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Abstract

We extend in this thesis the cointegrated discrete-time VAR model, which was introduced by

Engle and Granger, to a continuous-time setting using cointegrated multivariate continuous-

time autoregressive moving average (MCARMA) processes. The concept of cointegration

describes the phenomenon, that two or more non-stationary processes, which are integrated,

can have stationary linear combinations. Cointegration therefore models stochastic trends

of some or all the variables. There is empirical evidence that cointegration arises e.g. in

financial data.

We derive a canonical representation for cointegrated MCARMA processes and investigate

its properties. Moreover, we derive similar results to the Johansen-Granger Representation

Theorem in this thesis. A question that imposes itself in this framework is how to estimate

the parameters of the cointegrated MCARMA model from discrete-time observations. Since

the necessary uniform convergence results do not hold for the log-likelihood function, we

use a stepwise approach. For this reason, we separate the parameter vector into two vectors,

where the parameters in the first vector model the cointegration space and the parameters in

the second vector model the stationary part. To this end, we show super-consistency for the

estimator of the cointegration parameters. In the next step, we establish the consistency for

the estimator of the stationary parameters. Moreover, we derive the limiting distributions

of the estimators. Lastly, we present a simulation study in order to demonstrate the

applicability of the estimation procedure.

Besides, we also consider a decomposition of stationary MCARMA processes into multivari-

ate Ornstein-Uhlenbeck processes. With the help of this decomposition we derive a weak

VARMA representation of the sampled process and the integrated sequence of MCARMA

processes. Last but not least, we analyze the covariance structure of these representations.
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5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2. Quasi-Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . 110

5.3. Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4. Stochastic Equicontinuity and Continuous Convergence . . . . . . . . 123

5.5. Consistency of the Quasi-Maximum Likelihood Estimator . . . . . . . 133

5.6. Asymptotic Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.8. Appendix: Asymptotic Results . . . . . . . . . . . . . . . . . . . . . 164

5.9. Appendix: Auxiliary Results and Proofs of Chapter 5 . . . . . . . . . 170

6. Simulation Study 181

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2. Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.3. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Appendix 209

A. Summary of Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 209

B. Collection of Matrix Formulas . . . . . . . . . . . . . . . . . . . . . . 212

Bibliography 215

Index 223

List of Abbreviations 225



CHAPTER 1

Introduction

1.1. Historical Overview and Motivation

A typical problem in statistical applications is to analyze time series data and set

up a model which fits the data sufficiently. For this purpose, the model should not

only be quite general but also tractable. Furthermore, a model which reproduces the

stylized facts, namely simplified presentation of empirical findings, of the considered

time series is preferable. Examples for stylized facts are probabilistic properties but

also sample path properties. If for example the data exhibits jumps, an appropriate

model should incorporate jumps in the sample path as well. Besides, a model should

not be to complex in order to have a good understanding of its properties, which,

however, restricts the cases of possible applications. After having chosen a suitable

model one typically wants to estimate the model parameters.

Since realizations in the future are often unpredictable, one generally assumes that an

observation yt is a realization of a random variable Yt. Thus, it is common practice

that data is modelled by a stochastic process (Yt)t∈I . Stochastic processes can be

categorized in continuous-time and discrete-time processes depending on the nature

of the index set I. In order to find a proper model for the data set, one must first

choose one category. Even if observations are often made at discrete time points the

underlying phenomena might be continuous in time. For example, in physics there are

many continuous-time phenomena, like wind speed, water level, temperature and so

forth, which are only observed at discrete time points. Apart from that, a continuous-
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time model might lead to beneficial properties as in the case of option pricing where

the Black-Scholes model became standard. Other advantages of continuous-time

models are that one can have irregularly spaced or high frequency data. A class of

stochastic processes which is not only quite flexible but has also useful properties are

continuous-time autoregressive moving average (CARMA) processes. We are going

to use the multivariate versions, the so-called MCARMA processes, as the central

process for our model in this thesis. A multivariate model has the advantage that

it provides a joint model for several variables including the dependencies of these

variables in comparison to individual models for each variable.

An important property of stochastic processes is stationarity. Loosely said, station-

arity means that the statistical properties of the stochastic process do not change

over time. Stationarity plays a major role in time series analysis due to its benefit

for prediction. There is, however, empirical evidence that many time series in econo-

metrics and finance are non-stationary, though their first differences are stationary.

The first difference of a stochastic process (Yn)n∈Z is given by ∆Yn := Yn − Yn−1.

The same is also true for many other fields of application. Since standard methods

applied to non-stationary time series give spurious results, it is of great importance to

have a class of models which captures the non-stationarity but also enables a broad

statistical analysis. A particular subclass of non-stationary processes with useful

properties for applications and estimation is the class of cointegrated time series.

This is due to their close connection to stationary time series. Before we address the

topic of cointegration, we first say a few words about multivariate continuous-time

moving average (MCARMA) processes.

MCARMA Processes

CARMA processes date back to 1944 when Doob [30] introduced a univariate process

which is nothing else but a Gaussian CARMA process. Brockwell [18] extended later

in 2001 the definition of univariate CARMA processes by replacing the Brownian

motion with a more general Lévy process. Lévy processes include for example

Brownian motions, Poisson processes and α-stable processes. CARMA processes

are the continuous-time analogue of the extensively studied autoregressive moving

average (ARMA) processes. In the last years, there has been considerable interest

in this class of processes as can be seen by various publications (some exemplary

articles are Brockwell et. al. [19], [21], [22], [23], [24], Fasen et. al. [35], [36],[37],

[38], Schlemm and Stelzer [90], [91], Todorov and Tauchen [97], . . . ).

