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Abstract

In the area of severe accident management in nuclear reactors, the influence of solid-liquid
phase change processes, especially of solidification, on the heat transport in binary core
melts is an important issue. A necessary requirement for the correct modelling of this
influence is an appropriate description of the phase change processes as well as of the flow
field affected by them.
Existing codes from the nuclear field treat phase change indirectly by assuming a linear
increase of the liquid volume fraction with temperature from zero at the solidus temper-
ature to a value of one at the liquidus temperature. Aside from the arbitrariness of the
linearity assumption and the neglection of compositional effects, an additional shortcoming
of this methodology is that the phase state will in general not adapt instantaneously to
the specifications of the temperature field, but will follow its own dynamics. Furthermore,
in one of the most widely spread approaches, a solution of the Navier-Stokes equations is
circumvented by using correlation-based characteristic velocities.
In this thesis, a simulation model is developed which couples the Navier-Stokes equa-
tions as well as transport equations for the temperature and composition field with an
independent phase change model based on the phase-field method in a thermodynamic
consistent manner. In particular, a phenomenological free energy functional is constructed
and the governing equations for the phase volume fractions and their coupling with the
other transport equations are obtained by using the formalism of irreversible thermody-
namics. A dynamic calculation procedure based on free energy minimization is proposed
for a parameter appearing in the free energy functional, which characterizes the width of
the smooth transition regions of the phase volume fractions between pure phases. The
final set of coupled evolution equations can describe convective binary eutectic alloy solid-
liquid phase change with sharp as well as diffuse interfaces and contains the representation
of elemental materials as a special case. In particular, the model is able to describe the
detailed solidification microstructure if it is applied on sufficiently small length scales.
The model equations have been implemented in the computational fluid dynamics toolbox
OpenFOAM and the code is verified by comparisons with analytical predictions as well as
with neighbouring modelling approaches in suitable scenarios.
A validation is conducted with the help of three experimental test cases treating

• the sharp-interface solidification of the binary eutectic alloy CBr4 − C2Cl6 on a
micrometer length scale

• the sharp-interface melting of elemental gallium under thermal natural convection
on a centimeter length scale

• the mushy-interface solidification of the binary eutectic alloy NH4Cl −H2O under
thermosolutal natural convection on a centimeter length scale.

The three validation cases illustrate that the newly developed model can describe exper-
imental observations successfully and that it can improve numerical simulation results of
existing modelling approaches.
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Kurzfassung

Im Bereich der Schwerunfallbeherrschung in Kernreaktoren stellt der Einfluss fest-flüssiger
Phasenumwandlungen, insbesondere von Verfestigungsprozessen, auf den Wärmetransport
in binären Kernschmelzen einen wichtigen Gesichtspunkt dar. Eine notwendige Bedingung
für die korrekte Modellierung dieses Einflusses besteht in einer angemessenen Beschrei-
bung sowohl der Phasenumwandlungsprozesse als auch des durch letztere beeinträchtigten
Strömungsfeldes.
Bestehende Rechenprogramme aus dem nuklearen Bereich behandeln die Phasenumwand-
lung indirekt durch die Annahme, dass der Volumenbruchteil der flüssigen Phase linear
mit der Temperatur vom Wert null bei der Solidustemperatur zum Wert eins bei der Li-
quidustemperatur zunimmt. Abgesehen von der Beliebigkeit der Linearitätsannahme und
der Vernachlässigung kompositioneller Effekte besteht eine weitere Unzulänglichkeit die-
ser Vorgehensweise darin, dass sich der Phasenzustand im Allgemeinen nicht instantan
an die Vorgaben des Temperaturfeldes anpassen, sondern seiner eigenen Dynamik folgen
wird. Außerdem wird bei einem der am weitesten verbreiteten Ansätze auf eine Lösung
der Navier-Stokes Gleichungen verzichtet und stattdessen werden korrelationsbasierte cha-
rakteristische Geschwindigkeiten verwendet.
In dieser Arbeit wird ein Simulationsmodell entwickelt, welches die Navier-Stokes Glei-
chungen sowie Transportgleichungen für das Temperatur- und Kompositionsfeld auf ther-
modynamisch konsistente Weise mit einem unabhängigen, auf der Phasenfeldmethode ba-
sierenden Phasenumwandlungsmodell koppelt. Insbesondere wird ein phänomenologisches
Funktional für die freie Energie konstruiert und die Evolutionsgleichungen für die Volumen-
bruchteile der verschiedenen Phasen und ihre Kopplung mit den anderen Transportglei-
chungen werden auf der Grundlage der Thermodynamik irreversibler Prozesse abgeleitet.
Für einen im freien Energiefunktional auftauchenden Parameter, welcher die Breite der
glatten Übergangsbereiche der Phasenvolumenbruchteile zwischen den reinen Phasen cha-
rakterisiert, wird eine dynamische Berechnungsprozedur basierend auf einer Minimierung
der freien Energie vorgeschlagen. Der letztlich resultierende Satz gekoppelter Gleichungen
kann fest-flüssige Phasenumwandlungen binärer eutektischer Systeme unter konvektiven
Bedingungen sowohl mit scharfen als auch mit diffusen Phasengrenzen beschreiben und
enthält die Darstellung elementarer Materialien als Spezialfall. Insbesondere kann das Mo-
dell die detaillierte Mikrostruktur der Verfestigung wiedergeben, wenn es auf hinreichend
kleiner Längenskala angewendet wird.
Die Modellgleichungen wurden im strömungsmechanischen Simulationssoftwarepaket Open-
FOAM implementiert und das Rechenprogramm wird durch Vergleiche mit analytischen
Vorhersagen sowie benachbarten Modellierungsansätzen in geeigneten Szenarien verifiziert.
Mit Hilfe dreier experimenteller Testfälle, welche

• die Verfestigung des binären eutektischen Materials CBr4−C2Cl6 mit scharfen Pha-
sengrenzen auf einer Mikrometer-Längenskala

• das Schmelzen elementaren Galliums mit scharfer Phasengrenze bei thermischer na-
türlicher Konvektion auf einer Zentimeter-Längenskala
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• die Verfestigung des binären eutektischen Materials NH4Cl−H2O mit diffuser Pha-
sengrenze bei thermischer und kompositioneller natürlicher Konvektion auf einer
Zentimeter-Längenskala

beschreiben, wird eine Validierung durchgeführt. Die drei Validierungsfälle verdeutlichen,
dass das neu entwickelte Modell experimentelle Beobachtungen erfolgreich beschreiben und
dass es numerische Simulationsergebnisse existierender Modellierungsansätze verbessern
kann.
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1. Introduction

1.1. Motivation

According to the United Nations, the world population continues to grow and will reach a
number of about 9.7 billion by the year 2050 ([1]). Based on this increase and a commonly
expected rise in the worldwide standard of living, energy consumption will also grow. In
[2], the Organization for Economic Cooperation and Development (OECD) expects that
global energy demand will be about 80% higher in 2050 than today. In this context, the
role played by nuclear energy as a non-fossile ressource is estimated to rise steadily. Due
to this increasing global relevance and the serious consequences which accidents in nuclear
power plants may have, it is crucial to intensify efforts in safety research.
This work has been prepared in the context of a core-melting accident in a nuclear power
plant. In a late phase of such a scenario, a liquid melt pool may form in the lower head of
the reactor pressure vessel. It mainly consists of an oxidic UO2−ZrO2 melt, which is cov-
ered by a lighter metal layer ([3]). As a consequence of the decay heat being permanently
produced in the oxidic part, the reactor pressure vessel may fuse and radioactive material
may be released into the containment. A possible strategy to avoid such a scenario is
the in-vessel retention concept (IVR) ([4]). Its basic idea is to provide sufficient external
water cooling to prohibit a vessel failure, thereby making sure that the corium is retained
inside. For a successful IVR design, an exact prediction of the melt pool heat transfer
characteristics is of major importance.
In addition to numerous experimental programs, which have been launched so far inves-
tigating heat transfer in simulant ([5],[6],[7],[8]) as well as prototypic ([9]) melts, it is also
necessary to develop appropriate simulation tools for supporting these investigations. As
the models used in published numerical works ([10],[11],[12],[13]), which will be discussed
in more detail later, are characterized by a greater or lesser degree of simplification, the
task of the present thesis is to improve simulation capabilities by providing a more realistic
modelling approach.

1.2. Objective

This thesis focuses on the oxidic part of the core melt pool and aims at providing a detailed
modelling of heat transfer and the underlying phenomena. First of all, the UO2 − ZrO2

system may be described on the basis of a binary eutectic alloy phase diagram. A generic
representative is shown in Figure 1.1 with the composition variable ξ denoting the mass

1



1. Introduction

Figure 1.1.: Generic phase diagram of a binary eutectic alloy with components A and B

percentage of component B and ξe as well as Te indicating the eutectic composition and
the eutectic temperature, respectively. Note that UO2−ZrO2 does not show a miscibility
gap in the solid at elevated temperatures ([14]). However, this is not a problem as only
minor modifications are necessary in Figure 1.1 to obtain the desired behaviour. Beyond
that, a model based on the generic phase diagram presented above allows for an extended
scope of application.
According to Figure 1.1, the two components A and B mix homogeneously in the liquid
phase l, but they do partly separate in the solid state. As a consequence, two different
solid phases α and β can exist with α being predominantly composed of component A
and β consisting mainly of component B. For non-eutectic compositions and temperatures
above the eutectic temperature, only one of the two solid phases can form as indicated
in the phase diagram in Figure 1.1. Consequently, one of the two components A or B is
preferably built into the solid crystal lattice while the other one accumulates at the liquid
side of the phase boundary.
In contrast to elemental materials with a distinct melting point, solidification occurs here
in general over a temperature interval between the composition-dependent liquidus and
solidus temperatures. While the former are given by the liquidus lines, the latter are de-
fined by the solidus lines and the eutectic temperature Te. Inside this temperature interval,
the liquid phase coexists with one of the two solid phases (α+ l or β+ l in Figure 1.1) and
from a macroscopic point of view, a diffuse interface appears between the entirely liquid
and solid regions, the so-called mushy layer. In a more detailed consideration, however,
it turns out that phase interfaces between the solid and liquid phases are sharp and that
the macroscopic diffuseness is the result of a complex interface morphology in connection
with a limited spatial resolution.
In a core melting accident in a nuclear reactor, the formation of a mushy layer between
the melt and a completely solid region along the water-cooled vessel wall is a possibility.
As solidification proceeds, latent heat is released and one of the components is rejected
and accumulates in the melt as well as in the liquid parts of the mushy layer. This leads
to density gradients and the resulting buoyancy forces as well as friction forces caused
by the mushy layer influence momentum transport. On the other hand, the velocity field
transports heat and solute and therefore retroacts on the solidification process by changing
temperature and the composition-dependent liquidus and solidus temperatures.
The objective of this thesis is the development of a three-dimensional computational fluid
dynamics (CFD) model, which is capable to describe the processes mentioned above as well
as their coupling in a thermodynamically consistent manner. With respect to solidification,
the model shall be based on the phase-field method as an independent and microscopically
well-established description of solid-liquid phase change processes. The idea behind is that
if the spatial resolution of the numerical grid is high enough, the final set of implemented
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governing equations shall be able to provide a detailed description of the sharp interface
solidification microstructure. If, however, the achievable spatial resolution is limited due
to a large volume of interest, the model shall give a volume-averaged characterization in
the sense of a mushy layer as a diffuse interface between the solid and the liquid.
Additionally, the description of elemental material solidification should be contained in
the model as a special case because some experiments in the framework of IVR like BALI
([6]) use water as a core melt simulant.
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2. Review of Existing Modelling
Approaches

2.1. Models for Melt Pool Heat Transfer Simulation

Apart from system codes like MELCOR ([15]), only a limited number of simulation mod-
els have been applied to the description of heat transfer in solidifying core melt pools
and corresponding experiments. Especially with respect to a pointwise resolution of the
temperature distribution, only two different approaches could be found in the literature.
One of them was introduced by C.T. Tran and T.N. Dinh in 2009 and is known as the
effective convectivity model ([10],[11],[12]). The other one has been developed by Voller
et al. ([16],[17],[18],[19]) around 1990, not especially for the nuclear field. It is a real CFD
approach and has been applied to the description of melt pool heat transfer recently in a
publication by Zhang et al. from the year 2014 ([13]).
A third method will also be mentioned in this section although it has never been actu-
ally used in the framework of IVR. It has been developed by Bennon at al. ([20],[21])
at about the same time as Voller developed his model. In contrast to the latter, it also
regards effects related to the composition field and therefore exhibits the potential of a
more detailed description of binary alloy solidification.

2.1.1. The Effective Convectivity Model

In the effective convectivity model, the solution of a full set of coupled Navier-Stokes
and heat transport equations is circumvented by the use of characteristic velocities for
heat transport. As a starting point, the authors in [10] take the empirical heat transfer
correlations by Steinberner and Reineke ([22])

Nuup = 0.345Ra0.233 (2.1)

Nuside = 0.85Ra0.19 (2.2)

Nudown = 1.389Ra0.095 (2.3)

with the internal Rayleigh number Ra and the upwards, sidewards and downwards Nusselt
numbers Nuup, Nuside and Nudown. Based on this, characteristic velocities for convective
heat transport in a rectangular pool of height H and width W with cooled bounding
walls and an internal heat source are derived. The derivation assumes the existence of
a stratified region with height Hdown at the bottom and a mixed region with height Hup

5



2. Review of Existing Modelling Approaches

above and it is demonstrated in [10] that Hup and Hdown can be expressed by the Nusselt
numbers and the total height H of the pool according to

Hup =
H ·Nuup

Nuup +Nuside +Nudown
(2.4)

Hdown = H −Hup. (2.5)

The final result for the characteristic velocities describing convective heat transport to the
upper, lateral and lower walls of the pool is given by

Uup =
λ

ρcH
(Nuup −

H

Hup
) (2.6)

Uside =
λ

ρcH
(Nuside −

2H

W
) (2.7)

Udown =
λ

ρcH
(Nudown −

H

Hdown
) (2.8)

with heat conductivity λ , mass density ρ and the specific heat capacity c. The derivation
of (2.6)-(2.8) is based on energy balance considerations of the stratified and mixed fluid
layers and the expressions subtracted from the Nusselt numbers in the brackets originate
in the contribution of heat conduction to the total heat transfer. For details, the reader is
refered to [10].
The only transport equation which is solved is that for heat, given by

∂

∂t
(ρcT ) = ~∇ · (λ~∇T )− ∂

∂t
(ρLΦ)− ~∇ · (ρcTΦ~u) +QV (2.9)

with the latent heat per mass L, temperature T , the velocity field ~u and an internal heat
source QV . It is important to note here that the convection term ~∇ · (ρcTΦ~u) is treated
as an explicit source term on the right hand side of the equation and that it is evaluated
by using the characteristic velocities (2.6)-(2.8). Another remarkable aspect is that an
additional factor Φ appears in it, which denotes the liquid volume fraction and therefore
damps the characteristic velocities to zero in the solid. Finally, the phase change process
is considered by the expression − ∂

∂t(ρLΦ) accounting for latent heat production. However,
a closure relation is needed as the behaviour of the liquid volume fraction is not known in
the mushy layer. In the effective convectivity model, Φ is simply assumed to be a linear
function of temperature, given by

Φ =
T − TS
TL − TS

(2.10)

with the solidus and liquidus temperatures TS and TL.
As only a simple diffusion equation has to be solved, this model is very efficient and
performs quite well despite its simplicity ([11]). But nevertheless, there are discrepancies
with experimental measurements and therefore possibilities of improvement. A comparison
with experimental data from the COPO experiment ([5]) shows a difference of 30% in the
upward heat transfer coefficient ([11]). The results of the model depend on the quality of
the underlying heat transfer correlations and it cannot be applied without any preliminary
informations. Additionally, the assumption of a linear variation of the liquid fraction with
temperature in the mushy layer is quite arbitrary. And last but not least, an effective
description like the effective convectivity model is not very satisfying from a fundamental
perspective as we know that the flow is actually governed by the Navier-Stokes equations.
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2.1.2. Voller’s Model

The second approach, which is capable to convey a more complete picture, is the method
developed by Voller. In contrast to the effective convectivity model, a full set of Navier-
Stokes equations is solved here together with an enthalpy conservation equation. The set
of governing equations is given in [16],[17] and [18] by

~∇ · ~u = 0 (2.11)

∂(ρ~u)

∂t
+ ~∇ · (ρ~u⊗ ~u) = ~∇ · (η~∇~u)− ~∇p+ ~SD + ~SB (2.12)

∂(ρh)

∂t
+ ~∇ · (ρh~u) = ~∇ · (λ

c
~∇h) + SH . (2.13)

In the system of equations (2.11)-(2.13), η stands for the dynamic viscosity, p describes
pressure, h = cT is the so-called sensible enthalpy per mass and ~SD, ~SB and SH are source
terms while all other variables have been introduced before.
The term ~SD is there for damping velocity to zero in the solid. Especially for binary alloy
solidification with mushy layers, the latter can be considered to be a porous medium in
which the flow is governed by Darcy’s law ([23]). In this case, ~SD may be expressed as

~SD = −K0
(1− Φ)2

Φ3
~u (2.14)

with a material-dependent porosity parameter K0. In practice, a small positive constant
is added to Φ3 in the denominator for avoiding division by zero in the solid.
The second source term in the momentum equation ~SB accounts for buoyancy effects in
the framework of the Boussinesq approximation and is given by

~SB = ρ~gβT
h− href

c
(2.15)

with the gravitational acceleration ~g, the linear thermal expansion coefficient βT and a
reference sensible enthalpy per mass href .
The source term SH in the enthalpy equation represents the influence of phase change. It
is derived in [18] by regarding separate transport equations for the solid and liquid phase
enthalpies per mass Hs and Hl

∂

∂t
(ρ(1− Φ)Hs) + ~∇ · (ρ(1− Φ)Hs~us) =~∇ · [(1− Φ)λs~∇T ] + [interphase terms] (2.16)

∂

∂t
(ρΦHl) + ~∇ · (ρΦHl~ul) = ~∇ · [Φλl~∇T ]− [interphase terms] (2.17)

with the solid and liquid phase velocities ~us and ~ul as well as the solid and liquid phase
heat conductivities λs and λl. Note that the differential formulations in (2.16) and (2.17)
arise from integral formulations with volume intergrals

´
dVk and surface integrals

´
dAk

over the volume and surface of the corresponding phase k. The factors of Φ and 1 − Φ
in equations (2.16) and (2.17) result from the assumptions dVl = ΦdV , dVs = (1− Φ)dV ,
dAl = ΦdA and dAs = (1 − Φ)dA. The solid and liquid phase enthalpies per mass are
defined in [18] by

Hs = cT = h (2.18)

Hl = cT+L = h+ L (2.19)

and after an addition of equations (2.16) and (2.17), one gets

∂

∂t
(ρh) + ~∇ · (ρ~uh) = ~∇ · (λ~∇T )− ∂

∂t
(ρLΦ)− ~∇ · (ρLΦ~ul). (2.20)
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The velocity ~u and heat conductivity λ in (2.20) are defined as mixture quantities according
to

~u = (1− Φ)~us + Φ~ul (2.21)

λ = (1− Φ)λs + Φλl. (2.22)

Assuming the solid phase to be rigid (~us = ~0), one gets ~u = Φ~ul and due to

~∇ · (ρLΦ~ul) = ~∇ · (ρL~u) = ρL(~∇ · ~u) = 0, (2.23)

(2.20) is transformed to

∂

∂t
(ρh) + ~∇ · (ρ~uh) = ~∇ · (λ

c
~∇h)− ∂

∂t
(ρLΦ). (2.24)

A comparison with equation (2.13) then reveals the source term SH to be

SH = − ∂

∂t
(ρLΦ). (2.25)

Despite the progress concerning the treatment of mass- and momentum conservation, it
is important to note that the phase change process itself is treated here on the same level
as in the effective convectivity model. In analogy to (2.10), the liquid volume fraction Φ
is simply calculated according to

Φ =
T − TS
TL − TS

(2.26)

as a linear function of temperature and the corresponding latent heat production is consid-
ered by a source term − ∂

∂t(ρLΦ). Actually, it has been the other way around and Tran and
Dinh were inspired by Voller’s enthalpy methodology when they developed their effective
convectivity model. I decided for a different order here as I would like to present existing
models in a hierarchy of rising complexity.
The model presented in this subsection has been applied recently by Zhang et al.([13]) in
connection with a standard k − ε turbulence model to simulate the LIVE L4 experiment.
In LIVE-L4, a 20−80 mol% NaNO3−KNO3 mixture has been used as a corium simulant
and has been heated in a hemispherical vessel with an internal diameter of 1m ([24]). In a
first phase, 18kW of internal electrical heating power have been applied for several hours
until a steady-state had established. At the same time, external water cooling induced
solidification along the lateral vessel walls.
In [13], this first phase has been simulated by adding an internal heat source SQ on the
right-hand side of equation (2.13) to account for the electrical heating. In particular,
the authors compared simulations with and without consideration of phase change, i.e.
with and without the source terms ~SD and SH in equations (2.12) and (2.13). By com-
paring maximum flow velocities, temperature profiles along the pool centerline and heat
fluxes along the vessel wall at steady state with experimental measurements, Zhang et
al. conclude that the phase change process has a significant influence on heat transfer
characteristics. Table 2.1 presents selected quantities to support this conclusion.
However, the differences between measurements and the calculations including phase
change are still substantial for some quantities. The disagreement in the maximum veloc-
ity is large and the average Nusselt number is about 20% higher than the measured value.
Due to the pronounced impact of the phase change process, it is possible that a more real-
istic description of it will lead to further improvements in numerical prediction capabilities.
As mentioned already in the last subsection, the assumption (2.26) of a linear variation
of liquid volume fraction in the mushy layer is arbitrary. Its real behaviour will surely be
non-linear and besides the temperature dependence, the compostion field will also have an
influence on Φ.
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without phase
change modelling

with phase
change modelling

LIVE-L4

maximum flow velocity 4.38 cms 2.73 cms 0.3− 0.6 cms
average Nusselt number 303.5 276.1 229.6

Table 2.1.: Comparison between the simulations of Zhang et al. and LIVE-L4 experiment
for selected quantities at steady state

2.1.3. Bennon’s Model

The third approach presented here is the model of Bennon. Although the derivation in
[20] starts from a very general multiphase picture by regarding conservation equations for
mass, momentum, enthalpy and composition for an arbitrary number of individual phases
separately, the final set of governing equations presented in [21] for incompressible binary
alloy solidification is similar to Voller’s equations (2.11)-(2.13):

~∇ · ~u = 0 (2.27)

∂(ρ~u)

∂t
+ ~∇ · (ρ~u⊗ ~u) = ~∇ · (ηl~∇~u)−K0

(1− Φ)2

Φ3
~u (2.28)

− ~∇p+ ρ~g{βT (T − Te) + βξ(ξl − ξe)}
∂(ρh)

∂t
+ ~∇ · (ρh~u) = ~∇ · (λ~∇T )− ~∇ · [ρ(hl − h)~u] (2.29)

∂(ρξ)

∂t
+ ~∇ · (ρξ~u) = ~∇ · (ρΦDl

~∇ξl)− ~∇ · [ρ(ξl − ξ)~u]. (2.30)

Note that the index l in (2.27)-(2.30) marks quantities related to the liquid phase and
that velocity ~u, enthalpy per mass h and composition ξ must be interpreted as liquid-solid
mixture variables according to

~u = Φ~ul + (1− Φ) ~us = Φ~ul (2.31)

h = Φhl + (1− Φ)hs (2.32)

ξ = Φξl + (1− Φ)ξs. (2.33)

As a rigid solid is assumed here as well, the solid velocity ~us is set to zero in (2.31).
The main difference to the model of Voller is that the composition field is considered
here as an additional state variable. Its evolution equation (2.30) contains the usual un-
steady, convective and diffusive contributions whereupon diffusion is explicitly restricted
to the liquid phase with the liquid diffusion constant Dl. Additionally, the expression
−~∇ · [ρ(ξl − ξ)~u] arises on the right-hand side of (2.30) to account for species flux due to
relative phase motion. Consideration of the composition field allows for a more detailed
description of buoyancy effects in the momentum conservation equation (2.28). In com-
parison with Voller’s equation (2.12), the additional term ρ~gβξ(ξl−ξe) describes buoyancy
due to compositional gradients in the liquid with the linear compositional expansion coef-
ficient βξ and the eutectic composition ξe.
Except for the consideration of compositional influences, the physical content of the mod-
els by Bennon and Voller is the same. Although the enthalpy conservation equations look
differently at a first glance, (2.29) can be transformed to a form equivalent to Voller’s
equation (2.13). At first, we realize that Bennon et al. give the solid and liquid phase
enthalpies per mass in [21] by

hs = csT (2.34)

hl = clT + (cs − cl)Te + L (2.35)
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with the eutectic temperature Te and the constant solid and liquid phase specific heats cs
and cl. We have to be aware then that Voller’s model is formulated for a phase-independent
specific heat c = cs = cl and that the sensible enthalpy per mass used there corresponds
to hs here. By using (2.32), (2.34) and (2.35) in equation (2.29), setting cs = cl = c and
rearranging for hs, we find

∂(ρhs)

∂t
+ ~∇ · (ρhs~u) = ~∇ · (λ

c
~∇hs)−

∂

∂t
(ρΦL). (2.36)

This is the same as Voller’s equation (2.13) for the sensible enthalpy per mass.
Note that by using (2.32), (2.34) and (2.35), the temperature T appearing on the right-
hand side in equation (2.29) can be evaluated by

T =
h− Φ(cs − cl)Te − ΦL

Φcl + (1− Φ)cs
(2.37)

and hl can then be calculated according to (2.35).
However, there remain two unknown quantities in equations (2.27)-(2.30): the liquid com-
position ξl and the liquid volume fraction Φ. They are determined by making use of the
liquidus and solidus lines ξL(T ) and ξS(T ) in the equilibrium phase diagram of the binary
alloy.
Under the assumption of a local composition equilibrium, the liquid and solid compositions
ξl and ξs are determined by setting

ξl = ξL(T ) (2.38)

ξs = ξS(T ), (2.39)

i.e. they are set to their equilibrium values from the phase diagram for a given temperature
T .
This fixes the value of the so-far unknown ξl and using (2.33), the liquid volume fraction
and therefore the phase change process is captured according to

Φ = Φ(ξ, T ) =
ξ − ξS(T )

ξL(T )− ξS(T )
. (2.40)

The phase state is now determined by composition ξ as well as temperature T and is not
a linear function of temperature anymore, but also regards compositional effects like e.g.
solute rejection.
To the best of my knowledge, the method by Bennon presented in this subsection is the
most complete approach in the literature to describe binary alloy solidifiction with convec-
tion on macroscopic length scales. Nevertheless, there remain some problematic aspects
due to the treatment of phase change and its coupling with the other transport equa-
tions. In general, the process of phase change follows its own dynamics and therefore, the
phase state does not adapt to the current values of ξ and T instantaneously. Furthermore,
the coupling of the Navier-Stokes, heat and composition transport equations with phase
change should respect the second law of thermodynamics. For the Bennon model, it is not
clear that the entropy in an isolated volume of interest is non-decreasing and consequently,
the system of equations (2.27)-(2.30) may be thermodynamically inconsistent.
The model developed in this work aims at closing these remaining gaps by coupling the
Navier-Stokes, heat and composition transport equations to an independent and micro-
scopically well-established phase change model in a thermodynamic consistent manner.
As mentioned before, the Bennon model has not been applied so far in the nuclear field. It
has been validated in [25] with an experiment investigating the solidification of an aqueous
ammonium chloride solution from a cooled vertical wall. Later on, the same experiment
will be used as one of three test cases for a validation of the newly developed model and
also for a direct performance comparison with Bennon’s model.
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2.2. Phase-Field Modelling of Solid-Liquid Phase Change

Phase transitions between the solid and liquid state will be described in this work by
means of the phase-field method. It has emerged in the 1980s as an alternative to the
explicit tracking of sharp interfaces in phase change dynamics and makes use of a smooth
phase indicator function instead. Originally developed for solid-liquid phase transitions
of elemental materials with static liquid phases, the method has been refined successively.
Important steps include the investigation of its relationship to classical sharp interface
modelling, assurance of thermodynamic consistency, coupling of phase change with con-
vection and an extension to more than two possible phases. Due to the smoothness of
the phase indicator function, the phase-field method necessarily produces interfaces with
a certain degree of diffusivity. It is therefore suitable to describe solid-liquid phase change
with mushy layers as needed for the description of binary eutectic alloys (see Figure 1.1).
Additionally, the phase indicator function is treated on an equal footing with temperature
and other state variables and therefore, the phase-field method permits an independent
description of the phase change process. In a short summary, I will follow the different
steps of development mentioned before by means of an exemplary model to provide an
overview of the method and its state of the art.

2.2.1. Origin and Basic Ideas of the Phase-Field Method

We regard a solid-liquid phase change process of an elemental material in a volume V ∈ R3.
Commonly, it is assumed that the material properties are the same in both phases and
that there is no fluid flow in the liquid. Classical sharp interface modelling of this situation
([26]) consists of solving separate heat conduction equations in the two possible phases in
compliance with a certain boundary condition at the moving phase interface Γ(t)

ρc
∂T

∂t
= λ~∇2T (2.41)

ρLun = λ(~∇T |s − ~∇T |l) · ~n at Γ(t) (2.42)

with density ρ, latent heat per mass L, the normal interface velocity un and heat con-
ductivity λ. The vector ~n in (2.42) denotes the unit normal vector at each point on Γ(t)
pointing from the solid to the liquid and the temperature gradients ~∇T |s and ~∇T |l are
calculated from the solid and the liquid side, respectively. Condition (2.42) expresses the
conservation of latent heat produced by the moving phase boundary, i.e. it must be bal-
anced by the heat fluxes to the solid and the liquid side. The difficulty originates from
the fact that the phase boundary Γ(t), on which the boundary condition (2.42) has to be
applied, is itself a part of the solution and is not known a priori.
In the most general situation including curvature and kinetic effects, it is given by ([27])

Γ(t) = {~x ∈ V | T (~x, t) = Tm −
σκ(~x, t)Tm

ρL
− βkun} (2.43)

with surface tension σ, interface curvature κ(~x, t) and the linear kinetic coefficient βk.
A solution of (2.41), (2.42) and (2.43) necessitates an explicit tracking of the phase bound-
ary which may cause numerical difficulties. In particular, topology changes like e.g. coa-
lescence and applications in three spatial dimensions can lead to problems ([28]).
A possible path to an alternative description starts from the observation that (2.41) and
(2.42) may be combined to the single equation ([29])

ρc
∂T

∂t
= λ~∇2T − ρL∂Θ(~x, t)

∂t
, (2.44)
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where a step function

Θ(~x, t) =

{
1 (~x, t) ∈ liquid

0 (~x, t) ∈ solid
(2.45)

has been defined to identify the location of latent heat release. However, an evaluation of
(2.43) would still be necessary to determine Θ(~x, t).
The essential idea of the phase-field method is to approximate Θ(~x, t) by a smooth, sig-
moid phase indicator function ϕ(~x, t) (see Figure 2.1) and to replace interface tracking
via equation (2.43) by an additional partial differential equation for ϕ(~x, t). A single heat
transport equation

ρc
∂T

∂t
= λ~∇2T − ρL∂ϕ(~x, t)

∂t
(2.46)

is then solved inside the whole volume V and the additional governing equation for the liq-
uid phase indicator function ϕ(~x, t) is derived from thermodynamic principles. Note that
the continuity of the phase indicator function introduces an artificial diffusivity which has
no physical correspondence.

