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Abstract

Multivariate continuous–time ARMA(p, q) (MCARMA(p, q)) processes are the con-

tinuous–time analog of the well-known vector ARMA(p, q) processes. They have

attracted interest over the last years. This thesis contributes to the field of statistical

inference of MCARMA processes in two ways.

In the first part, we study information criteria, which provide a method to select

a suitably MCARMA process as a model for given data. Their background is that

methods to estimate the parameters of an MCARMA process require an identifiable

parametrization, such as the Echelon form with a fixed Kronecker index, which is

in the one–dimensional case the degree p of the autoregressive polynomial. Thus,

the Kronecker index has to be known in advance before parameter estimation can

be done. When this is not the case information criteria can be used to estimate

the Kronecker index and the degrees (p, q), respectively. We investigate information

criteria for MCARMA processes based on quasi maximum likelihood estimation.

Therefore, we first derive the asymptotic properties of quasi maximum likelihood

estimators for MCARMA processes in a misspecified parameter space. Then, we

present necessary and sufficient conditions for information criteria to be strongly

and weakly consistent, respectively. In particular, we study the well-known Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC) as special

cases.

The second part of the thesis is concerned with robust estimation of the parameters

of MCARMA processes. The estimators in the present literature do not work

when the data contains outliers. Therefore, robust estimators of the CARMA

parameters, which are able to deal with different types of outliers in the data, are

necessary. We first extend the class of M–estimators to the MCARMA case. Although

these estimators provide a class of strongly consistent and asymptotically normally

distributed parameter estimators, they, too, are not robust in the MCARMA setup.

We then restrain ourselves to the special case of univariate CARMA processes and

use an indirect estimation procedure similar to the one proposed by de Luna and

Genton [2001] for ARMA processes. This is motivated by the fact that generalized

M-estimators are robust estimators for AR processes, but in general not for ARMA

processes.



For the indirect estimator we first approximate the discretely observed CARMA(p,q)

process by an auxiliary AR(r) representation, r ≥ 2p− 1. The parameters of this

AR(r) process are estimated by a generalized M–estimator. Due to identifiability,

there exists a unique, injective map linking the parameters of the AR(r) process to

the parameters of the underlying CARMA(p,q) process. Unfortunately, an analytic

representation of this map does not exist. To overcome this we have to estimate this

map by an additional simulation study. Coupling both estimators gives a robust

estimator for the CARMA process. We present the asymptotic behavior as well as

the robustness properties of this estimator and develop model selection criteria based

on it, too. In both parts, the results are illustrated by a simulation study.
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CHAPTER 1

Introduction

Historical overview and motivation

Ever since the 1971 first edition of the book by Box et al. [2015], autoregressive

moving average (ARMA) processes and their vector–valued (VARMA) counterparts

have been among the most popular time series models in both applications and theory

(see e.g. Brockwell and Davis [1991] and Hannan and Deistler [2012]). However,

they are inherently a class of discrete–time models and nowadays there is a growing

interest in stochastic models with a continuous time parameter. Two reasons for this

interest are, on the one hand, that many phenomena, which one typically models by

time series, evolve continuously in time. Possible examples come from physics, for

example the temperature over time at a certain location, but also from economics,

where the price of a stock can be seen as a continuous–time process since nowadays

price data is available at very high frequency. On the other hand, continuous–time

models often lead to a rich and satisfying mathematical theory, for example again in

the field of finance, where the modern theory is very much based on continuous–time

models, the most famous example probably being the option pricing model by Black

and Scholes.

If one wishes to study time series for which the time parameter is continuous, using

a continuous–time analog of the discrete–time VARMA models might be attractive.

This analog are the multivariate continuous–time autoregressive moving average

(MCARMA) processes, which are the core object of attention in this thesis. One-

dimensional Gaussian CARMA processes were already investigated by Doob [1944]
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and Lévy-driven CARMA processes were propagated at the beginning of this century

by Peter Brockwell, see Brockwell [2014] for an overview. This generalization allows

for a multitude of different marginal distributions of the CARMA process by varying

the driving Lévy process. The formal extension to the multivariate setup was recently

given in Marquardt and Stelzer [2007]. This generalization is important because

it allows to consider the simultaneous behavior of multiple time series and their

interdependence using just one collective model. In the past few years, this class of

models has found application in many fields, including but not limited to, finance

(Barndorff-Nielsen and Shephard [2001], Todorov [2009], Andresen et al. [2014], Benth

et al. [2014]), econometrics (Bergstrom [1990]) or signal processing (Larsson and

Söderström [2002], Larsson et al. [2006], Garnier and Wang [2008]). (M)CARMA

processes are able to capture phenomena like jumps in the sample paths and heavy

tails (see e. g. Todorov and Tauchen [2006] and Benth and Šaltytė-Benth [2009]) and

are also suitable for the modeling of unequally spaced (Jones [1981], Jones [1985])

and high–frequency data, which is a very ongoing topic. They are also important as

building block of more complicated models as introduced for example in Brockwell

and Marquardt [2005], Haug and Stelzer [2011] and Barndorff-Nielsen and Stelzer

[2011], where again applications in finance play a central role.

From the mathematical perspective, an Rs-valued Lévy process (L(t))t≥0 is a

stochastic process in Rs with independent and stationary increments, L(0) = 0s

P-a.s. and càdlàg (continue à droite, limite à gauche) sample paths. Special cases of

Lévy processes are Brownian motions and (compound) Poisson processes. Further

information on Lévy processes can be found in Applebaum [2009], Bertoin [1998],

and Sato [1999], for example. The fundamental idea is now that that for a two-sided

Rs-valued Lévy process L = (L(t))t∈R, i.e. L(t) = L(t)1{t≥0} − L̃(t−)1{t<0} where

(L̃(t))t≥0 is an independent copy of the Lévy process (L(t))t≥0, and positive integers

p > q, a d-dimensional MCARMA(p, q) process is the solution to the stochastic

differential equation

P (D)Y (t) = Q(D)DL(t) for t ∈ R, (1.1)

where D = ∂
∂t

is the differential operator,

P (z) := Id×dz
p + A1z

p−1 + . . .+ Ap−1z + Ap, z ∈ C,
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with A1, . . . , Ap ∈ Rd×d being the autoregressive (AR) polynomial and

Q(z) := B0z
q +B1z

q−1 + . . .+Bq−1z +Bq, z ∈ C,

with B0, . . . , Bq ∈ Rd×s being the moving average (MA) polynomial. Of course, Lévy

processes are in general not differentiable, so that this is a purely formal definition.

To make sense of it, one uses an equivalent definition in terms of a continuous–time

state space model, which is of the form

dX(t) = AX(t)dt+BdL(t) and Y (t) = CX(t) for t ∈ R,

where A ∈ RN×N , B ∈ RN×s and C ∈ Rd×N are suitably defined matrices, since

Schlemm and Stelzer [2011] have shown that the class of MCARMA processes and

the class of continuous–time state space models are equivalent

For practical purposes, e.g. when one is interested in fitting a model to data,

statistical inference of MCARMA processes is a topic of great importance. There

are a few papers concerned with this, e.g. Brockwell and Schlemm [2013], Fasen

[2014], Fasen [2016], Schlemm and Stelzer [2011] and Schlemm and Stelzer [2012]. In

particular, Schlemm and Stelzer [2012] derive the asymptotic behavior of the quasi

maximum likelihood estimator (QMLE) under the assumption that the underlying

parameter space Θ with N(Θ) parameters contains the true data–generating param-

eter and satisfies some identifiability assumptions. These are typical assumptions

for estimation procedures. For a one–dimensional CARMA process we only obtain

identifiability when the degree p of the autoregressive polynomial is fixed in the

parameter space (cf. Brockwell et al. [2011]); in the multivariate setup an identifiable

parametrization is, for example, provided by the Echelon form. When this form

is used, the Kronecker index, which specifies the order of the coefficients of the

multivariate autoregressive polynomial, has to be fixed. If we know the Kronecker

index, we know the degree p of the autoregressive polynomial as well. But if we

observe data, how do we know what is the true Kronecker index of the data, so that

we do the parameter estimation in a suitable parameter space Θ? Put differently, how

can one arrive at a suitable choice of the AR degree p and the MA degree q for the

MCARMA process, since statistical procedures typically assume these parameters as

known? This problem is known as the problem of model selection or identification

and has been studied extensively in the literature, including, but not limited to, the

framework of discrete–time time series and especially VARMA processes.

One popular approach to solving the problem of model selection is by using

information or, synonymously, model selection criteria (cf. Burnham and Anderson
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[2002], Claeskens and Hjort [2008], Konishi and Kitagawa [2008]). The most prominent

model selection criteria are the Akaike Information Criterion (AIC) introduced in

Akaike [1973] by Akaike, the Schwarz Information Criterion (SIC), also known

as BIC (Bayesian Information Criterion), going back to Schwarz [1978], and the

Hannan–Quinn criterion in Hannan and Quinn [1979]. The AIC approximates the

Kullback–Leibler discrepancy of a candidate model and the true model, which is a

measure for the information that is lost when the candidate model is used instead

of the true model. The deciding idea is then to minimize the approximation of the

discrepancy to find the most well–fitting model. The BIC approximates the Bayesian

a posteriori distribution of different candidate models and aims to maximize this

probability to find the best model. The Hannan–Quinn criterion is based on the AIC

of Akaike but with a different penalty term to obtain a strongly consistent information

criterion, contrary to the AIC which is in general not consistent. Information criteria

for multivariate ARMAX processes, which constitute an extension of ARMA processes

that includes exogenous variables, and their statistical inference are well–studied in

the monograph Hannan and Deistler [2012]; see also Brockwell and Davis [1991] for

an overview of model selection criteria for ARMA processes. An extension of the

AIC to multivariate weak ARMA processes is given in Boubacar Mäınassara [2012].

There exist only a few papers investigating information criteria independent of the

underlying model, e.g. Sin and White [1996] present very general likelihood–based

information criteria and their properties, and Cavanaugh and Neath [1999] derive the

BIC. All of these information criteria have in common that they are likelihood–based

and choose as candidate model the model for which the information criterion attains

the lowest value.

So far, to the best of our knowledge, no attempts to study information criteria

in the framework of MCARMA processes have been made. This is the motivation

for the first part of the thesis, in which this problem is approached. Extending the

existing results in the literature to the MCARMA framework, we define a general

class of information criteria, which are based on the pseudo–Gaussian log–likelihood

function and of the form

ICn(Θ) := L̂(ϑ̂n, Y n) +N(Θ)
C(n)

n
.

In our setup Y n = (Y (h), . . . , Y (hn)) is a sample of length n from an MCARMA

process observed at discrete, equidistant time points, L̂ is the properly normalized

quasi log-likelihood function, ϑ̂n is the QMLE and C(n) is a penalty term. We

choose the parameter space as the most suitable for which the information criterion

is lowest. This means that for two parameter spaces Θ1,Θ2 we say that Θ1 fits
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better than Θ2 to the data if we have ICn(Θ1) < ICn(Θ2). A strongly consistent

information criterion chooses the correct space asymptotically with probability 1,

and for a weakly consistent information criterion the convergence to the true space

holds in probability. The sequence C(n) can be interpreted as a penalty term for the

inclusion of additional parameters into the model. Without the penalty term, the

criterion would always choose the model with more parameters if we compare two

nested parameter spaces. However, this is not feasible, since the inclusion of too many

parameters ultimately leads to an interpolation of the data, such that the model

would not provide information about the process generating the data anymore. The

employment of an information criterion can therefore be seen as seeking a trade–off

between accuracy and complexity. It can also be interpreted as implementation

of the principle of parsimony in model building, cf. [Box et al. 2015, Subsection

1.3.1]. We will study the consistency properties of this family of information criteria

and show how the derivation of the well–known AIC and BIC naturally leads to

special members of this family. The theoretical results are then complemented by a

simulation study, which illustrates the theoretical results in practice.

The second topic treated in this thesis is robust estimation of MCARMA processes.

The concept of robustness has been advocated in statistics for over 50 years, starting

with the works of Tukey [1960], Huber [1964] and Hampel [1971]. It is motivated

by the fact that mathematical results on the performance of statistical procedures,

e.g. estimation of the parameters in a parametric model, often strongly depend

on the fact that the underlying model assumptions are exactly fulfilled. However,

in data, one often is confronted with the phenomenon that a majority of the data

does satisfy suitable assumptions while there are also some data points, so–called

outliers, which are, in some sense, “very different” from the bulk of the data and

violate the assumptions. In the context of parameter estimation, it is known for

very wide classes of models that only a few of these outliers suffice to impact the

performance of classical estimators, such as the QMLE or the least squares estimator,

greatly. For example, when estimating the parameter of a stationary AR(1) process,

the size of a single observation going to infinity can cause the estimate to either

converge to 0, to 1 or to −1 (cf. [Maronna et al. 2006, Subsection 8.1.3]). This is

problematic because if the parameter is equal to 1 or −1, the AR(1) process is no

longer stationary and if the parameter is 0, the process is indistinguishable from its

driving noise. For this reason, robust estimators have been developed, which are able

to deal with the presence of outliers, e.g. abnormally large observations, in the data

and avoid these problems. For an overview that treats mainly the cases of i.i.d. data
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and linear regression models, see the monographs Huber and Ronchetti [2009] and

Hampel et al. [2005].

Generalizing the results on i.i.d. data, the topic of robust estimation in the

framework of time series has been a very active one in research since the end of the

20th century. The treatment of outliers in time series comes with the additional

difficulty that the temporal structure of the outliers has to be taken into account,

which is not relevant in the i.i.d. case. For this reason, estimators that are robust for

independent data may fail to be so in the time series context, which is for example

the case for the M–estimators introduced by Huber [1964]. Moreover, the definition

of an outlier and the way of modeling the presence of outliers used in the i.i.d. case

typically do not make much sense in the time series setup. Therefore, different models

and methods are needed. In the case of pure autoregressive processes, the class of

generalized M–estimators (GM estimators) (first appearing in Hampel [1975], Mallows

[1975], Kleiner and Martin [1979], Krasker and Welsch [1982]) was used successfully,

since for this class of processes these estimators combine two desirable properties:

they allow for the development of an asymptotic theory, as shown by Bustos [1982],

and are robust (cf. Künsch [1984]). For the more general ARMA processes, the GM

estimators again fail to be robust due to the structure of the innovations sequence

of these processes. While there are approaches that allow for robust estimation of

ARMA processes, for the longest time most of them suffered from the problem that

an asymptotic theory was not readily available. For an overview, see Martin and

Yohai [1985] or [Maronna et al. 2006, Chapter 8]. Recently, this problem has been

overcome, e.g. by the methods of Muler et al. [2009] and de Luna and Genton [2001].

The idea in the latter paper is to make use of a simulation–based indirect estimation

as advocated by Smith [1993], Gouriéroux et al. [1993] and Gouriéroux and Monfort

[1997]. The core idea is to not estimate the parameter of interest directly, but to

take a detour and use a, in some sense, “more readily handled model”, which is called

the auxiliary model. In conjunction with simulated data, one can then construct

an estimator for the parameter of interest in terms of estimators of the auxiliary

parameters. By choosing the auxiliary model as a pure AR process and estimating its

parameters with a GM estimator, de Luna and Genton [2001] were able to construct

a robust estimator for the parameters of an ARMA process. For one–dimensional

CARMA processes, we will proceed analogously and eventually obtain a robust

estimator with a tractable asymptotic distribution.
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Outline of the thesis

The thesis is structured as follows. In Chapter 2, the basic framework for the rest of

the thesis is established. We start by recalling the formal definitions of Lévy processes

and multivariate CARMA processes in Section 2.1. In Section 2.2, QML estimation

of the parameters of an MCARMA process from discrete–time observations in the

spirit of Schlemm and Stelzer [2012] is reviewed in detail, since it is fundamental for

much of what follows. In Subsection 2.2.3, we especially extend the results on the

QMLE obtained by Schlemm and Stelzer [2012] to the case of misspecified parameter

spaces. This is necessary, because in the subsequent study of information criteria, it

will be required to know the behavior of the QMLE in this kind of parameter space.

Consistency of information criteria is then the topic of Chapter 3. We first describe

the structure of the parametrizations we consider with respect to model selection

in Section 3.1. Afterwards, we prove a law of the iterated logarithm for the pseudo–

Gaussian log likelihood function in Section 3.2. This will be the most important tool

for eventually showing strong consistency of information criteria. The main results

of this chapter are contained in Section 3.3, in which we first define our family of

information criteria as well as the notion of consistency and then characterize the

consistency of the criteria in terms of the penalty function C(n).

Section 3.4 considers the derivation of the AIC in the framework of MCARMA

processes. By making use of Akaike’s original idea of approximating the Kullback–

Leibler discrepancy of a given parametric model and the true model, we obtain

particular members of our general family of information criteria as special cases in

Subsection 3.4.1. In Subsection 3.4.2 we study the consistency properties of these

special criteria. In Subsection 3.4.3 we follow the ideas of Boubacar Mäınassara

[2012] and approximate the Kullback–Leibler discrepancy in a different way, leading

to a different form of the AIC which is similar to the corrected AIC of Hurvich and

Tsai [1993]. Subsection 3.4.4 serves to study the consistency properties of this variant

of the AIC. In Subsection 3.4.5, we take yet another route and introduce a version

of the AIC which is based on a bootstrap procedure for discrete–time state space

models, analogous to Cavanaugh and Shumway [1997]. In Section 3.5, we treat the

BIC and elaborate on the approximation of the Bayesian a posteriori probability of

parameter spaces. This approach again leads us naturally to a special case of the

general information criteria considered in Section 3.3. Section 3.6 closes the chapter

with an extensive simulation study in which we apply the various criteria for bivariate

MCARMA processes. We consider different true Kronecker indices, different driving

Lévy processes, different candidate spaces and different sample sizes, examining in

detail the performance of the different criteria in each setup and comparing the
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results to the theory.

Chapter 4 constitutes the second part of the thesis in which robust estimation

of MCARMA processes is treated. As a first step, in Section 4.1, we introduce

the general replacement model, which serves to model the occurrence of outliers

in discrete–time observations of an MCARMA process. Afterwards, in Section 4.2,

we treat the class of M–estimators, which generalize the QMLE by replacing the

pseudo log–likelihood function by a different, general loss function. We will then

show that this class provides us with strongly consistent and asymptotically normally

distributed estimators when there are no outliers in the data. However, just as for

ARMA processes, this class of estimators fails to be robust when outliers are present.

We therefore move on and, restricting us to one–dimensional CARMA processes,

study in Section 4.3 the indirect estimator, which does achieve the desired robustness.

In its treatment, we first start by introducing the auxiliary AR(r) representation

with correlated noise of a discretely sampled CARMA process by means of a set of

Yule–Walker equations in Subsection 4.3.1. Although this representation does not

enable us to carry out inference for the parameters of the data–generating CARMA

process directly, it is a fundamental building block of the indirect estimator. In

Subsection 4.3.2 we define the indirect estimator and derive its asymptotic behavior

in the absence of outliers. We make use of the fact that there is an injective corre-

spondence between the parameters of a CARMA(p,q) process and the parameters

of the auxiliary AR(r) process defined in Subsection 4.3.1 if r ≥ 2p− 1. Then, we

calculate two estimates of the parameters of the auxiliary AR(r) process: one is

calculated from the actual, observed data and one is calculated from simulated data.

By minimizing a suitable distance between these two estimates, we then obtain an

estimator for the parameters of the data–generating CARMA process. We show

that this estimator is strongly consistent and asymptotically normally distributed

in the absence of outliers if both of the estimators that are applied to the AR(r)

representation also possess these properties. Since the auxiliary AR(r) process is

driven by correlated noise, it is not immediately clear how to obtain such estimators.

In Subsection 4.3.3, we first introduce the class of GM estimators and study their

asymptotic behavior. We will obtain that they are strongly consistent and asymp-

totically normal under suitable assumptions. Moreover, in this section we also treat

the well known least squares and pseudo–Gaussian maximum likelihood estimator

and show that also for an AR(r) process with correlated noise, they are strongly

consistent and asymptotically normally distributed. We can therefore use all three of

these estimators to construct the indirect estimator.
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In Subsection 4.3.4, we study the behavior of the indirect estimator when outliers

are present in the data. To this end, we select a GM estimator as the estimator that

is applied to the contaminated data, because it is well known that those estimators

are robust when applied to pure autoregressive processes. For the estimator in

the simulation part the use of the LS or QMLE estimator is most convenient.

In particular, we study three measures of robustness: qualitative robustness and

resistance in Subsubsection 4.3.4.1, the breakdown point in Subsubsection 4.3.4.2

and the influence functional in Subsubsection 4.3.4.3. The quintessence is that the

robustness properties of GM estimators for autoregressive processes are preserved

by the indirect estimator and thus also hold for the estimation of the CARMA

parameters.

In Section 4.4, we come back to the topic of model selection, albeit this time in

the context of outlier–afflicted data. We define information criteria which are the

analog of those from Section 3.3, but based on the indirect estimator and not the

QMLE. Similar consistency assertions as before can then be derived. In Section 4.5,

we conduct various simulations to assess the practical performance of the indirect

estimator. For CARMA processes of different orders p and q and different driving

Lévy processes, we employ a variety of contamination configurations for the parameter

estimation. A short study of the information criteria based on the indirect estimator

is also included.

Chapter 5 concludes the thesis, mentioning some open problems and directions

for future research. The appendix contains some technical results and proofs, which

were excluded from the main text.





CHAPTER 2

Fundamentals

In this chapter, the groundwork for the rest of the thesis will be laid. We will

introduce terms and concepts used extensively throughout the entirety of the work.

In particular, we will first define multivariate CARMA processes and an equivalent

model class, the continuous–time state space models (CSSMs), and then treat quasi

maximum likelihood estimation in this context.

2.1. Multivariate CARMA processes and continuous–time

state space models

We start by defining multivariate CARMA processes. To this end, we first introduce

the class of Lévy processes, which will be the source of randomness in the process.

They can be seen as the analogue to i.i.d. white noise typically used in discrete–time

time series models. We will keep the introduction brief and not discuss these processes

in great detail here, further information can be found in Applebaum [2009], Sato

[1999] or Bertoin [1998], for example.

Definition 2.1. An Rs-valued Lévy process (L(t))t≥0 is a stochastic process, de-

fined on some probability space (Ω,F ,P), with stationary, independent increments,

continuous in probability and satisfying L(0) = 0 almost surely. We assume with-

out loss of generality that the paths of the Lévy process are right–continuous and

have left limits (càdlàg). A two–sided Lévy process (L(t))t∈R is then defined as

L(t) = L(t)1{t≥0} − L̃(t−)1{t<0}, where (L̃(t))t≥0 is an independent copy of the Lévy
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process (L(t))t≥0.

Special cases of Lévy processes include Brownian Motion and (compound) Poisson

processes amongst others. One of the most important results about Lévy processes

is the Lévy–Itô–decomposition, which states that every Lévy process is the sum of a

Brownian Motion, a compound Poisson process and a square-integrable pure-jump

martingale, where the three processes are independent. Equivalently, this can also

be stated in terms of the characteristic function of the Lévy process, which satisfies

E [exp(i〈u, L(t)〉)] = exp(tψL(u)) for u ∈ Rs and t ∈ R+, where 〈·, ·〉 is the standard

Euclidean scalar product and the so-called characteristic exponent ψL is given by

ψL(u) = i〈γL, u〉 − 1

2
〈u,ΣGu〉+

∫
Rs

[
exp(i〈u, x〉)− 1− i〈u, x〉1{‖x‖≤1}

]
νL(dx).

This is known as the Lévy–Khintchine formula. It is composed of a drift vector

γL ∈ Rs, a non-negative definite, symmetric matrix ΣG ∈ Rs×s called the Gaussian

covariance matrix, and the Lévy measure νL, which satisfies the conditions

νL({0}) = 0 and

∫
Rs

min(‖x‖2, 1)νL(dx) <∞.

Regarding the absolute moments of the Lévy process, it holds for every k > 0 that

E[‖L(t)‖k] <∞⇐⇒
∫
‖x‖≥1

‖x‖kνL(dx) <∞

by [Sato 1999, Corollary 25.8]. Furthermore, for the covariance matrix it holds that

ΣL = E[L(1)L(1)T ] = ΣG +

∫
‖x‖≥1

xxTνL(dx)

if it exists ([Sato 1999, Example 25.11]). We will always operate with Lévy processes

that have finite second moments, which we formalize in the following assumption:

Assumption L. The Lévy process L has mean zero and finite second moments, i. e.

γL +
∫
‖x‖≥1

xνL(dx) is zero, and the integral
∫
‖x‖≥1

‖x‖2νL(dx) is finite.

With this in mind, we are now able to define multivariate continuous-time autore-

gressive moving average (MCARMA) processes. In the univariate case, these have

been introduced in Doob [1944] with a Brownian motion as source of randomness.

In Brockwell [2001] this was generalized to the case of a driving Lévy process and

in Marquardt and Stelzer [2007] the one–dimensional processes were generalized to
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multivariate ones. To this end, we first define the autoregressive polynomial (AR) P

and the moving average (MA) polynomial Q as follows:

Definition 2.2. Let p > q be integers. Furthermore, let A1, . . . , Ap ∈ Rd×d,

B0, . . . , Bq ∈ Rd×s and define the matrix polynomial P (z) by

z 7→ P (z) := Id×dz
p + A1z

p−1 + . . .+ Ap (2.1)

and the matrix polynomial Q(z) by

z 7→ Q(z) := B0z
q +B1z

q−1 + . . .+Bq, (2.2)

where Id×d is the d-dimensional identity matrix.

For a two-sided Lévy process with values in Rs satisfying E‖L(1)‖2 <∞ we would

like to interpret a d–dimensional, L-driven MCARMA(p,q) process (Y (t))t∈R

with AR polynomial P and MA polynomial Q as the solution to the differential

equation

P (D)Y (t) = Q(D)DL(t) where D :=
∂

∂t
, (2.3)

analogous to the difference equation satisfied by ARMA processes in discrete time

(cf. [Brockwell and Davis 1991, Equation (3.1.5)]). However, defining MCARMA

processes via the differential equation (2.3) bears one problem: the paths of a Lévy

process are not differentiable in general, which implies that the differential equation

cannot be solved. It therefore only acts as a formal motivation. The way out is

to interpret the MCARMA process as a special multivariate continuous-time linear

state space model:

Definition 2.3. Let (L(t))t∈R be an Rs-valued Lévy process with E‖L(1)‖2 <∞ and

let the polynomials P (z), Q(z) be defined as in (2.1) and (2.2) with p, q ∈ N0, q < p.

Moreover, define

A =



0d×d Id×d 0d×d · · · 0d×d

0d×d 0d×d Id×d
. . .

...
...

. . .
. . . 0d×d

0d×d · · · · · · 0d×d Id×d

−Ap −Ap−1 · · · · · · −A1


∈ Rpd×pd,
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C = (Id×d, 0d×d, . . . , 0d×d) ∈ Rd×pd and B = (βT1 · · · βTp )T ∈ Rpd×s with

βp−j := −1{0,...,q}(j)

(
p−j−1∑
i=1

Aiβp−j−i +Bq−j

)
, j = 0, . . . , p− 1.

Assume that the eigenvalues of A have strictly negative real parts. Then the Rd-valued

causal MCARMA(p, q) process Y = (Y (t))t∈R is defined by the state space equation

Y (t) = CX(t) for t ∈ R, (2.4)

where X is the stationary unique solution to the pd-dimensional stochastic differential

equation

dX(t) = AX(t)dt+BdL(t). (2.5)

This definition slightly extends the one given in Marquardt and Stelzer [2007]

because it is allowed for the dimensions of the driving Lévy process and the MCARMA

process to be different, however, this changes nothing about the validity of the results

in that paper. In particular, MCARMA(1, 0) processes and X in (2.5) are multivariate

Ornstein-Uhlenbeck processes. The assumptions about the moments of the Lévy

process and the eigenvalues of A are necessary for the solution X of (2.5) to be

unique, stationary and causal ([Sato and Yamazato [1983], Theorem 5.1]). Schlemm

and Stelzer [2011, Corollary 3.4] shows that the class of continuous-time state space

models of the form

Y (t) = CX(t) and dX(t) = AX(t)dt+BdL(t), (2.6)

where A ∈ RN×N has only eigenvalues with strictly negative real parts, B ∈ RN×s

and C ∈ Rd×N , and the class of causal MCARMA processes are equivalent if

E‖L(1)‖2 <∞ and E[L(1)] = 0s. Note that in contrast to Definition 2.3, it is not

required that A, B or C have any kind of special structure. For the purposes of

statistical inference, it turned out that working with general state state models is

advantageous. Therefore, when we talk about an MCARMA process or a state space

model Y , respectively, corresponding to (A,B,C, L), we mean that the MCARMA

process Y is defined as in (2.6) and shortly write Y = MCARMA(A,B,C, L). The

covariance matrix of L is always denoted by ΣL. To finish up this subsection, we

introduce the the so–called transfer function of a continuous–time state space model.

It will play a key role later when we turn to a MCARMA process observed on a

discrete time grid.
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Definition 2.4. Let A, B and C be matrices of appropriate dimensions that define

a continuous-time state space model as in Definition 2.3 for a Lévy process L. Then

the function H : R→ Rd×s({z}) with H(z) = C(zIN − A)−1B is called the transfer

function of the continuous-time state space model defined by (A,B,C, L). Here

Rd×s({z}) denotes the space of d× s matrices with rational functions as entries.
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2.2. Estimating the parameters of MCARMA processes

In this section, we investigate how the parameters of a MCARMA process can

be estimated from equidistant, discrete–time observations. Furthermore, we then

investigate the properties and asymptotic behavior of the estimators. To this end, one

would typically first introduce a parametric family of MCARMA processes. However,

as mentioned at the end of the last section, MCARMA processes are equivalent to

continuous–time state space models. Especially in the multivariate case, working

with state space models is more convenient. We therefore consider a parameter space

Θ and assume that for each ϑ ∈ Θ we are given matrices Aϑ, Bϑ, Cϑ of matching

dimensions as well as a Lévy process Lϑ as in Definition 2.3.

In Schlemm and Stelzer [2012], parameter estimation is done via quasi–maximum

likelihood estimation (QMLE) in the case that there exists a true parameter in

Θ in the sense that for an observed process Y and some ϑ0 ∈ Θ it holds that

Y = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0). The authors were then able to show that

the QMLE approach leads to a strongly consistent and asymptotically normally

distributed estimator. We want to use this QMLE approach to ultimately construct

likelihood–based information criteria for the orders of the MCARMA process Y .

For this, we will also have to deal with the case in which the above–mentioned

assumption fails when we are in a misspecified parameter space. Another argument

for inspecting the misspecified case is that if we want to fit MCARMA processes

to empirical data, it is questionable if something as a true parameter exists at all,

since we only develop a mathematical model that approximates reality. With this

understanding, all possible models are then misspecified. The theory of maximum

likelihood estimation in possibly misspecified spaces has received a considerable

amount of attention in the past, see e. g. White [1982], White [1996] and Sin and

White [1996]. This general theory will be very useful for us and allow us to extend

the theory of Schlemm and Stelzer [2012] to the more general, possibly misspecified,

case with very similar results under very similar assumptions.

2.2.1. Observation and identification

In the rest of the thesis, when we do statistical inference about an MCARMA process,

we observe it only on a discrete equidistant time-grid with grid distance h > 0. In

this section, we first investigate the probabilistic structure of an MCARMA process

observed in such a way. Furthermore, we discuss how it can be ensured that an

observed process corresponds to exactly one continuous–time state space model when

we are given a parametric family of state space models to choose from, reviewing the
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most important results from Schlemm and Stelzer [2012].

The first fundamental observation is that the discrete–time stochastic process which

results from observing corresponds to a discrete–time state space model as shown in

the following proposition:

Proposition 2.5 (Schlemm and Stelzer [2012], Proposition 3.1 and Proposition 3.3).

Assume that Y = MCARMA(A,B,C, L). Then the sampled process (Y (kh))k∈Z has

a discrete–time linear state space representation, i. e. it holds that

Y (kh) = CX(kh) where X(kh) = eAhX((k − 1)h) +Nh,k, k ∈ Z, (2.7)

and Nh,k =
∫ kh

(k−1)h
eA(kh−t) BdL(t) is a sequence of i.i.d. random vectors with covari-

ance matrix

��Σh =

∫ h

0

exp(Au)BΣLBT exp(ATu)du. (2.8)

The spectral density of (Y (kh))k∈Z, denoted by fhY , is defined as the Fourier transform

of the autocovariance function, i.e.

fhY (ω) =
1

2π

∫ ∞
−∞

e−iωh γY (h)dh, ω ∈ [−π, π],

where γY (h) := Cov(Y (t+ h), Y (t)) = C eAh Γ0C
T , h ≥ 0, with

Γ0 := Var(X(t)) =

∫ ∞
0

eAuBΣLBT eA
Tu du.

fhY is given by

fhY (ω) = C (exp(iω)IN − exp(Ah))−1
��Σh

(
exp(iω)IN − exp(ATh)

)−1
CT ,

and the resulting d× d matrix is positive semidefinite.

Proof. See cited references.

In principle, it could be possible for the process (Y (kh))k∈Z to be the output

process of a discrete–time linear state space model with higher dimension as the one

appearing in (2.7) and also for the matrix ��Σh to be singular. In order for parameter

estimation to be possible, these effects must be excluded, which is why we next

explore conditions that ensure this. For this, we will need the following definitions:

Definition 2.6. Let H be a d × s rational matrix function, i. e. a d × s matrix

whose entries are rational functions of the variable z ∈ R. A matrix triple (A,B,C),
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where A ∈ RN×N , B ∈ RN×s and C ∈ Rd×N , is called an algebraic realization of

H of dimension N if H(z) = C(zIN − A)−1B for every z ∈ R.

Algebraic realizations are generally not unique, not even the dimension needs to

be unique. This is the reason why we introduce the concept of a minimal realization

and the so–called McMillan degree:

Definition 2.7. Let H be a d×s rational matrix function. A minimal realization

of H is an algebraic realization of H of dimension smaller or equal to the dimension

of every other algebraic realization of H. The dimension of a minimal realization of

H is the McMillan degree of H.

This definition alone is not very useful, because it does not state an accessible

way of checking if a given algebraic realization is minimal. To state a theorem that

provides this, we need the following two definitions:

Definition 2.8. An algebraic realization (A,B,C) of dimension N is controllable

if the controllability matrix C =
(
B AB . . . An−1B

)
∈ Rs×sN has full rank.

Definition 2.9. An algebraic realization (A,B,C) of dimension N is observable

if the observability matrix O =


C

CA
...

CAn−1

 ∈ RdN×N has full rank.

Theorem 2.10 (Hannan and Deistler [2012], Theorem 2.3.3). An algebraic realization

is minimal if and only if it is both controllable and observable.

Proof. See cited reference.

Remark 2.11. We call a continuous–time state space model controllable, observable

or minimal if the corresponding transfer function as defined in Definition 2.4 has

these properties.

We now have all the ingredients necessary to give criteria for the covariance matrix

of our sampled process to be regular and for the sampled process to have the same

McMillan degree as our MCARMA process:

Proposition 2.12 (Schlemm and Stelzer [2012], Corollary 3.1). If the triple (A,B,C)

is a minimal realization of the transfer function of dimension N of a continuous–time

state space model (A,B,C, L), and ΣL is positive definite, then the N ×N matrix

��Σ =

∫ h

0

exp(Au)BΣLBT exp(ATu)du
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has full rank N.

Proof. See cited reference.

Proposition 2.13 (Schlemm and Stelzer [2012], Proposition 3.4). Assume that

Y = MCARMA(A,B,C,L) with (A,B,C) being a minimal realization of the asso-

ciated transfer function of McMillan degree N . Then a sufficient condition for the

sampled process (Y (kh))k∈Z to have the same McMillan degree is the Kalman–Bertram

criterion

λ− λ′ 6= 2πik

h
∀(λ, λ′) ∈ σ(A)× σ(A), ∀k ∈ Z \ {0}, (2.9)

where σ(A) denotes the spectrum of A.

Proof. See cited reference.

In the next two definitions we explain what exactly we understand under the

equality of two MCARMA processes:

Definition 2.14. Two stochastic processes, irrespective of whether their index sets

are continuous or discrete, are L2-observationally equivalent if their spectral

densities are the same.

Definition 2.15. A family (Yϑ)ϑ∈Θ of continuous–time stochastic processes is iden-

tifiable from the spectral density if, for every ϑ1 6= ϑ2, the two processes

(Yϑ1(t))t∈R and (Yϑ2(t))t∈R are not L2-observationally equivalent. It is h–identifiable

from the spectral density, h > 0, if, for every ϑ1 6= ϑ2, the two sampled processes

(Yϑ1(kh))k∈Z and (Yϑ2(kh))k∈Z are not L2-observationally equivalent.

This completes the tools we need to have at hand to describe under which conditions

it can be ensured that an observed process belongs to exactly one member of the

parametric family (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ. The obvious idea would be to make the

assumption that the family (Yϑ)ϑ∈Θ of output processes is h–identifiable from the

spectral density for the observation distance h we chose. However, we shall see in the

next section that this can be derived from identifiability assumptions on the family

of continuous–time processes and some conditions that exclude so–called aliasing

effects.

2.2.2. Canonical parametrizations

Up until now, we have not specified exactly how the matrices Aϑ, Bϑ and Cϑ depend

on the parameter ϑ ∈ Θ when we talk about a family of continuous–time state

space models. It seems logical to demand that a parametrization should at the very
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least provide output processes that are identifiable from the spectral density. A

parametrization that achieves this is the so–called Echelon MCARMA parametriza-

tion, which shall be presented here and used throughout the rest of the thesis. This

section is essentially [Schlemm and Stelzer 2012, Section 4.1], but since the results

are fundamental we explicitly repeat them here. The principal idea is to concentrate

on the transfer function H of a CSSM as given in Definition 2.4, find a unique

parametrization for it and then establish a connection between H, P and Q. We

start with a canonical decomposition for rational matrix functions:

Theorem 2.16 (Bernstein [2009], Theorem 4.7.5). Let H be a d× s rational matrix

function of rank r. There exist matrices S1 ∈ Rd×d[z] and S2 ∈ Rs×s[z] with constant

determinant, such that H = S1MS2, where

M =

(
diag( ε1

ψ1
, . . . , εr

ψr
) 0r,s−r

0d−r,r 0d−r,s−r

)
∈ Rd×s({z}).

Here Rd×d[z] is the space of d×d matrices with polynomials in the variable z as entries.

Moreover, ε1, . . . , εr, ψ1, . . . , ψr ∈ R[z] are monic polynomials uniquely determined by

H satisfying the following conditions:

For each i = 1, . . . , r the polynomials εi and ψi have no common roots and for each

i = 1, . . . , r − 1 the polynomial εi divides the polynomial εi+1 while the polynomial

ψi+1 divides the polynomial ψi. The triple (S1,M, S2) is called the Smith-McMillan

decomposition of H.

An important role is played by the degrees of the denominator polynomials ψi in

the Smith-McMillan decomposition of a rational matrix function H. We call these

degrees Kronecker indices and denote them by mi for i = 1, . . . , r and define the

vector m = (m1, . . . ,md) ∈ Nd. Here mk = 0 for k = r + 1, . . . , d, however in the

following we only concentrate on the case where all Kronecker indices are strictly

positive.

The Kronecker indices have the important property that
∑d

i=1mi = N , where N

is the McMillan degree of H, i. e. the smallest possible dimension of an algebraic

realization of H, see Definition 2.7. For 1 ≤ i, j ≤ d we furthermore define mij =

min{mi +1{i>j}, mj}. With these terms we can now give a unique, minimal algebraic

realization of a transfer function:

Theorem 2.17 (Echelon state space realization, Guidorzi [1975], Section 3). Let H

be a d× s rational matrix function with Kronecker indices m = (m1, . . . ,md) and

assume that mi > 0 for i = 1, . . . , d. Then a unique, minimal algebraic realization

(A,B,C) of H of dimension N =
∑d

i=1mi is given by the following structure:
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i) The matrix A = (Aij)i,j=1,...,d ∈ RN×N is a block matrix with blocks Aij ∈
Rmi×mj given by

Aij =


0 . . . . . . . . . . . . 0
...

...

0 . . . . . . . . . . . . 0

αij,1 . . . αij,mij 0 . . . 0

+ δi,j


0
... Imi−1

0

0 . . . 0

 .

ii) B = (bij) ∈ RN×s unrestricted.

iii)

C =



1 0 . . . 0
... 0 0 . . . 0

...
...

0d−1,md

... 1 0 . . . 0
...

...

0d−1,m1

... 0d−2,m2

...
... 1 0 . . . 0



However, this form alone does not ensure identifiability, since there is an orthogonal

invariance in the spectral factorization, see [Schlemm and Stelzer 2012, Theorem

3.5]). One way to get rid of this problem is to require H(0) = H0 for a non-singular

matrix H0, often the negative of the identity matrix. To see the consequences this

has on the parameters αij,k and bij and also show how one can obtain the MCARMA

polynomials P and Q from A,B and C, we work in terms of left matrix fraction

descriptions:

Theorem 2.18 (Echelon MCARMA realization, Guidorzi [1975], Section 3). Let H

be a d×s rational matrix function with Kronecker indices m = (m1, . . . , md). Assume

that (A,B,C) is a realization of H, parametrized as in Theorem 2.17. Then a unique

left matrix fraction description P−1Q of H is given by P = [pij(z)], Q = [qij(z)],

where

pij(z) = δi,jz
mi −

mij∑
k=1

αij,kz
k−1, qij(z) =

mi∑
k=1

κm1+...+mi−1+k,jz
k−1, (2.10)

where κi,j is the (i, j)th entry of the matrix K = TB, where T = (Tij)i,j=1,...,d ∈ RN×N
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is a block matrix with blocks Tij ∈ Rmi×mj given by

Tij =



−αij,2 . . . −αij,mij 0 . . . 0
... . .

. ...

−αij,mij
...

0
...

...
...

0 . . . . . . . . . . . . 0


+ δi,j



0 0 . . . . . . 0 1

0 0 . . . 1 0
...

... . .
. ...

... . .
. ...

...

0 1 . . . 0 0

1 0 . . . . . . 0 0


.

Using this form, there are several ways to enforce the normalization H(0) = H0.

Since H(0) = P (0)−1Q(0) = −(αij,1)−1
ij (κm1+...+mi−1+1,j)ij we can restrict some of the

entries of the matrix B to achieve our goal. Note that | detK| = 1 and hence T

is invertible, which is why B can be written as B = T−1K. If we now replace the

(m1+. . .+mi−1+1, j)th entry of K by the (i, j)th entry of the matrix −(αkl,1)klH0, we

have made some of the bij dependent on the entries of the matrix A and achieved the

normalization. If d = s and H0 = −Id×d, then it suffices to set κm1+...+mi−1+1,j = αij,1.

In the rest of the thesis, this normalization was always used in practical situations,

i.e. when simulations were carried out.

As in [Schlemm and Stelzer 2012, Tables 1 and 2], we give examples for the case of

d = s = 2 and H(0) = −I2×2. The number of free parameters, N(Θ), includes three

parameters for the covariance matrix ΣL of the Lévy process.

Table 2.1.: Canonical state space realizations (A,B,C) of rational transfer functions
with different Kronecker indices m

m N(Θ) A B C

(1, 1) 7

(
ϑ1 ϑ2

ϑ3 ϑ4

) (
ϑ1 ϑ2

ϑ3 ϑ4

) (
1 0
0 1

)
(1, 2) 10

ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5

  ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

 (
1 0 0
0 1 0

)

(2, 1) 11

 0 1 0
ϑ1 ϑ2 ϑ3

ϑ4 ϑ5 ϑ6

  ϑ7 ϑ8

ϑ1 + ϑ2ϑ7 ϑ3 + ϑ2ϑ8

ϑ4 + ϑ5ϑ7 ϑ6 + ϑ5ϑ8

 (
1 0 0
0 0 1

)

(2, 2) 15


0 1 0 0
ϑ1 ϑ2 ϑ3 ϑ4

0 0 0 1
ϑ5 ϑ6 ϑ7 ϑ8

 ( ϑ9 ϑ10
ϑ1+ϑ4ϑ11+ϑ2ϑ9 ϑ3+ϑ2ϑ10+ϑ4ϑ12

ϑ11 ϑ12
ϑ5+ϑ8ϑ11+ϑ6ϑ9 ϑ7+ϑ6ϑ10+ϑ8ϑ12

) (
1 0 0 0
0 0 1 0

)

If we consider a parameter space Θ that is parametrized as just described, then the

Kronecker indices m of Θ are closely connected to the AR order of the MCARMA
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Table 2.2.: Canonical MCARMA realizations (P,Q) with order (p, q) of rational
transfer functions with different Kronecker indices m

m N(Θ) P (z) Q(z) (p, q)

(1, 1) 7

(
z − ϑ1 −ϑ2

−ϑ3 z − ϑ4

) (
ϑ1 ϑ2

ϑ3 ϑ4

)
(1, 0)

(1, 2) 10

(
z − ϑ1 −ϑ2

−ϑ3 z2 − ϑ4z − ϑ5

) (
ϑ1 ϑ2

ϑ6z + ϑ3 ϑ7z + ϑ5

)
(2, 1)

(2, 1) 11

(
z2 − ϑ1z − ϑ2 −ϑ3

−ϑ4z − ϑ5 z − ϑ6

) (
ϑ7z + ϑ2 ϑ8z + ϑ3

ϑ5 ϑ6

)
(2, 1)

(2, 2) 15

(
z2 − ϑ1z − ϑ2 −ϑ3z − ϑ4

−ϑ5z − ϑ6 z2 − ϑ7z − ϑ8

) (
ϑ9z + ϑ2 ϑ10z + ϑ4

ϑ11z + ϑ6 ϑ12z + ϑ8

)
(2, 1)

processes with Y = MCARMA(Aϑ, Bϑ, Cϑ, Lϑ) for ϑ ∈ Θ, because it holds that

p = maxi=1,...,dmi for every such process.

However, for the MA order q things look a bit different. In fact, for the models in

Θ it holds that 0 ≤ q ≤ p − 1, i. e. by fixing Θ and thus m the MA order of the

contained models is not uniquely defined.

Later on, the Kronecker indices will be what our order selection criteria estimate. As

pointed out, this would not provide information about the MA degree, which is why

we will need to refine the parametrizations. This will be explained in detail at the

start of the chapter dealing with order selection.

2.2.3. Quasi–maximum likelihood estimation for MCARMA

processes

With the knowledge from the previous sections, we can now turn to the QML

estimation for MCARMA processes. In the following we assume that our data set

is generated by a continuous–time state space model (A,B,C, L), i.e. for (Y (t))t∈R

with Y = MCARMA(A,B,C, L) the discretely sampled process (Y (kh))k∈Z is the

data–generating process. Moreover, we have a parametric family of MCARMA

models (Aϑ, Bϑ, Cϑ, Lϑ) with ϑ in a parameter space Θ ⊂ RN(Θ), N(Θ) ∈ N. The aim

is to find ϑ0 ∈ Θ such that MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y , if such a thing exists.

As we have seen in Proposition 2.5, observing a parametric family of MCARMA

processes at equidistant points in time induces a parametric family of discrete–time

state space models. Therefore, QML estimation of a MCARMA process observed in

this way is equivalent to QML estimation of a discrete–time state space model. We

now review the most important aspects of the estimation of such a model, heavily

relying on Schlemm and Stelzer [2012]. A key role in the QML estimation of this

kind of processes is played by the so–called linear innovations. These are defined in
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the following way:

Definition 2.19. The linear innovations ε = (εk)k∈Z of the process (Y (nh))n∈Z

are defined by εk = Y (kh)− Pk−1Y (kh), where Pk denotes the orthogonal projection

onto the space span{Y (mh) : −∞ < m ≤ k} and the closure is taken in L2.

Note that this definition ensures that the innovations are stationary, uncorrelated

and have mean 0.

What is of particular importance is the fact that these innovations can be calculated

through the so-called Kalman filter, originally introduced in Kalman [1960] and

described in a time series context in [Brockwell and Davis 1991, §12.2]. This is

summarized in [Schlemm and Stelzer 2012, Proposition 2.1], who in turn combined

[Brockwell and Davis 1991, Proposition 12.2.3] and [Hamilton 1994, Proposition 13.2]

to obtain it. We employ the fundamental ideas of the Kalman filter in the following

to calculate the so–called pseudo–innovations. To this end, we proceed as follows:

For every ϑ ∈ Θ, the steady-state Kalman gain matrices Kϑ and covariances Vϑ are

computed as functions of the unique positive definite solution Ωϑ to the discrete–time

Riccati equation

Ωϑ = eAϑh Ωϑ eA
T
ϑh +��Σϑ,h −

(
eAϑh ΩϑC

T
ϑ

) (
CϑΩϑC

T
ϑ

)−1 (
expAϑh ΩϑC

T
ϑ

)T
, (2.11)

via

Kϑ =
(
eAϑh ΩϑC

T
ϑ

) (
CϑΩϑC

T
ϑ

)−1
, Vϑ = CϑΩϑC

T
ϑ . (2.12)

Based on this, the pseudo–innovations (εϑ,k)k∈Z are defined by

X̂ϑ,k = (eAϑh−KϑCϑ)X̂ϑ,k−1 +KϑY ((k − 1)h),

εϑ,k = Y (kh)− CϑX̂ϑ,k

=
[
Id×d − Cϑ

(
IN − (eAϑh−KϑCϑ)B

)−1
KϑB

]
Y (kh), k ∈ Z.

(2.13)

where B denotes the backshift operator, i.e. BYk = Yk−1. Note that we call them

pseudo–innovations because, in general, they will not coincide with the innovations

of the process (Yϑ(nh))n∈Z. If, however, Y = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0), then

εϑ0,k = εk and it holds that E[εϑ0,kε
T
ϑ0,k

] = Vϑ0 , which is in general not true for ϑ 6= ϑ0.

Suppose now that we have n observations of the process Y at discrete, equidistant

times, contained in the sample Y n = (Y (h), . . . , Y (nh)). In this situation, [Brockwell

and Davis 1991, Eq. (11.5.4)] tells us that −2
n

times the logarithm of the Gaussian
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likelihood of ϑ can be written as

L(ϑ, Y n) =
1

n

n∑
k=1

(d log(2π) + log(det(Vϑ)) + εTϑ,kV
−1
ϑ εϑ,k) (2.14)

=:
1

n

n∑
k=1

lϑ,k (2.15)

The expectation of this random variable is

Q(ϑ) := E [L(ϑ, Y n)] . (2.16)

Gaussian likelihood in this situation means that this is the exact likelihood function

if the innovations are normally distributed. If this assumption fails to hold L is

not the true likelihood function of the innovations, hence the name quasi maximum

likelihood estimation.

Moreover, in practical scenarios it will not even be possible to calculate the pseudo-

innovations, as they are defined in terms of the full history of the process (Y (nh))n∈Z

and we only have a finite amount of observations at our disposal. Therefore we need

a method to approximate them based on this finite sample. For example, one could

initialize the Kalman filter at k = 1 by prescribing X̂ϑ,1 = X̂ϑ,initial and then use the

recursion

X̂ϑ,k = (eAϑh−KϑCϑ)X̂ϑ,k−1 +KϑY ((k − 1)h), k ≥ 2,

ε̂ϑ,k = Y (kh)− CϑX̂ϑ,k, k ∈ N.
(2.17)

X̂ϑ,initial can be sampled from the stationary distribution of Xϑ if possible or simply

set to some deterministic value. We call the ε̂ϑ,k obtained in this way the approximate

pseudo–innovations.

Substituting the approximate pseudo-innovations for their theoretical counterparts in

(2.14), we obtain the quantity that will be minimized to obtain the Gaussian QMLE,

namely

L̂(ϑ, Y n) =
1

n

n∑
k=1

(d log(2π) + log(det(Vϑ)) + ε̂Tϑ,kV
−1
ϑ ε̂ϑ,k) (2.18)

The QMLE based on the sample Y n is then given by

ϑ̂n := arg min
ϑ∈Θ

L̂(ϑ, Y n). (2.19)



28 Chapter 2. Fundamentals

The idea is that ϑ̂n is an estimator for the pseudo–true parameter

ϑ∗ := arg min
ϑ∈Θ

Q(ϑ). (2.20)

We call this parameter pseudo–true parameter since we do not necessarily assume that

Θ contains some ϑ0 with Y = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0). Also, strictly speaking,

argmin is a slight abuse of notation here, as we cannot know if the pseudo-true

parameter is unique, and in fact it will turn out this is something that we will have

to assume. Since we will always make this assumption later, we have introduced this

notation here already. If Θ does contain such a ϑ0 as just described, we always have

ϑ∗ = ϑ0, i. e. this definition is compatible with that special case.

We now need to address several points: First off, we must ensure that the collection of

output processes (Yϑ)ϑ∈Θ is h-identifiable from the spectral density in order to prevent

the introduction of aliasing effects into our model by the discrete observations.

Secondly, we should consider the implications of using the approximate pseudo–in-

novations (ε̂ϑ,k)k∈N instead of their theoretical counterparts, which also affects the

log-likelihood function.

And lastly, we need to clarify some points which arise when we are in a misspecified

parameter space: under which conditions does the QMLE converge to the pseudo–

true parameter ϑ∗, if at all? Are those conditions any different in the correctly and

incorrectly specified case?

Before we answer these questions, we will list all the assumptions we use to develop

the asymptotic theory of the QMLE in one place for easy reference:

Assumption B.

B.1 The parameter space Θ is a compact subset of RN(Θ).

B.2 For each ϑ ∈ Θ, it holds that E[Lϑ] = 0, E[‖Lϑ(1)‖2] <∞ and the covariance

matrix ΣL
ϑ = E

[
Lϑ(1)LTϑ (1)

]
is non-singular.

B.3 For each ϑ ∈ Θ, the eigenvalues of Aϑ have strictly negative real parts.

B.4 The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ and ϑ 7→ ΣL
ϑ are three times

continuously differentiable. Moreover, for each ϑ ∈ Θ, the matrix Cϑ has full

rank.

B.5 For all ϑ ∈ Θ, the triple (Aϑ, Bϑ, Cϑ) is minimal with McMillan degree N .

B.6 The family (MCARMA(Aϑ, Bϑ, Cϑ, Lϑ))ϑ∈Θ is identifiable from the spectral

density.
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B.7 For all ϑ ∈ Θ, the spectrum of Aϑ is a subset of {z ∈ C : −π
h
< Imz < π

h
}.

B.8 The pseudo–true parameter ϑ∗ is an element of the interior of Θ.

B.9 For the true Lévy process L there exists a δ > 0 such that E[‖L(1)‖4+δ] <∞.

B.10 For every ε > 0 there exists a δ(ε) > 0 such that

Q(ϑ∗) ≤ min
ϑ∈Bε(ϑ∗)c∩Θ

Q(ϑ)− δ(ε),

where Bε(ϑ
∗) is the open ball with center ϑ∗ and radius ε.

