulses with �ip angle α >180◦ can be replaced by pulses
with a �ip angle α−360◦ to reduce the overall �ip angle which will provide an inherent
robustness against resonance o�sets and B1-inhomogeneities. In order to compensate
transfer elements against resonance o�sets, pairs of 180◦ pulses are inserted in the middle
of magnetization transfer periods. However, these additional spin �ips count towards the
overall rotation. In the case of the 5p4d sequence (see �gure 3.22 A) a total 720◦ rotation
is introduced which corresponds to 0◦ as far as the balance for the 12C- and 13C-bound
protons is concerned. Conversely, the 4p3d sequence contains an uneven number of delays,
so that a total 540◦ rotation is introduced which corresponds to a net deviation of 180◦
for the balance of 12C- and 13C-bound protons (see �gure 3.22 B). Further, a net rotation
is introduced on the carbon spins so that e�ectively every BIRDd sequence with an odd
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A B

Figure 3.23.: Fidelities of COB-BIRD elements as a function of J were evaluated with
respect to spin inversion (A) and synthesis of the desired propagator (B) for the sequence
depicted in �gure 3.18 B (black) as well as the 5p4d and 4p3d COB-BIRD sequences depicted
in �gure 3.22 (color code according to �gure 3.21).

number of delays obtained by the optimizations discussed here, will be transformed into a
BIRDr,X sequence as soon as 180◦ pulses are inserted in the transfer delay according to
�gure 3.22 C. Such a behavior can be prevented if 180◦ pulse pairs according to �gure 3.22 D
are inserted into the middle of a single transfer period. This will ensure the refocusing to
chemical shifts while an additional 360◦ rotation is introduced which corresponds to a net
0◦ change in the balance of remotely and directly-bound spins. Moreover, this maintenance
of the rotation properties is also the reason why all phases have to be purely x (or y for
that matter) because the heteronuclear transfer if facilitated by pulses with a mixed phase
will be fundamentally impaired as soon as 180◦ pulses with pure phase are inserted.

Fidelities according to ΦPP and ΦUR of the proposed COB-BIRD elements were evaluated
by simulations given in �gure 3.23. It becomes clear that not only inversion properties are
improved compared to the sequence proposed in [175], but also the overall rotation can be
made robust against a variation in heteronuclear J -couplings by both sequences. Within
the desired range of J -couplings between 120-250 Hz both sequences provide virtually
identical transfer e�ciency. Therefore both sequences were tested in a simple proxy setup
for CLIP/CLAP-RESET HSQC experiments on a sample of 140 mM sodium acetate-2-13C
(1JCH = 125.3 Hz) dissolved in a 1:5 (v/v) mixture of D2O/DMSO-d6. Given that 13C-enriched
material is used, the HSQC transfer could be replaced by a simple 90◦ excitation pulse.
Further, no homonuclear couplings are active in sodium acetate so that intensities of simple
spin echoes can be evaluated after the sign of transversal magnetization was inverted by
the BIRD elements. Signals of residual 12C-containing material could have been cycled
out using di�erence spectroscopy[175, 190], but the intensity pro�les would be distorted
compared to the simulations because the second scan would have full intensity in each case
due to the refocusing of heteronuclear couplings by the 180◦ 1H pulses within the BIRD
elements. A comparison between simulated and experimental BIRDd spin echo intensity
pro�les is given in �gure 3.24. The value for Je� has been varied by applying scaling factors
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BIRD

4p3d
COB-BIRD

5p4d
COB-BIRD

Figure 3.24.: Comparison of simulated (left panel) and experimental (right panels) BIRDd

spin echo intensity pro�les. For the conventional BIRD element, the BIRDd sequence with
all phases x was used with delays calibrated to match 1JCH = 185 Hz. The 5p4d and 4p3d
COB-BIRD sequences with T = 15.5 ms were set up as described in �gure 3.22. Je� was
varied by varying delays as described in the main text. Signal intensities were normalized
to the maximum intensity observed in the observed range of 25-350 Hz.
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to delays calibrated to match 185 Hz in the case of conventional BIRD according to

∆e� =
Je�

2Jdel · Jexp
(3.14)

with Jdel = 185 Hz and Jexp = 125.3 Hz. Delays for the COB-BIRD sequences given in
�gure 3.22 were scaled accordingly by Je�/Jexp. For the simulations and experiments 41
values for Je� were sampled between 25 and 350 Hz. Residual anti-phase contributions to
the observed signal were removed by a hard 90◦ pulse on 13C prior to acquisition. Since the
length of the sequences varies signi�cantly between the extreme values of Je� , relaxation
losses could be observed during preliminary experiments on a sample with a reduced T2
time due to doping with a paramagnetic relaxation agent. Thus, a variable echo period was
appended to the BIRD elements so that the overall relaxation period was kept constant.
Signal intensities were normalized to the maximum peak intensity which was achieved
across the given range of J -couplings. Further experimental details are given in section 3.4.

All experimental pro�les show reasonable agreement with the simulations. Small
negative peaks can be observed at the midpoints of each heteronuclear doublet which
correspond to signal of the residual 12C-containing material. Since the signal is phased to
show the inverted signal of 13C-bound protons with positive intensity and the 12C-bound
protons were left untouched by the BIRDd rotation, the latter appear negative. All intensity
pro�les are meaningful in the sense of showing maximum intensity either at Je� = Jdel
for conventional BIRD or within the optimized range of 120-250 Hz for COB-BIRD while
the maximum negative intensity is approached but not reached for the minimum value of
Je� = 25 Hz. Further, the pro�le of the 4p3d is slightly more homogeneous than for the 5p4d
sequence. This can be attributed in parts to the fact that the latter is using more 1H pulses
and is thus more susceptible to B1-inhomogeneities and miscalibration given that hard
pulses were used. Moreover, the inherent structure of the 4p3d is more advantageous than
its 5p4d counterpart. It has the bene�cial symmetry properties described in [29] given that
all transfer delays have equal duration and the second half of the sequence is the time and
phased-reversed version of the �rst half. UR pulses with inherent symmetries with respect
to the control-amplitudes have also been found to be advantageous in [12]. The most
apparent drawback of the COB-BIRD sequences discussed in this section is their rather
prolonged overall duration of 15.5 ms which is almost three times as long as a conventional
BIRD elements calibrated to match J = 185 Hz. They will be prolonged even further if
hard pulses are replaced by SPs which amounts to an additional 2.4 ms for BUBI pulse
pairs alone. Thus, the proposed sequence are signi�cantly more prone to the evolution
of homonuclear 1H couplings during the transfer element than conventional sequences.
They can most de�nitely not be applied in BIRD-based RT PS acquisition schemes since
the losses due to homonuclear couplings would not only accumulate, but the arti�cial
damping due to relaxation during periods of FID interruption would lead to an even more
severe line broadening. However, the above-mentioned losses would be constant in each
increment of an interferogram-based acquisition scheme, so that RESET-type experiments
could bene�t from COB-BIRD elements. It is known that if homonuclear couplings impair
the e�ciency of heteronuclear transfer elements, XY16-cycled CPMG sequences can be
used to suppress the couplings amongst the 1H nuclei[176, 223]. Another advantageous
aspect of the way the descriptor of the BIRD elements can be manipulated according to
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the examples given in �gure 3.22 is that the need for concurrent shaped odd-�ip angle and
180◦ pulses on 1H and 13C, respectively, is completely bypassed. The rotation properties of
BIRDd and BIRDr elements with an odd number of delays can be retained if a net rotation
of 360◦ on both spins is facilitated by two 180◦ pulse pairs in the middle of a single transfer
period. At the same time, BIRDd,X and BIRDr,X rotations can be obtained from BIRDr and
BIRDd elements with an odd number of delays, respectively, by inserting single 180◦ pulse
pairs in the middle of each heteronuclear transfer period.

3.3.3. Shaped pulse sequences

Another approach to obtain a degree of heteronuclear J -compensation within magnetiza-
tion transfer elements which is at least of theoretical interest, is solely based on the timing
of adiabatic spin �ips and thus SPs acting on 13C [106]. As discussed extensively in chapter 2,
the exact time point of inversion during adiabatic sweeps is determined by the chemical
shift. In [106] two approaches are presented to solve timing issues with adiabatic pulses
during heteronuclear magnetization transfer elements like INEPT and BIRD. Both variants
are depicted in �gure 3.25 A. Adiabatic sweeps with opposite directions can be used to
orchestrate the timing of 13C spin inversion such that optimal heteronuclear transfer for a
single value of J is facilitated in a broadband fashion. If adiabatic sweeps with parallel
directions are used, a linear correlation between chemical shifts and J couplings can be
used to achieve optimal transfer for a wider range of couplings. This section deals with a
possibility to obtain pulses from OCT optimizations that aim to facilitate the necessary
BIRD rotation for each combination of νS and J which will be referred to as BIlinear
Rotation Decoupling By Optimized Pulses (BIRDBOP) in the following. The basic BIRD
pulse sequence modi�ed accordingly is shown in �gure 3.25 B.

Before new pulses are designed, the sequences given in �gure 3.25 A shall be evaluated
with respect to their 1H spin inversion properties as a function of νS and J . The recipe for
optimal pulse lengths T and durations of transfer delays δ given in [106] to correlate a
given o�set range ∆νS with a range of J -couplings in BIRD elements assumes

Topt =
1

4Jmin
−

1
4Jmax

. (3.15)

For more even numbers Jmin = 125 Hz and Jmax = 250 Hz are plugged into equation 3.15
which yields Topt = 1 ms. The optimal delay δopt can be found via

δopt +Topt =
1

4Jmin
or δopt −Topt =

1
4Jmax

(3.16)

which equates to δopt = 3 ms using the values from above and yields a total duration
of 8 ms for this particular BIRD element. Given that the double-sweep layout is used
for the purpose of J -compensation, a BIRDd rotation is obtained. If a BIRDd,X rotation is
desired, the alternatively proposed single-sweep layout can be used[106]. The double-sweep
pulse sequence set up as given above using WURST-40 pulses with T = 1 ms, Q = 5 and
a sweep-width ∆νS = 40 kHz was evaluated according to ΦPP in �gure 3.26. Adiabatic
sweeps with opposed directions were used to create the pro�le given in �gure 3.26 A. It
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A B

Figure 3.25.: Alternative pulse sequences for J -compensated BIRD elements. Narrow and
wide bars correspond to 90◦ and 180◦ pulses, respectively. Phases are uniformly x . In
(A), trapezoids correspond to adiabatic pulses with pulse length T and sweep directions
indicated by diagonal arrows. Transfer delays are calibrated to match δ = 1/(21JCH).
According to [106] opposite sweep directions (dashed arrow) are employed to provide
o�set-independent optimal transfer for a single value of J and parallel sweep directions
(bold arrows) facilitate a linear correlation between o�sets and J . Adiabatic pulses have
been replaced by pulse shapes obtained by OCT in (B).

A B

Figure 3.26.: ΦPP �delities of double-sweep BIRD elements as a function of νS and J . 1H
spin inversion �delities according to ΦPP were evaluated using opposed (A) and parallel (B)
sweep directions. WURST-40 pulses withT = 1 ms, Q = 5 and a sweep-width ∆νS = 40 kHz
were used in both cases. The delay δ was set to 3 ms. Contour levels are given for ΦPP = 0.8
(blue), 0.9 (green), 0.95 (orange) and 0.98 (red).
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A B

Figure 3.27.: ΦUR �delities of double-sweep BIRD elements as a function of νS and J .
Fidelities of propagator synthesis according to ΦBIRDBOP (see equation 3.18) were evaluated
using opposed (A) and parallel (B) sweep directions. WURST-40 pulses with T = 1 ms,
Q = 5 and a sweep-width ∆νS = 40 kHz were used in both cases. The delay δ was set to
3 ms. Contour levels are given for ΦPP = 0.8 (blue), 0.9 (green), 0.95 (orange) and 0.98 (red).

can be seen that if an o�set νS is e�ciently swept by the adiabatic pulses, e�cient transfer
is achieved for J -couplings around a single optimal value corresponding to 167 Hz for
δ = 3 ms. The pro�le given in �gure 3.26 B was created by employing adiabatic sweeps in
parallel directions. The picture is now tilted in a way that a slope of optimal transfer from
combinations of low values for νS and J to combinations of high values is achieved.

In order to analyze this behavior in terms of rotation properties, a ΦUR-like quality factor
is necessary that can evaluate the �delity of a 1H propagator synthesis as a function of
13C pulses. This is highly reminiscent of the BUBI problem[17], where the in�uence of the
e�ective S spin propagator Ue� (S ) had to be separated from the I spin target propagator
UF(I , J ) to measure overlap with the e�ective two-spin propagator Ue� (I , J , S ) via

ΦBUBI = <〈UF(I , J )Ue� (S ) | Ue� (I , J , S )〉 . (3.17)

It might appear as if to apply the BUBI procedure to a BIRDd element as depicted in �g-
ure 3.25 B, the operator 2IySz which corresponds to the rotation axis for 13C-bound protons,
needs to be deconstructed into the spin I and S component according to equation 3.11 in
order to plug it into equation 3.17. However, it was proven in section 3.3.2 that this target
propagator can be created without pulses on the S spin and the full bilinear rotation has
to contribute to UF. The appropriate quality factor can thus be written as

ΦBIRDBOP = <
〈

exp(−iπ2IySz )Ue� (S )
���Ue� (I , J , S )

〉
. (3.18)

Equation 3.18 was used to create the pro�les given in �gure 3.27 using the parameters
according to �gure 3.26. Since the general pattern of �gure 3.26 can be reproduced,
ΦBIRDBOP can be assumed to be a valid performance measure for the pulse sequence
proposed in �gure 3.25 B.

In order to obtain gradients for an optimization, control derivatives with respect to spin
S controls have to be calculated from equation 3.18. It becomes evident that the solution
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has to be obtained in a di�erent way from ΦBUBI since both Ue� (S ) and Ue� (I , J , S ) are a
function of spin S controls. Thus, the product rule has to be applied to equation 3.18 to
obtain

∇u (S )ΦBIRDBOP = <
〈
UF(I , J )Ue� (S ) ��∇u (S )Ue� (I , J , S )

〉
+<

〈
UF(I , J )∇u (S )Ue� (S )��Ue� (I , J , S )

〉
. (3.19)

The second addend on the right side of equation 3.19 can be rearranged to �t the shape of
the �rst and to be obtained using the same syntax according to

∇u (S )ΦBIRDBOP = <
〈
UF(I , J )Ue� (S ) ��∇u (S )Ue� (I , J , S )

〉
+<

〈
U †F (I , J )Ue� (I , J , S )

���∇u (S )Ue� (S )
〉
. (3.20)

E�ective propagators contain the constituents of the pulse sequence from the perspective
of spin S or the whole spin system. Ue� (S ) is given by

Ue� (S ) = {UδU2UδU1} (S ) (3.21)

with Uδ (S ) corresponding to the chemical shift evolution under HS according to equa-
tion 2.19 besides U1(S ) and U2(S ) corresponding to the e�ective propagators of the shapes
labeled BIRD and BOP in �gure 3.25, respectively. They shall be referred to as shape one
and two in the following. In both cases, the dynamics of the spin system are exclusively
governed byHS andH S

RF(t ) according to equation 2.19. For Ue� (I , J , S ) the whole pulse
sequence as well as the coupling Hamiltonian HJ has to be taken into account. HI can
be neglected since the sequence is inherently robust against spin I o�sets due to the
application of a 180◦ pulse which is assumed to be perfect. All contributions toH are used
according to their de�nitions in equation 2.19. This yields

Ue� (I , J , S ) =
{
Uπ/2UδU2UπUδU1Uπ/2

}
(I , J , S ). (3.22)

Here, Uδ (I , J , S ) is governed by HS and HJ besides U1(I , J , S ) and U2(I , J , S ) depending
onH S

RF(t ) in addition. Uπ/2 and Uπ correspond to 90◦ and 180◦ pulses acting on protons,
respectively. Both are assumed to be perfect and are a �xture during the optimizations.
When equations 3.21 and 3.21 are plugged into equation 3.20 this yields

∇u (S )ΦBIRDBOP = <
〈
UF(I , J )Ue� (S ) ��∇u (S )

{
Uπ/2UδU2UπUδU1Uπ/2

}
(I , J , S )

〉
+<

〈
U †F (I , J )Ue� (I , J , S )

���∇u (S ) {UδU2UδU1} (S )
〉
. (3.23)

Depending whether gradients are needed for shape one or shape two the products within
each scalar product of the two addends need to be evaluated di�erently by the product
rule. To keep the syntax as before, each factor left of the actual gradient can be cyclically
permuted to obtain the master equations for each BIRDBOP shape. The gradient for shape
one can be obtained via

∇u1 (S )
ΦBIRDBOP = <

〈{
U †
δ
U †πU

†

2U
†

δ
U †π/2

}
(I , J , S )UF(I , J )Ue� (S )

���
{
∇u1 (S )

U1 ·Uπ/2
}
(I , J , S )

〉
+<

〈 {
U †
δ
U †2U

†

δ

}
(S )U †F (I , J )Ue� (I , J , S )

���∇u1 (S )
U1(S )

〉
(3.24)
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3.3. Optimal BIRD �lters

Figure 3.28.: Benchmark of the two master equations for ΦBIRDBOP gradients against a
�nite di�erence approximation according to equation 2.60. Both gradients were applied to
a randomly generated set of pulses yielding ΦBIRDBOP = 0.169.

whereas gradients for shape two are given by

∇u2 (S )
ΦBIRDBOP = <

〈{
U †
δ
U †π/2

}
(I , J , S )UF(I , J )Ue� (S )

���
{
∇u2 (S )

U2 ·UπUδU1Uπ/2
}
(I , J , S )

〉
+<

〈
U †
δ
(S )U †F (I , J )Ue� (I , J , S )

���
{
∇u2 (S )

U2 ·UδU1
}
(S )

〉
. (3.25)

Both master equations were used to perform a gradient benchmark according to equa-
tion 2.60. The resulting gradient errors are depicted in �gure 3.28. Just as in �gure 2.29,
distinct dips in the gradient errors can be observed which were indicative of exact gradients.
They can now be used to design BIRDBOP shapes from scratch.

Several optimizations were carried out both starting with randomly-generated pulses
as well as using the WURST-40 pulses discussed above as a starting point. Aiming at
robustness towards ∆νS = 30 kHz and a variation of J -couplings between 125 and 250 Hz
using B1,RMS = 10 kHz, BIRDBOP shapes with T = 1 ms could not exceed 94.8% �delity for
any of the tried starting conditions. Fidelity pro�les with respect to ΦBIRDBOP and ΦPP for
a typically obtained solution are shown in �gure 3.29. It becomes apparent that the major
improvement compared to the sequences using two adiabatic sweeps is that increased
performance is mainly due to a more homogeneous o�set pro�le. J -compensation has only
mildly improved and also using WURST-40 pulses as a starting point the J -correlation
feature using parallel sweep directions is lost in favor of o�set-independent optimal
transfer in the proximity of J = 200 Hz. Judging the results for BIRDBOP in the context of
the TOP curve shown in �gure 3.21, the solution lies below the �delity of a continuous
shape with T = 8 ms but slightly above a HPD sequence with comparable complexity,
namely 2p1d. Even if HPD sequences of higher complexity are considered, the �delity of
BIRDBOP shapes can not exceed those observed in the TOP curves. It has to be stated that
13C inversion was not demanded from the individual BIRDBOP shapes or the pulse pair as
a whole. But even with this reduced set of requirements there is no observable cooperative
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A B

Figure 3.29.: Fidelity pro�les of BIRDBOP shapes as a function of νS and J . Fidelities
of propagator synthesis according to ΦBIRDBOP (A) as well as 1H spin inversion �delities
according to ΦPP (B) were evaluated using two BIRDBOP shapes. The pulse sequence
depicted in �gure 3.25 B was simulated as a whole. Contour levels are given for both
quality factors equal to 0.8 (blue), 0.9 (green), 0.95 (orange) and 0.98 (red).

e�ect between the individual pulses as described in [40] that would help to provide �delities
exceeding the TOP curve. This case-hardens the claim that pulse sequences which are
obtained in section 3.3.2 indeed perform close to the physical maximum and the COB
approach is the most e�ective to obtain pulse sequence elements which are robust against
o�sets, B1-inhomogeneities and a variation in heteronuclear J -couplings.

3.4. Materials &methods

Simulations were performed using the MATLAB®software package with self-written
scripts and functions (see appendix A.2.2) or code developed during the thesis of Sebas-
tian Ehni[51] as well as modi�cations of the latter with the following exceptions: The data
for the experimental BIRD pro�les given in �gure 3.24 was processed using a Metabolomics
software package provided by the Bruker Biospin GmbH. Adiabatic shapes used in the
simulations discussed in sections 3.3.3 were generated using the Shapetool of the Bruker
TopSpin®software package.

Spectra shown in �gures 3.6 and 3.7 were recorded on a 600 MHz Bruker Avance II+
spectrometer equipped with an inversely detected room temperature BBI probehead using
a 500 mM sample of (−)-menthol dissolved in CDCl3. Spectral widths were set to 2 kHz
and 10.6 kHz for 1H and 13C, respectively, corresponding to 3.3 ppm and 70 ppm with
the carrier frequencies set to 2 and 45 ppm. Data was collected for 512 ms and 6.1 ms in
the 1H and 13C dimension, respectively. This corresponds to a data matrix of 2048 × 128
complex data points which was zero-�lled to 4096 × 256 points. Homonuclear decoupled
FIDs were obtained by the acquisition of 32 chunks of 16 ms per t2-increment (containing
64 complex points each) combined to an FID with 512 ms e�ective AQ. Thereby the overall
experiment time was increased from 6.9 min to 3 h and 4.5 min.
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All other spectra were recorded on a 600 MHz Bruker Avance III spectrometer equipped
with an inversely detected 1H,13C,15N-triple-resonance cryogenically cooled TCI probe-
head. For the CT measurements and comparisons shown in �gures 3.9 and 3.10, the
constant time delay T was set to 333 ms, corresponding to an evolution of 4/2JHH for a
representative coupling of −12 Hz. After correction according to equation 3.4, 310 ms
are available for data collection in the 1H dimension. Homonuclear decoupled FIDs were
constructed from 31 t2-increments of 10 ms duration (corresponding to 40 complex points)
to yield an overall data matrix of 1240 × 128 complex points which was zero-�lled to
2048 × 256 points. The overall experiment time was 3 h and 7.5 min.

For spectra shown in �gures 3.12 and 3.13 a mixture of 99.7 mg of ethylvanillin (3-ethoxy-
4-hydroxybenzaldehyde), 54 µl of methylpropiolate and 100 µl of triethyl orthoformate
(triethoxymethane) were added to 400 µl of DMSO-d6 to yield 1 M solutions of each
component in about 600 µl sample volume. Spectra of this mixture were recorded with
spectral widths of 6.6 kHz and 30.2 kHz for 1H and 13C, respectively, corresponding to
11 ppm and 200 ppm with the carrier frequencies set to 5.5 ppm and 100 ppm. Data
was collected for 620 ms and 1.9 ms in the 1H and 13C dimension, respectively. This
corresponds to data matrices of 8192 × 128 complex time points which were zero-�lled to
16384 × 256 points. Homonuclear decoupled FIDs were obtained by the acquisition of 32
chunks of 19.4 ms (256 complex points each) resulting in an AQ of 620 ms. This increased
the overall experiment time from 7.5 min to 3 h and 16.3 min. In SP and COB-CLIP/CLAP-
RESET experiments all hard pulses were replaced by SPs according to �gure 3.11 A and
as described in the main text. Using the nomenclature introduced in [12], carbon pulses
have been replaced by corresponding BEBOP (37.5 kHz, 10 kHz, 550 µs , ±5%, 1100), BIBOP
(37.5 kHz, 10 kHz, 600 µs , ±5%, 1200) and BURBOP-180(37.5 kHz, 10 kHz, 1100 µs , ±5%,
2200) pulses. Correspondingly, proton hard pulses have been replaced in the same manner
by BEBOP (10 kHz, 20 kHz, 550 µs , ±20%, 1100), BIBOP (11 kHz, 20 kHz, 100 µs , ±20%,
200) and BURBOP-180(10 kHz, 20 kHz, 600 µs , ±20%, 1200) pulses. In situations with
simultaneous RF irradiation on both channels the above-mentioned pulses are combined
to BUBI, BEBEtr and BEtrBE sandwiches and J -compensated as described in [17]. BIRD
elements containing SPs also employ concurrent BURBOP-90(10 kHz, 20 kHz, 600 µs ,
±20%, 1200) pulses on protons and corresponding BIBOP pulses on carbon (see above)
that have not been J -compensated according to the BUBI procedure. All pulse shapes
mentioned here were introduced in [15] and [17] except the BURBOP-90 shapes which
had to be optimized with parameters chosen equal to the BURBOP-180 on 1H.