Figure 2.1.: Smooth phase indicator function around a sharp phase boundary Γ

The main ideas about the evolution of ϕ(~x, t) as a non-conserved order parameter date
back to the 1970s ([30],[31]). Allen and Cahn investigated in [31] a diffuse interface system
in which the phase indicator function ϕ(~x, t) is the only state variable. Based on a phe-
nomenological free energy functional F [ϕ] of the Ginzburg-Landau type, they proposed
the governing equation

∂ϕ(~x, t)

∂t
= −KδF [ϕ]

δϕ
, K > 0, (2.47)

with a positive constant K and the first functional derivative δ
δϕ . The reason for this

choice is that it assures thermodynamic consistency of the phase change process, i.e. free
energy evolves towards a minimum value:

dF [ϕ]

dt
=

ˆ
V

δF [ϕ]

δϕ

∂ϕ

∂t
dV = −K

ˆ
V

(
δF [ϕ]

δϕ
)2dV ≤ 0. (2.48)

In thermodynamic equilibrium, this minimum value is adopted by F and the rate of phase
change is zero:

δF [ϕ]

δϕ
= 0 → ∂ϕ(~x, t)

∂t
= 0. (2.49)

In a non-equilibrium state, the rate of phase change is therefore assumed according to
(2.47) to be proportional to the deviation from equilibrium. If the phase change dynamics
is not too fast, this is surely a reasonable assumption.
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Based on an appropriate free energy functional, the first phase-field models combined
equation (2.47) with (2.46) to approximate the sharp interface problem (2.41)-(2.43). Due
to the fact that temperature T represents a second state variable next to ϕ(~x, t), these
models are not necessarily thermodynamically consistent as changes in temperature also
influence the temporal change of free energy.
Examples of these early phase-field models were published by Fix in 1983 ([32]), Collins
and Levine in 1985 ([33]), Langer in 1986 ([34]) and also by Kobayashi in 1993 and 1994
([28],[35]). A representative free energy functional is given by

F [ϕ, T ] =

ˆ
V

(fsurface + fbulk)dV (2.50)

fsurface = a1(~∇ϕ)2 + a2g(ϕ) (2.51)

fbulk = h(ϕ)ρL
Tm − T
Tm

, (2.52)

where the free energy density is decomposed into a surface part fsurface and a bulk part
fbulk, a1 and a2 are positive constants, g(ϕ) is a symmetric double well function und h(ϕ)
is an interpolation function with h(0) = 0 and h(1) = 1.
The task of fsurface is to represent the free energy of phase boundaries. A popular choice
for the double well g(ϕ) is the quartic function

g(ϕ) = ϕ2(1− ϕ)2, (2.53)

which is shown in Figure 2.2. The expression a2g(ϕ) in fsurface leads to a separation of
phases and therefore to a tendency to develop sharp phase boundaries because mixture
states with 0 < ϕ < 1 increase the free energy. Moreover, it is required that the transi-

Figure 2.2.: Symmetric double well g(ϕ)

tions of ϕ between 0 and 1 are smooth. Therefore, a certain amount of phase mixing is
needed being generated by the expression a1(~∇ϕ)2 in fsurface. It produces large positive

contributions to the free energy if interfaces are sharp and the corresponding gradients ~∇ϕ
are steep. The resulting equilibrium profile of the phase indicator function around a sharp
interface at T = Tm represents a balance between these two opposing tendencies of phase
separation and phase mixing. Using (2.50)-(2.53), one finds

δF [ϕ, Tm]

δϕ
= 0 ↔ ϕ(x) =

1

2
(1 + tanh(

x

2δ
)) ∧ a1 = a2δ

2. (2.54)

Note that according to [36] and by using (2.50), the first variational derivative is calculated
according to

δF [ϕ, T ]

δϕ
= −~∇ · {

∂(fsurface + fbulk)

∂~∇ϕ
}+

∂(fsurface + fbulk)

∂ϕ
. (2.55)
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2. Review of Existing Modelling Approaches

In (2.54), x represents a spatial coordinate perpendicular to the sharp phase boundary and
δ is a free input parameter governing the width of the transition region between ϕ = 0 and
ϕ = 1. The equilibrium profile from (2.54) is shown in Figure 2.3. In a further step, the

Figure 2.3.: Tangens hyperbolicus equilibrium profile of the phase indicator function

constant a2 is expressed by surface tension σ as a measurable physical quantity. Surface
tension can be defined as the excess free energy of the phase surface divided by the surface
area. Consequently, one may calculate for an equilibrium sharp interface with area A at
T = Tm using (2.54) as well as the free energy model (2.50) - (2.53):

σ =
F [ϕ, Tm]

A
=

1

3
a2δ ↔ a2 =

3σ

δ
. (2.56)

The bulk free energy density fbulk must be interpreted as a superposition of free energy
densities of the solid and the liquid phases:

fbulk = h(ϕ)fl(T ) + (1− h(ϕ))fs(T ) = fs(T ) + h(ϕ)(fl(T )− fs(T )). (2.57)

By expanding the difference fl(T ) − fs(T ) around the melting point Tm and taking the
solid as a reference state ([37])

fl(T )− fs(T ) = ρL
Tm − T
Tm

(2.58)

fs(T ) = 0, (2.59)

expression (2.52) is obtained. As indicated in Figure 2.4, the effect of fbulk is to lift or to
lower the minimum ϕ = 1 of the symmetric double well depending on temperature, which
leads to a preference of the solid (T < Tm) or the liquid (T > Tm) state. The minimum
ϕ = 0 representing the solid stays unaffected due to h(0) = 0.
Based on (2.46), (2.47) and the preceding argumentation, the equations of the phase-field
model are

ρc
∂T

∂t
= λ~∇2T − ρL∂ϕ(~x, t)

∂t
(2.60)

K−1∂ϕ(~x, t)

∂t
= 6σδ~∇2ϕ− 6σ

δ
ϕ(1− ϕ)(1− 2ϕ)− h′(ϕ)ρL

Tm − T
Tm

. (2.61)

In the earliest investigations ([32],[33],[34]), which deal with analytical studies of the phase-
field equations for the most part, the choice h(ϕ) = ϕ was common. The first numerical
simulations were published by Kobayashi ([28],[35]). He proposed to use a more general
interpolation function h(ϕ). According to his argumentation, the simple choice h(ϕ) = ϕ
leads to h′(ϕ) = 1 in equation (2.61). Therefore, a temperature change somewhere in a

14
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Figure 2.4.: Qualitative effect of fbulk on the symmetric double well

bulk phase with ϕ = 0 or ϕ = 1 leads to a change of the phase indicator function at
that position: ∂ϕ

∂t 6= 0. Consequently, the term ρL∂ϕ∂t in the temperature equation (2.60)
generates an unphysical release of latent heat in the bulk. In contrast to that, usage of

h(ϕ) = 3ϕ2 − 2ϕ3 (2.62)

induces
h′(ϕ) = 6ϕ(1− ϕ) (2.63)

and the problem of latent heat release in the bulk is cured. Based on an appropriate choice
of the constant K and the introduction of anisotropy in the gradient term of fsurface,
Kobayashi was able to qualitatively reproduce a number of realistic 2D and 3D dendritic
crystal patterns. In particular, he replaced (see [28])

a1 → a1n(θ) = a1(1 + q cos(j(θ − θ0))) (2.64)

in (2.51) with θ being the angle between ~∇ϕ and the x-direction. This led him to a
modified phase-field equation, which can be obtained in two-dimensional form from (2.61)
by the modification

6σδ~∇2ϕ → 6σδ~∇ · {n(θ)~∇ϕ} − 3σδ{ ∂
∂x

(
∂n

∂θ

∂ϕ

∂y
)− ∂

∂y
(
∂n

∂θ

∂ϕ

∂x
)}. (2.65)

Figure 2.5 shows a reproduction of one of Kobayashi’s 2D solidification patterns, which
I obtained with an implementation of (2.60) and (2.61) utilizing the modification (2.65).
The material parameters were chosen as in [28] with the anisotropy parameters q = 0.04,
j = 6 and θ0 = 0.5π.
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2. Review of Existing Modelling Approaches

Figure 2.5.: Anisotropic solidification pattern obtained by the phase-field method

2.2.2. Relationship to Classical Sharp Interface Modelling

As mentioned already before, early publications about the phase-field method were mostly
of an analytical nature. Besides the search for analytical solutions, investigations of the
relationship between the system of equations (2.60)-(2.61) and the sharp interface model
(2.41)-(2.43) were a popular topic. One can expect that a connection with the sharp
interface model may be possible in the limit δ → 0 as the free input parameter δ determines
the width of the continuous transition region of ϕ and due to the convergence of the tangens
hyperbolicus profile against a sharp interface step function Θ(x):

lim
δ→0
{1

2
(1 + tanh(

x

2δ
))} = Θ(x). (2.66)

Important contributions come here especially from Caginalp ([38],[39],[29]), who amongst
others performed a so-called sharp interface analysis by investigating the limit δ → 0 of
equations (2.60) and (2.61). The basic idea of this procedure is to decompose the volume
of interest V into different regions.
The inner region is a thin layer around the sharp interface Γ(t) with a width proportional
to δ, in which the phase-field ϕ performs its smooth transition from zero to one. In a
first step, a local set of curvilinear coordinates (r, s) is introduced in the neighbourhood of
Γ. For simplicity, we restrict our considerations here to two dimensions. The coordinate
r(~x, t) measures the signed distance of a point ~x at time t to the sharp phase boundary Γ
with r > 0 in the liquid and r < 0 in the solid. The second coordinate s(~x, t) represents
the corresponding arclength from some fixed point. Furthermore, the stretched coordinate
z = r

δ is introduced to permit a more convenient description of the spatial variations
of the phase-field and the temperature field in the inner region. A given value z = z0

corresponds to a normal distance r = z0δ to Γ and therefore approaches the sharp interface
if δ is decreased. The behaviour of T and ϕ in the inner region is expressed by the inner
expansions

T (z, s, t, δ) =T (0)(z, s, t)+δ · T (1)(z, s, t) + ... (2.67)

ϕ(z, s, t, δ) =ϕ(0)(z, s, t)+δ · ϕ(1)(z, s, t) + ... (2.68)

The outer region is defined to be located away from any interface in the bulk phases. The
usual coordinate vector ~x can be used here to describe the spatial dependence of T and
ϕ and the broadening of the actually sharp interface induced by a small, but finite value
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of δ is considered to represent a small perturbation. Consequently, the outer expansion is
given by

T̃ (~x, t, δ) =T̃ (0)(~x, t)+δ · T̃ (1)(~x, t) + ... (2.69)

ϕ̃(~x, t, δ) =ϕ̃(0)(~x, t)+δ · ϕ̃(1)(~x, t) + ... (2.70)

Note that the quantities on the right hand side of (2.69) and (2.70) may adopt a non-
smooth behaviour at the sharp interface Γ. The limiting values of the outer variables as
Γ is approached from r > 0 or r < 0 are denoted by T̃ |Γ± and ϕ̃|Γ± , respectively.
The intermediate region is the domain where the inner and outer regions overlap and
where the inner and outer expansions must both be valid. Consequently, the inner and
outer expansions have to be matched order by order in δ in the intermediate region to
achieve consistency. With the unit normal vector ~n on Γ pointing to the liquid side of the
interface, this leads to the following matching conditions:

lim
z→±∞

ϕ(0) = ϕ̃(0)|Γ± (2.71)

lim
z→±∞

T (0) = T̃ (0)|Γ± (2.72)

lim
z→±∞

∂T (1)

∂z
= ~∇T̃ (0)|Γ± · ~n. (2.73)

While (2.71) and (2.72) obviously result from a comparison of the order O(δ0) in the inner
and outer expansions, relation (2.73) following from the order O(δ1) is not immediately
clear. One has to be aware that T̃ (i)(~x, t) in the outer expansion can be expressed as a
Taylor series

T̃ (i)(~x, t) = T̃ (i)|Γ± + [~∇T̃ (i)|Γ± · ~n] zδ + ..., (2.74)

which results in the following order O(δ1) contribution to the outer expansion:

[~∇T̃ (0)|Γ± · ~n] z + T̃ (1)|Γ± . (2.75)

Differentiation with respect to z and equating the resulting expression with ∂T (1)(z,s,t)
∂z from

the inner expansion in the appropriate limit leads then to (2.73).
Applying Caginalp’s recipe to our exemplary model, we insert the outer expansions (2.69)
and (2.70) into the set of equations (2.60) and (2.61) and find

ϕ̃(0) = 0 ∨ ϕ̃(0) = 1 (2.76)

ϕ̃(i) = 0 for i > 0 (2.77)

ρc
∂T̃ (i)

∂t
= λ~∇2T̃ (i) for i ≥ 0. (2.78)

This means that away from interfaces, there are bulk phases and the temperature field
is governed by usual heat conduction equation in accordance with equation (2.41) from
sharp interface modelling.
With respect to the inner solutions, we have to notice that the differential operators ~∇2

and ∂
∂t must be expressed by the inner variables s and z ([29]). The order O(δ0) using the

matching conditions (2.71) and (2.72) gives

ϕ(0)(z, s, t) = ϕ(0)(z) =
1

2
(1 + tanh(

z

2
)) (2.79)

T (0)(z, s, t) = T̃ (0) = const = T̃ (0)|Γ± . (2.80)

Consequently, the leading order phase-field performs a tangens hyperbolicus transition in
the inner region between the solid and the liquid and the temperature field is continuous
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at the sharp interface Γ as T̃ (0)|Γ+ = T̃ (0)|Γ− = T̃ (0).
By utilizing the third matching condition (2.73), the order O(δ) of the temperature equa-
tion leads to

λ(~∇T̃ (0)|Γ− − ~∇T̃ (0)|Γ+) · ~n = −ρL∂r
∂t
. (2.81)

Noting that ∂r
∂t = −un with the normal velocity of the interface un, it is easy to confirm

that (2.81) represents the same boundary condition for the outer temperature field as we
know from equation (2.42) for sharp interface modelling.
Finally, with the interface curvature κ = ~∇2r ([29]), the order O(δ) of the phase-field
equation reproduces condition (2.43) for the interface temperature

T̃ (0) = Tm −
σκ(~x, t)Tm

ρL
− βkun, (2.82)

if the constant K is chosen according to

K−1 =
6Lρβkδ

Tm
. (2.83)

Consequently, using (2.83) and choosing δ sufficiently small, the set of equations (2.60)
and (2.61) is really equivalent to the sharp interface problem.
But what does sufficiently small mean? According to the preceding sharp interface analysis,
it means that δ must be smaller than the smallest physical length scale of interest. The
latter is given by the capillary length ([40])

lcap =
cσTm
ρL2

. (2.84)

The typical order of magnitude of the capillary length is about 10−10m (take for example
the material properties of usual water). At the same time, the smooth transition of ϕ must
be resolved by the numerical grid resulting in a required grid spacing in the same range of
10−10m or even smaller. As typical solidification patterns have characteristic lengths in the
micrometer range and above, it becomes immediately clear that quantitative phase-field
simulations are impossible on the basis of a sharp interface analysis.
In 1996, Karma and Rappel ([41],[42],[43]) found a remedy to this severe limitation con-
cerning δ and the grid spacing. In their thin interface analysis, they assumed δ to be
considerably smaller than the width of the diffusion boundary layer ldiff of the temper-
ature field, but it did not have to be smaller than the capillary length lcap. Using the
normal velocity un of the phase boundary, ldiff may be expressed as

ldiff =
λ

ρcun
. (2.85)

In order to determine ldiff in practical situations, the normal velocity un can usually be
extracted from experimental data at hand. If this is not possible, its value can be estimated
depending on material properties and undercooling conditions as proposed in [44]. The
considered set of generalized equations is given by

ρc
∂T

∂t
= λ~∇2T − ρL∂w(ϕ(~x, t))

∂t
(2.86)

K−1∂ϕ(~x, t)

∂t
= 2aδ~∇2ϕ− a

δ
g′(ϕ)− h′(ϕ)ρL

Tm − T
Tm

, (2.87)

where the symmetric double well g(ϕ) as well as the interpolation functions w(ϕ) and h(ϕ)
remain unspecified. Note that the value of the constant a is determined by some special
choice for g(ϕ).

18



2. Review of Existing Modelling Approaches

By expressing all spatial coordinates in units of ldiff = λ
ρcun

and time in units of τdiff =
l2diffρc

λ , the equations are non-dimensionalized and the small quantity

p =
δ

ldiff
<< 1 (2.88)

appears. The inner and outer expansions are then expressed as power series in the small
parameter p instead of δ and a procedure similar to the sharp interface analysis presented
before is applied.
Karma and Rappel’s main result is that even under the condition lcap < δ << ldiff , the
set of equations (2.86) and (2.87) can be mapped onto the sharp interface problem (2.41)-
(2.43) if the functions g(ϕ), w(ϕ) and h(ϕ) obey certain symmetries. Adapted to our
description with ϕ varying between zero and one, these symmetries are

g(1− ϕ) = g(ϕ) (2.89)

w(1− ϕ) = 1− w(ϕ) (2.90)

h(1− ϕ) = 1− h(ϕ). (2.91)

It is important to note here that in general, the O(p1) equation for ϕ produces corrections

in the interface temperature (2.82) to the curvature undercooling term σκ(~x,t)Tm
ρL as well

as to the kinetic undercooling term βkun. Especially the former leads to a non-resolvable
discrepancy with the sharp interface problem. If, however, conditions (2.89)-(2.91) are
fulfilled, the corrections to the curvature term vanish. The remaining corrections in the
kinetic term can then be absorbed into the definition of the constant K.
Choosing

g(ϕ) = ϕ2(1− ϕ)2 (2.92)

w(ϕ) = ϕ (2.93)

h(ϕ) = 3ϕ2 − 2ϕ3 (2.94)

as our choice from before fulfills conditions (2.89)-(2.91), one finds that (2.82) is recovered
if K in (2.83) is modified according to

K−1 =
6Lρδ

Tm
(βk + r

ρLδ

λ
) (2.95)

with a numerical constant 0 < r < 1. Another advantage is that simulations with a negli-
gible kinetic effect are now possible by setting βk = 0.
Based on the thin interface analysis, Karma and Rappel were able to reproduce dendritic
tip shapes and tip velocities with good agreement ([41],[43]). Around the turn of the mil-
lenium, Karma and Rappel’s methodology was applied by Almgren ([45]) and McFadden,
Wheeler and Anderson ([46]) to the asymmetric case of unequal heat conductivities in the
solid and the liquid.
Later on in this work, a thin interface analysis will be performed in detail for the newly
developed model.

2.2.3. Thermodynamic Consistency

Concerning thermodynamic consistency, one has to be aware that the phase-field model
considered so far contains two different state variables ϕ(~x, t) and T (~x, t) and that both
of them influence the temporal evolution of free energy. However, a popular procedure in
phase-field modelling has been to regard temperature as a constant at first and to derive
the phase-field equation (2.47) according to Allen and Cahn. Afterwards, temperature was
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allowed to vary and a heat conduction equation with a latent heat source term containing
the phase-field time derivative was added independently from the free energy functional.
With this recipe, it is not clear if

dF [ϕ, T ]

dt
=

ˆ
V
{δF [ϕ, T ]

δϕ

∂ϕ

∂t
+
δF [ϕ, T ]

δT

∂T

∂t
}dV ≤ 0. (2.96)

A proper way to deal with thermodynamic consistency was presented by Penrose and Fife
([47]) and later by Wang et al. ([48]), who derived a set of equations for temperature and
the phase-field from a single functional.
Based on the observation that temperature variations are the result of internal energy
flows, a legendre transform leads from the free energy functional F [ϕ, T ] to an entropy
functional S[ϕ, e] with the internal energy per volume e:

F [ϕ, T ] =

ˆ
V
{aδ(~∇ϕ)2 + f(ϕ, T )}dV (2.97)

=

ˆ
V
{aδ(~∇ϕ)2 + e− Ts(ϕ, e)}dV (2.98)

= E[e]− TS[ϕ, e]. (2.99)

The internal energy and entropy functionals E and S are then given by

E[e] =

ˆ
V
edV (2.100)

S[ϕ, e] =

ˆ
V
{s(ϕ, e)− asδ(~∇ϕ)2}dV (2.101)

with the entropy per volume s(ϕ, e) , as = a
T and a = const. In general, the non-constant

factor 1
T makes as space-dependent leading to a complication in the further procedure and

the resulting final equations. Mainly for analytical reasons, Penrose and Fife and also
Wang et al. therefore assume it to be a constant. The newly developed model of this work
will resolve this problem by a modification in the definition of free energy.
Penrose and Fife proved that the set of equations

∂ϕ

∂t
= K1T

δS[ϕ, e]

δϕ
, K1 > 0 (2.102)

∂e

∂t
= −~∇ · [K2

~∇(
δS[ϕ, e]

δe
)] , K2 > 0 (2.103)

assures thermodynamic consistency:

dS[ϕ, e]

dt
≥ 0. (2.104)

Using

δS[ϕ, e]

δe
=
∂s(ϕ, e)

∂e
=

∂

∂e
(
e

T
− f(ϕ, T )

T
) =

1

T
(2.105)

δS[ϕ, e]

δϕ
= −~∇ · [∂(−asδ(~∇ϕ)2)

∂~∇ϕ
] +

∂s(ϕ, e)

∂ϕ
(2.106)

= 2asδ~∇2ϕ+
∂

∂ϕ
(
e

T
− f(ϕ, T )

T
) (2.107)

=
1

T
(2aδ~∇2ϕ− ∂f(ϕ, T )

∂ϕ
), (2.108)

20



2. Review of Existing Modelling Approaches

setting K2 = λT 2 > 0 as well as e(ϕ, T ) = ρcT +ρLϕ and recovering the tilted double well

f(ϕ, T ) =
a

δ
ϕ2(1− ϕ)2 + h(ϕ)ρL

Tm − T
Tm

, (2.109)

the set of equations resulting from (2.102) and (2.103) is equivalent to the equations (2.60)
and (2.61). Consequently, the exemplary model considered so far is really thermodynam-
ically consistent.

2.2.4. Coupling with Convection

There have been two different approaches to couple the phase-field method with the Navier-
Stokes equations of hydrodynamics. One of them has been proposed by Beckermann et
al. in 1999 ([49]). In order to describe a convective solid-liquid phase change system,
the authors in [49] start from a two-phase approach and consider distinct volume-averaged
transport equations for the solid and liquid phase. By adding the solid and liquid equations
for each transport property Q and defining solid liquid mixture quantities according to

Q = ϕQliquid + (1− ϕ)Qsolid, (2.110)

they obain a set of phase-averaged Navier-Stokes, energy and composition transport equa-
tions. Viscosity and density are thereby assumed to be constant and phase-independent.
The solid is regarded to be rigid by setting the solid velocity to zero

~u = ϕ~uliquid + (1− ϕ)~usolid = ϕ~uliquid (2.111)

and an interfacial stress term proportional to

(1− ϕ)

δ
|~∇ϕ|~uliquid (2.112)

represents a momentum sink in the transport equation for velocity. It disappears in the
liquid with ϕ = 1, damps velocity in the diffuse interface region and reproduces the no-slip
boundary condition in the sharp interface limit δ → 0.
However, the derivation of the phase-field equation occurs on the basis of a geometrical
argumentation. The disadvantage of this approach is that thermodynamic consistency is
not assured as the coupling of the different transport equations with the phase change
process does not arise from a single functional in the sense of Penrose and Fife’s ideas
([47]) from the last subsection.
Because thermodynamic consistency is an important aspect of this thesis, the second
approach proposed by Anderson, McFadden and Wheeler ([50],[51]) is more appropriate
as it extends the formalism of irreversible thermodynamics by Penrose and Fife to include
the Navier-Stokes equations. They regard both phases as Newtonian fluids with a phase-
field dependent viscosity adopting sufficiently large values in the solid to damp velocity to
zero.
The derivation is based on the following expressions for mass, momentum, energy and
entropy in a subvolume Ω ⊂ V :

M =

ˆ
Ω
ρdV (2.113)

~p =

ˆ
Ω
ρ~udV (2.114)

E =

ˆ
Ω
{ρem +

1

2
ρ~u2}dV (2.115)

S =

ˆ
Ω
{ρsm − asδ(~∇ϕ)2}dV (2.116)
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with linear momentum ~p, the internal energy per mass em and the entropy per mass sm.
In (2.116), as is assumed to be constant again although actually as = a

T for the exemplified
case considered so far. I note here that in [51], the above expressions are more general by
incorporating the possibility of anisotropic behaviour in the entropy gradient term and also
by considering an additional gradient contribution to energy. These features are skipped
for simplicity. The governing equations corresponding to the introduced quantities are:

dM

dt
= 0 ↔ Dρ

Dt
= −ρ(~∇ · ~u) (2.117)

d~p

dt
=

ˆ
∂Ω
~n ·mdA ↔ ρ

D~u

Dt
= ~∇ ·m (2.118)

dE

dt
= −
ˆ
∂Ω
~qe · ~ndA+

ˆ
∂Ω
~n ·m · ~udA ↔ ρ

Dem
Dt

= −~∇ · ~qe +m : (~∇~u) (2.119)

dS

dt
= −
ˆ
∂Ω
~qs · ~ndA+

ˆ
Ω
ṡproddV ↔ ρ

Dsm
Dt

= −~∇ · ~qs + ṡprod + 2asδQG

(2.120)

In (2.117)-(2.120), the Gaussian theorem was used, D
Dt = ∂

∂t+~u·∇ is the material derivative,
m is the stress tensor, ~qe and ~qs are the heat and entropy fluxes and ṡprod is the so-called
entropy production rate. The quantity QG appearing in (2.120) results from the temporal
derivative of the gradient term in (2.116) and is given by

QG = ~∇ · (~∇ϕDϕ
Dt

)− Dϕ

Dt
~∇2ϕ− (~∇~u) : (~∇ϕ⊗ ~∇ϕ) +

1

2
(~∇ϕ)2(~∇ · ~u). (2.121)

Note that momentum conservation (2.118) was utilized in (2.119) to eliminate the kinetic
terms and to get an equation for the internal energy per mass.
In the framework presented here, thermodynamic consistency means that the entropy
production rate is non-negative and the main idea of Anderson et al. is to find constitutive
laws for m, ~qe, ~qs and Dϕ

Dt which assure ṡprod ≥ 0.
An important step is to make use of the thermodynamic relation

dem = Tdsm +
p

ρ2
dρ+

∂em
∂ϕ

dϕ (2.122)

with pressure p, which gives

ρ
Dsm
Dt

=
ρ

T

Dem
Dt
− p

ρT

Dρ

Dt
− ρ

T

∂em
∂ϕ

Dϕ

Dt
. (2.123)

The entropy production rate is then

ṡprod = ρ
Dsm
Dt

+ ~∇ · ~qs − 2asδQG (2.124)

=
ρ

T

Dem
Dt
− p

ρT

Dρ

Dt
− ρ

T

∂em
∂ϕ

Dϕ

Dt
+ ~∇ · ~qs − 2asδQG. (2.125)

Replacing Dem
Dt and Dρ

Dt by expressions (2.117) and (2.119) and using ~∇ · ~u = 1 : (~∇~u) as

well as − 1
T
~∇ · ~qe = −~∇ · (~qeT ) + ~qe · ~∇( 1

T ), we get

ṡprod = ~∇ · (~qs −
~qe
T
− 2asδ~∇ϕ

Dϕ

Dt
) (2.126)

+ ~qe · ~∇(
1

T
) +

Dϕ

Dt
(2asδ~∇2ϕ− ρ

T

∂em
∂ϕ

) (2.127)

+
1

T
{m+ p1 + 2asδ(~∇ϕ⊗ ~∇ϕ)− asδ(~∇ϕ)21} : (~∇~u). (2.128)
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The following constitutive laws assure ṡprod ≥ 0:

~qs =
~qe
T

+ 2asδ~∇ϕ
Dϕ

Dt
(2.129)

~qe = λ(ϕ)T 2~∇(
1

T
) = −λ(ϕ)~∇T (2.130)

Dϕ

Dt
= KT{2asδ~∇2ϕ− ρ

T

∂em
∂ϕ
} , K > 0 (2.131)

m = τ − p1− 2asδ{~∇ϕ⊗ ~∇ϕ− 1

2
(~∇ϕ)21}. (2.132)

In the expressions above, we introduced a phase-dependent heat conductivity λ(ϕ) and
the viscous stress tensor τ

τ = η(ϕ){(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1} (2.133)

with a phase-dependent viscosity η(ϕ). (2.129), (2.130) and (2.132) reduce to their usual
form in the bulk phases, but contain additional contributions in the diffuse interface re-
gions.
Putting m and ~qe into (2.118) and (2.119) realizes a thermodynamically consistent cou-
pling of the phase change process with the Navier-Stokes and heat transport equations.
Concerning the phase change process, we note that em = em(sm, ρ, ϕ) according to (2.122).
A legendre transform leads to the free energy per mass fm(T, ρ, ϕ) with

dfm = d(em − Tsm) = dem − Tdsm − smdT (2.134)

= Tdsm +
p

ρ2
dρ+

∂em
∂ϕ

dϕ− Tdsm − smdT (2.135)

= −smdT +
p

ρ2
dρ+

∂em
∂ϕ

dϕ. (2.136)

Consequently, we get

ρ

(
∂em(sm, ρ, ϕ)

∂ϕ

)
sm,ρ

= ρ

(
∂fm(T, ρ, ϕ)

∂ϕ

)
T,ρ

=
∂(ρfm)

∂ϕ
=
∂f

∂ϕ
(2.137)

with the free energy per volume f and remembering that as = a
T , the phase-field equation

is given by

K−1Dϕ

Dt
= 2aδ~∇2ϕ− ∂f

∂ϕ
, K > 0. (2.138)

Inserting the tilted double well (2.109) for f , this equation is equivalent to our previous
equation (2.61) except for the material derivative.

2.2.5. Binary Alloys

2.2.5.1. Binary Alloys with Complete Solubility

The first phase-field models for binary alloy solidification were developed by Boettinger,
Wheeler and Warren ([52],[53],[54]) and targeted on the description completely soluble
systems with simple, lens-shaped phase diagrams. They regarded a free energy functional

F [ϕ, ξ, T ] =

ˆ
V
{aδ(~∇ϕ)2 + f(ϕ, ξ, T )}dV, (2.139)

where the composition variable ξ denotes the mass fraction of component B. The tilted
double well f(ϕ, ξ, T ) was constructed as a superposition of tilted double wells of the single
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components in the sense of an ideal solution:

f(ϕ, ξ, T ) = ξfB(ϕ, T ) + (1− ξ)fA(ϕ, T ) +
RT

vm
{ξ log(ξ) + (1− ξ) log(1− ξ)} (2.140)

fk(ϕ, T ) =
a

δ
ϕ2(1− ϕ)2 + h(ϕ)ρkLk

Tm,k − T
Tm,k

. (2.141)

In contrast to the original work by Boettinger et al., we use here a single constant a for
simplicity. The last expression of f(ϕ, ξ, T ) originates in the entropy of mixing and the
ideal gas constant R as well as the molar volume vm are used. It is usually assumed that
temperature variations are negligible and T is set to a constant such that free energy is
appropriate for a thermodynamically consistent treatment. The set of equations is then

∂ϕ

∂t
= −K1

δF

δϕ
(2.142)

∂ξ

∂t
= −K2

~∇ · {ξ(1− ξ)~∇(
δF

δξ
)}. (2.143)

The factor ξ(1 − ξ) is added in (2.143) because it assures a composition-independent
diffusion coefficent. Equation (2.143) is the simplest kind of evolution equation assuring
thermodynamic consistency for a conserved quantity. It is therefore not a coincidence that
it has the same structure as equation (2.103) for internal energy.
In the binary alloy model by Boettinger et al., locally coexisting solid and liquid phases
have the same composition: ξ = ξs = ξl. As demonstrated by Kim ([55]), this leads to some
severe disadvantages. The authors in [55] assume isothermal conditions and reformulate
the tilted double well according to

f(ϕ, ξ) =
a

δ
ϕ2(1− ϕ)2 + h(ϕ)fl(ξ) + (1− h(ϕ))fs(ξ), (2.144)

where fl(ξ) and fs(ξ) denote the liquid and solid phase free energy densities. A connection
with the original expression by Boettinger from above can easiliy be obtained by setting

fs(ξ) =
RT

vm
{ξ log(ξ) + (1− ξ) log(1− ξ)} (2.145)

fl(ξ) =
RT

vm
{ξ log(ξ) + (1− ξ) log(1− ξ)} (2.146)

+ ξρBLB
Tm,B − T
Tm,B

+ (1− ξ)ρALA
Tm,A − T
Tm,A

. (2.147)

A one-dimensional state of thermodynamic equilibrium is determined by the condition

δF

δϕ
= 0 ↔ 2aδ

∂2ϕ

∂x2
=
∂f(ϕ, ξ)

∂ϕ
(2.148)

=
a

δ

∂

∂ϕ
{ϕ2(1− ϕ)2}+

∂h(ϕ)

∂ϕ
(fl(ξ)− fs(ξ)). (2.149)

Multiplying both sides with ∂ϕ
∂x , we get

aδ
∂

∂x
{(∂ϕ
∂x

)2} =
∂

∂x
{a
δ
ϕ2(1− ϕ)2 + h(ϕ)(fl(ξ)− fs(ξ))} (2.150)

→ ∂ϕ

∂x
=

√
1

δ2
ϕ2(1− ϕ)2 +

1

aδ
h(ϕ)(fl(ξ)− fs(ξ)). (2.151)

We remember that for elemental materials, we had fl(Tm) = fs(Tm) in thermodynamic
equilibrium and consequently

∂ϕ

∂x
=

1

δ
ϕ(1− ϕ) ↔ ϕ(x) =

1

2
(1 + tanh(

x

2δ
)). (2.152)
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The equilibrium profile is therefore decoupled from the bulk chemical properties in the
case of an elemental material and δ is a free input length. As demonstrated in (2.56),
the decoupled equilibrium profile allows a calibration of the model to represent a certain
surface tension for arbitrary values of δ by a proper choice for a.
However, for the binary alloy, thermodynamic equilibrium is not characterized by fl = fs,
but rather by the common tangent rule

fl(ξl) = fs(ξs) +
∂f(ϕ, ξ)

∂ξ
(ξl − ξs), (2.153)

where the liquid and solid compositions ξl and ξs have been used. Consequently, the last
expression in (2.151) does not vanish and the equilibrium profiles as well as the quantity
a depend on the bulk chemical properties. As demonstrated in [55], this leads to a severe
restriction concerning the value of δ. For the example of an Al − 2mol%Si alloy, it is
shown that the diffuse interface width must be smaller than about 6nm, which makes
quantitative calculations with large values of δ in the spirit of the thin-interface analysis
impossible.
In [56] and [57], Kim et al. present an alternative to get rid of this problem. Their idea is
to regard the composition variable ξ as a superposition:

ξ = h(ϕ)ξl + (1− h(ϕ))ξs (2.154)

and to set fl = fl(ξl) as well as fs = fs(ξs). In analogy with (2.148), the state of
thermodynamic equlibrium is then characterized by

2aδ
∂2ϕ

∂x2
=
∂f(ϕ, ξ)

∂ϕ
+
∂f(ϕ, ξ)

∂ξ

∂ξ

∂ϕ
(2.155)

=
a

δ

∂

∂ϕ
{ϕ2(1− ϕ)2}+

∂h(ϕ)

∂ϕ
{fl(ξl)− fs(ξs) +

∂f(ϕ, ξ)

∂ξ
(ξl − ξs)} (2.156)

=
a

δ

∂

∂ϕ
{ϕ2(1− ϕ)2} (2.157)

and the bulk contributions vanish as in the case of an elemental material. It should be
mentioned that this makes the computational effort larger because the quantities ξl and
ξs must be determined from the state variables ξ and ϕ. This is realized by assuming that
there is an instantaneous mass transport between locally coexisting phases, leading to a
condition of equal chemical potentials µs and µl:

µs =
∂fs(ξs)

∂ξs
=
∂fl(ξl)

∂ξl
= µl. (2.158)

With (2.154) and (2.158), ξl and ξs can be determined in principle. However, it is con-
cluded in [56] that a complex numerical solution procedure is necessary in general.

2.2.5.2. Binary Alloys with a Limited Solid Solubility

The next step in phase-field modelling of binary alloys was the consideration of eutectic
and peritectic binary alloys, which are characterized by a limited solubility of the two
components A and B in the solid state. As there are two different solid phases α and β
next to the liquid phase in these cases, it is necessary to introduce more than one phase-
field. First attempts in this direction with two phase-fields were presented by Wheeler,
McFadden and Boettinger ([58]) in 1996 and subsequently by Lo, Karma and Plapp ([59]).
Later on, however, it became common practice to introduce three phase-field functions ϕ1

(liquid phase), ϕ2 (solid phase α) and ϕ3 (solid phase β). It is clear that this necessitates
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an extension of those parts of the free energy functional depending on the phase state,
i.e. the surface free energy density fsurface and the phase interpolation functions. In
particular, two problems arise in such a multiphase-field formulation. The first one is that
in the spirit of an interpretation of the phase-field ϕi as the volume fraction of phase i, we
get the constraint

ϕ1(~x, t) + ϕ2(~x, t) + ϕ3(~x, t) = 1. (2.159)

The second problem is that equilibrium interfaces between the two bulk phases k and i
are in general not completely free of the third phase j and special measures are necessary
to avoid the appearance of these so-called ghost phases.