B.11 The Fisher information matrix of the quasi maximum likelihood estimator is

non-singular.

Remark 2.20.

a) At the beginning of [Schlemm and Stelzer 2012, Chapter 4.1] it is explained that

the Echelon MCARMA realization from Subsection 2.2.2 fulfills the smoothness

and identifiability assumptions desired in Assumption B automatically, namely

B.4, B.5 and B.6. The rest of the assumptions can be easily imposed by

restricting Θ and the driving Lévy process in a suitable way. For this reason

we always use the Echelon form as parametrization.

b) Note that imposing these assumptions on a parametric family of continuous–

time state space models achieves the following:

Two processes in the family (MCARMA(Aϑ, Bϑ, Cϑ, Lϑ))ϑ∈Θ can not possess the

same spectral density, since by B.6 this is excluded. Moreover, by B.5 it is also

ensured that no process in this family can be described equivalently by a process

from another family with different McMillan degree that fulfills the assumptions

as well (again in the sense that they possess the same spectral density). Hence,

for two parameter spaces Θ and Θ′ both satisfying Assumption B with different

McMillan degrees they will always contain different processes.

Moreover, Assumption B.2 is the equivalent of Assumption L, Assumption

B.3 guarantees the existence and uniqueness of a stationary solution, and

Assumption B.7 implies the Kalman–Bertram criterion (Eq. (2.9)).

c) Assumption B.10 is a property called identifiable uniqueness: it makes sure

that ϑ∗ is the unique minimum of Q(ϑ) in Θ (White [1996, p. 28]). In the

situation we investigated, i.e. for the Echelon form, we were not able to find a

way to guarantee the uniqueness to hold besides simply assuming it. In light of
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(2.20) this does not seem to be very restrictive, however. In conjunction with

what was explained in the previous paragraph the assumption just means that

in every parametric family we can find one continuous–time state space model

(or MCARMA process) which is the best approximation to the true one, i. e.

the notation in (2.20) is justified.

d) In the correctly specified case, i. e. when the space Θ contains ϑ0 with

MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y , the identifiable uniqueness follows from

some properties satisfied by the innovations associated to the true parameter

ϑ0, see [Schlemm and Stelzer 2012, Lemma 2.9 and 2.10], i. e. Assumption

B.10 can then be dropped without any replacement.

e) In case of a correctly specified parameter space, we can replace Assumption

B.11 by the assumption that there exists a positive index i0 such that the

[(i0 + 2)d2]× r matrix

∇ϑ


[
Ii0+1×i0+1 ⊗KT

ϑ ⊗ Cϑ
]


vec exp(IN×Nh)

vec exp(Aϑh)
...

vec exp(Ai0ϑ h)


vecVϑ


ϑ=ϑ0

has rank N(Θ). This condition is used in Schlemm and Stelzer [2012] as

Assumption C11 and guarantees the desired non-singularity.

We will now put some of these assumptions to use in order to show that we do not

need to assume h-identifiability, but can deduce it from the given assumptions:

Theorem 2.21 (Schlemm and Stelzer [2012], Theorem 3.13). Assume that the space

Θ with associated family of continuous–time state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ

satisfies Assumptions B.2, B.3, B.5, B.6 and B.7. Then the corresponding collection

of output processes (MCARMA(Aϑ, Bϑ, Cϑ, Lϑ))ϑ, ϑ ∈ Θ) is h-identifiable from the

spectral density.

Proof. See cited reference.

As a next step, we will answer the questions raised by the use of the approximate

pseudo–innovations. The answers are quite pleasant, because under mild conditions

it does not matter if we consider the empirical approximate pseudo-innovations or

their theoretical counterparts, the pseudo-innovations:
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Lemma 2.22. Assume that the space Θ with associated family of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumptions B.1 to B.5.

a) There exists a matrix sequence (cϑ,k)k∈N such that

εϑ,k = Y (kh) +
∞∑
ν=1

cϑ,νY ((k − ν)h), k ∈ Z.

Furthermore, there exists a positive constant C and a constant ρ ∈ (0, 1) such

that

sup
ϑ∈Θ
‖cϑ,k‖ ≤ Cρk, k ∈ N.

If the initial values X̂ϑ,initial are such that supϑ∈Θ ‖X̂ϑ,initial‖ is almost surely

finite, then there exist C > 0 and ρ ∈ (0, 1) such that

sup
ϑ∈Θ
‖εϑ,k − ε̂ϑ,k‖ ≤ Cρk P-a.s.

b) For each i ∈ {1, . . . , N(Θ)}, there exists a matrix sequence (c
(i)
ϑ,k)k∈N such that

∂iεϑ,k =
∞∑
ν=1

c
(i)
ϑ,νY ((k − ν)h), k ∈ Z.

Furthermore, there exists a positive constant C and a constant ρ ∈ (0, 1) such

that

sup
ϑ∈Θ
‖c(i)
ϑ,k‖ ≤ Cρk, k ∈ N.

If for i ∈ {1, . . . , N(Θ)} the initial values X̂ϑ,initial are such that supϑ∈Θ ‖X̂ϑ,initial‖
and supϑ∈Θ ‖∂iX̂ϑ,initial‖ are almost surely finite, then there exist C > 0 and

ρ ∈ (0, 1) such that

sup
ϑ∈Θ
‖∂iεϑ,k − ∂iε̂ϑ,k‖ ≤ Cρk P-a.s.

c) For each i, j ∈ {1, . . . , N(Θ)}, there exists a matrix sequence (c
(i,j)
ϑ,k )k∈N such

that

∂2
i,jεϑ,k =

∞∑
ν=1

c
(i,j)
ϑ,ν Y ((k − ν)h), k ∈ Z.

Furthermore, there exists a positive constant C and a constant ρ ∈ (0, 1) such
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that

sup
ϑ∈Θ
‖c(i,j)
ϑ,k ‖ ≤ Cρk, k ∈ N.

If for some i, j ∈ {1, . . . , N(Θ)} the initial values X̂ϑ,initial are such that

supϑ∈Θ ‖X̂ϑ,initial‖, supϑ∈Θ ‖∂lX̂ϑ,initial‖, l ∈ {i, j}, and supϑ∈Θ ‖∂2
i,jX̂ϑ,initial‖

are almost surely finite, then there exist C > 0 and ρ ∈ (0, 1) such that

sup
ϑ∈Θ
‖∂i,jεϑ,k − ∂i,j ε̂ϑ,k‖ ≤ Cρk P-a.s.

Proof. Part a) is Schlemm and Stelzer [2012, Lemma 2.6], part b) is Schlemm

and Stelzer [2012, Lemma 2.11i) and ii)] and part c) is Schlemm and Stelzer [2012,

Lemma 2.11iii) and iv)] where we additionally use Schlemm and Stelzer [2012, Lemma

3.14].

A consequence of this lemma is especially that the approximate pseudo–innovations

converge to the pseudo–innovations at an exponential rate if the assumptions on

the initial values are satisfied. In the rest of the thesis, we always assume this to

be the case (it suffices to set the initial values to 0 for example). Furthermore, the

convergence of the approximate pseudo–innovations also carries over to the likelihood

function, the approximate likelihood function and their respective derivatives:

Lemma 2.23. Assume that the space Θ with associated family of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumptions B.1 to B.5. If for i, j ∈
{1, . . . , N(Θ)} the initial values X̂ϑ,initial are such that supϑ∈Θ ‖X̂ϑ,1‖, supϑ∈Θ ‖∂iX̂ϑ,1‖
and supϑ∈Θ ‖∂2

i,jX̂ϑ,1‖ are almost surely finite, then it holds:

a) supϑ∈Θ

∣∣∣L̂ (ϑ, Y n)− L (ϑ, Y n)
∣∣∣→ 0 as n→∞ P-a.s.

b)
√
n supϑ∈Θ

∣∣∣∂iL̂ (ϑ, Y n)− ∂iL (ϑ, Y n)
∣∣∣ P→ 0 as n→∞.

c) supϑ∈Θ

∣∣∣∂2
i,jL̂ (ϑ, Y n)− ∂2

i,jL (ϑ, Y n)
∣∣∣→ 0 as n→∞ P-a.s.

d) supϑ∈Θ E
[∣∣∣L̂(ϑ, Y n)− L(ϑ, Y n)

∣∣∣]→ 0 as n→∞.

Proof. a) This is Schlemm and Stelzer [2012, Lemma 2.7] taking Schlemm and

Stelzer [2012, Lemma 3.14] into account.

b) & c) The assertions can be shown as in a), using Schlemm and Stelzer [2012, Lemma

2.11].
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d) We have supϑ∈Θ E ‖ε̂ϑ,k‖ <∞, supϑ∈Θ E ‖εϑ,k‖ <∞ as in the proof of Schlemm

and Stelzer [2012, Lemma 2.7], and for some ρ ∈ (0, 1) the behavior

sup
ϑ∈Θ

E
[∣∣∣L̂(ϑ, Y n)− L(ϑ, Y n)

∣∣∣] ≤ C

n

n∑
k=1

ρk sup
ϑ∈Θ

(E‖ε̂ϑ,k‖+ E‖εϑ,k‖)
n→∞→ 0.

The rest of this sections is devoted to proving a central limit theorem for the quasi

maximum likelihood estimator under Assumption B. To this end, first, we show that

the output processes are exponentially strong mixing and discuss the implications of

this:

Proposition 2.24. Suppose that the parametric family (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ of conti-

nuous–time state space models satisfies Assumptions B.1 and B.2. Then each output

processes Yϑ is exponentially strongly mixing.

Proof. Assumption B.1 guarantees that the Lévy processes Lϑ all have finite second

moments and Assumption B.2 guarantees that the solutions of the state space

models all are causal. Therefore, the requirements of [Marquardt and Stelzer 2007,

Proposition 3.34] are satisfied and the assertion follows.

The next proposition collects auxiliary results which are used in the proof of the

asymptotic normality of the QMLE. They are highlighted here separately for easier

reference, because they will appear again later in a different context.

Proposition 2.25.

a) Assume that the space Θ with associated family of continuous–time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumptions B.1 to B.3 as well as B.9.

Then, there exists a pseudo–true parameter ϑ∗ ∈ Θ as defined in Equation

(2.20) and for every n ∈ N, there exists

ϑ∗n = arg min
ϑ∈Θ

E
[
L̂(ϑ, Y n)

]
(2.21)

as well. If Θ also satisfies the other parts of Assumption B, then ϑ∗n → ϑ∗ as

n→∞. In particular, for n sufficiently large ϑ∗n is in the interior of Θ as well.

b) Assume that the space Θ with associated family of continuous–time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumptions B.1 to B.5. Then the strong

law of large numbers

L̂(ϑ, Y n)→ Q(ϑ) P-a.s.
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holds uniformly in ϑ as n→∞.

c) Assume that the space Θ with associated family of continuous–time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B. Then, as n→∞,

√
n∇ϑL̂(ϑ∗, Y n)

D→ N (0, I(ϑ∗)),

where I(ϑ∗) = limn→∞ nVar(∇ϑL(ϑ∗, Y n)).

d) Assume that the space Θ with associated family of continuous–time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumptions B.1 to B.5. Then the conver-

gence

∇2
ϑL̂(ϑ, Y n)→J (ϑ) P-a.s.

holds uniformly in ϑ as n→∞, where J (ϑ) := E [∇2
ϑlϑ,1].

e) Assume that the space Θ with associated family of continuous–time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B. Then there exist ε, α > 0

such that for almost all ω and for every n > n1(ω) and ϑ ∈ Bε(ϑ∗)∩Θ we have

det
(
∇2
ϑL̂(ϑ, Y n)(ω)

)
≥ α.

Proof. a) The existence statements follow directly from Sin and White [1996,

Proposition 3.1]. The convergence ϑ∗n → ϑ∗ follows from Lemma 2.23d).

b) This is exactly Schlemm and Stelzer [2012, Lemma 2.8] taking Schlemm and

Stelzer [2012, Lemma 3.14] into account.

c) Note that under Assumption B we have

∇ϑE [L(ϑ, Y n)]

∣∣∣∣
ϑ=ϑ∗

= 0.

Next, we use dominated convergence to interchange the expectation and deriva-

tion, giving

E [∇ϑL(ϑ, Y n)]

∣∣∣∣
ϑ=ϑ∗

= 0. (2.22)

The rest of the proof can now be carried out as that of [Schlemm and Stelzer

2012, Lemma 2.16]. That proof makes use of the fact that the above expectation

is zero, but obtains this result in a different way, which is why we pointed it

out separately here.
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d) The sequence
(
∂2
i,jlϑ,n

)
i,j

is ergodic for every i, j ∈ {1, . . . , r}. This follows

from the representation in (2.15), the moving average representations of the

innovations and their derivatives as given in (2.22), (2.22), (2.22), the strong

mixing of the output process Y (Proposition 2.24) and lastly [Krengel 1985,

Theorem 4.3].

Hence, by Birkhoff’s Ergodic Theorem, it follows that the matrix of second

derivatives satisfies a strong law of large numbers, i. e. it holds pointwise

∇2
ϑL(ϑ, Y n) =

n∑
k=1

∇2
ϑlϑ,k

P-a.s.−→ E
[
∇2
ϑlϑ,1

]
= J (ϑ), n→∞.

The stronger notion of uniform convergence can be shown by using the com-

pactness of the parameter space and applying [Ferguson 1996, Theorem 16a)].

e) Assumption B.11 says that the Fisher information matrix E [∇2
ϑlϑ∗,1] is in-

vertible and hence, det(E [∇2
ϑlϑ∗,1]) > 0. Moreover, by Assumption B.4 the

map ϑ 7→ E [∇2
ϑlϑ,1] is continuous. Thus, there exist ε, α > 0 such that

infϑ∈Bε(ϑ∗)∩Θ det(E [∇2
ϑlϑ,1]) > α. Since by d) as n→∞,

sup
ϑ∈Bε(ϑ∗)∩Θ

‖∇2
ϑL̂(ϑ, Y n)− E

[
∇2
ϑlϑ,1

]
‖ → 0 P-a.s.,

we finally get limn→∞ infϑ∈Bε(ϑ∗)∩Θ det(∇2
ϑL̂(ϑ, Y n)) > α P-a.s..

The following lemma gives the result that the function Q attains its minimum

at parameter values ϑ0 with Y = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0), a statement which

we will use later in the proof of consistency of information criteria again (see also

[Schlemm and Stelzer 2012, Lemma 2.10] and [Boubacar Mäınassara 2012, Lemma

1], although the former only treats the case of a space Θ with ϑ0 ∈ Θ):

Lemma 2.26. Let Θ satisfy Assumption B in its entirety and ϑ0 be such that

Y = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0). Then it holds for every ϑ ∈ Θ:

Q(ϑ) ≥ Q(ϑ0).

Furthermore, for every ϑ ∈ Θ with Yϑ 6= MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) there exists a

δ > 0 such that

Q(ϑ)−Q(ϑ0) > δ. (2.23)
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Proof. By definition we have

Q(ϑ) = log(2π) + log(det(Vϑ)) + E
[
εTϑ,1V

−1
ϑ εϑ,1

]
= log(2π) + log(det(Vϑ)) + tr

(
V −1
ϑ E

[
εϑ,1ε

T
ϑ,1

])
= log(2π) + log(det(Vϑ)) + tr

(
V −1
ϑ

(
E
[
εϑ0,1ε

T
ϑ0,1

]
+ 2E

[
εϑ0,1 (εϑ,1 − εϑ0,1)T

]
+ E

[
(εϑ,1 − εϑ0,1) (εϑ,1 − εϑ0,1)T

]))
(2.24)

Note that εϑ,1 and εϑ0,1 are defined in terms of the same random variables Y , hence

the difference εϑ,1− εϑ0,1 is an element of the linear past of εϑ0,1, to which the latter is

orthogonal by definition. This means the second expectation in (2.24) is zero (since

E[εϑ0,1] = 0), which we can use together with the fact that E
[
εϑ0,1ε

T
ϑ0,1

]
= Vϑ0 to

obtain

(2.24) = log(2π) + log(det(Vϑ)) + tr
(
V −1
ϑ

(
Vϑ0 + E

[
(εϑ,1 − εϑ0,1) (εϑ,1 − εϑ0,1)T

]))
.

For ϑ = ϑ0 things simplify even more and we have

Q(ϑ0) = log(2π) + log(det(Vϑ0)) + tr
(
V −1
ϑ0
Vϑ0

)
= log(2π) + log(det(Vϑ0)) + d

If we then regard the difference we find

Q(ϑ)−Q(ϑ0) = log(det(Vϑ)) + tr
(
V −1
ϑ Vϑ0

)
− log(det(Vϑ0))

− d+ tr
(
V −1
ϑ E

[
(εϑ,1 − εϑ0,1) (εϑ,1 − εϑ0,1)T

])
= − log

(
det(V −1

ϑ Vϑ0)
)

+ tr
(
V −1
ϑ Vϑ0

)
− d+ δ, (2.25)

where

δ := tr
(
V −1
ϑ E

[
(εϑ,1 − εϑ0,1) (εϑ,1 − εϑ0,1)T

])
.

Note that this definition implies that δ = 0 if and only if εϑ,1 = εϑ0,1 almost surely.

Otherwise, δ > 0.

Since the matrices Vϑ and Vϑ0 are symmetric and positive definite, the same carries

over to the product V −1
ϑ Vϑ0 . Denote by λϑ,i, i = 1, . . . , d the d strictly positive

eigenvalues of this product. For x > 0 we have the elementary inequality x−log(x) ≥ 1,

which we can use to establish

d∑
i=1

(λϑ,i − log(λϑ,i)) ≥ d
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⇐⇒
d∑
i=1

λϑ,i − log

(
d∏
i=1

λϑ,i

)
≥ d

⇐⇒ tr
(
V −1
ϑ Vϑ0

)
− log

(
det
(
V −1
ϑ Vϑ0

))
≥ d. (2.26)

Applying (2.26) to (2.25), we see that

Q(ϑ)−Q(ϑ0) ≥ d− d+ δ = δ ≥ 0, (2.27)

which is exactly what we wanted to prove.

For the strictly positive lower bound in the case of Yϑ 6= MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0),

we noted above that εϑ,1 6= εϑ0,1 if and only if δ > 0. Therefore, if δ = 0, then

εϑ,1 = εϑ0,1 holds almost surely. Since Assumptions B.1 - B.3 and B.6 hold, [Schlemm

and Stelzer 2012, Lemma 2.9] is applicable and tells us that εϑ,1 = εϑ0,1 almost surely

implies ϑ = ϑ0. Thus (2.23) follows directly from (2.27).

Remark 2.27. In Lemma 2.26, the strict inequality with a strictly positive δ will

always hold if we consider a parameter space whose vector of Kronecker indices m

is not equal to the Kronecker indices of the output process Y , since then the data–

generating process cannot be generated by a parameter in Θ by the assumptions on the

parametrization (see also Remark 2.20b)). However, for a space Θ that contains a ϑ∗

with Y = MCARMA(Aϑ∗ , Bϑ∗ , Cϑ∗ , Lϑ∗), equality in the statement of the lemma will

be attained for ϑ∗, which is then also the pseudo–true parameter in Θ as explained at

the start of this section.

We can now state the desired central limit theorem, which basically combines [Sin

and White 1996, Proposition 4.1] and [Schlemm and Stelzer 2012, Theorem 3.4]:

Theorem 2.28. Assume that the space Θ with associated family of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B. Then, as n→∞,

ϑ̂n → ϑ∗ P-a.s.,

and
√
n
(
ϑ̂n − ϑ∗

)
D→ N (0,Ξ(ϑ∗)),

where

Ξ(ϑ∗) = J −1(ϑ∗)I(ϑ∗)J −1(ϑ∗)

with

I(ϑ∗) = lim
n→∞

nVar(∇ϑL(ϑ∗, Y n)) and J (ϑ∗) = lim
n→∞

∇2
ϑL(ϑ∗, Y n). (2.28)
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Proof. The proof can be carried out in the same way as Schlemm and Stelzer [2012,

Theorem 3.16, Theorem 2.4 and Theorem 2.5], respectively, replacing ϑ0 by ϑ∗

wherever it appears. For the strong consistency, the key idea is to make use of the

convergence result given in Proposition 2.25b) and the fact that ϑ∗ is the unique

minimizer of Q in Θ, which follows from B.10 and ensures that the estimator converges

to a unique limit, see also White [1996, Theorem 3.4]. For the asymptotic normality,

one uses a Taylor expansion of ∇ϑL̂ around the value ϑ∗ and then uses the results

from Proposition 2.25c)-e) to obtain the statement. Detailed steps are omitted here,

since the arguments from the proofs of Schlemm and Stelzer [2012, Theorem 3.16,

Theorem 2.4 and Theorem 2.5] apply completely analogously. The only difference is

that instead of the true parameter we have the pseudo–true parameter here, but due

to the additional assumption B.10 the same techniques still can be used.

Remark 2.29. a) For the strong consistency part of the theorem, Assumption B.3

can be relaxed to only require continuity instead of three times differentiability.

b) In the case that we are in a correctly specified parameter space, this theorem

corresponds exactly to [Schlemm and Stelzer 2012, Theorem 3.16].



CHAPTER 3

Consistency of information criteria

for MCARMA processes

This chapter is devoted to the study of a class of information criteria for MCARMA

processes and their asymptotic properties. The motivation behind information criteria

is the following: Assume that we are given discrete–time, equidistant observations

Y n = (Y (h), . . . , Y (nh)) of a d–dimensional MCARMA process Y . Let the Kronecker

indices of the Echelon form, the degree of the AR polynomial and the degree of the

MA polynomial, respectively, belonging to Y be denoted by m0, p0 and q0, respectively.

As we have seen in Section 2.2, the QMLE is consistent and asymptotically normal,

even when we operate in a parameter space Θ which is misspecified as long as

Assumption B is satisfied. However, in order to truly estimate the parameters of the

data–generating process, it is necessary to operate in a space which contains ϑ0 with

Y = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0), because otherwise the QMLE will estimate a

pseudo–true parameter instead. This especially means that we need to know the true

Kronecker indices m0. This is exactly the point where we require model selection,

or, synonymously, information criteria. These criteria are characterized by the fact

that they allow to compare different parameter spaces and enable us to say which of

the spaces fits best to given data. Moreover, one would ideally hope to be able to

identify the true parameter space eventually if such a thing exists. We will study

a family of information criteria, which all have in common that they build upon

the pseudo–Gaussian likelihood function and the QMLE. The main result of this

chapter will be a theorem that gives conditions for the criteria to be asymptotically
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weakly or strongly consistent, respectively. Another important fact is that these

criteria generalize well–known information criteria for other model classes, e.g. the

AIC and BIC. Since the structure of these criteria laid the groundwork for the more

general definition we work with, we will study them and their derivation separately,

highlighting how the idea of approximating the Kullback–Leibler discrepancy (for the

AIC) or the Bayesian a posteriori probability (for the BIC) of different parameter

spaces naturally leads to particular members of our more general family of criteria.

3.1. Setup of the parameter spaces for order selection

As first step towards our information criteria, we will have a closer look at the

relevant parameter spaces. Assume that different parameter spaces, each containing

continuous–time state space models in Echelon form and differing by their Kronecker

indices, are given. As explained at the end of Subsection 2.2.2, if we now estimate

the true Kronecker indices m0 by, say, an information criterion, we would (indirectly)

obtain an estimate for p0, but not for q0. In order to alleviate this, we will “decompose”

a space Θ, with fixed Kronecker indices m, and thus fixed AR degree p, into several

smaller, not necessarily disjoint (in terms of their output processes) spaces and obtain

so–called nested spaces.

To motivate this further and explain it with an illustrative example, let us consider

the one–dimensional case first.

Example 3.1. The main reason to use the Echelon form is that it provides an

identifiable parametrization of multivariate CARMA models. In one dimension,

an identifiable parametrization can be obtained by much simpler means, namely by

using the coefficients of the AR and MA polynomial as defined in Definition 2.2

as parameters and demanding that those polynomials have no common zeros. In

particular, this means that we can choose a parameter space as

Θ0 = {ϑ = (a1, . . . , ap, b0, . . . , bp−1) : P and Q have no common zeros} ⊆ Rp+p−1

and impose the conditions from Assumption B in order to obtain a space suitable

for quasi maximum likelihood estimation. We have q = p − 1 with no further

restrictions, except those that are necessary from a technical perspective, i.e. mandated

by Assumption B. In the space Θ0, there therefore are p + (p − 1) = 2p − 1 free

parameters. However, Assumption B does not imply that b0 6= 0 for every ϑ ∈ Θ0. In

this sense, the MA degree of the processes parametrized by Θ0 is not uniquely defined.

For example, if p = 2 and b0 = 0, b1 6= 0 then the corresponding output process is a
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CARMA(2,1) process where one of the MA coefficients is 0. Alternatively, we can

also interpret it as a CARMA(2,0) process and omit the superfluous coefficient that

is equal to zero. Thus, the MA degree of processes parametrized by elements in Θ0

as defined above can vary between 0 and p− 1. This is exactly the effect that also

occurs with the Echelon form, since fixing the Kronecker indices does not uniquely

define the MA degree.

We now “partition” the space Θ0 into a sequence of nested models, each of which is

also suitable for maximum lilkelihood estimation. This comes at the price that these

spaces will then not necessarily be disjoint anymore (in the sense that they do not all

parametrize truly different output processes). In order to not violate Assumption B.5,

it is necessary that we keep p fixed and only vary q. For q < p− 1, we can then define

Θ = {(a1, . . . , ap, b0, . . . , bq) : P and Q have no common zeros} ⊆ Rp+q+1. (3.1)

Note that the MA order of the contained processes is now less or equal to q. When

doing order selection, instead of considering only the space Θ0, we can then introduce

p− 1 additional spaces for each p, namely those with 0 ≤ q ≤ p− 2. The advantage is

that we obtain more information that way: in this case we have p+q free parameters in

Θ. If we ultimately minimize an information criterion over all the spaces constructed

in this way, we also obtain information about the order of the MA polynomial, not

only about that of the AR polynomial.

We can observe another phenomenon in this scenario: If p = p0 and q0 6= p0 − 1,

then for every q > q0 and Θ as in (3.1), we can find an element which generates the

same output process as ϑ0, namely

ϑ∗ = (a∗1, . . . , a
∗
p0
, 0, . . . , 0︸ ︷︷ ︸
q−q0 times

, b∗0, . . . , b
∗
q0

).

The notation ϑ∗ is not a coincidence. Remember that we denoted by ϑ∗ the pseudo–

true parameter in a misspecified space in Theorem 2.28, defined by (2.20). Since

ϑ∗ differs from ϑ0 only by some added zeros, which do not influence the innovation

sequence (εϑ∗,k)k∈Z, we have εϑ∗,k = εϑ0,k for every k ∈ Z. This in turn implies that

the expected log-likelihood function Q, defined in (2.16), attains the same value at ϑ∗

as at ϑ0, while Lemma 2.26 tells us that Q(ϑ0) is the global minimum of Q, i. e. ϑ∗

therefore is a global minimum of Q in Θ and hence the pseudo–true parameter in Θ.

This is an important observation and will play a crucial role in some of the results

to come.

For the multivariate case, the idea remains in principle exactly the same. However,
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due to the complexity of the Echelon form, we cannot explicitly write down the

structure of the “smaller spaces”. Instead, we can only give an abstract definition by

saying that a nested Θ contains parameter vectors that parametrize a continuous–time

state space model in Echelon form of which some parameters are a priori restricted

to prescribed values. The reason for this is that there is no general formula for

the number of free parameters associated to given Kronecker indices. Moreover,

unlike in the one-dimensional case, even if we chose to restrict parameters to 0, this

does not automatically lead to a decrease in the degree of the MA polynomial of

the corresponding MCARMA processes. However, it is possible (and reasonable

in practical scenarios) to choose the spaces in such a way that each Θ contains

MCARMA processes with Kronecker indices m and MA degree q or less for some

q ∈ {0, . . . , p−1} in order to obtain additional information when doing order selection.

On the other hand, requiring this special “decomposition” is not necessary, which is

why we proceed in a more general setting.

Also noteworthy is the fact that, in contrast to the one-dimensional case, we cannot

simply remove parameters from a space to obtain the nested spaces. Instead we have

to set certain parameters to a fixed value in the Echelon form. However, if a space

Θ is nested in Θ′, we still think of Θ as a subset of a vector space with dimension

strictly less than N(Θ′), since the parameter vectors should only contain the free

parameters on which we have not imposed any a priori restrictions.

Let us complement these explanations by an example. We again look at the canonical

parametrizations for d = 2 as presented in Table 2.1 and Table 2.2 for d = s = 2

and H(0) = H0 = −I2×2. We now want to decompose the spaces given in those

tables into smaller spaces in such a way that the processes in two different spaces

not only differ by their Kronecker indices, but also by the degree of their respective

MA polynomial. Of course this is easy because we have already written down the

parametrizations explicitly and therefore know exactly on which parameters we must

impose which restrictions. The results are given in the following tables, where we

repeat the entries of Table 2.1 and Table 2.2 for the sake of easier comparison:
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Table 3.1.: Canonical state space realizations (A,B,C) of rational transfer functions
with different Kronecker indices m and additional decomposition of the
parameter space

m (p, q) N(Θ) A B C

(1, 1) (1, 0) 7

(
ϑ1 ϑ2

ϑ3 ϑ4

) (
ϑ1 ϑ2

ϑ3 ϑ4

) (
1 0
0 1

)
(1, 2) (2, 0) 8

ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5

 ϑ1 ϑ2

0 0
ϑ3 ϑ4

 (
1 0 0
0 1 0

)

(1, 2) (2, 1) 10

ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5

  ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

 (
1 0 0
0 1 0

)

(2, 1) (2, 0) 9

 0 1 0
ϑ1 ϑ2 ϑ3

ϑ4 ϑ5 ϑ6

  0 0
ϑ1 ϑ3

ϑ4 ϑ6

 (
1 0 0
0 0 1

)

(2, 1) (2, 1) 11

 0 1 0
ϑ1 ϑ2 ϑ3

ϑ4 ϑ5 ϑ6

  ϑ7 ϑ8

ϑ1 + ϑ2ϑ7 ϑ3 + ϑ2ϑ8

ϑ4 + ϑ5ϑ7 ϑ6 + ϑ5ϑ8

 (
1 0 0
0 0 1

)

(2, 2) (2, 0) 11


0 1 0 0
ϑ1 ϑ2 ϑ3 ϑ4

0 0 0 1
ϑ5 ϑ6 ϑ7 ϑ8




0 0
ϑ1 ϑ3

0 0
ϑ5 ϑ7

 (
1 0 0 0
0 0 1 0

)

(2, 2) (2, 1) 15


0 1 0 0
ϑ1 ϑ2 ϑ3 ϑ4

0 0 0 1
ϑ5 ϑ6 ϑ7 ϑ8

 ( ϑ9 ϑ10
ϑ1+ϑ4ϑ11+ϑ2ϑ9 ϑ3+ϑ2ϑ10+ϑ4ϑ12

ϑ11 ϑ12
ϑ5+ϑ8ϑ11+ϑ6ϑ9 ϑ7+ϑ6ϑ10+ϑ8ϑ12

) (
1 0 0 0
0 0 1 0

)
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Table 3.2.: Canonical MCARMA realizations (P,Q) with order (p, q) of rational
transfer functions with different Kronecker indices m and additional
decomposition of the parameter space

m (p, q) N(Θ) P (z) Q(z)

(1, 1) (1, 0) 7

(
z − ϑ1 −ϑ2

−ϑ3 z − ϑ4

) (
ϑ1 ϑ2

ϑ3ϑ4

)
(1, 2) (2, 0) 8

(
z − ϑ1 −ϑ2

−ϑ3 z2 − ϑ4z − ϑ5

) (
ϑ1 ϑ2

ϑ3 ϑ5

)
(1, 2) (2, 1) 10

(
z − ϑ1 −ϑ2

−ϑ3 z2 − ϑ4z − ϑ5

) (
ϑ1 ϑ2

ϑ6z + ϑ3 ϑ7z + ϑ5

)
(2, 1) (2, 0) 9

(
z2 − ϑ1z − ϑ2 −ϑ3

−ϑ4z − ϑ5 z − ϑ6

) (
ϑ2 ϑ3

ϑ5 ϑ6

)
(2, 1) (2, 1) 11

(
z2 − ϑ1z − ϑ2 −ϑ3

−ϑ4z − ϑ5 z − ϑ6

) (
ϑ7z + ϑ2 ϑ8z + ϑ3

ϑ5 ϑ6

)
(2, 2) (2, 0) 11

(
z2 − ϑ1z − ϑ2 −ϑ3z − ϑ4

−ϑ5z − ϑ6 z2 − ϑ7z − ϑ8

) (
ϑ2 ϑ4

ϑ6 ϑ8

)
(2, 2) (2, 1) 15

(
z2 − ϑ1z − ϑ2 −ϑ3z − ϑ4

−ϑ5z − ϑ6 z2 − ϑ7z − ϑ8

) (
ϑ9z + ϑ2 ϑ10z + ϑ4

ϑ11z + ϑ6 ϑ12z + ϑ8

)

Returning to the general procedure, we can then consider all of these spaces, which

differ by the Kronecker indices and the number of free parameters, instead of the

spaces which only differ by the Kronecker indices. Of course, we will still require

the nested spaces to fulfill Assumption B in order to be able to do QMLE in them,

but this is possible. After having explored the structure of the parameter spaces

under consideration in detail, we progress further towards the information criteria.

As already mentioned, one goal later on is to study their asymptotic behavior. To

this end, the results and tools from Chapter 2 will of course be necessary. However,

we will need some additional tools. In particular, the most important result in the

study of consistency will be the law of the iterated logarithm for the function L̂ as

defined in (2.18). For this reason, we first derive this result.

3.2. The law of the iterated logarithm

The goal of this section is to establish a law of the iterated logarithm for L̂. This

is done because in order to deduce strong consistency of information criteria later,

we will need to study the limit superior of L̂. The law of the iterated logarithm will

provide us with a suitable scaling sequence that, when multiplied with L̂, will lead

to a non–zero limit superior, which is exactly what we will need.

To make the derivation more manageable, it is broken down into three separate

steps, each building upon the former and culminating in the desired result. In the
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following proposition we begin by establishing a law of the iterated logarithm for

linear combinations of partial derivatives of the quasi log–likelihood function.

Proposition 3.2. Assume that the space Θ with associated family of continuous–

time state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B. Then, for every

x ∈ RN(Θ) \ {0N(Θ)} it holds P-a.s.

lim sup
n→∞

−
√
n√

log(log(n))
xT∇ϑL̂(ϑ∗, Y n) = lim sup

n→∞

√
n√

log(log(n))
xT∇ϑL̂(ϑ∗, Y n)

=
√

2 · xTI(ϑ∗)x.

Proof. Let x ∈ RN(Θ) \ {0N(Θ)}. First, it can be deduced that xTI(ϑ∗)x is finite and

positive from Schlemm and Stelzer [2012, Lemma 2.16]. Moreover, by Schlemm and

Stelzer [2012, Eq. (2.24)] the representation

∂ilϑ∗,k = tr
(
V −1
ϑ∗

(
Id×d − εϑ∗,kεTϑ∗,kV −1

ϑ∗

)
∂iVϑ∗

)
+ 2∂iε

T
ϑ∗,kV

−1
ϑ∗ εϑ∗,k (3.2)

holds. By Lemma 2.22 we know that both the pseudo-innovations and their partial

derivatives can be expressed as moving averages of the true output process via

εϑ∗,k =
∞∑
ν=0

cϑ∗,νY ((k − ν)h), ∂iεϑ∗,k =
∞∑
ν=0

c
(i)
ϑ∗,νY ((k − ν)h) (3.3)

and the inequalities supϑ∈Θ ‖cϑ,ν‖ ≤ Cρν and supϑ∈Θ ‖c
(i)
ϑ,ν‖ ≤ Cρν are satisfied for

some C > 0 and ρ ∈ (0, 1) for i ∈ {1, . . . , N(Θ)}. Thus, xT∇ϑlϑ∗,k =
∑N(Θ)

i=1 xi∂ilϑ∗,k

can be written as f(Y (kh), Y ((k − 1)h), . . .) for a suitable function f .

The aim is now to apply the law of the iterated logarithm for dependent random

variables as it’s given in Oodaira and Yoshihara [1971, Theorem 8], for which we

need to check the following three conditions:

a) E
[
xT∇ϑlϑ∗,k

]
= 0 and E

∣∣xT∇ϑlϑ∗,k
∣∣2+δ1 <∞ for some δ1 > 0.

b) E
[∣∣xT∇ϑlϑ∗,k − E

[
xT∇ϑlϑ∗,k | σ (Y ((k −m)h), . . . , Y (kh), . . . , Y ((k +m)h))

]∣∣2]
= O(m−2−δ2) for some δ2 > 0 and m ∈ N.

c)
∑∞

k=1 αY (h)(k)
δ3

2+δ3 <∞ for some 0 < δ3 < δ1, where (αY (h)(k))k∈Z denotes the

strong mixing coefficients of the process (Y (kh))k∈Z.

a) We start with the first condition. For the first part it follows as in (2.22) that

E [∂ilϑ∗,k] = 0 for every i ∈ {1, . . . , N(Θ)}, hence E
[
xT∇ϑlϑ∗,k

]
= 0. For the second

part, for any i ∈ {1, . . . , N(Θ)} we employ (3.2) and the Cauchy-Schwarz inequality
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to obtain

E |∂ilϑ∗,k|2+δ1 ≤ CE
∣∣tr (V −1

ϑ∗ εϑ∗,kε
T
ϑ∗,kV

−1
ϑ∗ ∂iVϑ∗

)∣∣2+δ1
+ CE

∣∣∂iεTϑ∗,kV −1
ϑ εϑ∗,k

∣∣2+δ1

≤ C
(
E‖εϑ∗,k‖4+2δ1 +

(
E‖εϑ∗,k‖4+2δ1E‖∂iεϑ∗,k‖4+2δ1

) 1
2

)
,

where we have used the compactness of Θ in the last line. From Assumption B.9

we know that the driving Lévy process L of Y has finite (4 + δ)th moment for some

δ > 0, which carries over to the (4 + δ)th moment of Y (kh), k ∈ Z, and hence to

εϑ∗,k and ∂iεϑ∗,k. With this, we obtain that the right-hand side is finite if δ1 <
δ
2
.

Since i ∈ {1, . . . , N(Θ)} is arbitrary and xT∇ϑlϑ∗,k is a linear combination of those

components, we get E
∣∣xT∇ϑlϑ∗,k

∣∣2+δ1 <∞.

b) For the second condition, we begin by decomposing the partial derivative as in

the proof of Schlemm and Stelzer [2012, Lemma 2.16]. For m ∈ N we write

∂ilϑ∗,k = Y
(i)
m,k − E

[
Y

(i)
m,k

]
+ Z

(i)
m,k − E

[
Z

(i)
m,k

]
,

where

Y
(i)
m,k =tr

(
V −1
ϑ∗ ∂iVϑ∗

)
+

m∑
ν,ν′=0

(
− tr

(
V −1
ϑ∗ cϑ∗,νY ((k − ν)h)Y T

ϑ0
((k − ν ′)h)cTϑ∗,ν′V

−1
ϑ∗ ∂iVϑ∗

)
+ 2Y T

ϑ0
((k − ν)h)c

(i),T
ϑ∗,ν V

−1
ϑ∗ cϑ∗,ν′Y ((k − ν ′)h)

)
,

Z
(i)
m,k = ∂ilϑ∗,k − Y (i)

m,k.

Hence, we obtain

E
[∣∣xT∇ϑlϑ∗,k − E

[
xT∇ϑlϑ∗,k

∣∣σ (Y ((k −m)h), . . . , Y (kh), . . . , Y ((k +m)h))
]∣∣2]

≤ E

∣∣∣∣∣∣
N(Θ)∑
i=1

xiZ
(i)
m,k − E

N(Θ)∑
i=1

xiZ
(i)
m,k

∣∣∣∣∣∣
2

=

N(Θ)∑
i=1

x2
i Var(Z

(i)
m,k) + 2

N(Θ)∑
i,j=1
i 6=j

xixj Cov(Z
(i)
m,k, Z

(j)
m,k).

From step 2 of the proof of Schlemm and Stelzer [2012, Lemma 2.16] we know

that Cov(Z
(i)
m,k, Z

(j)
m,k) ≤ Cρm for a positive constant C and ρ ∈ (0, 1), and every

i, j ∈ {1, . . . , N(Θ)}. Thus, the second condition is satisfied as well.

c) Lastly, we turn to the third condition. By Proposition 2.24 the strong mixing

coefficients αY (t) of (Y (t))t∈R are O(e−at) for some a > 0, which carries over to those
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of the sampled process (Y (kh))k∈Z. Thus, we can choose δ3 < δ1 <
δ
2

to obtain∑∞
k=1 αY (h)(k)

δ3
2+δ3 <∞ as desired.

Then a consequence of a)-c) and Oodaira and Yoshihara [1971, Theorem 8] is the

law of the iterated logarithm

lim sup
n→∞

∣∣∣∑n
k=1(

∑N(Θ)
i=1 xi∂ilϑ∗,k)

∣∣∣√
2nxTI(ϑ∗)x log(log(nxTI(ϑ∗)x))

= 1 P-a.s.

Since log(log(nxTI(ϑ∗)x)) = O(log(log(n))) we can therefore deduce the statement

by symmetry (the driving Lévy process has expectation 0s) for L. Finally, by

Lemma 2.23b) we can transfer the result to L̂ as well.

In the next step, we use this result to establish a law of the iterated logarithm for

the norm of the gradient of L̂, multiplied by an arbitrary matrix:

Theorem 3.3. Assume that the space Θ with associated family of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B. Moreover, let Ξ ∈
RN(Θ)×N(Θ) be an arbitrary matrix. Then it holds that

lim sup
n→∞

√
n√

log(log(n))
‖Ξ∇ϑL̂(ϑ∗, Y n)‖ =

√
2 · λmax(ΞI(ϑ∗)ΞT ) P-a.s.

Proof. An application of Proposition 3.2 gives

lim sup
n→∞

√
n√

log(log(n))
xTΞ∇ϑL̂(ϑ∗, Y n) =

√
2 · xTΞI(ϑ∗)ΞTx P-a.s.

for every x ∈ RN(Θ) \ {0N(Θ)}. Using the fact that RN(Θ) is its own dual space and

viewing the mapping x 7→ xTΞ∇ϑL̂(ϑ∗, Y n
ϑ0

) as the application of the linear functional

x to Ξ∇ϑL̂(ϑ∗, Y n
ϑ0

), this means that a law of the iterated logarithm holds for every

univariate process of the form xTΞ∇ϑL̂(ϑ∗, Y n
ϑ0

). Just as in the proof of Finkelstein

[1971, Lemma 2], we can conclude from this that P-a.s.

lim sup
n→∞

√
n√

log(log(n))
‖Ξ∇ϑL̂(ϑ∗, Y n)‖

= lim sup
n→∞

√
n√

log(log(n))
sup
‖x‖=1

∣∣∣xTΞ∇ϑL̂(ϑ∗, Y n)
∣∣∣

= sup
‖x‖=1

√
2 · xTΞI(ϑ∗)ΞTx

=
√

2 · λmax(ΞI(ϑ∗)ΞT )
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where we additionally use Zhulenev [1991, Eq. (22)] since the covariance matrix of

Ξ∇ϑL(ϑ∗, Y n
ϑ0

) is not necessarily the identity (since we are in a finite-dimensional

Hilbert space, see also Ledoux and Talagrand [1991, pp. 222 and 232] for the

identification of the limit).

Finally, having this theorem allows us to derive the law of the iterated logarithm

for L̂:

Theorem 3.4. Assume that the space Θ with associated family of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B. Then

lim sup
n→∞

n

log(log(n))

(
L̂(ϑ∗, Y n)− L̂(ϑ̂n, Y n)

)
= λmax(J (ϑ∗)−

1
2I(ϑ∗)J (ϑ∗)−

1
2 ) P-a.s.

Proof. A first-order Taylor expansion of ∇ϑL̂(ϑ̂n, Y n) around ϑ∗ gives

0 = ∇ϑL̂(ϑ̂n, Y n) = ∇ϑL̂(ϑ∗, Y n) +∇2
ϑL̂(ϑ

n
, Y n)(ϑ̂n − ϑ∗),

for some ϑ
n

with ‖ϑn − ϑ∗‖ ≤ ‖ϑ̂n − ϑ∗‖. Since by Theorem 2.28 we know that

ϑ̂n → ϑ∗ P-a.s., ϑ
n → ϑ∗ P-a.s. as well. A conclusion of Proposition 2.25e) is that

limn→∞ det(∇2
ϑL̂(ϑ

n
, Y n)) > 0 P-a.s., so that

ϑ̂n − ϑ∗ = −
(
∇2
ϑL̂(ϑ

n
, Y n)

)−1

∇ϑL̂(ϑ∗, Y n) P-a.s. (3.4)

is well-defined. Now we employ a Taylor expansion again, albeit this time we expand

L̂(ϑ∗, Y n) around ϑ̂n and use a second-order expansion. This gives us

L̂(ϑ∗, Y n) = L̂(ϑ̂n, Y n) +
1

2
(ϑ̂n − ϑ∗)T∇2

ϑL̂(ϑ̌n, Y n)(ϑ̂n − ϑ∗),

for some ϑ̌n with ‖ϑ̌n − ϑ̂n‖ ≤ ‖ϑ̂n − ϑ∗‖, where we have used ∇ϑL̂(ϑ̂n, Y n) = 0. As

above we have ϑ̌n → ϑ∗ P-a.s. Rearranging the terms, we arrive at

L̂(ϑ∗, Y n)− L̂(ϑ̂n, Y n) =
1

2
‖∇2

ϑL̂(ϑ̌n, Y n)
1
2 (ϑ̂n − ϑ∗)‖2

=
1

2
‖∇2

ϑL̂(ϑ̌n, Y n)
1
2 (∇2

ϑL̂(ϑ
n
, Y n))−1∇ϑL̂(ϑ∗, Y n)‖2. (3.5)

An application of Theorem 3.3 with Ξ = J (ϑ∗)−
1
2 (which is symmetric) yields

lim sup
n→∞

√
n√

log(log(n))
‖J (ϑ∗)−

1
2∇ϑL̂(ϑ∗, Y n)‖

=

√
2 · λmax(J (ϑ∗)−

1
2I(ϑ∗)J (ϑ∗)−

1
2 ) P-a.s.



3.3. Likelihood-based information criteria 49

With ∇2
ϑL̂(ϑ̌n, Y n)

1
2∇2

ϑL̂(ϑ
n
, Y n)−1 → J (ϑ∗)−

1
2 P-a.s. (cf. Proposition 2.25d)) and

(3.5) we can derive the statement.

Remark 3.5. This result is an analog to Sin and White [1996, Proposition 5.1]

which investigates consistency of information criteria under some different model

assumptions. However, it is stronger than the one in the cited article, since we are

able to specify the limit superior exactly while in Sin and White [1996] it is only

shown that convergence occurs.

We are now at the point where we have studied all the auxiliary tools necessary for

the treatment of order selection criteria, so that we can now introduce and analyze

them.

3.3. Likelihood-based information criteria

This main section of the chapter will contain our main results on consistency of

information criteria. First, we give their definition:

Definition 3.6. Assume that the space Θ with associated family of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B. Furthermore, let ϑ̂n

be the QMLE based on Y n in Θ as defined in (2.19) and let C(n) be a positive,

nondecreasing function of n with

lim
n→∞

C(n)

n
= 0.

Then a likelihood-based information criterion has the form

ICn(Θ) := L̂(ϑ̂n, Y n) +N(Θ)
C(n)

n
. (3.6)

These information criteria have the property that ICn(Θ)
P→ Q(ϑ∗). Since

Q attains its minimum at ϑ0 for which MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y (cf.

Lemma 2.26), when comparing different parameter spaces we choose that one for

which the information criterion is minimal as the most suitable.

Remark 3.7. C(n) can be interpreted as penalty term for the inclusion of more

parameters into the model. This penalty is needed to obtain meaningful information,

since the inclusion of more parameters always leads to an improved fit of the model

to the data, i. e. without the penalty term the criterion would always choose the

model with the most parameters. However, this is not feasible, since the inclusion

of too many parameters ultimately leads to an interpolation of the data, such that
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the model would not provide information about the phenomenon generating the data

anymore. The employment of an information criterion can therefore be seen as

seeking a trade-off between accuracy and complexity.

The condition C(n)/n → 0 guarantees that underfitting is not possible, i. e.

asymptotically there is no positive probability of choosing a parameter space which

cannot generate the process underlying the data. However, C(n)/n → 0 is not

sufficient to exclude overfitting, i.e. an asymptotically positive probability to choose

a space with more parameters than necessary. In the following we will give necessary

and sufficient conditions to exclude this case. To this end we need some notation.

Definition 3.8. Let Θ and Θ0 be parameter spaces with associated families of

continuous–time state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ0 and (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ, re-

spectively, satisfying Assumption B. Assume that there is a ϑ0 ∈ Θ0 with

MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y . We say that Θ0 is nested in Θ if N(Θ0) < N(Θ)

and there exist a matrix F ∈ RN(Θ)×N(Θ0) with F TF = IN(Θ0)×N(Θ0) as well as a

c ∈ RN(Θ) such that

(Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ0 = (AFϑ+c, BFϑ+c, CFϑ+c, LFϑ+c)ϑ∈Θ0 .

The interpretation of nested is that all processes generated by a parameter in

Θ0 can also be generated by a parameter in Θ. However, there are also processes

which can be generated by a parameter in Θ, but not by a parameter in Θ0. In

this sense Θ0 is contained in Θ. The condition F TF = IN(Θ0)×N(Θ0) guarantees

that we have a bijective map from Θ0 → FΘ0 + c ⊂ Θ. For MCARMA processes

parametrized in Echelon form, as explained in Section 3.1 a parameter space Θ

that satisfies Assumption B contains only processes that have the same Kronecker

indices m = (m1, . . . ,md) and hence, fixed degree p = maxi=1,...,dmi of the AR

polynomial. For the MA polynomial we only know that the degree is less than or

equal to p− 1. However, in Section 3.1 we explained how one can further partition

such a parameter space. In the context of Definition 3.8, Θ0 could be a parameter

space generating processes with Kronecker index m0 and MA degree not exceeding q0,

where Θ generates processes with Kronecker index m0 and MA degree not exceeding

q, q0 < q ≤ p0 − 1. Then Θ0 is nested in Θ. In this way our information criteria can

be used to estimate the Kronecker index, the degree of the AR polynomial and the

degree of the MA polynomial.

In the following we investigate only parameter spaces with associated family of

continuous–time state space models (Aϑ, Bϑ, Cϑ, Lϑ) in Echelon form. Remember that

we denoted the Kronecker indices, the degree of the AR polynomial and the degree of
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the MA polynomial, respectively, belonging to Y by m0, p0 and q0, respectively. Then

ΘE
0 denotes the parameter space generating all MCARMA processes with Kronecker

indices m0. The degree of the AR polynomial of those processes is then p0, the degree

of the MA polynomial is between 0 and p0−1. The space ΘE
0 is the biggest parameter

space generating MCARMA processes in Echelon form, satisfying Assumption B and

containing a parameter ϑE0 with MCARMA(AϑE0 , BϑE0 , CϑE0 , LϑE0 ) = Y . Note that ϑE0

is then the pseudo–true parameter in ΘE
0 .

Next, we define under which circumstances ICn is consistent; we distinguish two

different types of consistency.

Definition 3.9.

a) The information criterion ICn is called strongly consistent if for any parame-

ter spaces Θ0 and Θ with associated families of continuous–time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ0 and (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ, respectively, satisfying

Assumption B and with a ϑ0 ∈ Θ0 such that MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y ,

and either MCARMA(Aϑ, Bϑ, Cϑ, Lϑ) 6= Y for every ϑ ∈ Θ or Θ0 being nested

in Θ we have

P
(

lim sup
n→∞

(ICn(Θ0)− ICn(Θ)) < 0

)
= 1.

b) The information criterion ICn is called weakly consistent if for any parame-

ter spaces Θ0 and Θ with associated families of continuous–time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ0 and (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ, respectively, satisfying

Assumption B and with a ϑ0 ∈ Θ0 such that MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y ,

and either MCARMA(Aϑ, Bϑ, Cϑ, Lϑ) 6= Y for every ϑ ∈ Θ or Θ0 being nested

in Θ we have

lim
n→∞

P (ICn(Θ0)− ICn(Θ) < 0) = 1.

If the information criterion is strongly consistent, then the chosen parameter

space converges almost surely to the true parameter space. For a weakly consistent

information criterion we only have convergence in probability. Moreover, if we

compare two parameter spaces both containing a parameter that generates the

true output process, then we choose the parameter space with less parameters

asymptotically almost surely in the strongly consistent case, whereas in the weakly

consistent case we have convergence in probability. This especially means overfitting

is asymptotically excluded. With these notions we characterize consistency of ICn

for MCARMA processes in terms of the penalty term C(n).
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Theorem 3.10.

a) The criterion ICn is strongly consistent if

lim sup
n→∞

C(n)

log(log(n))
> λmax(J (ϑE0 )−

1
2I(ϑE0 )J (ϑE0 )−

1
2 ).

If lim supn→∞C(n)/ log(log(n)) = 0, then the information criterion is not

strongly consistent.

b) The criterion ICn is weakly consistent if lim supn→∞C(n) =∞.
If lim supn→∞C(n) <∞ then ICn is neither weakly nor strongly consistent.

c) Let Θ and Θ0 be parameter spaces with associated families of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ0 and (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ, respectively,

satisfying Assumption B. Assume that there is a ϑ0 ∈ Θ0 with

MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y and Θ0 is nested in Θ with map F and ϑ∗ is

the pseudo–true parameter in Θ. Moreover, suppose lim supn→∞ C(n) = C <∞.

Define

MF (ϑ∗) := −J −1(ϑ∗) + F (F TJ (ϑ∗)F )−1F T .

Then

lim
n→∞

P(ICn(Θ0)− ICn(Θ) > 0)

= P

N(Θ)−N(Θ0)∑
i=1

λiχ
2
i > 2[N(Θ)−N(Θ0)]C

 > 0,

where (χ2
i ) is a sequence of independent χ2 random variables with one degree

of freedom and the λi are the N(Θ)−N(Θ0) strictly positive eigenvalues of

J (ϑ∗)
1
2MF (ϑ∗)I(ϑ∗)MF (ϑ∗)J (ϑ∗)

1
2 .

Proof. For the whole proof, we denote by ϑ0 the parameter in Θ0 with

MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y and by ϑ∗ the pseudo–true parameter in Θ.