Figure 3.14 features subspectra of (−)-menthol and the compound mixture. Sub�g-
ures 3.14 A and B were taken from spectra which were rerecorded according to the settings
given for �gures 3.6 and 3.7. The spectra used in sub�gures 3.14 A’ and B’ were recorded
using the same settings and SPs were employed as described for �gures 3.12 and 3.13.
Sub�gures 3.14 C and C’ combine subspectra shown in sub�gures 3.13 A and A’. Finally,
sub�gures 3.14 D and D’ were obtained from subspectra shown in sub�gures 3.13 B and B’.

The aligned sample used in �gure 3.15 was prepared using a 30% (w/v) gelatin/D2O gel
with 400 mM sucrose. The gel was stretched using a silicone-tube stretching device[228–230]

to an extension corresponding to a quadrupolar 2H splitting of the solvent of ∆νQ = 271 Hz.
Homogeneity of the sample was veri�ed using the method described in [231]. Spectral
widths for sucrose were set to 2 kHz and 6 kHz for 1H and 13C, respectively, corresponding
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to 3.3 ppm and 40 ppm with the carrier frequencies set to 4.25 ppm and 75 ppm. Data
was collected for 256 ms and 10.6 ms in the 1H and 13C dimension, respectively. This
corresponds to data matrices of 1024 × 128 complex time points which were zero-�lled
to 2048 × 256 points. Homonuclear decoupled FIDs were obtained by the acquisition of
16 chunks of 16 ms (64 complex points each) resulting in an AQ of 256 ms. The overall
experiment time was prolonged from an initial 5.9 min to 1 h and 25 min. Isotropic
reference spectra on a sample with the same concentration were recorded using the same
parameters except that AQs in the 1H dimension were doubled and homonuclear FIDs
were obtained from 32 chunks of 16 ms each which yields an AQ of 512 ms.

All two-dimensional experiments were recorded using two scans and 16 dummy scans
with a 1 s recovery delay and the �rst four points were dropped in every FID chunk of
homonuclear decoupled spectra to avoid artifacts due to digital-to-analog conversion of
the signal. A cosine-squared window function was used for apodization in each case. The
temperature was set to 300 K. Delays of heteronuclear magnetization transfer elements
such as conventional INEPT and BIRD were calibrated to match 1JCH = 145 Hz. Delays for
COB-INEPT were calibrated as described in �gure 3.11. All hard and shaped 1H and 13C
pulses have been calibrated to a nominal RF amplitude of 20 kHz and 10 kHz, corresponding
to pulse lengths of 12.5 and 25 µs , respectively. The processing software to reconstruct PS
data was obtained from [214].

Experimental BIRD pro�les shown in �gure 3.24 were obtained from spectra recorded on
a 500 MHz Bruker Avance III HD spectrometer equipped with a CryoProbe Prodigy™using
a 140 mM sample of sodium acetate-2-13C dissolved in a 1:5 (v/v) mixture of D2O/DMSO-d6.
1D 1H spectra were acquired with spectral widths of 1.5 kHz corresponding to 3 ppm
with the carrier frequency set to the methyl resonance at 1.65 ppm. Data was collected
for 2.73 s corresponding to 8192 complex data points which were zero-�lled to 16384
points. Time-domain data was not apodized prior to FT. The frequency-domain data was
then phased and subject to an automated baseline correction procedure. Experiments
were recorded using a single scan. The temperature was set to 300 K. The 1JCH coupling
constant of about 125.3 Hz was determined within 0.1 Hz accuracy from a conventional 1D
1H spectrum. To avoid e�ects of B1-inhomogeneities and J -couplings during concurrent
180◦ pulses, BUBI shapes as described above were used. Hard pulses were used for the
odd-�ip angle rotations. All hard and shaped 1H and 13C pulses have been calibrated to a
nominal RF amplitude of 20 kHz and 10 kHz, corresponding to 12.5 and 25 µs pulse length,
respectively.

Ethylvanillin, methylpropiolate and triethyl orthoformate were purchased from Alfa
Aesar®. Sucrose and (−)-menthol were purchased from Sigma-Aldrich®. Gelatine was
purchased from Ewald-Gelatine GmbH. Sodium acetate-2-13C was purchased from Cam-
bridge Isotope Laboratories, Inc. Deuterated solvents were purchased from Eurisotop®.
All compounds were used without further puri�cation.
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The improvement of sensitivity and resolution are main concerns of NMR method develop-
ment. Suppressing mutual couplings amongst nuclear spins by RF pulses presents itself as
an opportunity to achieve both. In this thesis, the optimization of two decoupling scenarios
was studied. Numerical optimization algorithms based on OCT but also traditional pulse
sequence design were the means to this end.

Heteronuclear decoupling sequences are a fundamental building block in every heteronu-
clear correlation experiment where resolution and spectral dispersion and sensitivity are
of higher importance than the information provided by resonance lines that are split due
to heteronuclear couplings between spins, such as standard HSQC or HMQC experiments.
Decoupling schemes are needed which provide high decoupled peak intensities paired
with low sideband artifact levels for a wide range of resonance o�sets. Up until recently
it was best-practice to pursue these goals in three steps. First, a robust implementation
of spin inversion has to be found which will be repetitively applied with varying phases
given by a rationally designed supercycle in a second step. Finally, sideband artifacts
arising from recurring periods of e�ectively free coupling evolution have to be suppressed.
Typically, adiabatic bilevel decoupling is the preferred standard implementation to achieve
the goals given above. Pulse shapes such as CHIRP, WURST and Hyperbolic Secant (HS)
are common inversion elements which are expanded in a supercycle such as M4P5. Bilevel
decoupling serves as a scheme to suppress the two most spurious types of sidebands by
introducing 180◦ phase shifts on harmonic and subharmonic sidebands appearing at two
distinct frequencies using only four scans. It is thus very speci�c but thereby extremely
e�cient and more widely used than the less general accordion technique, which may
require more transients to yield comparable sideband levels at a given frequency.

Optimal tracking, a generalized version of the GRAPE algorithm, was presented as
an approach that can tackle one inherent source of sidebands of decoupling sequenes
which is repetitiveness. Tracking-based decoupling schemes have no inherent source of
sidebands at a given frequency since the optimizations result in non-repetitive sequences
in all cases. It was shown in this thesis however, that no single tracking-based decoupling
sequence can compete with multi-scan approaches such as adiabatic bilevel decoupling
in terms of sideband levels. A quality factor was proposed for cooperative decoupling
sequences which can compensate their own imperfections by a feedback loop which ex-
plicitly facilitates the minimization of temporal signal oscillations. This can further reduce
sidebands beyond mere non-repetitiveness. It was shown that for the target parameter set
of 40 kHz bandwidth, a mean RF amplitude of 2 kHz and a representative heteronuclear
coupling constant of 140 Hz, a set of four decoupling sequences could be obtained which
provides sideband amplitudes of about 0.5% across the desired o�set range. In other words,
decoupling of more than the entire chemical shift range of 13C on a 14.1 T device is facili-
tated despite an almost 5-fold reduction of RF power dissipation. Put di�erently, using
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the same mean RF amplitude the e�ective bandwidth was more than doubled compared
to the gold standard. Conversely, at such reduced RF levels adiabatic decoupling breaks
down as soon as the adiabaticity condition is violated. Additional sidebands are introduced
which can not be canceled by the same mechanism as bilevel decoupling. Given that the
BROCODE sequences presented here are not prone to frequency-speci�c sidebands, the
method described in this thesis can be assumed to be maybe the most general approach
to maintain sideband suppression and broadband operation at any given RF level. The
e�ciency of the BROCODE pulses has been proven by simulations and experiments and
further tested on two small molecule examples. It has been shown on a 100:1 mixture of a
pesticide molecule and its reactive precursor, that the sideband levels achievable by the
BROCODE allow for the unambiguous identi�cation of the minor component at the given
dynamic ratio. Even compared to adiabatic bilevel decoupling with RF levels adjusted
to ful�ll the adiabatic condition, the impurity resonances can quite reliably be identi�ed
using the BROCODE. A major bene�t of decoupling with reduced mean RF levels is the
possibility to extend acquisition periods and gain resolution. On the compound mixture
the increased resolution was an additional help in identifying the resonances by splittings
due to homonuclear J -couplings. It was shown on the natural compound (+)-borneol that
a synergy between BROCODE and LFP can be used to resolve homonuclear splittings
to an extent that resonances with identical 1H chemical shifts can be assigned by the
analysis of the respective multiplets in HSQC in cases of di�erent 13C chemical shifts. All
these bene�ts could be observed also in cases of unfavorable conditions. The magnitudes
of the heteronuclear coupling constants observed in the compound mixture were often
higher than the 140 Hz demanded in the optimizations. Further, the extended AQs require
repetitive application of the BROCODE pulses, which are PP pulses per design. So each
repetition of a given sequence will impair the decoupling performance given that the
individual pulses are not designed to be cyclic. Finally, the RF levels were calibrated
automatically in the HSQC experiments on the small molecules to test for robustness
and general applicability. Given that the BROCODE yielded acceptable decoupling and
sideband suppression capabilities nonetheless, it appears to be �exible enough to be a
useful tool for a wide range of heteronuclear correlation experiments. Relative sideband
amplitudes only appeared to increase when spectra were acquired with higher resolution.
This can be attributed to similar e�ects as with COSY experiments since sidebands can
have arbitrary phase and thus negative intensity contributions just like COSY signals
which will only gain signi�cant intensity with su�cient resolution.

Despite the availability of static magnetic �elds on the order of 23.5 T and multi-
dimensional NMR experiments, the resolution in 1H spectroscopy still can pose challenges
in terms of signal overlap. Therefore, experimental approaches to collapse homonuclear
multiplets were ever sought after. Although homonuclear decoupling approaches were
known for a rather long time, most of them were only rediscovered recently during a
surge of pure shift (PS) method development. These methods are commonly based on the
application of single-spin inversion (SSI) elements to achieve a selection of sub-ensembles
of active spins which can in turn be decoupled from the passive spins. Experiments are
known which apply SSI elements in indirect dimensions where PS FIDs are recorded as an
interferogram or which interrupt the data acquisition for the application of RF pulses to
achieve real-time (RT) homonuclear decoupling. SSI elements are available that facilitate
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sub-ensemble discrimination by slice-selection within the sample (Zangger-Sterk (ZS), with
the HOBS experiments as an important o�-spring), isotope �ltering (BIRD) or statistically
(PSYCHE). The bene�ts and drawbacks of all methods were weighed and matched to a
corresponding set of applications in multi-dimensional NMR spectroscopy. ZS and PSYCHE
are mostly used in homonuclear correlation experiments whereas the BIRD approach
lends itself to HSQC-type experiments. Although the most signi�cant drawback of all PS
methods is an inherent loss of sensitivity due to the fact that only a reduced number of spins
contribute to the acquired signal, the combination of BIRD and HSQC represents the only
known possibility to improve sensitivity and resolution at the same time. However, BIRD
can not be applied to HMBC and HSQMBC experiments since it is impossible to distinguish
di�erent spins which are remotely-bound to a heteronucleus. Another shortcoming of
BIRD is the inability to remove mutual couplings within diastereotopic CH2 groups whereas
ZS and PSYCHE achieve broadband decoupling irrespective of 13C multiplicity. Just as
PSYCHE, BIRD can bypass strong coupling e�ects but can in contrast also be applied
during the actual data acquisition. The same holds for HOBS but the latter can not be
considered broadband homonuclear decoupling.

In this thesis, HSQC-type experiments were proposed to extract heteronuclear one-bond
couplings with highest resolution by combining the CLIP/CLAP approach with BIRD-
based homonuclear decoupling. Coupling constants could be extracted from heteronuclear
doublets where each component is collapsed to singlets in the case of CH and CH3 groups
under isotropic conditions. Diastereotopic CH2 groups (and in principle also CH3 groups
under anisotropic conditions) show residual splittings and dispersive line shapes due to
unrefocused mutual couplings. It could be shown that in the weak coupling limit, the
extraction of heteronuclear couplings is not impaired by this line shape. In general, given
that all splittings due to weak homonuclear couplings can readily be removed, cases where
strong coupling can not be bypassed are easily recognizable by deviations from the expected
line shapes. Splittings caused by geminal couplings could be removed by transforming the
BIRD-based PS pseudo-dimension of the interferogram-based experiment into a constant-
time (CT) version. In principle, this should also suppress the splittings due to mutual
couplings within CH3 groups under anisotropic conditions. An alternative approach
based on a perfect echo fails in the latter case since it is tailored towards decoupling AX
spin systems only. The experiments were tested on small organic molecules in isotropic
solution as well as in a stretched gel and it could be shown that the accuracy of the extracted
couplings bene�ted from the multiplet reduction in many cases. Particularly in the aligned
sample, many artifacts from long-range correlations caused by strong coupling could be
suppressed so that more symmetric heteronuclear doublets could be obtained that lead to
more reliable couplings and could also prevent the extraction of RDCs with a wrong sign.
At the same time, the formation of strong coupling networks among the protons can also
render BIRD-based decoupling ine�ective. Moreover, a high abundance or magnitude of
homonuclear couplings and especially homonuclear RDCs lead to signi�cant deviations of
the spins from a PS trajectory so that sideband-like artifacts could be observed. However,
they did not signi�cantly a�ect the line shape of the heteronuclear doublets so that the
accuracy of the extracted couplings was not hampered.

The proposed experiments were examined with respect to their robustness towards a
variation in heteronuclear couplings, resonance o�sets and B1-inhomogeneities. It could be
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shown that without the application of broadband pulses and J -compensated magnetization
transfer elements like COB-INEPT, signal losses greater than 90% have to expected. Still,
magnetization losses compared to fully-coupled reference experiments are observed which
could be attributed to BIRD elements which are not compensated against a variation of
J -couplings. It was shown by simulations that none of the sequences proposed in the
literature provides a fully J -compensated bilinear rotation. After a feasibility study with
shaped pulses, BIRD elements were optimized as hard pulse-delay (HPD) sequences and
optimal solutions could be found with as little as four pulses and three delays with a total
pulse length of 15.5 ms. The resulting transfer elements were tested experimentally using
a proxy setup for the proposed HSQC experiments yielding reasonable agreement with
the simulations. Further, the usual COB approach was compared to a setup using matched
pairs of linear frequency sweeps. Quality factors and gradient functions were derived for
a direct optimization of 13C pulses within this particular setup but the results could not
compete with the sequences obtained in the systematic study of HPD sequences. Finally,
the results for the interferogram-based PS HSQC experiments could not be reproduced
with RT BIRD-based homonuclear decoupling. It is now commonly accepted that errors
on the coupling constants are introduced, but there is an ongoing debate regarding their
very source, whether they are caused by BIRD imperfections or the interruption of the
data collection itself.

The methods described in this thesis are not limited to the applications presented
herein. BROCODE-type sequences could be scaled and applied to 19F-decoupling of 1H
and 13C, which is relevant for NMR of pharmaceuticals but highly challenging due to
the enormous chemical shift range of 19F. Optimization algorithms could be modi�ed to
aim for cyclic sequences, which would reduce artifacts due to the repetitive application
of the BROCODE pulses in experiments where AQ exceeds the individual pulse lengths.
Further, when the number of scans recorded for the same experiment exceeds the number
of decoupling sequences contributing to a COOP cycle, sidebands could be further reduced
by implementing BROCODE pulses which make use of accordion-type averaging.

RESET HSQC-type experiments can not only be used to accurately determine one-
bond couplings, but also simplify the correlation of chemical shifts in crowded spectra.
Moreover, an experiment to extract the magnitude and sign of 2THH couplings from
collapsed homonuclear multiplets has yet to be developed. Such experiments can bene�t
from the more robust COB-BIRD elements proposed in this thesis. Given that BIRD �lters
are also used to orchestrate the evolution of heteronuclear couplings, additional BIRDr

and BIRDd,X elements could be optimized for use in ω1-coupled HSQC or heteronuclear
J -resolved experiments. In summary, the results of this thesis provided several additions
to the ever-expanding NMR toolbox in terms of the observation as well as suppression of
couplings among nuclear spins.
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[95] E. Kupče, R. Freeman, G. Wider, K. Wüthrich, “Figure of Merit and Cycling Side-
bands in Adiabatic Decoupling”, J. Magn. Reson. A 1996, 120, 264–268.

[96] T. E. Skinner, M. R. Bendall, “Peak Power and E�ciency in Hyperbolic-Secant
Decoupling”, J. Magn. Reson. A 1996, 123, 111–115.
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A. Appendix

A.1. Benchmark data

In order to quantify the gains in speed by changing the formalism in which the spin
dynamics are treated in thesis (see section 2.2.4), a computational benchmark was set.
The decoupling sequence obtained in section 2.2.2 was subjected to a linearly increasing
number of simple quality factor evaluations under the MATLAB®framework given in
appendix A.2.1. Wall clock times were obtained by time stamp commands and Hilbert
space computations were compared to their reduced Liouville space counterparts using
a Windows® workstation and a Linux machine. Moreover, to assess the reduction in
computational e�orts under more realistic conditions, the expenditure of time for 1000 iter-
ations of the GRAPE algorithm was measured for optimizations described in section 2.2.2
and compared to examples similar to the ones discussed in [36] and [107]. Time stamps
for the latter were obtained after every 50 iterations and data was collected using serial
and parallel computation. The data and the respective gain factors deduced from linear
�ts are compiled in �gure A.1. Under MATLAB®, the gain factors show a signi�cant
spread between the di�erent machines, which can most likely be attributed to the di�erent
hardware architecture. The di�erence between serial and parallel operation on the same
machine seems more peculiar. It appears that either the Hilbert space computations re-
quire more overhead, which seems unlikely, or the reduced state space prevents situations
where the workload among the di�erent threads is unevenly distributed so that periods of
waiting are introduced which would prolong the total duration. In terms of full GRAPE
iterations, the gain factors are very similar for serial operation whereas a signi�cant spread
is reintroduced upon parallelization. This can be explained by the scale of the problem
and the amount of time the optimization actually spends in the parallel fork, which can be
correlated with NνS . The latter was set to 21 for TRACK[36], 101 for BUSS [107] and 384 for
the test pulse in this work. This indicates that the higher the value for NνS , the more time
is relatively spend in the parallel fork, where the optimization is more signi�cantly sped
up by using the state space restriction.

Also in section 2.2.4, the e�ects of a periodical refreshment of the CG trajectory were
explored. For the optimizations leading to the BROCODE, 50 iterations were found to
be the optimal period to reset the CG routine. A more frequent reinitialization led to
signi�cantly impaired convergence as illustrated in �gure A.2. This indicates that at least
to some extent the hypersurface of the quality factors is locally quadratic with respect to
the control amplitudes.
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Figure A.1.: Benchmark data for reduced state space vs. conventional Hilbert space com-
putations. The test pulse obtained in section 2.2.2 was used for the MATLAB®benchmark
comparing the speed of simple quality factor evaluations. Performance gains were com-
pared between a Windows® workstation (Goblin) and a Linux machine (Wanderlust). The
latter was employed to compare the speed of full iterations of the GRAPE algorithm for
optimization problems discussed in [36] and [107] with the one in this work using serial as
well as parallel computation. All wall clock times were normalized to the slowest reduced
Liouville state computation and gains in speed are determined from the slope of linear �ts.
For reference to the computer pet names and speci�cations see table 2.6.
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Figure A.2.: Convergence benchmark (spaghetti plots) for di�erent frequencies of CG
reinitialization during optimizations of pulse sequences as described in section 2.2.2. The
CG trajectory was refreshed after 50 (black), 25 (blue) and 10 (red) iterations. The plot was
expanded to the same region as �gure 2.30.

A.2. MATLAB source code

A.2.1. Heteronuclear decoupling

Listing A.1: MATLAB®function for parallel simulation of time/frequency-domain data
(�d/spectrum) and determination of Φmean (cost) of decoupling sequences. Input variable
de�nitions according to sections 1.2.5 and 2.2.4 are: n_FID = N , inc_puls = M , ws = νS,
wj = J , b1 = B1,rel, t_dig = ∆t , xp = ux and yp = uy . All other variables are only relevant
for FID processing.

1 function [fid,spectrum,cost] = parallel_FID(n_FID,inc_puls,ws,wj,b1,t_dig,xp,

yp,qsin,em,basecor,norm_FT,zf)

2

3 %internal prealloc

4 fid = ones(n_FID+1,1);

5

6 %FID

7 rhossr = [0 0 0 1]’;

8 targetssr = rhossr;

9

10 phi = 0;

11

12 for i_FID = 1:n_FID

13 %dwell time
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14 for i_puls = 1:inc_puls

15 u_ssr = tf15_reduced_propagator(ws,wj,b1,t_dig(i_puls),...

16 xp((i_FID-1)*inc_puls+i_puls),yp((i_FID-1)*inc_puls+i_puls));

17 rhossr = u_ssr*rhossr;

18 end

19

20 %Kostenfunktion

21 checkpointssr = real(targetssr’*rhossr);

22 phi = phi + checkpointssr;

23

24 %Spektrum

25 fid(i_FID+1) = checkpointssr;

26 end

27

28 %Apodisierung

29 FT_dummy=fid’.*qsin;

30 FT_dummy=FT_dummy.*em;

31

32 %FT

33 spectrum=fftshift(fft(FT_dummy,zf));

34

35 %Baseline correction

36 spectrum=spectrum-basecor;

37

38 %Norm

39 spectrum=spectrum/norm_FT;

40 cost = phi/n_FID;

41 end

Listing A.2: MATLAB®function for parallel simulation of time/frequency-domain data
(�d/spectrum) and determination of ΦCOOP (cost) for COOP decoupling sequences. Input
variable de�nitions according to sections 1.2.5 and 2.2.4 are: ncoop = NCOOP, n_FID = N ,
inc_puls = M , ws = νS, wj = J , b1 = B1,rel, t_dig = ∆t , xp = ux and yp = uy . All other
variables are only relevant for FID processing.

1 function [fid,spectrum,cost] = parallel_COOPFID(ncoop,n_FID,inc_puls,...

2 ws,wj,b1,t_dig,xp,yp,qsin,em,basecor,norm_FT,zf)

3

4 %internal prealloc

5 fid = ones(n_FID+1,1);

6

7 %FID

8 rhossr_N = zeros(4,n_FID);

9

10 for icoop = 1:ncoop

11 rhossr = [0 0 0 1]’;
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12 targetssr = rhossr;

13

14 for i_FID = 1:n_FID

15 %dwell time

16 for i_puls = 1:inc_puls

17 u_ssr = tf15_reduced_propagator(ws,wj,b1,t_dig(i_puls),...

18 xp(icoop,(i_FID-1)*inc_puls+i_puls),...