Steinbach’s Approach

In principle, there have been two approaches to capture these aspects ([60]). One of
them has been proposed by Steinbach and Pezzolla in 1996 ([61]) as a general multiphase-
field approach for an arbitrary number N of possible phases and has been coupled to
composition transport by Tiaden ([62],[63]) and Kundin ([64]). Steinbach’s idea is to
decompose the free energy F of the system into a sum of pairwise contributions and
to regard the rate of change for the phase-field ϕi as a consequence of pairwise phase
interactions:

F =
N∑

i,k(i<k)

Fik (2.160)

ϕ̇i =
N∑

i,k(i<k)

q̇ik. (2.161)

The pairwise interactions q̇ik are connected with the pairwise free energies according to
the following relaxation ansatz

q̇ik = −Kik
δFik
δϕi

(2.162)

with a mobility constant Kik for the phase boundary between phases i and k. Finally, the
quantities Fik are given by

Fik =

ˆ
V
{aikδ(ϕk ~∇ϕi−ϕi~∇ϕk)2 +

aik
δ
ϕ2
iϕ

2
k + (

1

2
ϕ3
i +

3

2
ϕ2
iϕk−

3

2
ϕiϕ

2
k−

1

2
ϕ3
k)(fi−fk)}dV.

(2.163)
The above expression has been adapted to our notation, a single value of δ has been used
in contrast to Steinbach’s δik and fi denotes the free energy per volume of bulk phase i.
The extension of the gradient part

aδ(~∇ϕ)2 → aikδ(ϕk ~∇ϕi − ϕi~∇ϕk)2 (2.164)

is according to Steinbach a result of symmetry considerations and the theory of irreducible
representations. It is easiliy seen that we get back the original expression for single phase-
fields by setting aik = a, ϕi = ϕ and ϕk = 1− ϕ. The symmetric double well extension to
a multiwell is straightforward

a

δ
ϕ2(1− ϕ)2 → aik

δ
ϕ2
iϕ

2
k (2.165)

and gives back the original, single phase-field choice using the same replacements as in the
gradient term. The interpolation functions

1

2
ϕ3
i +

3

2
ϕ2
iϕk −

3

2
ϕiϕ

2
k −

1

2
ϕ3
k (2.166)
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reduce to 3ϕ2 − 2ϕ3 − 1
2 , which is shifted compared to the possible choice 3ϕ2 − 2ϕ3 for a

single phase-field.
It is clear that multiple phase interactions and triple point as well as higher order point
energies are neglected from the very beginning in this approach. A further approximation
deals with the constraint (2.159). In the evaluation of (2.162), the following relations are
used:

∂ϕk
∂ϕi

=
∂

∂ϕi
(1− ϕi − ϕj) ≈ −1 (2.167)

∂~∇ϕk
∂~∇ϕi

≈ −1. (2.168)

Using (2.161), (2.162), (2.163), (2.167) and (2.168), the resulting governing equation for
ϕi is given by

ϕ̇i =

N∑
k=1(k 6=i)

Kik{2aikδ(ϕk ~∇2ϕi−ϕi~∇2ϕk)−
2aik
δ
ϕiϕk(ϕk−ϕi)+6ϕiϕk(fi−fk)}. (2.169)

At a binary interface with ϕi = ϕ and ϕk = 1 − ϕ, it reduces to our standard equation
(2.61) with h(ϕ) = 3ϕ2 − 2ϕ3. The presented model respects the constraint (2.159) and
avoids the presence of ghost phases.
However, Garcke ([65]) showed that interfacial stresses are not conserved at multi-junctions
due to the approximations (2.167) and (2.168). Therefore, Steinbach and Pezzolla proposed
a revised version ([66]) of their multiphase approach in 1999 in which the problematic
approximations are not necessary anymore and which was utilized by Kim, Kim and Suzuki
([67]) as well as Eiken ([68]) in their phase-field models. The main idea is to introduce
interface fields

ψik = ϕi − ϕk (2.170)

for all possible pairs of phase-fields. The inverse transformation is given by

ϕi =
1

n
{

N∑
k=1(k 6=i)

(siskψik) + 1} (2.171)

with the number of locally coexisting phases n and

si =

{
1, if ϕi > 0

0, if ϕi = 0.
(2.172)

This leads to

∂ϕi
∂t

=
1

n

N∑
k=1(k 6=i)

{sisk
∂ψik
∂t
} (2.173)

and for the temporal derivative of the interface fields, they assume

ψik
∂t

=
∂ϕi
∂t
− ∂ϕk

∂t
= −Kik(

δF

δϕi
− δF

δϕk
). (2.174)

Steinbach and Pezzolla demonstrate that the phase-fields can be treated as independent
variables in (2.174) and that the interface fields ψik can be regarded as generalized co-
ordinates making sure that the constraint (2.159) is respected automatically due to the
differences appearing in (2.174). Another new aspect in [66] is that the quite complicated
gradient expression was simplified

aikδ(ϕk ~∇ϕi − ϕi~∇ϕk)2 → −aikδ~∇ϕi · ~∇ϕk. (2.175)
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Despite the elegant treatment of the constraint (2.159) and the convenient decomposition
into pairwise interactions, there remain problems. In particular, the governing equation
(2.173) has a singular nature due to the functions si and sk. A consequence of this is
that a phase i which is not present at the beginning of a simulation can never be formed
because of si = 0 in the whole domain and therefore ∂ϕi

∂t = 0.

Lagrangian Multiplier Approach

The second kind of dealing with multiple phase-fields utilizes the technique of lagrangian
multipliers to capture the constraint (2.159). The free energy functional for isothermal
conditions is then expressed as

F =

ˆ
V
{fsurface + fbulk + Λl · (ϕ1 + ϕ2 + ϕ3 − 1)}dV (2.176)

with the lagrangian multiplier Λl. If Λl is chosen appropriately, the phase-fields ϕi can be
treated as independent variables like in Steinbach’s method of interface fields. Assuming
a phase-field dependent mobility parameter K(ϕ1, ϕ2, ϕ3) to distinguish between different
kinds of interfaces and adopting the well-known evolution equations

∂ϕi
∂t

= −K(ϕ1, ϕ2, ϕ3)
δF

δϕi
, (2.177)

the appropriate choice for Λl is characterized by the requirement:

∂

∂t
(ϕ1 + ϕ2 + ϕ3) = 0

↔ −K(ϕ1, ϕ2, ϕ3){ δF
δϕ1

+
δF

δϕ2
+
δF

δϕ3
} = 0

↔ (
δ

δϕ1
+

δ

δϕ2
+

δ

δϕ3
)

ˆ
V
{fsurface + fbulk}dV + 3Λl = 0

−1

3
(
δ

δϕ1
+

δ

δϕ2
+

δ

δϕ3
)

ˆ
V
{fsurface + fbulk}dV = Λl. (2.178)

In the Lagrangian multiplier approach, there are again two branches which differ in the
question about how to avoid the presence of ghost phases at binary equilibrium interfaces.
Ghost phases have not been a topic in Steinbach’s models as the strictly pairwise decom-
position of phase interactions suppresses them automatically.
The first branch is represented by works of Folch and Plapp ([69],[70],[71],[72]), who re-
gard free energy as a smooth landscape above the Gibbs simplex. The latter is presented
in Figure 2.6 and denotes an equilateral triangle in (ϕ1, ϕ2, ϕ3)-space to which the triple
(ϕ1, ϕ2, ϕ3) is constrained due to (2.159). In the spirit of the second law of thermody-
namics, the dynamics of (ϕ1, ϕ2, ϕ3) tends to the valleys of this landscape to reduce the
free energy of the system. In particular, the free energy functional of Folch and Plapp is
especially designed to preserve the tangens hyperbolicus equilibrium profiles and to create
minimum values of free energy in the corners of the Gibbs simplex corresponding to the
bulk phases as well as free energy valleys along the sides corresponding to binary interfaces.
Due to the latter aspect, phase j stays stably at zero at an i − k interface because any
perturbation to ϕj > 0 is linked with a free energy increase. Additionally, the preservation
of the tangens hyperbolicus equlibrium profiles is important for the thin-interface analysis
because analytical calculations are difficult to perform for an arbitrary sigmoid shape.
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Figure 2.6.: Gibbs simplex for three phase-fields

The expressions proposed by Folch and Plapp are in our notation

fsurface =aδ
3∑
i=1

(~∇ϕi)2 +
a

δ

3∑
i=1

ϕ2
i (1− ϕi)2 (2.179)

fbulk =X{1

2
[ξ −

3∑
i=1

hiAi(T )]2 +

3∑
i=1

hiBi(T )} (2.180)

hi =
1

4
ϕ2
i {15(1− ϕi)[1 + ϕi − (ϕk − ϕj)2] + ϕi(9ϕ

2
i − 5)}. (2.181)

The quantity X in fbulk denotes a thermodynamic constant with a unit of energy per vol-
ume ([70]) and the functions Ai(T ) and Bi(T ) represent scaled equilibrium compositions
and scaled equilibrium free energies of phase i ([72]), which can be adapted to represent
a specific binary alloy phase diagram with two solidus and liquidus lines. The special
choices for fbulk and the interpolation functions hi guarantee a decoupling of the equilib-
rium profiles from bulk properties. A drawback of this model is that it can only represent
a single value of surface tension for all three possible phase interfaces because there is only
a single constant a. Further drawbacks of the model are that locally coexisting phases are

assumed to have equal compositions and that ∂2fbulk
∂ξ2

= 1 independently of the phase being
considered. The latter results in a constraint on the ratio of capillary lengths of the two
solid-liquid interfaces. In general, this constraint is not fulfilled for an arbitrary material
([70]).
The second branch of Lagrangian multiplier methods consists of models proposed in pub-
lications by Garcke, Nestler and others ([73],[74],[75],[76],[77],[78],[79]) which are capable
to represent different surface tension values. For a system with N phases, they use the
gradient expression

N∑
i,k(i<k)

aikδ(ϕk ~∇ϕi − ϕi~∇ϕk)2 (2.182)

like Steinbach and a straightforward extension of the symmetric double well

N∑
i,k(i<k)

aik
δ
ϕ2
iϕ

2
k. (2.183)

Ghost phases are avoided by adding a higher order term like

N∑
i,j,k(i<j<k)

aijk
δ
ϕ2
iϕ

2
jϕ

2
k. (2.184)

In the case of a binary eutectic alloy, the purpose of this higher order additive is to keep the
triple (ϕ1, ϕ2, ϕ3) close to the purely binary edges of the Gibbs simplex by increasing free
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energy inside without influencing the side lines. The larger the coefficient a123 is, the more
closely does (ϕ1, ϕ2, ϕ3) stay on a given edge. However, the values of the coefficients aijk
cannot be determined unambiguously and stay a source of uncertainty as they influence the
results. Additionally, although (2.184) gives no contribution to the governing equations at
purely binary interfaces, the tangens hyperbolicus profile is lost due to additional terms
arising from the lagrangian multiplier Λl. Consequently, a thin-interface analysis may
become difficult here. Variants of this approach replace (2.184) by

N∑
i,k(i<k)

aik
δ
ϕ2
iϕ

2
k(

N∑
j 6=(i,k)

ajϕj) (2.185)

([76]) or use the double obstacle potential

N∑
i,k(i<k)

aik
δ
ϕiϕk (2.186)

instead of the double well and utilize a higher order term

N∑
i,j,k(i<j<k)

aijk
δ
ϕiϕjϕk (2.187)

([78],[79]).
Haas developed in his dissertation in mathematics ([80]) a multiphase-field model with N
phases using the surface free energy functional

F [~ϕ] =

ˆ
V
{a(~ϕ, ~∇~ϕ)δ +

1

δ
w(~ϕ)}dV (2.188)

with ~ϕ = (ϕ1, ..., ϕN ) =
∑N

i=1 ϕi~ei. The gradient constribution a(~ϕ, ~∇~ϕ) shall be non-

negative and positively homogeneous of degree two concerning ~∇~ϕ and w(~ϕ) is a non-
negative polynomial vanishing for ~ϕ = ~ei. In the limit δ → 0, (2.188) describes the surface
free energy per unit area at an i− j interface according to

γij(~n) = inf
~p
{2
ˆ 1

−1

√
w(~p(y))a(~p(y), ~p ′(y)⊗ ~n)dy}. (2.189)

In (2.189), ~n is a unit normal vector representing a possible anisotropy, ~p ranges over
all Lipschitz continuous functions ~p : [−1, 1] → Σ connecting ~ei and ~ej and Σ = {~ϕ ∈
RN ,

∑N
i=1 ϕi = 1} denotes the Gibbs simplex. Haas constructs possible functions a(~ϕ, ~∇~ϕ)

and w(~ϕ) based on the conditions:

1. The minimizer of (2.189) has the form ~p(y) = h(y)~ej + (1− h(y))~ei.

2. (2.189) coincides with the physically measurable surface tension: γij = σij .

Assuming in particular that w(~ϕ) reduces to the classical double well along the edges of
Σ, he finds

w(~ϕ) =
1

2

∑
i 6=j

aijϕ
2
iϕ

2
j +

1

2

∑
i<j

i 6=j,i6=k,j 6=k

aijkϕiϕjϕ
2
k +

1

2

∑
i<j<k<l

aijklϕiϕjϕkϕl (2.190)

with aij > 0, aijkl > 0 and
aijk = aik + ajk − aij . (2.191)

He is able to express the coefficients aij in terms of the surface tension values σij while
definite values for the aijkl cannot be provided. One should note that for the special case
N = 3, all coefficients are uniquely defined as the terms containing aijkl are zero then.
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2.2.5.3. Binary Alloys and Thin-Interface Analysis

In binary alloy solidification problems, the sharp interface description is given by ([70])

∂ξ

∂t
= Dl/s

~∇2ξ (2.192)

un(ξI,l − ξI,s) = ~n · (Ds
~∇ξ|s −Dl

~∇ξ|l) (2.193)

TI = Te +ml(ξI,l − ξe)−
σTe
ρL

κ− βkun. (2.194)

In the above expressions, the indices l and s indicate the liquid and the solid phase, ~n is the
unit normal vector pointing to the liquid, un is the normal interface velocity, Dl/s stands for
the diffusion coefficient in the liquid/solid and ξI,l as well as ξI,s represent the composition
at the liquid and the solid side of the sharp interface. A comparison with (2.43) from
the elemental material sharp interface model reveals that there is now an additional term
ml(ξI,l − ξe) in the expression for the interface temperature TI with ml and ξe denoting
the slope of the liquidus line and the eutectic composition. Because the thermal diffusivity
is usually much larger than mass diffusivity Dl/s, temperature is assumed to be constant
and the coupling of the phase change process with the composition field dominates. A
special difficulty arising in a thin-interface analysis of a binary alloy phase-field model
is that the solid diffusion coefficient Ds is orders of magnitude smaller than the liquid
diffusion coefficient Dl whereas Karma and Rappel assumed a phase-independent thermal
diffusivity in their original analysis for elemental materials. This asymmetry in the case
of binary alloys leads to a number of anomalous terms in the first order equations which
caused problems at the beginning. In the meantime, these problems are resolved and
the thin-interface analysis technique is also available for binary alloys. For the case of
completely soluble binary alloys with only a single phase-field, Karma covered the special
case Ds = 0 ([81]) and Ohno and Matsuura the more general Dl >> Ds > 0 for a dilute
alloy ([82]). Concerning multiphase-field models for binary eutectic or peritectic alloys,
the approach by Plapp considered before ([70]) is directly equivalent to the original work
by Karma and Rappel for elemental materials in the case Ds = Dl. However, the authors
of [70] do also present a thin-interface analysis for the one-sided case Ds = 0. Again, Ohno
and Matsuura proposed a procedure for a multiphase-field model with Ds > 0 ([83]).

2.2.5.4. Binary Alloys and Convection

The model by Beckermann presented before ([49]) has been used in the literature to de-
scribe convective solidification of dilute binary alloys with a single solid phase ([84],[85]).
However, no simulations based on a direct extension of Anderson’s approach ([51]) to
multiple phase-fields with a thermodynamically consistent coupling of phase change with
the Navier-Stokes equations as well as transport equations for temperature and composi-
tion have been found in the literature. Under isothermal conditions, Nestler and Wheeler
treated the case of monotectic solidification with one solid phase and two possible liquid
phases ([86]) while fluid flow in a melting porous medium has been simulated by Nestler
and others ([87]) based on a coupling of the phase-field and lattice Boltzmann methods.

2.3. Conclusions

In section 2.1, three different modelling approaches for melt pool heat transfer were dis-
cussed in an order of rising complexity.
The effective convectivity model by Tran and Dinh is based on correlation-based char-
acteristic velocities and is therefore the least expensive of the three approaches as the
Navier-Stokes equations do not have to be solved. Consequently, its applicability is re-
stricted and it can provide only a coarse description without any informations about the
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flow field. The latter, however, may have a significant influence on the melt pool heat
transfer. In contrast to that, the models of Voller and Bennon describe the flow field in
an appropriate manner based on the Navier-Stokes equations. Both methods differ in the
treatment of the melt composition, which is assumed to be constant in Voller’s approach
while it is treated by Bennon as a transport quantity on an equal footing with temperature.
Due to the fact that composition inhomogenities influence the local liquidus temperature
and therefore the mushy layer thickness, composition transport will be considered along
with heat and momentum transport in the new model developed in this thesis.
A weak point in all three discussed models is the treatment of phase change. It is captured
by calculating the liquid volume fraction as an instantaneous function of either tempera-
ture alone or as a function of temperature and composition in the case of Bennon’s model.
However, the process of phase change commonly follows its own dynamics without in-
stantaneously adapting to any sudden change in the temperature or composition fields.
Additionally, its coupling with momentum, heat and composition transport does not as-
sure thermodynamic consistency in the three approaches. The most important idea of
this thesis is to provide an improvement in the modelling of solid-liquid phase change on
macroscopic length scales by utilizing the phase-field method and by coupling it with the
Navier-Stokes equations as well as the transport equations for heat and composition in a
thermodynamically consistent manner.

The phase-field method originates in attempts to regularize the problem of a moving
sharp phase boundary by introducing smooth phase indicator functions. Due to the latter,
a certain diffusivity of phase interfaces is inherent in the method and makes it particularly
suitable to describe mushy layer solidification. The phase-field method provides indepen-
dent governing equations for the phase change process and has the capability to correctly
reproduce its microscopic details. In section 2.2, the development of the phase-field ap-
proach has been reviewed on the basis of an exemplary model.
It has been demonstrated how the sharp interface problem may be regularized, which is
necessary to describe phase change by an additional partial differential equation, and un-
der what conditions the regularized problem with a finite interface thickness describes the
original sharp interface problem. In particular, a parameter δ exists which governs the
diffuse interface width and which has to be smaller than the characteristic length of the
dominating diffusion field to reproduce sharp interface dynamics.
Concerning the aspect of a thermodynamically consistent coupling, Anderson et al. ([51])
provide a satisfactory approach for the case of elemental material phase change with just a
single phase indicator function. The only problematic aspect has been that the transition
from free energy to an entropy functional introduced a non-constant coefficient into the
gradient term. The model developed in this thesis will circumvent the problem of the non-
constant prefactor in the gradient term by a modification in the definition of free energy.
Additionally, the problem under consideration in this thesis necessitates the introduction
of more than only one phase indicator function as binary eutectic alloys possess a liquid
phase l along with two solid phases α and β. The new model will generalize the ideas of
Anderson to a multiphase setup in order to achieve a thermodynamically consistent cou-
pling between the three phase-field equations, the Navier-Stokes equations and the transport
equations for heat and additionally composition.
The introduction of multiple phase-fields leads to two new difficulties:

• The phase indicator functions of the possible phases must sum up to one at any point
and at any time.

• The appearance of ghost phases j at equilibrium interfaces between phases i and k
has to be avoided.
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Steinbach ([66]) resolves both problems by the introduction of interface fields. However,
this approach leads to governing equations with a singular nature. In particular, the for-
mation of phases not being present at the beginning of a simulation is not possible. In
order to avoid these drawbacks and as we would like the phase-field dynamics to be based
on a smooth free energy landscape, the method of lagrangian multipliers discussed in para-
graph 2.2.5.2 will be used in this thesis to guarantee that the phase indicator functions add
up to one.
Using lagrangian multipliers, Folch and Plapp ([70]) avoid ghost phases by constructing a
fine-tuned free energy functional. It makes binary mixture states energetically favourable
in comparison with three-phase mixtures and at the same time, it preserves the tangens hy-
perbolicus profiles from simple phase-field models. However, their model can only represent
a single value of surface tension for all three possible phase interfaces. Other approaches do
not try a fine-tuning of free energy, but simply add higher order terms containing products
of all three phase-fields in order to increase the free energy of three-phase mixtures. These
approaches can represent different surface tension values, but the coefficients of the higher
order terms can in general not be determined unambiguously and the tangens hyperbolicus
equilibrium profiles are destroyed. The work of Haas ([80]) is worthy of special mention
as it provides a definite expression for the higher order coefficients in the case of N = 3
phases. However, it is developed on a very abstract mathematical level without giving
much attention to applicability. In order to stay in touch with engineering practice, the
expression for fsurface derived in this work is based on the ideas by Folch and Plapp of a
fine-tuned free energy functional. The objective is to make the representation of different
surface tension values possible by constructing higher order additions to free energy with
uniquely defined coefficients. These additions shall be especially designed to avoid ghost
phases and at the same time to preserve the tangens hyperbolicus equilibrium profiles.
Concerning the modelling of fbulk, the main drawback of the approach by Folch and Plapp
is the assumption of locally coexisting phases having equal compositions. The new model
for fbulk is based on the expression proposed by Kim et al. in [67] for dilute alloys under
isothermal conditions and generalizes it to non-isothermal and non-dilute setups. In par-
ticular, individual composition values are assigned to locally coexisting phases as introduced
by Kim et al. in [56] and [57]. In contrast to the speculation made in [56], the individual
phase compositions can be determined in an analytical manner in our case and a numerical
solution procedure is not necessary.
The last aspect deals with the diffuse interface width being governed by the parameter
δ. So far, the phase-field method has been applied exclusively on length scales of about
10−100 micrometers being characteristic of the solidification microstructure. The purpose
of these applications has been the reproduction of sharp phase boundary dynamics with-
out explicit interface tracking. In this context, δ is usually regarded as a free numerical
input parameter which has to be chosen small enough as discussed above. In the current
thesis, the phase-field method is used for the first time also in a volume-averaged setup with
the transition regions of the phase-fields corresponding to physically real mushy layers. As
the mushy layer width is not a constant, a mechanism is proposed to calculate the diffuse
interface width parameter dynamically in space and time.
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3.1. Free Energy Functional for Isothermal Binary Eutectic
Alloys

As the new model shall be capable to describe binary eutectic alloys, I adopt a multiphase-
field approach with three phase-fields ϕ1 (liquid phase), ϕ2 (solid phase α) and ϕ3 (solid
phase β) for the three possible phases. Tying in with the discussion in paragraph 2.2.5.2
and the conclusions drawn in section 2.3, the constraint

ϕ1(~x, t) + ϕ2(~x, t) + ϕ3(~x, t) = 1 (3.1)

is handeled by a lagrangian multiplier approach. In accordance with common practice in
the literature, the free energy functional is expressed as

F [ϕ1, ϕ2, ϕ3, ξ] =

ˆ
V
{fsurface + fbulk + ΛL · T · (ϕ1 + ϕ2 + ϕ3 − 1)}dV (3.2)

with a surface free energy density fsurface, a bulk free energy density fbulk and a lagrangian
multiplier ΛL (compare (2.176)). It has been discussed before that a thermodynamically
consistent coupling of phase change with momentum, heat and composition transport
requires a transition to an entropy functional S = −dF

dT . As the constraint (3.1) must also
be satisfied if the problem is expressed in terms of entropy, the so far constant factor T has
been introduced into the lagrangian multiplier term. The lagrangian contribution would
not appear in the corresponding entropy functional otherwise.
In accordance with the literature, ΛL is determined by the condition (compare (2.178))

δF

δϕ1
+
δF

δϕ2
+
δF

δϕ3
= 0

↔ ΛL = − 1

3T
(
δ

δϕ1
+

δ

δϕ2
+

δ

δϕ3
)

ˆ
V
{fsurface + fbulk}dV. (3.3)

3.1.1. Surface Part of Free Energy Density

For the considerations in this subsection, fbulk is set to zero and the remaining free energy
density of phase surfaces represents the action of surface tension. As discussed in section
2.3, the new model shall be based on the ideas by Folch and Plapp who propose the
expression

fsurface = aδ
3∑
i=1

(~∇ϕi)2 +
a

δ

3∑
i=1

ϕ2
i (1− ϕi)2 (3.4)
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(compare paragraph 2.2.5.2 for more details). Our objective is to construct a multiphase-
field expression fsurface(~∇ϕ1, ~∇ϕ2, ~∇ϕ3, ϕ1, ϕ2, ϕ3) which in analogy to (3.4) preserves the
tangens hyperbolicus profiles around binary equilibrium interfaces and which avoids the
presence of ghost phases in the transition layers. This is justified because ghost phases are
unphysical and the tangens hyperbolicus profiles are important for making a thin-interface
analysis feasible.
Furthermore and in contrast to (3.4), the new expression for fsurface shall be able to assign
different values of surface tension to the three possible phase interfaces. Remembering that
the coefficient a makes the connection with surface tension and refering to the multiphase-
field models discussed in 2.2.5.2, we use the simplest possibility of generalization for this
purpose:

aδ
∑
i

(~∇ϕi)2 →
∑
i<j

−aijδ~∇ϕi · ~∇ϕj (3.5)

a

δ

∑
i

ϕ2
i (1− ϕi)2 →

∑
i<j

aij
δ
ϕ2
iϕ

2
j . (3.6)

Note that the minus sign enters (3.5) because ~∇ϕj = −~∇ϕi at an i-j interface.
The literature review in paragraph 2.2.5.2 suggests that in order to represent different
surface tension values and to avoid the presence of ghost phases at the same time, the
addition of higher order terms containing products of all three phase-fields is necessary.
However, these higher order terms destroy the tangens hyperbolicus equilibrium profiles in
general. The objective is here to derive fine-tuned higher order terms for which the latter
is not the case. Consequently, we make the following ansatz for fsurface:

fsurface =− a12Tδ~∇ϕ1 · ~∇ϕ2 − a13Tδ~∇ϕ1 · ~∇ϕ3 − a23Tδ~∇ϕ2 · ~∇ϕ3

+
a12

δ
Tϕ2

1ϕ
2
2 +

a13

δ
Tϕ2

1ϕ
2
3 +

a23

δ
Tϕ2

2ϕ
2
3 (3.7)

+ ϕ1ϕ2ϕ3Tf123(ϕ1, ϕ2, ϕ3).

The factor T has been included here to generate surface contributions with constant coef-
ficients in the resulting entropy functional.
In the following, we will determine f123(ϕ1, ϕ2, ϕ3) in such a manner that the equilibrium
behaviour of the phase-fields around a sharp phase boundary between bulk phases k and
i is given by

ϕi =
1

2
· (1 + tanh(

x

2δ
)) , ϕk = 1− ϕi , ϕj = 0 , (3.8)

i.e. the tangens hyperbolicus profiles are preserved and ghost phases are avoided.
Figure 3.1 gives a graphical representation of the desired behaviour. Using the first and
second variational derivatives, the necessary and sufficient conditions of thermodynamic
equilibrium are given by ([70])

δF

δϕl
=0 ∀l (3.9)

δ2F

δϕ2
l

>0 ∀l. (3.10)

The required equilibrium profiles around an interface between solid phase α and the liquid
phase are obtained from (3.8) by setting i = 1, k = 2 and j = 3. In particular, the tangens
hyperbolicus profile and the relation ϕ2 = 1− ϕ1 imply

~∇2ϕ1 =
1

δ2
ϕ1ϕ2(ϕ2 − ϕ1). (3.11)
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Figure 3.1.: Profile of phase-field functions around a sharp interface

Setting l = 1 in the necessary conditions (3.9) and utilizing (3.2) with fbulk = 0, we get

δF

δϕ1
=

δ

δϕ1
(

ˆ
V
fsurfacedV ) + ΛLT = 0. (3.12)

Using (3.3) with fbulk = 0 and (2.55) to evaluate the functional derivatives, (3.12) gives

(
2

3

δ

δϕ1
− 1

3

δ

δϕ2
− 1

3

δ

δϕ3
)

ˆ
V
fsurfacedV = 0 (3.13)

↔ 2

3
{−~∇ · (

∂fsurface

∂~∇ϕ1

) +
∂fsurface
∂ϕ1

} − 1

3

3∑
m=2

{−~∇ · (
∂fsurface

∂~∇ϕm
) +

∂fsurface
∂ϕm

} = 0. (3.14)

With fsurface from (3.7) and by making use of (3.11), this leads to

(ϕ2 − ϕ1)(−a12 −
1

3
a13 +

1

3
a23) +

4

3
a12ϕ2 −

2

3
a12ϕ1 −

δ

3
f123(ϕ1, ϕ2, ϕ3 = 0) = 0. (3.15)

The condition δF
δϕ1

= 0 and the resulting equation (3.15) are satisfied for

f123(ϕ1, ϕ2, ϕ3 = 0) =
a12 + a13 − a23

δ
ϕ1 +

a12 + a23 − a13

δ
ϕ2 (3.16)

and it turns out that (3.16) is sufficient to satisfy the other two necessary conditions
δF
δϕ2

= δF
δϕ3

= 0 as well.
Going through a similar procedure at an interface between the solid phase β and the liquid
phase with ϕ2 = 0, one can find

δF

δϕ1
= 0↔ f123(ϕ1, ϕ2 = 0, ϕ3) =

a12 + a13 − a23

δ
ϕ1 +

a13 + a23 − a12

δ
ϕ3. (3.17)

δF
δϕ2

= 0 and δF
δϕ3

= 0 are again fulfilled without delivering new informations.
Finally, consideration of an α− β interface leads to

f123(ϕ1 = 0, ϕ2, ϕ3) =
a12 + a23 − a13

δ
ϕ2 +

a13 + a23 − a12

δ
ϕ3. (3.18)

Hence, a stationary behaviour is assured at all three binary interfaces by combining ex-
pressions (3.16), (3.17) and (3.18) to

f123(ϕ1, ϕ2, ϕ3) =
a12 + a13 − a23

δ
ϕ1 +

a12 + a23 − a13

δ
ϕ2 +

a13 + a23 − a12

δ
ϕ3. (3.19)
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It is demonstrated now that the profiles (3.8) do really minimize free energy if f123 is
chosen according to (3.19). According to [36] and due to

∂2fsurface

∂ϕi∂~∇ϕi
=
∂2fsurface

(∂~∇ϕi)2
= 0, (3.20)

the sufficient conditions (3.10) reduce in our case to

δ2F

δϕ2
l

=
∂2fsurface

∂ϕ2
l

> 0 ∀l. (3.21)

Setting l = 1 and using expression (3.7) for fsurface with f123 according to (3.19), we get

δ2F

δϕ2
1

=
∂2fsurface

∂ϕ2
1

=
2a12

δ
Tϕ2

2 +
2a13

δ
Tϕ2

3 + 2
a12 + a13 − a23

δ
Tϕ2ϕ3. (3.22)

At the three possible binary interfaces, (3.22) is given by:

δ2F

δϕ2
1

∣∣∣∣
ϕ3=0

=
2a12

δ
Tϕ2

2

δ2F

δϕ2
1

∣∣∣∣
ϕ2=0

=
2a13

δ
Tϕ2

3

δ2F

δϕ2
1

∣∣∣∣
ϕ1=0

= ϕ2T{
2a12

δ
ϕ2 +

a12 + a13 − a23

δ
ϕ3}

+ ϕ3T{
2a13

δ
ϕ3 +

a12 + a13 − a23

δ
ϕ2}

= ϕ2T{
a12 + a13 − a23

δ
+
a12 + a23 − a13

δ
ϕ2}

+ ϕ3T{
a12 + a13 − a23

δ
+
a13 + a23 − a12

δ
ϕ3}

= T
a12 + a13 − a23

δ
+ Tϕ2

2

a12 + a23 − a13

δ
+ Tϕ2

3

a13 + a23 − a12

δ
.

A similar set of relations can be obtained for the second variations with respect to ϕ2 and
ϕ3 at the three binary interfaces. Altogether, the conditions

a12 > 0

a13 > 0

a23 > 0 (3.23)

a12 + a13 > a23

a12 + a23 > a13

a13 + a23 > a12

are sufficient to assure that the profiles (3.8) minimize free energy if f123 is given by (3.19).
Hence, an appropriate expression for fsurface is given by

fsurface = −a12Tδ~∇ϕ1 · ~∇ϕ2 − a13Tδ~∇ϕ1 · ~∇ϕ3 − a23Tδ~∇ϕ2 · ~∇ϕ3

+
a12

δ
Tϕ2

1ϕ
2
2 +

a13

δ
Tϕ2

1ϕ
2
3 +

a23

δ
Tϕ2

2ϕ
2
3 (3.24)

+ ϕ1ϕ2ϕ3T{
a12 + a13 − a23

δ
ϕ1 +

a12 − a13 + a23

δ
ϕ2 +

a13 − a12 + a23

δ
ϕ3}
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with the constraints (3.23) for the numbers aij .
A comparison of our result for fsurface with (2.190) and (2.191) on page 30 reveals that
the higher order terms in (3.24) correspond to those proposed by Haas ([80]) for the case
of N = 3 phases. We can conclude that at least for three phases, the conditions imposed
by Haas (see page 30) must be equivalent to ours. While his first condition about the
minimizer of (2.189) more or less obviously corresponds to our requirement of suppressing
ghost phases, it is not obvious that his second condition γij = σij is equivalent to the
equilibrium profiles being given by the tangens hyperbolicus function.