Marquardt and Stelzer [69] extended the univariate Lévy driven CARMA processes

to the multivariate setting in 2007. The source of randomness in the model is a two-
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sided m-dimensional Lévy process (L(t))t∈R. A d-dimensional stationary MCARMA

process (Y (t))t∈R of order (p, q) for positive integers p > q is formally defined as the

solution to the stochastic differential equation

P (D)Y (t) = Q(D)DL(t), D :=
d

dt
, t ∈ R.

As for ARMA processes, we have an autoregressive polynomial P (z) := Imz
p+A1z

p−1+

. . .+Ap with matrix coefficients A1, . . . , Ap ∈ Rd×d and a moving average polynomial

Q(z) := B0z
q + B1z

q−1 + . . . + Bq with matrix coefficients B0, B1, . . . , Bq ∈ Rd×m.

The parameters p and q determine the path properties of the MCARMA process, for

example if the process has jumps or if it is smooth. The class of MCARMA processes

allows for a rich theory in the sense of probabilistic and analytical properties. In

particular, Lévy driven MCARMA processes allow for a broad class of marginal

distributions.

The class of vector ARMA (VARMA) processes is equivalent to the class of discrete-

time linear state space models. The same relation holds for stationary continuous-

time linear stochastic state space models which are equivalent to causal MCARMA

processes as was shown in [90]. Hence, another way to think of an MCARMA process

is via the state space representation. A stationary continuous-time linear state space

model is given by the state and observation equations

dX(t) = AX(t)dt+BdL(t) and Y (t) = CX(t), t ∈ R,

where A ∈ RN×N has eigenvalues with strictly negative real parts, B ∈ RN×m and

C ∈ Rd×N .

As already mentioned, there are often only observations at discrete time points

available. Thus, discretizations of MCARMA processes are of particular interest,

especially for estimating the model parameters of an MCARMA process using obser-

vations at discrete time points. The sampled process (Y (nh))n∈Z is the MCARMA

process (Y (t))t∈R observed at equidistant time points. The sampled process sat-

isfies a discrete-time linear state space model. For univariate CARMA processes

Brockwell, Davis and Yang [21] showed that the sampled process satisfies a weak

ARMA representation and for MCARMA processes Schlemm and Stelzer [90] derived

a weak vector ARMA representation. However, the autoregressive polynomial has

only complex coefficients instead of matrix coefficents. We derive in this thesis a

weak vector ARMA representation for the sampled process (Y (nh))n∈Z where the

autoregressive polynomial is a matrix polynomial. For this purpose, we also derive
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a decomposition of an MCARMA process into the sum of MCAR processes. Such

a decomposition was already used in the univariate case by Brockwell, Davis and

Yang [21] and in a different form by Schlemm and Stelzer [90] in order to derive their

(vector) ARMA representations.

Cointegration

As previously indicated, stationary processes do not seem to be sufficient to describe

many time series data sets. In the year 1982, Nelson and Plosser [70] provided

statistical evidence that many macroeconomic variables contain a stochastic trend.

There are numerous works providing empirical evidence that many economic and

financial data sets exhibit a non-stationary behavior but their first differences are

stationary. A first solution to this problem was to work with first differences instead

of levels to be able to apply standard methods for stationary processes. However,

many relations between (economic) variables are stated in terms of the actual levels

rather than differences. Hence, models on first differences are limited in containing

such relations.

Granger and Newbold [43] observed that for multivariate time series following a

common stochastic trend, statistical inference using the standard methods leads to

spurious results. Granger discovered that non-stationary time series can fluctuate

around a long-run equilibrium. These time series are non-stationary but behave

stationary around the stochastic trend. Clive Granger coined the term cointegration

for these multivariate time series. Cointegration means that the multivariate time

series is non-stationary itself but their differences are stationary and there exist

stationary linear combinations of the components. The seminal works by Granger

[42] in 1981 and Engle and Granger [33] in 1987 introduced the concept of cointegration

and thereby established a rich field of research. The concept of cointegration became

quite popular in econometrics but is also applied in many other fields like physics,

biology or social sciences. Cointegration relations have been found, among others,

between spot and future (forward) prices, interest rates of different maturities or

different countries, dividends and prices or stock prices in an industrial sector (c.f.

Brenner and Kroner [17] and references therein). The importance of the concept of

cointegration was substantiated by the Nobel price in economics for Clive Granger’s

discovery of cointegration in 2003. He won the Nobel price together with Robert

Engle for their developments in time series analysis.

Cointegrated time series are a subclass of integrated processes, namely processes

which have stationary first differences, and thus also of non-stationary processes.

They are very closely related to stationary processes due to the defining property of
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having stationary first differences as well as stationary linear combinations. Hence,

one can still use several properties of stationary processes while working with a

cointegrated time series. Moreover, the property of having a long-run equilibrium

implies that the components cannot drift too far away from the equilibrium but

fluctuate around the equilibrium. Thus, in a cointegrated time series deviations from

the equilibrium are stationary. This fact is used in the so-called error correction model

where the short-run dynamic is considered. The error correction form was introduced

in 1964 by Dennis Sargan [87] in a model of wages and prices for the United Kingdom.

The classical error correction model for a cointegrated d-dimensional VARMA(p, p)

process Yn = P (B)Yn−1 +Q(B)εn for n ∈ N with noise (εn)n∈N is given by

∆Yn =αβTYn−1 + P̃ (B)∆Yn−1 +Q(B)εn,

where the polynomial P̃ (z) is constructed from the matrix coefficients of the original

polynomial P (z). It has since become a useful tool in cointegration analysis for

estimating the long-run as well as the short-run behavior. A cointegrated model

can fit data with common stochastic trends better than a stationary model for the

afore-stated reasons.

