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Abstract

High-resolution Nuclear Magnetic Resonance (NMR) spectroscopy is one of the most
important analytical methods in order to study dynamic and structural aspects of molecules.
It is highly complementary to X-ray diffraction and mass spectrometry. Whereas mass
spectrometry excels at the detection of slightest amounts of material, NMR spectroscopy
can provide atomic resolution. The latter also holds for X-ray structures, but via NMR
spectroscopy molecules can be studied in solution, so that dynamic processes can be
observed to a greater extent.

To improve resolution and sensitivity is the main motivation behind NMR method
development. The Fourier transform (FT) technique, advances in the development of
superconducting magnets with ever-increasing field strengths as well as novel probe tech-
nologies and for quite some time also hyperpolarization methods facilitated to lower the
detection threshold to a few parts per million (ppm) down to a single nuclear spin. Higher
static magnetic fields and the ability to spread NMR spectra across additional frequency
dimensions are the main sources of increased resolution. But there is still a demand for the
development of new pulse sequences to be able to measure standard NMR parameters like
chemical shifts and spin couplings but also relaxation phenomena and dynamic processes
with increasing reliability. The same holds for anisotropic structure parameters such as
Residual Dipolar Couplings (RDCs), Residual Quadrupolar Couplings (RQCs) or Residual
Chemical Shift Anisotropy (RCSA), for which molecules have to be partially aligned along a
principal axis with the help of aligning media. In recent years it was shown for a multitude
of examples that this methodology can address problems concerning the conformation,
configuration and constitution of molecules where conventional approaches fail.

The development of radio frequency (RF) pulses, the backbone of every NMR experiment,
is also subject of research. The variety of known pulse shapes is reflected in the extensive
amount of design methods, extending from geometric intuition to numerical optimization
algorithms. Optimal Control Theory (OCT), a gradient-based approach related to the
Euler-Lagrange formalism, is highly suitable to optimize trajectories of dynamic systems
with known equations of motion. For high-resolution NMR spectroscopy, it could be
shown that optimal control algorithms can be used to explore the physical limits of many
spin systems and that even for many thousands of independent optimization variables and
a five-dimensional parameter grid, optimal solutions can be found. The basic mathematical
principles of spin dynamics simulations and optimal control algorithms will be outlined in
chapter 1 of this thesis.

The subject matter of this thesis is the optimization of decoupling experiments. Even if
line splittings and coupling constants can hold valuable structural information, resonance
lines collapsed to singlets lead to improved resolution and increased interpretability of
the spectra. At the same time this can lead to higher signal intensities and therefore
improved sensitivity. The main part of this thesis is organized in two parts. Chapter 2 deals



with heteronuclear decoupling which aims to suppress the interactions of different spin
species, typically 'H and *C. A historical overview over the most common decoupling
schemes serves to introduce mechanisms to obtain spectra as artifact-free as possible and
to derive criteria for optimizations. The proposed algorithms are studied with respect to
the underlying mathematical formalism, generality, efficiency and convergence. The pulse
sequences obtained as a result will be simulated and experimentally verified on a simple
spin system. Two experimentally relevant aspects of decoupling sequences, namely the
signal to artifact (5/A) ratio and the achievable resolution which is limited by restrictions
of the energy deposition on the acquisition time (AQ), are investigated on examples of
small organic molecules.

Chapter 3 deals with homonuclear decoupling, the suppression of couplings amongst
the same spin species, whose methodology is far more complex. It is motivated by the
accurate measurement of anisotropic NMR parameters, RDCs in particular. A heteronu-
clear correlation experiment is proposed where heteronuclear couplings can be measured
without the influence of homonuclear couplings on the signal shape. It shall be determined
on several examples whether the accuracy of the extracted coupling constants can be
improved by homonuclear decoupling. The influence of several spin system parameters
on the sensitivity of the experiments will be characterized and the identified weak spots
will be compensated by optimizations of novel pulse sequence elements.

Given that both topics were subject of research by other groups in parallel to this thesis,
the results obtained here will be discussed in the current framework.
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Zusammenfassung

Die hochauflésende Kernmagnetresonanzspektroskopie, aus dem Englischen Nuclear
Magnetic Resonance (NMR)-Spektroskopie, ist eine der wichtigsten Analysemethoden,
um Dynamik- und Strukturaspekte von Molekiilen zu untersuchen. Die Methode ist in
hohem Mafie komplementar zur Rontgenbeugung und massenspektrometrischen Analysen.
Wihrend die Massenspektrometrie fiir kaum zu tiberbietende Empfindlichkeit bei der
Detektion kleinster Substanzmengen steht, kann mit der NMR-Spektroskopie atomare
Auflésung erzielt werden. Letzteres gilt auch fiir Rontgenstrukturanalysen, jedoch erlaubt
die NMR-Spektroskopie die Untersuchung von Molekiilen in Losung, so dass dynamische
Prozesse in groflerem Umfang messbar sind.

Die Verbesserung von Aufldsung und Empfindlichkeit ist die grundlegende Motivati-
on der NMR-Methodenentwicklung. Die Fouriertransformationstechnik, Fortschritte bei
der Entwicklung supraleitender Magnete immer hoherer Feldstarken sowie neuartiger
Probenkopftechnologien und seit einiger Zeit auch Hyperpolarisationsmethoden trugen
in grolem Maf3e dazu bei, Detektionsschwellen von wenigen ppm bis hin zu einem ein-
zelnen Kernspin zu erreichen. Groflere statische Magnetfelder und die Auffaicherung von
NMR-Spektren entlang zusétzlichen Frequenzachsen gehéren zu den Hauptquellen verbes-
serter Auflosung. Von hohem Interesse ist jedoch nach wie vor die Entwicklung neuartiger
Pulssequenzen, um Standard-NMR-Strukturparameter wie chemische Verschiebungen
und Kopplungen von Spins, aber auch Relaxationsphinome und dynamische Prozesse
immer zuverlassiger messen zu konnen. Dasselbe gilt fiir anisotrope Strukturparameter
wie dipolare oder quadrupolare Restkopplungen und residuale chemische Verschiebungsa-
nisotropie, fiir deren Messung Molekiile mithilfe von Orientierungsmedien partiell entlang
einer Vorzugsachse ausgerichtet werden miissen. In den letzten Jahren konnte anhand
einer Vielzahl von Beispielen gezeigt werden, dass mit dieser Methodik Probleme im Be-
reich der Aufklarung von Konformation, Konfiguration und Konstitution von Molekiilen
adressiert werden kénnen, wo konventionelle Ansitze versagen.

Auch die Entwicklung von Radiofrequenzpulsen, den fundamentalen Bestandteilen aller
NMR-Experimente, ist Gegenstand aktueller Forschung. Die Vielfalt an bekannten Pulsfor-
men steht dabei im Verhéltnis zur umfangreichen Methodenpalette, die von geometrischer
Intuition bis zu numerischen Optimierungsalgorithmen reicht. Die Theorie der optimalen
Kontrolle, ein dem Euler-Lagrange-Formalismus verwandtes Gradientenverfahren, eignet
sich in besonderem Mafle dazu, Trajektorien dynamischer Systeme mit bekannten Bewe-
gungsgleichungen zu optimieren. Im Bereich der hochauflésenden NMR-Spektroskopie
konnte gezeigt werden, dass sich durch auf Kontrolltheorie basierenden Algorithmen die
physikalischen Grenzen vieler Spinsysteme ausloten lassen und selbst fiir viele tausend
unabhéngige Optimierungsvariablen in bis zu finfdimensionalen Parameterraumen opti-
male Losungen gefunden werden kdnnen. Die mathematischen Grundlagen zur Simulation
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der Dynamik von Spinsystemen sowie Algorithmen zur optimalen Kontrolle werden in
Kapitel 1 dieser Arbeit skizziert.

Der Gegenstand dieser Arbeit ist die Optimierung von Entkopplungsexperimenten.
Auch wenn Aufspaltungsmuster und Kopplungen wertvolle Strukturinformationen bergen,
bedeuten zu Singuletts zusammengefallene Resonanzlinien oft eine verbesserte Auflésung
und somit erhohte Interpretierbarkeit der Spektren. Gleichzeitig kann sich die Signalin-
tensitat und somit die Empfindlichkeit steigern lassen. Der Hauptteil dieser Arbeit ist in
zwei Teile gegliedert. Kapitel 2 beschéftigt sich mit heteronuklearer Entkopplung und
somit der Unterdriickung von Wechselwirkungseffekten unterschiedlicher Spinspezies,
typischerweise 'H und *C. Ein historischer Abriss iiber die géingigsten Entkopplungsse-
quenzen dient dazu, methodische Ansétze um moglichst artefaktfreie Spektren zu erhalten,
aufzuzeigen und daraus Kriterien fiir eine Optimierung abzuleiten. Die vorgestellten Al-
gorithmen werden untersucht im Hinblick auf den zugrundeliegenden mathematischen
Formalismus, Allgemeingiiltigkeit, Effizienz und Konvergenzverhalten. Die als Ergebnis
erhaltenen Pulssequenzen werden an einem einfachen Spinsystem simuliert und experi-
mentell getestet. Zwei experimentell relevante Aspekte von Entkopplungssequenzen, das
Signal-zu-Artefakt-Verhéltnis und die zu erreichende Auflésung im Hinblick auf durch
Energieeintrag begrenzte Akquisititonszeiten, werden an Beispielen kleiner organischer
Molekiile untersucht.

Kapitel 3 befasst sich mit homonuklearer Entkopplung, also der Unterdriickung von
Kopplungen innerhalb derselben Spinspezies, deren Methodik wesentlich komplexer ist.
Als Motivation dient hier die genaue Messung von anisotropen NMR-Parametern, genau-
er von dipolaren Restkopplungen. Es wird ein heteronukleares Korrelationsexperiment
vorgeschlagen, um heteronukleare Kopplungen ohne den Einfluss von homonuklearen
Kopplungen auf die Signalform messen zu kénnen. Dabei soll an mehreren Beispielen
untersucht werden, ob die Genauigkeit der extrahierten Kopplungskonstanten durch
homonukleare Entkopplung erhéht werden kann. Der Einfluss diverser Parameter der
Spinsysteme auf die Empfindlichkeit der Experimente wird charakterisiert und identifi-
zierte Schwachstellen werden durch die Optimierung neuartiger Pulssequenzbausteine
ausgeglichen.

Da an beiden Themenkomplexen wahrend der Anfertigung dieser Arbeit durch andere
Arbeitsgruppen parallel geforscht wurde, werden die hier erhaltenen Ergebnisse auch im
Kontext dieser Arbeiten diskutiert.
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1. Theory

Oh what is my theory that it is. [...]
Well, this is what it is - my theory that
I have, that is to say, which is mine, is
mine. [...] This is it. My theory that
belongs to me is as follows. This is how
it goes. The next thing I'm going to say
is my theory. Ready? [...] This theory
goes as follows and begins now. [...]
That is my theory, it is mine, and
belongs to me and I own it, and what it
is too.

Anne Elk (Miss) - Monty Python’s
Flying Circus 31: The All-England
Summarize Proust Competition

1.1. Spin Dynamics

This section deals with the introduction of all necessary concepts and formalisms which are
required for a mathematical treatment of nuclear spins. They will be used to numerically
evaluate NMR pulse sequences and predict spectra as well as to subject spin dynamics to
optimization algorithms. Reference to most of the theory presented here can be found in
comprehensive textbooks!!l. Further references are indicated.

1.1.1. Nuclear Magnetism

The origin of nuclear magnetism is not yet fully understood. Combinations of quarks with
different charges and spin yield the proton and the neutron carrying a positive and neutral
charge respectively. Both have half-integer spin and a magnetic moment. Their spin is a
type of angular momentum that is no result of orbit or collision but an intrinsic property
of the nuclear particles. The same holds for their magnetic moment which is no result
of circulating currents. Nuclei can interact with magnetic fields in the same manner as
electrons. In general the potential energy En,e of an object exposed to a magnetic field B
is given by

Emag = _p * B (1.1)
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with p being the magnetic moment (bold symbols denote vectors). For atomic nuclei their
magnetic moment is linked to the spin angular momentum via

—p=y-1I (1.2)

with I denoting the nuclear spin angular momentum operator and the proportionality
constant y corresponding to the so-called gyromagnetic ratio. The gyromagnetic ratio is
one of the key figures to define the sensitivity of a given nuclear isotope towards an NMR
measurement next to the natural abundance. With a natural abundance of >99.9% and
y of 42.576 MHz T~!, 'H, whose nucleus consists of a single proton, is among the most
sensitive probes for NMR. Only *H has a higher y than 'H but is far less abundant and not a
stable hydrogen isotope. The gyromagnetic ratio can assume positive and negative values.
Most nuclei have y > 0 and a magnetic moment parallel to the angular momentum. For
particles with y < 0, the magnetic moment has the opposite direction to the angular
momentum.

1.1.2. Spin Precession

To understand the behavior of nuclear spins, many analogies to the quantum mechanical
description of rotation and angular momentum may be drawn. For a given quantum
number [ there exist 2/+1 degenerate energy levels E; ,, which are the energy eigenstates
of the system under a given Hamiltonian H and that can be described by wave functions
Ill/l,m>:

H|¢l,m> = El,m|l//l,m> (1-3)

For nuclei with a spin quantum number I = 1/2 such as 'H (and heteronuclei such as *C,
5N, 1F or *P) this leads to two degenerate eigenstates. If a static magnetic field is applied,
this degeneracy is broken. In NMR spectroscopy this magnetic field is aligned along the
z-direction of the laboratory frame and is referred to as By. It induces the so-called Zeeman
interaction which is described by the following Hamiltonian:

Hy = —yBol; (1.4)

The solution of the time-independent Schrodinger equation yields the two eigenstates |a)
and |B) which form the Zeeman eigenbasis with the following energy levels:

Hola) = = hy Bole) (15)
Holp) = 5h yBo 1) (19)
~—

The magnetic energy is minimized if the spin is in the |a) state which means parallel
alignment of the spin and the magnetic field. The less-favored |f) state corresponds to
opposite alignment. The energy difference is given by hwy with w, generally being called
the Larmor frequency wr. Since the population of these quantum states is governed by a
Boltzmann distribution, a higher value of wy, corresponds to a larger population difference
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of the two eigenstates at a given temperature. Therefore the macroscopic magnetization
after cancellation of opposite-aligned magnetic moments, which determines the sensitivity
of an NMR experiment, increases with «r, and ultimately with By. The fact that spins can
not all align parallel to By once it is applied (turn like a compass needle in the earth’s
magnetic field) becomes evident if the time-dependent Schrédinger equation is solved. For
simplicity H is divided by £ to obtain the Hamiltonian H in natural units:

ay)
— =—iH 1.7
22— ity (17)
For time-independent Hamiltonians like the Zeeman term ), this is a first-order differential

equation and easily solved by an exponential:

[¥)(t) = exp(=iH1)[¥)(0) (1.8)

If |{f) corresponds to a Zeeman eigenstate the eigenvalues of the exponential operator can
be obtained by exponentiation of the eigenvalues of the original operator. This can be
done because the exponential of an operator commutes with the operator itself. For H
this yields

exp(-IHG1)IY) = exp(—- DIy (19)

This shows that the Zeeman interaction does not change the spin states but a time-
dependent phase factor is introduced. These phase factors are the result of an induced
motion of the spins. Without the influence of B; the vectors representing the angular
momentum and magnetic moment point in all possible directions. In other words, the
spin polarization axes are isotropically distributed. Once By is applied, the spins start to
move around the field on a precession cone keeping a constant angle. This precession
movement happens due to the spins having an angular momentum as well as magnetic
moment. There are several classical analogues to spin precession. A rotating spinning top
that is given a push will start to precess rather than falling over under the effect of earth’s
gravitational pull. The same holds for a bicycle that will turn a corner rather than falling
over once the cyclist leans to one side (although there are contributions from other forces
in this particular case).

1.1.3. Nuclear Spin Hamiltonian

Typical molecules consist of multiple atoms with several protons, neutrons and electrons
each. Realistically, the full Schrodinger equation of such a system can not be solved. But to
a very good degree of approximation the behavior of the nuclear spins can be decoupled
from all other degrees of freedom of a given molecule since the energy scale is far from
being relevant to the motion of the electrons (the NMR energy scale being in the RF regime).
A time-averaged contribution of electronic properties to the spin dynamics can be taken
into account by modifying Hj. For spin-1/2-nuclei, the interaction with the electrical field
of the surrounding electrons is completely independent of the nucleus’ orientation because
its charge distribution is spherical and therefore can be compared to a point charge. This
means for I = 1/2 there are no electric influences on the nuclear energy levels and all
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internal and external interactions are purely magnetic. The remarkable situation for NMR
is that the spins interact more strongly with externally applied magnetic fields than with
its natural environment. The by far biggest contribution to the Hamiltonian is the Zeeman
interaction caused by By which has been discussed in section 1.1.2.

In order to probe the spins an oscillating transverse magnetic field has to be applied. This
is often referred to as B; and is ideally exactly perpendicular to By to avoid longitudinal
contributions. In order to achieve resonance and tilt the macroscopic magnetization to the
transverse plane where it can be detected, B; has to be modulated with «y, (it may have
an additional phase ¢; ensemble spin dynamics are discussed in section 1.1.4). In contrast
to By, this RF field couples to the transverse components of the spin angular momentum
operator:

H, = —%yBl {COS(O)reft + @)L + sin(wyert + g{))Iy} (1.10)

As will be discussed further below, the actual wr, of individual spins can deviate from y B,.
Given that the B, field according to equation 1.10 can only be matched to a single frequency
wref, the resonance condition is only fulfilled perfectly for wy, = wres. The product in front
of the brackets of equation 1.10 is synonymously being called nutation frequency or RF
amplitude wgg:

1
WRF = —5)/31 (1.11)

The factor 1/2 is reflecting the fact that if an oscillating RF field is represented by the sum
of two fields rotating in opposite directions, only one component can be in resonance with
the spins precessing in only one direction.

Due to the large amplitudes of the By and B; fields, the external magnetic fields dominate
the spin dynamics and certain contributions to internal spin interactions are overcom-
pensated or hidden. This so-called secular approximation often leads to a significant
simplification of Hy. Further, rapid molecular motion leads to the replacement of many
interactions by a time-averaged value, which is often zero in gases or isotropic liquids or
assumes a scalar value. This becomes evident for the chemical shift. Electrons surrounding
the nuclei are also affected by By and the currents that are induced in turn induce fields
that perturb By locally. Nuclear spins interact with these induced fields in the same way
as with By:

Hesfun = —p - 6 - By (1.12)

The so-called chemical shift tensor § is a 3 X 3 matrix taking into account that local fields
are induced in all possible directions in the laboratory frame. Given that local fields can
not be measured from a reference of naked nuclei, the chemical shift has to be defined
with respect to a reference shift §, of a given substance, e.g. TMS for 'H and *C NMR
spectroscopy. Further, it is common to dissect the chemical shift tensor further into an
isotropic contribution djs, and a contribution from Chemical Shift Anisotropy (CSA) Aé.
Thus, equation 1.12 can be modified according to

Hesgan = —p - (80 - 1+ Sigo - 1 + AS) - By. (1.13)
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Given that By is applied along the z-axis A - By at a specific nuclear site yields

ASer NSy ASe\ [0\  ([ASeBo
NSy Ay Ay |- 0 |=[A6,.B|. (1.14)
NS A8y AS) \Bo) \AS..By

The matrix elements AJd;; generally depend on the molecule’s orientation © and contribute
to the Hamiltonian according to

Hesa = —y A8,z (©)Bol, — yAS,:(0)Bol, — yAS,.(©)Bol,. (1.15)

In the secular approximation the first and second term in equation 1.15 are neglected and
Hcs simplifies to
Hes = =y (8o + Biso + A8,2(0)) Bo L. (1.16)

The time-average of element Ad,,(©) amounts to zero in liquids due to the random
molecular motion and the chemical shift is thus dominated by d;s,. It can be used to correct
wr, at each individual nuclear site to take the local chemical surrounding into account and
modify H, according to

Hy = wo(8o + Siso); = 0°L. (1.17)

From the considerations above, it becomes clear that the magnitude of the chemical shift
is dependent on By. In order to unambiguously identify the position of resonance lines
in NMR spectra, the ppm scale was introduced, which is also referenced to the chemical
shift of a reference compound and normalized to By and is then independent of the static
magnetic field. Other than the exact frequency, a ppm value allows a rough conclusion
about chemical moieties. Nevertheless, the ability to express the chemical shift as a
frequency has advantages in the context of formulating control problems (see section 1.2).

The theoretical treatment of NMR experiments greatly benefits from a further simplifica-
tion concerning the By field. To separate the effects of By from all other contributions to H
(and most importantly from H;), the Hamiltonian is transformed into a coordinate system
that is rotating with w.f around the z-axis of the laboratory frame. One of the immediate
benefits is that H; according to equation 1.10 becomes time-independent. Precession in
this rotating frame can be further simplified if wy.r is again subtracted from the local wy, in
equation 1.17 which can be rewritten as

7'{0 = Q)IZ. (118)

This Hamiltonian now only contains a single frequency w which is generally called offset
frequency or resonance offset (with respect to wyer) and can also be denoted as 27v with v
representing a frequency measured in Hz which will be used in the following chapters.
Spins can also mutually interact with each other via the magnetic fields generated
by themselves which is referred to as coupling. The strength of a direct interaction of
magnetic dipoles through space is dependent on the orientation of the spins’ angular
momenta with respect to a unit vector which joins the centers of the nuclei as well as
their distance rji. In the secular approximation the direct dipole-dipole coupling Hpp is
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predominantly determined by the orientation ©ji of the vector connecting the nuclei with
respect to By and simplifies to

Hop(Ojk) = Dj(rjk, Ojk) - (BLilk, — I - Ii) (1.19)

with Dj; being the dipolar coupling constant with a characteristic distance and orientation
dependence given by

hpo  Yive 1
Dy (rie. O) = —% L5 (3005 @)~ 1). (1.20)
JT r].k

The dipolar coupling constant is further defined by the gyromagnetic ratios y; and y; and
the magnetic constant yy (47 - 1077 N - A™?). In a heteronuclear spin system (o, of spin j
and k are significantly different as a result of a different y) even more terms are discarded
to obtain

Hpp(Ojk) = Djk(rik, Ojic) 2L Iy... (1.21)

Since large parts of this thesis deal with heteronuclear two-spin systems, a common
shorthand notation is used for the corresponding bilinear operators. The single-spin
operators for the heteronucleus are denoted S instead of I and the operator 2I;,I;, may be
rewritten as 2I,S,. Equation 1.20 implies the existence of an angle ® where D is effectively
zero. This angle is called the magic angle ®p,gic ~ 54.74° and is of major importance for
solid-state NMR. Since molecules can move freely in isotropic liquids it is easily recognized
that Hpp has to average to zero because all angles © can be realized. To ensure equal
probability of all orientations the factor sin ©j is introduced in the following integral
since a portion of surface area on a sphere is proportional to sin ©x which leads to

/4
f sin @k (3 cos? O —1)d® = 0. (1.22)
0
Even in isotropic liquids spins show couplings which are caused by changes in the
local magnetic field at a nuclear site due to influences of neighboring spins mediated by
the bonding electrons. This indirect dipole-dipole interaction is mostly called J-coupling
and provides insights into molecular bonding topologies. The involvement of chemical
bonds causes the manifestation of these couplings even in the presence of rapid molecular
motion. The full J-coupling Hamiltonian #j is given by

Hy = 2rel; - Jik - I. (1.23)

Just like the chemical shift tensor &, the J-coupling tensor Jji is averaged to a scalar value
Jik (measured in Hz) if the molecules undergo motional averaging. Therefore it is also
called scalar coupling and the secular Hj simplifies to

Hy = 27 Jiedj - I. (1.24)
Similar to Hpp, Hj can be further simplified for heteronuclear spin systems:

7‘6 = 2m Jisl;S, (1.25)
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The same simplification can be applied to homonuclear spin systems when «y, of spin j
and k differ significantly as a result of a large difference in chemical shift (weak coupling
limit).

If nuclei possess I > 1/2 the charge distribution within the nucleus is no longer spherical
which gives rise to a nuclear quadrupole moment Q. Quadrupole moments can interact
with the electric field gradients generated by electrons surrounding the nucleus which
are described by the electric field gradient tensor V(©). The full Hamiltonian of this
interaction is given by

eQ
Ho(©) = ml -V(©) I (1.26)
The magnitude of the quadrupolar coupling is often quite large compared to other interac-
tions so the secular approximation may not be applicable to full extent and higher-order
quadrupolar coupling terms have to be considered in the Hamiltonian. The first-order
contribution is given by

Hy(©) = wQ% (322 - 1(1 + 1)1) (1.27)

with the first-order quadrupolar coupling wg given by

_ 3eQV.-(0)

©0o(®) = 2121 — 1)h

(1.28)

and V,,(©) being the motional average of the secular electric field gradient component
comparable to an isotropic chemical shift with the difference being that V,,(©) is averaged
to zero in liquids and therefore Hg vanishes.

All contributions to H, which have been discarded so far contribute to relaxation.
The remaining local magnetic fields experienced randomly by individual spins drive
the ensemble back to their equilibrium state. To describe the fundamental relaxation
mechanisms, the concepts of populations and coherence have to be introduced which need
a formalism to depict the dynamics of spin ensembles.

1.1.4. Ensemble Dynamics

Single spin-1/2 particles can be described by a wave function that is a superposition of the
two Zeeman eigenstates |a) and | ) with complex superposition coefficients ¢, and cg:

V) = cala) + cpl B) (1.29)

The coeflicients in equation 1.29 have to fulfill the normalization condition for any given
state (/). Any state |{/) can be written as a two-dimensional column vector with the
superposition coefficients as complex components. In this notation the Zeeman eigenstates

can be written as
lery = (é) 1By = ((1)) . (1.30)
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It is now useful to look at the matrix representations of the different angular momentum
operators and their effects on |a) and |f). In analogy to regular angular momentum, shift
operators can be defined for the spin which change the spin quantum number:

I =L +il (1.31)
I =1 -, (1.32)
These operators act on the Zeeman eigenstates according to
Iflay=0 I'|p) = |a) (1.33)
Ilay = 1) IIB) = o. (1.34)

Furthermore, so-called projection or polarization operators can be defined using the unity
matrix and the spin angular momentum operator I,:

1

I=-1+1 (1.35)
1
I# = -k (1.36)

In terms of their action on the |a) and |fB) states, they have the following properties:
I“la) = |a) Play=0 (1.37)
gy = 0 18y = 18) (1.38)

The matrix representations of the aforementioned operators can be obtained by forming the
direct product (or tensor product) of all possible combinations of the Zeeman eigenstates:

" = |a)p| I” = |pXal (1.39)
I = |a)Xal 1 = |B)BI (1.40)

Equating these direct products yields

. (01 _ (oo « (10 (oo
I _(0 o) I _(1 0) I ‘(o 0) Iﬂ_(o 1). (1.41)

From the considerations above the matrix representations of the Cartesian components of
the spin angular momentum operator and the unity matrix can be obtained from linear
combinations of the direct products given above:

L= %(F +17) (1.42)
I, = %(F -I) (1.43)
L= %(1“ - 1% (1.44)
%1 = %(I“ +1P) (1.45)
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The matrix representations of the three angular momentum operators in the Zeeman
eigenbasis yield

1(0 1 1({0 1 11 0
I. = — [, = — L = - . 1.46
In order to describe the ensemble behavior of spins, macroscopic expectation values of the

angular momentum operators need to be evaluated. Expectation values of spins in a given
superposition state are given by

(0) =<YI0lY)
_ * * Oga Oaﬂ Ca
= e o) (Oﬁa Oﬂﬁ) (Cﬂ) (47
= ¢4Co" Oga + €oC Oup + cpca” Opy + cpep”Opp.
Asterisks denote complex conjugates. To be able to describe the state of the system only

by the the quadratic products of the superposition coefficients a matrix can be constructed
according to the direct product

WXy = (C“"’“* "’“cﬂ*) : (1.48)

cpeq” cpeg”
Expectation values of operators O can be obtained from [ ){(¢/| via

(0) = Tr(O"[y ) (1.49)

with the trace operation being the sum of the diagonal elements after a matrix multipli-
cation. To obtain the macroscopic expectation value of Operator O for an ensemble of a
massive number of spins all individual contributions have to be summed up. If the state of
individual spins is denoted as |¢/)(¢/| it is sufficient to use the trace operation to project
the following operator onto O:

—_ CaCa™ CqCp™
= = 1.50
I T (150)
with p being called the spin density operator and presenting the possibility to predict
the outcome of macroscopic observations of quantum systems via the definition of an
ensemble state which has been deduced from spin operators. The shorthand notation of
(O) may be written as

(0y="Tr (07p). (1.51)

The matrix elements given in equation 1.50 are of fundamental importance for NMR
spectroscopy. Their meaning becomes evident when p is rewritten using the shift and
polarization operators:

P = CuCy I% + CﬁCﬁ*I‘B + cqep* I + cpeg T (1.52)

Diagonal elements of p correspond to the populations of the eigenstates. For NMR only
the difference of populations has a physical significance since it gives rise to a macroscopic
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spin polarization along the z-axis. Any state with a population of the |a) states which is
larger than the |f) states indicates polarization along By. If the |f) is higher populated,
the polarization points against the direction of By. The off-diagonal elements are called
coherences between states. In the simplest case of uncoupled spin-1/2-nuclei there can
only exist coherence between the |a) and |f) states. It can be classified by a quantum
number defined by the difference between the I, angular momentum eigenvalues of the
interconnected states with W representing the most important —1 coherence which can
be detected by a quadrature NMR receiver. This quantum number is called coherence order
p. Coherences indicate transverse magnetization components of a given state. Therefore
the spins have to be in superposition states with magnetization vectors partially aligned
in the transverse plane. Otherwise no coherence will be observable.

The density operator not only allows to analyze a given state of a spin ensemble but
also to predict its temporal evolution. This is in large parts facilitated by the fact that the
spin systems in NMR allow for a very simple description of a thermal equilibrium state to
an exceptionally good degree of approximation. Assuming that there is no coherence at
thermal equilibrium the population of the Zeeman eigenstates is governed by a Boltzmann
distribution:

exp(—E;/kgT)

B % exp(~Ei/kyT)

Po.j (1.53)

The ratio of energy of the eigenstates (E;) and the available thermal energy (kgT) can be

rewritten as a Boltzmann factor
_ h)/BO

kgT
and yields a very small number in the case of the NMR energy scale which indicates a very
small population difference. This allows for the so-called high-temperature approximation
where a power series expansion of the exponentials in equation 1.53 may be aborted after
the term that is linear in B. Due to the small values of B the denominator of equation 1.53
equates to two. The density operator at thermal equilibrium is therefore given by

B

(1.54)

_1(1+%B 0

1
=zl 0" 4o %B) = S(1+BL). (1.55)

Given that the unity matrix and the value of B are not manipulated by any interaction
described in section 1.1.3, or synonymously only the net polarization is relevant for an
NMR measurement, it is sufficient to describe py as L.

The equation of motion of the density operator is called the Liouville-von-Neumann
equation and can be derived from the Schrédinger equation via

dp 0

2= (v
_ oy oY (1.56)
=5 W1+ 1) o

= —iHYXY| + il )P IH

9 _ i, pl.

o = (1.57)

10
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It can be solved by expanding the integral of the commutator in equation 1.57 in a Dyson
series!?) which yields

p(t) = U(t)poU' (t) (1.58)
with U(t) denoting the unitary propagator (and U" its adjoint) given by

U(t) = exp (o) —if?‘{(l')d’[ (1.59)
0

where exp ) indicates Dyson’s time-ordered exponential. For time-independent Hamilto-
nians equation 1.59 simplifies to

U(At) = exp(—iHAL). (1.60)

The Liouville-van-Neumann equation is sufficient to describe the trajectory of density
operators under any given Hamiltonian so far. However, it is not suitable to describe
relaxation processes where both coherences need to be destroyed and the equilibrium state
I, has to be repopulated. Although the density operator has analogies to a macroscopic
magnetization vector, unitary transformations according to equation 1.58 can not change
the norm of the matrices representing density operators. This is due to their corresponding
Lie algebras. Hamiltonians and density operators are defined in Hilbert space and the
matrices are members of the s1(N) Lie algebra with N = 2" where n is the number of spins.
The propagators belong to the Lie group SU(N) which is connected to its Lie algebra via
the exponential comparable to the connection of Hamiltonians and propagators. Therefore
unitary transformations are length-preserving upon action on their vector space[B].

The traditional approach to describe macroscopic magnetization is the three-component
magnetization vector whose temporal evolution is governed by the semi-classical Bloch
equations which can be written in matrix form:

P M, 0 -0 WRF SIn ¢ \ (M, M, /T,
En My | = 1) 0 —wgpcos P |[ My | - My /T; (1.61)
t M, —WRF SIN ¢  WRF COS P 0 M, M, -1)/Tq

Bloch equations are not only capable to describe the effects of RF irradiation and free
precession simultaneously, but further encompass relaxation properties using only two
empirically observable and measurable numbers. T; corresponds to the so-called transverse
relaxation time and is connected to an exponential decay rate which limits the time window
where coherence and hence the NMR signal may be observed. It is also referred to as
spin-spin relaxation. T; is the so-called longitudinal relaxation time and is connected to
a rate of exponential build-up of equilibrium polarization along the z-axis and therefore
limits the repetition rate of NMR experiments. The shortcoming of the Bloch equations is
the restriction to a three-dimensional space which is not sufficient to depict the dynamics
of coupled spin systems.

The most general formalism to cover coupled many-spin dynamics in the presence of
relaxation is the Liouville superoperator formalism!*]. Equation 1.57 can be transformed
to yield the Liouville equation

0p _ e e
=== —iflp~1(p - pu) (1.62)

11
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where hats denote superoperators. The relaxation superoperator I' has been introduced
to include all dissipative processes which contribute to T; and T, as well as chemical
exchange and kinetics. Density operators in Liouville space are denoted as 22"-element
vectors and are obtained by stacking the columns of the matrix representations. The
matrix representation of the Hamilton superoperator (and all other angular momentum
superoperators) is obtained via

H=H1-10H" (1.63)

with ® denoting the tensor product in analogy to equation 1.48 and H* being the transpose
of the Hamiltonian. This yields 22" x 22" matrices. Equation 1.62 can easily be solved for
time-independent Hamiltonians excluding relaxation and yields

A

H(AL) = L(AL) fo. (1.64)

L denotes the propagator in Liouville space and is connected to the Hamilton superoperator
by exponentiation:

L(At) = exp(~iHAL) (1.65)

The matrix representation of L in the case of a unitary transformation can be derived from
the corresponding unitary propagator via

L=U®U". (1.66)

All formalisms introduced above can readily be transferred and applied in the rotating
frame. Since this thesis deals with coupled spin systems in small organic molecules with
comparably long relaxation times, calculations are mostly carried out in Hilbert space and
relaxation is neglected. In the case of the very well conditioned spin systems in chapter 2,
a reduced Liouville space is used.

1.1.5. Coupled Spin Dynamics

Section 1.1.3 already introduced Hamiltonians which describe couplings among spins
and make use of products of operators to describe the corresponding interactions. The
density operator formalism can serve as the basis of a depiction of coupled spin dynamics
that reintroduces a part of the simplicity of the magnetization vector. This formalism
is called the product operator formalism and is a common tool to analyze NMR pulse
sequences without too much loss of generality. Microscopically, the state of a pair of
coupled spin-1/2-nuclei can be described by a superposition of four Zeeman product states
according to

[V) = caalaa) + caplaf) + cpalfa) + cppl BB). (1.67)

In analogy to the formalism to derive the operator basis of uncoupled spins, the state |¢/) in
equation 1.67 could be represented as a four-element vector and a 4 X 4 density operator
matrix containing the 16 possible products of superposition coefficients could be formed.
The corresponding density operator may be rewritten comparable to equation 1.52 using
combinations of shift and polarization operators. This indicates the existence of several

12
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possible coherence orders depending on the transitions between eigenstates. A two-spin
system allows for double- (p = =+2), single- (p = =+1) and zero-quantum coherences
(p = 0).

However, the use of the Cartesian components of the spin angular momentum operator
to construct an orthogonal operator basis is more advantageous due to their commutation
properties:

(L, Iy] =il,
L, L] = in (1.68)
[Iya L] =il

The relationship between these operators is called cyclic commutation. If any given three
operators A, B and C cyclically commute, the unitary transformation of operator B under
the effect of operator A is given by the so-called sandwich formula

exp(—iBA)Bexp(i6A) = Bcosf + Csin 0. (1.69)

This transformation can be understood as a rotation of B around an axis A by an angle 0.
In NMR, the angles 6 are always defined by products of frequencies which originate from
Hamiltonians and their period of action on the spin system. The matrix representations of
operators of a two-spin system can be derived from the two sets of single-spin operators
according to

ZIlezk =2- Ilj ® Izk (170)

where each single-spin component may also be %1. The 16 resulting product operators each
have cyclic commutation relationships and the sandwich formula may be used to describe
NMR pulse sequences consisting of a series of RF pulses and delays of free evolution with
only very few assumptions. If product operators are transformed under the action of
several Hamiltonians simultaneously, the corresponding transformations can be applied
consecutively

exp(A + B) = exp(A) - exp(B) if [A,B] =0 (1.71)

holds. Therefore, for periods of free evolution where both the chemical shift and couplings
are active, weak coupling has to be assumed (which is generally the case in heteronuclear
spin systems) since

[Ilz’ 2112122] =0 but [Ilz’ 2leIZx] # 0. (1-72)

RF pulses may have arbitrary flip angles € but must have a pure phase which corresponds
to applying the pulse strictly along the x or y axis. This will lead to one of the terms in
equation 1.10 vanishing which is necessary to apply the sandwich formula due to

[, I,] # 0. (1.73)

Further, RF pulses have to be assumed to be short and strong so that the effects of resonance
offsets can be neglected during the pulse. This assumption is made because of

[L, L] # 0. (1.74)

13
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Product operator transformations are typically written according to

Iy . . ..
I SLEEN I, cos(wrrT) — I sin(wgrr7) excitation of transverse magnetization, (1.75)
I, , .
I, AN I cos(wr) + I, sin(wr) evolution of resonance offset, (1.76)
2I,S, . . .
L KiLIN I, cos(rjt) + 2I,S, sin(mJr) evolution of J-couplings. (1.77)

It immediately follows from equation 1.75 that the flip angles wrg7 equaling 7/2 (90°) and
7 (180°) carry significance for NMR since they correspond to the excitation of transverse
magnetization from equilibrium polarization and population inversion, respectively. In
general, any product operator transformation can be described by a general recipe which
is referred to as the magic formula given by

if [A,B]=0

A
exp(—i0B)Aexp(ifB) = _ . ) (1.78)
AcosO +i[A B]sing if [A B]#0.

1.2. Optimal Control Theory

1.2.1. Definition

OCT can be seen as a generalization of the Euler-Lagrange formalism[®! to find extrema
of constrained functions. In order to find an extremum of a given function f(x,y) with a
constraint given by g(x,y) = c, the Lagrangian A needs to be evaluated:

A(x,y,4) = f(x,y) + A(g(x,y) —¢) (1.79)

The Lagrange multipliers A provide means to couple the constraints g to the function f. To
find the extremum V, , ;A(x,y,A) = 0 has to be fulfilled and the extremal coordinates are
found by solving the system of equations formed by the partial derivatives of equation 1.79.

OCT extends this formalism to the problem of finding optimal trajectories of dynamic
systems!®). The primary objective is to find an optimal set of user-controllable parameters
(controls) which are denoted by the control vector u(t), that yield an optimal trajectory
which is denoted by the state vector x(¢). These optimal controls and trajectories yield an
extremum of a user-defined scalar quality criterion or performance index L(x(t),u(t)). A
set of constraints f such as bounds for the possible values of u may be connected to L via
a vector of Lagrange multipliers A so that a quality criterion J can be defined according
to

J = L(x(t).u()) + AT f(x(t),u(t)). (1.80)
The most apparent constraint for a dynamic system is its equation of motion which largely
defines its trajectory:

0x(1)
5 =S (x(®).u().1) (1.81)
For a continuous system, equation 1.80 can be rewritten as
b
T =hxttp)tp) + [ glx@.u(o. 0t (1.82)

ty
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where g and h are scalar functions and h evaluates the endpoint of the trajectory at time
point t¢. The second term in equation 1.82 corresponds to a running cost and judges the
path how the final state x(¢;) was reached. In examples where only the final state is of
interest the running cost may be dropped from 7. In general, optimality is reached when
VuJ = 0 which corresponds to maximum target fidelity and minimum expenditure of
effort.

1.2.2. Optimal Control of Quantum Systems

This section is in large parts deduced from a comprehensive online lecture series on spin
dynamics by Ilya Kuprov!’]. In order to control the trajectories of quantum systems, the
solution of the Schrédinger equation (1.7) has to be known and the system has to be
governed by a Hamiltonian given by

H = Hy + Hy () (1.83)

where H, denotes the free evolution or drift Hamiltonian and H; corresponds to the
control Hamiltonian given by

Hi(t) = ) ue(H (1.84)
k

with a set of k time-dependent control variables which couple to their corresponding
control operators Hy. A typical problem for optimal control may be to find a set of controls
which generates a unitary propagator that transforms a given state |¢) to a desired target
state |o). An according cost functional may be defined such as

iy

J ={alexp, —if

to

Hy+ Zuku)m] dt |19) + g [e(1)] (1.85)
k

where g denotes constraints on the admissible controls. The problem can be simplified
if the controls are assumed to be discontinuous. In practice, this is often a very suitable
assumption since hardware devices like NMR waveform generators can generate piecewise-
constant output. Similar to equation 1.60, the unitary propagator in equation 1.85 for a
time point ¢; simplifies to

Uj = exp (—i Hoy + Z up (7)) Hie At) (1.86)
k

where At is an equal spacing on the time grid. The cost functional is now dependent on
an effective propagator formed by a product of discrete propagators

J =(olUx---Uj- - Uilyh). (1.87)

The penalty term has been dropped for simplicity. To approach the target as closely as
possible a maximum of J needs to be found with respect to the controls. The evaluation
of control derivatives according to

85 8
du(t;)  Oug(ty)

(o|Un---Uj---Urly) (1.88)
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indicates that all terms in the derivative of this product vanish except

iNJ <
o

Ug---U o, U U
ouc(t) N By

Therefore the main task of optimization schemes is to efficiently obtain propagator deriva-
tives.

¢>. (1.89)

1.2.3. Pulse Classes

One assumption in section 1.1.5 to apply the product operator formalism to pulse sequence
analysis was that RF pulses needed to be strong so that off-resonance effects could be
neglected. In practice, they can not be neglected since RF energy dissipation has to be
limited in order to prevent damage to the sample and the instruments. Therefore, pulses
have to have a finite RF amplitude and length. This yields a rectangular amplitude profile
which is why these pulses are traditionally called rectangular or simply hard pulses. The
limitations of these pulses can easily be recognized from the FT. A rectangular function
with finite width in the time domain will yield a sinc function with finite width in the
frequency domain. In practice, the rotation axis of rectangular pulses is tilted as a function
of the resonance offset and the effective rotation frequency is also altered!). This leads
to decreased transfer efficiencies and is most severe in the case of spin inversion by 180°
pulses where the magnetization has to pass through the transverse plane.

The first attempt to have an error-compensated 180° pulse was the 907180, 907 inversion

pulse (x and y denoting the phases of the individual pulses)[®]. This work prompted the
term composite pulses since a self-compensated rotation was obtained by combining
multiple imperfect rotations. Numerous composite pulses were developed in the following
either by rational design or numerical optimization procedures® 1%} (The significance and
manifold of composite pulses is further elaborated on in chapter 2). Hence, some composite
rotations are susceptible to geometric intuition whereas the mechanism of others is more
intricate. Further, since different pulses may be obtained via different methods, pulses
with different properties are the result. This led to a classification of the rotations which
the corresponding pulses are able to generatel® and which can also be extended to the
formulation of optimal control problems.

« A: Type A composite pulses produce fully compensated rotations over a range of
imperfections. Any given state of a spin system would undergo a rotation according
to the desired ideal propagator. Such pulses will be referred to as universal rotation
(UR) pulses in the following.

« B1: Type B1 composite pulses produce a partially compensated rotation and approach
the ideal propagator up to a given phase factor

+ B2: Type B2 composite pulses yield a fully compensated rotation for a single defined
initial spin state and leaves the final states of other magnetization components
undefined. Such pulses will be referred to as point-to-point (PP) pulses in the
following.

16
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« B3: Type B3 composite pulses act like B2 pulses but can not facilitate a uniform
phase of the final state.

The design of all these types can be subject to an optimization by OCT methods if the
cost functionals are defined accordingly. Type A/UR pulses aim to create an effective
propagator

N
Ug = | |U=Un--- U (1.90)
j=1

that approaches a desired target propagator Ur as closely as possible. Any pulse which
would minimize an error functional given by

1Ur = Uegtll® = 1UglI” = 2R(Ue|Uetr) + | UestI* (1.91)

can be called a UR pulse. Since the first and last term of equation 1.91 are constant, a
minimum is found when the fidelity measure

Our = R(U|Ue) = R Tr (U Uegr) (1.92)

is maximized. In fact, an arbitrary phase factor exp(i¢) is occasionally affordable in
practical NMR applications and a cost functional taking this into account can be formulated
as

g = KUp|Uett)|*. (1.93)

Meanwhile it is recognized that the use of @%R may seem more flexible than ®yr but
it suffers hindered convergencel'> 121, Pulses obtained by an optimization using a high
®yr as their target produce the so-called Broadband Universal Rotation By Optimized
Pulses (BURBOP) family[!!~'8], They have been used in a variety of NMR experiments
where they are mostly applied to refocus transverse magnetization in a very robust manner
to form spin echoes[!*],

In analogy to B2 pulses, if a pulse is only required to transform a given initial magneti-
zation denoted by py into a defined target state pr the fidelity of a PP transformation is
given by

ep = (prlpn) = Tr (pipx) (1.94)

with pn being the initial density operator after a set of N unitary transformations according
to
PN:UN"'Uj'"UlpoUlT"'UjT"'UIE- (1.95)

po and pr are assumed to be Hermitian operators. Optimizations with ®pp as their target
yield for example the Broadband Excitation By Optimized Pulses (BEBOP) and Broadband
Inversion By Optimized Pulses (BIBOP) families!'> 15-18:20-28] ‘They can be used to reliably
excite transverse magnetization or invert the sign of longitudinal magnetization. By
exploiting symmetry principles it is possible to create UR from PP pulses!®”) and further
relations between the pulse families are outlined in [12]. The differences between UR and
PP pulses are illustrated and summarized in figure 1.1.
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Figure 1.1.: llustration of the difference between UR and PP pulses. A UR pulse is defined
by a rotation axis and angle (here 90° around the y-axis) and will therefore transform any
given magnetization components accordingly (A). A PP transformation is defined by a
specific initial and final state (here the orientation of the magnetization is turned from z
to x) and leaves magnetization components orthogonal to the initial state at an undefined
place on the plane orthogonal to the target state. This is depicted by the gray disc (B).
(Graphic taken and modified from [12])

1.2.4. The GRAPE algorithm

Gradient ascent algorithms based on principles of OCT were already proposed in the 1980s
to target the problem of band-selective pulses**~3?]. These studies have been limited to
the steering of the dynamics of uncoupled spin systems governed by the Bloch equations
and approaches applicable to very general spin systems have been sparse for a long a time.
With one exception[®3], gradient-based optimizations relied largely on difference methods
where control derivatives are approximated by finite differences

0P O(u + Au) — d(u)
ou Au ’

(1.96)

Here, in order to obtain gradients for N independent parameters, 2N evaluations of the
performance index ® are necessary. First, it has to be evaluated with the current controls,
and secondly with controls modified by a slight excursion Au.

However, the definition of quality factors in section 1.2.3 allows for a more elegant way
to obtain gradients. According to the definition of inner products (compare equation 1.51)
and the fact that a trace of a product does not change upon cyclic permutation of its factors,
equation 1.92 can be rewritten as

Dyr = %(UJL . U§UF| U U1>. (1.97)

—
Pj Xj
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Xj corresponds to the effective propagator at time t; and P; can be understood as an
effective propagator corresponding to a rotation backwards in time starting from Ur. If
the pulse was optimal, X; and P; would be identical at each point in time. Gradients that
improve ®yp are therefore proportional to the overlap of these propagators and are given

by

0Pur d
Ou(t))  Our(ty) e (1.98)
U '
= %<P] mxj—l>-

Just as in equation 1.89, all terms except a single product vanish and the remaining task
is to find the propagator derivative. These considerations can be transferred to ®pp.
Equation 1.94 can be rewritten as

Dpp = <UJ11 . U;]pFUN e Up| U - - Ul,DOUlT - U]T> (1.99)

A Pj

where p; is the density operator propagated forward from py and A; can be imagined as
the target operator pr propagated backwards in time. Again, the pulse would be optimal,
if pj and A; were identical at each point in time. Hence, gradients that improve ®pp are
proportional to the overlap of these density operators and are given by

oy D
Our(t;)  dux(t))

0
= (A |——Up;1U ).
< ] auk(tj) JpJ 1 Jj >

Evaluating the derivative of the product in equation 1.100 indicates that only propagator
derivatives are non-zero:

(/11'|Pj>
(1.100)

o ou;
pi-1U; +Ujpj-15——= (1.101)

aUk(tj)

The only additional effort compared to ®yr derivatives is therefore to find the derivatives
of UjT. These can be obtained by deriving the product

— Up. UF= "7
dur(t) P T Bulny)

AUU) a1

= =0 1.102
8uk(tj) ﬁuk(tj) ( )
which yields
ou’ oU: ou’ oU;
Ur—te = -2 U &= —— =-U —U. 1.103
T our (1) Oui(tj) / Oui (1) I Ou(ty) ( )

It was shown that with the considerations above, an iterative scheme can be formulated
that only needs two trajectories of the spin system to obtain gradient information for
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———— -

Figure 1.2.: Gradients for all control parameters are obtained by evaluating the overlap
of two trajectories at each point in time. In the case of ®pp, p; is obtained by a forward
propagation of the initial state py. A; corresponds to the backward trajectory of the final
state pp (bold lines). If the pulse sequence facilitates a perfect transfer both trajectories

match (dashed line).

all control parameters independent of the total number N. The concept of forward and
backward propagation is further illustrated in figure 1.2. In order to achieve robustness
towards a range of imperfections, these can be arranged in sets of discrete values. This
way, pulses can be made robust towards a range of resonance offsets Av by choosing a
reasonable number N, of values along this range. Deviations from an ideal B, field to
generate the pulse can be taken into account by choosing a set of Np, , values for the
nominal magnitude By ;¢ to scale wgrg. To fit the shape of equation 1.84, equation 1.11 can
be rewritten as

Hi(t;) = 27 By re1 (uy (£)) I + uy(t))1). (1.104)

Parameter ranges can be molded into any type of quality factor by expanding it to the
total average over a set of local quality factors:
1

q>(V, Bl,rel) = W Z Z (I)(V’ Bl,rel) (1-105)
v 1,rel

v Bl,rel

Gradients can be generalized the same way according to

1 aq)(Va Bl,rel)

— (1.106)
NVNBl’re[ auk(t])

Vuk(tj)q)(V,Bl,rel) =
v Bl,rel

These mean gradients can be used to update the pulse sequence parameters in an iterative
manner. The most general update rule for iteration s is given by

vl =u+e-V,0 (1.107)

with € being an arbitrarily chosen or optimized step length. The considerations above
form the basis of the GRadient Ascent Pulse Engineering (GRAPE) algorithm['3] which in
the simplest guise can be formulated as follows (The recipe is given for ®pp. For ®yR see
the content in brackets):
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Figure 1.3.: Schematic representation of a control sequence u(t;), consisting of N piece-
wise constant steps with a duration of At. Vertical arrows represent the sign and magnitude
of the gradients which indicate in which way individual controls need to change in order
to improve the quality factor .

1. Make a guess for initial controls u.

[\

. Starting from py (unity), compute the forward trajectory p; (Xj) .

w

. Starting from pr (Ug), compute the backward trajectory A; (P)).

4. Evaluate V,® for all possible combinations of parameters and form the mean value.

Ul

. Update the controls according to equation 1.107.

(@)

. Repeat steps 2-5 until convergence.

If € is chosen as one, the algorithm performs the simplest version of steepest descent (or
ascent in this case) with guaranteed (but slow) convergence to the closest local optimum.
More informed ways to derive a step length are given in section 1.2.8. Figure 1.3 illustrates
how the controls are updated using the gradient information.

1.2.5. Optimal tracking

So far, only optimization approaches for pulse sequences were discussed where terms in
the cost functional corresponding to the running cost in equation 1.82 have been discarded
and only the target fidelity has been evaluated. However, for several applications in
NMR, the behavior of spin systems during multi-pulse sequences is of the essence. The
historically most relevant theoretical tool to describe such pulse sequences is coherent
averaging or Average Hamiltonian Theory (AHT) [34], since the focus is on the effective
Hamiltonian during a pulse train. Effective Hamiltonians are also achievable by means of
OCT B3], but this approach does not exploit the full flexibility of the algorithms available.
The general task of finding controls that facilitate a desired output trajectory can be
transferred to spin dynamics, where a pulse sequence is required to steer the evolution of
a density operator along a chosen trajectory. In terms of Optimal Control, this is called
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Figure 1.4.: Schematic representation of the trajectories necessary for a GRAPE tracking
iteration with respect to the chosen time grid. The trajectory is digitized into N detection
points T,, with M time slices of the pulse sequence, digitized into NM steps, between two
subsequent detection points. As shown in equation 1.113, N backward trajectories A;(n)
can be combined to a single trajectory A;. (Graphic taken and modified from [36])

a tracking problem!®l. A generalized version of the GRAPE algorithm, called optimal
tracking, that has been tailored towards this kind of problems, was introduced in the
context of low-power heteronuclear decoupling!® (which is a main part of this thesis, see
chapter 2).

The desired trajectories are no longer defined by a single target state pr but by several
target states spread over the time grid of the pulse sequence. In the most simple case
N discrete way points would be equally distributed over the sequence with an equal
spacing of AT. These points could correspond to data acquisition points of NMR spectra
which are also recorded with an equal spacing called the dwell time (in the case of linear
sampling). Typically, the digitization of a pulse sequence At can be chosen smaller than
the digitization of the detected signal so that the number M = AT/At corresponds to the
number of pulse sequence increments between detection points. The performance of the
sequence is evaluated at each detection point via local quality factors

$n = {pr(Tn) | p(Tn))- (1.108)

If all local quality factors are weighted equally they can be molded into a global quality
factor given by

1 1
Q== On = = (Pr(T) |p(Th))- (1.109)
EPRAS PN

In order to obtain gradients that modify the controls with respect to the improvement of
each of the N local quality factors, N backward trajectories have to be evaluated alongside
one forward trajectory. The propagation scheme and the according time grid is depicted
in figure 1.4. The average gradients are therefore given by
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N

o0 1 O 1 0

dur(ty) ~ N & dur(t) N & ou(t))

(A](n)lp]) (1.110)

It becomes obvious from figure 1.4 that pulse increments at early time points affect all
future detection points but at the same time there is no control that can affect its past.
Therefore several contributions to the sum in equation 1.110 can be dropped and a combined
backward trajectory may be written as

Aj= Zaj(n) (1.111)

n>l

where [ is an integer number given by |j/M] ensuring that control derivatives at each
increment j only affect detection points in the future. Therefore equation 1.110 simplifies
to

9 19
ﬁuk(tj) N 6uk(tj)

(Ajlpj»- (1.112)

Although this is suggested by the equations above and figure 1.4, there is no actual need to
compute N backward trajectories consecutively. It is possible to replace a sum of unitary
propagations by a single propagation of a sum according to

Z UA U =U (Z A,,) Ut (1.113)

which allows for an extremely efficient calculation of A; and retains the benefit of the
GRAPE algorithm that only two full trajectories are necessary to obtain gradients for all
controls. The GRAPE-based tracking algorithm for a desired density operator trajectory
can be summarized as follows:

1. Make a guess for initial controls u.

[\

. Starting from p,, compute the forward trajectory p;.

w

. Starting from pr(Ty), compute the backward trajectory A; according to

UAU;
_ if Lj/M] = LG - 1)/M]
Ajir=1 .
USAU; + pr(Ty)
if j/M] > LG -1)/M]

(1.114)

4. Evaluate V,® for all possible combinations of parameters and form the mean value.

Ul

. Update the controls according to equation 1.107.