3.1.2. Bulk Part of Free Energy Density

The next step is to find a model for the bulk free energy density. As discussed in section
2.3, we use the isothermal model for dilute binary alloys by Kim, Kim and Suzuki ([67]) as
a basis. In particular, locally coexisting phases shall be assigned with individual compo-
sition values as discussed in paragraph 2.2.5.1 and proposed by Kim et al. also in earlier
publications ([56],[57]).
In accordance with [67], we write

fbulk = h1f1(ξ1, T ) + h2f2(ξ2, T ) + h3f3(ξ3, T ) (3.25)

ξ = h1ξ1 + h2ξ2 + h3ξ3 (3.26)

with individual phase compositions ξi and individual phase free energy densities fi(ξi, T ).
The functions hi correspond to appropriate phase interpolation functions and will be de-
termined later.

3.1.2.1. Individual Phase Free Energy Densities

At first, a description of the individual phase free energy densities is provided. As in [67],
the individual phases are regarded as ideal solutions of components A and B

fi(ξi, T ) = ξiµB,i + (1− ξi)µA,i (3.27)

and the chemical potentials µA,i and µB,i of components A and B in phase i are written
as

µA,i(ξi, T ) =
RT

vm
log(1− ξi) +GA,i(T ) (3.28)

µB,i(ξi, T ) =
RT

vm
log(ξi) +GB,i(T ). (3.29)

The first summands in (3.28) and (3.29) arise from the entropy of mixture and the ideal
gas constant R enters as an abbreviation R = kBNA for the product of the Boltzmann con-
stant kB and Avogadro’s number NA while vm represents the molar volume. At this point,
we exceed the model in [67] because the dilute solution approximation log(1− ξi) ≈ −ξi is
not appropriate to be used for our purpose.
We demonstrate now how the functions GA,i(T ) and GB,i(T ) can be adapted to represent
a given binary eutectic alloy. In order to obtain a suitable temperature dependence of en-
tropy and internal energy in non-isothermal situations, the functions GA,i(T ) and GB,i(T )
cannot be chosen as in [67].
If we take the eutectic temperature Te as a reference temperature for the liquid state,
proper expressions for the liquid entropy density and the liquid internal energy density
will be given by

s1 = −∂f1

∂T

!
= − R

vm
(ξ1 log(ξ1) + (1− ξ1) log(1− ξ1)) + ρc log(

T

Te
) (3.30)

e1 = f1 + Ts1 = f1 − T
∂f1

∂T

!
= ρc(T − Te). (3.31)
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An expression for the free energy per volume f1 being consistent with (3.30) and (3.31) is

f1 =
RT

vm
(ξ1 log(ξ1) + (1− ξ1) log(1− ξ1))− ρc(T log(

T

Te
)− (T − Te)), (3.32)

which suggests

GA,1(T ) = GB,1(T ) = −ρc(T log(
T

Te
)− (T − Te)). (3.33)

Note that in the isothermal model in [67], the authors set GA,1(T ) = GB,1(T ) = 0.
In analogy to [67], the next step is to regard a state of thermodynamic equilibrium between
one of the two solid phases j ∈ {2, 3} and the liquid phase at a temperature T ≥ Te. In
such a situation, the chemical potentials of components A and B in the involved phases
must be equal

µA,1 = µA,j (3.34)

µB,1 = µB,j (3.35)

and the compositions of the liquid and the solid phase ξ1 and ξj must correspond to their
equilibrium values from the phase diagram:

ξ1 = ξ
(1j)
1 (T ) (3.36)

ξj = ξ
(1j)
j (T ). (3.37)

We denote here the composition of the liquid phase in equilibrium with the solid phase j at

temperature T by ξ
(1j)
1 (T ) and similarly, the composition of the solid phase j in equilibrium

with the liquid phase at temperature T is named ξ
(1j)
j (T ). Therefore, the functions ξ

(1j)
1 (T )

and ξ
(1j)
j (T ) correspond to the liquidus and solidus lines in the equilibrium phase diagram

(see Figure 1.1).
For T ≥ Te and j ∈ {2, 3}, this leads to

GA,j(T ) =
RT

vm
log(

1− ξ(1j)
1 (T )

1− ξ(1j)
j (T )

)− ρc(T log(
T

Te
)− (T − Te)) (3.38)

GB,j(T ) =
RT

vm
log(

ξ
(1j)
1 (T )

ξ
(1j)
j (T )

) − ρc(T log(
T

Te
)− (T − Te)). (3.39)

However, we have to be aware that the liquidus and solidus lines end at the eutectic
temperature, i.e.

ξ
(1j)
1 (T < Te) = ξ

(1j)
1 (Te) (3.40)

ξ
(1j)
j (T < Te) = ξ

(1j)
j (Te). (3.41)

Suppose we have a volume with a melt of non-eutectic composition which in a first step
is cooled down to the eutectic temperature. When a uniform eutectic temperature dis-
tribution is approached from above, T → T+

e , the equilibrium state of the volume will

be a mixture of the liquid phase and one of the two solid phases with ξ1 = ξ
(1j)
1 (Te) und

ξj = ξ
(1j)
j (Te). If more heat is removed in a second step to reduce temperature below Te,

the liquid phase should disappear completely and the final state is expected to consist of a
mixture of the two solid phases in general. However, due to (3.40) and (3.41), the chemical
potential differences do not change in the second step of heat removal and equilibrium is
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retained for arbitrary temperatures T < Te:

µA,1 − µA,j =
RT

vm
[log(1− ξ(1j)

1 (Te))− log(1− ξ(1j)
j (Te))− log(

1− ξ(1j)
1 (Te)

1− ξ(1j)
j (Te)

)] = 0 (3.42)

µB,1 − µB,j =
RT

vm
[log(ξ

(1j)
1 (Te))− log(ξ

(1j)
j (Te))− log(

ξ
(1j)
1 (Te)

ξ
(1j)
j (Te)

)] = 0. (3.43)

Consequently, a complete solidification cannot be described for the above scenario with the
model for fbulk considered so far. In order to get rid of this problem, we lower the chemical
potentials of components A and B in the solid phases α and β for T < Te proportional to
the thermal undercooling T − Te. We use the Heaviside step function

Θ(x) =

{
1, falls x≥0

0, falls x<0
(3.44)

and add an expression

Θ(Te − T )Lρ
T − Te
Te

. (3.45)

to µA,j und µB,j (j ∈ {2, 3}) with the latent heat per mass L. We assume the same value of
L for both components in both solid phases because only a single value is usually provided
in the literature. However, a generalization to individual latent heat values LA,j and LB,j
is not a problem.
With this addition, we obtain for j ∈ {2, 3}

µA,j =
RT

vm
{log(1− ξj) + log(

1− ξ(1j)
1 (T )

1− ξ(1j)
j (T )

)}

+ Θ(Te − T )Lρ
T − Te
Te

− ρc(T log(
T

Te
)− (T − Te)) (3.46)

µB,j =
RT

vm
{log(ξj) + log(

ξ
(1j)
1 (T )

ξ
(1j)
j (T )

)}

+ Θ(Te − T )Lρ
T − Te
Te

− ρc(T log(
T

Te
)− (T − Te)). (3.47)

Consequently, we get at T < Te, ξ1 = ξ
(1j)
1 (Te) and ξj = ξ

(1j)
j (Te) the chemical potential

differences

µA,1 − µA,j = µB,1 − µB,j = Lρ
Te − T
Te

> 0, (3.48)

which increase linearly with thermal undercooling similar to the behaviour of elemental
materials and which permit a complete solidification. We summarize the final expressions
for the individual phase free energy densities:
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f1(ξ1, T ) =
RT

vm
{ξ1 log(ξ1) + (1− ξ1) log(1− ξ1)} − ρc{T log(

T

Te
)− (T − Te)}

f2(ξ2, T ) =
RT

vm
{ξ2 log(ξ2) + (1− ξ2) log(1− ξ2)} − ρc{T log(

T

Te
)− (T − Te)}

+
RT

vm
{ξ2 log(

ξ
(12)
1 (T )

ξ
(12)
2 (T )

) + (1− ξ2) log(
1− ξ(12)

1 (T )

1− ξ(12)
2 (T )

)}+ Θ(Te − T )Lρ
T − Te
Te

f3(ξ3, T ) =
RT

vm
{ξ3 log(ξ3) + (1− ξ3) log(1− ξ3)} − ρc{T log(

T

Te
)− (T − Te)}

+
RT

vm
{ξ3 log(

ξ
(13)
1 (T )

ξ
(13)
3 (T )

) + (1− ξ3) log(
1− ξ(13)

1 (T )

1− ξ(13)
3 (T )

)}+ Θ(Te − T )Lρ
T − Te
Te

(3.49)

3.1.2.2. Determination of Individual Phase Compositions

In analogy with Kim et al. ([67]), we introduced individual phase compositions ξi in (3.25)
and (3.26). It is important to note, however, that the ξi are merely auxiliary variables
which have to be determined from the state variables (ϕ1, ϕ2, ϕ3, ξ, T ). In this context,
Kim et al. propose to assume an instantaneous mass transport between locally coexisting
phases and therefore a local equality of the chemical potentials of the three phases:

µ =
∂f1(ξ1, T )

∂ξ1
=
∂f2(ξ2, T )

∂ξ2
=
∂f3(ξ3, T )

∂ξ3
. (3.50)

The evaluation of (3.50) is simplified considerably in [67] because the model by Kim et
al. is aimed at dilute binary alloys under isothermal conditions T = Te. Introducing the
partition coefficients k12(T ) and k13(T ) according to

ξ
(12)
2 (T ) = k12(T )ξ

(12)
1 (T ) (3.51)

ξ
(13)
3 (T ) = k13(T )ξ

(13)
1 (T ), (3.52)

condition (3.50) is evaluated in [67] approximately by setting

ξ2 = k12(Te)ξ1 (3.53)

ξ3 = k13(Te)ξ1. (3.54)

Putting this into (3.26), Kim et al. can calculate ξ1 and afterwards ξ2 and ξ3 by (3.53)
and (3.54). For the general case of a non-dilute alloy, it is concluded in [56] that a
complex numerical solution procedure including the Newton-Raphson method is necessary
to determine the ξi.
I will demonstrate in the following that for the non-dilute model regarded in this work, the
individual phase compositions can be determined exactly in an analytical manner.
We note at first that

∂fi(ξi, T )

∂ξi
= µB,i − µA,i. (3.55)
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This leads to

∂f1(ξ1, T )

∂ξ1
=
∂f2(ξ2, T )

∂ξ2

↔RT

vm
log(

ξ1

1− ξ1
) + (GB,1(T )−GA,1(T )) =

RT

vm
log(

ξ2

1− ξ2
) + (GB,2(T )−GA,2(T ))

↔ log(
ξ2

1− ξ2
) = log(

ξ1

1− ξ1
)− vm

RT
(GB,2(T )−GA,2(T ))

↔ ξ2

1− ξ2
=

ξ1

1− ξ1
e−

vm
RT

(GB,2(T )−GA,2(T ))

=
ξ1

(1− ξ1)Z2

↔ ξ2 =
ξ1

ξ1 + (1− ξ1)Z2
(3.56)

and analogously

ξ3 =
ξ1

ξ1 + (1− ξ1)Z3
(3.57)

with

Z2 =
ξ

(12)
1

ξ
(12)
2

1− ξ(12)
2

1− ξ(12)
1

(3.58)

Z3 =
ξ

(13)
1

ξ
(13)
3

1− ξ(13)
3

1− ξ(13)
1

. (3.59)

Using (3.26), (3.56) and (3.57), we get

ξ = h1ξ1 + h2ξ2 + h3ξ3

= h1ξ1 + h2
ξ1

ξ1 + (1− ξ1)Z2
+ h3

ξ1

ξ1 + (1− ξ1)Z3
. (3.60)

(3.60) can be rearranged to

0 = Aξ3
1 +Bξ2

1 + Cξ1 +D (3.61)

A = h1(1− (Z2 + Z3) + Z2Z3

B = h1(Z2 + Z3)− 2h1Z2Z3 + h2(1− Z3) + h3(1− Z2) + ξ(Z2 + Z3 − Z2Z3 − 1)

C = h1Z2Z3 + h2Z3 + h3Z2 + ξ(2Z2Z3 − Z2 − Z3)

D = −ξZ2Z3.

with Z2 and Z3 from (3.58) and (3.59).
Equation (3.61) can be solved analytically by using Cardano’s formula for cubic equations
([36]). Having obtained ξ1, ξ2 and ξ3 can be calculated with (3.56) and (3.57) and no
iterative numerical procedure is necessary.
Due to the dependence of the individual phase compositions on the state variables Vi ∈
{T, ξ,Φ1,Φ2,Φ3}, we henceforth express the derivative of a quantity X with respect to
one of the state variables Vi according to

dX

dVi
=
∂X

∂Vi
+

3∑
k=1

∂X

∂ξk

∂ξk
∂Vi

. (3.62)
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3.1.2.3. Interpolation Functions

In (3.25) and (3.26), a consistent set of interpolation functions is needed. As the model by
Kim et al. ([67]) is based on Steinbach’s multiphase-field approach discussed in paragraph
2.2.5.2, they are able to use the simple choice hi = ϕi in their model. In contrast to that,
the triple (ϕ1, ϕ2, ϕ3) moves in continuous free energy landscape in our case as we took the
model by Folch and Plapp ([70]) as a basis for fsurface. This results in several conditions
on the functions hi which necessitate a more complicated choice. The requirements as well
as the resulting set of interpolation functions are in accordance with [70], but they are
repeated here for the sake of completeness.
According to (3.25), the function hi shall shift the value of free energy at ϕi = 1, which is
zero by means of fsurface, to the thermodynamically appropriate value fi(ξi, T ) without
influencing the other two bulk phases ϕj = 1 and ϕk = 1 as well as the j − k interface
between them:

hi(ϕi = 1) = 1 ∧ hi(ϕi = 0) = 0. (3.63)

Additionally, we require for ϕj = 0 the relation:

hi(ϕj = 0) + hk(ϕj = 0) = 1. (3.64)

As demonstrated later, this condition induces a connection between the quantities aki
and surface tensions σki independently from the equilibrium phase diagram and therefore
independently from bulk chemical properties.
Finally, fsurface has been constructed to be minimized by the profiles (3.8). As this
property shall be maintained for fbulk 6= 0, the functions hi must be designed to make
the contribution of fbulk to the first variations in (3.9) vanish in a state of thermodynamic
equilibrium provided that the phase-fields are given by (3.8). The above set of conditions
is fulfilled by (see [70]):

hi = ϕ5
i + 5ϕ4

i (1−ϕi) + 10ϕ3
i (1−ϕi)2 +

15

4
ϕ2
i (1−ϕi)3 − 15

4
ϕ2
i (1−ϕi)(ϕj −ϕk)2. (3.65)

(3.65) agrees with (2.181) and leads together with the introduction of individual phase
compositions to a complete decoupling of surface effects described by fsurface and bulk
chemical properties described by fbulk.

3.1.3. Determination of the Model Parameters aki

Using the recipe provided in [70], we can calculate now the surface tension of a flat k − i
equilibrium phase boundary at T = Te in the framework of the developed model. For a
binary eutectic alloy, it is defined to be the surface excess of the grand potential per unit
area. Introducing the grand potential per volume ω = f − µξ, we get

σki =
1

A

ˆ
V

(ω − ωbulk)dV

=

ˆ +∞

−∞
(ω − ωbulk)dx. (3.66)

With the equilibrium compositions from the phase diagram ξi = ξ
(ik)
i (Te) and ξk =

ξ
(ik)
k (Te), one obtains

ω = f − µξ (3.67)

= fsurface + hifi(ξ
(ik)
i (Te), Te) + hkfk(ξ

(ik)
k (Te), Te)− µ{hiξ(ik)

i (Te) + hkξ
(ik)
k (Te)}

= fsurface + hi{fi(ξ(ik)
i (Te), Te)− µξ(ik)

i (Te)}+ hk{fk(ξ
(ik)
k (Te), Te)− µξ(ik)

k (Te)}
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as well as

ω(ϕi = 1, ϕk = 0) = fi(ξ
(ik)
i (Te), Te)− µξ(ik)

i (Te) (3.68)

ω(ϕi = 0, ϕk = 1) = fk(ξ
(ik)
k (Te), Te)− µξ(ik)

k (Te). (3.69)

Since a state of thermodynamic equilibrium is regarded, the free energies of the two phases

fi(ξ
(ik)
i (Te), Te) and fk(ξ

(ik)
k (Te), Te) correspond to minimum values of the two free energy

functions fi(ξi, Te) and fk(ξk, Te). It is well-known in thermodynamics that these minima
share a common tangent ([70])

fk(ξ
(ik)
k (Te), Te) = fi(ξ

(ik)
i (Te), Te) + (ξ

(ik)
k (Te)− ξ(ik)

i (Te))µ,

leading to the relation

fi(ξ
(ik)
i (Te), Te)− µξ(ik)

i (Te) = fk(ξ
(ik)
k (Te), Te)− µξ(ik)

k (Te). (3.70)

Using (3.70) in (3.68) and (3.69), one can see that the grand potential per volume adopts
the same value on both sides of the phase boundary

ωbulk = ω(ϕi = 1, ϕk = 0) = ω(ϕi = 0, ϕk = 1) = fi(ξ
(ik)
i (Te), Te)− µξ(ik)

i (Te). (3.71)

Replacing in (3.66) ω and ωbulk by (3.67) and (3.71), utilizing (3.70) and property (3.64)
of the interpolation functions and inserting the derived expression (3.24) for fsurface as
well as the equilibrium profile ϕi = 1

2(1 + tanh( x2δ )), surface tension is given by

σki =

ˆ +∞

−∞
{fsurface + [fi(ξ

(ik)
i (Te), Te)− µξ(ik)

i (Te)](hi + hk − 1)}dx

=

ˆ +∞

−∞
{fsurface}dx

=

ˆ +∞

−∞
{akiTeδ(~∇ϕi)2 +

akiTe
δ

ϕ2
i (1− ϕi)2}dx

=
2akiTe
δ

ˆ +∞

−∞
{ϕ2

i (1− ϕi)2}dx

= 2akiTe

ˆ 1

0
{ϕi(1− ϕi)}dϕi

=
akiTe

3

↔ aki =
3σki
Te

. (3.72)

3.1.4. Determination of the Lagrangian Multiplier ΛL

Since the models for fsurface and fbulk are complete now, the lagrangian multiplier ΛL from
(3.3) can be calculated explicitly. Using (2.55) to calculate the variation of the surface free
energy with respect to an arbitrary phase j, we get

1

T

δ

δϕj

ˆ
V
fsurfacedV

=
1

T
{−~∇ · (

∂fsurface

∂~∇ϕj
) +

∂fsurface
∂ϕj

}

= ~∇ · (aijδ~∇ϕi) + ~∇ · (akjδ~∇ϕk) +
2aij
δ
ϕ2
iϕj +

2akj
δ
ϕ2
kϕj

+
aij + aik − akj

δ
ϕ2
iϕk +

akj + aik − aij
δ

ϕ2
kϕi + 2

aij + akj − aik
δ

ϕiϕjϕk
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with i 6= j 6= k, aij , aik, akj ∈ {a12, a13, a23} and aij = aji, aik = aki, akj = ajk.
Additionally, considering (3.62), the bulk part yields

1

T

δ

δϕj

ˆ
V
fbulkdV =

1

T

d

dϕj

3∑
k=1

hkfk

=
1

T

3∑
k=1

{∂hk
∂ϕj

fk + hk
∂fk
∂ξk

∂ξk
∂ϕj
}. (3.73)

Due to ∂fk
∂ξk

= µ and (7.14), we get

1

T

δ

δϕj

ˆ
V
fbulkdV =

1

T

3∑
k=1

∂hk
∂ϕj

(fk − µξk)

and finally, the lagrangian multiplier is given by

ΛL =− 1

3T
(
δ

δϕ1
+

δ

δϕ2
+

δ

δϕ3
)

ˆ
V

(fsurface + fbulk)dV (3.74)

=− 1

3

3∑
j=1

{~∇ · (aijδ~∇ϕi) + ~∇ · (akjδ~∇ϕk) +
2aij
δ
ϕ2
iϕj +

2akj
δ
ϕ2
kϕj

+
aij + aik − akj

δ
ϕ2
iϕk +

akj + aik − aij
δ

ϕ2
kϕi + 2

aij + akj − aik
δ

ϕiϕjϕk

+
1

T

3∑
k=1

∂hk
∂ϕj

(fk − µξk)}.
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3.2. Generalization to Macroscopic Length Scales

The phase state of a binary eutectic alloy can fluctuate between the possible bulk phases on
a comparably small length scale of several micrometers. In the literature, the phase-field
method has been exclusively applied on lengths being representative of the typical solidifi-
cation microstructure. A generic volume of interest has a side length of about 10− 100µm
and the phase-fields are used to represent the detailed dynamics of sharp interfaces sepa-
rating the bulk phases.
If one would like to use the phase-field method for modelling phase change in the context
of IVR with characteristic lengths in the range of 1m, it will not be possible to resolve
the detailed phase structure as the necessary number of grid cells will become too large.
Additionally, one may assume that the microscopic details are not so important for the
overall large-scale behaviour.
From a macroscopic point of view, the mentioned phase state fluctuations are smeared out
and appear as mixture states, which according to the phase diagram are purely binary in
thermodynamic equilibrium. Examples are the mushy layers, which depending on compo-
sition represent a binary mixture of the liquid phase with one of the two solid phases, but
also the composite solids as mixtures of the two solid phases α and β.
In this section, I will propose a new approach based on volume-averaging in order to gen-
eralize the derived free energy functional to macroscopic length scales. In this framework,
the word ’macroscopic’ shall be understood as ’being visible to the naked eye’. Furthermore,
the generalization will be consistent in the sense that the original expression is recovered
if the averaging volume goes to zero.

3.2.1. Free Energy Functional for Volume-Averaged Phase-Fields

In order to render an application of the phase-field method to macroscopic systems possible,
we introduce volume-averaged phase-fields

Φi(~x, t) =
1

∆V

+L
2ˆ

−L
2

+L
2ˆ

−L
2

+L
2ˆ

−L
2

ϕi(~x+ ~y, t)dy1dy2dy3. (3.75)

The integrand of (3.75) is given by the phase-field functions introduced in the last section
as an exact description of the phase state. Except for the thin and smooth transition layers
around sharp phase boundaries, the integrand of (3.75) therefore adopts a value of one in
phase i and a value of zero otherwise. Consequently, the Φi correspond to real volume
fractions and we get the same constraint as for the ϕi before:

Φ1(~x, t) + Φ2(~x, t) + Φ3(~x, t) = 1. (3.76)

Note that regions with 0 < ϕi < 1 correspond to an artificial phase mixing generated by
the modeling approach while 0 < Φi < 1 represents a physically real phase mixing.
The task is now to find a phenomenological description of free energy as a functional of
the volume-averaged Φi instead of the ϕi. The phenomenology of the Φi can be read from
the phase diagram (see e.g. Figure 1.1). Depending on composition and temperature,
there are pure phases α, β and l as well as binary mixtures α + l, β + l and α + β. At
a given temperature, two bulk phases possessing different compositions are separated by
a transition layer consisting of the corresponding binary mixture. The phenomenology is
therefore the same as for the small ϕi with the difference that the transition layer width
should be described by a dynamical quantity ∆(~x, t) in the volume-averaged framework
instead of the small constant δ needed for sharp interface approximation. This is because
the width of macroscopic mixture states may in general vary in space and time.
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Consequently, an expression for free energy as a functional of the Φi can be obtained from
the functional derived in the last section by replacing

ϕi(~x, t)→ Φi(~x, t) (3.77)

δ → ∆(~x, t). (3.78)

This leads to

F [Φ1,Φ2,Φ3,∆, ξ] =

ˆ
V
{f + ΛL · T · (Φ1 + Φ2 + Φ3 − 1)}dV (3.79)

f = fsurface + fbulk

fsurface = −a12T∆~∇Φ1 · ~∇Φ2 − a13T∆~∇Φ1 · ~∇Φ3 − a23T∆~∇Φ2 · ~∇Φ3

+
a12

∆
TΦ2

1Φ2
2 +

a13

∆
TΦ2

1Φ2
3 +

a23

∆
TΦ2

2Φ2
3

+ Φ1Φ2Φ3T{
a12 + a13 − a23

∆
Φ1 +

a12 − a13 + a23

∆
Φ2

+
a13 − a12 + a23

∆
Φ3}

fbulk =
3∑
i=1

hi(Φ1,Φ2,Φ3)fi(ξi, T ).

The lagrangian multiplier can obtained similarly by applying the replacements (3.77) and
(3.78) in (3.74)

ΛL =− 1

3

3∑
j=1

{~∇ · (aij∆~∇Φi) + ~∇ · (akj∆~∇Φk) +
2aij
∆

Φ2
iΦj +

2akj
∆

Φ2
kΦj (3.80)

+
aij + aik − akj

∆
Φ2
iΦk +

akj + aik − aij
∆

Φ2
kΦi + 2

aij + akj − aik
∆

ΦiΦjΦk

+
1

T

3∑
k=1

∂hk
∂Φj

(fk − µξk)}

with i 6= j 6= k, aij , aik, akj ∈ {a12, a13, a23} and aij = aji, aik = aki, akj = ajk.

3.2.2. Determination of the Dynamical Parameter ∆(~x, t)

In order to handle the additional degree of freedom ∆(~x, t), we make use of the fact that we
are interested in comparably slow solidification processes. It is therefore possible to assume
that the spatial extent of the appearing mixture states is always close to the equilibrium
value determined by the other state variables. In this regard, the field ∆(~x, t) is determined
at each point in time based on free energy minimization:

δF [Φ1,Φ2,Φ3,∆, ξ]

δ∆
= 0. (3.81)

As only fsurface depends on ∆ and no gradients of ∆ appear in it, (3.81) reduces to

∂fsurface
∂∆

= 0. (3.82)

Evaluating (3.82) by using fsurface from (3.79) leads to
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∆2 =
a12Φ2

1Φ2
2 + a13Φ2

1Φ2
3 + a23Φ2

2Φ2
3

−a12
~∇Φ1 · ~∇Φ2 − a13

~∇Φ1 · ~∇Φ3 − a23
~∇Φ2 · ~∇Φ3

(3.83)

+
Φ1Φ2Φ3{(a12 + a13 − a23)Φ1 + (a12 + a23 − a13)Φ2 + (a13 + a23 − a12)Φ3}

−a12
~∇Φ1 · ~∇Φ2 − a13

~∇Φ1 · ~∇Φ3 − a23
~∇Φ2 · ~∇Φ3

.

It is important to note that the second derivative of fsurface with respect to ∆ is always
positive. Therefore, the above expression does indeed minimize free energy with respect
to ∆. In the following subsections, the physical implications of the volume-averaged de-
scription and its consistency in the limit ∆V → 0 will be investigated.

3.2.3. Equilibrium States of Binary Mixtures

In this subsection, we will investigate the equilibrium states of the volume-averaged model
based on (3.79), (3.80) and (3.83). As there is no domain α+β+l in the binary eutectic alloy
phase diagram (see Figure 1.1), three-phase mixture states do not have to be considered.
Note that temperature is still treated as a constant here like in section 3.1. The transition
to non-isothermal conditions will be made in section 3.3.
Exemplarily, we regard a binary mixture layer of the liquid phase and solid phase α with
Φ3 = 0. Due to the symmetry of model, the results can be translated to any other
combination of two phases. Using (2.55), (3.50), (7.4) from appendix, (3.62) and the free
energy model (3.79), the necessary conditions for an equilibrium state are given by

δF

δΦ1

∣∣
Φ3=0

= a12T ~∇ · (∆~∇Φ2) +
2a12

∆
TΦ1Φ2

2

+
3∑
i=1

{ ∂hi
∂Φ1

∣∣
Φ3=0

(fi − µξi)}+ ΛLT = 0 (3.84)

δF

δΦ2

∣∣
Φ3=0

= a12T ~∇ · (∆~∇Φ1) +
2a12

∆
TΦ2Φ2

1

+
3∑
i=1

{ ∂hi
∂Φ2

∣∣
Φ3=0

(fi − µξi)}+ ΛLT = 0 (3.85)

δF

δΦ3

∣∣
Φ3=0

= (a13 + a23)T ~∇ · (∆~∇Φ1 + ∆~∇Φ2)

+ Φ1Φ2T (
a12 + a13 − a23

∆
Φ1 +

a12 − a13 + a23

∆
Φ2)

+
3∑
i=1

{ ∂hi
∂Φ3

∣∣
Φ3=0

(fi − µξi)}+ ΛLT = 0. (3.86)

In the next step, we replace ΛL by (3.80), insert the interpolation functions hi from (3.65)
and use Φ2 = 1− Φ1 to obtain

δF

δΦ1

∣∣
Φ3=0

= −(a12 −
1

3
a23 +

1

3
a13)T{~∇ · (∆~∇Φ1)− 1

∆
Φ1(1− Φ1)(1− 2Φ1)}

− 15Φ2
1(1− Φ1)2{f2 − f1 − µ(ξ2 − ξ1)} = 0 (3.87)

δF

δΦ2

∣∣
Φ3=0

= (a12 +
1

3
a23 −

1

3
a13)T{~∇ · (∆~∇Φ1)− 1

∆
Φ1(1− Φ1)(1− 2Φ1)}

+ 15Φ2
1(1− Φ1)2{f2 − f1 − µ(ξ2 − ξ1)} = 0 (3.88)

δF

δΦ3

∣∣
Φ3=0

= −2

3
(a23 − a13)T{~∇ · (∆~∇Φ1)− 1

∆
Φ1(1− Φ1)(1− 2Φ1)} = 0. (3.89)
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Setting Φ3 = 0 in (3.83), the expression for the dynamic ∆ simplifies to

∆ =
Φ1(1− Φ1)

|~∇Φ1|
. (3.90)

Regarding (3.90), it is not clear how ∆ behaves in the bulk phases with Φ1 = 0 or Φ1 = 1
because the numerator as well as the denominator become zero. However, this difficulty
can be mitigated by explicitly replacing ∆ in the equations. Inserting (3.90) into (3.87)-
(3.89), utilizing

~∇ · {Φ1(1− Φ1)

|~∇Φ1|
~∇Φ1} = Φ1(1− Φ1)~∇ ·

~∇Φ1

|~∇Φ1|
+ (1− 2Φ1)|~∇Φ1| (3.91)

and defining curvature κ according to

κ = ~∇ · (
~∇Φ1

|~∇Φ1|
) = ~∇ · ~n, (3.92)

we end up with the three equations

δF

δΦ1

∣∣
Φ3=0

= −(a12 −
1

3
a23 +

1

3
a13)TΦ1(1− Φ1)κ

− 15Φ2
1(1− Φ1)2{f2 − f1 − µ(ξ2 − ξ1)} = 0 (3.93)

δF

δΦ2

∣∣
Φ3=0

= (a12 +
1

3
a23 −

1

3
a13)TΦ1(1− Φ1)κ

+ 15Φ2
1(1− Φ1)2{f2 − f1 − µ(ξ2 − ξ1)} = 0 (3.94)

δF

δΦ3

∣∣
Φ3=0

= −2

3
(a23 − a13)TΦ1(1− Φ1)κ = 0. (3.95)

characterizing thermodynamic equilibrium.
Equation (3.95) is solely determined by fsurface and it is fulfilled if

Φ1 = 1 ∨ Φ1 = 0 ∨ κ = 0. (3.96)

If one of the conditions (3.96) is fulfilled, the contributions from fsurface arising in the
first lines of (3.93) and (3.94) will vanish as well. We can conclude that with respect to
surface tension effects, thermodynamic equilibrium is achieved in the bulk phases Φ1 = 1
and Φ1 = 0 and in curvature-free binary mixture layers with κ = 0. The latter are
characterized by the unity vector ~n in (3.92) showing into the same direction at any point
of the phase mixture.
In particular, it is important to note that conditions (3.96) characterizing thermodynamic
equilibrium with respect to fsurface do not specify a certain profile for the phase volume
fractions Φ1 and Φ2 = 1−Φ1. This is in contrast to the model for the small quantities ϕi
and δ. Remember that the expression for fsurface has been constructed in subsection 3.1.1
to enforce tangens hyperbolicus profiles in thermodynamic equilibrium. These profiles are
lost in the volume-averaged model.
However, the second lines of (3.93) and (3.94) must be zero as well to achieve equilibrium
also with respect to fbulk. The resulting condition is

f2(ξ2, T ) = f1(ξ1, T ) + µ(ξ2 − ξ1) (3.97)

at any point in the mixture region. Before this state has not been reached, there will be
further phase change processes until (3.97) is fulfilled everywhere. We can conclude that
the equilibrium profiles are determined by (3.97) and therefore by the individual phase
chemical properties.
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3.2.4. Consistency in the Limit ∆V → 0

In the limit ∆V → 0, we have by definition

lim
∆V→0

Φi(~x, t) = ϕi(~x, t). (3.98)

We know that around sufficiently flat k− i interfaces far from any triple points, the ϕi are
given by

ϕi =
1

2
· (1 + tanh(

x

2δ
))

ϕk = 1− ϕi (3.99)

ϕj = 0.

Utilizing (3.98) and (3.99) in (3.83), we get

lim
∆V→0

∆2(~x) =
akiϕ

2
iϕ

2
k

−aki~∇ϕi · ~∇ϕk
=
ϕ2
i (1− ϕi)2

(~∇ϕi)2
= δ2. (3.100)

Since ∆ and δ are both positive and utilizing (3.98), this means that the original free
energy functional for describing sharp interfaces is obtained back:

lim
∆V→0

F [Φ1,Φ2,Φ3,∆, ξ] = F [ϕ1, ϕ2, ϕ3, δ, ξ] ≡ F [ϕ1, ϕ2, ϕ3, ξ]. (3.101)

It is natural to identify the averaging volume ∆V with the cells of the numerical grid.
Strictly speaking, the limit ∆V → 0 means that the calculation grid is fine enough for
ϕi ≈ constant inside a single cell. In practice, it should be sufficient to resolve the
continuous transition region between ϕi = 0 and ϕi = 1, i.e. to have a handful of cells
inside 0 < ϕi < 1 as in usual phase-field simulations.
We can conclude from (3.101) that if the cells of the numerical grid are small enough, the
macroscopic governing equations to be derived later based on the generalized free energy
functional (3.79) converge to the appropriate microscopic equations describing the detailed
sharp interface structure.
Note that at sharp interfaces with a high curvature or close to triple points, the phase-fields
cannot adopt the tangens hyperbolicus profiles according to (3.99). The deviation of the
resulting expression ∆(ϕ1, ϕ2, ϕ3) from the constant δ will be regarded as a correction in
these cases.