One of the most important results in cointegration analysis is the Granger representa-

tion theorem derived by Engle and Granger [33] in 1987. The Granger representation

theorem connects the moving average, autoregressive and error correction representa-

tions for cointegrated time series. The Johansen-Granger representation theorem (c.f.

Johansen [53] and [54]) characterizes cointegration precisely by making assumptions

on the autoregressive polynomial. Johansen [52], [53] also presented a maximum-

likelihood estimation method for cointegrated vector autoregressive processes using a

reduced rank regression method. A reduced rank model is a multivariate regression

model where the coefficient matrix has a reduced rank. Moreover, Johansen developed

the Johansen cointegration rank test as a consequence of his reduced rank regression

method. This a sequential test in order to determine the number of cointegration

relations.

The most attention in the field of cointegration analysis was given to the discrete-time

setting. However, in 1991 Phillips [77] considered cointegration in the continuous-time

case. The natural analogue of first differences is differentiation in the continuous-

time framework. Phillips considered differentiable stochastic processes in a special

triangular model. Chambers [25] considered the connection between cointegrated

models in continuous and discrete time. Other examples of cointegrated continuous-

time models were considered for example by Kessler and Rahbek [57], who considered
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a cointegrated Gaussian CAR(1, 0) model, or by Fasen [34], [35], where special cases

of MCARMA models were investigated.

In the work of Comte [27] a characterization of cointegration for CAR(p) processes

was derived in combination with a moving average representation of the cointegrated

CAR(p) process. Moreover, a more general definition for integration in continuous-

time was given. Instead of defining integration as having a stationary derivative, a

process is called integrated if it has stationary increments. This includes particulary

Lévy processes and thus also Brownian motions. A multivariate process is then

obviously called cointegrated if it has stationary increments and there exist stationary

linear combinations. This definition has the advantage to include a much broader

class of processes since for example Lévy processes are in general not differentiable.

If the process is differentiable, these two definitions do coincide (c.f. Comte [27]).

In this thesis, we present a general cointegrated MCARMA model which includes the

models of Comte [27] and Phillips [77]. This definition extends the aforementioned sta-

tionary MCARMA model to the non-stationary subclass of (co-)integrated processes.

Furthermore, we derive the probabilistic properties of this model and an analogous

result to the Granger-Representation theorem, i.e. a moving average representation

and characterization of cointegration for MCARMA processes. This characterization

is not only given with respect to the autoregressive polynomial but also with respect

to the matrices of the state space form. Additionally, we investigate its sampled

version and therefore the connection between the continuous-time cointegrated model

and its discrete-time version.

Statistical estimation

A question which naturally arises in this context is how to estimate the model

parameters of a cointegrated MCARMA process given discrete-time observations.

Closely related to this is the problem of model identification. This problem occurs on

the one hand due to the estimation of a continuous-time model which is only observed

at discrete time points (aliasing effect) and on the other hand due to the multivariate

setting, where different models can have the same output. This means models can

include many redundancies and can become indistinguishable. It is essential to

prevent this from happening by having a sufficient set of assumptions for deriving

a consistent estimator. Statistical inference for a cointegrated MCARMA process

was only considered for special cases so far. For example, Kessler and Rahbek [58]

consider an ergodic Gaussian MCAR(1) process and present an estimation method

for this process. They also present sufficient conditions to solve the identifiability

problem and avoid the aliasing effect.
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Since standard estimations methods for stationary processes are not suitable for

non-stationary processes one has to use different methods in this setting. Saikkonen

[85], [86] presented in the middle of the 1990s a step-wise estimation approach for

cointegrated processes in the discrete-time framework. The stochastic equicontinuity

condition and the concept of continuous weak convergence, which is closely related

to uniform convergence, make it possible to deal with different rates of convergence.

Since a cointegrated process is non-stationary it has different rates of convergence for

different directions in the parameter space. However, Saikkonen derives a consistency

result and the asymptotic distributions of the estimator using continuous weak

convergence results and a suitable stochastic equicontinuity condition. He especially

considered the maximum likelihood estimator as an example. A quasi-maximum

likelihood method was considered by Schlemm and Stelzer [90] for stationary Lévy

driven MCARMA processes observed equidistantly at discrete time points in order

to estimate the model parameters. They showed the strong consistency of the

quasi-maximum likelihood estimator (QMLE) and also the asymptotic normality.

Furthermore, the identifiability problem is solved for this case.

We present in this thesis a step-wise quasi-maximum likelihood estimation method,

which is based on the ideas of Saikkonen as well as the quasi-maximum likelihood

approach for stationary MCARMA processes by Schlemm and Stelzer [90]. The

QMLE for the cointegrated model is consistent, whereby different rates of consistency

apply. The QMLE of the short-run parameters is consistent with the standard rate of
√
n, whereas the QMLE of the long-run parameters is super-consistent. Furthermore,

we derive the asymptotic distributions of the long-run and short-run parameter

estimators. The derived results are in line with the results for cointegrated models in

the discrete-time setting. Furthermore, the model identifiability problem is solved

for cointegrated MCARMA processes. The assumptions needed to derive these

results are standard assumptions and similar to set of assumptions in Schlemm and

Stelzer [90] and Saikkonen [85], [86]. The applicability of the estimation procedure is

eventually tested in simulation studies.

1.2. Outline of the Thesis

This thesis is divided into six chapters. Chapter 2 summarizes known results about

Lévy processes and MCARMA processes, which are the fundamental processes consid-

ered in this thesis. In Chapter 3 (weak) VARMA representations of MCARMA and

integrated MCARMA processes observed at discrete time points are derived and their
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autocovariance structure is analyzed. Chapter 4, Chapter 5 and Chapter 6 consider

cointegrated MCARMA processes, which comprise representations, characterization,

statistical inference and simulation studies.