19 yp(icoop,(i_FID-1)*inc_puls+i_puls));

20 rhossr = u_ssr*rhossr;

21 end

22

23 %Propagation

24 rhossr_N(:,i_FID) = rhossr_N(:,i_FID)+(1/ncoop)*rhossr;

25 end %single FID

26 end %COOP

27

28 %COOP FID

29 phi_mean = 0;

30 for i_FID = 1:n_FID

31 checkpointssr = targetssr’*rhossr_N(:,i_FID);

32 phi_mean = phi_mean + checkpointssr/n_FID;

33 fid(i_FID+1) = checkpointssr;

34 end

35

36 %homogenous cost

37 phi = 0;

38 for i_FID = 1:n_FID

39 checkpointssr = targetssr’*rhossr_N(:,i_FID);

40 checkpointssr = 1-(1-checkpointssr)^2-(phi_mean-checkpointssr)^2;

41 phi = phi + checkpointssr;

42 end

43

44 %Apodisierung

45 FT_dummy=fid’.*qsin;

46 FT_dummy=FT_dummy.*em;

47

48 %FT

49 spectrum=fftshift(fft(FT_dummy,zf));

50

51 %Baseline correction

52 spectrum=spectrum-basecor;

53

54 %Norm

55 spectrum=spectrum/norm_FT;

56 cost = phi/n_FID;

185



A. Appendix

57 end

Listing A.3: MATLAB®function for the explicit computation of propagators in a reduced
Liouville space. Input variable de�nitions according to sections 1.2.5 and 2.2.4 are: ws = νS,
J identical, b1 = B1,rel, timestep = ∆t , ux = ux (tj ) and uy = uy (tj ).

1 function u = tf15_reduced_propagator(ws,J,b1,timestep,ux,uy)

2

3 u=zeros(4);

4

5 %nu plus/minus

6 nup = sqrt((b1*ux)^2 + (b1*uy)^2 + (ws+(J/2))^2);

7 num = sqrt((b1*ux)^2 + (b1*uy)^2 + (ws-(J/2))^2);

8

9 %Matrix element building blocks a-d (plus/minus);

10 ap = -((b1*ux)/nup) * sin(pi*nup*timestep);

11 am = -((b1*ux)/num) * sin(pi*num*timestep);

12

13 bp = -((b1*uy)/nup) * sin(pi*nup*timestep);

14 bm = -((b1*uy)/num) * sin(pi*num*timestep);

15

16 cp = -((ws+(J/2))/nup) * sin(pi*nup*timestep);

17 cm = -((ws-(J/2))/num) * sin(pi*num*timestep);

18

19 dp = cos(pi*nup*timestep);

20 dm = cos(pi*num*timestep);

21

22 %Matrix Entries

23 u(1,1) = ap*am - bp*bm - cp*cm + dp*dm;

24 u(1,2) = ap*bm + bp*am + cp*dm + dp*cm;

25 u(1,3) = ap*cm - bp*dm + cp*am - dp*bm;

26 u(1,4) =-ap*dm - bp*cm + cp*bm + dp*am;

27

28 u(2,1) = ap*bm + bp*am - cp*dm - dp*cm;

29 u(2,2) =-ap*am + bp*bm - cp*cm + dp*dm;

30 u(2,3) = ap*dm + bp*cm + cp*bm + dp*am;

31 u(2,4) = ap*cm - bp*dm - cp*am + dp*bm;

32

33 u(3,1) = ap*cm + bp*dm + cp*am + dp*bm;

34 u(3,2) =-ap*dm + bp*cm + cp*bm - dp*am;

35 u(3,3) =-ap*am - bp*bm + cp*cm + dp*dm;

36 u(3,4) =-ap*bm + bp*am - cp*dm + dp*cm;

37

38 u(4,1) = ap*dm - bp*cm + cp*bm - dp*am;

39 u(4,2) = ap*cm + bp*dm - cp*am - dp*bm;

40 u(4,3) =-ap*bm + bp*am + cp*dm - dp*cm;
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41 u(4,4) = ap*am + bp*bm + cp*cm + dp*dm;

42

43 end

A.2.2. BIRD filters

Listing A.4: MATLAB®script for the evaluation of ΦPP and ΦUR of HPD BIRD elements
discussed in sections 3.3.1 and 3.3.2 as well as simulations of BIRD spin echo intensity
pro�les.

1 clear;

2 close all;

3

4 %spin system initialization

5 nspins=2;

6 a00_basis;

7

8 method = ’BIRD’;

9 %BIRD, JCBIRD, 4p3d, 5p4d

10

11 n_j = 41;

12 j_min = 25;

13 j_max = 350;

14 j_fix = 125.29; % J_exp

15 j_del = 185; % J_match

16

17 rhoinit = iz(:,:,1);

18 rhotarget = -iz(:,:,1);

19 op = 2*iy(:,:,1)*iz(:,:,2);

20

21 phi = 0;

22 colorstyle = ’b’;

23

24 %Spectra

25 k = 1024;

26 dw = 0.000333;

27 n_FID = 8*k;

28 SI=16*k;

29 lb = 1.5;

30

31 %Indices

32 j_index = linspace (j_min, j_max, n_j);

33 te = ones(1,n_j);

34 teFID=zeros(n_FID+1,1);

35 em=zeros(n_FID+1,1);

36 qsin=zeros(n_FID+1,1);
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37 spectra = zeros(n_j,SI);

38 ftindex = linspace(-1/(2*dw),1/(2*dw),SI);

39

40 for a = 1:n_FID+1

41 qsin(a)=sin(0.5*pi*((a-1)/(n_FID+1)+1))^2;

42 em(a)=exp(-pi*lb*(a-1)*dw);

43 end

44

45 h_evo = 2*pi*j_fix*iz(:,:,1)*iz(:,:,2);

46 u = expm(-1i*h_evo*dw);

47 u_target = expm(-1i*pi*op);

48

49 for i_j = 1:n_j

50 rho=rhoinit;

51 ueff = eye(2^nspins);

52

53 switch method

54 case ’4p3d’

55 %--- 4p3d 2IySz COB 15.5 ms ---

56 scaling = j_index(i_j)/j_fix;

57 delay1 = 5.1666*1e-3;

58 delay2 = 5.1669*1e-3;

59 delay3 = 5.1666*1e-3;

60 u_pi = expm(-1i*pi*(ix(:,:,1)+ix(:,:,2)));

61 flip1 = 2*pi*(148.1455/360);

62 flip2 = 2*pi*(-116.2881/360);

63 flip3 = 2*pi*(116.2863/360);

64 flip4 = 2*pi*(-148.1424/360);

65

66 u_puls = expm(-1i*flip1*ix(:,:,1));

67 u_delay = expm(-1i*h_evo*(scaling*delay1/2));

68 ueff = u_delay*u_pi*u_delay*u_puls*ueff;

69

70 u_puls = expm(-1i*flip2*ix(:,:,1));

71 u_delay = expm(-1i*h_evo*(scaling*delay2/4));

72 ueff = u_delay*(-u_pi)*u_delay*u_delay*u_pi*u_delay*u_puls*ueff;

73

74 u_puls = expm(-1i*flip3*ix(:,:,1));

75 u_delay = expm(-1i*h_evo*(scaling*delay3/2));

76 ueff = u_delay*u_pi*u_delay*u_puls*ueff;

77

78 u_puls = expm(-1i*flip4*ix(:,:,1));

79 ueff = u_puls*ueff;

80

81 %CLIP
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82 u_clip = expm(-1i*0.5*pi*ix(:,:,2));

83 ueff = u_clip*ueff;

84

85 case ’5p4d’

86 %--- 5p4d 2IySz COB 15.5 ms ---

87 scaling = j_index(i_j)/j_fix;

88 delay1 = 5.7616*1e-3;

89 delay2 = 4.0728*1e-3;

90 delay3 = 1.7267*1e-3;

91 delay4 = 3.9389*1e-3;

92 u_pi = expm(-1i*pi*(ix(:,:,1)+ix(:,:,2)));

93 flip1 = 2*pi*(37.6467/360);

94 flip2 = 2*pi*(119.8013/360);

95 flip3 = 2*pi*(-71.4578/360);

96 flip4 = 2*pi*(-63.912/360);

97 flip5 = 2*pi*(-22.0815/360);

98

99 u_puls = expm(-1i*flip1*ix(:,:,1));

100 u_delay = expm(-1i*h_evo*(scaling*delay1/2));

101 ueff = u_delay*u_pi*u_delay*u_puls*ueff;

102

103 u_puls = expm(-1i*flip2*ix(:,:,1));

104 u_delay = expm(-1i*h_evo*(scaling*delay2/2));

105 ueff = u_delay*u_pi*u_delay*u_puls*ueff;

106

107 u_puls = expm(-1i*flip3*ix(:,:,1));

108 u_delay = expm(-1i*h_evo*(scaling*delay3/2));

109 ueff = u_delay*u_pi*u_delay*u_puls*ueff;

110

111 u_puls = expm(-1i*flip4*ix(:,:,1));

112 u_delay = expm(-1i*h_evo*(scaling*delay4/2));

113 ueff = u_delay*u_pi*u_delay*u_puls*ueff;

114

115 u_puls = expm(-1i*flip5*ix(:,:,1));

116 ueff = u_puls*ueff;

117

118 %CLIP

119 u_clip = expm(-1i*0.5*pi*ix(:,:,2));

120 ueff = u_clip*ueff;

121

122 case ’BIRD’

123 %--- BIRD ---

124 vardelay = j_index(i_j)/(2*j_fix*j_del);

125 delay = expm(-1i*h_evo*vardelay);

126 inv = expm(-1i*pi*(ix(:,:,1)+ix(:,:,2)));
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127 puls = expm(-1i*0.5*pi*ix(:,:,1));

128 puls2 = expm(-1i*0.5*pi*ix(:,:,1));

129 bubi = expm(-1i*(-0.5*pi*ix(:,:,1)+pi*ix(:,:,2)));

130 ueff = puls*delay*inv*delay*puls*ueff;

131

132 case ’JCBIRD’

133 %--- JC BIRD ---

134 vardelay = j_index(i_j)/(2*j_fix*j_del);

135 u_delay = expm(-1i*h_evo*vardelay);

136 u_short = expm(-1i*h_evo*vardelay/2);

137 u_x = expm(-1i*0.5*pi*ix(:,:,1));

138 u_xm = expm(1i*0.5*pi*ix(:,:,1));

139 u_y = expm(-1i*0.5*pi*iy(:,:,1));

140 u_ym = expm(1i*0.5*pi*iy(:,:,1));

141 u_pi = expm(-1i*pi*(ix(:,:,1)+ix(:,:,2)));

142 ueff = u_ym*u_short*u_pi*u_short*u_x*u_delay*u_pi...

143 *u_delay*u_xm*u_short*u_pi*u_short*u_y*ueff;

144

145 otherwise

146 error(’no valid BIRD’)

147 end

148

149 % ----------- cost -------------------

150 if phi == 0

151 rho = ueff*rho*ueff’;

152 norm = real(trace(rhotarget’*rhotarget));

153 te(i_j)=real(trace(rhotarget’*rho))/norm;

154 elseif phi == 3

155 normu = real(trace(u_target’*u_target));

156 te(i_j)=real(trace(u_target’*ueff))/normu;

157 else

158 break

159 end

160

161 %---------- peaks ------------------

162 rho = ueff*ix(:,:,1)*ueff’;

163 for j = 1:n_FID+1

164 teFID(j) = trace(-ix(:,:,1)’*rho);

165 rho = u*rho*u’;

166 end

167 teFID=teFID.*(em.*qsin);

168 ft = fftshift(fft(teFID,SI));

169 spectra(i_j,:) = ft;

170 end

171
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172 figure;

173 plot(j_index,te,colorstyle,’Linewidth’,0.75);

174 set(gca,’fontsize’,12,’XColor’,’k’,’YColor’,’k’,’Linewidth’,0.75);

175 set(gca,’YTicklabel’,num2str(get(gca,’YTick’)’,’%.1f’));

176 set(gcf,’color’,[1 1 1]);

177 xlabel(’J / Hz’);

178 if phi == 0

179 ylabel(’\Phi_{PP}’);

180 elseif phi == 3

181 ylabel(’\Phi_{UR}’);

182 else

183 return

184 end

185

186 figure;

187 entries = find(ftindex > -150 & ftindex < 150);

188 newftindex = linspace(min(j_index),max(j_index),...

189 numel(j_index)*numel(entries));

190 peaks = reshape(spectra(:,entries)’,numel(j_index)*numel(entries),1);

191 norm = max(real(peaks));

192 plot(newftindex,real(peaks)/norm,’k’,’Linewidth’,0.75);

193 axis ([min(newftindex) max(newftindex) -1 1]);

194 set(gca,’fontsize’,12,’XColor’,’k’,’YColor’,’k’,’Linewidth’,0.75);

195 set(gca,’YTicklabel’,num2str(get(gca,’YTick’)’,’%.1f’));

196 set(gcf,’color’,[1 1 1]);

197 xlabel(’J_{eff} / Hz’);

198 ylabel(’Peak intensity’);

Listing A.5: MATLAB®function for the parallel evaluation of ΦPP (PP) and ΦBIRDBOP (UR)
as well as the determination of Ue� (ue� ) according to equation 3.22 of BIRDBOP shapes
discussed in section 3.3.3. Input variable de�nitions are: wj = J , ws = νS, cell arrays ix,
iy and iz correspond to the density operators Ix and Sx , Iy and Sy as well as Iz and Sz ,
respectively. zeile1 and zeile2 correspond to the number of pulse increments of shape one
and two, respectively. Other input variables according to section 3.3.3 are: xp1 = u

(S )

x,1
,

yp1 =u (S )

y,1
, t_dig1 =∆t1, xp2 =u (S )

x,2
, yp2 =u (S )

y,2
and t_dig2 =∆t2. uf , ux and upi correspond

to UF, Uπ/2 and Uπ , respectively.
1 function [UR,PP,ueff] = tf_t14b_sim_bird_shape_jcomp_par(wj,ws,ix,iy,iz,...

2 zeile1,zeile2,xp1,yp1,t_dig1,xp2,yp2,t_dig2,uf,ux,upi)

3

4 h_j = 2*pi*wj*iz(:,:,1)*iz(:,:,2);

5 h_cs = 2*pi*ws*iz(:,:,1);

6 h_evo = h_j+h_cs;

7

8 %Useff puls 1
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9 ushape1s = eye(4);

10 for j = 1:zeile1

11 h_rf = 2*pi*(xp1(j)*ix(:,:,1)+yp1(j)*iy(:,:,1));

12 h = h_cs + h_rf;

13 u = expm(-1i*h*t_dig1(j));

14 ushape1s = u*ushape1s;

15 end

16

17 %Ueff puls 1

18 ushape1 = eye(4);

19 for j = 1:zeile1

20 h_rf = 2*pi*(xp1(j)*ix(:,:,1)+yp1(j)*iy(:,:,1));

21 h = h_evo + h_rf;

22 u = expm(-1i*h*t_dig1(j));

23 ushape1 = u*ushape1;

24 end

25

26 %Useff puls 2

27 ushape2s = eye(4);

28 for j = 1:zeile2

29 h_rf = 2*pi*(xp2(j)*ix(:,:,1)+yp2(j)*iy(:,:,1));

30 h = h_cs + h_rf;

31 u = expm(-1i*h*t_dig2(j));

32 ushape2s = u*ushape2s;

33 end

34

35 %Ueff puls 2

36 ushape2 = eye(4);

37 for j = 1:zeile2

38 h_rf = 2*pi*(xp2(j)*ix(:,:,1)+yp2(j)*iy(:,:,1));

39 h = h_evo + h_rf;

40 u = expm(-1i*h*t_dig2(j));

41 ushape2 = u*ushape2;

42 end

43

44 udelay = expm(-1i*h_evo*0.003);

45 udelays = expm(-1i*h_cs*0.003);

46

47 useff = udelays*ushape2s*udelays*ushape1s;

48 ueff = ux*udelay*ushape2*upi*udelay*ushape1*ux;

49

50 UR = real(trace((uf*useff)’*ueff)/4);

51 rho = ueff*iz(:,:,2)*ueff’;

52 PP = real(trace(-iz(:,:,2)’*rho));

53 end
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A.3. Fortran source code

A.3.1. Heteronuclear decoupling - Hilbert space

Listing A.6: Fortran source code for the quality factor evaluation of individual decoupling
sequences according to Φmean in Hilbert space

1 ! 2 spins xy Heterodecoupling Tony 2012/08

2 ! phi0 (TRACKING)

3 !=======================================================================

4 ttcost2 = 0d0

5 call mcopy(initialrho,rho)

6 do k=1,npulses

7 call geteigenhamtrack(k)

8 call czmul(-1d0,ii,pham(k),work1)

9 call expm(duration(k),work1,work1)

10 call URUd(work1,rho,rho)

11 if (mod(k,Ppdwell) .eq. 0) then

12 call mscalp(targetrho,rho,ttcost3)

13 ttcost2=ttcost2+ttcost3

14 endif

15 enddo

16 ttcost1 = ttcost1+ttcost2/n_FID

Listing A.7: Fortran source code for the gradient evaluation of individual decoupling
sequences according to Φmean in Hilbert space

1 !2 spins xy Gradient für TRACKING Tony 2012/08

2 !==========================================================================

3 !-----get single U, same U as with expm(-iH), even with full H (+Sctrl)

4 do k=1,npulses !einzeln alle, voller H

5 call geteigenhamtrack(k)

6 call VDe(pham(k),k) !V=work2, D=work9, e=work8

7 call mcopy(work2,optV(k))

8 call mcopy(work9,optD(k))

9 call mcopy(work8,opte(k))

10 call dagger(work2,work3) ! Vd

11 call mmul(work8,work3,work4) ! eVd

12 call mmul(work2,work4,optG(k)) ! G=U=VeVd

13 enddo

14

15 !----------initialrho propagieren

16 call mcopy(initialrho,prho(1))

17 do k=1,npulses ! Aufmultiplizieren, von rho

18 call dagger(optG(k),work2) ! Ud

19 call mmul(prho(k),work2,prho(k+1)) ! RUd
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20 call mmul(optG(k),prho(k+1),prho(k+1)) ! URUd

21 enddo

22

23 !----------targetrho rückwärts propagieren

24 call zeros(plambda(npulses+1)) ! DANGER: comes from npulses+1

25 do k=npulses,1,-1

26 if (mod(k,Ppdwell) .eq. 0) then

27 call madd(targetrho,plambda(k+1),plambda(k+1)) !TRACK

28 endif

29 call dagger(optG(k),work2) ! Ud

30 call mmul(plambda(k+1),optG(k),work3) ! LU

31 call mmul(work2,work3,plambda(k)) ! UdLU

32 enddo

33

34 !---------- exakten grad, basis transformation

35 do ictrl=3,nctrl

36 call cmul(pii,ctrlham(ictrl),workg1(ictrl)) ! H = 2*pi*H

37 enddo

38 do k=1,npulses

39 call dagger(optG(k),work3) ! Ud

40 call dagger(optV(k),work4) ! Vd

41 call mmul(plambda(k+1),optV(k),work6) ! L*V

42 call mmul(work4,work6,work6) ! Vd*L*V

43 call mmul(work3,optV(k),work7) ! Ud*V

44 call mmul(work4,work7,work8) ! Vd*Ud*V = work8

45 call mmul(work3,optV(k),work7) ! Ud*V

46 call mmul(prho(k),work7,work7) ! R*Ud*V

47 call mmul(work4,work7,work9) ! Vd*R*Ud*V

48 call mmul(prho(k),optV(k),work7) ! R*V

49 call mmul(optG(k),work7,work7) ! U*R*V

50 call mmul(work4,work7,work10) ! Vd*U*R*Vc

51

52 !------------calculate dU/du

53 do ictrl=3,nctrl

54 call mmul(workg1(ictrl),optV(k),work1) ! Hctrl*V

55 call mmul(work4,work1,work1) ! Vd*Hctrl*V

56 call mpstern(work1,optD(k),work1) ! U’ = Vd*Hctrl*V * D

57 call mmul(work1,work8,work7) ! U’ * work8

58 call mmul(work8,work7,work7) ! Ud’=Vd*Ud*V*U’*Vd*Ud*V

59 call cmul(-1d0,work7,work7) ! -Ud’

60 call mmul(work10,work7,work5) ! Vd*U*R*V*-Ud’

61 call mmul(work1,work9,work7) ! U’ * V’RU’V

62 call madd(work7,work5,work7) ! (URU)’

63 call mmul(work6,work7,work7) ! Vd*L*V * (URU)’

64 !-------------imaginäres skalarprodukt
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65 call traceim(work7,ttcost) ! Im(tr{L*(URU)’})

66 ttcost=-ttcost*duration(k) ! -i*<L/R’>*t

67 grad2(ictrl,k)=grad2(ictrl,k)-ttcost/n_FID ! Summe

68 enddo

69 enddo

Listing A.8: Fortran source code for the quality factor evaluation of COOP decoupling
sequences according to the full penalty approach in Hilbert space

1 !2 spins xy COOP-Heterodecoupling Tony 2012/11/14

2 !phi0 (TRACKING) full penalty

3 !=======================================================================

4 !---- init ----

5 ttcost2 = 0d0

6 do k=1,n_FID

7 call zeros(multitarget(k))

8 enddo

9

10 !---- propagate ----

11 do j=0,ncoop-1

12 call mcopy(initialrho,rho)

13 do k=j*(npulses/ncoop)+1,(j+1)*npulses/ncoop

14 call geteigenhamtrack(k)

15 call czmul(-1d0,ii,pham(k),work1)

16 call expm(duration(k),work1,work1)

17 call URUd(work1,rho,rho)

18 if (mod(k,Ppdwell) .eq. 0) then

19 call cmul(1d0/ncoop,rho,work1)

20 call madd(multitarget(k/Ppdwell-j*n_FID),work1,

21 / multitarget(k/Ppdwell-j*n_FID))

22 endif

23 enddo !einzelpuls

24 enddo !coop

25

26 !---- evaluate ----

27 do k=1,n_FID

28 call mscalp(targetrho,multitarget(k),ttcost3) !Target

29 call mscalp(coop(10),multitarget(k),ttcost4) !Penalty 2IySz

30 ttcost3 = 1d0-(1d0-ttcost3/normrho)**2d0-(ttcost4/normrho)**2d0

31 call mscalp(coop(8),multitarget(k),ttcost4) !Penalty 2IySy

32 ttcost3=ttcost3-(ttcost4/normrho)**2d0

33 call mscalp(coop(11),multitarget(k),ttcost4) !Penalty 2IySx

34 ttcost3=ttcost3-(ttcost4/normrho)**2d0

35 ttcost2=ttcost2+ttcost3

36 enddo

37 ttcost1 = ttcost1+ttcost2/n_FID
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Listing A.9: Fortran source code for the gradient evaluation of COOP decoupling se-
quences according to the full penalty approach in Hilbert space

1 !2 spins xy COOP-Heterodecoupling (TRACKING) Tony 2012/11/14

2 !phi0 (TRACKING) full penalty

3 !==========================================================================

4 !----get single U, same U as with expm(-iH), even with full H (+Sctrl)

5 call geteye(work1)

6 call mdiv(work1,2d0,work1)

7 do k=1,npulses !einzeln alle, voller H

8 call geteigenhamtrack(k)

9 call VDe(pham(k),k) !V=work2, D=work9, e=work8

10 call mcopy(work2,optV(k))

11 call mcopy(work9,optD(k))

12 call mcopy(work8,opte(k))

13 call dagger(work2,work3) ! Vd

14 call mmul(work8,work3,work4) ! eVd

15 call mmul(work2,work4,optG(k)) ! G=U=VeVd

16 enddo

17

18 !----------initialrho propagieren

19 do k=1,n_FID

20 call zeros(multitarget(k))

21 enddo

22

23 do j=1,ncoop

24 call mcopy(initialrho,prho((j-1)*(npulses/ncoop)+1))

25 do k=(j-1)*(npulses/ncoop)+1,j*(npulses/ncoop)

26 ! Aufmultiplizieren von rho

27 call dagger(optG(k),work2) ! Ud

28 call mmul(prho(k),work2,prho(k+1)) ! RUd

29 call mmul(optG(k),prho(k+1),prho(k+1)) ! URUd

30 if (mod(k,Ppdwell) .eq. 0) then

31 call cmul(1d0/ncoop,prho(k+1),work1)

32 call madd(multitarget(k/Ppdwell-(j-1)*n_FID),work1,

33 / multitarget(k/Ppdwell-(j-1)*n_FID))