3.2.5. Lower Boundary for ∆

In analogy to subsection 3.2.3, we regard again a binary mixture of phases i and k with
∆ being given by

∆ =
Φi(1− Φi)

|~∇Φi|
=

Φi(1− Φi)√
~∇Φi · ~∇Φi

. (3.102)

We investigate here if there is a lower boundary for ∆. A necessary condition for (3.102)
adopting a minimum value is

δ∆

δΦi
= 0.
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An evaluation of this leads to

δ∆

δΦi
= −~∇ · ( ∂∆

∂~∇Φi

) +
∂∆

∂Φi

= −~∇ · (Φi(1− Φi)(−
1

2
)[(~∇Φi)

2]−
3
2 2~∇Φi) + (1− 2Φi)

1

|~∇Φi|

= ~∇ · (Φi(1− Φi)
~∇Φi

|~∇Φi|3
) +

1− 2Φi

|~∇Φi|

= (1− 2Φi)
(~∇Φi)

2

|~∇Φi|3
+ Φi(1− Φi)

∂

∂~∇Φi

(
~∇Φi

[(~∇Φi)2]
3
2

)~∇2Φi +
1− 2Φi

|~∇Φi|

= 2
1− 2Φi

|~∇Φi|
+ Φi(1− Φi)[

[(~∇Φi)
2]

3
2 − ~∇Φi · 3

2 [(~∇Φi)
2]

1
2 2~∇Φi

[(~∇Φi)2]3
]~∇2Φi

= 2
1− 2Φi

|~∇Φi|
+ Φi(1− Φi)

|~∇Φi|3 − 3|~∇Φi|3

|~∇Φi|6
~∇2Φi

= 2{1− 2Φi

|~∇Φi|
− Φi(1− Φi)

1

|~∇Φi|3
~∇2Φi}. (3.103)

Expression (3.103) vanishes if

Φi = ϕi =
1

2
(1 + tanh(

x

2δ
)). (3.104)

The value adopted by ∆ based on the profile (3.104) is according to (3.100) equal to δ.
We can conclude

∆(~x, t) ≥ δ > 0. (3.105)

In addition to the result obtained in subsection 3.2.4, (3.105) demonstrates the consistency
of the transition to the volume-averaged model.

3.3. Coupled Governing Equations for Non-Isothermal Con-
ditions

Based on thermodynamic principles, we derive now governing equations for the phase-
fields and their coupling with the compressible Navier-Stokes equations as well as with
transport equations for heat and composition. The coupling procedure is based on ideas
proposed by Anderson, McFadden and Wheeler ([50],[51]) discussed in subsection 2.2.4
and can be regarded as a generalization for binary alloys including multiple phase-fields,
heat and composition transport. Furthermore, it turns out that due to the special criteria
applied in the construction of fsurface and fbulk, the final set of equations contains the
description of elemental material solid-liquid phase change as a special case.

3.3.1. Binary Eutectic Alloys

The first step is to calculate functionals for entropy and internal energy from the free
energy functional (3.79):

S = −dF
dT

=

ˆ
V
{− df

dT
− ΛL(Φ1 + Φ2 + Φ3 − 1)}dV (3.106)

E = F + TS =

ˆ
V
{f − T df

dT
}dV. (3.107)
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We define an entropy per mass sm and an internal energy per mass em by

− df
dT

=
∑
i<j

aij∆~∇Φi · ~∇Φj + ρsm (3.108)

f − T df

dT
= ρem. (3.109)

Note that the coefficients in the gradient term are constants. Considering

df

dT
=
∂f

∂T
+

3∑
k=1

∂f

∂ξk

∂ξk
∂T

=
∂f

∂T
+

3∑
k=1

hk
∂fk
∂ξk

∂ξk
∂T

=
∂f

∂T
+ µ

∂ξ

∂T
=
∂f

∂T
,

we get

ρsm =− a12

∆
Φ2

1Φ2
2 −

a13

∆
Φ2

1Φ2
3 −

a23

∆
Φ2

2Φ2
3 (3.110)

− Φ1Φ2Φ3{
a12 + a13 − a23

∆
Φ1 +

a12 − a13 + a23

∆
Φ2 +

a13 − a12 + a23

∆
Φ3}

−
3∑

k=1

{hk
∂fk
∂T
}

and

ρem =
3∑

k=1

hk{fk − T
∂fk
∂T
}. (3.111)

Furthermore, the following conservation equations for mass, momentum, internal energy
and composition shall be valid:

Dρ

Dt
= −ρ(~∇ · ~u) ρ

Dem
Dt

= −~∇ · ~qe +m : (~∇~u) (3.112)

ρ
D~u

Dt
= ~∇ ·m−K0

(1− Φ1)2

Φ3
1

~u+ ρ~g ρ
Dξ

Dt
= −~∇ · ~qξ.

On the left hand sides, the material derivatives D
Dt = ∂

∂t + (~u · ~∇) were used, m represents
the stress tensor and the velocity ~u shall be damped in the mushy layer according to Darcy’s
law with a permeability K0 > 0. Additionally, the quantity ~qξ represents the composition
flux. The equations for mass, momentum and energy conservation in (3.112) basically
correspond to equations (2.117)-(2.119) in subsection 2.2.4 as introduced by Anderson et
al. ([51]). The difference to Anderson’s model is that we added the Darcy source term in
momentum conservation and introduced an additional transport equation for composition.

3.3.1.1. Internal Energy Conservation

At first, we consider internal energy conservation. Applying the chain rule to (3.111), we
get

Dem
Dt

=
∂em
∂ρ

Dρ

Dt
+
dem
dT

DT

Dt
+
dem
dξ

Dξ

Dt
+

3∑
k=1

dem
dΦj

DΦj

Dt
.
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The calculations presented in appendix C result in

∂em
∂ρ

= 0

dem
dT

= −T
ρ

3∑
k=1

hk
∂2fk
∂T 2

dem
dξ

=
1

ρ
(µ− T dµ

dT
)

dem
dΦj

=
1

ρ

3∑
k=1

∂hk
∂Φj

[fk − T
∂fk
∂T
− µξk + T

∂µ

∂T
ξk].

Using these expressions, the equation for internal energy conservation can be transformed
to a transport equation for the temperature field:

−T
3∑

k=1

hk
∂2fk
∂T 2

DT

Dt
=− ~∇ · ~qe +m : (~∇~u)− (µ− T dµ

dT
)
Dξ

Dt
(3.113)

−
3∑
j=1

{
3∑

k=1

∂hk
∂Φj

(fk − µξk − T
∂

∂T
(fk − µξk)− Tµ

∂ξk
∂T

)}DΦj

Dt
.

3.3.1.2. Second Law: Positive Entropy Production Rate

The objective of this paragraph is to find constitutive laws for the quantities m, ~qe and
~qξ appearing in the set of equations (3.112) as well as governing equations for the phase
volume fractions Φj in accordance with the second law of thermodynamics. The resulting
constitutive laws will contain non-classical contributions due to the presence of phase
interfaces and assure a thermodynamically consistent coupling of phase change with the
governing equations (3.112). In analogy to Anderson et al. ([51]), we regard the entropy
balance of a control volume Ω ⊂ V

dSΩ

dt
=

ˆ
Ω
ṡproddΩ −

ˆ
∂Ω

~qs · ~ndA (3.114)

containing a source term ṡprod and an entropy flux ~qs. Utilizing the entropy functional
(3.106) with (3.108), the left hand side can be evaluated according to

dSΩ

dt
=

ˆ
Ω
{ ∂
∂t

(ρsm) + ~∇ · (ρsm~u)}dΩ

−
ˆ

Ω
{ΛL(

∂Φ1

∂t
+
∂Φ2

∂t
+
∂Φ3

∂t
) + ΛL~∇ · ((Φ1 + Φ2 + Φ3 − 1)~u)}dΩ

+

ˆ
Ω
{ ∂
∂t

(
∑
i<j

aij∆~∇Φi · ~∇Φj) + ~∇ · ([
∑
i<j

aij∆~∇Φi · ~∇Φj ]~u)}dΩ.

After an application of the continuity equation and the Gaussian theorem, the entropy
production rate ṡprod in the subvolume Ω may be expressed as

ṡprod = ρ
Dsm
Dt
− ΛL(

DΦ1

Dt
+
DΦ2

Dt
+
DΦ3

Dt
)− ΛL(Φ1 + Φ2 + Φ3 − 1)(~∇ · ~u)

+
∂

∂t
(
∑
i<j

aij∆~∇Φi · ~∇Φj) + ~∇ · ([
∑
i<j

aij∆~∇Φi · ~∇Φj ]~u) + ~∇ · ~qs. (3.115)
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In accordance with the second law of thermodynamics, we must assure that expression
(3.115) is always non-negative. The first term is evaluated again by using the chain rule

Dsm
Dt

=
∂sm
∂ρ

Dρ

Dt
+
dsm
dT

DT

Dt
+
dsm
dξ

Dξ

Dt
+

3∑
j=1

dsm
dΦj

DΦj

Dt
+
∂sm
∂∆

D∆

Dt

and from the calculations in the appendix D, we get

dsm
dT

=−1

ρ

3∑
k=1

hk
∂2fk
∂T 2

dsm
dξ

=−1

ρ

dµ

dT

dsm
dΦj

=−1

ρ
{2aij

∆
Φ2
iΦj + 2

akj
∆

Φ2
kΦj

+
aij + aik − akj

∆
Φ2
iΦk +

akj + aik − aij
∆

Φ2
kΦi + 2

aij + akj − aik
∆

ΦiΦjΦk

+

3∑
k=1

∂hk
∂Φj

(
∂fk
∂T
− ∂µ

∂T
ξk)}

∂sm
∂∆

=
1

ρ
{ 1

∆2
[a12Φ2

1Φ2
2 + a13Φ2

1Φ2
3 + a23Φ2

2Φ2
3]

+
1

∆2
Φ1Φ2Φ3[(a12 + a13 − a23)Φ1 + (a12 − a13 + a23)Φ2 + (a13 − a12 + a23)Φ3]}.

It will become clear in the following that the expression for ∂sm
∂ρ does not have to be

evaluated explicitly. We write in the second line of (3.115)

∂

∂t
(aij∆~∇Φi · ~∇Φj) + ~∇ · (aij∆~∇Φi · ~∇Φj~u)

= aij∆~∇Φi ·
∂~∇Φj

∂t
+ aij∆~∇Φj ·

∂~∇Φi

∂t
+ aij(~∇Φi · ~∇Φj)

∂∆

∂t

+ aij∆(~∇Φi · ~∇Φj)(~∇ · ~u) + aij∆(~u · ~∇)(~∇Φi · ~∇Φj) + aij(~∇Φi · ~∇Φj)(~u · ~∇)∆

= aij∆~∇Φi · {
∂~∇Φj

∂t
+ (~u · ~∇)~∇Φj}+ aij∆~∇Φj · {

∂~∇Φi

∂t
+ (~u · ~∇)~∇Φi}

+ aij(~∇Φi · ~∇Φj){
∂∆

∂t
+ (~u · ~∇)∆}+ aij∆(~∇Φi · ~∇Φj)(~∇ · ~u)

= aij∆~∇Φi ·
D~∇Φj

Dt
+ aij∆~∇Φj ·

D~∇Φi

Dt
+ aij(~∇Φi · ~∇Φj)

D∆

Dt

+ aij∆(~∇Φi · ~∇Φj)(~∇ · ~u). (3.116)

We use

~∇ · (aij∆~∇Φi
DΦj

Dt
)

=
DΦj

Dt
~∇ · (aij∆~∇Φi) + aij∆~∇Φi · ~∇(

DΦj

Dt
)

=
DΦj

Dt
~∇ · (aij∆~∇Φi) + aij∆~∇Φi · [~∇(

∂Φj

∂t
) + ~∇((~u · ~∇)Φj)]

=
DΦj

Dt
~∇ · (aij∆~∇Φi) + aij∆~∇Φi · [

∂~∇Φj

∂t
+ (~u · ~∇)~∇Φj + (~∇~u)T · ~∇Φj ]

=
DΦj

Dt
~∇ · (aij∆~∇Φi) + aij∆~∇Φi ·

D~∇Φj

Dt
+ aij∆(~∇Φi ⊗ ~∇Φj) : (~∇~u)
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and replace in (3.116):

aij∆~∇Φi ·
D~∇Φj

Dt
= ~∇ · (aij∆~∇Φi

DΦj

Dt
)− DΦj

Dt
~∇ · (aij∆~∇Φi)− aij∆((~∇Φi ⊗ ~∇Φj) : ~∇~u).

This leads to

ṡprod =ρ
∂sm
∂ρ

Dρ

Dt
−

3∑
k=1

{hk
∂2fk
∂T 2
}DT
Dt
− dµ

dT

Dξ

Dt
+

3∑
j=1

{ρdsm
dΦj

DΦj

Dt
}+ ρ

∂sm
∂∆

D∆

Dt
(3.117)

− ΛL

3∑
j=1

{DΦj

Dt
} − ΛL(Φ1 + Φ2 + Φ3 − 1)(~∇ · ~u)

+
∑
i<j

{
~∇ · (aij∆~∇Φi

DΦj

Dt
)− DΦj

Dt
~∇ · (aij∆~∇Φi)− aij∆(~∇Φi ⊗ ~∇Φj) : (~∇~u)

+ ~∇ · (aij∆~∇Φj
DΦi

Dt
)− DΦi

Dt
~∇ · (aij∆~∇Φj)− aij∆(~∇Φj ⊗ ~∇Φi) : (~∇~u)

+ aij(~∇Φi · ~∇Φj)
D∆

Dt
+ aij∆(~∇Φi · ~∇Φj)(~∇ · ~u)

}
+ ~∇ · ~qs.

In (3.117), we insert the transport equation for the temperature field (3.113) and use
~∇ · ~u = 1 : (~∇~u):

ṡprod =ρ
∂sm
∂ρ

Dρ

Dt
− µ

T

Dξ

Dt
(3.118)

+
3∑
j=1

{
−~∇ · (aij∆~∇Φi)− ~∇ · (akj∆~∇Φk)− 2

aij
∆

Φ2
iΦj − 2

akj
∆

Φ2
kΦj

−
aij + aik − akj

∆
Φ2
iΦk −

akj + aik − aij
∆

Φ2
kΦi − 2

aij + akj − aik
∆

ΦiΦjΦk

− 1

T

3∑
k=1

[
∂hk
∂Φj

(fk − µξk)]− ΛL

}DΦj

Dt

+ {ρ∂sm
∂∆

+
∑
i<j

aij(~∇Φi · ~∇Φj)}
D∆

Dt
− 1

T
~∇ · ~qe

+
{m
T
−
∑
i<j

[aij∆(~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi − (~∇Φi · ~∇Φj)1)]

− λL(
3∑

k=1

Φk − 1)
}

: (~∇~u)

+ ~∇ · (~qs +
∑
i<j

aij∆(~∇Φi
DΦj

Dt
+ ~∇Φj

DΦi

Dt
)).

Inserting ∆ defined in (3.83) into the expression for ∂sm
∂∆ , we get:

ρ
∂sm
∂∆

+
∑
i<j

aij(~∇Φi · ~∇Φj) = 0.

Due to ∂em
∂ρ = 0, we can write

ρ
∂sm
∂ρ

Dρ

Dt
= − ρ

T
(
∂em
∂ρ
− T ∂sm

∂ρ
)
Dρ

Dt
= − ρ

T

∂fm
∂ρ

Dρ

Dt
. (3.119)

The differential of free energy for a constant quantity of material

dF = −SdT − pdV (3.120)
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can be related to the mass unit, leading to

dfm = −smdT − pd(
1

ρ
) = −smdT +

p

ρ2
dρ. (3.121)

Utilizing this in (3.119) and inserting mass conservation from the set of equations (3.112),
we get

ρ
∂sm
∂ρ

Dρ

Dt
= − ρ

T

p

ρ2

Dρ

Dt
= − p

ρT
(−ρ)(~∇ · ~u) =

1

T
p1 : (~∇~u). (3.122)

With

− 1

T
~∇ · ~qe = −~∇ · ( ~qe

T
) + ~qe · ~∇(

1

T
)

and

− µ

T

Dξ

Dt
=

µ

ρT
~∇ · ~qξ = ~∇ · ( µ

ρT
~qξ)− ~qξ · ~∇(

µ

ρT
),

we obtain

ṡprod =
3∑
j=1

{
−~∇ · (aij∆~∇Φi)− ~∇ · (akj∆~∇Φk)− 2

aij
∆

Φ2
iΦj − 2

akj
∆

Φ2
kΦj

−
aij + aik − akj

∆
Φ2
iΦk −

akj + aik − aij
∆

Φ2
kΦi − 2

aij + akj − aik
∆

ΦiΦjΦk

− 1

T

3∑
k=1

[
∂hk
∂Φj

(fk − µξk)]− ΛL

}DΦj

Dt
(3.123)

+ ~qe · ~∇(
1

T
) (3.124)

− ~qξ · ~∇(
µ

ρT
) (3.125)

+
{m
T

+
p

T
1−

∑
i<j

[aij∆(~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi − (~∇Φi · ~∇Φj)1)]

− ΛL(
3∑

k=1

Φk − 1)
}

: (~∇~u) (3.126)

+ ~∇ · (~qs −
~qe
T

+
µ

ρT
~qξ +

∑
i<j

aij∆(~∇Φi
DΦj

Dt
+ ~∇Φj

DΦi

Dt
)). (3.127)

The task is now to find expressions for m, ~qe, ~qξ and
DΦj

Dt which keep ṡprod non-negative.
It is important to note that the contributions to ṡprod arise from different phenomena like
phase change (3.123), heat transport (3.124), composition transport (3.125) or fluid flow
(3.126) as well as the corresponding entropy flux (3.127). Additionally, note that the con-
dition of a non-negative entropy production rate must be fulfilled also in special cases in
which some of these phenomena are not present and the corresponding terms disappear.
This suggests that the different summands must fulfill ṡprod ≥ 0 individually.
Consider for example a case of purely diffusive heat and composition transport in a solid
phase without phase change. In this situation, (3.123) and (3.126) are zero and the ex-
pression for ṡprod reduces to

ṡprod = ~qe · ~∇(
1

T
)− ~qξ · ~∇(

µ

ρT
) + ~∇ · (~qs −

~qe
T

+
µ

ρT
~qξ). (3.128)

It is shown in classical irreversible thermodynamics ([88]) that the entropy current may
be expressed as

~qs =
~qe
T
− µ

ρT
~qξ (3.129)
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which makes the last term in (3.128) zero. The easiest way to make the two remaining
terms non-negative individually is to create a sum of squares by the choices

~qe = Me
~∇(

1

T
) , Me > 0 (3.130)

~qξ = −Mξ
~∇(

µ

ρT
) , Mξ > 0. (3.131)

This leads to

ṡprod = M−1
e ~qe

2 +M−1
ξ ~qξ

2 ≥ 0. (3.132)

Note that the choices (3.130) and (3.131) represent common practice in classical irreversible
thermodynamics. We will demonstrate in the next paragraph that the well-known Fourier
and Fick laws for the heat and composition currents can be reproduced by appropriate
choices for the constants Me and Mξ.
The classical stress tensor m is given by

m = τ − p1 (3.133)

with the viscous stress tensor

τ = η{(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1} (3.134)

and the dynamic viscosity η. Expressions (3.126) and (3.127) have in common that they
contain contributions from the phase volume fractions. In accordance with Anderson et
al. ([51]), we modify the classical expressions in (3.129) and (3.133) for ~qs and m in such
a manner that the terms in (3.126) and (3.127) depending on the phase volume fractions
are cancelled:

~qs =
~qe
T
− µ

ρT
~qξ −

∑
i<j

aij∆(~∇Φi
DΦj

Dt
+ ~∇Φj

DΦi

Dt
) (3.135)

m = τ − p1 +
∑
i<j

[aijT∆(~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi − (~∇Φi · ~∇Φj)1)]

+ ΛLT (

3∑
k=1

Φk − 1). (3.136)

By doing so, the influence of the phase volume fractions and their dynamics on ṡprod is
limited to the first term (3.123). In order to get thermodynamically consistent governing
equations for phase change, we make use of the same idea that has led to equations (3.130)
and (3.131). Setting

M−1DΦj

Dt
= −~∇ · (aij∆~∇Φi)− ~∇ · (akj∆~∇Φk)− 2

aij
∆

Φ2
iΦj − 2

akj
∆

Φ2
kΦj

−
aij + aik − akj

∆
Φ2
iΦk −

akj + aik − aij
∆

Φ2
kΦi − 2

aij + akj − aik
∆

ΦiΦjΦk

− 1

T

3∑
k=1

[
∂hk
∂Φj

(fk − µξk)]− ΛL , M > 0, (3.137)
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three additional square contributions to ṡprod are created. Inserting (3.130), (3.131),
(3.135), (3.136) and (3.137) into the expression for ṡprod, we obtain

ṡprod = M−1
3∑
j=1

(
DΦj

Dt
)2 +M−1

e ~qe
2 +M−1

ξ ~qξ
2 +

1

T
τ : (~∇~u). (3.138)

While the first three summands are clearly non-negative, the last one must be regarded in
more detail:

τ : (~∇~u) = η{(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1} : (~∇~u)

= η{(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1} : {1

2
((~∇~u) + (~∇~u)T ) +

1

2
((~∇~u)− (~∇~u)T )}

= η
3∑

i,j=1

{∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂ui
∂xi

δij}{
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) +
1

2
(
∂ui
∂xj
− ∂uj
∂xi

)}

= η

3∑
i,j=1

1

2
(
∂ui
∂xj

+
∂uj
∂xi

)2 +
1

2
(
∂ui
∂xj

+
∂uj
∂xi

)(
∂ui
∂xj
− ∂uj
∂xi

)− 2

3

∂ui
∂xi

δij
∂ui
∂xj

(3.139)

= η
3∑

i,j=1

1

2
(
∂ui
∂xj

+
∂uj
∂xi

)2 − 2

3
(
∂ui
∂xi

)2δij (3.140)

= η

3∑
i,j=1

{
1
2( ∂ui∂xj

+
∂uj
∂xi

)2 ≥ 0 i 6= j
4
3(∂ui∂xi

)2 ≥ 0 i = j
(3.141)

In the above expression, the Kronecker delta δij was utilized and in the step from (3.139)

to (3.140), it was used that ( ∂ui∂xj
+

∂uj
∂xi

)( ∂ui∂xj
− ∂uj

∂xi
) is antisymmetric with respect to an

interchange of i and j. In the summation, every pair (i, j) is therefore cancelled by the
corresponding (j, i) and the contribution of this expression vanishes.
Based on (3.138) and (3.141), it is clear that

ṡprod ≥ 0 (3.142)

and that our model is in accordance with the second law of thermodynamics.

3.3.1.3. Further Elaboration of the Constitutive Laws

In this paragraph, the constitutive laws found before will be linked with physical experi-
ence. In particular, the constants Me and Mξ will be determined.

Heat Flux ~qe

Expression (3.130) for ~qe can be reformulated according to

~qe = Me
~∇(

1

T
) = −Me

T 2
~∇T. (3.143)

This must be compared with the well-known Fourier law for the heat flux

~qe = −λ~∇T. (3.144)

For binary eutectic alloys, we define a mixture heat conductivity of the three phases

λ = λ(Φ1,Φ2,Φ3) = Φ1λ1 + Φ2λ2 + Φ3λ3. (3.145)

One can see that the technical choice (3.130) can be made consistent with the Fourier law
by setting

Me = λ(Φ1,Φ2,Φ3)T 2. (3.146)
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Composition Flux ~qξ

Equation (3.131) for the composition flux can be transformed according to

~qξ = −Mξ
~∇(

µ

ρT
)

= −Mξ{
d

dξ
(
µ

ρT
)~∇ξ +

d

dT
(
µ

ρT
)~∇T +

3∑
j=1

d

dΦj
(
µ

ρT
)~∇Φj +

d

dρ
(
µ

ρT
)~∇ρ}

with

d

dξ
(
µ

ρT
) =

1

ρT

dµ

dξ

d

dT
(
µ

ρT
) =

1

ρT

dµ

dT
− µ

ρT 2

d

dΦj
(
µ

ρT
) =

1

ρT

dµ

dΦj

(7.8)
= − 1

ρT

dµ

dξ
(

3∑
k=1

∂hk
∂Φj

ξk)

d

dρ
(
µ

ρT
) = − µ

ρ2T
.

The expressions dµ
dξ ,

dµ
dT ,

dµ
dΦj

are evaluated in appendix B. In the next step, the factor in

front of ~∇ξ is compared with the well-known first Fick law describing composition fluxes
solely due to composition gradients:

~qξ = −ρD~∇ξ. (3.147)

The quantity D represents the mass diffusion coefficient. A comparison leads to

Mξ
1

ρT

dµ

dξ
= ρD ↔Mξ =

Dρ2T
dµ
dξ

(3.148)

and with

~∇ξ = ~∇
3∑

k=1

hkξk =
3∑

k=1

~∇hkξk + hk ~∇ξk =

3∑
k=1

(
3∑
j=1

∂hk
∂Φj

~∇Φj)ξk + hk ~∇ξk,

we get the following result for the composition flux:

~qξ = −ρD~∇ξ − ρD 1
dµ
dξ

(
dµ

dT
− µ

T
)~∇T + ρD

3∑
j=1

(

3∑
k=1

∂hk
∂Φj

ξk)~∇Φj +
Dµ
dµ
dξ

~∇ρ

= −ρD
3∑

k=1

hk ~∇ξk −
ρD
dµ
dξ

(
dµ

dT
− µ

T
)~∇T +

Dµ
dµ
dξ

~∇ρ.

Phase-Field Equations
DΦj

Dt

We start with a consistency check concerning the constraint of the phase volume fractions
summing up to one. Inserting the lagrangian multiplier (3.80) into the phase-field equations
(3.137) and adding the three equations together, one finds:

M−1
3∑
j=1

DΦj

Dt
= 0.
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Due to M > 0, this means that the sum of the phase volume fractions is kept constant
and a consistent set of initial values will fix this constant value to one.
The inverse mobility M−1 is regarded as a superposition of the inverse mobilities M−1

12

and M−1
13 corresponding to the two liquid-solid phase boundaries:

M−1 =
Φ2M

−1
12 + Φ3M

−1
13

Φ2 + Φ3
, M−1

12 ,M
−1
13 > 0. (3.149)

M−1
12 and M−1

13 will be determined in section 3.4 in the framework of a thin-interface anal-
ysis.

Stress Tensor m

Due to
∑3

j=1 Φj = 1, the stress tensor simplifies to

m = τ − p1 +
∑
i<j

[aijT∆(~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi − (~∇Φi · ~∇Φj)1)] (3.150)

with τ being given by (3.134).

Summary

We summarize the constitutive laws and the governing equations for the phase volume
fractions assuring a non-negative entropy production rate in their final form

~qe = λ(Φ1,Φ2,Φ3)~∇T (3.151)

~qξ = −ρD
3∑

k=1

hk ~∇ξk −
ρD
dµ
dξ

(
dµ

dT
− µ

T
)~∇T +

Dµ
dµ
dξ

~∇ρ (3.152)

m = η{(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1} − p1

+
∑
i<j

[aijT∆(~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi − (~∇Φi · ~∇Φj)1)] (3.153)

M−1DΦj

Dt
= −~∇ · (aij∆~∇Φi)− ~∇ · (akj∆~∇Φk)− 2

aij
∆

Φ2
iΦj − 2

akj
∆

Φ2
kΦj

−
aij + aik − akj

∆
Φ2
iΦk −

akj + aik − aij
∆

Φ2
kΦi − 2

aij + akj − aik
∆

ΦiΦjΦk

− 1

T

3∑
k=1

[
∂hk
∂Φj

(fk − µξk)]− ΛL (3.154)

with λ(Φ1,Φ2,Φ3) being given by (3.145) and M−1 by (3.149).

3.3.1.4. Governing Equations

In the momentum equation, the divergence of the stress tensor m appears. In order to
evaluate it, we make use of the following relation for component k of the non-classical part
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depending on the phase volume fractions:

(~∇ · [~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi − (~∇Φi · ~∇Φj)1])k

=
∂

∂xl
{∂Φi

∂xl

∂Φj

∂xk
+
∂Φj

∂xl

∂Φi

∂xk
− (

∂Φi

∂xm

∂Φj

∂xm
)δlk}

=
∂2Φi

∂x2
l

∂Φj

∂xk
+

∂2Φj

∂xl∂xk

∂Φi

∂xl
+
∂2Φj

∂x2
l

∂Φi

∂xk
+

∂2Φi

∂xl∂xk

∂Φj

∂xl
− ∂

∂xk
(
∂Φi

∂xm

∂Φj

∂xm
)

= ~∇2Φi(~∇Φj)k +
∂2Φj

∂xl∂xk

∂Φi

∂xl
+ ~∇2Φj(~∇Φi)k +

∂2Φi

∂xl∂xk

∂Φj

∂xl

− ∂2Φi

∂xk∂xm

∂Φj

∂xm
− ∂2Φj

∂xk∂xm

∂Φi

∂xm

= ~∇2Φi(~∇Φj)k + ~∇2Φj(~∇Φi)k

This leads to

~∇ ·m = ~∇ · (η{(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1})− ~∇p

+
∑
i<j

{aij∆T (~∇2Φi
~∇Φj + ~∇2Φj

~∇Φi}

+
∑
i<j

{aij(~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi − (~∇Φi · ~∇Φj)1)}~∇(T∆). (3.155)

Using the quantity

prgh = p− ρ~g · ~x→ −~∇p+ ρ~g = −~∇prgh − (~g · ~x)~∇ρ,

we finally summmarize the derived set of coupled governing equations for compressible
flows based on equations (3.112) in the box on the next page. Equations (3.156)-(3.160)
in combination with (3.83) for the determination of ∆ are the main result of this thesis.
In the case of incompressible flows, we can set ~∇ · ~u = 0 and the term proportional to ~∇ρ
as well as the factors of ρ can be cancelled in the composition transport equation (3.159).
The interpolation functions hk appear in the system of equations (3.156)-(3.160) in the
phase-field equations as well as in the transport equations for composition and temper-
ature. The comparably complicated structure of the hk given in (3.65) is mainly due to
the requirements arising from the phase-field equations, i.e. the condition to retain the
desired equilibrium profiles arising from fsurface. In contrast to that, their task in the
transport equations for T and ξ is merely to interpolate between zero and one, which can
also be done by the phase-fields Φk themselves. If one would like to describe sharp phase
boundaries, the different functional behaviour of the interpolation functions hk(Φ1,Φ2,Φ3)
in comparison to the phase-field functions Φk will play no role because the phase mixing
layers are very thin in comparison to any other length of interest. However, if one would
like to describe macroscopically extended mixture states like the mushy layers, the Φk as
the real volume fractions of the corresponding phases will allow a more realistic interpo-
lation behaviour between the bulk phases. Therefore, in simulations of binary eutectic
alloys on macroscopic length scales, we replace the interpolation functions hk by the phase
volume fractions Φk in equations (3.158) and (3.159) as well as in equation (3.61) for the
determination of individual phase compositions.
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Dρ

Dt
= −ρ(~∇ · ~u) (3.156)

ρ
D~u

Dt
= ~∇ · (η{(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1})− ~∇prgh (3.157)

− (~g · ~x)~∇ρ−K0
(1− Φ1)2

Φ3
1

~u

+
∑
i<j

{aijT∆(~∇2Φi
~∇Φj + ~∇2Φj

~∇Φi)}

+
∑
i<j

{aij(~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi − (~∇Φi · ~∇Φj)1} · ~∇(T∆)

−T
3∑

k=1

hk
∂2fk
∂T 2

DT

Dt
= ~∇ · (λ(Φ1,Φ2,Φ3)~∇T )− (µ− T dµ

dT
)
Dξ

Dt
(3.158)

+ η{(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1} : (~∇~u)

+
∑
i<j

{aijT∆(~∇Φi ⊗ ~∇Φj + ~∇Φj ⊗ ~∇Φi)} : (~∇~u)

− (p+
∑
i<j

{aijT∆(~∇Φi · ~∇Φj)})(~∇ · ~u)

−
3∑
j=1

{
3∑

k=1

∂hk
∂Φj

(fk − µξk − T
∂

∂T
(fk − µξk)− Tµ

∂ξk
∂T

)}DΦj

Dt

ρ
Dξ

Dt
= ~∇ · (ρD

3∑
k=1

hk ~∇ξk) + ~∇ · (ρD
dµ
dξ

(
dµ

dT
− µ

T
)~∇T ) (3.159)

− ~∇ · (Dµ
dµ
dξ

~∇ρ)

M−1DΦj

Dt
= −~∇ · (aij∆~∇Φi)− ~∇ · (akj∆~∇Φk) (3.160)

− 2
aij
∆

Φ2
iΦj − 2

akj
∆

Φ2
kΦj

−
aij + aik − akj

∆
Φ2
iΦk −

akj + aik − aij
∆

Φ2
kΦi

− 2
aij + akj − aik

∆
ΦiΦjΦk

− 1

T

3∑
k=1

[
∂hk
∂Φj

(fk − µξk)]− ΛL.

3.3.2. The Special Case of Elemental Materials

The system of equations derived in subsection 3.3.1 contains the description of an elemental
material as a special case. As the composition field plays no role for elemental materials, we

set the individual phase compositions ξi as well as the quantities ξ
(ij)
i (T ) representing the

equilibrium compositions from the phase diagram equal to one. Additionally, we identify
the eutectic temperature Te with the elemental material melting temperature Tm. Using
limx→0{x log x} = 0, the free energy densities f2 and f3 originally representing the two
solid phases α and β of a binary eutectic alloy reduce to the same expression. This is
consistent with elemental materials having just a single solid phase. We obtain for the free
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energy densities of the liquid and the solid phase

f1 = −ρc(T log(
T

Tm
)− (T − Tm))

f2 = f3 = −ρc(T log(
T

Tm
)− (T − Tm)) + Θ(Tm − T )Lρ(

T − Tm
Tm

)

and the chemical potential vanishes:

µ =
∂f1

∂ξ1
=
∂f2

∂ξ2
=
∂f3

∂ξ3
= 0.