A list of notations and general abbreviations is given in the end of this thesis on

page 228. In order to improve the readability we put some technical and auxiliary

results in appendices in the end of each chapter. Furthermore, we state a list of the

assumptions of each chapter in Appendix A. A collection of basic formulas and rules

in the field of matrix theory can be found in Appendix B. We are going to employ

these formulas and rules several times in this thesis and hence we summarized the

most important ones in that section.

In the following we outline the thesis and give a short introduction to the results and

content of each chapter. A more detailed description can be found in the beginning

of each chapter.

Chapter 2: For the sake of understanding we present known results on multivariate

Lévy processes in Section 2.2 and moreover, Section 2.3 gives an introduction to

multivariate MCARMA processes. In Section 2.4 important properties of MCARMA

processes are summarized, which we use on several occasions. Lastly, a definition of

integrated CARMA processes and an extension to the multivariate case is given in

Section 2.5.

Chapter 3: We consider in Chapter 3 stationary and integrated MCARMA processes

and their observations in discrete time. In Section 3.2 we recall basic definitions in

the field of matrix polynomials and recall some useful results. We need the theory on

matrix polynomials to factorize the autoregressive polynomial P (z) of a stationary

MCARMA process Y . This factorization enables us to decompose an MCARMA(p, q)

process Y into the sum of p-dependent multivariate Ornstein-Uhlenbeck processes Yk

in Section 3.3.

The result of Section 3.4 exploits the decomposition from the previous section

yielding a (weak) VARMA(p, p − 1) of a stationary MCARMA(p, q) process Y

observed at discrete time points. Next, Section 3.5 deals with a process derived

from integrated MCARMA processes
∫ t

0
Y (u) du observed at discrete time points,

which is an MCARMA(p + 1, q) process itself. In particular, we consider the first

difference of the sampled integrated process, namely the integrated sequence given

by I
(h)
n :=

∫ nh
(n−1)h

Y (u) du. Similar as in Section 3.4, we derive a (weak) VARMA

representation of order (p, p) in this case. Besides, the autocovariance structure of

both discrete-time processes is investigated.
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Chapter 4: This chapter characterizes cointegrated Lévy driven MCARMA processes

using two different perspectives. After a brief recapitulation of cointegration of

VARMA processes in the discrete time framework we present the corresponding

definition of cointegration for the continuous-time setting in Section 4.2. Since the

source of randomness in our model are Lévy processes, the definition of integration as

non-stationary processes having stationary increments is the feasible definition for the

cointegrated model presented in this chapter. Additionally, we derive a continuous-

time error correction form analogous to the discrete-time version. However, the main

result of this section is the characterization of cointegration for MCARMA processes

with respect to the autoregressive and moving average polynomials.

Section 4.3 considers cointegrated MCARMA models from a different perspective.

The state space representation of MCARMA processes is used to derive decoupling of

the linear system into a stationary and non-stationary part. Solving this state space

equation yields that the d-dimensional cointegrated MCARMA process Y satisfies

Y (t) = C1B1L(t)+Y2(t). This means Y is nothing else but the sum of a Lévy process

and a stationary MCARMA process. This representation is the key to derive several

probabilistic properties of the cointegrated process, which are also derived in this

section.

Note that the characterization and the representation combined are a continuous-time

version of the well-known Johansen-Granger Representation Theorem for cointegrated

MCARMA models. Besides, we investigate which properties of the cointegrated

MCARMA process, observed at discrete time points, are inherited from the continuous-

time model. The rank of the matrix C1 determines the number of common stochastic

trends and the orthogonal complement of C1 spans the cointegration space and

consequently the cointegration rank can also be determined via the difference of the

dimension of the process Y and the rank of the matrix C1.

Lastly, we apply the Kalman filter to the sampled process in Section 4.4 in order to

obtain the linear innovations ε(h) of the process. The linear innovations enable us

to derive a transfer function error correction form ε
(h)
n = ΠY

(h)
n−1 + k(B)∆Y

(h)
n of the

sampled process with the linear innovations ε(h) as noise process. The difference to

the classical error correction form is the linear filter k(z) of infinite order.

We see in this section that the matrix Π contains the cointegration information, that

is the rank of Π, which is equal to the cointegration rank r and the matrix Π can

be decomposed into the product Π = αβT of full rank matrices with appropriate

dimensions. Note that α is the adjustment matrix and the columns of β span

the cointegration space. Moreover, the connection between β and the orthogonal
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complement of the matrix C1 become self-evident. Eventually, the probabilistic

properties of ε(h) are investigated. Lastly, the applicability of the Kalman filter in

the non-stationary setting with unit roots is guaranteed due to the derivations in

Appendix Section 4.6.

Chapter 5: Chapter 5 forms the main part of this thesis. It contains a step-

wise estimation procedure for cointegrated Lévy driven MCARMA processes based

on equidistant observations in discrete time. We use the results on the linear

innovations from the previous chapter in order to calculate the pseudo-Gaussian log-

likelihood function L(h)
n (ϑ) of observations (y1, . . . , yn), which we state in Section 5.2.

Furthermore, we make a collection of assumptions on the driving Lévy process and

the parametrization. Most of these assumptions are standard in the quasi-maximum

likelihood approach for stationary processes.