Moreover, let ϑ̂n0 denote the QMLE based on Y n in Θ0, ϑ̂n the QMLE based on Y n

in Θ and ϑ̂E0 the QMLE based on Y n in ΘE
0 . The corresponding quasi log–likelihood

functions are denoted by L̂0, L̂ and L̂E, respectively.

a) We distinguish two different cases.
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Case 1: MCARMA(Aϑ, Bϑ, Cϑ, Lϑ) 6= Y for every ϑ ∈ Θ. Then

ICn(Θ0)− ICn(Θ) = L̂0

(
ϑ̂n0 , Y

n
)
−L̂

(
ϑ̂n, Y n

)
+[N(Θ0)−N(Θ)]

C(n)

n
. (3.7)

On the one hand, by Theorem 3.4 we have that

L̂
(
ϑ̂n, Y n

)
= L̂ (ϑ∗, Y n) +Oa.s.

(
log(log(n))

n

)
,

L̂0

(
ϑ̂n0 , Y

n
)

= L̂0 (ϑ0, Y
n) +Oa.s.

(
log(log(n))

n

)
,

and on the other hand, by Proposition 2.25b)

L̂ (ϑ∗, Y n) = Q(ϑ∗) + oa.s.(1) and L̂0 (ϑ0, Y
n) = Q(ϑ0) + oa.s.(1).

Finally, in this case the inequality from eq. (2.23) is strict, so that for some

δ > 0

ICn(Θ0)− ICn(Θ) = Q(ϑ0)−Q(ϑ∗) + r̂(n) + [N(Θ0)−N(Θ)]
C(n)

n

< −δ + r̂(n) + [N(Θ0)−N(Θ)]
C(n)

n
,

where r̂(n) is oa.s.(1). By assumption it holds that C(n)/n→ 0 as n→∞, so

that we get

P
(

lim sup
n→∞

(ICn(Θ0)− ICn(Θ)) < −δ
)

= 1.

Case 2: Θ0 is nested in Θ with map F . Note that Θ0 is also nested in ΘE
0 by

definition, which then in turn means that Θ is nested in ΘE
0 , implying

L̂(ϑ̂n, Y n) = min
ϑ∈Θ
L̂(ϑ, Y n) ≥ min

ϑ∈ΘE0

L̂E(ϑ, Y n) = L̂E(ϑ̂nE, Y
n). (3.8)

Moreover, ε̂ϑ0,k = ε̂ϑ∗,k = ε̂ϑE0 ,k and hence,

L̂0 (ϑ0, Y
n) = L̂ (ϑ∗, Y n) = L̂E

(
ϑE0 , Y

n
)
. (3.9)

With this and (3.8) we receive

L̂0(ϑ̂n0 , Y
n)− L̂(ϑ̂n, Y n) ≤ L̂E

(
ϑE0 , Y

n
)
− L̂E(ϑ̂nE, Y

n).
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Now, Theorem 3.4 tells us that

lim sup
n→∞

n

log(log(n))

(
L̂E
(
ϑE0 , Y

n
)
− L̂E(ϑ̂nE, Y

n)
)

= λmax(J (ϑE0 )−
1
2I(ϑE0 )J (ϑE0 )−

1
2 ) P-a.s.

Turning to the information criterion, this gives

lim sup
n→∞

n

log(log(n))
(ICn(Θ0)− ICn(Θ))

≤ lim sup
n→∞

n

log(log(n))

(
L̂E
(
ϑE0 , Y

n
)
− L̂E(ϑ̂nE, Y

n)

+[N(Θ0)−N(Θ)]
C(n)

log(log(n))

)
≤λmax(J (ϑE0 )−

1
2I(ϑE0 )J (ϑE0 )−

1
2 )− lim sup

n→∞

C(n)

log(log(n))
P-a.s.,

since N(Θ0)−N(Θ) ≤ −1. Hence, if

lim sup
n→∞

C(n)

log(log(n))
> λmax(J (ϑE0 )−

1
2I(ϑE0 )J (ϑE0 )−

1
2 ),

we obtain

P
(

lim sup
n→∞

n

log(log(n))
(ICn(Θ0)− ICn(Θ)) < 0

)
= 1.

Finally, if lim supn→∞C(n)/ log(log(n)) = 0, then from

L̂0

(
ϑ̂n0 , Y

n
)
− L̂

(
ϑ̂n, Y n

)
≥ 0

it clearly follows that

P
(

lim sup
n→∞

n

log(log(n))
(ICn(Θ0)− ICn(Θ)) > 0

)
= 1,

so that strong consistency cannot hold.

b) Again we distinguish the two cases from part a). Case 1 is dealt with analogously

as in a), so that we only need to give detailed arguments for case 2. Suppose

therefore that Θ0 is nested in Θ. Define the map f : Θ0 → Θ by f(ϑ) = Fϑ+ c,

where F and c are as in the definition of nested spaces. Then, a Taylor expansion
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of L̂
(
f(ϑ̂n0 ), Y n

)
around ϑ̂n results in

L̂0

(
ϑ̂n0 , Y

n
)

= L̂
(
f(ϑ̂n0 ), Y n

)
= L̂

(
ϑ̂n, Y n

)
+

1

2

(
ϑ̂n − f(ϑ̂n0 )

)T
∇2
ϑL̂
(
ϑ
n
, Y n

)(
ϑ̂n − f(ϑ̂n0 )

)
(3.10)

with ϑ
n

such that ‖ϑn − ϑ̂n‖ ≤ ‖f(ϑ̂n0 )− ϑ̂n‖. Plugging (3.10) into (3.7) gives

ICn(Θ0)− ICn(Θ) =
1

2

(
ϑ̂n − f(ϑ̂n0 )

)T
∇2
ϑL̂
(
ϑ
n
, Y n

)(
ϑ̂n − f(ϑ̂n0 )

)
+ [N(Θ0)−N(Θ)]

C(n)

n
. (3.11)

In order to be able to show weak consistency, we will study the behavior of the

random variable ϑ̂n − f(ϑ̂n0 ). Note that L̂0 (ϑ, Y n) = L̂ (f(ϑ), Y n) for ϑ ∈ Θ0,

so that by the chain rule

∇ϑL̂0(ϑ0, Y
n) = F T∇ϑL̂(f(ϑ0), Y n) = F T∇ϑL̂(ϑ∗, Y n).

Moreover,

f(ϑ̂n0 )− ϑ∗ = f(ϑ̂n0 )− f(ϑ0) = F (ϑ̂n0 − ϑ0).

As in (3.4), we also have

ϑ̂n − ϑ∗ = −
(
∇2
ϑL̂(ϑ̌n, Y n)

)−1

∇ϑL̂(ϑ∗, Y n),

ϑ̂n0 − ϑ0 = −
(
∇2
ϑL̂0(ϑ̃n, Y n)

)−1

∇ϑL̂0(ϑ0, Y
n),

where ϑ̌n is such that ‖ϑ̌n − ϑ∗‖ ≤ ‖ϑ̂n − ϑ∗‖ and ϑ̃n is such that ‖ϑ̃n − ϑ0‖ ≤
‖ϑ̂n0−ϑ0‖. In particular, ϑ̌n → ϑ∗ and ϑ̃n → ϑ0 P-a.s. as n→∞. To summarize,

ϑ̂n − f(ϑ̂n0 ) = ϑ̂n − ϑ∗ − F (ϑ̂n0 − ϑ0)

=

[
−
(
∇2
ϑL̂(ϑ̌n, Y n)

)−1

+ F
(
∇2
ϑL̂0(ϑ̃n, Y n)

)−1

F T

]
∇ϑL̂(ϑ∗, Y n).

An application of Proposition 2.25c) and d) results in

√
n(ϑ̂n − f(ϑ̂n0 ))

D→
[
−J (ϑ∗)−1 + FJ (ϑ0)−1F T

]
N (0N(Θ), I(ϑ∗)) =: NF .

(3.12)
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Since by the chain rule J (ϑ0) = F TJ (ϑ∗)F the random vector NF is distributed

as N (0N(Θ),MF (ϑ∗)I(ϑ∗)MF (ϑ∗)) (note that MF (ϑ∗) is symmetric). Finally,

by (3.11), Proposition 2.25d) and C(n)→∞ as n→∞,

P(ICn(Θ0)− ICn(Θ) < 0)

= P
(

1

2

√
n
(
ϑ̂n − f(ϑ̂n0 )

)T
∇2
ϑL̂
(
ϑ
n
, Y n

)√
n
(
ϑ̂n − f(ϑ̂n0 )

)
< −[N(Θ0)−N(Θ)]C(n)

)
n→∞−→ P

(
NT
FJ (ϑ∗)NF <∞

)
. (3.13)

Using Imhof [1961, Eq. (1.1)] gives

NT
FJ (ϑ∗)NF

D
=

N(Θ)∑
i=1

λiχ
2
i , (3.14)

where (χ2
i ) is a sequence of independent χ2 random variables with one degree of

freedom and the λi are the eigenvalues of J (ϑ∗)
1
2MF (ϑ∗)I(ϑ∗)MF (ϑ∗)J (ϑ∗)

1
2 .

Since rank(MF (ϑ∗)) = N(Θ)−N(Θ0) and J (ϑ∗)
1
2 and I(ϑ∗) have full rank, the

number of strictly positive eigenvalues of J (ϑ∗)
1
2MF (ϑ∗)I(ϑ∗)MF (ϑ∗)J (ϑ∗)

1
2

is N(Θ)−N(Θ0). Hence, the result follows.

c) With the arguments in b) we obtain the statement.

Remark 3.11.

a) A conclusion of Theorem 3.10a) is that strong consistency of the information

criterion always holds, independent of the process Y generating the observed

data and hence ϑE0 , if lim supn→∞C(n)/ log(log(n)) =∞.

b) Let Θ0 be nested in Θ with map F . Then it can be shown as in the proof of

Theorem 3.4 that

lim sup
n→∞

n

log(log(n))
(ICn(Θ0)− ICn(Θ))

= λmax(MF (ϑ∗)
1
2I(ϑ∗)MF (ϑ∗)

1
2 ) + lim sup

n→∞
[N(Θ0)−N(Θ)]

C(n)

log(log(n))
.

This implies that the information criterion ICn is not strongly consistent iff
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lim supn→∞C(n)/ log(log(n)) < C∗, where

C∗ := max
F

λmax(MF (ϑ∗)
1
2I(ϑ∗)MF (ϑ∗)

1
2 )

N(Θ)−N(Θ0)
≤ λmax(J (ϑE0 )−

1
2I(ϑE0 )J (ϑE0 )−

1
2 ).

Since the structure of J (ϑ∗) and I(ϑ∗) is in general not known, it is difficult

to calculate C∗ explicitly. However, in the Gaussian case we will derive that

C∗ = 2 (cf. Corollary 3.12).

c) We would like to note that these results are similar to the statement of Sin and

White [1996, Corollary 5.3] under different model assumptions. However, the

authors present only sufficient conditions for strong consistency, where we also

have a necessary condition (see Remark 3.5 as well).

d) As the proof of Theorem 3.10a), Case 1, shows, for spaces Θ with

MCARMA(Aϑ, Bϑ, Cϑ, Lϑ) 6= Y for every ϑ ∈ Θ a necessary and sufficient

condition for choosing the correct parameter space asymptotically with prob-

ability 1 is limn→∞C(n)/n = 0. Only if we allow nested models as well the

additional condition lim supn→∞C(n)/ log(log(n)) > C∗ becomes necessary.

The probability in Theorem 3.10c) is the overfitting probability.

To wrap up this section, we want to study the special case where the observed

MCARMA process is driven by a Brownian motion. Some of the technical auxiliary

results for the proof are given in the appendix.

Corollary 3.12. Assume that the Lévy process L which drives the observed process

Y is a Brownian motion. Then:

a) ICn is strongly consistent iff lim supn→∞C(n)/ log(log(n)) > 2.

b) If lim supC(n) = C <∞, then the overfitting probability of ICn for a space Θ

in which Θ0 is nested is

P(χ2
N(Θ)−N(Θ0) > [N(Θ)−N(Θ0)]C),

where χ2
N(Θ)−N(Θ0) denotes a χ2-distributed random variable with N(Θ)−N(Θ0)

degrees of freedom.

Proof. a) From Lemma A.2b) we know that there exists a space Θ0 such that

there is a ϑ0 ∈ Θ0 with MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y and Θ0 is nested in

ΘE
0 with map F . Moreover, N(Θ0) = N(ΘE

0 )− 1 and

λmax(MF (ϑE0 )
1
2I(ϑE0 )MF (ϑE0 )

1
2 ) = 2.
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Additionally, a conclusion of Lemma A.2a) is that

λmax(H(ϑE0 )−
1
2I(ϑE0 )H(ϑE0 )−

1
2 ) = 2λmax(IN(ΘE0 )×N(ΘE0 )) = 2.

Therefore the statement follows directly from Theorem 3.10a) and Remark 3.11b).

b) Lemma A.2c) tells us that those eigenvalues of H(ϑ∗)
1
2MF (ϑ∗)I(ϑ∗)MFH(ϑ∗)

1
2

can only be 0 or 2 where 2 appears exactly N(Θ)−N(Θ0) times. Hence,

N(Θ)∑
i=1

λiχ
2
i = 2

N(Θ)−N(Θ0)∑
i=1

χ2
i
D
= 2χ2

N(Θ)−N(Θ0).

The statement now follows from the definition of the overfitting probability in

Theorem 3.10c).

We have now completed the investigation of consistency for our information criteria.

Note that the results of this section are analogous to the ones obtained for ARMAX

processes with i.i.d. noise in Hannan and Deistler [2012, Theorem 5.5.1]. As our next

topics, we will treat some particular information criteria in more detail, namely the

AIC and BIC. Our study will follow the ideas that historically led to their definition.

At the end, however, it will turn out that we precisely arrive at special cases of ICn as

defined in Definition 3.6, enabling us to use the results of this section to immediately

draw conclusions about the consistency of these two prominent criteria.
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3.4. AIC for multivariate CARMA processes

3.4.1. Derivation of the AIC

The underlying idea of the Akaike Information Criterion (AIC) was first introduced

in Akaike [1973] (see also de Leeuw [1992]) and has since been derived and motivated

in a lot of ways, see e. g. Shibata [1976], Bozdogan [1987] or Burnham and Anderson

[2002]. Moreover, it has been used for a wide range of models, including one-

dimensional and multivariate or vector ARMA (VARMA) processes (see [Brockwell

and Davis 1991, §9.3]) and Boubacar Mäınassara [2012], respectively). The extension

of the guiding ideas to the context of MCARMA processes is the purpose of this

subsection.

The fundamental idea behind the AIC is to estimate the so–called Kullback–Leibler

information or Kullback–Leibler discrepancy, which was originally introduced in

Kullback and Leibler [1951] and can be seen as a measure for the difference between

two probability distributions. In order to write it down, suppose that we are given a

random vector X , a set Θ and parametric family of possible probability distributions

of X , represented by the corresponding densities (fϑ)ϑ∈Θ. The Kullback–Leibler

discrepancy between the distributions corresponding to the parameters ϑ and ϑ0 is

then given by

K(fϑ | fϑ0) =

∫
fϑ0(x) log

(
fϑ0(x)

fϑ(x)

)
dx (3.15)

An alternative interpretation of K(fϑ | fϑ0) is that it denotes the amount of informa-

tion lost when fϑ is used to approximate fϑ0 .

Note that in the literature this is sometimes also called the Kullback–Leibler distance,

which is technically not correct since K(fϑ | fϑ0) 6= K(fϑ0 | fϑ) in general. Also note-

worthy is the fact that this is just the negative of Boltzmann’s entropy (Boltzmann

[1877]), such that minimizing the Kullback–Leibler discrepancy (which will be the

guiding principle later) is essentially just maximizing entropy, i. e. applying the

second law of thermodynamics.

For our purposes it will be very helpful to consider a slight variation of this object,

which arises from multiplying this quantity by two, expressing the integral as an

expectation and rearranging some terms with help of the laws of the logarithm. Doing

that we arrive at

d(fϑ | fϑ0) := 2K(fϑ | fϑ0) = ∆(fϑ | fϑ0)−∆(fϑ0 | fϑ0) (3.16)
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where

∆(fϑ | fϑ0) = Eϑ0 [−2 log(fϑ)] . (3.17)

Note that the original definition of the Kullback–Leibler discrepancy does not assume

that there is some sort of “true” model or parameter, it is merely a method to compare

two distributions. However, if we suppose there indeed is a true, unknown model

corresponding to the parameter ϑ0, the motivation for the use of the Kullback–Leibler

discrepancy as a tool in the context of model selection becomes clear: The value of

K(fϑ | fϑ0) (or, equivalently, d(fϑ | fϑ0)) decreases the better the true distribution is

described by the one associated to the parameter ϑ. Hence, the density that comes

closest to fϑ0 in the Kullback–Leibler sense is given by the one associated to

arg min
ϑ∈Θ

2K(fϑ|fϑ0) = arg min
ϑ∈Θ

{∆(fϑ | fϑ0)−∆(fϑ0 | fϑ0)}

= arg min
ϑ∈Θ

{−2Eϑ0 [log (fϑ)]} ,

where we have used that ∆(fϑ0 | fϑ0) in (3.16) cannot be influenced in any way,

which is why minimizing ∆(fϑ | fϑ0) is the relevant notion. In our context X = Y n =

(Y (h), . . . , Y (nh)) is the sample of length n, containing equidistant observations of

realizations of the MCARMA process of which we want to estimate m0, p0 and q0. fϑ

denotes the density of the observations Y n for ϑ ∈ Θ, a parameter space which may

or may not contain a parameter ϑ0 with Y = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0), i. e. it

is explicitly allowed for Θ to be misspecified. Moreover, we assume that Θ is set up

as explained in Section 3.1, i. e. the Echelon form is used for processes in Θ. On top

of that, to make use of the results we obtained in previous chapters we assume that

Θ satisfies Assumption B, which especially implies that Theorem 2.28 is applicable.

As it is not possible to calculate d(fϑ | fϑ0) for every ϑ directly if we only have some

observations of the process and not full information about the parameters, we will

need to approximate it.

The approximation is done by first replacing the unknown parameter ϑ in ∆(fϑ | fϑ0)

by its QMLE, arriving at Eϑ0

[
−2 log(fϑ̂n(Y n)) | Y n

]
as the object of interest. This is

motivated by the consistency of the maximum likelihood estimator, which ideally

converges to ϑ0 if we are in a correctly specified parameter space and the fact that

we regard the sample Y n as given and fixed here, which is why we consider the

conditional expectation.

In the second step of the approximation, we replace the unknown density fϑ by

the Gaussian quasi–likelihood. This explains why we switched from K(ϑ | ϑ0) to
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d(ϑ | ϑ0): −2/n times the logarithm of the Gaussian quasi-likelihood is per definition

equal to L, such that we from now on use its sample–based version L̂.

As a side remark, consider the following: If −2/n log(fϑ) = L(ϑ, Y n), then the

pseudo–true parameter ϑ∗ in a misspecified parameter space Θ as defined in (2.20) is

then also a minimizer of (3.17) and (3.16), respectively. This means that in the case

of a misspecified model the maximum likelihood estimator converges to the parameter

which induces the process that is closest to the true one among all processes in Θ in

the information–theoretic sense provided by the Kullback–Leibler discrepancy.

Returning to the approximation procedure, in a third step we now suppose that Yn

is a second sample of n observations with same spacing as Y n and satisfying the

same MCARMA (or state space) equations, but independent of Y n. Then, we can

also use this sample to calculate the likelihood function. Using that Yn and Y n are

independent, we summarize our approximation steps as follows

min
ϑ∈Θ

∆(fϑ | fϑ0)

n
= min

ϑ∈Θ
Eϑ0

[
− 2

n
log(fϑ)

]
≈ Eϑ0

[
− 2

n
log(fϑ̂n(Y n)) | Y

n

]
≈ E

[
L̂(ϑ̂n(Y n), Y n) | Y n

]
≈ E

[
L̂(ϑ̂n(Y n),Yn) | Y n

]
(3.18)

The right-hand side can again be approximated by the following theorem:

Theorem 3.13. As n→∞ it holds that

n

(
L̂(ϑ̂n(Y n),Yn)−

[
L̂(ϑ̂n(Yn),Yn)− tr (I(ϑ∗)J −1(ϑ∗))

n

])
D→ Zϑ∗ ,

where Zϑ∗ is a random variable with expectation E[Zϑ∗ ] = 0.

Proof. A second-order Taylor expansion of L̂(ϑ̂n(Yn), Y n) around ϑ̂n(Y n) gives

L̂(ϑ̂n(Yn), Y n) = L̂(ϑ̂n(Y n), Y n)

+
1

2

(
ϑ̂n(Yn)− ϑ̂n(Y n)

)T
∇2
ϑL̂(ϑ

n
, Y n)

(
ϑ̂n(Yn)− ϑ̂n(Y n)

)
,

where ‖ϑn − ϑ̂n(Y n)‖ ≤ ‖ϑ̂n(Yn)− ϑ̂n(Y n)‖. Hence,

L̂(ϑ̂n(Yn), Y n)− L̂(ϑ̂n(Y n), Y n)

=
1

2
tr

(
∇2
ϑL̂(ϑ

n
, Y n)

(
ϑ̂n(Yn)− ϑ̂n(Y n)

)(
ϑ̂n(Yn)− ϑ̂n(Y n)

)T)
.

On the one hand, since both ϑ̂n(Y n) and ϑ̂n(Yn) converge P-a.s. to ϑ∗, the vector

ϑ
n → ϑ∗ P-a.s. as well. On the other hand, by the independence of Y n and Yn, the

random vectors ϑ̂n(Yn) and ϑ̂n(Y n) are independent as well. By Theorem 2.28, as
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n→∞,

√
n
(
ϑ̂n(Y n)− ϑ∗, ϑ̂n(Yn)− ϑ∗

)
D−→ (N1,N2),

where N1,N2 are independent, N (0,J −1(ϑ∗)I(ϑ∗)J −1(ϑ∗))-distributed random vec-

tors. A conclusion of Proposition 2.25d) is ∇2
ϑL̂(ϑ

n
, Y n)→J (ϑ∗) P-a.s. Hence, a

continuous mapping theorem gives

n
(
L̂(ϑ̂n(Yn), Y n)− L̂(ϑ̂n(Y n), Y n)

)
D→ 1

2
tr
(
J (ϑ∗)(N1 +N2)(N1 +N2)T

)
,

and by the independence of N1 and N2 we have

E
[
J (ϑ∗)(N1 +N2)(N1 +N2)T

]
= 2J (ϑ∗)E

[
N1N T

1

]
= 2I(ϑ∗)J −1(ϑ∗).

The statement follows then since the expectation of the trace is the trace of the

expectation.

As a consequence of (3.18) and Theorem 3.13 we receive the approximation

min
ϑ∈Θ

[
− 2

n
Eϑ0 [log (fϑ)]

]
≈ L̂(ϑ̂n(Yn),Yn) +

tr (I(ϑ∗)H−1(ϑ∗))

n
,

which becomes our information criterion via the following definition:

AICn(Θ) = L(ϑ̂n, Y n) +
tr (I(ϑ∗)J −1(ϑ∗))

n
(3.19)

Remark 3.14. If the Lévy process L which drives the observed process Y is a

Brownian motion and MCARMA(Aϑ∗ , Bϑ∗ , Cϑ∗ , Lϑ∗) = Y , we have I(ϑ∗) = 2J (ϑ∗)

by Lemma A.2a) and hence, the AIC reduces to AICn(Θ) = L̂(ϑ̂n, Y n) + 2N(Θ)
n

.

The form of the AIC given in this remark coincides with Akaike’s original definition

(cf. Akaike [1973]). This suggests to define an alternative version of the AIC, the

Classical Akaike Information Criterion (CAIC), as follows:

CAICn(Θ) := L̂(ϑ̂n, Y n) +
2N(Θ)

n
. (3.20)

This criterion avoids the additional work of estimating the matrices I(ϑ∗) andH−1(ϑ∗)

appearing in the AIC, which comes at the cost of not being exact when the driving

Lévy process is not a Brownian motion. This is appealing because it can be quite

difficult to evaluate the trace term in practice, depending on the structure of the

models one investigates. Fortunately, for MCARMA processes it turns out that there
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are quite accessible methods of estimating the matrices I(ϑ∗) and J (ϑ∗) from data,

which are discussed in Schlemm and Stelzer [2012], but shall be repeated here briefly:

The matrix J (ϑ∗) can be estimated consistently by Ĵ n = ∇2
ϑL̂(ϑ̂n, Y n), which in

turn can again be calculated by employing the Kalman filter, which is also able to

evaluate the Hessian matrix of the Gaussian log-likelihood ([Schlemm and Stelzer

2012, p. 2197]).

For I(ϑ∗) the idea, which originally goes back to Boubacar Mäınassara and Francq

[2011], is to use the representation I(ϑ∗) =
∑

∆∈Z Cov(γϑ∗,0, γϑ∗,∆) where

γϑ∗,m = ∇ϑ

[
log(det(Vϑ∗)) + εTϑ∗,mV

−1
ϑ∗ εϑ∗,m

]
.

One now assumes that (γϑ∗,m)m∈N admits an infinite-order AR-representation of the

form Φ(B)γϑ∗,m = Um where Φ(z) = Ir +
∑∞

i=1 Φiz
i and (Um)m∈N is a weak white

noise (i. e. uncorrelated, but not necessarily independent) with covariance matrix

ΣU . If this is true, one can interpret I(ϑ∗)
2π

as the value of the spectral density of

(γϑ∗,m)m∈N at frequency 0 and obtain with the help of [Brockwell and Davis 1991, p.

459] that I can be written as I(ϑ∗) = Φ−1(1)ΣUΦ−1(1).

One now replaces the unknown pseudo–true parameter ϑ∗ in γϑ0,m by the QML

estimate ϑ̂n and then fits a long autoregression to the resulting empirical objects, i.

e. one chooses an integer s > 0 and performs a least-squares regression of γϑ̂n,m on

γϑ̂n,m−1, . . . , γϑ̂n,m−s where s+ 1 ≤ m ≤ n. Denoting the corresponding empirical AR

polynomial by Φ̂n
s (z) = Ir +

∑s
i=1 Φ̂L

i,sz
i and the empirical covariance matrix of the

residuals by Ûn
s , it is claimed in [Boubacar Mäınassara and Francq 2011, Theorem 3]

that

Îns =
(

Φ̂n
s (1)

)−1

Ûn
s

((
Φ̂n
s (1)

)T)−1

converges to I(ϑ∗) in probability as n, s→∞ if the conditions E
[
‖εϑ∗,1‖8+δ

]
<∞

for some δ > 0 and s3

n
→ 0 are satisfied.

An alternative method of estimating I(ϑ∗)J (ϑ∗)−1 for simulated data is the following:

first, an estimate Ξ̂n of Ξ(ϑ∗) is calculated as n times the empirical covariance

matrix of a suitably large number of independent realizations of ϑ̂n. Similarly, again

simulating independently a suitably large number of times, one can obtain an estimate

Ĵ n of J (ϑ∗) as the arithmetic mean of the realizations of ∇2
ϑL̂(ϑ̂n, Y n). Because

Ξ(ϑ∗) = J (ϑ∗)−1I(ϑ∗)J (ϑ∗)−1, an estimate of I(ϑ∗)J (ϑ∗)−1 is then Ĵ nΞ̂n. This

estimator avoids the inversion of matrices at the cost of relying on simulations. This

means that if one has only given a data set, it might not be feasible, unless one

carries out the simulations using the maximum likelihood estimate obtained from
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the data as the true parameter.

3.4.2. Properties of the AIC

In this short section, we want to investigate both versions of the AIC defined at the

end of the last section in terms of the results of Chapter 3. In other words, we want

to study the question whether those criteria exhibit strong or weak consistency. The

answer is given in the following proposition:

Theorem 3.15. Both the AIC and the CAIC are neither strongly nor weakly consis-

tent.

Proof. The CAIC is a special case of ICn with C(n) ≡ 2. The assertion immediately

follows from that theorem. The penalty term of the AIC does not exactly fit the

scheme of ICn, but the proof of Theorem 3.10c) can directly be adapted to obtain

the same result.

Remark 3.16. a) By the above Theorem and the explanations in Remark 3.11

we see that the overfitting probability for both versions of the AIC is non-zero

asymptotically. As pointed out in Remark 3.11d), this problem is induced by

taking spaces in which the true space is nested into consideration. If we stick to

strictly disjoint spaces and do not partition them further, then both versions of

the AIC will be strongly consistent, again by Remark 3.11d) (for CAICn this

is obvious, as C(n)
n
→ 0 for n→∞ obviously holds, for the other version the

proof is the same as for Case 1 of Theorem 3.10a)). This comes at the cost of

obtaining fewer information about the number of free parameters.

Remember that this is directly related to information about the MA degree q0

of the data-generating MCARMA process if the partitions are chosen suitably.

As a consequence, if we only want to estimate the AR degree p0 (which is

uniquely defined by the Kronecker indices) then both AIC versions will be

strongly consistent. This could be advantageous if we only want to consider

CAR(p) processes of various orders as possible models, for example.

Another immediate consequence of this is that the underfitting probability of the

AIC goes to 0 as n→∞, since the true parameter space can never be nested

in a space with too few parameters.

b) The inconsistency of the AIC is widely known for other model classes, amongst

others also for ARMA processes, see e. g. Shibata [1976] or [Hannan and

Deistler 2012, Theorem 5.6.1], where the latter also shows that the under-

fitting probability goes to 0 asymptotically for ARMA processes. The results
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of Theorem 3.15 therefore match these and show that these properties are in

general also found for the class of MCARMA processes.
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3.4.3. An alternative approach to the AIC

In this section we will take an alternative route to estimating the Kullback–Leibler

discrepancy defined in Subsection 3.4.1. This will result in a different criterion for

order selection, which is inspired by Boubacar Mäınassara [2012], who adapted the

idea of Hurvich and Tsai [1993] to multivariate ARMA processes driven by weak

white noise.

Fundamentally, we still work within the same framework and want to approximate

and minimize the quantity ∆(fϑ | fϑ0) from (3.17). As before, Y n denotes a sample

of n equidistant observations of the underlying MCARMA(p0, q0) process. Also as

before, the parameter space Θ in which we operate has been fixed for the moment,

however it is still of the form of Section 3.1 and assumed to fulfill Assumption B. In

a first step we now argue as before to approximate

min
ϑ∈Θ

∆(fϑ | fϑ0)

n
= min

ϑ∈Θ
Eϑ0

[
− 2

n
log(fϑ)

]
≈ Eϑ0

[
− 2

n
log(fϑ̂n(Y n)) | Y

n

]
≈ Eϑ0

[
L̂(ϑ̂n(Y n), Y n) | Y n

]
For our new approach, we now write down the expectation on the right–hand side

explicitly. For the sake of readability, we hereby write ϑ̂n for ϑ̂n(Y n):

Eϑ0

[
L̂(ϑ̂n(Y n), Y n)

]
= d log(2π) + Eϑ0

[
log(det(Vϑ̂n))

]
+

1

n

n∑
k=1

Eϑ0

[
εT
ϑ̂n,k

V −1
ϑ εϑ̂n,k

]
= nd log(2π) + nEϑ0

[
log(det(Vϑ̂n))

]
+ tr

(
V −1

ϑ̂n
Eϑ0

[
εϑ̂n,1ε

T
ϑ̂n,1

])
(3.21)

We now approximate the right–hand side. To this end, we first drop the constant

nd log(2π) from Eq. (3.21), as it is the same across all models and therefore negligible.

In the wake of this we arrive at the expression

Eϑ0

[
L̂(ϑ̂n(Y n), Y n)

]
≈ Eϑ0

[
log(det(Vϑ̂n))

]
+ tr

(
V −1

ϑ̂n
Eϑ0

[
εϑ̂n,1ε

T
ϑ̂n,1

])
(3.22)

In a first step of further approximation, we will now do a Taylor expansion of the

pseudo–innovations εϑ,n around the pseudo–true parameter ϑ∗. From this we obtain

εϑ,n = εϑ∗,n +∇ϑεϑ∗,n(ϑ− ϑ∗) +Rn(ϑ) (3.23)

where ϑ is between ϑ∗ and ϑ (in the sense of the Euclidean norm on the parameter

space). The last summand in the expansion is the rest term of second order, which
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is Op(‖ϑ− ϑ∗‖2). With this expansion we deduce:

Eϑ0

[
εϑ,1ε

T
ϑ,1

]
= Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1 + εϑ∗,1(ϑ− ϑ∗)T∇ϑε

T
ϑ∗,1 + εϑ∗,1R

T
1

+∇ϑεϑ∗,1(ϑ− ϑ∗)εTϑ∗,1 +∇ϑεϑ∗,1(ϑ− ϑ∗)(ϑ− ϑ∗)T∇ϑε
T
ϑ∗,1

+∇ϑεϑ∗,1(ϑ− ϑ∗)RT
1 +R1ε

T
ϑ∗,1 +R1(ϑ− ϑ∗)T∇ϑε

T
ϑ∗,1 +R1R

T
1

]
.

(3.24)

Now we observe that the sequence (εϑ∗,n)n∈N is orthogonal by construction, which

implies εϑ0,1 is independent of any linear combination of its past values εϑ0,m, m < 1.

By Lemma 2.22 we know that both the innovations and their partial derivatives can

be expressed as moving averages of the observations and can conclude that εϑ∗,1 is

also independent of its derivatives, i. e. every summand in (3.24) that contains two

out of three of the objects εϑ∗,1, ∇ϑεϑ∗,1 and R1 disappears because the expectation

of the innovations is 0. Furthermore, we employ that R1 is Op(‖ϑ− ϑ∗‖2) to simplify

(3.24), giving

Eϑ0

[
εϑ,1ε

T
ϑ,1

]
= Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

]
+ Eϑ0

[
∇ϑεϑ∗,1(ϑ− ϑ∗)(ϑ− ϑ∗)T∇ϑε

T
ϑ∗,1

]︸ ︷︷ ︸
=:D(ϑ)

+Op(‖ϑ− ϑ∗‖4)

We plug this into (3.22) and obtain

Eϑ0

[
L(ϑ̂n(Y n), Y n)

]
≈ Eϑ0

[
log
(
det
(
Vϑ̂n
))]

+ Eϑ0

[
tr
(
V −1

ϑ̂n
Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

]
+V −1

ϑ̂n
D(ϑ̂n) + V −1

ϑ̂n
Op(‖ϑ̂n − ϑ∗‖4)

)]
≈ Eϑ0

[
log
(
det
(
Vϑ̂n
))]

+ Eϑ0

[
tr
(
V −1

ϑ̂n
Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

])]
+ Eϑ0

[
tr
(
V −1

ϑ̂n
D(ϑ̂n)

)]
(3.25)

by using the linearity of the expectation and the trace. Note that the Op term is

negligible for our purposes and thus has been dropped.

Next, we turn our attention to V −1

ϑ̂n
which appears in both the second and the third

term. From (3.23) we obtain the following equation when disregarding the rest term,

which is asymptotically negligible:

εϑ,n −∇ϑεϑ∗,nϑ = εϑ∗,n −∇ϑεϑ∗,nϑ
∗
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Defining M := −∇ϑεϑ∗,n and Rϑ,n := εϑ,n +Mϑ, we can write this equivalently as

Rϑ,n = Mϑ∗ + εϑ∗,n.

This is a classical, multivariate linear regression model. If we now assume that the in-

novations are normally distributed with mean 0 and covariance matrix Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

]
,

we can use [Anderson 2003, Theorem 8.2.2] to obtain that n times the maximum likeli-

hood estimator of that covariance matrix, which is given by Vϑ̂n = 1
n

∑n
k=1 εϑ̂n,kε

T
ϑ̂n,k

, is

distributed according to aW
(
Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

]
, n−N(Θ)

)
distribution, whereW(A, c)

denotes the (d-dimensional) Wishart distribution with mean A and c degrees of

freedom. A similar result is also found in Hurvich and Tsai [1993] in a purely

autoregressive context. Note also that even if the normality of the innovations may

not be true, we still assume it here in order to make progress with our derivation,

acknowledging that this may entail an approximation error, which we find acceptable

since the AIC is an approximative result by itself.

Having this it then holds by the general theory on the Wishart distribution (see

e. g. [Muirhead 1982, p. 97]) that 1
n
V −1

ϑ̂n
has a W−1

(
Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

]−1
, n−N(Θ)

)
distribution, where W−1 signifies the inverse Wishart distribution. This is useful

because we can then deduce that

1

n
Eϑ0

[
V −1

ϑ̂n

]
=

Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

]−1

n−N(Θ)− d− 1

⇒Eϑ0

[
V −1

ϑ̂n

]
=

n

n−N(Θ)− d− 1
Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

]−1
. (3.26)

This will be employed multiple times in the following. For now, we turn our attention

to the third term in (3.25). We have

tr(V −1
ϑ D(ϑ)) = tr

(
V −1
ϑ Eϑ0

[
∇ϑεϑ∗,1(ϑ− ϑ∗)(ϑ− ϑ∗)T∇ϑε

T
ϑ∗,1

])
= Eϑ0

[
tr
(
∇ϑε

T
ϑ∗,1V

−1
ϑ ∇ϑεϑ∗,1(ϑ− ϑ∗)(ϑ− ϑ∗)T

)]
=

1

n
tr
(
Eϑ0

[
∇ϑε

T
ϑ∗,1V

−1
ϑ ∇ϑεϑ∗,1

]
n(ϑ− ϑ∗)(ϑ− ϑ∗)T

)
. (3.27)

Note that there are three separate steps involved in getting from the first to the

second line: First we employed the fact that V −1
ϑ is not random to put it inside the

expectation, then we interchanged the trace and the expectation and finally we applied

the relation tr(AB) = tr(BA) with B = ∇ϑεTϑ∗,1 and A = V −1
ϑ ∇ϑεϑ∗,1(ϑ−ϑ∗)(ϑ−ϑ∗)T .

Likewise, we interchanged expectation and trace again from the second to third line

and pulled the non-random object L(ϑ− ϑ∗)(ϑ− ϑ∗)T out of the expectation.

Having this, we can now plug in the quasi maximum likelihood estimator of ϑ and
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the covariance matrix of the innovations and take the expectation again. This leads

us to the thing we are interested in, the third term in (3.25):

Eϑ0

[
tr
(
V −1

ϑ̂n
D(ϑ̂n)

)]
=

1

n
Eϑ0

[
tr
(
Eϑ0

[
∇ϑε

T
ϑ∗,1V

−1

ϑ̂n
∇ϑεϑ∗,1

]
n(ϑ̂n − ϑ∗)(ϑ̂n − ϑ∗)T

)]
=

1

n
tr
(
Eϑ0

[
∇ϑε

T
ϑ∗,1V

−1

ϑ̂n
∇ϑεϑ∗,1

]
Eϑ0

[
n(ϑ̂n − ϑ∗)(ϑ̂n − ϑ∗)T

])
.

Theorem 2.28 gives that ϑ̂n is asymptotically normally distributed. Thanks to this,

the second factor in the above expression converges to the asymptotic covariance

matrix Ξ(ϑ∗). Therefore we are able to do the following approximation, also taking

into account (3.26):

Eϑ0

[
tr
(
V −1

ϑ̂n
D(ϑ̂n)

)]
≈ 1

n
tr

(
Eϑ0

[
∇ϑε

T
ϑ∗,1

n

n−N(Θ)− d− 1
V −1
ϑ∗ ∇ϑεϑ∗,1

]
Ξ(ϑ∗)

)
.

Moreover, the proof of [Schlemm and Stelzer 2012, Lemma 2.17] shows that

∇2
ϑL(ϑ∗, Y n)

n→∞→ J1(ϑ∗) + J2(ϑ∗) P-a.s.,

where

J1(ϑ∗) = 2Eϑ0

[
∇ϑε

T
ϑ∗,1V

−1
ϑ∗ ∇ϑεϑ∗,1

]
, J2 =

(
tr
[
V
− 1

2
ϑ∗ (∂iVϑ∗)V

−1
ϑ∗ (∂jVϑ∗)V

− 1
2

ϑ∗

])
ij
.

Consequently, we can write

Eϑ0

[
tr
(
V −1

ϑ̂n
D(ϑ̂n)

)]
≈ 1

2(n−N(Θ)− d− 1)
tr (J1(ϑ∗)Ξ(ϑ∗)) (3.28)

Now we can combine all these considerations and plug them into (3.25), starting

with (3.28):

Eϑ0

[
L(ϑ̂n(Y n), Y n)

]
≈ Eϑ0

[
log(det(Vϑ̂n))

]
+ E tr(V −1

ϑ̂n
Eϑ0

[
εϑ∗,1ε

T
ϑ∗,1

]
)

+
1

2(n−N(Θ)− d− 1)
tr
(
J1(ϑ0)Ξ(ϑ∗)

)
(3.26)
≈ Eϑ0

[
log(det(Vϑ̂n))

]
+

n

n−N(Θ)− d− 1
tr(Id)

+
1

2(n−N(Θ)− d− 1)
tr (J1(ϑ∗)Ξ(ϑ∗))

= Eϑ0

[
log(det(Vϑ̂n))

]
+

dn

n−N(Θ)− d− 1

+
1

2(n−N(Θ)− d− 1)
tr (J1(ϑ∗)Ξ(ϑ∗))
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The first term can be approximated by dropping the expectation, so that we arrive

at the following, modified (hence the M) version of the AIC:

AICMn(Θ) = log(det(Vϑ̂n))

+
n

n−N(Θ)− d− 1

(
d+

1

2
tr (J1(ϑ∗)Ξ(ϑ∗))

)
. (3.29)

Looking at this result it remains to answer the question how one can obtain estimators

for Vϑ̂n , J1(ϑ∗) and Ξ(ϑ∗). Since Ξ(ϑ∗) = J −1(ϑ∗)I(ϑ∗)J −1(ϑ∗), seeking an estimator

for it really comes down to estimating I(ϑ∗) and J (ϑ∗). This can be done by the

methods explained at the end of Subsection 3.4.1. Vϑ̂n can be estimated by

E
[
εϑ̂nε

T
ϑ̂n

]
≈ 1

n

n∑
k=1

εϑ̂n,kε
T
ϑ̂n,k

,

from which we can deduce that an estimate of log(det(Vϑ̂n)) is given by

log

(
det

(
1

n

n∑
k=1

εϑ̂n,kε
T
ϑ̂n,k

))
.

For J1(ϑ∗), recall its definition

J1(ϑ∗) = 2Eϑ0

[
∇ϑε

T
ϑ∗,1V

−1
ϑ∗ ∇ϑεϑ∗,1

]
Replacing the expectation by the arithmetic mean, the pseudo-true parameter by

the maximum likelihood estimator and the pseudo-innovations by their empirical

counterpart, we have an estimator

Ĵn1 = 2
1

n

n∑
k=1

(
∇ϑε̂

T
ϑ̂n,k

V −1

ϑ̂n
∇ϑε̂ϑ̂n,k

)
.

For the calculation of the gradient of the empirical pseudo-innovations we can rely

on the fact that Kalman filter can not only be used to evaluate the innovations

themselves, but also their derivatives.

3.4.4. Properties of the modified AIC

As we have seen in Theorem 3.15, both the CAIC and AIC derived in Subsection 3.4.1

suffer from the problem of overfitting if our candidate spaces include spaces in which

the true one is nested: Even if the amount of observations becomes very large (i. e.
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for n→∞), the probability of choosing a model with too many parameters is strictly

positive. In this section, we want to investigate whether this effect is alleviated when

using the criterion AICM or if it is still present. The answer is given in the next

proposition:

Proposition 3.17. Let Θ and Θ0 be parameter spaces with associated families of

continuous-time state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ0 and (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ, re-

spectively, satisfying Assumption B. Assume that there is a ϑ0 ∈ Θ0 with

MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y and Θ0 is nested in Θ with map F and ϑ∗

is the pseudo–true parameter in Θ.

Assume that the driving Lévy process of Y is a Brownian motion. Then it holds:

lim
n→∞

P (AICMn(Θ) < AICMn(Θ0)) = P
(
χ2
d(N(Θ)−N(Θ0)) > d(N(Θ)−N(Θ0)

)
,

where χ2
d(N(Θ)−N(Θ0)) denotes a chi-squared random variable with d(N(Θ)−N(Θ0))

degrees of freedom.

This especially implies that AICMn is neither strongly nor weakly consistent.

Proof. Denote the maximum likelihood estimator in Θ by ϑ̂n and the maximum

likelihood estimator in Θ0 by ϑ̂n0 , respectively. The probability we are interested in

can then be rewritten as

P

(
log

(
nVϑ̂n

nVϑ̂n0

)
<

dn

n−N(Θ0)
− dn

n− (N(Θ0) +N(Θ)−N(Θ0))

+
d1

2 (n−N(Θ0))
− d2

2 (n− (N(Θ0) +N(Θ)−N(Θ0)))

)
. (3.30)

Here we have defined implicitly the constants d1 = tr (J1(ϑ∗)Ξ(ϑ∗)) and d2 =

tr (J1(ϑ0)Ξ(ϑ0)). To make notation a bit more convenient in the future, we introduce

the abbreviations c1 := N(Θ) and c2 := N(Θ0) +N(Θ)−N(Θ0).

By the assumption on the driving Lévy process, it holds that εϑ,n ∼ N (0, Vϑ) for

every n ∈ Z, i. e. the innovations are now normally distributed. Hence, as in the

derivation of the AIC, we notice that nVϑ̂n0
has a W(Vϑ0 , n−N(Θ0)) distribution.

Likewise, nVϑ̂n is W(Vϑ0 , n−N(Θ))-distributed. Note that the two mean matrices

are the same, since the innovations of the process associated to ϑ∗ and ϑ0, which are

the parameters the maximum likelihood estimators converge to, are the same, hence

their covariance matrix (which is just the mean matrix) is the same as well. By this
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we obtain

det
(
nVϑ̂n

)
det
(
nVϑ̂n0

) D= det(W(Vϑ0 , n− c2))

det(W(Vϑ0 , n− c2) +W(Vϑ0 , N(Θ)−N(Θ0)))
, (3.31)

where the Wishart variables on the right-hand side are independent.

By [Anderson 2003, Theorem 8.4.1] it then holds

det(W(Vϑ0 , n− c2))

det(W(Vϑ0 , n− c2) +W(Vϑ0 , N(Θ)−N(Θ0)))

D
=

d∏
i=1

β

(
n− c2 − i+ 1

2
,
N(Θ)−N(Θ0)

2

)
D
=

d∏
i=1

χ2
n−c2−i+1

χ2
n−c2−i+1 + χ2

N(Θ)−N(Θ0)

,

where β(a, b) is the beta distribution with parameters a and b and the β variables are

independent. The second equality holds because for independent random variables

X ∼ χ2
θ1

and Y ∼ χ2
θ2

the ratio X
X+Y

has a beta distribution with parameters θ1
2

and
θ2
2

, i. e. the χ2 variables can also be taken as independent.

As a consequence of this, it holds for the inverse quotient that

LVϑ̂n0
LVϑ̂n

D
=

d∏
i=1

(
1 +

χ2
q

χ2
n−c2−i+1

)
. (3.32)

Because log

(
nV

ϑ̂n

nV
ϑ̂n0

)
= − log

(
nV

ϑ̂n0

nV
ϑ̂n

)
we can write (3.30) as follows:

(3.30) = P

(
− log

(
nVϑ̂n0
nVϑ̂n

)
<
−dn(N(Θ)−N(Θ0))

(n− c1)(n− c2)
− d1(N(Θ)−N(Θ0))

2(n− c1)(n− c2)

+
d2(N(Θ)−N(Θ0))

2(n− c1)(n− c2)

)
(3.32)
= P

(
− log

(
d∏
i=1

(
1 +

χ2
N(Θ)−N(Θ0)

χ2
n−c2−i+1

))
<
−dn(N(Θ)−N(Θ0))

(n− c1)(n− c2)

− d1n(N(Θ)−N(Θ0))

2(n− c1)(n− c2)
+
d2(N(Θ)−N(Θ0))

2(n− c1)(n− c2)

)
= P

(
−

d∑
i=1

log

(
1 +

χ2
N(Θ)−N(Θ0)

χ2
n−c2−i+1

)
<
−dn(N(Θ)−N(Θ0))

(n− c1)(n− c2)

− d1(N(Θ)−N(Θ0))

2(n− c1)(n− c2)
+
d2(N(Θ)−N(Θ0))

2(n− c1)(n− c2)

)
(3.33)
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Before we let n→∞ we need three more facts: First off, we do a Taylor expansion

of log(1 + x) around 0, obtaining

log(1 + x) = log(1) +
1

1 + x

∣∣∣∣
x=0

(x− 0) + o(|x|) = x+ o(|x|).

Secondly, for every i ∈ {1, . . . , d} the quotient
χ2
n−c2−i+1

L
converges to 1 almost surely

for n→∞. This follows from the fact that a χ2
n−c2−i+1-distributed random variable

can be written as
∑n−c2−i+1

j=1 Z2
j , where the Zj are i.i.d. N (0, 1)-distributed. The

quotient
χ2
n−c2−i+1

n
then obeys the law of large numbers and converges to EZ2

j = 1.

Hence

−n
d∑
i=1

log

(
1 +

χ2
N(Θ)−N(Θ0)

χ2
n−c2−i+1

)
= −n

d∑
i=1

(
χ2
j

χ2
L−c2−i+1

)
+ op(1)

n→∞→ −
d∑
i=1

χ2
N(Θ)−N(Θ0)

D
= χ2

d·(N(Θ)−N(Θ0)),

since the d χ2-variables in the sum are independent.

Lastly note that after multiplying both sides of the inequality by n, the first summand

on the right-hand side of the inequality in (3.33) converges to −d(N(Θ)−N(Θ0))

as n → ∞ while the second and third summand tend to 0, which can be seen by

regarding the numerator and denominator of these two fractions as polynomials in

the variable n.

Eventually we are now able to combine these considerations and obtain

(3.33)
n→∞→ P

(
−χ2

N(Θ)−N(Θ0) < −d(N(Θ)−N(Θ0))
)

= P
(
χ2
d(N(Θ)−N(Θ0)) > d(N(Θ)−N(Θ0))

)
and the proof is complete.

The fact that AICMn is not consistent immediately follows from the fact that the

overfitting probability asymptotically is non–zero, which we have just shown (cp.

Remark 3.11d)).
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3.4.5. A bootstrap variant of AIC

In this section, we will explore another method of approximating the Kullback–

Leibler discrepancy based on bootstrap methods. Remember that throughout

Subsection 3.4.1, the motivation was to estimate minϑ∈ΘK(fϑ | fϑ0) as defined

in (3.15) or, equivalently, minϑ∈Θ ∆(fϑ | fϑ0) as defined in (3.17). We then approxi-

mated 1/n times this quantity by Eϑ0

[
L̂(ϑ̂n(Y n), Y n) | Y n

]
in (3.18). However, it

then turned out that L̂(ϑ̂n(Y n), Y n) was a biased estimator of this expectation in

Theorem 3.13, since we had to subtract a penalty term to obtain an asymptotically

unbiased estimator. In defining the CAIC, we then replaced this penalty term by
2N(Θ)
n

, motivated by the fact that the penalty term is equal to this in the case that

the driving Lévy process is a Brownian motion.

The deciding observation is that we obtained an asymptotic result, i.e. if n is large

in comparison to N(Θ), the approach of Subsection 3.4.1 is justified. However, in

small samples, this is not necessarily the case as observed by Hurvich and Tsai [1989].

The authors point out that the CAIC is substantially negatively biased in those

cases, where small samples are characterized by N(Θ) ≈ 2n for the largest space

under consideration. To remedy this, Cavanaugh and Shumway [1997] propose a

bootstrap–based variant of CAIC. The authors then show that their criterion, which

they call AICb, is asymptotically equivalent to the CAIC and illustrate via simulation

studies the better performance in small samples. We follow the ideas of Cavanaugh

and Shumway [1997], taking advantage of the fact that they develop their theory in

the framework of discrete–time state space models with not necessarily Gaussian

noise and use the Gaussian QMLE. This will imply that their theoretical results

essentially immediately carry over to our framework of MCARMA processes as we

will see in the following.

We operate in the usual framework of this chapter, i.e. Y n = (Y (h), . . . , Y (nh))

is a sample of length n, containing equidistant observations of realizations of the

data–generating MCARMA process (Y (t))t∈R. We also consider a parameter space

Θ containing models in Echelon form that fulfills Assumption B and may or may

not contain a ϑ0 with Y = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0). To define AICb, we now

need bootstrap replicates of ϑ̂n, the QMLE based on Y n. To achieve this, just

as Cavanaugh and Shumway [1997], we use the bootstrap algorithm proposed by

Stoffer and Wall [1991], which is specifically tailored to the discrete–time state space

framework. It proceeds in the following steps ([Stoffer and Wall 1991, p. 1025]):

Step 1: Using Y n, calculate the Gaussian QMLE as in (2.19) and the set of standardized

approximate pseudo–innovations {V −
1
2

ϑ̂n
ε̂ϑ̂n,1, . . . , V

− 1
2

ϑ̂n
ε̂ϑ̂n,n}, using the Kalman



3.4. AIC for multivariate CARMA processes 75

filter from Subsection 2.2.3.

Step 2: Draw a sample of size n with replacement from the set of standardized

innovations calculated in step 1 to obtain a set of resampled innovations

{ε̂∗
ϑ̂n,1

, . . . , ε̂∗
ϑ̂n,n
}.

Step 3: Using (2.11), (2.12) and (2.17) with ϑ = ϑ̂n and V
1
2

ϑ̂n
ε̂∗
ϑ̂n,k

in place of ε̂ϑ,k,

calculate resampled observations Y n
∗ = (Y∗(h), . . . , Y∗(nh)). The initial value

used in the initialization of the Kalman filter stays fixed.

Step 4: Using the observations Y n
∗ , calculate the Gaussian QMLE ϑ̂n∗ .

Step 5: For a number b ∈ N of bootstrap replications, repeat steps 2 to 4 to obtain a

set of bootstrap replicates {ϑ̂n∗ (i), 1 ≤ i ≤ b}.

In the appendix of Stoffer and Wall [1991], it is shown that the relative frequency

distribution of the ϑ̂n∗ (i) behaves for n, b → ∞ the same as the distribution of ϑ̂n

for n → ∞, i.e. the two estimators are asymptotically equivalent. To show this,

results of Lennart and Caines [1980] are used, which hold in our context as well

as a consequence of Assumption B (cf. Proposition 2.25). We explicitly remark

that neither Gaussianity nor independence of the true innovations are required. An

immediate consequence is that the results on the bootstrap estimator also hold for

our situation.

We can now define the criterion AICb analogous to Cavanaugh and Shumway [1997]

by

AICbn(Θ) = L̂(ϑ̂n, Y n) +
2
(

1
b

∑b
i=1 L̂(ϑ̂n∗ (i), Y

n)− L̂(ϑ̂n, Y n)
)

n

= −L̂(ϑ̂n, Y n) +
2

nb

b∑
i=1

L̂(ϑ̂n∗ (i), Y
n).

(3.34)

From the first line, we can see that AICb is built in the same way as other information

criteria we studied before: the pseudo Gaussian log–likelihood function, evaluated at

the QMLE, is penalized by an additional term. Note that, in contrast to Cavanaugh

and Shumway [1997], we divide the term 2
b

∑b
i=1 L̂(ϑ̂n∗ (i), Y

n) by the sample size n.