As there is only a single solid phase, we can set Φ3 ≡ 0 and we get with Φ1 = Φ as well as
Φ2 = 1− Φ from the interpolation functions (3.65)

h1 = 6Φ5 − 15Φ4 + 10Φ3

h2 = 1− h1

h3 = 0

∂h1

∂Φ1
=
∂h2

∂Φ2
=

90

4
Φ2(1− Φ)2

∂h1

∂Φ2
=
∂h2

∂Φ1
= −30

4
Φ2(1− Φ)2

∂h1

∂Φ3
=
∂h2

∂Φ3
= +

30

4
Φ2(1− Φ)2

∂h3

∂Φ1
=
∂h3

∂Φ2
=
∂h3

∂Φ3
= 0.

The lagrangian multiplier ΛL from (3.80) reduces to

ΛL =
1

3
{(a23 − a13)~∇ · (∆~∇Φ)− 3

a12

∆
Φ(1− Φ)− a23 − a13

∆
Φ(1− Φ)(1− 2Φ)

− 1

T

90

4
Φ2(1− Φ)2(f1 + f2)}.

If we insert it into the evolution equation (3.160) for Φ1 = Φ, we will get

M−1DΦ

Dt
=(a12 −

1

3
a23 +

1

3
a13)~∇ · (∆~∇Φ)

− 1

∆
(a12 −

1

3
a23 +

1

3
a13)Φ(1− Φ)(1− 2Φ)

+ 15Φ2(1− Φ)2 1

T
{f2 − f1}

while the volume fraction of the solid phase is given by 1−Φ. The phase-field dependent
part of equation (3.157) for the velocity field reduces to

− 2a12T∆~∇2Φ~∇Φ− 2a12(~∇Φ⊗ ~∇Φ− 1

2
(~∇Φ)21)~∇(T∆)

and in equation (3.158) for the temperature field, one obtains

− T
3∑

k=1

hk
∂2fk
∂T 2

DT

Dt
= ρc

DT

Dt

and on the right-hand side

−2a12T∆(~∇Φ⊗~∇Φ) : (~∇~u)−(p−a12T∆(~∇Φ)2)(~∇·~u)+30Φ2(1−Φ)2(f2−f1−T
∂

∂T
(f2−f1)).

64



3. Model Development

Due to the fact that there is no second solid phase, we set the surface tension values being
linked with it to zero: σ13 = σ23 = 0. This results in a13 = a23 = 0 and with a12 = a = 3σ

Tm
,

we finally obtain

Dρ

Dt
= −ρ(~∇ · ~u) (3.161)

ρ
D~u

Dt
= ~∇ · (η{(~∇~u) + (~∇~u)T − 2

3
(~∇ · ~u)1})− ~∇prgh − (~g · ~x)~∇ρ (3.162)

− 2aT∆~∇2Φ~∇Φ− 2a(~∇Φ⊗ ~∇Φ− 1

2
(~∇Φ)21) · ~∇(T∆)

ρc
DT

Dt
= ~∇ · (λ(Φ)~∇T ) + τ : (~∇~u)− 2aT∆(~∇Φ⊗ ~∇Φ) : (~∇~u) (3.163)

− (p− aT∆(~∇Φ)2)(~∇ · ~u)− 30Φ2(1− Φ)2Lρ
DΦ

Dt

M−1DΦ

Dt
= a~∇ · (∆~∇Φ)− a

∆
Φ(1− Φ)(1− 2Φ) (3.164)

− 1

T
15Φ2(1− Φ)2Θ(Tm − T )Lρ

Tm − T
Tm

,M−1 > 0,

∆ =
Φ(1− Φ)

|~∇Φ|
(3.165)

The Darcy term −K0
(1−Φ1)2

Φ3
1

~u has been omitted here because we do not expect mushy

layers in slow solidification processes of elemental materials. Velocity can be damped by a
phase-dependent viscosity assigning a sufficiently large value to the solid phase. Equations
(3.161)-(3.165) will be validated later based on an experiment investigating the melting of
gallium in a cubic box.

3.3.3. Implementation of the Model Equations

3.3.3.1. General Information

The model has been implemented into the open source CFD software package OpenFoam
([89]). In a given time step of a binary eutectic alloy simulation, the phase-field equations
are solved first. After that, the Navier-Stokes equations are treated with a pressure-velocity
coupling using the PISO algorithm ([90]) with three pressure corrections. Finally, the
transport equations for composition and temperature are solved. An equivalent procedure
is used for elemental materials with the difference that there is only a single phase-field
equation and that the transport equation for composition drops out.

3.3.3.2. Stability of Numerical Solutions

It has been observed in simulation tests that the phase-field variables Φi may move slowly
into the direction Φi < 0 at some locations due to numerical errors and after a certain
point has been passed, a strong decrease to negative values may be observed. This scenario
is avoided by adding the expression

Θ(−Φi)CΦi , C > 0, (3.166)

with the Θ-function

Θ(−Φi) =

{
1, if Φi ≤ 0

0, if Φi > 0.
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to the right-hand side of the equations for Φi. In (3.166), the quantity C represents a
sufficiently large constant with appropriate units. In this way, the numerical solution is
stabilized by the creation of a barrier which increases linearly with the undershooting
Φi < 0. Note that (3.166) vanishes in the physically reasonable range with 0 ≤ Φi ≤ 1
and that the exact value of C therefore does not influence the simulation results.

3.4. Thin-Interface Analysis

We expressed the inverse mobility M−1 in (3.149) as a superposition of inverse mobilities
M−1

12 and M−1
13 representing the individual liquid-solid phase boundaries. In this section,

the quantities M−1
12 and M−1

13 will be determined based on a thin-interface analysis as
discussed in subsection 2.2.2.

3.4.1. Thin-Interface Analysis for Binary Eutectic Alloys

We regard the motion of a sharp phase boundary on a micrometer length scale and assume
that convective effects are negligible. As discussed in subsection 2.2.2, Karma and Rappel
found that the behaviour of sharp interfaces may be reproduced by a phase-field model with
continuous transition layers of finite width between the pure phases if the model functions
obey certain symmetries and if the transition layer width parameter δ is significantly
smaller than the diffusion length l of the field dominating the phase change process. For
many binary materials including metallic alloys, thermal diffusivity is orders of magnitude
larger than mass diffusivity and the latent heat produced during phase change is conducted
away from the moving phase boundary much faster than the material component rejected
by the solid phase. The latter accumulates on the liquid side of the phase boundary and
affects the phase change process due its influence on the liquidus temperature and due to
the long time it needs to diffuse away. We hence assume that the temperature around the
phase boundary is constant, T ≥ Te, and concentrate on the interplay of phase change
and composition transport. Therefore, the diffusion length is set to l = D

un
with the mass

diffusion constant D and the normal velocity of the sharp phase boundary un.
In the following, we take Karma and Rappel’s approach ([43]) for elemental materials as a
basis and adapt it to the case of a binary alloy. We restrict our considerations to a moving
sharp interface between the liquid phase and solid phase α with M−1 = M−1

12 and regard
the one-sided case with a solid diffusion constant of zero. On the basis of the assumptions
stated above, we can concentrate on a coupled solution of the composition field and the
phase-field equation for the solid phase α. In the limit ∆V → 0, i.e. without volume-
averaging, we can replace in equations (3.159) and (3.160) ∆→ δ, Φ1 → ϕ1, Φ2 → ϕ2 and
set ϕ1 = 1− ϕ2 as well as ϕ3 = 0:

M−1
12

∂ϕ2

∂t
=(a12 +

1

3
a23 −

1

3
a13)δ~∇2ϕ2 −

a12 + 1
3a23 − 1

3a13

δ
ϕ2(1− ϕ2)(1− 2ϕ2)

− 15ϕ2
2(1− ϕ2)2 1

T
{f2 − f1 − µ(ξ2 − ξ1)}

∂ξ

∂t
=~∇ · {D(h1

~∇ξ1 + h2
~∇ξ2)}.

As our interest is aimed at comparably slow solidification processes, we assume that ξ1

and ξ2 are close to their equilibrium values ξ
(12)
1 (T ) and ξ

(12)
2 (T ) and that in analogy to

ξ
(12)
2 (T ) = k12ξ

(12)
1 (T ) with the equilibrium partition coefficient k12, we have ξ2 = k12ξ1.
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This leads to

f2 − f1 − µ(ξ2 − ξ1) = µA,2 − µA,1

=
RT

vm
{log(

1− ξ2

1− ξ(12)
2

)− log(
1− ξ1

1− ξ(12)
1

)}

=
RT

vm
{log(1− ξ2 − ξ(12)

2

1− ξ(12)
2

)− log(1− ξ1 − ξ(12)
1

1− ξ(12)
1

)}

≈ −RT
vm

ξ2 − ξ(12)
2

1− ξ(12)
2

+
RT

vm

ξ1 − ξ(12)
1

1− ξ(12)
1

=
RT

vm
{ 1

1− ξ(12)
1

− k12

1− ξ(12)
2

}(ξ1 − ξ(12)
1 )

and
h1
~∇ξ1 + h2

~∇ξ2 = (1− h2)~∇ξ1 + h2k12
~∇ξ1 = (1− (1− k12)h2)~∇ξ1.

Introducing the substitutes

τ12 =
M−1

12 δ

a12 + 1
3a23 − 1

3a13
(3.167)

D = (1− ϕ2)D1 , D1 = diffusion constant in the liquid phase

r = (1− (1− k12)h2) (3.168)

q = (1− ϕ2)r = (1− ϕ2)(1− (1− k12)h2) (3.169)

s =
15Rδ

vm(a12 + 1
3a23 − 1

3a13)
{ 1

1− ξ(12)
1

− k12

1− ξ(12)
2

} (3.170)

the set of governing equations can be expressed as

τ12
∂ϕ2

∂t
= δ2~∇2ϕ2 − ϕ2(1− ϕ2)(1− 2ϕ2)− sϕ2

2(1− ϕ2)2(ξ1 − ξ(12)
1 )

r
∂ξ1

∂t
= D1

~∇ · [q~∇ξ1]− ξ1
∂r

∂t
.

In the next step, we introduce dimensionless coordinates:

~x = l~̃x → ~∇ =
1

l
~̃∇

t =
l2

D1
t̃ → ∂

∂t
=
D1

l2
∂

∂t̃
.

The quantity l describes the diffusion length of the composition field and therefore the
typical length scale of the resulting solidification pattern. We assume in the following
that the parameter δ, which charaterizes the continuous transition layer width, is chosen
considerably smaller than l. Introducing the quantities (compare [43])

p =
δ

l
<< 1 (3.171)

α =
D1τ12

δ2
, (3.172)

the governing equations can be rewritten as

αp2∂ϕ2

∂t̃
= p2 ~̃∇2ϕ2 − ϕ2(1− ϕ2)(1− 2ϕ2)− s(ξ1 − ξ(12)

1 )ϕ2
2(1− ϕ2)2

r
∂ξ1

∂t̃
= ~̃∇ · [q ~̃∇ξ1]− ξ1

∂r

∂t̃
.
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In analogy to Karma and Rappel ([43]), we introduce a set of curvilinear coordinates
(χ1, χ2, χ3) which are locally orthogonal and which move with the sharp phase boundary
at a normal velocity of un. For that matter, χ1 and χ2 measure the dimensionless arc
lengths along the two principal directions from a given reference point and χ3 measures
the dimensionless signed orthogonal distance from the sharp phase boundary with χ3 > 0 in
the solid. Additionally, an internal coordinate η = χ3

p is defined as well as the dimensionless
normal velocity and a dimensionless curvature

ũn =
unl

D1
(3.173)

κ̃ = lκ = l(
1

R1
+

1

R2
) (3.174)

with the two principal radii of curvature R1 and R2. According to Caginalp ([29]), the
relations

| ~̃∇χ3| = 1

~̃∇2χ3 = κ̃

hold in a neighbourhood of the sharp interface.
We rewrite the differential operators in terms of the new coordinates (compare also [45]):

∂

∂t̃
=

3∑
k=1

{∂χi
∂t̃

∂

∂χi
} =

2∑
k=1

{∂χi
∂t̃

∂

∂χi
} − ũn

p

∂

∂η
≈ − ũn

p

∂

∂η

~̃∇ =

3∑
k=1

( ~̃∇χk)
∂

∂χk

~̃∇2 =
3∑

k=1

{( ~̃∇χk)2 ∂2

∂χ2
k

+ ~̃∇2χk
∂

∂χk
}

=
2∑

k=1

{( ~̃∇χk)2 ∂2

∂χ2
k

+ ~̃∇2χk
∂

∂χk
}+

1

p2

∂2

∂η2
+ κ̃

1

p

∂

∂η

≈ 1

p2

∂2

∂η2
+ κ̃

1

p

∂

∂η

~̃∇ · [q ~̃∇ξ1] = ~̃∇q · ~̃∇ξ1 + q ~̃∇2ξ1

≈ 1

p2

∂q

∂η

∂ξ1

∂η
+ q(

1

p2

∂2ξ1

∂η2
+
κ̃

p

∂ξ1

∂η
)

=
1

p2

∂

∂η
(q
∂ξ1

∂η
) +

κ̃

p
q
∂ξ1

∂η
.

Note that in the expressions above, terms proportional to 1
p and 1

p2
dominate due to the

smallness of p. The equations are then given by

p(αũn + κ̃)
∂ϕ2

∂η
+
∂2ϕ2

∂η2
− ϕ2(1− ϕ2)(1− 2ϕ2)− sϕ2

2(1− ϕ2)2(ξ1 − ξ(12)
1 ) = 0 (3.175)

p(ũnr + κ̃q)
∂ξ1

∂η
+

∂

∂η
(q
∂ξ1

∂η
) + pũnξ1

∂r

∂η
= 0. (3.176)

As introduced in subsection 2.2.2, we perform an inner expansion:

ϕ2 = ϕ
(0)
2 (η) + pϕ

(1)
2 (η) + ... (3.177)

ξ1 = ξ
(0)
1 (η) + pξ

(1)
1 (η) + ... (3.178)
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3.4.1.1. Order O(1)

Inserting the expansions (3.177) and (3.178) into the governing equations (3.175) and
(3.176), we obtain at order O(p0) = O(1)

∂2ϕ
(0)
2

∂η2
− ϕ(0)

2 (1− ϕ(0)
2 )(1− 2ϕ

(0)
2 )− sϕ(0)

2

2
(1− ϕ(0)

2 )
2
(ξ

(0)
1 − ξ(12)

1 ) = 0

∂

∂η
(q
∂ξ

(0)
1

∂η
) = 0.

These equations are solved by

ϕ
(0)
2 (η) =

1

2
(1 + tanh(

η

2
)) (3.179)

ξ
(0)
1 (η) = ξ

(12)
1 = const. (3.180)

3.4.1.2. Order O(p)

At order O(p), the equation for composition ξ1 is

∂

∂η
[q(ϕ

(0)
2 )

∂ξ
(1)
1

∂η
] + ũnξ

(12)
1

∂r(ϕ
(0)
2 )

∂η
= 0

↔ ∂

∂η
[q(ϕ

(0)
2 )

∂ξ
(1)
1

∂η
+ ũnξ

(12)
1 r(ϕ

(0)
2 )] = 0

↔ q(ϕ
(0)
2 )

∂ξ
(1)
1

∂η
+ ũnξ

(12)
1 r(ϕ

(0)
2 ) = A = const ∀η (3.181)

In the limit η →∞, we get

lim
η→+∞

r(ϕ
(0)
2 ) = r(1) = k12

lim
η→+∞

q(ϕ
(0)
2 ) = q(1) = 0

lim
η→+∞

∂ξ
(1)
1

∂η
= lim

χ3→0+

∂ξ1

∂χ3

and therefore
A = ũnk12ξ

(12)
1 . (3.182)

In the limit η → −∞, we get

lim
η→−∞

r(ϕ
(0)
2 ) = r(0) = 1

lim
η→−∞

q(ϕ
(0)
2 ) = q(0) = r = 1

lim
η→−∞

∂ξ
(1)
1

∂η
= lim

χ3→0−

∂ξ1

∂χ3

and hence

lim
χ3→0−

∂ξ1

∂χ3
= ũn(k12 − 1)ξ

(12)
1 .

Replacing ũn = unl
D1

, this leads to

D1~̂n · ~∇ξ
∣∣
liquid

= un(ξ
(12)
2 − ξ(12)

1 ) (3.183)
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with the unit normal vector pointing into the liquid phase and ~∇ξ
∣∣
liquid

representing the
composition gradient at the sharp phase boundary calculated from the liquid side. This is
the well-known boundary condition for the composition field from sharp interface modelling
in the special case of zero diffusion in the solid. It corresponds to expression (2.193) if we
set Ds = 0.
Combining (3.181) and (3.182), we get

q(ϕ
(0)
2 )

∂ξ
(1)
1

∂η
= ũn(k12 − r(ϕ(0)

2 ))ξ
(12)
1

= −ũn(1− k12)(1− h2)ξ
(12)
1

↔ ∂ξ
(1)
1

∂η
= − ũn(1− k12)(1− h2)ξ

(12)
1

q(ϕ
(0)
2 )

.

We integrate this equation from η to ∞ and specify the integration constant by ξ
(1)
1

∗
:

ξ
(1)
1

∗
− ξ(1)

1 (η) = −ũnξ(12)
1 (1− k12)

ˆ ∞
η

1− h2(ϕ
(0)
2 )

q(ϕ
(0)
2 )

dη.

Based on (3.179), the integration variable can be changed according to

dη =
dϕ

(0)
2

ϕ
(0)
2 (1− ϕ(0)

2

,

and one obtains with q(ϕ
(0)
2 ) from (3.169)

ξ
(1)
1 (η) = ξ

(1)
1

∗
− ũn(1− k12)ξ

(12)
1 F (ϕ

(0)
2 ) (3.184)

F (ϕ
(0)
2 ) =

ˆ ϕ
(0)
2

1

1− h2(ϕ2)

[1− (1− k12)h2(ϕ2)]ϕ2(1− ϕ2)2
dϕ2. (3.185)

The phase-field equation of order O(p) is given by

[
∂2

∂η2
− (1− 6ϕ

(0)
2 + 6ϕ

(0)
2

2
)]ϕ

(1)
2 = sϕ

(0)
2

2
(1− ϕ(0)

2 )2ξ
(1)
1 (η)− (αũn + κ̃)

ϕ
(0)
2

∂η
(3.186)

and it will be used to determine ξ
(1)
1

∗
in (3.184). We multiply both sides of (3.186) with

∂ϕ
(0)
2
∂η and by inserting the tangens hyperbolicus according to (3.179) for ϕ

(0)
2 , we find

[
∂2

∂η2
− (1− 6ϕ

(0)
2 + 6ϕ

(0)
2

2
)]
∂ϕ

(0)
2

∂η
= 0.

Integrating from −∞ to +∞, we get the equation

ˆ +∞

−∞
[sϕ

(0)
2

2
(1− ϕ(0)

2 )2ξ
(1)
1 (η)− (αũn + κ̃)

ϕ
(0)
2

∂η
]
∂ϕ

(0)
2

∂η
dη = 0. (3.187)

Replacing ξ
(1)
1 (η) with (3.184), the following integrals arise which can be evaluated by

utilizing the tangens hyperbolicus profiles ϕ
(0)
2 (η) from (3.179) again and F (ϕ

(0)
2 ) from

70



3. Model Development

(3.185):

ˆ +∞

−∞

∂ϕ
(0)
2

∂η

∂ϕ
(0)
2

∂η
dη =

ˆ 1

0
{ϕ(0)

2 (1− ϕ(0)
2 )}dϕ(0)

2 =
1

6ˆ +∞

−∞
ϕ

(0)
2

2
(1− ϕ(0)

2 )2∂ϕ
(0)
2

∂η
dη =

ˆ 1

0
{ϕ(0)

2

2
− 2ϕ

(0)
2

3
+ ϕ

(0)
2

4
}dϕ(0)

2 =
1

30ˆ +∞

−∞
ϕ

(0)
2

2
(1− ϕ(0)

2 )2F (ϕ
(0)
2 )

∂ϕ
(0)
2

∂η
dη

=

ˆ 1

0
{ ∂

∂ϕ
(0)
2

[
1

3
ϕ

(0)
2

3
− 1

2
ϕ

(0)
2

4
+

1

5
ϕ

(0)
2

5
]F (ϕ

(0)
2 )}dϕ(0)

2

= [
1

3
ϕ

(0)
2

3
− 1

2
ϕ

(0)
2

4
+

1

5
ϕ

(0)
2

5
]F (ϕ

(0)
2 )
∣∣1
0
−
ˆ 1

0
[
1

3
ϕ

(0)
2

3
− 1

2
ϕ

(0)
2

4
+

1

5
ϕ

(0)
2

5
]
dF (ϕ

(0)
2 )

dϕ
(0)
2

dϕ
(0)
2

= −
ˆ 1

0

[1
3ϕ

(0)
2

3
− 1

2ϕ
(0)
2

4
+ 1

5ϕ
(0)
2

5
](1− h2(ϕ

(0)
2 ))

ϕ
(0)
2 (1− ϕ(0)

2 )2[1− (1− k12)h2(ϕ
(0)
2 )]

dϕ
(0)
2

= −ζ12

One obtains

sξ
(1)
1

∗ 1

30
+ sũnξ

(12)
1 (1− k12)ζ12 − (αũn + κ̃)

1

6
= 0

and after recovering the original quantities from the substitutes defined in (3.170), (3.167),
(3.172), (3.173) and (3.174) according to

s =
15Rδ

vm(a12 + 1
3a23 − 1

3a13)
{ 1

1− ξ(12)
1

− k12

1− ξ(12)
2

}

α =
D1M

−1
12

δ(a12 + 1
3a23 − 1

3a13)

ũn =
unl

D1

κ̃ = lκ,

the result is

ξ
(1)
1

∗
= −30

unl

D1
ξ

(12)
1 (1−k12)ζ12+

vm

3R( 1

1−ξ(12)1

− k12

1−ξ(12)2

)

M−1
12 unl

δ2
+
vm(a12 + 1

3a23 − 1
3a13)

3Rδ( 1

1−ξ(12)1

− k12

1−ξ(12)2

)
lκ.

(3.188)
Figures 3.2 and 3.3 illustrate the composition profiles for the case of a continuous transition
layer of finite thickness between the bulk phases and in the limit χ3,0 → 0 of a sharp phase
boundary. Note that due to the fact that a slow solidification process with a zero solid
diffusion constant is regarded, the composition variables adopt constant values in the bulk
solid ([67]).
It is possible now to express the composition at the liquid side of the sharp phase boundary
ξI,l used in sharp interface modelling (compare equation (2.194)) by quantities which are
available in our thin-interface analysis of the phase-field approach. As shown in Figure
3.3, ξI,l matches the constant value of ξ1 in the solid. This constant value, in turn, agrees
with ξ1(χ3 ≥ χ3,0) in Figure 3.2 which can be obtained as the limit η → ∞ of the inner

71



3. Model Development

Figure 3.2.: Composition profile for
a phase boundary with finite thick-

ness

Figure 3.3.: Composition profile for
a sharp interface

expansion. Using (3.178), (3.180) and (3.184), we get

ξI,l = ξ1(χ3 ≥ χ3,0)

= lim
η→∞

ξ1(η)

= lim
η→∞
{ξ(12)

1 + p[ξ
(1)
1

∗
− ũnξ(12)

1 (1− k12)F (ϕ
(0)
2 (η))]}

= ξ
(12)
1 + pξ

(1)
1

∗
− pũnξ(12)

1 (1− k12)F (1)

= ξ
(12)
1 + pξ

(1)
1

∗
. (3.189)

Assuming a straight liquidus line in the phase diagram, we can write

TL(ξ) = Te +m12(ξ − ξe) (3.190)

with the eutectic temperature Te, the eutectic composition ξe and the slope m12 . By

transforming (3.190), we can express the corresponding equilibrium composition ξ
(12)
1 as a

function of temperature

ξ
(12)
1 = ξe −

Te − T
m12

. (3.191)

(3.189) can be rearranged after inserting (3.191) for ξ
(12)
1 according to

T = Te +m12(ξI,l − ξe)−m12pξ
(1)
1

∗
.

Repacing p according to its defintion in (3.171), p = δ
l , and using (3.188), we get

T =Te +m12(ξI,l − ξe) +m12[30
ξ

(12)
1 (1− k12)ζ12

D1
δ − vmM

−1
12

3R( 1

1−ξ(12)1

− k12

1−ξ(12)2

)δ
]un

−
vmm12(a12 + 1

3a23 − 1
3a13)

3R( 1

1−ξ(12)1

− k12

1−ξ(12)2

)
κ. (3.192)

This must be compared to expression (2.194) for the interface temperature from sharp
interface theory

T = Te +m12(ξI,l − ξe)− dκκ− β12un (3.193)

with the linear kinetic coefficient β12 and the Gibbs-Thomson coefficient

dκ =
σ12Te
ρL12

. (3.194)
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In the expression for the Gibbs-Thomson coefficient, σ12 describes surface tension between
the phases α and l and L12 represents the corresponding latent heat.
Obviously, an expression proportional to curvature κ representing the Gibbs-Thomson
effect does also appear in our model according to (3.192). However, the corresponding
Gibbs-Thomson coefficient dκ is different from (3.194). Therefore, a numerical investiga-
tion will be performed in section 4.3 which clarifies that the effect may nevertheless be
reproduced quantitatively correctly.
The mobility of the phase boundaries can be determined by a comparison of the velocity-
dependent terms in (3.192) and (3.193):

M−1
12 =

3R( 1

1−ξ(12)1

− k12

1−ξ(12)2

)δ

vm
{ β12

m12
+

30ξ
(12)
1 (1− k12)ζ12

D1
δ}.

For the validation cases to be consisdered in chapter 5, we can neglect the kinetic effect
and set β12 = 0. The mobility of a phase boundary between the liquid phase and one of
the two solid phases i ∈ {2, 3} is hence given by

M−1
1i =

90R( 1

1−ξ(1i)1

− k1i

1−ξ(1i)i

)ξ
(1i)
1 (1− k1i)ζ1i

vmD1
δ2 (3.195)

ζ1i =
1

30

ˆ 1

0

hi(ϕ
(0)
i )(1− hi(ϕ(0)

i ))

ϕ
(0)
i (1− ϕ(0)

i )2[1− (1− k1i)hi(ϕ
(0)
i )]

dϕ
(0)
i . (3.196)

3.4.2. Thin-Interface Analysis for Elemental Materials

We also perform a thin-interface analysis based on the analysis by Karma and Rappel
in [43] for the special case of elemental materials. We neglect again convective effects
and regard a moving sharp interface between the solid and the liquid phase. In the limit
∆V → 0, we replace ∆→ δ and Φ→ ϕ in (3.163) and (3.164) and obtain the coupled set
of equations

M−1∂ϕ

∂t
=aδ~∇2ϕ− a

δ
ϕ(1− ϕ)(1− 2ϕ)− 15ϕ2(1− ϕ)2 1

T
Lρ

Tm − T
Tm

ρc
∂T

∂t
=λ~∇2T − 30ϕ2(1− ϕ)2Lρ

∂ϕ

∂t
.

The heat conductivity λ is assumed to be constant here. If we replace temperature by the
new coordinate ψ = T−Tm

Tm
, we get after some minor transformations

M−1δ

a
(1 + ψ)

∂ϕ

∂t
=(1 + ψ)δ2~∇2ϕ− (1 + ψ)ϕ(1− ϕ)(1− 2ϕ) + 15ϕ2(1− ϕ)2 Lρδ

aTm
ψ

ρc
∂ψ

∂t
=λ~∇2ψ − 30ϕ2(1− ϕ)2 Lρ

Tm

∂ϕ

∂t
.

The next step is to introduce dimensionless coordinates

~x = l~̃x → ~∇ =
1

l
~̃∇

t =
l2ρc

λ
t̃ → ∂

∂t
=
D1

l2
∂

∂t̃
,
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with l being the diffusion length of the temperature field now. Using p = δ
l << 1 as well

as

α =
M−1λ

aρcδ
β =

Lρδ

2Tma

γ =
L

cTm
h = 6ϕ5 − 15ϕ4 + 10ϕ3

g =
1

2
ϕ2(1− ϕ)2,

we obtain

αp2∂ϕ

∂t̃
=p2 ~̃∇2ϕ− ∂g

∂ϕ
+ β

∂h

∂ϕ

ψ

1 + ψ
(3.197)

∂ψ

∂t̃
= ~̃∇2ψ − γ ∂h

∂t̃
. (3.198)

Aside from the factor ψ
(1+ψ) in (3.197), which however does not induce any significant

changes, equations (3.197) and (3.198) are the same as equations (26) and (27) in [43].
Concerning the following calculation steps, I therefore refer to [43] and only the final result
for the inverse mobility is presented here. Assuming δ << l, the temperature at the phase
boundary is given by

T = Tm −
σκTm
Lρ

− βkun (3.199)

with the linear kinetic coefficient βk and the normal velocity of the phase boundary un if

M−1 =
3Lρδ

T 2
m

{βk +
209

420

Lρδ

λ
}. (3.200)

The elemental material model will be validated with an experiment investigating the melt-
ing of gallium for which the kinetic effect can be neglected. Setting βk = 0, we obtain

M−1 =
627

420

L2ρ2δ2

λT 2
m

. (3.201)
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In this chapter, we will investigate if the implemented model reproduces the properties
resulting from our analytical considerations before. On the one hand, we will examine
if the surface and bulk parts of free energy fsurface and fbulk manifest themselves in the
simulation results by generating the desired behaviour at phase surfaces and by represent-
ing a given phase diagram. On the other hand, the transition to neighbouring modelling
appoaches will be checked. In particular, on a sufficiently fine grid, the large-scale equa-
tions (3.156)-(3.160) for Φi and the dynamic ∆ should converge to a classical phase-field
model with a constant δ. Additionally, the results of sharp-interface modelling should be
reproduced by the classical phase-field model if δ is sufficiently small, i.e. much smaller
than the boundary layer width of the dominating diffusion field. Finally, there should also
be a connection of the developed model with the volume-of-fluid method ([91]) by Hirt
and Nichols if the elemental material equations of subsection 3.3.2 are taken and the solid
phase is fitted with material properties corresponding to a fluid.

4.1. Surface Part of Free Energy Density

4.1.1. Tangens Hyperbolicus Profile

The surface part of free energy density has been constructed to generate tangens hyper-
bolicus equilibrium profiles for the phase-fields ϕi around flat sharp interfaces for constant
values of δ. We verify this by simulating the formation of an equilibrium phase boundary

Figure 4.1.: Simulation setup with initial values

between the liquid phase and solid phase α of CBr4 − C2Cl6 (material properties in ap-
pendix E) in a two-dimensional volume of interest under isothermal conditions T = Te. The
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dimensions of the volume are 100µm×100µm with a grid spacing of 0.5µm and the compo-

sitions of the two phases correspond to their equilibrium values ξ
(12)
1 (Te) = ξe = 0.118 and

ξ
(12)
2 (Te) = k12ξe = 0.0885. The volume of interest and the initial values of the phase-fields

and the composition field are shown in Figure 4.1. The gradients of all fields were set to
zero at all boundaries.
The resulting profile of the phase-field ϕ1 in a simulation with δ = 0.6 ·10−6m is presented
in Figure 4.2 and agrees very well with the tangens hyperbolicus profile. Note that the
simulated profile has been shifted in y-direction to be centered around y = 0 for a compar-
ison with the standard tangens hyperbolicus. Further calculations reveal that the width of
the continuous transition layer between the bulk phases depends linearly on δ (see Figure
4.3).

Figure 4.2.: Equilibrium Profile of
the phase-field ϕ1

Figure 4.3.: Dependence of transi-
tion layer width on δ

4.1.2. Convergence of ∆→ δ on Small Length Scales

We keep the simulation setup from Figure 4.1 using the material properties of CBr4 −
C2Cl6, but we leave the state of equilibrium by changing the initial composition of the
melt from ξe = 0.118 to k12ξe = 0.0885. Furthermore, a constant temperature gradient
G = 105K

m is applied in positive y-direction which generates the eutectic temperature
Te = 357.6K at the starting position of the phase boundary at y = 20µm. The liquidus
temperature of the melt is given by TL(0.0885) = 359.99K, which is 2.39K higher than the
temperature at the phase boundary. Consequently, solidification is initiated and the phase
boundary indicated in Figure 4.1 moves upwards. The simulations are performed with a
constant δ = 10−6m and with dynamically calculated values of ∆ according to (3.83) with
∆ ≥ δ. Note that in order to generate a tangens hyperbolicus profile in phase-field simu-
lations, the contribution of fsurface ∝ 1

δ to the phase-field equations must dominate over
the contribution of fbulk. The choice δ = 10−6m is small enough to fulfill this condition.
Additionally, it is important for the convergence ∆ → δ that the grid is fine enough to
permit a resolution of the tangens hyperbolicus profile. For δ = 10−6m, the transition
layer width is lt ≈ 10δ = 10µm. Therefore, a grid spacing of 1µm has been chosen such
that a sufficient resolution is achieved with 10 grid cells in the transition layer.
As Figure 4.4 shows by means of a profile along the central vertical line x = 50µm, the
dynamically calculated ∆ values are larger than δ = 10−6m at first. However, the phase-
field profiles tend towards the tangens hyperbolicus shape with increasing time and ∆
approaches the constant value of δ = 10−6m. For t ≥ 1s, ∆ = δ is realized everywhere and
permanently. Figure 4.5 presents the phase-field profiles for both cases along the same
line x = 50µm after 1s and illustrates a good agreement. The statement of subsection
3.2.4 that ∆ gives back δ at flat binary interfaces on a sufficiently fine grid is therefore
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Figure 4.4.: Calculated ∆-values at
different times along x = 50µm

Figure 4.5.: Profiles of the phase-
field functions at t = 1s

confirmed numerically.

4.1.3. Binary Mixtures on Large Length Scales

4.1.3.1. Curved Binary Mixtures

We have seen that fsurface enforces tangens hyperbolicus profiles around sharp interfaces on
small length scales. Concerning macroscopic length scales, it has been shown analytically
in subsection 3.2.3 that fsurface in combination with the ∆-model works on minimizing the
curvature of binary mixture states. In order to verify this, we stretch the volume of interest
in Figure 4.1 by a factor of 1000, leading to a square with a side length of 0.1m and bend
the lower boundary. The grid spacing is 1mm. On the basis of a preceding calculation, a
curved mixture of the liquid phase and solid phase α of CBr4−C2Cl6 is created and used
as the initial state for this paragraph (see Figure 4.6). Starting from this initial state, the
phase-field equations are solved utilizing the ∆-model with the contributions from fbulk
being set to zero. The resulting dynamics is therefore solely due to the surface part in
the governing equations and we expect that according to equations (3.93)-(3.95), the final
equilibrium state is free of curvature. As Figure 4.7 shows, this is indeed the case.