34 endif

35 enddo !einzelpuls

36 enddo !coop

37

38 !---- time-dependant COOP mixed target operators weighted by cost

39 do k=1,n_FID

40 call mscalp(targetrho,multitarget(k),ttcost2) !Target

41 call cmul((2d0/ncoop)*(1d0-ttcost2/normrho),targetrho,work1)

42 call mscalp(coop(10),multitarget(k),ttcost3) !Penalty 2IySz
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43 call cmul(-(2d0/ncoop)*ttcost3/normrho,coop(10),work2)

44 call madd(work1,work2,work1)

45 call mscalp(coop(8),multitarget(k),ttcost3) !Penalty 2IySy

46 call cmul(-(2d0/ncoop)*ttcost3/normrho,coop(8),work2)

47 call madd(work1,work2,work1)

48 call mscalp(coop(11),multitarget(k),ttcost3) !Penalty 2IySx

49 call cmul(-(2d0/ncoop)*ttcost3/normrho,coop(11),work2)

50 call madd(work1,work2,multitarget(k))

51 enddo

52

53 !----------targetrho rückwärts propagieren

54 do j=ncoop,1,-1

55 call zeros(plambda(j*(npulses/ncoop)+1))

56 ! DANGER: comes from npulses+1

57 do k=j*npulses/ncoop,(j-1)*(npulses/ncoop)+1,-1

58 ! rückwärts aufmultplizieren von U

59 if (mod(k,Ppdwell) .eq. 0) then

60 call madd(multitarget(k/Ppdwell-(j-1)*n_FID),plambda(k+1),

61 / plambda(k+1)) !TRACK

62 endif

63 call dagger(optG(k),work2) ! Ud

64 call mmul(plambda(k+1),optG(k),work3) ! LU

65 call mmul(work2,work3,plambda(k)) ! UdLU

66 enddo

67 enddo

68

69 !---------- exakten grad, basis transformation

70 do ictrl=3,nctrl

71 call cmul(pii,ctrlham(ictrl),workg1(ictrl)) ! H = 2*pi*H

72 enddo

73 do k=1,npulses

74 call dagger(optG(k),work3) ! Ud

75 call dagger(optV(k),work4) ! Vd

76 call mmul(plambda(k+1),optV(k),work6) ! L*V

77 call mmul(work4,work6,work6) ! Vd*L*V

78 call mmul(work3,optV(k),work7) ! Ud*V

79 call mmul(work4,work7,work8) ! Vd*Ud*V = work8

80 call mmul(work3,optV(k),work7) ! Ud*V

81 call mmul(prho(k),work7,work7) ! R*Ud*V

82 call mmul(work4,work7,work9) ! Vd*R*Ud*V

83 call mmul(prho(k),optV(k),work7) ! R*V

84 call mmul(optG(k),work7,work7) ! U*R*V

85 call mmul(work4,work7,work10) ! Vd*U*R*Vc

86

87 !------------calculate dU/du
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88 do ictrl=3,nctrl

89 call mmul(workg1(ictrl),optV(k),work1) ! Hctrl*V

90 call mmul(work4,work1,work1) ! Vd*Hctrl*V

91 call mpstern(work1,optD(k),work1) ! U’ = Vd*Hctrl*V * D

92 call mmul(work1,work8,work7) ! U’ * work8

93 call mmul(work8,work7,work7) ! Ud’=Vd*Ud*V*U’*Vd*Ud*V

94 call cmul(-1d0,work7,work7) ! -Ud’

95 call mmul(work10,work7,work5) ! Vd*U*R*V*-Ud’

96 call mmul(work1,work9,work7) ! U’ * V’RU’V

97 call madd(work7,work5,work7) ! (URU)’

98 call mmul(work6,work7,work7) ! Vd*L*V * (URU)’

99 !-------------imaginäres skalarprodukt

100 call traceim(work7,ttcost) ! Im(tr{L*(URU)’})

101 ttcost=-ttcost*duration(k) ! -i*<L/R’>*t

102 grad2(ictrl,k)=grad2(ictrl,k)-ttcost/n_FID ! Summe

103 enddo

104 enddo

Listing A.10: Fortran source code for the quality factor evaluation of COOP decoupling
sequences according to the homogenizing approach in Hilbert space

1 !2 spins xy COOP-Heterodecoupling Tony 2013/02/06

2 !phi0 (TRACKING) <Ix> maximization & homogenisation

3 !=======================================================================

4 !---- init ----

5 ttcost2 = 0d0

6 do k=1,n_FID

7 call zeros(multitarget(k))

8 enddo

9

10 !---- propagate ----

11 do j=0,ncoop-1

12 call mcopy(initialrho,rho)

13 do k=j*(npulses/ncoop)+1,(j+1)*npulses/ncoop

14 call geteigenhamtrack(k)

15 call czmul(-1d0,ii,pham(k),work1)

16 call expm(duration(k),work1,work1)

17 call URUd(work1,rho,rho)

18 if (mod(k,Ppdwell) .eq. 0) then

19 call cmul(1d0/ncoop,rho,work1)

20 call madd(multitarget(k/Ppdwell-j*n_FID),work1,

21 / multitarget(k/Ppdwell-j*n_FID))

22 endif

23 enddo !einzelpuls

24 enddo !coop

25
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26 !---- evaluate ----

27 do k=1,n_FID

28 call mscalp(targetrho,multitarget(k),targetmod(k)) !Target

29 ttcost2=ttcost2+targetmod(k)/normrho

30 enddo

31

32 ttcost4 = ttcost2/n_FID !mean value

33 ttcost2 = 0d0 !reinitialization

34

35 do k=1,n_FID !maximize & homogenise

36 ttcost3 = 1-(1-targetmod(k))**2-(ttcost4-targetmod(k))**2

37 ttcost2 = ttcost2+ttcost3

38 enddo

39

40 ttcost1 = ttcost1+ttcost2/n_FID

Listing A.11: Fortran source code for the gradient evaluation of COOP decoupling se-
quences according to the homogenizing approach in Hilbert space

1 !2 spins xy COOP-Heterodecoupling Tony 2013/02/06

2 !phi0 (TRACKING) <Ix> maximization & homogenisation

3 !=======================================================================

4 !----get single U, same U as with expm(-iH), even with full H (+Sctrl)

5 call geteye(work1)

6 call mdiv(work1,2d0,work1)

7 do k=1,npulses !einzeln alle, voller H

8 call geteigenhamtrack(k)

9 call VDe(pham(k),k) !V=work2, D=work9, e=work8

10 call mcopy(work2,optV(k))

11 call mcopy(work9,optD(k))

12 call mcopy(work8,opte(k))

13 call dagger(work2,work3) ! Vd

14 call mmul(work8,work3,work4) ! eVd

15 call mmul(work2,work4,optG(k)) ! G=U=VeVd

16 enddo

17

18 !----------initialrho propagieren

19 !----------skalarprodukte und mittelwerte berechnen

20 do k=1,n_FID

21 call zeros(multitarget(k))

22 enddo

23 ttcost2=0d0

24

25 do j=1,ncoop

26 call mcopy(initialrho,prho((j-1)*(npulses/ncoop)+1))

27 do k=(j-1)*(npulses/ncoop)+1,j*(npulses/ncoop)
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28 ! Aufmultiplizieren, von rho

29 call dagger(optG(k),work2) ! Ud

30 call mmul(prho(k),work2,prho(k+1)) ! RUd

31 call mmul(optG(k),prho(k+1),prho(k+1)) ! URUd

32 if (mod(k,Ppdwell) .eq. 0) then

33 call cmul(1d0/ncoop,prho(k+1),work1)

34 call madd(multitarget(k/Ppdwell-(j-1)*n_FID),work1,

35 / multitarget(k/Ppdwell-(j-1)*n_FID))

36 endif

37 enddo !einzelpuls

38 enddo !coop

39

40 !------- evaluate <Ix>

41 do k=1,n_FID

42 call mscalp(targetrho,multitarget(k),targetmod(k)) !Target

43 ttcost2=ttcost2+targetmod(k)/normrho

44 enddo

45

46 ttcost4 = ttcost2/n_FID !mean value

47

48 !---------Gradientenloops für grad_Ix

49 do k=1,n_FID

50 call cmul((2d0/ncoop)*(1+ttcost4-2*targetmod(k)),targetrho,

51 / multitarget(k))

52 enddo

53

54 !----------targetrho rückwärts propagieren

55 do j=ncoop,1,-1

56 call zeros(plambda(j*(npulses/ncoop)+1))

57 ! DANGER: comes from npulses+1

58 do k=j*npulses/ncoop,(j-1)*(npulses/ncoop)+1,-1

59 ! rückwärts aufmultplizieren von U

60 if (mod(k,Ppdwell) .eq. 0) then

61 call madd(multitarget(k/Ppdwell-(j-1)*n_FID),plambda(k+1),

62 / plambda(k+1)) !TRACK

63 endif

64 call dagger(optG(k),work2) ! Ud

65 call mmul(plambda(k+1),optG(k),work3) ! LU

66 call mmul(work2,work3,plambda(k)) ! UdLU

67 enddo

68 enddo

69

70 !---------- exakten grad, basis transformation

71 do ictrl=3,nctrl

72 call cmul(pii,ctrlham(ictrl),workg1(ictrl)) ! H = 2*pi*H
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73 enddo

74 do k=1,npulses

75 call dagger(optG(k),work3) ! Ud

76 call dagger(optV(k),work4) ! Vd

77 call mmul(plambda(k+1),optV(k),work6) ! L*V

78 call mmul(work4,work6,work6) ! Vd*L*V

79 call mmul(work3,optV(k),work7) ! Ud*V

80 call mmul(work4,work7,work8) ! Vd*Ud*V = work8

81 call mmul(work3,optV(k),work7) ! Ud*V

82 call mmul(prho(k),work7,work7) ! R*Ud*V

83 call mmul(work4,work7,work9) ! Vd*R*Ud*V

84 call mmul(prho(k),optV(k),work7) ! R*V

85 call mmul(optG(k),work7,work7) ! U*R*V

86 call mmul(work4,work7,work10) ! Vd*U*R*Vc

87

88 !------------calculate dU/du

89 do ictrl=3,nctrl

90 call mmul(workg1(ictrl),optV(k),work1) ! Hctrl*V

91 call mmul(work4,work1,work1) ! Vd*Hctrl*V

92 call mpstern(work1,optD(k),work1) ! U’ = Vd*Hctrl*V * D

93 call mmul(work1,work8,work7) ! U’ * work8

94 call mmul(work8,work7,work7) ! Ud’=Vd*Ud*V*U’*Vd*Ud*V

95 call cmul(-1d0,work7,work7) ! -Ud’

96 call mmul(work10,work7,work5) ! Vd*U*R*V*-Ud’

97 call mmul(work1,work9,work7) ! U’ * V’RU’V

98 call madd(work7,work5,work7) ! (URU)’

99 call mmul(work6,work7,work7) ! Vd*L*V * (URU)’

100 !-------------imaginäres skalarprodukt

101 call traceim(work7,ttcost) ! Im(tr{L*(URU)’})

102 ttcost=-ttcost*duration(k) ! -i*<L/R’>*t

103 grad2(ictrl,k)=grad2(ictrl,k)-ttcost/n_FID ! Summe

104 enddo

105 enddo

A.3.2. Heteronuclear decoupling - reduced Liouville space

Listing A.12: Fortran subroutine for the explicit computation of propagators in a reduced
Liouville space

1 c------------------------------------------------------------

2 subroutine gethamSSR(mout,k)

3 c------------------------------------------------------------

4 IMPLICIT NONE

5 include ’octopussi.cmn’

6 !$omp THREADPRIVATE(/basics/)

7 include ’constants.cmn’
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8 c 2 spins xy SSR

9

10 c input k intg

11 c input mout pointer to matrix

12 c input (implicit=common) w(1), ctrl, hcp(1)

13 c output Matrix mout (saving into array is optional)

14

15 integer mout,i,j,k

16 real*8 nup,num,ap,am,bp,bm,cp,cm,dp,dm

17

18 c-----> switched to SSR 2014/01/24

19

20 !B1 = B1(iB1) / ux = ctrl(1,k) / uy = ctrl(2,k)

21 !J = hcp(1) / w1 = w(1) / t = duration(k)

22

23 nup = dsqrt((B1(iB1)*ctrl(1,k))**2+(B1(iB1)*ctrl(2,k))**2

24 / + (w(1)+(hcp(1)/2))**2 )

25 num = dsqrt((B1(iB1)*ctrl(1,k))**2+(B1(iB1)*ctrl(2,k))**2

26 / + (w(1)-(hcp(1)/2))**2 )

27

28 ap = -((B1(iB1)*ctrl(1,k))/nup)*SIN(pi*nup*duration(k))

29 am = -((B1(iB1)*ctrl(1,k))/num)*SIN(pi*num*duration(k))

30

31 bp = -((B1(iB1)*ctrl(2,k))/nup)*SIN(pi*nup*duration(k))

32 bm = -((B1(iB1)*ctrl(2,k))/num)*SIN(pi*num*duration(k))

33

34 cp = -((w(1)+(hcp(1)/2))/nup)*SIN(pi*nup*duration(k))

35 cm = -((w(1)-(hcp(1)/2))/num)*SIN(pi*num*duration(k))

36

37 dp = COS(pi*nup*duration(k))

38 dm = COS(pi*num*duration(k))

39

40 wmtrx(1,1,mout) = ap*am - bp*bm - cp*cm + dp*dm

41 wmtrx(1,2,mout) = ap*bm + bp*am + cp*dm + dp*cm

42 wmtrx(1,3,mout) = ap*cm - bp*dm + cp*am - dp*bm

43 wmtrx(1,4,mout) =-ap*dm - bp*cm + cp*bm + dp*am

44

45 wmtrx(2,1,mout) = ap*bm + bp*am - cp*dm - dp*cm

46 wmtrx(2,2,mout) =-ap*am + bp*bm - cp*cm + dp*dm

47 wmtrx(2,3,mout) = ap*dm + bp*cm + cp*bm + dp*am

48 wmtrx(2,4,mout) = ap*cm - bp*dm - cp*am + dp*bm

49

50 wmtrx(3,1,mout) = ap*cm + bp*dm + cp*am + dp*bm

51 wmtrx(3,2,mout) =-ap*dm + bp*cm + cp*bm - dp*am

52 wmtrx(3,3,mout) =-ap*am - bp*bm + cp*cm + dp*dm
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53 wmtrx(3,4,mout) =-ap*bm + bp*am - cp*dm + dp*cm

54

55 wmtrx(4,1,mout) = ap*dm - bp*cm + cp*bm - dp*am

56 wmtrx(4,2,mout) = ap*cm + bp*dm - cp*am - dp*bm

57 wmtrx(4,3,mout) =-ap*bm + bp*am + cp*dm - dp*cm

58 wmtrx(4,4,mout) = ap*am + bp*bm + cp*cm + dp*dm

59

60 return

61 end

Listing A.13: Fortran subroutine for the explicit computation of exact propagator deriva-
tives in a reduced Liouville space

1 c------------------------------------------------------------

2 subroutine getgradSSR(dux,duy,k)

3 c------------------------------------------------------------

4 IMPLICIT NONE

5 include ’octopussi.cmn’

6 !$omp THREADPRIVATE(/basics/)

7 include ’constants.cmn’

8 c 2 spins xy SSR

9

10 c input k intg

11 c input dux,duy pointers to matrices

12 c input (implicit=common) w(1), ctrl, hcp(1)

13 c output matrices dU/dux & dU/duy

14

15 integer dux,duy,i,j,k

16 real*8 nup,num,ap,am,bp,bm,cp,cm,dp,dm

17 real*8 dnup,dnum,dap,dam,dbp,dbm,dcp,dcm,ddp,ddm

18 !dcp deleted from cmn block (integer nspins x nspins)

19 real*8 element1,element2,element3,element4

20

21 c-----> switched to SSR 2014/01/24

22

23 !B1 = B1(iB1) / ux = ctrl(1,k) / uy = ctrl(2,k)

24 !J = hcp(1) / w1 = w(1) / t = duration(k)

25

26 c-----> basic matrix elements

27

28 nup = dsqrt((B1(iB1)*ctrl(1,k))**2+(B1(iB1)*ctrl(2,k))**2

29 / + (w(1)+(hcp(1)/2))**2 )

30 num = dsqrt((B1(iB1)*ctrl(1,k))**2+(B1(iB1)*ctrl(2,k))**2

31 / + (w(1)-(hcp(1)/2))**2 )

32

33 ap = -((B1(iB1)*ctrl(1,k))/nup)*SIN(pi*nup*duration(k))
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34 am = -((B1(iB1)*ctrl(1,k))/num)*SIN(pi*num*duration(k))

35

36 bp = -((B1(iB1)*ctrl(2,k))/nup)*SIN(pi*nup*duration(k))

37 bm = -((B1(iB1)*ctrl(2,k))/num)*SIN(pi*num*duration(k))

38

39 cp = -((w(1)+(hcp(1)/2))/nup)*SIN(pi*nup*duration(k))

40 cm = -((w(1)-(hcp(1)/2))/num)*SIN(pi*num*duration(k))

41

42 dp = COS(pi*nup*duration(k))

43 dm = COS(pi*num*duration(k))

44

45 c-----> dU/dux

46

47 dnup = (B1(iB1)**2)*ctrl(1,k)/nup

48 dnum = (B1(iB1)**2)*ctrl(1,k)/num

49

50 dap = ((B1(iB1)*SIN(pi*nup*duration(k))

51 / *(ctrl(1,k)*dnup-nup))/nup**2)

52 / -pi*duration(k)*B1(iB1)*ctrl(1,k)

53 / *COS(pi*duration(k)*nup)*dnup/nup

54

55 dam = ((B1(iB1)*SIN(pi*num*duration(k))

56 / *(ctrl(1,k)*dnum-num))/num**2)

57 / -pi*duration(k)*B1(iB1)*ctrl(1,k)

58 / *COS(pi*duration(k)*num)*dnum/num

59

60 dbp = ((B1(iB1)*ctrl(2,k)*SIN(pi*duration(k)*nup)*dnup)/nup**2)

61 / -pi*duration(k)*B1(iB1)*ctrl(2,k)

62 / *COS(pi*duration(k)*nup)*dnup/nup

63

64 dbm = ((B1(iB1)*ctrl(2,k)*SIN(pi*duration(k)*num)*dnum)/num**2)

65 / -pi*duration(k)*B1(iB1)*ctrl(2,k)

66 / *COS(pi*duration(k)*num)*dnum/num

67

68 dcp = (((hcp(1)+2*w(1))*SIN(pi*duration(k)*nup)*dnup)/(2*nup**2))

69 / -pi*duration(k)*(hcp(1)+2*w(1))

70 / *COS(pi*duration(k)*nup)*dnup/(2*nup)

71

72 dcm = (((-hcp(1)+2*w(1))*SIN(pi*duration(k)*num)*dnum)/(2*num**2))

73 / - pi*duration(k)*(-hcp(1)+2*w(1))

74 / *COS(pi*duration(k)*num)*dnum/(2*num)

75

76 ddp = -pi*duration(k)*SIN(pi*duration(k)*nup)*dnup

77 ddm = -pi*duration(k)*SIN(pi*duration(k)*num)*dnum

78
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79 c-----> Matrix entries

80

81 !Row 1

82 element1 = dap*am+ap*dam

83 element2 = dbp*bm+bp*dbm

84 element3 = dcp*cm+cp*dcm

85 element4 = ddp*dm+dp*ddm

86 wmtrx(1,1,dux) = element1-element2-element3+element4

87

88 element1 = dap*bm+ap*dbm

89 element2 = dbp*am+bp*dam

90 element3 = dcp*dm+cp*ddm

91 element4 = ddp*cm+dp*dcm

92 wmtrx(1,2,dux) = element1+element2+element3+element4

93

94 element1 = dap*cm+ap*dcm

95 element2 = dbp*dm+bp*ddm

96 element3 = dcp*am+cp*dam

97 element4 = ddp*bm+dp*dbm

98 wmtrx(1,3,dux) = element1-element2+element3-element4

99

100 element1 = dap*dm+ap*ddm

101 element2 = dbp*cm+bp*dcm

102 element3 = dcp*bm+cp*dbm

103 element4 = ddp*am+dp*dam

104 wmtrx(1,4,dux) = -element1-element2+element3+element4

105

106 !Row 2

107 element1 = dap*bm+ap*dbm

108 element2 = dbp*am+bp*dam

109 element3 = dcp*dm+cp*ddm

110 element4 = ddp*cm+dp*dcm

111 wmtrx(2,1,dux) = element1+element2-element3-element4

112

113 element1 = dap*am+ap*dam

114 element2 = dbp*bm+bp*dbm

115 element3 = dcp*cm+cp*dcm

116 element4 = ddp*dm+dp*ddm

117 wmtrx(2,2,dux) = -element1+element2-element3+element4

118

119 element1 = dap*dm+ap*ddm

120 element2 = dbp*cm+bp*dcm

121 element3 = dcp*bm+cp*dbm

122 element4 = ddp*am+dp*dam

123 wmtrx(2,3,dux) = element1+element2+element3+element4
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124

125 element1 = dap*cm+ap*dcm

126 element2 = dbp*dm+bp*ddm

127 element3 = dcp*am+cp*dam

128 element4 = ddp*bm+dp*dbm

129 wmtrx(2,4,dux) = element1-element2-element3+element4

130

131 !Row 3

132 element1 = dap*cm+ap*dcm

133 element2 = dbp*dm+bp*ddm

134 element3 = dcp*am+cp*dam

135 element4 = ddp*bm+dp*dbm

136 wmtrx(3,1,dux) = element1+element2+element3+element4

137

138 element1 = dap*dm+ap*ddm

139 element2 = dbp*cm+bp*dcm

140 element3 = dcp*bm+cp*dbm

141 element4 = ddp*am+dp*dam

142 wmtrx(3,2,dux) = -element1+element2+element3-element4

143

144 element1 = dap*am+ap*dam

145 element2 = dbp*bm+bp*dbm

146 element3 = dcp*cm+cp*dcm

147 element4 = ddp*dm+dp*ddm

148 wmtrx(3,3,dux) = -element1-element2+element3+element4

149

150 element1 = dap*bm+ap*dbm

151 element2 = dbp*am+bp*dam

152 element3 = dcp*dm+cp*ddm

153 element4 = ddp*cm+dp*dcm

154 wmtrx(3,4,dux) = -element1+element2-element3+element4

155

156 !Row 4

157 element1 = dap*dm+ap*ddm

158 element2 = dbp*cm+bp*dcm

159 element3 = dcp*bm+cp*dbm

160 element4 = ddp*am+dp*dam

161 wmtrx(4,1,dux) = element1-element2+element3-element4

162

163 element1 = dap*cm+ap*dcm

164 element2 = dbp*dm+bp*ddm

165 element3 = dcp*am+cp*dam

166 element4 = ddp*bm+dp*dbm

167 wmtrx(4,2,dux) = element1+element2-element3-element4

168
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169 element1 = dap*bm+ap*dbm

170 element2 = dbp*am+bp*dam

171 element3 = dcp*dm+cp*ddm

172 element4 = ddp*cm+dp*dcm

173 wmtrx(4,3,dux) = -element1+element2+element3-element4

174

175 element1 = dap*am+ap*dam

176 element2 = dbp*bm+bp*dbm

177 element3 = dcp*cm+cp*dcm

178 element4 = ddp*dm+dp*ddm

179 wmtrx(4,4,dux) = element1+element2+element3+element4

180

181 c-----> dU/duy

182

183 dnup = (B1(iB1)**2)*ctrl(2,k)/nup

184 dnum = (B1(iB1)**2)*ctrl(2,k)/num

185

186 dap = ((B1(iB1)*ctrl(1,k)*sin(pi*duration(k)*nup)*dnup)/nup**2)

187 / -pi*duration(k)*B1(iB1)*ctrl(1,k)

188 / *cos(pi*duration(k)*nup)*dnup/nup

189

190 dam = ((B1(iB1)*ctrl(1,k)*sin(pi*duration(k)*num)*dnum)/num**2)

191 / -pi*duration(k)*B1(iB1)*ctrl(1,k)