The reason is that our definition of L̂ already incorporates a factor 1
n
, which is not

the case in Cavanaugh and Shumway [1997]. Model selection is then again done by

comparing the values of AICbn for different spaces Θ and choosing the one which

attains the lowest value. With the terminology of Subsection 3.4.1, specifically (3.18),

we have the following property of the AICb:
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Proposition 3.18. For a parameter space Θ that satisfies Assumption B, AICbn(Θ)

is an asymptotically almost surely unbiased estimator of Eϑ0

[
Eϑ0

[
L̂(ϑ̂n(Y n),Yn) | Y n

]]
,

i.e. as first b→∞ and then n→∞ it holds that

|AICbn(Θ)− Eϑ0

[
Eϑ0

[
L̂(ϑ̂n(Y n),Yn) | Y n

]]
| −→ 0.

Proof. The results of [Cavanaugh and Shumway 1997, Section 2], using [Cavanaugh

and Shumway 1997, Lemma 1-3], are directly applicable (keeping the difference in

normalization of L̂ in mind). To prove their lemmas, they need regularity assumptions

on the parametrization ([Cavanaugh and Shumway 1997, p. 489]). These assumptions

are satisfied in our case, since we assume that the parameter space Θ satisfies

Assumption B. Moreover, Cavanaugh and Shumway [1997] use the asymptotic results

of Lennart and Caines [1980]. Namely, results on strong consistency and asymptotic

normality of the QMLE in discrete–time state space models are needed. These are

true in our context as well (cf. Proposition 2.25 and Theorem 2.28). These results

are also the results that are used by Stoffer and Wall [1991] in their asymptotic

justification of the bootstrap procedure (cf. [Stoffer and Wall 1991, Appendix]), upon

which the AICb is fundamentally built.

From the results on [Cavanaugh and Shumway 1997, pp. 475-476] we receive that∣∣∣∣∣2
(

1

bn

b∑
i=1

L̂(ϑ̂n∗ (i), Y
n)− L̂(ϑ̂n(Y n), Y n)

)
−Eϑ0

[
Eϑ0

[
L̂(ϑ̂n(Y n),Yn) | Y n

]]
+ Eϑ0

[
L̂(ϑ̂n(Y n),Yn)

]∣∣∣→ 0 P-a.s.

as b→∞ and then n→∞. We can also write

|AICbn(Θ)− Eϑ0

[
Eϑ0

[
L̂(ϑ̂n(Y n),Yn) | Y n

]]
|

=

∣∣∣∣∣L̂(ϑ̂n(Y n), Y n) + 2

(
1

bn

b∑
i=1

L̂(ϑ̂n∗ (i), Y
n)− L̂(ϑ̂n(Y n), Y n)

)
−Eϑ0

[
Eϑ0

[
L̂(ϑ̂n(Y n),Yn) | Y n

]]∣∣∣
≤

∣∣∣∣∣2
(

1

bn

b∑
i=1

L̂(ϑ̂n∗ (i), Y
n)− L̂(ϑ̂n(Y n), Y n)

)
−Eϑ0

[
Eϑ0

[
L̂(ϑ̂n(Y n),Yn) | Y n

]]
+ Eϑ0

[
L̂(ϑ̂n(Y n),Yn)

]∣∣∣
+
∣∣∣L̂(ϑ̂n(Y n), Y n)− Eϑ0

[
L̂(ϑ̂n(Y n),Yn)

]∣∣∣
Moreover, as n→∞, we have that ϑ̂n(Y n)→ ϑ∗ P-a.s. and also L(ϑ̂n(Y n), Y n)→
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Q(ϑ∗) P-a.s. (cp. [Schlemm and Stelzer 2012, p. 2201]). Using this as well as

Lemma 2.23a) and the continuity of the function Q, we obtain

lim
n→∞

∣∣∣L̂(ϑ̂n(Y n), Y n)− Eϑ0

[
L̂(ϑ̂n(Y n),Yn)

]∣∣∣
≤ lim

n→∞

∣∣∣L̂(ϑ̂n(Y n), Y n)−Q(ϑ∗)
∣∣∣+ lim

n→∞

∣∣∣Q(ϑ∗)− Eϑ0

[
L̂(ϑ̂n(Y n),Yn)

]∣∣∣
= lim

n→∞

∣∣∣L̂(ϑ̂n(Y n), Y n)−Q(ϑ∗)
∣∣∣+ lim

n→∞

∣∣∣Q(ϑ∗)−Q(ϑ̂n(Y n))
∣∣∣ = 0 P-a.s.

Therefore, the assertion of the proposition follows.

A consequence of this, as pointed out on [Cavanaugh and Shumway 1997, p. 477], is

that asymptotically, AICbn performs the same as AICn and CAICn, i.e. for very large

n it does not matter which of these criteria is used, because the results will then be the

same. It should be noted that AICbn is computationally much more expensive than

the other two criteria, because for each bootstrap replication a nonlinear optimization

problem has to be solved numerically to obtain ϑ̂n∗ . Therefore, if n is large, usage of

AICbn is probably not recommendable. However, it is a criterion specifically designed

for small–sample situations. Cavanaugh and Shumway [1997] present convincing

results of simulation studies which confirm that AICbn is indeed superior to the

other AIC–type criteria in small samples. We will do the same in Section 3.6 and

perform a simulation study which shows that this also holds true in our context,

which justifies AICbn also from a practical point of view.

Another bootstrap–based information criterion called WIC is introduced in the

unpublished research memorandum Ishiguro and Sakamoto [1991] and applied in

Ishiguro et al. [1991] to an aperture imaging synthesis problem. It is defined similarly

to AICbn via

WICn(Θ) = L̂(ϑ̂n, Y n) +
2
(

1
b

∑b
i=1 L̂(ϑ̂n∗ (i), Y

n)− L̂(ϑ̂n∗ (i), Y
n
∗ )
)

n

However, the authors give no explanation why they define their criterion in this

particular way. This is in contrast to the AICb, for which it is shown in Cavanaugh

and Shumway [1997] that its penalty term serves as an estimator of a bias correction

term and the underlying idea is to approximate the Kullback–Leibler discrepancy.

Moreover, in our simulation experiment with small sample size we observed no

satisfying performance of WICn, i.e. the overfitting rate was very high compared

to the other criteria and especially AICbn. Hence, since it is both better founded

theoretically and performed better in the simulation study, we recommend the use of

AICbn and only mention WICn here briefly for sake of completeness.
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3.5. BIC for multivariate CARMA processes

3.5.1. Derivation of the BIC

Besides the AIC, the Bayesian Information Criterion (BIC) is probably the second

most well–known and applied “information criterion” in the literature. Note that

we have put the term “information criterion” in quotation marks, because, strictly

speaking, it is not based on an information theoretic approach and therefore not

truly an information criterion as the AIC is. Instead, as the name already suggests,

it is based on an approach via Bayesian statistics. It is sometimes also called SIC,

an abbreviation for Schwarz Information Criterion, named after the author who

originally introduced it in Schwarz [1978]. Another often-cited article in this context

is Rissanen [1978], which introduces an equivalent criterion in a slightly different

context based on coding theory.

In this section, we shall largely take the same approach as in Cavanaugh and Neath

[1999] to apply the ideas from the context of Bayesian statistics to develop the BIC.

Ultimately, this will then again lead to a criterion that fits into the framework of

our likelihood–based information criteria. As before, we assume that we have n

equidistant, discrete–time observations of an MCARMA process Y , contained in the

sample Y n. We operate with parameter spaces Θ which contain continuous-time

state space model in the Echelon form and satisfy Assumption B. Each parameter

space is again characterized by its unique vector of Kronecker indices and its numbers

of free parameters as illustrated in Section 3.1. We allow the spaces to be nested in

the sense of Definition 3.8, but do not necessarily require this.

The core idea behind the BIC is that we want to choose the parameter space that

is the most probable one given the data at hand. To make this explicit, suppose

that π is a discrete prior probability distribution over the set of candidate spaces.

The only assumption about π is that it assigns a positive probability to each of the

spaces, which is standard in Bayesian theory. Moreover, suppose that g(· | Θ) is a

prior probability distribution over the parameter space Θ. For g we assume that

it is bounded and bounded away from zero in a neighborhood of the pseudo–true

parameter:

Assumption C. For every space Θ there exist two constants b and B with 0 < b ≤
B <∞ such that 0 ≤ g(ϑ | Θ) ≤ B for all ϑ ∈ Θ and b ≤ g(ϑ | Θ) for all ϑ ∈ N0(ϑ∗),

where N0(ϑ∗) denotes a neighborhood of the pseudo–true parameter ϑ∗ contained in

Θ.

Now we can apply Bayes’ theorem to obtain the joint posterior probability distri-
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bution f of Θ and ϑ:

f(Θ, ϑ | Y n) =
π(Θ)g(ϑ | Θ)f(Y n | Θ, ϑ)

h(Y n)
, (3.35)

where h(·) denotes the (unknown) marginal density of Y n. With this, we can calculate

the a posteriori probability of the space Θ as

P(Θ | Y n) =

∫
Θ

f(Θ, ϑ | Y n)dϑ. (3.36)

We can now make the notion of ”choosing the most probable model for the data at

hand” precise: Choose the space Θ which maximizes (3.36). Similar to the derivation

of the AIC, the task is now to find a good approximation of (3.36) which is directly

calculable from the data.

For this note first that maximization of (3.36) is equivalent to minimizing −2/n

times the logarithm of P(Θ | Y n). Applying this transformation and plugging in

(3.35) gives

− 2

n
log (P(Θ | Y n)) =

2

n
log(h(Y n))− 2

n
log(π(Θ))

− 2

n
log

(∫
Θ

f(Y n | Θ, ϑ)g(ϑ | Θ)dϑ

)
. (3.37)

We choose the parameter space Θ with the lowest value of − 2
n

log (P(Θ | Y n)). Hence,

we have to approximate this expression. For this, we approximate the unknown

density f(Y n | Θ, ϑ) by the pseudo-Gaussian likelihood function, which we denote by

��L, and establish an upper and a lower bound for the logarithm of the integral on the

right-hand side of (3.37). It will turn out that we have, under the condition that Y n

is known,

L(ϑ̂n, Y n) +N(Θ)
log(n)

n
+
R1(Θ)

n
≤ − 2

n
log

(∫
��L(ϑ | Y n)g(ϑ | Θ)dϑ

)
≤ L(ϑ̂n, Y n) +N(Θ)

log(n)

n
+
R2(Θ)

n
(3.38)

where N(Θ) is, as before, the number of free parameters in Θ and R1(Θ) and R2(Θ)

are rest terms which do not depend on n. Since 2 log(π(Θ)) does not depend on n as

well, we can write

− 2

n
log (P(Θ | Y n)) = L̂(ϑ̂n, Y n) +N(Θ)

log(n)

n
+

[
2

n
log(h(Y n)) +O

(
log(n)

n

)]
.
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Moreover, the term 2 log(h(Y n)) is the same across all models and therefore not

relevant for model selection. Hence, we drop it from the approximation and choose

the model that minimizes the information criterion defined as

BICn(Θ) := L̂(ϑ̂n, Y n) +N(Θ)
log(n)

n
. (3.39)

In order to establish the central inequalities from (3.38), we use two lemmas which

we will state in the following. The first one is the analog of [Cavanaugh and Neath

1999, Lemma 1]: Take in mind that the idea is that Y n is known and hence L(ϑ̂n, Y n)

is deterministic.

Lemma 3.19. For any Y n there exist positive constants λ1 and λ2 and an integer n1

such that the following holds for every ϑ in a neighborhood N(ϑ∗) of the pseudo–true

parameter ϑ∗ and for every n > n1:

1

2
L(ϑ̂n, Y n) +

λ2

2
(ϑ− ϑ̂n)T (ϑ− ϑ̂n)

≤1

2
L(ϑ, Y n)

≤1

2
L(ϑ̂n, Y n) +

λ1

2
(ϑ− ϑ̂n)T (ϑ− ϑ̂n).

Proof. Let Y n be known and fixed. We start by taking a second-order Taylor

expansion of 1
2
L around ϑ̂n, giving

1

2
L (ϑ, Y n) =

1

2
L(ϑ̂n, Y n) + (ϑ− ϑ̂n)T

1

2
∇ϑL(ϑ̂n, Y n)

+
1

2
(ϑ− ϑ̂n)T

1

2
∇2
ϑL(ϑ

n
, Y n)(ϑ− ϑ̂n)

=
1

2
L(ϑ̂n, Y n) +

1

2
(ϑ− ϑ̂n)T

1

2
∇2
ϑL(ϑ

n
, Y n)(ϑ− ϑ̂n), (3.40)

where ϑ
n

is between ϑ and ϑ̂n in the sense of the Euclidean norm on the parameter

space Θ (i. e. it can be written as ϑ
n

= tϑ+ (1− t)ϑ̂n for some t ∈ [0, 1]) and we have

used that ϑ̂n is the point where L attains its minimum, implying ∇ϑL(ϑ̂n, Y n) = 0.

Next, denote by λmax
n (ϑ) and λmin

n (ϑ) the largest and smallest eigenvalue of the matrix
1
2
∇2
ϑL(ϑ, Y n), respectively. By the general theory on quadratic forms we have the

following chain of inequalities:

(ϑ− ϑ̂n)T (ϑ− ϑ̂n)λmin
n (ϑ

n
) ≤ (ϑ− ϑ̂n)T

1

2
∇2
ϑL(ϑ

n
, Y n)(ϑ− ϑ̂n)

≤ (ϑ− ϑ̂n)T (ϑ− ϑn)λmax
n (ϑ

n
). (3.41)
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Because of the almost sure convergence of Hessian matrix of L, as pointed out in

Proposition 2.25d), we know that for every ϑ ∈ Θ λmax
n (ϑ) and λmin

n (ϑ) converge

P-almost surely to the largest and smallest eigenvalue of 1
2
J (ϑ), respectively, and

the convergence is uniform in ϑ. Because of Assumption B.11 we know that J(ϑ∗) is

non–singular and therefore, by continuity of the map ϑ 7→ J (ϑ), the eigenvalues of

J (ϑ) lie between two positive constants if ϑ is in a neighborhood N(ϑ∗) of ϑ∗. This

allows us to find a n2 ∈ N, a neighborhood N(ϑ∗) of ϑ∗ and two constants λ1, λ2

with 0 < λ2 < λ1 <∞ such that

λ2 ≤ inf
n>n2

{
inf

ϑ∈N(ϑ∗)
λmin
n (ϑ)

}
and

λ1 ≥ sup
n>n2

{
sup

ϑ∈N(ϑ∗)

λmax
n (ϑ)

}
.

If ϑ
n

is in N(ϑ∗), we can apply these bounds to (3.41), obtaining

0 ≤ (ϑ− ϑ̂n)T (ϑ− ϑ̂n)λ2 ≤ (ϑ− ϑ̂n)T
1

2
∇2
ϑL(ϑ

n
, Y n)(ϑ− ϑ̂n)

≤ (ϑ− ϑ̂n)T (ϑ− ϑ̂n)λ1. (3.42)

It remains to argue that ϑ
n

indeed is contained in this neighborhood if L is large

enough. To see this, remember that ϑ̂n (regarded as a random variable) converges

to ϑ∗ P-almost surely by Theorem 2.28. This means that ϑ̂n ∈ N(ϑ∗) for every

n larger than some constant n3. Since ϑ
n

is between ϑ and ϑ̂n, it is an element

of the neighborhood N(ϑ∗) if the latter two are elements of it. If we now choose

n1 = max{n2, n3} the statement of the Lemma follows from these considerations and

applying the inequalities from (3.42) to equation (3.40).

The second lemma is a general one, it does not rely on the structure of a MCARMA

process or special properties of the maximum likelihood method. Hence it is almost

exactly the same as Lemma 2 in Cavanaugh and Neath [1999], only slightly altered

to fit our notation better:

Lemma 3.20. Let (Tn)n∈N and (Un)n∈N be two sequences of positive random variables.

Moreover, let (ρn)n∈N be a positive, convergent sequence defined in such a way that

Tn ≥ Un holds whenever Un > ρn. Finally, suppose there exist two positive constants

γ and ε such that

P((Tn − ρn) ≥ γ) ≥ ε ∀n ∈ N.
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Then there exists a positive integer n4 such that for every δ > 0 and n > n4 it holds:

log(E(T nn ))− log(E(Un
n )) > −δ.

Proof. See cited reference.

Now we have all that is required to establish (3.38). For this, we define

Zn(ϑ) := exp

(
−1

2
L(ϑ, Y n)

)
,

X1,n(ϑ) := exp

(
−1

2
L(ϑ̂n, Y n)− λ1

2
(ϑ− ϑ̂n)T (ϑ− ϑ̂n)

)
,

X2,n(ϑ) := exp

(
−1

2
L(ϑ̂n, Y n)− λ2

2
(ϑ− ϑ̂n)T (ϑ− ϑ̂n)

)
,

X1(ϑ) := exp

(
−1

2
Q(ϑ∗)− λ1

2
(ϑ− ϑ∗)T (ϑ− ϑ∗)

)
,

Z(ϑ) := exp

(
−1

2
Q(ϑ)

)
,

with Q as defined in (2.16).

An application of Lemma 3.19 allows us to find a natural number n1 and a neighbor-

hood N(ϑ∗) of ϑ∗ such that we have

X1,n(ϑ) ≤ Zn(ϑ) ≤ X2,n(ϑ) (3.43)

for every n > n1 and every ϑ ∈ N(ϑ∗). We can also note that both X1 and Z attain

a global maximum at ϑ∗ and the value of the maxima is the same. The convergence

results from Proposition 2.25b) allow us to conclude

X1,n(ϑ)→ X1(ϑ) P-almost surely, uniformly in ϑ and

Zn(ϑ)→ Z(ϑ) P-almost surely, uniformly in ϑ.

The plan is now to apply Lemma 3.20 to the random variables Un = X1,n(ϑ) and

Tn = Zn(ϑ). In order to be allowed to do that, we need to specify the sequence

(ρn)n∈N and check the existence of the constants γ and ε. Note that the relevant

probability measure in this context is g(ϑ | Θ): the observations Y n are assumed to

be fixed and known, the source of randomness is the parameter ϑ. We shall denote

the corresponding probabilities by Pϑ|Θ and expectations by Eϑ|Θ in the following.

We will now give an explicit construction of (ρn)n∈N and γ:
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First off, choose

ε(1)
n := sup

ϑ∈Θ
|X1,n(ϑ)−X1(ϑ)|,

ε(2)
n := sup

ϑ∈Θ
|Zn(ϑ)− Z(ϑ)|,

and

εn := max{ε(1)
n , ε(2)

n }.

Note that these quantities do depend on Y n, but are not random anymore since the

observations are fixed.

Now choose a compact neighborhood M(ϑ∗) of ϑ∗ such that ∅ 6= M(ϑ∗) ⊂ N(ϑ∗) and

sup
ϑ∈N(ϑ0)C

X1(ϑ) < sup
ϑ∈M(ϑ0)C

X1(ϑ) < sup
ϑ∈M(ϑ0)C

Z(ϑ) < Z(ϑ∗) = X1(ϑ∗).

Note that this is possible because we have X1(ϑ) < Z(ϑ) for every ϑ ∈ Θ \ {ϑ∗},
since Q attains a global minimum at ϑ∗ by definition in (2.20).

Now let

2γ := sup
ϑ∈M(ϑ∗)C

X1(ϑ)− sup
ϑ∈N(ϑ0)C

X1(ϑ) > 0,

ρ∗ := sup
ϑ∈N(ϑ∗)C

X1(ϑ) < X1(ϑ∗)

and

ρn := ρ∗ + εn.

Note that ρn is positive for every n ∈ N and the sequence (ρn)n∈N converges to ρ∗.

Suppose now that X1,n(ϑ) > ρn for every n larger than some n1 ∈ N and a fixed ϑ.

Then:

X1(ϑ) = X1(ϑ)−X1,n(ϑ) +X1,n(ϑ) ≥ −εn +X1,n(ϑ) > −εn + ρn = ρ∗.

Hence, ϑ /∈ N(ϑ∗)C, and

{ϑ ∈ Θ | X1,n(ϑ) > ρn for every n larger than n1} ⊆ N(ϑ∗),

which in turn implies X1,n(ϑ) ≤ Zn(ϑ) via Equation (3.43). Hence the sequence
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(ρn)n∈N fulfills the first part of the conditions in Lemma 3.20. For the second part,

consider ϑ ∈M(ϑ∗). Then, Z(ϑ) > ρ∗ + 2γ = supϑ∈M(ϑ∗)C X1(ϑ) and consequently

Zn(ϑ) = Zn(ϑ)− Z(ϑ) + Z(ϑ) ≥ −εn + Z(ϑ)

> −εn + ρ∗ + 2γ = ρn + γ + γ − 2εn ≥ ρn + γ

because we will eventually have εn <
γ
2

for every n larger than some constant n2 ∈ N
((εn)n∈N converges to 0). This delivers

M(ϑ∗) ⊆ {ϑ ∈ Θ : Zn(ϑ)− ρn ≥ γ}.

Since M(ϑ∗) was chosen to be non-empty and compact, it has a strictly positive

probability, meaning Pϑ|Θ(Zn(ϑ)− ρn ≥ γ) ≥ ε̃ for some ε̃ > 0 and for every n > n2.

If n is now larger than n3 = max{n1, n2}, both requirements of Lemma 3.20 are

fulfilled and for any δ∗ > 0 it holds

log(Eϑ|Θ[(Zn(ϑ))n])− log(Eϑ|Θ[(X1,n(ϑ))n]) > −δ∗
2
∀n > n3.

In a similar way (reversing the roles of Zn(ϑ) and X2,n(ϑ)) we obtain the inequality

log(Eϑ|Θ[(X2,n(ϑ))n])− log(Eϑ|Θ[(Zn(ϑ))n]) > −δ∗
2
∀n > n4

by another application of Lemma 3.20. If n is now larger than n∗ = max{n3, n4} we

can combine these results to obtain the following chain of inequalities:

−2 log(Eϑ|Θ[(X2,n(ϑ))L])− δ∗ < −2 log(Eϑ|Θ[(Zn(ϑ))L])

< −2 log(Eϑ|Θ[(X1,n(ϑ))L]) + δ∗. (3.44)

Let us consider the middle term for a moment:

−2 log(Eϑ|Θ[(Zn(ϑ))n]) = −2 log

(∫
Θ

(
exp

(
−1

2
L(ϑ, Y n)

))n
g(ϑ | Θ)dϑ

)
= −2 log

(∫
exp

(
−n

2
L(ϑ, Y n)

)
g(ϑ | Θ)dϑ

)
= −2 log

(∫
exp

(
−n

2
(− 2

n
log(��L(ϑ | Y n)))

)
g(ϑ | Θ)dϑ

)
= −2 log

(∫
��L(ϑ | Y n)g(ϑ | Θ)dϑ

)
.

This shows that the middle term, divided by n, in the above inequality (3.44) is the
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same as the middle term in inequality (3.38), meaning we can establish the desired

upper and lower bound for this term.

In the following, it is assumed that n∗ is large enough to guarantee that ϑ̂n ∈ N0(ϑ∗)

for all n > n∗, where N0(ϑ∗) denotes the neighborhood of ϑ∗ from Assumption C, in

which g(ϑ | Θ) is bounded from below (which is not a restriction, if the condition is

not met by the initial n∗ we can just enlarge it further). We start with the term on

the far left of the inequalities in (3.44):

− 2 log(Eϑ|Θ[(X2,n(ϑ))n])

= −2 log

(∫
Θ

(
exp

(
−1

2
L(ϑ̂n, Y n)− λ2

2

(
ϑ− ϑ̂n

)T (
ϑ− ϑ̂n

)))n
· g(ϑ | Θ)dϑ

)

≥ −2 log

(∫
RN(Θ)

B exp

(
−n

2
L(ϑ̂n, Y n)− nλ2

2

(
ϑ− ϑ̂n

)T (
ϑ− ϑ̂n

))
dϑ

)
= nL(ϑ̂n, Y n)− 2 log(B)− 2 log

((
2π

nλ2

)N(Θ)
2
∫
RN(Θ)

(
nλ2

2π

)N(Θ)
2

· exp

−1

2

(
ϑ− ϑ̂n

)T (
ϑ− ϑ̂n

)
1
nλ2

 dϑ

 (3.45)

Note that the term remaining inside the integral is the density of a N(Θ)-dimensional

normal distribution with expectation ϑ̂n and covariance matrix 1
nλ2

IN(Θ)×N(Θ), i. e.

the whole integral is simply equal to 1. Hence we can write

(3.45) = nL(ϑ̂n, Y n)− 2 log(B)− 2 log

((
nλ2

2π

)N(Θ)
2

)
= nL(ϑ̂n, Y n)− 2 log(B) +N(Θ) log(L) +N(Θ) log(λ2)−N(Θ) log(2π),

which is exactly the form claimed in (3.38) if we denote

R1(Θ) := N(Θ) log(λ2)−N(Θ) log(2π)− 2 log(B).

Note that all terms contained in this rest do not depend on the sample size n.

For the right-hand side of the inequalities in (3.44) we proceed in a similar way:
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− 2 log(Eϑ|Θ[(X1,n(ϑ))n])

= −2 log

(∫
Θ

(
exp

(
−1

2
L(ϑ̂n, Y n)− λ1

2

(
ϑ− ϑ̂n

)T (
ϑ− ϑ̂n

)))n
· g(ϑ | Θ)dϑ

)

≤ −2 log

(∫
N0(ϑ∗)

b exp

(
−n

2
L(ϑ̂n, Y n)− nλ1

2

(
ϑ− ϑ̂n

)T (
ϑ− ϑ̂n

))
dϑ

)

= nL(ϑ̂n, Y n)− 2 log(b)− 2 log

((
2π

nλ1

)N(Θ)
2
∫
N0(ϑ∗)

(
nλ1

2π

)N(Θ)
2

· exp

−1

2

(
ϑ− ϑ̂n

)T (
ϑ− ϑ̂n

)
1
nλ1

 dϑ

 (3.46)

Now the assumption about n∗ comes into play, since it allows us to conclude that

we have ϑ̂n ∈ N0(ϑ
∗) for n > n∗, which means that the integral appearing here is

bounded below by some constant c (depending on N0(ϑ
∗) and λ1, but not on n).

This allows us to estimate

(3.46) ≤ nL(ϑ̂n, Y n)− 2 log(b)− 2 log

((
2π

nλ1

)N(Θ)
2

)
− 2 log(c)

= nL(ϑ̂n, Y n) +N(Θ) log(n) +R2(Θ),

where R2(Θ) := −2 log(b)− 2 log(c) +N(Θ) log(λ1)−N(Θ) log(2π) is again a rest

term independent of n. This completes the proof of the inequalities stated in Equation

(3.38) and hence the derivation of the BIC as shown after said equation.

3.5.2. Consistency of the BIC

As is well–known from the literature, the BIC is a strongly consistent criterion in the

case of ARMA processes as originally shown in Hannan [1980]. From our general

results on ICn, it follows easily that this is true in our context as well:

Theorem 3.21. The BIC is a strongly consistent information criterion.

Proof. Take C(n) = log(n) in (3.6). The assertion then follows from Theorem 3.10

and Remark 3.11a) since limn→∞
log(n)

log(log(n))
=∞.



3.6. Simulation study of order selection criteria 87

3.6. Simulation study of order selection criteria

The results on information criteria obtained in the previous sections will now be

illustrated by a simulation study. In this context we would like to thank Eckhard

Schlemm and Robert Stelzer, who kindly provided the MATLAB code for the

simulation and parameter estimation of the MCARMA process. As before, we use the

Echelon MCARMA parametrization in the simulations. Throughout our simulations,

we always consider two-dimensional MCARMA processes. As driving Lévy process,

we use, on the one hand, a two-dimensional, correlated Brownian motion and, on the

other hand, a two-dimensional, normal-inverse Gaussian (NIG) process. For the NIG

process the increments L(t)− L(t− 1) have the density

fNIG(x;µ, α, β, δ,∆) =
δ eδκ

2π

e〈βx〉

eαg(x)

1 + αg(x)

g(x)3
, x ∈ R2,

where g(x) =
√
δ2 + 〈x− µ,∆(x− µ)〉, κ2 = α2 − 〈β,∆β〉. The parameter µ ∈ R2 is

a location parameter, α ≥ 0 is a shape parameter, β ∈ R2 is a symmetry parameter,

δ ≥ 0 is a scale parameter and ∆ ∈ R2×2 is a positive semidefinite matrix with

det(∆) = 1 that determines the dependence between the components of the Lévy

process. In the simulations we use the values

δ = 1, α = 3, β =

(
1

1

)
, ∆ =

(
5
4
−1

2

−1
2

1

)
, µ = − 1

2
√

31

(
3

2

)
,

which result in a zero-mean process with covariance matrix

ΣL
NIG ≈

(
0.4571 −0.1622

−0.1622 0.3708

)
.

In the case of the Brownian motion the covariance matrix ΣL
BM is equal to the

covariance matrix ΣL
NIG in the NIG case. In the estimation the number of free

parameters includes three parameters for the covariance matrix of the driving Lévy

process.

The simulation of the continuous–time MCARMA process is done with the initial

value X(0) = 0, applying the Euler-Maruyama method to the stochastic differential

equation (2.5) and then evoking (2.4). For the Euler-Maruyama scheme we operate

on the interval [0, n], where n is the number of observations and the step size is 0.01.

Afterwards, the simulated process is sampled at discrete points in time with sampling

distance h = 1, resulting in n observations of the discretely sampled MCARMA
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process. Figure 3.1 shows a typical sample path of a bivariate CARMA(2,1) process

simulated in this way and Figure 3.2 shows a sample path for the same parameter

configuration when the NIG process is used as driving Lévy process. After obtaining

the discrete samples of the MCARMA process we calculate the AIC, CAIC and BIC

as defined in (3.19), (3.20) and (3.39), respectively. In the calculation of the AIC

we estimate the penalty term tr (I(ϑ∗)H−1(ϑ∗)) by the second method explained at

the end of Subsection 3.4.1 since in general there is no explicit form of I(ϑ∗) and

H(ϑ∗). This means that we use tr(Ĵ nΞ̂n) as estimate, where Ξ̂n is the empirical

covariance matrix of independent realizations of ϑ̂n and Ĵ n is the arithmetic mean

of independent realizations of ∇2
ϑL̂(ϑ̂n, Y n).

For the first part of the study, we simulate a two-dimensional MCARMA pro-

cess with Kronecker index m0 = (1, 2), p = 2 and q = 1 with parameter ϑ
(1)
0 =(

−1,−2, 1,−2,−3, 1, 2
)

and n = 2000. We consider eight different parameter spaces

in total with m0 ∈ {1, 2}2, p ∈ {1, 2} and q ∈ {0, 1}. We observe that every informa-

tion criterion makes the right choice of the parameter space in all 50 replications,

independent of the driving Lévy process. There are no effects of overfitting, which is

not surprising considering the fact that the true parameter is chosen in such a way

that it is only contained in one space, so that the scenario from Remark 3.11d) is given.

Next, we change the true parameter slightly to ϑ
(2)
0 =

(
−1,−2, 1,−2,−3, 0, 0

)
, i.e.

the data–generating process is now a MCARMA(2,0) process, while m0 = (1, 2)

remains the same. The results of 100 replications for the true parameter ϑ
(2)
0 in space

2 are summarized in Table 3.3.

Space Model BM NIG

m p q N(Θ) AIC CAIC BIC AIC CAIC BIC

1 (1, 1) 1 0 7 0 0 0 0 0 0

2 (1, 2) 2 0 8 92 85 100 89 84 100

3 (1, 2) 2 1 10 8 15 0 11 16 0

4 (2, 1) 2 0 9 0 0 0 0 0 0

5 (2, 1) 2 1 11 0 0 0 0 0 0

6 (2, 2) 2 0 11 0 0 0 0 0 0

7 (2, 2) 2 1 15 0 0 0 0 0 0

Agreement 93% 95%

Table 3.3.: Results for the true parameter ϑ
(2)
0 in space 2.
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As expected because of the strong consistency the BIC performs convincingly

and achieves a perfect score for both driving Lévy processes. Furthermore, both

versions of the AIC exhibit overfitting. The line “agreement” records the percentage

of repetitions in which the CAIC and AIC lead to the same choice, revealing that

there is an undeniable difference between the CAIC and the AIC in both cases. From

the theory, we know that this should not happen when the driving Lévy process is a

Brownian motion since the criteria are then the same. This difference comes from

the estimation error by estimating the penalty term tr (I(ϑ∗)J −1(ϑ∗)) in the AIC.

We realize that in the Gaussian model the value of the penalty term in the AIC is

higher than the value of the penalty term in the CAIC for both space number 2

and space number 3. However, the error is smaller in space number 3 than in space

number 2, which results in a higher overfitting rate for the CAIC. This is because

L̂(ϑ̂n, Y n) is smaller in model 3 than in model 2 – this difference is compensated

for more often in the AIC than in the CAIC because of the larger penalty terms,

which leads to a lesser overfitting rate. We also calculate the overfitting probability

in the Brownian motion case as given in Theorem 3.10c). For this, note that there is

only one parameter space in which the true one is nested (space number 3) and for

that space we have C = 2 and N(Θ)−N(Θ0) = 2. The strictly positive eigenvalues

of H(ϑ∗)
1
2MF (ϑ∗)I(ϑ∗)MF (ϑ∗)H(ϑ∗)

1
2 are calculated with the help of MATLAB

and turn out to be both equal to 2, so that the overfitting probability simplifies to

P(χ2
1 > 2) ≈ 0.1573. The empirical probability 0.15 of overfitting in the CAIC is very

close.

Next, we consider another situation in which the data–generating process is a

MCARMA(3,0) process with Kronecker index m0 = (3, 2) and the true parameter is

ϑ
(3)
0 =

(
−3,−6,−5, 2,−3,−0.2,−4,−2.5,−7,−9, 0, 0, 0, 0, 0, 0

)
.

Here, we consider 7 candidate spaces in total. Among them are two parameter spaces

in which the true space is nested (spaces 6 and 7); the true parameter space is

number 5. We conduct the study again with n = 2000. The results of 100 repetitions

are given in Table 3.4. The results of this simulation study resemble the ones of

the study with ϑ
(2)
0 as true parameter – the CAIC is the criterion most prone to

overfitting, while the AIC fares slightly better and the BIC still performs perfectly.

The agreement of the AIC and CAIC is now lower in both cases. We also note that

the AIC overfits in favor of model 6 while the CAIC selects model 7 if it makes a

wrong choice. The explanation is similar as in the study before: the penalty terms in

the AIC all deviate from the values of the penalty terms in the CAIC. The larger

the space, however, the less the deviation. This, in combination with the fact that
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Space Model BM NIG

m p q N(Θ) AIC CAIC BIC AIC CAIC BIC

1 (1, 1) 1 0 7 1 0 0 5 0 0

2 (1, 2) 2 1 10 0 0 0 0 0 0

3 (2, 1) 2 1 11 0 0 0 0 0 0

4 (2, 2) 2 1 15 0 0 0 0 0 0

5 (3, 2) 3 0 13 91 89 100 87 88 100

6 (3, 2) 3 1 17 9 0 0 13 0 0

7 (3, 2) 3 2 19 0 11 0 0 12 0

Agreement 84% 79%

Table 3.4.: Results for the true parameter ϑ
(3)
0 in space 5.

the value of L̂(ϑ̂n, Y n) decreases as the number of parameters increases, leads to

the selection of different overfitted spaces. The actual overfitting rate, however, is

comparable to the simulation study with m0 = (1, 2), i.e. the actual number of wrong

choices has not increased systematically. This is also backed up by the observation

that the approximated overfitting probability of space number 7 for the CAIC is

0.1019, showing that the empirical overfitting rate is very close to the theoretical

probability in the Brownian motion case and slightly higher in the NIG case.

Lastly, we perform a small–sample simulation study to illustrate the advantages

of AICbn as defined in Subsection 3.4.5 in this situation. For the study, we chose

again m0 = (3, 2) and the true parameter ϑ
(3)
0 . We let h = 1 and n = 15, the

driving Lévy process is a Brownian motion with the same covariance matrix as

before. To ensure that our sample, despite its small size, is generated by a stationary

process, we simulate the data–generating process on the interval [0, 750] and use

Yϑ0(735), . . . , Yϑ0(750) as the actual observations. For the number of bootstrap

replications, we choose b = 150, following the recommendations of [Cavanaugh and

Shumway 1997, p. 487f], who found that this value yields satisfying results. We

considered only 3 candidate spaces here, the true parameter space and the two

spaces in which it is nested (spaces 5, 6 and 7 in Table 3.4). The information

criteria employed are AICn, CAICn, AICbn, WICn and BICn. The reason for only

considering three spaces is that due to the high number of bootstrap repetitions,

adding further spaces dramatically increases the computation time. For one iteration

of the order selection procedure (i.e. calculating each of the 4 criteria once for each

parameter space), we needed about three days of computation time, such that a

satisfyingly large number of iterations could only obtained by means of parallel

computing. The bootstrap replicates were calculated by the algorithm of Stoffer and

Wall [1991] as described in Subsection 3.4.5. We report on the results of 50 iterations

here. The results are given in Table 3.5. To be consistent with Table 3.4, we have
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kept the numbering of the spaces, although we do not consider 7 spaces in total

anymore.

Space Model BM

m p q N(Θ) AIC CAIC BIC AICb WIC

5 (3, 2) 3 0 13 23 31 43 45 27

6 (3, 2) 3 1 17 18 15 7 2 3

7 (3, 2) 3 2 19 9 4 0 3 20

Table 3.5.: Results for the true parameter ϑ
(3)
0 in space 5 with n = 15.

As we can see, the performance of AICbn is vastly better than of the other two

AIC–type criteria and also better than that of WICn. Its performance also better

than that of the BIC, but only slightly. This coincides with the results of [Cavanaugh

and Shumway 1997, Table 5], in which the authors report that the BIC (which they

call SIC, their BIC is defined differently) becomes more and more competitive with

the AICb as the number of parameters of the largest model, relative to the amount of

observations, decreases. Since we have a maximal number of parameters equal to 19

and 15 observations, we are not quite in the situation with 2n = N(Θ) in which the

AICb performs best according to Cavanaugh and Shumway [1997]. Due to the high

computation times necessary, we could not evaluate other scenarios and parameter

setups for the AICb, but nevertheless these results and the theoretical framework

affirm that it is a criterion worth considering in the small–sample setup.

Note that the performance of WICn, the second bootstrap–based criterion we briefly

mentioned at the end of Subsection 3.4.5, is not satisfying. In fact, the number of

correct selections is only slightly higher than 50 %. Due to this and also the fact that

no satisfying theoretical foundation is available for WICn, we recommend the use of

AICbn and illustrate the results on WICn here mainly for sake of completeness.

Remark 3.22. Except for Subsection 3.4.3, Subsection 3.4.4 and Subsection 3.4.5,

the contents of Chapters 2 and 3 have been accepted for publication in Fasen and

Kimmig [2016+]. The simulation study of Section 3.6 has also been altered in

comparison to the published version, although the general framework remains the

same. Most importantly, an error in the code of the simulation has been fixed and

the studies have been repeated with the error–free code, which is why the results differ

from those in the published article.





CHAPTER 4

Robust estimation of MCARMA

processes

The second part of this thesis is concerned with robust estimation of MCARMA

processes. The central aspect of robust statistics is to investigate the behavior

of statistical procedures when some of the underlying model assumptions are not

satisfied. Historically, among the first scientists studying this problem were Tukey

[1960], Huber [1964] and Hampel [1971] in the case of i.i.d. observations. In those

articles, deviations from the model assumptions were understood as some observations

coming from a different distribution than the one that was assumed for the i.i.d.

data. Tukey [1960] then noticed that classical estimators, such as the empirical

standard deviation, are highly sensible to this phenomenon and therefore, alternative

procedures should be considered. Huber [1964] introduced the class of M–estimators

for the location parameter of i.i.d. observations and showed that these estimators

fare much better than, for example, the traditional sample mean. In Hampel [1971],

the intuitive notion of a procedure being robust was first formalized and the terms

qualitative robustness and breakdown point, which we will also study later on, were

introduced (still in the case of i.i.d. observations). The M–estimators of Huber were

later generalized to the context of linear regression, see e.g. Huber [1973], Yohai and

Maronna [1979], Maronna and Yohai [1981] and [Maronna et al. 2006, Chapters 4 and

5]. Subsequently, further generalizations to the context of dependent observations,

especially time series, were made, see e.g. Martin and Jong [1977], Denby and Martin

[1979], Martin [1980], Bustos [1982] for the treatment of autoregressive processes
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and Muler et al. [2009] for the treatment of ARMA processes. In the course of these

generalizations, the need for a different class of estimators was recognized, as classical

M–estimators fail to be robust in the case of dependent observations. Amongst

other procedures (for an overview see [Maronna et al. 2006, Chapter 8]), the class

of so–called generalized M–estimators (GM estimators) was considered and quite

successfully applied to autoregressive processes. This class will appear also later in

this chapter as a building block of a robust estimator for CARMA processes.

The first step in considering robustness consists of clarifying what is meant by the

notion of “deviations from the nominal (or true) model”. Contrary to the i.i.d. case,

assuming that some observations arise from a different distribution than the others

does not make much sense when considering time series. The reason is that in this

context, the model assumption usually is that the observed data is generated by one

particular, “true” time series, say Y , in a parametric family. Therefore, a natural way

to model a deviation from the model assumptions would be to assume that the data

is not a realization of the true time series Y , but only in some sense “close” to it. Up

until now in this thesis, we always assumed that observations were generated by some

discretely sampled MCARMA process (Y (nh))n∈Z which we could observe. In a first

step, in Section 4.1 we will define in what way we deviate from this assumption and

how to model this appropiately. After establishing that, we will then move to the

topic of robust parameter estimation.

As explained in [Huber and Ronchetti 2009, p. 5], a robust statistical procedure can

be characterized by three properties. First, it should be reasonably efficient at the

optimal model. Secondly, it should produce only slightly different results if there

are slight deviations from the underlying model assumptions. And thirdly, larger

deviations from the assumptions should, at least up to a certain point, not have a

catastrophic effect. In the context of MCARMA processes, the statistical procedure

which we will consider is the estimation of the parameters of the data–generating

process. In Section 4.2, we will define and study M–estimators for MCARMA

processes, which achieve the first property (they perform well at the nominal model),

but unfortunately are not robust. Moving to the special case of one–dimensional

CARMA processes, in Section 4.3 we will construct a so–called indirect estimator.

Studying this estimator in detail will then allow us to show that it achieves all three

of the properties outlined above. Subsection 4.3.1 is concerned with the behavior

under the nominal model. In Subsection 4.3.4 the performance under deviations from

the nominal model will be studied in terms of three robustness measures: qualitative

robustness, the breakdown point and the influence functional. In Section 4.4, we

come back to a topic already treated earlier, namely model selection in this new
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framework. Lastly, we conduct a simulation study in Section 4.5 to illustrate the

various theoretical results in practice.

We now start by formally defining what we classify as observations that are only

close to, but not directly from, a data–generating process.

4.1. Discretely observed CARMA processes and outliers

The deviations from the true model we consider are characterized by the fact that

we do not observe the data–generating process perfectly. Instead, we will only

observe a disturbed process that is built from observations of the true time series

subject to contamination by so–called outliers. These outliers can be thought of

as atypical observations that do not arise because of the model structure, but due

to some external influence, e.g. measurement errors. Therefore, a whole sample of

observations which contains outliers does not come from the true model anymore,

but is still close to it as long as the total number of outliers is not overwhelmingly

large. There are several ways how one can formalize the presence of outliers in the

data, with three main characterizations that are typically used in the literature, the

so–called innovation outliers (IO), additive outliers (AO) and replacement outliers

(RO). The latter two can be seen as special cases of the so–called general replacement

model. We define the different types of outliers for a discretely sampled MCARMA

process as follows:

Definition 4.1. Let (Y (nh))n∈Z be a d–dimensional discretely sampled MCARMA

process as in (2.5) for some fixed h > 0.

a) We say that (Y (nh))n∈Z is afflicted by innovation outliers (IOs) if the innova-

tions of this process have a heavy–tailed distribution (i.e. a distribution with

infinite variance).

b) Let g : [0, 1]→ [0, 1] be a function that satisfies g(γ)− γ = o(γ) for γ → 0. Let

(Vn)n∈Z be a stochastic process taking only the values 0 and 1 with

P(Vn = 1) = g(γ) (4.1)

and let (Zn)n∈Z be an arbitrary, d–dimensional stochastic process. We say

that outliers are modeled by the general replacement model if we observe the

disturbed process (Ỹn)n∈Z instead of (Y (nh))n∈Z, where

Ỹn = (1− Vn)Y (nh) + VnZn. (4.2)
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Remark 4.2. a) The general replacement model is, for example, also used in

Martin and Yohai [1986]. The interpretation is that at each point n ∈ Z, an

outlier is observed with probability g(γ), while the true value Y (nh) is observed

with probability 1− g(γ). It has the advantage that one can obtain both additive

and replacement outliers by choosing the processes (Zn)n∈Z and (Vn)n∈Z ade-

quately. Specifically, to model replacement outliers, one assumes that (Zn)n∈Z,

(Vn)n∈Z and (Y (nh))n∈Z are jointly independent. Then, if the realization of Vn

at time n is equal to 1, the value Y (nh) will be replaced by the realization of

Zn, justifying the use of the name replacement outliers.

On the other hand, modeling additive outliers can be achieved by taking Zn =

Y (nh) +Wn for some process (Wn)n∈Z and assuming that (Y (nh))n∈Z is inde-

pendent from (Vn)n∈Z. Then we have

Ỹn = Y (nh) + VnWn,

such that the realization of Wn is added to the realization of Y (nh) if Vn realizes

as 1, modeling exactly the behavior one wishes to have.

b) Another advantage of the general replacement model is that one can easily model

the temporal structure of outliers. On the one hand, for example, if (Vn)n∈Z is

chosen as an i.i.d. process with P(Vn = 1) = γ, then outliers typically appear

isolated, i.e. between two outliers there is usually a period of time where no

outliers are present. On the other hand, one can also model patchy outliers by

letting (Bn)n∈Z be an i.i.d. process of Bernoulli variables with success probability

ε and setting Vn = max(Bn−k, . . . , Bn) for a k ∈ N. Then

P(Vn = 1) = 1− (1− ε)k = kε+ o(ε)

for ε→ 0, i.e. (4.1) holds with γ := kε. For ε sufficiently small, outliers then

typically appear in a patch or block of size k.

c) The fundamental difference between IOs and the other two types of outliers is

that the observations in the case of IOs still come from a discretely sampled

MCARMA process, albeit with infinite–variance noise. For the other two

types of outliers, the observations do not follow the same structure as in the

uncontaminated case, which makes estimation more difficult. Also, in the

case of IOs, an outlier influences the future values of the stochastic process

(Y (nh))n∈Z, while this is not the case for outliers generated by the general

replacement model.
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d) In the case of IOs, one needs to estimate a process with infinite second moments.

For this reason, the results are typically quite different from those in the case

of the other outlier types. For example, in Andrews et al. [2009] the maximum

likelihood estimator is used successfully, while it is well–known that MLEs are

typically nonrobust in the case of additive or replacement outliers. In Davis

et al. [1992], M–estimation is studied in this context. We will not study IOs in

detail here, leaving their treatment in the context of MCARMA processes open

for future research and focusing on the general replacement model for the rest

of the thesis.

4.2. M-estimators for MCARMA processes

In this chapter, the aim is to introduce the notion of M-estimation for the class

of MCARMA processes. Since its introduction in Huber [1964] for the estimation

of the location parameter of i.i.d. data, this class of estimators has been applied

in many problems and fields, including but not limited to parameter estimation in

linear regression (Huber [1973], Yohai and Maronna [1979]) and of ARMA processes

with finite ([Maronna et al. 2006, Section 8.4]) and infinite (Davis et al. [1992])

variance. The principal idea of M–estimators is to generalize the maximum likelihood

procedure by replacing the likelihood function by a more general one (hence the

name, M–estimator is a shorthand for “Maximum likelihood type estimator”). Huber

[1964] recognized that the likelihood function is generally unbounded and therefore

proposed to use a bounded function to achieve robustness. Typically, it is then also

possible to show consistency and asymptotic normality for this class of estimators at

the nominal model, i.e. in the absence of outliers. We will also take this approach.

Since the method is a generalization of maximum likelihood estimation, if we choose

suitable functions to replace the likelihood function, the proofs will be very similar

to the ones in the study of QMLE for MCARMA processes.

Just as with maximum likelihood estimation, we assume that n, equidistant, discrete–

time observations with sampling distance h > 0 of a MCARMA processes (Y (t))t∈R are

given in the form of Y n = (Y (h), . . . , Y (nh)). To do parameter estimation, we again

consider a parameter space Θ and a parametric family of CSSMs (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ

that satisfy Assumptions B.1 to B.9. Moreover, for simplicity’s sake, we assume

that Θ contains an element ϑ0 that generates the true output process. Of course

in the context of M-estimation we can forgo the assumptions B.10 and B.11, as

those were explicitly connected to the maximum likelihood method, while the rest of

Assumption B is more generally related to the parametrization under consideration.
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Then, similar to (2.19), we define our estimator by

ϑ̂nM = arg min
ϑ∈Θ

1

n
L̂M(ϑ, Y n) := arg min

ϑ∈Θ

1

n

n∑
k=1

ρ(ε̂ϑ,k), (4.3)

where ρ : Rd → R is a suitably chosen loss function and (ε̂ϑ,k)k∈N are the approximate

pseudo-innovations as calculated by the Kalman filter. For the loss function, we

make the following assumption:

Assumption F.

F.1 The function ρ : Rd → R is three times continuously differentiable.

F.2 The expectation E[ρ(εϑ,1)] exists for every ϑ ∈ Θ.

F.3 It holds that

|(∂iρ)(x)− (∂iρ)(y)| ≤ c‖x− y‖ and |(∂2
i,jρ)(x)− (∂2

i,jρ)(y)| ≤ c‖x− y‖

for all i, j ∈ {1, . . . , d} and x, y ∈ Rd and some constant c ≥ 0.

We will now proceed similarly as in [Schlemm and Stelzer 2012, Section 2] to

show consistency and asymptotic normality of ϑ̂nM. Just as in the maximum like-

lihood case, it is usually more convenient for the proofs to consider the function

LM (ϑ, Y n) := 1
n

∑n
k=1 ρ(εϑ,k) and its derivatives, respectively, where we have replaced

the approximate pseudo-innovations by their theoretical counterparts, instead of

L̂M . Analogous to Lemma 2.23, we therefore show that the approximate quantities

converge to their theoretical counterparts:

Lemma 4.3. Assume that for i, j ∈ {1, . . . , N(Θ)} the initial values X̂ϑ,initial are

such that supϑ∈Θ ‖X̂ϑ,1‖, supϑ∈Θ ‖∂iX̂ϑ,1‖ and supϑ∈Θ ‖∂2
i,jX̂ϑ,1‖ are almost surely

finite. Then it holds:

a) supϑ∈Θ

∣∣∣L̂M (ϑ, Y n)− LM (ϑ, Y n)
∣∣∣→ 0 as n→∞ P-a.s.

b)
√
n supϑ∈Θ

∣∣∣∂iL̂M (ϑ, Y n)− ∂iLM (ϑ, Y n)
∣∣∣ P→ 0 as n→∞.

c) supϑ∈Θ

∣∣∣∂2
i,jL̂M (ϑ, Y n)− ∂2

i,jLM (ϑ, Y n)
∣∣∣→ 0 as n→∞ P-a.s.

Proof. a) First off, note that by a Taylor expansion we have that

sup
ϑ∈Θ
|L̂M(ϑ, Y n)− LM(ϑ, Y n)| ≤ sup

ϑ∈Θ

1

n

n∑
k=1

|ρ(ε̂ϑ,k)− ρ(εϑ,k)|
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≤ sup
ϑ∈Θ

1

n

n∑
k=1

‖∇ϑρ(εϑ,k)‖‖ε̂ϑ,k − εϑ,k‖,

where ‖εϑ,k − εϑ,k‖ ≤ ‖ε̂ϑ,k − εϑ,k‖,

F.3

≤ C

n

n∑
k=1

(
(sup
ϑ∈Θ

(‖εϑ,k‖+ ‖∇ϑρ(0)‖) sup
ϑ∈Θ
‖ε̂ϑ,k − εϑ,k‖

)
≤ C

n

n∑
k=1

(
sup
ϑ∈Θ

(‖εϑ,k − εϑ,k + εϑ,k‖+ ‖∇ϑρ(0)‖)ρk
)

≤ C

n

n∑
k=1

(
sup
ϑ∈Θ
‖ε̂ϑ,k − εϑ,k‖ρk + sup

ϑ∈Θ
‖εϑ,k‖ρk + ‖∇ϑρ(0)‖ρk

)
≤ C

n

n∑
k=1

(
ρ̃k + ρk sup

ϑ∈Θ
‖εϑ,k‖+ ‖∇ϑρ(0)‖ρk

)
(4.4)

where we have used that supϑ∈Θ ‖ε̂ϑ,k − εϑ,k‖ ≤ Cρk for C > 0 and ρ ∈ (0, 1) by

Lemma 2.22a) and defined ρ̃ = ρ2. As in the proof of [Schlemm and Stelzer 2012,

Lemma 2.7], we can show that ρk supϑ∈Θ ‖εϑ,k‖ converges to 0 almost surely as

k →∞ by using the Markov inequality and the Borel–Cantelli lemma. Since the

sequences (ρ̃k)k∈N and (‖∇ϑρ(0)‖ρk)k∈N converge to zero as well, we obtain that

the sum in (4.4) converges to 0 almost surely. The proofs of b) and c) are similar.

The next lemma deals with the asymptotic behavior of the function LM :

Lemma 4.4. For n → ∞, the sequence of random functions ϑ 7→ LM(ϑ, Y n)

converges uniformly in ϑ almost surely to the limiting function

QM(ϑ) := E [ρ(εϑ,1)] .

Proof. Since the sampled output process (Y (nh))n∈Z is ergodic, the same is true for

the pseudo-innovation sequence (εϑ,n)n∈Z for every ϑ ∈ Θ as apparent from (2.13).

Since ρ is measurable, the sequence (ρ(εϑ,n))n∈Z is ergodic again by [Durrett 2010,

Theorem 7.1.3]. Hence, by Birkhoff’s ergodic theorem ([Durrett 2010, Theorem 7.2.1])

it follows that the sequence LM(ϑ, Y n) converges almost surely pointwise to QM .

Uniform convergence can be shown by means of the compactness of the parameter

space and an application of [Ferguson 1996, Theorem 16a)].

This lemma suffices for us to derive the consistency of the M–estimator:
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Theorem 4.5. If the function ϑ 7→ QM (ϑ) has a unique global minimum at ϑ0, then

the estimator ϑ̂nM is strongly consistent, i. e. it holds that

ϑ̂nM
n→∞−→ ϑ0

almost surely.