Figure 4.6.: Curved α-l mixture used
as initial state

Figure 4.7.: Final equilibrium state
due to the action of fsurface
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4.1.3.2. Flat Binary Mixtures

In this paragraph, we withdraw the bending of the lower boundary and regard a square
with a side length of 0.1m filled with CBr4−C2Cl6. The starting position of the liquid-α
phase boundary with T = Te shall be located at y = 0.02m and a temperature gradient of
G = 100Km shows in the positive y-direction. The initial values and boundary conditions of
the phase-fields and the composition field correspond to those in subsection 4.1.2 and we
expect the formation of a mushy layer between the solidus temperature T = Te = 357.6K
at y = 0.02m and the liquidus temperature T = TL(0.0885) = 359.99K at y = 0.044m.
The simulations are performed again with the two variants of subsection 4.1.2, i.e. with
a constant δ = 10−6m and with dynamically calculated values of ∆ under the condition
∆ ≥ δ. A comparison of Figures 4.8 and 4.9 shows that the mushy layer fully develops
in the latter simulation while this is not the case for the constant δ. The constant value
of δ = 10−6m attaches an oversized importance to the surface terms being proportional
to 1

δ which prevents a complete formation of the mushy layer. Additionally, it is shown

Figure 4.8.: Equilibrium state of Φ2

for δ = 10−6m
Figure 4.9.: Equilibrium state of Φ2

for dynamically calculated ∆

Figure 4.10.: Calculated ∆-values
along x = 0.05m in Figure 4.9

Figure 4.11.: Equilibrium profile of
Φ1 along x = 0.05m in Figure 4.9

in Figure 4.10 that the calculated ∆’s do not converge against δ here as in subsection
4.1.2, but adopt values in the mm range. The profile of Φ1 corresponding to Figure 4.9
along x = 0.05m is presented in Figure 4.11. It is obvious that the profile is not a tangens
hyperbolicus anymore as in subsection 4.1.2, but that it is determined instead by the
thermodynamic properties of the involved phases represented by fbulk. We can therefore
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conclude that based on the dynamical calculation of ∆, the phase-field equations can
be applied independently from the spatial dimensions of interest. While the equilibrium
profiles are determined by fsurface on small length scales (see the tangens hyperbolicus
profiles in Figure 4.5) and the phase mixing regions are thin layers between the bulk phases,
the model for fsurface in combination with the ∆-model allows the profiles to develop
according to the requirements of fbulk to form mushy layers of appropriate thickness on
large lengths. As Figure 4.8 shows, a transition between different length scales is not
possible with a single constant value of δ. The ∆-model therefore assigns an appropriate
magnitude to phase surface effects represented by fsurface in comparison with fbulk.

4.1.3.3. Binary Mixtures With a Non-Uniform Thickness

The examples considered so far in subsection 4.1.3 exhibited binary mixture layers with
uniform thicknesses. The original reason for introducing the dynamic ∆(~x, t) has been
that the thickness of macroscopic binary mixture states may be non-uniform, which makes
a constant ∆(~x, t) = ∆0 inappropriate. The objective of this paragraph is to demonstrate
numerically that the proposed model for the dynamic calculation of ∆(~x, t) based on
equation (3.83) is able to characterize mixture states with spatially-dependent thicknesses.
Additionally, it is shown that the same results cannot be reproduced with a constant ∆0.
To create a mushy layer with a non-uniform thickness, we regard a more general scenario
including convection, heat and composition transport. The investigation is done by means
of an aqueous ammonium chloride solution (material properties in appendix G) as the
thermal and compositional linear expansion coefficients of CBr4 − C2Cl6, the material
considered so far, could not be found in the literature. The simulation volume stays the
same square with a side length of 0.1m and a grid spacing of 1mm, but the left wall is
cooled to a constant temperature T = 243.15K < Te = 257.75K and the right wall is
kept at T = 313.15K as indicated in Figure 4.12. At the beginning of the simulation, the

Figure 4.12.: Simulation setup

square is completely filled with a melt of composition ξ = 0.7 with T = 313.15K. As time
goes by, a solid phase with a mushy layer grows from the left wall which is influenced by
the heat and composition transport of the velocity field. Figures 4.13 and 4.14 show Φ2

and ∆ at t = 600s. The width of the mushy layer is non-uniform here and adopts a value
of about 5mm at the top and an about 2.6 times larger value of 13mm at the bottom.
The dynamically calculated ∆ values do not directly represent these thicknesses, but the
∆-model is capable to provide a measure for them and to reflect the non-uniformity. The
values calculated at the bottom of about 8mm are also approximately 2.6 times larger than
the values of 3mm calculated at the top. In order to make clear that the results cannot
be reproduced by simply choosing a constant value of about an appropriate magnitude,
Figures 4.15 and 4.16 show the results of corresponding simulations with constant values
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∆ = 3mm and ∆ = 8mm. In the calculation with ∆ = 3mm, the mushy layer thickness
is 6mm on top (+20%) and 11mm at the bottom (-15%) while the corresponding values
are 7mm (+40%) and 11mm (-15%) for the case ∆ = 8mm. Additionally, without the
preceding calculation of Figures 4.13 and 4.14, it would not have been clear in which range
the constant values shall be chosen.

Figure 4.13.: Phase-field Φ2 at t =
600s with dynamically calculated

values of ∆

Figure 4.14.: Calculated values of ∆
at t = 600s

Figure 4.15.: Phase-field Φ2 at t =
600s with ∆ = 3mm

Figure 4.16.: Phase-field Φ2 at t =
600s with ∆ = 8mm
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4.2. Bulk Part of Free Energy Density

The implemented model should reproduce the characteristic properties of the equilibrium
phase diagram in slow solid-liquid phase change processes. In this section, the material
properties of the binary eutectic alloy CBr4 − C2Cl6 (see appendix E) are utilized again.

4.2.1. Reproduction of Equilibrium Compositions from the Phase Dia-
gram

In order to investigate the reproduction of equilibrium compositions in accordance with
the phase diagram, we go back to the small square with dimensions 100µm × 100µm
and solve the phase-field equations and the composition equation for different constant

values T0 of temperature with initial melt compositions ξ0 < ξ
(12)
1 (T0) and ξ0 > ξ

(13)
1 (T0),

respectively. The simulation setup with the corresponding boundary conditions and inital
values is presented in Figure 4.17. Note that solidification starts at the lower boundary
and that the system decides itself which of the two solid phases is formed. δ is set to 0.3µm
as this choice generates continuous transition layers between the pure phases which are
sufficiently thin to approximate sharp interfaces in the current setup. The grid spacing of
0.5µm assures an appropriate resolution with 6 cells in the transition layer. Tables 4.1 and

Figure 4.17.: Simulation setup with initial values and boundary conditions

4.2 specify the chosen inital values of composition ξ0 and the corresponding temperatures
T0 of the simulations. For that matter, the values of ξ0 have been chosen slightly below
(if ξ0 < ξe) and above (if ξ0 > ξe) the equilibrium composition of the liquid phase at
temperature T0 in order to guarantee a sufficiently slow solidification rate. Consequently,
the phase boundary stays close to equilibrium and the compositions of the adjacent liquid

phase and the solid should correspond to the equilibrium values ξ
(1j)
j (T0) and ξ

(1j)
1 (T0)

from the phase diagram.

T0 ξ0 ξ
(12)
1 (T0)

357.6K 0.116 0.118

360.0K 0.086 0.088

362.0K 0.062 0.064

364.0K 0.037 0.039

366.0K 0.0138 0.0143

Table 4.1.: Initial values of composition (ξ0 < ξe) for different constant temperatures T0
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T0 ξ0 ξ
(13)
1 (T0)

357.6K 0.120 0.118

395.0K 0.347 0.345

430.0K 0.559 0.557

475.0K 0.832 0.830

Table 4.2.: Initial values of composition (ξ0 > ξe) for different constant temperatures T0

A first result of the simulations is that in accordance with the phase diagram, simulations
with ξ0 < ξe lead to the formation of solid phase α while solid phase β is generated
in simulations with ξ0 > ξe. On the small length scale considered here, fsurface ∝ 1

δ
separates coexisting bulk phases up to thin transition layers. Figures 4.18 and 4.19 show
the phase-field function ϕ2 and the corresponding composition profile in y-direction from
the simulation (T0 = 360.0K, ξ0 = 0.086) at t = 4s. One can see in Figure 4.19 that there

Figure 4.18.: Phase-field ϕ2 indi-
cating solid phase α for (T0 =

360.0K, ξ0 = 0.086) at t = 4s

Figure 4.19.: Composition profile in
y-direction at t = 4s

is a constant composition of 0.0663 in the solid phase α and a composition maximum of
0.0882 in the liquid adjacent to the phase boundary due to the rejection of component
B by the solid. Going further into the liquid, composition approaches its initial value
of 0.086. Therefore, the equilibrium compositions of solid phase α and the liquid phase

at temperature T0 = 360.0K resulting from the phase diagram, ξ
(12)
1 (T0) = 0.088 and

ξ
(12)
2 (T ) = 0.066, are reproduced well by the simulation. Figures 4.20 and 4.21 show

systematic comparisons between the simulation results and the specifications of the phase
diagram and reveal a good agreement.
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Figure 4.20.: Comparison of simu-
lated equilibrium compositions with
the liquidus and solidus lines of

CBr4 − C2Cl6 for ξ0 < ξe

Figure 4.21.: Comparison of simu-
lated equilibrium compositions with
the liquidus and solidus lines of

CBr4 − C2Cl6 for ξ0 > ξe

4.2.2. Reproduction of Stability Properties from the Phase Diagram

In this subsection, we investigate the instability of phase boundaries, which manifests itself
on macroscopic length scales in the formation of a mushy layer between the bulk liquid
and solid phases. For a given value of ξ0, one can read from the phase diagram if and in
what temperature interval a mushy layer should develop and which of the two solid phases
should coexist with the liquid therein. In order to further verify the developed model, we
adopt the simulation setup from Figure 4.17 with the same initial and boundary conditions.
However, the side length is increased by a factor of 1000 to 0.1m and a uniform grid with
a spacing of 1mm is utilized. The simulations are performed for different constant values
ξ0 of the melt composition in a temperature gradient G which shows upwards in Figure
4.17.
The isotherm representing the solidus temperature TS(ξ0) corresponding to composition
ξ0 is located at the lower boundary of the simulation volume at the beginning and moves
upwards with all other isotherms with a small constant velocity v = 0.5µms . We expect
the formation of a completely solid phase below the isotherm TS(ξ0) and a purely binary
mushy layer in the region TS(ξ0) < T < TL(ξ0). Because the width of the temperature
interval [Ts(ξ0), Tl(ξ0)] is much smaller for ξ0 < ξe than for ξ0 > ξe, different temperature
gradients G = 100Km (ξ0 < ξe) and G = 200Km (ξ0 > ξe) were used to keep the mushy layer
width in a reasonable scope compared to the dimensions of the simulation volume.
As an example, simulation results for the eutectic composition ξ0 = ξe = 0.118 and for
the non-eutectic composition ξ0 = 0.09 are presented in Figures 4.22 and 4.23. One can
see that the phase boundary does indeed stay sharp in the eutectic case, whereas a mushy
layer develops for ξ0 = 0.09. According to the profiles in Figure 4.24, this mushy layer is
really a purely binary liquid-α mixture as the phase diagram requires. We mention here
that the solid being formed in the region T ≤ Te is in general a mixture of solid phases
α and β. In Figure 4.22, the solid contains a phase α volume fraction of Φ2 = 0.706 and
correspondingly Φ3 = 0.294. In Figure 4.23, the values are Φ2 = 0.985 and Φ3 = 0.015.
This will be discussed in more detail in the next subsection. A systematic comparison of
the mushy layer extents with the phase diagram is provided in Figures 4.25 and 4.26. It
shows a good agreement.
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Figure 4.22.: Steady-State at eutec-
tic composition ξ0 = ξe = 0.118

Figure 4.23.: Steady-State at com-
position ξ0 = 0.09

Figure 4.24.: Profiles of the phase-fields in Figure 4.23 along the line x = 0.05m

Figure 4.25.: Comparison of simula-
tion results with the liquidus and
solidus lines of the phase diagram

for ξ0 < ξe

Figure 4.26.: Comparison of simula-
tion results with the liquidus and
solidus lines of the phase diagram

for ξ0 > ξe
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4.2.3. Composite Solids

As mentioned before and indicated in Figures 4.22 and 4.23, the formation of composite
solids is possible. The latter will occur if the initial composition of the melt lies within
the eutectic plateau, i.e. if

ξ
(12)
2 (Te) ≤ ξ0 ≤ ξ(13)

3 (Te). (4.1)

Under condition (4.1), mass conservation leads to

ξ0 = Φ2ξ
(12)
2 (Te) + (1− Φ2)ξ

(13)
3 (Te) ↔ Φ2 =

ξ0 − ξ(13)
3 (Te)

ξ
(12)
2 (Te)− ξ(13)

3 (Te)
(4.2)

Φ3 = 1− Φ2.

According to (4.2), the volume fraction of solid phase α in the composite solid approaches

1 for ξ0 → ξ
(12)
2 (Te) and 0 for ξ0 → ξ

(13)
3 (Te). For ξ0 < ξ

(12)
2 (Te), a pure α-solid is

obtained and analogously for ξ0 > ξ
(13)
3 (Te) a pure β-solid. On the basis of the simulations

presented in the preceding subsection, Figure 4.27 compares the phase volume fractions of
the composite solid with the expectations according to mass conservation. Again, we find
a good agreement.

Figure 4.27.: Comparison of the phase volume fractions in the solid resulting from mass
conservation with simulation results

4.3. Transition to a Sharp-Interface Model

In this section, we consider the non-averaged model based on the phase indicator func-
tions ϕi with a constant δ and verify its capability to numerically reproduce results from
sharp interface modelling if δ is sufficiently small. In particular, it has been demonstrated
analytically in the thin-interface analysis in subsection 3.4.1 that the new model is able to
describe the undercooling at phase boundaries due to curvature. It will be shown here that
the implemented model is able to reproduce this so-called Gibbs-Thomson effect quanti-
tatively correctly. The verification setup has been adopted by Kim et al. ([67]) and will
be described in more detail below.
The setup consists of two α-grains of the binary eutectic alloy CBr4 − C2Cl6 (material
properties in appendix E) which are separated by each other and the adjacent liquid phase
by sharp phase boundaries. The sample is placed in a constant external temperature gra-
dient G = 8000Km , which shows upwards in Figure 4.28.
In the framework of sharp-interface modelling, the equilibrium shape of the phase bound-
ary can be calculated in the following manner. If θ is the angle between the x-direction
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Figure 4.28.: Simulation Setup

and the unit normal on the phase boundary, its value θ0 at the triple point can be obtained
from the force balance

σ22 − 2σ12 cos(θ0) = 0↔ θ0 = arccos(
σ22

2σ12
). (4.3)

Therefore, the final contact angle is determined by the ratio of the surface tensions σ22

between the two α-grains and σ12 between the liquid phase and solid phase α. This
angle is related to a certain curvature κ and according to (3.192) to a certain curvature
undercooling at the phase boundary. Consequently, the triple point moves downwards in
the external temperature gradient G until the necessary undercooling is realized. Based
on the boundary conditions θ = θ0 at x = 0 and θ = π

2 at y = 0, the points (x, y) defining
the position of the sharp equilibrium phase boundary can be obtained by ([67])

x =
1

aG

ˆ θ

θ0

σ12
sin(θ)

y
dθ

y2 =
2

aG
σ12(1− sin(θ))

a =
RTe
vm

k12 − 1

m12
.

In order to investigate the capability of the newly developed model to numerically re-
produce sharp interface behaviour and in order to check the reproduction of the Gibbs-
Thomson effect in particular, we simulate the above situation for different ratios σ22

σ12
. In

this context, only the phase-field and composition equations are solved and the phase-field
ϕ2 is assigned to the right α-grain and ϕ3 to the left one. Additionally, the material prop-
erties of solid phases α and β appearing in the governing equations are set equal as both
solid phases shall represent phase α of CBr4 − C2Cl6 in the calculations considered here.
The calculations are performed with a constant δ = 0.12µm and a grid spacing of 0.1µm.
The results for different ratios σ22

σ12
are presented in Figures 4.29, 4.30 and 4.31.

One can see that the phase-field simulations show a good agreement with the sharp inter-
face solutions. As curvature undercooling plays a vital role here, we can conclude that the
Gibbs-Thomson effect can be represented by the model sufficiently well.
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Figure 4.29.: Equilibrium phase boundary for σ22 = σ12

Figure 4.30.: Equilibrium phase boundary for σ22 = 1.5σ12

Figure 4.31.: Equilibrium phase boundary for σ22 = 1.95σ12
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4.4. Relationship to the Volume-of-Fluid Method

The volume-of-fluid method presented by Hirt and Nichols ([91]) allows an efficient de-
scription of two-phase flows. They introduce a step-like phase indicator function γ, which
adopts a constant value of 1 in one of the two phases and a constant value of 0 in the other
one. Consequently, grid cells with values of γ between 0 and 1 indicate the sharp phase
boundary between both fluids. In the case of an incompressible flow, γ is transported
according to the advection equation

∂γ

∂t
+ ~∇ · (γ~u) = 0 (4.4)

with the velocity field ~u. However, it turns out that special measures are necessary in order
to keep the phase interface sharp and to avoid a smearing. In the following, the version
of the volume-of-fluid method implemented in OpenFOAM ([89]) in the framework of the
InterFoam solver for incompressible flows is taken as a basis. The corresponding equations
are

~∇ · ~u = 0 (4.5)

∂(ρ~u)

∂t
+ ~∇ · (ρ~u~u)− ~∇ · (η~∇~u) = −~∇p+ ρ~g + σκ~∇γ (4.6)

∂γ

∂t
+ ~∇ · (γ~u) + ~∇ · (γ(1− γ) ~ur) = 0. (4.7)

The coupling of γ with the Navier-Stokes equations is realized on the one hand via the ve-
locity field ~u and on the other hand via an additional source term σκ~∇γ in the momentum
equation to describe surface effects with curvature

κ = −~∇ ·
~∇γ
|~∇γ|

.

The so-called compression term ~∇ · (γ(1− γ) ~ur) appearing in (4.7) avoids the smearing of
phase boundaries and is discretized in the following manner:

~∇ · (γ(1− γ) ~ur) =
∑
f

γf (1− γf )~ur,f ~Sf (4.8)

~ur,f =
(~∇γ)f

|(~∇γ)f + ε|
min{Cγ

|Ff |
|~Sf |

,max{
|Ff |
|~Sf |
}}.

For that matter, it is summed over the surface areas f of a grid cell, ~Sf is the area vector
being perpendicular to f and Ff is the volume flow. The maximum is evaluated considering
all cells of the grid, ε is a small stabilizing quantity and Cγ is set to one in the following.
Consequently, the compression term has the form

~∇ · (γ(1− γ)
~∇γ
|~∇γ|

K) (4.9)

with a quantity K in accordance with (4.8) and it vanishes in a continuous consideration
as γ(1− γ) is always zero then.
We compare this now with the model developed in this work for the special case of elemental
materials (equations (3.161)-(3.164)) because only two possible phases are needed here. In
order to see the close connection between the volume-of-fluid method and the phase-field
model, some simplifications and rearrangements in the equations derived in Chapter 3 are
necessary. These will be presented in the following.
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As the volume-of-fluid method is not capable to describe phase change, we set T = Tm in
the phase-field equation to switch off fbulk and the corresponding thermodynamic driving
forces. This leads to

DΦ

Dt
=
∂Φ

∂t
+ (~u · ~∇)Φ = Ma~∇(∆~∇Φ)− Ma

∆
Φ(1− Φ)(1− 2Φ). (4.10)

Note that all specifics of the liquid-solid system have vanished in (4.10) and that the
remaining part merely represents surface tension forces between two arbitrary phases. As
the influence of fbulk, which is usually the dominant factor in the phase-field equations on
macroscopic length scales, is not present here, we choose a constant δ in (4.10) and obtain

∂Φ

∂t
= −(~u · ~∇)Φ +Ma{δ~∇2Φ− 1

δ
Φ(1− Φ)(1− 2Φ)}. (4.11)

For sufficiently small values of δ, the second summand on the right-hand side dominates
over −(~u · ~∇)Φ and enforces a tangens hyperbolicus profile

Φ(xn) =
1

2
(1 + tanh(

xn
2δ

)) (4.12)

with

|~∇Φ| = ∂Φ

∂xn
=

1

δ
Φ(1− Φ) (4.13)

~∇2Φ =
∂2Φ

∂x2
n

=
1

δ2
Φ(1− Φ)(1− 2Φ). (4.14)

Note that the profile (4.12) makes the expression in the brackets {} vanish, but as soon
as there is a deviation from (4.12), a large contribution proportional to 1

δ drives the dis-
turbed profile back towards the tangens hyperbolicus. Especially in the limit δ → 0, the
tangens hyperbolicus converges against the step function of the volume-of-fluid method
and assuming incompressibility ~∇ · ~u = 0, we obtain the analogue of equation (4.4):

∂Φ

∂t
+ ~∇ · (Φ~u) = 0. (4.15)

Additionally, it is possible to extract a term from the phase-field equation (4.11) which
corresponds to the compression term (4.9) of the volume-of-fluid method and which in
analogy to (4.9) is analytically zero in the limit δ → 0. For that manner, we use (4.13) to
make the following transformations:

Ma

δ
Φ(1− Φ)(1− 2Φ) = Ma|~∇Φ|(1− 2Φ)

= Ma~∇(Φ(1− Φ)) ·
~∇Φ

|~∇Φ|

= ~∇ · (MaΦ(1− Φ)
~∇Φ

|~∇Φ|
)− Φ(1− Φ)~∇ · (Ma

~∇Φ

|~∇Φ|
)

= ~∇ · (MaΦ(1− Φ)
~∇Φ

|~∇Φ|
)− δ|~∇Φ|~∇ · (Ma

~∇Φ

|~∇Φ|
). (4.16)

Based on this, we obtain from (4.11) with ~∇ · ~u = 0 the equation

∂Φ

∂t
+ ~∇ · (Φ~u) = Maδ~∇2Φ− ~∇ · (MaΦ(1− Φ)

~∇Φ

|~∇Φ|
) + δ|~∇Φ|~∇ · (Ma

~∇Φ

|~∇Φ|
), (4.17)
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which adopts in the sharp interface limit δ → 0 the form

∂Φ

∂t
+ ~∇ · (Φ~u) = −~∇ · (MaΦ(1− Φ)

~∇Φ

|~∇Φ|
). (4.18)

In the phase-field model, the term Ma
δ Φ(1 − Φ)(1 − 2Φ) results from the double well

potential and its task is to separate coexisting phases. A comparison of (4.18) with (4.7)
shows that an expression can be extracted from it which has the same structure as the
compression term of the volume-of-fluid method. At the same time, the mobility M of the
phase-field can be determined by comparing (4.18) with (4.9):

Ma = K ↔M =
K

a
. (4.19)

The discretization of the resulting expression ~∇ · (KΦ(1 − Φ)
~∇Φ
|~∇Φ|

) may be conducted

in analogy to (4.8). Note that in the framework of the thin-interface analysis presented
in subsection 3.4.2, the phase-field mobility M has already been determined for phase
boundaries moving due to phase change. In the situation considered here, phase change
plays no role and it is therefore natural to find an alternative expression for M .
The last point is the coupling with the Navier-Stokes equations. The thermodynamically
consistent coupling leads in the case T = Tm, ∆ = δ and a = 3σ

Tm
regarded here to an

expression
− 6σδ~∇2Φ~∇Φ (4.20)

on the right-hand side of the momentum equation (3.162). In the following, we will try to

express ~∇2Φ by ~∇ · ( ~∇Φ
|~∇Φ|

) plus a correction term. Using ∂i = ∂
∂xi

, we start by evaluating

∂1(
∂1Φ

|~∇Φ|
)

= ∂1(
∂1Φ√

(∂1Φ)2 + (∂2Φ)2 + (∂3Φ)2
)

=
∂2

1Φ
√

(∂1Φ)2 + (∂2Φ)2 + (∂3Φ)2

(
√

(∂1Φ)2 + (∂2Φ)2 + (∂3Φ)2)2

−
∂1Φ1

2{(∂1Φ)2 + (∂2Φ)2 + (∂3Φ)2}−
1
2 (2∂1Φ∂2

1Φ + 2∂2Φ∂1∂2Φ + 2∂3Φ∂1∂3Φ)

(
√

(∂1Φ)2 + (∂2Φ)2 + (∂3Φ)2)2

=
∂2

1Φ

|~∇Φ|
− ∂1Φ

|~∇Φ|3
(∂1Φ∂2

1Φ + ∂2Φ∂1∂2Φ + ∂3Φ∂1∂3Φ). (4.21)

In analogy, one obtains

∂2(
∂2Φ

|~∇Φ|
) =

∂2
2Φ

|~∇Φ|
− ∂2Φ

|~∇Φ|3
(∂1Φ∂2∂1Φ + ∂2Φ∂2

2Φ + ∂3Φ∂2∂3Φ) (4.22)

∂3(
∂3Φ

|~∇Φ|
) =

∂2
3Φ

|~∇Φ|
− ∂3Φ

|~∇Φ|3
(∂1Φ∂3∂1Φ + ∂2Φ∂3∂2Φ + ∂3Φ∂2

3Φ). (4.23)

Using (4.21)-(4.23), one can write

~∇ · (
~∇Φ

|~∇Φ|
) =

3∑
i=1

∂i(
∂iΦ

|~∇Φ|
)

=
~∇2Φ

|~∇Φ|
− 1

|~∇Φ|3
(~∇Φ)T · (~∇⊗ ~∇Φ) · ~∇Φ

↔ ~∇2Φ = |~∇Φ|~∇ · (
~∇Φ

|~∇Φ|
) + (

~∇Φ

|~∇Φ|
)T · (~∇⊗ ~∇Φ) · (

~∇Φ

|~∇Φ|
). (4.24)
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Introducing the curvature κ = −~∇ · ( ~∇Φ
|~∇Φ|

) and using δ|~∇Φ| = Φ(1 − Φ), we obtain the

expression

6Φ(1− Φ)σκ~∇Φ− 6σ
Φ(1− Φ)

|~∇Φ|
{(

~∇Φ

|~∇Φ|
)T · (~∇⊗ ~∇Φ) · (

~∇Φ

|~∇Φ|
)}~∇Φ (4.25)

on the right-hand side of the momentum equation. The similarity with the corresponding
term in the volume-of-fluid method becomes even more pronounced if we replace Φ(1−Φ)
by its average value in the transition region 0 < Φ < 1 due to the small spatial extent of
the latter:

ˆ 1

0
Φ(1− Φ)dΦ =

1

6
. (4.26)

This leads to

− 6σδ~∇2Φ~∇Φ = σκ~∇Φ− σ{ 1

|~∇Φ|
(
~∇Φ

|~∇Φ|
)T · (~∇⊗ ~∇Φ) · (

~∇Φ

|~∇Φ|
)}~∇Φ (4.27)

on the right-hand side of the momentum equation. (4.27) contains the same expression as
in (4.6) plus an additional correction.
In the following, we will compare the results of the phase-field method (PFM) with those
of the volume-of-fluid method (VOF) represented by the InterFoam algorithm taking the
example of the dam break test case prepared in OpenFOAM. In this test case, a water col-
umn surrounded by air rushes down onto a solid obstacle. In the phase-field calculations,
(4.26) has not been utilized as this average does not naturally arise in the framework of
the phase-field method. Possible differences with the InterFoam algorithm may therefore
be rooted in the factors 6Φ(1−Φ) as well as in the correction term in (4.27). The results
are presented in Figures 4.32 - 4.35 and show a good agreement. We can therefore con-
clude that on the one hand, the correction term is not too important on a macroscopic
length scale. On the other hand, the coupling procedure with the Navier-Stokes equations
is justified as there are no major discrepancies with the well-established volume-of-fluid
method. In Table 4.3, we additionally compare both methods with respect to the conser-
vation of the phase volume. One can see that the volume fraction of water decreases in
both methods. The phase-field method, however, performs slightly better.

Time Phase-Field
Method

Volume-of-Fluid
Method

0.0s 0.124769 0.124769

1.0s 0.123248 0.122835

Table 4.3.: Volume fraction of water at the beginning and at the end of the simulations
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Figure 4.32.: PFM at t = 0.0s, t =
0.1s and t = 0.3s

Figure 4.33.: VOF at t = 0.0s, t =
0.1s and t = 0.3s
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Figure 4.34.: PFM at t = 0.5s, t =
0.75s and t = 1.0s

Figure 4.35.: VOF at t = 0.5s, t =
0.75s and t = 1.0s
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In this chapter, the results of CFD simulations using the developed model will be com-
pared with experimental data. In particular, three different cases will be considered which
have been chosen to cover a wide scope of possible applications.
The first case treats a solidifying microstructure of CBr4−C2Cl6 with alternating lamella
of solid phases α and β, which are separated from each other and the eutectic melt by sharp
phase boundaries. The objective is to show that the developed model is really capable to
reproduce the details of sharp interface solidification if it is applied on a sufficiently fine
grid. The corresponding experimental data have been published by Ginibre et al. ([92]).
After that, a second simulation on a macroscopic length scale treats elemental material
phase change under thermal natural convection, a scenario being contained in the derived
model as a special case (see subsection 3.3.2). As the dynamics of phase change can be de-
scribed in both directions, a melting process of elemental gallium in a box-shaped container
published by Gau and Viskanta ([93]) is considered here. Another notable aspect is that
this second simulation treats the dynamics of sharp phase boundaries on a macroscopic
scale in contrast to the microscopic sharp interface dynamics of CBr4 − C2Cl6 treated in
the first case.
Finally, a macroscopic experiment by Christenson et al. ([94],[25]) investigating the solidi-
fication of an aqueous ammonium chloride solution under thermosolutal natural convection
is simulated. In this last setup, the full scope of our model including heat and composition
transport as well as mushy layer formation is covered.

5.1. Microscopic Lamellae Solidification of CBr4 − C2Cl6

As mentioned before, we turn towards the description of the exact sharp interface structure
on a small length scale at first. For a validation of the developed model, an experiment by
Ginibre et al. ([92]) is used in which the solidification dynamics of the binary eutectic alloy
CBr4 − C2Cl6 is investigated on a length scale of several micrometers. A sketch of the
experiment is presented in Figure 5.1. For that matter, a 12µm thick sample is enclosed
between two glass plates and placed in fixed external temperature gradient G = 8000Km .
Starting from an inital equilibrium state with alternating lamellae of the two solid phases
α and β in the region with T ≤ Te and a eutectic melt in the area with T > Te, the
sample is moved with a constant velocity V = 0.5µms to the cold side of the temperature
gradient. Further details about the experimental procedure may be found in [92]. As
demonstrated in Figure 5.2, the resulting solidification pattern is characterized by oscil-
lating phase boundaries between the two solid phases α and β. This experiment has been
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Figure 5.1.: Sketch of Ginibre’s experiment

simulated with the model developed in this work. In the simulations, only the phase-field
equations and the transport equation for the composition field have been solved because
effects of natural convection are negligible on the small length scale considered here and
because the temperature field is dominated by the external gradient despite the latent heat
being released. The equations have been discretized on a uniform grid in two dimensions

Figure 5.2.: Solidification pattern of the sample moving with V = 0.5µms

with a grid spacing of 0.5µm. Only two pairs of lamellae have been considered and cyclic
boundary conditions have been utilized at the left and right boundaries. Figures 5.3 and
5.4 show the resulting solidification pattern for the case of dynamically calculated values
∆(~x, t) as well as for the case of a constant δ = 3 · 10−7m. The calculated values ∆(~x, t)
corresponding to Figure 5.3 are presented in Figure 5.5 and were subjected to the condition
∆(~x, t) ≥ δ. Obviously, the case of Figure 5.3 leads to a more realistic result. Figure 5.5
makes clear that only small corrections to the constant δ = 3 · 10−7m are calculated with
maximum values at the triple points connecting the solid phases α and β as well as the
liquid phase. These corrections seem to be crucial in order to obtain a realistic result for
the setup considered here.
How can this be understood? The phase-field model with a small and constant δ to de-
scribe the microscopic sharp-interface dynamics is based on the free energy functional
developed in section 3.1. It has been constructed to keep the continuous transition region
between two bulk phases purely binary and to impose a tangens hyperbolicus profile on
the involved phase-fields in or close to a state of thermodynamic equilibrium. Thereby, the
existence of triple points has not been considered and the implicit assumption was that
triple points follow the motion of neighbouring binary interfaces without having a large
influence. In the spirit of considering free energy as a landscape above the Gibbs simplex,
its values in the interior of the simplex result in our model from a superposition of expres-
sions which provide the desired behaviour along the edges. Therefore, triple points may
not be represented entirely correctly and the constant δ = 3 · 10−7m seems to be too large
to suppress their influence on the result. As all three phases are present at triple points
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Figure 5.3.: Solidification pattern
for dynamically calculated values

∆(~x, t)

Figure 5.4.: Solidification pattern
for a constant δ = 3 · 10−7m

Figure 5.5.: Dynamically calculated ∆(~x, t) corresponding to Figure 5.3

by definition, the profiles of the phase-fields deviate from the tangens hyperbolicus shape
and the ∆ model provides small corrections to the constant δ there. As Figure 5.5 shows,
these corrections trace the path of the triple points and neutralize their bad influence on
the results.
The oscillation wavelength is constant in Figure 5.3 and adopts a value of about 30µm. A
comparison with the experimental result shows a quite good agreement (Figure 5.6). How-
ever, the oscillations get out of step after some time because the experimental wavelength
is not a constant and fluctuates around 30µm. A reason for this deviation may be that
as pointed out by Ginibre et al. ([92]), the pulling velocity V was subjected to periodic
oscillations of ±4% around its average value 0.5µms which has not been considered in the
simulations. We can conclude that the developed model is capable to correctly reproduce
the solidification microstructure of binary eutectic alloys on a small length scale.
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Figure 5.6.: Comparison of the experimental result with the simulation result from Figure
5.3

5.2. Melting of Gallium Under Thermal Natural Convection

We investigate in this section the melting of elemental gallium in a box-shaped container of
dimensions 0.0889m× 0.0635m× 0.0381m. The corresponding experiments are described
in [93] and have been performed by Gau and Viskanta in 1986. According to the authors,
the inital temperature of the solid gallium block and all bounding walls has generally been
1K−2K below the melting point Tm = 302.93K before the melting process was started. As
no further specifications are given, we assume an initial temperature of Tc = 301.45K and
therefore an undercooling of 1.5K in the following. The melting process was initialized
by raising the temperature of a wall with dimensions 0.0635m × 0.0381m to the fixed
value Th = 311.15K > Tm while the opposing wall was kept at the initial temperature of
Tc = 301.45K. All other walls were isolated. A sketch of the experimental setup is shown
in Figure 5.7. During the series of experiments, the phase change process was stopped in

Figure 5.7.: Experimental setup from Gau and Viskanta with the heated wall in red

each case at a certain point in time and the position of the phase boundary was determined
after a quick removal of the residual melt. The experimental results presented by Gau and
Viskanta in [93] are shown in Figure 5.8. The results are presented in two dimensions as
no noteworthy changes were observed in the perpendicular direction. One can see that
melting is stronger at the top and that the difference increases with time. The reason for
this behaviour is that due to thermal buoyancy effects, the melt rises along the heated
wall, absorbs heat along the way and transports it to the phase boundary. The heat is
spent there to transform the solid phase into the liquid state and the melt falls down due
to the heat loss and the associated density increase. On its way down, the induced melting
becomes weaker and weaker as more heat has been spent before. In the course of these
events, the phase boundary bulges as shown in Figure 5.8 and the distance covered by the
melt during heat release increases, leading to an even more pronounced difference between
the top and the bottom of the cavity.
The considered experimental series was simulated with the special case of the developed
model for elemental materials, i.e. by solving the system of equations (3.161)-(3.165)
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Figure 5.8.: Experimentally determined position of the sharp phase boundary at different
points in time

with the assumption of incompressibility. The material properties of gallium used in the
simulation are specified in appendix F. The Grashof number is

Gr =
gρ2βT∆TL3

η2
=

9.81m
s2
· (6111 kg

m3 )2 · 1.3 · 10−4 1
K · 9.7K · (0.0635m)3

(2.045 · 10−3 kg
ms)

2
= 2.8 · 107

and therefore smaller than the critical value Grkrit = 109 for flows along heated vertical
plates ([95]) which indicates the onset of turbulence.
The simulations have been performed in three dimensions with a grid distance of 1mm.
Although the characteristics of the phase boundary are determined by the two spatial
dimensions specified in Figure 5.8, the velocity field has a non-negligible component in
the third direction especially at the beginning of the simulation when the liquid volume
fraction is small. A comparison of the simulated positions of the sharp phase boundary
with the experimental results from Figure 5.8 is shown in Figure 5.9.