(@)}

. Repeat steps 2-5 until convergence.
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1.2.6. Cooperativeness

However compensated a single RF pulse or sequence of pulses may be against experimental
imperfections, each transformation will lead to small amounts of unwanted magnetization
components that will not follow the desired pathway. This will give rise to spectral
artifacts, diminished signal to noise (S/N) ratios and imperfect line shapes. Composite
pulses or shaped pulses (SPs) in general can only compensate their own imperfections
to a certain extent. Nevertheless, if NMR spectra are accumulated using several scans,
unwanted magnetization components can be canceled in the averaged signal by phase
cycling procedures®7]. Typically in repeated experiments, identical pulses are used but
their phases are systematically altered mostly by multiples of 90°. These restrictions on the
phase alteration may be lifted by designing a whole set of pulses which can compensate
each others imperfections using Optimal Control methods. A cycle of such pulses can be
referred to as cooperatively acting or simply COOP pulses*®]. Cooperativeness can be
exploited in multiplel®] and even the same scan[*’] with the focus of this thesis being on
multi-scan experiments.

For a set of Ncoop pulses it is straightforward to define an average density operator

according to
Ncoop

1
= — E (m)
ti) = t:). 1.115
pL) Ncoop — ) ( )

Extensive care has to be taken on the formulation of quality factors so that cooperativeness
can take effect. It has been shown by previous studies using OCT on the subject of
broadband excitation with minimal phase error(?*] that quality factors with quadratic
terms prove advantageous. If magnetization shall be transferred from I, to I, any residual
I, magnetization will be observable as a phase error in the resulting signal. This can be
taken into account via

®=1-(1-(L))*— (I, (1.116)

This quality factor will reach the maximum of ® = 1 when (I;) = 1and(I,) = 0. The
gradient with respect to the controls enforces this via

V,® = 2(1 - <Ix>) - Vully) - 2<Iy> : Vu<Iy>- (1'117)

In contrast to the simple definition of ®pp, the expectation values of the operators in
question (so basically the fidelity of the transformation itself) is fed back to the gradient and
acts as a scaling proportional to the transfer efficiency already reached. This principle can
readily be transferred to cooperativeness. Equation 1.116 needs to be modified according
to

dcoop = 1 — (1 —@)2 - @2. (1.118)

To adjust the controls of individual pulses u™ in order to improve ®coop, the average

density operator needs to be derived with respect to individual controls. The gradients of
any ®pp-type contribution to ®coop are given by

Ncoop

utm SPE[PN) = ’PN > = —V um <PF |p > (1.119)
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Simulation Experiment

-20 20 -20 20
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Figure 1.5.: Simulated and experimental offset profiles for the average excited magneti-
zation (I,) (upper panels) and the average phase error ¢ (lower panels) for an individual
pulse (Ncoop = 1, dotted and dashed line) and sets of COOP pulses with Ncoop = 3 (bold
gray line) and Ncoop = 6 (bold black line). With an increasing number of pulses both the
excitation and phase error homogeneously improve. Pulses were optimized for Av = 40 kHz
using wgrr = 17.5 kHz with a duration of 50 us. (Graphic taken and modified from [39])

If the result of equation 1.119 is plugged into the derivative of equation 1.118 this yields

Vu(m)q)COOP = ((1 - @) * Vu(m)<Ix>(m) - <I_y> . Vu(m)<Iy>(m)) . (1120)

COOP

It becomes clear from equation 1.120 that the average fidelity of the whole set of pulses
is fed back to the gradients of individual pulses. Only this way cooperativeness can take
action. Apart from broadband excitation with minimal phase error, examples for total
elimination of magnetization, band-selective excitation, Inherent Coherence Evolution
optimized Broadband Excitation Resulting in constant phase Gradients (ICEBERG)-type
pulses[?’] and water suppression are given in the seminal work [39]. Excitation profiles
for the former are depicted in figure 1.5. The profiles show increasing homogeneity of the
intensity of the excited magnetization across the given offset range with decreasing phase
errors if Ncoop is increased.

1.2.7. Control derivatives

It has been shown in section 1.2.4 that obtaining propagator derivatives is the key to
the gradients which are the mathematical core of each iteration of the GRAPE algorithm.
Derivatives of matrix exponentials with the shape of equation 1.86 are given by

1
0
—eAHB' :eAfeATBe_ATdT. (1.121)
0x x=0

0
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Applied to the unitary propagator this yields
At

:—inij(r)?{kUj(—T)df. (1.122)

0

o
8uk(tj)

If the step size At is sufficiently short in comparison to the period of the largest frequency
component in the Hamiltonian (At < ||H||™" is fulfilled) the integral in equation 1.122
simplifies to Hj At and the propagator derivative to first order is given by

o _ iIAtH U, (1.123)
() i kUj. .
Plugged into equation 1.98 the control derivative of ®yg to first order is given by
= —R(P;|iAtHX;). (1.124)
Ouy (1) ! !
The control derivative of ®pp can be obtained by applying equation 1.123 to equation 1.101:
OPpp :
Fue (L) =— </1j| iAt [Wk,ij (1.125)

Applying this approximation causes a convergence slowdown close to the optimum since
the approximation error starts to dominate the decreasing gradients. However, equa-
tion 1.123 can be seen as the first term of the power series definition of the exponential
derivativel*!l. Since H and Hj often not commute the power series can be expressed more

conveniently as a commutator series(*? according to
au; At At
=Uj |-iAtH + — [H, Hi ] + — [H, [H,H,
ot ,(z o B0t + B )

A (1.126)
- g [7{’ [7—{’ [7_(, 7‘{k]]] t+-- .

This way propagator derivatives are obtained which approach the accuracy of exact
gradients up to machine precision at the computational cost of the matrix exponential.
Yet a far more elegant way to obtain the exact solution for the integral in equation 1.121
exists. According to the work of van Loan[*’], an augmented matrix can be constructed
which yields a variety of integrals involving the matrix exponential upon exponentiation.
To obtain propagator derivatives to first order with respect to the controls a triangular
matrix has to be evaluated according to the following

(1.127)

1
A B ed 4 f eA"Be~CTdr
exp o cl T 4 )

eC

Propagators and their derivatives are therefore available if the right Hamiltonians are
plugged into the blocks of the augmented matrix(**. From equation 1.127 follows

. au;
—iH At —iq’{kAt Uv] (314—]
= (t)
exp( 0 —i?—(At) (0 [kfjj . (1.128)
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These derivatives are exact to the same degree as the Padé approximation used to compute
the matrix exponential(*}l. True analytical derivatives in the context of NMR pulse se-
quence optimization were only used by Levante et al.?3] who made use of an eigensystem
differentiation proposed by Aizul*3l. Given that exact matrix exponentiation is only possi-
ble for diagonal matrices, H has to be transformed to its eigenbasis by a transformation
matrix V consisting of the eigenvectors |£) according to

VIHV = D. (1.129)

The matrix D now only contains the eigenvalues & on its diagonal. They can be connected
to the eigenvalues of the propagator {; via

G1(j) = exp(—i§At). (1.130)

Although the optimization approach of Levante et al. was centered around the eigenvectors
of a desired average Hamiltonian!®l it was necessary to obtain propagator eigenvalue
derivatives which are related to propagator derivatives via

040G)

6uk(tj

<§U)‘

§z(/)> (1.131)

This can be transferred to the propagator derivative in the eigenbasis of the Hamiltonian.
The general form of derivatives with the shape of equation 1.86 according to [45] is given
in terms of the matrix elements by

(&l B lém) e

i£6 = m (1.132)

0
< é:l ‘a eA+xB

g’"> RIGESE=—
it& + &

if |£) are eigenvectors and & are eigenvalues of operator A and therefore obey

Alay = &lé&). (1.133)

For all calculations and optimizations presented in this thesis which are performed in
Hilbert space, the eigensystem differentiation approach was used.

1.2.8. Update methods

After gradients have been obtained to a desired degree of accuracy, the next crucial step
in the basic GRAPE algorithm presented in section 1.2.4 is the update of the control vector
according to equation 1.107. For this section, a common literature jargon is adopted that
denotes the optimization problems introduced above as minimization. In order to reach a
minimum of a given @ the sign in the update rule needs to be reversed which will give
physically meaningful results if all quality factors are translated from fidelities to error
functionals (1 — ®). Most of the methods discussed here are freely available as minimizers
and are incorporated in the renowned spin dynamics simulation library Spinach!“°]
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As already mentioned, basic steepest descent guarantees monotonic convergence but is
often slow close to the optimum. The step size € can be modified by line search procedures
according to

€; = arg min (@ (u® — eV, P (v*))) . (1.134)
€

There are a variety of line search methods available which mostly differ in the way
tolerances with respect to the change of ® are applied during the search for an optimal
step size. They shall not be further discussed.

Significant effort has been put in attempts to exploit the predicted quadratic convergence
behavior of the Newton-Raphson method*”]. If @ is assumed to be locally quadratic then
the effect of changing controls can be approximated by a second order Taylor expansion
according to

1
O(u + Au) ~ O(u) + V,d(u) ' Au + 5AuTHAu (1.135)

with H being the Hessian matrix. The change of controls that will lead to a minimum is
found by evaluating

Vu®(u + Au) ~ V,&(u) + HAu 20 (1.136)

and yields the optimal Newton step according to
' =u' — H'V, o). (1.137)

Hessians may be difficult to handle depending on the size of the control vector but an
exceptional benefit of the GRAPE algorithm is that the computational effort to obtain
gradients is comparable to the calculation of trajectories. In order to obtain the Hessian of
J according to equation 1.87, V2J needs to be evaluated. The (block-)diagonal elements
of the Hessian are available via

PT < 0%U;
— < —glUuy---U
O (1) 0y (1)) N

T du (1) 0wy (1)

U---- U

¢> (1.138)

and off-diagonal elements (mixed second derivatives) are given by

rT
dux(t)dun(tm) <G

aU; . I
() 77!

o Ouy(tm)
The propagator derivatives in equation 1.138 could be obtained in the eigenbasis of U; or
the Hamiltonian[*’] but a more elegant way based on auxiliary matrices has been proposed
recentlyl*t, Propagators and derivatives to first and second order with respect to the
controls can be obtained via

Un - U Upos -+ Uy

¢>. (1.139)

) ) aU; 1 d*U;
—iHAt —iH At 0 U w2 Jaeoa®)
exp| O —iHAt —-iHAt|=|o U oU; . (1.140)
0 0 —iHAt ' Gulh)
0 0 U;

In the context of other non-linear optimization theories, Hessians are often too expensive
to be calculated explicitly and second order derivatives are approximated from the gradient
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history by so-called quasi-Newton methods. A popular approach is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updatel*”] which has been successfully applied to the GRAPE
algorithm!“?]. Starting from a unity matrix, the Hessian is build up according to

gsg;r (HsAuy) (HsAus)T

HBFSS — .+ - 1.141
s+1 S g’sI‘Aus AusTHsAus ( )

using the gradient history g, given by
g, = Vi, o) — v, 0(u’) (1.142)
and the history of the controls Au; given by

Aug = u*™ —u. (1.143)

To avoid inversion, the Hessian can also be updated via its initial inversel*?]. In cases where

Hessian and gradient storage are not feasible for the entire optimization (or the landscape
of ® has noisy regions) the limited-memory BFGS (L-BFGS) method can be applied where
the history is erased after a given number of iterations*®. Equation 1.135 implies that since
a minimum is sought after which leaves a zero gradient, the Hessian in equation 1.137 has
to be positive definite. Otherwise negative Hessian eigenvalues would invert the search
direction. Modifying the Hessian in a way that the spectral decomposition is maintained
but negative or small eigenvalues are avoided is the subject of so-called regularization
methods, studied recently with regard to the GRAPE algorithm[*°].

A good compromise between the speed of first-order and the convergence properties
of second-order updates is reached by the use of conjugate gradients (CGs) [°). It makes
use of the gradient information from the past iteration to find an optimal step along a
direction amongst a set of search directions which are orthogonal or conjugate to each
other:

' = ' —ed, (1.144)

The step size € is found by line search according to

€s = arg min (O (v’ — ed;)) (1.145)

€

and the search direction is given by
d, = V,o’) + feds-1. (1.146)

The initial search direction d is given by the gradient with respect to the initial controls
and is corrected by a factor f; which is dependent on the implementation of the CG method.
Two important versions are the Fletcher-Reeves method

V.0 u)|?
Bs = L””z (1.147)
|qu)(us_l)|
and the Polak-Ribiére method
(Vu () - V@) V()
B, = (1.148)

|qu)(us_l)|2
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which become identical if the landscape of ® is quadratic. The convergence behavior of
CGs can be compared to steepest descent far away from the optimum and a second-order
method once the optimum is approached without as much slowdown as pure first-order
methods and without the need to compute Hessian information. It should be noted that
all second order or hybrid update methods rely on exact first-order gradients.

All optimizations described in the following chapters of this thesis are carried out using
the Fortran-based OCTOPUSSI software package developed by Sebastian Ehnil>!l. It relies
on memory preallocation according to the CPU cache size for maximum speed of floating
number operations. Although it is equipped with an L-BFGS module, the large number
of variables necessary for the pulse sequences in chapter 2 render the handling of the
according Hessians unfeasible. Hence, CGs offered the apparently best available alternative.
OCTOPUSSI makes use of the Fletcher-Reeves-Polak-Ribiere-minimization (FRPRMN)
routine available for Fortran. For exhaustive details on the organization and features of
OCTOPUSSI, the reader is referred to [51]. All modifications to the existing software that
go beyond merely adding new definitions of quality factors and gradient functions (see
appendix A.3) are mentioned throughout this work.

1.2.9. RF constraints

Looking at the way different flavors of the GRAPE algorithm are formulated in sections 1.2.4
and 1.2.5, one could assume that the controls may be updated to whatever extent to reach
convergence. Depending on the problem at hand, this could lead to an infinite amount of
RF energy being dissipated into the system. But the reality of running NMR experiments
is far from it. The peak RF loading and the ratio of irradiation time and periods without
irradiation (duty-cycle) is regulated to prevent damage from the coils in the probe and
undue heating of the sample. Most importantly, if measurements are performed on living
tissue such as humans in an Magnetic Resonance Imaging (MRI) scanner, limits of RF
exposure are given by law.

Constraints on the amount of RF dissipation can be applied in different ways. They may
act as penalties on the quality factor(!® %] (see equation 1.85) or may be applied as bounds
at each iteration of the algorithm after the control update. The latter is straightforward
to implement and does not hinder convergence in most cases. The most immediate
restriction corresponds to a local amplitude limit which applies to each increment of the
pulse sequence. wgr according to equation 1.11 is connected to the Cartesian components
(real and imaginary parts, see equation 1.104) of the pulse shape via

wrr(tj)/2m = ugp(tj) = 1/ufc(tj) + uﬁ(tj). (1.149)

A maximum amplitude 4% can be enforced as a bound!?! ??] via
max
up(ty) = we(ty) - —= if ugp(£;) > Ul (1.150)
urr(t;)

which will leave the phase of the increment unaltered. Equation 1.150 can also be used to

explicitly demand that up™ is used at each increment in order to obtain constant amplitude
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phase-modulated pulses(*. A more flexible approach is to limit the overall power envelope
given by
N
1
P= —fug\F(t)dt (1.151)
N
ty
which simplifies to a sum for piece-wise constant output according to
;&
2
p= NZuRF(tj). (1.152)

J

Pulses with limited RF power can be compared to constant amplitude pulses using VP as
a measure which corresponds to the often used By rys. Power limits Pp,x can be enforced
as a bound via

Pmax

P

Using limited RF power over limited RF amplitude can lead to increased fidelity using the
same pulse length, since amplitude modulation introduces further degrees of freedom!?”).
Power limits were added as a feature to OCTOPUSSI during the course of this thesis. To
have a measure of RF exposure which is independent of time, local and overall amplitudes,
the total energy of pulses can be compared. Devoid all natural constants, the energy
transferred from the probe coil to the sample is given by

ur(ty) — u(t)) - if P > Ppax. (1.153)

Egrr ~ P - tn. (1.154)

It can be used as a bound®? in the same way as power and amplitude according to

max

ur(t;) — ug(t)) - ER—; if Egp > EDeX, (1.155)

Both power and energy limits leave the phase of the increment unaltered. Energy limits
were not used in this thesis, but equation 1.154 was employed as a measure to see which
combinations of By rms and AQs are feasible for experiments described in chapter 2.

1.2.10. Pulse shape analysis

The pulse shapes obtained by means of OCT can be regarded as extremely complex
composite pulses. However, the trajectories describing 2"-dimensional spin dynamics
are often complicated and optimal pulses contain a seemingly arbitrary succession of
flip angles due to the intricate phase and amplitude modulations which leave the user to
interpret an almost noise-like pulse shape. Distinguished authors have drawn comparisons
to sheep herding. Trying to understand the mode of action of optimal control pulses
corresponded to watching a dog running around randomly barking and biting at the sheep
whereas the sheep are steered along a trajectory rather orderly. In terms of spin dynamics
the sheep may be analyzed by using projection superoperators ng to deconstruct the state
space € of a given density operator according to a desired criterion®3! according to

Pk = “ﬁﬂk |P>||- (1.156)
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Figure 1.6.: The seemingly noise waveforms applied to 'H, ">C and °N (left panel, control
amplitudes given as fractions of a nominal power level) steer magnetization from the H,
proton to the carbonyl carbon Cg of the same residue in a protein backbone. Analyzing the
trajectories using the methods described in [53] with respect to correlation orders reveals
that single-spin order is first depleted and via largely two-spin order and for a short period
also three-spin order is regenerated at last (middle panel). Correlation orders higher than
three are hardly populated. Focusing on single-spin orders (right panel) reveals a smooth
transition from H, to Cp via C,. (Graphic taken and modified from [53])

The portion py is the part of the spin system that belongs to the subspace selected by the
projection operation. Several modes of projection are proposed in [53], such as coherence
order (see sections 1.1.4 and 1.1.5) or correlation order. Correlation orders can be obtained
evaluating the number of non-unit spin operators contributing to a given state. Further, the
single-spin correlation and coherence order is of particular interest since it can be further
deconstructed to identify contributions of individual spins. An illustrative example for a
noisy pulse shape creating smooth dynamics is given in figure 1.6 where magnetization is
moved along a protein backbone. Note that correlation orders above three are avoided
almost throughout the trajectory.

However, even pulses acting on an isolated single-spin system where trajectories can
be followed on a Bloch sphere may be difficult to interpret. To solve this problem, the
perspective of the dog has to be assumed. An NMR pulse shape s in the time domain
is usually represented in terms of its real and imaginary parts (Cartesian components)
according to

s(t) = ux(t) + iuy(t) (1.157)

or by the temporal amplitude and phase:
s(t) = ugp(t)e?® (1.158)

It can readily be converted to the frequency domain via the FT where the shape S(v) is
given by spectral amplitude and phase

S(v) = ugp(v)e ™. (1.159)
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In many cases the means of representation given above are not particularly informative
given that they do not correlate irradiation time and frequency. One approach would be
to evaluate the temporal frequency given by

9¢(t)
v(t) = —(—— 1.160
(=22 (1.160)
but here the information about the intensity is lost. To accommodate these shortcomings,
the short-time Fourier transform (STFT) or spectrogram representation has been applied
to the analysis of optimal control pulses recentlyl®. The spectrogram provides a joint

time-frequency representation and is given by

S(t,v) = fs(r)g(t —7)e 2V (1.161)

with ¢g(t) being a gate function to define the section of the pulse shape under analysis
at a given time. To suppress the pulse outside the window [t — At, t + At], a normalized
Gaussian window function can be used according to

(1.162)
0 else

2
1,737
<e 20 for 7 € [—At, At
g(r) = {N [ ]
where the variance o is proportional to the full width at half maximum (FWHM) of the
Gaussian. In order to analyze at which time the pulse deposits energy at a given frequency,
the spectrogram amplitude

ugp(t,v) = \/9&2 [S(t,v)] + S2[S(E,v)] (1.163)

needs to be evaluated. Information about the time and frequency-dependent phases may
also be extracted but is of minor interest for this thesis. The insights and drawbacks of
different pulse sequence representations is illustrated in figure 1.7 choosing a BIBOP shape
as an example which was developed as part of a bigger study[?’l. Whereas the control
amplitudes are not informative, the phase and amplitude representation reveal a constant
amplitude shape with a smoothly swept phase. The irradiation frequency is also swept
with two large swings at the beginning and end. Looking at the spectrogram however, it
can be recognized that the majority of ugr is deposited in the optimized region and the
swings correspond to a small leakage into large frequencies due to the pulses’ rectangular
amplitude profile.
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Figure 1.7.: Comparison of temporal and joint time-frequency representations of an
example BIBOP shapel??: The Cartesian control amplitudes (A and B) do not reveal the
pulse’s mode of action. Converting the controls to phase (C) and amplitude (D) leads to the
recognition of a smooth phase modulation with constant ugr. The phase derivative with
respect to time (E) hints at a smooth frequency sweep with sharp swings towards high
frequencies at the extremities of the shape. However, the spectrogram (F) unmasks this
observation as artifacts of the rectangular amplitude profile. Parameters of the spectrogram
were chosen according to the BIBOP example given in [54].
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BROCODE
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2.1. Introduction

2.1.1. Historical concepts

In a heteronuclear spin system where resonance frequencies are well-separated, the evolu-
tion of the density operator under the effect of J-coupling is governed by the Hamiltonian
according to equation 1.25. If spin I is probed in an NMR experiment and is connected to
spin S via a chemical bond, the Hamiltonian for spin I is given by

H; = 2nvl, + 7l Jis2L,S, (2.1)

with 11 being the resonance offset of I and ! Jis corresponding to the one-bond coupling
constant between I and S, which is simply called J in the following. With equation 1.72 in
mind, the real expectation value of the detectable I” coherence is given by

RA{I) (t) = cos (2mvit) cos (r]t)
= coS (27‘[ [VI + g] t) 2.2)

so that the resonance line at v; will be split by the J-coupling. The wealth of information
contained in these splittings will be elaborated on in chapter 3. Already in the early days of
NMR spectroscopy it was recognized that these splittings may prove to be a disadvantage
in terms of sensitivity and interpretability of spectra. This becomes evident for more dilute
nuclei like 1*C with its usually large number of couplings to the abundant 'H nuclei. The
removal of these couplings by a second RF field (decoupling) was proposed by Bloch!**],
later proved experimentally®®) and became known as double resonancel®). If spin I is
observed and assumed to be on resonance while spin S is continuously irradiated with a
constant amplitude and constant phase RF field, the effective Hamiltonian is given by

Hy.,. = mJe2LS,. (2.3)
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Figure 2.1.: Simulated decoupling profile for a heteronuclear two-spin system under CW
irradiation with ugp = 2 kHz. The coupling of J = 140 Hz is reasonably suppressed only
close to vs = 0 and is otherwise scaled according to equation 2.5. Ten contours equally
spaced between 5 and 100% of the maximum achievable intensity were plotted.

The effective J-coupling J.¢ is given by

Jett = AcwJ (2.4)

where the original J-coupling is scaled by a characteristic factor for continuous-wave (CW)
irradiation as a function of the spin S resonance offset vs and ugg:

Vs

’ 2 2
VS +uRF

Apart from offsets very close to resonance this only corresponds to a scaling since still over
70% of the total coupling are observable for equal values of vs and ugg. The characteristic
offset pattern of CW decoupling is depicted in figure 2.1. Decoupling is only achieved for
S offsets close to resonance.

If not otherwise mentioned the following simulation parameters were used for the
generation of the decoupling profiles in the following sections. The coupling constant was
set to J = 140 Hz as a typical value for ! Joy in aliphatic CH,, groups of organic molecules.
Theoretical spin I spectra were sampled for 128 ms with a real dwell time of 100 us. The
resulting free induction decays (FIDs) were damped according to an assumed transverse
relaxation rate corresponding to a line width of 6 Hz and apodized using a cosine-squared
window function. Time-domain data was zero-filled to 8192 points prior to FT and spectra
were simulated using 101 offsets distributed equally over the given range.

The limited bandwidth of CW decoupling severely hampered '*C NMR spectroscopy
and it was realized that the RF field used for decoupling has to be modulated. Several

Acw = (2.5)
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modulation schemes have been suggested, starting with single-freqency modulation!®®,

pseudorandom phase modulation (noise decoupling)®®), square-wave phase modulation[®’]
and chirp frequency modulation[®!). However, non of these methods can be considered
broadband decoupling by today’s standards.

2.1.2. Composite Pulse Decoupling

A major leap towards broadband decoupling was taken by replacing continuous RF irradi-
ation by a repeated set of 180° pulses. Decoupling is achieved when the pulses on S are
applied at the midpoints between acquisition points of the I spectrum since it will lead to
a refocusing of the coupling evolution:

rJ2I,S,t .
I, ——— I, cos(r]r) + 2I,S, sin(r ] 1)

Sx 2L, S,
2, I cos(nJt) — 2I,S, sin(n ] T) RkiN L, (2.6)

Scaling can be achieved in a similar manner by a slight temporal displacement of the
pulses®?. The method is mostly limited by the inability to place reasonably short 180°
pulses in between acquisition points that correspond to common spectral widths especially
for 1*C. An inversion profile for an ordinary rectangular 180° pulse is depicted in figure 2.2.
It can only provide reasonable inversion efficiency close to resonance and the nominal
By value. The 907180,90; composite pulse was already mentioned in section 1.2.3. It is
obtained by splitting a conventional 180° pulse in the middle and inserting a correction
180° pulse phase-shifted by 90° [!]. The inversion profile is given in figure 2.3. Close
to resonance, it excels at B; compensation, but at the nominal value for B; the offset
profile within figure 2.3 is rather wavy. Given that it gets more homogeneous at higher
RF amplitudes, the 903240,907 composite pulse was proposed, where the length of the

correction pulse is simply extended!®3]. The corresponding inversion profile is shown in
figure 2.4. This modified composite pulse offers a more homogeneous inversion profile for
the nominal B; value without sacrificing too much robustness against By variations.

The use of Composite Pulse Decoupling (CPD) instead of spin flip decoupling using
uncompensated pulses indicated that refocusing the coupling evolution at each detection
point is not necessary for efficient decoupling as long as the magnetization is manipulated
rapidly with respect to the magnitude of the coupling constant. Moreover, supercycles
were developed to compensate imperfections of individual inversion elements. They can be
obtained by recursive expansion with the MLEV series being the pioneering example[64-66],
Theoretical justification for this approach was delivered retrospectively using both AHT [34]
and a more explicit spin rotation operator-based treatment(®” %], Practical implementations
of MLEV supercycles are given in table 2.1. The effects of more and more compensated
cycles is illustrated in figure 2.5 using the 903180,907 composite pulse. Using no or a
primitive supercycle leads to a more or less direct translation of the pulses’ wavy offset
profile into the decoupling profile whereas higher expansions provide a homogeneous and
more broadband performance. Although the 905240, 903 composite pulse was suggested as

an inversion element in the seminal work(®*! the effect of its more homogeneous inversion
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Figure 2.2.: Simulated inversion profile of a rectangular 180° pulse. Only values of (I,) < 0

are plotted which correspond to flip angles > 90°. Optimal inversion is only facilitated for
the slightest deviations from exact resonance and the nominal B;.
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Figure 2.3.: Simulated inversion profile of a 903180,903 composite pulse. It allows for
large deviations from the nominal B; value close to resonance and offers rudimentary
compensation against resonance offset.
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Figure 2.4.: Simulated inversion profile of a 903240;905 composite pulse. The offset
profile is more homogeneous at the nominal B; value and compensation against B; inho-
mogeneities is maintained in particular for lower values.

Supercycle Pulse sequence
none R =903180,90 or 903240, 905
MLEV-4 RRRR

MLEV-16 RRRR RRRR RRRR RRRR

MLEV-64 RRRR RRRR RRRR RRRR
RRRR RRRR RRRR RRRR
RRRR RRRR RRRR RRRR
RRRR RRRR RRRR RRRR

Table 2.1.: Practical implementations of MLEV supercycles for CPD using different com-
posite pulses as inversion element R. Bars indicate phase reversal.
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Figure 2.5.: Simulated decoupling profiles for MLEV cycles using the 9031805903 compos-
ite pulse: Using only the pulse repeatedly or in a simple cycle leads to a wavy decoupling
profile comparable to the inversion profile in figure 2.3. When more compensated super-
cycles with more steps are used, a homogeneous decoupling profile can be obtained. Only
peak intensities above 50% are plotted to indicate collapsed doublets.
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Figure 2.6.: Comparison of simulated MLEV-64 decoupling profiles using the 907240, 903
and 907,180,903 composite pulses: Since the irregular offset profile of the 903180,90 pulse
is overcompensated by the MLEV-64 supercycle, it offers an about 40% broader decoupling
range compared to the 903240,90% pulse using the same cycle.

profile (see figure 2.4) compared to the 903180903 pulse is clearly overcompensated by
the error correction capabilities of the supercycle as depicted in figure 2.6.

Another very important composite pulse tailored towards a broad inversion profile is the
902180°,.2702 or simply 123 pulse, giving rise to the Wideband, Alternating-phase, Low-
power Technique for Zero-residual-splitting (WALTZ) decoupling scheme. The numbers
represent the multiples of 90° pulses and the bar denotes a phase reversal(®®!. Figure 2.7
shows the inversion profile of the 123 pulse, which outperforms its competitors presented
so far. Several modifications to expand the WALTZ sequence have been proposed. Beyond
phase reversal and recursive expansion, individual 90° pulses can be shifted to compensate
net rotation errors of individual MLEV-4 portions of a supercyclel®®]. More recently, adding
further 90° pulses to induce a corresponding net rotation of 90° after each repetition of the
cycle has been proposed along with further expansions[’’). The known cycles are given in
table 2.2.

Important improvements could be achieved by pulse sequence design via numerical
optimizations with the Globally optimized Alternating-phase Rectangular Pulses (GARP)
sequence being the first seminal example(’!]. The basic inversion element is given by

R =30.555.2 257.8 268.3 69.3 62.2 85.0 91.8 134.5 256.1 66.4 45.9 25.5
72.7 119.5 138.2 258.4 64.9 70.9 77.2 98.2 133.6 255.9 65.6 53.4

(2.7)

with all numbers representing flip angles around the x-axis and bars denoting phase
reversal. Expanded in a simple MLEV-4 cycle this yields the GARP-1 scheme but most
commonly the GARP-4 implementation is used which has a second MLEV-4 expansion.
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Figure 2.7.: Simulated inversion profile of a 907180°,.2705 composite pulse. A better com-
promise between offset and B; compensation is achieved compared to previous composite
pulses.

Supercycle Pulse sequence Basic element
WALTZ-4 RRRR R =123
WALTZ-16 0000 Q = 342312423
WALTZ-17 Q0Q0Q 90°

WALTZ-64 | Q000 Q000 Q0QQ Q0QQ

WALTZ-65 | Q000 0QQQ 00QQ Q0QQ 903

Table 2.2.: Practical implementations of WALTZ supercycles for CPD using different
expansions of the 123 composite pulse as inversion element. Numbers between one and
four represent multiples of 90° pulses and bars indicate phase reversal.

42



2.1. Introduction

Pulse sequence Flip angles
DIPSI-1 365 295 65 305 350
DIPSI-2 320 410 290 285 30 245 375 265 370
DIPSI-3 245 395 250 275 30 230 360 245 370
340 350 260 270 30 225 365 255 395

Table 2.3.: Different DIPSI pulse sequences for CPD. All numbers represent flip angles
around the x-axis and bars denote phase reversal. The pulse sequences are typically
expanded in a RRRR supercycle.

Further, the Decoupling In the Presence of Scalar Interactions (DIPSI) sequences have
been proposed for better quality decoupling in more complex spin system where scalar
couplings among protons are involved(’?. The three known sequences are given in
table 2.3 but due to their reduced decoupling bandwidth, the DIPSI sequences only gained
significance as isotropic mixing sequences for TOtal Correlation SpectroscopY (TOCSY)-
related experiments[”3]. A bandwidth comparison for the most common implementations
of relevant CPD schemes is given in figure 2.8. The reason that for high-resolution NMR
of 13C WALTZ is chosen over GARP is the sufficient decoupling bandwidth for 'H on the
one hand. On the other hand, extremely low residual splittings are necessary since very
small line widths are achievable in *C NMR, where WALTZ is superior to GARP (711,

Moreover, a central issue are the cycling sidebands. The theoretical treatment of de-
coupling assumes synchronous sampling of the data points with respect to the pulse
sequencel®]. This is impractical due to the longer supercycles or sometimes long basic
inversion elements conflicting with the requirement of fast sampling for large spectral
widths. Therefore sampling has to occur also during an inversion element where periods
of effectively free precession may introduce a modulation of the signal depending on the
magnitude of the J-coupling!’4). These artifacts appear symmetrically distributed around
the decoupled center peak at frequencies which are multiples of the inverse cycle time.
Example sideband profiles for the effective regions of both GARP-4 and WALTZ-65 are
given in figure 2.9 where an expanded vertical scale of the spectra from figure 2.8 reveals
an abundance of cycling or decoupling sidebands. In general, WALTZ-65 decoupling yields
lower sideband amplitudes which is of particular interest for quantitative NMR. The in-
creased bandwidth of GARP-4 on the other hand is exploited in 'H-detected heteronuclear
correlation experiments like Heteronuclear Single-Quantum Correlation (HSQC) [°] and
Heteronuclear Multiple-Quantum Correlation (HMQC) [78] given that heteronuclei have
larger chemical shift ranges than 'H. Since decoupling schemes with a variety of origins
are discussed in this thesis, these artifacts will be generally referred to as sidebands from
here on. The origin of the signal modulation leading to sidebands is easily recognized
looking at the spectrogram representation of the decoupling sequence. This is illustrated
in figure 2.10 for the basic GARP inversion element of equation 2.7. Phase modulation in
general allows for RF dissipation at different offset frequencies at different points during
the pulse sequence which in turn leads to periods of effectively free precession for spins
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Figure 2.8.: Simulated decoupling profiles for the most common CPD schemes. WALTZ-65
presents the best compromise between the effective bandwidth and quality of decoupling
for 3C-detected heteronuclear NMR whereas GARP is mostly used for 'H-detected exper-
iments.

at any given frequency. These short periods lead to an unwanted signal modulation that is
the cause of the spurious sidebands in the resulting spectra.

Some more decoupling schemes based on composite pulses have been proposed such
as frequency-switched pulsesl’” 78] or the Spin decoupling employing Ultra-broadband-
inversion sequences generated via Simulated ANnealing (SUSAN) sequence”]. But either
they could not provide sideband levels as low as GARP-4 or were outperformed in terms
of bandwidth by the pulses discussed in section 2.1.3.
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Figure 2.9.: Simulated sideband profiles for WALTZ-65 and GARP-4. Theoretical spectra
for the offsets where decoupled peak intensities exceed 90% of the theoretical maximum are
overlaid and expanded to 2% of the maximum achievable center peak intensity. Since the
sidebands are symmetrically distributed around the center peak, only positive frequencies

are plotted.
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Figure 2.10.: Spectrogram representation of the GARP inversion element. Parameters of
the spectrogram were chosen according to the GARP-4 example given in [54] with a 15%
baseline of zeros added at the beginning and end of the pulse sequence.
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2.1.3. Shaped Pulse Decoupling

With respect to the development of CPD techniques, it was realized rather early that
adiabatic fast passage should be the most robust way to invert spins!®® #). Spin inversion
can be called adiabatic if the effective field Beg caused by B; and the resonance offset v is
tilted slow enough to fulfill the adiabatic condition given by

00

B. 2.8
a7 | < Bet (2.8)

where 0 is the angle between B and the x-axis. This is mostly achieved by a frequency
sweep which will lead to a consecutive inversion of the spins at a given frequency at a given
point in time during the sweep. Mostly in parallel, competing researchers have proposed
different implementations of adiabatic sweeps to be used as the inversion element for
broadband decoupling. The Hyperbolic Secant (HS) pulse, originally designed for selective
inversion!®-#4 led to the Sech/Tanh Universal Decoupling (STUD) techniquel®> %], Its
tangential frequency sweep is given by

u(t) = % tanh 5.3 (? - 1) (2.9)

where Av is the swept bandwidth, T the pulse length and the factor 5.3 ensures RF trunca-
tion at the 1% level at the extremities of the sweep. Frequency sweeps are typically realized
by phase-modulation which can be obtained by integrating the frequency modulation
yielding
3607 Av 2t
ST o 55 (%))
o(t) e 2 n(cosh 5.3 T (2.10)

The amplitude envelope is given by a HS function according to
max 2t
urp(t) = ugp - - sech 5.3 (? — 1) . (2.11)

A linear frequency sweep would be the most simple implementation and is represented
by the (smoothed) frequency-chirped pulses!®”- 8] and the method is simply referred to
as CHIRP decoupling!® *°]. Another widely-used shape for adiabatic decoupling using a
linear frequency sweep which simply differs in the amplitude envelope are the Wideband,
Uniform Rate, and Smooth Truncation (WURST) pulses(® °21. Whereas with the CHIRP
pulses the first quarter of a sine wave is used to apodize a given percentage of the shape,
the WURST envelope is given by

ure (1) = uf®™ (1~ [sin (FD)]") (212)

where —7/2 < ft < 7/2 and the power index n indicates the steepness of the RF cutoff
and can be appended to the acronym, like in WURST-40. The phase-modulation for both
CHIRP and WURST is obtained by integration of a linear function and therefore resembles
a parabolic profile.

The relationship between swept bandwidth, inversion bandwidth and effective decou-
pling bandwidth as well as the effects of RF power levels and pulse lengths on the sideband
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amplitudes has been studied extensively(**~) and a fair comparison is cumbersome. There

is no unifying set of parameters that could compare all three different shapes but some
have proven reliable such as the adiabaticity factor Q given by

Q= B _ (e +°)°
©100/0t]  ugp (Av/0t) — v (Augp/Ot)

(2.13)

which should be larger than unity and is recommended as fivel”!). The R-factor given by
Av T can also be evaluated and should not drop below 20. Whereas Q may serve as an
indicator how much energy is necessary for an efficient sweep, the R-factor becomes low
if the sweep is too long to be truly adiabatic. Analysis of the different sweeping modes
reveals a constant adiabaticity throughout the shape for the HS, but for linear sweeps Q
has a crucial minimum at v = 0. Evaluating equation 2.13 at v = 0 yields

2

_ Ugg
Q= 9y, 01] (2.14)

which led to the proposal of optimized frequency sweeps to obtain constant-adiabaticity
WURST (caWURST) pulses with a desired value for Q by integrating the amplitude
profile®). For the recommended caWURST-2 shape this corresponds to

(umax)z (umax)z
() = ~ 2 f cos*(Bt)dt = L (12Bt + 8sin(2Bt) + sin(4Bt)).  (2.15)
Q 32pQ

A comparison of the different shapes and sweeping modes is given in figure 2.11. As
the sweeps get increasingly non-linear, the more the frequencies are effectively swept
at the center of the shape. In combination with the increased uy @ when the pulses go
through resonance, more rectangular inversion profiles are obtained going from CHIRP
over caWURST-2 to HS.

Adiabatic decoupling benefited from the development of new iterative methods to obtain
phase cycles®* 1], The most common phase cycle is an MLEV-4 expansion of the 5-step
phase cycle which was first presented for frequency-switched composite pulses!’’] and is
generally referred to as M4P5. These phase cycles follow a general recipe which is depicted
in table 2.4. Different values for d are commonly used for the different phase cycles which
are given in the third column of table 2.4. Decoupling profiles for the shapes depicted in
figure 2.11 using a M4P5 cycle are shown in figure 2.12. The offsets used in the simulations
were equally distributed over 110% of the sweep-width of the corresponding shapes. More
non-linear sweeps allow for an increased translation of sweep-width into decoupling
bandwidth (left panels of figure 2.12) which was obtained by evaluating the offset range
where the peak intensities surpass 90% of the theoretical maximum. This way, relative
decoupling bandwidths of 79.2% for a 20%-smoothed CHIRP, 94.6% for caWURST-2 and
96.8% for STUD were extracted for the given parameters. For an analysis of the sidebands,
the frequency scale of the spin I spectrum was converted to multiples of the inverse pulse
length T~!. The sideband profiles (right panels of figure 2.12) show the most abundant
and spurious sidebands at 1/T and 1/2T. Going from CHIRP over caWURST-2 to STUD,
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Figure 2.11.: Comparison of different adiabatic pulse shapes and sweeping modes. The
Cartesian components of the pulses are given on the left and the corresponding frequency
sweeps on the right. The CHIRP shape (A) is apodized at the first and final 20% and
employs a linear frequency sweep (B). The caWURST shape follows a squared cosine
envelope (C) and has an optimized frequency sweep according to equation 2.15 (D). The
shape with the highest peak RF amplitude is the HS pulse with the amplitude envelope
given by equation 2.11 (E) and a tangential frequency sweep according to equation 2.9 (F).
R = 60 for all cases and the RF levels were chosen to yield Q = 5. By rms for the HS pulse
was chosen to match caWURST-2. All shapes were digitized into 1000 increments.
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Phase cycle Phases / ° Recommended value for d / °
P5 0,d, 120 + 2d, 60 + 3d, 120 + 4d 1500771
P7 0, d, 90 + 2d, 300 + 3d, 240 + 4d, 300 + nonel8¢]
5d, 90 + 6d
P9 0,d, 150 + 2d, 120 + 3d, 210 + 4d, 90 + 150101]
5d, 90 + 6d, 270 + 7d, 240 + 8d

Table 2.4.: Phase cycles used in conjunction with MLEV-4. All three examples show slight
variations in their performance depending on the exact value of d. M4P5, which is an
MLEV-4 expansion of the five-step phase cycle P5, is most commonly used for adiabatic
decoupling.

the sidebands at 1/2T show decreasing intensity, sidebands at 1/T become more in-phase
and sidebands very close to the center peak become less abundant. The origin, intensity
and phase behavior of sidebands caused by adiabatic decoupling is discussed extensively
in section 2.1.4.

To suppress these sidebands different approaches were proposed. The authors of the
STUD method tried to improve the quality of decoupling by more complex phase cycles
using a single scan. A combination of M4P5 and M4P9 with cycles where the variable
d in table 2.4 is incremented by 180° (shorthand notation M4P5" and M4P9’) yielded the
M4P5-M4P9-M4P5’-M4P9’ cycle, which is referred to as STUD+!10% 1021 The potential of
sideband suppression using multiple scans and a comparison with STUD+ is discussed in
the following sections.
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Figure 2.12.: Simulated decoupling profiles for typical adiabatic decoupling schemes.
CHIRP can only provide 79.2% decoupling range with respect to the sweep-width (A)
and sideband intensities above 2% can be observed (B). Using caWURST-2 the decoupling
bandwidth is increased to 94.6% (C) and sidebands fall below 2% (D). STUD provides the
highest effective bandwidth of 96.8% (E) and the least sidebands of about 1% (F). Ten contour
levels for positive and negative sidebands were plotted distributed equally between the
extreme values of +0.2 and +2% respectively. Peak contours were plotted using ten levels
between the maximum sideband and 100% intensity.
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2.1.4. Bilevel Decoupling

Sidebands in adiabatic decoupling are well understood!°*]. The reason why desynchronisa-

tion-based approaches known for CPD [74 1%4] can not be applied to adiabatic decoupling
lies in the inversion mode of adiabatic pulses. However, the known positions and phase
gradients of the sidebands allow for targeted suppression schemes. These principles
are exploited in Eliminate Cycling Oscillations (ECO)-WURST decoupling!'®] and the
modified so-called ECHO-WURST method!'%). The advantages of both methods were
molded into the standard implementation to suppress sidebands in adiabatic decoupling
which will be simply referred to as bilevel decoupling and will be discussed in the following.

Looking at the left panels of figure 2.12 indicates that the only significant sidebands
at decoupler offsets close to resonance of the heteronucleus appear at the frequency 1/T.
They are referred to as principal or harmonic sidebands are simply called harmonics in
the following. Harmonics arise because spins close to resonance are inverted near the
center of the adiabatic sweep. Up to that point the signal of spin I is modulated by the
heteronuclear coupling. After inversion of the heteronucleus the coupling evolution will
be refocused after T has passed, at the end of the sweep. Off-resonance, sidebands at a
second frequency are introduced. Since spins far off-resonance are either inverted rather
at the beginning or end of the sweep this signal modulation can only refocus after 2T
which is why this second type of sidebands appear at 1/2T. They are called subharmonic
sidebands or simply subharmonics.

This inversion behavior also induces the phase gradients which cause the particular line
shapes of the sidebands depicted in the right panels of figure 2.12. The closer spins are
inverted near the middle of the sweep, the more in-phase the harmonics will appear. At the
same time the intensity of the subharmonics will drop or differently put, the subharmonics
will only gain significant intensity at higher frequencies. This is reflected in the progression
of sideband profiles from CHIRP over caWURST-2 to STUD since the amplitude envelope
in combination with the sweeping mode allows for a more focused energy disposition in the
swept frequency range. The phase gradients can be turned into pure intensity gradients
by averaging two scans using adiabatic pulses with opposite sweep directions!!%% 1061,
Then, all sidebands will appear as in-phase lines with maximum harmonic intensity near
the center and maximum subharmonic intensity at the edges of the sweep, but with a
sum remaining mostly constant. As a consequence, the sideband intensity can be shifted
between harmonics and subharmonics(®* on the one hand or distributed over several
frequencies by the frequency-unspecific accordion averaging techniquel®’].

However, the phase gradients are the key to efficient sideband suppression. Bilevel
decoupling is based on the averaging of scans where the signal modulation leading to
the sidebands has an onset to achieve a 180° phase shift between successive scans. This
is facilitated by applying adiabatic pulses with a pulse length T/2 at the beginning of
the decoupling period. To achieve reasonable adiabaticity, these pulses typically employ
higher RF levels. Adding a single pulse of T/2 leads to a 180° phase shift of the harmonics
which therefore can be canceled using two scans. In order to also cancel subharmonics
the T/2-incrementation has to be done over four scans so an effective 180° phase shift by
an onset of T is introduced. Practically, this is not achieved by averaging scans with no to
three high-power pulses at the beginning of the acquisition period but one to four. These
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Figure 2.13.: Sideband cancelling mechanism of bilevel decoupling illustrated by simulated
time- and frequency domain data for two scans on resonance and four scans off resonance
bilevel decoupling. Averaging two scans where the signal modulation has an onset of T//2
(A) leads to cancellation of harmonic sidebands (B), vs = 0. Using four scans with onsets of
multiples of T/2 (C) introduces the necessary phase shifts to cancel both harmonics and
subharmonics (D), vs = 1/2 of the highest swept frequency. Individual scans are shown as
colored dashed lines and the average is shown as a solid black line. caWURST-2 pulses
according to figure 2.11 C and D were used. The same shape was used for the high-power

pulse with pulse length T/2 and ugp™ was chosen to yield Q = 5.

principles are illustrated in figure 2.13 using the caWURST-2 shape. The cancellation of the
sidebands is shown for an on resonance example where harmonics are the only significant
sidebands and an offset half-way towards the positive edge of the sweep where both types
of sidebands are present. The colored dashed lines indicate individual scans with their
individual signal modulations and the resulting phase shifts of the sidebands. Solid black
lines depict the averaged signal. In both cases the most obtrusive sidebands are suppressed
but a residual signal modulation is left at higher frequency and lower intensity which
may be negligible. The reason why the caWURST-2 shape is used here is the common
notion to shy away from decoupling schemes like STUD that rely on relatively high peak
RF amplitudes. A combination of bilevel decoupling and the HS shape would imply an
even higher value of up™ if reasonable adiabaticity is required for the T/2 pulse. An

52



2.2. Broadband Decoupling by Optimal Control Theory

additional reason might be that the same authors championed both the WURST shapes
and the bilevel technique.

A bilevel approach to decoupling was also proposed for quantitative '*C NMR. Here,
CW irradiation serves as the high-power component for WALTZ decoupling using as
much as 256 scans to average sidebands to a level below the detection limit so that the
dynamic range in the spectrum allows for the quantitative study of polymer branching[”].

2.2. Broadband Decoupling by Optimal Control Theory

2.2.1. Motivation

Broadband decoupling by means of OCT has been the subject of work done in parallel and
independently from this thesis. The Broadband Uniform Sideband Suppression (BUSS)
pulse was proposed for heteronuclear decoupling in biomolecular NMR at extremely high
magnetic fields!!?”]. In order to distinguish the motivation behind the BUSS pulse from
this work the relative specifications for the decoupling schemes of the past sections has to
give way to absolute numbers. The BUSS pulse was optimized to cover an offset range of
45 kHz using B; rys = 4.4 kHz. This corresponds to a '*C chemical shift range of 150 ppm
on a spectrometer operating at 28.2 T corresponding to wy, = 1.2 GHz for 'H. Spectrometers
operating at such high magnetic fields are not yet commercially available and on the
far more common 14.1 T magnets the BUSS pulse would cover 300 ppm which is more
than enough for small molecule NMR. To compare different decoupling schemes it is
advantageous to distill the most important figures into a single number. Figures of merit
have been proposed for CPD [1%8] and adiabatic decoupling!®" ! and are generally defined
as simple as
AVS

Birms
The effective bandwidth Avs in equation 2.16 is defined as the bandwidth where 80% of the
theoretically possible peak decoupled peak intensity is achieved. Using this criterion the
BUSS pulse would provide E = 10.7 since the actual Avs demanded in the optimizations
was set to 47 kHz. In this work, the desired decoupling bandwidth is 40 kHz which would
safely encompass 37.5 kHz that correspond to 250 ppm on a 14.1 T device (wr, = 600 MHz
for 'H). Conversely, here the aim is set to cover this bandwidth using only B; pys = 2 kHz,
yielding = = 20. For the various implementations of adiabatic decoupling, figures of merit
ranging from slightly above 10°!] to over 701°’] have been reported. However, all of these
values neglect the important ratio J/B; rms Which is key for effective decoupling. The
decoupling schemes given above can be reevaluated using a slightly modified figure of
merit given by

[1]

(2.16)

* _ AVS']

= — .
Bl,RMS

[1]

(2.17)

Values for Z* for the decoupling schemes under investigation are given in table 2.5. The
only reported example of a value for =* approaching the target value of 1.4 given in this
thesis is a caWURST-240 implementation. Nevertheless, with By rms chosen so that the
value of J corresponds to 7% of B; rums, the target parameters chosen here pose a more
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Decoupling scheme || B;rms/ kHz | Avs/ kHz | ]/ Hz = J/Birms =* Citation
BUSS 4.4 47 150 (197) | 10.682 | 0.034 (0.045) | 0.364 (0.478) | [107]
STUD+ 4.4 45 197 10.227 0.045 0.458 [107]
WURST-40 3.36 56 151 16.667 0.045 0.749 [91]
caWURST-2 0.92 66 11 71.739 0.012 0.858 [97]
caWURST-240 5.6 290 151 51.786 0.027 1.396 [97]
This work 2 40 140 20 0.07 1.4 -

Table 2.5.: Figures of merit for state-of-the-art decoupling techniques. In case of the BUSS pulse pairs of values concerning the
magnitude of J are given since different values were used in the optimization an experimental verification (in brackets).
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challenging optimization task than other reported methods. Moreover, the caWURST-240
sequence proposed in [97] operates at B; rms = 5.6 kHz which is above the limit for typical
cryogenically cooled probeheads of modern NMR spectrometers corresponding to 4.4 kHz
for acquisition periods of about 140 ms. Further, apart from the caWURST-2 example
given in table 2.5, none of the methods given above can be scaled up. By halving the
digitization of all pulse increments and doubling all RF amplitudes, the frequencies and
corresponding frequency ranges double as well. In table 2.5 only the caWURST-2 can
be reasonably scaled up without exceeding the RF limitations of common cryo-probes.
However, even up-scaling by a factor of ten would only cover J-couplings of about 110 Hz,
which is below typical values of ! Joy couplings. These couplings serve as the standard
test case for broadband decoupling. However, with this scaling factor caWURST-2 would
already operate at unfeasible 9.2 kHz. At the same time, none of the “high-power” methods
can be scaled down to By rms = 2 kHz since the covered values for J would fall below
typical values for ! Joy couplings. Given that the aim of this work is operation at mean RF
levels of 2 kHz at a target J of 140 Hz, the resulting sequences can be scaled up by a factor
of 2.2 without violation of common RF constraints to yield uncompromised decoupling
performance over 88 kHz for J couplings larger than 300 Hz. Since the latter is untypical
for ! Joy couplings, an improved quality of decoupling can be expected for the lower more
typical values.

In order to work towards meaningful comparisons of state-of-the-art decoupling schemes
with sequences developed in this thesis, the sideband suppression capabilities of the BUSS
pulse and the STUD+ implementation discussed in [107] has to be reassessed with respect
to bilevel decoupling each tailored towards the target parameter settings defined above.
For this comparison, caWURST-2 pulses with T = 1.5 ms and B; ppms = 4.4 kHz digitized
in 300 steps of 5 us were used. To ensure an efficient sweep over the desired bandwidth
of about 40 kHz, the total sweep was set to 42 kHz. This yields Q = 4.36 and requires
upi™ = 7.19 kHz. For the high-power component necessary for bilevel decoupling the
caWURST-2 shape was calibrated to T = 750 us and upg™ = 10.5 kHz to obtain Q = 4.66
using the same digitization. Simulations were backed up with experiments on a sample
of 3C-labeled methanol (* Jog = 141 Hz) using the same parameters given in section 2.1.1
for the simulations except that the time-domain data was zero-filled to 16384 points to
achieve a digital resolution below 1 Hz to allow for a more exact evaluation of relative
intensities. The value for J has been adjusted to 141 Hz in the simulations and 101 offsets
were sampled across an offset range of 60 kHz. To allow for a critical evaluation of the
sideband amplitudes, all peak intensities were normalized to the maximum peak intensity
which was achieved across the given offset range. Further experimental details are given in
section 2.2.7. Simulated and experimental decoupling profiles for one to four scans of the
bilevel implementation discussed in section 2.1.4 using the caWURST-2 shape along with
a M4P5 supercycle are given in figure 2.14. Experiments agree well with the simulations
in terms of position and phase gradients of the sidebands. Using two scans the harmonics
appearing at 1/T can efficiently be suppressed whereas the subharmonics appearing at
1/2T cancel using four scans just in the way it is depicted in figure 2.13. For a more detailed
look at the sidebands, the spectra are overlaid with an expanded vertical scale in figure 2.15.
Again, experiments and simulations agree well as far as harmonics and subharmonics are
concerned. The deviations are mainly posed by sidebands closer to the center peak which
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Figure 2.14.: Comparison of simulated (left panels) and experimental (right panels) offset
profiles for caWURST-2 bilevel decoupling at B; rms = 4.4 kHz using one to four scans.
Ten contour levels for positive and negative sidebands were plotted distributed equally
between the extreme values of +0.2 and +2% respectively. Peak contours were plotted
using ten levels between the maximum sideband and 100% intensity. The number of scans
are given as insets. The M4P5 cycle was used throughout.
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Figure 2.15.: Comparison of simulated (left panels) and experimental (right panels) side-
band amplitudes for caWURST-2 bilevel decoupling at B; pms = 4.4 kHz using one to four
scans. Spectra are overlaid and expanded to 2% of the maximum decoupled center peak
intensity across the desired offset range of 40 kHz. Since the sidebands are symmetrically
distributed around the center peak, only positive frequencies are plotted. The number of
scans are given as insets. The M4P5 cycle was used throughout.

57



2. Heteronuclear Decoupling: The BROCODE
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Figure 2.16.: Comparison of simulated sideband amplitudes for caWURST-2 bilevel de-
coupling using 4 scans with state-of-the-art single-scan methods. To further emphasize the
negligible sidebands of adiabatic bilevel decoupling, spectra were expanded to 1% of the
maximum decoupled center peak intensity across the experimentally relevant core offset
region of 37.5 kHz where the frequency sweep is close to perfection. Bilevel decoupling
(black) generally outperforms STUD+ (red, left panel) as well as scaled (red, right panel)
and unscaled (blue, right panel) versions of the BUSS pulse.

differ in phase and intensity. It can be seen from looking at figure 2.14 that these sidebands
only occur at the edges of the given offset range, where the decoupled peak intensity is
still reasonable but an increased abundance of sidebands is observable before decoupling
collapses. These sidebands are discussed further below.