Proof. The proof of consistency is the same one as that of [Schlemm and Stelzer

2012, Theorem 2.4], making use of Lemma 4.4 with the function L̂M replacing L̂ and

QM replacing Q.

To show asymptotic normality of the M-estimator ϑ̂nM, we will prove a series of

lemmas and then put them together eventually. This way of proceeding is in principle

the same as the one in [Schlemm and Stelzer 2012, Section 2.4], with the difference

that we have a general loss function ρ whereas Schlemm and Stelzer have the pseudo–

Gaussian likelihood function. Therefore, they can use the explicit representation of

this likelihood and its properties, whereas we work with the properties that can be

deduced from Assumption F. Some ideas of the proofs remain valid under the change

of the objective function. However, a key difference to the approach of Schlemm and

Stelzer [2012] is how a central limit theorem for the suitably scaled gradient of the

objective function is derived, the analogue of [Schlemm and Stelzer 2012, Lemma

2.16], which is a crucial step in the proof of the central limit theorem for ϑ̂nM. We

will obtain this central limit theorem by making use of the concept of near–epoch

dependent stochastic processes. They are defined as follows:

Definition 4.6. Let (Rn)n∈Z be a (vector–valued) stochastic process and denote

Fn+m
n−m = σ(Rn−m, . . . , Rn+m) for m ∈ N, n ∈ Z. Let (Sn)n∈Z be a one–dimensional

stochastic process with E[|Sn|] <∞ for every n ∈ Z. (Sn)n∈Z is said to be near epoch

dependent in Lp–norm (Lp–NED) on (Rn)n∈Z if it holds that

‖Sn − E
[
Sn | Fn+m

n−m
]
‖Lp ≤ vmdn,

where (dn)n∈Z is a sequence of positive constants and vm → 0 as m → ∞ holds.

(Sn)n∈Z is said to be of size ϕ0 if (vm)m∈N is of order O(m−ϕ) for every ϕ > ϕ0.

Remark 4.7. a) Near epoch dependence is a property of the map from (Rn)n∈Z

to (Sn)n∈Z in the sense that the latter may depend on the full history (and

even future) of the former, but the dependence disappears fast enough as the

distance between time points increases. This concept is particularly useful if

(Rn)n∈Z is a mixing process, since functions of a mixing process which depend
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on infinitely many of its values are not necessarily mixing anymore. However,

under some mild additional conditions, a process that is near epoch dependent

on a strongly mixing process inherits enough of its properties to obtain a law

of large numbers and a central limit theorem. This is because for each n ∈ Z
the random variable Sn can be “approximated well” by E

[
Sn | Fn+m

n−m
]
, which is

then by construction a finite–lag function of a mixing process, i.e. itself mixing

again. Formally, one can show that (Sn)n∈Z is a so–called mixingale in this

case. For further details on near epoch dependence and mixingales we refer to

[Davidson 1994, Chapters 16 and 17] and White [1996].

b) If a process (Sn)n∈Z is of size ϕ0, it is of course also of size ϕ′ for every ϕ′ > ϕ0

by definition. Similarly, if (Sn)n∈Z is Lp–NED on (Rn)n∈Z for some p > 0, it

is also Lq–NED on the same process for every 1 ≤ q ≤ p ([Davidson 1994, p.

268]).

The most fundamental observation now is that for both the innovations and their

partial derivatives, every component is L2–NED on the data–generating CARMA

process (Y (nh))n∈Z:

Lemma 4.8. For every ϑ ∈ Θ, every j ∈ {1, . . . , d} and every i ∈ {1, . . . , N(Θ)},
the processes ((εϑ,n)j)n∈Z and ((∂iεϑ,n)j)n∈Z are L2–NED of size −∞ on (Y (nh))n∈Z.

Proof. The proof is analogous to [Davidson 1994, Example 17.3], but we give it here

in detail for sake of completeness. By Lemma 2.22a) it holds that

εϑ,k = Y (kh) +
∞∑
ν=1

cϑ,νY ((k − ν)h)

for k ∈ Z. Therefore, for the j–th component, denoting by (cϑ,ν)j the j–th row of

the matrix cϑ,ν , we have that

(εϑ,k)j =
∞∑
ν=0

(cϑ,ν)
T
j Y ((k − ν)h).

Denoting

Fk+m
k−m := σ(Y ((k −m)h), . . . , Y ((k +m)h), k ∈ Z, m ∈ N,

we have that
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‖(εϑ,k)j − E
[
(εϑ,k)j | Fk+m

k−m
]
‖L2

=

∥∥∥∥∥
∞∑

ν=m+1

(cϑ,ν)
T
j (Y ((k − ν)h)− E [Y ((k − ν)h) | σ(Y ((k −m)h), . . . , Y ((k +m)h))])

∥∥∥∥∥
L2

≤
∞∑

ν=m+1

∥∥(cϑ,ν)
T
j (Y ((k − ν)h)− E [Y ((k − ν)h) | σ(Y ((k −m)h), . . . , Y ((k +m)h))])

∥∥
L2

where we used the Minkowski inequality. By definition of the L2–norm and the

Cauchy–Schwarz inequality, we have

∥∥(cϑ,ν)
T
j (Y ((k − ν)h)− E [Y ((k − ν)h) | σ(Y ((k −m)h), . . . , Y ((k +m)h))])

∥∥
L2

=
(
E
[
|(cϑ,ν)Tj (Y ((k − ν)h)− E [Y ((k − ν)h) | σ(Y ((k −m)h), . . . , Y ((k +m)h))])|2

]) 1
2

≤ ‖(cϑ,ν)Tj ‖
(
E
[
‖Y ((k − ν)h)− E [Y ((k − ν)h) | σ(Y ((k −m)h), . . . , Y ((k +m)h))] ‖2

]) 1
2

= ‖(cϑ,ν)Tj ‖‖Y ((k − ν)h)− E [Y ((k − ν)h) | σ(Y ((k −m)h), . . . , Y ((k +m)h))] ‖L2

≤ ‖(cϑ,ν)Tj ‖‖Y ((k − ν)h)‖L2

= ‖(cϑ,ν)Tj ‖
(
E
[
‖Y ((k − ν)h)‖2

]) 1
2

≤ ‖cϑ,ν‖
(
E
[
‖Y (h)‖2

]) 1
2 ,

where we also used that the process (Y (nh))n∈Z has mean zero and is stationary.

Defining vm :=
∑∞

ν=m+1 ‖cϑ,ν‖, we see that this sequence is of size −∞ since ‖cϑ,ν‖ ≤
Cρν for ρ ∈ (0, 1) by Lemma 2.22a). Letting dt = d1 := (E [‖Y (h)‖2])

1
2 we obtain the

assertion. The proof for (∂iεϑ,n)n∈Z is analogous, using Lemma 2.22b).

A useful property of near epoch dependence is that one can state readily verified

conditions under which this property is preserved by transformations. This is the

subject of the following lemma:

Lemma 4.9. Assume that (Sn)n∈Z and (Tn)n∈Z are one–dimensional stochastic

processes, which are L2–NED on a process (Rn)n∈Z of size −ϕS and −ϕT , respectively.

a) The process (Sn + Tn)n∈Z is L2–NED on (Rn)n∈Z of size −min{ϕS, ϕT}.

b) Assume, in addition, that ϕS = ϕT and that E [|Sn|2r] <∞ and E [|Tn|2r] <∞
for every n ∈ Z and some r > 2. Then, (SnTn)n∈Z is L2–NED on (Rn)n∈Z of

size −ϕS(r−2)
2(r−1)

.

c) Assume, in addition, that the function τ : Rd → R satisfies |τ(x) − τ(y)| ≤
c‖x − y‖ for every x, y ∈ Rd and some c > 0. Moreover, assume that for
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i = 1, . . . , d, the processes (S
(i)
n )n∈Z are all L2–NED on a process (Rn)n∈Z of

a common size −ϕS. Then the process (τ(S
(1)
n , . . . , S

(d)
n ))n∈Z is L2–NED on

(Rn)n∈Z of size −ϕS.

Proof. Part a) is [Davidson 1994, Theorem 17.8]. Part b) is [Davidson 1994, Example

17.17]. Part c) is a special case of [Davidson 1994, Theorem 17.12].

We need these three specific results to obtain the following lemma:

Lemma 4.10. For every c ∈ RN(Θ) and every ϑ ∈ Θ, the one–dimensional process

(cT∇ϑ(ρ(εϑ,n)))n∈Z is L2–NED of size −∞ on (Y (nh))n∈Z.

Proof. First, observe that it holds

cT∇ϑ(ρ(εϑ,n)) =

N(Θ)∑
l=1

cl

(
d∑
j=1

(∂jρ)(εϑ,n)(∂lεϑ,n)j

)
.

By Assumption F.3, Lemma 4.8 and Lemma 4.9c), the process ((∂jρ)(εϑ,n))n∈Z is

L2–NED of size −∞ on (Y (nh))n∈Z for every j ∈ {1, . . . , d}. Again by Lemma 4.8,

((∂lεϑ,n)j)n∈Z is also L2–NED of size −∞ on (Y (nh))n∈Z for every j ∈ {1, . . . , d}.
By the moving average representations of Lemma 2.22a) and b) and Assump-

tion B.9 and F.3, there exists a δ > 0 such that E
[
|(∂jρ)(εϑ,n)|4+δ

]
< ∞ and

E
[
|(∂lεϑ,n)j|4+δ

]
< ∞. Applying Lemma 4.9b) with r = 2 + δ

2
, it follows that the

process ((∂jρ)(εϑ,n)(∂lεϑ,n)j)n∈Z is L2–NED of size −∞ on (Y (nh))n∈Z. Repeatedly

applying Lemma 4.9a) allows to deal with the sums and arrive at the assertion of

the lemma.

Before we can obtain the desired central limit theorem, we need to consider the

behavior of the variance of the gradient of the objective function. This is the topic

of the following two lemmas, in which we first establish that this variance exists for

every n ∈ N and then consider the asymptotic behavior under suitable scaling. The

first lemma is analogous to [Schlemm and Stelzer 2012, Lemma 2.12].

Lemma 4.11. For each ϑ ∈ Θ and every i ∈ {1, . . . , r} the variance of ∂iLM (ϑ, Y n)

is finite.

Proof. For fixed i ∈ {1, . . . , r} it holds that

∂iLM(ϑ, Y n) =
1

n

n∑
k=1

d∑
j=1

(∂jρ)(εϑ,k)(∂iεϑ,k)j =:
1

n

n∑
k=1

∂igϑ,k.
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Two applications of the Cauchy–Schwarz inequality and Assumption F.3 give the

following chain of estimates:

Var(∂iLM(ϑ, Y n)) =
1

n2

n∑
k,l=1

d∑
j,j′=1

Cov ((∂jρ)(εϑ,k)(∂iεϑ,k)j; (∂j′ρ)(εϑ,l)(∂iεϑ,l)j′)

≤ 1

n2

n∑
k,l=1

d∑
j,j′=1

√
Var ((∂jρ)(εϑ,k)(∂iεϑ,k)j)

√
Var ((∂j′ρ)(εϑ,l)(∂iεϑ,l)j′)

≤ 1

n2

n∑
k,l=1

d∑
j,j′=1

√
E
[
((∂jρ)(εϑ,k)(∂iεϑ,k)j)

2]√E
[
((∂j′ρ)(εϑ,l)(∂iεϑ,l)j′)

2]
≤ 1

n2

n∑
k,l=1

d∑
j,j′=1

(
E
[
((∂jρ)(εϑ,k))

4] 1
4 E
[
((∂iεϑ,k)j)

4] 1
4 ·

· E
[
((∂j′ρ)(εϑ,l))

4] 1
4 E
[
((∂iεϑ,l)j′)

4] 1
4

)
≤ CE

[
‖εϑ,1‖4

] 1
2

d∑
j,j′=1

E
[
((∂iεϑ,1)j)

4] 1
4 E
[
((∂iεϑ,1)j′)

4] 1
4 <∞

since the fourth moments appearing here are finite by Assumption B.9 and the

moving average representations given in Lemma 2.22.

As before, the correct scaling of the variance of the gradient to obtain convergence

is by a factor n, as the following lemma shows:

Lemma 4.12. For every ϑ ∈ Θ, there exists a deterministic matrix IM(ϑ) such that

nVar (∇ϑLM(ϑ, Y n))
n→∞−→ IM(ϑ).

Proof. Since the element in row m and column l of the matrix nVar (∇ϑLM(ϑ, Y n))

can be written as

I
(m,l)
ϑ,n := nCov(∂mLM(ϑ, Y n), ∂lLM(ϑ, Y n)) =

1

n

n∑
k=1

n∑
t=1

Cov(∂mρ(εϑ,k), ∂lρ(εϑ,t))

it follows from [Davidson 1994, p. 266] that a sufficient condition for the statement

to hold is the summability of the sequence (Cov(∂mρ(εϑ,k), ∂lρ(εϑ,k+∆)))∆∈N for

every k ∈ Z and m, l ∈ {1, . . . , N(Θ)}. Since by Lemma 4.10, both (∂mρ(εϑ,k))k∈Z

and (∂lρ(εϑ,k))k∈Z are L2–NED of size −∞ on (Y (kh))k∈Z and (Y (kh))k∈Z is an

exponentially strongly mixing process by Proposition 2.24 (i.e. its mixing coefficients

are of size −∞), the assertion now follows from [Davidson 1994, Theorem 17.7] and

the comment right after that theorem.



4.2. M-estimators for MCARMA processes 107

We can now put these results together for the central limit theorem:

Lemma 4.13. It holds that

√
n∇ϑL̂M(ϑ0, Y

n)
D−→ N (0, IM(ϑ0)), n→∞.

Proof. By Lemma 4.3b), it suffices to show that the random variable
√
n∇ϑLM (ϑ0, Y

n)

has the limiting normal distribution given in the statement of the lemma. We make

use of the Cramér–Wold device and show that

√
ncT∇ϑLM(ϑ0, Y

n)
D−→ N (0, cTIM(ϑ0)c), n→∞,

for every c ∈ RN(Θ). To this end, note that, as already used in the proof of Lemma 4.10,

there exists a δ > 0 such that

E
[
|cT∇ϑLM(ϑ0, Y

n)|4+δ
]
<∞

holds. Moreover, by Lemma 4.10, (cT∇ϑ(ρ(εϑ,n)))n∈Z is L2–NED of size −∞ on

(Y (nh))n∈Z, which by Proposition 2.24 is an exponentially strongly mixing process,

i.e. an α–mixing process of size −∞. Lastly, it holds that

Var(cT∇ϑLM(ϑ0, Y
n)) = cT

1

n2
Var

(
n∑
k=1

∇ϑgϑ0,k

)
c

is OP(n−1) by Lemma 4.12, i.e. Var(
∑n

k=1∇ϑgϑ0,k) is OP(n). Therefore, the conditions

of [White 1996, Theorem A.3.7] are satisfied and we obtain that

cT∇ϑLM(ϑ0, Y
n)√

Var(cT∇ϑLM(ϑ0, Y n))
=

cT
∑n

k=1∇ϑgϑ0,k√
Var(cT

∑n
k=1∇ϑgϑ0,k)

D−→ N (0, 1), n→∞,

from which we deduce the assertion by Lemma 4.12 and Slutzky’s lemma.

We now need one further lemma which deals with the limiting behavior of the

second derivative of the objective function, which will appear again in the asymptotic

covariance matrix of our estimator. The statement corresponds to the one of [Schlemm

and Stelzer 2012, Lemma 2.17].

Lemma 4.14. The matrix JM(ϑ0) = limn→∞∇2
ϑL̂M(ϑ0, Y

n) exists, for i, k =

1, . . . , r. Its components are given by

(JM(ϑ0))i,k = E

[(
d∑
j=1

(
d∑
l=1

(∂2
j,lρ)(εϑ0,1)(∂kεϑ0,1)k

)
(∂iεϑ0,1)j + (∂jρ)(εϑ0,1)(∂2

i,kεϑ0,1)j

)]
,
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where (∂kεϑ0,1)k denotes the k–th component of the vector ∂kεϑ0,1 (and likewise for

the other vectors involved).

Proof. By Lemma 4.3c), the limit of ∇2
ϑL̂M(ϑ0, Y

n) is the same as the one of

∇2
ϑLM(ϑ0, Y

n). Observe that

(∇2
ϑLM(ϑ0, Y

n))i,k =
1

n

n∑
k′=1

d∑
j=1

((
d∑
l=1

(∂2
j,lρ)(εϑ0,k′)(∂kεϑ0,k′)k

)
(∂iεϑ0,k′)j

+ (∂jρ)(εϑ0,k′)(∂
2
i,kεϑ0,k′)j

)
,

By Lemma 2.22b), each partial derivative ∂kεϑ0,n (n ∈ Z) is a measurable function

of the ergodic process (Y (nh))n∈Z. Hence, the process (∂kεϑ0,n)n∈Z is ergodic again.

For the same reason, the process (∂2
i,kεϑ0,n)n∈Z is also ergodic by the moving average

representation of Lemma 2.22c). By two applications of the Cauchy–Schwarz inequal-

ity, the moving average representations in Lemma 2.22b) and Lemma 2.22c) and the

fact that the data–generating process Y ((nh))n∈Z has finite (4 + δ)–th moments we

obtain that

E
[∥∥(∂2

j,lρ)(εϑ0,k′)(∂kεϑ0,k′)k(∂iεϑ0,k′)j + (∂jρ)(εϑ0,k′)(∂
2
i,kεϑ0,k′)j

∥∥]
F.3

≤ CE
[
(‖εϑ0,k′‖+ ‖(∂2

j,lρ)(0)‖)‖∂kεϑ0,k′‖‖∂iεϑ0,k′‖
]

+ C ′E
[
(‖εϑ0,k′‖+ ‖(∂jρ)(0)‖)‖∂2

i,kεϑ0,k′‖
]

≤ CE
[
(‖εϑ0,k′‖+ ‖(∂2

j,lρ)(0)‖)2
] 1

2 E
[
‖∂kεϑ0,k′‖2‖∂iεϑ0,k′‖2

] 1
2

+ C ′E
[
(‖εϑ0,k′‖+ ‖(∂jρ)(0)‖)2

] 1
2 E
[
‖∂2

i,kεϑ0,k′‖2
] 1

2

≤ CE
[
(‖εϑ0,k′‖+ ‖(∂2

j,lρ)(0)‖)2
] 1

2 E
[
‖∂kεϑ0,k′‖4

] 1
4 E
[
‖∂iεϑ0,k′‖4

] 1
4

+ C ′E
[
(‖εϑ0,k′‖+ ‖(∂jρ)(0)‖)2

] 1
2 E
[
‖∂2

i,kεϑ0,k′‖2
] 1

2 <∞.

Hence, (JM(ϑ0))i,k is finite for i, k ∈ {1, . . . , r}. The assertion now follows from

Birkhoff’s Ergodic Theorem.

We are now ready to state the theorem about the asymptotic distribution of the

M-estimator:

Theorem 4.15. Assume that the matrix JM(ϑ0) from Lemma 4.14 is invertible.

Then the M-estimator ϑ̂nM defined in (4.3) is asymptotically normally distributed, i.

e.
√
n
(
ϑ̂nM − ϑ0

)
D−→

n→∞
N (0,ΞM(ϑ0)),

where the asymptotic covariance matrix ΞM(ϑ0) = JM(ϑ0)−1IM(ϑ0)JM(ϑ0)−1 is given
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by

IM(ϑ0) = lim
n→∞

nVar(∇ϑLM(ϑ0, Y
n)) and JM(ϑ0) = lim

n→∞
∇2
ϑLM(ϑ0, Y

n).

Proof. From Theorem 4.5 we know that ϑ̂nM converges almost surely to ϑ0. Moreover,

the true parameter is an element of the interior of the parameter space by B.8

and hence the same is true for ϑ̂nM for n large enough. Alas, the property that ϑ̂nM

minimizes L̂M(ϑ, Y n) can be written as ∇ϑL̂M(ϑ̂nM, Y
n) = 0. Now, we do a Taylor

expansion of the function ∇ϑL̂M (ϑ, Y n) around the true parameter ϑ0. This gives us

the equation

0 =
√
n∇ϑL̂M(ϑ0, Y

n) +∇2
ϑL̂M(ϑ

n
, Y n)

√
n(ϑ̂nM − ϑ0),

where ϑ
n

is between ϑ0 and ϑ̂nM in the sense of the Euclidean norm. Moreover,

‖∇2
ϑL̂M(ϑ

n
, Y n)−∇2

ϑLM(ϑ0, Y
n)‖ ≤ sup

ϑ∈Θ
‖∇3

ϑLM(ϑ, Y n)‖‖ϑn − ϑ0‖.

As in the proof of [Schlemm and Stelzer 2012, Theorem 2.5], it can be deduced

from the compactness of Θ that the right–hand side converges almost surely to 0 as

n→∞. Together with Lemma 4.13 and Lemma 4.14 and the assumed invertability

of JM(ϑ0) this delivers the assertion of the theorem.

An important special case of an M–estimator is the least squares estimator. Param-

eter estimation of CARMA processes via the least squares estimator has been studied

in Brockwell et al. [2011], but only in the one–dimensional case and for subordinators

as driving Lévy processes. We generalize these results to the multivariate framework

and to more general Lévy processes. The least squares estimator fits the framework

of this section by choosing ρ(x) = ‖x‖22 in (4.3). Then, it is clear that Assumption F

is fulfilled, as

(∂iρ)(x) = 2xi and (∂2
i,jρ)(x) = 2δi,j, ∀i, j ∈ {1, . . . , d}, ∀x ∈ Rd.

Next, we check that QM(ϑ) has a unique minimum at ϑ = ϑ0:

Lemma 4.16. Assume that the space Θ with associated family of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B and contains ϑ0 with

Yϑ0 = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0). Then, for ρ(x) = ‖x‖22, the function QM has a

unique minimum at ϑ0.
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Proof. It holds

QM(ϑ) = E
[
‖εϑ,1 − εϑ0,1 + εϑ0,1‖2

2

]
=

d∑
i=1

E
[
((εϑ,1)i − (εϑ0,1)i + (εϑ0,1)i)

2
]

=
d∑
i=1

(
E
[
((εϑ,1)i − (εϑ0,1)i)

2
]

+ E
[
(εϑ0,1)2

i

]
+ Cov((εϑ,1)i − (εϑ0,1)i; (εϑ0,1)i)

)
=

d∑
i=1

(
E
[
((εϑ,1)i − (εϑ0,1)i)

2
]

+ (Vϑ0)ii
)

≥ tr(Vϑ0),

with equality if and only if ϑ = ϑ0 due to B.6. Note that we used that the difference

εϑ,1 − εϑ0,1 is an element of the Hilbert space spanned by {Y (kh), k ≤ 0} and that

εϑ0,1 is orthogonal to this space by construction to drop out the covariance. This

completes the proof.

We can now easily obtain the following result on the asymptotic behavior of the

least squares estimator:

Theorem 4.17. Assume that the space Θ with associated family of continuous–time

state space models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B and contains ϑ0 with

Yϑ0 = MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0).

Denote

ϑ̂nLS = arg min
ϑ∈Θ

1

n
L̂LS(ϑ, Y n) := arg min

ϑ∈Θ

1

n

n∑
k=1

‖ε̂ϑ,k‖2.

Then, as n→∞,

ϑ̂nLS → ϑ0 P-a.s.,

and
√
n
(
ϑ̂nLS − ϑ0

)
D→ N (0,ΞLS(ϑ0)),

where

ΞLS(ϑ0) = J −1
LS (ϑ0)ILS(ϑ0)J −1

LS (ϑ0)

with

ILS(ϑ0) = lim
n→∞

nVar(∇ϑLLS(ϑ, Y n)) and JLS(ϑ0) = lim
n→∞

∇2
ϑLLS(ϑ, Y n)).
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Proof. The theorem is an immediate consequence of Theorem 4.5 and Theorem 4.15.

Remark 4.18. It is also possible to use the explicit representation of the partial

derivatives of the function LLS(ϑ, Y n) to obtain the same result on the asymptotic

behavior of ϑ̂nLS by using the same techniques as in [Schlemm and Stelzer 2012].

Namely, Lemma 4.13 can be proven analogous to [Schlemm and Stelzer 2012, Lemma

2.14 and Lemma 2.16]. The principle idea is the same as when using the general

theory on near epoch dependence: the process of interest can be approximated by a

process that has the desired asymptotic behavior (because it depends on finitely many

values of a strongly mixing process) and the approximation error is asymptotically

negligible. In this sense, using the theory on NED processes naturally generalizes the

ideas of Schlemm and Stelzer [2012] to more general objective functions ρ.

Another example for an M–estimator is the so–called Tukey bisquare estimator.

For a constant k > 0 it is defined by choosing the loss function ρ as

ρ(x) =
k2

6

(
1−

(
1− ‖x‖

2

k2

)3
)
1{‖x‖≤k}.

Here, it holds that

∂iρ(x) = ‖x‖
(

1− ‖x‖
2

k2

)2

xi1{‖x‖≤k}.

Since all partial derivatives are non–zero only on a compact set, it is obvious that

each partial derivative satisfies the Lipschitz condition of Assumption F.3 by the mul-

tivariate mean value theorem. The same argument can be made for the second–order

partial derivatives. In contrast to the least squares estimator, the loss function of

the Tukey bisquare estimator is bounded. It will reappear later when we consider

generalized M–estimators in the context of indirect estimation for CARMA processes

(cf. Example 4.25).

In summary, we have seen that M–estimators can be defined for MCARMA

processes and that the asymptotics can be studied with similar tools as in the

maximum likelihood case. While these are pleasant and interesting results, they do

not achieve what we truly want: an estimator that is robust towards outliers. This

is true because it is well–known from the literature that this class of estimators is

not robust towards additive or replacement outliers for ARMA(p,q) processes with

q > 0. This is due to the fact that an outlier at time t has an effect on all innovations
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for every t′ ≥ t (Muler et al. [2009], [Maronna et al. 2006, Chapter 8]), which, in

turn, is caused by the linear innovations of an ARMA(p,q) process being an infinite

moving average sequence of all past observations. For discretely sampled MCARMA

processes, one can on the one hand see them as weak VARMA processes ([Schlemm

and Stelzer 2011, Theorem 4.2]) and on the other hand, their linear innovations are

also infinite moving average sequences of the past (cp. Lemma 2.22a)). For these

reasons, we immediately realize that the problems from the ARMA scenario carry

over. We therefore need yet another ansatz if we want to obtain a robust estimator,

which will be the topic of the following section.
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4.3. Indirect estimation for CARMA processes

In the rest of this chapter, we restrict ourselves to CARMA processes, i.e. to the case

d = 1. As mentioned at the end of the last section, constructing a robust estimator

directly by using the discrete–time state space model or weak ARMA representation

of a sampled CARMA process is difficult because the innovations are a moving

average process of infinite order. One way out would be to calculate a different kind

of“innovations”by using the robust filter as proposed by Masreliez [1975] and base the

estimator on these robust innovations ([Maronna et al. 2006, Section 8.8]). However,

this approach has the downside that it yields biased estimators and no asymptotic

theory is available (Muler et al. [2009]). For this reason, we take yet another road

and will make use of the so–called method of indirect inference, originally proposed

by Smith [1993] and extended by Gouriéroux et al. [1993] (see also the overview in

Gouriéroux and Monfort [1997]).

The core idea of the method is avoid estimating the parameter of interest directly.

Originally, the authors named as reasons for this ansatz, for example, that a suitable

likelihood function is not available or too complex to handle. The authors then

propose to estimate an auxiliary, different parameter instead and use the resulting

estimate in conjunction with simulated data to construct an estimator for the original

parameter of interest. This method has been successfully used in different contexts,

see e.g. [Gouriéroux and Monfort 1997, Chapter 4], Jiang and Turnbull [2004], de

Luna and Genton [2001] and de Luna and Genton [2000]. The latter two papers

recognized that it is possible to construct robust estimators via this approach, even

for model classes where direct robust estimation is difficult (e.g. ARMA processes).

The reason is that the auxiliary parameter, which is estimated from the actual,

outlier–contaminated data, can be chosen as a parameter of a simpler model than the

original one that admits robust estimation. In de Luna and Genton [2001] and also

in our case, the auxiliary model is an autoregressive process, since robust estimation

of this class of processes via so–called generalized M–estimators (GM estimators) is

well–understood from a theoretical point of view. We therefore start by studying

how we can obtain an auxiliary AR representation of a discretely sampled CARMA

process.

4.3.1. The AR(r) representation of a CARMA process

In the following, we always assume that we operate in a parameter space Θ which

fulfills Assumptions B.1 - B.9 and that there exists a parameter ϑ0 ∈ Θ with

Y = CARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0). Since we are in one dimension, we do not need to
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assume the Echelon form for the models in this parameter space. Instead, in the

following we always work with the simpler identifiable parametrization introduced

in Example 3.1, i.e. we use the coefficients a1, . . . , ap and b0, . . . , bq of P and Q as

defined in Definition 2.2 as parameters and assume that for ϑ ∈ Θ the polynomials

Pϑ and Qϑ have no common zeros. The corresponding matrices Aϑ, Bϑ and Cϑ

(which, in truth, is independent of ϑ) are then given as in Definition 2.3. For any

ϑ ∈ Θ, the auxiliary AR(r) representation of the sampled processes (Yϑ(nh))n∈Z is

defined as follows:

Definition and Proposition 4.19. For r ≥ 2p− 1 we call

πϑ := (πϑ,1, . . . , πϑ,r, σϑ)

the auxiliary parameter of the AR(r) representation of (Yϑ(nh))n∈Z if the stationary

process (Uϑ,n)n∈Z defined by

Uϑ,n := Yϑ(nh)−
r∑
i=1

πϑ,r+i−1Yϑ(h(n− i)). (4.5)

with E[Uϑ,1] = 0 and Var(Uϑ,1) = σ2
ϑ satisfies

E [Uϑ,r+1Yϑ((r + 1− j)h)] = 0 ∀j = 1, . . . , r. (4.6)

For every ϑ ∈ Θ and every r ≥ 2p− 1, πϑ exists and is unique.

Proof. First, we need to show that for any r ∈ N, the covariance matrix of

(Yϑ(h), . . . , Yϑ((r + 1)h)) is non–singular. To see this, note that the autocovari-

ance function of (Yϑ(nh))n∈Z, which is a stationary process, is

γYϑ(z) = Cϑ eAϑhz Γ0C
T , z ∈ Z,

by [Schlemm and Stelzer 2012, Proposition 3.1] with Γ0 =
∫∞

0
eAϑuBϑΣL

ϑB
T
ϑ eAϑu du.

Since the covariance matrix ΣL
ϑ is non–singular by Assumption B.2 and Cϑ has full

rank by Assumption B.4 we have that γYϑ(0) > 0. Moreover, the eigenvalues of Aϑ

have strictly negative real part by B.3 and therefore γYϑ(z)→ 0 as z →∞ holds. By

[Brockwell and Davis 1991, Proposition 5.1.1], it therefore follows that the covariance

matrix of (Yϑ(h), . . . , Yϑ((r + 1)h)) is non–singular for every r ∈ N.

Having this, it follows from [Brockwell and Davis 1991, §8.1] that there exist unique

numbers πϑ,1, . . . , πϑ,r, σ
2
ϑ0

, which solve the set of r+ 1 Yule–Walker equations. These
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equations state that Var(Uϑ,1) = σ2
ϑ and

0 = E

(Yϑ((r + 1)h)−
r∑
i=1

πϑ,r+i−1Yϑ(h(r + 1− i))


Yϑ(rh)

...

Yϑ(h)


 , (4.7)

which shows the assertion because of the stationarity of the process (Yϑ(nh))n∈Z.

Remark 4.20. Since

Yϑ(nh) =
r∑
i=1

πϑ,r+i−1Yϑ(h(n− i)) + Uϑ,n,

(Uϑ,n)n∈Z can be interpreted as the noise sequence driving the auxiliary AR(r) repre-

sentation of (Yϑ(nh))n∈Z. Per construction, however, the sequence (Uϑ,n)n∈Z is not an

uncorrelated sequence – Uϑ,n is only uncorrelated with Yϑ(h(n− 1)), . . . , Yϑ(h(n− r)).

From this property, it follows that Uϑ,n can be interpreted as the error of the best

linear predictor of Yϑ(nh) in terms of Yϑ(h(n− 1)), . . . , Yϑ(h(n− r)).

For the asymptotic results, we will later need to study the map that links the

original parameter space to the auxiliary one. The next definition introduces this

map and states under which conditions the properties that we require later hold:

Definition and Proposition 4.21. Define the parameter space Π ⊆ Rr+1 as the

set containing all possible parameter vectors of stationary, invertible AR(r) processes.

The map π from Θ to Π with ϑ 7→ πϑ and πϑ as given in Definition 4.19 is called

the link function or binding function. π is injective and continuously differentiable if

r ≥ 2p− 1.

Proof. We make use of the fact that a discretely observed CARMA(p, q) process

(Yϑ(nh))n∈Z admits a representation as a stationary, invertible ARMA(p, p−1) process

with weak white noise of the form

PARMA(B)Yϑ(nh) = QARMA(B)εϑ,n, (4.8)

where (εϑ,k)k∈Z is the innovations sequence of (Yϑ(kh))k∈Z (cf. Definition 2.19),

PARMA(z) =
∏p

i=1(1− ehλi z), the λi being the eigenvalues of the matrix Aϑ in (2.5)

and QARMA is a monic, Schur–stable polynomial (cp. [Schlemm and Stelzer 2011,

Theorem 4.2] for the case that the eigenvalues of A are all distinct and [Brockwell and

Lindner 2009, Lemma 2.1] for the general case). The coefficients of QARMA can be

calculated by identifying them with the coefficients of the invertible moving average
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process whose autocorrelations at lags 1, . . . , p− 1 match those of PARMA(B)Yϑ(nh),

see [Brockwell et al. 2011, Section 4]. We can now decompose the map π : Θ→ Π

into three separate maps, for which we define the following spaces:

M := {(a1, . . . , ap, b1, . . . , bp−1, σ) ∈ R2p : The coefficients define a weak

ARMA(p, p− 1) model as in (4.8) for which PARMA and QARMA

have no common zeros.} ⊆ R2p

G := {γ = (γ0, . . . , γr) ∈ Rr+1 : The coefficients define the autocovariances

up to order r of a stationary stochastic process} ⊆ Rr+1

Denote by π1 : Θ→M the map which maps the parameters of a CARMA process

to the coefficients of the weak ARMA(p, p− 1) representation of its sampled version.

Denote by π2 :M→ G the map which maps the parameters of a weak ARMA(p, p−1)

process to its autocovariances of lags 0, . . . , r. Lastly, denote by π3 : G → Π the map

which maps a vector of autocovariances γ to the parameters of an AR(r) process of

the form in (4.5). Then we have that π = π3 ◦ π2 ◦ π1.

Because we assumed that the beginning of this section that Θ satisfies Assumption B,

we obtain in particular that the family of processes ((Yϑ(nh))n∈Z, ϑ ∈ Θ) is identifiable

(cf. Theorem 2.21). Since each of the sampled processes admits exactly one weak

ARMA(p, p− 1) representation, the map π1 is injective.

Next, the map π2 is injective if r ≥ p + p − 1 = 2p − 1. The reason is that

by the method of [Brockwell and Davis 1991, p. 93], the autocovariances γ(k),

k ∈ Z, of an ARMA(p, p− 1) process are completely determined as the solution of

a difference equation with p boundary conditions, which depend on the coefficient

vector (a1, . . . , ap, b1, . . . , bp−1, σ). Hence, viewing (γ0, . . . , γr) as solution of those

recursive equations, injectivity of π2 always holds if r ≥ 2p−1, since then the number

of equations is greater then or equal to the number of variables (see also [de Luna

and Genton 2001, Section 4.1]). Finally, the map π3 is even bijective, because it is

defined by the Yule–Walker–equations for an AR(r) process. Hence, π is injective

as a composition of three injective maps if r ≥ 2p− 1. The differentiability of the

map π follows from the fact that each of the maps π1, π2 and π3 is differentiable.

For π1, this follows from Assumption B.4 and the fact that the coefficients of the

weak ARMA representation are determined by the CARMA parameters. Notably,

the AR parameters are determined by the eigenvalues of the matrix Aϑ and the

MA parameters can be obtained from the CARMA parameters as in the proof

of [Brockwell and Davis 1991, Proposition 3.2.1], see also [Brockwell et al. 2011,

Proposition 3]. From the algorithmic description of π2 given by [Brockwell and
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Davis 1991, p. 93], one sees immediately that this map is differentiable, too. The

differentiability of π3 follows from the fact that it is defined by the Yule–Walker

equations, which are differentiable with respect to γ by construction.

In the following we always assume that r ≥ 2p− 1.

4.3.2. Definition and asymptotics of the indirect

estimator

We will now introduce the main idea of this section. Remember that our aim is to

obtain an estimator for the parameters of a CARMA process that is well–performing

in the absence of outliers in the data as well as in the presence of outliers, i. e. robust.

To achieve this goal, as explained at the start of the section, we will now construct

an indirect estimator. Moreover, we assume in this subsection that there are no

outliers in the data, i.e. we have observations Y n = (Y (h), . . . , Y (nh)) from the

data–generating process (Y (kh))k∈Z. We do this in order to first study the asymptotic

behavior of the indirect estimator in the absence of outliers.

For fixed r, denote by π̂n an estimator of πϑ0 that is calculated from the observations

Y n. Possible choices for this estimator will be discussed later in Subsection 4.3.3.

With regard to robustness, we will later choose a robust estimator in this step. If we

could analytically invert the link function π and calculate π−1(π̂n), then we would

be able to obtain an estimator of ϑ0 since π̂n estimates πϑ0 . However, this is not

possible in general since no analytic representation of π exists. To overcome this

problem, we now perform a second estimation, which is based on simulations and

constitutes the other building block of indirect estimation.

We fix a number s ∈ N and simulate a sample path of length sn of a Lévy process

(LS(t))t∈R, say. We assume that this Lévy process satisfies E[|LS(1)|4+δ] <∞ for a

δ > 0. Then, for a fixed parameter ϑ ∈ Θ we then generate a sample path of the

associated CARMA process, using the simulated path of LS. This gives us a vector

of “pseudo–observations” (Yϑ(h), . . . , Yϑ(snh)) of length sn.

Note that, strictly speaking, Yϑ is an abuse of notation here, since the parameter

ϑ ∈ Θ also contains elements that parametrize the Lévy process Lϑ which drives

Yϑ. Of course, if we use the fixed Lévy process LS, those parameters are not used.

However, we chose not to introduce another new notation here and instead keep ϑ as

parameter, remembering that we only really parametrize the corresponding matrices

Aϑ, Bϑ and Cϑ with it from here on. This of course has the consequence that the

indirect estimator will, eventually, only give us an estimator for the entries of ϑ which

parametrize Aϑ, Bϑ and Cϑ. If one is also interested in the driving Lévy process, one
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would then have to resort to another estimation later on (cf. Brockwell and Schlemm

[2013]).

Returning to the pseudo–observations, we can calculate an estimate of πϑ by applying

an estimator to the pseudo–observations (Yϑ(h), . . . , Yϑ(snh)). We do not need to

use a robust estimator in this step, because we have simulated the observations and

therefore can be sure that no outliers are present in data. We denote this estimator

by π̂nS(ϑ). Obviously, varying ϑ, while keeping n and s fixed, will result in different

values of π̂nS(ϑ). This is a deciding observation, because the idea is now to choose

that value of ϑ as estimate for ϑ0 which minimizes a suitable distance between π̂n

and π̂nS(ϑ). The formal definition is as follows:

Definition 4.22. Let π̂n be an estimator of πϑ0 calculated from the data Y n, let π̂nS(ϑ)

be an estimator of πϑ calculated from the “pseudo–observations” (Yϑ(h), . . . , Yϑ(snh))

and let Ω be a symmetric, positive definite weighting matrix. Define the function

LInd : Θ→ [0,∞) by

LInd(ϑ, Y
n) := arg min

ϑ∈Θ
(π̂n − π̂nS(ϑ))TΩ(π̂n − π̂nS(ϑ)). (4.9)

Then, the indirect estimator of ϑ0 is defined as

ϑ̂nInd = arg min
ϑ∈Θ

LInd(ϑ, Y
n). (4.10)

Note that the function LInd, which we minimize to obtain the indirect estimator,

is not a likelihood function as the notation might suggest, but we nevertheless chose

this symbol to keep the notation as consistent as possible with the concepts used

earlier in the thesis. Figure 4.1 gives an overview of the indirect estimation procedure

(inspired by [de Luna and Genton 2001, Figure 1]).
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CARMA(p,q) process,
discretely observed

CARMA(p,q) process,
Parameter: ϑ0.

identifiability sampling

Weak ARMA(p,p-1) process
representation

AR(r) process.
Parameter: πϑ0

auxiliary model

Observed data
Ỹ1, . . . , Ỹn contains outliers

π̂n

robust estimator

Pseudo–data
Yϑ(h), . . . , Yϑ(snh).

π̂nS(ϑ)

simulate Yϑ
for given ϑ

outlier–free

efficient estimator

ϑ̂nInd

optimization in ϑ

Figure 4.1.: Flowchart of the indirect estimation procedure
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With respect to the asymptotic behavior of the indirect estimator, the basic

conclusion is now that if the two estimators used in the construction are strongly

consistent and asymptotically normally distributed, then the indirect estimator will

be strongly consistent for ϑ0 and also asymptotically normally distributed. More

precisely, we have the following theorem:

Theorem 4.23. a) Assume that r ≥ 2p− 1 and that

π̂n
n→∞−→ πϑ0 P-a.s. (4.11)

Analogously, assume that

sup
ϑ∈Θ
‖π̂nS(ϑ)− πϑ‖

n→∞−→ 0, P-a.s. (4.12)

Then it holds that

ϑ̂nInd −→ ϑ0 P-a.s., n→∞. (4.13)

b) In addition to the assumptions of part a), assume that for each n ∈ N the map

ϑ 7→ π̂nS(ϑ) is continuously differentiable. Moreover, assume for every ϑ ∈ Θ

that
√
ns(π̂nS(ϑ)− πϑ)

D−→ N (0,ΞS(πϑ)), n→∞, (4.14)

that
√
n(π̂n − πϑ0)

D−→ N (0,ΞD(πϑ0)), n→∞, (4.15)

and that for any sequence (ϑ
n
)n∈N with ϑ

n −→ ϑ0 P-a.s. it also holds

∇ϑπ̂
n
S(ϑ

n
) −→ ∇ϑπϑ0 , P-a.s., n→∞. (4.16)

Then it holds that

√
n(ϑ̂nInd − ϑ0)

D−→ N (0,ΞInd(ϑ0)), n→∞, (4.17)

where

ΞInd(ϑ0) = (JInd(ϑ0))−1IInd(ϑ0)(JInd(ϑ0))−1

for

JInd(ϑ0) = ∇ϑπ
T
ϑ0

Ω∇ϑπϑ0

and

IInd(ϑ0) = (∇ϑπϑ0)TΩ

(
ΞD(πϑ0) +

1

s
ΞS(πϑ0)

)
Ω∇ϑπϑ0 .
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Proof. a) We first start by proving the consistency. To this end, we define the

function

QInd : Θ→ [0,∞)

ϑ 7→ (πϑ0 − πϑ)TΩ(πϑ0 − πϑ).
(4.18)

With this, we than have that

sup
ϑ∈Θ
|LInd(ϑ, Y n)−QInd(ϑ)|

= sup
ϑ∈Θ
|(π̂n − π̂nS(ϑ))TΩ(π̂n − π̂nS(ϑ))− (πϑ0 − πϑ)TΩ(πϑ0 − πϑ)|

≤ |(π̂n)TΩπ̂n − πTϑ0
Ωπϑ0|+ sup

ϑ∈Θ
|(π̂nS(ϑ))TΩπ̂n − πTϑΩπϑ0|

+ sup
ϑ∈Θ
|(π̂n)TΩπ̂nS(ϑ)− πTϑ0

Ωπϑ|+ sup
ϑ∈Θ
|(π̂nS(ϑ))TΩπ̂nS(ϑ)− πTϑΩπϑ|

The four summands on the right–hand side each converge P-a.s. to zero as

n → ∞. For the first one, this is a consequence of the assumed strong

consistency of π̂n. For the remaining three, the arguments are similar, so that

we treat only the second one exemplary. In the following 〈·, ·〉 denotes the

Euclidean scalar product. We have

sup
ϑ∈Θ
|(π̂nS(ϑ))TΩπ̂n − πTϑΩπϑ0|

= sup
ϑ∈Θ
|(π̂nS(ϑ))TΩπ̂n − πTϑΩπ̂n + πTϑΩπ̂n − πTϑΩπϑ0|

≤ sup
ϑ∈Θ
|(π̂nS(ϑ))TΩπ̂n − πTϑΩπ̂n|+ sup

ϑ∈Θ
|πTϑΩπ̂n − πTϑΩπϑ0|

= sup
ϑ∈Θ
|〈Ω

1
2 (π̂nS(ϑ)− πϑ),Ω

1
2 π̂n〉|+ sup

ϑ∈Θ
|〈Ω

1
2πϑ,Ω

1
2 (π̂n − πϑ0)〉|

≤ sup
ϑ∈Θ
‖Ω

1
2 (π̂nS(ϑ)− πϑ)‖2‖Ω

1
2 π̂n‖2 + sup

ϑ∈Θ
‖Ω

1
2πϑ‖2‖Ω

1
2 (π̂n − πϑ0)‖2

→ 0, P-a.s., n→∞.

Here, we used the Cauchy–Schwarz inequality, the fact that supϑ∈Θ ‖Ω
1
2πϑ‖ is

finite by the continuity of the map π and the compactness of Θ as well as both

(4.11) and (4.12).

Therefore, the function LInd(ϑ, Y n) converges uniformly in ϑ almost surely to

the limiting function QInd(ϑ). Per construction, ϑ̂nInd minimizes LInd(ϑ, Y n)

and QInd has a unique minimum at ϑ = ϑ0 (since Ω is positive definite and the

map π is injective). Therefore, strong consistency of ϑ̂nInd follows by arguing

once more as in the proof of [Schlemm and Stelzer 2012, Theorem 2.4].
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b) For the asymptotic normality, note that

√
n(π̂n − π̂nS(ϑ0)) =

√
n(π̂n − πϑ0) +

√
n(πϑ0 − π̂nS(ϑ0)).

From (4.15), we know that

√
n(π̂n − πϑ0)

D−→ N (0,ΞD(πϑ0))

and from (4.14) we know that

√
n(π̂nS(ϑ0)− πϑ0))

D−→ N
(

0,
1

s
ΞS(πϑ0)

)
, n→∞.

Since both estimators are independent from each other, it follows that

√
n(π̂n − π̂nS(ϑ0))

D−→ N
(

0,ΞD(πϑ0) +
1

s
ΞS(πϑ0)

)
. (4.19)

The defining equation (4.10) can also be expressed as

0 = ∇ϑLInd(ϑ, Y n)
∣∣
ϑ=ϑ̂nInd

= (∇ϑπ̂
n
S(ϑ̂nInd))TΩ(π̂n − π̂nS(ϑ̂nInd)).

We now use a Taylor expansion of order 1 around the true value ϑ0 to obtain:

0 =
√
n∇ϑLInd(ϑ̂nInd, Y

n)

=
√
n∇ϑLInd(ϑ0, Y

n) +
√
n∇2

ϑLInd(ϑ
n
, Y n)(ϑ̂nInd − ϑ0)

= (∇ϑπ̂
n
S(ϑ0))TΩ

√
n(π̂n − π̂nS(ϑ0))− (∇ϑπ̂

n
S(ϑ

n
))TΩ(∇ϑπ̂

n
S(ϑ

n
))
√
n(ϑ̂nInd − ϑ0).

Here, ϑ
n

is such that ‖ϑn − ϑ0‖ ≤ ‖ϑ̂nInd − ϑ0‖. By the strong consistency of

ϑ̂nInd we have ϑ
n → ϑ0 P-a.s. for n→∞. We rewrite this equation to

√
n(ϑ̂nInd − ϑ0) = ((∇ϑπ̂

n
S(ϑ

n
))TΩ(∇ϑπ̂

n
S(ϑ

n
)))−1(∇ϑπ̂

n
S(ϑ0))TΩ

√
n(π̂n − π̂nS(ϑ0))

By (4.19), the fact that π̂nS (·) converges almost surely uniformly to π(·) ((4.12)),

ϑ
n → ϑ0 P-a.s. and (4.16), we obtain as n→∞

√
n(ϑ̂nInd−ϑ0)

D−→ (∇ϑπ
T
ϑ0

Ω∇ϑπϑ0)−1(∇ϑπϑ0)TΩ·N
(

0,ΞD(πϑ0) +
1

s
ΞS(πϑ0)

)
.

(4.20)

This completes the proof.
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Remark 4.24.

a) The asymptotic covariance matrix can also be written as

ΞInd(ϑ0) = H(ϑ0)

(
ΞD(πϑ0) +

1

s
ΞS(πϑ0)

)
H(ϑ0)T ,

where

H(ϑ0) = (∇ϑπ
T
ϑ0

Ω∇ϑπϑ0)−1∇ϑπ
T
ϑ0

Ω. (4.21)

This is the analog of the form given in [de Luna and Genton 2001, Eq. (4.4)].

b) Note that the asymptotic results hold for every r ≥ 2p − 1, but increasing

the auxiliary AR order does not necessarily yield better results. The results

also hold for all s ∈ N, and the asymptotic covariance matrix of ϑ̂nInd does

explicitly depend on s. A consequence is that for s → ∞, we have that

ΞInd(ϑ0)→ H(ϑ0)ΞD(πϑ0)H(ϑ0)T . From the defining formula, we then see that

there is an optimal choice for Ω, namely Ω = (ΞD(πϑ0))
−1, in which case we

obtain that

ΞInd(ϑ0)→ (∇ϑπ
T
ϑ0

(ΞD(πϑ0))−1∇ϑπϑ0)−1, s→∞.

An estimator of ΞInd(ϑ0) can then be obtained by plugging in a consistent

estimator of ΞD(πϑ0) and approximating ∇ϑπϑ0 numerically (de Luna and

Genton [2001], Remark 3-5).
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4.3.3. Estimating the AR(r) representation of a CARMA

process

As evident from the previous subsection, in order to apply the indirect estimator

for a CARMA process, we need strongly consistent and asymptotically normally

distributed estimators for its AR(r) representation. In this subsection, we will study

three such estimators: the class of generalized M–estimators (GM), the least squares

(LS) estimator and the quasi maximum likelihood estimator (QMLE). Ultimately, we

have in mind to use an indirect estimator for which a GM estimator is applied to

the outlier–affected data and the LS or QMLE estimator is used for the simulated

data, because this will give us a robust estimator for the parameters of a CARMA

process. Before we can do this, though, we study the asymptotic theory of the three

aforementioned estimators and start with the treatment of GM estimators.

4.3.3.1. Generalized M–Estimators

In this subsection, we largely follow the approach of Bustos [1982], who develops the

theory of GM estimators for autoregressive processes. In doing so, we will, however,

make some slightly different assumptions as in that paper, since some of them would

be too restrictive in our case. Since, ultimately, the GM estimator will be applied to

a CARMA process afflicted by outliers, we study the theory of the GM estimators

not only for a perfectly observed CARMA process. Instead, we work with the general

replacement model as defined in (4.2). We need to make some assumptions:

Assumption G.

G.1 The processes (Vn)n∈Z and (Zn)n∈Z are strictly stationary with E[|V1|2+δ] <∞
and E[|Z1|2+δ] <∞ for some δ > 0.

G.2 (Vn)n∈Z and (Zn)n∈Z are exponentially strong mixing, i. e. αV (m) ≤ Cρm and

αZ(m) ≤ Cρm for some C > 0, ρ ∈ (0, 1) and every m ∈ N.

G.3 Either the processes (Y (nh))n∈Z, (Vn)n∈Z and (Zn)n∈Z are jointly independent

or we have that Zn = Y (nh) +Wn for a process (Wn)n∈Z such that (Y (nh))n∈Z,

(Vn)n∈Z and (Wn)n∈Z are jointly independent.

G.4 It holds that

P(aỸr+1 + πrỸr + . . .+ π1Ỹ1 = 0) = 0

for all a ∈ R, π ∈ Rr with |a|+ ‖π‖ > 0.
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These assumptions are the analog to [Bustos 1982, Assumption M1)-M5)]. The

biggest difference is that the role of the process (Yn)n∈Z used by Bustos [1982] is taken

by the sampled CARMA process (Y (nh))n∈Z in our case. Bustos [1982] requires the

process (Yn)n∈Z to be an infinite–order moving average of a Φ–mixing noise sequence,

which is generally not fulfilled by a sampled CARMA process. However, we already

know from Proposition 2.24 that sampled CARMA processes are exponentially strong

mixing (Φ–mixing is the stronger notion, i.e. it implies strong mixing, but the converse

is not true). Therefore, the exponential strong mixing assumption on the processes

(Vn)n∈Z and (Zn)n∈Z is more natural in our scenario. The mixing assumption made by

Bustos is used at only one point to obtain a central limit theorem. We will see later

that our assumptions give us the same kind of limit theorem and are therefore suitable

(see Lemma 4.30). Additionally, we require higher order moments and independence

of (Y (nh))n∈Z, (Vn)n∈Z and (Zn)n∈Z and not only independence of the latter two

from the noise driving (Y (nh))n∈Z, which are somewhat stronger assumptions than

in Bustos [1982].

To define the GM estimators, let now two functions φ : Rr×R→ R and χ : R→ R
be given. Conditions on these two functions will be imposed later. Moreover, assume

that we have observations Ỹ n = (Ỹ1, Ỹ2, . . . , Ỹn) from the process defined in (4.2).

We define the parameters to be estimated as the solutions of the system

E

φ


Ỹ1

...

Ỹr

 ,
Ỹr+1 − π0,rỸr − . . .− π0,1Ỹ1

σ0



Ỹ1

...

Ỹr


 = 0, (4.22)

E

χ
( Ỹr+1 − π0,rỸr − . . .− π0,1Ỹ1

σ0

)2
 = 0. (4.23)

and denote them by

π0 = (π0,1, . . . , π0,r, σ0).

The interpretation is that the π0,i are the coefficients of the AR polynomial 1+π0,rz+

. . .+ π0,1z
r and σ0 is a scale parameter of the innovation sequence of the fitted AR(r)

process. Note that π0 and σ0 in general depend on the processes (Vn)n∈Z and (Zn)n∈Z.

We choose not to indicate this in the notation to make the exposition more readable,

and will instead highlight this fact explicitly in the text when it is necessary. Now,
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the GM estimate π̂n based on φ and χ is defined as the solution of the equations

1

n− r

n−r∑
t=1

φ




Ỹt
...