192 / *cos(pi*duration(k)*num)*dnum/num

193

194 dbp = ((B1(iB1)*sin(pi*nup*duration(k))

195 / *(ctrl(2,k)*dnup-nup))/nup**2)

196 / -pi*duration(k)*B1(iB1)*ctrl(2,k)

197 / *cos(pi*duration(k)*nup)*dnup/nup

198

199 dbm = ((B1(iB1)*sin(pi*num*duration(k))

200 / *(ctrl(2,k)*dnum-num))/num**2)

201 / -pi*duration(k)*B1(iB1)*ctrl(2,k)

202 / *cos(pi*duration(k)*num)*dnum/num

203

204 dcp = (((hcp(1)+2*w(1))*sin(pi*duration(k)*nup)*dnup)/(2*nup**2))

205 / -pi*duration(k)*(hcp(1)+2*w(1))

206 / *cos(pi*duration(k)*nup)*dnup/(2*nup)

207

208 dcm = (((-hcp(1)+2*w(1))*sin(pi*duration(k)*num)*dnum)/(2*num**2))

209 / -pi*duration(k)*(-hcp(1)+2*w(1))

210 / *cos(pi*duration(k)*num)*dnum/(2*num)

211

212 ddp = -pi*duration(k)*sin(pi*duration(k)*nup)*dnup

213 ddm = -pi*duration(k)*sin(pi*duration(k)*num)*dnum
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214

215 c-----> Matrix entries

216

217 !Row 1

218 element1 = dap*am+ap*dam

219 element2 = dbp*bm+bp*dbm

220 element3 = dcp*cm+cp*dcm

221 element4 = ddp*dm+dp*ddm

222 wmtrx(1,1,duy) = element1-element2-element3+element4

223

224 element1 = dap*bm+ap*dbm

225 element2 = dbp*am+bp*dam

226 element3 = dcp*dm+cp*ddm

227 element4 = ddp*cm+dp*dcm

228 wmtrx(1,2,duy) = element1+element2+element3+element4

229

230 element1 = dap*cm+ap*dcm

231 element2 = dbp*dm+bp*ddm

232 element3 = dcp*am+cp*dam

233 element4 = ddp*bm+dp*dbm

234 wmtrx(1,3,duy) = element1-element2+element3-element4

235

236 element1 = dap*dm+ap*ddm

237 element2 = dbp*cm+bp*dcm

238 element3 = dcp*bm+cp*dbm

239 element4 = ddp*am+dp*dam

240 wmtrx(1,4,duy) = -element1-element2+element3+element4

241

242 !Row 2

243 element1 = dap*bm+ap*dbm

244 element2 = dbp*am+bp*dam

245 element3 = dcp*dm+cp*ddm

246 element4 = ddp*cm+dp*dcm

247 wmtrx(2,1,duy) = element1+element2-element3-element4

248

249 element1 = dap*am+ap*dam

250 element2 = dbp*bm+bp*dbm

251 element3 = dcp*cm+cp*dcm

252 element4 = ddp*dm+dp*ddm

253 wmtrx(2,2,duy) = -element1+element2-element3+element4

254

255 element1 = dap*dm+ap*ddm

256 element2 = dbp*cm+bp*dcm

257 element3 = dcp*bm+cp*dbm

258 element4 = ddp*am+dp*dam
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259 wmtrx(2,3,duy) = element1+element2+element3+element4

260

261 element1 = dap*cm+ap*dcm

262 element2 = dbp*dm+bp*ddm

263 element3 = dcp*am+cp*dam

264 element4 = ddp*bm+dp*dbm

265 wmtrx(2,4,duy) = element1-element2-element3+element4

266

267 !Row 3

268 element1 = dap*cm+ap*dcm

269 element2 = dbp*dm+bp*ddm

270 element3 = dcp*am+cp*dam

271 element4 = ddp*bm+dp*dbm

272 wmtrx(3,1,duy) = element1+element2+element3+element4

273

274 element1 = dap*dm+ap*ddm

275 element2 = dbp*cm+bp*dcm

276 element3 = dcp*bm+cp*dbm

277 element4 = ddp*am+dp*dam

278 wmtrx(3,2,duy) = -element1+element2+element3-element4

279

280 element1 = dap*am+ap*dam

281 element2 = dbp*bm+bp*dbm

282 element3 = dcp*cm+cp*dcm

283 element4 = ddp*dm+dp*ddm

284 wmtrx(3,3,duy) = -element1-element2+element3+element4

285

286 element1 = dap*bm+ap*dbm

287 element2 = dbp*am+bp*dam

288 element3 = dcp*dm+cp*ddm

289 element4 = ddp*cm+dp*dcm

290 wmtrx(3,4,duy) = -element1+element2-element3+element4

291

292 !Row 4

293 element1 = dap*dm+ap*ddm

294 element2 = dbp*cm+bp*dcm

295 element3 = dcp*bm+cp*dbm

296 element4 = ddp*am+dp*dam

297 wmtrx(4,1,duy) = element1-element2+element3-element4

298

299 element1 = dap*cm+ap*dcm

300 element2 = dbp*dm+bp*ddm

301 element3 = dcp*am+cp*dam

302 element4 = ddp*bm+dp*dbm

303 wmtrx(4,2,duy) = element1+element2-element3-element4
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304

305 element1 = dap*bm+ap*dbm

306 element2 = dbp*am+bp*dam

307 element3 = dcp*dm+cp*ddm

308 element4 = ddp*cm+dp*dcm

309 wmtrx(4,3,duy) = -element1+element2+element3-element4

310

311 element1 = dap*am+ap*dam

312 element2 = dbp*bm+bp*dbm

313 element3 = dcp*cm+cp*dcm

314 element4 = ddp*dm+dp*ddm

315 wmtrx(4,4,duy) = element1+element2+element3+element4

316

317 return

318 end

ListingA.14: Fortran source code for the quality factor evaluation of individual decoupling
sequences according to Φmean in a reduced Liouville space

1 ! 2 spins xy SSR Heterodecoupling Tony 2014/01/24

2 ! phi0 (TRACKING)

3 ! =======================================================================

4 ttcost2 = 0d0

5 call vcopy(initialrho,rho)

6

7 do k=1,npulses

8 call gethamSSR(work1,k) !SSR

9 call mvmul(work1,rho,rhoout)

10 call vcopy(rhoout,rho)

11 if (mod(k,Ppdwell) .eq. 0) then

12 ttcost3=wvctr(4,1,rho)

13 ttcost2=ttcost2+ttcost3

14 endif

15 enddo

16 ttcost1 = ttcost1+ttcost2/n_FID

Listing A.15: Fortran source code for the gradient evaluation of individual decoupling
sequences according to Φmean in a reduced Liouville space

1 !2 spins xy SSR Gradient für TRACKING Tony 2014/01/27

2 !==========================================================================

3 !----------initialrho propagieren

4 call vcopy(initialrho,prho(1))

5 do k=1,npulses

6 call gethamSSR(work1,k)

7 call mvmul(work1,prho(k),prho(k+1))
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8 enddo

9

10 !----------targetrho rückwärts propagieren

11 call zerovec(plambda(npulses+1)) ! DANGER: comes from npulses+1

12 do k=npulses,1,-1 ! rückwärts aufmultplizieren von U

13 if (mod(k,Ppdwell) .eq. 0) then

14 call vadd(initialrho,plambda(k+1),plambda(k+1)) !TRACK

15 endif

16 call gethamSSR(work1,k)

17 call mtrans(work1,work2)

18 call mvmul(work2,plambda(k+1),plambda(k))

19 enddo

20

21 !----------explicit gradients

22 do k=1,npulses

23 call getgradSSR(work1,work2,k)

24 call mvmul(work1,prho(k),rho)

25 call vscalp(plambda(k+1),rho,ttcost)

26 grad2(1,k)=grad2(1,k)+ttcost/n_FID

27 call mvmul(work2,prho(k),rho)

28 call vscalp(plambda(k+1),rho,ttcost)

29 grad2(2,k)=grad2(2,k)+ttcost/n_FID

30 enddo

Listing A.16: Fortran source code for the quality factor evaluation of COOP decoupling
sequences according to the homogenizing approach in a reduced Liouville space

1 !2 spins xy SSR COOP-Heterodecoupling Tony 2014/02/20

2 !phi0 (TRACKING) <Ix> maximization & homogenisation

3 !=======================================================================

4 !---- init ----

5 ttcost2 = 0d0

6 do k=1,n_FID

7 call zerovec(multitarget(k))

8 enddo

9

10 !---- propagate ----

11 do j=0,ncoop-1

12 call vcopy(initialrho,rho)

13 do k=j*(npulses/ncoop)+1,(j+1)*npulses/ncoop

14 call gethamSSR(work1,k) !SSR

15 call mvmul(work1,rho,rhoout)

16 call vcopy(rhoout,rho)

17 if (mod(k,Ppdwell) .eq. 0) then

18 call cvmul(1d0/ncoop,rho,work10)

19 call vadd(multitarget(k/Ppdwell-j*n_FID),work10,

211



A. Appendix

20 / multitarget(k/Ppdwell-j*n_FID))

21 endif

22 enddo !einzelpuls

23 enddo !coop

24

25 !---- evaluate ----

26 do k=1,n_FID

27 targetmod(k)=wvctr(4,1,multitarget(k)) !Target

28 ttcost2=ttcost2+targetmod(k)

29 enddo

30

31 ttcost4 = ttcost2/n_FID !mean value

32 ttcost2 = 0d0 !reinitialization

33

34 do k=1,n_FID !maximize & homogenise

35 ttcost3 = 1-(1-targetmod(k))**2-(ttcost4-targetmod(k))**2

36 ttcost2 = ttcost2+ttcost3

37 enddo

38

39 ttcost1 = ttcost1+ttcost2/n_FID

Listing A.17: Fortran source code for the gradient evaluation of COOP decoupling se-
quences according to the homogenizing approach in a reduced Liouville space

1 !2 spins xy SSR COOP-Heterodecoupling Tony 2014/02/28

2 !phi0 (TRACKING) <Ix> maximization & homogenisation

3 !=======================================================================

4 !----------initialrho propagieren

5 do k=1,n_FID

6 call zerovec(multitarget(k))

7 enddo

8 ttcost2=0d0

9

10 do j=1,ncoop

11 call vcopy(initialrho,prho((j-1)*(npulses/ncoop)+1))

12 do k=(j-1)*(npulses/ncoop)+1,j*(npulses/ncoop)

13 ! Aufmultiplizieren, von rho

14 call gethamSSR(work1,k)

15 call mvmul(work1,prho(k),prho(k+1))

16 if (mod(k,Ppdwell) .eq. 0) then

17 call cvmul(1d0/ncoop,prho(k+1),work10)

18 call vadd(multitarget(k/Ppdwell-(j-1)*n_FID),work10,

19 / multitarget(k/Ppdwell-(j-1)*n_FID))

20 endif

21 enddo !einzelpuls

22 enddo !coop
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23

24 !------- evaluate <Ix>

25 do k=1,n_FID

26 targetmod(k)=wvctr(4,1,multitarget(k)) !Target

27 ttcost2=ttcost2+targetmod(k)

28 enddo

29

30 ttcost4 = ttcost2/n_FID !mean value

31

32 do k=1,n_FID

33 call cvmul((2d0/ncoop)*(1+ttcost4-2*targetmod(k)),initialrho,

34 / multitarget(k))

35 enddo

36

37 !----------targetrho rückwärts propagieren

38 do j=ncoop,1,-1

39 call zerovec(plambda(j*(npulses/ncoop)+1))

40 ! DANGER: comes from npulses+1

41 do k=j*npulses/ncoop,(j-1)*(npulses/ncoop)+1,-1

42 ! rückwärts aufmultplizieren von U

43 if (mod(k,Ppdwell) .eq. 0) then

44 call vadd(multitarget(k/Ppdwell-(j-1)*n_FID),plambda(k+1),

45 / plambda(k+1)) !TRACK

46 endif

47 call gethamSSR(work1,k)

48 call mtrans(work1,work2)

49 call mvmul(work2,plambda(k+1),plambda(k))

50 enddo

51 enddo

52

53 !----------explicit gradients

54 do k=1,npulses

55 call getgradSSR(work1,work2,k)

56 call mvmul(work1,prho(k),rho)

57 call vscalp(plambda(k+1),rho,ttcost)

58 grad2(1,k)=grad2(1,k)+ttcost/n_FID

59 call mvmul(work2,prho(k),rho)

60 call vscalp(plambda(k+1),rho,ttcost)

61 grad2(2,k)=grad2(2,k)+ttcost/n_FID

62 enddo

The computation of quality factors and gradients can be further simpli�ed if decoupling is
demanded after each increment of the pulse sequence.

ListingA.18: Fortran source code for the quality factor evaluation of individual decoupling
sequences according to Φmean in a reduced Liouville space
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1 ! 2 spins xy SSR Heterodecoupling Tony 2014/05/26

2 ! phi0 (TRACKING) CONTINUOUS

3 ! =======================================================================

4 ttcost2 = 0d0

5 call vcopy(initialrho,rho)

6

7 do k=1,npulses

8 call gethamSSR(work1,k) !SSR

9 call mvmul(work1,rho,rhoout)

10 call vcopy(rhoout,rho)

11 ttcost3=wvctr(4,1,rho)

12 ttcost2=ttcost2+ttcost3

13 enddo

14 ttcost1 = ttcost1+ttcost2/npulses

Listing A.19: Fortran source code for the gradient evaluation of individual decoupling
sequences according to Φmean in a reduced Liouville space

1 !2 spins xy SSR Gradient für TRACKING Tony 2014/05/26

2 ! CONTINOUS decoupling throughout FID

3 !==========================================================================

4 !----------initialrho propagieren

5 call vcopy(initialrho,prho(1))

6 do k=1,npulses

7 call gethamSSR(work1,k)

8 call mvmul(work1,prho(k),prho(k+1))

9 enddo

10

11 !----------targetrho rückwärts propagieren

12 call zerovec(plambda(npulses+1)) ! DANGER: comes from npulses+1

13 do k=npulses,1,-1 ! rückwärts aufmultplizieren von U

14 call vadd(initialrho,plambda(k+1),plambda(k+1)) !TRACK

15 call gethamSSR(work1,k)

16 call mtrans(work1,work2)

17 call mvmul(work2,plambda(k+1),plambda(k))

18 enddo

19

20 !----------explicit gradients

21 do k=1,npulses

22 call getgradSSR(work1,work2,k)

23 call mvmul(work1,prho(k),rho)

24 call vscalp(plambda(k+1),rho,ttcost)

25 grad2(1,k)=grad2(ictrl,k)+ttcost/npulses

26 call mvmul(work2,prho(k),rho)

27 call vscalp(plambda(k+1),rho,ttcost)

28 grad2(2,k)=grad2(ictrl,k)+ttcost/npulses
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29 enddo

Listing A.20: Fortran source code for the quality factor evaluation of COOP decoupling
sequences according to the homogenizing approach in a reduced Liouville space

1 !2 spins xy SSR COOP-Heterodecoupling Tony 2014/05/27

2 !phi0 (TRACKING) <Ix> maximization & homogenisation CONTINUOUS

3 !=======================================================================

4 !---- init ----

5 ttcost2 = 0d0

6 do k=1,npulses/ncoop

7 call zerovec(multitarget(k))

8 enddo

9

10 !---- propagate ----

11 do j=0,ncoop-1

12 call vcopy(initialrho,rho)

13 do k=j*(npulses/ncoop)+1,(j+1)*npulses/ncoop

14 call gethamSSR(work1,k) !SSR

15 call mvmul(work1,rho,rhoout)

16 call vcopy(rhoout,rho)

17 call cvmul(1d0/ncoop,rho,work10)

18 call vadd(multitarget(k-j*npulses/ncoop),work10,

19 / multitarget(k-j*npulses/ncoop))

20 enddo !einzelpuls

21 enddo !coop

22

23 !---- evaluate ----

24 do k=1,npulses/ncoop

25 targetmod(k)=wvctr(4,1,multitarget(k)) !Target

26 ttcost2=ttcost2+targetmod(k)

27 enddo

28

29 ttcost4 = ttcost2/(npulses/ncoop) !mean value

30 ttcost2 = 0d0 !reinitialization

31

32 do k=1,npulses/ncoop !maximize & homogenise

33 ttcost3 = 1-(1-targetmod(k))**2-(ttcost4-targetmod(k))**2

34 ttcost2 = ttcost2+ttcost3

35 enddo

36

37 ttcost1 = ttcost1+ttcost2/(npulses/ncoop)

Listing A.21: Fortran source code for the gradient evaluation of COOP decoupling se-
quences according to the homogenizing approach in a reduced Liouville space
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1 !2 spins xy SSR COOP-Heterodecoupling Tony 2014/05/27

2 !phi0 (TRACKING) <Ix> maximization & homogenisation CONTINOUS

3 !=======================================================================

4 !----------initialrho propagieren

5 do k=1,npulses/ncoop

6 call zerovec(multitarget(k))

7 enddo

8 ttcost2=0d0

9

10 do j=1,ncoop

11 call vcopy(initialrho,prho((j-1)*(npulses/ncoop)+1))

12 do k=(j-1)*(npulses/ncoop)+1,j*(npulses/ncoop)

13 ! Aufmultiplizieren, von rho

14 call gethamSSR(work1,k)

15 call mvmul(work1,prho(k),prho(k+1))

16 call cvmul(1d0/ncoop,prho(k+1),work10)

17 call vadd(multitarget(k-(j-1)*(npulses/ncoop)),work10,

18 / multitarget(k-(j-1)*(npulses/ncoop)))

19 enddo !einzelpuls

20 enddo !coop

21

22 !------- evaluate <Ix>

23 do k=1,npulses/ncoop

24 targetmod(k)=wvctr(4,1,multitarget(k)) !Target

25 ttcost2=ttcost2+targetmod(k)

26 enddo

27

28 ttcost4 = ttcost2/(npulses/ncoop) !mean value

29

30 do k=1,npulses/ncoop

31 call cvmul((2d0/ncoop)*(1+ttcost4-2*targetmod(k)),initialrho,

32 / multitarget(k))

33 enddo

34

35 !----------targetrho rückwärts propagieren

36 do j=ncoop,1,-1

37 call zerovec(plambda(j*(npulses/ncoop)+1))

38 ! DANGER: comes from npulses+1

39 do k=j*npulses/ncoop,(j-1)*(npulses/ncoop)+1,-1

40 ! rückwärts aufmultplizieren von U

41 call vadd(multitarget(k-(j-1)*(npulses/ncoop)),plambda(k+1),

42 / plambda(k+1)) !TRACK

43 call gethamSSR(work1,k)

44 call mtrans(work1,work2)

45 call mvmul(work2,plambda(k+1),plambda(k))
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46 enddo

47 enddo

48

49 !----------explicit gradients

50 do k=1,npulses

51 call getgradSSR(work1,work2,k)

52 call mvmul(work1,prho(k),rho)

53 call vscalp(plambda(k+1),rho,ttcost)

54 grad2(1,k)=grad2(1,k)+ttcost/(npulses/ncoop)

55 call mvmul(work2,prho(k),rho)

56 call vscalp(plambda(k+1),rho,ttcost)

57 grad2(2,k)=grad2(2,k)+ttcost/(npulses/ncoop)

58 enddo

A.3.3. BIRD filters

Listing A.22: Fortran source code for the quality factor evaluation of BIRD elements as
continuous shapes or HPD sequences

1 c! 2 spins xy exact hard pulse delay 2013.11.20, SE

2 c! d(phi3)/dt (d_p_d)*nincrm

3 c! shape TR 2014.09.30

4 c! ======================================================================

5 call geteye(work1)

6 do k=1,npulses

7 call geteigenham(k)

8 call czmul(-duration(k),ii,phamm,work3)

9 call expm(1d0,work3,work4)

10 call mmul(work4,work1,work2) !(Uj+1*Uj...U1)

11 call mcopy(work2,work1)

12 enddo

13 if(jpattern(1,iJ).eq.0)then !J=0

14 call dagger(unitary1(1),work2)

15 elseif(jpattern(1,iJ).eq.1)then !Jcomp

16 call dagger(unitary1(2),work2)

17 endif

18 call mmul(work2,work1,work2) !(Uf+ * Uj...U1)

19 call trace(work2,ttcost2) !Re(Tr{(Uf+ * Uj...U1)})

20 ttcost1=ttcost1+ttcost2/normuni

21 endif

Listing A.23: Fortran source code for the gradient evaluation of BIRD elements as contin-
uous shapes

1 c! 2 spins xy exact UR BIRD shape 2014.09.30

2 c! =========================================================

3 call geteye(work1)
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4 do k=1,npulses ! einzeln alle, voller H

5 call geteigenham(k) ! H= 2pi*v*Ii

6 call VDe(phamm,k) ! V=work2, D=wor9, e=work8

7 call mcopy(work2,optV(k))

8 call mcopy(work9,optD(k))

9 call dagger(work2,work3)

10 call mmul(work8,work3,work4)

11 call mmul(work2,work4,optG(k)) ! G=U=VeVd

12 enddo

13 ! -------------vorwärts: multiply U---------

14 call geteye(prho(1))

15 do k=1,npulses

16 call mmul(optG(k),prho(k),prho(k+1))

17 enddo

18 ! -------------rückwärts: multiply from U_F+

19 if(jpattern(1,iJ).eq.0)then ! J = 0

20 call dagger(unitary1(1),plambda(npulses+1))

21 elseif(jpattern(1,iJ).eq.1)then ! Jcomp

22 call dagger(unitary1(2),plambda(npulses+1))

23 endif

24 do k=npulses,1,-1 ! rückwärts aufmultplizieren von U_F

25 call mmul(plambda(k+1),optG(k),plambda(k))! LD (lambda dagger)

26 enddo

27 do ictrl=1,nctrl

28 call cmul(pii,ctrlham(ictrl),workg1(ictrl))

29 enddo

30 do k=1,npulses ! calc grad

31 call mmul(prho(k),plambda(k+1),work1) ! UiUf

32 call dagger(optV(k),work2)

33 call mmul(work1,optV(k),work1)

34 call mmul(work2,work1,work1) ! V’*UiUf*V

35 call mtrans(work1,work1) ! (V’*UiUf*V).’

36 do ictrl=1,nctrl

37 call mmul(workg1(ictrl),optV(k),workg2(ictrl)) ! I*V

38 call mmul(work2,workg2(ictrl),workg2(ictrl)) ! V’*I*V

39 call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’*I*V).*D

40 call mpstern(workg2(ictrl),work1,workg2(ictrl))

41 ! (V’*I*V).*D.* (V’*UiUf*V).’

42 call sumsumim(workg2(ictrl),ttcost) ! imag(sum(sum( " )))

43 ttcost=ttcost*duration(k) ! imag(sum(sum( ")))*timestep

44 grad2(ictrl,k)=grad2(ictrl,k)+ttcost/normuni

45 enddo

46 enddo
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Listing A.24: Fortran source code for the gradient evaluation of BIRD elements as HPD
sequences

1 c! 2 spins xy exact hard pulse delay 2013.11.20, SE

2 c! d(phi3)/dt (d_p_d)*nincrm

3 c! ===================================================================

4 call geteye(work1)

5 do k=1,npulses ! einzeln alle, voller H

6 call geteigenham(k) ! H= 2pi*v*Ii

7 call VDe(phamm,k) ! V=work2, D=wor9, e=work8

8 call mcopy(work2,optV(k))

9 call mcopy(work9,optD(k))

10 call dagger(work2,work3)

11 call mmul(work8,work3,work4)

12 call mmul(work2,work4,optG(k)) ! G = U = V*e*V’

13 enddo

14 ! -------------vorwärts: multiply U---------

15 call geteye(prho(1))

16 do k=1,npulses

17 call mmul(optG(k),prho(k),prho(k+1))

18 enddo

19 ! -------------rückwärts: multiply from U_F+

20 if(jpattern(1,iJ).eq.0)then ! J = 0

21 call dagger(unitary1(1),plambda(npulses+1))

22 elseif(jpattern(1,iJ).eq.1)then ! Jcomp

23 call dagger(unitary1(2),plambda(npulses+1))

24 endif

25 do k=npulses,1,-1 ! rückwärts aufmultplizieren von U_F

26 call mmul(plambda(k+1),optG(k),plambda(k))! LD (lambda dagger)

27 enddo

28 do ictrl=1,nctrl

29 call cmul(pii,ctrlham(ictrl),workg1(ictrl))

30 enddo

31 do k=2,npulses,2 ! calc grad

32 call mmul(prho(k),plambda(k+1),work1) ! UiUf

33 call dagger(optV(k),work2)

34 call mmul(work1,optV(k),work1)

35 call mmul(work2,work1,work1) ! V’*UiUf*V

36 call mtrans(work1,work1) ! (V’*UiUf*V).’