The efficiency of sideband suppression using bilevel decoupling shall now be compared
to STUD+ as well as scaled and unscaled versions of the BUSS pulse. For STUD+, HS
pulses with T = 500 ps and upg™ = 10.15 kHz were used. Given that the sweep width was
also set to 42 kHz, decreased adiabaticity can be expected. However, simulations and
experiments show that this is overcompensated by the STUD+ supercycle['%”). The BUSS
pulse is digitized in 28672 increments which are 4.3 ps long each. This allows a maximum
acquisition period of about 123.3 ms. To allow a similar resolution as in the simulations
above, the theoretical spin I spectra were sampled for 123.2 ms with a real dwell time of
98.9 s and processed in the same way as given above. Scaled to the target offset range of
40 kHz, the digitization is increased to 5 ps allowing for a real dwell time of 100 us and
the BUSS pulse can be attenuated to 25600 increments necessary for a 128 ms AQ. B; rums
is now reduced to 3.78 kHz. Simulated sideband profiles for the implementations given
above are depicted in figure 2.16. Clearly, bilevel decoupling outperforms the single-scan
methods if the corresponding offset frequency is efficiently swept by the adiabatic pulse.
STUD+ suffers from residual sidebands even if no particularly spurious harmonics or
subharmonics are discernible. BUSS decoupling shows no significant sidebands at a given
frequency but can not provide baselines as smooth as bilevel decoupling. Therefore, the
multi-scan approach has to be "gold standard" for comparisons in this thesis.

This superiority dramatically comes to a halt as soon as B; pums is reduced to 2 kHz.
Simulations and experiments with the same setup as in figures 2.14 and 2.15 were repeated
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with up?™ of the caWURST-2 shapes reduced to 3.27 kHz to yield By rms = 2 kHz. If
the same scaling is applied to the high-power component this leaves the shorter pulses
with upi™ = 4.77 kHz. Simulated and experimental decoupling profiles for one to four
scans of bilevel decoupling using the caWURST-2 shape at By pms = 2 kHz embedded
in the M4P5 supercycle are given in figure 2.17. Generally, an increased abundance of
sidebands can be observed in both simulations and experiments which also have a higher
intensity. The range where sideband amplitudes are plotted has been increased to 0.5-
5% to allow for a more dynamic representation. Additional sidebands can mostly be
observed closer to the center peak with frequencies lower than 1/T. The general sideband
patterns predicted by the simulations could be reproduced experimentally although it
appears as if experimental sideband amplitudes are lower than predicted. Expanded and
overlaid spectra are given in figure 2.18. It can be seen that the canceling mechanism for
the harmonics and subharmonics is still functional since the former can be sufficiently
suppressed and all sidebands in the vicinity of 1/2T are largely attenuated using four scans.
However, the most obtrusive sidebands remain at frequencies below 1/2T and cannot be
eliminated. They are referred to as inner sidebands[®% 1% and appear at 1/pT where p are
repetition elements in the supercycle. In the case of M4P5 p takes values of 4, 5 and 20.
They can only gain significant intensity when the individual adiabatic spin flips suffer
from substantial imperfections which become apparent upon reducing By rys to 2 kHz.
Figure 2.18 indicates that the position of each sideband is reproduced correctly but the
apparent intensity differences seen in figure 2.17 turn out to be differences in the phase
gradients. Whereas the two most intensive and low-frequency sidebands show significant
anti-phase contributions in the simulations, they appear rather in-phase in the experiments
and slowly gain phase shifts upon acquiring multiple scans. As with the acquisition of all
NMR signals, the phase of a resonance line at a given frequency is determined by how well
the beginning of acquisition is synchronized with the beginning of the FID. As a result of
modern digital data acquisition techniques, there is a transient oscillation at the beginning
of each FID which has to be rectified in the processing pipeline by a so-called group delay
compensation routine. Given that data is collected using oversampling in the MHz range,
group delays may have a duration corresponding to a non-integer number of points on
the desired final time grid. This is why it cannot be made sure that the beginning of the
acquisition and hence the decoupling sequence is matching the time grid in simulations
and experiments alike. The differences of the inner sidebands in figure 2.15 might therefore
be caused by the same phenomenon.

From the most simple perspective, the arising of inner sidebands is rooted in a flip angle
undershoot of 180° due to the dramatic reduction of B; pps. It can also be understood by a
drop of the adiabaticity factor Q. Using equations 2.14 and 2.15, an adiabaticity map as
a function of B; pms and the pulse length T can be created. Q is plotted in figure 2.19 for
pulse lengths between 100 us and 5 ms and B ris ranging from 0 to 5 kHz where results
higher than 5 were attenuated since no inner sidebands need to be expected at this levels of
adiabaticity. As mentioned above, the caWURST-2 pulses used in figures 2.14 and 2.15 as
the low-power component of bilevel decoupling reach Q = 4.36 (black circle). When B; rums
is reduced to 2 kHz, Q drops down to 0.9 (white circle) which is far below recommended
values. Adiabaticity can be recovered using longer pulse durations but even doubling the
pulse length to 3 ms can only provide Q = 1.8 (dashed white circle). Using such prolonged
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Figure 2.17.: Comparison of simulated (left panels) and experimental (right panels) offset
profiles for caWURST-2 bilevel decoupling at B; pms = 2 kHz using one to four scans.
Ten contour levels for positive and negative sidebands were plotted distributed equally
between the extreme values of +0.5 and +5% respectively. Peak contours were plotted
using ten levels between the maximum sideband and 100% intensity. The number of scans
are given as insets. The M4P5 cycle was used throughout.
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Figure 2.18.: Comparison of simulated (left panels) and experimental (right panels) side-
band amplitudes for caWURST-2 bilevel decoupling at B; pms = 2 kHz using one to four
scans. Spectra are overlaid and expanded to 5% of the maximum decoupled center peak
intensity across the desired offset range of 40 kHz. Since the sidebands are symmetrically
distributed around the center peak, only positive frequencies are plotted. The number of
scans are given as insets. The M4P5 cycle was used throughout.
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T/ms

Figure 2.19.: Adiabaticity factor Q as a function of the pulse length T and B; rys for
the caWURST-2 shape. Values higher than 5 were attenuated. For T = 1.5 ms and
Birms = 4.4 kHz, Q reaches 4.36 (black circle). Reducing By rvs to 2 kHz using the same
pulse length results in Q = 0.9 (white circle) which can only be recovered to 1.8 using
sweeps twice as long (dashed white circle). 25 contours were plotted equally distributed
between 0 and 5.

pulses poses several drawbacks for efficient (bilevel) decoupling. These drawbacks are
rooted in the prolonged refocusing periods of the heteronuclear couplings. The resulting
sideband patterns are depicted in figure 2.20. Using a single-scan allows for an analysis of
the full variety of sidebands. Given that the pulse lengths have doubled, the frequencies of
harmonics and subharmonics was halved and they can be found close to the center peak.
Increased adiabaticity leads to fewer and less intensive inner sidebands. However, the
first integer multiple of the harmonics can be observed as distinct sidebands at 2/T Hz.
If bilevel decoupling was restricted to the averaging of four scans, either the harmonics
and subharmonics could be suppressed using a T/2 incrementation of the high-power
component, or the harmonics and their first integer multiple could be canceled using a T/4
incrementation. In order to eliminate all three types of sidebands the T/4 incrementation
has to be expanded to eight scans. In each case, inner sidebands remain and the general
picture can not be improved beyond what is given in figure 2.17. A more detailed look
at the sidebands is given in figure 2.21. It can be seen that harmonics and subharmonics
have greatly increased intensity. Using longer adiabatic sweeps, longer periods of free
precession are introduced for each given decoupler offset leading to larger oscillations of
the signal. These oscillations also lead to significant intensity losses upon averaging of
the individual scans as can be seen by the wavy baselines obtained by four scans of the
T/2 incrementation. Using four scans of the T/4 incrementation leaves the subharmonics
uncanceled since only a 90° degree phase shift is introduced leaving the subharmonics at
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Figure 2.20.: Simulated offset profiles for caWURST-2 bilevel decoupling at B; rps = 2 kHz
using pulses with T increased to 3 ms (Q = 1.8). Decoupling profiles are given for a
single scan (A), four scans using a T/2 (B) and T/4 (C) incrementation of the high-power
component. 8 scans using a T/4 incrementation are depicted in (D). Ten contour levels
for positive and negative sidebands were plotted distributed equally between the extreme
values of +0.5 and +5% respectively. Peak contours were plotted using ten levels between
the maximum sideband and 100% intensity. The M4P5 cycle was used throughout.

about 5% intensity. If eight scans of the T/4 incrementation were to be collected, inner
sidebands would still remain at the same intensity of about 5%.

It has been demonstrated that the most common and most reliable sideband suppression
technique used in low-power broadband heteronuclear decoupling is mostly limited by
the adiabaticity constraint of the individual inversion elements. The main task of the
optimization studies of this thesis using OCT is therefore to find pulse sequences that can
overcome this limit in a single or multiple scans.
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Figure 2.21.: Simulated sideband amplitudes for caWURST-2 bilevel decoupling at
Birms = 2 kHz using pulses with T increased to 3 ms (Q = 1.8). Sideband profiles are
given for a single scan (A), four scans using a T/2 (B) and T/4 (C) incrementation of the
high-power component. 8 scans using a T/4 incrementation are depicted in (D). Spectra
are overlaid and expanded to 5% of the maximum decoupled center peak intensity across
the desired offset range of 40 kHz. Since the sidebands are symmetrically distributed
around the center peak, only positive frequencies are plotted. The M4P5 cycle was used
throughout.
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2.2.2. General approach

Already prior to OCT studies, pulses were known that bypass adiabaticity constraints. The
Broadband Inversion Pulses (BIPs) [1°] are the only reported pulse shapes that approach the
physical limits established by OCT [?2 7], Whereas BIPs are designed as rather short high-
power inversion pulses, RF power-limited BIBOPs might be candidates for building blocks
of periodic decoupling sequences. However, the optimal tracking algorithm introduced
in section 1.2.5 poses the ultimate means to exploit the flexibility of optimal control
algorithms. The application to broadband decoupling as presented in [36] shall be outlined
in the following.

The Hamiltonian H of a heteronuclear spin system under the effect of a decoupling
sequence similarly to equation 1.83 contains a drift and a control component with the
decoupling sequence being the control part. The drift component of the I spin species
which is sampled (see equation 2.1) is now accompanied by the chemical shift of the
heteronucleus Hs. For the sake of clarity, the heteronuclear coupling term #j has been
separated from the spin I chemical shift H; to yield

H(t) = Hy + Hs + H; + H:(t) (2.18)

with the individual components given by

H; = 2w,
Hs = 27vsS, 219
Hy = n]2L,S, (2.19)

Hie(£) = 270 By et (ue (1) Sy + 1y (1)Sy).

Given that the I, operator commutes with all other components of equation 2.18, decoupling
performance is independent of the spin I offset and H can be dropped from equation 2.18
yielding

H (t) = 2mvsS, + mJ2L,S; + 27 By re1 (ux (t)Sx + uy ()Sy)- (2.20)

This means spin I can be assumed on resonance and without loss of generality the initial
density operator can be assumed to be

Po = L. (221)

Without the influence of the decoupling sequence the evolution of p, would solely be
governed by Hj since Hs commutes with both Hj and p,. The free evolution density
operator is given by

p(t) = I, cos(mJt) + 2I,S, sin(rJt). (2.22)

Sampling the theoretical spin I spectra now requires the evaluation of expectation values
of the I, operator which are given by

(L) (t) = cos(m]Jt). (2.23)

This cosine modulation causes the splitting of resonance lines after FT as decribed in
section 2.1.1. Since decoupling means effectively reducing J to zero, perfect decoupling
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corresponds to equation 2.23 resulting in unity at all times. If the decoupling sequence is
organized as outlined in section 1.2.5, the local target states are given by

pr(Ty) =L for0<n<N (2.24)
which would result in local quality factors according to
¢n = (I |p(Tn)> (2.25)

The global quality factor would therefore yield

1 & 1
¢=—- Pn =+ (L |p(T)) - (2.26)
)

All considerations of section 1.2.5 still apply to the computation of gradients so that the
tracking algorithm tailored towards heteronuclear decoupling can be formulated as

1. Make a guess for initial controls u.

[\

. Starting from I, compute the forward trajectory p;.

3. Starting from I, compute the backward trajectory A; according to

U A,
N if /M) = LG - 1)/M]
Ui+ I

if [j/M] > |G - 1)/M]

(2.27)

4. Evaluate V,® for all possible combinations of parameters and form the mean value.
5. Update the controls according to equation 1.107.

6. Apply RF limits according to amplitude, power or energy.

7. Repeat steps 2-6 until convergence.

Preliminary optimizations using the algorithm above were carried out using the setup
proposed in [36] for decoupling using a single scan. The pulse shape was digitized into
5120 increments with variable u, and u, amplitudes and 25 ys step size each (T = 128 ms
using 10240 variables in total). The period between the individual tracking/detection
points AT (corresponding to the real dwell time) was set to 1 ms. This results in a rather
reduced spectral width of 1 kHz but should allow for a sufficient spin inversion in between
detection points if the RF power is sufficient. All optimizations are targeted towards
decoupling of spins over an offset range Avs = 40 kHz using J = 140 Hz. up®™ was limited
at each step to 2 kHz. For the optimizations described in [36], Avs = 1 kHz was discretized
in 21 steps. If the same ratio was to be applied here, N, needs to be scaled up to 801.

However, it was found empirically that N,, = 384 can be used without significant losses.
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Figure 2.22.: Simulated decoupling profiles using a single optimized pulse sequence
obtained by the standard tracking algorithm discussed in this section. The quality factor
according to equation 2.26 was used. For the offset profile (A) ten contour levels for
positive and negative sidebands were plotted distributed equally between the extreme
values of £1 and +10% respectively. Peak contours were plotted using ten levels between
the maximum sideband and 100% intensity. For the sideband profiles (B) spectra are
overlaid and expanded to 10% of the maximum decoupled center peak intensity across the
desired offset range of 40 kHz. Since the sidebands are symmetrically distributed around
the center peak, only positive frequencies are plotted.

The converged algorithm resulted in a non-repetitive decoupling sequence which was
used for the simulations depicted in figure 2.22. The simulated spectra were processed as
described in section 2.1.1 apart from zero-filling only to 1024 points since this is sufficient
for reasonable resolution at the reduced spectral width. Although the heteronuclear
doublet could be collapsed to a single peak, the decoupled signals suffer from massive
sidebands exceeding 10% at the edges of the desired offset range and even exceeding 5%
below the baseline. In the following, different sources of additional degrees of freedom for
the optimizations shall be explored.

2.2.3. Cooperativeness

Multi-scan cooperativenesst® as discussed in section 1.2.6 was recently filed under a

patent!®] where the application to heteronuclear decoupling and sideband suppression
was hinted at. Therein, a preliminary quality factor was suggested which was found
independently and developed further as a part of this thesis. It is assumed that sideband
suppression can be achieved if the quality factors according to equation 1.118 and 2.26 are
combined to yield

2

1 - (1-{@(T) (2.28)

Dcoop =

1P

1
N
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It can be deduced from figure 1.5 that the offset profiles of excitation pulses become
increasingly homogeneous upon increasing Ncoop. However, although the values for (I,.)
are fed back to the individual pulses at each given resonance offset, there is no discernible
force that drives the optimization towards low overall deviations from the average of all
offsets. The same should apply to equation 2.28 in that (I,.) for individual detection points
T, is fed back to the individual pulses but not the average over the whole pulse length T
(which is given by the quality factor according to equation 2.26 which shall be referred
to as Ppean in the following). Since these very deviations from ®,eoy are the source of
the spurious sidebands, modifications of ®coop shall be explored that allow for explicit
sideband suppression.

The first alternative to ®coop under investigation is also derived from equation 1.118. It is
based on the assumption that the homogeneous profile of (I,.) is achieved by demanding the
cancellation of @ Since a single pulse can not fulfill the goals given in the optimization[*"],
several pulses have to produce a matching set of non-zero values for (I,) in order to cancel
it. At the same time, non-zero values for (I,) involve values for (I,) deviating from unity.

Therefore, for ®coop to reach high values, values for (L) close to unity are sacrificed
for effective nullification of (I,). The latter can be achieved rather homogeneously over

the desired offset range leaving a homogeneous profile of (L) as a byproduct. From the
considerations in section 2.2.2 it becomes apparent that the set of operators involved in an
imperfect heteronuclear decoupling scenario is rather limited. According to equation 2.22,
the unperturbed evolution of the density operator only involves the I, and 2I,S, operators
since the influence of H; can be neglected. Given that the decoupling sequence only
acts on spin S, it can only convert the 2I,S; into the 2I,S, and 2I;S, operators, which are
themselves converted into each other by Hs. This leaves only four operators to describe
the dynamics of a heteronuclear decoupling scenario with three of them needed to be
suppressed. The modified ®coop is therefore defined as

N
Dcoor = 1= > 1= (1= ()’ - @RS () - @S, (T) - @Sy (T,). (229)

n=1

Gradients of ®copp with respect to the controls of individual pulses can be obtained by
combining equations 1.111 and 1.120 to obtain

2

Ncoop

Vum Pcoop = % Z ((1=TNHT)) - Voo (L) ™ (Ty)
n>l

= LSNTy) - Yy (2L,S) ™ (Ty) — LSy)(Th) - Vo (2L, Sy ™ (T)
= Q@IS )T,) - Vo (2,8 ™(T)) . (2.30)
The tracking algorithm needs to be modified in order to concurrently optimize a set of
decoupling sequences which compensate their own imperfections by maximizing ®coop

according to equation 2.29 which will be referred to as the full penalty approach in the
following:

1. Make a guess for initial controls u(™.
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2. Starting from I, compute the forward trajectories p](.m) for all pulses.

3. At each point T,,, compute p(T,) and evaluate @(Tn), (21,8 )(Ty), (2I,S,)(T,) and
(21,5, )(Ty)

4. Starting from

2
Ncoop

((1 - @(TN)) L - <21ysx>(TN) ' 2Iny

— @L,S,)(Ty) - 21,S, — 2L, S:)(Ty) - 21,S:) . (2.31)

ANM =

compute the backward trajectory Aﬁm) for all pulses according to

U A
J J
if j/M] = LG -1)/M]

2 __ -
A = JuMiA ™y 2 ((1=TXT) - L = CLSHTy) - 2L,Sc  (2.32)
J J Ncoop

= 2L,S,)(Ty) - 21,S, — (2L,S:)(Ty) - 21,S:)

if [j/M] > (- 1)/M]

5. Evaluate V,u® for all possible combinations of parameters and form the mean
value.

6. Update the controls according to equation 1.107.
7. Apply RF limits according to amplitude, power or energy.
8. Repeat steps 2-7 until convergence.

Proof-of-principle optimizations with 1000 iterations of the algorithm above were carried
out for Ncoop = 1-6 using the parameters given in section 2.2.2. The resulting sets of
decoupling sequences were subject to simulations which yielded the decoupling profiles
depicted in figure 2.23. Theoretical spectra were processed as described for figure 2.22. The
simulations clearly show progressive sideband reduction upon increasing Ncoop. First,
a trend can be observed where sidebands exceeding 10% are pushed outside the desired
40 kHz bandwidth. Secondly, sidebands can in the end be suppressed well below the 5%
threshold across the entire bandwidth. This is illustrated in more detail in figure 2.24. The
sideband profiles confirm that going from one to two scans, even if individual sidebands
may have larger amplitudes than in the single-scan case, a generally lower abundance of
sidebands can be observed. However, slightly increased sidebands may occur for several
reasons. Incomplete convergence may leave the pulse below its physical potential or an
offset may have been sampled in the simulations which suffers decreased fidelity due
to a too sparsely sampled grid in the optimization. Nevertheless, since the algorithms
aim for an optimal global quality factor, decreased local quality factors can be accepted if
this is overcompensated by a better overall average. Further, due to the variety of terms
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Figure 2.23.: Simulated decoupling profiles using sets of self-compensating decoupling
sequences obtained by the modified tracking algorithm. The quality factor according
to equation 2.29 was used (full penalty approach). Ten contour levels for positive and
negative sidebands were plotted distributed equally between the extreme values of +1 and
+10% respectively. Peak contours were plotted using ten levels between the maximum
sideband and 100% intensity.
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Figure 2.24.: Simulated decoupling profiles using sets of self-compensating decoupling
sequences obtained by the modified tracking algorithm. The quality factor according to
equation 2.29 was used (full penalty approach). Spectra are overlaid and expanded to 10%
of the maximum decoupled center peak intensity across the desired offset range of 40 kHz.
Since the sidebands are symmetrically distributed around the center peak, only positive

frequencies are plotted.
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in the quality factor for the full penalty approach, some terms can be traded off against
each other. This could lead to less efficient sideband suppression in favor of higher signal
intensity. Apart from that, a higher number of scans indeed corresponds to lower sideband
amplitudes.

It can be argued that the sideband canceling mechanism discussed so far is rather
implicit. Given that it relies on the 2I,Sy, 2I,S, and 2I,S, operators, which are not or only
indirectly measurable, the focus is not on the main source of sidebands (oscillations of
(I)). In order to achieve explicit sideband suppression, a suitable quality factor has to
include a term that penalizes oscillations of (I.). A quality factor according to

1 N

Oeoop = — ¥ 1= (1= THT))" = (Pumean — T)(T) (2333)
N

n=1

now contains a term that penalizes excursions from the temporal average of the signal
(®mean, see above). Therefore the second term in equation 2.33 serves as an evaluation of
the standard deviation of (I,). Ultimately, a low standard deviation of the signal should
result in low sideband amplitudes. Therefore, ®coop according to equation 2.33 should
provide the means of explicit sideband suppression which shall be referred to as the
homogenizing approach in the following. Gradients of ®coop with respect to the controls
of individual pulses can be obtained via

1 2 —
V m o = — 1-{(L T : V m 1L (ITI) T
utm®coop = ; Neoor ((1=ENT) - Vo (L™ (Ty)

+ ((Dmean - @(Tn)) : Vu(m)ax)(m) (Tn)) . (2-34)

It should be noted that ®,c,, itself is not subject to the formation of the gradient since
it serves as a feedback value and only carries information of the past iteration. The sum
within ®eqn should not be mixed with the superordinate sum in equation 2.34 because
®pnean has influence on each local quality factor. This is why equation 2.34 can be further
simplified:

1 2 e
Vu(m)q)COOP = Z (1 + Pmean — 2<Ix>(Tn)) : Vu(m)ax)(m) (Tn) (2-35)
N 4~ Ncoor

Now it can be directly deduced from equation 2.35 that the homogenizing approach
aims at the perfect trade-off between maximum signal intensity and low deviations from
®pean. The tracking algorithm has to be further modified for the homogenizing approach
according to:

1. Make a guess for initial controls u(™.

2. Starting from I, compute the forward trajectories p](.m) for all pulses.

3. At each point T,,, compute p(T,) and evaluate (L(T).

4. Use @(TH) to obtain @,y according to equation 2.26.
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5. Starting from

Axy = (1 + Pmean = 2(LN(T)) - L, (2:36)

Ncoor

compute the backward trajectory Ay") for all pulses according to

U.(m)TAjU.(m)
J J

if j/M]=1G-1)/M]
(1 + q>mean - 2@(1‘”)) ' Ix

if [j/M] > (- 1)/M]

A = (2.37)

(m)T (m)
5T Nooor

6. Evaluate V,w® for all possible combinations of parameters and form the mean
value.

7. Update the controls according to equation 1.107.
8. Apply RF limits according to amplitude, power or energy.
9. Repeat steps 2-8 until convergence.

Another set of proof-of-principle optimizations was carried out for the homogenizing
approach which used conditions identical to the full penalty approach. The decoupling
profiles yielded by the different decoupling cycles are depicted in figure 2.25. The results
for the homogenizing approach show a significant improvement over the full penalty
approach. Even using a single scan, there are no sidebands occurring which exceed 10%
intensity. In addition, sideband amplitudes well below 5% can be achieved with already
four scans using the modified quality factor. It can be observed that using more than four
scans, there is only slight further improvement. Nevertheless, it can be stated that the
homogenizing approach offers the more promising sideband suppression capabilities. This
is confirmed by the sideband profiles given in figure 2.26. It can be seen that the final
improvement brought about by the homogenizing approach amounts to about 1% if a full
cycle of six decoupling sequences are used. For a quantitative comparison the trend in
sideband reduction upon increasing Ncoop is illustrated in figure 2.27 by contrasting the
maximum observable sideband amplitude for the two approaches and the given number
of scans. The result of the sequence individually optimized as a part of section 2.2.2 is
given as a reference. It becomes obvious that a reasonable choice of the quality factor
alone can result in roughly a factor of two in sideband reduction compared to using the
standard ®,.n. Moreover, it can be confirmed now that for each number of scans the full
penalty approach is outperformed by the homogenizing approach. However, for both cases
there is apparently a single occurrence of increasing sideband amplitudes when Ncoop is
increased. This is due to singular sidebands at a given value of vs and v; which appear for
reasons discussed above despite an improved overall average. These situations shall be
ameliorated in the following section. The improvement of sideband suppression that can
be attributed to cooperativeness can be amounted to a factor between two and three.
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Figure 2.25.: Simulated decoupling profiles using sets of self-compensating decoupling
sequences obtained by the modified tracking algorithm. The quality factor according to
equation 2.33 was used (homogenizing approach). Ten contour levels for positive and
negative sidebands were plotted distributed equally between the extreme values of +1 and
+10% respectively. Peak contours were plotted using ten levels between the maximum
sideband and 100% intensity.
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Figure 2.26.: Simulated decoupling profiles using sets of self-compensating decoupling
sequences obtained by the modified tracking algorithm. The quality factor according to
equation 2.33 was used (homogenizing approach). Spectra are overlaid and expanded to
10% of the maximum decoupled center peak intensity across the desired offset range of
40 kHz. Since the sidebands are symmetrically distributed around the center peak, only

positive frequencies are plotted.
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Figure 2.27.: Comparison of the maximum positive sideband amplitudes within the desired
offset range Avs = 40 kHz obtained by the sets of decoupling sequences optimized following
the full penalty and homogenizing approach described in this section. The reference pulse
was optimized as described in section 2.2.2.
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Figure 2.28.: Sideband canceling mechanism of the homogenizing approach illustrated by
simulated time- (A) and frequency domain (B) data for four scans (Ncoop = 4) with zero
decoupler offset (vs = 0 Hz). Individual scans are shown as colored dashed lines and the
average is shown as a solid black line.

Finally, the mechanism of sideband suppression by the homogenizing approach shall
be illustrated for a single value of vs using a decoupling cycle consisting of four self-
compensating pulse sequences in figure 2.28. Individual scans now reveal massive temporal
signal oscillations that would lead to severely high sideband amplitudes after FT. These
oscillations are greatly reduced upon averaging so that in most cases a particularly intensive
positive sideband is opposed by a negative sideband amplitude in the next scan. Moreover,
in contrast to bilevel decoupling, the averaging is effective for the entire FID so that the
sideband suppression is not limited to distinct frequencies v;. Nonetheless, the results of
this section are not yet fully competitive with bilevel decoupling at the given RF constraints
but the potential of cooperative decoupling was hinted at.
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2.2.4. Optimizations

So far, the limiting factor of the optimizations were the computational resources. The
optimization package OCTOPUSSIP®Y was designed to (concurrently) optimize pulse shapes
acting on two (heteronuclear) coupled spins in Hilbert space. This implies the storage of
two pulse shapes and complex-numbered 16-element matrix representations of density
operator trajectories. The computational limit using OCTOPUSSI was reached when six
pulses with T = 128 ms with At = 25 ys were optimized using u, and u, controls which
yields a sum of 61440 variables. Conversely, it has been discussed in the previous sections
that only four operators are needed to describe a heteronuclear decoupling scenario which
facilitates the use of a four-state vector representation of the density operator as an element
within a reduced Liouville spacel*®]. The expectation values of the operators 21,Sy, 21,S,,
2I,S, and I, form the real-valued elements of the reduced state vector given by

<21y5x>(tj) pZIny(tj)

A Q@LS)(t) | _ | PP (t))
t:) = = . 2.38
p( ]) <2[ySz>(tJ) pZIySZ(tj) ( )

(L) (t)) P (1)

Initial and final magnetization I, are thus written (0,0,0,1)". Forward and backward

trajectories of the density superoperator which are necessary to obtain the gradients for
the GRAPE algorithm are defined as

)T

pi = U+ Ui (2.39)
and )
Ay =UL, - Ugpr (2.40)

where 0] are the generalized rotation matrices corresponding to the unitary propaga-
tors in Hilbert space and UjT is the transpose of U;. The matrix elements of these rota-
tion superoperators are given by explicit scalar functions that no longer involve matrix

exponentiation*®). They are computed according to the following recipe:
Un(j) = asa_ —byb_ —coc_ +dod-
Up(j) = asb_ +bra_ +cod- +dic_
Uis(j) = asc_ —bod_ +cia_ —d.b_
Us(j) = —asd- —byc_ +cyb_+dia
Un(j) = asb_ +bra. —ced- —dic_
Usy(j) = —asa_ + byb_ —coc_ +dod- (2.41)
Ups(j) = asd_ +bic_ +cib_+dia_
0240) = ayc_—byd_—cya_ +d,b_
Ui (j) = asc +byd_ +cra +dyb_
Usy(j) = —asd- + byc- + cyb_ —dia-
Uss(j) = —aza— — byb_ +cyc_ +did-
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Usa(j) = —asb_ + bra_ —cod_ +dc_
Un(j) = asd- —bic_ +cib_ —dia_
U(j) = asc_ +byd- —cia_ —d,b_ (2.41)
Uis(j) = —asb_ + bra_ +ced- —doc_
Uw(j) = asa_ +byb_ +coc_ +dod-

The constituents of (7] are given by

B rel * Ux ] .
a. = —M - sin(mrveAt) (2.42)
Vi
B rel * ]
p, = D wU) LAY (2.43)
Vi
+ J/2
Cy = —VS:—]/ - sin(viAt) (2.44)
d. = cos(nvsAt) (2.45)
and
2 2 2
Vi = \/(Bl,rel cue(t))) + (Bl,rel cuy(ty)) + (vs £ J/2) (2.46)

In analogy to equation 1.125, gradients of local quality factors ¢ can be obtained to first
order via

0¢ 21,8, 21 Sz 121,y
= 2By gt (p A - e 2 ) 2.47
Gy = 2B ()" (2.47)
and 3
o) P (pZI SZAZI ySe _ 2y sxfl 452 ) (2.48)
Buy(tj)

In order to obtain the gradients of ®p,eqap in this formalism, equations 2.47 and 2.48 have to
be combined with equation 1.111 to yield

aq)mean 1 ( 2I,Sy 2I,S, , 2I,S
= 2B ;AL - — A VRN y) 2.49
and P .
mean 2I,S, , 2I,S 2I, Sy , 2I,S
=27B At-—(.yzA.yx— .yxA.yZ). 2.50
Oy (1)) S VA Pj j (2.50)

As mentioned in section 1.2.8, to exploit the beneficial convergence behavior of second-
order update methods, exact gradients are needed. Hence, exact derivatives of UJ need
to be evaluated which can be done element-wise. All derivatives of the elements given
in equation 2.41 can be evaluated using the sum and product rule and boil down to the
derivatives of equations 2.42 to 2.45. Here, the derivatives of c. and d. with respect to u,
and u, only vary in derivatives of v.. The latter are given by

2
Ovy _ Bl,rel Ux

Ouy (1)) - Vi

(2.51)
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and ,
B ‘U
aVi _ 1,rel Y (2‘52)
Ouy(t)) Va
so that Py 5
+ Vi
— = — g At———— - sin(wv, At 2.53
(9Uk(tj) GUk(tj) ( B ) ( )
and 5 / 5 ( )
Cy v+ J/2 Vi sin(srvy At
= . — At - LAL) . 2.54
Ouy (1)) Vo Ou (1)) ( Vi mAL - cos(mvy )) (2:54)

When it comes to a. and b, the derivatives with respect to u, and u, vary significantly so
that

da. _ Bi rel ([ux vy

Ovs
— 1] - sin(mveAt) — mtxAtL . cos(nViAt)) (2.55)

duc(t)  ve \[ve Oue(t)) Duy(ty)
and 0 B 0
+ rel © Ux + i +At
@r _ Durel "Uc  OVs (Sm(’”- ) oAt cos(mim)) . (2.56)
Ouy (1) Vi Ouy (1) Vs
This can be transferred to b, where
0b. Birel-uy  Ovy [sin(mviAt)
— = . — — — At - AV 2 2.57
aux(tj) Vi 8ux(tj) ( Vi g COS(”V_ ) ( )
and
0b, B rel ([uy ovy ] . vy
= — - — 1| - sin(wviAt) — mu, At -cos(mviAt)|. (2.58)
Guy(tj) Vi Va 6uy(tj) Y Guy(tj)

These newly derived equations can be plugged into the recipe for l7j to obtain exact
gradients for ®peqy via

aq)mean _ l N . a—(jj A (2 59)
dur(t) N\ | dug(e)” ] '

Gradients V,® can be benchmarked against a finite difference approximation VEP® (see
equation 1.96) by evaluating

vibp
V@

as a function of Au. This difference was evaluated for a randomly generated pulse using
gradients according to equations 2.49 and 2.50 (first order approximate) as well as equa-
tions 2.51 to 2.59 (exact). Further, a single pulse optimized comparable to as given in [36]
(T =128 ms, At = 25 us, AT = 1 ms, J = 140 Hz, u{{l}f‘x =500 Hz, Avs = 1 kHz, N, = 21) was
also analyzed accordingly. The converged pulse yielded ®ppean = 0.956 whereas the random
pulse yields ®pean = —0.009. The resulting gradient errors are depicted in figure 2.29. In
general, the gradient error should decrease as Au decreases, since the finite difference
approximation more and more approaches an exact gradient. Conversely, the curves

1-—

oy = (2.60)
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Figure 2.29.: Benchmark of first order approximate and exact gradients for ®y,en, against a

finite difference approximation according to equation 2.60. Both gradients were applied to a
randomly generated pulse (Ppean = —0.009) as well as a converged sequence (P pean = 0.956).

for the exact gradients in figure 2.29 show a distinct dip. This is due to a threshold in
machine number precision. At some point, the change of control amplitudes Au becomes
too insignificant to cause a substantial change in the quality factors so that the finite
differences in equation 1.96 become very small. In terms of machine number precision,
there are increasingly less places after the decimal point which can contribute to a mean-
ingful difference. This source of numerical noise causes the gradient error to increase if
Au decreases below a certain threshold. The dip is more pronounced for the randomly
generated pulse since closer to the optimum the same change in control amplitude causes
less response in fidelity. At the same time, a ®pean > 0.9 also takes away one significant
digit for the finite difference. For each case of the first order approximate gradient the
gradient accuracy is by orders of magnitude worse and shows a flat region where the exact
gradients show the dip.

With access to exact gradients in the reduced state space formalism, a feasibility study
of optimal single and cycles of decoupling sequences is now possible. Given that there
is no more need to store complex numbers and far less arrays of matrices have to be
stored, the newly available memory can be invested in a more finely digitized time grid
of the pulse shapes. In addition, depending on the particular optimization problem and
whether the computation is performed in parallel or not, a gain in speed between 5
and 20 can be accomplished (see appendix figure A.1). To give an overview about the
computational resources and to be able to correlate the feasibility of optimizations with
the hardware configuration, the available machines for this work are listed in table 2.6.
Prior to a systematic study of the problem outlined in section 2.2.1, possibilities to boost
convergence were explored. The most important second order update methods discussed
in section 1.2.8 assume at least locally quadratic behavior of the quality factor landscape.
Since this assumption can not be made a priori, a periodical refreshment of the CGs
comparable to the limited gradient history in the L-BFGS update has been tested on the
optimization procedure given in section 2.2.2. The CG reinitialization can be performed

80



2.2. Broadband Decoupling by Optimal Control Theory

Pet name CPU CPU model Clock Cores | CPU
vendor frequency / cache /
GHz MHz
Ork Intel® Pentium®4 2.66 1 0.5
Sodom AMD | Athlon™MP 2800+ 2.13 2 0.5
Goblin AMD | Athlon"II X2 240e 2.8 2 1
Uff Intel® | Core™2 Quad Q8200 2.33 4 2
Cybershot || Intel® | Core™2 Quad Q6600 2.4 4 4
Sandstone || Intel® | Core™2 Quad Q6600 2.4 4 4
Server Intel® | Core™2 Quad Q9650 3 4 6
Wanderlust || Intel® Core 17 950 3.07 4 8
JP Intel® Xeon®E5-2470 2.3 16 20

Table 2.6.: Overview of the computational resources available in this thesis. All machines
are Linux-based except for Goblin, which is a Windows® workstation which was not used
for optimizing pulse sequences.

when a convergence criterion is met to avert premature termination or at fixed intervals
as depicted in figure 2.30. Here the quality factor as a function of the iteration number
is given as an error functional (deviation from unity) on a logarithmic scale which leads
to this representation infamously being called spaghetti plots. For ten different starting
pulses spaghetti plots are given for CG reinitialization after 500, 250, 100 and 50 iterations
as well as no refreshment. Each optimization ran for 1000 iterations. It can clearly be
seen that without reinitialization, after 1000 iterations almost full convergence is reached
whereas each additional instance of CG refreshment results in consecutively improved
overall convergence rates. It can be deduced from the slope at the final iteration that
further improvements can be expected for CG reinitialization after 50 iterations which
was found to be an optimal value for this problem. Resetting the CG trajectory after 25
and 10 iterations leads to impaired convergence (see appendix figure A.2). Looking at the
spread of results, the variance within one group of optimizations is markedly marginal
leading to hardly any overlap between the different groups. Therefore it can be stated
that CG reinitialization at a given interval allows access to a whole set of new (or better)
solutions which are out of reach for a conventional unperturbed search.

To affirm the results obtained so far, a series of optimizations was performed to find the
best possible individual decoupling sequence. For a single sequence, the smallest possible
digitization At was found to be 2 us which was still feasible on Ork on a single CPU as well
on Uff in parallel. For T = 128 ms this amounts to 128000 variables. Ten optimizations
with 1000 iterations each were performed using both ®y,ean and $coop (homogenizing
approach) as a quality factor for At = 25, 20, 10, 5, 4 and 2 ps. Further, the effect of applying
and omitting CG reinitialization after 50 iterations was examined for each setting so that
a total of 240 optimizations contribute to this study. In order to provide a more reasonable
spectral width, AT was reduced to 100 ps. Otherwise, all parameters were kept the same
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Figure 2.30.: Convergence benchmark (spaghetti plots) for different frequencies of CG
reinitialization during optimizations of pulse sequences as described in section 2.2.2. The
CG trajectory was refreshed after 500 (blue), 250 (red), 100 (green) and 50 (orange) and
compared to the reference (black). The plot was expanded to the region with the most
significant differences.

as described in the previous sections. The decoupling sequences thus obtained were
analyzed with respect to the maximum positive and negative as well as the root mean
square (RMS) sideband amplitudes within the desired offset range Avs = 40 kHz. For each
digitization, the average sideband amplitudes of the four possible settings are illustrated in
figure 2.31. All three modes of evaluation share common trends. It is globally affirmed that
the homogenizing approach provides reduced sideband amplitudes compared to relying on
®pnean alone. In addition, CG reinitialization proves beneficial in each case so that further
sideband suppression can be achieved compared to using no convergence boost. The
quality factor landscape is thus seemingly not locally quadratic. It can be observed that
there is no significant improvement beneath 5 ps. Therefore it can be assumed that the
physical limits are approached rather than a speed limit in terms of phase modulation due
to the coarse digitization. In particular for cases where no CG reinitialization is applied
there are instances where the error bars or even the mean values indicate that the sideband
amplitudes increase for a finer digitization. This could be attributed to the convergence
behavior which is illustrated for the case of ®coop and CG reinitialization in figure 2.32.
Two influences can be deduced from the two subplots. First, at the initial steps a finer
digitization results in slightly impaired convergence due to a larger space of possibilities
given that there are more variables (there is only one outlier for At = 2 us with drastically
faster convergence but with a worse result than the rest of the set). This will later largely
be compensated for by the fact that overall better solutions can be achieved which leads to
the sets of At < 20 us to overtake the optimizations with a more coarse time grid after about
50 iterations. After about 100 iterations, the sets of At < 10 s overtake the latter. Secondly,
the spread between the individual sets of optimizations still increases between iteration
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Figure 2.31.: Sideband statistics for individual decoupling sequences with varying digiti-
zation. Sideband amplitudes are given for ®yean and @coop (homogenizing approach) as
well as with and without CG reinitialization. The bars indicate the mean value and error
bars correspond to the standard deviation. The legend applies to all graphs.

200 and 1000 so that the state of convergence is not guaranteed to be reached within the
frame of these optimizations, which can lead to occasionally increased sidebands for a
finer digitization. These fluctuations are almost exclusively observed when the positive
and negative sideband amplitudes are evaluated. The trend can be rectified if the sideband
amplitudes are averaged over Avs at each frequency v; within the observed window of

83



2. Heteronuclear Decoupling: The BROCODE

&

3

o]

@]

e -

|

A

=

:}’_
18 . ) . 20 . . . . . . .
0 50 100 150 200 200 300 400 500 600 700 800 900 1000

lterations Iterations

Figure 2.32.: Spaghetti plots for different digitizations of pulse shapes using ®coop and
CG reinitialization. Optimizations were logged for At = 25 (black), 20 (blue), 10 (red), 5
(green), 4 (orange) and 2 ps (purple). The plots were expanded to bring the regions of the
initial 200 (A) and the final 800 iterations (B) into focus.

1 kHz. Although the RMS sideband intensities carry less physical meaning, they appear to
confirm the statements derived from the data obtained so far. Although the RMS sidebands
can be suppressed below 1%, the real sidebands which would be apparent in the measured
spectra would still be in range of 2-3%. The decoupling sequences obtained in this part of
the study are therefore only on the cusp of being competitive with bilevel decoupling.

In the second part of the study, COOP decoupling sequences were optimized to find the
best possible tradeoff between Ncoop and At with regard to the computational resources
given in table 2.6. The most exhaustive combinations which could be achieved were
Ncoop = 6 for At = 10 us (153600 variables), Ncoop = 4 for At = 5 us (204800 variables)
and Ncoop = 3 for At = 4 us (192000 variables). These optimizations were only feasible
on Wanderlust and JP. The 256000 variables necessary for Ncoop = 2 and At = 2 us could
not be handled on any of the available machines. Again, ten optimizations were carried
out until the maximum ratio between Ncoop and At was reached for every digitization
using CG reinitialization after every 50 of the 1000 iterations. The resulting cycles of
decoupling sequences were analyzed according to figure 2.31 and compared with individual
sequences which is shown in figure 2.33. Here, an increase in Ncoop consistently provides
an improvement in the sideband suppression capabilities of the decoupling cycle at a given
digitization for all three modes of evaluation. Most strikingly, decoupling cycles with a
rather coarse digitization but higher number of pulses can outperform individual pulses
with a finer digitization, which can be understood quantitatively be evaluating the ratios
Ncoop/At. This quotient can be imagined as a pseudo-digitization which can be inversely
correlated with the degrees of freedom for the optimization. For the ratios given above it
equates from coarse to fine to 1.67, 1.34 and 1.25 for 153600, 192000 and 204800 variables,
respectively. This can in parts explain the drastic improvements of COOP cycles over
individual pulses with At = 2 us as well as allow for a guess which setting may yield the
optimal result. Indeed, the three sets of decoupling sequences only vary by nuances in
terms of the resulting sideband amplitudes. However, by absolute numbers Ncoop = 6 for
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Figure 2.33.: Sideband statistics for COOP decoupling sequences with varying ratios of
Ncoop and the digitization At. ®coop (homogenizing approach) and CG reinitialization
after 50 iterations were used for all optimizations. The bars indicate average sideband
amplitudes of ten optimizations and error bars denote the standard deviation. The legend
applies to all graphs.

At =10 us and Ncoop = 4 for At =5 us offer a slight advantage with the latter providing
the lowest RMS sideband intensities. At best, average sideband amplitudes of about 0.6%
with apparent maximum sidebands of 1.5% can be achieved so that Ncoop = 4 and At =5 pus
is chosen to be developed further in the following sections since it not only poses the most
promising but also the most reasonable and fair comparison to the bilevel implementation
discussed in section 2.2.1.
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Figure 2.34.: Spaghetti plots for different COOP decoupling sequences using the homoge-

nizing approach and CG reinitialization. Optimizations were logged for At = 10 us and

Ncoop = 1 (black), 2 (blue), 3 (red), 4 (green), 5 (orange) and 6 (purple). The plots were

expanded to bring the regions of the initial 200 (A) and the final 800 iterations (B) into

focus.

Cooperativeness is also reflected in the convergence behavior. This is illustrated for
At = 10 ps going from Ncoop = 1 to 6 in figure 2.34. In contrast to figure 2.32, already
from the initial state of the optimizations, cycles with more pulses (and therefore more
degrees of freedom) show improved convergence and fidelities compared to individual
pulses or cycles with fewer members. This is due to fact that the average trajectory has
the same complexity for each value of Ncoop given that the additional degrees of freedom
are condensed in the same increment. This is why at each step the available solutions
improve with increasing Ncoop. Moreover, in the later stages of the optimizations, the
spread between the different sets remains rather constant so that it can be assumed that
all sets of optimizations reach a similar state of convergence.

2.2.5. The BROCODE

Now the search for the best possible comparison to the bilevel implementation discussed in
section 2.2.1 is going to be further refined. This section therefore solely focuses on cycles
of decoupling sequences with At =5 us and Ncoop = 1, 2 and 4. From the sets optimized
so far, the best candidate in terms of the value of ®coop was chosen to be optimized
until full convergence was reached. The dwell time AT was set to be equal to At just as
proposed for the BUSS pulse!'?”). This practically demands a refocusing of the coupling
evolution after each of the 5 ys increments. Although this is physically impossible, the
algorithm will be forced to find a solution that approximates the demanded behavior to
the best of its capabilities. In practice, performance in terms of continuous decoupling
throughout the grid was already generally satisfactory for all pulses which were optimized
for At = 100 us beforehand. Thus, a sufficient robustness against different dwell times
can be expected. The offset grid was discretized in 501 increments rather than 384 to
make sure that the on resonance case is sampled as well as spurious oscillations in the
offset behavior of the sequences are avoided. To make sure that the pulse sequences make
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use of the available Upp™ =2 kHz at each increment, the individual control amplitudes

were adjusted to the maximum value after each iteration according to equation 1.150. CG
reinitialization was only applied when the difference in ®coop between two iterations
was below 1077, Convergence in each case was generally reached within 10000 iterations.
Simulated decoupling profiles are given in figure 2.35. Simulation parameters were chosen
as in figures 2.14 and 2.17 to be set up for a later comparison with experiments. The
profiles clearly show a reduction in maximum sideband intensities from about 3% to below
2% going from Ncoop = 1 to 4. However, the average 1.5% sideband amplitudes given in
figure 2.33 could not be retained. On the one hand, given that ®coop has multiple terms,
it is not guaranteed that the pulse sequences with the highest numerical quality factor
provide the lowest sideband amplitudes. On the other hand the offset grid was more dense
than for the preliminary optimizations in section 2.2.4, so that the fidelity at some offsets
might slightly suffer from the fact that individual frequencies which were off the grid
before have to be significantly improved in order to yield a more homogeneous broadband
behavior for the new grid.

Although the sequences obtained so far are already competitive with bilevel decoupling,
there are still degrees of freedom available to be exploited. In a final set of optimizations,
RF amplitude modulation was allowed by restricting the overall RF power according to
equation 1.153 to ensure that B; pvms = 2 kHz is not exceeded. Sets of 10 optimizations were
carried out for Ncoop = 1, 2 and 4 using At = 5 ps. Continuous decoupling was demanded
throughout all shapes. 384 equally spaced checks across the offset grid with Avs = 40 kHz
were used and CG reinitialization was applied after every 50 of the initial 1000 iterations.
Subsequently, the best candidate according to the value of ®coop was chosen for further
optimizing with 501 offset checks and resetting the CG trajectory only when the change
in ®coop between two iterations was less than 1077, The converged algorithm resulted in
a family of self-compensating decoupling sequences with the best performance achieved
in this work. Simulations and experiments on a sample of 1*C-labeled methanol were
performed according to the protocol used for figures 2.14 and 2.17. Decoupling profiles are
given in figure 2.36. It is easily recognizable that allowing for amplitude modulation alone
provides a boost in sideband reduction comparable to cooperativeness. Upon increasing
Ncoop up to 4, sidebands can with few exceptions be suppressed down to 0.5%. The
general sideband pattern of the simulations can be reproduced rather reasonably in the
experiments. Apparently the differences seem to focus very close to the center peak.
The sideband profiles given in figure 2.37 confirm that already a single RF power-limited
decoupling sequence is competitive with a cycle of four purely phase-modulated sequences.
Differences between simulations and experiments entail a signal systematically appearing
at about 70 Hz right of the center peak. This peak appears throughout all experiments and
can be attributed to an impurity in the purchased methanol which was not further purified.
Further, it appears that at a specific range of frequencies (namely right of the impurity
signal and up to 500 Hz), sideband intensities and the overall spread from maximum
positive to maximum negative sideband amplitudes is smaller in the experiments than
predicted by the simulations. At the same time, at frequencies left of the impurity signal
(maybe due to it) the sideband intensities exceed those of the simulations. These deviations
amount to 0.1 to 0.4% of absolute sideband intensity so that the spread between positive
and negative sidebands varies by up to 0.5%. Sources of systematic errors may be RF
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Figure 2.35.: Simulated decoupling profiles using the fully converged constant amplitude
COOP decoupling sequences (At = 5 ps). For the offset profiles (left panels) ten contour
levels for positive and negative sidebands were plotted distributed equally between the
extreme values of +0.5 and +5% respectively. Peak contours were plotted using ten levels
between the maximum sideband and 100% intensity. For the sideband profiles (right
columns) spectra are overlaid and expanded to 5% of the maximum decoupled center peak
intensity across the desired offset range of 40 kHz. Since the sidebands are symmetrically
distributed around the center peak, only positive frequencies are plotted.
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Figure 2.36.: Comparison of simulated (left panels) and experimental (right panels) offset
profiles using the fully converged power-limited COOP decoupling sequences (At = 5 ps).
Ten contour levels for positive and negative sidebands were plotted distributed equally
between the extreme values of +0.5 and +5% respectively. Peak contours were plotted
using ten levels between the maximum sideband and 100% intensity.

89



2. Heteronuclear Decoupling: The BROCODE

Simulations Experiments

Ncoor =1

Sideband intensities / %

5 . . . . . . . .

0 200 400 600 800 1000 0 200 400 600 800 1000
vi/Hz vi/Hz

Figure 2.37.: Comparison of simulated (left panels) and experimental (right panels) side-
band amplitudes using the fully converged power-limited COOP decoupling sequences
(At =5 pus). Spectra are overlaid and expanded to 5% of the maximum decoupled center peak
intensity across the desired offset range of 40 kHz. Since the sidebands are symmetrically
distributed around the center peak, only positive frequencies are plotted.
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inhomogeneity or miscalibration which can theoretically affect heteronuclear decoupling
favourably in cases of overshooting the nominal u®* or at least not be detrimentall!%7).
Since all experiments for figures 2.36 and 2.37 were performed using a single calibration
(see section 2.2.7), they would all be affected equally. Another experimental imperfection
that might work in favor of decoupling performance are smoothing effects on the pulse
shapes since the amplitude and phase modulation happens on a 5 us grid which is rather
coarse compared to other OCT studies (see the references in section 1.2.3). From the
statistics given in figure 2.31, there might be slight improvements to be expected from
an even smoother modulation, but these effects are hard to predict and to measure. In
addition to these subtle effects, it has to be mentioned that the signal of residual 12C-bound
protons was not suppressed so that it can add up to the total signal intensity but it should
only add a relative 1-2% and therefore be rather negligible. Moreover, effects from digital
filtering and group delay compensation have already been discussed in section 2.2.1 and
may have a strong influence if particularly severe oscillations appear at the beginning
of the FIDs which might hence get retouched. Probably the most profound source of
deviations between simulations, given that basically the course of the baseline is analyzed,
are the differences in the signal processing procedure. Due to the fact that the experimental
data is processed by TopSpin®software, the effects of elaborate digital filter functions and
baseline correction algorithms on the line shape can not be reproduced in the simulations
so that this could be a viable contribution to the observed differences.

Even with the decoupling profiles at hand, it has to be proven that COOP decoupling
sequences outperform sets of randomly assorted sequences which were optimized individ-
ually. Hence, simulations were performed for sets of individually optimized decoupling
sequences obtained during the series of optimizations discussed above and compared with
the results for the COOP sequences. Figure 2.38 contains the data for both amplitude-
and power-limited sequences evaluated using the same criteria as in figures 2.31 and 2.33.
The data clearly show how in each case power-limited pulse sequences outperform their
purely phase-modulated counterparts for each value of Ncoop. Moreover, by whatever
metric the sideband amplitudes are evaluated, a set of randomly compiled decoupling
sequences never reaches the sideband levels of specifically optimized COOP cycles. The
effect is more pronounced with amplitude-modulated pulses than with their exclusively
phase-modulated counterparts as well as more pronounced with four instead of two pulses.
The differences are the least significant for the RMS sideband intensities which is due
to the fact that at the frequencies where the sideband levels are extracted, obviously a
limit set by the line shape is approached which amounts to about 0.3%. Quantitatively, in
terms of positive and negative sidebands, the absolute improvement ranges from 0.3-0.6%
which corresponds to a relative gain of 14-64%. This proves that cooperativeness can by
design benefit from additional degrees of freedom provided by more pulses or amplitude
modulation beyond mere statistical averaging.

As a final aspect of this study, the effect of the amplitude-modulation on the drastic
improvement of decoupling performance shall be elucidated. Figure 2.39 depicts amplitude
and phase profiles as well as a spectrogram representation of the first 5 ms of a single
constant amplitude and an amplitude modulated decoupling sequence. Whereas the phase
profiles are rather similar in showing a rather noise-like modulations the amplitude profiles
clearly resemble the different mechanisms by which constraints are applied to the RF
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Figure 2.38.: Sideband statistics for COOP decoupling sequences versus sets of individually
optimized sequences as a function of Ncoop. Decoupling sequences with limited RF
amplitude are marked with up™ and pulses with limited RF power are marked with B; rus.
The bars for individually optimized sequences indicate the mean value and error bars
correspond to the standard deviation. The legend applies to all graphs.
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Figure 2.39.: Visual representation of differently modulated pulse shapes for decoupling.
Phase, amplitude and spectrogram representations of a single optimized pure-phase modu-
lated decoupling sequence (A, C and E respectively) and an amplitude-modulated sequence
(B, D and F respectively). Parameters of the spectrogram were chosen according to the
BUSS example given in [54] with a 15% baseline of zeros added at the beginning and end

of the shape.
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control amplitudes. It can be deduced from figure 2.39 D that for several hundred s at the
beginning of the sequence the RF amplitude slowly builds up since heteronuclear coupling
evolution on this timescale does not necessitate significant RF expenditure. Nevertheless,
prior to oscillating again seemingly chaotic around B; ryms = 2 kHz there are bursts of more
than 6.5 kHz which can compensate for such a build-up behavior (further experimental
details of the individual pulses are given in section 2.2.7). It has been shown in [54]
that the apparently random modulation of the pulse sequence serves a distinct purpose
which is revealed by the spectrogram. For the power-limited sequence (figure 2.39 F) it
is easily shown that all the RF energy is being dissipated in the desired range of offsets
Avs = 40 kHz with rapidly changing frequency ranges of RF deposition. Conversely, the
purely phase-modulated sequence has a spillover outside the desired offset range for the
same reason as discussed with the BIBOP shape of figure 1.7. As can be seen by the
corresponding contour levels, this leaves less energy available to span a dense web of RF
irradiation over the desired frequency range and over the timescale of the sequence. This
causes more abundant periods of effectively free coupling evolution which gives rise to
more pronounced sidebands as discussed for the GARP inversion element (see figure 2.10).
Another more phenomenological evidence for the RF spillover can be found at the edges
of the offset profiles in figure 2.35 (left side) where there is no visible transition from a
singlet (inside the optimized region) to a doublet (outside the optimized region) as can be
observed in figure 2.36. The RF energy deposition at these frequencies leads to a diffuse
and distorted doublet with an abundance of sidebands.