Ỹt+r−1

 ,
Ỹt+r − π̂nr Ỹt+r−1 − . . .− π̂n1 Ỹt

σ̂n




Ỹt
...

Ỹt+r−1

 = 0 (4.24)

1

n− r

n−r∑
t=1

χ

( Ỹt+r − π̂nr Ỹt+r−1 − . . .− π̂n1 Ỹt
σ̂n

)2
 = 0 (4.25)

Here, σ̂n is an estimate of the scale of the innovations of the AR(r) process fitted to

Ỹ n while the π̂ni estimate the parameters of the AR polynomial. Next, we give some

examples for GM estimators:

Example 4.25.

a) There are two main classes of GM estimators, the so–called Mallows estimators

and the Hampel–Krasker–Welsch estimators. More information on them can be

found in Bustos [1982], Denby and Martin [1979], Martin [1980] and Martin

and Yohai [1986]. In the literature, this kind of estimators sometimes appear

under the name BIF (for bounded influence) estimators. The class of Mallows

estimators was originally proposed in Mallows [1975] for the regression setup

for non–dependent data and later generalized to the time series setting. They

are defined by choosing

φ(y, u) = w(y)ψ(u),

where w is a strictly positive weight function and ψ is a suitably chosen ro-

bustifying function. The other class consists of the Hampel–Krasker–Welsch

estimators for which one chooses

φ(y, u) =
ψ(w(y)u)

w(y)
,

where w is again a weight function and ψ again is a suitably chosen bounded

function. In the original study of this estimator, Hampel [1978] and Krasker

and Welsch [1982] used ψ = ψk (as defined in part b) below) and w(y) = 1
‖y‖

as a special case.

b) Typical choices for ψ are the so–called Huber ψk–functions, see e.g. [Maronna

et al. 2006, Eq. (2.28)]. Those functions are defined by

ψk(u) = sign(u) min{|u|, k}
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for a constant k > 0. A possibility for w is e.g. to use w(y) = ψk(|y|)
|y| for a

Huber function ψk. Another choice for ψ, which is not of the Huber type, is

the so–called Tukey bisquare (or biweight) function, introduced in Beaton and

Tukey [1974], which is given by

ψ(u) = u

(
1− u2

k2

)2

1{|u|≤k},

where k is again a tuning constant.

c) For the function χ, a typical choice is

χ(x2) = ψ2(x)− EZ [ψ2(Z)]

with the same ψ function as in the definition of φ. Here, the expectation is taken

with respect to a suitably distributed random variable Z. Suitably distributed in

this context means that Z is chosen in such a way that the scale parameter σ0

coincides with the standard deviation of the innovations if the process (Ỹn)n∈Z

actually is a stationary AR(r) process. This can be achieved by choosing Z

as having the same distribution as the innovations divided by their standard

deviation. For example, if the innovations have a normal distribution and

Z ∼ N (0, 1), this will be the case. This choice of χ corresponds to Huber’s

“proposal 2” ([Huber 1964, p. 97] ).

In order to develop an asymptotic theory and to obtain a robust estimator, it is

necessary to impose assumptions on φ and χ, which we will do next analogous to

[Bustos 1982, E1) - E6)]:

Assumption H. Assume that φ : Rr × R→ R and χ : R→ R are such that

H.1 For each y ∈ Rr, the map u 7→ φ(y, u) is odd, uniformly continuous and it holds

that φ(y, u) ≥ 0 for u ≥ 0.

H.2 (y, u) 7→ φ(y, u)y is bounded and there exists c > 0 such that

|φ(y, u)y − φ(z, u)z| ≤ c‖y − z‖

for all u ∈ R.

H.3 For each y ∈ Rr, the map u 7→ φ(y,u)
u

is non–increasing and there exists u0 ∈ R
such that φ(y,u0)

u0
> 0.
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H.4 φ is differentiable with respect to u and the map u 7→ ∂φ(y,u)
∂u

is continuous,

while u 7→ ∂φ(y,u)
∂u

y is bounded.

H.5 It holds

E

sup
u∈R

u
 ∂

∂u
φ



Ỹ1

...

Ỹr

 , u



∥∥∥∥∥∥∥∥

Ỹ1

...

Ỹr


∥∥∥∥∥∥∥∥

 <∞.

H.6 χ is bounded and increasing on {x : −a ≤ χ(x) < b}, where b = supx∈R χ(x)

and a = χ(0). Furthermore, χ is differentiable and the map x 7→ xχ′(x2) is

continuous and bounded. Lastly, χ(u2
0) > 0.

In the following, when talking about GM estimators, we always assume that

Assumption G and Assumption H are satisfied.

Remark 4.26. As pointed out on [Bustos 1982, p. 497], one can deduce under

these assumptions from [Maronna and Yohai 1981, Theorem 2.1] that there exists

π0 ∈ Rr× (0,∞) such that (4.22) and (4.23) are fulfilled. More precisely, there exists

a compact set K ⊂ Rr × (0,∞) such that π0 ∈ K and for any π ∈ Kc, equations

(4.22), (4.23), (4.24) and (4.25) do not hold ([Bustos 1982, p. 500]). This means that

the relevant parameter space for GM estimation is the compact set K and restricting

attention to this set does not entail loss of generality.

The parameter π0 can be seen as the pseudo–true parameter to which the GM-

estimator converges in this scenario. We are dealing with a pseudo–true parameter

as we do not explicitly demand that (Ỹn)n∈Z actually is an AR(r) process, and most

of the times that will not be the case when outliers are present. Of course, it is

not clear a priori if π0 is unique. However, if it is, then we will have almost sure

convergence of the GM estimator:

Theorem 4.27. Assume that the solutions of (4.22) and (4.23) are unique. Then

we have that π̂n
n→∞−→ π0 P-a.s.

Proof. The proof of [Bustos 1982, Theorem 2.1] can directly be used, as all of the

assumptions required in it are fulfilled in our scenario.

The assumed uniqueness of the limiting parameters is, in general, not easy to

verify. Additionally, one would like to have that π0 = πϑ for the auxiliary pa-

rameter defined in Definition 4.19 in the case that the GM estimator is applied

to realizations of an uncontaminated, sampled CARMA process (Y (nh))n∈Z with

Y = CARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0). The following proposition gives a sufficient condi-

tion for this to hold:
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Proposition 4.28. Assume that (Ỹn)n∈Z = (Y (nh))n∈Z, i.e. there are no outliers

present in the data. Moreover, assume that for Uϑ0,r+1 as defined in equation (4.5) it

holds that

(Uϑ0,r+1, Yϑ0(rh), . . . , Yϑ0(h))
D
= (−Uϑ0,r+1, Yϑ0(rh), . . . , Yϑ0(h)).

Assume that the function u 7→ φ(y, u) is nondecreasing and strictly increasing for

|u| ≤ u0, where u0 satisfies Assumptions H.3 and H.6. Moreover, assume that the

function χ is chosen in such a way that

E

[
χ

((
Uϑ0,1

σϑ0

)2
)]

= 0

holds. Then the auxiliary parameter πϑ0 as defined in Definition 4.19 is the unique

solution to (4.22) and (4.23).

Proof. By the analog of [Maronna and Yohai 1981, Lemma 2.1] in the autoregression

case, we have that for each fixed (π1, . . . , πr) ∈ Rr there exists a unique solution σ of

the equation

E

[
χ

((
Y ((r + 1)h)− πrY (hr)− . . .− π1Y (h)

σ

)2
)]

= 0.

By assumption, the function χ is chosen in such a way that for (πϑ0,1, . . . , πϑ0,r) this

unique solution is σϑ0 . Therefore, we have that πϑ0 is a solution of (4.23). Next, we

show that the auxiliary parameter is a solution of (4.22), too. Since the function

φ(y, u) is odd in u by Assumption H.1, it holds that

E

φ


Yϑ0(h)
...

Yϑ0(rh)

 ,
Yϑ0((r + 1)h)− πϑ0,rY (rh)− . . .− πϑ0,1Y (h)

σϑ0



Yϑ0(h)
...

Yϑ0(rh)




=E

φ


Yϑ0(h)
...

Yϑ0(rh)

 ,
Uϑ0,r+1

σϑ0



Yϑ0(h)
...

Yϑ0(rh)




=E

−φ


Yϑ0(h)
...

Yϑ0(rh)

 ,−Uϑ0,r+1

σϑ0



Yϑ0(h)
...

Yϑ0(rh)



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=− E

φ


Yϑ0(h)
...

Yϑ0(rh)

 ,
Uϑ0,r+1

σϑ0



Yϑ0(h)
...

Yϑ0(rh)


 , (4.26)

where the last equality follows from the assumption on the distribution of

(−Uϑ0,r+1, Yϑ0(rh), . . . , Yϑ0(h)). From these equations, we see that

E

φ


Yϑ0(h)
...

Yϑ0(rh)

 ,
Uϑ0,r+1

σϑ0



Yϑ0(h)
...

Yϑ0(rh)


 = 0

holds and πϑ0 therefore is a solution of equation (4.22). We now show, similar to

[Maronna and Yohai 1981, Theorem 2.2a)], that πϑ0 also is the unique solution of

(4.22) and (4.23). Assume that another solution (π′1, . . . , π
′
r, σ
′) exists. Note that the

arguments in the derivation of (4.26) still hold if we replace σϑ0 in the denominator

of the second argument of φ by σ′. Thus, we obtain that it also holds that

E

φ


Yϑ0(h)
...

Yϑ0(rh)

 ,
Uϑ0,r+1

σ′



Yϑ0(h)
...

Yϑ0(rh)


 = 0

and therefore

E


φ



Yϑ0(h)
...

Yϑ0(rh)

 ,
Yϑ0((r + 1)h)− π′rYϑ0(rh)− . . .− π′1Yϑ0(h)

σ′



−φ



Yϑ0(h)
...

Yϑ0(rh)

 ,
Uϑ0,r+1

σ′




Yϑ0(h)
...

Yϑ0(rh)


 = 0. (4.27)

Since P((Yϑ0(h), . . . , Yϑ0(rh)) = (0, . . . , 0)) = 0 and φ(y, u) is strictly increasing on

the interval (−u0, u0) for every y ∈ Rr, we must have that

1 =P
(({

Yϑ0((r + 1)h)− π′rYϑ0(rh)− . . .− π′1Yϑ0(h)

σ′
≥ u0

}
∩
{
Uϑ0,r+1

σ′
≥ u0

})
∪̇
({

Yϑ0((r + 1)h)− π′rYϑ0(rh)− . . .− π′1Yϑ0(h)

σ′
≤ −u0

}
∩
{
Uϑ0,r+1

σ′
≤ −u0

}))
≤P
(
Yϑ0((r + 1)h)− π′rYϑ0(rh)− . . .− π′1Yϑ0(h)

σ′
≥ u0

)
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+P
(
Yϑ0((r + 1)h)− π′rYϑ0(rh)− . . .− π′1Yϑ0(h)

σ′
≤ −u0

)
=P
(
|Yϑ0((r + 1)h)− π′rYϑ0(rh)− . . .− π′1Yϑ0(h)|

σ′
≥ u0

)
,

because otherwise (4.27) cannot hold. Therefore,(
Yϑ0((r + 1)h)− π′rYϑ0(rh)− . . .− π′1Yϑ0(h)

σ′

)2

≥ u2
0, P-a.s. (4.28)

Now, π′ is by assumption also a solution of (4.23) and hence we have that

0 = E

[
χ

((
Yϑ0((r + 1)h)− π′rYϑ0(rh)− . . .− π′1Yϑ0(h)

σ′

)2
)]

(4.28)

≥ χ(u2
0)

H.6
> 0,

a contradiction.

Remark 4.29.

a) The assumption (Uϑ0,r+1, Yϑ0(rh), . . . , Yϑ0(h))
D
= (−Uϑ0,r+1, Yϑ0(rh), . . . , Yϑ0(h)) is

fulfilled, for example, if the distribution of Uϑ0,r+1 is symmetric and Uϑ0,r+1 is

independent of (Yϑ0(rh), . . . , Yϑ0(h)). This again is fulfilled if the Lévy process

driving (Y (t))t∈R is a Brownian motion, because then, by the equation

Y (t) =

∫ t

−∞
Cϑ0 eAϑ0

(t−u) Bϑ0dLϑ0(u), t ∈ R

([Schlemm and Stelzer 2012, Proposition 3.1]) the process (Yϑ0(t))t∈R is a Gaus-

sian process (see also [Brockwell 2001, p. 155]). Hence, every finite–dimensional

marginal of (Yϑ0(t))t∈R has a multivariate normal distribution. Because

(Yϑ0(h), . . . , Yϑ0((r + 1)h)) is exactly the marginal distribution of the CARMA

process (Yϑ0(t))t∈R at times h, . . . , (r + 1)h, this random vector especially has

multivariate normal distribution. For normally distributed random variables it is

well know that they are independent if and only if they are uncorrelated, hence the

property that Uϑ0,r+1 is uncorrelated with Yϑ0(h), . . . , Yϑ0((r+ 1)h) by construction

implies the independence in this case. The symmetry of a normal distribution is

obvious.

b) The monotonicity assumption on φ is fulfilled, for example, for both the Mallows

and Hampel–Krasker–Welsch estimators of Example 4.25a) when the function ψ

is chosen as a Huber ψk–function as in Example 4.25b) with u0 = k.

c) The assumption about χ is fulfilled, for example, if χ is chosen as in Example 4.25c)
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with Z
D
=

Uϑ0,1√
Var(Uϑ0,1

)
. In the case that the driving Lévy process is a Brownian

motion as in part a), this entails that the assumption is fulfilled if Z ∼ N (0, 1).

Next, we would like to deduce a central limit theorem for our GM estimator. Since

we have altered the assumptions on the involved stochastic processes, we cannot use

all of the results of Bustos [1982] that lead to the CLT directly. In particular, we

need the following lemma, which is the analog of [Bustos 1982, Lemma 3.1] under

our assumptions:

Lemma 4.30. For fixed y ∈ Rr+1, define the map

Ψ : Rr × (0,∞)→ Rr+1

π = (π1, . . . , πr, σ) 7→ Ψ(y, π)

by

Ψ(y, π) =


φ



y1

...

yr

 , yr+1−πryr−...−π1y1

σ



y1

...

yr


χ
((

yr+1−πryr−...−π1y1

σ

)2
)


Furthermore, define the stochastic process (Ψ(t))t∈N by Ψ(t) = Ψ((Ỹt, . . . , Ỹt+r−1), π0).

Then it holds that
1√
n− r

n−r∑
t=1

Ψ(t)
D→ N (0, IGM(π0)),

where the matrix IGM(π0) is defined by

(IGM(π0))ij = E [Ψi(1)Ψj(1)] + 2
∞∑
t=1

E [Ψi(1)Ψj(1 + t)] (4.29)

and Ψi(t) denotes the i–th component of Ψ(t), i = 1, . . . , r + 1. Especially, each

(IGM(π0))ij is finite for i, j ∈ {1, . . . , r + 1}.

Proof. By the Cramer–Wold device, the statement of the Lemma is equivalent to

the assertion that 1√
n−rx

T
∑n−r

t=1 Ψ(t) converges to a univariate normal distribution

with mean 0 and variance xTIGM(π0)x for every x ∈ Rr+1. According to [Ibragimov

1962, Theorem 1.7], this holds if we can show that E|xTΨ(t)|2+δ < ∞ and that

(xTΨ(t))t∈N is strongly mixing with
∑∞

k=1 αxTΨ(k)
δ

2+δ <∞ for some δ > 0. The same

theorem then also states that xTIGM(π0)x < ∞, from which we then can deduce

that for i, j ∈ {1, . . . , r + 1} the entry (IGM(π0))ij is finite and therefore IGM(π0) is
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well–defined.

For the existence of the (2 + δ)–th moment of xTΨ(t), note that

E
[
|xTΨ(t)|2+δ

]
≤ C‖x‖2+δ

∞

r+1∑
i=1

E
[
‖Ψi(t)‖2+δ

]
<∞, (4.30)

where the last inequality holds since every Ψi(t) is bounded by H.2 and H.6. Moreover,

the process (Ỹn)n∈Z is strongly mixing for the following reason: For every n ∈ N, it

holds that Ỹn = g(Vn, Zn, Y (nh)) for some measurable function g if the first part of

Assumption G.3 is fulfilled or Ỹn = g(Vn,Wn, Y (nh)) if the second part is fulfilled. In

either case, the three processes to which g is applied are independent by assumption.

Hence, by [Bradley 2007, Theorem 6.6(II)] it holds that

αỸ (m) ≤ αV (m) + αZ(m) + αY (h)(m) ≤ Cρm

for some C > 0 and ρ ∈ (0, 1) by Assumption G.2 and Proposition 2.24. Furthermore,

Ψ(t) depends on the finitely many values Ỹt, . . . , Ỹt+r and by [Bradley 2007, Remark

1.8b)] this ensures that αΨ(m) ≤ αỸ (m + r) ≤ Cρm. Hence, the strong mixing

coefficients of xTΨ satisfy the summability condition and the lemma is proven.

The rest of the lemmas that are used in the proof of the central limit theorem

are the same as in Bustos [1982]. For sake of completeness, we state them in the

appendix (Section A.2). Keeping this in mind, we can now state and prove a central

limit theorem for the GM estimator π̂n. Remember that the relevant parameter

space is the compact set K from Remark 4.26.

Theorem 4.31. For π = (π1, . . . , πr, σ) ∈ K, define

QGM(π) =


E

φ


Ỹ1

...

Ỹr

 , Ỹr+1−πrỸr−...−π1Ỹ1

σ



Ỹ1

...

Ỹr




E
[
χ

((
Ỹr+1−πrỸr−...−π1Ỹ1

σ

)2
)]

 .

Assume that JGM(π0) := ∇πQGM(π0), the Jacobian of QGM evaluated at the pseudo-

true parameter, is non-singular and that π̂n
P→ π0. Then it holds that

√
n− r(π̂n − π0)

D−→ N (0,ΞGM(π0)), n→∞,
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where the matrix ΞGM(π0) is defined by

ΞGM(π0) := (JGM(π0))−1IGM(π0)(JGM(π0))−1. (4.31)

Proof. Note first that for i, j = 1, . . . , r it holds that

sup
π∈K

∣∣∣∣∣∣∣∣
∂

∂πi
φ



Ỹ1

...

Ỹr

 ,
Ỹr+1 − πrỸr − . . .− π1Ỹ1

σ

 Ỹj

∣∣∣∣∣∣∣∣
= sup

π∈K

∣∣∣∣∣∣∣∣
(
∂

∂u
φ

)

Ỹ1

...

Ỹr

 ,
Ỹr+1 − πrỸr − . . .− π1Ỹ1

σ

 Ỹj
Ỹi
σ

∣∣∣∣∣∣∣∣
≤ sup

π∈K
C

∣∣∣∣∣∣∣∣
(
∂

∂u
φ

)

Ỹ1

...

Ỹr

 ,
Ỹr+1 − πrỸr − . . .− π1Ỹ1

σ


∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥

Ỹ1

...

Ỹr


∥∥∥∥∥∥∥∥

2

≤ sup
u∈R

C

∥∥∥∥∥∥∥∥
(
∂

∂u
φ

)

Ỹ1

...

Ỹr

 , u



Ỹ1

...

Ỹr


∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥∥

Ỹ1

...

Ỹr


∥∥∥∥∥∥∥∥

≤ C

∥∥∥∥∥∥∥∥

Ỹ1

...

Ỹr


∥∥∥∥∥∥∥∥ .

by Assumption H.4. By Assumption G.1, the expectation of the right–hand side is

finite. Similarly,

sup
π∈K

∥∥∥∥∥∥∥∥
∂

∂σ
φ



Ỹ1

...

Ỹr

 ,
Ỹr+1 − πrỸr − . . .− π1Ỹ1

σ



Ỹ1

...

Ỹr


∥∥∥∥∥∥∥∥

= sup
π∈K

 1

σ

∥∥∥∥∥∥∥∥
Ỹr+1 − πrỸr − . . .− π1Ỹ1

σ

(
∂

∂u
φ

)

Ỹ1

...

Ỹr

 ,
Ỹr+1 − πrỸr − . . .− π1Ỹ1

σ



Ỹ1

...

Ỹr


∥∥∥∥∥∥∥∥


≤ C sup
u∈R

∥∥∥∥∥∥∥∥u
(
∂

∂u
φ

)

Ỹ1

...

Ỹr

 , u



Ỹ1

...

Ỹr


∥∥∥∥∥∥∥∥ .
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The expectation of the right–hand side is finite because of Assumption H.5. A similar

argument, using Assumption H.6, also shows that

∣∣∣∣ ∂∂πiχ(( Ỹr+1−πrỸr−...−π1Ỹ1

σ

)2
)∣∣∣∣ for

i = 1, . . . , r and

∣∣∣∣ ∂∂σχ(( Ỹr+1−πrỸr−...−π1Ỹ1

σ

)2
)∣∣∣∣ are uniformly dominated by integrable

random variables. Therefore, the existence of JGM(π0) follows by an application of

the dominated convergence theorem ([Rosenthal 2006, Proposition 9.2.1]). Remember

that QGM(π0) = 0 by (4.22) and (4.23). We do a first-order Taylor expansion of this

expression around π̂n to obtain

0 =
√
n− rQGM(π0) =

√
n− rQGM(π̂n) +

√
n− r∇πQGM(πn)(π0 − π̂n), (4.32)

where ‖π0 − πn‖ ≤ ‖π0 − π̂n‖. Note now that

√
n− pQGM(π̂n) = − 1√

n− r

n−r∑
t=1

Ψ(t) +
1√
n− r

n−r∑
t=1

(Ψ(t) + QGM(π̂n)). (4.33)

Applying Lemma 4.30 to the first summand and Lemma A.5 to the second one shows

that
√
n− rQGM(π̂n)

D−→ N (0, IGM(π0)), n→∞.

Moreover, by Assumption H, the consistency of π̂n and the dominated convergence

theorem, we can conclude that ∇πQGM(πn) converges to JGM(π0) as n→∞. Since

JGM(π0) is non–singular, the Theorem now follows from (4.32).

Remark 4.32. The statement of this theorem coincides with the one of [Bustos

1982, Theorem 2.2]. The difference lies in the proof, namely (4.33): for the first

summand, we obtain a central limit theorem by means of Lemma 4.30, which has a

different proof than the corresponding statement ([Bustos 1982, Lemma 3.1]), since

our assumptions are different.

4.3.3.2. The least squares estimator

In this subsection, we estimate the parameters of the auxiliary AR(r) representation

by the least squares estimator. In the treatment, we retain the assumption that

we have a parameter space Θ that satisfies Assumptions B.1 to B.9 and that we

have observations Y n = (Y (h), . . . , Y (nh)) of a process (Y (nh))n∈Z with Y =

CARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) for some ϑ0 ∈ Θ. We are interested in estimating the

parameter πϑ0 of the AR(r) representation of (Y (nh))n∈Z defined in (4.5). To do

parameter estimation in a suitable space, we assume that r ≥ 2p − 1 and thus

the binding function π as defined in Definition 4.21 is injective and continuously
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differentiable. The space Π′ = π(Θ) ⊆ Π is then compact and the relevant space for

parameter estimation. We define the estimator as follows:

Definition 4.33. Based on the sample Y n = (Y (h), . . . , Y (nh)) of the process

(Y (nh))n∈Z, the least squares estimator of πϑ0 is

π̂nLS = (π̂nLS,1, . . . , π̂
n
LS,r, σ̂LS,n)

where π̂nLS,1, . . . , π̂
n
LS,r minimize

S(π) :=
1

n− r

n−r∑
t=1

(Y ((t+ r)h)− πrY ((t+ r − 1)h)− . . .− π1Y (th))2

=:
1

n− r

n−r∑
t=1

Ut(π)2 (4.34)

in Π′ and σ̂LS,n is obtained from π̂nLS,1, . . . , π̂
n
LS,r via the equation

σ̂2
LS,n =

1

n− r

n−r∑
t=1

(
Y ((t+ r)h)− π̂nLS,rY ((t+ r − 1)h)− . . .− π̂nLS,1Y (th)

)2
.

Note that the right–hand side of (4.34) is differentiable with respect to π. Hence,

the derivative evaluated at the minimizer must be equal to zero. Since for i = 1, . . . , r

it holds that

∂

∂πi
Ut(π)2 = −2 (Y ((t+ r)h)− πrY ((t+ r − 1)h)− . . .− π1Y (th))Y ((t+ i− 1)h)

we obtain that π̂nLS is a solution of (4.24) and (4.25) for the special choices φ(y, u) = u

and χ(x) = x− 1, i.e. the least squares estimator can be seen as a special case of

a GM estimator. We have the following result on the asymptotic behavior of this

estimator:

Theorem 4.34. The estimator π̂nLS based on the sample Y n = (Y (h), . . . , Y (nh)) is

strongly consistent for πϑ0, i. e. we have

π̂nLS
n→∞−→ πϑ0 P-a.s.

Furthermore, it holds that

√
n(π̂nLS − πϑ0)

D−→ N (0,ΞLS(πϑ0)) , n→∞,
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where the matrix ΞLS(πϑ0) is defined via (4.29) and (4.31), respectively, for φ(y, u) = u

and χ(x) = x− 1.

Proof. For the particular choice φ(y, u) = u and χ(x) = x− 1, the unique solution to

(4.22) and (4.23) is πϑ0 as shown in Definition 4.19. Per construction, π̂nLS minimizes

the function S(π). Since the sampled CARMA process (Y (nh))n∈Z is ergodic, the

same is then true for the process (Un(π)2)n∈Z since each Un(π)2 results from applying

a measurable function to finitely many Y (nh). Moreover,

E[U1(π)2] <∞

since the process (Y (nh))n∈Z is stationary and has finite second moments. Therefore,

it holds by Birkhoff’s ergodic theorem that

S(π) −→ E[U1(π)2] P-a.s., n→∞.

We have just noticed that for fixed ϑ the derivative of the limiting function has

a unique zero at π = πϑ0 , i.e. the limiting function itself has a unique minimum.

Moreover, the space Π′ = π(Θ) is compact. Therefore, by [Ferguson 1996, Theorem

16a)] we obtain on the one hand that

sup
π∈Π′
|S(π)− E[U1(π)2]| −→ 0 P-a.s., n→∞ (4.35)

and from this by analogous arguments as in [Francq and Zaköıan 2005, Proof of

Theorem 12.5] that

π̂nLS
n→∞−→ πϑ0 P-a.s.

Note that the authors assume in their Theorem 12.5 that the innovations of the

data–generating process are uncorrelated, which is not satisfied in our situation.

However, in the proof of strong consistency of the least squares estimator, they use

this fact only to establish that the limiting function has a unique minimum. We do

not need this argument here, since we can derive the uniqueness as shown above.

The asymptotic normality of π̂nLS follows in principle from Theorem 4.31. Here we

again make use of the fact that we can interpret the least squares estimator as a

particular GM estimator with φ(y, u) = u and χ(x) = x − 1. Still, we need to be

careful because these two functions do not satisfy Assumptions H.2, H.4 and H.6 with

respect to boundedness. However, a close inspection of the proof of Theorem 4.31

reveals that the boundedness is only used at two points. The first is at (4.30), where

we deduce the finiteness of the expectation by boundedness. However, this is not a
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necessary condition. In the situation of this theorem, equation (4.30) reads

Ψi(t) = (Y ((t+ r)h)− πϑ0,rY ((t+ r − 1)h)− . . .− πϑ0,1Y (th))Y ((t+ i− 1)h)

for i = 1, . . . , r and

Ψr+1(t) =

(
Y ((t+ r)h)− πϑ0,rY ((t+ r − 1)h)− . . .− πϑ0,1Y (th)

σϑ0

)2

− 1.

Therefore, inequality (4.30) follows since the Lévy process driving (Y (t))t∈R has finite

(4 + δ)–th moment by B.9, which then transfers to (Y (t))t∈R and subsequently to

the finitely many elements of which each Ψi(t) is a linear combination (note that

this moment condition is also sufficient to obtain the exponential strong mixing of

(Y (t))t∈R used in the proof of Lemma 4.30).

The second point where the boundedness assumptions are used is right at the

beginning of the proof of Theorem 4.31 to deduce the existence of the matrix

JGM∗(πϑ0). Here we have used the notation GM∗ in the index to indicate that we

refer to the GM estimator for the particular choices φ(y, u) = u and χ(x) = x− 1

and not to a general one. However, in our case the expectations defining QGM∗(π)

are obviously differentiable in π because of the linearity of the expectation.

An assumption of Theorem 4.31 was also that the Jacobian ∇πQGM∗(π) evaluated

at the true parameter, i.e. JGM∗(πϑ), is non–singular. This we can verify by direct

calculation. Plugging in the functions φ and χ we work with here, one sees immediately

that interchanging derivative and expectation is allowed. Denoting by QGM∗(π) the

function defined in Theorem 4.31 for the special choice φ(y, u) = u and χ(x) = x− 1

and by (QGM∗(π))j the j–th component, we obtain that

∂

∂πi
(QGM∗(π))j = −E [Y (ih)Y (jh)]

σ
= −Cov(Y (ih), Y (jh))

σ
, i, j = 1, . . . , r,

∂

∂σ
(QGM∗(π))j = −E [Y ((r + 1)h)− πrY (rh)− . . .− π1Y (h)]

σ2
, j = 1, . . . , r,

∂

∂πi
(QGM∗(π))r+1 = −E [2(Y ((r + 1)h)− πrY (rh)− . . .− π1Y (h))Y (ih)]

σ2
, i = 1, . . . , r,

∂

∂σ
(QGM∗(π))r+1 = −2

E [(Y ((r + 1)h)− πrY (rh)− . . .− π1Y (h))2]

σ3
.

Plugging in π = πϑ0 and using the defining equation (4.7), we can simplify in this
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special case to

JGM∗(ϑ0) = − 1

σϑ0



Var(Y (1)) Cov(Y (h), Y (2h)) . . . Cov(Y (h), Y (rh)) 0

Cov(Y (h), Y (2h)) Var(Y (2h)) . . . Cov(Y (2h), Y (rh)) 0
...

...
. . .

...
...

Cov(Y (h), Y (rh)) . . . . . . Var(Y (rh)) 0

0 0 . . . 0 2


Hence, JGM∗(πϑ) is non–singular if and only if the upper left r× r block is. However,

the upper left block is, up to a positive factor, the covariance matrix of the random

vector (Y (h), . . . , Y (rh)), which is of course non–singular because it is positive

definite. In particular, none of the proofs of Lemma A.3 - Lemma A.5 do need the

boundedness, such that the result follows.

4.3.3.3. The quasi maximum likelihood estimator

The third estimator for the parameters of the auxiliary AR(r) representation of a

CARMA process is the quasi maximum likelihood estimator. We stay in the framework

of Subsubsection 4.3.3.2, i.e. we have a parameter space Θ that satisfies Assumptions

B.1 to B.9 and observations Y n = (Y (h), . . . , Y (nh)) of a process (Y (nh))n∈Z with

Y = CARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) for some ϑ0 ∈ Θ. The link function π : Θ→ Π is

assumed to be injective (i.e. r ≥ 2p− 1 holds) and continuously differentiable. For

observations (Y (h), . . . , Y (nh)) and a parameter π ∈ Π′, the pseudo–innovation in

the AR(r) model at time t+ r is exactly Ut(π) as defined in (4.34), i.e.

Ut(π) = Y ((t+ r)h)− πrY ((t+ r − 1)h)− . . .− π1Y (th). (4.36)

For the definition of the quasi maximum likelihood estimator, we again use the

Gaussian likelihood function, which is the exact likelihood if the Ut(π) are Gaussian.

Taking logarithms and multiplying by −2/(n− r), we define:

Definition 4.35. Based on the sample Y n = (Y (h), . . . , Y (nh)) of the process

(Y (nh))n∈Z, the quasi Gaussian likelihood function for the AR(r) process is defined

as

LAR(π, Y n) =
1

n− r

n−r∑
t=1

lAR,t(π)

:=
1

n− r

n−r∑
t=1

(
log(σ2) +

Ut(π)2

σ2

)
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=
1

n− r

n−r∑
t=1

(
log(σ2) +

(Y ((t+ r)h)− πrY ((t+ r − 1)h)− . . .− π1Y (th))2

σ2

)

Based on this, the quasi maximum likelihood estimator π̂nMLE(ϑ) is defined by

π̂nMLE = arg min
π∈Π′

LAR(π, Y n).

Remark 4.36. The quasi maximum likelihood estimator and the least squares estima-

tor are identical in this situation. Remember that by Definition 4.33 π̂nLS,1, . . . , π̂
n
LS,r

minimize

S(π) :=
1

n− r

n−r∑
t=1

(Y ((t+ r)h)− πrY ((t+ r − 1)h)− . . .− π1Y (th))2 .

Since this function is differentiable with respect to π, (π̂nLS,1, . . . , π̂
n
LS,r) is the unique

zero of the gradient. Differentiating partially gives for i ∈ {1, . . . , r}:

∂

∂πi
S(π) = − 2

n− r

n−r∑
t=1

(Y ((t+r)h)−πrY ((t+r−1)h)−. . .−π1Y (th))Y ((t+r−i)h).

Additionally, σ̂2
LS,n is defined as

σ̂2
LS,n =

1

n− r

n−r∑
t=1

(
Y ((t+ r)h)− π̂nLS,rY ((t+ r − 1)h)− . . .− π̂nLS,1Y (th)

)2

The function LAR is differentiable with respect to π, too, i.e. we can differentiate LAR

partially with respect to each variable and look for a zero of the gradient to obtain

π̂nMLE. Doing so, we obtain for for i ∈ {1, . . . , r} that

∂

∂πi
LAR(π, Y n) = − 2

(n− r)σ2

n−r∑
t=1

(Y ((t+r)h)−πrY ((t+r−1)h)−. . .−π1Y (th))Y ((t+r−i)h)

(4.37)

and

∂

∂σ
LAR(π, Y n) = − 2

n− r

n−r∑
t=1

(Y ((t+ r)h)− πrY ((t+ r − 1)h)− . . .− π1Y (th))2

σ3
− 2

σ2
.

(4.38)

Since ∂
∂πi
S(π) is a multiple of ∂

∂πi
LAR(π, Y n) for i ∈ {1, . . . , r}, the unique zeros of

these partial derivatives are the same, i.e.

(π̂nMLE,1, . . . , π̂
n
MLE,r) = (π̂nLS,1, . . . , π̂

n
LS,r).
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With this, it is obvious from (4.38) that σ̂2
MLE,n = σ̂2

LS,n holds, too, and the estimators

are indeed the same.

In the theory of parameter estimation of ARMA processes, it is well–known that least

squares and maximum likelihood estimation are asymptotically equivalent, see e.g.

[Brockwell and Davis 1991, §8.7]. However here we have the stronger notion that the

estimators are identical for every finite sample size.

By this remark, we immediately obtain the following theorem:

Theorem 4.37. Let π̂nMLE be defined as in Definition 4.35. Then π̂nMLE is strongly

consistent for πϑ0, i. e. we have

π̂nMLE
n→∞−→ πϑ0 P-a.s.

Furthermore, it holds that

√
n(π̂nMLE − πϑ0)

D−→ N (0,ΞMLE(πϑ0)) , n→∞,

where the matrix ΞMLE(πϑ0) is defined via

ΞMLE(πϑ0) = (JMLE(πϑ0))−1IMLE(πϑ0)(JMLE(πϑ0))−1

for

IMLE(πϑ0) = lim
n→∞

nVar(∇πLAR(πϑ0 , Y
n)) and JMLE(πϑ0) = lim

n→∞
∇2
πLAR(πϑ0 , Y

n).

Proof. Since the least squares estimator and the QMLE coincide, the theorem

immediately follows from Theorem 4.34.

The asymptotic results derived up until now are not yet sufficient to guarantee

that Theorem 4.23 holds when the QMLE or the least squares estimator is used

as the estimator in the simulation part. We also need to make sure that (4.16) is

satisfied, which is the topic of the next theorem.

Theorem 4.38. Assume that Θ satisfies Assumption B. Let (LS(t))t∈R be a Lévy

process that satisfies Assumptions B.2 and B.9. Assume that for every ϑ ∈ Θ the

eigenvalues of Aϑ are all distinct. Moreover, assume that P-a.s. it holds for every

t ∈ R and every j ∈ {1, . . . , N(Θ)} that

∂

∂ϑj

∫ t

−∞
Cϑ eAϑ(t−u) BϑdLS(u) =

∫ t

−∞

∂

∂ϑj
(Cϑ eAϑ(t−u) Bϑ)dLS(u).
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Denote by π̂nMLE(ϑ) the QMLE of the parameter πϑ of the AR(r) representation of the

CARMA process (Yϑ(nh))n∈Z driven by LS based on a sample Y n
ϑ = (Yϑ(h), . . . , Yϑ(nh)).

Furthermore, assume that the the sequence of random functions ϑ 7→ ∇2
ϑπ̂

n
MLE(ϑ) is

almost surely uniformly bounded. Then, it holds that

∇ϑπ̂
n
MLE(ϑ

n
) −→ ∇ϑπϑ0 , P-a.s., n→∞

for every sequence (ϑ
n
)n∈N with ϑ

n → ϑ0 P-a.s. as n→∞.

Proof. We begin by calculating the derivative of the function ϑ 7→ π̂nMLE(ϑ). This

function can be characterized as the solution of

∇πLAR(π̂nMLE(ϑ), Y n
ϑ ) = 0 ∀ϑ ∈ Θ.

By the implicit function theorem, the derivative ∂
∂ϑj
π̂nMLE(ϑ) for j ∈ {1, . . . , N(Θ)} is

then given by

∂

∂ϑj
π̂nMLE(ϑ) = − (∇π(∇πLAR(π̂nMLE(ϑ), Y n

ϑ )))−1 ∂

∂ϑj
∇πLAR(π̂nMLE(ϑ), Y n

ϑ )

= −
(
∇2
πLAR(π̂nMLE(ϑ), Y n

ϑ )
)−1 ∂

∂ϑj
∇πLAR(π̂nMLE(ϑ), Y n

ϑ ). (4.39)

We consider the asymptotic behavior of the two terms on the right–hand side

separately. Since π̂nMLE(ϑ) → πϑ holds P-a.s. by Theorem 4.37 (note that ϑ is the

“true” parameter in this scenario and the driving Lévy process satisfies Assumptions

B.2 and B.9), we obtain that

−
(
∇2
πLAR(π̂nMLE(ϑ), Y n

ϑ )
)−1 −→ −E

[
∇2
πlAR,1(πϑ, ϑ)

]−1
, n→∞, P-a.s.

For the second factor, observe that by (4.37) and (4.38) we have for i ∈ {1, . . . , r}
and j ∈ {1, . . . , N(Θ)}

∂

∂ϑj

∂

∂πi
LAR(π, Y n

ϑ )

= − 2

(n− r)σ2
·

n−r∑
t=1

((
∂

∂ϑj
Yϑ((t+ r)h)− πr

∂

∂ϑj
Yϑ((t+ r − 1)h)− . . .− π1

∂

∂ϑj
Yϑ(th)

)
Yϑ((t+ r − i)h)

+(Yϑ((t+ r)h)− πrYϑ((t+ r − 1)h)− . . .− π1Yϑ(th))
∂

∂ϑj
Yϑ((t+ r − i)h)

)
(4.40)
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and similarly

∂

∂ϑj

∂

∂σ
LAR(π, Y n

ϑ )

= − 4

(n− r)σ3

n−r∑
t=1

(
(Yϑ((t+ r)h)− πrYϑ((t+ r − 1)h)− . . .− π1Yϑ(th))(

∂

∂ϑj
Yϑ((t+ r)h)− πr

∂

∂ϑj
Yϑ((t+ r − 1)h)− . . .− π1

∂

∂ϑj
Yϑ(th)

))
. (4.41)

For an arbitrary t ∈ R, we have by assumption that

∂

∂ϑj
Yϑ(t) =

∂

∂ϑj

∫ t

−∞
Cϑ eAϑ(t−u) BϑdLS(u) =

∫ t

−∞

∂

∂ϑj
(Cϑ eAϑ(t−u) Bϑ)dLS(u).

Since we are in the one–dimensional case and use the parametrization from Example 3.1

(as described at the beginning of Subsection 4.3.1), the vector Cϑ is independent

of ϑ and always equal to the first unit vector in Rp. Therefore, by [Schlemm 2011,

Proposition 3.14] it holds that

∂

∂ϑj
(Cϑ eAϑ(t−u) Bϑ) = C

∂

∂ϑj

(
eAϑ(t−u) Bϑ

)
= C

(
∂

∂ϑj
eAϑ(t−u)

)
Bϑ + C eAϑ(t−u)

(
∂

∂ϑj
Bϑ

)
Note that the derivative ∂

∂ϑj
eAϑ(t−u) of the matrix–valued function ϑ 7→ eAϑ(t−u) exists

for each j ∈ {1, . . . , N(Θ)} and is a continuous function by Assumption B.4. It can

also be interpreted as the partial derivative with respect to ϑj of the real–valued

function ϑ 7→ CeAϑ(t−u)B evaluated for B = Bϑ (an explicit formula can be obtained

from [Tsai and Chan 2003, Theorem 4] if the eigenvalues of Aϑ are all distinct). We

now define

gϑ,j(t) :=

(
C

(
∂

∂ϑj
eAϑt

)
Bϑ + C eAϑt

(
∂

∂ϑj
Bϑ

))
1[0,∞)(t),

for j ∈ {1, . . . , N(Θ)} and obtain that

∂

∂ϑj
Yϑ(t) =

∫ ∞
−∞

gϑ,j(t− u)dLS(u).
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Setting

Gϑ(t) :=


gϑ(t)

gϑ,1(t)
...

gϑ,N(Θ)(t)

 ,

where gϑ(t) = Cϑ eAϑtBϑ1[0,∞)(t) is the kernel function of the moving average

representation of the process (Yϑ(t))t∈R. With this, we can write(
Yϑ(t)

∇ϑYϑ(t)

)
=

∫ ∞
−∞

Gϑ(t− u)dLS(u).

Therefore, the process

(
Yϑ(t)

∇ϑYϑ(t)

)
t∈R

is a multivariate continuous–time moving

average process with kernel function Gϑ. By [Fuchs and Stelzer 2013, Theorem 3.5],

we obtain that this process is mixing and therefore in particular ergodic. From (4.40)

and (4.41), we see that for each j ∈ {1, . . . , N(Θ)} it holds that

∂

∂ϑj
∇πLAR(π, Y n

ϑ )

=
Cj
n− r

n−r∑
t=1

hj (π, Yϑ((t+ r)h), . . . , Yϑ(th),∇ϑYϑ((t+ r)h), . . . ,∇ϑYϑ(th))

for constants Cj ∈ R and measurable functions hj . By the ergodicity of

(
Yϑ(t)

∇ϑYϑ(t)

)
t∈R

and [Bradley 2007, Proposition 2.10(II)], each of the processes

(hj (π, Yϑ((t+ r)h), . . . , Yϑ(th),∇ϑYϑ((t+ r)h), . . . ,∇ϑYϑ(th)))t∈Z , j = 1, . . . , N(Θ),

is ergodic again, so that we obtain by Birkhoff’s ergodic theorem that

∇ϑ∇πLAR(π, Y n
ϑ ) −→ E [∇ϑ∇πlAR,1(π, ϑ)] , P-a.s., n→∞. (4.42)

From (4.40) and (4.41), it is obvious that ∇ϑ∇πLAR(π, Y n
ϑ ) is differentiable once

more with respect to π. By the same arguments that led to (4.42) and an application

of [Ferguson 1996, Theorem 16a)], using the compactness of Π′, we can then obtain

that

sup
π∈Π′
‖∇π∇ϑ∇πLAR(π, Y n

ϑ )− E [∇π∇ϑ∇πlAR,1(π, ϑ)] ‖ → 0, P-a.s., n→∞.
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By arguing as in the proof of [Schlemm and Stelzer 2012, Theorem 2.5], we can infer

from this that the sequence of random functions π 7→ ∇π∇ϑ∇πLAR(π, Y n
ϑ ) is almost

surely uniformly bounded on the compact set Π′. Therefore,

‖∇ϑ∇πLAR(π̂nMLE(ϑ), Y n
ϑ )−∇ϑ∇πLAR(πϑ, Y

n
ϑ )‖

≤ sup
π∈Π′
‖∇π∇ϑ∇πLAR(π, Y n

ϑ )‖‖π̂nMLE(ϑ)− πϑ‖ → 0 P-a.s., n→∞,

since π̂nMLE(ϑ)→ πϑ holds P-a.s. by Theorem 4.37. By (4.42), we can deduce from

this that

∇ϑ∇πLAR(π̂nMLE(ϑ), Y n
ϑ ) −→ E [∇ϑ∇πlAR,1(πϑ, ϑ)] , P-a.s., n→∞.

Plugging this into (4.39), we finally obtain that

∇ϑπ̂
n
MLE(ϑ)→ −E

[
∇2
πlAR,1(πϑ, ϑ)

]−1 E [∇ϑ∇πlAR,1(πϑ, ϑ)] P-a.s., n→∞.

Exchanging derivative and expectation by means of the dominated convergence

theorem (using that the set Θ× Π′ is compact and the continuity of the respective

derivatives), we can also express this as

∇ϑπ̂
n
MLE(ϑ)→ −∇2

πE [lAR,1(πϑ, ϑ)]−1∇ϑ∇πE [lAR,1(πϑ, ϑ)] P-a.s., n→∞.

Since the function ϑ 7→ πϑ is characterized implicitly by the equation

∇πE [lAR,1(πϑ, ϑ)] = 0 ∀ϑ ∈ Θ,

we can deduce via the implicit function theorem that

∇ϑπϑ = −∇2
πE [lAR,1(πϑ, ϑ)]−1∇ϑ∇πE [lAR,1(πϑ, ϑ)] ,

from which we obtain that

∇ϑπ̂
n
MLE(ϑ)→ ∇ϑπϑ P-a.s., n→∞ (4.43)

pointwise for every ϑ ∈ Θ. Eventually, for a sequence (ϑ
n
)n∈N with ϑ

n → ϑ0 P-a.s.

as n→∞ we have:

‖∇ϑπ̂
n
MLE(ϑ

n
)−∇ϑπϑ0‖ ≤ ‖∇ϑπ̂

n
MLE(ϑ

n
)−∇ϑπ̂

n
MLE(ϑ0)‖+ ‖∇ϑπ̂

n
MLE(ϑ0)−∇ϑπϑ0‖

≤ sup
ϑ∈Θ
‖∇2

ϑπ̂
n
MLE(ϑ)‖‖ϑn − ϑ0‖+ ‖∇ϑπ̂

n
MLE(ϑ0)−∇ϑπϑ0‖.
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By assumption, supϑ∈Θ ‖∇2
ϑπ̂

n
MLE(ϑ)‖ ≤ C holds P-a.s. for a constant C > 0 indepen-

dent of n. By the fact that ϑ
n → ϑ0 P-a.s. as n→∞ and (4.43), we can deduce that

the right–hand side converges to 0 P-a.s. as n→∞ and the proof is complete.

Remark 4.39. a) Since the QMLE and the LS estimator coincide (cf. Remark 4.36)

in this context, under analogous assumptions as in Theorem 4.38 the results of

that theorem also hold for π̂nLS.

b) Since we assumed that for every t ∈ R and every j ∈ {1, . . . , N(Θ)} that

∂

∂ϑj
Yϑ(t) =

∂

∂ϑj

∫ t

−∞
Cϑ eAϑ(t−u) BϑdLS(u) =

∫ t

−∞

∂

∂ϑj
(Cϑ eAϑ(t−u) Bϑ)dLS(u)

holds P-a.s., we can interpret the derivative ∂
∂ϑj

Yϑ(t) pathwise as the sensitivity

of Yϑ(t) with respect to changes in the kernel function gϑ. It is important

to notice that the driving Lévy process does not depend on ϑ in this context,

i.e. the “randomness” in the paths of (Yϑ(t))t∈R does not depend on ϑ and

is not affected by the derivative, which is why the pathwise interpretation of

the derivative makes sense here and the sensitivity of the kernel function with

respect to the parameters is the deciding factor in the derivative.
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4.3.4. Robustness properties of the indirect estimator

In Subsection 4.3.2, we were able to show that the indirect estimator is strongly con-

sistent and asymptotically normally distributed in the case that there are no outliers,

i.e. when we perfectly observe the data–generating CARMA process. Complementing

this, as mentioned at the beginning of this chapter, a robust estimator should also

perform well in the presence of outliers. The study of the indirect estimator with

respect to this is the topic of this subsection.

We work under the following assumptions: We operate in a parameter space

Θ satisfying assumptions B.1 - B.9. Θ contains a true parameter ϑ0 such that

Y = CARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) holds for the data–generating CARMA(p,q) pro-

cess (Y (t))t∈R. We do not observe the sampled process (Y (nh))n∈Z directly, but

instead the contaminated process (Ỹn)n∈Z as defined in Definition 4.1 (specifically

(4.2)). We assume that Assumption G is satisfied. A sample of length n of this

process is denoted by Ỹ n. For the auxiliary AR(r) representation of Definition 4.19,

we assume that r ≥ 2p−1, so that the binding function π is injective. For the indirect

estimator as defined in Definition 4.22, we take π̂n as GM estimator as defined in

Subsubsection 4.3.3.1 that satisfies Assumption H. For the simulation–based estima-

tor π̂nS , we can use any of the three estimators introduced in Subsection 4.3.3, but it

is most convenient to think of either the least squares or the QML estimator, because

these are easier to handle (remember that π̂nS is applied to outlier–free, simulated

data, therefore there it is not needed to use a robust estimator here).

We will consider three different measures of robustness: qualitative resistance, the

breakdown point and the influence functional, which all have different interpretations

and represent different aspects of robustness. The starting point will be the notion

of qualitative resistance.

4.3.4.1. Resistance and qualitative robustness

As outlined in the introduction to this chapter, the most fundamental questions

when considering robustness of an estimator is how the estimator behaves when the

data does not satisfy the model assumptions. One could intuitively call an estimator

robust, when small deviations from the nominal model do not have much effect on

the estimator. In the context of a CARMA process and the model we introduced in

Section 4.1, this then translates to demanding that a small number of outliers in a

data sample should not exert too much influence on the estimator. This property

is known as qualitative robustness or resistance of the estimator and was originally

introduced in Hampel [1971] for i.i.d. observations, who measured deviations from
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the nominal model in terms of the Prokhorov distance on the set of probability

distributions. The same article also gives a slight extension to the case of data that is

generated by permutation–invariant distributions, introducing the term π–robustness

([Hampel 1971, p.1893]). Of course, time series do not satisfy the assumption of

permutation invariance in general. Therefore, there have been various attempts to

generalize the concept of qualitative robustness to the time series setting. However,

there is no unique, intuitively correct way of doing so. Diverse approaches can be

found in Papantoni-Kazakos and Gray [1979], Cox [1981] or Boente et al. [1987],

among others.

In Boente et al. [1987, Remark 3.1] it is explained that the concepts of Cox [1981] and

Papantoni-Kazakos and Gray [1979] do not seem adequate for the time series context.

The reason is that, when using these concepts, estimators which depend only on

a fixed set of coordinates can be robust. This is intuitively contradictory, since a

small percentage of the observations then completely controls the behavior of the

estimator. Moreover, Boente et al. [1987] argue that their concept of πdn–robustness

best generalizes Hampel’s original idea. [Boente et al. 1987, Theorem 3.1] proves

that πdn–robustness is equivalent to Hampel’s π–robustness for i.i.d. processes and

therefore extends it to the setting of time series. They then go ahead and define the

term of resistance. Boente et al. [1987, Theorem 4.2] shows that resistance in their

sense again implies πdn robustness under mild conditions. The concept of resistance

also has the intuitive appeal of making a statement about changes in the values of

the estimator when comparing two deterministic samples, while πdn–robustness is

only a statement concerning the distribution of the estimator, which is in general not

easily tractable. For these reasons, we apply the definitions in the sense of Boente

et al. [1987] here and explore the respective properties for our indirect estimator.

To this end, let y be a (infinite-length) realization of the discretely sampled, data–

generating CARMA process (Y (nh))n∈Z. Formally, we can write that y ∈ R∞, where

R∞ denotes the infinite cartesian product of R with itself. On this space, equipped

with the Borel σ-field B∞ we denote the set of all probability measures by P(R∞).

In the following, we denote for y ∈ R∞ as above by yn the vector of the first n

coordinates, i. e. yn = (y(h), y(2h), . . . , y(nh)). We can now define resistance:

Definition 4.40. Let y ∈ R∞ and let (ϑ̂n)n∈N be a sequence of estimators. Denote

by ϑ̂n(zn) the value of ϑ̂n when it is calculated using the deterministic realization

zn ∈ Rn.

a) (ϑ̂n)n∈N is called resistant at y if for every ε > 0 there exists δ > 0 such that

sup
{
‖ϑ̂n(zn)− ϑ̂n(wn)‖ : zn, wn ∈ Bδ(y

n)
}
≤ ε ∀n ∈ N, (4.44)
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where Bδ(x) denotes the open ball with center x and radius δ with respect to

the metric

dn(zn, wn) = inf

{
ε :

#{i ∈ {1, . . . , n} : |zni − wni | ≥ ε}
n

≤ ε

}
. (4.45)

We say that (ϑ̂n)n∈N is asymptotically resistant at y if for every ε > 0 there

exists δ > 0 and N0(ε, y) ∈ N such that (4.44) holds for n ≥ N0(ε, y).

b) For Q ∈ P(R∞) we say that (ϑ̂n)n∈N is strongly resistant at Q if

Q
({
y ∈ R∞ : (ϑ̂n)n∈N is resistant at y

})
= 1.

We say that (ϑ̂n)n∈N is asymptotically strongly resistant at Q if

Q
({
y ∈ R∞ : (ϑ̂n)n∈N is asymptotically resistant at y

})
= 1.

With this definition at hand, we want to study the question whether our indirect

estimator for CARMA processes is resistant. We will make use of the fact that it is

built out of two blocks, the GM estimator of the auxiliary AR representation, which

deals with possible outliers in the observations, and the outlier–free estimator of

the AR representation based on simulated data. As it turns out, under our assump-

tions from Assumption H, GM estimators applied to a certain class of stationary,

ergodic processes are already asymptotically strongly resistant; the discretely sampled

CARMA process is a special case.

Theorem 4.41. Let π̂n be a GM estimator as defined in (4.24) and (4.25), where

φ and χ fulfill Assumption H and assume that the solutions of (4.22) and (4.23)

are unique. Then (π̂n)n∈N is asymptotically strongly resistant at the measure PY (h),

which is the probability measure associated to the distribution of the data–generating

CARMA process (Y (nh))n∈Z.

Proof. The statement follows from [Boente et al. 1987, Theorem 5.1]. The theorem

requires that φ and χ fulfill Assumption H, that the limiting equation has a unique

solution, which we assumed, and that (Y (nh))n∈Z is ergodic and fulfills G.4, which

is automatically given for every sampled stationary CARMA process, meaning it is

especially given for the data–generating process.