37 do ictrl=1,nctrl

38 call mmul(workg1(ictrl),optV(k),workg2(ictrl)) ! I*V

39 call mmul(work2,workg2(ictrl),workg2(ictrl)) ! V’*I*V

40 call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’*I*V).*D

41 call mpstern(workg2(ictrl),work1,workg2(ictrl))

42 ! (V’*I*V).*D.* (V’*UiUf*V).’
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43 call sumsumim(workg2(ictrl),ttcost) !imag(sum(sum( " )))

44 ttcost=ttcost*duration(k) !imag(sum(sum( ")))*timestep

45 grad2(ictrl,k)=grad2(ictrl,k)+ttcost/normuni

46 enddo

47 enddo

48 ! ------------- grad------------------------

49 do k=1,npulses,2 ! dU/dt=d(exp(-iHt)/dt=-iH*exp(-iHt)

50 call geteigenham(k) ! H= 2pi*v*Ii

51 call czmul(1d0,ii,phamm,work1) ! i*Hj

52 call mmul(work1,prho(k+1),work2) ! i*Hj*Uj...U1

53 call mmul(plambda(k+1),work2,work3) !U_F+..Uj+1*i*Hj *Uj...U1

54 call trace(work3,ttcost) ! Re(Tr("))

55 grad2(1,k)=grad2(1,k)-ttcost/normuni ! -Re(Tr("))/norm

56 enddo

Listing A.25: Fortran source code for the quality factor evaluation of BIRD elements as
BIRDBOP shapes

1 ! 2 spins xy BUBI-Cost UR BIRD auf Spin 1

2 ! phi3b BIRDBOP 2015.02.24 TR

3 ! ===========================================================================

4 c call get...ham91(ipulse,k)

5 c ipulse = 1 -> pulse 1 /// ipulse = 3 -> pulse 2

6 ttcost5 = 0.003 !BIRD delay

7

8 !Ueff Pulse 1

9 call geteye(work1)

10 do k=1,npulses

11 call getfullham91(1,k) !yields phamm

12 call czmul(-duration(k),ii,phamm,work2)

13 call expm(1d0,work2,work3)

14 call mmul(work3,work1,work2)

15 call mcopy(work2,work1)

16 enddo

17

18 !USeff Pulse 1

19 call geteye(work2)

20 do k=1,npulses

21 call getsham91(1,k)

22 call czmul(-duration(k),ii,phamm,work3)

23 call expm(1d0,work3,work4)

24 call mmul(work4,work2,work3)

25 call mcopy(work3,work2)

26 enddo

27

28 !Ueff Pulse 2
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29 call geteye(work3)

30 do k=1,npulses

31 call getfullham91(3,k)

32 call czmul(-duration(k),ii,phamm,work4)

33 call expm(1d0,work4,work5)

34 call mmul(work5,work3,work4)

35 call mcopy(work4,work3)

36 enddo

37

38 !USeff Pulse 2

39 call geteye(work4)

40 do k=1,npulses

41 call getsham91(3,k)

42 call czmul(-duration(k),ii,phamm,work5)

43 call expm(1d0,work5,work6)

44 call mmul(work6,work4,work5)

45 call mcopy(work5,work4)

46 enddo

47

48 !H

49 call cmul(pii*w(1),Iz(1),work5) !H_cs

50 call cmul(pii*hcp(1),IzSz,work6) !H_J

51 call madd(work5,work6,work7) !H_evo

52

53 !U_delay

54 call czmul(ttcost5,ii,work7,work6)

55 call expm(-1d0,work6,work7)

56

57 !U_delays

58 call czmul(ttcost5,ii,work5,work6)

59 call expm(-1d0,work6,work5)

60

61 !USeff

62 call mmul(work5,work2,work8)

63 call mmul(work4,work8,work8)

64 call mmul(work5,work8,work8)

65

66 !Ueff

67 call czmul(-0.5*pi,ii,Ix(2),work2)

68 call expm(1d0,work2,work5) !90◦ x

69 call czmul(-pi,ii,Ix(2),work2)

70 call expm(1d0,work2,work6) !180◦ x

71

72 call mmul(work1,work5,work9)

73 call mmul(work7,work9,work9)
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74 call mmul(work6,work9,work9)

75 call mmul(work3,work9,work9)

76 call mmul(work7,work9,work9)

77 call mmul(work5,work9,work9)

78

79 !Cost

80 call mmul(unitary,work8,work1)

81 call dagger(work1,work2)

82 call mmul(work2,work9,work1)

83 call trace(work1,ttcost2)

84

85 ttcost1=ttcost1+ttcost2/normuni

Listing A.26: Fortran source code for the gradient evaluation of BIRD elements as
BIRDBOP shapes

1 ! 2 spins xy BUBI-Cost UR BIRD auf Spin 1

2 ! phi3b BIRDBOP 2015.02.24 TR

3 ! ======================================================================

4 c call get...ham91(ipulse,k)

5 c ipulse = 1 -> pulse 1 /// ipulse = 3 -> pulse 2

6 ttcost4 = 0.003 !BIRD delay

7

8 c!--------------------- SHAPE 1 ---------------------

9 c!----------- linke Seite der Produktregel ----------

10 c!--- <Ud’Upi’U2’Ud’Ux’*Uf*USeff|grad(U1eff)*Ux> ----

11

12 !U(I,S,J)j für Puls 1

13 do k=1,npulses

14 call getfullham91(1,k)

15 call VDe(phamm,k)

16 call mcopy(work2,optV(k))

17 call mcopy(work9,optD(k))

18 call dagger(work2,work3)

19 call mmul(work8,work3,work4) ! U = V*e*V’

20 call mmul(work2,work4,optG(k))! G = nicht aufmultiplizierte U

21 enddo

22

23 !USeff --------------------------------------

24 !Puls 1

25 call geteye(work1)

26 do k=1,npulses

27 call getsham91(1,k)

28 call czmul(-duration(k),ii,phamm,work2)

29 call expm(1d0,work2,work3)

30 call mmul(work3,work1,work2)
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31 call mcopy(work2,work1)

32 enddo

33

34 !Puls 2

35 call geteye(work2)

36 do k=1,npulses

37 call getsham91(3,k)

38 call czmul(-duration(k),ii,phamm,work3)

39 call expm(1d0,work3,work4)

40 call mmul(work4,work2,work3)

41 call mcopy(work3,work2)

42 enddo

43

44 !U_delayS

45 call cmul(pii*w(1),Iz(1),work5)

46 call czmul(ttcost4,ii,work5,work6)

47 call expm(-1d0,work6,work7)

48

49 !USeff

50 call mmul(work7,work1,work3)

51 call mmul(work2,work3,work3)

52 call mmul(work7,work3,work9)

53

54 !UBIRD’ -----------------------------------

55 !U_delay

56 call cmul(pii*hcp(1),IzSz,work6)

57 call madd(work5,work6,work7)

58 call czmul(ttcost4,ii,work7,work6)

59 call expm(-1d0,work6,work7)

60 call dagger(work7,work7)

61

62 !90◦ x

63 call czmul(-0.5*pi,ii,Ix(2),work2)

64 call expm(1d0,work2,work5)

65 call dagger(work5,work5)

66

67 !180◦ x

68 call czmul(-pi,ii,Ix(2),work2)

69 call expm(1d0,work2,work6)

70 call dagger(work6,work6)

71

72 !Ueff(I,S,J) für Puls2

73 call geteye(work2)

74 do k=1,npulses

75 call getfullham91(3,k)
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76 call czmul(-duration(k),ii,phamm,work3)

77 call expm(1d0,work3,work4)

78 call mmul(work4,work2,work3)

79 call mcopy(work3,work2)

80 enddo

81 call dagger(work2,work2)

82

83 !UBIRD’*UF*USeff --------------------------

84 call mmul(unitary,work9,work1)

85 call mmul(work5,work1,work1)

86 call mmul(work7,work1,work1)

87 call mmul(work2,work1,work1)

88 call mmul(work6,work1,work1)

89 call mmul(work7,work1,work1)

90 call dagger(work1,work1)

91

92 !vorwärts von 90◦x

93 call dagger(work5,prho(1))

94 !zurueckdaggern da oben 90◦x’ gebraucht wurde

95 do k=1,npulses

96 call mmul(optG(k),prho(k),prho(k+1))

97 enddo

98

99 !rückwärts von (UBIRD’*UF*USeff)+

100 call mcopy(work1,plambda(npulses+1))

101 do k=npulses,1,-1 ! rückwärts aufmultplizieren von U

102 call mmul(plambda(k+1),optG(k),plambda(k)) ! LD (lambda dagger)

103 enddo

104

105 ! ------------- grad

106 do ictrl=1,2

107 call cmul(pii,ctrlham(ictrl),workg1(ictrl))

108 enddo

109 do k=1,npulses ! calc grad

110 call mmul(prho(k),plambda(k+1),work1) ! UiUf

111 call dagger(optV(k),work2)

112 call mmul(work1,optV(k),work1)

113 call mmul(work2,work1,work1) ! V’*UiUf*V

114 call mtrans(work1,work1) ! (V’*UiUf*V).’

115 do ictrl=1,2

116 call mmul(workg1(ictrl),optV(k),workg2(ictrl)) ! I*V

117 call mmul(work2,workg2(ictrl),workg2(ictrl)) !V’*I*V

118 call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’*I*V).*D

119 call mpstern(workg2(ictrl),work1,workg2(ictrl))

120 ! (V’*I*V).*D.* (V’*UiUf*V).’
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121 call sumsumim(workg2(ictrl),gradg(ictrl)) !imag(sum(sum(")))

122 gradg(ictrl)=gradg(ictrl)*duration(k)

123 ! imag(sum(sum(")))*timestep

124 grad2(ictrl,k)=grad2(ictrl,k)+gradg(ictrl)/normuni

125 enddo

126 enddo

127

128 c!--------------------- SHAPE 1 ---------------------

129 c!---------- rechte Seite der Produktregel ----------

130 c!-------- <Ud’U2’Ud’*Uf’*Ueff|grad(U1Seff)> --------

131

132 !U(S) für Puls 1

133 do k=1,npulses

134 call getsham91(1,k)

135 call VDe(phamm,k)

136 call mcopy(work2,optV(k))

137 call mcopy(work9,optD(k))

138 call dagger(work2,work3)

139 call mmul(work8,work3,work4) ! U = V*e*V’

140 call mmul(work2,work4,optG(k))! G = nicht aufmultiplizierte U

141 enddo

142

143 !Ueff --------------------------------------

144 !Puls 1

145 call geteye(work1)

146 do k=1,npulses

147 call getfullham91(1,k)

148 call czmul(-duration(k),ii,phamm,work2)

149 call expm(1d0,work2,work3)

150 call mmul(work3,work1,work2)

151 call mcopy(work2,work1)

152 enddo

153

154 !Puls 2

155 call geteye(work2)

156 do k=1,npulses

157 call getfullham91(3,k)

158 call czmul(-duration(k),ii,phamm,work3)

159 call expm(1d0,work3,work4)

160 call mmul(work4,work2,work3)

161 call mcopy(work3,work2)

162 enddo

163

164 !U_delay

165 call cmul(pii*w(1),Iz(1),work5)
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166 call cmul(pii*hcp(1),IzSz,work6)

167 call madd(work5,work6,work7)

168 call czmul(ttcost4,ii,work7,work6)

169 call expm(-1d0,work6,work7)

170

171 !90◦ x

172 call czmul(-0.5*pi,ii,Ix(2),work3)

173 call expm(1d0,work3,work3)

174

175 !180◦ x

176 call czmul(-pi,ii,Ix(2),work4)

177 call expm(1d0,work4,work4)

178

179 !Ueff

180 call mmul(work1,work3,work8)

181 call mmul(work7,work8,work8)

182 call mmul(work4,work8,work8)

183 call mmul(work2,work8,work8)

184 call mmul(work7,work8,work8)

185 call mmul(work3,work8,work8)

186

187 !UBIRD’--------------------------

188 !USeff für Puls2

189 call geteye(work2)

190 do k=1,npulses

191 call getsham91(3,k)

192 call czmul(-duration(k),ii,phamm,work3)

193 call expm(1d0,work3,work4)

194 call mmul(work4,work2,work3)

195 call mcopy(work3,work2)

196 enddo

197 call dagger(work2,work2)

198

199 !U_delays

200 call czmul(ttcost4,ii,work5,work6)

201 call expm(-1d0,work6,work5)

202 call dagger(work5,work5)

203

204 !UBIRD’*UF’*Ueff ------------------

205 call dagger(unitary,work1)

206 call mmul(work1,work8,work9)

207 call mmul(work5,work9,work9)

208 call mmul(work2,work9,work9)

209 call mmul(work5,work9,work9)

210 call dagger(work9,work1)
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211

212 !vorwärts von 1

213 call geteye(prho(1))

214 do k=1,npulses

215 call mmul(optG(k),prho(k),prho(k+1))

216 enddo

217

218 !rückwärts von (UBIRD’*UF’*Ueff)+

219 call mcopy(work1,plambda(npulses+1))

220 do k=npulses,1,-1 ! rückwärts aufmultplizieren von U

221 call mmul(plambda(k+1),optG(k),plambda(k)) ! LD (lambda dagger)

222 enddo

223 do k=1,npulses ! calc grad

224 call mmul(prho(k),plambda(k+1),work1) ! UiUf

225 call dagger(optV(k),work2)

226 call mmul(work1,optV(k),work1)

227 call mmul(work2,work1,work1) ! V’*UiUf*V

228 call mtrans(work1,work1) ! (V’*UiUf*V).’

229 do ictrl=1,2

230 call mmul(workg1(ictrl),optV(k),workg2(ictrl)) ! I*V

231 call mmul(work2,workg2(ictrl),workg2(ictrl)) ! V’*I*V

232 call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’*I*V).*D

233 call mpstern(workg2(ictrl),work1,workg2(ictrl))

234 ! (V’*I*V).*D.* (V’*UiUf*V).’

235 call sumsumim(workg2(ictrl),gradg(ictrl))! imag(sum(sum(")))

236 gradg(ictrl)=gradg(ictrl)*duration(k)

237 ! imag(sum(sum(")))*timestep

238 grad2(ictrl,k)=grad2(ictrl,k)+gradg(ictrl)/normuni

239 enddo

240 enddo

241

242 c!--------------------- SHAPE 2 ---------------------

243 c!----------- linke Seite der Produktregel ----------

244 c!----- <Ud’Ux’*Uf*USeff|grad(U2eff)*UpiUdU1Ux> -----

245

246 !U(I,S,J)j für Puls 2

247 do k=1,npulses

248 call getfullham91(3,k)

249 call VDe(phamm,k)

250 call mcopy(work2,optV(k))

251 call mcopy(work9,optD(k))

252 call dagger(work2,work3)

253 call mmul(work8,work3,work4) ! U = V*e*V’

254 call mmul(work2,work4,optG(k))! G = nicht aufmultiplizierte U

255 enddo
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256

257 !USeff --------------------------------------

258 !Puls 1

259 call geteye(work1)

260 do k=1,npulses

261 call getsham91(1,k)

262 call czmul(-duration(k),ii,phamm,work2)

263 call expm(1d0,work2,work3)

264 call mmul(work3,work1,work2)

265 call mcopy(work2,work1)

266 enddo

267

268 !Puls 2

269 call geteye(work2)

270 do k=1,npulses

271 call getsham91(3,k)

272 call czmul(-duration(k),ii,phamm,work3)

273 call expm(1d0,work3,work4)

274 call mmul(work4,work2,work3)

275 call mcopy(work3,work2)

276 enddo

277

278 !U_delayS

279 call cmul(pii*w(1),Iz(1),work5)

280 call czmul(ttcost4,ii,work5,work6)

281 call expm(-1d0,work6,work7)

282

283 !USeff

284 call mmul(work7,work1,work3)

285 call mmul(work2,work3,work3)

286 call mmul(work7,work3,work9)

287

288 !UBIRD’ -----------------------------------

289 !U_delay

290 call cmul(pii*hcp(1),IzSz,work6)

291 call madd(work5,work6,work7)

292 call czmul(ttcost4,ii,work7,work6)

293 call expm(-1d0,work6,work7)

294 call dagger(work7,work7)

295

296 !90◦ x

297 call czmul(-0.5*pi,ii,Ix(2),work2)

298 call expm(1d0,work2,work5)

299 call dagger(work5,work5)

300
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301 !UBIRD -----------------------------------

302 !180◦ x

303 call czmul(-pi,ii,Ix(2),work2)

304 call expm(1d0,work2,work6)

305

306 !Ueff(I,S,J) für Puls1

307 call geteye(work2)

308 do k=1,npulses

309 call getfullham91(1,k)

310 call czmul(-duration(k),ii,phamm,work3)

311 call expm(1d0,work3,work4)

312 call mmul(work4,work2,work3)

313 call mcopy(work3,work2)

314 enddo

315

316 !UBIRD’*UF*USeff --------------------------

317 call mmul(unitary,work9,work1)

318 call mmul(work5,work1,work1)

319 call mmul(work7,work1,work1)

320 call dagger(work1,work1)

321

322 !UBIRD ------------------------------------

323 call dagger(work5,work5) !90◦x zurückdaggern

324 call dagger(work7,work7) !delay zurückdaggern

325 call mmul(work2,work5,work3)

326 call mmul(work7,work3,work3)

327 call mmul(work6,work3,work3)

328

329 !vorwärts von UBIRD

330 call mcopy(work3,prho(1))

331 do k=1,npulses

332 call mmul(optG(k),prho(k),prho(k+1))

333 enddo

334

335 !rückwärts von (UBIRD’*UF*USeff)+

336 call mcopy(work1,plambda(npulses+1))

337 do k=npulses,1,-1 ! rückwärts aufmultplizieren von U

338 call mmul(plambda(k+1),optG(k),plambda(k)) ! LD (lambda dagger)

339 enddo

340

341 ! ------------- grad

342 do ictrl=1,2

343 call cmul(pii,ctrlham(ictrl),workg1(ictrl+2))

344 enddo

345 do k=1,npulses ! calc grad
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346 call mmul(prho(k),plambda(k+1),work1) ! UiUf

347 call dagger(optV(k),work2)

348 call mmul(work1,optV(k),work1)

349 call mmul(work2,work1,work1) ! V’*UiUf*V

350 call mtrans(work1,work1) ! (V’*UiUf*V).’

351 do ictrl=3,4

352 call mmul(workg1(ictrl),optV(k),workg2(ictrl)) ! I*V

353 call mmul(work2,workg2(ictrl),workg2(ictrl)) ! V’*I*V

354 call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’*I*V).*D

355 call mpstern(workg2(ictrl),work1,workg2(ictrl))

356 ! (V’*I*V).*D.* (V’*UiUf*V).’

357 call sumsumim(workg2(ictrl),gradg(ictrl)) ! imag(sum(sum(")))

358 gradg(ictrl)=gradg(ictrl)*duration(k)

359 ! imag(sum(sum(")))*timestep

360 grad2(ictrl,k)=grad2(ictrl,k)+gradg(ictrl)/normuni

361 enddo

362 enddo

363

364 c!--------------------- SHAPE 2 ---------------------

365 c!---------- rechte Seite der Produktregel ----------

366 c!--------- <Ud’*Uf’*Ueff|grad(U2Seff)UdU1> ---------

367

368 !U(S) für Puls 1

369 do k=1,npulses

370 call getsham91(3,k)

371 call VDe(phamm,k)

372 call mcopy(work2,optV(k))

373 call mcopy(work9,optD(k))

374 call dagger(work2,work3)

375 call mmul(work8,work3,work4) ! U = V*e*V’

376 call mmul(work2,work4,optG(k))! G = nicht aufmultiplizierte U

377 enddo

378

379 !Ueff --------------------------------------

380 !Puls 1

381 call geteye(work1)

382 do k=1,npulses

383 call getfullham91(1,k)

384 call czmul(-duration(k),ii,phamm,work2)

385 call expm(1d0,work2,work3)

386 call mmul(work3,work1,work2)

387 call mcopy(work2,work1)

388 enddo

389

390 !Puls 2
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391 call geteye(work2)

392 do k=1,npulses

393 call getfullham91(3,k)

394 call czmul(-duration(k),ii,phamm,work3)

395 call expm(1d0,work3,work4)

396 call mmul(work4,work2,work3)

397 call mcopy(work3,work2)

398 enddo

399

400 !U_delay

401 call cmul(pii*w(1),Iz(1),work5)

402 call cmul(pii*hcp(1),IzSz,work6)

403 call madd(work5,work6,work7)

404 call czmul(ttcost4,ii,work7,work6)

405 call expm(-1d0,work6,work7)

406

407 !90◦ x

408 call czmul(-0.5*pi,ii,Ix(2),work3)

409 call expm(1d0,work3,work3)

410

411 !180◦ x

412 call czmul(-pi,ii,Ix(2),work4)

413 call expm(1d0,work4,work4)

414

415 !Ueff

416 call mmul(work1,work3,work8)

417 call mmul(work7,work8,work8)

418 call mmul(work4,work8,work8)

419 call mmul(work2,work8,work8)

420 call mmul(work7,work8,work8)

421 call mmul(work3,work8,work8)

422

423 !UBIRD’--------------------------

424 !U_delays

425 call czmul(ttcost4,ii,work5,work6)

426 call expm(-1d0,work6,work5)

427 call dagger(work5,work5)

428

429 !UBIRD’*UF’*Ueff ------------------

430 call dagger(unitary,work1)

431 call mmul(work1,work8,work9)

432 call mmul(work5,work9,work9)

433 call dagger(work9,work1)

434

435 !UBIRD-----------------------------
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436 !USeff für Puls1

437 call geteye(work2)

438 do k=1,npulses

439 call getsham91(1,k)

440 call czmul(-duration(k),ii,phamm,work3)

441 call expm(1d0,work3,work4)

442 call mmul(work4,work2,work3)

443 call mcopy(work3,work2)

444 enddo

445

446 !UBIRD-----------------------------

447 call dagger(work5,work5) !delay zurückdaggern

448 call mmul(work5,work2,work2)

449

450 !vorwärts von UBIRD

451 call mcopy(work2,prho(1))

452 do k=1,npulses

453 call mmul(optG(k),prho(k),prho(k+1))

454 enddo

455

456 !rückwärts von (UBIRD’*UF’*Ueff)+

457 call mcopy(work1,plambda(npulses+1))

458 do k=npulses,1,-1 ! rückwärts aufmultplizieren von U

459 call mmul(plambda(k+1),optG(k),plambda(k)) ! LD (lambda dagger)

460 enddo

461 do k=1,npulses ! calc grad

462 call mmul(prho(k),plambda(k+1),work1) ! UiUf

463 call dagger(optV(k),work2)

464 call mmul(work1,optV(k),work1)

465 call mmul(work2,work1,work1) ! V’*UiUf*V

466 call mtrans(work1,work1) ! (V’*UiUf*V).’

467 do ictrl=3,4

468 call mmul(workg1(ictrl),optV(k),workg2(ictrl)) ! I*V

469 call mmul(work2,workg2(ictrl),workg2(ictrl)) ! V’*I*V

470 call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’*I*V).*D

471 call mpstern(workg2(ictrl),work1,workg2(ictrl))

472 ! (V’*I*V).*D.* (V’*UiUf*V).’