Due to the non-stationarity we separate the parameter space Θ into short-run and

long-run parameters in order to use a step-wise estimation approach. This basically

means that we collect the parameters corresponding to the non-stationary behavior

in a sub-vector ϑ1 ∈ Θ1 and the parameters corresponding to the stationary part

in another sub-vector ϑ2 ∈ Θ2. Likewise, we separate the log-likelihood function

into a sum L(h)
n (ϑ) = L(h)

n,1(ϑ) + L(h)
n,2(ϑ2). The first summand L(h)

n,1(ϑ) depends on all

parameters, whereas the second summand only depends on the stationary parameters

L(h)
n,2(ϑ2). We employ this partitioned form in the rest of this chapter.

Since stochastic equicontinuity and continuous weak convergence are essential to

derive the asymptotic distribution, we recall these concepts in Section 5.4 and

derive several continuous weak convergence for processes appearing in our model.

Furthermore, we prove the stochastic equicontinuity condition for these processes in

this section.

Section 5.3 deals with the identifiability problem and aliasing effect, which appear in

the estimation of multivariate continuous-time systems using discrete time observa-

tions. The parametrization should be chosen such that different values of the param-

eter must generate different probability distributions of the observations, namely the

model should be identifiable. We state sufficient conditions on the parametrization

in order to have an identifiable model and derive a unique parametrization using the

decoupled state space representation.

In Section 5.5 we show the super-consistency of the long-run quasi-maximum likeli-

hood estimator. We do not merely derive a consistency result, but also determine the

order of consistency in a second step. In the third step, we prove the consistency of
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the short-run quasi-maximum likelihood estimator with the knowledge of the order

of consistency of the long-run parameter estimator. This step-wise proof is necessary

as different rates of convergence apply to different directions of the parameter space.

Finally, we derive the asymptotic distributions of the long-run and short-run estimator

in Section 5.6. For this purpose, we first prove the weak convergence of the score

vector to a vector consisting of a stochastic integral and of a normal distributed

random variable. Afterwards, we show the convergence of the Hessian matrix to a

block-diagonal matrix, which is almost surely positive definite. Then by applying a

mean value expansion of the score vector and using the results of this chapter, we

obtain the asymptotic distributions of the estimators. The long-run estimator is

mixed normal and the short-run estimator is asymptotically normal. Besides, these

results yield also the asymptotic independence of the estimators.

Chapter 6: We apply in this section the step-wise quasi-maximum likelihood

estimation procedure in simulation studies. For this purpose we present in Section 6.2

a unique parametrization for the long-run matrix C1 satisfying the assumption of

the previous chapter. The matrix C1 contains the cointegration information. To

be more precise, for an output process Y = C1B1L(t) + Y2(t) of dimension d and

matrix C1 ∈Md,c(R) with full rank c we know that the process has d− c stationary

linear combinations and consequently c common stochastic trends. Moreover, the

orthogonal complement of this matrix spans the cointegration space. The algorithm

presented describes how to construct the matrix C1 in a unique way from a given

long-run parameter vector. Furthermore, references on appropriate parametrization

for the remaining matrices are given.

In the end, we present the results of the simulation studies in Section 6.3. We consider

a bivariate model with one common stochastic trend and a three-dimensional model

with two common stochastic trends. Moreover, we compare the results for a Brownian

motion and a normal-inverse Gaussian process respectively. We will see that the

simulation studies verify the practical applicability of our step-wise quasi-maximum

likelihood estimation method for cointegrated Lévy driven MCARMA processes.





CHAPTER 2

Preliminaries

2.1. Introduction

This preliminary chapter shall serve as an introduction to the model class we want

to investigate in the following. Since all results in this chapter are already known,

we briefly recall the most important results.

We introduce in this chapter some basic results on Lévy processes. Lévy processes

will be the source of randomness in our model. Not only do Lévy processes include

many widely used processes as for example Brownian motion, Poisson process and

many others, they can also be considered as the continuous analogue of random

walks. In the first subsection we give a short overview over Lévy processes.

In discrete time the class of multivariate autoregressive moving average (VARMA)

processes are well studied. This model class consist of two parts. On the one hand,

we have the autoregressive part modelling the linear dependence of the output process

on its prior values. On the other hand, we have the moving average part, which is a

function of its past innovations. Linear stochastic state space models have a close

connection to ARMA models. These model classes are equivalent, see e.g. in Hannan

and Deistler [46]. A comprehensive overview over discrete-time ARMA processes and

state space models can be found for example in Brockwell and Davis [20].

A natural generalization of these models is a continuous-time model. Continuous-time

autoregressive moving average processes (CARMA) date back to 1944 when Doob
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[30] introduced a process which can be interpreted as an Gaussian CARMA process.

Brockwell introduced later a univariate CARMA process driven by a Lévy process in

[18]. Marquardt and Stelzer extended then CARMA processes to the multivariate

case in [69] and their connection to continuous time linear stochastic state space

models was shown in [90].

We recapitulate in the second subsection the definition of a multivariate CARMA

(MCARMA) process. Moreover, we recall in the last subsection some of the basic

properties of MCARMA processes. These definitions and results will build the basis

for the integrated and cointegrated MCARMA models.

Integrated CARMA (ICARMA) processes have been introduced by Brockwell and

Lindner [23] in 2013 in order to model spot volatility. Their definition of an integrated

CARMA process extends naturally to the multivariate setting. We state this extended

definition in Section 2.5. The property of integration is a necessary condition for a

cointegrated process. However, this definition of an integrated MCARMA process

has the disadvantage that it does not enable the process to be cointegrated. Such

an integrated process will always be integrated but will have no stationary linear

combination. Later on, we introduce a different definition of an integrated MCARMA

process which is more flexible and hence we can have cointegration relations in this

case.

2.2. Multivariate Lévy processes

We recall in this section the definition of a multivariate Lévy process and some of its

properties. We use these processes throughout this thesis as the driving process of

our models. For a profound treatment of Lévy processes see e.g. the textbooks by

Applebaum [4], Bertoin [10] and Sato [88].