The next step now consists of establishing that the asymptotic strong resistance of

the GM estimators transfers to the indirect estimator, which is not very hard since
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we can again make use of the fact that no outliers are present in the simulation–based

estimate used to construct the indirect estimate.

Theorem 4.42. Let (Y (nh))n∈Z be the data–generating CARMA process sampled

at discrete points in time, let ϑ̂nInd be defined as in (4.10) and let the assumptions of

Theorem 4.41 be satisfied. Then, (ϑ̂nInd)n∈N is asymptotically strongly resistant at the

measure PY (h), which is the probability measure associated to the distribution of the

data–generating CARMA process (Y (nh))n∈Z.

Proof. From the proof of Theorem 4.23a) we know that there exists a set A0 with

PY (h)(A0) = 1 such that LInd(ϑ, yn) converges uniformly in ϑ to QInd(ϑ) as n→∞
for every y ∈ A0. Since the function QInd has a unique minimum at ϑ0 and for this

minimum it holds that QInd(ϑ0) = 0, we have that for every ε > 0 there exist an

η > 0 and a N1(y) ∈ N such that for y ∈ A0 and every n ≥ N1(y) it holds that

inf
|ϑ−ϑ0|≥ ε2

|LInd(ϑ, yn)| > η (4.46)

and

|LInd(ϑ0, y
n)| ≤ η

4
. (4.47)

By Theorem 4.23a) we know that ϑ̂nInd(yn) converges to ϑ0 as n → ∞ for every

y ∈ A0. Therefore, there exists a N2(y) ∈ N such that for every n ≥ N2(y) we have

that

‖ϑ̂nInd(yn)− ϑ0‖ <
ε

2
. (4.48)

Under the assumptions of Theorem 4.41, the GM estimator π̂n is asymptotically

strongly resistant at PY (h) . Therefore, there exists a set A ⊆ R∞ with PY (h)(A) = 1

such that for every y ∈ A and every ε′ > 0 there exists a δ′ > 0 and a natural number

N2(y) ∈ N with

‖π̂n(zn)− π̂n(yn)‖ ≤ ε′ ∀n ≥ N1(y)

for every zn ∈ Bδ′(y
n). By the definition of LInd in (4.9) and the asymptotic strong

resistance of π̂n at PY (h) , we have that for η as in (4.46) and (4.47), there exists a

δ > 0 and N3(y) ∈ N such that for every n ≥ N3(y) and for every zn ∈ Bδ(y
n) it

holds that

sup
ϑ∈Θ
|LInd(ϑ, yn)− LInd(ϑ, zn)|

= sup
ϑ∈Θ
| − (π̂n(yn)− π̂n(zn))TΩπ̂nS(ϑ)− π̂nS(ϑ)TΩ(π̂n(yn)− π̂n(zn))

+ π̂n(yn)TΩπ̂n(yn)− π̂n(zn)TΩπ̂n(zn)|
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≤ sup
ϑ∈Θ

2‖π̂nS(ϑ)‖‖Ω‖‖π̂n(yn)− π̂n(zn)‖+ |π̂n(yn)TΩπ̂n(yn)− π̂n(zn)TΩπ̂n(zn)|

≤ sup
π∈Π′
‖π‖‖Ω‖‖π̂n(yn)− π̂n(zn)‖+ |π̂n(yn)TΩπ̂n(yn)− π̂n(zn)TΩπ̂n(zn)| ≤ η

4

(4.49)

This holds since ‖π̂n(yn)− π̂n(zn)‖ can be made arbitrarily small by choosing δ and

N3(y) suitably, because the space Π′ = π(Θ) is compact, i.e. supπ∈Π′ ‖π‖ ≤ C for

some C > 0, and because the quadratic form x 7→ xTΩx is continuous.

For y ∈ A ∩ A0, n ≥ max{N1(y), N2(y)N3(y)} and for every zn ∈ Bδ(y
n) it then

holds by (4.46) and (4.47) that

|LInd(ϑ0, z
n)| = |LInd(ϑ0, z

n)− LInd(ϑ0, y
n) + LInd(ϑ0, y

n)| ≤ η

4
+
η

4
=
η

2
.

Likewise, (4.46) and (4.49) give us that

inf
|ϑ−ϑ0|≥ ε2

|LInd(ϑ, zn)| ≥ inf
|ϑ−ϑ0|≥ ε2

(|LInd(ϑ, yn)| − |LInd(ϑ, zn)− LInd(ϑ, yn)|)

≥ inf
|ϑ−ϑ0|≥ ε2

|LInd(ϑ, yn)| − sup
|ϑ−ϑ0|≥ ε2

|LInd(ϑ, zn)− LInd(ϑ, yn)|

≥ η − η

4
=

3η

4
.

Since ϑ̂nInd(zn) minimizes LInd(ϑ, zn) per definition, it must therefore hold that

‖ϑ̂nInd(zn)− ϑ0‖ <
ε

2

for every n ≥ max{N1(y), N2(y), N3(y)}. For every y ∈ A∩A0 and every zn ∈ Bδ(yn)

we obtain from this and (4.48) that for every n ≥ max{N1(y), N2(y), N3(y)} it holds

that

‖ϑ̂nInd(zn)− ϑ̂nInd(yn)‖ ≤ ‖ϑ̂nInd(zn)− ϑ0‖+ ‖ϑ̂nInd(yn)− ϑ0‖ < ε.

Since PY (h)(A ∩ A0) = 1 and it of course holds for zn and wn ∈ Bδ(y
n) that

‖ϑ̂nInd(zn)− ϑ̂nInd(wn)‖ ≤ ‖ϑ̂nInd(zn)− ϑ̂nInd(yn)‖+ ‖ϑ̂nInd(yn)− ϑ̂nInd(wn)‖.

this proves that (ϑ̂nInd)n∈N is asymptotically strongly resistant at PY (h) .

As mentioned in the introduction of this subsection, one could also define qualitative

robustness of a sequence of estimators by demanding that the distribution of the

estimator does not change too much when the data is changed slightly, i.e. afflicted
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by outliers. To make this notion explicit, we first need to define a pseudometric for

measures on a metric space, the Prokhorov distance:

Definition 4.43. For a metric space (M,d) with Borel sets B(M), the Prokhorov

distance πd between two measures µ, ν on B(M) with respect to d is defined as

πd(µ, ν) := inf{ε > 0 : µ(A) ≤ ν({x ∈M : d(x,A) < ε}) + ε ∀A ∈ B(M)}.

This pseudometric is a key component of the definition of qualitative robustness,

which is as follows in our scenario:

Definition 4.44. Let P ∈ P(R∞), let dΘ be a metric on Θ, let ρn be a pseudometric

on P(Rn) for all n ∈ N and denote by Pn the n–th order marginal of P. Finally,

denote by Pϑ̂n ∈ P(Θ) the distribution of the estimator ϑ̂n under Pn.

Then, the sequence of estimators (ϑ̂n)n∈N is said to be ρn–robust at P if for every

ε > 0 there exists δ > 0 such that for every Qn ∈ P(Rn) with ρn(Pn,Qn) < δ it holds

that

πdΘ
(Pϑ̂n ,Qϑ̂n

) ≤ ε.

As shown in [Boente et al. 1987, Theorem 3.1], this is a direct generalization of

the definition of π–robustness given by Hampel [1971] for i.i.d. processes. Moreover,

for a special choice of ρn, this kind of robustness is implied by asymptotic strong

resistance, which enables us to obtain:

Theorem 4.45. Assume that the assumptions of Theorem 4.42 are fulfilled. Choose

ρn as the Prokhorov distance on B(Rn) with respect to dn as defined in (4.45), i.e.

ρn(Pn,Qn) = πdn(Pn,Qn)

= inf{ε > 0 : Pn(A) ≤ Qn({xn ∈ Rn : dn(xn, A) < ε}) + ε ∀A ∈ B(Rn)}.

Then, the sequence of estimators (ϑ̂nInd)n∈N is πdn–robust at PY (h), which is the

probability measure associated to the distribution of the data–generating CARMA

process (Y (nh))n∈Z.

Proof. By [Cox 1981, Lemma 5], the GM estimator π̂n is a continuous function of

yn for every n ∈ N. By definition, ϑ̂nInd depends on yn only through a continuous

function applied to π̂n(yn) and therefore ϑ̂nInd is a continuous function of yn for every

n ∈ N, too. From Theorem 4.42, it follows that (ϑ̂nInd)n∈N is asymptotically strongly

resistant at PY (h) . By [Boente et al. 1987, Proposition 4.2], these two properties imply

that (ϑ̂nInd)n∈N is strongly resistant at PY (h) . [Boente et al. 1987, Theorem 4.2a)] then

gives the πdn–robustness of (ϑ̂nInd)n∈N, since it is implied by strong resistance.
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In conclusion, we can say that our indirect estimator is asymptotically strongly

resistant as well as πdn–robust under the same assumptions we used to derive

Theorem 4.23, i.e. no additional assumptions were necessary. This is in contrast to,

for example, M–estimators, which are not qualitatively robust even in the case of

linear regression ([Maronna and Yohai 1981, p.8]).

4.3.4.2. The breakdown point

Intuitively speaking, the breakdown point is (for a sample of data with fixed length

n) the maximum percentage of outliers which can be contained in the data without

“ruining” the estimator. In this sense, it measures by how much the observed data can

deviate from the nomial model before catastrophic effects in the estimation procedure

happen. How this idea should adequately be formalized, however, depends strongly

on the model under consideration. The term was coined originally in [Hampel 1971,

Section 6] for i.i.d. observations in the asymptotic framework. It was later extended,

on the one hand to the case of a finite number of observations in Donoho and Huber

[1983] and on the other hand to different models, such as regression models, e.g. in

Maronna et al. [1979] or Maronna and Yohai [1991] among many others (these two

references deal explicitly with GM estimators) and the time series context, e.g. in

Martin and Yohai [1985] and Martin [1980]. Unfortunately, in the literature there

is no generally accepted way of defining the breakdown point for time series. The

definition for i.i.d. observations is not directly transferable because in time series the

configuration of outliers (i.e. at which times and whether they appear in patches or

isolated) has a decisive effect on the performance of estimators, which is of course

absent in the case of i.i.d. observations, where estimators are typically invariant

to permutation of the data. Furthermore, for time series, determining under which

conditions an estimator has broken down may depend on the model – for a stationary

AR(1) process, for example, one could argue on the one hand that a breakdown

has occurred if the parameter estimate is equal to 0, since then the time series is

indistinguishable from the driving noise. On the other hand, it would also seem

reasonable to say that the estimator has broken if the estimate is equal to 1 or −1,

since these values of the parameter do no longer provide a stationary AR(1) model.

Defining the breakdown point in this way, specifically tailored to the model under

consideration, is somewhat unsatisfactory, especially considering the fact that the

edge cases are not always as easily identifiable as in the AR(1) example.

For a very general class of models and estimators, the breakdown point as defined in

Genton and Lucas [2003] takes these problems into account. Heuristically speaking,

the fundamental idea of that definition is that the breakdown point is the smallest
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amount of outlier contamination with the property that the performance of the

estimator does not get worse anymore if the contamination is increased further. For

a formal definition, see [Genton and Lucas 2003, Definition 1 and Definition 2]. The

downside of this definition is that, except for special cases, the defining expression is

not analytically tractable and it is therefore very difficult to explicitly calculate the

breakdown point for a given estimator and a given contamination model.

For our indirect estimator ϑ̂nInd as defined in (4.10), studying the breakdown point

means studying the breakdown point of the GM estimator π̂n which is obtained

by applying the method of Subsubsection 4.3.3.1 to the observations Ỹ1, . . . , Ỹn.

The reason is that the other building block of ϑ̂nInd, π̂nS , is obtained by applying an

estimator to a simulated, outlier–free sample. Hence, if the rate of contamination is

high enough to “ruin the estimator”, it must ruin the GM estimator. In the literature,

one often finds the fact that the breakdown point of a GM estimator, applied to an

AR(r) process is positive, but bounded from above by 1
r+1

. The earliest mention of

this in a published article seems to be [Martin 1980, p. 239]. However, no calculation

is presented to support this. Later literature often cites this result, too, e.g. [de

Luna and Genton 2001, p. 377] and [Genton and Lucas 2003, p. 89]. In Genton and

Lucas [2003], the authors mention that this result is consistent with their definition

of breakdown, unfortunately without providing a proof as well. The only reference

containing explicit calculations to our knowledge seems to be Martin and Jong [1977],

which is only availabe in form of an unpublished technical memorandum. For this

reason, its content could not be accessed in order to check the calculations and,

unfortunately, carrying out the calculations to verify the alluded upper bound of 1
r+1

proved a task which was not succesful. We can only give an intuitive justification in

a special case as follows:

Suppose that our sample of length n is of the form

Ỹ n = (Y (h), Y (2h), . . . , Y ((r+1)h)+ξ, Y ((r+2)h), . . . , Y (2(r+1)h)+ξ, . . . , Y (nh)),

(4.50)

where ξ is a fixed real number. This means that in our realization we have equally

spaced additive outliers of size ξ, where there are r outlier–free observations in

between. In total, the fraction of contamination in this setup is then
b n
r+1
c

n
. If we

compute π̂n with this sample, we need to evaluate (4.24) and (4.25). We then can

write

(4.24) =
1

n− r

φ


Y (h)
...

Y (rh)

 ,
Y ((r + 1)h) + ξ − π̂nr Y (rh)− . . .− π̂n1Y (h)

σ̂n



Y (h)
...

Y (rh)


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+φ




Y (2h)
...

Y ((r + 1)h) + ξ

 ,
Y ((r + 2)h)− π̂nr (Y ((r + 1)h) + ξ)− . . .− π̂n1Y (h)

σ̂n

 ·


Y (2h)
...

Y ((r + 1)h) + ξ

+ . . . +

φ



Y ((r + 1)h) + ξ

...

Y (2rh)

 ,
Y ((2r + 1)h)− π̂nr Y (2rh)− . . .− π̂n1 (Y ((r + 1)h) + ξ)

σ̂n

 ·

Y ((r + 1)h) + ξ

...

Y (2rh)

+
n∑

t=r+2

φ




Ỹt
...

Ỹt+r−1

 ,
Ỹt+r − π̂nr Ỹt+r−1 − . . .− π̂n1 Ỹt

σ̂n




Ỹt
...

Ỹt+r−1




!
= 0 (4.51)

and likewise for (4.25). The deciding observation is that the outlier at time r + 1

influences all summands of the equation from time t = 1 until t = r+ 1. Additionally,

the remaining summands from time t = r + 2 to t = n are affected in the same way

since a new outlier appears exactly after r + 1 points in time.

We now consider the special case of the Mallows estimator of Example 4.25a). Hence,

φ(y, u) = w(y)ψ(u) for every (y, u) ∈ Rr+1. Additionally, we assume that the function

ψ is non–decreasing, as it is for example satisfied by the Huber ψk–functions of

Example 4.25b). By Assumption H.2, there exists a constant C > 0 such that

‖φ(y, u)y‖ = w(y)‖y‖|ψ(u)| ≤ C ∀(y, u) ∈ Rr+1.

By the assumed monotonicity of ψ, it must therefore hold that

lim
|u|→∞

ψ(u) = C ′

for some constant C ′ > 0. Likewise, the behavior

lim
‖y‖→∞

w(y)‖y‖ = C̃

for some C̃ ≥ 0 needs to hold.

If we now let ξ →∞ in (4.51), then the second argument of φ in the summands for

t = 1, . . . , r + 1 tends to either −∞ or ∞ while the norm of the first argument tends
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to ∞ in the summands for t = 2, . . . , r + 1. More precisely, this means that for the

summand corresponding to t = 1 it holds that

lim
ξ→∞

φ



Y (h)
...

Y (rh)

 ,
Y ((r + 1)h) + ξ − π̂nr Y (rh)− . . .− π̂n1Y (h)

σ̂n



Y (h)
...

Y (rh)



= w



Y (h)
...

Y (rh)



∥∥∥∥∥∥∥∥

Y (h)
...

Y (rh)


∥∥∥∥∥∥∥∥ lim
ξ→∞

ψ

(
Y ((r + 1)h) + ξ − π̂nr Y (rh)− . . .− π̂n1Y (h)

σ̂n

)

= C ′w



Y (h)
...

Y (rh)



∥∥∥∥∥∥∥∥

Y (h)
...

Y (rh)


∥∥∥∥∥∥∥∥ > 0,

which is a constant independent of π. Similarly, for the summand with t = 2 we have

that

lim
ξ→∞

φ




Y (2h)
...

Y ((r + 1)h) + ξ

 ,
Y ((r + 2)h)− π̂nr (Y ((r + 1)h) + ξ)− . . .− π̂n1Y (h)

σ̂n



= lim
ξ→∞

w




Y (2h)
...

Y ((r + 1)h) + ξ



∥∥∥∥∥∥∥∥


Y (2h)
...

Y ((r + 1)h) + ξ


∥∥∥∥∥∥∥∥

· lim
ξ→∞

ψ

(
Y ((r + 2)h)− π̂nr (Y ((r + 1)h) + ξ)− . . .− π̂n1Y (h)

σ̂n

)
= C̃C ′ ≥ 0.

The same behavior holds for the summands with t = 3, . . . , r + 1. Summarizing and

using that w is a strictly positive function, we have

lim
ξ→∞

r+1∑
t=1

φ




Ỹt
...

Ỹt+r−1

 ,
Ỹt+r − π̂nr Ỹt+r−1 − . . .− π̂n1 Ỹt

σ̂n




Ỹt
...

Ỹt+r−1



= C ′w



Y (h)
...

Y (rh)



∥∥∥∥∥∥∥∥

Y (h)
...

Y (rh)


∥∥∥∥∥∥∥∥+ (r − 1)C̃C ′ > 0.
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We can argue just in the same way for the sums with indices starting at t = r + 2.

Hence, for ξ → ∞, every summand of the left–hand side of (4.51) converges to a

strictly positive constant, independent of π, and therefore (4.24) is not solvable. For

(4.25), we can argue just in the same way and obtain that π̂n does not exist. Note

that adding further outliers to components of (4.50) does not have an effect anymore,

since all summands of the estimating equation are already afflicted, i.e. we have

considered a worst case scenario. Since the fraction of contamination was
b n
r+1
c

n
, the

breakdown point must be less than this ratio. Letting n→∞ delivers a breakdown

point bounded from above by 1
r+1

, just as claimed.

On the other hand, the perhaps more important fact is that the breakdown point of a

GM estimator is positive. This is an important distinction from, e.g. the QMLE and

least squares estimator, because it is well known that the latter two have a breakdown

point of zero, i.e. one single outlier can cause the estimators to break down (see e.g.

[Genton and Lucas 2003, Section 5.1]). To see that the breakdown point is positive,

we can argue similarly as above: Assume that the contaminated, finite sample of

fixed size n ∈ N has one single outlier at time k ∈ {1, . . . , n}. This outlier can, at

most, affect r summands of the defining equations (4.24) and (4.25) as we have seen

above. Since the summands are all bounded by a constant C, therefore, at worst, this

outlier causes r summands to be equal to a non–zero constant independent of π. If

n > r (which is reasonable to suppose, since the AR order r is typically rather small

in comparison to the number of observations), then there are summands remaining

which are not afflicted by outliers. At worst, the outlier therefore shifts the left

hand side of (4.24) and (4.25) by ± rC
n−1

and a sample of size n− r remains, so that

solutions continue to exist if they existed before.

For large r, the upper bound of 1
r+1

is rather unsatisfactory, because the breakdown

point will then be very low. For the indirect estimator, however, it may be necessary to

choose r rather large, depending on the order of the CARMA(p, q) process. Therefore,

if one suspects that the data contains a percentage of outliers high enough to surpass

the breakdown point for an appropriate r, it might be advisable to not use a GM

estimator at all.

Luckily, the construction of the indirect estimator allows for modifications which can

deal with this problem. Remember that we use the auxiliary AR representation only

because it is convenient to apply GM estimators to it and exploit their robustness

properties. However, one could also use any other auxiliary model for which a

robust estimator is available. One possibility would be to use the weak ARMA(p,

p− 1) representation of the sampled CARMA process as described in (4.8) as the

auxiliary model and use the bounded MM (BMM) estimators for ARMA processes
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as introduced in Muler et al. [2009]. In that paper, the authors argue that their

estimators form a class of estimators for ARMA models which are again consistent

and asymptotically normal when no outliers are present and have good robustness

properties. Specifically, in Muler et al. [2009, Section 6] the authors point out that

the BMM estimators do not break down in the sense of Genton and Lucas [2003], i.e.

they achieve the largest possible breakdown point of 1
2
. The downside of this approach

is that the theory in Muler et al. [2009] is only developed for ARMA models driven

by a strong white noise sequence, i.e. a white noise that consists of independent

and identically distributed random variables. Since the noise in the ARMA(p, p− 1)

representation coincides with the innovations calculated by the Kalman filter for

the state–space representation of the sampled CARMA process (cf. (4.8)), we know

that we are only dealing with an uncorrelated, but not independent noise sequence.

Therefore, the results of Muler et al. [2009] are not directly applicable. However, if

one had the analogs of [Muler et al. 2009, Theorem 4 and Theorem 6], which state

that the BMM estimator is strongly consistent and asymptotically normal under

suitable conditions for an ARMA process with a noise sequence that is i.i.d., one could

replace the auxiliary AR(r) representation by the ARMA(p, p− 1) representation, π̂n

by the BMM estimator and choose π̂nS as a strongly consistent, asymptotically normal

estimator for the ARMA(p, p− 1) representation. In this setup the assumptions of

Theorem 4.23 would be fulfilled again, so the results of Subsection 4.3.2 would still

hold. It is worth mentioning that if the Lévy process driving the observed process

(Y (t))t∈R is a Brownian motion, then the sampled ARMA(p, p− 1) process will be

driven by an i.i.d. noise, because the innovations are then normally distributed and

thus independent. In this special case, the results on the BMM estimator hold and

can be applied. Since the construction of the BMM estimator is very involved and

lengthy, we do not go into details here and instead refer to Muler et al. [2009] for

further information.

4.3.4.3. The influence functional

We continue our investigation of robustness of ϑ̂nInd with the study of the influence

functional of the indirect estimator. This measure of robustness was originally

introduced as the influence curve by Hampel [1974] for i.i.d. processes. Intuitively

speaking, it measures the change in the asymptotic bias of an estimator caused by

an infinitesimal amount of contamination in the data. It was later generalized to

the time series context by Künsch [1984], who explicitly studies the estimation of

autoregressive processes. However, in the paper of Künsch, only estimators which

depend on a finite–dimensional marginal distribution of the data–generating process
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and a very specific form of contamination are considered. To remedy this, a further

generalization was then made by Martin and Yohai [1986], who consider the influence

functional and explicitly allow for the estimators to depend on the measure for

the process. Martin and Yohai also argue that their idea is a generalization of the

definition of Künsch which fits better to the time series context, since their definition

of contamination makes more sense in the time series setup ([Martin and Yohai 1986,

Section 4]. We work with their definition in the following and will point out in what

sense it differs from that of Künsch.

Consider now the model as in (4.2). The distribution of (Ỹn)n∈Z is characterized by

the joint distribution of (Y (nh))n∈Z, (Vn)n∈Z and (Zn)n∈Z. We denote the probability

measure associated to the distribution (Zn)n∈Z on R∞ by PZ and the probability

measure associated to the distribution of (Ỹn)n∈Z by PγY for 0 ≤ γ ≤ 1. Note that

γ = 0 corresponds to the case where there are no outliers, i. e. we can observe the

nominal process without error and then write P0
Y = PY (h) , which is the probability

measure associated to the distribution of the data–generating CARMA process

(Y (nh))n∈Z . We denote

{PγY } := {PγY , 0 ≤ γ ≤ 1} ⊆ P(R∞).

We assume that the assumptions of Theorem 4.27 and Theorem 4.31 are satisfied for

every choice of γ. Remember that the pseudo–true parameter in this case depends on

the processes V and Z, i.e. it is different for different values of γ and we denote it by

πγ0 . We assume that π0
0 = πϑ0 , i.e. in the case of no outliers the auxiliary parameter of

the data–generating CARMA process is estimated. Sufficient for this are for example

the conditions of Proposition 4.28. We introduce the statistical functional TGM by

defining

TGM : {PγY } → Π

PγY 7→ πγ0 .

Then, the definition of the influence functional for the GM estimators as considered

in Subsubsection 4.3.3.1 is as follows:

IFGM(PZ , {PγY }) := lim
γ→0

TGM(PγY )− TGM(PY (h))

γ
= lim

γ→0

πγ0 − π0

γ
(4.52)

whenever this limit is well–defined. Note that the influence functional depends

on the whole “arc” of contaminated measures {PγY , 0 ≤ γ ≤ 1}. This is the most

important difference to the definition used by Künsch [1984], because in that paper
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the approximation PγY = (1−γ)PY (h) +γν for some fixed ν ∈ P(R∞) is used ([Künsch

1984, Eq. (1.11)]). The influence functional measures the effect of an infinitesimal

contamination of the true process by the process Z on the asymptotic estimate

defined via the functional TGM.

In a similar vein, we can define the influence functional for the estimation of the

parameter ϑ0 of our CARMA process, which is what we are truly interested in.

Analogous to TGM, we first define a suitable statistical functional TInd via

TInd : {PγY } → Θ

PγY 7→ ϑγ0 := arg min
ϑ∈Θ

(πγ0 − πϑ)TΩ(πγ0 − πϑ). (4.53)

This definition is motivated by the fact that π̂n converges almost surely to πγ0 in this

scenario by Theorem 4.27. With the same arguments as in the uncontaminated case

(cf. the proof of Theorem 4.23), we then obtain that LInd(ϑ, Ỹ n) converges uniformly

in ϑ almost surely to (πγ0 − πϑ)TΩ(πγ0 − πϑ), the analog of (4.18). Continuing to

argue as in the proof of Theorem 4.23, ϑ̂nInd then converges uniformly almost surely

to ϑγ0 in this case and the definition of TInd is justified. With this the definition of

the influence functional of the indirect estimator is

IFInd(PZ , {PγY }) = lim
γ→0

TInd(PγY )− TInd(PY (h))

γ
= lim

γ→0

ϑγ0 − ϑ0

γ

Of course we are interested in properties of this functional, mainly if and under which

conditions it remains bounded. Boundedness of the influence functional implies that

the estimate arising from the contaminated process cannot move too far away from

the one in the uncontaminated case if the rate of contamination is infinitesimal. This

property is well–known for the influence functional for GM estimators of AR processes.

Since these estimators are an integral building block of the indirect estimator, one can

hope that it carries over to this scenario and indeed it does, since the two functionals

are proportional. This follows from de Luna and Genton [2000, Theorem 1] as special

case, but we cite the theorem in full and also give its proof in detail here for the sake

of completeness:

Theorem 4.46. Under the assumptions made at the beginning of Subsection 4.3.4,

IFInd exists whenever IFGM exists and

IFInd(PZ , {PγY }) = H(TInd(PY (h)))IFGM(PZ , {PγY }),
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where

H(TInd(PY (h))) = H(ϑ0) = (∇ϑπ
T
ϑ0

Ω∇ϑπϑ0)−1∇ϑπ
T
ϑ0

Ω

as in (4.21).

Proof. By (4.53), it holds that

∇ϑπϑγ0 Ω(πγ0 − πϑγ0 ) = 0

=⇒∇ϑπϑγ0 Ω(πγ0 − π0 + π0 − πϑγ0 ) = 0

=⇒∇ϑπϑγ0 Ω

(
πγ0 − π0

γ

)
= ∇ϑπϑγ0 Ω

(
πϑγ0 − π0

γ

)
. (4.54)

By Definition 4.21, the map ϑ 7→ ∇ϑπϑ is continuous. Moreover, ϑγ0 → ϑ0 as γ → 0

holds. Therefore, by continuity, ∇ϑπϑγ0 → ∇ϑπϑ0 as γ → 0 holds. Furthermore,

lim
γ→0

πϑγ0 − π0

γ
= ∇ϑπϑ0 lim

γ→0

ϑγ0 − ϑ0

γ
= ∇ϑπϑ0IFInd(PZ , {PγY }).

Taking the limit γ → 0 on both sides of (4.54) thus implies

∇ϑπϑ0ΩIFGM(PZ , {PγY }) = ∇ϑπϑ0Ω∇ϑπϑ0IFInd(PZ , {PγY })

=⇒IFInd(PZ , {PγY }) = (∇ϑπϑ0Ω∇ϑπϑ0)−1∇ϑπϑ0ΩIFGM(PZ , {PγY })

= H(TInd(PY (h)))IFGM(PZ , {PγY })

as claimed.

From this theorem we see that the question of boundedness of the influence

functional for the indirect estimator of a CARMA process reduces to the question

of boundedness of the influence functional for the GM estimation of the auxiliary

AR process. Conditions under which the influence functional is bounded are studied

in Martin and Yohai [1986], where it is shown that GM estimators yield a bounded

influence functional for AR(1) processes. Those results generalize easily to the setting

of GM estimators for AR(r) processes with r ≥ 2 applied to sampled CARMA

processes as we considered them in Subsubsection 4.3.3.1 as we shall see in the

following.

For our investigation of boundedness of the influence functional, assume that our

contamination model (4.2) is such that we have additive outliers, i.e. we are in the

case of Remark 4.2b) and it holds that Ỹn = Y (nh) + VnWn, where the processes are

chosen in such a way that Assumption G is satisfied. Under these assumptions, we

can now state the result on the influence functional defined in (4.52):
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Theorem 4.47. Let the additive outlier model hold. Assume furthermore that the

matrix JGM(πϑ0) as defined in Theorem 4.31 is non–singular. Then there exists a

constant K > 0 such that it holds:

|IFGM(PW , {PγY })| ≤ 2(r + 1)C
∥∥(JGM(πϑ0))−1

∥∥ .
Proof. The plan is to apply [Martin and Yohai 1986, Theorem 4.3]. To this end, note

that TGM(PγY ) (i. e. the parameter πγ0 defined by (4.22) and (4.23)) only depends on

r + 1 values of the process (Ỹn)n∈Z . Moreover, we have that each of those summands

is bounded by (say) a constant C by Assumptions H.2 and H.6 and that

E

φ


Y (h)
...

Y (rh)

 ,
Y ((r + 1)h)− πϑ0,rY (rh)− . . .− πϑ0,1Y (h)

σϑ0



Y (h)
...

Y (rh)


 = 0,

E

[
χ

((
Y ((r + 1)h)− πϑ0,rY (rh)− . . .− πϑ0,1Y (h)

σϑ0

)2
)]

= 0.

by (4.22) and (4.23). Note that we have written Y instead of Ỹ here because γ = 0

corresponds to the uncontaminated case where there are no outliers present, which

implies that Ỹ then coincides with Y and πγ0 = π0
0 = πϑ0 . Since we also assumed that

JGM(πϑ0), the derivative of QGM(π) at πϑ0 , exists and is non–singular, Assumptions

(a), (b) and (c) of [Martin and Yohai 1986, Theorem 4.3] are satisfied (see also [Martin

and Yohai 1986, Comment 4.3]).

However, this is not sufficient yet, as to apply [Martin 1980, Theorem 4.3] it must

also be checked that TGM satisfies [Martin and Yohai 1986, Eq. (4.6)]. Sufficient

conditions for this equation to hold are given in [Martin and Yohai 1986, Theorem

4.2], which we will now verify. Remember that by Assumption G.3 the process

(Vn)n∈Z is independent from the processes (Wn)n∈Z and (Y (nh))n∈Z, such that the

assumption on the distribution of (Ỹn)n∈Z of [Martin and Yohai 1986, Theorem 4.2]

is satisfied.

As in the proof of [Martin and Yohai 1986, Theorem 5.2], we obtain that Assumption

(a) of [Martin and Yohai 1986, Theorem 4.2] is satisfied. Assumption (b) of [Martin

and Yohai 1986, Theorem 4.2] is an assumption of Theorem 4.47 as well. For

assumption (c), the object Hm(π) that must be studied is given in our context by
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Hm(π) = sup
ai∈{0,1}, bi∈{0,1}, i=1,...,r+1−m∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E





φ





Ỹ1

...

Ỹm

Ym+1 + ar−m+1Zm+1

...

Yr + a2Zr


, Yr+1+a1Zr+1−πr(Yr+a2Zr)−...−π1Ỹ1

σ





Ỹ1

...

Ỹm

Ym+1 + ar−m+1Zm+1

...

Yr + a2Zr


χ

((
Yr+1+a1Zr+1−πrYr+a2Zr−...−π1Ỹ1

σ

)2
)



−



φ





Ỹ1

...

Ỹm

Ym+1 + br−m+1Zm+1

...

Yr + b2Zr


, Yr+1+b1Zr+1−πr(Yr+b2Zr)−...−π1Ỹ1

σ





Ỹ1

...

Ỹm

Ym+1 + bm+1Zm+1

...

Yr + brZr


χ

((
Yr+1+b1Zr+1−πr(Yr+b2Zr)−...−π1Ỹ1

σ

)2
)





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for 0 ≤ m ≤ r + 1 and by Hm(π) = 0 for m > r + 1, where we used the notation

Yt = Y (th) for t = 1, . . . , r + 1 for the sake of readability. Since every component of

Hm(π) is bounded for every 1 ≤ m ≤ r + 1 and every π, it follows that

∞∑
m=1

sup
π∈Π′

Hm(π) =
r+1∑
m=1

sup
π∈Π′

Hm(π) ≤ (r + 1)C <∞,

and therefore Assumption (c) of [Martin and Yohai 1986, Theorem 4.2] holds. For

the same reason it follows from the boundedness assumptions that

sup
π∈Π′

sup
(Ỹ1,...,Ỹr+1)T

E




φ



Ỹ1

...

Ỹr

 , Ỹr+1−πrỸr−...−π1Ỹ1

σ



Ỹ1

...

Ỹr


χ

((
Ỹr+1−πrỸr−...−π1Ỹ1

σ

)2
)



 <∞,
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which is Assumption (d). Last but not least, it holds that

lim
π→πϑ0


φ



Ỹ1

...

Ỹr

 , Ỹr+1−πrỸr−...−π1Ỹ1

σ



Ỹ1

...

Ỹr


χ

((
Ỹr+1−πrỸr−...−π1Ỹ1

σ

)2
)



=


φ



Ỹ1

...

Ỹr

 ,
Ỹr+1−πϑ0,r

Ỹr−...−πϑ0,1
Ỹ1

σϑ0



Ỹ1

...

Ỹr


χ

((
Ỹr+1−πϑ0,r

Ỹr−...−πϑ0,1
Ỹ1

σϑ0

)2
)

 P-a.s.

by the continuity of the functions φ and χ. And, again by the boundedness we

assumed in H.2 and H.6, we obtain that

E

sup
π∈Π′

∥∥∥∥∥∥∥∥∥∥∥∥


φ



Ỹ1

...

Ỹr

 , Ỹr+1−πrỸr−...−π1Ỹ1

σ



Ỹ1

...

Ỹr


χ

((
Ỹr+1−πrỸr−...−π1Ỹ1

σ

)2
)



∥∥∥∥∥∥∥∥∥∥∥∥

 <∞,

which is Assumption (e).

This completes the list of required assumptions for [Martin and Yohai 1986, Eq.

(4.6)] to hold which is the last ingredient in the proof of the boundedness of the

influence functional in this case.

Remark 4.48. Note that [Martin and Yohai 1986, Theorem 5.2] proceeds in the

same way to show that the influence functional of an AR(1) process with additive

outliers is bounded. In contrast to our results however, they do not consider the

case of higher order AR processes and also assume that the true, outlier–free process

possesses Gaussian innovations, which we do not require.
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4.4. Model selection using the indirect estimator

An important question that we have not addressed so far is the issue of model

selection in the robustness framework. A naive idea would be to apply the criteria

developed in Chapter 3 to determine the orders of the CARMA process before using a

robust estimator for parameter estimation. However, since those information criteria

are based on the QMLE and we know that this estimator is not robust towards

outliers, it is reasonable to expect that the outliers also greatly affect the information

criteria. Instead, it would better to use some kind of robust model selection procedure

which takes the outliers into account. In the literature, there exist a few approaches

towards this problem. For example, [Martin 1980, Section 6] proposes a modification

to the AIC in the framework of determining the order r of an autoregressive process

based on GM estimators. [Ronchetti 1997, Section 3.2] also treats this topic and

introduces a robust version of the AIC, referencing the results of Behrens [1991].

Similarly, Machado [1993] treats the BIC and proposes a robustified version of it.

The problem with these cited references is, however, that they all assume that the

parameter of interest is estimated by an M or GM estimator and modify the criteria

accordingly. For our problem, this means that we could apply these robust order

selection procedures to estimate the order of the auxiliary AR process introduced

in Subsection 4.3.1, since the parameters of this process are estimated by a GM

estimator as part of the indirect approach. However, this is of limited use, since

the auxiliary AR representation is just an appliance in constructing the indirect

estimator. In Subsection 4.3.2 we only required that r ≥ 2p− 1 and did not observe

in any kind that the indirect estimator works better or worse if r is chosen in a

particular way above this threshold. Hence, choosing r optimally does not directly

aid us in finding a suitable parameter space for ϑ0. ϑ̂nInd, on the other hand, is not

an M or GM estimator, i.e. those criteria cannot be applied and we have to look for

an alternative method. However, the guiding idea used by the cited references is still

useful: they replace the likelihood function by the robust function that is optimized

to obtain the respective estimator. We will proceed in the same way.

Similar to Subsection 4.3.2, we consider the case when there are no outliers in the

data, i.e. when Ỹ n = Y n. Remembering how our information criteria were defined,

it suggests itself to define a criterion based on the indirect estimator as

ICInd
n (Θ) := LInd(ϑ̂nInd, Y

n) +N(Θ)
C(n)

n
,

where

LInd(ϑ, Y n) = (π̂n − π̂nS(ϑ))TΩ(π̂n − π̂nS(ϑ))
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as in (4.10) can be interpreted as “pseudo–likelihood” function and C(n) is again a

penalty function as in Definition 3.6. Given a family of parameter spaces parametriz-

ing CARMA(p, q) processes of different orders, we will again choose the parameter

space Θ (or the model represented by this parameter space) as the most suitable for

the data for which ICInd
n (Θ) is minimal. Since we are in the one–dimensional case, we

know from Example 3.1 that a parameter space can be uniquely characterized by the

order p of the AR polynomials of the CARMA processes it contains, which needs to

be fixed by B.6, and the maximal order q of the MA polynomials of the processes. If

the data–generating CARMA process (Y (t))t∈R is a CARMA(p0, q0) process, the true

parameter space Θ0 is then the one for which p = p0 and q = q0. Ultimately, just as in

Chapter 3, we would like to draw conclusions about consistency of these information

criteria in the sense of Definition 3.9. To this end, we have to study the behavior

of ϑ̂nInd if we have a parameter space Θ such that Y 6= CARMA(Aϑ, Bϑ, Cϑ, Lϑ) for

every ϑ ∈ Θ, i.e. if we are in a misspecified parameter space. In the one–dimensional

case, a space is misspecified precisely if and only if either p 6= p0 or p = p0 and

q < q0. Similarly, the true parameter space Θ0 is nested in Θ if and only if p = p0

and q ≥ q0. Obviously, if ϑ0 ∈ Θ0, then for any Θ in which Θ0 is nested the results

on the indirect estimator then also hold in Θ, because there exists ϑ∗ ∈ Θ with

CARMA(Aϑ∗ , Bϑ∗ , Cϑ∗ , Lϑ∗) = CARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0). For non–nested spaces,

summarizing Subsection 2.2.3, all the results from the correctly specified case carry

over in the case of the QMLE as long as there is a unique pseudo–true parameter

ϑ∗ ∈ Θ, which minimizes the almost sure limit of L̂(ϑ, Y n), i.e. Q in the QMLE case.

We will see that this is also the case for the indirect estimator. We always assume in

the following that the auxiliary parameter space Π and the weighting matrix Ω are

the same for every candidate space Θ. This is not a restrictive assumption, it just

implies that r ≥ 2p− 1 needs to hold for the maximum p under consideration, i.e.

for the largest parameter space.

Proposition 4.49. Assume that the parameter space Θ is such that

Y 6= CARMA(Aϑ, Bϑ, Cϑ, Lϑ) for every ϑ ∈ Θ and let the assumptions of Section 4.3

be satisfied. Then, there exists a unique ϑ∗ ∈ Θ such that

ϑ∗ = arg min
ϑ∈Θ

QInd(ϑ) = arg min
ϑ∈Θ

(πϑ0 − πϑ)TΩ(πϑ0 − πϑ).

Moreover, it holds that

QInd(ϑ
∗) = (πϑ0 − πϑ∗)TΩ(πϑ0 − πϑ∗) > 0
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and Theorem 4.23 holds with ϑ∗ replacing ϑ0.

Proof. The function ϑ 7→ QInd(ϑ) is continuous by construction of π. Since Θ is

compact, it therefore attains its minimum at some ϑ∗ ∈ Θ. Moreover, π is injective by

assumption, which implies that ϑ∗ is unique. Since the parameter space is misspecified

by construction, this minimum also has to be strictly positive because πϑ∗ 6= πϑ0

holds. Theorem 4.23 can then be proven just in the same way as before, replacing ϑ0

by ϑ∗ wherever it appears and noting that the only property of ϑ0 we used was that

it is the unique minimizer of QInd(ϑ).

in the following, we always assume that the pseudo–true parameter ϑ∗ is an element

of the interior of the corresponding space Θ, analogous to Assumption B.8. Using

the previous proposition and this additional assumption, we can draw a conclusion

about the consistency of our new information criterion ICInd
n :

Theorem 4.50.

a) Assume that the penalty term C(n) fulfills C(n)→∞ as n→∞. Then, ICInd
n

is a weakly consistent information criterion in the sense of Definition 3.9b).

b) If lim supn→∞C(n) <∞, then ICInd
n is neither weakly nor strongly consistent

in the sense of Definition 3.9.

c) Consider a parameter space Θ with p = p0 but q > q0, i.e. Θ0 is nested in

Θ with map F in the sense of Definition 3.8. For the pseudo–true parameter

ϑ∗ ∈ Θ, define

MF,Ind(ϑ
∗) := −(JInd(ϑ

∗))−1 + F (JInd(ϑ0))−1F T .

If lim supn→∞C(n) = C <∞, we have

lim
n→∞

P(ICInd
n (Θ0)− ICInd

n (Θ) > 0) = P

(
q−q0∑
i=1

λiχ
2
i > 2[N(Θ)−N(Θ0)]C

)
> 0,

where (χ2
i ) is a sequence of independent χ2 random variables with one degree

of freedom and the λi are the q − q0 strictly positive eigenvalues of

JInd(ϑ
∗)

1
2MF,Ind(ϑ

∗)IInd(ϑ∗)MF,Ind(ϑ
∗)JInd(ϑ

∗)
1
2 .

Proof. The proof is analogous to the one of Theorem 3.10b), the only difference being

that we need to use different asymptotic results. Throughout the proof, we consider
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the true parameter space Θ0 and an alternative space Θ fulfilling Assumption B. We

denote the “likelihood” associated to Θ0 by LInd,0, the indirect estimator in Θ0 by

ϑ̂nInd,0 and the limiting function of LInd,0 by QInd,0. For the space Θ we use the usual

notation without any additional subscripts.

a) We have to distinguish two cases.

Case 1: Consider a parameter space Θ such that Θ0 is not nested in Θ. Then:

ICInd
n (Θ0)−ICInd

n (Θ) = LInd,0(ϑ̂nInd,0, Y
n)−LInd(ϑ̂nInd, Y

n)+(N(Θ0)−N(Θ))
C(n)

n
.

We now show that LInd,0(ϑ̂nInd,0, Y
n)−QInd,0(ϑ0)→ 0 almost surely for n→∞

(by the same argument as [Schlemm and Stelzer 2012, p. 2201]). For ε > 0 and

ω ∈ Ω \N , where N is a set with P(N) = 0, suppose that n ∈ N is such that

sup
ϑ∈Θ0

|LInd,0(ϑ, Y n)−QInd,0(ϑ)| < ε.

Then

LInd,0(ϑ̂nInd,0, Y
n) ≤ LInd,0(ϑ0, Y

n) ≤ QInd,0(ϑ0) + ε

and

LInd,0(ϑ̂nInd,0, Y
n) ≥ QInd,0(ϑ̂nInd,0)− ε ≥ QInd,0(ϑ0)− ε,

which implies |LInd,0(ϑ̂nInd,0, Y
n)−QInd,0(ϑ0)| < ε. Therefore,

P(LInd,0(ϑ̂nInd,0, Y
n)

n→∞−→ QInd,0(ϑ0)) ≥ P
(

sup
ϑ∈Θ
|LInd,0(ϑ, Y n)−QInd,0(ϑ)| n→∞−→ 0

)
= 1,

where the last equality holds by the uniform almost sure convergence of LInd,0 to

QInd,0, which we obtained in the proof of Theorem 4.23. By the same argument

we also obtain that LInd(ϑ̂nInd, Y
n)−QInd(ϑ∗)→ 0. Therefore,

LInd,0(ϑ̂nInd,0, Y
n)−LInd(ϑ̂nInd, Y

n)→ QInd,0(ϑ0)−QInd(ϑ∗) > 0 P-a.s., n→∞,

since Θ is misspecified. By assumption, we have that C(n)/n→ 0 as n→∞,

and hence

P(ICInd
n (Θ0)− ICInd

n (Θ) ≥ 0)
n→∞−→ P(QInd,0(ϑ0)−QInd(ϑ∗) ≥ 0) = 0,
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showing that the probability of selecting Θ instead of Θ0 goes to zero.

Case 2: Consider a parameter space Θ in which Θ0 is nested, i.e. we have

p = p0 but q > q0 for Θ. In this case we argue as in the proof of Theorem 3.10b),

defining f : Θ0 → Θ by f(ϑ) = Fϑ+ c, where F and c are as in the definition

of nested spaces in Definition 3.8 and writing

ICn(Θ0)− ICn(Θ) =
1

2

(
ϑ̂nInd − f(ϑ̂nInd,0)

)T
∇2
ϑLInd

(
ϑ
n
, Y n

)(
ϑ̂nInd − f(ϑ̂nInd,0)

)
+ [N(Θ0)−N(Θ)]

C(n)

n

with ϑ
n

such that ‖ϑn − ϑ̂nInd‖ ≤ ‖f(ϑ̂nInd,0)− ϑ̂nInd‖. The rest of the proof now

uses the analogous arguments as the one of Theorem 3.10b) and the asymptotic

results derived in the proof of Theorem 4.23. In this way, we first arrive at the

analog of (3.12):

ϑ̂nInd − f(ϑ̂nInd,0)
D−→
[
−((∇ϑπϑ∗)

TΩ∇ϑπϑ∗)
−1 + F ((∇ϑπϑ0)TΩ∇ϑπϑ0)−1F T

]
· N

(
0, (∇ϑπϑ∗)

TΩ

(
ΞD(ϑ∗) +

1

s
ΞS(ϑ∗)

)
Ω∇ϑπϑ∗

)
=: NF,Ind

Using this and C(n)→∞ for n→∞, we then obtain the analog of (3.13):

P(ICn(Θ0)− ICn(Θ) < 0)

= P
(

1

2

√
n
(
ϑ̂nInd − f(ϑ̂nInd,0)

)T
∇2
ϑLInd

(
ϑ
n
, Y n

)√
n
(
ϑ̂nInd − f(ϑ̂nInd,0)

)
< −[N(Θ0)−N(Θ)]C(n)

)
n→∞−→ P

(
NT
F,IndJInd(ϑ∗)NF,Ind <∞

)
. (4.55)

As in the proof of Theorem 3.10b), Imhof [1961, Eq. (1.1)] gives

NT
F,IndJInd(ϑ∗)NF,Ind

D
=

N(Θ)∑
i=1

λiχ
2
i ,

where the λi are the eigenvalues of JInd(ϑ∗)
1
2MF,Ind(ϑ∗)IInd(ϑ∗)MF,Ind(ϑ∗)JInd(ϑ∗)

1
2

and (χ2
i ) is a sequence of independent χ2 random variables with one degree of

freedom. Since rank(MF,Ind(ϑ∗)) = N(Θ)−N(Θ0) = q − q0 and JInd(ϑ∗)
1
2 and

IInd(ϑ∗) have full rank, the number of strictly positive eigenvalues of

JInd(ϑ∗)
1
2MF,Ind(ϑ∗)IInd(ϑ∗)MF,Ind(ϑ∗)JInd(ϑ∗)

1
2
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is q − q0. Hence, the result follows.

b) & c) The results follow from the arguments given in a), in particular from (4.55),

which in this case has the form

P(ICn(Θ0)− ICn(Θ) < 0)
n→∞−→ P

(
NT
F,IndJInd(ϑ∗)NF,Ind < (q − q0)C

)
.

By varying the penalty term C(n) one can, as in the QMLE–based case, define a

multitude of information criteria. Two particular examples are the analogs of the

BIC and the CAIC (cp. (3.39) and (3.20)), which we define as

BICInd
n (Θ) := LInd(ϑ̂nInd, Y

n) +N(Θ)
log(n)

n
(4.56)

and

CAICInd
n (Θ) := LInd(ϑ̂nInd, Y

n) +
2N(Θ)

n
. (4.57)

Note that we gave these criteria the same names as in the QMLE–based case.

However, the interpretations derived in Subsection 3.4.1 and Subsection 3.5.1 as

approximations of the Kullback–Leibler discrepancy and the Bayesian a posteriori

probability, respectively, are no longer valid. These interpretations naturally led to the

introduction of the QMLE, which we do not have here. Nevertheless, Theorem 4.50

enables us to easily derive their consistency properties:

Corollary 4.51. BICInd
n is a weakly consistent information criterion, CAICInd

n is

neither weakly nor strongly consistent.

Proof. The properties are obvious from Theorem 4.50.

Remark 4.52. a) If one wanted to show strong consistency for this class of

information criteria, it would be necessary to have a law of the iterated logarithm

for LInd(ϑ
∗, Y n)− LInd(ϑ̂

n
Ind, Y

n), analogous to Theorem 3.4. The proof would

then be very similar to that of Theorem 3.10a). However, due to the definition

of LInd(ϑ, Y
n), such a law is not easily obtained. We conjecture that the

analogous result to Theorem 3.10a) would then hold, i.e. strong consistency

would especially hold if limn→∞C(n) =∞.

b) The new information criteria of this section are robust in the following, heuristic

sense: If the observations Y n are replaced by outlier–afflicted observations Ỹ n
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as defined in (4.2), by Theorem 4.42 we know that the value of ϑ̂nInd remains

close to its value in the scenario without outliers. Hence, LInd(ϑ̂
n
Ind, Ỹ

n) will

then also be close to LInd(ϑ̂
n
Ind, Y

n). The information criterion therefore arrives

at the same selected parameter space in most situations even though outliers

are present. On the contrary, for the QMLE based information criteria, this

does bot hold since the QML estimate ϑ̂n is not resistant and therefore can

be arbitrarily bad in the presence of outliers, leading to frequent wrong model

choices by the criteria. Our simulation study in Subsection 4.5.2 confirms this

behavior. A more formal treatment is found in Machado [1993], however there a

different structure of the estimator upon which the criteria are built is assumed,

which is why the results do not apply here.
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4.5. Simulation study of indirect estimation

In this section, we illustrate the theoretical results from Section 4.3 and Section 4.4

by means of simulation. We consider several situations to assess the performance

of our indirect estimator. The simulation methods for the CARMA processes used

throughout the study are the same as in Section 3.6. We simulate the CARMA

process on the interval [0, 1000] and choose a sampling distance of h = 1, resulting

in n = 1000 observations of the discrete–time process. The simulated processes

are driven either by a standard Brownian motion or by a univariate NIG process.

For the NIG process we use the parameters α = 3, β = 1, ∆ = 1, δ = 2.5145 and

µ = −0.8890, where the interpretation of the parameters is analogous to those of the

two–dimensional NIG process in Section 3.6. These parameters result in a zero–mean

Lévy process with variance approximately 1, which allows for comparison of the

results to the Brownian motion case.

For the indirect estimator in Definition 4.22, we take π̂n as GM estimator as in

Subsubsection 4.3.3.1. For calculating the GM estimator, we use the S–Plus software.

This is done because it provides a pre–built function ar.gm for applying GM estimators

to AR processes. This function uses a Mallows estimator as in Example 4.25a). The

weight function w(y) is the Tukey bisquare function from Example 4.25b) applied

to ‖y‖, for the function ψ(u) the user can choose between the two classes explained

in Example 4.25b), namely the Huber ψk–functions and the bisquare function. The

function is implemented as an iterative least squares procedure as described by

[Martin 1980, p. 231ff.] and therefore also allows to use first some iteration steps

with the Huber ψk–function and then some steps with the bisquare function. As

advocated by Martin [1980], we experience that doing 6 iterations using the Huber

function and then 2 steps with the bisquare function works well. In our experiments

we choose k = 4 for the tuning constant of the ψk–function. The order of the

auxiliary AR representation is chosen conveniently for the different situations and

will be mentioned explicitly in each example. In general, we set s = 75 to obtain

the simulation–based observations (Yϑ(h), . . . , Yϑ(snh)) in the simulation part of the

indirect procedure. The Lévy process used for the simulation is the same as the

one driving the observed CARMA process. For the estimator π̂nS , we choose the

least squares estimator of Definition 4.33. For the weighting matrix Ω we choose the

identity matrix for convenience reasons. Some (unreported) experiments in which

we first estimated the asymptotic covariance matrix of the GM estimator by the

empirical covariance matrix of a suitable number of independent realizations of π̂n

and set Ω to be the inverse of that estimate did not significantly affect the procedure

positively or negatively, so that the use of the convenient identity matrix seems
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justified. For the outlier model as defined in Definition 4.1b) via (4.2), we choose

the process (Vn)n∈Z as i.i.d. Bernoulli variables, where P(V1 = 1) = γ varies and

will be given in detail for each experiment. In all but one of the studies, the process

(Zn)n∈Z is chosen to be deterministic, i.e. Zn = ξ for n ∈ Z. We use varying values of

ξ. In the experiment where (Zn)n∈Z has a different structure, this will be mentioned

explicitly.

4.5.1. Parameter estimation

Case 1: Processes driven by Brownian motion

In each experiment, we calculate the indirect estimator and, for comparison purposes,

the QMLE as defined in Subsection 2.2.3 in 50 independent replications and report

on the average estimated value, the bias relative to the true parameters and the

empirical variance of the parameter estimates.