In summary, it has been shown that the seemingly noise-like but apparently highly-
orchestrated RF modulation scheme in combination with multi-scan cooperativeness as
introduced in section 2.2.3 does in principle provide the ultimate sideband canceling
mechanism for broadband heteronuclear decoupling. Given that the decoupling scheme is
non-repetitive, there is no predetermined or dominant signal modulation which will lead to
a dominant sideband at a given frequency which makes the method more attractive in the
low-power regime as it is not subject to adiabaticity constraints. This is proven by the very
homogeneous sideband profiles in figure 2.37. At the same time broadband operation is
maintained beyond the capabilities of CPD methods. The sideband canceling mechanism as
depicted in figure 2.28 is more general and straight-forward than any frequency-unspecific
desynchronisation’4 1°4] or averaging techniques!®! and is independent of a minimum
required number of scans (or maximum for that matter). It is therefore nearby to refer to this
method in the most general way as BROadband COoperative DEcoupling (BROCODE) [11°]
in the following.

2.2.6. Experiments

Finally, two experimental aspects of the BROCODE shall be elucidated. First, the confidence
levels given in terms of the maximum sideband amplitudes in section 2.2.5 shall be tested
with regard to the dynamic ratio that is defined by the signal and the corresponding
sidebands. Therefore, a sample of imidacloprid, a widely-used insecticidel''] was doped
with its synthetic precursor 2-chloro-5-chloromethyl-pyridine as an impurity (referred to
simply as pyridine precursor in the following) to approximately yield a concentration ratio
of 100:1. The synthetic pathway to imidacloprid which employs the pyridine precursor is

94



2.2. Broadband Decoupling by Optimal Control Theory

one of the two common methods to obtain the insecticidel''?) and is depicted in figure 2.40.

To characterize the compounds for decoupling experiments, one-dimensional 'H and *C
as well as two-dimensional CLean In-Phase-HSQC (CLIP-HSQC) ['3] experiments were
recorded to obtain relevant information about the labeled atoms in figure 2.40. Chemical
shifts of 'H and "*C nuclei and their corresponding ' Jcyy couplings are given in table 2.7.
Decoupled two-dimensional HSQC spectra of the aforementioned 100:1 compound mixture
were recorded with AQs of 128 ms using the BROCODE pulses (By rums = 2 kHz) and bilevel
decoupling employing caWURST-2 pulses at By rms = 4.4 kHz as well as 2 kHz. Further,
following equation 1.154 the RF energy scales quadratically with B; rys so that a reduction
of the latter by more than 50% (as is the case for BROCODE) affords an AQ prolonged
by a factor more than four. Therefore, additional spectra were recorded with AQs of
512 ms using the BROCODE pulses and bilevel decoupling employing caWURST-2 pulses
at By rms = 2 kHz. Four scans have been averaged in each case. For the first comparison,
spectra using the BROCODE and caWURST-2 bilevel decoupling (both with AQ = 128 ms,
the latter with By rms = 4.4 kHz) were evaluated with regard to whether the impurity can
be identified. In all experiments stated above, position 1 is very easily discerned in the
mixture (see figure 2.40 B for atom numbering). On the contrary, position 4 poses several
problems. The spectral regions of 6 ppm for the 'H and 125 ppm for the '*C dimension are
sampled with a resolution of 7.8 and 294 Hz, respectively. This is sufficient for the pure
compounds, but given that the chemical shift differences for position 4 amount to 18 Hz for
both dimensions, a significant challenge has to be met. At the given resolution, the * Jyy
coupling to position 3a is not resolved so the line width achieved after apodization using a
cosine-squared window function also amounts to about 18 Hz. This is why several line
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Figure 2.40.: Reaction schemes of the synthetic pathway to obtain imidacloprid using the
pyridine precursor. The necessary substrate 2-nitro-amino-imidazoline (*the tautomeric
form would be called 2-nitroimine-imidazolidine) is obtained starting from ethylene di-
amine (A). The reaction with the pyridine precursor yields the desired compound with the
atom numbering corresponding to the number of bonds between the given carbon atom
and the moiety which distinguishes the compounds from each other (B).
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Imidacloprid S(*H) / ppm | 5(*3C) / ppm 1T/ Hz -
position

1 4.48 44.94 141.0 -

3a 7.80 139.85 164.9 -

3b 8.37 149.78 182.1 -

4 7.53 124.79 172.5 -
Pyridine S(*H) / ppm | 5(*3C) / ppm 1Jon/ Hz -
position

1 4.83 42.61 154.3 -

3a 7.95 140.77 166.0 -

3b 8.50 150.37 183.2 -

4 7.56 124.91 173.1 -

Chemical shift || AS(*H) / ppm | AS(*H) /Hz | AS(**C) / ppm | AS(**C) / Hz
differences

1 0.35 210 2.33 349.5

3a 0.15 90 0.92 138

3b 0.13 78 0.59 88.5

4 0.03 18 0.12 18

Table 2.7.: Characterization of imidacloprid and the pyridine precursor. Chemical shifts
were determined for both compounds in order to calculate the corresponding differences
for each position which yields an HSQC cross peak (position 2 is a quaternary carbon).
The values in Hz are calculated for a 'H resonance frequency corresponding to 600 MHz.

shape distortions overlap with the signal of the impurity component. These are the wiggles
due to incomplete nullification of the FID at its end as well as residual distortions due to
lock phase misadjustment. It is hard to judge if these distortions are symmetric around
the main signal since bilevel decoupling introduces a baseline wave due to the intensity
drop at the beginning of each FID upon averaging of the individual scans (see figure 2.13)
which makes it hard to thoroughly phase the signal to the necessary accuracy at the
given intensity levels. This baseline wave can be observed in the simulations depicted
in figure 2.16. The spectra using the BROCODE can be phased more reliably and reveal
asymmetric line shape distortions which may be caused by the signal of the impurity
component. However, given that such statements involve a fair amount of speculation,
position 4 shall not be further discussed and positions 3a and 3b shall be further elucidated.
Excerpts of the HSQC spectra showing signals for position 3a and 3b for both compounds
are depicted in figure 2.41. A highly-resolved one-dimensional 'H spectrum was added on
top of the spectrum to pinpoint the position where the impurity signals can be expected.
Integration of the signals reveals a concentration ratio between 100:1.3 and 100:1.4. Errors
during the sample preparation happen most likely due to difficulties with the handling
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Figure 2.41.: HSQC comparison for signals 3a and 3b of the imidacloprid/pyridine pre-
cursor mixture. Experiments using the BROCODE pulses (black and gray contours) and
caWURST-2 bilevel decoupling (B; rms = 4.4 kHz, red and blue contours) were collected
for 128 ms. Eight positive and negative contour levels are plotted with an 1.8-fold incre-
mentation starting at 1% of the maximum intensity of signal 3a at 7.8 ppm belonging to
imidacloprid. This corresponds to 0.6% of the maximum intensity of signal 3b at 8.37 ppm.
A highly-resolved one-dimensional *H spectrum was added on top of the spectrum.

of the solid substances at the given dynamic ratio in terms of mass, particularly given
that the pyridine precursor is hygroscopic. However, the contour levels were plotted with
an 1.8-fold incrementation starting from 1% of the maximum intensity of signal 3a of
imidacloprid, so that the representation of the spectra is not substantially affected. The
first contour level of signal 3b corresponds to 0.6% of the maximum intensity. As expected,
bilevel decoupling with By ryms = 4.4 kHz allows for the identification of cross peaks for
positions 3a and 3b. Additionally, an artifact due to long-range transfer between the 3b
carbon to the 3a proton yields a further cross peak. All this information content is retained
when the BROCODE is used despite the drastically reduced RF levels of 2 kHz. Sidebands
remain below 1% for signal 3a and 0.6% for signal 3b despite the fact that the ! Joyy couplings
for the aromatic moieties exceed 140 Hz which is the value used in the optimizations and
despite the fact that the RF levels were calibrated by automated routines. Nevertheless,
the poor resolution in the 'H dimension does not allow for a discrimination of impurity
signals and typical HSQC artifacts at a first glance. Therefore, longer AQs are desirable.
The experiments described above were repeated with AQ = 512 ms where B; pms for
caWURST-2 bilevel decoupling had to be reduced to 2 kHz according to probehead spec-
ifications. Due to the extended AQ the resolution could be boosted to 1.95 Hz. Even so,
this did not lead to the unambiguous identification of an impurity signal at position 4
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for several reasons. The prolonged AQ requires a repetition of the BROCODE sequences.
Since the sequences are non-cyclic and according to the categorization of section 1.2.3
behave like PP pulses, each repetition impairs the decoupling performance, which can lead
to a slight increase in sideband intensities and the introduction of distinct sidebands very
close to the center peak. Enhanced resolution also may affect sideband intensities such that
the individual sidebands are better resolved and may have increased intensity at the given
frequency. Another method to boost resolution is linear forward-prediction (LFP). The full
FID can in principle be used to predict another chunk of data up to the same amount as
the FID itself. For the spectra presented in this section, LFP worked more reliably with the
spectra which provided an already increased resolution due to 512 ms AQ. At the same
time, slightly higher sideband amplitudes may be a spurious byproduct. Nevertheless, LFP
is attractive in this context since it can lead to resolved resonance line splittings due to
3 Jun couplings and occasionally even * Jiz; couplings (another example will be discussed
further below). Resolved line splittings are in principle beneficial in order to distinguish
impurity signals from sidebands, but in the case of position 4 did not help to resolve the
signal belonging to the pyridine precursor. Excerpts of the HSQC spectra showing signals
for position 3a and 3b for both compounds are depicted in figure 2.42. With the help
of LFP, the time-domain data corresponds to an experiment with more than 1 s of AQ
yielding a resolution below 1 Hz. Again, eight positive and negative contour levels were
plotted with an 1.8-fold incrementation but this time starting from 1.2% of the maximum
intensity of signal 3a of imidacloprid. Obviously the intensity threshold where only the
signal of the pyridine precursor is observable had to be lifted in the higher resolved spectra
using the BROCODE. The same contour levels correspond to about 0.7% of the maximum
intensity at position 3b of imidacloprid where the impurity signal would be hidden among
the sidebands which is why the contours in the lower panel of figure 2.42 had to be raised
to 1% to identify the pyridine precursor. When caWURST-2 bilevel decoupling is used,
sidebands are more abundant and obtrusive so that the impurity signals have to be sought
after among the sidebands.

For a more detailed analysis, 1D slices were extracted for signals 3a and 3b for both
resolutions. The digital resolution of the 3C dimension was increased to about 74 Hz
using a zero-filling factor of four so that 1D slices can be extracted closer to the actual
3C chemical shift of the impurity signal. This facilitates a more reliable identification
of impurity resonances. Slices of signal 3a extracted from the spectra acquired with the
different decoupling schemes as well as different resolutions are given in figure 2.43. At the
resolution achieved by AQ = 128 ms, no J-couplings can be resolved so that the impurity
signal at position 3a can only be distinguished from the long-range transfer artifact at the
chemical shift of position 4 on a closer look. Nevertheless, using only B; pms = 2 kHz also
the BROCODE can provide sideband amplitudes which are marginal enough to identify
signals of the impurity component. Upon increasing the resolution by applying LFP to
datasets acquired with AQ = 512 ms, both the 3 Jip; and the * Jyy couplings of the signals
at position 3a can be resolved. Unluckily, this also applies to the sidebands caused by the
bilevel method, which are still spurious at the 1*C chemical shift of the impurity signals
such that they equal the latter. However, it is now easily possible to at least discern transfer
artifacts from all other signals appearing in the spectrum. This is particularly beneficial
when the BROCODE is used at this resolution, since now the only relevant signal is easily
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Figure 2.42.: HSQC comparison for signals 3a and 3b of the imidacloprid/pyridine pre-
cursor mixture. Experiments using the BROCODE pulses (black and gray contours)
and caWURST-2 bilevel decoupling (red and blue contours) were collected for 512 ms
(Birms = 2 kHz in both cases). Eight positive and negative contour levels are plotted
with an 1.8-fold incrementation starting at 1.2% of the maximum intensity of signal 3a
at 7.8 ppm belonging to imidacloprid (upper panel) and 1% of the maximum intensity of
signal 3b at 8.37 ppm (lower panel). A highly-resolved one-dimensional 'H spectrum was
added on top of the spectrum.

identifiable due to its line shape defined by J-couplings. The most significant remaining
sidebands are directly next to the center peak which are most likely due to the repetition
of the BROCODE sequences. This appears plausible since these sidebands are found about
8 Hz away from the center peak which corresponds to 1/128 ms. A similar trend can be
observed for position 3b. 1D Slices of signal 3b extracted from the same spectra are given
in figure 2.44. Again, looking at the spectra recorded with AQ = 128 ms, the information
content of the experiment using bilevel decoupling at B; pms = 4.4 kHz can be retained
when the BROCODE is employed at the much reduced RF power levels. At the higher
resolution and equal RF power as the BROCODE, bilevel decoupling suffers from very
obtrusive sidebands which exceed the intensity of the impurity signal by far. Using the
BROCODE however, the signal of position 3b of the pyridine precursor can be identified
with the * Jyy coupling moderately resolved.

The aspect of increased 'H resolution in decoupled HSQC spectra due to extended AQ
facilitated by the extremely low-power BROCODE sequences and the possible synergy
with LFP was further studied on a sample of (+)-borneol. The compound class of bornanes
and norbonanes is well studied''*] and is a good example for molecules that have cyclic
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Figure 2.43.: 1D HSQC slices for signals 3a of the imidacloprid/pyridine precursor mixture. Excerpts of spectra (top panels) and
four-fold magnifications (bottom panels) are shown with AQ = 128 ms using bilevel decoupling (B; rms = 4.4 kHz, A) and the BROCODE
(B) as well as AQ = 512 ms using bilevel decoupling (B; rms = 2 kHz, C) and the BROCODE (D). Datasets recorded for the latter two
were subject to LFP. All spectra were normalized to the same maximum intensity. The long-range transfer artifact at the chemical shift
of position 4 is indicated by an asterisk.
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Figure 2.45.: Structure (A) and overlapping signals 5n and 6x (B) of (+)-borneol. Atom
numbering was chosen according to [114].

moieties or aliphatic chains which are either not highly- or not diversely substituted
so that CH;, groups can form rather complex spin systems. In the case of (+)-borneol,
proton 5-endo (here denoted 5n) and 6-exo (here denoted 6x) both resonate at 1.25 ppm
and are coupled which results in a higher order spectrum. The atom numbering and
particular 'H signal are shown in figure 2.45. Such multiplets can not be deconvolved by
homonuclear correlation spectra such as COrrelation SpectroscopY (COSY) '] or TOCSY.
Figure 2.46 shows a Double-Quantum-Filtered COSY (DQF-COSY) [11] spectrum (methyl
groups were excluded) of (+)-borneol with annotated 1D 'H spectra used as projections.
The assignment of the resonances was adopted from [114]. The signal at about 2 ppm
stems from the hydroxyl group. The diagonal peak of protons 5n and 6x shows only
three correlations to signals 2x, 5x, and 6n. Without knowing the structure, it can not
be said a priori if these cross peaks are due to 2Jgy, > Jun or even *Jgy couplings and
which of the two protons in question gives rise to these correlations. An HSQC spectrum
reveals that the two protons at 1.25 ppm are not attached to the same carbon atom, so
they can in principle be deconvolved using the 1*C dimension in heteronuclear correlation
experiments. The signals of position 3 are assigned rather easily. With the help of COSY
and HSQC correlations as well as some values for homonuclear J-couplings, signals 5n
and 6x can be solved indirectly as soon as the signals for 5x and 6n are unambiguously
assigned. Nevertheless, in complex spectra (regardless whether the complexity is caused
by the structure of a single compound or overlap is caused by a mixture of compounds)
it might be necessary to directly solve multiplets such as 5n and 6x. Given that due to
the use of heteronuclear decoupling, the resolution in the 'H dimension is usually very
limited, several spectra using the BROCODE were recorded. Experiments were conducted
with AQ = 128 ms and 512 ms both with and without the use of LFP so that datasets with
effective AQs of 128, 256, 512 and 1024 ms were obtained. For the 'H spectral width of
4 ppm this yielded resolutions of 7.84, 3.92, 1.95 and 0.98 Hz, respectively. Corresponding
spectra for the former and the latter showing the CH, region of (+)-borneol is depicted in
figure 2.47. It is easily recognizable from the contours that the spectrum reveals a lot more
fine structure of the individual cross peaks upon the fourfold increase brought about using
the BROCODE and LFP. A more detailed analysis of the cross peaks was performed by a
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Figure 2.46.: Two-dimensional DQF-COSY for (+)-borneol. A highly-resolved 1D 'H
spectrum was used for the projections. Resonance assignment was adopted from [114].

comparison with simulations of simple spin systems. 1D slices of the HSQC spectra for all
four resolutions as well as simulated spectra of signals 5n and 6x are given in figure 2.48.
The experiments with AQ = 128 ms show no discernible fine structure and the cross peaks
obtained by LFP only reveal a triplet-like envelope. Even the extended AQ of 512 ms only
reveals a quantitative difference between both signals which can be explained by different
magnitudes of the ? Jyy coupling within the CH, groups, the > Jyy couplings between 5n
and 6x themselves and the > Jyyy; couplings to 5x and 6n, respectively. When LFP is applied
to the experiment with AQ = 512 ms, a qualitative difference is revealed as the signal of
proton 6x shows a further fine structure which can only be explained by an additional
coupling. The COSY correlation to proton 2x therefore must be due to a  Jyy coupling
between the former and proton 6x. The four protons at positions 5 and 6 were plugged into
the simulation for signal 5n using their respective chemical shifts and 2Js,s5, = —12.2 Hz,
3 Jsnex = 4.6 Hz and 3 Js,6, = 9.4 Hz. For signal 6x, a five-spin system using the protons at
positions 5 and 6 as well as 2x was simulated using the respective chemical shifts and
2 Jonex = —12.7 Hz, 3 Jsu6x = 4.6 Hz, 3 J5x6¢ = 12.4 Hz and * o6 = 1.9 Hz. The assignment of
the overlapping resonances 5n and 6x is thus also more directly possible. Resolving the
full multiplet structure of overlapping signals is not only useful for strongly coupled spin
systems but can also facilitate a direct multiplet analysis in weakly coupled spin systems.
More importantly, it is highly desirable to exploit the simplicity of HSQC spectra to the
highest possible extent in terms of extraction of homonuclear coupling constants as it
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Figure 2.47.: Two-dimensional HSQC spectra showing the CH, region of (+)-borneol.
Experiments are given for AQ = 128 ms (red contours) and 512 ms using LFP (black
contours). A highly-resolved 1D 'H spectrum was used for the projection. Resonance
assignment was adopted from [114].
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Figure 2.48.: 1D HSQC slices for signals 5n (upper panels) and 6x (lower panels) of (+)-
borneol. Signals obtained from experiments with AQ = 128 ms and 512 ms are given in
red and black, respectively. Simulations of spectra with AQ = 1024 ms are shown in blue.
The values for AQ and the use of LFP are indicated as insets.
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may render in terms of information theory more complex experiments like Heteronuclear
Multiple-Bond Correlation (HMBC) 17} or HSQC-TOCSY [8] expendable.

In summary, the BROCODE was presented as the possibly most general and universal
approach for sideband suppression in low-power broadband heteronuclear decoupling.
Within the established confidence limits of residual sideband amplitudes, the information
content of the decoupled HSQC spectra can be retained using the lower levels of RF energy
dissipation. By using the BROCODE repetitively in experiments with AQ = 512 ms (and
LFP), homonuclear J-couplings could be extracted which increased the information content
of the HSQC spectra discussed in this section. This was not possible using adiabatic bilevel
decoupling within usual adiabaticity constraints (B; pms = 4.4 kHz) given that the same
net RF energy dissipation according to equation 1.154 ensues much shorter AQs.

2.2.7. Materials & methods

Simulations were performed using the MATLAB®software package with either self-written
scripts and functions (see appendix A.2.1) or code developed during the theses of Sebas-
tian Ehni® and Martin Koos as well as modifications of the latter with the following
exceptions: Spectrograms[®*l shown in figures 1.7, 2.10 and 2.39 were obtained from a
software package provided by Thomas Heydenreich, Technical University Munich. The
data for the experimental decoupling profiles given in figures 2.14, 2.15, 2.17, 2.18, 2.36
and 2.37 was processed using a MATLAB® Metabolomics toolbox provided by the Bruker
Biospin GmbH. Adiabatic shapes used in the simulations discussed in sections 2.1.3, 2.1.4
and 2.2.1 as well as in corresponding experiments in section 2.2.1 were generated using
the Shapetool of the Bruker TopSpin®software package. The BUSS shape!'’’] used in
the simulations of figure 2.16 was provided by Dr. Franz Schilling, Technical University
Munich.

Experimental decoupling profiles shown in the figures referenced above were obtained
from spectra recorded on a 600 MHz Bruker Avance III spectrometer equipped with an
inversely detected 'H,'*C,'>N-triple-resonance cryogenically cooled TCI probehead using
a 500 mM sample of *C-enriched methanol dissolved in CDCl;. 1D 'H spectra with
synchronized inverse gated 1>C decoupling were acquired with spectral widths of 10 kHz
corresponding to 16.7 ppm with the carrier frequency set to the methyl resonance at
3.49 ppm. The *C resonance at about 50.75 ppm which served as the zero decoupler offset
for the decoupling experiments was determined individually for each series of experiments
within 0.01 Hz accuracy from a highly-resolved 1D !*C spectrum. Data was collected
for 128 ms corresponding to 2560 complex data points which were zero-filled to 16384
points. Time-domain data was apodized using a cosine-squared window function and an
exponential line broadening of 6 Hz prior to FT. The frequency-domain data was then
phased and subject to an automated baseline correction procedure. Four dummy scans
were used in each series of experiments with a recovery delay of 30 s. Experiments using
bilevel decoupling with two or four scans made use of the CPD program bi_p5md4sp_4sp
whereas for the single-scan experiments the p5m4sp180 program was used as implemented
in Bruker TopSpin® 3.0 (and above). Measurements using the BROCODE required self-
written CPD programs using bilevel syntax (see appendix A.5). The temperature was
set to 300 K. RF levels for the decoupler channel were calibrated using the off-resonance
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scaling of the ! Jcyy coupling of methanol under CW irradiation according to equation 2.5.
The coupling constant of about 141 Hz was determined individually for each series of
experiments within 0.6 Hz accuracy from a non-decoupled 1D 'H spectrum. Off-resonance
scaling was used to determine the power levels corresponding to urr = 4 kHz (62.5 us pulse
length) within +1% accuracy. For experiments using caWURST-2 pulses at B; ryis = 4.4 kHz,
the shapes had to be calibrated to up®™ = 7.19 kHz (34.77 s pulse length) for the low-power
component and 10.5 kHz (23.81 us pulse length) for the high-power component. The shapes
had to be calibrated to up™ = 3.27 kHz (76.45 ps pulse length) for the low-power component
and 4.77 kHz (52.41 ps pulse length) for the high-power component to achieve equal scaling
for operation at By rms = 2 kHz. The optimization of the BROCODE pulses resulted in
shapes with different values for up™. Upon conversion from the three-column uy, u,, At
into the two-column amplitude/phase format of Bruker shapes, the amplitudes which
will serve as the 100% reference in the Bruker format were determined from rounding
upi up to the nearest multiple of 0.5 kHz. These values and the corresponding pulse
lengths were then used to calibrate the actual power levels. The individual pulse requires
upE™ = 6623.50 Hz which was referenced to 7 kHz (35.71 us pulse length). The two-step
BROCODE pulses require up™ = 6192.08 and 7049.91 Hz which were referenced to 6.5
and 7.5 kHz, respectively (38.46 and 33.33 us pulse length, respectively). For the four-
step BROCODE cycle, pulses were obtained with uleﬁ‘X = 6478.45, 6578.45, 5977.50 and
5759.49 Hz which were referenced to 6.5, 7, 6 and 6 kHz, respectively (38.46, 35.71, 41.67
and 41.67 pus pulse length, respectively). Power levels for 'H pulses were calibrated by
automated routines.

Experiments to obtain the spectral information about imidacloprid and the pyridine
precursor given in table 2.7 were recorded on a 500 MHz Bruker Avance Il HD spectrometer
equipped with a CryoProbe Prodigy " using 100 mM samples of imidacloprid and 2-chloro-
5-chloromethyl-pyridine dissolved in DMSO-ds. 'H chemical shifts were extracted from
1D spectra acquired with spectral widths of 4 kHz corresponding to 8 ppm with the carrier
frequency set to 6 ppm. Data was collected for 1024 ms corresponding to 8192 complex data
points which were zero-filled to 16384 points. Experiments were recorded using a single
scan. 13C chemical shifts were extracted from 1D spectra using WALTZ-65 'H decoupling
at ugr = 2.5 kHz (100 ps pulse length) throughout the experiments which were collected
from 16 scans using four dummy scans and a recovery delay of 1.5 s. Spectral widths of
17.5 kHz corresponding to 140 ppm with the carrier frequency set to 100 ppm were used.
Data was collected for 1.87 s corresponding to 65536 complex data points which were
zero-filled to 131072 points. Time-domain data for all experiments was apodized using an
exponential line broadening of 0.3 Hz prior to FT and phase correction. RF levels were
calibrated automatically. The temperature was set to 298 K. ! Joyy couplings were determined
according to the method described in [119] from two-dimensional CLIP-HSQC [3] spectra.
Spectral widths were adopted from the corresponding 1D spectra and data matrices of
8192 X 512 complex data points were collected. Time-domain data was zero-filled to
16384 x 1024 points and apodized using a cosine-squared window function prior to FT
and phase correction. Experiments were recorded using two scans and 16 dummy scans
with a recovery delay of 1 s. Delays for magnetization transfer via ! Jcy couplings were
set for a 145 Hz coupling constant. The pulse sequence was adopted from the hsqcetgpsp.2
sequence provided in the standard Bruker library and uses SPs for inversion and refocusing
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of 3C spins. OCT-derived pulses were used for these purposes. The pulse parameters of
the corresponding BIBOP and BURBOP shapes such as bandwidth (Av), RF levels (up™),
pulse length (T), compensation of B; variations () and the number of pulse increments
are given in accordance to the nomenclature introduced in [12] such as BURBOP-a(Av,
up, T, 9, #points). The 180° pulses acting on °C were replaced by BIBOP (37.5 kHz,
10 kHz, 600 us, £5%, 1200) for inversion and BURBOP-180(37.5 kHz, 10 kHz, 1100 us, +5%,
2200) for refocusing. Both were introduced in [15].

Decoupled HSQC experiments on the imidacloprid/pyridine precursor mixture were
recorded on a 600 MHz Bruker Avance III spectrometer equipped with an inversely detected
'H,3C,>N-triple-resonance cryogenically cooled TCI probehead using a sample of the
compound mixture dissolved in DMSO-d; at a concentration ratio of 500/5 mM. Spectra
were acquired with spectral widths of 3.6 and 18.9 kHz for 'H and !*C, respectively,
corresponding to 6 and 125 ppm with the carrier frequencies set to 6 and 97 ppm. For the
spectra shown in figure 2.41, data was collected for 127.9 ms and 3.40 ms in the IH and
13C dimension, respectively. This corresponds to a data matrix of 920 X 128 complex data
points which was zero-filled to 16384 X 256 points and apodized using a cosine-squared
window function prior to FT and phase correction. Experiments were recorded using four
scans and 16 dummy scans with a recovery delay of 3 s. Delays for magnetization transfer
via ! Joy couplings were set for a 145 Hz coupling constant. The pulse sequence was
adopted from the hsqcetgpsp.2 sequence provided in the standard Bruker library using the
same pulse shapes for inversion and refocusing as given above. RF levels were calibrated
automatically and the temperature was set to 300 K. The shapes for bilevel decoupling
at By rms = 4.4 kHz and the four-step BROCODE cycle were calibrated according to the
specifications given above. The spectra shown in figure 2.42 employed bilevel decoupling
at By rms = 2 kHz and the BROCODE using the same parameters as given for figure 2.41
except as follows: Data was collected for 511.80 ms in the 'H dimension (the same 3.40 ms
were recorded in the '*C dimension) which resulted in a data matrix of 3682 x 128 complex
data points. LFP in the 'H dimension was applied using 18 coefficients to obtain a data
matrix of effectively 7364 X 128 complex data points which were zero-filled to 16384 X 256
points. For repetitive application of the BROCODE it was necessary to acquire a series
of single-scan experiments and add up the time-domain data afterward. This is due to
memory limitations of the spectrometer hardware and strongly depends on the console
but can in principle be automated. The projection of both figures was taken from a highly-
resolved 1D 'H spectrum acquired using a spectral width of 4.8 kHz corresponding to
8 ppm with the carrier frequency set to 6 ppm. Data was collected in a single scan for 1.7 s
corresponding to 16384 complex data points which were zero-filled to 32768 points. The
time-domain data was apodized using an exponential line broadening of 0.3 Hz prior to
FT and phase correction.

Experiments on (+)-borneol were also recorded on a 600 MHz Bruker Avance III spec-
trometer equipped with an inversely detected 'H,'*C,'>N-triple-resonance cryogenically
cooled TCI probehead using a sample dissolved in CDCl; at a 500 mM concentration. The
DQF-COSY shown in figure 2.46 was acquired with spectral widths of 2.4 kHz in both 'H
dimensions corresponding to 4 ppm with the carrier frequency set to 2.5 ppm. Data was
collected for 1.71 s and 106.75 ms in the direct and indirect dimensions, corresponding to
a data matrix of 8192 X 512 complex data points which was zero-filled to 16384 x 1024.
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Time-domain data was apodized using a sine-squared window function prior to FT. The
spectrum was recorded using eight scans and 16 dummy scans with a recovery delay of
1 s. The cosydfetgp.2 sequence provided in the standard Bruker library was employed. RF
levels were calibrated automatically and the temperature was set to 300 K.

Decoupled HSQC experiments on (+)-borneol shown in figures 2.47 and 2.48 used
spectral widths of 2.4 and 11.3 kHz for 'H and *C, respectively, corresponding to 4 and
75 ppm with the carrier frequencies set to 2.5 and 45 ppm. Data was collected for 127.6 ms
(red contours and slices), 511.66 ms (black contours and slices) in the 'H and 3.40 ms in
the *C dimensions, respectively. This corresponds to data matrices of 612 x 128 (red
contours and slices) and 2454 x 128 (black contours and slices) complex data points
which were zero-filled to 8192 X 256 points. Time-domain data was apodized using a
cosine-squared window function prior to FT and phase correction. Experiments were
recorded using four scans and 16 dummy scans with a recovery delay of 3 s. Delays for
magnetization transfer via ! Joy couplings were set for a 145 Hz coupling constant. The
pulse sequence was adopted from the hsqcetgpsp.2 sequence provided in the standard
Bruker library using the same pulse shapes for inversion and refocusing as given above.
The Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) transfer element!120]
prior to acquisition was replaced by a perfect echo INEPT (PE-INEPT) element to remove
the effects of homonuclear J-couplings during heteronuclear magnetization transfer['21],
RF levels were calibrated automatically and the temperature was set to 300 K. The shapes
for the four-step BROCODE cycle were calibrated according to the specifications given
above. In cases where LFP in the 'H dimension was applied, 33 coefficients were used to
obtain data matrices of effectively 1224 x 128 (red contours and slices) and 4908 x 128
(black contours and slices) complex data points which were zero-filled to 8192 X 256
points. For repetitive application of the BROCODE a series of single-scan experiments
was acquired and added up in the time-domain afterward. The projection of both the
COSY and HSQC spectra was taken from a highly-resolved 1D 'H spectrum acquired using
the same spectral width as in the two-dimensional experiments. Data was collected in a
single scan for 3.4 s corresponding to 16384 complex data points which were zero-filled to
32768 points. The time-domain data was apodized using an exponential line broadening
of —0.1 Hz and a Gaussian multiplier with a maximum position at 0.6 relative to the FID
prior to FT and phase correction. The same spectrum was used for figure 2.45 B.

Imidacloprid, 2-chloro-5-chloromethyl-pyridine and (+)-borneol were purchased from
Sigma-Aldrich®. Deuterated solvents and *C-enriched methanol were purchased from
Eurisotop®. All compounds were used without further purification.
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I want us to face the shape we’re in
A world of confusion awaits our sons
and kin

Let’s reset it all

Karnivool - We Are (Asymmetry)

3.1. Introduction

3.1.1. Motivation

NMR structure parameters accessible in isotropic media such as chemical shifts, J-couplings
and Nuclear Overhauser Enhancement (NOE) distances have their limits as far as the elu-
cidation and verification of structure models of small to medium-sized organic molecules
is concerned given that they are rather short-ranged. Therefore, high-resolution NMR
spectroscopy experienced a major boost when weakly-orienting media were introduced to
induce partial alignment upon the analyte molecule so that anisotropic structure param-
eters become available. Contributions to the Hamiltonian which exhibit an orientation
dependence (see equations 1.16, 1.20 and 1.28) resurface to a small extent and become
observable as RCSA (1221, RQCs ['?3] and RDCs [124-128] jn NMR spectra. The latter proved
to be especially potent for solving structural problems. For small molecules in particular,
heteronuclear one-bond RDCs, notably !Dcy couplings, are highly interesting since they
can correlate C-H vectors (the most basic spin systems in organic compounds) over longer
distances than the NOE by using the B field as an external orientational reference.

Already in isotropic liquids, ! Joi; couplings carry a wealth of information. They indicate
the degree of hybridization of carbon atoms[!?], serve as a measure of the configuration-
relevant anomeric effect in saccharides’*”) and can be used for the conformational re-
finement of peptides'3!]. Together with !Dcyy couplings however, challenges with the
structural elucidation of many different kinds of molecules in terms of conformation[!32-13¢],
relative configuration!!'® 137-142] and constitution'*3! could be met. Using chiral align-
ment media, enantiomers show differences in alignment so that questions concerning
enantiomeric excess and absolute configuration of molecules can be addressed(!4+-147],

RDCs in general are obtained by evaluating the differences between isotropic J-couplings
and the total couplings under anisotropic conditions given by

T =J+2D. (3.1)
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Figure 3.1.: Pulse sequence of the CLIP-HSQC. Narrow and wide bars correspond to
90° and 180° pulses, respectively. Phases are x unless indicated otherwise. Transfer
delays are calibrated to match A = 1/(2! Joy). Phases are ¢; = x, —x; ¢, = x, x, —x, —x and
Prec = x, —x, —x, x. The narrow gray rectangle indicates a 90° pulse to ensure anti-phase
removal which can be cycled according to ¢;. Delays § accommodate for the applications
of PFGs. Coherence order selection is applied with the gradients of ratio G;:G, = 80:20.1
for 1C as the heteronucleus. Phase-sensitive detection in the *C dimension is achieved
by using an Echo/antiEcho-TPPI protocol.

In the case of 'Dcy couplings, a massive interest in 'H,'3C-HSQC-type experiments
emerged, from which ! Joy and ' Tcy couplings could be reliably extracted either from the
direct[15 113 148-153] or indirect dimension!'>*157] All these experiments have shifted their
emphases between sensitivity, resolution, robustness, line shape, speed and the multiplet
structure of often notorious diastereotopic CH; groups. A good compromise between all
those aspects and probably the most-widely used experiment is the CLIP-HSQC [113], The
pulse sequence is depicted in figure 3.1. The 90° pulse acting on *C prior to acquisition
(indicated by a gray bar in figure 3.1) is meant to convert residual anti-phase magnetization
(e.g. 2I,S;) from incomplete INEPT back transfer to non-detectable multiple-quantum
coherence (e.g. 2I,S,) to prevent the former to introduce a dispersive contribution to
the heteronuclear doublet. This yields purely absorptive signals with respect to the ! Jcy
coupling which can readily be extracted from in-phase doublets.

The most significant drawback of all HSQC experiments where couplings are obtained
from the 'H dimension are the abundant  Jiy and "Dyy couplings which can cause overlap
and asymmetric doublets due to line shape distortions arising from strong coupling. Both
can impair an accurate determination of ! Joy; and Tcy couplings. In aligned samples in
particular, 'H nuclei can form highly complex networks due to ®Dyy couplings which
lead to a decrease in sensitivity and resolution. This effect is illustrated in figure 3.2. The
gray contours indicate that under anisotropic conditions, resolution is lost. Therefore,
possibilities to apply homonuclear 'H decoupling to HSQC experiments in order to enable
a more accurate extraction of one-bond couplings are explored in the following. It has to
be noted that an approach based on dipolar decoupling was proposed some time agol'>].
However, it has not found as widespread applications and is far less general as the methods
which will be discussed in section 3.1.2.
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Figure 3.2.: Excerpts of an annotated CLIP-HSQC spectrum presented in [139] illustrating
the effects on the line shape going from an isotropic environment (black contours) to
an anisotropic environment (gray contours). ' Tcy couplings can either be increased or
decreased by the dipolar contribution compared to the ' Joyy coupling. (Graphic taken and
modified from [139])

3.1.2. Broadband Homonuclear Decoupling

Sensitivity and resolution are main concerns of NMR method and instrumentation devel-
opments. Higher static magnetic fields and novel probe technologies significantly boosted
sensitivity but despite the increased chemical shift dispersion due to higher field strengths
and the possibility to spread resonance lines across multiple dimensions, the resolution
in 'H spectroscopy poses a challenge in terms of signal overlap. Therefore, methods that
collapse homonuclear multiplets to singlets have been pursued almost from the get go.
Homonuclear decoupling approaches can be grouped in several categories. One of the
oldest methods is a projection from a 2D J-resolved spectrum tilted by 45° in frequency
spacel®°]. Unluckily, due to the phase-twist line shape of the traditional J-resolved experi-
ment, the projection has to be taken from an absolute-value spectrum which limits the final
resolution because of large feet next to the signals caused by the dispersive contributions.
Apart from processing techniques (e.g. [160] and references therein), several experimental
approaches towards absorptive line shapes have been proposed. Dispersive contributions
can be removed from the spectrum by zero-quantum filtering{'°!} followed by the applica-
tion of a multiplet reduction algorithm['%?]. Alternatively, a conventional J-spectrum can
be combined with a so-called anti-J-spectrum of same intensity that has a reversed tilt
and is mirrored along the J-dimension in order to cancel dispersive signal components
and yield the desired line shapel'®3]l. The possibility to remove homonuclear splittings
via J-evolution periods was exploited in Diffusion-Ordered SpectroscopY (DOSY) where

reduced signal overlap facilitates more reliable extraction of diffusion coefficients*¢+ 1631,

In general, phase-sensitive homonuclear decoupled spectra can be obtained in various
ways. The effect of homonuclear J couplings during evolution periods can either be
kept constant (and therefore practically hidden) or be refocused. A constant-time (CT)
period allows for the evolution of chemical shifts for a variable period while the evolution
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of J couplings is kept constant by shifting a 180° pulse in an indirect dimension of a
multi-dimensional NMR experiment!'®% 1671 In addition to homonuclear decoupled 1D 'H
spectra, CT evolution is the only possibility to obtain COSY spectra with homonuclear
decoupling in the indirect dimension!*® 1], Direct J-refocusing approaches fail for COSY
as they would collapse the anti-phase multiplets to zero intensity (unless an experiment
is chosen that produces in-phase cross peaks!!’’l). CT experiments are widely used in
biomolecular NMR to suppress homonuclear couplings among heteronuclei in isotopically
enriched materials!'!).

The most relevant methods to achieve broadband homonuclear 'H decoupling employ J-
refocusing elements using RF pulses. Since decoupling among the abundant 'H nuclei can
not be achieved by RF irradiation in the sense of chapter 2, the pulse sequences are based
on the selection of sub-ensembles of spins. The result is an inherent sensitivity penalty
given that a small set of active spins has to be selected which can then be decoupled from
a larger set of passive spins to afford the decoupling and therefore increased resolution.
This methodology became known as pure shift (PS) NMR and exploded into a plethora
of experiments during the course of this thesis and which has already been extensively
reviewed[!727174], The fundamental principles at the core of all those experiments, however,
are rather old. The first of the reported building blocks which can serve as what can be
referred to as a single-spin inversion (SSI) element is the Bllinear Rotation Decoupling
(BIRD) isotope filter element(!7%). It acts as an effective 180° rotation on protons directly
bound to a heteronucleus (e.g. *C) while leaving more remotely connected protons
unaffected. Since the discrimination is facilitated by a difference of the magnitudes of
heteronuclear J-couplings, the *C spin can be regarded as a local decoupling field. If
3C-bound 'H magnetization is selected, broadband homonuclear decoupling is achieved by
the combination of the BIRD filter with a hard 180° pulse in the middle of a free evolution
period as it will allow the chemical shift evolution of the active spins while refocusing
the homonuclear J-couplings to the remotely-bound passive spins. By incrementing this
evolution period and concatenating the first points of the resulting FIDs, a PS FID can
be obtained. The sensitivity of this experiment depends on the natural abundance of the
heteronucleus which is 1.1% in the case of 1*C. Although the BIRD element was introduced
as a PS method, up until recently it was mostly used as a building block in heteronuclear
correlation experiments!34-157 176, 177],

A second pulse sequence building block that can be used in a PS context (although not
necessarily a SSI element) is a succession of two small-flip-angle pulses (f < 90°). The fact
that the efficiency of different coherence transfer pathways (CTPs) depends on the flip angle
of a mixing pulse was first presented for the Exclusice COrrelation SpectroscopY (E.COSY)
experiment[!78], where cross peaks are simplified and appear as if COSY spectra with
different selected coherence orders were combined. The same effect can be achieved by
two successive 90° pulses, phase-shifted by f, which was also the basis of the less-used
time-reversal method(!7°). However, if a small-flip-angle pulse pair is used instead of a
90° mixing pulse, COSY peaks are simplified in a way that is more suitable to obtain PS
'H spectra. In the z-COSY experiment['®°], diagonal and cross peaks of the active spins
only retain those multiplet components where the passive spins have the same spin state
in both the direct and indirect dimension and the remaining transitions are suppressed
if B is sufficiently small. The resulting diagonal peaks therefore completely lie along the
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diagonal. The anti-z-COSY provides diagonal peaks where all multiplet components lie
perpendicular to the diagonal by inserting an additional 180° rotation prior to the § pulse
pair. Now only multiplet components are retained in which the spin states of passive spins
in the indirect dimension was different from the direct dimension. Therefore the spectrum
can be tilted by 45° just as a J-resolved spectrum and the diagonal peaks can be used to
obtain an absorption-mode PS spectrum from a projection!’®!l. Also the possibilities to
decouple via small-flip-angle pulses has not been taken up again until recently.

Certainly the most significant approach was presented by Zangger and Sterk['#? and
their seminal work of 1997 introduced two major concepts at once. First, the sub-ensemble
selection can be achieved by spatial frequency encoding. A combination of a band-selective
90° pulse with a PFG leads to broadband excitation of each resonance at a given sample
volume. J-refocusing is achieved by the combination of a hard and selective 180° pulse
while a PFG is applied simultaneously so that the active spins of a given slice of the sample
experience a 360° rotation and are decoupled from all passive spins by the hard 180°
pulse. This Zangger-Sterk (ZS) SSI also sits in the middle of an indirect 'H chemical shift
evolution period but the second novelty that was introduced concerns the data acquisition.
It is not mandatory to restrict the collection of data to the single point in time where
homonuclear couplings are refocused. Chunks of data can be recorded for as long as
AQ < J7!is fulfilled, which corresponds to several ms in the case of ™ Jyy couplings
which are typically below 20 Hz. The result is a reduced time requirement to obtain a PS
FID since it can be concatenated from usually only a few dozen chunks which is why this
and related methods are referred to as interferogram-based or pseudo-2D experiments.
Now that only a few increments of an indirect dimension are needed, PS spectra can be
acquired in minutes rather than hours. The sensitivity is clearly reduced since only a small
portion of spins contribute to the signal at a given resonance frequency. More specifically,
this depends on the minimum chemical shift difference of spins that need to be decoupled
as it defines the necessary selectivity Av of the selective pulse which in turn defines the
slice thickness Az in combination with the slice selection gradient G; via

Av
Az=—"

182]

Gs. (3.2)

The ZS element resurfaced in the context of DOSY experiments where signal overlap
is a significant impediment for the determination of diffusion coefficients!'33]. Several
modifications to the original pulse sequence were proposed and the term PS NMR was
established('®*). A modified ZS pulse sequence is depicted in figure 3.3 A. For simplicity,
slice-selective excitation was replaced by a hard 90° pulse. This necessitates selection of the
active spins by CTP gradients to obtain clean spectra. Further, the newly-introduced delays
7 not only accommodate for PFGs and recovery delays. The additional echo time around
the hard 180° pulse can delay the refocusing of homonuclear couplings optimally until the
center of the data chunk while chemical shifts are refocused at the beginning of data acqui-
sition. In terms of the PS trajectory, now not only the very flat initial region of the cosine
wave but also the flat region of the terminal sine build-up can be monitored, effectively
doubling the tolerable chunk length['34]. Such a ZS-based PS pseudo-dimension can readily
be appended to two-dimensional experiments. The PS information of the direct dimension
obtained from such pseudo-3D experiments can readily be transferred to the indirect
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dimension of the final spectrum by means of covariance processing!'®’], as was proposed

for 2D-TOCSY [186-187] and Nuclear Overhauser Enhancement SpectroscopY (NOESY) [188],
As mentioned above, SSI elements fail for COSY but covariance processing can be used
to transfer the PS information of the indirect dimension of a CT-COSY spectrum to the
direct dimension['38]. The general shortcoming of the ZS method is that the sensitivity
is connected to the slice thickness. An improved version has been proposed, where the
offsets of the band-selective pulses are shifted after each scan, so that fresh reservoirs of
polarization are available and relaxation delays can be shortened!'8°],

The improved ZS data sampling scheme could successfully be applied to the BIRD
method"®]. The pulse sequence is depicted in figure 3.3 B. Again, a combination of a
hard 180° pulse and an SSI, here a BIRD filter, facilitates the decoupling. Many different
BIRD filters were proposed(!°!], using the spin species they affect with a 180° rotation as a
superscript. This can be either combination of protons directly (d) or remotely (r) bound
to the heteronucleus (X). The BIRD element in the gray box of figure 3.3 B corresponds
to a BIRD®X filter which refocuses chemical shifts and homonuclear couplings but not
heteronuclear couplings for the directly coupled CH group. Given that *C-bound protons
are selected by a stimulated echo and omitting the first >C pulse on alternate transients, the
'H 180° pulse has to be timed so that heteronuclear couplings are refocused at the beginning
of acquisition, homonuclear couplings 27 later, and chemical shifts have evolved for ;.
Since 13C-bound protons are observed, heteronuclear decoupling has to be applied during
acquisition. The correct CTP is enforced by PFGs. A major advantage of the BIRD method
is that it can bypass strong coupling (where the ZS-based experiment would fail) if the 1*C
satellite of a given signal is only weakly coupled to the passive proton. The downside is
that geminal couplings within a diastereotopic CH; group can not be suppressed because
both 'H nuclei are attached to the same 3C atom. It would further fail for isotopically
enriched compounds. A BIRD pseudo-dimension is predestined to be incorporated into
heteronuclear correlation experiments, where the sensitivity penalty has already been
paid and only a loss of S/N per unit time has to be condoned. A similar approach has
been pursued with the Reducing nuclEar Spin multiplicitiEs to singuleTs (RESET) HSQC
[192] " although the data sampling scheme is different in a way that a full 3D dataset is
recorded and each FID acquired contributes to the final S/N. Any BIRD-based PS approach
to long-range correlation experiments also has to fail since BIRD filters can not distinguish
between different remotely-bound protons. A PS HMBC experiment was proposed using
a J-resolved dimension*%3.

From all PS methods discussed in this thesis, the double-f pulses were the latest bloomer.
The approach was revived by the Pure Shift Yielded by CHirp Excitation (PSYCHE)
experiment(°!], Figure 3.3 C illustrates the pulse sequence. Hard f pulses were replaced by
swept-frequency pulses in the presence of a weak PFG. The sub-ensemble of active spins
that is refocused by this stimulated echo and selected for the PS trajectory statistically
depends on sin? § while the signal contribution of the passive spins depends on cos? 8
and needs to be suppressed. Since frequency sweeps are used instead of hard pulses,
CTPs which would lead to cross peaks in a corresponding anti-z-COSY experiment as well
as zero-quantum coherence evolution are blocked. Signals with different zero-quantum
coherence evolution times can be superimposed across the sample just as described by
Keeler!'®!], Spurious signals from cross peak pathways are also dephased since the corre-
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Figure 3.3.: Interferogram-based pulse sequences for PS 1D 'H NMR. Narrow and wide
bars correspond to hard 90° and 180° pulses, respectively. Phases are uniformly x. The SSI
in each sequence is indicated by a gray box. The sinc shape corresponds to a band-selective
180° pulse which facilitates J-refocusing in the ZS sequence (A). Heteronuclear transfer
delays in the BIRD sequence (B) are calibrated to match A = 1/(2! Jcy). The dashed 180°
pulse is omitted in alternate transients. Trapezoids with diagonal arrows indicate low-
power frequency-swept CHIRP pulses with low flip angles used in the PSYCHE sequence
(C). They can be replaced by pulses which sweep frequencies in opposite directions
simultaneously as indicated by dotted arrows. Delays 7 accommodate for the applications
of CTP gradients and allow for prolonged data chunks if z4 (A, C) and 7 (B) are chosen as
AQ/4n with n being the number of data chunks.

sponding spins are on resonance at different times during the two sweeps. A unique feature
of the PSYCHE element is that spectral purity can be tuned according to the choice of
since the intensity of the PS signals depends on sin? f whereas the intensity of spurious
signals depends on sin* 8. PSYCHE shares almost none of the weaknesses of other PS
methods and is far less prone to strong coupling. S/N can be further improved when double
frequency sweeps are used as indicated by dotted arrows in figure 3.3 C. The PSYCHE
element can be incorporated in the indirect dimension of a TOCSY sequence so that the
resulting spectrum can be subjected to covariance processing to yield a PS TOCSY without
a penalty in S/N per unit time(!*! (apart from having to record enough t; increments to
benefit from decoupling). Further, it can be used to remove dispersive signal components
in J-resolved spectral’®! or to specifically reintroduce couplings to a chosen spin in a

related experiment('*7),
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In parallel to the interferogram-based experiments, methods were proposed that cir-
cumvent the biggest disadvantage of PS techniques so far, which is the increased time
consumption a pseudo-dimension ensues. The first experiment that incorporated real-
time (RT) broadband homonuclear decoupling was based on BIRD elements in the middle
of short acquisition windows!**), RT PS acquisition relies on stopping the acquisition and
internal spectrometer clock, inserting an SSI to achieve homonuclear J-refocusing, leaving
the chemical shift trajectory in the same state as it has been when acquisition was stopped
and then resume the collection of data points. These acquisition windows should be
reasonably short to fulfill the condition AQ/n < J~! just as in interferogram-based exper-
iments with n being the number of acquisition windows. All FID segments can be stitched
together on the fly by the spectrometer software afterwards and do not require additional
processing. The original pulse sequence to obtain BIRD-based RT PS 1D 'H spectra is
depicted in figure 3.4 A. This sequence also relies on selecting *C-bound 'H magnetization
and on an efficient suppression of 2C-bound 'H signals. This is achieved by purging
heteronuclear spin states 21,S, by a PFG and inverting these states in alternate transients
by omitting the dashed *C 180° pulse in figure 3.4 A. Further, a BIRD element flanked by
gradients ensures that solely 2I,S, states are excited. XY-supercycling'® can be used to
increase the tolerance of BIRD filters towards a variation of ! Joyy couplings. To benefit
from the improved data-chunking introduced in [184], the first acquisition period has to be
half as long as all subsequent ones. The replacement of such a homospoil-sequence with a
traditional HSQC-sequence creates an unrivaled situation among PS experiments. Given
that the sensitivity penalty is paid by the selection of dilute heteronuclei via the HSQC
transfer, RT homonuclear decoupling increases resolution and sensitivity at the same time
due to the collapse of homonuclear multiplets!?’”]. Doublets within diastereotopic CH,
groups remain as an irreducible multiplicity and are the only drawback that is specific to
this method. A general downside that can be observed in all RT PS experiments is a loss
in resolution due to broadened lines. Since acquisition is stopped but relaxation remains
in effect, an artificial source of damping is introduced which causes the line broadening.
Just recently, RT BIRD acquisition and '*C-editing was proposed to replace the multiplet

reduction algorithm (see [162]) in zero-quantum-filtered J-resolved spectroscopy!?°!l.

RT acquisition was soon after proposed for the ZS approach[?°?l. Selection of the active
spins resembles the original experiment and is achieved by slice-selective excitation.
The FID is then periodically interrupted to apply the ZS SSI as described above. The
corresponding pulse sequence is depicted in figure 3.4 B. This sequence affords ZS-based
PS spectra in a reduced amount of time although sensitivity is still lost due to the slice-
selection procedure. RT ZS acquisition can readily replace conventional acquisition in
two-dimensional experiments as has been demonstrated for TOCSY [2°2], DOSY [2%3] and
Rotating frame nuclear Overhauser Enhancement SpectroscopY (ROESY) 24, A drawback
which is specific to RT ZS decoupling is that the length of the selective 180° pulse has
to be limited in order to prevent severe discontinuities in the resulting FID, so that the
selectivity can be hampered. Several modifications to the RT ZS acquisition scheme have
been proposed. Couplings with respect to a single spin can be reintroduced by adding an
additional selective pulse to the ZS SSI, which removes the signal of the corresponding
spin from the spectrum!?*> 206] Given that very small splittings may be hidden due to the
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Figure 3.4.: Pulse sequences for RT PS 1D 'H NMR. Narrow and wide bars correspond to
hard 90° and 180° pulses, respectively. Phases are x unless indicated otherwise. Heteronu-
clear transfer delays in the BIRD sequence (A) are calibrated to match A = 1/(2! Joy). The
dashed 180° pulse is omitted on alternate transients. Narrow and wide sinc shapes respec-
tively correspond to band-selective 90° and 180° pulse in the ZS sequence (B). To obtain
the HOBS sequence (C), the slice-selection gradient G, has to be omitted and slice-selective
excitation is replaced by broadband excitation of the whole sample before refocusing only
the frequency region which shall contribute to the final spectrum.

line broadening introduced by RT ZS decoupling, an interferogram-based version of the

same experiment was proposed soon after(27],

A very important offspring of RT ZS decoupling (although it can not be considered
broadband) are the Homodecoupled Band-Selective (HOBS) experiments, sometimes re-
ferred to as Band-Selective Homonuclear (BASH) decoupling(?*®-21]. Here, the subset of
active spins is a whole frequency region, which is decoupled from all spins outside that re-
gion by region-selective pulses. Unique to all PS methods, the active spins can be observed
with the full sensitivity but mutual couplings within the selected frequency region can
not be decoupled. Further, passive spins are completely removed from the spectrum, so
that it might be necessary to acquire several spectra in succession. Therefore the method
lends itself to be applied to types of molecules where the spectra can be easily divided
in distinct regions such as peptides and proteins(?°® 2. The pulse sequence is shown in
figure 3.4 C. By omitting the slice-selection gradient G, observation is restricted to spins
which are refocused by the band-selective pulses, which may be far less selective now.
The HOBS approach could be applied to TOCSY 28], NOESY [2°], ROESY [2°4] and HSQC
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208, 209] [211

experiments! as well as measurements of relaxation times(?'!]. The sensitivity and
resolution achieved in the selected regions of HOBS experiments is competitive to PSYCHE
although the method is not as general. However, the SSI of the PSYCHE experiment is
too long to be applied in RT experiments so that HOBS experiments are unrivaled with
respect to the S/N per unit time ratios for the decoupled spins.

3.2. RESET Experiments

3.2.1. Basic principle

The most promising starting point to work towards broadband homonuclear decoupled
CLIP-HSQC spectra is the RESET HSQC [1%2]. According to the nomenclature introduced
in [191], it uses a BIRD®X filter to refocus all homonuclear couplings to >C-bound pro-
tons and ! Jcy couplings, while the chemical shift evolution of *C-bound 'H nuclei is
monitored during an indirect evolution period. If a BIRD" filter was inserted, the *C
nuclei would remain effectively unperturbed and ' Jcy couplings can freely evolve as
only '2C-bound protons experience a 180° rotation. To benefit from the improved ZS
data-chunking proposed in [184], the BIRD" element can be replaced by a combination
of a hard 180° pulse and a BIRD? element with according delays as described in [190].
The resulting pulse sequence, which is referred to as CLIP-RESET HSQC in the following
is depicted in figure 3.5. It differs from the conventional RESET HSQC as follows: the
90° pulse, indicated by the narrow gray rectangle, removes anti-phase coherences after
incomplete heteronuclear transfer. It can be omitted alongside the 180° pulse in the gray
box to obtain CLean Anti-Phase-HSQC (CLAP-HSQC)-type spectral!'3l. These can be
combined with their CLIP-RESET counterparts to allow the extraction of couplings from
overlapping signals in an In-Phase Anti-Phase (IPAP) fashion!?'3]. After this, n FID chunks
are collected in a PS pseudo-dimension which is incremented by AQ/n. Delays 7 are chosen
so that chemical shifts and ! Joy couplings evolve for t, and the refocusing of homonuclear
couplings is delayed for AQ/2n until the middle of each chunk. The FID chunks are then
concatenated by the use of processing softwarel?l, This enables the user to drop points
from the beginning of each data chunk to avoid distortions from digital signal processing
and digital-to-analogue conversion!'®¥]. The delay 7* can be used to compensate for this
in the pulse sequence. The correct CTP during the pseudo-dimension is enforced by PFGs.
If HSQC spectra fully-decoupled in all frequency dimensions are desired, the dashed 180°
pulse and a heteronuclear decoupling sequence during acquisition can be applied to obtain
RESET-type spectra by the ZS data sampling scheme.