Definition 2.2.1 (Lévy process)

We say that a stochastic process L = (L(t))t≥0 on a probability space (Ω,F ,P) is a

(m-dimensional) Lévy process if it satisfies the following four properties:

1. L(0) = 0m P− a.s.

2. L has independent increments, i.e. for each n ∈ N and each 0 ≤ t0 < t1 <

. . . < tn <∞ the random variables L(t0), L(t1)− L(t0), . . . , L(tn)− L(tn−1)

are independent.

3. L has stationary increments, i.e. for all t, s ≥ 0 we have L(t+ s)− L(s)
d
=L(t).



2.3. Lévy-driven Multivariate CARMA Processes 15

4. L is stochastically continuous, i.e. for all ε > 0 and for all s ≥ 0 we have

limt→s P(‖L(t)− L(s)‖ > ε) = 0.

A Lévy process is uniquely determined by its characteristic function in the Lévy-

Khintchine form E
[
ei〈u,L(t)〉] = etΨ(u), u ∈ Rm, t ≥ 0, where Ψ is given by

Ψ(u) = i〈γ, u〉 − 1

2
〈u,Σu〉+

∫
Rm

(
ei〈u,x〉 − 1− i〈u, x〉1{‖x‖≤1}

)
ν(dx).

The unique characteristic triplet (γ,Σ, ν) consists of the drift vector γ ∈ Rm, the

Gaussian covariance matrix Σ ∈ Rm×m, which is a positive semi-definite matrix,

and the Lévy measure ν, which is a measure on Rm satisfying ν(0m) = 0 and∫
Rm min(1, ‖x‖2)ν(dx) <∞. In the following, we consider the cádlág version of the

Lévy process.

A two-sided Lévy process L = (L(t))t∈R is defined by taking two independent copies

{L1(t)}t≥0 and {L2(t)}t≥0 and set

L(t) :=

L1(t), t ≥ 0,

−L2(−t−), t < 0,

where L(s−) := lim
t↗s

L(t).

For a proper definition of stochastic integration with respect to Lévy processes see

e.g. the books Applebaum [4] and Protter [82].

2.3. Lévy-driven Multivariate CARMA Processes

We recall in this section Lévy-driven multivariate CARMA processes, which were first

defined by Marquardt and Stelzer (see [69]). This definition was slightly extended

by Schlemm and Stelzer (see [90]), where the driving Lévy process was allowed to

have a different dimension than the multivariate CARMA process. Subsequently,

we summarize the main theory on MCARMA processes. We use the notation A∗ to

denote the complex conjugate matrix of A in the following.

Definition 2.3.1

Let B(R) denote the Borel-σ-algebra over R. A family {ζ(∆)}∆∈B(R) of Cm-valued

random variables is called an m-dimensional random orthogonal measure if

(a) ζ(∆) ∈ L2 for all bounded ∆ ∈ B(R),
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(b) ζ(∅) = 0,

(c) ζ(∆1 ∪∆2) = ζ(∆1) + ζ(∆2) a.s. if ∆1 ∩∆2 = ∅ and

(d) F : B(R)→Mm(C), ∆ 7→ E[ζ(∆)ζ(∆)∗] defines a σ-additive positive definite

matrix measure (i.e. a σ-additive set function that assumes values in the positive

semi-definite matrices) and it holds that

E[ζ(∆1)ζ(∆2)∗] = F (ζ(∆1) ∩ ζ(∆2))

for all ∆1,∆2 ∈ B(R).

F is referred to as the spectral measure of ζ.

The stochastic integrals
∫

∆
f(t)ζ(dt) of deterministic Lebesgue-measurable functions

f : R→Mm(C) with respect to a random orthogonal measure ζ are defined in the

usual L2-sense. The integration is defined componentwise

(∫
∆

f(t)ζ(dt)

)
:=



(∫
∆
f(t)ζ(dt)

)
1

...(∫
∆
f(t)ζ(dt)

)
i

...(∫
∆
f(t)ζ(dt)

)
m


:=



∑m
k=1

∫
∆
f1k(t)ζk(dt)
...∑m

k=1

∫
∆
fik(t)ζk(dt)
...∑m

k=1

∫
∆
fmk(t)ζk(dt)


.

The integral is defined whenever

∫
∆

f(t)F (dt)f(t)∗ :=

(
m∑

k,l=1

∫
R
fik(t)f̄ik(t)Fkl(dt)

)
1≤i,j≤m

<∞,

and f is said to be in L2(F ). As we consider only the case, where we have spectral

measures with constant density with respect to the Lebesgue measure λ on R, i.e.

F (dt) = Cλ(dt) := C dt holds for some positive definite C ∈ Mm(C). Then it is

sufficient for the existence of the integral that
∫

∆
‖f(t)‖2 dt < ∞, for some norm

‖ · ‖ on Mm(C). We denote by Mm(C) the space of all m-dimensional complex

valued matrices. Additionally, we denote the space of square integrable matrix-valued

functions by

L2(R,Mm(C)) := L2(Mm(C)) :=

{
f : R→Mm(C),

∫
R
‖f(t)‖2 dt <∞

}
.



2.3. Lévy-driven Multivariate CARMA Processes 17

Furthermore, we have for two functions f, g ∈ L2(F )

E
[∫

∆

f(t)ζ(dt)

(∫
∆

g(t)ζ(dt)

)∗]
=

∫
∆

f(t)Cg(t)∗ dt. (2.1)

The next theorem shows the existence of a random orthogonal measure and a

corresponding spectral measure.