Figure 5.9.: Comparison of simulation results with experiment

All in all, the temporal evolution as well as the form of the phase boundary agree well.
The small discrepancies in the temporal development may be explained by uncertainties
concerning the temperature Tc of the cold wall. As mentioned before, Tc is specified with
1K − 2K below the melting point for every run. As the experiment was executed anew
for every curve shown in Figure 5.8, it is probable that there were certain variations of Tc
which have not been considered in the numerical simulations with a fixed Tc = 301.45K
corresponding to an undercooling of 1.5K.
Additionally, Figures 5.10 and 5.11 show the temperature field and the magnitude of the
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velocity field after 17 minutes. At this point in time, there is a single, two-dimensional
convection cell which transports heat from the heated wall to the phase boundary.

Figure 5.10.: Simulated temperature field after 17 minutes

Figure 5.11.: Simulated velocity field (magnitude) after 17 minutes
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5.3. Solidification of NH4Cl−H2O Under Thermo-Solutal Nat-
ural Convection

In this section, the developed model is validated by means of the solidification of an
aqueous ammonium chloride solution NH4Cl−H2O in a box-shaped volume with dimen-
sions 0.036m× 0.144m× 0.2m. The material properties of NH4Cl −H2O and the model
parameters to be calculated by them are specified in appendix G. In the corresponding
experiment presented by Christenson et al. in [94] and [25], the mentioned box-shaped
volume is filled with an aqueous ammonium chloride solution with an initial composition
ξ = 0.7 < ξe and an initial temperature T = 313.15K. One of the two walls with dimen-
sions 0.144m × 0.2m is held at a constant temperature Tc = 243.15K and the opposing
wall is held at Th = 313.15K. The Grashof number is

Gr =
gρ2βT∆TL3

η2
=

9.81m
s2
· (1078 kg

m3 )2 · 3.832 · 10−4 1
K · 4.518K · (0.144m)3

(1.3 · 10−3 kg
ms)

2
= 3.5 · 107,

(5.1)
which means that it is below the critical value Grkrit = 109 for flows along vertical plates
marking the transition to turbulence (see [95]). Because only the liquid part must be taken
into consideration for possible turbulent motions, ∆T in (5.1) has been calculated from the
difference between the heated wall temperature Th and the temperature at the boundary
between the mushy layer and completely liquid regions, which has been estimated to be
given by the liquidus temperature:

∆T = Th − Tl(ξ)
= Th − Te −m12 · (ξ − ξe)
= 313.15K − 257.75K − (−494K) · (0.7− 0.803)

= 4.518K.

We mention here that even if the temperature difference between the heated and the cooled
wall ∆T = Th − Tc = 70K is used, the resulting Grashof number Gr = 5.4 · 108 is still
smaller than Grkrit.
We can therefore assume the flow to be laminar and due to the large container depth of
0.2m, it can also be regarded as being essentially two-dimensional. In the following, the
depicted experiment will be described in the sense of Figure 5.12.

Figure 5.12.: Experimental setup in two dimensions

At first, Figure 5.13 shows the experimentally determined solidification behaviour pre-
sented by Christenson et al. in [25]. Note that small dendritic tips at the boundary
between the mushy layer and the liquid phase have been taken out by the authors of [25]
such that the data represent the smoothed behaviour. One can see that a solid phase grows
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from the cooled wall, which due to the non-eutectic composition of the melt is separated
by a mushy layer from the liquid phase. The temperature and composition dependence of
density generates buoyancy forces, which manifest themselves in a transport of heat and
the lighter water to the upper part of the container. This leads to a temperature increase
and due to the higher mass fraction of water to a decrease of the liquidus temperature
there. Consequently, the process of solidification is attenuated in the upper part of the
box and the solidification behaviour presented in Figure 5.13 is observed.

Figure 5.13.: Experimentally determined solidification behaviour

In the numerical simulation based on Figure 5.12, a uniform grid with a cell size of 1mm
was used and the full system of equations (3.156)-(3.160) was solved under the incompress-
ibility assumption ~∇·~u = 0. The temperature and composition dependence of density has
been considered in the framework of the Boussinesq approximation.
In Figure 5.14, the simulation results of the developed model concerning the extent of the
mushy layer (green lines) is compared on the one hand with the experimental results from
Figure 5.13 and on the other hand with the simulation results which Christenson et al.
([25]) obtained with Bennon’s model (see subsection 2.1.3).

Figure 5.14.: Comparison of experimental results with numerical simulations (1)
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Note that small tips between the mushy layer and the liquid phase appeared in the simu-
lations as well and have been removed to be consistent with the data presented in [25] and
in Figure 5.13. One can see that the newly developed model is capable to give a good re-
production of the experimental results and that it improves the results of Bennon’s model.
Remember that in Bennon’s model, the phase state is calculated as an instantaneous func-
tion of temperature and composition according to equation (2.40). In contrast to that,
the model developed in this work solves additional governing equations describing phase
change. Furthermore, the assurance of thermodynamic consistency generates additional
phase-field dependent coupling terms in the other transport equations in the new model
which are not present in Bennon’s approach.
It must be mentioned that Christenson et al. ([25]) present a second simulation which has
been obained tentatively with an initial melt composition ξ = 0.69 and which is compared
with the experimental results and our simulation results in Figure 5.15.

Figure 5.15.: Comparison of experimental results with numerical simulations (2)

However, as the uncertainty of the composition measurement is given by at most ±0.005
in the experimental paper ([94]), this second simulation with ξ = 0.69 is actually not con-
sistent with the experiment. The comparison of the newly developed model with Bennon’s
model should therefore be based on Figure 5.14.
Additionally, temperature measurements at different positions are available. A selection
of these measurements is presented in Figures 5.16 to 5.21 together with the simulated
temperature distributions based on the phase-field model as well as Bennon’s model. One
can see that the new model leads to a better agreement with the measurements here as
well. Note that the red and blue lines in Figures 5.16 to 5.21 end in each case at the time
when a steady-state has established in the corresponding simulations. The experimentally
determined steady state after about 56 minutes occurs much later than the in the simu-
lations with the Bennon model and is nearly reproduced by the phase-field model. Note
that the temperature measurements end after 40 minutes when the experimental steady
state has not established yet.
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Figure 5.16.: Temperature at x =
0.0022m, y = 0.09m

Figure 5.17.: Temperature at x =
0.0044m, y = 0.09m

Figure 5.18.: Temperature at x =
0.0066m, y = 0.09m

Figure 5.19.: Temperature at x =
0.0087m, y = 0.065m

Figure 5.20.: Temperature at x =
0.0022m, y = 0.045m

Figure 5.21.: Temperature at x =
0.0044m, y = 0.045m
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6.1. Conclusion

In this thesis, a three-dimensional computational fluid dynamics model has been developed
which couples the Navier-Stokes equations and transport equations for heat and composi-
tion with an independent phase change model in a thermodynamically consistent manner.
The phase change model is based on the phase-field method, which is a well-known diffuse
interface approach to represent the dynamics of sharp solid-liquid phase boundaries with
the help of smooth phase indicator functions.
The model development is based on the construction of a phenomenological functional
for the free energy of binary eutectic alloys. After a generalization of the free energy
functional to a volume-averaged framework, it is used to achieve a thermodynamically
consistent coupling of phase change with momentum, heat and composition transport. In
particular, this thesis can contribute the following new aspects:

• The modelling of surface free energy density generalizes the approach by Folch and
Plapp ([70]) by the introduction of an especially designed higher-order term, which
additionally to the avoidance of ghost phases and the preservation of the tangens
hyperbolicus equlibrium profiles as considered by the model in [70] allows to assign
different surface tension values to different interfaces. While the avoidance of ghost
phases is in accordance with physical experience and the tangens hyperbolicus profiles
are important for the feasibility of a thin-interface analysis, the representation of
different surface tension values is requested as the new model shall provide a realistic
microscopic description. It has turned out that the resulting expression for fsurface
corresponds to a special case of a model proposed by Haas ([80]) for N phases derived
from a different perspective.

• The modelling of bulk free energy density is based on an expression provided by
Kim et al. ([67]) for dilute binary eutectic alloys under isothermal conditions. It
has been generalized to non-isothermal conditions and arbitrary composition values.
In particular, individual phase compositions are introduced and in contrast to some
speculations in the literature ([56]), it has been demonstrated that no numerical so-
lution procedure is necessary for their determination. Rather, they can be calculated
in an analytical manner by using Cardano’s formula.

• Due to the potential appearance of complicated and, depending on the size of the
volume of interest, non-resolvable microstructures in binary eutectic alloy solidifica-
tion problems, the free energy functional has been generalized and expressed by the
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volume averages of the phase indicator functions, i.e. the phase volume fractions. In
this regard, a dynamic calculation procedure for the parameter ∆ characterizing the
diffuse interface width has been proposed based on free energy minimization. Ad-
ditionally, it has been demonstrated that the generalization to the volume-averaged
description is consistent in the sense that the original free energy functional can be
obtained back when the averaging volume goes to zero.

• In order to find governing equations for the phase volume fractions and a thermody-
namically consistent coupling of phase change with the Navier-Stokes equations and
transport equations for heat and composition, the method proposed by Anderson et
al. ([51]) for elemental materials has been extended based on the generalized free
energy functional for binary eutectic alloys constructed before. The main differences
to the original approach are the presence of three phases and the necessity of includ-
ing composition transport into the coupling procedure. The description of elemental
materials is contained in the resulting set of governing equations as a special case.

Concerning the model verification, it has been examined if the desired behaviour is re-
produced numerically by the implemented code. Additionally, the agreement of numeri-
cal results with related approaches like sharp-interface modelling and the volume-of-fluid
method have been investigated in appropriate limits. In particular, the following steps
have been performed:

• Concerning phase surfaces, it has been demonstrated that the tangens hyperbolicus
profiles are reproduced numerically by the non-averaged model on small length scales.
In a volume-averaged setup, it has been shown that the profiles are determined by
the chemcial properties of the involved phases and that the effect of surface free
energy density is to minimize the curvature of mixture layers. Furthermore, it has
been illustrated that the volume-averaged model utilizing the dynamical calculation
procedure for ∆ is capable to reproduce the results of the non-averaged model if the
numerical grid is sufficiently fine. Consequently, the dynamic calculation procedure
for ∆ allows an application of the phase-field equations independently from the
spatial dimensions of interest. This is not possible if ∆ is set to a single constant
value. Finally, it has been demonstrated that the dynamic model for ∆ is able
to characterize spatially varying thicknesses of binary mixture layers and that the
results cannot be reproduced with a constant ∆0 even if it is chosen in the same
range as the dynamically calculated values.

• The modelling of fbulk has been verified by illustrating that the equilibrium compo-
sitions as well as the stability properties of phase boundaries including the resulting
mushy layer thicknesses are in accordance with a given binary eutectic alloy phase
diagram.

• It has been verified that the new model is capable to reproduce the results of sharp
interface modelling. In particular, the Gibbs-Thomson effect is represented quanti-
tatively correctly.

• It has been shown that there is a close relationship of the new model with the well-
known volume-of-fluid method if the possibility for phase change is switched off and
if the mobility constant is chosen appropriately. In the framework of the standard
dam break test case prepared in OpenFOAM, the results of the two methods agree
well. Notably, this provides a verification of the coupling between the phase-field
and Navier-Stokes equations.

The model validation has been performed with the help of three test cases:

• The sharp interface solidification microstructure of the binary eutectic alloy CBr4−
C2Cl6 resulting from an experiment by Ginibre et al. ([92]) could be reproduced
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successfully by applying the model on a micrometer length scale. The dynamic
calculation procedure concerning the transition layer width between pure phases has
led to an improvement here in comparison to another simulation utilizing a fixed
value as it could neutralize the bad influence of triple points.

• The second validation case treats the sharp interface melting of elemental gallium in
a rectangular cavity on a centimeter length scale as presented by Gau and Viskanta
([93]). The results of the developed model have shown a good agreement with the
experimentally determined position of the sharp phase boundary at different points
in time.

• The third test case examines the mushy layer solidification of the binary eutectic
alloy NH4Cl−H2O in a rectangular box on a centimeter length scale on the basis of
investigations by Christenson et al. ([94],[25]). The numerical results concerning the
mushy layer width at different points in time as well as temporal temperature varia-
tions at different positions have reproduced the experimental measurements with a
satisfactory agreement. Additionally, this last validation case has been used to com-
pare the model with Bennon’s model, which to the best of my knowledge represents
the most complete modelling approach for macroscopic binary alloy solidification
with convection. It has been demonstrated that the new model is capable to im-
prove the results from Bennon’s method and therefore, the additional effort related
to the solution of two more partial differential equations for phase change has been
justified.

6.2. Outlook

There remains some work to be done until the present model is ready for an application
in the field of core melt in-vessel retention. The most important aspect is an appropriate
treatment of turbulence as the typical Rayleigh numbers of corium melt pools are in
the range of 1015 − 1017. As a direct resolution of the smallest eddies is not possible
considering typical volume sizes of IVR experiments, the present model must be coupled
with a turbulence model. Due to the spirit of the model development in this thesis aiming
at delivering a picture as complete as possible and due to the fact that volume-averaging has
been incroporated already in the phase change process, a large eddy simulation approach
seems to be appropriate in order to close the gaps. A recently developed subgrid-scale
model for turbulent heat flux in flows with a significant influence of buoyancy may be
helpful here ([96]). A minor point is the introduction of an internal heat source representing
decay heat production on the right-hand side of the temperature equation, which has not
been necessary in the scenarios considered so far.
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7. Appendix

A. Derivatives of Individual Phase Compositions ξi

Regard the chemical potential function

µ(T, ξ,Φ1,Φ2,Φ3) =
∂f1(ξ1, T )

∂ξ1
=
∂f2(ξ2, T )

∂ξ2
=
∂f3(ξ3, T )

∂ξ3
.

A.1. Derivative with Respect to Temperature

We have

dµ

dT
=

∂2f1

∂ξ1∂T
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∂2f1

∂ξ2
1

∂ξ1

∂T
=

∂2f2

∂ξ2∂T
+
∂2f2

∂ξ2
2

∂ξ2

∂T
=

∂2f3

∂ξ3∂T
+
∂2f3

∂ξ2
3

∂ξ3

∂T

and therefore
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∂2fj
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.

Due to

dξ
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= 0 =

3∑
k=1

hk
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we get
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and consequently
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A.2. Derivative with Respect to Composition

We have
dµ

dξ
=
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∂ξ2
1
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it follows that
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Consequently,
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A.3. Derivative with Respect to the Phase-Fields

Due to
dµ
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we have
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ξk ↔
3∑

k=1

hk
∂ξk
∂Φl

= −
3∑

k=1

∂hk
∂Φl

ξk, (7.4)

we get

∂ξi
∂Φl
{hi +

∂2fi
∂ξ2i
∂2fj
∂ξ2j

hj +

∂2fi
∂ξ2i
∂2fk
∂ξ2k

hk} = −ξ1
∂h1

∂Φl
− ξ2

∂h2

∂Φl
− ξ3

∂h3

∂Φl

and therefore

∂ξi
∂Φl

=
−ξ1

∂h1
∂Φl
− ξ2

∂h2
∂Φl
− ξ3

∂h3
∂Φl

h1
∂2f2
∂ξ22

∂2f3
∂ξ23

+ h2
∂2f1
∂ξ21

∂2f3
∂ξ23

+ h3
∂2f1
∂ξ21

∂2f2
∂ξ22

· ∂
2fj
∂ξ2

j

∂2fk
∂ξ2

k

(7.5)
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B. Derivatives of Chemical Potential µ

B.1. Derivative with Respect to Temperature

We can calculate
dµ

dT
=

d

dT
(
∂fi
∂ξi

) =
∂2fi
∂ξi∂T

+
∂2fi
∂ξ2

i

∂ξi
∂T

.

Using (7.1), one gets

dµ

dT
=
h1

∂2f2
∂ξ22

∂2f3
∂ξ23

∂2f1
∂ξ1∂T

+ h2
∂2f1
∂ξ21

∂2f3
∂ξ23

∂2f2
∂ξ2∂T

+ h3
∂2f1
∂ξ21

∂2f2
∂ξ22

∂2f3
∂ξ3∂T

h1
∂2f2
∂ξ22

∂2f3
∂ξ23

+ h2
∂2f1
∂ξ21

∂2f3
∂ξ23

+ h3
∂2f1
∂ξ21

∂2f2
∂ξ22

.
(7.6)

B.2. Derivative with Respect to Composition

Based on
dµ

dξ
=

d

dξ
(
∂fi
∂ξi

) =
∂2fi
∂ξ2

i

∂ξi
∂ξ

and using (7.3), we obtain

dµ

dξ
=

∂2f1
∂ξ21

∂2f2
∂ξ22

∂2f3
∂ξ23

h1
∂2f2
∂ξ22

∂2f3
∂ξ23

+ h2
∂2f1
∂ξ21

∂2f3
∂ξ23

+ h3
∂2f1
∂ξ21

∂2f2
∂ξ22

. (7.7)

B.3. Derivative with Respect to the Phase-Fields

We have
dµ

dΦl
=

d

dΦl
(
∂fi
∂ξi

) =
∂2fi
∂ξ2

i

∂ξi
∂Φl

.

Using (7.5) and (7.7), one gets

dµ

dΦl
= −dµ

dξ

3∑
k=1

∂hk
∂Φl

ξk. (7.8)

C. Derivatives of Internal Energy per Mass em

C.1. Derivative with Respect to Density

Internal energy per mass em is given by

em =
1

ρ

3∑
k=1

hk{fk − T
∂fk
∂T
}.

If we express the molar volume vm appearing in the individual phase free energy densities
fk as

vm =
Mm

ρ
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with the molar mass Mm, the quantities fk will be composed of terms with prefactors ρRT
Mm

,
ρL as well as ρc. Hence, ρ is cancelled in em, leading to

∂em
∂ρ

= 0. (7.9)

C.2. Derivative with Respect to Temperature

dem
dT

=
∂em
∂T

+
3∑

k=1

∂em
∂ξk

∂ξk
∂T

=
1

ρ

3∑
k=1

{hk(
∂fk
∂T
− ∂fk
∂T
− T ∂

2fk
∂T 2
}+

1

ρ

3∑
k=1

{hk(
∂fk
∂ξk
− T ∂2fk

∂ξk∂T
)
∂ξk
∂T
}

We use

1

ρ

3∑
k=1

{hk(
∂fk
∂ξk
− T ∂2fk

∂ξk∂T
)
∂ξk
∂T
} =

1

ρ
µ

3∑
k=1

{hk
∂ξk
∂T
} − T

ρ

3∑
k=1

{hk[
∂

∂T
(
∂fk
∂ξk

∂ξk
∂T

)− ∂fk
∂ξk

∂2ξk
∂T 2

]}

=
µ

ρ

∂ξ

∂T
− T

ρ

∂

∂T
(µ
∂ξ

∂T
) +

T

ρ
µ
∂2ξ

∂T 2
= 0 (7.10)

because ξ and T are state variables, which are independent from each other by definition:

∂ξ

∂T
=
∂2ξ

∂T 2
= 0.

We end up with

dem
dT

= −T
ρ

3∑
k=1

hk
∂2fk
∂T 2

. (7.11)

C.3. Derivative with Respect to Composition

dem
dξ

=
∂em
∂ξ

+
3∑

k=1

∂em
∂ξk

∂ξk
∂ξ

=
1

ρ

3∑
k=1

hk(
∂fk
∂ξk
− T ∂2fk

∂ξk∂T
)
∂ξk
∂ξ

=
µ

ρ

3∑
k=1

hk
∂ξk
∂ξ
− T

ρ

3∑
k=1

hk
∂2fk
∂ξk∂T

∂ξk
∂ξ

We use
3∑

k=1

hk
∂ξk
∂ξ

=
∂ξ

∂ξ
= 1,

insert ∂ξk
∂ξ from (7.3) and compare with(7.6):

3∑
k=1

hk
∂2fk
∂ξk∂T

∂ξk
∂ξ

=
dµ

dT
. (7.12)
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This leads to

dem
dξ

=
1

ρ
(µ− T dµ

dT
). (7.13)

C.4. Derivative with Respect to the Phase-Fields

dem
dΦj

=
∂em
∂Φj

+

3∑
k=1

∂em
∂ξk

∂ξk
∂Φj

=
1

ρ

3∑
k=1

∂hk
∂Φj

(fk − T
∂fk
∂T

) +
1

ρ

3∑
k=1

hk(
∂fk
∂ξk
− T ∂2fk

∂ξk∂T
)
∂ξk
∂Φj

=
1

ρ

3∑
k=1

∂hk
∂Φj

(fk − T
∂fk
∂T

) +
µ

ρ

3∑
k=1

hk
∂ξk
∂Φj

− T

ρ

3∑
k=1

hk
∂2fk
∂ξk∂T

∂ξk
∂Φj

Due to
∂ξ

∂Φj
=

3∑
k=1

∂hk
∂Φj

ξk + hk
∂ξk
∂Φj

= 0↔
3∑

k=1

hk
∂ξk
∂Φj

= −
3∑

k=1

∂hk
∂Φj

ξk (7.14)

and

3∑
k=1

hk
∂2fk
∂ξk∂T

∂ξk
∂Φj

=
3∑

k=1

hk{
∂

∂T
(
∂fk
∂ξk

∂ξk
∂Φj

)− ∂fk
∂ξk

∂2ξk
∂Φj∂T

}

=
∂

∂T
(

3∑
k=1

hk
∂fk
∂ξk

∂ξk
∂Φj

)− µ ∂

∂T
(

3∑
k=1

hk
∂ξk
∂Φj

)

=
∂

∂T
(−µ

3∑
k=1

∂hk
∂Φj

ξk) + µ
∂

∂T
(

3∑
k=1

∂hk
∂Φj

ξk)

= − ∂µ
∂T

3∑
k=1

∂hk
∂Φj

ξk, (7.15)

one obtains

dem
dΦj

=
1

ρ

3∑
k=1

∂hk
∂Φj

[fk − T
∂fk
∂T
− µξk + T

∂µ

∂T
ξk]. (7.16)

D. Derivatives of Entropy per Mass sm

D.1. Derivative with Respect to Temperature

dsm
dT

=
∂sm
∂T

+
3∑

k=1

∂sm
∂ξk

∂ξk
∂T

= −1

ρ

3∑
k=1

hk
∂2fk
∂T 2

− 1

ρ

3∑
k=1

hk
∂2fk
∂ξk∂T

∂ξk
∂T

.
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Using (7.10), we get
3∑

k=1

hk
∂2fk
∂ξk∂T

∂ξk
∂T

= 0

and hence

dsm
dT

= −1

ρ

3∑
k=1

hk
∂2fk
∂T 2

. (7.17)

D.2. Derivative with Respect to Composition

dsm
dξ

=
∂sm
∂ξ

+
3∑

k=1

∂sm
∂ξk

ξk
∂ξ

= −1

ρ

3∑
k=1

hk
∂2fk
∂ξk∂T

∂ξk
ξ

Utilizing (7.12), we get

dsm
dξ

= −1

ρ

dµ

dT
. (7.18)

D.3. Derivative with Respect to the Phase-Fields

dsm
dΦj

=−1

ρ
{2aij

∆
Φ2
iΦj + 2

akj
∆

Φ2
kΦj

+
aij + aik − akj

∆
Φ2
iΦk +

akj + aik − aij
∆

Φ2
kΦi + 2

aij + akj − aik
∆

ΦiΦjΦk

+
3∑

k=1

∂hk
∂Φj

∂fk
∂T

+
3∑

k=1

hk
∂2fk
∂ξk∂T

∂ξk
∂Φj
}

Using (7.15) leads to

dsm
dΦj

= −1

ρ
{2aij

∆
Φ2
iΦj + 2

akj
∆

Φ2
kΦj

+
aij + aik − akj

∆
Φ2
iΦk +

akj + aik − aij
∆

Φ2
kΦi + 2

aij + akj − aik
∆

ΦiΦjΦk

+

3∑
k=1

∂hk
∂Φj

(
∂fk
∂T
− ∂µ

∂T
ξk)}. (7.19)

D.4. Derivative with Respect to ∆

∂sm
∂∆

=
1

ρ
{ 1

∆2
[a12Φ2

1Φ2
2 + a13Φ2

1Φ2
3 + a23Φ2

2Φ2
3]

+
1

∆2
Φ1Φ2Φ3[(a12 + a13 − a23)Φ1 + (a12 − a13 + a23)Φ2 + (a13 − a12 + a23)Φ3]}

(7.20)
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E. Material Properties of CBr4 − C2Cl6

The phase diagram of the binary eutectic alloy CBr4 − C2Cl6 is presented in Figure E.1.
According to this, the liquidus and solidus lines can be modeled as straight lines. The
material properties used in this work are as follows (mainly taken from [67]):

Quantity Symbol Value Unit

eutectic composition ξe 0.118 1

eutectic temperature Te 357.6 K

partition coefficient α− l k12 0.75 1

partition coefficient β − l at T = Te k13e 1.6 1

slope of liquidus line α− l m12 -81 K

slope of liquidus line β − l m13 165 K

liquidus line α− l ξ
(12)
1 (T ) ξe − Te−T

m12
1

liquidus line β − l ξ
(13)
1 (T ) ξe − Te−T

m13
1

solidus line α− l ξ
(12)
2 (T ) k12ξ

(12)
1 (T ) 1

solidus line β − l ξ
(13)
3 (T ) 1−k13eξe

m13(1−ξe)(T −Te)+k13eξe 1

diffusion coefficient of the liquid phase D1 5 · 10−10 m2

s

diffusion coefficient of the solid phase D2 = D3 0 m2

s

diffusion coefficient D Φ1D1
m2

s

surface tension α− l σ12 6.6 · 10−3 J
m2

surface tension β − l σ13 5.8 · 10−3 J
m2

surface tension α− β σ23 11.5 · 10−3 J
m2

molar volume vm 1.12 · 10−4 m3

mol

latent heat per volume ρL 3 · 107 J
m3

Table E.1.: Material properties of CBr4 − C2Cl6

Diffusion in the solid phase is neglected here. The value for the latent heat per volume is
based on data presented in [97] and [98]. The constants ζ12 and ζ13 appearing in (3.195) as
a result of the thin-interface analysis are obtained by numerically evaluating the integral
(3.196):

ζ12 = 0.0483

ζ13 = 0.0298.
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Figure E.1.: Phase diagram of CBr4 − C2Cl6

F. Material Properties of Gallium

The elemental material gallium is described by the following material properties:

Quantity Symbol Value Unit

melting tempera-
ture

Tm 302.93 K

latent heat per
mass

L 80160 J
kg

surface tension σ 0.056 J
m2

liquid density ρl 6327.23 kg
m3 − 0.73743 kg

m3K
T + 1.37767 ·

10−4 kg
m3K2T

2

kg
m3

solid density ρs 5094 kg
m3

density ρ (6Φ2−15Φ4+10Φ3)ρl+(1−6Φ2+15Φ4−10Φ3)ρs
kg
m3

heat conductivity λ 0.11 W
mK2T − 5 W

mK
W
mK

heat capacity c 360 J
kgK

linear thermal
expansion coeffi-
cient

βT 1.3 · 10−4 1
K

liquid viscosity ηl 4.359 · 10−4 kg
ms · e

481K
T

kg
ms

solid viscosity ηs 90 kg
ms

viscosity η (6Φ2−15Φ4+10Φ3)ηl+(1−6Φ2+15Φ4−10Φ3)ηs
kg
ms

Table F.2.: Material properties of gallium

The viscosity of the solid phase has been regarded as a fitting parameter.

G. Material Properties of NH4Cl −H2O

The phase diagram of the binary eutectic alloy NH4Cl − H2O is shown in Figure G.2.
The material properties are listed in the following table (mostly from [99]):
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Quantity Symbol Value Unit

eutectic composition ξe 0.803 1

eutectic temperature Te 257.75 K

partition coefficient α− l k12 0.3 1

partition coefficient β − l at T = Te k13e 1.23 1

slope of liquidus line α− l m12 -494 K

slope of liquidus line β − l m13 78 K

liquidus line α− l ξ
(12)
1 (T ) ξe − Te−T

m12
1

liquidus line β − l ξ
(13)
1 (T ) ξe − Te−T

m13
1

solidus line α− l ξ
(12)
2 (T ) k12ξ

(12)
1 (T ) 1

solidus line β − l ξ
(13)
3 (T ) 1−k13eξe

m13(1−ξe)(T −Te)+k13eξe 1

diffusion coefficient of the liquid phase D1 5 · 10−10 m2

s

diffusion coefficient of the solid phase D2 = D3 0 m2

s

diffusion coefficient D Φ1D1
m2

s

surface tension α− l σ12 0.04 J
m2

surface tension β − l σ13 0.04 J
m2

surface tension α− β σ23 0.04 J
m2

molar volume vm 3.9 · 10−5 m3

mol

latent heat per mass L 3.138 · 105 J
kg

liquid heaet conductivity λ1 0.468 W
mK

solid heat conductivity λ2 = λ3 0.393 W
mK

heat conductivity λ Φ1λ1 + Φ2λ2 + Φ3λ3
W
mK

density ρ 1078 kg
m3

liquid specific heat capacity c1 3269 J
kgK

solid specific heat capacity c2 = c3 1870 J
kgK

specific heat capacity c Φ1c1 + Φ2c2 + Φ3c3
J

kgK

linear thermal expansion coefficient βT 3.832e− 4 1
K

linear compositional expansion coeffi-
cient

βξ 0.257 1

liquid viscosity η1 1.3 · 10−3 kg
ms

permeability constant K0 2.338 · 107 kg
m3s

Table G.3.: Material properties of NH4Cl −H2O

The quantities k13, m12 and m13 have been deduced from the phase diagram. The molar
volume vm has been chosen according to [100]. The damping of the velocity field in the
mushy layer is achieved with a hybrid model in analogy to [101] and [102], which combines
the Darcy law with a phase-dendent viscosity as the former is only valid for liquid volume
fractions Φ1 ≤ 0.5 ([101]). As no measured values of surface tension could be found in
the literature, they were estimated as follows: The molar masses of NH4Cl and water are
given by

MNH4Cl
mol = 14

g

mol
+ 4 · 1 g

mol
+ 35.5

g

mol
= 53.5

g

mol

MH2O
mol = 2 · 1 g

mol
+ 16

g

mol
= 18

g

mol
.
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For a solution with 70%H2O, this leads to

< Mmol >= 0.7 · 18
g

mol
+ 0.3 · 53.5

g

mol
= 28.65

g

mol
= 4.7576 · 10−26kg per molecule.

Therefore, one can assign the following value for latent heat to a single molecule:

Lmolecule = L· < Mmol >= 3.138 · 105 J

kg
· 4.7576 · 10−26kg = 1.493 · 10−20J.

The average number density of molecules is

n =
ρ

< Mmol >
=

1078 kg
m3

4.7576 · 10−26kg
= 2.266 · 1028 1

m3
.

Surface tension can then be estimated using the empirical relation by Turnbull ([103]) in
the form presented in [44]:

σn−
2
3 = 0.32 · Lmolecule

↔ σ = n
2
3 · 0.32 · Lmolecule ≈ 0.04

J

m2
. (7.21)

As microscopic details like contact angles are not an issue in the simulation with NH4Cl−
H2O, we use the same value (7.21) for all three quantities σij . The quantities ζ12 and ζ13

appearing in the thin-interface analysis result from a numerical evaluation of the integral
(3.196) and are given by

ζ12 = 0.0818

ζ13 = 0.0354.

Figure G.2.: Phase diagram of NH4Cl −H2O
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