A CLIP-RESET HSQC spectrum obtained by using the experiment from figure 3.5 on a
sample of (—)-menthol dissolved in CDClj is shown in comparison with a conventional
CLIP-HSQC spectrum in figure 3.6. A gain in resolution due to a collapse of homonu-
clear multiplets can be seen for practically all cross peaks. However, on a closer look it
can be seen that a PS heteronuclear doublet is only achieved for CH and CHj3 moieties.
The homonuclear doublets due to 2 Jy couplings within diastereotopic CH; groups are
retained as an irreducible multiplicity. Figure 3.7 compares slices extracted from the
two-dimensional spectra for all carbon multiplicities and also shows examples for failed
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Figure 3.5.: Pulse sequence for the CLIP-RESET HSQC. Narrow and wide bars correspond
to hard 90° and 180° pulses, respectively. Phases are x unless indicated otherwise. Het-
eronuclear transfer delays are calibrated to match A = 1/(2!Jcy). Phases are ¢; = x, —x;
¢2 = x, x, —x, —x and ¢re. = x, —x, —x, x. The narrow gray rectangle indicates a 90° pulse
to ensure anti-phase removal which can be cycled according to ¢;. Pulses in the gray box
can be omitted to obtain CLAP-HSQC-type spectra. For the acquisition of CLAP spectra,
¢rec has to be changed to y, —y, —y, y. If only the 90° pulse in the gray box is omitted
and the dashed 180° pulse is applied along with broadband heteronuclear decoupling
during acquisition, fully decoupled RESET HSQC-type spectra can be obtained in a more
time-efficient manner. The delay 7 is set to AQ/4n with n being the number of data chunks.
AQ/n corresponds to the length of each FID chunk and therefore corresponds to the ,
increment. Delay 7* allows for the compensation of phase distortions introduced by
dropping points at the beginning of each FID chunk (see text). Delays § accommodate
for the applications of PFGs. Coherence order selection is applied with the gradients of
ratio G;1:G,:Gs3 = 80:20.1:20 for 13C as the heteronucleus. Phase-sensitive detection in the
3C dimension is achieved by using an Echo/antiEcho-TPPI protocol. Graphic taken and
modified from [212].

decoupling due to strong coupling. Whereas CH3 and CH moieties can be fully homonu-
clear decoupled, diastereotopic CH; groups show the above-mentioned doublet-structure.
The latter also display dispersive lineshapes given that 2 iy couplings do not evolve in
synchronicity with chemical shifts because homonuclear couplings are active during all
heteronuclear transfer delays and delays 7. The result of strong coupling can be observed
for the cross peaks obtained for position 4 (figure 3.7 D). Signals show severe line shape
distortions so that the heteronuclear doublets become asymmetric.

The S/N ratios of CLIP-RESET HSQC spectra can improve compared to the conventional
CLIP-HSQC as far as the final data matrix is concerned. This gain as well as the gain in
resolution comes at the cost of the time required to build up the final spectrum from the
initial interferogram. So the S/N per unit time ratios drop by v/n and improve at best by
the original multiplicity of the fully-coupled resonance line. In practice, slightly more
moderate drops can be expected since the AQ in the detection dimension can be drastically
reduced. Since the final FIDs are concatenated from chunks of length AQ/n, CLIP-RESET
HSQC spectra show weak artifacts similar to decoupling sidebands at frequency multiples
of n/AQ distributed around the signals. This is due to the modulation of each FID chunk by
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Figure 3.6.: Comparison of CLIP (red contours) and CLIP-RESET HSQC spectra (black
contours) of (—)-menthol. The structure of (—)-menthol and atom numbering is given as
an inset. Graphic taken and modified from [212].

signal evolution under the influence of cos(z" Jit) terms. These discontinuities give rise
to artifacts which in favorable cases stay at about 1-2% intensity if AQ/n is chosen so that
cos(n"™ JunAQ/n) does not significantly drop below 0.9 for representative " Jyy couplings.
As far as the extraction of !Jcy coupling constants is concerned, these sidebands do
not hamper the accuracy of the extracted couplings as long as the overall line shape
is unaffected. The measurement of couplings is easily possible for all weakly coupled
spins. This also holds for CH; groups if all relevant homonuclear couplings lie in the weak
coupling limit as the resulting heteronuclear doublets are symmetric and ! Jcy couplings can
reliably be extracted. For strongly coupled spins however, the line shape distortions render
the measurement of coupling constants erroneous just as in conventional CLIP-HSQC
spectra. On the other hand, CLIP-RESET HSQC spectra are simplified in a way that at least
allows unambiguous identification of higher-order spectra from deviations from expected
line shapes. The reliability of the extracted couplings will be further elaborated on in the
following sections.

An experiment closely related to the one discussed in this section was developed in
parallel and independently from this thesis(?!%].
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Figure 3.7.: Slices from CLIP (red) and CLIP-RESET HSQC spectra (black) of (—)-menthol.
Heteronuclear doublet components can be reduced to single resonance lines for CHs (A)
and CH (B) moieties. Weakly coupled diastereotopic CH; groups show a remaining splitting
and dispersive lineshapes due to non-refocused 2 Jyy couplings (C). Strong couplings can
not be suppressed by a single BIRD filter and lead to line shape distortions and asymmetric
heteronuclear doublets (D). These allow for the immediate identification of strongly-
coupled spins. Atoms are numbered according to figure 3.6. Graphic taken and modified
from [212].
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3.2.2. CT-RESET Experiments

As already discussed, BIRD-based PS methods fail to refocus the coupling evolution within
CH,, groups. This retains the coupling evolution due to %y couplings for CH, but also
for CH; groups under anisotropic conditions. In order to suppress couplings within
CH,, groups in RESET-type experiments, the BIRD element has to be combined with
an additional source of decoupling from the ones discussed in section 3.1.2. Given that
the CLIP/CLAP-RESET HSQC experiments rely on a pseudo-dimension to achieve J-
refocusing, the t, evolution period can readily be replaced by a CT version. The PS
acquisition scheme depicted in figure 3.5 can be replaced by the pulse sequence shown in
figure 3.8 to yield CT-CLIP/CLAP-RESET HSQC experiments. Several subtleties had to be
taken into account for the design of CT-RESET experiments. An echo period of AQ/2n
had to be introduced to delay the refocusing of all ® Jiy; couplings (n>2) until the middle of
each FID chunk. Chemical shifts and heteronuclear couplings have to evolve for t,/2 on
either side of the BIRD element and finally, the total flip angle of *C-bound and 'C-bound
has to differ by 180° so that homonuclear decoupling is achieved. The sequence depicted
in figure 3.8 is a possible solution that addresses all these issues. Given that it contains
an even number of non-selective 180° pulses, a BIRD' elements has to be used. Ideally, if
strong coupling can be neglected, the maximum signal intensity for a CH, group should
be reached if the CT evolution period T is set according to

m m

2Jun + 2Dun - 2Tun

(3.3)
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Figure 3.8.: Pulse sequence for a CT pseudo-dimension of CLIP/CLAP-RESET HSQC
experiments. Narrow and wide bars correspond to hard 90° and 180° pulses, respectively.
Phases are x unless indicated otherwise. For the acquisition of CLAP spectra, ¢y, has to be
changed to y, —y, —y, y. Heteronuclear transfer delays are calibrated to match A = 1/(2! Jcp).
If the dashed 180° pulse is omitted and broadband heteronuclear decoupling is applied
during acquisition, CT versions of the fully decoupled RESET HSQC experiment can be
obtained in a more time-efficient manner. The delay 7 is set to AQ/4n with n being the
number of data chunks. Decremented CT delays have to be corrected from the overall
evolution period T according to equation 3.4. Delays marked with an asterisk allow for
the compensation of phase distortions introduced by dropping points at the beginning of
each FID chunk. Graphic taken and modified from [212].
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Figure 3.9.: Comparison of conventional (red contours) and CT-CLIP-RESET HSQC spec-
tra (black contours) of (—)-menthol. The structure of (—)-menthol and atom numbering is
given as an inset. Graphic taken and modified from [212].

Odd integers m will lead to negative cross peaks while even integers m will lead to positive
cross peaks for CH, groups. The actual delays T’ that have to be decremented in the
pulse sequence shown in figure 3.8 have to be corrected from the overall evolution period
according to

T’:i'(T—ZA—ZT—th) (3.4)

since all couplings which can not be refocused by BIRD elements are active during all
heteronuclear transfer periods A, delays 7 and the lengths of all individual pulses ,. The
cross peak intensities for CH, groups therefore no longer primarily depend on weakly
coupled remote protons but are governed by their corresponding cos(7TyyuT) terms, so
that it might be necessary to record a number of experiments with different times T to
cover a possible distribution of 2 Jyy couplings within CH, groups.

A CT-CLIP-RESET HSQC spectrum acquired on a sample of (—)-menthol dissolved
in CDCl;5 is shown in figure 3.9 together with a reference conventional CLIP-RESET
spectrum. The comparison clearly shows the additional decoupling of CH; groups in the
case of position 6. However, several cross peaks only show one heteronuclear doublet
component at the chosen contour levels. Figure 3.10 compares slices extracted from the
two-dimensional spectra for the same cross peaks as in figure 3.7. In this example, the
CT evolution period T was set to 333 ms, accommodating geminal coupling constants
2Jun = —12 Hz for m = 4. This period defines the relaxation losses which are visibly
suffered for the CHs and CH cross peaks depicted in figure 3.10 A and B. These losses
can be overcompensated (or at least ameliorated) in cases where the doublets within
CH; groups can be collapsed to singlets provided that the condition of equation 3.3 is
met. This could be achieved for the weakly coupled CH, group at position 6 of (—)-
menthol (see figure 3.10 C). However, CT incrementation can not prevent the dissipation
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Figure 3.10.: Slices from conventional (red) and CT-CLIP-RESET HSQC spectra (black)
of (—)-menthol. Collapse of heteronuclear doublet components to single resonance lines
can now be achieved for CH; (A), CH (B) and weakly coupled diastereotopic CH; groups
(C). As in conventional CLIP-RESET HSQC experiments, strong couplings can not be
circumvented and lead to line shape distortions and asymmetric heteronuclear doublets
(D). These allow for the immediate identification of strongly-coupled spins. Atoms are
numbered according to figure 3.9. Graphic taken and modified from [212].

of magnetization due to strong coupling. Again, for position 4 (see figure 3.10 D), only
one of the heteronuclear doublet components for each proton can be reduced to a single
resonance line. Here, the decoupling can not compensate for the relaxation losses and the
line shape distortions of the respective other doublet components clearly indicate that the
simple extraction of one-bond couplings will not lead to reliable data. Hypothetically, if
absorptive line shapes were obtained in fully decoupled CT-RESET HSQC spectra, they
could be used together with one absorptive heteronuclear doublet component obtained in
CT-CLIP-RESET HSQC spectra to extract the corresponding ! Jcy coupling constant.
Table 3.1 compiles ! Joy coupling constants for (—)-menthol extracted from the spectra
shown so far. The accuracy of the measured couplings is determined by a maximum error
estimate as described in [119]. Generally, the values for ! Jog couplings can become more
accurate upon homonuclear decoupling in the case of weakly coupled spins systems. The
doublet C6-H6’ belongs to a weakly coupled CH; group and serves as an example where
the accuracy is progressively improved going from conventional CLIP to CLIP-RESET
and CT-CLIP-RESET HSQC experiments. For strongly coupled spin systems, it is far from
trivial to predict the outcome of a manipulation by BIRD elements. For (—)-menthol, both
a decrease as well as an increase of the widths of heteronuclear doublet components can
be observed. This holds in particular among the spin systems containing CH; groups. For
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Group | “Jeu/Hz (CLIP) Jou /Hz (CLIP-RESET) !Joy / Hz (CT-CLIP-RESET)
C1-H1 | 139.2 139.1 139.1
C2-H2* | 126.2 + 1.6 124.8 + 3.5 126.6 + 4.1
C3-H3* | 128.4 + 3.6 126.8 + 0.8 128.0 + 6.3
C3-H3’* 1244+ 04 124.8 + 0.8 123.2 + 1.8
C4-H4* | 125.8 + 2.0 126.9 + 0.9 126.9 + 15.3
C4-H4™* | 118.6 + 4.9 122.9 + 1.1 122.8 + 0.5
C5-H5 | 123.6 + 0.3 124.0 + 0.1 124.2 + 0.2
C6-H6 | 127.6 0.1 127.5 + 0.2 127.7
C6-H6' | 123.4 +0.9 123.2 + 0.6 124.0
C7-H7 | 127.2+12 126.1 + 0.1 126.1
C8-Hs8 1249 + 0.6 124.5 124.3
C9-H9 124.5 124.4 1245 + 0.1
C10-H10 | 124.5 + 0.1 124.4 124.5

Table 3.1.: Comparison of ! Joy couplings for (—)-menthol extracted out of conventional
CLIP-HSQC spectra and spectra obtained by the RESET-type experiments developed in
this thesis. Groups marked with an asterisk are affected by strong coupling and the values
for the coupling constants are not fully reliable. In cases where no maximum error estimate
for the couplings is given, it was below 0.1 Hz.

group C3-H3’, the maximum error estimate shows a gradual increase whereas for group
C4-H4’ a gradual decrease can be observed. In the extreme case of group C4-H4 the error
estimate varies by an order of magnitude.

If this source of bias could be bypassed by the PSYCHE method, would be the topic of
subsequent work. The possible advantages of CH,, decoupling and suppression of strong
couplings would meet the disadvantage of an additional sensitivity penalty since the
statistical sub-ensemble selection would further subdivide the portion of spins contributing
to the signal. Very recently, a method based on indirect covariance has been proposed!?!°]
that is completely insensitive to carbon multiplicity but depends on a priori PS input. It
still has to be proven if this approach can generate CLIP-HSQC-type spectra. In parallel
to this thesis, the perfectBIRD method was proposed!?'”] which makes use of the fact
that once the protons of a CH; group have been reduced to an AX spin system, they
are susceptible to a perfect echo sequencel?'®]. Although the perfectBIRD experiment
allows for a distribution of 2 Jyy couplings, it usually fails for higher spin systems such as
CH; groups under anisotropic conditions. The latter can in principle be adressed by CT-
CLIP-RESET HSQC experiments. The lack of generality of the perfect echo is the reason
why it is not per se considered a PS method but is limited to very specific applications
such as Carr-Purcell-Meiboom-Gill (CPMG) sequences?), HMQC experiments!??°! and
INEPT building blocks!*?!]. Finally, it has to be stated that both the perfectBIRD and the
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CT-RESET approach fail for strong coupling and can either due to their complexity or
inherently not be applied to RT BIRD acquisition.

3.2.3. Robustness

The experiments discussed so far are not compensated against a variation in ! Jcy couplings,
resonance offsets or B;-inhomogeneities. Standard experiments nowadays contain at least
broadband inversion and refocusing pulses on the heteronucleus instead of rectangular
180° pulses. Further improvements can be expected if also 90° pulses are replaced by
broadband excitation pulses. Additional slight improvements of spectral quality can be
achieved if offset- and B;-compensated pulses are also applied on 'H. The classification
along with the graphical representation of the required pulse shapes is introduced in
figure 3.11 A. Broadband excitation requires a PP 90 transfer facilitated by BEBOP shapes.
Broadband inversion and refocusing require PP 180 and UR 180 transfers facilitated by
BIBOP and BURBOP-180 shapes, respectively (see section 1.2.3). 90° pulses used in the
BIRD¢ elements require UR 90 transfers and were replaced by BURBOP-90 shapes. In cases
where RF pulses are applied simultaneously on both channels, J-compensated pulses for
concurrent excitation and time-reversed excitation (PP 90%) and vice versa are used. The
corresponding pulse sandwiches are referred to as Broadband Excitation and time-reversed
Broadband Excitation (BEBE") and time-reversed Broadband Excitation and Broadband
Excitation (BEYBE), respectivelyl!”]. For concurrent refocusing of 'H and inversion of
13C, the J-compensated Broadband Universal Broadband Inversion (BUBI) pulse sandwich
is used!”]. Both types of pulse pairs aim at avoiding losses of magnetization due to the
evolution of ! Joy couplings during the pulses. If the rectangular 90° and 180° pulses
are replaced by the corresponding shapes, the SP-CLIP/CLAP-RESET HSQC experiments
depicted in figure 3.11 B are obtained. These experiments efficiently address experimental
issues such as large offset effects and B;-inhomogeneities. To compensate the experiments
against a variation of ! Joy couplings, conventional INEPT transfer elements have to be
replaced with the more robust Couplings, Offsets, B;-deviation (COB)-INEPT building
block!%]. It uses odd-flip angle pulses (UR a) and a series of transfer delays to facilitate
uniform heteronuclear magnetization transfer spanning ! Joy = 120-250 Hz. If plugged
into the SP-CLIP/CLAP-RESET HSQC sequences, the COB-CLIP/CLAP-RESET HSQC
experiments depicted in 3.11 C are obtained. It has to be noted that a COB-BIRD element is
not yet known and will therefore become a topic in this thesis (see section 3.3). The pulse
shapes required to carry out the experiments described in this section were introduced
as part of [15] and [17] with the exception of the BURBOP-90 pulses required for the
BIRD! filters. The optimization procedure for this particular pulse shape as well as all
experimental parameters for all other pulses are outlined in section 3.4. The newly-
designed 'H BURBOP-90 pulse is applied concurrently with a BIBOP shape on *C and
was not matched according to the procedure described in [17]. This has to be kept in mind
when experimental imperfections are discussed in the following. Further, a rectangular 90°
pulse is still used for anti-phase removal after INEPT steps, since preliminary experiments
indicated that the application of shaped CLIP pulses leaves the trajectory of the desired 'H
magnetization undefined during the pulse and leads to signal losses. The latter are kept
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Figure 3.11.: Pulse sequences for compensated CLIP/CLAP-RESET HSQC experiments.
Rectangular 90° and 180° pulses have been replaced by SPs according to their function
depicted in the legend (A) and as described in the text. In SP-CLIP/CLAP-RESET HSQC
experiments (B), heteronuclear transfer delays are calibrated to match A = 1/(2! Jcp).
In COB-CLIP/CLAP-RESET HSQC experiments (C), transfer delays are set according to
A1 = 1.469 ms, A, = 2.135 ms and A3 = 0.394 ms to facilitate uniform INEPT-type transfer
spanning values for ! Joy of 120-250 Hz. Phases are x unless indicated otherwise and are
cycled according to ¢; = x, =x; ¢ = x, x, —x, —x and Prec = x, —x, —x, x. The narrow
gray rectangle indicates a hard 90° pulse to ensure anti-phase removal which can be
cycled according to ¢;. Pulses in the gray box can be omitted to obtain CLAP-HSQC-type
spectra. For the acquisition of CLAP spectra, ¢re. has to be changed to y, —y, -y, y and
for COB-CLAP-RESET experiments ¢3 has to be set to y. If only the 90° pulse in the gray
box is omitted and the dashed 180° pulse is applied along with broadband heteronuclear
decoupling during acquisition, fully decoupled RESET HSQC-type spectra can be obtained.
The delay 7 is set to AQ/4n with n being the number of data chunks. Delay 7* allows for
the compensation of phase distortions introduced by dropping points at the beginning of
each FID chunk (see text). Delays § accommodate for the applications of PFGs. Coherence
order selection is applied with the gradients of ratio G;:G,:G3 = 80:20.1:20 for *C as the
heteronucleus. Phase-sensitive detection in the *C dimension is achieved by using an
Echo/antiEcho-TPPI protocol. Graphic taken and modified from [212].
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to a minimum if the CLIP pulse is kept as short as possible. The pulse sequence for a CT
RESET acquisition scheme using SPs is given in appendix A.4.

To evaluate the performance of the experiments discussed so far, a compound mix-
ture that provides a particularly wide range of offsets and ! Joy couplings was prepared.
Ethylvanillin, methylpropiolate and triethyl orthoformate were dissolved in DMSO-d;
and used as a test sample in the following. Triethyl orthoformate can easily decompose
into ethyl formate and ethanol and therefore gives rise to additional signals. Figure 3.12
shows example spectra obtained using the COB-CLIP/CLAP-RESET HSQC in compar-
ison to reference COB-CLIP/CLAP experiments. Already in this representation, it can
be deduced from signals of methylpropiolate (b2) and ethyl formate (d1), which display
high ! Joy values, that significant intensity losses are observable in RESET experiments.
Those can be attributed to the BIRD elements which are not yet compensated for a large
variation in ! Joyy couplings. To further break down the individual sources of signal losses,
also conventional as well as SP-CLIP/CLAP-RESET experiments were collected for the
compound mixture and compared to the reference spectra in figure 3.12. Thus figure 3.13
contains 1D slices from four different experiments. Fully-coupled COB-CLIP/CLAP-HSQC
experiments provide 98% overall transfer with respect to the defined ranges of resonance
offsets, B;-inhomogeneities and ! Joy couplings!’®! and therefore define the maximum
intensity achievable in the experiments under discussion. Whereas the signals shown
in figure 3.13 A and A’ are examples for possible gains in sensitivity due to the collapse
of homonuclear multiplets, the subspectra B-E and B’-E’ per se show no homonuclear
splittings but allow for the examination of the different influences of uncompensated
pulses and transfer elements on apparent intensity losses. Given that signals al, a6 and
c3 appear at the edges of the corresponding spectra, the sensitivity primarily benefits
from the application of broadband pulses. Signal c1 lies rather in the center of the ob-
served frequency ranges and shows the steadiest progression from conventional over SP
to COB-CLIP/CLAP-RESET experiments. As expected, signals that benefit the most from
the application of COB-INEPT elements, like d1 and in particular b2 of methyl propiolate
(Jcu = 258 Hz), suffer the most severe intensity losses in RESET experiments which
can be ascribed to uncompensated BIRDY elements. Further, anti-phase contributions to
the heteronuclear doublets can be observed for b2 which is most likely caused by the
BURBOP-90/BIBOP pulse pair that has not been matched with respect to the evolution of
!Jen couplings. In total, sensitivity losses greater than 90% can be expected if completely
uncompensated experiments are used on realistic natural abundance samples.

Another feature of the more robust COB-INEPT is the improved cancellation of heteronu-
clear doublet components when CLIP/CLAP-spectra are combined following the IPAP
procedure!?3]. In order to completely suppress one of the multiplet components, CLIP and
CLAP spectra have to have identical signal magnitudes. Given that CLAP spectra do not
require a second INEPT-type magnetization transfer, they always provide maximum cross
peak intensities. In CLIP spectra however, J-mismatch leads to incomplete back-transfer
of magnetization during the second INEPT step. This is illustrated in figure 3.14 where
subsprectra from adding and substracting CLIP/CLAP-RESET experiments on (—)-menthol
and the compound mixture from above using conventional and COB-INEPT are compared.
Incomplete cancellation of heteronuclear doublet components can be observed where the
heteronuclear coupling deviates from the nominal ! Joy = 145 Hz as can be seen for the

128



3.2. RESET Experiments

140
1
+2 2/\OH 160

180

SR

a2 r’bgl 'gcm L 60
B

40
' Ol |

at{ v tTTommoommoomoomoooooes

10 9 8 7 6 5 4 3 2 1
5('H)/ ppm

Figure 3.12.: Comparison of 2D COB-CLIP/CLAP- and COB-CLIP/CLAP-RESET HSQC
spectra recorded on a mixture of ethylvanillin (a), methylpropiolate (b) and triethyl ortho-
formate (c) in DMSO-ds. The impurities ethyl formate (d) and ethanol (e) are the result of
the decomposition of (c). A reference COB-CLIP (red contours) and a COB-CLIP-RESET
HSQC spectrum (black contours) are compared in (A). Chemical structures as well as
labelling of the compounds and respective atom numbering are given as insets. The labels
are applied to the corresponding COB-CLAP (red contours) and COB-CLAP-RESET HSQC
spectra (black contours) shown in (B). The crowded region of the methyl groups inside the
dashed box is magnified and shown as an inset. Negative contours are indicated by single
contour lines (inset) or dashed lines (overview spectra). Graphic taken and modified from
[212].

129



3. Homonuclear Decoupling: RESET experiments

A ab: J =127 Hz c3:J=126 Hz

!

ol el ﬁ

15 14 13 12 11 10

C c1:J = 186 Hz

D d1:J =226 Hz E a1:J=173 Hz
J,J‘ LI Aj.:_i Al!
84 82 80 78 100 98 96 94
3('H) / ppm 3('"H) / ppm
A, a6: J =127 Hz c3:J=126 Hz
PR S AAAT i S
; T

1.5 1.4 1.3 1.2 1.1 1.0

5 s
B b2: J =258 Hz C c1:J=186 Hz

U_ . A it
r — x10 'f' V'E

. x20
47 45 43 41 54 52 50 48
D’ d1:J=226 Hz E’ al:J=173 Hz

ﬂu.. Ui

I il

84 82 80 78 100 98 96 94
3('H) / ppm 5('H) / ppm

Figure 3.13.: Slices from altogether four spectra collected on the compound mixture
depicted in figure 3.12 are shown: the fully-coupled COB-CLIP-HSQC (red solid lines)
serves as a reference for the COB-CLIP-RESET (black solid lines), the SP-CLIP-RESET
(black dashed lines) and the conventional hard pulse CLIP-RESET HSQC (black dotted
lines). Compound and atom labels as introduced in figure 3.12 are added to subspectra
A-E as insets next to the value of ! Jcy. The traces of corresponding CLAP experiments
(A’-E’) are indicated by a prime. Note the magnification of subspectra B and B’ given by

the legend shown as an inset. Graphic taken and modified from [212].
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Figure 3.14.: Comparison of subspectra from addition and substraction of CLIP/CLAP-
RESET experiments using (—)-menthol (1) and a mixture of ethylvanillin (2), triethyl
orthoformate (3) and methylpropiolate (4). Spectra shown in the left column were recorded
using conventional INEPT (A-D) and delays set to A = 1/(2 - 145 Hz) while the traces in
the right column employ COB-INEPT (A’-D’). Blue arrows indicate the positions of the
canceled heteronuclear doublet components. The values for ! Jcy are given as insets. A
phase correction had to be applied to the signals in (D) and (D’) with the former being
magnified by a factor of four. The structures of the compounds and peak annotations are
given in (E). Graphic taken and modified from [212].
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Figure 3.15.: Comparison of COB-CLIP (red contours) and COB-CLIP-RESET HSQC spec-
tra (black contours) of sucrose in a stretched gelatin/D,0 gel 30% (w/v) for a resulting
quadrupolar “H splitting of the solvent of Avg = 271 Hz. The structure of sucrose and
atom numbering is given as an inset. Graphic taken and modified from [212].

CHj3 group of (—)-menthol (see figure 3.14 A) and even more pronounced for the CH group
of methylpropiolate (see figure 3.14 D). If the coupling is closer to the nominal value for
INEPT or the COB-INEPT is used, which tolerates couplings between 120 and 250 Hz, only
very small artifacts remain adjacent to the positions of the canceled multiplet components
(see figure 3.14 A’-D’). These appear most likely due to residual phase misadjustments or
correspond to sidebands caused by the PS acquisition scheme.

So far it has been shown that homonuclear decoupling can strongly improve the res-
olution for conventional isotropic samples. Partially aligned samples on the other hand
experience a multitude of homonuclear RDCs which result in complex coupling networks
among the spins such that hardly any homonuclear multiplet structure can be resolved.
To investigate the applicability of the PS methodology on RDC measurements, COB-CLIP-
RESET HSQC spectra were recorded on a sample of sucrose in gelatin/D,0 (30% w/v)!'34
stretched to an extension corresponding to a quadrupolar ?H splitting of the solvent of
Avg = 271 Hz. A comparison with a conventional COB-CLIP-HSQC spectrum is given
in figure 3.15. In general it can be recognized that a significant line narrowing could
be achieved due to the partial refocusing of the homonuclear dipolar interactions. The
multiplicity of all CH cross peaks could be reduced to heteronuclear doublets whereas
the resolution could not be improved for the CH; moieties. Figure 3.16 compares slices
extracted from the two-dimensional spectra for different CH and CH; groups. Whereas the
cross peak of the anomeric center (C1-H1) displays a symmetric shape and only a homonu-
clear doublet need to be decoupled, the heteronuclear doublet components of signal C2-H2
are distorted and result in an asymmetric doublet in the conventional COB-CLIP-HSQC
spectrum (see figure 3.16 B). Here, BIRD-based homonuclear decoupling can circumvent
these effects as described in [190] and singlets are obtained for each component of the
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Figure 3.16.: Slices from COB-CLIP (red) and COB-CLIP-RESET HSQC spectra (black) of
partially aligned sucrose. Heteronuclear doublet components can be reduced to single
resonance lines for CH moieties (A) even in cases where distortions due to strong or
longe-range heteronuclear couplings are observable (B). Cross peaks of CH, groups can
not be further simplified (C) or even lead to highly distorted signals (D) which indicate
strong coupling networks. Atoms are numbered according to figure 3.15. Graphic taken
and modified from [212].

symmetric heteronuclear doublet. For CH; groups, however, no simplification of any cross
peaks can be observed. On the contrary, rather than discernable dispersive doublets, highly
distorted signals are obtained for the C6-H6 resonance (see figure 3.16). Obviously, complex
coupling networks are formed which can not be deconvolved by the methods presented in
this work, including CT-RESET experiments. Values for ! Tcy couplings could therefore
not reliably extracted for these moieties. The RESET experiments on sucrose suffer from
significantly increased sideband amplitudes. These are introduced since each FID chunk
more severely deviates from a PS trajectory due to the more pronounced modulation by a
multitude of cos(7"Typt) terms. At a given degree of alignment, this can only to a limited
extent be ameliorated by shorter FID chunks. So the experiments presented here suffer
more from a reduced S/A rather than S/N ratio. The effect on the accuracy of the extracted
one-bond couplings will be discussed further below.

Another feature of BIRD-based homonuclear decoupling is the possibility to suppress
artifacts from long-range correlations. Figure 3.17 illustrates this effect for signal C8-H8
of sucrose. In conventional CLIP-HSQC spectra, the signal at position 8 is affected by
long-range correlations to position 7 and 9, which is easily recognized in the isotropic
case (see figure 3.17 A). The effect is even more pronounced in the aligned sample (see
figure 3.17 B) but not as easily discerned a priori. In RESET-type spectra, these artifacts
can be suppressed so that symmetric heteronuclear doublets can be obtained. In the case

133



3. Homonuclear Decoupling: RESET experiments

A B
'T.,=151Hz
—
_Mj\ x4
C D
"Joy = 145 Hz T =139 Hz

i I

L.

45 43 41 39 45 43 41 3.9
3('"H) / ppm 3('H) / ppm

Figure 3.17.: Comparison of slices along the chemical shift of C8 of sucrose for the spectra
shown in figure 3.15 and their isotropic counterparts. Couplings are extracted from the
original slices (black) by determination of the maximum overlap between the doublet
components with the help of a copy (red) as described in [119]. In conventional CLIP-HSQC
spectra artifacts due to long-range correlations may be introduced which is clearly visible
in the isotropic case (A). The effect is more dominant but less simple to recognize in the
partially aligned sample (B). These artifacts can be removed by the BIRD filter (C and D),
which can benefit the accuracy of the determined coupling as indicated by the insets. Note
that the subspectra shown in (B) and (D) are scaled by a factor of four. Graphic taken and
modified from [212].

of position 8 of sucrose this means that the measurement of a ! Dcy coupling with a wrong
sign is prevented. In general, apart from the anomeric center, no symmetric heteronuclear
doublets are obtained for sucrose under partially aligned conditions so that homonuclear
decoupling improves the line shapes for almost all signals. This leads to improved accu-
racy of the extracted ! Dcy couplings in many cases and in particular when the spectral
quality is affected already under isotropic conditions. Table 3.2 compiles ! Joy, ' Tcy and
thereby derived ! D¢y couplings for sucrose obtained from conventional and homonuclear
decoupled CLIP-HSQC spectra. Generally, the accuracy of the obtained one-bond RDCs
is at least similar if not improved by CLIP-RESET-HSQC-type experiments at the cost of
no anisotropic information about the CH; moieties in the case of sucrose. This holds in
particular for signals like position 7-9 where heteronuclear doublets appear asymmetric
due to being affected by long-range correlations or strong coupling also under isotropic
conditions. In summary, the family of CLIP/CLAP-RESET HSQC experiments developed
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in this thesis present a rather robust method to obtain one-bond heteronuclear couplings
from reduced multiplets in a more simple and often more accurate manner. Strong coupling
effects can occasionally be bypassed and at least be identified in a straightforward way by
deviations from expected line shapes.

The measurement of heteronuclear coupling constants employing PS methods has been
the subject of investigations in parallel and independently from this thesis (although not
exclusively focused on ! Joy couplings). The interferogram-based approaches to obtain PS
1D 'H spectra have been used to identify remote couplings to abundant heteronuclei that
would be otherwise hidden in complex 'H multiplets. The BIRD sequence (see figure 3.3 B)
was used to extract ™ Jyzr couplings for fluorinated organic compounds!??!J and a comparable
ZS example (see figure 3.3 A) was given for " Jirx (X = °F, *'P) couplings[???]. It has to
be noted that such experiments primarily aim at identifying heteronuclei. They can not
provide the same information content as multi-dimensional correlation experiments. As
mentioned in section 3.1.2, BIRD-based PS methods fail for heteronuclear long-range
correlation experiments. Alternatively, a CPMG-Heteronuclear Single-Quantum Multiple-
Bond Correlation (HSQMBC) experiment employing ZS decoupling in a pseudo-dimension
was proposed to obtain Jizx (X = 13C, 3!P, 77Se) couplings from simplified anti-phase
doublets!?*3], PSYCHE can readily be applied to this experiment(?%4],

It was further attempted in this thesis to combine CLIP-HSQC experiments with RT
BIRD-based homonuclear decoupling as in [200] but with only marginal success. The
extracted couplings deviate from those obtained via CLIP or CLIP-RESET HSQC experi-
ments by several %. It can only be speculated upon that periodical losses of magnetization
due to J-mismatch of individual BIRD filters or the data acquisition scheme itself induce
some modulation of the FIDs so that frequency errors are introduced that render the
measurement of coupling constants erroneous. While it was reported that passive " Jix
and *Jcx (X = 2H, '°F, 3!P) couplings can be extracted from E.COSY-type cross peaks of
RT BIRD-decoupled 'H,'*C-HSQC spectral?®], it is now general consensus among the
NMR community that the extraction of ! Joy couplings from simplified multiplets depends
on an interferogram-based PS acquisition!??). However, HOBS-HSQMBC experiments
apparently seem unaffected by such errors given that also values for ! Joyy couplings were
reported[zm. As mentioned before, HOBS-experiments are less general, since mutual cou-
plings within a selected region are not suppressed and only a part of the whole spectrum
can be recorded at a time.

3.3. Optimal BIRD filters

3.3.1. General considerations

The original BIRD filter was introduced as a means to use the *C spin (or other het-
eronuclei) as a local decoupler field to achieve homonuclear 'H decoupling!!’%). This
manipulation on a spin system can be described as a bilinear 7-rotation on a heteronuclear
two-spin system, hence the acronym BIRD. With both spins on resonance, the heteronu-
clear coupling Hamiltonian sandwiched between two 90° pulses yields a propagator of the
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Figure 3.18.: Pulse sequences discussed in the original BIRD publication [175]. Narrow
and wide bars correspond to 90° and 180° pulses, respectively. Phases are x unless indicated
otherwise. Transfer delays are calibrated to match A = 1/(2!Joy). The phases ¢; to ¢,
in the original pulse sequence (A) can be set according to [191] to achieve BIRD*X and
BIRD™* manipulations. The dashed 180° pulse with phase ¢, can be set to achieve the
corresponding BIRD? and BIRD® manipulations. Originally, ¢; = y, ¢5 = x and ¢3 = —y
were proposed. The pulse sequence (B) facilitates a BIRD®X rotation and is said to be less
sensitive towards a variation in J couplings.
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form
Usrp = exp (—iﬁZIgSz) (3.5)

with p either x or y and I? being 'H magnetization of spins bound to the heteronucleus
following the nomenclature of [191]. However, the flip angle only corresponds to 180°
if the BIRD delays are matched to the value of the heteronuclear coupling. In the case
of delay mismatch magnetization dissipates which causes sensitivity losses. This matter
was seemingly addressed in the original publication[!”*! and the according pulse sequence
is depicted in figure 3.18 along with the very basic BIRD filter that allows for various
modifications!*®! which will be discussed further below. The fidelities of any of these pulse
sequence as a function of the magnitude of the heteronuclear coupling J can be assessed
just like any 180° rotation. As discussed in section 1.2.3 the degree of spin inversion can
be measured by ®pp (I, = —I,) or Oyr can be used to determine if the effective propagator
comparable to equation 3.5 is produced. Whereas the former is straightforward, propagator
analysis of a two-spin system hides certain subtleties. The fact that the phase factor of a
propagator does not affect the final state of the magnetization but plays a major role in
pulse sequence design was extensively discussed in [12] for isolated single-spin systems.
Allowed phase factors can be determined as follows. Given that

det(e?) = ¢@ (3.6)

and the nuclear spin Hamiltonian is a traceless matrix, the determinant of any unitary
single-spin propagator has to yield unity. The same has to hold for propagators with a
phase factor ¢’?. Following

det(rA) = r'det(A) (3.7)

with n being the dimension of the matrix,

det(e’?U) = e*det(U) = 1 (3.8)
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Figure 3.19.: Fidelities of the originally proposed BIRD elements as a function of | were
evaluated with respect to spin inversion (A) and synthesis of the desired propagator (B)
for the basic sequence depicted in figure 3.18 A (red line in A, red circles in B) and the
J-compensated sequence depicted in figure 3.18 B (black line). Delays for magnetization
transfer via heteronuclear J couplings were set for a 185 Hz coupling constant.

has to be fulfilled. This is the case if
e = cos2¢ +i-sin2¢ = 1 (3.9)

is fulfilled. Possible solutions for ¢ are integer multiples of 7 so that phase factors of +1
are obtained for single-spin propagators!'?l. For two-spin systems, n in equation 3.7 equals
4 so that

e = cos4d + i -sindg = 1 (3.10)

has to hold. Here, solutions for ¢ are integer multiples of /2 so that phase factors of +1
as well as +i are allowed. This has to be considered if the rotation properties of BIRD
elements are determined in the following. Another peculiarity that is not found at a
prominent place in the literature on this topic is that imaginary phase factors can be used
to transform a concurrent or even consecutive rotation around axes corresponding to
commuting operators into a single bilinear rotation via

exp(—iz(I +S)) = —i - exp(—in2IS). (3.11)

This relation will be a great boon in the following analysis. After the determination of ®pp
for the single-spin operator transformations of both spins individually, the phase factor
of the bilinear rotation can be determined from a simple guess. This approach could be
used to analyze the rotation properties of the pulse sequences given in figure 3.18. The
originally proposed simple BIRD filter thus facilitates a rotation around 2I,S, with phase
factor 1 when the delays are matched to J and 2I,S, with phase factor —i for J = 0. The J-
compensated sequence facilitates 2L.S, with phase factor —1 under the matching condition
and 2I,S, with phase factor —i for J = 0. The fidelities of spin inversion according to ®pp
and propagator synthesis according to ®yr are given in figure 3.19. As far as spin inversion
is concerned, the pulse sequence shown in figure 3.18 B indeed provides robustness towards
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P1 | P2 | P3| Pa Ur | €' Uga | € | Descriptor
x| x - Sy | -1 2I,S, | 1 d, X
x| x x 1|1 2I,S; | 1 d
x| x S; | 1 | 2L,Sy+S, | 1 d
x| x| —x - | 2L.S, | —i 2L,S, | -1 r,X
x| x| —x| x L | -1 2L,S, | —1 r
x| x| x| y|2LS, | i |2LS,+S, | -1 r
x| vy - | 2L,S, | —i Sx | —i r,X
x| vy x| 2L,S, | —i 1] 1 r
N I, | -1 S| 1 r
x| y| x| -|2LS, | i 2L.S, | 1 d, X
x| yl|l—x| x|2LS,| i L. | —i d
x| yl|—x L | 1 2L.S, | -1 d

Table 3.3.: Known BIRD rotations characterized by their descriptor as introduced in [191]
as well as the rotation axes of the effective propagators acting on directly and remotely-
bound protons (Uygs and Ugyr, respectively) with their respective phase factors e as a
function of the phases ¢; to ¢4.

a variation in J-couplings, but in terms of the bilinear rotation it has the same profile
as the simple sequence given in figure 3.18 A. It can therefore not be considered a fully
J-compensated bilinear rotation given that a BIRD element also needs to act as a refocusing
pulse. An overall robust bilinear rotation operation is thus desirable.

In order to provide the necessary information for a feasibility study by OCT, the propa-
gator analysis was extended to all BIRD variants proposed in [191] and the propagators
and phase factors which can serve as input for OCT optimizations are compiled in table 3.3.
From an OCT point of view, BIRD filters are J-selective UR 180 pulses which need to max-
imize ®yr with Ur = Upya for a range of heteronuclear couplings as well as a contribution
to ®yr from Up = Uy for J = 0. This can easily be plugged into the GRAPE algorithm to
carry out the optimization procedure introduced in [15]. First, SPs are optimized with
a rather coarse digitization of 100 us to define an upper threshold for ®yr for the hard
pulse-delay (HPD) approximation!® 8], Ten optimizations with different starting pulses
are used to find the optimal sequence for any given overall pulse length between 0.5 and
25 ms incremented in steps of 500 us. The best sequence of each set will then contribute to
the time-optimal pulses (TOP) curve. However, even if protons are assumed to be on reso-
nance, the optimization of BIRD elements is not as straightforward as with other reported
transfer elements!'> 8], Given that BIRD%*X and BIRD*X filters need to manipulate the S
spin, the corresponding propagators can not be created without concurrent RF irradiation
on both spins. Even BIRD? and BIRD" filters require pulses on spin S in cases where ¢,
differs from ¢, since this entails occasional composite rotations with a monolinear spin
S contribution that can not be created without RF pulses on the S spin. Bearing this in
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Figure 3.20.: Interpolated TOP curves for the optimizations of BIRD filters as SPs with
effective propagators as given in table 3.3. Fidelities are given on a negative logarithmic
scale of the error functional 1-®yg to show a rather monotonous increase.

mind, pulse sequences that are tolerant to a typical range of ! o couplings of 120-250 Hz
could be obtained. The resulting TOP curves for all BIRD variants of table 3.3 are overlaid
in figure 3.20. Since all basic BIRD sequences have the same structure, it can be assumed
that the underlying mode of action is the same for all BIRD variants and thus the GRAPE
algorithm can find similarly optimal solutions in each case. Therefore all TOP curves
should lay on top of each other if good convergence is assumed. They more or less do
with a single exception of a BIRD" element where ¢, differs from ¢4 (RF controls on spin
S needed) and an effective propagator corresponding to unity with an imaginary phase
factor has to be created for the directly-bound protons. This particular TOP curve only
follows the others up to a first significant dip around 5 ms and then hardly ever reaches
the level where all other curves are clustered again. To this remarkable extent, this can not
be attributed to convergence issues alone but maybe is due to the fact that spin systems
with a range of J-couplings can not be left unstirred to the same extent as demanded by
this particular set of target propagators.

The three distinct dips in the majority of the TOP curves in the logarithmic repre-
sentation are a familiar phenomenon in exploring the limits-type optimization studies,
where beyond a certain threshold in pulse length a new family of pulse shapes is made
available['> 221 Just as phase modulation can create the effect of a second irradiation
frequency, BIRD sequences of a certain length can behave as if they match two or more
distinct J-couplings.

3.3.2. Hard pulse-delay sequences

The sequences obtained in section 3.3.1 are exclusively compensated against a variation
in heteronuclear J-couplings. The next step towards sequences which are robust against
J-couplings, offsets and B;-inhomogeneities is the HPD approximation'> #. Continuous
pulse shapes are approximated by a set of hard pulses and evolution delays with varying
degrees of complexity. For the basic layout of CLIP/CLAP-RESET HSQC experiments
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presented in sections 3.2.1 and 3.2.3, a BIRD? rotation is used to facilitate homonuclear
decoupling. The specific pulse sequence according to table 3.3 uses phases ¢; to ¢4 = x and
facilitates a 7 rotation around the 2, axis for protons directly-bound to '*C, and the unity
operation on remotely-bound protons. Given that the net rotation on 3C amounts to 360°,
the pulse sequences can be optimized without RF pulses on *C. For the optimization of
HPD sequences it is necessary to obtain gradients of propagators with respect to time since
a set of optimal delays is required in addition to optimal flip angles. They are found more
trivially than control derivatives since the time derivative of the exponent in equation 1.60
commutes with the propagator itself so that

oy,
OAt; HU; (3.12)
and gradients of ®yg can be obtained via
0Pur .
aAt, = —R(P;liH;X;). (3.13)

Again, ten optimizations with different starting pulses are used to find the optimal
sequence for any given overall pulse length between 0.5 and 25 ms incremented in steps
of 500 us. The best sequence of each set will then contribute to the TOP curve. Given
that the complexity of pulse sequences with a few pulses and delays is very reduced, the
hypersurface of ®yp is heavily jointed so that optimizations using CGs can end up stuck
in local extrema very quickly. This is why steepest ascent with constant values for € in
equation 1.107 were performed using e, = 1077 and ¢, = 10!°. These values were
found semiempirically given that the length of the hard pulses is set to At = 0.5 us and
arbitrary RF amplitude is allowed to facilitate any flip angle while delays are in the range
of a few ms. Both values for the two variables were picked to achieve a significant change
in the corresponding controls in each iteration so that optimizations can also bypass local
extremal®!. Optimizations were aborted when the change in ®yg between two iterations
was less than 107'°. TOP curves for pulse sequences which facilitate BIRD? rotations are
given in figure 3.21. The continuous pulse shape obtained for the shaped BIRD! element
defines the upper threshold for the achievable fidelities. To provide optimal transfer for
J-couplings in the range of 120-250 Hz, conventional BIRD elements need to have delays
calibrated to match 185 Hz. If the sequences depicted in figure 3.18 are set up accordingly,
the standard BIRD sequence (figure 3.18 A, T = 5.4 ms) and the sequence with improved
inversion properties (figure 3.18 B, T = 10.8 ms), here labeled JC BIRD, both yield fidelities
of approximately 0.945 and are included in figure 3.21. HPD sequences with x pulses
and y delays are labeled as xpyd. The TOP curves can be interpreted rather easily. Up to
the length of a conventional BIRD sequence, which corresponds to a 2p1d sequence, all
TOP curves overlap. This threshold marks the first dip in the curve of the SPs which has
to correspond to a simple sequence roughly calibrated to match J = 185 Hz. Also 3p2d
sequences can not exceed the fidelity of such a simple sequence. The second dip in the
TOP curve of SPs marks the point where the sequences are effectively matched to two
J-couplings at the same time which lie favorably within the desired range of 120-250 Hz.
4p3d sequences have the same complexity as the sequence depicted in figure 3.18 B but can
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Figure 3.21.: Overlaid TOP curves for the optimizations of BIRD? elements as HPD
sequences with effective propagators corresponding to the sequence with all phases x in
table 3.3. The sequences depicted in figure 3.18 A (BIRD) and B (JC BIRD) with delays
calibrated to match 185 Hz are inserted as a reference. Fidelities are given on a negative
logarithmic scale of the error functional 1-®yg.

approach the threshold of roughly 0.996 fidelity at overall pulse lengths of about 15 ms but
can not improve any further. This fidelity is desirable since it yields ®pp fidelities of about
0.99. Starting with 5p4d sequences, the second threshold can be exceeded but at higher
pulse lengths the TOP curves starts to scatter and interpolation is no longer meaningful.
This can be attributed to convergence issues. The continuous pulse shape obtained for the
shaped BIRDY element defines the upper threshold for the achievable fidelities. To provide
optimal transfer for J-couplings in the range of 120-250 Hz, conventional BIRD elements
need to have delays calibrated to match 185 Hz. If the sequences depicted in figure 3.18 are
set up accordingly, the standard BIRD sequence (figure 3.18 A, T = 5.4 ms) and the sequence
with improved inversion properties (figure 3.18 B, T = 10.8 ms), here labeled JC BIRD, both
yield fidelities of approximately 0.945 and are included in figure 3.21. HPD sequences with
x pulses and y delays are labeled as xpyd. The TOP curves can be interpreted rather easily.
Up to the length of a conventional BIRD sequence, which corresponds to a 2p1d sequence,
all TOP curves overlap. This threshold marks the first dip in the curve of the SPs which
has to correspond to a simple sequence roughly calibrated to match J = 185 Hz. Also 3p2d
sequences can not exceed the fidelity of such a simple sequence. The second dip in the
TOP curve of SPs marks the point where the sequences are effectively matched to two
J-couplings at the same time which lie favorably within the desired range of 120-250 Hz.
4p3d sequences have the same complexity as the sequence depicted in figure 3.18 B but can
approach the threshold of roughly 0.996 fidelity at overall pulse lengths of about 15 ms but
can not improve any further. This fidelity is desirable since it yields ®pp fidelities of about
0.99. Starting with 5p4d sequences, the second threshold can be exceeded but at higher
pulse lengths the TOP curves starts to scatter and interpolation is no longer meaningful.
This can be attributed to convergence issues.

For practical applications, sequences with as little complexity as possible are desirable.
Thus, only 4p3d and 5p4d sequences are discussed in the following which approach the
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Figure 3.22.: Pulse sequences of COB-BIRD elements. Narrow and wide bars correspond to
odd-flip angle and 180° pulses, respectively. Phases are uniformly x. Transfer delays of the
5p4d sequence (A) are set to Ay = 2.881 ms, A, = 2.036 ms, Az = 0.863 ms and A4 = 1.969 ms.
The 4p3d sequence (B) will be transformed into a BIRD** element by inserting 180° pulses
in the gray box according to (C) and will retain the properties of a BIRDY element by
inserting the building block according to (D). Delays are set to A; = A, = A3 = 2.583 ms.
Both delay settings ensure optimal transfer for J = 120-250 Hz.

fidelity of continuous shapes the closest at T = 15.5 ms. The best candidates for both
implementations are given in figure 3.22. The analysis of these pulse sequence hold certain
subtleties. It has to be noted that phases are uniformly x which will be discussed further
below. The sequences can be understood on a first glance from the perspective of the
12C-bound protons, since the sum of all flip angles is either 0° or an integer multiple of
360°. It can easily be proven that pulses with flip angle @ >180° can be replaced by pulses
with a flip angle —360° to reduce the overall flip angle which will provide an inherent
robustness against resonance offsets and Bj-inhomogeneities. In order to compensate
transfer elements against resonance offsets, pairs of 180° pulses are inserted in the middle
of magnetization transfer periods. However, these additional spin flips count towards the
overall rotation. In the case of the 5p4d sequence (see figure 3.22 A) a total 720° rotation
is introduced which corresponds to 0° as far as the balance for the 2C- and '*C-bound
protons is concerned. Conversely, the 4p3d sequence contains an uneven number of delays,
so that a total 540° rotation is introduced which corresponds to a net deviation of 180°
for the balance of ?C- and *C-bound protons (see figure 3.22 B). Further, a net rotation
is introduced on the carbon spins so that effectively every BIRD? sequence with an odd
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Figure 3.23.: Fidelities of COB-BIRD elements as a function of | were evaluated with
respect to spin inversion (A) and synthesis of the desired propagator (B) for the sequence
depicted in figure 3.18 B (black) as well as the 5p4d and 4p3d COB-BIRD sequences depicted
in figure 3.22 (color code according to figure 3.21).

number of delays obtained by the optimizations discussed here, will be transformed into a
BIRD™X sequence as soon as 180° pulses are inserted in the transfer delay according to
figure 3.22 C. Such a behavior can be prevented if 180° pulse pairs according to figure 3.22 D
are inserted into the middle of a single transfer period. This will ensure the refocusing to
chemical shifts while an additional 360° rotation is introduced which corresponds to a net
0° change in the balance of remotely and directly-bound spins. Moreover, this maintenance
of the rotation properties is also the reason why all phases have to be purely x (or y for
that matter) because the heteronuclear transfer if facilitated by pulses with a mixed phase
will be fundamentally impaired as soon as 180° pulses with pure phase are inserted.

Fidelities according to ®pp and ®yg of the proposed COB-BIRD elements were evaluated
by simulations given in figure 3.23. It becomes clear that not only inversion properties are
improved compared to the sequence proposed in [175], but also the overall rotation can be
made robust against a variation in heteronuclear J-couplings by both sequences. Within
the desired range of J-couplings between 120-250 Hz both sequences provide virtually
identical transfer efficiency. Therefore both sequences were tested in a simple proxy setup
for CLIP/CLAP-RESET HSQC experiments on a sample of 140 mM sodium acetate-2-*C
(1 Jeq = 125.3 Hz) dissolved in a 1:5 (v/v) mixture of D,O/DMSO-d;. Given that *C-enriched
material is used, the HSQC transfer could be replaced by a simple 90° excitation pulse.
Further, no homonuclear couplings are active in sodium acetate so that intensities of simple
spin echoes can be evaluated after the sign of transversal magnetization was inverted by
the BIRD elements. Signals of residual '2C-containing material could have been cycled
out using difference spectroscopyl!7>1°°] but the intensity profiles would be distorted
compared to the simulations because the second scan would have full intensity in each case
due to the refocusing of heteronuclear couplings by the 180° 'H pulses within the BIRD
elements. A comparison between simulated and experimental BIRD? spin echo intensity
profiles is given in figure 3.24. The value for J.¢ has been varied by applying scaling factors
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Figure 3.24.: Comparison of simulated (left panel) and experimental (right panels) BIRDY
spin echo intensity profiles. For the conventional BIRD element, the BIRD? sequence with
all phases x was used with delays calibrated to match ! Jcyy = 185 Hz. The 5p4d and 4p3d
COB-BIRD sequences with T = 15.5 ms were set up as described in figure 3.22. J.¢ was
varied by varying delays as described in the main text. Signal intensities were normalized
to the maximum intensity observed in the observed range of 25-350 Hz.
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to delays calibrated to match 185 Hz in the case of conventional BIRD according to

_ Jett
2Jdel - ]exp

with Jge1 = 185 Hz and Jeyp = 125.3 Hz. Delays for the COB-BIRD sequences given in
figure 3.22 were scaled accordingly by Jeg/Jexp. For the simulations and experiments 41
values for J.g were sampled between 25 and 350 Hz. Residual anti-phase contributions to
the observed signal were removed by a hard 90° pulse on '*C prior to acquisition. Since the
length of the sequences varies significantly between the extreme values of J.¢, relaxation
losses could be observed during preliminary experiments on a sample with a reduced T,
time due to doping with a paramagnetic relaxation agent. Thus, a variable echo period was
appended to the BIRD elements so that the overall relaxation period was kept constant.
Signal intensities were normalized to the maximum peak intensity which was achieved
across the given range of J-couplings. Further experimental details are given in section 3.4.