Theorem 2.3.2 (Marquardt and Stelzer (2007), Theorem 3.5)

Let L = (L(t))t∈R be an m-dimensional square integrable Lévy process with E [L(1)] =

0 and E [L(1)L(1)∗] = ΣL. Then, there exists an m-dimensional random orthogonal

measure ΦL with spectral measure FL such that E [ΦL(∆)] = 0 for any bounded Borel

set ∆,

FL(dt) =
ΣL

2π
dt

and

L(t) =

∫ ∞
−∞

eiµt − 1

iµ
ΦL(dµ).

The random measure ΦL is uniquely determined by

ΦL([a, b)) =

∫ ∞
−∞

eiµa − eiµb

2πiµ
L(dµ)

for all −∞ < a < b <∞.

For the polynomial

P : C→Mm(C), z 7→ Imz
p + A1z

p−1 + A2z
p−2 + . . .+ Ap,

with matrix coefficients A1, A2, . . . , Ap ∈Mm(C) and p ∈ N, we have the correspond-

ing companion matrix given by

A =



0 Im 0 . . . 0

0 0 Im
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 Im

−Ap −Ap−1 . . . . . . −A1


∈Mmp(C). (2.2)

The following result of Marquardt and Stelzer [69], is the main result in order to
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define multivariate CARMA processes. Since matrices do not commute in general,

the definition is not as straightforward as in the one dimensional case. However,

the following theorem by Marquardt and Stelzer enables a definition of MCARMA

processes, which contains the autoregressive moving average structure.

Theorem 2.3.3 (Marquardt and Stelzer (2007), Theorem 3.12)

Let L = (L(t))t∈R be an m-dimensional square integrable Lévy process with mean zero

and corresponding m-dimensional random orthogonal measure Φ as in Theorem 2.3.2

and p, q ∈ N0, q < p. Let further A1, A2, . . . , Ap, B0, B1, . . . , Bq ∈ Mm(R), where

B0 6= 0 and define β1 = β2 = . . . = βp−q−1 = 0m×m (if p > q + 1) and

βp−j = −
p−j−1∑
i=1

Aiβp−j−i +Bq−j for j = 0, 1, 2, . . . , q.

Assume that A is defined as in (2.2) satisfying σ(A) ⊂ (−∞, 0) + iR, which implies

Ap ∈ Glm(R). We denote by G = (G∗1(t), . . . , G∗p(t))
∗ an mp-dimensional process and

set β = (β∗1 , . . . , β
∗
p)
∗.

Then the stochastic differential equation

dG(t) = AG(t)dt+ βdL(t) (2.3)

is uniquely solved by the process G given by

Gj(t) =

∫ ∞
−∞

eiλtwj(iλ) Φ(dλ), j = 1, 2, . . . , p, t ∈ R,

where for j = 1, 2, . . . , p− 1

wj(z) =
1

z
(wj+1(z) + βj),

and

wp(z) =
1

z

(
−

p−1∑
k=0

Ap−kwk+1(z) + βp

)
.

The strictly stationary process G can also be represented as

G(t) =

∫ t

−∞
eA(t−s)β L(ds), t ∈ R. (2.4)

Moreover, G(0) and {L(t)}t≥0 are independent, in particular, E[Gj(0)L(t)∗] = 0 for
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all t ≥ 0, j = 1, 2, . . . , p. Finally, it holds that

wp(z) = P (z)−1

(
βpz

p−1 −
p−2∑
j=0

j∑
k=0

Ap−kβp+k−j−1z
j

)
and

w1(z) = P (z)−1Q(z),

where the ”autoregressive polynomial” is given by

P (z) = Imz
p + A1z

p−1 + . . .+ Ap, for z ∈ C

and the ”moving average polynomial” by

Q(z) = B0z
q +B1z

q−1 + . . .+Bq for z ∈ C (2.5)

and
∫∞
−∞ ‖wj(iλ)‖2 dλ <∞ for all j ∈ {1, 2, . . . , p}.

Note that the process G in Theorem 2.3.2 is a multivariate Ornstein-Uhlenbeck

process. From this fact one can derive many probabilistic properties of MCARMA

processes.

Let us now give the definition of a multivariate continuous-time autoregressive moving

average process as stated in Marquardt and Stelzer [69].

Definition 2.3.4 (MCARMA process)

Let L = (L(t))t∈R be a two-sided square integrable m-dimensional Lévy process with

E[L(1)] = 0 and E[L(1)L(1)∗] = ΣL.

An m-dimensional Lévy-driven continuous-time autoregressive moving av-

erage process (Y (t))t∈R of order (p, q) for p > q (MCARMA(p, q)) is defined

as

Y (t) =

∫ ∞
−∞

eiλtP (iλ)−1Q(iλ) Φ(dλ), t ∈ R, (2.6)

where the autoregressive and moving average polynomial are given by

P (z) := Imz
p + A1z

p−1 + . . .+ Ap,

and

Q(z) := B0z
q +B1z

q−1 + . . .+Bq
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for z ∈ C.

Furthermore, Φ is the Lévy orthogonal random measure of Theorem 2.3.2 satisfying

E[Φ(dλ)] = 0 as well as E[Φ(dλ)Φ(dλ)∗] = dλ
2π

ΣL. Here Aj ∈ Mm(R), j = 1, . . . , p

and Bi ∈Mm(R), i = 1, 2, . . . , q are matrices satisfying Bq 6= 0 and

N (P ) := {z ∈ C : det(P (z)) = 0} ⊂ R \ {0}+ iR.

Normally, one is interested in a causal process. This means that the process is a

function of past values and does not depend on future values, that is the process

adapted to the natural filtration of the driving Lévy process. Hence, we give the

definition of a causal MCARMA process.