In a first experiment, we use as true process a CARMA(1,0) process with parameter

ϑ
(1)
0 = −2. This process is of particular interest, because its discretely sampled

version admits a weak ARMA(1,0), i.e. an AR(1), representation. For this reason,

one would expect the procedure to work very well here as the auxiliary representation

is actually exact. Naturally, we choose r = 1 in this case. We consider three different

scenarios of outlier contamination. In the first case, we set ξ = 5 and γ = 0.1. In

the second, we let ξ = 10 and γ = 0.1, while for the last one we choose ξ = 5 and

γ = 0.15. Note that already ξ = 5 represents quite large outliers, since for a sample

path in this situation we typically observe that the values of the discretely sampled

process lie between −3.5 and 3.5. Figure 4.2 shows a typical sample path of the

CARMA(1,0) process with parameter ϑ
(1)
0 , the discretely sampled process and the

outlier–afflicted process in the situation with γ = 0.1, ξ = 5. The results of the

simulation studies are given in Table 4.1, Table 4.2 and Table 4.3, respectively.

ξ = 5, γ = 0.1

MLE Indirect

Mean Bias Variance Mean Bias Variance

ϑ1 −2.4497 −0.4497 0.0559 −2.0768 −0.0768 0.0513

Table 4.1.: Results for ϑ
(1)
0 , ξ = 5, γ = 0.1

As we can see, already in the case of ξ = 5 and γ = 0.1, the indirect estimator

performs vastly better than the QMLE, giving a much less biased estimate at a

similar variance. In the situation of Table 4.2, i.e. when ξ is increased to 10, the

QMLE has lost all its information about the true parameter and provides no useful
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ξ = 10, γ = 0.1

MLE Indirect

Mean Bias Variance Mean Bias Variance

ϑ1 −5.9097 −3.9097 0.2360 −2.0245 −0.0245 0.0663

Table 4.2.: Results for ϑ
(1)
0 , ξ = 10, γ = 0.1

ξ = 5, γ = 0.15

MLE Indirect

Mean Bias Variance Mean Bias Variance

ϑ1 −2.7873 −0.7873 0.3860 −2.1703 −0.1703 0.0973

Table 4.3.: Results for ϑ
(1)
0 , ξ = 5, γ = 0.15

estimate anymore. On the other hand, the indirect estimator stays close to the true

value (we explain the even smaller bias in comparison to the situation with ξ = 5

as caused by the relatively small number of 50 iterations. Of course one should not

expect the bias to systematically decrease when ξ increases), while the variance has

increased only slightly. Increasing γ to 0.15 but keeping ξ = 5 shows that both

estimators perform worse than in the situation with γ = 0.1, which is to be expected.

But once again, the indirect estimator deals better with higher outlier percentage

than the QMLE. Comparing these studies, we see that for the indirect estimator the

percentage of outliers has a bigger effect on the estimates than the actual size of the

outliers. For the QMLE however, the situation is reversed: its performance, relative

to Table 4.1, is worse when ξ is increased to 10 compared to the situation where

ξ = 5 is kept and γ increases to 0.15.

For our next simulation experiment, we move away from the CARMA(1,0) process

to a CARMA(3,1) process. This especially means that the sampled process is not a

weak AR process anymore, meaning that we truly make use of all the components of

the indirect estimation procedure now. The true parameter is

ϑ
(2)
0 =

(
−1 −2 −2 0 1

)
.

For this process, we choose r = 5, which is also the minimum order of the auxiliary

AR representation for which the assumptions on the indirect procedure are satisfied.

We do four experiments in this setup. We estimate ϑ
(2)
0 for each of the following

contamination configurations: ξ = 5 and γ = 0.1, ξ = 10 and γ = 0.1, ξ = 5 and

γ = 1
6

and ξ = 5 and γ = 0.25. Remember that in this situation, the breakdown point

as defined in Subsubsection 4.3.4.2 has an upper bound of 1
6

since we have r = 5.

Hence, γ = 0.25 lies above the breakdown point and we would expect to encounter

problems in the estimation procedure, while for γ ≤ 1
6

these problems should not
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occur. We will see that this is indeed the case. Figure 4.3 shows a typical sample

path of the CARMA(3,1) process with parameter ϑ
(2)
0 , the discretely sampled process

and the outlier–afflicted process in the situation with γ = 0.1, ξ = 5. The results

of the four experiments are given in Table 4.4, Table 4.5, Table 4.6 and Table 4.7,

respectively.

ξ = 5, γ = 0.1

MLE Indirect

Mean Bias Variance Mean Bias Variance

ϑ1 −0.6876 0.3124 0.0294 −1.0174 −0.0174 0.0114

ϑ2 −2.6307 −0.6307 0.2550 −1.9930 0.0070 0.0068

ϑ3 −3.3831 −1.3831 0.0573 −1.9954 0.0046 0.0194

ϑ4 2.5467 2.5467 0.0190 0.0048 0.0048 0.0040

ϑ5 0.5621 −0.4379 0.0498 1.0007 0.0007 0.0064

Table 4.4.: Results for ϑ
(2)
0 , ξ = 5, γ = 0.1

ξ = 10, γ = 0.1
MLE Indirect

Mean Bias Variance Mean Bias Variance
ϑ1 −0.4614 0.5386 0.0478 −1.0202 −0.0202 0.0110
ϑ2 −1.4955 0.5045 0.1616 −2.0063 −0.0063 0.0107
ϑ3 −1.8424 0.1576 0.0953 −1.9802 0.0198 0.0259
ϑ4 3.3178 3.3178 0.1280 0.0047 0.0047 0.0066
ϑ5 2.6317 1.6317 0.0477 0.9987 −0.0013 0.0074

Table 4.5.: Results for ϑ
(2)
0 , ξ = 10, γ = 0.1

ξ = 5, γ = 1
6

MLE Indirect
Mean Bias Variance Mean Bias Variance

ϑ1 −0.4445 0.5555 0.0029 −1.0052 −0.0052 0.0071
ϑ2 −2.3450 −0.3450 0.1135 −1.9815 0.0185 0.0136
ϑ3 −3.5119 −1.5119 0.1823 −2.0210 −0.0210 0.0276
ϑ4 3.1446 3.1446 0.0376 0.0106 0.0106 0.0057
ϑ5 0.7903 −0.2097 0.1317 1.0043 0.0043 0.0054

Table 4.6.: Results for ϑ
(2)
0 , ξ = 5, γ = 1

6
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ξ = 5, γ = 0.25
MLE Indirect

Mean Bias Variance Mean Bias Variance
ϑ1 −0.1022 0.8978 0.0029 −0.0638 0.9362 0.0024
ϑ2 −1.5663 0.4337 0.1135 −2.9026 −0.9026 0.0008
ϑ3 −4.2751 −2.2751 0.1823 −2.1834 −0.1834 0.0094
ϑ4 4.2080 4.2080 0.0376 1.1326 1.1326 0.0018
ϑ5 0.8238 −0.1762 0.1317 1.8766 0.8766 0.0021

Table 4.7.: Results for ϑ
(2)
0 , ξ = 5, γ = 0.25

For the first two experiments, i.e. those in which γ = 0.1, we immediately recognize

the maximum likelihood estimate as basically worthless in this setup, being severely

biased and very far from the true parameter value. Especially the inclusion of a

zero component in the true parameter seems to pose a major problem, since this

component is affected by the most bias. On the other hand, the indirect estimator

is still very close to the true parameter value in all of the components, including

the zero component. This reaffirms that the indirect estimation procedure works in

practical scenarios and the results in the former experiments were not due to the

use of the CARMA(1,0) process. Increasing ξ to 10 while keeping γ = 0.1 results

in a slightly worse performance of the indirect estimator. However, the increase in

the bias is not very substantial and the estimates are still reasonably close to the

true values. This of course cannot be said about the maximum likelihood estimator,

which again delivers severely biased estimates.

Comparing Table 4.4 to Table 4.6, we see that the increase of γ from 0.1 to 1
6

also

affects the performance of the indirect estimator. For all components of ϑ
(2)
0 but the

first, the bias of the indirect estimator increases (even though it decreases for the

first component, we still have an overall increase). A similar effect occurs for the

variances. However, the loss in quality of the indirect estimator is manageable and

the calculated estimates still closely resemble the true parameter. This means that

even at the breakdown point, the performance of the indirect estimator is satisfying,

although of course not as good as for lower contamination probabilities.

The situation is vastly different in the experiment with γ = 0.25. Here, we see that

the indirect estimator, too, gives estimates which are severely biased and quite far

away from the true parameters. Although the performance of the QMLE is still

rather bad in the estimation of the zero component, its bias is less than that of the

indirect estimator in three of the five components, but still substantial. The estimates

delivered by the indirect estimator, however, are not satisfying either in this case.

This of course is explained by the outlier probability of γ = 0.25, which causes the
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bad performance. We also observe that the numerical procedure used to obtain the

parameter estimates in this scenario quite often fails to deliver a result at all because

the algorithm terminates with an error. The error occurs when the estimated value

of ϑ0 is not an element of Θ anymore (the algorithm first calculates an estimate

and then checks if it is an element of Θ, i.e. if Assumption B is satisfied). The

results in the table are averaged over experiments in which the algorithm did deliver

a result, the failed attempts were discarded. The ratio of successful to unsuccessful

experiments was roughly equal to 1:2, i.e. the algorithm failed about twice as often

as it succeeded. In this sense, we can say that the estimator has broken down: for a

given outlier–contaminated sample, it either does not return an admissible estimate

at all, or, if it does, the estimate is far away from the true parameter. The latter

statement is also evident from the fact that the variance of the indirect estimates is

far smaller in this case than in the other experiments, i.e. if the algorithm is able to

calculate a result, there is very little variance in it, which, intuitively, means that the

algorithm typically returns very similar bad estimates if it returns a result at all.

Lastly, we switch to another class of CARMA processes, this time using a

CARMA(2,1) process with true parameter

ϑ
(3)
0 =

(
−0.5 −1 −2

)
.

We report on two simulation studies, which are a bit different than the ones conducted

before. In the first of these two studies, we let γ = 0 to compare the performance

of the indirect estimator to that of the QMLE in the uncontaminated case. For the

other CARMA processes of this section we also studied this situation, but only choose

to report on it once here since the results were very similar and the same conclusions

could be drawn. For the second study, we did not use the simple additive outlier model

but instead one that is a little more involved. Namely, we chose the process (Zn)n∈Z

to be a sequence of i.i.d. random variables with P(Z1 = ξ) = P(Z1 = −ξ) = 1
2
, i.e.

every time an outlier appears the sign is chosen randomly with equal probability. This

change in model serves to study the performance of the procedure in circumstances

that are a bit more complicated than the simple additive outlier model with fixed

size of ξ. We choose γ = 0.1 and ξ = 10 in this study. In both studies, r = 3. The

results are given in Table 4.8 and Table 4.9.

In the situation without outliers, both estimators are very close to the true

parameter values. The differences in the bias and variance, which result in the

indirect estimator performing even slightly better than the QMLE here, we explain

as being not systematic, but due to the approximations in the numerical procedure

and the number of only 50 iterations. We see that both estimators can be used
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γ = 0
MLE Indirect

Mean Bias Variance Mean Bias Variance
ϑ1 −0.5112 −0.0112 0.0071 −0.5080 −0.0080 0.0086
ϑ2 −0.9969 0.0031 0.0056 −1.0019 −0.0019 0.0050
ϑ3 −2.0427 −0.0427 0.0246 −2.0156 −0.0156 0.0112

Table 4.8.: Results for ϑ
(3)
0 , γ = 0 (no outliers).

P(Z1 = 10) = P(Z1 = −10) = 0.5, γ = 0.1
MLE Indirect

Mean Bias Variance Mean Bias Variance
ϑ1 −0.3796 0.1204 0.0585 −0.4908 0.0092 0.0134
ϑ2 −2.0699 −1.0699 0.2484 −1.0479 −0.0479 0.0132
ϑ3 −4.0399 −2.0399 0.1408 −2.0015 −0.0015 0.0091

Table 4.9.: Results for ϑ
(3)
0 , P(Z1 = 10) = P(Z1 = −10) = 1

2
, γ = 0.1

to achieve satisfying results, which confirms the theoretical results on the indirect

estimator in the uncontaminated case. For the other true parameters, we conducted

the same study (i.e. in the outlier–free situation) and observed basically the same

results, i.e. both estimators performed well and there was no notable, systematic

better performance of the one or the other.

Using the indirect estimator also yields satisfying results under the more complicated

outlier model. To a degree, this is not surprising since the GM estimator, which

controls the robustness properties of ϑ̂nInd, is per construction not sensitive to the sign

of the outlier, but only to the absolute size. Since the outlier–generating process is

symmetric and the total percentage of outliers is still at 10%, it seems intuitive that

the performance does not differ much from before. Similarly, it is to be expected

that the QMLE does not improve in comparison to the other outlier scenarios, which

is confirmed by our study here.

Case 2: NIG process

In the following experiments, we replace the driving Brownian motion by the NIG

process and repeat the experiments of Table 4.1, Table 4.4 and Table 4.5, using the

same outlier configurations and auxiliary AR orders as in those experiments. The

results are given in Table 4.10, Table 4.11 and Table 4.12.

We see that the results do not substantially differ from those in the Brownian

motion case. In all three experiments with the NIG process, the QMLE, just like in

the Brownian motion case, ceases to be a meaningful estimator in the presence of
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ξ = 5, γ = 0.1

MLE Indirect

Mean Bias Variance Mean Bias Variance

ϑ1 −2.3851 −0.3851 0.0650 −2.0536 −0.0536 0.0860

Table 4.10.: Results for ϑ
(1)
0 , ξ = 5, γ = 0.1, driving NIG noise

ξ = 5, γ = 0.1

MLE Indirect

Mean Bias Variance Mean Bias Variance

ϑ1 −0.6669 0.3331 0.0311 −1.0113 −0.0113 0.0056

ϑ2 −2.5668 −0.5668 0.2676 −1.9936 0.0064 0.0042

ϑ3 −3.3917 −1.3917 0.0626 −1.9967 0.0033 0.0096

ϑ4 0.5077 −0.4923 0.0535 1.0027 0.0027 0.0043

ϑ5 2.5503 2.5503 0.0236 −0.0070 −0.0070 0.0035

Table 4.11.: Results for ϑ
(2)
0 , ξ = 5, γ = 0.1, driving NIG noise

outliers in the data. The indirect estimator on the other hand continues to provide

good estimates. Of course, there are some differences in the bias and variance of

the experiments with the NIG process in comparison to the experiments with the

Brownian motion. Specifically, the bias and variance of the indirect estimator are a

bit higher overall (as compared to Table 4.1) in the situation of Table 4.10, while

in the situation of Table 4.11 and Table 4.12 we observe that the bias also is, on

average, greater than in the corresponding experiments with Brownian motion while

the variance is slightly lower. When we consider the bias, this matches the results

of the simulation study in Section 3.6, where the performance typically also was

slightly worse in the NIG case but otherwise very similar. We therefore conclude

that indirect estimator is not limited to Gaussian CARMA processes, but also can

be applied successfully for more general Lévy processes.

4.5.2. Model selection

The simulation experiment in this subsection serves to test the performance of our

information criterion defined in Section 4.4 in the presence of outliers. We use

the CARMA(3,1) process with true parameter ϑ
(2)
0 as before as data–generating

Lévy process. We compare the true parameter space Θ0, which is the space of all

CARMA(3,1) processes, to the space of all CARMA(3,2) processes and the space

of all CARMA(3,0) processes. The true parameter space is nested in the former

space, while the latter is itself nested in Θ0. We consider two different information

criteria, namely BICInd
n and CAICInd

n as defined in (4.56) and (4.57), respectively. We

compare these two criteria to the performance of the QMLE–based BICn, of which
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ξ = 10, γ = 0.1
MLE Indirect

Mean Bias Variance Mean Bias Variance
ϑ1 −0.4691 0.5309 0.0689 −1.0030 −0.0030 0.0045
ϑ2 −1.5286 0.4714 0.1200 −1.9712 0.0288 0.0112
ϑ3 −1.8365 0.1635 0.0668 −2.0321 −0.0321 0.0178
ϑ4 2.6651 1.6651 0.0316 1.0056 0.0056 0.0038
ϑ5 3.3668 3.3668 0.0981 0.0127 0.0127 0.0056

Table 4.12.: Results for ϑ
(2)
0 , ξ = 10, γ = 0.1, driving NIG noise

we know that it is strongly consistent in the outlier–free case. For this experiment,

we chose again ξ = 5 and γ = 0.1. Both the Brownian motion and the NIG process

were used as driving Lévy process. For both scenarios, we conducted 20 replications

in total, the number being somewhat low because of the very high computation time

required (one replication typically took between 60 and 90 minutes to finish). The

results are given in Table 4.13.

Space Model BM NIG

p q N(Θ) BICn BICInd
n CAICInd

n BICn BICInd
n CAICInd

n

1 3 0 3 0 0 0 0 0 0

2 3 1 4 1 18 16 2 20 19

3 3 2 5 19 2 4 18 0 1

Table 4.13.: Results for the true parameter ϑ
(2)
0 in space 2.

Despite the relatively low number of repetitions, the results are insightful. We

see that the BICn is drastically affected by the outliers and now has an error rate

of 95% and 90%, respectively, having lost the strong consistency. On the other

hand, BICInd
n , which we showed to be only weakly consistent for the outlier–free case,

seems to retain this property when there are outliers in the data. In 90% of the

replications in the Brownian motion case, it comes to the correct decision while it

overfits in the other 10%. Of course we know that for a weakly consistent criterion

the overfitting rate should eventually go to zero as n increases. However, an error

rate of 10% seems acceptable, given the fact that the outliers have to be taken into

account. For the NIG case, it even achieves a perfect score. We conjecture, however,

that this perfect score is due to the low number of total experiments and we would

observe overfitting in the NIG case, too, when carrying out more experiments. In

comparison, CAICInd
n exhibits an overfitting rate of 20% and 5%, i.e. in both cases

it overfits more often. This is an expected effect, since we know that CAICInd
n is

not consistent due to the deterministic penalty term and thus exhibits a non–zero
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asymptotic overfitting probability even in the outlier–free case. This experiment

clearly shows that it is advisable to use criteria of the form given by ICInd
n instead of

the “classical” information criteria when one suspects the presence of outliers in the

data, since they perform much better, even compared to information criteria which

are strongly consistent in the absence of outliers.

Summarizing the studies, we can say that our indirect estimator performs convinc-

ingly for various orders p and q of the data–generating CARMA process, for different

driving Lévy processes and for a variety of outlier configurations. Of course, it is

clear that this method, too, has its bounds. We especially saw that both an increase

of γ, the proportion of outliers, and of the size of the outliers affect the performance.

Increasing γ too far eventually causes the estimator to break down. This is natural,

since with an increasing number of outliers we have less “good” observations which

provide full information about the data–generating process and it therefore becomes

harder to detect the true structure of the process. Nevertheless, as soon as outliers

are present, the use of the indirect estimator instead of the QMLE always seems

advisable, since there was no situation in which the performance of the QMLE came

close to being satisfying. On the other hand, when no outliers are present, one

does not lose much, if at all, by using the indirect estimator. However, it should

be mentioned that the computation is more involved and slower in comparison to

the QMLE method, such that the latter might be preferred due to this when one is

certain that no outliers are present. If one wishes to be on the safe side, however,

usage of the indirect estimator is probably not a mistake.



CHAPTER 5

Conclusion and outlook

This thesis has contributed to the field of statistical inference for MCARMA processes

in two ways. On the one hand, model selection procedures for stationary MCARMA

processes based on observations at an equidistant time grid have been studied.

Using the Echelon form as parametrization, the approach via likelihood–based in-

formation criteria under natural identifiability and regularity conditions provided

us with a method of estimating the Kronecker indices and the orders p and q of the

continuous–time, data–generating process from discrete–time observations. Moreover,

in Theorem 3.10, we were able to obtain results that allowed to explicitly derive

the consistency properties of the criteria from the penalty term C(n). They enable

us to answer the question whether the true model will be selected asymptotically.

We showed in Subsection 3.4.1 and Subsection 3.5.1 that the well–known AIC and

BIC fit naturally in this framework and the underlying ideas of approximating the

Kullback–Leibler discrepancy and the Bayesian a posteriori probability, respectively,

remain valid.

On the other hand, the thesis also contributed to the theory of parameter estimation

for MCARMA processes with a special emphasis on robustness in the one–dimensional

case. We were first able to introduce a quite general class of strongly consistent,

asymptotically normally distributed estimators for the parameters of MCARMA

processes, the M–estimators of Section 4.2. In the special case of one–dimensional

processes, we also studied the indirect estimator in detail, which is another strongly

consistent, asymptotically normally distributed estimator when applied to outlier–free

data as evident from Theorem 4.23. Moreover, due to its special structure, we were
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able to show in Subsection 4.3.4 that if a GM estimator is applied to estimate the

parameters of the auxiliary AR representation of the sampled CARMA process, its

robustness properties are inherited by the indirect estimator. Thus, we can provide a

robust estimator for the parameters of the CARMA process. Using this estimator as

foundation, we were also able to extend the model selection criteria from the first

part of the thesis in Section 4.4, establishing a bridge between the two fields.

For both the field of model selection and robust estimation simulation studies showed

that, at least for simulated data, the theoretical results can also be observed and

verified in practical situations.

There are several directions for further research. For example, there are gener-

alizations of (M)CARMA processes, e.g. the continuous–time threshold ARMA

(CTARMA) processes of Stramer et al. [1996] or the non–stationary, cointegrated

MCARMA processes treated in Scholz [2016]. These models come with additional

parameters that define their structure, in the latter case for example the cointegration

rank. At the moment, information criteria that are able to estimate these additional

structural parameters, too, have not been studied yet and therefore of course the

question of their properties, for example consistency, is open. Another possible way

of extending the results on information criteria could be to relax the assumption that

there is a “true” model Θ0 among the candidate models. We always worked under

this assumption in Chapter 3, but of course in applications this is an idealization,

since real–world data will never be a perfect realization of a theoretical mathematical

model. Especially the proofs with regard to consistency relied strongly on this as-

sumption, so that it would be interesting to explore what happens when it is dropped

and all spaces under consideration are then misspecified. A starting point in this

direction could be the work by Hurvich and Tsai [1991], who examined this question

in the context of linear regression and discrete–time autoregressive processes. Ad-

ditional remarks can also be found in [Burnham and Anderson 2002, Subsection 6.3.4].

In the area of robust estimation, the potential extensions are plentiful, too. First

of all, we only studied one estimator of the CARMA parameters that achieves the de-

sired robustness. There is a multitude of other approaches in the literature which one

could investigate and transfer to the context of (M)CARMA processes. In particular,

one could attempt to take a similar route as with the QMLE of Subsection 2.2.3,

but instead of the Kalman filter use a robust filter, as proposed by Masreliez [1975],

to calculate robust innovations and base the parameter estimation on these. For

AR and ARMA processes, an overview of these methods is given in [Maronna et al.
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2006, Section 8.6 and Section 8.8], where additional references can also be found.

Another class of estimators for ARMA models, which could possibly be extended to

the framework of CARMA processes, are the RA estimators, which are based on the

residual autocovariances, as proposed by Bustos and Yohai [1986].

The question how robust estimators (in the sense of estimators that truly are insensi-

tive to outliers) for multivariate CARMA processes can be obtained is also left open

at the moment. In particular, a generalization of the indirect estimator as studied

in Section 4.3 is not straightforwardly possible, since a theory of GM estimation

for multivariate AR processes does not exist to our knowledge. There are several

approaches towards robust parameter estimation of vector autoregressive processes,

e.g. in Garcia Ben et al. [1999], where the RA estimators of Bustos and Yohai

[1986] are generalized, in Croux and Joossens [2008] where a least trimmed squares

procedure is used or in Muler and Yohai [2013], where the BMM estimators of Muler

et al. [2009] are generalized to the multivariate setting. All these approaches, however,

only give robust estimators for VAR and not for VARMA processes. Therefore, for a

robust estimator of MCARMA processes, combining the indirect estimation method

with one of these procedures could be a promising avenue in future research.

Another possible extension would be to consider a different way of modeling the

outliers. In this thesis, the estimators were founded on discrete–time observations of

MCARMA processes and we modeled the outliers via the general replacement model

for discrete–time stochastic processes. A different approach would be to choose a

model in which already the continuous–time process is afflicted by outliers. To our

knowledge, no systematic approaches towards modeling outliers in continuous–time

processes exist yet, such that a first step could be to define a suitable analog in

continuous time of the general replacement model of Section 4.1 and then continue

from there, e.g. by again sampling on a discrete time–grid and building estimators

based on these observations.

In all of the thesis, inference was based on discrete–time, equidistant observations

with sampling distance h > 0 fixed. It is also possible to move away from this

assumption in order to better treat irregularly spaced or high–frequency data, for

example by observing the data–generating MCARMA process at times hn, 2hn, . . .,

nhn for a sequence (hn)n∈N with hn → 0 and nhn → ∞ as n → ∞. In Fasen

and Fuchs [2013a] and Fasen and Fuchs [2013b] this observation scheme is used to

first study the behavior of the periodogram of a sampled CARMA(p,q) process and

subsequently construct an estimator for the parameters of the CARMA(p,q) process

based on the periodogram. It is assumed that p and q are known, such that the
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development of model selection criteria in this framework is a topic that needs to be

considered. It is also worth mentioning that in these two papers it is assumed that

the driving Lévy process is symmetric and α–stable for some α ∈ (0, 2]. If α < 2,

this means that the process has infinite variance. In the thesis at hand, we always

assumed that the driving Lévy process has (at least) finite second moment, such that

the use of α–stable Lévy processes with α < 2 was not allowed. A big question for

further research is therefore if similar results can be obtained if such processes are used.

Concluding, it is therefore evident that the field of statistical inference for MCARMA

processes is far from completely explored and that there remain a lot of interesting

questions to be investigated and eventually answered. Given the intuitive appeal as

continuous–time analog of VARMA processes and the current popularity of MCARMA

processes amongst scientists, we expect this to be a lively area of research in the

years to come.
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APPENDIX A

Technical appendices

A.1. Auxiliary results for Section 3.3

In this appendix, we give the calculations for the Brownian motion case in Section 3.3.

Lemma A.1. Let A,B ∈ Rd×d be matrices, where B is symmetric. Then

tr
(
(vec(Id×d)⊗ vec(Id×d)

T )(A⊗B)
)

= tr(AB).

Proof. The structure of the matrix vec(Id×d)⊗ vec(Id×d)
T is as follows:

vec(Id×d)⊗ vec(Id×d)
T =



1 0 . . . 0 1 0 . . . 0 1

0 0 . . . 0 0 0 . . . 0 0
...

...
...

...
...

... . . .
...

...

0 0 . . . 0 0 0 . . . 0 0

1 0 . . . 0 1 0 . . . 0 1

0 0 . . . 0 0 0 . . . 0 0
...

...
...

...
...

... . . .
...

...

0 0 . . . 0 0 0 . . . 0 0

1 0 . . . 0 1 0 . . . 0 1



,

where there are exactly d zero rows between the non-zero rows and also exactly d zero

columns between the non-zero columns. By the definition of the Kronecker product,
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we then have

(vec(Id×d)⊗ vec(Id×d)
T )(A⊗B)

=



a11b11 + . . .+ ad1bd1 ∗ ∗ ∗ ∗ ∗ ∗ . . . ∗
0 0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
... . . .

...

0 0 0 0 0 0 0 . . . 0

∗ ∗ ∗ ∗ a12b12 + . . .+ ad2bd2 ∗ ∗ . . . ∗
0 0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
... . . .

...

0 0 0 0 0 0 0 . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . a1db1d + . . .+ addbdd


Again, there are exactly d zero rows between the non-zero rows. The asterisks mark

entries of the matrix which are (possibly) non-zero, but not relevant in our case, since

we are only interested in the trace. Alas, with the assumption that B is symmetric

we have

tr
(
(vec(Id×d)⊗ vec(Id×d)

T )(A⊗B)
)

=
d∑
i=1

d∑
j=1

aijbij =
d∑
i=1

d∑
j=1

aijbji =
d∑
i=1

(AB)ii = tr(AB)

and the assertion follows.

Lemma A.2. Assume that the Lévy process L which drives the observed process Y

is a Brownian motion.

a) Assume that the space Θ with associated family of continuous-time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ satisfies Assumption B and that

MCARMA(Aϑ∗ , Bϑ∗ , Cϑ∗ , Lϑ∗) = Y for the pseudo-true parameter ϑ∗. Then

I(ϑ∗) = 2J (ϑ∗).

b) There exists a space Θ0 with associated family of continuous-time state space

models (Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ0 satisfying Assumption B such that

MCARMA(Aϑ0 , Bϑ0 , Cϑ0 , Lϑ0) = Y for some ϑ0 ∈ Θ0. Moreover, Θ0 is nested

in ΘE
0 with map F , N(Θ0) = N(ΘE

0 )− 1 and

λmax(MF (ϑE0 )
1
2I(ϑE0 )MF (ϑE0 )

1
2 ) = 2.
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c) The matrix J (ϑ∗)
1
2MFI(ϑ∗)MFJ (ϑ∗)

1
2 has only the eigenvalues 2 and 0,

where 0 has multiplicity N(Θ0) and 2 has multiplicity N(Θ)−N(Θ0).

Proof. a) An analogous statement for VARMA processes is given in Boubacar

Mäınassara and Francq [2011, Remark 2]. However, they state it without

a proof. Since the proof is not so obvious we will give it in detail here for

MCARMA processes. First, note that since the driving Lévy process is a

Brownian motion, it holds per construction that the linear innovations (εk)k∈Z

of the process (Y (kh))k∈Z are i.i.d. N (0, V )–distributed (cf. Definition 2.19).

Moreover, per assumption it also holds that εϑ∗,k = εk for every k ∈ Z, hence

we also have that εϑ∗,k ∼ N (0, Vϑ∗) and Vϑ∗ = V . By definition

I(ϑ∗) = lim
n→∞

nVar (∇ϑL(ϑ∗, Y n)) ,

which means that for i, j ∈ {1, . . . , N(Θ)} we have to study terms of the form

Var (n∇ϑL(ϑ∗, Y n))ij

(3.2)
=

n∑
k=1

E
[(

tr
(
V −1
ϑ∗ ∂iVϑ∗

)
− tr

(
V −1
ϑ∗ εϑ∗,kε

T
ϑ∗,kV

−1
ϑ∗ ∂iVϑ∗

)
+ 2∂iε

T
ϑ∗,kV

−1
ϑ∗ εϑ∗,k

)
·
(
tr
(
V −1
ϑ∗ ∂jVϑ∗

)
− tr

(
V −1
ϑ∗ εϑ∗,kε

T
ϑ∗,kV

−1
ϑ∗ ∂jVϑ∗

)
+ 2∂jε

T
ϑ∗,kV

−1
ϑ∗ εϑ∗,k

)]
+

n∑
k=1

n∑
l=1
l 6=k

E
[(

tr
(
V −1
ϑ∗ ∂iVϑ∗

)
− tr

(
V −1
ϑ∗ εϑ∗,kε

T
ϑ∗,kV

−1
ϑ∗ ∂iVϑ∗

)
+ 2∂iε

T
ϑ∗,kV

−1
ϑ∗ εϑ∗,k

)
·
(
tr
(
V −1
ϑ∗ ∂jVϑ∗

)
− tr

(
V −1
ϑ∗ εϑ∗,lε

T
ϑ∗,lV

−1
ϑ∗ ∂jVϑ∗

)
+ 2∂jε

T
ϑ∗,lV

−1
ϑ∗ εϑ∗,l

)]
=:

n∑
k=1

ak +
n∑
k=1

n∑
l=1
l 6=k

bk,l. (A.1)

We start to investigate ak. By definition, every innovation εϑ∗,k is orthogonal

to span{Y (jh) : −∞ < j < k} and by Lemma 2.22b) both ∂iεϑ∗,k and ∂jεϑ∗,k

are elements of span{Y (jh) : −∞ < j < k}. Hence, εϑ∗,k is independent of

∂iεϑ∗,k and ∂jεϑ∗,k. This, together with the independence of the innovation

sequence (εϑ∗,k)k∈N, the fact that E[∂iεϑ∗,k] = 0, E[εϑ∗,kε
T
ϑ∗,k] = Vϑ∗ and the

interchangeability of trace and expectation, allows us to simplify

ak = − tr
(
V −1
ϑ∗ ∂iVϑ∗

)
tr
(
V −1
ϑ∗ ∂jVϑ∗

)
+ E

[
tr
(
V −1
ϑ∗ εϑ∗,kε

T
ϑ∗,kV

−1
ϑ∗ ∂iVϑ∗

)
tr
(
V −1
ϑ∗ εϑ∗,kε

T
ϑ∗,kV

−1
ϑ∗ ∂jVϑ∗

)]
+ 4E

[
∂iε

T
ϑ∗,kV

−1
ϑ∗ εϑ∗,k∂jε

T
ϑ∗,kV

−1
ϑ∗ εϑ∗,k

]
=: a

(1)
k + a

(2)
k + a

(3)
k . (A.2)
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For the second term, we define ε̃ϑ∗,k = V
− 1

2
ϑ∗ εϑ∗,k ∼ N (0, Id×d) and have by

standard calculation rules for Kronecker products (Bernstein [2009, Proposition

7.1.6 and Proposition 7.1.12]):

a
(2)
k = E

[
tr
((
V
− 1

2
ϑ∗ ε̃ϑ∗,k ε̃

T
ϑ∗,kV

− 1
2

ϑ∗ ∂iVϑ∗
)
⊗
(
V
− 1

2
ϑ∗ ε̃ϑ∗,k ε̃

T
ϑ∗,kV

− 1
2

ϑ∗ ∂jVϑ∗
))]

= tr
((
V
− 1

2
ϑ∗ ⊗ V

− 1
2

ϑ∗

)
· E
[
ε̃ϑ∗,k ε̃

T
ϑ∗,k ⊗ ε̃ϑ∗,k ε̃Tϑ∗,k

]
·
(
V
− 1

2
ϑ∗ ∂iVϑ∗ ⊗ V

− 1
2

ϑ∗ ∂jVϑ∗
))

.

Since ε̃ϑ∗,k ∼ N (0, Id×d), by means of Balestra and Holly [1990, Theorem 1] the

expectation appearing in the last line is

E
[
ε̃ϑ∗,k ε̃

T
ϑ∗,k ⊗ ε̃ϑ∗,k ε̃Tϑ∗,k

]
= Kd,d + Id2×d2 + vec(Id×d)⊗ vec(Id×d)

T ,

where Kd,d is the d2 × d2 Kronecker permutation matrix (Bernstein [2009, Eq.

(7.1.20)]). Together with the linearity and the cyclic permutation property of

the trace, we use this to obtain

a
(2)
k = tr

(
Kd,d

(
V
− 1

2
ϑ∗ ⊗ V

− 1
2

ϑ∗

)(
V
− 1

2
ϑ∗ ∂iVϑ∗ ⊗ V

− 1
2

ϑ∗ ∂jVϑ∗
))

+ tr
((
V
− 1

2
ϑ∗ ⊗ V

− 1
2

ϑ∗

)(
V
− 1

2
ϑ∗ ∂iVϑ∗ ⊗ V

− 1
2

ϑ∗ ∂jVϑ∗
))

+ tr
(

(vec(Id×d)⊗ vec(Id×d)
T )
(
V
− 1

2
ϑ∗ ⊗ V

− 1
2

ϑ∗

)(
V
− 1

2
ϑ∗ ∂iVϑ∗ ⊗ V

− 1
2

ϑ∗ ∂jVϑ∗
))

= tr
(
Kd,d

(
V −1
ϑ∗ ∂iVϑ∗ ⊗ V

−1
ϑ∗ ∂jVϑ∗

))
+ tr

(
V −1
ϑ∗ ∂iVϑ∗ ⊗ V

−1
ϑ∗ ∂jVϑ∗

)
+ tr

(
(vec(Id×d)⊗ vec(Id×d)

T )(V −1
ϑ∗ ∂iVϑ∗ ⊗ V

−1
ϑ∗ ∂jVϑ∗)

)
.

We now apply Lemma A.1 as well as Bernstein [2009, Fact 7.4.30 xviii) and

Proposition 7.1.12] to get

a
(2)
k = 2 tr

(
V −1
ϑ∗ ∂iVϑ∗V

−1
ϑ∗ ∂jVϑ∗

)
+ tr

(
V −1
ϑ∗ ∂iVϑ∗

)
tr
(
V −1
ϑ∗ ∂jVϑ∗

)
.

It remains to consider a
(3)
k in (A.2). The independence of ∂jεϑ∗,k∂iε

T
ϑ∗,k and

εϑ∗,k, the cyclic permutation property of the trace and the interchangeability of

expectation and trace leads to

a
(3)
k = E

[
tr
(
V −1
ϑ∗ εϑ∗,kε

T
ϑ∗,kV

−1
ϑ∗ ∂jεϑ∗,k∂iε

T
ϑ∗,k

)]
= tr

(
E
[
V −1
ϑ∗ εϑ∗,kε

T
ϑ∗,kV

−1
ϑ∗

]
E
[
∂jεϑ∗,k∂iε

T
ϑ∗,k

])
= tr

(
V −1
ϑ∗ E

[
∂jεϑ∗,k∂iε

T
ϑ∗,k

])
= E

[
∂iε

T
ϑ∗,kV

−1
ϑ∗ ∂jεϑ∗,k

]
.
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Combining those calculations finally results in

ak = a
(1)
k + a

(2)
k + a

(3)
k = 2 tr

(
V −1
ϑ∗ ∂iVϑ∗V

−1
ϑ∗ ∂jVϑ∗

)
+ 4E

[
∂iε

T
ϑ∗,kV

−1
ϑ∗ ∂jεϑ∗,k

]
.

By similar calculations, we can verify that bk,l = 0 for k 6= l.

Finally, this implies

(I(ϑ∗))ij = ak = 2 tr
(
V −1
ϑ∗ ∂iVϑ∗V

−1
ϑ∗ ∂jVϑ∗

)
+ 4E

[
∂iε

T
ϑ∗,kV

−1
ϑ∗ ∂jεϑ∗,k

]
.

By Schlemm and Stelzer [2012, (2.33a) and (2.33b)], this term is equal to

(2J (ϑ∗))ij as proclaimed.

b) & c) Denote by v1, . . . , vN(ΘE0 ) the eigenvectors of H(ϑE0 ) which are an orthonormal

basis of RN(ΘE0 ). Define F = (v1, . . . , vN(ΘE0 )−1) ∈ RN(ΘE0 )×(N(ΘE0 )−1) and let

Θ0 ⊆ F TΘE
0 be compact such that FΘ0 +(ϑE0 −FF TϑE0 ) ⊆ ΘE

0 and F TϑE0 ∈ Θ0.

Define

(Aϑ, Bϑ, Cϑ, Lϑ)ϑ∈Θ0

:=(AFϑ+(ϑE0 −FFTϑE0 ), BFϑ+(ϑE0 −FFTϑE0 ), CFϑ+(ϑE0 −FFTϑE0 ), LFϑ+(ϑE0 −FFTϑE0 ))ϑ∈Θ0 .

Then ϑ0 = F TϑE0 , Θ0 is nested in ΘE
0 with map F and satisfies Assumption B,

and N(Θ0) = N(ΘE
0 ) − 1. Moreover, the eigenvectors v1, . . . , vN(ΘE0 )−1 are

basis vectors of the image of F and vN(ΘE0 ) is a basis of the kernel of F T .

Then vN(ΘE0 ) is an eigenvector of MF (ϑE0 )
1
2I(ϑE0 )MF (ϑE0 )

1
2 for the eigenvalue

2 and v1, . . . , vN(ΘE0 )−1 are eigenvectors of MF (ϑE0 )
1
2I(ϑE0 )MF (ϑE0 )

1
2 for the

eigenvalue 0 as well.

A.2. Auxiliary results for Subsection 4.3.3

This appendix contains [Bustos 1982, Lemma 3.3 – Lemma 3.5], which are needed for

the study of the asymptotic properties of GM estimators. The proofs do not differ

from those in the original article (although we use slightly different assumptions). We

list them in this appendix for easier reference, using the notation of Subsection 4.3.3.

Lemma A.3 (Bustos [1982], Lemma 3.3). Let b0 > 0 be such that ‖π − π0‖ ≤ b0

implies that ‖QGM(π)‖ ≥ a‖π − π0‖ for some a > 0 and define

C = {π ∈ Rr × (0,∞) : ‖π − π0‖ ≤ b0}. (A.3)
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Then it holds that

sup
π∈C

∥∥∥∑n−r
t=1 (Ψ((Ỹt, . . . , Ỹt+r), π)−QGM(π)−Ψ((Ỹt, . . . , Ỹt+r), π0))

∥∥∥
√
n− r + (n− r)‖QGM(π)‖

n→∞→ 0 P-a.s.

Proof. The existence of a and b0 as in the assumption follows from the assumed

non–singularity of JGM(π0) = ∇πQGM(π0). Define now

gn((Ỹt, . . . , Ỹt+r), π) :=
n−r∑
t=1

(Ψ((Ỹt, . . . , Ỹt+r), π)−QGM(π)).

By (4.22) and (4.23) we have that QGM(π0) = 0. Therefore it holds∥∥∥∑n−r
t=1 (Ψ((Ỹt, . . . , Ỹt+r), π)−QGM(π)−Ψ(Ỹt, . . . , Ỹt+r), π0))

∥∥∥
√
n− r + (n− r)‖QGM(π)‖

=

∥∥∥gn((Ỹt, . . . , Ỹt+r), π)− g((Ỹt, . . . , Ỹt+r), π0)
∥∥∥

√
n− r + (n− r)‖QGM(π)‖

Applying the multivariate mean value theorem to the function g(π), we find that

there exists a constant K > 0 such that

sup
π∈C

∥∥∥g((Ỹt, . . . , Ỹt+r), π)− g((Ỹt, . . . , Ỹt+r), π0)
∥∥∥

≤ K sup
π∈C
‖π − π0‖

· max
i,j=1,...,r+1

∥∥∥∥∥
n−r∑
t=1

(
∂iΨj((Ỹt, . . . , Ỹt+r), π)− E

[
∂iΨj((Ỹt, . . . , Ỹt+r), π)

])∥∥∥∥∥
Rearranging some terms, we can conclude from this that

sup
π∈C

∥∥∥gn((Ỹt, . . . , Ỹt+r), π)− gn((Ỹt, . . . , Ỹt+r), π0)
∥∥∥

√
n− r + (n− r)‖QGM(π)‖

≤ K sup
π∈C

‖π − π0‖√
n− r + (n− r)‖QGM(π)‖

· max
i,j=1,...,r+1

(∥∥∥∥∥
n−r∑
t=1

(∂iΨj((Ỹt, . . . , Ỹt+r), π)− ∂iΨj((Ỹt, . . . , Ỹt+r), π0))

−(n− r)E
[
∂iΨj((Ỹ1, . . . , Ỹ1+r), π)− ∂iΨj((Ỹt, . . . , Ỹt+r), π0)

]∥∥∥
+

∥∥∥∥∥
n−r∑
t=1

∂iΨj((Ỹt, . . . , Ỹt+r), π0)− (n− r)E
[
∂iΨj((Ỹ1, . . . , Ỹ1+r), π0)

]∥∥∥∥∥
)

(A.4)
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By using the inequalities defining the set C and introducing the factor 1
n−r in front

of both sums, we obtain the next inequality:

(A.4)

n− r
≤ K sup

π∈C

1
1√

n−rb0
+ a

· max
i,j=1,...,r+1

(∥∥∥∥∥ 1

n− r

n−r∑
t=1

(∂iΨj((Ỹt, . . . , Ỹt+r), π)− ∂iΨj((Ỹt, . . . , Ỹt+r), π0))

−E
[
∂iΨj((Ỹ1, . . . , Ỹ1+r), π)− ∂iΨj((Ỹ1, . . . , Ỹ1+r), π0)

]∥∥∥
+

∥∥∥∥∥ 1

n− r

n−r∑
t=1

∂iΨj((Ỹt, . . . , Ỹt+r), π0)− E
[
∂iΨj((Ỹ1, . . . , Ỹ1+r), π0)

]∥∥∥∥∥
)

Both summands converge to zero almost surely as n→∞, the first one by [Bustos

1982, Lemma 3.2], the second one by ergodicity. This completes the proof.

Lemma A.4. It holds that∥∥∥∑n−r
t=1 (Ψ((Ỹt, . . . , Ỹt+r), π0) + QGM(π̂n))

∥∥∥
√
n− r + (n− r)‖QGM(π̂n)‖

P−→ 0, n→∞.

Proof. By (4.24) and (4.25), we have that
∑n−r

t=1 Ψ((Ỹt, . . . , Ỹt+r), π̂
n) = 0. Hence,

we have∥∥∥∑n−r
t=1 (Ψ((Ỹt, . . . , Ỹt+r), π0) + QGM(π̂n))

∥∥∥
√
n− r + (n− r)‖QGM(π̂n)‖

=

∥∥∥∑n−r
t=1 (Ψ((Ỹt, . . . , Ỹt+r), π0) + QGM(π̂n)−Ψ((Ỹt, . . . , Ỹt+r), π̂

n))
∥∥∥

√
n− r + (n− r)‖QGM(π̂n)‖

.

By assumption, we have that π̂n
P→ π0, i.e. it holds that P(π̂n ∈ C)→ 1 for n→∞,

where C is the set defined in (A.3). If π̂n ∈ C we have that∥∥∥∑n−r
t=1 (Ψ((Ỹt, . . . , Ỹt+r), π̂

n) + Ψ((Ỹt, . . . , Ỹt+r), π0) + QGM(π̂n))
∥∥∥

√
n− r + (n− r)‖QGM(π̂n)‖

≤ sup
π∈C

∥∥∥∑n−r
t=1 (Ψ((Ỹt, . . . , Ỹt+r), π) + Ψ((Ỹt, . . . , Ỹt+r), π0) + QGM(π))

∥∥∥
√
n− r + (n− r)‖QGM(π)‖

and this completes the proof since we now can apply the previous lemma.
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Lemma A.5. It holds that

1√
n− r

n−r∑
t=1

(Ψ((Ỹt, . . . , Ỹt+r), π0) + QGM(π̂n))
P−→ 0, n→∞.

Proof. Denote Gn :=
∑n−r

t=1 (Ψ((Ỹt, . . . , Ỹt+r), π0) + QGM(π̂n)). By Lemma 4.30, for

ε > 0 there exists a M <∞ such that P(An) < ε where the set An is defined as

An :=

{
1√
n− r

∥∥∥∥∥
n−r∑
t=1

Ψ((Ỹt, . . . , Ỹt+r), π0)

∥∥∥∥∥ > M

}
.

Similarly, define the set

Bn :=

{
‖Gn‖√

n− r + (n− r)‖QGM(π̂n)‖
>

1

2

}
.

Now, on Acn ∩Bc
n it holds that

√
n− r‖QGM(π̂n)‖ −M ≤

√
n− r‖QGM(π̂n)‖ − 1√

n− r
‖Gn − (n− r)QGM(π̂n)‖

≤ ‖Gn‖√
n− r

≤ 1 +
√
n− r‖QGM(π̂n)‖

2
,

from which we conclude that

√
n− r‖QGM(π̂n)‖ ≤ 2M + 1.

This inequality in turn implies that

2(1 +M)

1 +
√
n− r‖QGM(π̂n)‖

≥ 1.

Therefore, we can deduce that

‖Gn‖√
n− r

≤ 2(1 +M)
‖Gn‖√

n− r + (n− r)‖QGM(π̂n)‖

since we have multiplied by a factor greater than or equal to 1. By the previous

lemma, the right–hand side converges to zero for every ω ∈ Ac
n ∩ Bc

n. Hence, by

the definition of those sets, P
(

lim supn→∞
‖Gn‖√
n−r > c

)
≤ ε for every c > 0 and the

assertion follows.
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satze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung
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non-negative Lévy-driven CARMA processes”. In: J. Bus. Econom. Statist.

29(2), pp. 250–259.

[30] Burnham, K. and Anderson, D. (2002). Model Selection and Multi-Model

Inference: A Practical Information-Theoretic Approach. 2nd ed. New York:

Springer.

[31] Bustos, O. H. (1982). “General M-estimates for contaminated pth-order au-

toregressive processes: consistency and asymptotic normality”. In: Z. Wahrschein-

lichkeit 59(4), pp. 491–504.

[32] Bustos, O. H. and Yohai, V. J. (1986). “Robust estimates for ARMA

models”. In: J. Amer. Statist. Assoc. 81(393), pp. 155–168.



200 Bibliography

[33] Cavanaugh, J. E. and Neath, A. A. (1999). “Generalizing the derivation

of the Schwarz information criterion”. In: Comm. Statist. Theory Methods

28(1), pp. 49–66.

[34] Cavanaugh, J. E. and Shumway, R. H. (1997). “A bootstrap variant of

AIC for state-space model selection”. In: Statist. Sinica 7(2), pp. 473–496.

[35] Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model

Averaging. Cambridge University Press, Cambridge.

[36] Cox, D. (1981). “Metrics on stochastic processes and qualitative robustness”.

In: University of Washington, Dept. of Statistics, Techn. Rep 3.

[37] Croux, C. and Joossens, K. (2008). “Robust estimation of the vector

autoregressive model by a least trimmed squares procedure”. In: COMPSTAT

2008. Springer, pp. 489–501.

[38] Davidson, J. (1994). Stochastic Limit Theory. Advanced Texts in Economet-

rics. Oxford Univ. Press.

[39] Davis, R. A., Knight, K. and Liu, J. (1992). “M-estimation for autore-

gressions with infinite variance”. In: Stochastic Process. Appl. 40(1), pp. 145–

180.

[40] de Leeuw, J. (1992). “Introduction to Akaike (1973) information theory

and an extension of the maximum likelihood principle”. In: Breakthroughs in

Statistics. Ed. by S. Kotz and N. L. Johnson. 1. London: Springer, pp. 599–

609.

[41] de Luna, X. and Genton, M. G. (2000). “Robust simulation-based esti-

mation”. In: Statist. Probab. Lett. 48(3), pp. 253–259.

[42] de Luna, X. and Genton, M. G. (2001). “Robust simulation-based es-

timation of ARMA models”. In: J. Comput. Graph. Stat. 10(2), pp. 370–

387.

[43] Denby, L. and Martin, R. D. (1979). “Robust estimation of the first-order

autoregressive parameter”. In: J. Amer. Statis. Assoc. 74(365), pp. 140–146.

[44] Donoho, D. L. and Huber, P. J. (1983). “The notion of breakdown point”.

In: A festschrift for Erich L. Lehmann. Ed. by P. Bickel, K. Doksum and

J. Hodges Jr. Wadsworth, Belmont, CA, pp. 157–184.



Bibliography 201

[45] Doob, J. L. (1944). “The Elementary Gaussian Processes”. In: Ann. Math.

Stat. 15(3), pp. 229–282.

[46] Durrett, R. (2010). Probability: Theory and Examples. 4th ed. Cambridge

Univ. Press.

[47] Fasen, V. (2014). “Limit theory for high frequency sampled MCARMA

models”. In: Adv. Appl. Probab. 46(3), pp. 846–877.

[48] Fasen, V. (2016). “Dependence Estimation for High Frequency Sampled

Multivariate CARMA Models”. In: Scand. J. Statist. 43(1), pp. 292–320.

[49] Fasen, V. and Fuchs, F. (2013a).“On the Limit Behavior of the Periodogram

of High-Frequency Sampled Stable CARMA Processes”. In: Stochastic Process.

Appl. 123(1), pp. 229–273.

[50] Fasen, V. and Fuchs, F. (2013b). “Spectral Estimates for High-Frequency

Sampled CARMA Processes”. In: J. Time Series Anal. 34(5), pp. 532–551.

[51] Fasen, V. and Kimmig, S. (2016+). “Information criteria for multivariate

CARMA processes”. In: Accepted for publication in Bernoulli.

[52] Ferguson, T. S. (1996). A Course in Large Sample Theory. Taylor & Francis.

[53] Finkelstein, H. (1971). “The Law of the Iterated Logarithm for Empirical

Distributions”. In: Ann. Math. Statist. 42(2), pp. 607–615.
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continuous-time autoregressive moving average (CARMA) stochastic volatility

models”. In: Journal of Business & Economic Statistics 24(4), pp. 455–469.

[130] Tsai, H. and Chan, K. S. (2003). “A note on parameter differentiation

of matrix exponentials, with applications to continuous-time modelling”. In:

Bernoulli 9(5), pp. 895–919.

[131] Tukey, J. W. (1960).“A survey of sampling from contaminated distributions”.

In: Contributions to Probability and Statistics. Essays in honor of Harold

Hotelling. Ed. by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow and

H. B. Mann, pp. 448–485.



208 Bibliography

[132] White, H. (1982). “Maximum Likelihood Estimation of Misspecified Models”.

In: Econometrica 50(1), pp. 1–25.

[133] White, H. (1996). Estimation, Inference and Specification Analysis. Cam-

bridge Univ. Press.

[134] Yohai, V. J. and Maronna, R. A. (1979). “Asymptotic behavior of M–

estimators for the linear model”. In: Ann. Statist. 7(2), pp. 258–268.

[135] Zhulenev, S. V. (1991). “On the law of the iterated logarithm in the finite-

dimensional case”. In: J. Math. Sci. (New York) 57(4), pp. 3210–3216.


	1 Introduction
	2 Fundamentals
	2.1 Multivariate CARMA processes and continuous–time state space models
	2.2 Estimating the parameters of MCARMA processes
	2.2.1 Observation and identification
	2.2.2 Canonical parametrizations
	2.2.3 Quasi–maximum likelihood estimation for MCARMA processes


	3 Consistency of information criteria for MCARMA processes
	3.1 Setup of the parameter spaces for order selection
	3.2 The law of the iterated logarithm
	3.3 Likelihood-based information criteria
	3.4 AIC for multivariate CARMA processes
	3.4.1 Derivation of the AIC
	3.4.2 Properties of the AIC
	3.4.3 An alternative approach to the AIC
	3.4.4 Properties of the modified AIC
	3.4.5 A bootstrap variant of AIC

	3.5 BIC for multivariate CARMA processes
	3.5.1 Derivation of the BIC
	3.5.2 Consistency of the BIC

	3.6 Simulation study of order selection criteria

	4 Robust estimation of MCARMA processes
	4.1 Discretely observed CARMA processes and outliers
	4.2 M-estimators for MCARMA processes
	4.3 Indirect estimation for CARMA processes
	4.3.1 The AR(r) representation of a CARMA process
	4.3.2 Definition and asymptotics of the indirect estimator
	4.3.3 Estimating the AR(r) representation of a CARMA process
	4.3.3.1 Generalized M–Estimators
	4.3.3.2 The least squares estimator
	4.3.3.3 The quasi maximum likelihood estimator

	4.3.4 Robustness properties of the indirect estimator
	4.3.4.1 Resistance and qualitative robustness
	4.3.4.2 The breakdown point
	4.3.4.3 The influence functional


	4.4 Model selection using the indirect estimator
	4.5 Simulation study of indirect estimation
	4.5.1 Parameter estimation
	4.5.2 Model selection


	5 Conclusion and outlook
	Appendices
	A Technical appendices
	A.1 Auxiliary results for Section 3.3
	A.2 Auxiliary results for Subsection 4.3.3

	Bibliography