All experimental profiles show reasonable agreement with the simulations. Small
negative peaks can be observed at the midpoints of each heteronuclear doublet which
correspond to signal of the residual 12C-containing material. Since the signal is phased to
show the inverted signal of *C-bound protons with positive intensity and the ?C-bound
protons were left untouched by the BIRDY rotation, the latter appear negative. All intensity
profiles are meaningful in the sense of showing maximum intensity either at Jog = Jgel
for conventional BIRD or within the optimized range of 120-250 Hz for COB-BIRD while
the maximum negative intensity is approached but not reached for the minimum value of
Jeft = 25 Hz. Further, the profile of the 4p3d is slightly more homogeneous than for the 5p4d
sequence. This can be attributed in parts to the fact that the latter is using more 'H pulses
and is thus more susceptible to B;-inhomogeneities and miscalibration given that hard
pulses were used. Moreover, the inherent structure of the 4p3d is more advantageous than
its 5p4d counterpart. It has the beneficial symmetry properties described in [29] given that
all transfer delays have equal duration and the second half of the sequence is the time and
phased-reversed version of the first half. UR pulses with inherent symmetries with respect
to the control-amplitudes have also been found to be advantageous in [12]. The most
apparent drawback of the COB-BIRD sequences discussed in this section is their rather
prolonged overall duration of 15.5 ms which is almost three times as long as a conventional
BIRD elements calibrated to match J = 185 Hz. They will be prolonged even further if
hard pulses are replaced by SPs which amounts to an additional 2.4 ms for BUBI pulse
pairs alone. Thus, the proposed sequence are significantly more prone to the evolution
of homonuclear 'H couplings during the transfer element than conventional sequences.
They can most definitely not be applied in BIRD-based RT PS acquisition schemes since
the losses due to homonuclear couplings would not only accumulate, but the artificial
damping due to relaxation during periods of FID interruption would lead to an even more
severe line broadening. However, the above-mentioned losses would be constant in each
increment of an interferogram-based acquisition scheme, so that RESET-type experiments
could benefit from COB-BIRD elements. It is known that if homonuclear couplings impair
the efficiency of heteronuclear transfer elements, XY16-cycled CPMG sequences can be
used to suppress the couplings amongst the 'H nucleil'’® 2231 Another advantageous
aspect of the way the descriptor of the BIRD elements can be manipulated according to

Aefr (3.14)
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the examples given in figure 3.22 is that the need for concurrent shaped odd-flip angle and
180° pulses on 'H and 13C, respectively, is completely bypassed. The rotation properties of
BIRD? and BIRD® elements with an odd number of delays can be retained if a net rotation
of 360° on both spins is facilitated by two 180° pulse pairs in the middle of a single transfer
period. At the same time, BIRDIX and BIRD™X rotations can be obtained from BIRD* and
BIRD¢ elements with an odd number of delays, respectively, by inserting single 180° pulse
pairs in the middle of each heteronuclear transfer period.

3.3.3. Shaped pulse sequences

Another approach to obtain a degree of heteronuclear J-compensation within magnetiza-
tion transfer elements which is at least of theoretical interest, is solely based on the timing
of adiabatic spin flips and thus SPs acting on '3C [1%], As discussed extensively in chapter 2,
the exact time point of inversion during adiabatic sweeps is determined by the chemical
shift. In [106] two approaches are presented to solve timing issues with adiabatic pulses
during heteronuclear magnetization transfer elements like INEPT and BIRD. Both variants
are depicted in figure 3.25 A. Adiabatic sweeps with opposite directions can be used to
orchestrate the timing of *C spin inversion such that optimal heteronuclear transfer for a
single value of ] is facilitated in a broadband fashion. If adiabatic sweeps with parallel
directions are used, a linear correlation between chemical shifts and J couplings can be
used to achieve optimal transfer for a wider range of couplings. This section deals with a
possibility to obtain pulses from OCT optimizations that aim to facilitate the necessary
BIRD rotation for each combination of v and J which will be referred to as Bllinear
Rotation Decoupling By Optimized Pulses (BIRDBOP) in the following. The basic BIRD
pulse sequence modified accordingly is shown in figure 3.25 B.

Before new pulses are designed, the sequences given in figure 3.25 A shall be evaluated
with respect to their 'H spin inversion properties as a function of vs and J. The recipe for
optimal pulse lengths T and durations of transfer delays § given in [106] to correlate a
given offset range Avs with a range of J-couplings in BIRD elements assumes

1 1
4.] min 4.] max .

Topt = (3.15)

For more even numbers J,in = 125 Hz and Ji,ax = 250 Hz are plugged into equation 3.15
which yields Topt = 1 ms. The optimal delay &g, can be found via

1 1
50pt + Topt = 4— or §0pt - Topt = —— (316)

min 4]max
which equates to dopt = 3 ms using the values from above and yields a total duration
of 8 ms for this particular BIRD element. Given that the double-sweep layout is used
for the purpose of J-compensation, a BIRD! rotation is obtained. If a BIRD®X rotation is
desired, the alternatively proposed single-sweep layout can be used'%]. The double-sweep
pulse sequence set up as given above using WURST-40 pulses with T =1 ms, Q =5 and
a sweep-width Avs = 40 kHz was evaluated according to ®pp in figure 3.26. Adiabatic
sweeps with opposed directions were used to create the profile given in figure 3.26 A. It
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Figure 3.25.: Alternative pulse sequences for J-compensated BIRD elements. Narrow and
wide bars correspond to 90° and 180° pulses, respectively. Phases are uniformly x. In
(A), trapezoids correspond to adiabatic pulses with pulse length T and sweep directions
indicated by diagonal arrows. Transfer delays are calibrated to match § = 1/(2' Jcp).
According to [106] opposite sweep directions (dashed arrow) are employed to provide
offset-independent optimal transfer for a single value of J and parallel sweep directions
(bold arrows) facilitate a linear correlation between offsets and J. Adiabatic pulses have
been replaced by pulse shapes obtained by OCT in (B).
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Figure 3.26.: ®pp fidelities of double-sweep BIRD elements as a function of vs and J. 'H
spin inversion fidelities according to ®pp were evaluated using opposed (A) and parallel (B)
sweep directions. WURST-40 pulses with T = 1 ms, Q = 5 and a sweep-width Avs = 40 kHz
were used in both cases. The delay § was set to 3 ms. Contour levels are given for ®pp = 0.8
(blue), 0.9 (green), 0.95 (orange) and 0.98 (red).
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Figure 3.27.: Oy fidelities of double-sweep BIRD elements as a function of vs and J.
Fidelities of propagator synthesis according to ®prppop (see equation 3.18) were evaluated
using opposed (A) and parallel (B) sweep directions. WURST-40 pulses with T = 1 ms,
Q =5 and a sweep-width Avs = 40 kHz were used in both cases. The delay § was set to
3 ms. Contour levels are given for ®pp = 0.8 (blue), 0.9 (green), 0.95 (orange) and 0.98 (red).

can be seen that if an offset vs is efficiently swept by the adiabatic pulses, efficient transfer
is achieved for J-couplings around a single optimal value corresponding to 167 Hz for
6 = 3 ms. The profile given in figure 3.26 B was created by employing adiabatic sweeps in
parallel directions. The picture is now tilted in a way that a slope of optimal transfer from
combinations of low values for vs and J to combinations of high values is achieved.

In order to analyze this behavior in terms of rotation properties, a ®yr-like quality factor
is necessary that can evaluate the fidelity of a 'H propagator synthesis as a function of
13C pulses. This is highly reminiscent of the BUBI problem('’], where the influence of the
effective S spin propagator U.g(S) had to be separated from the I spin target propagator
Ur(I, ]) to measure overlap with the effective two-spin propagator Ueg(I, J, S) via

Pgust = R (Ur(L, ))Uer (S)| Uer (1, ], S)) - (3.17)

It might appear as if to apply the BUBI procedure to a BIRD! element as depicted in fig-
ure 3.25 B, the operator 21, S, which corresponds to the rotation axis for *C-bound protons,
needs to be deconstructed into the spin I and S component according to equation 3.11 in
order to plug it into equation 3.17. However, it was proven in section 3.3.2 that this target
propagator can be created without pulses on the S spin and the full bilinear rotation has
to contribute to Ur. The appropriate quality factor can thus be written as

®pmppop = R ( exp(—im2lyS:)Uet(S)| Uest (I, ] S) ) - (3.18)

Equation 3.18 was used to create the profiles given in figure 3.27 using the parameters
according to figure 3.26. Since the general pattern of figure 3.26 can be reproduced,
®prpeop can be assumed to be a valid performance measure for the pulse sequence
proposed in figure 3.25 B.

In order to obtain gradients for an optimization, control derivatives with respect to spin
S controls have to be calculated from equation 3.18. It becomes evident that the solution
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has to be obtained in a different way from ®gyg; since both Ueg(S) and Ueg (I, ], S) are a
function of spin S controls. Thus, the product rule has to be applied to equation 3.18 to
obtain

V. PeroBor = R (Ur(L, J)Uer (S) |V Uer (1, J, S) )
+ %<UF(I’ ])Vu(s) Ueff(S)| Ueff(I’]’ S)) . (319)

The second addend on the right side of equation 3.19 can be rearranged to fit the shape of
the first and to be obtained using the same syntax according to

V. ®eroBor = R (Ue(L, Uett (S) |V Uesr (1, ], S) )
+ R (UL DU (L. J. S)| Vo) Ueir(S)) . (3.20)

Effective propagators contain the constituents of the pulse sequence from the perspective
of spin S or the whole spin system. U.g(S) is given by

Uett (S) = {UsU2Us Ut} (S) (3.21)

with Us(S) corresponding to the chemical shift evolution under Hs according to equa-
tion 2.19 besides U;(S) and U, (S) corresponding to the effective propagators of the shapes
labeled BIRD and BOP in figure 3.25, respectively. They shall be referred to as shape one
and two in the following. In both cases, the dynamics of the spin system are exclusively
governed by Hs and 7—(51:(1,‘) according to equation 2.19. For U (I, J,S) the whole pulse
sequence as well as the coupling Hamiltonian #j has to be taken into account. H; can
be neglected since the sequence is inherently robust against spin I offsets due to the
application of a 180° pulse which is assumed to be perfect. All contributions to H are used
according to their definitions in equation 2.19. This yields

Uet(I, ], S) = {Up/2UsUsU,UsU Uy 2} (1, ], S). (3.22)

Here, Us(1, ],S) is governed by Hs and Hj besides Ui (I, ], S) and Uy(I, ], S) depending
on ﬂ}fF(t) in addition. Uy, and U, correspond to 90° and 180° pulses acting on protons,
respectively. Both are assumed to be perfect and are a fixture during the optimizations.
When equations 3.21 and 3.21 are plugged into equation 3.20 this yields

Vs PemroBor = R (Up(L, ))Uer (S) |Vy(s) {Urj2UsUpUr UsU Uy 2} (1, ], S) )
+ R (UL (L)) Uest (1, ], S)| Vo) (UsU2Us UL} (9)) . (3.23)

Depending whether gradients are needed for shape one or shape two the products within
each scalar product of the two addends need to be evaluated differently by the product
rule. To keep the syntax as before, each factor left of the actual gradient can be cyclically
permuted to obtain the master equations for each BIRDBOP shape. The gradient for shape
one can be obtained via

V.o smosor = R ({UTUTU UTUT V(L 1, S)UR(L, ))Uer(S) |{ Vo Us - Unpa} (1,1, 5) )
+ R ({UfUj UL U1 DU (1, 1.9)| V0 Ui(S)) - (3.29)
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Figure 3.28.: Benchmark of the two master equations for ®grppop gradients against a
finite difference approximation according to equation 2.60. Both gradients were applied to
a randomly generated set of pulses yielding ®grppop = 0.169.

whereas gradients for shape two are given by

V.,0®srosor = R ({UTUT (1, 1, $)U(L, 1) Uetr(S) [{ Va0 Uz - UnUsUrUny2} (1,1, S) )
+ R (U U (L)) Vet 1. T )| { Voo Ua - UsUr | (S)) . (3.25)

Both master equations were used to perform a gradient benchmark according to equa-
tion 2.60. The resulting gradient errors are depicted in figure 3.28. Just as in figure 2.29,
distinct dips in the gradient errors can be observed which were indicative of exact gradients.
They can now be used to design BIRDBOP shapes from scratch.

Several optimizations were carried out both starting with randomly-generated pulses
as well as using the WURST-40 pulses discussed above as a starting point. Aiming at
robustness towards Avs = 30 kHz and a variation of J-couplings between 125 and 250 Hz
using By rms = 10 kHz, BIRDBOP shapes with T = 1 ms could not exceed 94.8% fidelity for
any of the tried starting conditions. Fidelity profiles with respect to ®prppop and $pp for
a typically obtained solution are shown in figure 3.29. It becomes apparent that the major
improvement compared to the sequences using two adiabatic sweeps is that increased
performance is mainly due to a more homogeneous offset profile. J-compensation has only
mildly improved and also using WURST-40 pulses as a starting point the J-correlation
feature using parallel sweep directions is lost in favor of offset-independent optimal
transfer in the proximity of J = 200 Hz. Judging the results for BIRDBOP in the context of
the TOP curve shown in figure 3.21, the solution lies below the fidelity of a continuous
shape with T = 8 ms but slightly above a HPD sequence with comparable complexity,
namely 2p1d. Even if HPD sequences of higher complexity are considered, the fidelity of
BIRDBOP shapes can not exceed those observed in the TOP curves. It has to be stated that
3C inversion was not demanded from the individual BIRDBOP shapes or the pulse pair as
a whole. But even with this reduced set of requirements there is no observable cooperative
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Figure 3.29.: Fidelity profiles of BIRDBOP shapes as a function of vs and J. Fidelities
of propagator synthesis according to ®grpgop (A) as well as 'H spin inversion fidelities
according to ®pp (B) were evaluated using two BIRDBOP shapes. The pulse sequence
depicted in figure 3.25 B was simulated as a whole. Contour levels are given for both
quality factors equal to 0.8 (blue), 0.9 (green), 0.95 (orange) and 0.98 (red).

effect between the individual pulses as described in [40] that would help to provide fidelities
exceeding the TOP curve. This case-hardens the claim that pulse sequences which are
obtained in section 3.3.2 indeed perform close to the physical maximum and the COB
approach is the most effective to obtain pulse sequence elements which are robust against
offsets, B;-inhomogeneities and a variation in heteronuclear J-couplings.

3.4. Materials & methods

Simulations were performed using the MATLAB®software package with self-written
scripts and functions (see appendix A.2.2) or code developed during the thesis of Sebas-
tian Ehnil®!! as well as modifications of the latter with the following exceptions: The data
for the experimental BIRD profiles given in figure 3.24 was processed using a Metabolomics
software package provided by the Bruker Biospin GmbH. Adiabatic shapes used in the
simulations discussed in sections 3.3.3 were generated using the Shapetool of the Bruker
TopSpin®software package.

Spectra shown in figures 3.6 and 3.7 were recorded on a 600 MHz Bruker Avance II+
spectrometer equipped with an inversely detected room temperature BBI probehead using
a 500 mM sample of (—)-menthol dissolved in CDCls. Spectral widths were set to 2 kHz
and 10.6 kHz for 'H and !*C, respectively, corresponding to 3.3 ppm and 70 ppm with
the carrier frequencies set to 2 and 45 ppm. Data was collected for 512 ms and 6.1 ms in
the 'H and 3C dimension, respectively. This corresponds to a data matrix of 2048 x 128
complex data points which was zero-filled to 4096 X 256 points. Homonuclear decoupled
FIDs were obtained by the acquisition of 32 chunks of 16 ms per #;-increment (containing
64 complex points each) combined to an FID with 512 ms effective AQ. Thereby the overall
experiment time was increased from 6.9 min to 3 h and 4.5 min.
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All other spectra were recorded on a 600 MHz Bruker Avance III spectrometer equipped
with an inversely detected H,'*C,'>N-triple-resonance cryogenically cooled TCI probe-
head. For the CT measurements and comparisons shown in figures 3.9 and 3.10, the
constant time delay T was set to 333 ms, corresponding to an evolution of 4/% Jyyy for a
representative coupling of —12 Hz. After correction according to equation 3.4, 310 ms
are available for data collection in the 'H dimension. Homonuclear decoupled FIDs were
constructed from 31 t,-increments of 10 ms duration (corresponding to 40 complex points)
to yield an overall data matrix of 1240 X 128 complex points which was zero-filled to
2048 X 256 points. The overall experiment time was 3 h and 7.5 min.

For spectra shown in figures 3.12 and 3.13 a mixture of 99.7 mg of ethylvanillin (3-ethoxy-
4-hydroxybenzaldehyde), 54 ul of methylpropiolate and 100 p! of triethyl orthoformate
(triethoxymethane) were added to 400 pl of DMSO-d; to yield 1 M solutions of each
component in about 600 pl sample volume. Spectra of this mixture were recorded with
spectral widths of 6.6 kHz and 30.2 kHz for 'H and 13C, respectively, corresponding to
11 ppm and 200 ppm with the carrier frequencies set to 5.5 ppm and 100 ppm. Data
was collected for 620 ms and 1.9 ms in the 'H and >C dimension, respectively. This
corresponds to data matrices of 8192 X 128 complex time points which were zero-filled to
16384 x 256 points. Homonuclear decoupled FIDs were obtained by the acquisition of 32
chunks of 19.4 ms (256 complex points each) resulting in an AQ of 620 ms. This increased
the overall experiment time from 7.5 min to 3 h and 16.3 min. In SP and COB-CLIP/CLAP-
RESET experiments all hard pulses were replaced by SPs according to figure 3.11 A and
as described in the main text. Using the nomenclature introduced in [12], carbon pulses
have been replaced by corresponding BEBOP (37.5 kHz, 10 kHz, 550 us, +5%, 1100), BIBOP
(37.5 kHz, 10 kHz, 600 ps, +5%, 1200) and BURBOP-180(37.5 kHz, 10 kHz, 1100 us, +5%,
2200) pulses. Correspondingly, proton hard pulses have been replaced in the same manner
by BEBOP (10 kHz, 20 kHz, 550 ps, £20%, 1100), BIBOP (11 kHz, 20 kHz, 100 ps, £20%,
200) and BURBOP-180(10 kHz, 20 kHz, 600 us, +20%, 1200) pulses. In situations with
simultaneous RF irradiation on both channels the above-mentioned pulses are combined
to BUBI, BEBE"™ and BE"BE sandwiches and J-compensated as described in [17]. BIRD
elements containing SPs also employ concurrent BURBOP-90(10 kHz, 20 kHz, 600 ps,
+20%, 1200) pulses on protons and corresponding BIBOP pulses on carbon (see above)
that have not been J-compensated according to the BUBI procedure. All pulse shapes
mentioned here were introduced in [15] and [17] except the BURBOP-90 shapes which
had to be optimized with parameters chosen equal to the BURBOP-180 on 'H.

Figure 3.14 features subspectra of (—)-menthol and the compound mixture. Subfig-
ures 3.14 A and B were taken from spectra which were rerecorded according to the settings
given for figures 3.6 and 3.7. The spectra used in subfigures 3.14 A’ and B’ were recorded
using the same settings and SPs were employed as described for figures 3.12 and 3.13.
Subfigures 3.14 C and C’ combine subspectra shown in subfigures 3.13 A and A’. Finally,
subfigures 3.14 D and D’ were obtained from subspectra shown in subfigures 3.13 B and B’.

The aligned sample used in figure 3.15 was prepared using a 30% (w/v) gelatin/D,0 gel
with 400 mM sucrose. The gel was stretched using a silicone-tube stretching devicel?28-23]
to an extension corresponding to a quadrupolar 2H splitting of the solvent of Avg = 271 Hz.
Homogeneity of the sample was verified using the method described in [231]. Spectral
widths for sucrose were set to 2 kHz and 6 kHz for 'H and '3C, respectively, corresponding
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to 3.3 ppm and 40 ppm with the carrier frequencies set to 4.25 ppm and 75 ppm. Data
was collected for 256 ms and 10.6 ms in the 'H and *C dimension, respectively. This
corresponds to data matrices of 1024 X 128 complex time points which were zero-filled
to 2048 x 256 points. Homonuclear decoupled FIDs were obtained by the acquisition of
16 chunks of 16 ms (64 complex points each) resulting in an AQ of 256 ms. The overall
experiment time was prolonged from an initial 5.9 min to 1 h and 25 min. Isotropic
reference spectra on a sample with the same concentration were recorded using the same
parameters except that AQs in the 'H dimension were doubled and homonuclear FIDs
were obtained from 32 chunks of 16 ms each which yields an AQ of 512 ms.

All two-dimensional experiments were recorded using two scans and 16 dummy scans
with a 1 s recovery delay and the first four points were dropped in every FID chunk of
homonuclear decoupled spectra to avoid artifacts due to digital-to-analog conversion of
the signal. A cosine-squared window function was used for apodization in each case. The
temperature was set to 300 K. Delays of heteronuclear magnetization transfer elements
such as conventional INEPT and BIRD were calibrated to match ! Joy = 145 Hz. Delays for
COB-INEPT were calibrated as described in figure 3.11. All hard and shaped 'H and *C
pulses have been calibrated to a nominal RF amplitude of 20 kHz and 10 kHz, corresponding
to pulse lengths of 12.5 and 25 pus, respectively. The processing software to reconstruct PS
data was obtained from [214].

Experimental BIRD profiles shown in figure 3.24 were obtained from spectra recorded on
a 500 MHz Bruker Avance IIT HD spectrometer equipped with a CryoProbe Prodigy " using
a 140 mM sample of sodium acetate-2-1*C dissolved in a 1:5 (v/v) mixture of D,O/DMSO-ds.
1D 'H spectra were acquired with spectral widths of 1.5 kHz corresponding to 3 ppm
with the carrier frequency set to the methyl resonance at 1.65 ppm. Data was collected
for 2.73 s corresponding to 8192 complex data points which were zero-filled to 16384
points. Time-domain data was not apodized prior to FT. The frequency-domain data was
then phased and subject to an automated baseline correction procedure. Experiments
were recorded using a single scan. The temperature was set to 300 K. The ! Jcy coupling
constant of about 125.3 Hz was determined within 0.1 Hz accuracy from a conventional 1D
'H spectrum. To avoid effects of B;-inhomogeneities and J-couplings during concurrent
180° pulses, BUBI shapes as described above were used. Hard pulses were used for the
odd-flip angle rotations. All hard and shaped 'H and '*C pulses have been calibrated to a
nominal RF amplitude of 20 kHz and 10 kHz, corresponding to 12.5 and 25 ps pulse length,
respectively.

Ethylvanillin, methylpropiolate and triethyl orthoformate were purchased from Alfa
Aesar®. Sucrose and (—)-menthol were purchased from Sigma-Aldrich®. Gelatine was
purchased from Ewald-Gelatine GmbH. Sodium acetate-2-'>C was purchased from Cam-
bridge Isotope Laboratories, Inc. Deuterated solvents were purchased from Eurisotop®.
All compounds were used without further purification.
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4. Conclusion

The improvement of sensitivity and resolution are main concerns of NMR method develop-
ment. Suppressing mutual couplings amongst nuclear spins by RF pulses presents itself as
an opportunity to achieve both. In this thesis, the optimization of two decoupling scenarios
was studied. Numerical optimization algorithms based on OCT but also traditional pulse
sequence design were the means to this end.

Heteronuclear decoupling sequences are a fundamental building block in every heteronu-
clear correlation experiment where resolution and spectral dispersion and sensitivity are
of higher importance than the information provided by resonance lines that are split due
to heteronuclear couplings between spins, such as standard HSQC or HMQC experiments.
Decoupling schemes are needed which provide high decoupled peak intensities paired
with low sideband artifact levels for a wide range of resonance offsets. Up until recently
it was best-practice to pursue these goals in three steps. First, a robust implementation
of spin inversion has to be found which will be repetitively applied with varying phases
given by a rationally designed supercycle in a second step. Finally, sideband artifacts
arising from recurring periods of effectively free coupling evolution have to be suppressed.
Typically, adiabatic bilevel decoupling is the preferred standard implementation to achieve
the goals given above. Pulse shapes such as CHIRP, WURST and Hyperbolic Secant (HS)
are common inversion elements which are expanded in a supercycle such as M4P5. Bilevel
decoupling serves as a scheme to suppress the two most spurious types of sidebands by
introducing 180° phase shifts on harmonic and subharmonic sidebands appearing at two
distinct frequencies using only four scans. It is thus very specific but thereby extremely
efficient and more widely used than the less general accordion technique, which may
require more transients to yield comparable sideband levels at a given frequency.

Optimal tracking, a generalized version of the GRAPE algorithm, was presented as
an approach that can tackle one inherent source of sidebands of decoupling sequenes
which is repetitiveness. Tracking-based decoupling schemes have no inherent source of
sidebands at a given frequency since the optimizations result in non-repetitive sequences
in all cases. It was shown in this thesis however, that no single tracking-based decoupling
sequence can compete with multi-scan approaches such as adiabatic bilevel decoupling
in terms of sideband levels. A quality factor was proposed for cooperative decoupling
sequences which can compensate their own imperfections by a feedback loop which ex-
plicitly facilitates the minimization of temporal signal oscillations. This can further reduce
sidebands beyond mere non-repetitiveness. It was shown that for the target parameter set
of 40 kHz bandwidth, a mean RF amplitude of 2 kHz and a representative heteronuclear
coupling constant of 140 Hz, a set of four decoupling sequences could be obtained which
provides sideband amplitudes of about 0.5% across the desired offset range. In other words,
decoupling of more than the entire chemical shift range of 1*C on a 14.1 T device is facili-
tated despite an almost 5-fold reduction of RF power dissipation. Put differently, using
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the same mean RF amplitude the effective bandwidth was more than doubled compared
to the gold standard. Conversely, at such reduced RF levels adiabatic decoupling breaks
down as soon as the adiabaticity condition is violated. Additional sidebands are introduced
which can not be canceled by the same mechanism as bilevel decoupling. Given that the
BROCODE sequences presented here are not prone to frequency-specific sidebands, the
method described in this thesis can be assumed to be maybe the most general approach
to maintain sideband suppression and broadband operation at any given RF level. The
efficiency of the BROCODE pulses has been proven by simulations and experiments and
further tested on two small molecule examples. It has been shown on a 100:1 mixture of a
pesticide molecule and its reactive precursor, that the sideband levels achievable by the
BROCODE allow for the unambiguous identification of the minor component at the given
dynamic ratio. Even compared to adiabatic bilevel decoupling with RF levels adjusted
to fulfill the adiabatic condition, the impurity resonances can quite reliably be identified
using the BROCODE. A major benefit of decoupling with reduced mean RF levels is the
possibility to extend acquisition periods and gain resolution. On the compound mixture
the increased resolution was an additional help in identifying the resonances by splittings
due to homonuclear J-couplings. It was shown on the natural compound (+)-borneol that
a synergy between BROCODE and LFP can be used to resolve homonuclear splittings
to an extent that resonances with identical 'H chemical shifts can be assigned by the
analysis of the respective multiplets in HSQC in cases of different 1*C chemical shifts. All
these benefits could be observed also in cases of unfavorable conditions. The magnitudes
of the heteronuclear coupling constants observed in the compound mixture were often
higher than the 140 Hz demanded in the optimizations. Further, the extended AQs require
repetitive application of the BROCODE pulses, which are PP pulses per design. So each
repetition of a given sequence will impair the decoupling performance given that the
individual pulses are not designed to be cyclic. Finally, the RF levels were calibrated
automatically in the HSQC experiments on the small molecules to test for robustness
and general applicability. Given that the BROCODE yielded acceptable decoupling and
sideband suppression capabilities nonetheless, it appears to be flexible enough to be a
useful tool for a wide range of heteronuclear correlation experiments. Relative sideband
amplitudes only appeared to increase when spectra were acquired with higher resolution.
This can be attributed to similar effects as with COSY experiments since sidebands can
have arbitrary phase and thus negative intensity contributions just like COSY signals
which will only gain significant intensity with sufficient resolution.

Despite the availability of static magnetic fields on the order of 23.5 T and multi-
dimensional NMR experiments, the resolution in 'H spectroscopy still can pose challenges
in terms of signal overlap. Therefore, experimental approaches to collapse homonuclear
multiplets were ever sought after. Although homonuclear decoupling approaches were
known for a rather long time, most of them were only rediscovered recently during a
surge of pure shift (PS) method development. These methods are commonly based on the
application of single-spin inversion (SSI) elements to achieve a selection of sub-ensembles
of active spins which can in turn be decoupled from the passive spins. Experiments are
known which apply SSI elements in indirect dimensions where PS FIDs are recorded as an
interferogram or which interrupt the data acquisition for the application of RF pulses to
achieve real-time (RT) homonuclear decoupling. SSI elements are available that facilitate
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sub-ensemble discrimination by slice-selection within the sample (Zangger-Sterk (ZS), with
the HOBS experiments as an important off-spring), isotope filtering (BIRD) or statistically
(PSYCHE). The benefits and drawbacks of all methods were weighed and matched to a
corresponding set of applications in multi-dimensional NMR spectroscopy. ZS and PSYCHE
are mostly used in homonuclear correlation experiments whereas the BIRD approach
lends itself to HSQC-type experiments. Although the most significant drawback of all PS
methods is an inherent loss of sensitivity due to the fact that only a reduced number of spins
contribute to the acquired signal, the combination of BIRD and HSQC represents the only
known possibility to improve sensitivity and resolution at the same time. However, BIRD
can not be applied to HMBC and HSQMBC experiments since it is impossible to distinguish
different spins which are remotely-bound to a heteronucleus. Another shortcoming of
BIRD is the inability to remove mutual couplings within diastereotopic CH; groups whereas
ZS and PSYCHE achieve broadband decoupling irrespective of *C multiplicity. Just as
PSYCHE, BIRD can bypass strong coupling effects but can in contrast also be applied
during the actual data acquisition. The same holds for HOBS but the latter can not be
considered broadband homonuclear decoupling.

In this thesis, HSQC-type experiments were proposed to extract heteronuclear one-bond
couplings with highest resolution by combining the CLIP/CLAP approach with BIRD-
based homonuclear decoupling. Coupling constants could be extracted from heteronuclear
doublets where each component is collapsed to singlets in the case of CH and CHj; groups
under isotropic conditions. Diastereotopic CH, groups (and in principle also CHs3 groups
under anisotropic conditions) show residual splittings and dispersive line shapes due to
unrefocused mutual couplings. It could be shown that in the weak coupling limit, the
extraction of heteronuclear couplings is not impaired by this line shape. In general, given
that all splittings due to weak homonuclear couplings can readily be removed, cases where
strong coupling can not be bypassed are easily recognizable by deviations from the expected
line shapes. Splittings caused by geminal couplings could be removed by transforming the
BIRD-based PS pseudo-dimension of the interferogram-based experiment into a constant-
time (CT) version. In principle, this should also suppress the splittings due to mutual
couplings within CHs groups under anisotropic conditions. An alternative approach
based on a perfect echo fails in the latter case since it is tailored towards decoupling AX
spin systems only. The experiments were tested on small organic molecules in isotropic
solution as well as in a stretched gel and it could be shown that the accuracy of the extracted
couplings benefited from the multiplet reduction in many cases. Particularly in the aligned
sample, many artifacts from long-range correlations caused by strong coupling could be
suppressed so that more symmetric heteronuclear doublets could be obtained that lead to
more reliable couplings and could also prevent the extraction of RDCs with a wrong sign.
At the same time, the formation of strong coupling networks among the protons can also
render BIRD-based decoupling ineffective. Moreover, a high abundance or magnitude of
homonuclear couplings and especially homonuclear RDCs lead to significant deviations of
the spins from a PS trajectory so that sideband-like artifacts could be observed. However,
they did not significantly affect the line shape of the heteronuclear doublets so that the
accuracy of the extracted couplings was not hampered.

The proposed experiments were examined with respect to their robustness towards a
variation in heteronuclear couplings, resonance offsets and B;-inhomogeneities. It could be
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shown that without the application of broadband pulses and J-compensated magnetization
transfer elements like COB-INEPT, signal losses greater than 90% have to expected. Still,
magnetization losses compared to fully-coupled reference experiments are observed which
could be attributed to BIRD elements which are not compensated against a variation of
J-couplings. It was shown by simulations that none of the sequences proposed in the
literature provides a fully J-compensated bilinear rotation. After a feasibility study with
shaped pulses, BIRD elements were optimized as hard pulse-delay (HPD) sequences and
optimal solutions could be found with as little as four pulses and three delays with a total
pulse length of 15.5 ms. The resulting transfer elements were tested experimentally using
a proxy setup for the proposed HSQC experiments yielding reasonable agreement with
the simulations. Further, the usual COB approach was compared to a setup using matched
pairs of linear frequency sweeps. Quality factors and gradient functions were derived for
a direct optimization of '3C pulses within this particular setup but the results could not
compete with the sequences obtained in the systematic study of HPD sequences. Finally,
the results for the interferogram-based PS HSQC experiments could not be reproduced
with RT BIRD-based homonuclear decoupling. It is now commonly accepted that errors
on the coupling constants are introduced, but there is an ongoing debate regarding their
very source, whether they are caused by BIRD imperfections or the interruption of the
data collection itself.

The methods described in this thesis are not limited to the applications presented
herein. BROCODE-type sequences could be scaled and applied to ’F-decoupling of 'H
and 13C, which is relevant for NMR of pharmaceuticals but highly challenging due to
the enormous chemical shift range of °F. Optimization algorithms could be modified to
aim for cyclic sequences, which would reduce artifacts due to the repetitive application
of the BROCODE pulses in experiments where AQ exceeds the individual pulse lengths.
Further, when the number of scans recorded for the same experiment exceeds the number
of decoupling sequences contributing to a COOP cycle, sidebands could be further reduced
by implementing BROCODE pulses which make use of accordion-type averaging.

RESET HSQC-type experiments can not only be used to accurately determine one-
bond couplings, but also simplify the correlation of chemical shifts in crowded spectra.
Moreover, an experiment to extract the magnitude and sign of “Tyy couplings from
collapsed homonuclear multiplets has yet to be developed. Such experiments can benefit
from the more robust COB-BIRD elements proposed in this thesis. Given that BIRD filters
are also used to orchestrate the evolution of heteronuclear couplings, additional BIRD*
and BIRDX elements could be optimized for use in w;-coupled HSQC or heteronuclear
J-resolved experiments. In summary, the results of this thesis provided several additions
to the ever-expanding NMR toolbox in terms of the observation as well as suppression of
couplings among nuclear spins.
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A. Appendix

A.1. Benchmark data

In order to quantify the gains in speed by changing the formalism in which the spin
dynamics are treated in thesis (see section 2.2.4), a computational benchmark was set.
The decoupling sequence obtained in section 2.2.2 was subjected to a linearly increasing
number of simple quality factor evaluations under the MATLAB®framework given in
appendix A.2.1. Wall clock times were obtained by time stamp commands and Hilbert
space computations were compared to their reduced Liouville space counterparts using
a Windows® workstation and a Linux machine. Moreover, to assess the reduction in
computational efforts under more realistic conditions, the expenditure of time for 1000 iter-
ations of the GRAPE algorithm was measured for optimizations described in section 2.2.2
and compared to examples similar to the ones discussed in [36] and [107]. Time stamps
for the latter were obtained after every 50 iterations and data was collected using serial
and parallel computation. The data and the respective gain factors deduced from linear
fits are compiled in figure A.1. Under MATLAB®, the gain factors show a significant
spread between the different machines, which can most likely be attributed to the different
hardware architecture. The difference between serial and parallel operation on the same
machine seems more peculiar. It appears that either the Hilbert space computations re-
quire more overhead, which seems unlikely, or the reduced state space prevents situations
where the workload among the different threads is unevenly distributed so that periods of
waiting are introduced which would prolong the total duration. In terms of full GRAPE
iterations, the gain factors are very similar for serial operation whereas a significant spread
is reintroduced upon parallelization. This can be explained by the scale of the problem
and the amount of time the optimization actually spends in the parallel fork, which can be
correlated with N,. The latter was set to 21 for TRACKD®), 101 for BUSS [1°7] and 384 for
the test pulse in this work. This indicates that the higher the value for N,,, the more time
is relatively spend in the parallel fork, where the optimization is more significantly sped
up by using the state space restriction.

Also in section 2.2.4, the effects of a periodical refreshment of the CG trajectory were
explored. For the optimizations leading to the BROCODE, 50 iterations were found to
be the optimal period to reset the CG routine. A more frequent reinitialization led to
significantly impaired convergence as illustrated in figure A.2. This indicates that at least
to some extent the hypersurface of the quality factors is locally quadratic with respect to
the control amplitudes.
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Matlab benchmark: single propagations
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Figure A.1.: Benchmark data for reduced state space vs. conventional Hilbert space com-
putations. The test pulse obtained in section 2.2.2 was used for the MATLAB®benchmark
comparing the speed of simple quality factor evaluations. Performance gains were com-
pared between a Windows® workstation (Goblin) and a Linux machine (Wanderlust). The
latter was employed to compare the speed of full iterations of the GRAPE algorithm for
optimization problems discussed in [36] and [107] with the one in this work using serial as
well as parallel computation. All wall clock times were normalized to the slowest reduced
Liouville state computation and gains in speed are determined from the slope of linear fits.
For reference to the computer pet names and specifications see table 2.6.
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A.2. MATLAB source code
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Figure A.2.: Convergence benchmark (spaghetti plots) for different frequencies of CG
reinitialization during optimizations of pulse sequences as described in section 2.2.2. The
CG trajectory was refreshed after 50 (black), 25 (blue) and 10 (red) iterations. The plot was
expanded to the same region as figure 2.30.

A.2. MATLAB source code

A.2.1. Heteronuclear decoupling

Listing A.1: MATLAB®function for parallel simulation of time/frequency-domain data

(fid/spectrum) and determination of ®pean (cost) of decoupling sequences. Input variable

definitions according to sections 1.2.5 and 2.2.4 are: n_FID = N, inc_puls = M, ws = vs,

wj = J, b1 = By e, t_dig = At, xp = uy and yp = u,. All other variables are only relevant

for FID processing.

function [fid,spectrum,cost] = parallel FID(n_FID,inc_puls,ws,wj,bl,t _dig,xp,
yp,qsin,em,basecor,norm_FT,zf)

%sinternal prealloc
fid = ones(n_FID+1,1);

%FID
rhossr = [0 0 0 1]7;
targetssr = rhossr;

phi = 0;

for i_FID = 1:n_FID
%dwell time
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for i_puls = 1:inc_puls
u_ssr = tfl5_reduced_propagator(ws,wj,bl,t_dig(i_puls),...
Xp((i_FID-1)*inc_puls+i_puls),yp((i_FID-1)*inc_puls+i_puls));
rhossr = u_ssrxrhossr;

end

%Kostenfunktion
checkpointssr = real(targetssr’xrhossr);
phi = phi + checkpointssr;

%Spektrum
fid(i_FID+1) = checkpointssr;
end

%sApodisierung
FT_dummy=fid’.=*qsin;
FT_dummy=FT_dummy. xem;

%FT
spectrum=fftshift(fft(FT_dummy,zf));

%Baseline correction
spectrum=spectrum-basecor;

%sNorm
spectrum=spectrum/norm_FT;
cost = phi/n_FID;

end

Listing A.2: MATLAB®function for parallel simulation of time/frequency-domain data

(fid/spectrum) and determination of ®coop (cost) for COOP decoupling sequences. Input

variable definitions according to sections 1.2.5 and 2.2.4 are: ncoop = Ncoop, n_FID = N,

inc_puls = M, ws = vs, wj = J, bl = By, t_dig = At, xp = u, and yp = u,. All other

variables are only relevant for FID processing.

function [fid,spectrum,cost] = parallel_COOPFID(ncoop,n_FID,inc_puls,...
ws,wj,bl,t_dig,xp,yp,qsin,em,basecor,norm_FT,zf)

%sinternal prealloc
fid = ones(n_FID+1,1);

%SFID
rhossr_N = zeros(4,n_FID);

for icoop = 1l:ncoop
rhossr = [0 0 0 1]';
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targetssr rhossr;
for i_FID 1:n_FID
%dwell time
for i_puls = 1:inc_puls
u_ssr = tfl5_reduced_propagator(ws,wj,bl,t dig(i_puls),...
xp(icoop, (i_FID-1)*inc_puls+i_puls),...
yp(icoop, (i_FID-1)*inc_puls+i_puls));
rhossr = u_ssrx*rhossr;

end

%Propagation
rhossr_N(:,i FID) = rhossr_N(:,i_FID)+(1/ncoop)*rhossr;
end %single FID
end %CO0OP

%CO0P FID
phi_mean = 0;
for i_FID = 1:n_FID
checkpointssr = targetssr’xrhossr_N(:,i_FID);
phi_mean = phi_mean + checkpointssr/n_FID;
fid(i_FID+1) = checkpointssr;
end

%shomogenous cost
phi = 0;
for i_FID = 1:n_FID
checkpointssr = targetssr’xrhossr_N(:,i_FID);
checkpointssr = 1-(1-checkpointssr)”~2-(phi_mean-checkpointssr)”2;
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phi + checkpointssr;

%sApodisierung
FT_dummy=fid'.*qsin;
FT_dummy=FT_dummy. *xem;

spectrum=fftshift(fft(FT_dummy,zf));
%Baseline correction

spectrum=spectrum-basecor;

spectrum=spectrum/norm_FT;
phi/n_FID;
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end

Listing A.3: MATLAB®function for the explicit computation of propagators in a reduced
Liouville space. Input variable definitions according to sections 1.2.5 and 2.2.4 are: ws = vs,
J identical, b1 = By s, timestep = At, ux = u(t;) and uy = uy(t;).

function u = tfl5_reduced_propagator(ws,J,bl,timestep,ux,uy)
u=zeros(4);
%snu plus/minus

nup = sqrt((blxux)”2 + (blxuy)”2 + (ws+(J/2))"2);
num sqrt((blxux)”2 + (blxuy)”2 + (ws-(J/2))"2);

%Matrix element building blocks a-d (plus/minus);
ap = -((blxux)/nup) * sin(pi*nupxtimestep);

am = -((blxux)/num) * sin(pixnumxtimestep);

bp = - ((blxuy)/nup) * sin(pi*nupxtimestep);

bm = -((bl*uy)/num) * sin(pi*numxtimestep);

cp = -((ws+(J/2))/nup) * sin(pixnupxtimestep);
cm = -((ws-(J3/2))/num) * sin(pixnumxtimestep);
dp = cos(pixnupxtimestep);

dm = cos(pixnumxtimestep);

%Matrix Entries

u(l,1) = ap*xam - bpxbm - cpxcm + dpxdm;
u(l,2) = apxbm + bpxam + cpxdm + dpx*cm;
u(l,3) = apxcm - bpxdm + cp*xam - dpxbm;
u(l,4) =-apxdm - bpxcm + cpxbm + dpx*am;
u(2,1) = apxbm + bp*am - cpxdm - dpxcm;
u(2,2) =-apxam + bpxbm - cpxcm + dpx*dm;
u(2,3) = apxdm + bpxcm + cpxbm + dpx*am;
u(2,4) = apxcm - bpxdm - cp*am + dpxbm;
u(3,1) = apxcm + bpxdm + cpxam + dpxbm;
u(3,2) =-apxdm + bpxcm + cpxbm - dpx*am;
u(3,3) =-apxam - bpxbm + cpxcm + dpx*dm;
u(3,4) =-apxbm + bpxam - cp*dm + dp*cm;
u(4,1) = apxdm - bpxcm + cpxbm - dpxam;
u(4, = apxcm + bpxdm - cpxam - dpx*bm;
u(4,3) =-apxbm + bpxam + cpxdm - dpx*cm;
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u(4,4) = ap*am + bpxbm + cpxcm + dp=dm;

end

A.2.2. BIRD filters

Listing A.4: MATLAB®script for the evaluation of ®pp and ®yr of HPD BIRD elements
discussed in sections 3.3.1 and 3.3.2 as well as simulations of BIRD spin echo intensity

profiles.

clear;
close all;

%spin system initialization

nspins=2;
al0_basis;

method = 'BIRD’;
%BIRD, JCBIRD, 4p3d, 5p4d

n_j = 41;

j_min = 25;

j_max = 350;

j_fix = 125.29; % J_exp

j_del = 185; % J_match

rhoinit = iz(:,:,1);
rhotarget = -iz(:,:,1);

op = 2xiy(:,:,1)*iz(:,:,2);

phi = 0;
colorstyle = 'b’;

%Spectra

k = 1024;

dw = 0.000333;
n_FID = 8xk;
SI=16xk;

b = 1.5;

%Indices

j_index = linspace (j_min, j_max, n_j);

te = ones(1l,n_j);
teFID=zeros(n_FID+1,1);
em=zeros(n_FID+1,1);
gsin=zeros(n_FID+1,1);
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spectra
ftindex

zeros(n_j,SI);
linspace(-1/(2*dw),1/(2+dw),SI);

for a = 1:n_FID+1
gsin(a)=sin(0.5*pix((a-1)/(n_FID+1)+1))"2;
em(a)=exp(-pixlbx(a-1)=*dw);

end

h_evo = 2xpixj_fix*iz(:,:,1)*iz(:,:,2);
u = expm(-lixh_evoxdw);
u_target = expm(-1lixpixop);

for i_j = 1:n_j
rho=rhoinit;
ueff = eye(2”nspins);

switch method
case '4p3d’
%--- 4p3d 2IySz COB 15.5 ms ---
scaling = j_index(i_j)/j_fix;

delayl = 5.1666x*1le-3;
delay2 = 5.1669x1le-3;
delay3 = 5.1666x*1le-3;

u_pi = expm(-1ixpi*(ix(:,:,1)+ix(:,:,2)));
flipl = 2*pix(148.1455/360);
flip2 = 2xpix*(-116.2881/360);
flip3 = 2%pix(116.2863/360);
flip4 = 2xpix(-148.1424/360);

u_puls = expm(-1ixflipl*ix(:,:,1));
u_delay = expm(-1lixh_evo*(scalingx*delayl/2));
ueff = u_delayxu_pixu_delay*u_pulsxueff;

u_puls = expm(-1ixflip2*ix(:,:,1));
u_delay = expm(-1lixh_evox*(scalingxdelay2/4));

ueff = u_delayx*(-u_pi)*u_delay*xu_delay*u_pixu_delay*u_pulsxueff;

u_puls = expm(-1i*xflip3=*ix(:,:,1));
u_delay = expm(-1lixh_evox(scalingxdelay3/2));
ueff = u_delayxu_pixu_delay*u_puls*xueff;

u_puls = expm(-1lixflip4=ix(:,:,1));
ueff = u_pulsxueff;

%CLIP
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u_clip = expm(-1i%0.5%pixix(:,:,2));
ueff = u_clipxueff;

case ’'5p4d’
5p4d 2IySz COB 15.5 ms ---
scaling = j_index(i_j)/j_fix;
delayl = 5.7616x1le-3;
delay2 = 4.0728x1le-3;
delay3 = 1.7267x*1le-3;
delay4 = 3.9389x1le-3;
u_pi = expm(-lixpix(ix(:,:,1)+ix(:,:,2)));

flipl = 2+pi*(37.6467/360);
flip2 = 2#pi*(119.8013/360);
flip3 = 2*pix(-71.4578/360);
flip4 = 2*pi*(-63.912/360);
flip5 = 2*pi*(-22.0815/360);

u_puls = expm(-1ixflipl*ix(:,:,1));
u_delay = expm(-1lixh_evox(scalingxdelayl/2));
ueff = u_delayxu_pixu_delay*u_pulsxueff;

u_puls = expm(-1ixflip2*ix(:,:,1));
u_delay = expm(-1lixh_evox(scalingxdelay2/2));
ueff = u_delayxu_pixu_delayxu_puls*xueff;

u_puls = expm(-1i*xflip3*ix(:,:,1));
u_delay = expm(-lixh_evox(scalingxdelay3/2));
ueff = u_delayxu_pixu_delayxu_puls*xueff;

u_puls = expm(-1ixflip4*ix(:,:,1));
u_delay = expm(-1lixh_evox(scalingxdelay4/2));
ueff = u_delayxu_pixu_delay*u_puls*xueff;

u_puls = expm(-1ixflip5*ix(:,:,1));
ueff = u_pulsxueff;

%CLIP
u_clip = expm(-1ix0.5%pixix(:,:,2));
ueff = u_clipxueff;

case 'BIRD’
BIRD ---
vardelay = j_index(i_j)/(2*j_fixxj_del);
delay = expm(-1lixh_evoxvardelay);
inv = expm(-1i*pi*(ix(:,:,1)+ix(:,:,2)));
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puls = expm(-1i*x0.5%pi*xix(:,:,1));
puls2 = expm(-1i*0.5%pi*xix(:,:,1));

bubi = expm(-1i%(-0.5%pixix(:,:,1)+pi*xix(:,:,2)));

ueff = pulsxdelay*invxdelayx*puls*xueff;

case 'JCBIRD’
JC BIRD ---
vardelay = j_index(i_j)/(2xj_fixxj_del);
u_delay = expm(-1lixh_evoxvardelay);
u_short = expm(-1lixh_evoxvardelay/2);
u_x = expm(-1i*0.5%pi*xix(:,:,1));
u_xm = expm(1lix0.5%xpixix(:,:,1));
u_y = expm(-1ix0.5xpixiy(:,:,1));
u_ym = expm(1lix0.5xpixiy(:,:,1));
u_pi = expm(-1lixpix(ix(:,:,1)+ix(:,:,2)));

ueff = u_ymxu_short*u_pixu_shortxu_xxu_delayxu_pi...
xu_delayxu_xmxu_shortxu_pixu_shortxu_yxueff;

otherwise
error(’no valid BIRD")

end

end
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if phi ==
rho = ueffxrhoxueff’;
norm = real(trace(rhotarget’x*rhotarget));
te(i_j)=real(trace(rhotarget’*rho))/norm;
elseif phi ==
normu = real(trace(u_target’xu_target));
te(i_j)=real(trace(u_target’xueff))/normu;
else
break
end

rho = ueffxix(:,:,1)*ueff’;

for j = 1:n_FID+1
teFID(j) = trace(-ix(:,:,1)’'*rho);
rho = uxrhoxu’;

end

teFID=teFID.x(em.x*qgsin);

ft = fftshift(fft(teFID,SI));

spectra(i_j,:) = ft;
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figure;
plot(j_index,te,colorstyle, 'Linewidth’,0.75);
set(gca, 'fontsize’,12, 'XColor’,'k", "YColor’, k", "Linewidth’,0.75);
set(gca, 'YTicklabel’,num2str(get(gca, 'YTick’)', '%.1f"));
set(gcf, 'color’,[1 1 11);
xlabel('J / Hz");
if phi ==
ylabel(’'\Phi_{PP}");
elseif phi ==
ylabel(’'\Phi {UR}");
else
return
end

figure;

entries = find(ftindex > -150 & ftindex < 150);

newftindex = linspace(min(j_index),max(j_index), ...
numel(j_index)*numel(entries));

peaks = reshape(spectra(:,entries)’,numel(j_index)+*numel(entries),1);

norm = max(real(peaks));

plot(newftindex, real(peaks)/norm, 'k’, 'Linewidth’,0.75);

axis ([min(newftindex) max(newftindex) -1 1]);

set(gca, 'fontsize’,12, 'XColor’,'k", "YColor’, k", "Linewidth’,0.75);

set(gca, 'YTicklabel’,num2str(get(gca, 'YTick’)', '%.1f"));

set(gcf, 'color’,[1 1 11);

xlabel(’'J {eff} / Hz");

ylabel('Peak intensity’);

Listing A.5: MATLAB®function for the parallel evaluation of ®pp (PP) and ®grppop (UR)
as well as the determination of U.g (ueff) according to equation 3.22 of BIRDBOP shapes
discussed in section 3.3.3. Input variable definitions are: wj = J, ws = vs, cell arrays ix,
iy and iz correspond to the density operators I, and Sy, I, and S, as well as I, and S,

respectively. zeilel and zeile2 correspond to the number of pulse increments of shape one
()

x,1

t digl=Aty, xp2 = uisz), yp2 = u;SZ) and t_dig2 = At,. uf, ux and upi correspond

and two, respectively. Other input variables according to section 3.3.3 are: xpl = u

)
ypl—uy’l,

to Ur, U,/ and Uy, respectively.