473 call sumsumim(workg2(ictrl),gradg(ictrl)) ! imag(sum(sum(")))

474 gradg(ictrl)=gradg(ictrl)*duration(k)

475 ! imag(sum(sum(")))*timestep

476 grad2(ictrl,k)=grad2(ictrl,k)+gradg(ictrl)/normuni

477 enddo

478 enddo
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A.4. CT-SP-CLIP/CLAP-RESET HSQC

If CT versions of the more robust SP (see �gure 3.11 B) or COB-CLIP/CLAP-RESET HSQC
experiments (see �gure 3.11 C) are to be recorded, the PS pseudo-dimension depicted in
�gure 3.8 needs to be made more robust. If all hard pulses are replaced with corresponding
broadband shapes as described in section 3.2.3, the pulse sequence shown in �gure A.3 is
obtained.

Figure A.3.: Pulse sequence for a CT pseudo-dimension of SP/COB-CLIP/CLAP-RESET
HSQC experiments. Rectangular 90◦ and 180◦ pulses have been replaced by shaped
pulses according to their function depicted in �gure 3.11 A. Phases are x unless indicated
otherwise. For the acquisition of CLAP spectra, ϕrec has to be changed to y, −y, −y, y.
Heteronuclear transfer delays are calibrated to match ∆ = 1/(21JCH). If the dashed 180◦
pulse is omitted and broadband heteronuclear decoupling is applied during acquisition, CT
versions of more robust fully decoupled RESET HSQC experiment can be obtained. The
delay τ is set to AQ/4n with n being the number of data chunks. Decremented CT delays
have to be corrected from the overall evolution period T according to equation 3.4. Delays
marked with an asterisk allow for the compensation of phase distortions introduced by
dropping points at the beginning of each FID chunk. Graphic taken and modi�ed from
[212].
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A.5. Bruker pulse programs

Listing A.27: CPD program for decoupling using the BROCODE
1 bilev "l31=(nsdone+ds)%4+1"

2 jump to l31

3 1 pcpd:sp11:0 pl=sp11

4 jump to 1

5 2 pcpd:sp12:0 pl=sp12

6 jump to 2

7 3 pcpd:sp13:0 pl=sp13

8 jump to 3

9 4 pcpd:sp14:0 pl=sp14

10 jump to 4

Listing A.28: Pulse program for CLIP-RESET HSQC experiments
1 ; CLIP_RESET_hsqcetgp

2 ;

3 ;based on hsqcetgp

4 ;avance-version (09/04/17)

5 ;HSQC

6 ;2D H-1/X correlation via double inept transfer

7 ;phase sensitive using Echo/Antiecho-TPPI gradient selection

8 ;clip pulse before aquisition

9 ;

10 ;$CLASS=HighRes
11 ;$DIM=2D
12 ;$TYPE=
13 ;$SUBTYPE=
14 ;$COMMENT=
15

16 #include <Avance.incl>

17 #include <Grad.incl>

18 #include <Delay.incl>

19

20 "p2=p1*2"

21 "p4=p3*2"

22 "d4=1s/(cnst2*4)"

23 "d11=30m"

24

25 # ifdef LABEL_CN

26 "p22=p21*2"

27 # else

28 # endif /*LABEL_CN*/

29
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30 "acqt0=0"

31

32 "d0=3u"

33 "d10=3u"

34 "in0=inf1/2"

35 "in10=inf2/2"

36

37 "DELTA1=d4-p16-de+p1*2/PI-8u-p3"

38 "DELTA2=in0/2-p16-d16"

39 "DELTA3=in0-p16-d16"

40 "DELTA4=in0/2-(dw*2*cnst4)-p16-d16"

41

42 # ifdef LABEL_CN

43 "DELTA=p16+d16+larger(p2,p22)+d0*2"

44 # else

45 "DELTA=p16+d16+p2+d0*2"

46 # endif /*LABEL_CN*/

47

48 1 ze

49 d11

50 2 d1

51 3 (p1 ph1)

52 d4 pl2:f2

53 (center (p2 ph1) (p4 ph6):f2 )

54 d4 UNBLKGRAD

55 (p1 ph2) (p3 ph3):f2

56 d10

57 # ifdef LABEL_CN

58 (center (p2 ph5) (p22 ph1):f3 )

59 # else

60 (p2 ph5)

61 # endif /*LABEL_CN*/

62 d10

63 p16:gp1*EA

64 d16

65 (p4 ph4):f2

66 DELTA

67 (ralign (p1 ph1) (p3 ph5):f2 )

68 d4

69 (center (p2 ph1) (p4 ph1):f2 )

70 4u

71 p16:gp2

72 DELTA1

73 4u

74 (p3 ph8):f2
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75

76 ;;;;; Pure-Shift Pseudo-Dimension ;;;;;

77 d0

78 DELTA2

79 p16:gp3

80 d16

81 (p2 ph1):f1

82 DELTA3

83 p16:gp4

84 d16

85 (p1 ph1):f1 ;BIRDd

86 d4*2

87 (center (p2 ph1) (p4 ph1):f2 )

88 d4*2

89 (ralign (p1 ph1) (p4 ph1):f2 )

90 DELTA4

91 p16:gp5

92 d16 BLKGRAD

93 d0

94

95 go=2 ph31

96 d1 mc #0 to 2

97 F1QF( caldel(d0, +in0) )

98 F2EA(calgrad(EA), caldel(d10, +in10) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

99 exit

100

101 ph1=0

102 ph2=1

103 ph3=0 2

104 ph4=0 0 0 0 2 2 2 2

105 ph5=0 0 2 2

106 ph6=0

107 ph8=0 2

108 ph31=0 2 0 2 2 0 2 0

109

110 ;pl1 : f1 channel - power level for pulse (default)

111 ;pl2 : f2 channel - power level for pulse (default)

112 ;pl3 : f3 channel - power level for pulse (default)

113 ;pl12: f2 channel - power level for CPD/BB decoupling

114 ;p1 : f1 channel - 90 degree high power pulse

115 ;p2 : f1 channel - 180 degree high power pulse

116 ;p3 : f2 channel - 90 degree high power pulse

117 ;p4 : f2 channel - 180 degree high power pulse

118 ;p16: homospoil/gradient pulse
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119 ;p22: f3 channel - 180 degree high power pulse

120 ;p28: f1 channel - trim pulse

121 ;d0 : incremented delay (2D) [3 usec]

122 ;d1 : relaxation delay; 1-5 * T1

123 ;d4 : 1/(4J)XH

124 ;d11: delay for disk I/O [30 msec]

125 ;d16: delay for homospoil/gradient recovery

126 ;cnst2: = J(XH)

127 ;cnst4: = Points dropped by AU program

128 ;inf1: 1/SW(X) = 2 * DW(X)

129 ;in0: 1/(2 * SW(X)) = DW(X)

130 ;nd0: 2

131 ;NS: 1 * n

132 ;DS: >= 16

133 ;td1: number of experiments

134 ;FnMODE: echo-antiecho

135 ;cpd2: decoupling according to sequence defined by cpdprg2

136 ;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

137

138 ;use gradient ratio: gp 1 : gp 2

139 ; 80 : 20.1 for C-13

140 ; 80 : 8.1 for N-15

141 ;use gradient ratio: gp 3 : gp 4 : gp 5

142 ; 1 : 4 : 3

143 ;for z-only gradients:

144 ;gpz1: 80%

145 ;gpz2: 20.1% for C-13, 8.1% for N-15

146 ;gpz3: n*1 %

147 ;gpz4: n*4 %

148 ;gpz5: n*3 %

149

150 ;use gradient files:

151 ;gpnam1: SMSQ10.100

152 ;gpnam2: SMSQ10.100

153 ;gpnam3: SMSQ10.100

154 ;gpnam4: SMSQ10.100

155 ;gpnam5: SMSQ10.100

156

157 ;preprocessor-flags-start

158 ;LABEL_CN: for C-13 and N-15 labeled samples start experiment with

159 ; option -DLABEL_CN (eda: ZGOPTNS)

160 ;preprocessor-flags-end

161

162 ;$Id: hsqcetgp,v 1.5.4.1 2011/02/24 17:26:40 ber Exp $
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Listing A.29: Pulse program for CLAP-RESET HSQC experiments
1 ; CLAP_RESET_hsqcetgp

2 ;

3 ;based on hsqcetgp

4 ;avance-version (09/04/17)

5 ;HSQC

6 ;2D H-1/X correlation via double inept transfer

7 ;phase sensitive using Echo/Antiecho-TPPI gradient selection

8 ;

9 ;$CLASS=HighRes
10 ;$DIM=2D
11 ;$TYPE=
12 ;$SUBTYPE=
13 ;$COMMENT=
14

15 #include <Avance.incl>

16 #include <Grad.incl>

17 #include <Delay.incl>

18

19 "p2=p1*2"

20 "p4=p3*2"

21 "d4=1s/(cnst2*4)"

22 "d11=30m"

23

24 # ifdef LABEL_CN

25 "p22=p21*2"

26 # else

27 # endif /*LABEL_CN*/

28

29 "acqt0=0"

30

31 "d0=3u"

32 "d10=3u"

33 "in0=inf1/2"

34 "in10=inf2/2"

35

36 "DELTA1=d4-p16-de+p1*2/PI-8u"

37 "DELTA2=in0/2-p16-d16"

38 "DELTA3=in0-p16-d16"

39 "DELTA4=in0/2-(dw*2*cnst4)-p16-d16"

40

41 # ifdef LABEL_CN

42 "DELTA=p16+d16+larger(p2,p22)+d0*2"

43 # else
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44 "DELTA=p16+d16+p2+d0*2"

45 # endif /*LABEL_CN*/

46

47 1 ze

48 d11

49 2 d1

50 3 (p1 ph1)

51 d4 pl2:f2

52 (center (p2 ph1) (p4 ph6):f2 )

53 d4 UNBLKGRAD

54 (p1 ph2) (p3 ph3):f2

55 d10

56 # ifdef LABEL_CN

57 (center (p2 ph5) (p22 ph1):f3 )

58 # else

59 (p2 ph5)

60 # endif /*LABEL_CN*/

61 d10

62 p16:gp1*EA

63 d16

64 (p4 ph4):f2

65 DELTA

66 (ralign (p1 ph1) (p3 ph5):f2 )

67 d4

68 (p2 ph1)

69 4u

70 p16:gp2

71 DELTA1

72 4u

73

74 ;;;;; Pure-Shift Pseudo-Dimension ;;;;;

75 d0

76 DELTA2

77 p16:gp3

78 d16

79 (p2 ph1):f1

80 DELTA3

81 p16:gp4

82 d16

83 (p1 ph1):f1 ;BIRDd

84 d4*2

85 (center (p2 ph1) (p4 ph1):f2 )

86 d4*2

87 (ralign (p1 ph1) (p4 ph1):f2 )

88 DELTA4

239



A. Appendix

89 p16:gp5

90 d16 BLKGRAD

91 d0

92

93 go=2 ph31

94 d1 mc #0 to 2

95 F1QF( caldel(d0, +in0) )

96 F2EA(calgrad(EA), caldel(d10, +in10) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

97 exit

98

99 ph1=0

100 ph2=1

101 ph3=0 2

102 ph4=0 0 0 0 2 2 2 2

103 ph5=0 0 2 2

104 ph6=0

105 ph31=1 3 1 3 3 1 3 1

106

107 ;pl1 : f1 channel - power level for pulse (default)

108 ;pl2 : f2 channel - power level for pulse (default)

109 ;pl3 : f3 channel - power level for pulse (default)

110 ;pl12: f2 channel - power level for CPD/BB decoupling

111 ;p1 : f1 channel - 90 degree high power pulse

112 ;p2 : f1 channel - 180 degree high power pulse

113 ;p3 : f2 channel - 90 degree high power pulse

114 ;p4 : f2 channel - 180 degree high power pulse

115 ;p16: homospoil/gradient pulse

116 ;p22: f3 channel - 180 degree high power pulse

117 ;p28: f1 channel - trim pulse

118 ;d0 : incremented delay (2D) [3 usec]

119 ;d1 : relaxation delay; 1-5 * T1

120 ;d4 : 1/(4J)XH

121 ;d11: delay for disk I/O [30 msec]

122 ;d16: delay for homospoil/gradient recovery

123 ;cnst2: = J(XH)

124 ;cnst4: = Points dropped by AU program

125 ;inf1: 1/SW(X) = 2 * DW(X)

126 ;in0: 1/(2 * SW(X)) = DW(X)

127 ;nd0: 2

128 ;NS: 1 * n

129 ;DS: >= 16

130 ;td1: number of experiments

131 ;FnMODE: echo-antiecho

132 ;cpd2: decoupling according to sequence defined by cpdprg2
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133 ;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

134

135 ;use gradient ratio: gp 1 : gp 2

136 ; 80 : 20.1 for C-13

137 ; 80 : 8.1 for N-15

138 ;use gradient ratio: gp 3 : gp 4 : gp 5

139 ; 1 : 4 : 3

140 ;for z-only gradients:

141 ;gpz1: 80%

142 ;gpz2: 20.1% for C-13, 8.1% for N-15

143 ;gpz3: n*1 %

144 ;gpz4: n*4 %

145 ;gpz5: n*3 %

146

147 ;use gradient files:

148 ;gpnam1: SMSQ10.100

149 ;gpnam2: SMSQ10.100

150 ;gpnam3: SMSQ10.100

151 ;gpnam4: SMSQ10.100

152 ;gpnam5: SMSQ10.100

153

154 ;preprocessor-flags-start

155 ;LABEL_CN: for C-13 and N-15 labeled samples start experiment with

156 ; option -DLABEL_CN (eda: ZGOPTNS)

157 ;preprocessor-flags-end

158

159 ;$Id: hsqcetgp,v 1.5.4.1 2011/02/24 17:26:40 ber Exp $

Listing A.30: Pulse program for SP-CLIP-RESET HSQC experiments
1 ;SP_CLIP_RESET_hsqcetgp

2 ;

3 ;based on hsqcetgp,v 1.5.2.1 2011/02/24

4 ;HSQC

5 ;2D H-1/X correlation via double inept transfer

6 ;phase sensitive using Echo/Antiecho-TPPI gradient selection

7 ;clip pulse before aquisition

8 ;

9 ;$CLASS=HighRes
10 ;$DIM=2D
11 ;$TYPE=
12 ;$SUBTYPE=
13 ;$COMMENT=
14

15 #include <Avance.incl>

16 #include <Grad.incl>
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17 #include <Delay.incl>

18 #include<Sysconf.incl>
19

20 "d11=30m"

21 "acqt0=0"

22 "d4=1s/(cnst2*4)"

23

24 "d0=3u"

25 "d10=3u"

26 "in0=inf1/2"

27 "in10=inf2/2"

28

29 "DELTA=p16+d16+p26+d0*2"

30 "DELTA1=d4-p16-4u-p3"

31 "DELTA2=in0/2-p16-d16"

32 "DELTA3=in0-p16-d16"

33 "DELTA4=in0/2-(dw*2*cnst4)-p16-d16"

34

35 1 ze

36 d11

37 2 d1

38 3 (p21:sp21 ph1):f1 ;zx

39 d4

40 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

41 d4 UNBLKGRAD

42 (p21:sp24 ph1):f1 (p21:sp25 ph3):f2 ;yz z-y

43 d10

44 (p26:sp26 ph5):f1

45 d10

46 p16:gp1*EA

47 d16

48 (p27:sp27 ph4):f2

49 DELTA

50 (p21:sp28 ph1):f1 (p21:sp29 ph4):f2 ;z-y yz

51 d4

52 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

53 p16:gp2

54 DELTA1

55 4u pl2:f2

56 (p3 ph8):f2

57

58 ;;;;; Pure-Shift Pseudo-Dimension ;;;;;

59 d0

60 DELTA2

61 p16:gp3
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62 d16

63 (p22:sp22 ph1):f1

64 DELTA3

65 p16:gp4

66 d16

67 (p22:sp30 ph1):f1 ;BIRDd

68 d4*2

69 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

70 d4*2

71 (p22:sp30 ph1):f1 (p22:sp23 ph1):f2 ;URx90 BIBOP

72 DELTA4

73 p16:gp5

74 d16 BLKGRAD

75 d0

76

77 go=2 ph31

78 d1 mc #0 to 2

79 F1QF(caldel(d0, +in0) )

80 F2EA(calgrad(EA), caldel(d10, +in10) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

81 exit

82

83 ph1=0

84 ph2=1

85 ph3=0 2

86 ph4=0 0 2 2

87 ph5=0 0 0 0 2 2 2 2

88 ph6=0

89 ph8=0 2

90 ph31=0 2 2 0

91

92 ;pl1 : f1 channel - power level for pulse (default)

93 ;pl2 : f2 channel - power level for pulse (default)

94 ;pl3 : f3 channel - power level for pulse (default)

95 ;pl12: f2 channel - power level for CPD/BB decoupling

96 ;p1 : f1 channel - 90 degree high power pulse

97 ;p2 : f1 channel - 180 degree high power pulse

98 ;p3 : f2 channel - 90 degree high power pulse

99 ;p4 : f2 channel - 180 degree high power pulse

100 ;p16: homospoil/gradient pulse

101 ;p21 : 550u excitation pulses

102 ;p22 : 600u UR and Inversion pulses

103 ;p26 : 100u Inversion pulse

104 ;p27 : 1100u UR pulse

105
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106 ;spnam21 : jc01_BEBOP_zx_550u_BW10_RF20_pm20_Hc0.99997119.pul

107 ;spnam22 : jc02_BURBOP_x_600u_BW10_RF20_pm20_matched.pul

108 ;spnam24 : jc04_BEBOP_yz_550u_BW10_RF20_pm20_matched.pul

109 ;spnam26 : jc06_BIBOP_z-z_100u_BW11_RF20_pm20_Hc0.99966724.pul

110 ;spnam28 : jc08_BEBOP_z-y_550u_BW10_RF20_pm20_matched.pul

111 ;spnam30 : UR90x_600u_BW10_RF20_pm20_Hc0.999959.bruker

112

113 ;spnam23 : jc03_BIBOP_600u_BW37.5_RF10_pm5_matched.pul

114 ;spnam25 : jc05_BEBOP_zy_550u_BW37.5_RF10_pm5_matched.pul

115 ;spnam27 : jc07_BURBOP_y_1100u_BW37.5_RF10_pm5_Hc0.999876221.pul

116 ;spnam29 : jc09_BEBOP_-yz_550u_BW37.5_RF10_pm5_matched.pul

117

118 ;sp21 : 20 kHz Rf Amplitude

119 ;sp22 : 20 kHz Rf Amplitude

120 ;sp24 : 20 kHz Rf Amplitude

121 ;sp26 : 20 kHz Rf Amplitude

122 ;sp28 : 20 kHz Rf Amplitude

123 ;sp30 : 20 kHz Rf Amplitude

124

125 ;sp23 : 10 kHz Rf Amplitude

126 ;sp25 : 10 kHz Rf Amplitude

127 ;sp27 : 10 kHz Rf Amplitude

128 ;sp29 : 10 kHz Rf Amplitude

129

130 ;d0 : incremented delay (2D) [3 usec]

131 ;d1 : relaxation delay; 1-5 * T1

132 ;d4 : 1/(4J)XH

133 ;d11: delay for disk I/O [30 msec]

134 ;d16: delay for homospoil/gradient recovery

135 ;cnst2: = J(XH)

136 ;cnst4: = Points dropped by AU program

137 ;inf1: 1/SW(X) = 2 * DW(X)

138 ;in0: 1/(2 * SW(X)) = DW(X)

139 ;nd0: 2

140 ;NS: 2 * n

141 ;DS: >= 16

142 ;td1: number of experiments

143 ;FnMODE: echo-antiecho

144 ;cpd2: decoupling according to sequence defined by cpdprg2

145 ;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

146

147 ;use gradient ratio: gp 1 : gp 2

148 ; 80 : 20.1 for C-13

149 ; 80 : 8.1 for N-15

150 ;use gradient ratio: gp 3 : gp 4 : gp 5
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151 ; 1 : 4 : 3

152 ;for z-only gradients:

153 ;gpz1: 80%

154 ;gpz2: 20.1% for C-13, 8.1% for N-15

155 ;gpz3: n*1 %

156 ;gpz4: n*4 %

157 ;gpz5: n*3 %

158

159 ;use gradient files:

160 ;gpnam1: SMSQ10.100

161 ;gpnam2: SMSQ10.100

162 ;gpnam3: SMSQ10.100

163 ;gpnam4: SMSQ10.100

164 ;gpnam5: SMSQ10.100

165

166 ;preprocessor-flags-start

167

168 ;$Id: hsqcetgp,v 1.5.2.1 2011/02/24 17:27:48 ber Exp $

Listing A.31: Pulse program for SP-CLAP-RESET HSQC experiments
1 ;SP_CLAP_RESET_hsqcetgp

2 ;

3 ;based on hsqcetgp,v 1.5.2.1 2011/02/24

4 ;HSQC

5 ;2D H-1/X correlation via double inept transfer

6 ;phase sensitive using Echo/Antiecho-TPPI gradient selection

7 ;

8 ;$CLASS=HighRes
9 ;$DIM=2D

10 ;$TYPE=
11 ;$SUBTYPE=
12 ;$COMMENT=
13

14 #include <Avance.incl>

15 #include <Grad.incl>

16 #include <Delay.incl>

17 #include<Sysconf.incl>
18

19 "d11=30m"

20 "acqt0=0"

21 "d4=1s/(cnst2*4)"

22

23 "d0=3u"

24 "d10=3u"

25 "in0=inf1/2"
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26 "in10=inf2/2"

27

28 "DELTA=p16+d16+p26+d0*2"

29 "DELTA1=d4-p16-4u"

30 "DELTA2=in0/2-p16-d16"

31 "DELTA3=in0-p16-d16"

32 "DELTA4=in0/2-(dw*2*cnst4)-p16-d16"

33

34 1 ze

35 d11

36 2 d1

37 3 (p21:sp21 ph1):f1 ;zx

38 d4

39 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

40 d4 UNBLKGRAD

41 (p21:sp24 ph1):f1 (p21:sp25 ph3):f2 ;yz z-y

42 d10

43 (p26:sp26 ph5):f1

44 d10

45 p16:gp1*EA

46 d16

47 (p27:sp27 ph4):f2

48 DELTA

49 (p21:sp28 ph1):f1 (p21:sp29 ph4):f2 ;z-y yz

50 d4

51 (p22:sp22 ph1):f1 ;URx180

52 p16:gp2

53 DELTA1

54 4u

55

56 ;;;;; Pure-Shift Pseudo-Dimension ;;;;;

57 d0

58 DELTA2

59 p16:gp3

60 d16

61 (p22:sp22 ph1):f1

62 DELTA3

63 p16:gp4

64 d16

65 (p22:sp30 ph1):f1 ;BIRDd

66 d4*2

67 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

68 d4*2

69 (p22:sp30 ph1):f1 (p22:sp23 ph1):f2 ;URx90 BIBOP

70 DELTA4
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71 p16:gp5

72 d16 BLKGRAD

73 d0

74

75 go=2 ph31

76 d1 mc #0 to 2

77 F1QF(caldel(d0, +in0) )

78 F2EA(calgrad(EA), caldel(d10, +in10) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

79 exit

80

81 ph1=0

82 ph2=1

83 ph3=0 2

84 ph4=0 0 2 2

85 ph5=0 0 0 0 2 2 2 2

86 ph6=0

87 ph8=0 2

88 ph31=1 3 3 1

89

90 ;pl1 : f1 channel - power level for pulse (default)

91 ;pl2 : f2 channel - power level for pulse (default)

92 ;pl3 : f3 channel - power level for pulse (default)