5

function [UR,PP,ueff] = tf_t1l4b_sim_bird_shape_jcomp_par(wj,ws,ix,iy,iz,...
zeilel,zeile2,xpl,ypl,t_digl,xp2,yp2,t_dig2,uf,ux,upi)

h_j = 2xpixwj*iz(:,:,1)*iz(:,:,2);
h_cs = 2xpi*xwsx*iz(:,:,1);

h_evo = h_j+h_cs;

%Useff puls 1
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end

192

ushapels = eye(4);

for

end

j = l:zeilel

horf = 2xpix(xpl(j)*ix(:,:,1)+ypl(j)=*iy(:,:
h = h_cs + h_rf;

u = expm(-1lixhxt_digl(j));

ushapels = uxushapels;

%sUeff puls 1
ushapel = eye(4);
for j = 1l:zeilel

end

h_orf = 2xpix(xpl(j)*ix(:,:,1)+ypl(j)*iy(:,:
h = h_evo + h_rf;

u = expm(-lixhxt_digl(j));

ushapel = uxushapel;

%Useff puls 2
ushape2s = eye(4);
for j = 1l:zeile2

end

horf = 2xpix(xp2(j)*ix(:,:,1)+yp2(j)*iy(:,:
h h_cs + h_rf;

u = expm(-lixhxt_dig2(j));

ushape2s = uxushape2s;

%sUeff puls 2
ushape2 = eye(4);
for j = 1l:zeile2

end

horf = 2xpix(xp2(j)*ix(:,:,1)+yp2(j)*iy(:,:
h = h_evo + h_rf;

u = expm(-lixhxt_dig2(j));

ushape2 = uxushape2;

udelay = expm(-1lixh_evox0.003);
udelays = expm(-1lixh_cs*0.003);

useff = udelays*xushape2sxudelays*ushapels;
ueff = uxxudelayxushape2xupixudelayxushapelx*ux;

UR =

rho

PP =

real(trace((ufxuseff)’'xueff)/4);
= ueffxiz(:,:,2)xueff’;
real(trace(-iz(:,:,2) " '*rho));

1))

1))

1))

,1));
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A.3. Fortran source code

A.3.1. Heteronuclear decoupling - Hilbert space

Listing A.6: Fortran source code for the quality factor evaluation of individual decoupling

sequences according to ®peqn in Hilbert space

! 2 spins xy Heterodecoupling Tony 2012/08

! phi® (TRACKING)

ttcost2 = 0dO
call mcopy(initialrho, rho)
do k=1,npulses
call geteigenhamtrack(k)
call czmul(-1d0,ii,pham(k),workl)
call expm(duration(k),workl,workl)
call URUd(workl, rho, rho)
if (mod(k,Ppdwell) .eq. 0) then
call mscalp(targetrho,rho,ttcost3)
ttcost2=ttcost2+ttcost3
endif
enddo
ttcostl = ttcostl+ttcost2/n_FID

Listing A.7: Fortran source code for the gradient evaluation of individual decoupling

sequences according to ®peq, in Hilbert space

12 spins xy Gradient fur TRACKING Tony 2012/08

s get single U, same U as with expm(-iH), even with full H (+Sctrl)

do k=1,npulses leinzeln alle, voller H
call geteigenhamtrack(k)

call VDe(pham(k),k) IV=work2, D=work9, e=work8

call mcopy(work2,optV(k))
call mcopy(work9,optD(k))
call mcopy(work8,opte(k))

call dagger(work2,work3) I vd

call mmul(work8,work3,work4) I eVd

call mmul(work2,work4,optG(k)) I G=U=VeVd
enddo

R initialrho propagieren
call mcopy(initialrho,prho(1))

do k=1,npulses I Aufmultiplizieren, von rho
call dagger(optG(k),work2) I Ud
call mmul(prho(k),work2,prho(k+1)) ! RuUd
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call mmul(optG(k),prho(k+1l),prho(k+1)) I URUd
enddo

----- targetrho rickwarts propagieren
call zeros(plambda(npulses+l)) I DANGER: comes from npulses+l

do k=npulses,1,-1
if (mod(k,Ppdwell) .eq. 0) then
call madd(targetrho,plambda(k+1),plambda(k+1)) !TRACK
endif

call dagger(optG(k),work2) I Ud

call mmul(plambda(k+1),optG(k),work3) I LU

call mmul(work2,work3,plambda(k)) I UdLU
enddo

----- exakten grad, basis transformation

do ictrl=3,nctrl

call cmul(pii,ctrlham(ictrl),workgl(ictrl)) ! H = 2xpixH
enddo
do k=1,npulses

call dagger(optG(k),work3) I Ud

call dagger(optV(k),work4) I vd

call mmul(plambda(k+1),optV(k),work6) I LxV

call mmul(work4,work6,work6) I VdxLxV
call mmul(work3,optV(k),work?) I Ud*V

call mmul(work4,work7,work8) I VdxUd*xV = work8
call mmul(work3,optV(k),work?7) I UdxV

call mmul(prho(k),work7,work?) I RxUd*V
call mmul(work4,work7,work9) I VdxRxUd*V
call mmul(prho(k),optV(k),work?) I RV

call mmul(optG(k),work7,work?) I UxRxV
call mmul(work4,work7,workl10) I Vd*xUxRx*Vc

------- calculate dU/du

do ictrl=3,nctrl

call mmul(workgl(ictrl),optV(k),workl) I HctrixV

call mmul(work4,workl,workl) I Vd*HctrlxV

call mpstern(workl,optD(k),workl) I U" = Vds«HctrlxV * D
call mmul(workl,work8,work?7) ' U" * work8

call mmul(work8,work7,work?) I Ud’'=Vd*Ud*V*U'*xVd+xUd*V
call cmul(-1d0,work7,work7) I -ud’

call mmul(workl0,work7,work5) I Vd*UxR+xVx-Ud"’

call mmul(workl,work9,work7) ' U’ x V'RU'V

call madd(work7,work5,work7) I (URU)’

call mmul(work6,work?7,work7) I VdxL+V x (URU)’

-------- imaginares skalarprodukt
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call traceim(work7,ttcost) ' Im(tr{Lx(URU)"'})
ttcost=-ttcostxduration(k) I -ix<L/R’>xt
grad2(ictrl,k)=grad2(ictrl, k)-ttcost/n_FID ! Summe

enddo

enddo

Listing A.8: Fortran source code for the quality factor evaluation of COOP decoupling

sequences according to the full penalty approach in Hilbert space

12 spins xy COOP-Heterodecoupling Tony 2012/11/14

Iphi®@ (TRACKING) full penalty
!

l---- init ----
ttcost2 = 0dO
do k=1,n_FID
call zeros(multitarget(k))
enddo

!---- propagate ----
do j=0,ncoop-1
call mcopy(initialrho, rho)
do k=j=*(npulses/ncoop)+1, (j+1)=*npulses/ncoop
call geteigenhamtrack(k)
call czmul(-1d0,ii,pham(k),workl)
call expm(duration(k),workl,workl)
call URUd(workl, rho, rho)
if (mod(k,Ppdwell) .eq. 0) then
call cmul(1d0@/ncoop, rho,workl)
call madd(multitarget(k/Ppdwell-j*n_FID),workl,
/ multitarget(k/Ppdwell-j*n_FID))
endif
enddo !einzelpuls
enddo !coop

I---- evaluate ----

do k=1,n_FID
call mscalp(targetrho,multitarget(k),ttcost3) !Target
call mscalp(coop(10),multitarget(k),ttcostd4) !'Penalty 2IySz
ttcost3 = 1d0-(1dO-ttcost3/normrho)**2d0- (ttcost4/normrho) **2d0
call mscalp(coop(8),multitarget(k),ttcostd4) !Penalty 2IySy
ttcost3=ttcost3-(ttcost4/normrho)**x2d0
call mscalp(coop(1ll),multitarget(k),ttcost4) !'Penalty 2IySx
ttcost3=ttcost3- (ttcostd4/normrho)**2d0
ttcost2=ttcost2+ttcost3

enddo

ttcostl = ttcostl+ttcost2/n_FID
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Listing A.9: Fortran source code for the gradient evaluation of COOP decoupling se-

quences according to the full penalty approach in Hilbert space

12 spins xy
I'phi® (TRACKING)

COOP-Heterodecoupling (TRACKING)

Tony 2012/11/14
full penalty

I----get single U, same U as with expm(-iH), even with full H (+Sctrl)

call ge
call md
do k=1,
call
call
call
call
call
call
call
call
enddo

------- initi
do k=1,n_FI

call ze
enddo

do j=1,ncoo

teye(workl)
iv(workl,2d0,workl)
npulses
geteigenhamtrack(k)

leinzeln alle, voller H

VDe (pham(k),k) !'V=work2, D=work9, e=work8

mcopy (work2,optV(k))
mcopy (work9,optD(k))
mcopy (work8,opte(k))
dagger(work2,work3)
mmul(work8,work3,work4)
mmul (work2,work4,optG(k))

alrho propagieren
D
ros(multitarget(k))

p

I vd
I evVd
I G=U=VeVd

call mcopy(initialrho,prho((j-1)*(npulses/ncoop)+1))

do k=(j-1)*(npulses/ncoop)+1,j*(npulses/ncoop)

call da
call mm
call mm
if (mod
call

! Aufmultiplizieren von rho
gger(optG(k),work2)
ul(prho(k),work2,prho(k+1))
ul(optG(k),prho(k+1),prho(k+1))
(k,Ppdwell) .eq. 0) then
cmul(1d0/ncoop,prho(k+1),workl)

' Ud
! Rud
I URUd

call madd(multitarget(k/Ppdwell-(j-1)*n_FID),workl,

/ multitarg
endif

enddo !ein

enddo !coop

et (k/Ppdwell-(j-1)*n_FID))

zelpuls

I---- time-dependant COOP mixed target operators weighted by cost

196

do k=1,n_FI

D

call mscalp(targetrho,multitarget(k),ttcost2) !Target
call cmul((2d0/ncoop)*(1dO-ttcost2/normrho),targetrho,workl)
call mscalp(coop(10),multitarget(k),ttcost3) !Penalty 2IySz
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call cmul(-(2d0/ncoop)*ttcost3/normrho,coop(10),work2)

call madd(workl,work2,workl)

call mscalp(coop(8),multitarget(k),ttcost3) !'Penalty 2IySy
call cmul(-(2d0/ncoop)*ttcost3/normrho,coop(8),work2)

call madd(workl,work2,workl)

call mscalp(coop(1ll),multitarget(k),ttcost3) !Penalty 2IySx
call cmul(-(2d0/ncoop)*ttcost3/normrho,coop(1ll),work2)

call madd(workl,work2,multitarget(k))

enddo

do

--targetrho riuckwarts propagieren
j=ncoop,1,-1
call zeros(plambda(j*(npulses/ncoop)+1))
DANGER: comes from npulses+l
do k=j*npulses/ncoop, (j-1)*(npulses/ncoop)+1,-1
rickwarts aufmultplizieren von U
if (mod(k,Ppdwell) .eq. 0) then
call madd(multitarget(k/Ppdwell-(j-1)*n_FID),plambda(k+1),

/ plambda(k+1)) !TRACK
endif
call dagger(optG(k),work2) I Ud
call mmul(plambda(k+1),0ptG(k),work3) I LU
call mmul(work2,work3,plambda(k)) I udLU
enddo
enddo

-- exakten grad, basis transformation
do ictrl=3,nctrl
call cmul(pii,ctrlham(ictrl),workgl(ictrl)) ! H = 2x*pixH
enddo
do k=1,npulses

call dagger(optG(k),work3) I Ud

call dagger(optV(k),work4) I vd

call mmul(plambda(k+1),optV(k),work6) PLxV

call mmul(work4,work6,work6) I VdxLxV
call mmul(work3,optV(k),work?) I UdxV

call mmul(work4,work7,work8) I Vd+*Ud*V = work8
call mmul(work3,optV(k),work?) I UdxV

call mmul(prho(k),work7,work?) I RxUd*V
call mmul(work4,work7,work9) I VdxRxUd*V
call mmul(prho(k),optV(k),work?7) I RxV

call mmul(optG(k),work7,work?) I UxRxV
call mmul(work4,work?7,workl0) I VdxUxRxVc

----calculate dU/du
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do ictrl=3,nctrl

call mmul(workgl(ictrl),optV(k),workl) I HctrlxV
call mmul(work4,workl,workl) I VdxHctrlxV
call mpstern(workl,optD(k),workl) I'U" = Vd*HctrlxV x D
call mmul(workl,work8,work?) I U" *x work8
call mmul(work8,work7,work?7) I Ud'=Vd*Ud*V*U'*xVd*Ud*V
call cmul(-1d0,work7,work7) I -ud’
call mmul(workl0,work7,work5) I VdxUxRxVx-Ud’
call mmul(workl,work9,work?) I'U" = V'RU'V
call madd(work7,work5,work?) I (URU)’
call mmul(work6,work?7,work7) I VdxLxV *x (URU)’
LR imaginares skalarprodukt

call traceim(work7,ttcost) I Im(tr{L*x(URU)"'})
ttcost=-ttcostxduration(k) I -ix<L/R’'>*t
grad2(ictrl,k)=grad2(ictrl,k)-ttcost/n_FID ! Summe

enddo

enddo

Listing A.10: Fortran source code for the quality factor evaluation of COOP decoupling
sequences according to the homogenizing approach in Hilbert space

12 spins xy  COOP-Heterodecoupling Tony 2013/02/06
I'phi@ (TRACKING) <Ix> maximization & homogenisation
!

P---- init ----

ttcost2 = 0dO

do k=1,n_FID

call zeros(multitarget(k))

enddo

I---- propagate ----

do j=0,ncoop-1
call mcopy(initialrho, rho)
do k=j*(npulses/ncoop)+1, (j+1)=*npulses/ncoop
call geteigenhamtrack(k)
call czmul(-1d0,ii,pham(k),workl)
call expm(duration(k),workl,workl)
call URUd(workl, rho, rho)
if (mod(k,Ppdwell) .eq. 0) then
call cmul(1d0/ncoop, rho,workl)
call madd(multitarget(k/Ppdwell-j*n_FID),workl,
/ multitarget(k/Ppdwell-j*n_FID))
endif
enddo 'einzelpuls
enddo !coop
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I---- evaluate ----

do k=1,n_FID

call mscalp(targetrho,multitarget(k),targetmod(k)) ITarget
ttcost2=ttcost2+targetmod(k)/normrho

enddo

ttcost4
ttcost2

ttcost2/n_FID !mean value
0do lreinitialization

do k=1,n_FID Imaximize & homogenise

ttcost3 1-(1-targetmod(k))**x2-(ttcost4-targetmod(k))x**2
ttcost2 ttcost2+ttcost3

enddo

ttcostl = ttcostl+ttcost2/n_FID

Listing A.11: Fortran source code for the gradient evaluation of COOP decoupling se-

quences according to the homogenizing approach in Hilbert space

12 spins xy COOP-Heterodecoupling Tony 2013/02/06

Iphi®@ (TRACKING) <Ix> maximization & homogenisation
!

l----get single U, same U as with expm(-iH), even with full H (+Sctrl)
call geteye(workl)
call mdiv(workl,2d0,workl)

do k=1,npulses leinzeln alle, voller H

call geteigenhamtrack(k)
call VDe(pham(k),k) !'V=work2, D=work9, e=work8
call mcopy(work2,optV(k))
call mcopy(work9,optD(k))
call mcopy(work8,opte(k))

call dagger(work2,work3) I vd

call mmul(work8,work3,work4) I evd

call mmul(work2,work4,optG(k)) I G=U=VeVd
enddo

R initialrho propagieren
R skalarprodukte und mittelwerte berechnen
do k=1,n_FID
call zeros(multitarget(k))
enddo
ttcost2=0d0

do j=1,ncoop
call mcopy(initialrho,prho((j-1)*(npulses/ncoop)+1))
do k=(j-1)*(npulses/ncoop)+1, j*(npulses/ncoop)
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! Aufmultiplizieren, von rho

call dagger(optG(k),work2) I Ud
call mmul(prho(k),work2,prho(k+1)) I RUd
call mmul(optG(k),prho(k+1),prho(k+1)) ! URUd

if (mod(k,Ppdwell) .eq. 0) then
call cmul(1d0@/ncoop,prho(k+1),workl)
call madd(multitarget(k/Ppdwell-(j-1)*n_FID),workl,
/ multitarget(k/Ppdwell-(j-1)*n_FID))
endif
enddo !einzelpuls
enddo !coop

beeeem - - evaluate <Ix>
do k=1,n_FID
call mscalp(targetrho,multitarget(k),targetmod(k))
ttcost2=ttcost2+targetmod(k)/normrho
enddo

ttcost4d = ttcost2/n_FID !'mean value

L Gradientenloops fir grad_Ix
do k=1,n_FID

ITarget

call cmul((2d0/ncoop)*(1+ttcost4-2«targetmod(k)),targetrho,

/ multitarget(k))
enddo

R L targetrho rickwarts propagieren
do j=ncoop,1,-1
call zeros(plambda(j*(npulses/ncoop)+1))
! DANGER: comes from npulses+l
do k=j*npulses/ncoop, (j-1)*(npulses/ncoop)+1,-1
I rickwarts aufmultplizieren von U
if (mod(k,Ppdwell) .eq. 0) then

call madd(multitarget(k/Ppdwell-(j-1)*n_FID),plambda(k+1),

/ plambda(k+1)) !TRACK
endif
call dagger(optG(k),work2) I Ud
call mmul(plambda(k+1),0ptG(k),work3) I LU
call mmul(work2,work3,plambda(k)) I UdLU
enddo
enddo

R exakten grad, basis transformation
do ictrl=3,nctrl

call cmul(pii,ctrlham(ictrl),workgl(ictrl)) ! H = 2xpixH
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enddo

do k=1,
call
call
call
call
call
call
call
call
call
call
call
call

R cal
do ic

call

call

call

call

call

call

call

call

call

call

R im
call

ttco

npulses
dagger(optG(k),work3)
dagger(optV(k) ,work4)

mmul (plambda(k+1),0ptV(k),worké)
mmul (work4,work6,work6)
mmul (work3,optV(k),work?7)
mmul(work4,work?7,work8)
mmul(work3,optV(k),work?7)
mmul(prho(k),work7,work?)
mmul (work4,work7,work9)
mmul (prho(k),optV(k),work7)
mmul (optG(k),work7,work?)
mmul(work4,work7,work10)

culate dU/du
tr1=3,nctrl
mmul(workgl(ictrl),optV(k),workl)
mmul(work4,workl,workl)
mpstern(workl,optD(k),workl)
mmul (workl,work8,work7)

mmul (work8,work7,work7)
cmul(-1d0,work7,work?7)
mmul(workl0,work7,work5)
mmul(workl,work9,work7)

madd (work7,work5,work7)

mmul (work6,work7,work7)
aginares skalarprodukt
traceim(work7,ttcost)
st=-ttcostxduration(k)

grad2(ictrl,k)=grad2(ictrl,k)-ttcost/n_FID

enddo
enddo

ud

Vd

LV
Vd*L*xV
Ud*V
VdxUd*V = work8
Ud=*V
RxUdx*V
VdxR+xUd*V
RxV

UxRxV
VdxUxRx*Vc

HctrixV

VdxHctrixV

U' = VdxHctrlxV x D
U’ * work8

I Ud'=Vd*xUd*xV*U'*xVdxUd*V

-ud’
VdxUxR*Vx-Ud’
U’ « V'RU'V
(URU) '
Vd*L*xV * (URU)’
Im(tr{L*x(URU)"'})
-ix<L/R’>xt

I Summe

A.3.2. Heteronuclear decoupling - reduced Liouville space

Listing A.12: Fortran subroutine for the explicit computation of propagators in a reduced

Liouville space

IMPLICIT
include
'$omp THREADPRIV
include

NONE
"octopussi.cmn’
ATE(/basics/)
"constants.cmn’
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(9}

2 spin

input
input
input
output

O o o 0

202

s xy SSR
k intg
mout pointer to matrix
(implicit=common) w(l), ctrl, hcp(1)

Matrix mout (saving into array 1is optional)

integer mout,i,j,k
realx8 nup,num,ap,am,bp,bm,cp,cm,dp,dm

switched to SSR 2014/01/24

!Bl = B1(iB1) / ux = ctrl(1,k) / uy = ctrl(2,k)
'J = hcp(l) / wl = w(l) / t = duration(k)

nup = dsqrt((B1(iBl)*ctrl(1,K))**x2+(B1(iB1l)*ctrl(2,Kk))**2
+ (w(1)+(hcp(1)/2))*x2 )

num = dsqrt((B1(iBl)*ctrl(1,K))**2+(B1(iB1l)*ctrl(2,Kk))**2
+ (W(1)-(hcp(1)/2))*x*2 )

ap = -((B1(iB1l)*ctrl(1,k))/nup)*SIN(pixnup*duration(k))
am = -((B1(iB1l)*ctrl(1,k))/num)=*SIN(pixnumxduration(k))

bp = - ((B1(iB1)x*ctrl(2,k))/nup)*SIN(pixnup*duration(k))
bm = - ((B1(iB1)x*ctrl(2,k))/num)*SIN(pi*xnumxduration(k))

cp = -((w(1l)+(hcp(1l)/2))/nup)*SIN(pi*xnupxduration(k))
cm = -((w(1l)-(hcp(1l)/2))/num)*SIN(pi*xnumxduration(k))

dp = COS(pixnupxduration(k))
dm = COS(pi*numxduration(k))

wmtrx(1l,1,mout)
wmtrx(1,2,mout)
wmtrx(1,3,mout)
wmtrx(1,4,mout)

apxam - bpxbm - cpxcm + dpxdm
apxbm + bpxam + cpxdm + dpx*cm
ap*cm - bpxdm + cp*xam - dpxbm
-ap*dm - bpxcm + cpxbm + dpxam

wmtrx(2,1,mout) = ap*bm + bp*xam - cpxdm - dp*xcm
wmtrx(2,2,mout) =-ap*xam + bpxbm - cpxcm + dpx*dm
wmtrx(2,3,mout) = apxdm + bpx*cm + cpxbm + dpx*xam
wmtrx(2,4,mout) = apxcm - bpxdm - cpxam + dpxbm

wmtrx(3,1,mout) apxcm + bpxdm + cp*xam + dpxbm
wmtrx(3,2,mout) =-apxdm + bpxcm + cpxbm - dpxam
wmtrx(3,3,mout) =-apxam - bpxbm + cpxcm + dp*xdm
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wmtrx(3,4,mout) =-apxbm + bp*xam - cpxdm + dp*xcm

wmtrx(4,1,mout apxdm - bpxcm + cpxbm - dpxam

)
wmtrx(4,2,mout) = apxcm + bpxdm - cpxam - dpxbm
wmtrx(4,3,mout) =-apxbm + bpxam + cpxdm - dpx*xcm
wmtrx(4,4,mout) = ap*xam + bpxbm + cpxcm + dpxdm
return
end

Listing A.13: Fortran subroutine for the explicit computation of exact propagator deriva-

tives in a reduced Liouville space

IMPLICIT NONE

include 'octopussi.cmn’
'$omp THREADPRIVATE(/basics/)

include ’'constants.cmn’
c 2 spins xy SSR

¢ input k intg

c Input dux,duy pointers to matrices

c input (implicit=common) w(l), ctrl, hcp(1)
c output matrices dU/dux & dU/duy

integer dux,duy,i,j,k

real*8 nup,num,ap,am,bp,bm,cp,cm,dp,dm

real*x8 dnup,dnum,dap,dam,dbp,dbm,dcp,dcm,ddp,ddm

ldcp deleted from cmn block (integer nspins x nspins)
real+8 elementl,element2,element3,element4d

C----- > switched to SSR 2014/01/24

IBl = B1(iB1) / ux = ctrl(1,k) / uy = ctrl(2,k)
1J = hcp(l) / wl = w(l) / t = duration(k)

C----- > basic matrix elements
nup = dsqrt((B1(iBl)*ctrl(1l,Kk))**2+(B1(iB1l)*ctrl(2,Kk))**2
/ + (w(1)+(hcp(1)/2))**2 )
num = dsqrt((B1(iBl)*ctrl(1l,k))**2+(BL(iB1l)*ctrl(2,k))*x*2
/ + (w(1)-(hcp(1)/2))*x2 )
ap = -((B1(iBl)*ctrl(1,k))/nup)*SIN(pi*xnupxduration(k))
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~

am = - ((BL(iB1l)*ctrl(1,k))/num)*SIN(pi*numxduration(k))
bp = - ((B1(iB1)x*ctrl(2,k))/nup)*SIN(pixnup*duration(k))
bm = - ((B1(iB1)x*ctrl(2,k))/num)*SIN(pi*xnumxduration(k))
cp = -((w(1l)+(hcp(1l)/2))/nup)*SIN(pi*xnupxduration(k))
cm = -((w(1l)-(hcp(1l)/2))/num)*SIN(pi*xnumxduration(k))
dp = COS(pixnupxduration(k))

dm = COS(pi*numxduration(k))

> dU/dux
dnup = (B1(iB1l)**2)*ctrl(1,k)/nup
dnum = (B1(iB1l)**2)*ctrl(1,k)/num

dap = ((B1(iB1)*SIN(pi*nup*duration(k))
*x(ctrl(1,k)*dnup-nup))/nup**2)
-pixduration(k)*B1(iBl)x*ctrl(1,k)

*CO0S (pixduration(k)x*nup)*dnup/nup

dam = ((B1(iB1)*SIN(pi*numxduration(k))
*(ctrl(1,k)*dnum-num))/num*x*2)
-pixduration(k)*B1(iBl)x*ctrl(1,k)

*CO0S (pixduration(k)*num)*dnum/num

dbp = ((B1(iB1l)*ctrl(2,k)*SIN(pixduration(k)=*nup)=*dnup)/nupx*2)
-pixduration(k)*B1l(iB1l)=*ctrl(2,k)
*COS (pixduration(k)=*nup)*dnup/nup

dbm = ((B1(iB1l)*ctrl(2,k)*SIN(pixduration(k)*num)=*dnum)/num+=*2)
-pixduration(k)*B1(iBl)x*ctrl(2,k)
*CO0S (pixduration(k)*num)*xdnum/num

dcp = (((hcp(1)+2*xw(1))*SIN(pixduration(k)=*nup)=*dnup)/(2xnup**2))
-pixduration(k)*(hcp(1l)+2xw(1))
*C0S (pixduration(k)*nup)=*dnup/(2*xnup)

dem = (((-hcp(1)+2*xw (1) )*SIN(pi*xduration(k)*num)=*dnum)/(2xnum*x*2))
- pixduration(k)*(-hcp(1)+2*xw(1))
*COS (pixduration(k)*num)xdnum/ (2*xnum)

ddp
ddm

-pixduration(k)*SIN(pi*duration(k)=*nup)=*dnup
-pixduration(k)*SIN(pi*duration(k)=*num)x*xdnum
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> Matrix entries

Row 1

elementl = dap*xam+apxdam
element2 = dbpxbm+bp+dbm
element3 = dcp*xcm+cp*dcm

element4 = ddpxdm+dpxddm
wmtrx(1,1,dux) = elementl-element2-element3+elementd

elementl = dapxbm+apxdbm
element2 = dbp*xam+bp*dam
element3 = dcpxdm+cpxddm
element4 = ddpxcm+dpxdcm
wmtrx(1l,2,dux) = elementl+element2+element3+elementd

elementl = dap*xcm+ap*dcm
element2 = dbpxdm+bp*ddm
element3 = dcp*xam+cpxdam
element4 = ddpxbm+dpxdbm

wmtrx(1,3,dux) = elementl-element2+element3-element4

elementl = dapxdm+ap*ddm
element2 = dbp*xcm+bp=*dcm
element3 = dcpxbm+cpxdbm
element4 = ddp*xam+dpxdam
wmtrx(1l,4,dux) = -elementl-element2+element3+elementd

IRow 2

elementl = dapxbm+apxdbm

element2 = dbpx*xam+bpxdam

element3 = dcpxdm+cp*ddm

element4 = ddpxcm+dp*dcm

wmtrx(2,1,dux) = elementl+element2-element3-element4

elementl = dap*xam+apxdam
element2 = dbpxbm+bpxdbm
element3 = dcp*xcm+cp*dcm
element4 = ddpxdm+dp*ddm
wmtrx(2,2,dux) = -elementl+element2-element3+elementd

elementl = dapxdm+apxddm
element2 = dbpxcm+bp*dcm
element3 = dcpxbm+cp*dbm
element4 = ddp*xam+dp=*dam
wmtrx(2,3,dux) = elementl+element2+element3+elementd
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elementl = dapxcm+ap=*dcm
element2 = dbpxdm+bp+ddm
element3 = dcp*xam+cp*dam
element4 = ddpxbm+dp*dbm

wmtrx(2,4,dux) = elementl-element2-element3+element4

'Row 3

elementl = dap*xcm+ap*dcm

element2 = dbpxdm+bp*ddm

element3 = dcp*xam+cp*dam

element4 = ddpxbm+dp+dbm

wmtrx(3,1,dux) = elementl+element2+element3+element4

elementl = dapxdm+ap*ddm

element2 = dbpxcm+bp*dcm
element3 = dcpxbm+cp*xdbm
element4 = ddp*xam+dp+dam
wmtrx(3,2,dux) = -elementl+element2+element3-elementd
elementl = dap*xam+ap=*dam
element2 = dbpxbm+bp*xdbm
element3 = dcpxcm+cp*dcm
element4 = ddpxdm+dp+ddm
wmtrx(3,3,dux) = -elementl-element2+element3+elementd

elementl = dapxbm+ap*dbm
element2 = dbp*xam+bpxdam
element3 = dcpxdm+cp+ddm
element4 = ddpxcm+dp*dcm

wmtrx(3,4,dux) = -elementl+element2-element3+elementd
'Row 4

elementl = dapxdm+ap+ddm

element2 = dbpxcm+bp*dcm

element3 = dcpxbm+cp*dbm

element4 = ddpxam+dp*dam

wmtrx(4,1,dux) = elementl-element2+element3-element4

elementl = dap*xcm+ap*dcm
element2 = dbpxdm+bp*ddm
element3 = dcp*xam+cp*dam
element4 = ddpxbm+dp*dbm
wmtrx(4,2,dux) = elementl+element2-element3-elementd
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elementl = dapxbm+ap*dbm
element2 = dbp*xam+bp=*dam
element3 = dcpxdm+cpxddm
element4 = ddp*xcm+dpxdcm
wmtrx(4,3,dux) = -elementl+element2+element3-elementd

elementl = dap*xam+apxdam
element2 = dbpxbm+bpxdbm
element3 = dcpxcm+cpxdcm
element4 = ddpxdm+dp*ddm
wmtrx(4,4,dux) = elementl+element2+element3+element4

du/duy
dnup = (B1(iB1)=*x*2)xctrl(2,k)/nup
dnum = (B1(iB1)x*x2)x*ctrl(2,k)/num

dap = ((B1(iBl)x*ctrl(1,k)*sin(pixduration(k)*nup)*dnup)/nup*x2)
-pixduration(k)*B1l(iBl)*ctrl(1,k)
*Cos (pixduration(k)*nup)*dnup/nup

dam = ((B1(iB1l)*ctrl(1l,k)=*sin(pixduration(k)x*num)*dnum)/numx*2)
-pixduration(k)*B1(iBl)*ctrl(1,k)
*Cos (pixduration(k)*xnum)xdnum/num

dbp = ((Bl(iB1l)*sin(pi*nupx*xduration(k))
*x(ctrl(2,k)*dnup-nup))/nup**2)
-pixduration(k)*B1l(iB1l)*ctrl(2,k)

*Cos (pixduration(k)*xnup)*dnup/nup

dbm = ((B1(iBl)*sin(pi*numxduration(k))
*(ctrl(2,k)*dnum-num))/numx*x*2)
-pixduration(k)*B1l(iB1l)=*ctrl(2,k)

*Cos (pixduration(k)*xnum)*dnum/num

dep = (((hcp(1)+2*w(1))*sin(pixduration(k)*nup)*dnup)/ (2*xnup*x*2))
-pixduration(k)*(hcp(1)+2*w(1))
*Cos (pixduration(k)*xnup)*dnup/(2*xnup)

dem = (((-hcp(1)+2*xw(1l))*sin(pixduration(k)*num)*dnum)/(2*xnum**2))
-pixduration(k)*(-hcp(1)+2*xw(1))
*Cos (pixduration(k)*xnum)xdnum/ (2*xnum)

ddp -pixduration(k)*sin(pixduration(k)*nup)=*dnup
ddm = -pixduration(k)x*sin(pixduration(k)x*num)xdnum
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> Matrix entries

Row 1

elementl
element2
element3
element4

wmtrx(1l,1,duy) = elementl-element2-element3+element4

elementl
element2
element3
element4

wmtrx(1,2,duy) = elementl+element2+element3+element4

elementl
element2
element3
element4

wmtrx(1l,3,duy) = elementl-element2+element3-element4

wmtrx(1l,4,duy) = -elementl-element2+element3+elementd

dapxam+ap+*dam
dbp*bm+bpxdbm
dcp*xcm+cpxdcm
ddpxdm+dp+ddm

dap*bm+apxdbm
dbp*am+bpxdam
dcpxdm+cp+ddm
ddp*cm+dp=xdcm

dap*cm+apxdcm
dbpxdm+bp+ddm
dcp*xam+cpxdam
ddp*bm+dp*dbm

elementl = dapxdm+ap*ddm
element2 = dbpxcm+bpxdcm
element3 = dcpxbm+cp*dbm
element4 = ddp*am+dp=*dam
'Row 2

elementl = dapxbm+ap*dbm
element2 = dbpxam+bp*dam
element3 = dcp*xdm+cp*ddm
element4 = ddpxcm+dp*dcm

wmtrx(2,1,duy) = elementl+element2-element3-elementd

wmtrx(2,2,duy) = -elementl+element2-element3+elementd

elementl = dap*xam+ap*dam
element2 = dbpxbm+bp*xdbm
element3 = dcpxcm+cp*dcm
element4 = ddpxdm+dp+ddm
elementl = dapxdm+ap*ddm
element2 = dbpxcm+bp*xdcm
element3 = dcpxbm+cp*dbm
element4 = ddp*xam+dp*dam
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wmtrx(2,3,duy) = elementl+element2+element3+elements

elementl = dapxcm+apxdcm
element2 = dbpxdm+bpxddm
element3 = dcp*xam+cp*dam
element4 = ddpxbm+dp+dbm

wmtrx(2,4,duy) = elementl-element2-element3+elementd

IRow 3

elementl = dap*xcm+apxdcm

element2 = dbpxdm+bp*ddm

element3 = dcp*xam+cpxdam

element4 = ddpxbm+dpxdbm

wmtrx(3,1,duy) = elementl+element2+element3+elementd

elementl = dap*xdm+ap+ddm
element2 = dbpxcm+bp*dcm
element3 = dcpxbm+cpxdbm
element4 = ddp*xam+dpxdam
wmtrx(3,2,duy) = -elementl+element2+element3-elementd
elementl = dap*xam+ap+*dam

element2 = dbpxbm+bp*dbm
element3 = dcpxcm+cpxdcm
element4 = ddpxdm+dp*ddm
wmtrx(3,3,duy) = -elementl-element2+element3+elementd

elementl = dapxbm+apxdbm
element2 = dbpxam+bp*dam
element3 = dcpxdm+cpxddm

element4 = ddpxcm+dp=*dcm

wmtrx(3,4,duy) = -elementl+element2-element3+elementd
'Row 4

elementl = dap*xdm+apxddm

element2 = dbp*xcm+bpxdcm

element3 = dcpxbm+cp*dbm

element4 = ddpxam+dp+*dam
wmtrx(4,1,duy) = elementl-element2+element3-element4

elementl = dapxcm+apxdcm
element2 = dbpxdm+bp+ddm
element3 = dcp*xam+cp*dam
element4 = ddpxbm+dp=*dbm
wmtrx(4,2,duy) = elementl+element2-element3-elementd
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elementl = dapxbm+ap*dbm
element2 = dbp*xam+bp+dam
element3 = dcp*xdm+cp*ddm
element4 = ddp*xcm+dp=*dcm
wmtrx(4,3,duy) = -elementl+element2+element3-elementd

elementl = dap*xam+ap*dam
element2 = dbpxbm+bp*dbm
element3 = dcp*xcm+cp*dcm
element4 = ddpxdm+dp*ddm
wmtrx(4,4,duy) = elementl+element2+element3+element4

return
end

Listing A.14: Fortran source code for the quality factor evaluation of individual decoupling
sequences according to ®yeqn in a reduced Liouville space

! 2 spins xy SSR Heterodecoupling Tony 2014/01/24

! phi® (TRACKING)
!

ttcost2 = 0d0O
call vcopy(initialrho, rho)

do k=1,npulses
call gethamSSR(workl, k) !SSR
call mvmul(workl, rho, rhoout)
call vcopy(rhoout, rho)
if (mod(k,Ppdwell) .eq. 0) then
ttcost3=wvctr(4,1, rho)
ttcost2=ttcost2+ttcost3
endif
enddo
ttcostl = ttcostl+ttcost2/n_FID

Listing A.15: Fortran source code for the gradient evaluation of individual decoupling
sequences according to ®pean in a reduced Liouville space

12 spins xy SSR  Gradient fir TRACKING Tony 2014/01/27

Rt initialrho propagieren
call vcopy(initialrho,prho(1))
do k=1,npulses
call gethamSSR(workl, k)
call mvmul(workl,prho(k),prho(k+1))

210



20

21

22

23

24

25

26

27

28

29

30

A.3. Fortran source code

enddo

------- targetrho rickwarts propagieren

call zerovec(plambda(npulses+1l)) ! DANGER: comes from npulses+1l
do k=npulses,1,-1 I rickwarts aufmultplizieren von U

if (mod(k,Ppdwell) .eq. 0) then

call vadd(initialrho,plambda(k+1),plambda(k+1)) !TRACK

endif

call gethamSSR(workl, k)

call mtrans(workl,work2)

call mvmul(work2,plambda(k+1),plambda(k))
enddo

------- explicit gradients

do k=1,npulses
call getgradSSR(workl,work2,k)
call mvmul(workl,prho(k),rho)
call vscalp(plambda(k+1l),rho,ttcost)
grad2(1,k)=grad2(1,k)+ttcost/n_FID
call mvmul(work2,prho(k),rho)
call vscalp(plambda(k+1),rho,ttcost)
grad2(2,k)=grad2(2,k)+ttcost/n_FID
enddo

Listing A.16: Fortran source code for the quality factor evaluation of COOP decoupling
sequences according to the homogenizing approach in a reduced Liouville space

12 spins xy SSR COOP-Heterodecoupling Tony 2014/02/20
Iphi®@ (TRACKING) <Ix> maximization & homogenisation

l---- init ----

ttcost2 = 0d0O

do k=1,n_FID

call zerovec(multitarget(k))

enddo

I---- propagate ----

do j=0,ncoop-1

call vcopy(initialrho,rho)
do k=jx*(npulses/ncoop)+1, (j+1)*npulses/ncoop

call gethamSSR(workl,k) !SSR
call mvmul(workl, rho, rhoout)
call vcopy(rhoout, rho)

if (mod(k,Ppdwell) .eq. 0) then
call cvmul(1d0/ncoop, rho,workl10)
call vadd(multitarget(k/Ppdwell-j*n_FID),workl0,
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/ multitarget(k/Ppdwell-j*n_FID))
endif
enddo !einzelpuls
enddo !coop

I---- evaluate ----

do k=1,n_FID

targetmod(k)=wvctr(4,1,multitarget(k)) !Target
ttcost2=ttcost2+targetmod (k)

enddo

ttcost4 = ttcost2/n_FID !mean value
ttcost2 0do 'reinitialization

do k=1,n_FID Imaximize & homogenise
ttcost3 = 1-(1-targetmod(k))**x2-(ttcostd-targetmod(k))*x2
ttcost2 = ttcost2+ttcost3

enddo

ttcostl = ttcostl+ttcost2/n_FID

Listing A.17: Fortran source code for the gradient evaluation of COOP decoupling se-
quences according to the homogenizing approach in a reduced Liouville space

12 spins xy  SSR COOP-Heterodecoupling Tony 2014/02/28
I'phi@ (TRACKING) <Ix> maximization & homogenisation

T initialrho propagieren
do k=1,n_FID
call zerovec(multitarget(k))
enddo
ttcost2=0d0

do j=1,ncoop
call vcopy(initialrho,prho((j-1)*(npulses/ncoop)+1))
do k=(j-1)*(npulses/ncoop)+1,j*(npulses/ncoop)
! Aufmultiplizieren, von rho
call gethamSSR(workl, k)
call mvmul(workl,prho(k),prho(k+1))
if (mod(k,Ppdwell) .eq. 0) then
call cvmul(1dO/ncoop,prho(k+1),workl0)
call vadd(multitarget(k/Ppdwell-(j-1)*n_FID),workl10,
/ multitarget(k/Ppdwell-(j-1)*n_FID))
endif
enddo !einzelpuls
enddo !coop
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R evaluate <Ix>

do k=1,n_FID
targetmod(k)=wvctr(4,1,multitarget(k)) ITarget
ttcost2=ttcost2+targetmod (k)

enddo

ttcost4 = ttcost2/n_FID !mean value

do k=1,n_FID
call cvmul((2d0/ncoop)*(1l+ttcost4-2+targetmod(k)),initialrho,
multitarget(k))

enddo

R targetrho rickwarts propagieren

do j=ncoop,1,-1
call zerovec(plambda(j*(npulses/ncoop)+1))
I DANGER: comes from npulses+l
do k=j=*npulses/ncoop, (j-1)*(npulses/ncoop)+1,-1
I rickwarts aufmultplizieren von U
if (mod(k,Ppdwell) .eq. 0) then
call vadd(multitarget(k/Ppdwell-(j-1)*n_FID),plambda(k+1),
plambda(k+1)) !TRACK
endif
call gethamSSR(workl, k)
call mtrans(workl,work2)
call mvmul(work2,plambda(k+1),plambda(k))
enddo
enddo

bemmeeeee - explicit gradients

do k=1,npulses
call getgradSSR(workl,work2,k)
call mvmul(workl,prho(k),rho)
call vscalp(plambda(k+1l),rho,ttcost)
grad2(1,k)=grad2(1,k)+ttcost/n_FID
call mvmul(work2,prho(k),rho)
call vscalp(plambda(k+1),rho,ttcost)
grad2(2,k)=grad2(2,k)+ttcost/n_FID
enddo

The computation of quality factors and gradients can be further simplified if decoupling is
demanded after each increment of the pulse sequence.

Listing A.18: Fortran source code for the quality factor evaluation of individual decoupling
sequences according to e, in a reduced Liouville space
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! 2

! phi®@ (TRACKING)

spins xy SSR Heterodecoupling

Tony 2014/05/26

CONTINUOUS

ttcost2 = 0d0O
call vcopy(initialrho, rho)

do k=1,npulses

call
call
call

gethamSSR(workl, k) !SSR
mvmul(workl, rho, rhoout)
vcopy (rhoout, rho)

ttcost3=wvctr(4,1,rho)
ttcost2=ttcost2+ttcost3

enddo

ttcostl = ttcostl+ttcost2/npulses

Listing A.19: Fortran source code for the gradient evaluation of individual decoupling
sequences according to ®ean in a reduced Liouville space

12 spins xy SSR  Gradient fir TRACKING
I CONTINOUS decoupling throughout FID

Tony 2014/05/26

initialrho propagieren

call vcopy(initialrho,prho(1))

do

k=1, npulses

call gethamSSR(workl, k)
call mvmul(workl,prho(k),prho(k+1))
enddo

call zerovec(plambda(npulses+l))

do

do

214

targetrho rickwarts propagieren

! DANGER: comes from npulses+l

k=npulses,1,-1 I rickwarts aufmultplizieren von U
call vadd(initialrho,plambda(k+1),plambda(k+1)) !TRACK
call gethamSSR(workl, k)
call mtrans(workl,work2)
call mvmul(work2,plambda(k+1),plambda(k))

enddo

explicit gradients

k=1,npulses

call getgradSSR(workl,work2,k)

call mvmul(workl,prho(k),rho)

call vscalp(plambda(k+1),rho,ttcost)
grad2(1l,k)=grad2(ictrl,k)+ttcost/npulses
call mvmul(work2,prho(k),rho)

call vscalp(plambda(k+1),rho,ttcost)
grad2(2,k)=grad2(ictrl,k)+ttcost/npulses
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enddo

Listing A.20: Fortran source code for the quality factor evaluation of COOP decoupling
sequences according to the homogenizing approach in a reduced Liouville space

12 spins xy SSR COOP-Heterodecoupling Tony 2014/05/27
Iphi®@ (TRACKING) <Ix> maximization & homogenisation CONTINUOQUS

l---- init ----
ttcost2 = 0d0O
do k=1,npulses/ncoop
call zerovec(multitarget(k))
enddo

l---- propagate ----

do j=0,ncoop-1

call vcopy(initialrho, rho)

do k=j*(npulses/ncoop)+1, (j+1)*npulses/ncoop
call gethamSSR(workl, k) !SSR
call mvmul(workl, rho, rhoout)
call vcopy(rhoout, rho)
call cvmul(1d®/ncoop, rho,workl0)
call vadd(multitarget(k-j=*npulses/ncoop),worklo,
multitarget(k-j*npulses/ncoop))

enddo !einzelpuls

enddo !coop

I---- evaluate ----

do k=1,npulses/ncoop
targetmod(k)=wvctr(4,1,multitarget(k)) ITarget
ttcost2=ttcost2+targetmod (k)

enddo

ttcost4 = ttcost2/(npulses/ncoop) Imean value
ttcost2 = 0d0O lreinitialization
do k=1,npulses/ncoop Imaximize & homogenise

ttcost3 = 1-(1-targetmod(k))x**2-(ttcost4-targetmod(k))**2
ttcost2 = ttcost2+ttcost3
enddo

ttcostl = ttcostl+ttcost2/(npulses/ncoop)

Listing A.21: Fortran source code for the gradient evaluation of COOP decoupling se-
quences according to the homogenizing approach in a reduced Liouville space
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12 spins xy  SSR COOP-Heterodecoupling Tony 2014/05/27
Iphi® (TRACKING) <Ix> maximization & homogenisation CONTINOUS

Rt initialrho propagieren
do k=1,npulses/ncoop
call zerovec(multitarget(k))
enddo
ttcost2=0d0

do j=1,ncoop
call vcopy(initialrho,prho((j-1)*(npulses/ncoop)+1))
do k=(j-1)*(npulses/ncoop)+1,j*(npulses/ncoop)
! Aufmultiplizieren, von rho
call gethamSSR(workl, k)
call mvmul(workl,prho(k),prho(k+1))
call cvmul(1d@/ncoop,prho(k+1l),workl10)
call vadd(multitarget(k-(j-1)*(npulses/ncoop)),workl0,
/ multitarget(k-(j-1)*(npulses/ncoop)))
enddo !einzelpuls
enddo !coop

beeeeo - evaluate <Ix>
do k=1,npulses/ncoop
targetmod(k)=wvctr(4,1,multitarget(k)) !Target
ttcost2=ttcost2+targetmod (k)
enddo

ttcostd = ttcost2/(npulses/ncoop) !mean value

do k=1,npulses/ncoop
call cvmul((2d0/ncoop)*(1l+ttcost4-2xtargetmod(k)),initialrho,
/ multitarget(k))
enddo

Rt targetrho riickwarts propagieren
do j=ncoop,1,-1
call zerovec(plambda(j*(npulses/ncoop)+1))
! DANGER: comes from npulses+l
do k=j*npulses/ncoop, (j-1)*(npulses/ncoop)+1,-1
! rickwarts aufmultplizieren von U
call vadd(multitarget(k-(j-1)*(npulses/ncoop)),plambda(k+1),
/ plambda(k+1)) !TRACK
call gethamSSR(workl, k)
call mtrans(workl,work2)
call mvmul(work2,plambda(k+1),plambda(k))
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enddo
enddo

Rt explicit gradients

do k=1,npulses
call getgradSSR(workl,work2,k)
call mvmul(workl,prho(k), rho)
call vscalp(plambda(k+1l),rho,ttcost)
grad2(1,k)=grad2(1,k)+ttcost/(npulses/ncoop)
call mvmul(work2,prho(k),rho)
call vscalp(plambda(k+1),rho,ttcost)
grad2(2,k)=grad2(2,k)+ttcost/(npulses/ncoop)

enddo

A.3.3. BIRD filters

Listing A.22: Fortran source code for the quality factor evaluation of BIRD elements as
continuous shapes or HPD sequences

c! 2 spins xy exact hard pulse delay 2013.11.20, SE

c! d(phi3)/dt (d_p_d)*nincrm

c! shape TR 2014.09.30

c!

call geteye(workl)
do k=1,npulses
call geteigenham(k)
call czmul(-duration(k),ii,phamm,work3)
call expm(1d0,work3,work4)
call mmul(work4,workl,work?2) T(Uj+1xUj...U1)
call mcopy(work2,workl)
enddo
if(jpattern(1l,iJ).eq.0)then 1J=0
call dagger(unitaryl(1l),work2)
elseif (jpattern(1,iJ).eq.1)then 1Jcomp
call dagger(unitaryl(2),work2)
endif
call mmul (work2,workl,work2) '(Uf+ = Uj...Ul)
call trace(work2,ttcost2) 'Re(Tr{(Uf+ x Uj...UL1)})
ttcostl=ttcostl+ttcost2/normuni
endif

Listing A.23: Fortran source code for the gradient evaluation of BIRD elements as contin-
uous shapes
c! 2 spins xy exact UR BIRD shape 2014.09.30
c! ===
call geteye(workl)
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do k=1,npulses ! einzeln alle, voller H
call geteigenham(k) ! H= 2pixvxIi
call VDe(phamm, k) I V=work2, D=wor9, e=work8
call mcopy(work2,optV(k))
call mcopy(work9,optD(k))
call dagger(work2,work3)
call mmul(work8,work3,work4)
call mmul(work2,work4,optG(k)) ! G=U=Vevd
enddo
I vorwarts: multiply U---------
call geteye(prho(1l))
do k=1,npulses
call mmul(optG(k),prho(k),prho(k+1))
enddo
I rickwarts: multiply from U_F+
if(jpattern(1,iJ).eq.0)then 13 =0
call dagger(unitaryl(1l),plambda(npulses+1))
elseif (jpattern(1l,iJ).eq.1l)then ! Jcomp
call dagger(unitaryl(2),plambda(npulses+l))
endif
do k=npulses,1l,-1 ! rickwarts aufmultplizieren von U_F
call mmul(plambda(k+1),optG(k),plambda(k))! LD (lambda dagger)
enddo
do ictrl=1,nctrl
call cmul(pii,ctrlham(ictrl),workgl(ictrl))

enddo
do k=1,npulses I calc grad
call mmul(prho(k),plambda(k+1),workl) I UiUf

call dagger(optV(k),work2)

call mmul(workl,optV(k),workl)

call mmul(work2,workl,workl) PV xUiUf*V

call mtrans(workl,workl) P (V'xUiUfxV) .’

do ictrl=1,nctrl
call mmul(workgl(ictrl),optV(k),workg2(ictrl)) ! IxV
call mmul(work2,workg2(ictrl),workg2(ictrl)) PV xIxV
call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V'xIxV).xD
call mpstern(workg2(ictrl),workl,workg2(ictrl))
P (V'xIxV).xD.x (V'xUiUfxV).'
call sumsumim(workg2(ictrl),ttcost) ! imag(sum(sum( " )))
ttcost=ttcostxduration(k) ! imag(sum(sum( ")))x*timestep
grad2(ictrl,k)=grad2(ictrl, k)+ttcost/normuni

enddo

enddo
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Listing A.24: Fortran source code for the gradient evaluation of BIRD elements as HPD
sequences

c! 2 spins xy exact hard pulse delay 2013.11.20, SE
c! d(phi3)/dt (d_p_d)*nincrm
c!

call geteye(workl)
do k=1,npulses ! einzeln alle, voller H
call geteigenham(k) I H= 2pixvxIi
call VDe(phamm, k) I V=work2, D=wor9, e=work8
call mcopy(work2,optV(k))
call mcopy(work9,optD(k))
call dagger(work2,work3)
call mmul(work8,work3,work4)
call mmul(work2,work4,optG(k)) ! G = U = VxexV’
enddo

call geteye(prho(1))
do k=1,npulses
call mmul(optG(k),prho(k),prho(k+1))
enddo
e rickwarts: multiply from U_F+
if(jpattern(l,iJ).eq.0)then 1'3=0
call dagger(unitaryl(1l),plambda(npulses+1))
elseif(jpattern(1l,iJ).eq.1)then I Jcomp
call dagger(unitaryl(2),plambda(npulses+1))
endif
do k=npulses,1,-1 ! rickwarts aufmultplizieren von U_F
call mmul(plambda(k+1),optG(k),plambda(k))! LD (lambda dagger)
enddo
do ictrl=1,nctrl
call cmul(pii,ctrlham(ictrl),workgl(ictrl))

enddo
do k=2,npulses,?2 I calc grad
call mmul(prho(k),plambda(k+1),workl) I UiUf

call dagger(optV(k),work2)
call mmul(workl,optV(k),workl)
call mmul(work2,workl,workl) IV xUiUfxV
call mtrans(workl,workl) P (V'xUiUfxV) .’
do ictrl=1,nctrl
call mmul(workgl(ictrl),optV(k),workg2(ictrl)) ! Ix*V
call mmul(work2,workg2(ictrl),workg2(ictrl)) IV *xIxV
call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’'*I*V).xD
call mpstern(workg2(ictrl),workl,workg2(ictrl))
P (V'xIxV).xD.x (V'xUiUfxV).'
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call sumsumim(workg2(ictrl),ttcost) !imag(sum(sum( " )))
ttcost=ttcostxduration(k) !imag(sum(sum( ")))xtimestep
grad2(ictrl,k)=grad2(ictrl,k)+ttcost/normuni

enddo

enddo

T grad------------------n

do k=1,npulses,2 ! dU/dt=d(exp(-iHt)/dt=-iH*xexp(-iHt)
call geteigenham(k) I H= 2pixvx*Ii
call czmul(1dO,ii,phamm,workl) I ixHj
call mmul(workl,prho(k+1),work2) ! ixHj=*Uj...Ul
call mmul(plambda(k+1),work2,work3) !U_F+..Uj+1xixHj *Uj...U1
call trace(work3,ttcost) I Re(Tr("))
grad2(1l,k)=grad2(1,k)-ttcost/normuni !' -Re(Tr("))/norm

enddo

Listing A.25: Fortran source code for the quality factor evaluation of BIRD elements as
BIRDBOP shapes

I 2 spins xy BUBI-Cost UR BIRD auf Spin 1

! phi3b BIRDBOP 2015.02.24 TR
I

c call get...ham91(ipulse, k)
c ipulse =1 -> pulse 1 /// ipulse = 3 -> pulse 2
ttcost5 = 0.003 !'BIRD delay

IUeff Pulse 1

call geteye(workl)

do k=1,npulses
call getfullham91(1,k) lyields phamm
call czmul(-duration(k),ii,phamm,work2)
call expm(1dO,work2,work3)
call mmul(work3,workl,work2)
call mcopy(work2,workl)

enddo

1USeff Pulse 1
call geteye(work2)
do k=1,npulses
call getsham91(1,k)
call czmul(-duration(k),ii,phamm,work3)
call expm(1dO,work3,work4)
call mmul(work4,work2,work3)
call mcopy(work3,work2)
enddo

Ueff Pulse 2
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call geteye(work3)
do k=1,npulses
call getfullham91(3,k)
call czmul(-duration(k),ii,phamm,work4)
call expm(1dO,work4,work5)
call mmul(work5,work3,work4)
call mcopy(work4,work3)
enddo

IUSeff Pulse 2
call geteye(work4)
do k=1,npulses
call getsham91(3,k)
call czmul(-duration(k),ii,phamm,work5)
call expm(1d0,work5,work6)
call mmul(work6,work4,work5)
call mcopy(work5,work4)
enddo

'H

call cmul(pii*w(1),Iz(1),work5) 'H_cs
call cmul(piixhcp(1l),IzSz,work6) 'H_J
call madd(work5,work6,work?7) 'H_evo

IU_delay
call czmul(ttcost5,ii,work7,work6)
call expm(-1d0,work6,work7)

IU_delays
call czmul(ttcost5,ii,work5,work6)
call expm(-1d0,work6,work5)

1USeff

call mmul(work5,work2,work8)
call mmul(work4,work8,work8)
call mmul(work5,work8,work8)

IUeff

call czmul(-0.5*pi,ii,Ix(2),work2)

call expm(1dO,work2,work5) 190° x
call czmul(-pi,ii,Ix(2),work2)

call expm(1d0,work2,work6) 1180° x

call mmul(workl,work5,work9)
call mmul(work7,work9,work9)
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Listing A.26: Fortran source code for the gradient evaluation of BIRD elements as

call mmul(work6,work9,work9)
call mmul(work3,work9,work9)
call mmul(work7,work9,work9)
call mmul(work5,work9,work9)

1Cost

call mmul(unitary,work8,workl)
call dagger(workl,work2)

call mmul(work2,work9,workl)
call trace(workl,ttcost2)

ttcostl=ttcostl+ttcost2/normuni

BIRDBOP shapes

I 2 spins xy BUBI-Cost UR BIRD auf Spin 1

! phi3b BIRDBOP 2015.02.24 TR
|

c call get...ham91(ipulse, k)

c ipulse

=1 -> pulse 1 /// ipulse = 3 -> pulse 2
ttcost4 = 0.003 !'BIRD delay

--------------- SHAPE 1 -----------mmmm--
----- linke Seite der Produktregel ----------

cl--- <Ud’Upi’U2’Ud’Ux’«UfxUSeff|grad(Uleff)*Ux> ----

222

'U(1,S,3)j fur Puls 1
do k=1,npulses
call getfullham91(1,k)
call VDe(phamm, k)
call mcopy(work2,optV(k))
call mcopy(work9,optD(k))
call dagger(work2,work3)
call mmul(work8,work3,work4) ! U
call mmul(work2,work4,optG(k))! G
enddo

VxexV’
nicht aufmultiplizierte U

Y i R
Puls 1
call geteye(workl)
do k=1,npulses
call getsham91(1,k)
call czmul(-duration(k),ii,phamm,work2)
call expm(1dO,work2,work3)
call mmul(work3,workl,work?2)
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call mcopy(work2,workl)
enddo

IPuls 2
call geteye(work2)
do k=1,npulses
call getsham91(3,k)
call czmul(-duration(k),ii,phamm,work3)
call expm(1d0,work3,work4)
call mmul(work4,work2,work3)
call mcopy(work3,work2)
enddo

IU_delayS

call cmul(pii*w(1),Iz(1),work5)
call czmul(ttcost4,ii,work5,work6)
call expm(-1d0,work6,work7)

IUSeff

call mmul(work7,workl,work3)
call mmul(work2,work3,work3)
call mmul(work7,work3,work9)

TUBIRD - - == -mmmmmmmmmmmcmc e

IU_delay

call cmul(piixhcp(1l),IzSz,work6)
call madd(work5,work6,work?)

call czmul(ttcost4,ii,work7,work6)
call expm(-1d0,work6,work?)

call dagger(work7,work7)

190° x

call czmul(-0.5*pi,ii,Ix(2),work2)
call expm(1dO,work2,work5)

call dagger(work5,work5)

1180° x

call czmul(-pi,ii,Ix(2),work2)
call expm(1dO,work2,work6)
call dagger(work6,worko6)

Ueff(I,S,J) fir Puls2
call geteye(work2)
do k=1,npulses

call getfullham91(3,k)
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call czmul(-duration(k),ii,phamm,work3)
call expm(1dO,work3,work4)
call mmul(work4,work2,work3)
call mcopy(work3,work2)
enddo
call dagger(work2,work2)

TUBIRD' *UF*USeff -----mmmmmmiiee e
call mmul(unitary,work9,workl)

call mmul(work5,workl,workl)

call mmul(work7,workl,workl)

call mmul(work2,workl,workl)

call mmul(work6,workl,workl)

call mmul(work7,workl,workl)

call dagger(workl,workl)

—_~ o~ o~ o~

lvorwarts von 90°x
call dagger(work5,prho(1l))
lzurueckdaggern da oben 90°x’ gebraucht wurde
do k=1,npulses
call mmul(optG(k),prho(k),prho(k+1))
enddo

'rickwarts von (UBIRD’x*UFxUSeff)+
call mcopy(workl,plambda(npulses+1))

do k=npulses,1l,-1 ! rickwarts aufmultplizieren von U

call mmul(plambda(k+1),0ptG(k),plambda(k))
enddo

do ictrl=1,2

call cmul(pii,ctrlham(ictrl),workgl(ictrl))

enddo
do k=1,npulses
call mmul(prho(k),plambda(k+1),workl)
call dagger(optV(k),work2)
call mmul(workl,optV(k),workl)
call mmul(work2,workl,workl)
call mtrans(workl,workl)
do ictrl=1,2

I LD (lambda dagger)

! calc grad
I UiUf

I V' xUiUT«V

(V' *UiUf*V) .’

call mmul(workgl(ictrl),optV(k),workg2(ictrl)) ! IxV
call mmul(work2,workg2(ictrl),workg2(ictrl)) !V’*IxV

call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’'*I*V).xD

call mpstern(workg2(ictrl),workl,workg2(ictrl))

(V' *IxV).xD.x (V'xUiUfxV).'



A.3. Fortran source code

121 call sumsumim(workg2(ictrl),gradg(ictrl)) !imag(sum(sum(")))
122 gradg(ictrl)=gradg(ictrl)=*duration(k)
123 I imag(sum(sum(")))*xtimestep

124 grad2(ictrl,k)=grad2(ictrl,k)+gradg(ictrl)/normuni
125 enddo

126 enddo

127

128 Clovoommo SHAPE 1 -------mmmmmmmmmm oo
129 Cle-mmmnnn- rechte Seite der Produktregel ----------
B Cl-------- <Ud’U2’'Ud’*Uf’xUeff|grad(UlSeff)> --------
131

132 1U(S) fir Puls 1

133 do k=1,npulses

134 call getsham91(1,k)

135 call VDe(phamm, k)

136 call mcopy(work2,optV(k))

137 call mcopy(work9,optD(k))

138 call dagger(work2,work3)

139 call mmul(work8,work3,work4) ! U = VxexV’
140 call mmul(work2,work4,optG(k))! G = nicht aufmultiplizierte U
141 enddo

142

143 leff ---cmmmm e
144 'Puls 1

145 call geteye(workl)

146 do k=1,npulses

147 call getfullham91(1,k)

148 call czmul(-duration(k),ii,phamm,work2)

149 call expm(1d0,work2,work3)

150 call mmul(work3,workl,work2)

151 call mcopy(work2,workl)

152 enddo

153

154 'Puls 2

155 call geteye(work2)

156 do k=1,npulses

157 call getfullham91(3,k)

158 call czmul(-duration(k),ii, phamm,work3)

159 call expm(1d0,work3,work4)

160 call mmul(work4,work2,work3)

161 call mcopy(work3,work2)

162 enddo

163

164 IU_delay

165 call cmul(pii*w(1l),Iz(1),work5)
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call
call
call
call

cmul(piixhcp(1l),IzSz,work6)

madd (work5,work6,work?7)

czmul(ttcost4,ii,work7,work6)

expm(-1d0,work6,work?7)

190° x

call
call

1180°
call
call

'Ueff
call
call
call
call
call
call

'UBIR
1USef
call
do k=
cal
cal
cal
cal
cal
enddo
call

'U_de
call
call
call

'UBIRD’*UF’xUeff

call
call
call
call
call
call

czmul(-0.5%pi,ii,Ix(2),work3)

expm(1d0,work3,work3)

X

czmul(-pi,ii,Ix(2),work4)

expm(1d0O,work4,work4)

mmul(workl,work3,work8
mmul(work7,work8,work8
mmul(work4,work8,work8
mmul (work2,work8,work8
mmul(work7,work8,work8
mmul(work3,work8,work8

~— ~— ~— ~— ~— ~—

0 LU

f fur Puls2
geteye(work2)
1,npulses

1 getsham91(3,k)

1 czmul(-duration(k),ii,phamm,work3)

1 expm(1dO,work3,work4)

1T mmul (work4,work2,work3)

1 mcopy(work3,work2)

dagger(work2,work2)

lays

czmul(ttcost4,ii,work5,work6)

expm(-1d0,work6,work5)
dagger(work5,work5)

dagger(unitary,workl)
mmul(workl,work8,work9
mmul (work5,work9,work9
mmul (work2,work9,work9
mmul (work5,work9,work9
dagger(work9,workl)

~—~ ~— ~— ~—
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211

212 lvorwarts von 1

213 call geteye(prho(1))

214 do k=1,npulses

215 call mmul(optG(k),prho(k),prho(k+1))

216 enddo

217

218 I'rickwarts von (UBIRD’x*UF’'xUeff)+

219 call mcopy(workl,plambda(npulses+1))

220 do k=npulses,1,-1 ! rickwarts aufmultplizieren von U

21 call mmul(plambda(k+1),0optG(k),plambda(k)) ! LD (lambda dagger)
222 enddo

223 do k=1,npulses I calc grad

224 call mmul(prho(k),plambda(k+1),workl) I Uiuf

225 call dagger(optV(k),work2)

226 call mmul(workl,optV(k),workl)

227 call mmul(work2,workl,workl) I V'xUiUf*V

228 call mtrans(workl,workl) P (V' xUiUf*V) .’
229 do ictrl=1,2

230 call mmul(workgl(ictrl),optV(k),workg2(ictrl)) ! IxV
231 call mmul(work2,workg2(ictrl),workg2(ictrl)) I V' xIxV
232 call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V’'xI*V).xD
233 call mpstern(workg2(ictrl),workl,workg2(ictrl))

234 (V' *IxV).«D.x (V' xUiUfxV) .’

235 call sumsumim(workg2(ictrl),gradg(ictrl))! imag(sum(sum(")))
236 gradg(ictrl)=gradg(ictrl)*duration(k)

237 I imag(sum(sum(")))*timestep

238 grad2(ictrl,k)=grad2(ictrl,k)+gradg(ictrl)/normuni

239 enddo

240 enddo

241

242 Cle-ommm i SHAPE 2 ----------ommmme o -

23 Cl----mmmoon- linke Seite der Produktregel ----------

e Cl----- <Ud’Ux’*UfxUSeff|grad(U2eff)«UpilUdUlUx> -----

245

246 !U(I,S,J)j fir Puls 2

247 do k=1,npulses

248 call getfullham91(3,k)

249 call VDe(phamm, k)

250 call mcopy(work2,optV(k))

251 call mcopy(work9,optD(k))

252 call dagger(work2,work3)

253 call mmul(work8,work3,work4) ! U = VxexV’

254 call mmul(work2,work4,optG(k))! G = nicht aufmultiplizierte U
255 enddo

227



256

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

289

290

291

292

293

294

295

296

297

298

299

300

A. Appendix

228

1USef
'Puls
call
do k=
cal
cal
cal
cal
cal
enddo

'Puls
call
do k=
cal
cal
cal
cal
cal
enddo

'U_de
call
call
call

1USef
call
call
call

1
geteye(workl)
1,npulses
1 getsham91(1,k)
1 czmul(-duration(k),ii, phamm,work2)
1 expm(1dO,work2,work3)
1T mmul(work3,workl,work2)
1 mcopy(work2,workl)

2
geteye(work2)
1,npulses
1 getsham91(3,k)
1 czmul(-duration(k),ii,phamm,work3)
1 expm(1dO,work3,work4)
1T mmul(work4,work2,work3)
1 mcopy(work3,work2)

laysS
cmul(pii*w(1l),Iz(1),work5)
czmul(ttcost4,ii,work5,work6)
expm(-1d0,work6,work?7)

f

mmul (work7,workl,work3)
mmul (work2,work3,work3)
mmul (work7,work3,work9)

= 1 0

'U_de
call
call
call
call
call

lay
cmul(piixhcp(1l),IzSz,work6)
madd (work5,work6,work7)
czmul(ttcostd,ii,work7,work6)
expm(-1d0,work6,work7)
dagger(work7,work?)

190° x

call
call
call

czmul(-0.5%pi,ii,Ix(2),work2)
expm(1d0,work2,work5)
dagger(work5,work5)
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TUBIRD -------mmmmmmimmii e - -
1180° x

call czmul(-pi,ii,Ix(2),work2)

call expm(1dO,work2,work6)

Ueff(I,S,J) fir Pulsl
call geteye(work2)
do k=1,npulses
call getfullham91(1,k)
call czmul(-duration(k),ii,phamm,work3)
call expm(1d0,work3,work4)
call mmul (work4,work2,work3)
call mcopy(work3,work2)
enddo

IUBIRD' *UF*USeff ----------ccoomeoo
call mmul(unitary,work9,workl)

call mmul(work5,workl,workl)

call mmul(work7,workl,workl)

call dagger(workl,workl)

TUBIRD -------mmmmmmmimmmi e - -
call dagger(work5,work5) !90°x zuriickdaggern
call dagger(work7,work7) !delay zuriickdaggern
call mmul(work2,work5,work3)

call mmul(work7,work3,work3)

call mmul(work6,work3,work3)

lvorwarts von UBIRD
call mcopy(work3,prho(1))
do k=1,npulses
call mmul(optG(k),prho(k),prho(k+1))
enddo

I'rickwarts von (UBIRD’x*UFxUSeff)+
call mcopy(workl,plambda(npulses+1))

do k=npulses,1l,-1 ! riickwarts aufmultplizieren von U

call mmul(plambda(k+1),0ptG(k),plambda(k))
enddo

do ictrl=1,2

! LD (lambda dagger)

call cmul(pii,ctrlham(ictrl),workgl(ictrl+2))

enddo
do k=1,npulses

I calc grad

229



346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

A. Appendix

call mmul(prho(k),plambda(k+1),workl) I UiUf
call dagger(optV(k),work2)
call mmul(workl,optV(k),workl)

call mmul(work2,workl,workl) IV xUiUf=V
call mtrans(workl,workl) P (V'xUiUf*V) .’
do ictrl=3,4

call mmul(workgl(ictrl),optV(k),workg2(ictrl)) ! IxV

call mmul(work2,workg2(ictrl),workg2(ictrl)) IV xIxV

call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V'xI*V).xD
call mpstern(workg2(ictrl),workl,workg2(ictrl))

P (V'xIxV).xD.x (V'xUiUfxV).'’

call sumsumim(workg2(ictrl),gradg(ictrl)) ! imag(sum(sum(")))
gradg(ictrl)=gradg(ictrl)*duration(k)

I imag(sum(sum(")))xtimestep
grad2(ictrl,k)=grad2(ictrl,k)+gradg(ictrl)/normuni

enddo
enddo
Clemm e - SHAPE 2 -----mmimmmee e -
Cl--mmmeea-- rechte Seite der Produktregel ----------
cl--------- <Ud’+Uf’xUeff|grad(U2Seff)UdUl> ---------
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'U(S) fir Puls 1

do k=1,

call
call
call
call
call
call
call
enddo

npulses

getsham91(3, k)

VDe (phamm, k)

mcopy (work2,optV(k))

mcopy (work9,optD(k))

dagger(work2,work3)

mmul (work8,work3,work4) ! U = VxexV'’

mmul (work2,work4,optG(k))! G = nicht aufmultiplizierte U

call geteye(workl)

do k=1,

call
call
call
call
call
enddo

Puls 2

npulses

getfullham91(1,k)
czmul(-duration(k),ii, phamm,work2)
expm(1d0,work2,work3)
mmul(work3,workl,work2)

mcopy (work2,workl)
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A.3. Fortran source code

call geteye(work2)
do k=1,npulses
call getfullham91(3,k)
call czmul(-duration(k),ii, phamm,work3)
call expm(1d0,work3,work4)
call mmul(work4,work2,work3)
call mcopy(work3,work2)
enddo

IU_delay

call cmul(pii*w(1l),Iz(1),work5)
call cmul(piixhcp(1l),IzSz,work6)
call madd(work5,work6,work?)

call czmul(ttcost4,ii,work7,work6)
call expm(-1d0,work6,work?)

190° x
call czmul(-0.5*pi,ii,Ix(2),work3)
call expm(1dO,work3,work3)

1180° x
call czmul(-pi,ii,Ix(2),work4)
call expm(1dO,work4,work4)

IUeff

call mmul(workl,work3,work8)
call mmul(work7,work8,work8)
call mmul (work4,work8,work8)
call mmul(work2,work8,work8)
call mmul(work7,work8,work8)
call mmul(work3,work8,work8)

TUBIRD ' - - - - s mmmmmm e e e -
IU_delays

call czmul(ttcost4,ii,work5,work6)
call expm(-1d0,work6,work5)

call dagger(work5,work5)

IUBIRD'*UF’'*Ueff --------mmoommnnn
call dagger(unitary,workl)

call mmul(workl,work8,work9)

call mmul(work5,work9,work9)

call dagger(work9,workl)

TUBIRD - - - - = == e e e e e e e e
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'USeff fir Pulsl
call geteye(work2)
do k=1,npulses
call getsham91(1,k)
call czmul(-duration(k),ii,phamm,work3)
call expm(1d0,work3,work4)
call mmul (work4,work2,work3)
call mcopy(work3,work2)
enddo

TUBIRD----------mmmmmmm e
call dagger(work5,work5) !delay zurickdaggern
call mmul(work5,work2,work2)

lvorwarts von UBIRD
call mcopy(work2,prho(1))
do k=1,npulses
call mmul(optG(k),prho(k),prho(k+1))
enddo

'rickwarts von (UBIRD'x*UF’'xUeff)+
call mcopy(workl,plambda(npulses+1))
do k=npulses,1,-1 ! ruckwarts aufmultplizieren von U
call mmul(plambda(k+1),optG(k),plambda(k)) ! LD (lambda dagger)
enddo
do k=1,npulses ! calc grad
call mmul(prho(k),plambda(k+1),workl) I UiUf
call dagger(optV(k),work2)
call mmul(workl,optV(k),workl)
call mmul(work2,workl,workl) PV xUiUf+V
call mtrans(workl,workl) (V' UiUfxV) .’
do ictrl=3,4
call mmul(workgl(ictrl),optV(k),workg2(ictrl)) ! IxV
call mmul(work2,workg2(ictrl),workg2(ictrl)) IV xIxV

call mpstern(workg2(ictrl),optD(k),workg2(ictrl))!(V'xIxV).xD

call mpstern(workg2(ictrl),workl,workg2(ictrl))
P (V' *IxV).xD.x (V'xUiUfxV).’

call sumsumim(workg2(ictrl),gradg(ictrl)) ! imag(sum(sum(")))

gradg(ictrl)=gradg(ictrl)*duration(k)
I imag(sum(sum(")))*timestep
grad2(ictrl,k)=grad2(ictrl,k)+gradg(ictrl)/normuni
enddo
enddo



A.4. CT-SP-CLIP/CLAP-RESET HSQC

A.4. CT-SP-CLIP/CLAP-RESET HSQC

If CT versions of the more robust SP (see figure 3.11 B) or COB-CLIP/CLAP-RESET HSQC
experiments (see figure 3.11 C) are to be recorded, the PS pseudo-dimension depicted in
figure 3.8 needs to be made more robust. If all hard pulses are replaced with corresponding
broadband shapes as described in section 3.2.3, the pulse sequence shown in figure A.3 is
obtained.

b T | b
w3 BaHAR s HSH TZtZWmWWUW
-X y -X
“c Ny =
G

Figure A.3.: Pulse sequence for a CT pseudo-dimension of SP/COB-CLIP/CLAP-RESET
HSQC experiments. Rectangular 90° and 180° pulses have been replaced by shaped
pulses according to their function depicted in figure 3.11 A. Phases are x unless indicated
otherwise. For the acquisition of CLAP spectra, ¢, has to be changed to y, -y, -y, y.
Heteronuclear transfer delays are calibrated to match A = 1/(2!Joy). If the dashed 180°
pulse is omitted and broadband heteronuclear decoupling is applied during acquisition, CT
versions of more robust fully decoupled RESET HSQC experiment can be obtained. The
delay 7 is set to AQ/4n with n being the number of data chunks. Decremented CT delays
have to be corrected from the overall evolution period T according to equation 3.4. Delays
marked with an asterisk allow for the compensation of phase distortions introduced by
dropping points at the beginning of each FID chunk. Graphic taken and modified from
[212].
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A.5. Bruker pulse programs

Listing A.27: CPD program for decoupling using the BROCODE

bilev "131=(nsdone+ds)%4+1"
jump to 131
1 pcpd:spll:0 pl=spll
jump to 1
2 pcpd:spl2:0 pl=spl2
jump to 2
3 pcpd:spl3:0 pl=spl3
jump to 3
4 pcpd:spld:0 pl=spld
jump to 4

Listing A.28: Pulse program for CLIP-RESET HSQC experiments
; CLIP_RESET_hsqcetgp

;based on hsqcetgp

;avance-version (09/04/17)

;HSQC

;2D H-1/X correlation via double inept transfer

;phase sensitive using Echo/Antiecho-TPPI gradient selection
;Clip pulse before aquisition

20

21

22

23

24

25

26

27

28

29

; $CLASS=HighRes
: $DIM=2D
:$TYPE=

; $SUBTYPE=

; $COMMENT=

#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>

"p2=plx2"
"p4=p3x*2"
"d4=1s/(cnst2x4)"
"d11=30m"

#  ifdef LABEL_CN
"p22=p21x2"

# else

# endif /*LABEL_CNx/
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A.5. Bruker pulse programs

"acqto=0"

"do=3u"
"d10=3u"
"in@=infl/2"
"inl@=inf2/2"

"DELTAl=d4-pl6-de+pl*2/PI-8u-p3"
"DELTA2=1n0/2-p16-d16"
"DELTA3=1n0-p16-d16"

"DELTA4=1n0/2- (dwx2xcnst4) -p16-d16"

#  ifdef LABEL_CN
"DELTA=pl6+dl6+larger(p2,p22)+dox2"
# else

"DELTA=pl6+d16+p2+d0O=*2"

# endif /*LABEL_CNx/

1 ze
dll
2 dl
3 (pl phl)
d4 pl2:f2
(center (p2 phl) (p4 ph6):f2 )
d4 UNBLKGRAD
(pl ph2) (p3 ph3):f2
dloe
# ifdef LABEL_CN
(center (p2 ph5) (p22 phl):f3 )
# else
(p2 ph5)
# endif /*LABEL_CNx/
dloe
pl6:gplxEA
dl6
(p4 ph4):f2
DELTA
(ralign (pl phl) (p3 ph5):f2 )
d4
(center (p2 phl) (p4 phl):f2 )
4u
pl6:gp2
DELTAl1
4u
(p3 ph8):f2
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;3333 Pure-Shift Pseudo-Dimension ;;;;;

do
DELTA2
pl6:gp3
d16

(p2 phl
DELTA3
pl6:gp4
d16

(pl phl
ddx2

) fl

):f1 ;BIRDd

(center (p2 phl) (p4 phl):f2 )

d4x2

(ralign (pl phl) (p4 phl):f2 )

DELTA4
pl6:gp5
dl6 BLK
do

go=2 ph
dl mc #
F1QF(

F2EA(calgrad(EA), caldel(d10, +inl0@) & calph(ph3, +180) & calph(ph6,
+180) & calph(ph31, +180))

exit

ph1l=0
ph2=1
ph3=0 2
ph4=0 0 0
ph5=0 0 2
ph6=0
ph8=0 2

GRAD

31
0 to 2
caldel(dO, +in0) )

02222
2

ph31=0 2 0 2 2 0 2 0

;pll @ fl
;pl2 @ 2
;pl3 @ 3
;pll2: f2
;pl o fl
;p2 o fl
;p3 1 f2
;p4 o f2

;pl6: homospoil/gradient pulse
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channel - power level for pulse (default)
channel - power level for pulse (default)
power level for pulse (default)
power level for CPD/BB decoupling

channel -
channel -
channel - 90 degree
channel - 180 degree
channel - 90 degree
channel - 180 degree

high power pulse
high power pulse
high power pulse
high power pulse
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A.5. Bruker pulse programs

;d16:

;cnst4: = Points dropped by AU program
;infl:

: incremented delay (2D)

relaxation delay; 1-5 x T1

: 1/(43)XH
: delay for disk I/0

: 3 channel - 180 degree high power pulse
: f1 channel - trim pulse

[3 usec]

delay for homospoil/gradient recovery
;cnst2: = J(XH)

1/SW(X) = 2 * DW(X)

;in0: 1/(2 * SW(X)) = DW(X)
;nd0: 2

;NS: 1 * n

:DS: >= 16

;tdl: number of experiments

; FNMODE: echo-antiecho
;cpd2: decoupling according to sequence defined by cpdprg2
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 1 : gp 2
; 80 : 20.1
; 80 : 8.1
;use gradient ratio: gp 3 : gp 4 :
; 1:4:3
;for z-only gradients:

;gpzl: 80%

;gpz2: 20.1% for C-13, 8.1% for N-15
;gpz3: n*xl %

;gpz4: nx4d %

;gpz5: n*x3 %

;use gradient files:
;gpnaml: SMSQ10.100
;gpnam2: SMSQ10.100
;gpnam3: SMSQ10.100
;gpnam4: SMSQ10.100
;gpnam5: SMSQ10.100

;preprocessor-flags-start

;LABEL_CN: for C-13 and N-15 labeled samples start experiment with

for C-13
for N-15

gp 5

option -DLABEL_CN (eda: ZGOPTNS)
;preprocessor-flags-end

[30 msec]

;$Id: hsqcetgp,v 1.5.4.1 2011/02/24 17:26:40 ber Exp $
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Listing A.29: Pulse program for CLAP-RESET HSQC experiments

; CLAP_RESET_hsqcetgp
;based on hsqcetgp
;avance-version (09/04/17)
;HSQC

;2D H-1/X correlation via double inept transfer
;phase sensitive using Echo/Antiecho-TPPI gradient selection

; $CLASS=HighRes
; $DIM=2D
:$TYPE=

; $SUBTYPE=

: SCOMMENT=

#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>

"p2=p1x2"
"p4=p3%2"
"d4=1s/(cnst2x4)"
"d11=30m"

#  ifdef LABEL_CN
"p22=p21*2"

# else

# endif /*LABEL_CNx/

"acqto=0"

"do=3u"
"d10=3u"
"in@=infl/2"
"inl0=inf2/2"

"DELTA1=d4-pl6-de+pl*2/PI-8u"
"DELTA2=in0/2-pl6-d16"
"DELTA3=in0-pl6-d16"

"DELTA4=1in0/2- (dwx2xcnst4)-pl6-d16"

# ifdef LABEL_CN

"DELTA=pl6+d16+larger(p2,p22)+dox2"
# else
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A.5. Bruker pulse programs

"DELTA=p16+d16+p2+d0+2"
# endif /+LABEL_CN=x/

1 ze
dll

2 dl

3 (pl phl)
d4 pl2:f2
(center (p2 phl)
d4 UNBLKGRAD

(p4 ph6):f2 )

(pl ph2) (p3 ph3):f2

d1o
#  ifdef LABEL_CN
(center (p2 ph5)
# else
(p2 ph5)

(p22 phl):f3 )

# endif /*LABEL_CNx/

d1o
pl6:gplxEA
dl16

(p4 ph4):f2
DELTA
(ralign (pl phl)
d4

(p2 phl)

4u

pl6:gp2
DELTA1L

4u

;333 Pure-Shift Pseudo-Dimension

do

DELTA2
pl6:gp3

dl16

(p2 phl):fl
DELTA3
pl6:gp4

dl16

(p3 ph5):f2 )

(pl phl):fl ;BIRDd

d4x*2

(center (p2 phl)
d4x2

(ralign (pl phl)
DELTA4

(p4 phl):f2 )

(p4 phl):f2 )

rrorar
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pl6:gp5
d16 BLKGRAD
do

go=2 ph31l
dl mc #0 to 2
F1QF( caldel(d®, +in®) )

F2EA(calgrad(EA), caldel(d1l0, +inl0@) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31l, +180))
exit

ph1l=0

ph2=1

ph3=0 2

ph4=0 0 0 0 2 2 2 2
ph5=0 0 2 2

ph6=0

ph31=1 3133131

;pll @ f1l channel - power level for pulse (default)

;pl2 : 2 channel

power level for pulse (default)

;p1l3 : f3 channel - power level for pulse (default)
;pl12: f2 channel - power level for CPD/BB decoupling

;pl : f1l channel
;p2 : Tl channel
;p3 : T2 channel 90 degree high
;p4 : f2 channel - 180 degree high
;pl6: homospoil/gradient pulse
;p22: f3 channel - 180 degree high
;p28: fl channel - trim pulse

;dO @ incremented delay (2D)

;dl : relaxation delay; 1-5 * T1
;dd4 1 1/(43)XH

;d11: delay for disk I/0

;d16: delay for homospoil/gradient
;enst2: = J(XH)

90 degree high
180 degree high

power pulse
power pulse
power pulse
power pulse

power pulse

[3 usec]

[30 msec]
recovery

;enst4: = Points dropped by AU program

;infl: 1/SW(X) = 2 * DW(X)
;in0@: 1/7(2 * SW(X)) = DW(X)

;nd0: 2
sNS: 1 % n
;DS: >= 16

;tdl: number of experiments
; FNMODE: echo-antiecho

;cpd2: decoupling according to sequence defined by cpdprg2
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A.5. Bruker pulse programs

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 1 : gp 2

; 80 : 20.1 for C-13
; 80 : 8.1 for N-15
;use gradient ratio: gp 3 : gp 4 : gp 5

; 1:4:3

;for z-only gradients:

;gpzl: 80%

;gpz2: 20.1% for C-13, 8.1% for N-15

;gpz3: n*xl %

;gpzd: nxd %

;gpz5: n*x3 %

;use gradient files:
;gpnaml: SMSQ10.100
;gpnam2: SMSQ10.100
;gpnam3: SMSQ10.100
;gpnam4: SMSQ10.100
;gpnam5: SMSQ10.100

;preprocessor-flags-start

;LABEL_CN: for C-13 and N-15 labeled samples start experiment with
; option -DLABEL_CN (eda: ZGOPTNS)
;preprocessor-flags-end

;$Id: hsqcetgp,v 1.5.4.1 2011/02/24 17:26:40 ber Exp $

Listing A.30: Pulse program for SP-CLIP-RESET HSQC experiments
;SP_CLIP_RESET_hsqcetgp

;based on hsqcetgp,v 1.5.2.1 2011/02/24

;HSQC

;2D H-1/X correlation via double inept transfer

;phase sensitive using Echo/Antiecho-TPPI gradient selection
;clip pulse before aquisition

; $CLASS=HighRes

; $DIM=2D

;$TYPE=

; $SUBTYPE=

; $COMMENT=

#include <Avance.incl>
#include <Grad.incl>
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#include <Delay.incl>
#include<Sysconf.incl>

"d11=30m"
"acqto=0"
"d4=1s/(cnst2x4)"

"do=3u"
"d10=3u"
"in@=inf1/2"
"in10=inf2/2"

"DELTA=p16+d16+p26+d0O*2"
"DELTA1=d4-pl6-4u-p3"
"DELTA2=in0/2-pl6-d16"
"DELTA3=1in0-p16-d16"

"DELTA4=in0/2- (dwx2xcnst4)-pl6-d1l6"

1 ze
di1

2 dl

3 (p21l:sp2l1l phl):fl ; ZX
d4
(p22:sp22 phl):fl
d4 UNBLKGRAD
(p21:sp24 phl):fl
di1o
(p26:sp26 ph5):fl
d1o
pl6:gpl+EA
d16
(p27:sp27 ph4):f2
DELTA
(p21:sp28 phl):fl
d4
(p22:sp22 phl):fl
pl6:gp2
DELTA1l
4u pl2:f2
(p3 ph8):f2

(p22:sp23 phl):f2

(p21:sp25 ph3):f2

(p21:sp29 ph4):f2

(p22:sp23 phl):f2

;353 Pure-Shift Pseudo-Dimension ;;;;;
do
DELTA2

pl6:gp3
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d16

(p22:sp22 phl):fl
DELTA3

pl6:gp4

dl16

(p22:sp30 phl):fl
d4x2

(p22:sp22 phl):fl
d4x2

(p22:sp30 phl):fl
DELTA4

pl6:gp5

d16 BLKGRAD

do

go=2 ph31l
dl mc #0 to 2
F1QF (caldel(do,

F2EA(calgrad(EA), caldel(dl0, +inl0@) & calph(ph3, +180) & calph(ph6,

; BIRDd

(p22:sp23 phl):f2 ;URx180 BIBOP

(p22:sp23 phl):f2 ;URx90 BIBOP

+in0@) )

+180) & calph(ph31, +180))

exit

ph1l=0

ph2=1

ph3=0 2

ph4=0 0 2 2

ph5=0 0 0 0 2 2 2 2
ph6=0

ph8=0 2

ph31=0 2 2 0

;pll : f1 channel
;pl2 @ f2 channel
;pl3 : f3 channel
;pll2: f2 channel
;pl @ f1l channel -
;p2 : fl channel -
;p3 : f2 channel -
;p4 : f2 channel -

power level for pulse (default)
power level for pulse (default)
power level for pulse (default)
power level for CPD/BB decoupling
90 degree high power pulse

180 degree high power pulse

90 degree high power pulse

180 degree high power pulse

;p16: homospoil/gradient pulse

;P21 : 550u excitat
;p22 : 600u UR and

ion pulses
Inversion pulses

;P26 : 100u Inversion pulse

;p27 : 1100u UR pul

se
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; spnam2l :

jcO1_BEBOP_zx_550u_BW10_RF20_pm20_Hc0.99997119.pul

;spnam22 : jc02_BURBOP_x_600u_BW10_RF20_pm20_matched.pul
;spnam24 : jc04_BEBOP_yz_550u_BW10_RF20_pm20_matched.pul

; Spnam26 :

;spnam28 : jcO08_BEBOP_z-y_550u_BW10_RF20_pm20_matched.pul
;spnam30 : UR90x_600u_BW10_RF20_pm20_Hc0.999959.bruker

;spnam23 : jcO03_BIBOP_600u_BW37.5_RF10_pm5_matched.pul
;spnam25 @ jcO5_BEBOP_zy_550u_BW37.5_RF10_pm5_matched. pul

; spnam27

;spnam29 : jc09_BEBOP_-yz 550u_BW37.5_RF10_pm5_matched.pul

;sp2l
;Sp22
;Sp24
;Sp26
;Sp28
;Sp30

;Sp23
;Sp25
;Sp27
;Sp29

20 kHz Rf Amplitude
20 kHz Rf Amplitude
20 kHz Rf Amplitude
20 kHz Rf Amplitude
20 kHz Rf Amplitude
20 kHz Rf Amplitude

10 kHz Rf Amplitude
10 kHz Rf Amplitude
10 kHz Rf Amplitude
10 kHz Rf Amplitude

: incremented delay (2D) [3 usec]

relaxation delay; 1-5 x T1

: 1/(43)XH
: delay for disk I/O [30 msec]
: delay for homospoil/gradient recovery

;cnst2: = J(XH)

;cnstd: = Points dropped by AU program
;infl: 1/SW(X) = 2 = DW(X)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;NS: 2 x n

;DS: >= 16

;tdl: number of experiments

;FNMODE: echo-antiecho

;cpd2:

decoupling according to sequence defined by cpdprg2

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 1 : gp 2

’

’

80 : 20.1 for C-13
80 : 8.1 for N-15

;use gradient ratio: gp 3 : gp 4 : gp 5
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; 1:4:3
;for z-only gradients:

;gpzl: 80%

;gpz2: 20.1% for C-13, 8.1% for N-15
;gpz3: n*xl %

;gpzd: nxd %

;gpz5: n*3 %

;use gradient files:
;gpnaml: SMSQ10.100
;gpnam2: SMSQ10.100
;gpnam3: SMSQ10.100
;gpnam4: SMSQ10.100
;gpnam5: SMSQ10.100

;preprocessor-flags-start

;$Id: hsqcetgp,v 1.5.2.1 2011/02/24 17:27:48 ber Exp $

Listing A.31: Pulse program for SP-CLAP-RESET HSQC experiments
; SP_CLAP_RESET_hsqcetgp

;based on hsqcetgp,v 1.5.2.1 2011/02/24

;HSQC

;2D H-1/X correlation via double inept transfer

;phase sensitive using Echo/Antiecho-TPPI gradient selection
; $CLASS=HighRes

; $DIM=2D

; $TYPE=

; $SUBTYPE=

; SCOMMENT=

#include <Avance.incl>
#include <Grad.incl>

#include <Delay.incl>
#include<Sysconf.incl>

"d11=30m"
"acqt0=0"
"d4=1s/(cnst2x4)"

"do=3u"
"d10=3u"
"in@=inf1/2"
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"in10=inf2/2"

"DELTA=p16+d16+p26+d0O*2"
"DELTA1=d4-pl6-4u"
"DELTA2=in0/2-pl16-d16"
"DELTA3=in0-pl6-d16"

"DELTA4=in0/2- (dwx2xcnst4)-pl6-d16"

1 ze
di1
2 dl
3 (p21l:sp21 phl):fl 7 ZX
d4
(p22:sp22 phl):fl (p22:sp23 phl):f2
d4 UNBLKGRAD
(p21:sp24 phl):fl (p21:sp25 ph3):f2
dlo
(p26:sp26 ph5):fl
di1o
pl6:gplxEA
d16
(p27:sp27 ph4):f2
DELTA
(p21:sp28 phl):fl (p21:sp29 ph4):f2
d4
(p22:sp22 phl):fl ; URXx180
pl6:gp2
DELTA1l
4u

;1133 Pure-Shift Pseudo-Dimension ;;;;;
do

DELTA2

pl6:gp3

d16

(p22:sp22 phl):fl

DELTA3

pl6:gp4

d16

(p22:sp30 phl):fl ;BIRDd

d4x2

(p22:sp22 phl):fl (p22:sp23 phl):f2
ddx2

;URXx180 BIBOP

'Yz z-y

1Z-Y Yz

;URXx180 BIBOP

(p22:s5p30 phl):fl (p22:sp23 phl):f2 ;URXx90 BIBOP

DELTA4
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pl6:
d16
do

gp>
BLKGRAD

go=2 ph3l
dl mc #0 to 2
F1QF (caldel(d0, +in0@) )

F2EA(calgrad(EA), caldel(dl0, +inl@) & calph(ph3, +180) & calph(ph6,

+180) & calph(ph31, +180))

exit

phl=0

ph2=1

ph3=0 2

ph4=0 0 2 2

ph5=0 6 0 0 2 2 2 2

ph6=0

ph8=0 2

ph31=1 3 3 1

;pll @ f1 channel - power level for pulse (default)
;pl2 : f2 channel - power level for pulse (default)
;pl3 : f3 channel - power level for pulse (default)
;pl12: f2 channel - power level for CPD/BB decoupling
;pl ¢ f1l channel - 90 degree high power pulse

;p2 : fl channel - 180 degree high power pulse

;p3 : f2 channel - 90 degree high power pulse

;p4 : f2 channel - 180 degree high power pulse
;p16: homospoil/gradient pulse

;P21 : 550u excitation pulses

;p22 : 600u UR and Inversion pulses

;P26 : 100u Inversion pulse

;p27 : 1100u UR pulse

;spnam21 : jcO1_BEBOP_zx_550u_BW10_RF20_pm20_Hc0.99997119.pul
;spnam22 : jc02_BURBOP_x_600u_BW10_RF20_pm20_matched.pul
;spnam24 : jc04_BEBOP_yz 550u_BW10_RF20_pm20_matched.pul
;Spnam26 : jc06_BIBOP_z-z_100u_BW11 _RF20_pm20_Hc0.99966724.pul
;Spnam28 : jcO8_BEBOP_z-y_550u_BW10_RF20_pm20_matched.pul
;spnam30 : UR90x_600u_BW10_RF20_pm20_Hc0.999959.bruker

;spnam23 : jc03_BIBOP_600u_BW37.5_RF10_pm5_matched.pul

;spnam25 @ jcO05_BEBOP_zy_550u_BW37.5_RF10_pm5_matched.pul
;spnam27 : jc07_BURBOP_y_1100u_BW37.5_RF10_pm5_Hc0.999876221.pul
;spnam29 @ jc09_BEBOP_-yz_550u_BW37.5_RF10_pm5_matched. pul
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;sp21 : 20 kHz Rf Amplitude
;5p22 : 20 kHz Rf Amplitude
;sp24 : 20 kHz Rf Amplitude
;Sp26 : 20 kHz Rf Amplitude
;Sp28 : 20 kHz Rf Amplitude
;5p30 : 20 kHz Rf Amplitude

;5p23 : 10 kHz Rf Amplitude
;Sp25 : 10 kHz Rf Amplitude
;Sp27 : 10 kHz Rf Amplitude
;5p29 : 10 kHz Rf Amplitude

;dO : incremented delay (2D) [3 usec]

;dl @ relaxation delay; 1-5 x T1

;d4 @ 1/(43)XH

;d11: delay for disk I/0 [30 msec]
;d16: delay for homospoil/gradient recovery

;enst2: = J(XH)

;cnst4: = Points dropped by AU program

;infl: 1/SW(X) = 2 x DW(X)

;in@: 1/(2 = SW(X)) = DW(X)

;nd0: 2
;NS: 2 x n
;DS: >= 16

;tdl: number of experiments

; FNMODE: echo-antiecho

;cpd2: decoupling according to sequence defined by cpdprg2
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 1 : gp 2

; 80 : 20.1 for C-13
; 80 : 8.1 for N-15
;use gradient ratio: gp 3 : gp 4 : gp 5

; 1:4:3

;for z-only gradients:

;gpzl: 80%

;gpz2: 20.1% for C-13, 8.1% for N-15
;9pz3: nxl %

;9pz4: nx4 %

;0pz5: nx3 %

;use gradient files:

;gpnaml: SMSQ10.100
;gpnam2: SMSQ10.100
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;gpnam3: SMSQ10.100
;gpnam4: SMSQ10.100
;gpnam5: SMSQ10.100

;preprocessor-flags-start

;$Id: hsqcetgp,v 1.5.2.1 2011/02/24 17:27:48 ber Exp $

Listing A.32: Pulse program for COB-CLIP-RESET HSQC experiments
; COB_CLIP_RESET _hsqcetgp

;based on hsqcetgp,v 1.5.2.1 2011/02/24

yHSQC

;2D H-1/X correlation via double inept transfer

;phase sensitive using Echo/Antiecho-TPPI gradient selection
;clip pulse before aquisition

; $CLASS=HighRes

; $DIM=2D

; $TYPE=

; $SUBTYPE=

; SCOMMENT=

#include <Avance.incl>
#include <Grad.incl>

#include <Delay.incl>
#include<Sysconf.incl>

"d11=30m"
"acqt0=0"
"d4=1s/(cnst2x4)"

"d20=d5%x0.001469"
"d21=d5%0.00213465"
"d22=d5%0.0003938"

"do=3u"
"d10=3u"
"in0=inf1/2"
"in10=inf2/2"

"DELTA=pl6+d16+p26+d0*2"
"DELTA1=d5%0.001469-p16-4u-p3"
"DELTA2=in0/2-p16-d16"
"DELTA3=in0-pl6-d16"
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"DELTA4=in0/2- (dw*2*cnst4)-pl6-d16"

1 ze
di1

2 dl

3 (p21l:sp21 phl)
d2o
(p22:sp22 phl)
d20 UNBLKGRAD
(p30:sp30 phl)
d21
(p22:sp22 phl)
d21
(p30:sp31 phl)
d22
(p22:sp22 phl)
d22
(p21:sp24 phl)
di1o
(p26:sp26 ph5)
dl1o
pl6:gplxEA
d16
(p27:sp27 ph4)
DELTA
(p21:sp28 phl)
d22
(p22:sp22 phl)
d22
(p30:sp31 phl)
d21
(p22:sp22 phl)
d21
(p30:sp30 phl)
d20
(p22:sp22 phl)
pl6:gp2
DELTA1 BLKGRAD
4u
(p3 ph8):f2

rrorr

do
DELTA2

pl6:gp3
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:fl

:fl

:fl

:fl

:fl

:fl

1 fl

:fl

1 f2

:fl

:fl

:fl

1 fl

:fl

:fl

(p22:

(p22:

(p22:

(p21:

(p21:

(p22:

(p22:

(p22:

;ZX

sp23 phl):f2

; URX242

sp23 phl):f2

; URX65

sp23 phl):f2

sp25 ph3):f2

sp29 ph4):f2

sp23 phl):f2

; URX65

sp23 phl):f2

; URX242

sp23 phl):f2

Pure-Shift Pseudo-Dimension ;;;;;

; URX180

;plx2.7 phl

; URX180

;pl%x0.72 phl

; URX180

'Yz z2-y

1Z2-Y yz

; URX180

;plx0.72 phl

; URX180

;plx2.7 phl

; URX180

BIBOP

BIBOP

BIBOP

BIBOP

BIBOP

BIBOP
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82 d16

83 (p22:sp22 phl):fl

84 DELTA3

85 pl6:gp4

86 dl16

87 (p22:sp30 phl):fl ;BIRDd

88 d4x2

89 (p22:sp22 phl):fl (p22:sp23 phl):f2 ; URx180 BIBOP
90 d4=2

o1 (p22:sp32 phl):fl (p22:sp23 phl):f2 ;URx90 BIBOP
02 DELTA4

93 p16:gp5

% d16 BLKGRAD

95 d@

96
97 go=2 ph31
98 dl mc #0 to 2

9 F1QF (caldel(d0, +in@) )

100 F2EA(calgrad(EA), caldel(dl0, +inl0@) & calph(ph3, +180) & calph(ph6,
+180) & calph(ph31, +180))

01 exit

102

103 phl=0

104 ph2=1

105 ph3=0 2

106 ph4=0 022
w7 ph5=0 0 06 0 2 2 2 2
10s  ph6=0

109 ph8=0 2

110 ph31=0 220

111

iz ;pll : f1 channel
us  ;pl2 : f2 channel

power level for pulse (default)
power level for pulse (default)
us ;pl3 : 3 channel power level for pulse (default)
us  ;pll2: 2 channel power level for CPD/BB decoupling
s ;pl : fl channel - 90 degree high power pulse

n7 ;p2 : Tl channel - 180 degree high power pulse

ns ;p3 : f2 channel - 90 degree high power pulse

ne ;p4 : f2 channel - 180 degree high power pulse

120 ;pl6: homospoil/gradient pulse

121

122 ;p21 : 550u excitation pulses

123 ;p22 : 600u UR and Inversion pulses
12e ;p26 : 100u Inversion pulse

15 ;p27 : 1100u UR pulse
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;p30

; spnam21
; spnam22
;Spnam24 :
; Spnam26 :
; Spnam28 :
; spnam30 :
;spnam31 :
;spnam32

; spnam23 :
; spnam25
; spnam27
; Spnam29

;sp2l
;Sp22
;Sp24
;Sp26
;Sp28
;Sp30
;Sp31
;Sp32

;Sp23
;Sp25
;Sp27
;Sp29

20
20
20
20
20
20
20
20

10
10
10
10

: incremented
relaxation delay; 1-5 x T1

200u odd UR pulses

jcO01_BEBOP_zx_550u_BW10_RF20_pm20_Hc0.99997119.pul
jCc02_BURBOP_x_600u_BW10_RF20_pm20_matched.pul

jc04_BEBOP_yz 550u_BW10_RF20_pm20_matched.pul
jCc06_BIBOP_z-z_100u_BW11 RF20_pm20_Hc0.99966724.pul
jCc08_BEBOP_z-y_550u_BW10_RF20_pm20_matched.pul
jc10_BURBOP_x242.8833deg_200u_BW10_RF20_pm20_Hc0.9997027.pul
jcl1l _BURBOP_x65.3166deg_200u_BW10_RF20_pml@_Hc0.9998099.pul
UR90x_600u_BW10_RF20_pm20_Hc0.999959.bruker

jc03_BIBOP_600u_BW37.5_RF10_pm5_matched.pul
jc05_BEBOP_zy_550u_BW37.5_RF10_pm5_matched.pul
jcO07_BURBOP_y_1100u_BW37.5_RF10_pm5_Hc0.999876221.pul
jCO9_BEBOP_-yz_550u_BW37.5_RF10_pm5_matched.pul

kHz Rf
kHz Rf
kHz Rf
kHz Rf
kHz Rf
kHz Rf
kHz Rf
kHz Rf

Amplitude
Amplitude
Amplitude
Amplitude
Amplitude
Amplitude
Amplitude
Amplitude

kHz Rf
kHz Rf
kHz Rf
kHz Rf

Amplitude
Amplitude
Amplitude
Amplitude

delay (2D) [3 usec]

: 1/(4J)XH

;d11l: delay for disk I/0
;d16: delay for homospoil/gradient recovery

;enst2: = J(XH)

;cnst4: = Points dropped by AU program
;infl: 1/SW(X) = 2 x DW(X)

;in0: 1/(2 * SW(X)) = DW(X)

;nd0: 2

;NS: 2 % n

;DS: >= 16

;td1l: number of experiments

;FNMODE: echo-antiecho
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;cpd2: decoupling according to sequence defined by cpdprg2
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

;use gr
yuse gr
;for z-
;gpzl:
ygpz2:
;gpz3:
;gpz4:
;gpz5:

;use gr

;gpnaml:
;gpnam2:
;gpnam3:
;gpnamé:
;gpnam5:

yprepro

adient ratio: gp 1 : gp 2
80 : 20.1
80 : 8.1
adient ratio: gp 3 : gp 4 :
1:4:3
only gradients:

80%

20.1% for C-13, 8.1% for N-15
nxl %

nx4 %

n*3 %

adient files:
SMSQ10.100
SMSQ10.100
SMSQ10.100
SMSQ10.100
SMSQ10.100

cessor-flags-start

for C-13
for N-15

gp 5

;$Id: hsqcetgp,v 1.5.2.1 2011/02/24 17:27:48 ber Exp $

; COB_CL

Listing A.33: Pulse program for COB-CLAP-RESET HSQC experiments

AP_RESET_hsqcetgp

;based on hsqcetgp,v 1.5.2.1 2011/02/24

; HSQC

;2D H-1/X correlation via double inept transfer
;phase sensitive using Echo/Antiecho-TPPI gradient selection

;$CLASS
;$DIM=2
;$TYPE=

=HighRes
D

: $SUBTYPE=

: $COMME

#includ
#includ
#includ
#includ

NT=

e <Avance.incl>
e <Grad.incl>

e <Delay.incl>
e<Sysconf.incl>
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"d11=30m"
"acqtO=0"
"d4=1s/(cnst2x4)"

"d20=d5%0.001469"
"d21=d5%0.00213465"
"d22=d5+%0.0003938"

"do=3u"
"d10=3u"
"in@=inf1/2"
"in10=inf2/2"

"DELTA=p16+d16+p26+d0O*2"

"DELTA1=d5%0.001469-p16-4u"

"DELTA2=in0/2-p16-d16"
"DELTA3=in0-pl16-d16"

"DELTA4=in0/2- (dw*2*cnst4)-pl6-d16"

1 ze
di1

2 dl

3 (p21l:sp21 phl):fl
d20
(p22:sp22 phl):fl
d20 UNBLKGRAD
(p30:sp30 phl):fl
d21
(p22:sp22
d21
(p30:sp31 phl):fl
d22
(p22:sp22
d22
(p21l:sp24 phl):fl
di1e
(p26:sp26 ph5):fl
dloe
pl6:gpl*EA
d16
(p27:sp27 ph4):f2
DELTA
(p21:sp28 phl):fl
d22
(p22:sp22 ph2):fl

ph1):fl

phl):f1
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(p22:

(p22:

(p22:

(p21:

(p21:

; ZX
sp23 phl):f2 ;URXx180 BIBOP
;URx242 ;pl*2.7 phl
sp23 phl):f2 ;URXx180 BIBOP
;URX65 ;plx0.72 phl
sp23 phl):f2 ; URx180 BIBOP

sp25 ph3):f2 'YZ z-y

sp29 ph4):f2 1Z-Y Yz

; URX180
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d22

(p30:sp31 ph2):fl
d21

(p22:sp22 ph2):fl
d21

(p30:sp30 ph2):fl
d2oe

(p22:sp22 ph2):fl
pl6:gp2

DELTA1 BLKGRAD

4u

;URX65 ;pl*x0.72 phl
; URX180
;URX242 ;pl*x2.7 phl

; URX180

;133 Pure-Shift Pseudo-Dimension ;;;;;

do

DELTA2

pl6:gp3

d16

(p22:sp22 phl):fl
DELTA3

pl6:gp4

d16

(p22:sp30 phl):fl ;BIRDd

d4x*2

(p22:sp22 phl):fl
d4x*2

(p22:sp32 phl):fl
DELTA4

pl6:gp5

d16 BLKGRAD

do

go=2 ph31
dl mc #0 to 2

(p22:sp23 phl):f2 ;URx180 BIBOP

(p22:sp23 phl):f2 ;URx90 BIBOP

F1QF (caldel(d0, +in@) )
F2EA(calgrad(EA), caldel(d1l0, +inl0) & calph(ph3, +180) & calph(ph6,
+180) & calph(ph31, +180))

exit

phl=0

ph2=1

ph3=0 2

ph4=0 0 2 2

ph5=0 6 0 0 2 2 2 2
ph6=0

ph31=1 3 3 1
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A. Appendix

;pll @ f
pl2 o f
;pl3 ¢ f
;pll2: f
pl o fl
p2  fl
;p3 : f2
;p4 T2
;pl6:

;p21l
ip22
;P26
i P27
;p30

1 channel - power level for pulse (default)

2 channel - power level for pulse (default)

3 channel - power level for pulse (default)

2 channel - power level for CPD/BB decoupling
channel - 90 degree high power pulse
channel - 180 degree high power pulse
channel - 90 degree high power pulse
channel - 180 degree high power pulse

; Spnam21
; Spnam22
; spnam24
; Spnam26 :
; Spnam28 :
; Spnam30 :
;spnam31 :
;spnam32

;spnam23
; spnam25
; spnam27
; Spnam29

;sp2l
;Sp22
;Sp24
;Sp26
;Sp28
;Sp30
;sp3l
;Sp32

;Sp23
;Sp25
;Sp27
;Sp29
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20
20
20
20
20
20
20
20

10
10
10
10

homospoil/gradient pulse

550u excitation pulses

600u UR and Inversion pulses
100u Inversion pulse

1100u UR pulse

200u odd UR pulses

jcO1_BEBOP_zx_550u_BW10_RF20_pm20_Hc0.99997119.pul
jCc02_BURBOP_x_600u_BW10_RF20_pm20_matched.pul
jCc04_BEBOP_yz_550u_BW10_RF20_pm20_matched.pul
jc06_BIBOP_z-z_ 100u_BW11 RF20_pm20_Hc0.99966724.pul
jCcO8_BEBOP_z-y_550u_BW10_RF20_pm20_matched.pul
jcl0_BURBOP_x242.8833deg_200u_BW10_RF20_pm20_Hc0.9997027.pul
jcll _BURBOP_x65.3166deg_200u_BW10_RF20_pml0_Hc0.9998099.pul
UR90x_600u_BW10_RF20_pm20_Hc0.999959.bruker

jCc03_BIBOP_600u_BW37.5_RF10_pm5_matched.pul
jc05_BEBOP_zy_550u_BW37.5_RF10_pm5_matched.pul
jcO07_BURBOP_y_1100u_BW37.5_RF10_pm5_Hc0.999876221.pul
jCO09_BEBOP_-yz_550u_BW37.5_RF10_pm5_matched.pul

kHz
kHz
kHz
kHz
kHz
kHz
kHz
kHz

Rf
Rf
Rf
Rf
Rf
Rf
Rf
Rf

Amplitude
Amplitude
Amplitude
Amplitude
Amplitude
Amplitude
Amplitude
Amplitude

kHz
kHz
kHz
kHz

Rf
Rf
Rf
Rf

Amplitude
Amplitude
Amplitude
Amplitude
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A.5. Bruker pulse programs

;dO : incremented delay (2D) [3 usec]

;dl : relaxation delay; 1-5 * T1

;dd : 1/(4J)XH

;d5: = d5=1 (for J=120-250Hz, Delay Scaling Factor)

;d11: delay for disk I/0 [30 msec]
;d16: delay for homospoil/gradient recovery

;cnst2: = J(XH)

;cnst4: = Points dropped by AU program

;infl: 1/SW(X) = 2 x DW(X)

;in@: 1/(2 * SW(X)) = DW(X)

;nd0: 2
;NS: 2 % n
;:DS: >= 16

;tdl: number of experiments

; FNMODE: echo-antiecho

;cpd2: decoupling according to sequence defined by cpdprg2
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence

;use gradient ratio: gp 1 : gp 2

; 80 : 20.1 for C-13
; 80 : 8.1 for N-15
;use gradient ratio: gp 3 : gp 4 : gp 5

; 1:4:3

;for z-only gradients:

;gpzl: 80%

;gpz2: 20.1% for C-13, 8.1% for N-15

;gpz3: nxl %

;gpzd: nx4d %

;gpz5: n*x3 %

;use gradient files:
;gpnaml: SMSQ10.100
;gpnam2: SMSQ10.100
;gpnam3: SMSQ10.100
;gpnam4: SMSQ10.100
;gpnam5: SMSQ10.100

;preprocessor-flags-start

;$Id: hsqcetgp,v 1.5.2.1 2011/02/24 17:27:48 ber Exp $

Conventional CLIP/CLAP-RESET HSQC experiments have to be modified as given below
to obtain CT versions of the according spectra where all heteronuclear doublet components
are collapsed to singlets irrespective of the 1*C multiplicity.

Listing A.34: Pulse program building block for CT-CLIP/CLAP-RESET HSQC experiments
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"in@=inf1/2"
"in10=inf2/2"
"in20=1n@/2"

"DELTA2=1in0/2"
"DELTA3=1in0/2+p16+d16+2xd0"
"DELTA4=dwx*x2*xcnst4"

"d21=d19-DELTA2-DELTA3-6%p2-2+d0-4*d4-DELTA4-p16-d16"
"d20=d21/4"

i35 CT Pure-Shift Pseudo-Dimension ;;;;;
d20

DELTA2

(p2 phl):fl

DELTA3

d20

pl6:gp3

dle

(p2 ph7):fl

do

pl6:gp4

dle

(pl phl):fl ;BIRDr

d4x2

(center (p2 ph2) (p4 phl):f2 )
d4x2

(ralign (pl phl) (p4 phl):f2 )
pl6:gp5*-1

d16 BLKGRAD

do

(p2 ph7):f1

d20

DELTA4

(p2 phl):fl

d20

go=2 ph31l
dl mc #0 to 2
F1QF( caldel(dO, +in0@) & caldel(d20, -in20) )
F2EA(calgrad(EA), caldel(d10, +inl@) & calph(ph3, +180) & calph(ph6,
+180) & calph(ph31, +180))
exit

ph1l=0
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A.5. Bruker pulse programs

ph2=1

ph3=0 2

ph4=0 0 0 0 2 2 2 2
ph5=0 0 2 2

ph6=0

ph7=2

ph8=0 2

ph31=0 2 022020

;d19: d19 = T (constant time period) = n/J(HH)geminal
;d20: Decremented delay (CT)
;d21: Available AQ for pure-shift FID

The modifications of the SP/COB-CLIP/CLAP-RESET HSQC pulse sequences to obtain the
CT experiments described in appendix A.4 are given below.

Listing A.35: Pulse program building block for CT-SP/COB-CLIP/CLAP-RESET HSQC
experiments

"in@=infl/2"

"inlO@=inf2/2"

"in20=1in0/2"

"DELTA2=1in0/2"
"DELTA3=in0/2+pl6+d16+2xd0"
"DELTA4=dwx2xcnst4"

"d21=d19-DELTA2-DELTA3-7+p22-2+d0-4+d4-DELTA4-p16-d16"
"d20=d21/4"

;1333 CT Pure-Shift Pseudo-Dimension ;;;;;

d20

DELTA2

(p22:sp22 phl):fl

DELTA3

d20

pl6:gp3

d16

(p22:sp22 ph7):fl

do

pl6:gp4

d16

(p22:sp30 phl):fl ;BIRDr

d4x2

(p22:sp22 ph2):fl (p22:sp23 ph2):f2 ;URXx180 BIBOP
d4x2

(p22:sp30 phl):fl (p22:sp23 phl):f2 ;URXx90 BIBOP
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pl6:gp5*-1

d16 BLKGRAD

do

(p22:sp22 ph7):fl

d20

DELTA4

(p22:sp22 phl):fl

d20

go=2 ph31l

dl mc #0 to 2
F1QF( caldel(de®, +in@) & caldel(d20, -in20) )
F2EA(calgrad(EA), caldel(d10, +inl@) & calph(ph3, +180) & calph(ph6,
+180) & calph(ph31l, +180))

exit

ph1=0

ph2=1

ph3=0 2

ph4=0 0 0 0 2 2 2 2
ph5=0 0 2 2

ph6=0

ph7=2

ph8=0 2

ph31=0 2 022020

;d19: d19 = T (constant time period) = n/J(HH)geminal

;d20: Decremented delay (CT)
;d21: Available AQ for pure-shift FID
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BROCODE
BUBI
BURBOP
BUSS
caWURST
CG
CLAP-HSQC
CLIP-HSQC
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DOSY
DQF-COSY
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FID
FRPRMN
FT
FWHM
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GRAPE
HMBC
HMQC
HOBS
HPD

HS

HSQC
HSQMBC
ICEBERG

INEPT
IPAP
L-BFGS
LFP
MRI
NMR
NOE
NOESY
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PP

ppm
PS
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C. Lebenslauf

Nicht verfiigbar in der elektronischen Version.
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