93 ;pl12: f2 channel - power level for CPD/BB decoupling

94 ;p1 : f1 channel - 90 degree high power pulse

95 ;p2 : f1 channel - 180 degree high power pulse

96 ;p3 : f2 channel - 90 degree high power pulse

97 ;p4 : f2 channel - 180 degree high power pulse

98 ;p16: homospoil/gradient pulse

99 ;p21 : 550u excitation pulses

100 ;p22 : 600u UR and Inversion pulses

101 ;p26 : 100u Inversion pulse

102 ;p27 : 1100u UR pulse

103

104 ;spnam21 : jc01_BEBOP_zx_550u_BW10_RF20_pm20_Hc0.99997119.pul

105 ;spnam22 : jc02_BURBOP_x_600u_BW10_RF20_pm20_matched.pul

106 ;spnam24 : jc04_BEBOP_yz_550u_BW10_RF20_pm20_matched.pul

107 ;spnam26 : jc06_BIBOP_z-z_100u_BW11_RF20_pm20_Hc0.99966724.pul

108 ;spnam28 : jc08_BEBOP_z-y_550u_BW10_RF20_pm20_matched.pul

109 ;spnam30 : UR90x_600u_BW10_RF20_pm20_Hc0.999959.bruker

110

111 ;spnam23 : jc03_BIBOP_600u_BW37.5_RF10_pm5_matched.pul

112 ;spnam25 : jc05_BEBOP_zy_550u_BW37.5_RF10_pm5_matched.pul

113 ;spnam27 : jc07_BURBOP_y_1100u_BW37.5_RF10_pm5_Hc0.999876221.pul

114 ;spnam29 : jc09_BEBOP_-yz_550u_BW37.5_RF10_pm5_matched.pul
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115

116 ;sp21 : 20 kHz Rf Amplitude

117 ;sp22 : 20 kHz Rf Amplitude

118 ;sp24 : 20 kHz Rf Amplitude

119 ;sp26 : 20 kHz Rf Amplitude

120 ;sp28 : 20 kHz Rf Amplitude

121 ;sp30 : 20 kHz Rf Amplitude

122

123 ;sp23 : 10 kHz Rf Amplitude

124 ;sp25 : 10 kHz Rf Amplitude

125 ;sp27 : 10 kHz Rf Amplitude

126 ;sp29 : 10 kHz Rf Amplitude

127

128 ;d0 : incremented delay (2D) [3 usec]

129 ;d1 : relaxation delay; 1-5 * T1

130 ;d4 : 1/(4J)XH

131 ;d11: delay for disk I/O [30 msec]

132 ;d16: delay for homospoil/gradient recovery

133 ;cnst2: = J(XH)

134 ;cnst4: = Points dropped by AU program

135 ;inf1: 1/SW(X) = 2 * DW(X)

136 ;in0: 1/(2 * SW(X)) = DW(X)

137 ;nd0: 2

138 ;NS: 2 * n

139 ;DS: >= 16

140 ;td1: number of experiments

141 ;FnMODE: echo-antiecho

142 ;cpd2: decoupling according to sequence defined by cpdprg2

143 ;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

144

145 ;use gradient ratio: gp 1 : gp 2

146 ; 80 : 20.1 for C-13

147 ; 80 : 8.1 for N-15

148 ;use gradient ratio: gp 3 : gp 4 : gp 5

149 ; 1 : 4 : 3

150 ;for z-only gradients:

151 ;gpz1: 80%

152 ;gpz2: 20.1% for C-13, 8.1% for N-15

153 ;gpz3: n*1 %

154 ;gpz4: n*4 %

155 ;gpz5: n*3 %

156

157 ;use gradient files:

158 ;gpnam1: SMSQ10.100

159 ;gpnam2: SMSQ10.100
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160 ;gpnam3: SMSQ10.100

161 ;gpnam4: SMSQ10.100

162 ;gpnam5: SMSQ10.100

163

164 ;preprocessor-flags-start

165

166 ;$Id: hsqcetgp,v 1.5.2.1 2011/02/24 17:27:48 ber Exp $

Listing A.32: Pulse program for COB-CLIP-RESET HSQC experiments
1 ;COB_CLIP_RESET_hsqcetgp

2 ;

3 ;based on hsqcetgp,v 1.5.2.1 2011/02/24

4 ;HSQC

5 ;2D H-1/X correlation via double inept transfer

6 ;phase sensitive using Echo/Antiecho-TPPI gradient selection

7 ;clip pulse before aquisition

8 ;

9 ;$CLASS=HighRes
10 ;$DIM=2D
11 ;$TYPE=
12 ;$SUBTYPE=
13 ;$COMMENT=
14

15 #include <Avance.incl>

16 #include <Grad.incl>

17 #include <Delay.incl>

18 #include<Sysconf.incl>
19

20 "d11=30m"

21 "acqt0=0"

22 "d4=1s/(cnst2*4)"

23

24 "d20=d5*0.001469"

25 "d21=d5*0.00213465"

26 "d22=d5*0.0003938"

27

28 "d0=3u"

29 "d10=3u"

30 "in0=inf1/2"

31 "in10=inf2/2"

32

33 "DELTA=p16+d16+p26+d0*2"

34 "DELTA1=d5*0.001469-p16-4u-p3"

35 "DELTA2=in0/2-p16-d16"

36 "DELTA3=in0-p16-d16"

249



A. Appendix

37 "DELTA4=in0/2-(dw*2*cnst4)-p16-d16"

38

39 1 ze

40 d11

41 2 d1

42 3 (p21:sp21 ph1):f1 ;zx

43 d20

44 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

45 d20 UNBLKGRAD

46 (p30:sp30 ph1):f1 ;URx242 ;p1*2.7 ph1

47 d21

48 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

49 d21

50 (p30:sp31 ph1):f1 ;URx65 ;p1*0.72 ph1

51 d22

52 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

53 d22

54 (p21:sp24 ph1):f1 (p21:sp25 ph3):f2 ;yz z-y

55 d10

56 (p26:sp26 ph5):f1

57 d10

58 p16:gp1*EA

59 d16

60 (p27:sp27 ph4):f2

61 DELTA

62 (p21:sp28 ph1):f1 (p21:sp29 ph4):f2 ;z-y yz

63 d22

64 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

65 d22

66 (p30:sp31 ph1):f1 ;URx65 ;p1*0.72 ph1

67 d21

68 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

69 d21

70 (p30:sp30 ph1):f1 ;URx242 ;p1*2.7 ph1

71 d20

72 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

73 p16:gp2

74 DELTA1 BLKGRAD

75 4u

76 (p3 ph8):f2

77

78 ;;;;; Pure-Shift Pseudo-Dimension ;;;;;

79 d0

80 DELTA2

81 p16:gp3
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82 d16

83 (p22:sp22 ph1):f1

84 DELTA3

85 p16:gp4

86 d16

87 (p22:sp30 ph1):f1 ;BIRDd

88 d4*2

89 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

90 d4*2

91 (p22:sp32 ph1):f1 (p22:sp23 ph1):f2 ;URx90 BIBOP

92 DELTA4

93 p16:gp5

94 d16 BLKGRAD

95 d0

96

97 go=2 ph31

98 d1 mc #0 to 2

99 F1QF(caldel(d0, +in0) )

100 F2EA(calgrad(EA), caldel(d10, +in10) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

101 exit

102

103 ph1=0

104 ph2=1

105 ph3=0 2

106 ph4=0 0 2 2

107 ph5=0 0 0 0 2 2 2 2

108 ph6=0

109 ph8=0 2

110 ph31=0 2 2 0

111

112 ;pl1 : f1 channel - power level for pulse (default)

113 ;pl2 : f2 channel - power level for pulse (default)

114 ;pl3 : f3 channel - power level for pulse (default)

115 ;pl12: f2 channel - power level for CPD/BB decoupling

116 ;p1 : f1 channel - 90 degree high power pulse

117 ;p2 : f1 channel - 180 degree high power pulse

118 ;p3 : f2 channel - 90 degree high power pulse

119 ;p4 : f2 channel - 180 degree high power pulse

120 ;p16: homospoil/gradient pulse

121

122 ;p21 : 550u excitation pulses

123 ;p22 : 600u UR and Inversion pulses

124 ;p26 : 100u Inversion pulse

125 ;p27 : 1100u UR pulse
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126 ;p30 : 200u odd UR pulses

127

128 ;spnam21 : jc01_BEBOP_zx_550u_BW10_RF20_pm20_Hc0.99997119.pul

129 ;spnam22 : jc02_BURBOP_x_600u_BW10_RF20_pm20_matched.pul

130 ;spnam24 : jc04_BEBOP_yz_550u_BW10_RF20_pm20_matched.pul

131 ;spnam26 : jc06_BIBOP_z-z_100u_BW11_RF20_pm20_Hc0.99966724.pul

132 ;spnam28 : jc08_BEBOP_z-y_550u_BW10_RF20_pm20_matched.pul

133 ;spnam30 : jc10_BURBOP_x242.8833deg_200u_BW10_RF20_pm20_Hc0.9997027.pul

134 ;spnam31 : jc11_BURBOP_x65.3166deg_200u_BW10_RF20_pm10_Hc0.9998099.pul

135 ;spnam32 : UR90x_600u_BW10_RF20_pm20_Hc0.999959.bruker

136

137 ;spnam23 : jc03_BIBOP_600u_BW37.5_RF10_pm5_matched.pul

138 ;spnam25 : jc05_BEBOP_zy_550u_BW37.5_RF10_pm5_matched.pul

139 ;spnam27 : jc07_BURBOP_y_1100u_BW37.5_RF10_pm5_Hc0.999876221.pul

140 ;spnam29 : jc09_BEBOP_-yz_550u_BW37.5_RF10_pm5_matched.pul

141

142 ;sp21 : 20 kHz Rf Amplitude

143 ;sp22 : 20 kHz Rf Amplitude

144 ;sp24 : 20 kHz Rf Amplitude

145 ;sp26 : 20 kHz Rf Amplitude

146 ;sp28 : 20 kHz Rf Amplitude

147 ;sp30 : 20 kHz Rf Amplitude

148 ;sp31 : 20 kHz Rf Amplitude

149 ;sp32 : 20 kHz Rf Amplitude

150

151 ;sp23 : 10 kHz Rf Amplitude

152 ;sp25 : 10 kHz Rf Amplitude

153 ;sp27 : 10 kHz Rf Amplitude

154 ;sp29 : 10 kHz Rf Amplitude

155

156 ;d0 : incremented delay (2D) [3 usec]

157 ;d1 : relaxation delay; 1-5 * T1

158 ;d4 : 1/(4J)XH

159 ;d5: = d5=1 (for J=120-250Hz, Delay Scaling Factor)

160 ;d11: delay for disk I/O [30 msec]

161 ;d16: delay for homospoil/gradient recovery

162 ;cnst2: = J(XH)

163 ;cnst4: = Points dropped by AU program

164 ;inf1: 1/SW(X) = 2 * DW(X)

165 ;in0: 1/(2 * SW(X)) = DW(X)

166 ;nd0: 2

167 ;NS: 2 * n

168 ;DS: >= 16

169 ;td1: number of experiments

170 ;FnMODE: echo-antiecho

252



A.5. Bruker pulse programs

171 ;cpd2: decoupling according to sequence defined by cpdprg2

172 ;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

173

174 ;use gradient ratio: gp 1 : gp 2

175 ; 80 : 20.1 for C-13

176 ; 80 : 8.1 for N-15

177 ;use gradient ratio: gp 3 : gp 4 : gp 5

178 ; 1 : 4 : 3

179 ;for z-only gradients:

180 ;gpz1: 80%

181 ;gpz2: 20.1% for C-13, 8.1% for N-15

182 ;gpz3: n*1 %

183 ;gpz4: n*4 %

184 ;gpz5: n*3 %

185

186 ;use gradient files:

187 ;gpnam1: SMSQ10.100

188 ;gpnam2: SMSQ10.100

189 ;gpnam3: SMSQ10.100

190 ;gpnam4: SMSQ10.100

191 ;gpnam5: SMSQ10.100

192

193 ;preprocessor-flags-start

194

195 ;$Id: hsqcetgp,v 1.5.2.1 2011/02/24 17:27:48 ber Exp $

Listing A.33: Pulse program for COB-CLAP-RESET HSQC experiments
1 ;COB_CLAP_RESET_hsqcetgp

2 ;

3 ;based on hsqcetgp,v 1.5.2.1 2011/02/24

4 ;HSQC

5 ;2D H-1/X correlation via double inept transfer

6 ;phase sensitive using Echo/Antiecho-TPPI gradient selection

7 ;

8 ;$CLASS=HighRes
9 ;$DIM=2D

10 ;$TYPE=
11 ;$SUBTYPE=
12 ;$COMMENT=
13

14 #include <Avance.incl>

15 #include <Grad.incl>

16 #include <Delay.incl>

17 #include<Sysconf.incl>
18
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19 "d11=30m"

20 "acqt0=0"

21 "d4=1s/(cnst2*4)"

22

23 "d20=d5*0.001469"

24 "d21=d5*0.00213465"

25 "d22=d5*0.0003938"

26

27 "d0=3u"

28 "d10=3u"

29 "in0=inf1/2"

30 "in10=inf2/2"

31

32 "DELTA=p16+d16+p26+d0*2"

33 "DELTA1=d5*0.001469-p16-4u"

34 "DELTA2=in0/2-p16-d16"

35 "DELTA3=in0-p16-d16"

36 "DELTA4=in0/2-(dw*2*cnst4)-p16-d16"

37

38 1 ze

39 d11

40 2 d1

41 3 (p21:sp21 ph1):f1 ;zx

42 d20

43 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

44 d20 UNBLKGRAD

45 (p30:sp30 ph1):f1 ;URx242 ;p1*2.7 ph1

46 d21

47 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

48 d21

49 (p30:sp31 ph1):f1 ;URx65 ;p1*0.72 ph1

50 d22

51 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

52 d22

53 (p21:sp24 ph1):f1 (p21:sp25 ph3):f2 ;yz z-y

54 d10

55 (p26:sp26 ph5):f1

56 d10

57 p16:gp1*EA

58 d16

59 (p27:sp27 ph4):f2

60 DELTA

61 (p21:sp28 ph1):f1 (p21:sp29 ph4):f2 ;z-y yz

62 d22

63 (p22:sp22 ph2):f1 ;URx180
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64 d22

65 (p30:sp31 ph2):f1 ;URx65 ;p1*0.72 ph1

66 d21

67 (p22:sp22 ph2):f1 ;URx180

68 d21

69 (p30:sp30 ph2):f1 ;URx242 ;p1*2.7 ph1

70 d20

71 (p22:sp22 ph2):f1 ;URx180

72 p16:gp2

73 DELTA1 BLKGRAD

74 4u

75

76 ;;;;; Pure-Shift Pseudo-Dimension ;;;;;

77 d0

78 DELTA2

79 p16:gp3

80 d16

81 (p22:sp22 ph1):f1

82 DELTA3

83 p16:gp4

84 d16

85 (p22:sp30 ph1):f1 ;BIRDd

86 d4*2

87 (p22:sp22 ph1):f1 (p22:sp23 ph1):f2 ;URx180 BIBOP

88 d4*2

89 (p22:sp32 ph1):f1 (p22:sp23 ph1):f2 ;URx90 BIBOP

90 DELTA4

91 p16:gp5

92 d16 BLKGRAD

93 d0

94

95 go=2 ph31

96 d1 mc #0 to 2

97 F1QF(caldel(d0, +in0) )

98 F2EA(calgrad(EA), caldel(d10, +in10) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

99 exit

100

101 ph1=0

102 ph2=1

103 ph3=0 2

104 ph4=0 0 2 2

105 ph5=0 0 0 0 2 2 2 2

106 ph6=0

107 ph31=1 3 3 1
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108

109 ;pl1 : f1 channel - power level for pulse (default)

110 ;pl2 : f2 channel - power level for pulse (default)

111 ;pl3 : f3 channel - power level for pulse (default)

112 ;pl12: f2 channel - power level for CPD/BB decoupling

113 ;p1 : f1 channel - 90 degree high power pulse

114 ;p2 : f1 channel - 180 degree high power pulse

115 ;p3 : f2 channel - 90 degree high power pulse

116 ;p4 : f2 channel - 180 degree high power pulse

117 ;p16: homospoil/gradient pulse

118

119 ;p21 : 550u excitation pulses

120 ;p22 : 600u UR and Inversion pulses

121 ;p26 : 100u Inversion pulse

122 ;p27 : 1100u UR pulse

123 ;p30 : 200u odd UR pulses

124

125 ;spnam21 : jc01_BEBOP_zx_550u_BW10_RF20_pm20_Hc0.99997119.pul

126 ;spnam22 : jc02_BURBOP_x_600u_BW10_RF20_pm20_matched.pul

127 ;spnam24 : jc04_BEBOP_yz_550u_BW10_RF20_pm20_matched.pul

128 ;spnam26 : jc06_BIBOP_z-z_100u_BW11_RF20_pm20_Hc0.99966724.pul

129 ;spnam28 : jc08_BEBOP_z-y_550u_BW10_RF20_pm20_matched.pul

130 ;spnam30 : jc10_BURBOP_x242.8833deg_200u_BW10_RF20_pm20_Hc0.9997027.pul

131 ;spnam31 : jc11_BURBOP_x65.3166deg_200u_BW10_RF20_pm10_Hc0.9998099.pul

132 ;spnam32 : UR90x_600u_BW10_RF20_pm20_Hc0.999959.bruker

133

134 ;spnam23 : jc03_BIBOP_600u_BW37.5_RF10_pm5_matched.pul

135 ;spnam25 : jc05_BEBOP_zy_550u_BW37.5_RF10_pm5_matched.pul

136 ;spnam27 : jc07_BURBOP_y_1100u_BW37.5_RF10_pm5_Hc0.999876221.pul

137 ;spnam29 : jc09_BEBOP_-yz_550u_BW37.5_RF10_pm5_matched.pul

138

139 ;sp21 : 20 kHz Rf Amplitude

140 ;sp22 : 20 kHz Rf Amplitude

141 ;sp24 : 20 kHz Rf Amplitude

142 ;sp26 : 20 kHz Rf Amplitude

143 ;sp28 : 20 kHz Rf Amplitude

144 ;sp30 : 20 kHz Rf Amplitude

145 ;sp31 : 20 kHz Rf Amplitude

146 ;sp32 : 20 kHz Rf Amplitude

147

148 ;sp23 : 10 kHz Rf Amplitude

149 ;sp25 : 10 kHz Rf Amplitude

150 ;sp27 : 10 kHz Rf Amplitude

151 ;sp29 : 10 kHz Rf Amplitude

152
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153 ;d0 : incremented delay (2D) [3 usec]

154 ;d1 : relaxation delay; 1-5 * T1

155 ;d4 : 1/(4J)XH

156 ;d5: = d5=1 (for J=120-250Hz, Delay Scaling Factor)

157 ;d11: delay for disk I/O [30 msec]

158 ;d16: delay for homospoil/gradient recovery

159 ;cnst2: = J(XH)

160 ;cnst4: = Points dropped by AU program

161 ;inf1: 1/SW(X) = 2 * DW(X)

162 ;in0: 1/(2 * SW(X)) = DW(X)

163 ;nd0: 2

164 ;NS: 2 * n

165 ;DS: >= 16

166 ;td1: number of experiments

167 ;FnMODE: echo-antiecho

168 ;cpd2: decoupling according to sequence defined by cpdprg2

169 ;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

170

171 ;use gradient ratio: gp 1 : gp 2

172 ; 80 : 20.1 for C-13

173 ; 80 : 8.1 for N-15

174 ;use gradient ratio: gp 3 : gp 4 : gp 5

175 ; 1 : 4 : 3

176 ;for z-only gradients:

177 ;gpz1: 80%

178 ;gpz2: 20.1% for C-13, 8.1% for N-15

179 ;gpz3: n*1 %

180 ;gpz4: n*4 %

181 ;gpz5: n*3 %

182

183 ;use gradient files:

184 ;gpnam1: SMSQ10.100

185 ;gpnam2: SMSQ10.100

186 ;gpnam3: SMSQ10.100

187 ;gpnam4: SMSQ10.100

188 ;gpnam5: SMSQ10.100

189

190 ;preprocessor-flags-start

191

192 ;$Id: hsqcetgp,v 1.5.2.1 2011/02/24 17:27:48 ber Exp $
Conventional CLIP/CLAP-RESET HSQC experiments have to be modi�ed as given below
to obtain CT versions of the according spectra where all heteronuclear doublet components
are collapsed to singlets irrespective of the 13C multiplicity.

ListingA.34: Pulse program building block for CT-CLIP/CLAP-RESET HSQC experiments
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1 "in0=inf1/2"

2 "in10=inf2/2"

3 "in20=in0/2"

4

5 "DELTA2=in0/2"

6 "DELTA3=in0/2+p16+d16+2*d0"

7 "DELTA4=dw*2*cnst4"

8

9 "d21=d19-DELTA2-DELTA3-6*p2-2*d0-4*d4-DELTA4-p16-d16"

10 "d20=d21/4"

11

12 ;;;;; CT Pure-Shift Pseudo-Dimension ;;;;;

13 d20

14 DELTA2

15 (p2 ph1):f1

16 DELTA3

17 d20

18 p16:gp3

19 d16

20 (p2 ph7):f1

21 d0

22 p16:gp4

23 d16

24 (p1 ph1):f1 ;BIRDr

25 d4*2

26 (center (p2 ph2) (p4 ph1):f2 )

27 d4*2

28 (ralign (p1 ph1) (p4 ph1):f2 )

29 p16:gp5*-1

30 d16 BLKGRAD

31 d0

32 (p2 ph7):f1

33 d20

34 DELTA4

35 (p2 ph1):f1

36 d20

37

38 go=2 ph31

39 d1 mc #0 to 2

40 F1QF( caldel(d0, +in0) & caldel(d20, -in20) )

41 F2EA(calgrad(EA), caldel(d10, +in10) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

42 exit

43

44 ph1=0
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45 ph2=1

46 ph3=0 2

47 ph4=0 0 0 0 2 2 2 2

48 ph5=0 0 2 2

49 ph6=0

50 ph7=2

51 ph8=0 2

52 ph31=0 2 0 2 2 0 2 0

53

54 ;d19: d19 = T (constant time period) = n/J(HH)geminal

55 ;d20: Decremented delay (CT)

56 ;d21: Available AQ for pure-shift FID

The modi�cations of the SP/COB-CLIP/CLAP-RESET HSQC pulse sequences to obtain the
CT experiments described in appendix A.4 are given below.

Listing A.35: Pulse program building block for CT-SP/COB-CLIP/CLAP-RESET HSQC
experiments

1 "in0=inf1/2"

2 "in10=inf2/2"

3 "in20=in0/2"

4

5 "DELTA2=in0/2"

6 "DELTA3=in0/2+p16+d16+2*d0"

7 "DELTA4=dw*2*cnst4"

8

9 "d21=d19-DELTA2-DELTA3-7*p22-2*d0-4*d4-DELTA4-p16-d16"

10 "d20=d21/4"

11

12 ;;;;; CT Pure-Shift Pseudo-Dimension ;;;;;

13 d20

14 DELTA2

15 (p22:sp22 ph1):f1

16 DELTA3

17 d20

18 p16:gp3

19 d16

20 (p22:sp22 ph7):f1

21 d0

22 p16:gp4

23 d16

24 (p22:sp30 ph1):f1 ;BIRDr

25 d4*2

26 (p22:sp22 ph2):f1 (p22:sp23 ph2):f2 ;URx180 BIBOP

27 d4*2

28 (p22:sp30 ph1):f1 (p22:sp23 ph1):f2 ;URx90 BIBOP
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29 p16:gp5*-1

30 d16 BLKGRAD

31 d0

32 (p22:sp22 ph7):f1

33 d20

34 DELTA4

35 (p22:sp22 ph1):f1

36 d20

37 go=2 ph31

38 d1 mc #0 to 2

39 F1QF( caldel(d0, +in0) & caldel(d20, -in20) )

40 F2EA(calgrad(EA), caldel(d10, +in10) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

41 exit

42

43 ph1=0

44 ph2=1

45 ph3=0 2

46 ph4=0 0 0 0 2 2 2 2

47 ph5=0 0 2 2

48 ph6=0

49 ph7=2

50 ph8=0 2

51 ph31=0 2 0 2 2 0 2 0

52

53 ;d19: d19 = T (constant time period) = n/J(HH)geminal

54 ;d20: Decremented delay (CT)

55 ;d21: Available AQ for pure-shift FID
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