Definition 2.3.5 (Causal MCARMA process)

Let L = (L(t))t∈R be a two-sided m-dimensional Lévy process satisfying∫
‖x‖≥1

log ‖x‖ ν(dx) <∞. (2.7)

Assume further that p, q ∈ N0 with q < p and A1, A2, . . . , Ap, B0, B1, . . . , Bq ∈Mm(R),

where B0 6= 0. Define the matrices A, β and the polynomial P as in Theorem 2.3.3

and assume σ(A) = N (P ) ⊂ (−∞, 0) + iR.

Then the m-dimensional process

Y (t) = (Im, 0m, . . . , 0m)G(t), (2.8)

where G is the unique stationary solution to

dG(t) = AG(t)dt+ βdL(t)

is called a causal MCARMA(p, q) process. Again, the process G is referred to

as the state space representation.

Additionally, the stationary MCARMA process can also be represented as a moving

average process as can be seen by the next theorem.

Theorem 2.3.6 (Marquardt and Stelzer (2007), Theorem 3.22)

The MCARMA process (2.6) can be represented as a moving average process

Y (t) =

∫ ∞
−∞

g(t− s)L(ds), t ∈ R, (2.9)
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where the kernel matrix function g : R→Mm(R) is given by

g(t) =
1

2π

∫ ∞
−∞

eiµtP (iµ)−1Q(iµ) dµ. (2.10)

For causal MCARMA process defined in Definition 2.3.5 an analogous result holds if

the kernel function g is replaced by

g̃(s) = (Im, 0m, . . . , 0m)eAsβ1[0,∞)(s). (2.11)

Remark 2.3.7

All the results in this and the next subsection remain valid if we allow the dimension

of the Lévy process to be different than the dimension of the MCARMA process.

We have in this case a two-sided Lévy process L with values in Rd and the m-

dimensional Lévy-driven CARMA process, with polynomials P (z) ∈Mm(R(z)) and

Q(z) ∈Mm,d(R(z)), is the solution of pth-order linear differential equation

P (D)Y (t) = Q(D)DL(t),

which is interpreted as being equivalent to the state space representation dG(t) =

AG(t)dt+ βdL(t), Y (t) = (Im, 0m, . . . , 0m)G(t), t ∈ R, where we have now matrices

with the following dimensions: β ∈Mmp×d(R), and (Im, 0m, . . . , 0m) ∈Mm,pm(R).

2.4. Properties of Multivariate CARMA Processes

Lastly, let us recall some useful properties of stationary MCARMA processes in this

section.

Proposition 2.4.1 (Marquardt and Stelzer (2007), Proposition 3.26)

The processes defined in Definition 2.3.4 and Definition 2.3.5 are strictly stationary.

Proposition 2.4.2 (Marquardt and Stelzer (2007), Proposition 3.27)

If the driving Lévy process L has the characteristic triplet (γ,Σ, ν), the distribution

of the MCARMA process Y (t) is infinitely divisible for t ∈ R. Moreover, the

characteristic triplet of the stationary distribution is (γ∞Y ,Σ
∞
Y , ν

∞
Y ), where

γ∞Y =

∫
R
g(s)γ ds+

∫
R

∫
Rm

g(s)x
(
1{‖g(s)x‖≤1} − 1{‖x‖≤1}

)
ν(dx) ds,

Σ∞Y =

∫
R
g(s)Σg∗(s) ds
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and ν∞Y (B) =

∫
R

∫
Rm

1B(g(s)x) ν(dx) ds. (2.12)

For a causal MCARMA process the same result holds with g replaced by g̃.

Proposition 2.4.3 (Marquardt and Stelzer (2007), Proposition 3.28)

Let Y = (Y (t))t∈R be the MCARMA process defined by (2.3.4). Then, its matrix-

valued autocovariance function is given by

Γy(h) =
1

2π

∫ ∞
−∞

eiλhP (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗ dλ, h ∈ R (2.13)

and the spectral density is given by

fy(λ) =
1

2π
P (iλ)−1Q(iλ)ΣLQ(iλ)∗(P (iλ)−1)∗, λ ∈ R. (2.14)

Definition 2.4.4

An Rd-valued continuous-time linear state space model (A,B, C, L) of dimension

N is characterized by an Rm-valued driving Lévy process L, a state transition matrix

A ∈MN (R), an input matrix B ∈MN,m(R) and an observation matrix C ∈Md,N (R).

It consists of a state equation of Ornstein-Uhlenbeck type

dX(t) = AX(t)dt+ BdL(t) (2.15)

and an observation equation

Y (t) = CX(t). (2.16)

The RN -valued process X = (X(t))t∈R is the state vector process and the Rd-valued

process Y = (Y (t))t∈R is the output process.

The next result characterizes the connection between continuous-time state-space

models and MCARMA processes, which is very useful in the following.

Proposition 2.4.5 (Schlemm and Stelzer (2012), Corollary 3.4)

Assume that the driving Lévy process L satisfies EL(1) = 0 and E‖L(1)‖2 < ∞.

The classes of causal MCARMA and causal continuous-time state space models are

equivalent.

Last but not least, we recall a result on the sampled process of a stationary MCARMA

processes by Schlemm and Stelzer [90]. The corresponding sampled process Y (h) =
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(Y
(h)
n )n∈Z of a continuous-time stochastic process Y = (Y (t))t∈R is defined by inserting

nh into the original process i.e. Y
(h)
n = Y (nh). The constant h > 0 determines the

sampling distance. Consequently, we observe the process at equidistant time points.

The sampled process is of particular interest in the case of discrete-time observation

of the original continuous-time process.

Lemma 2.4.6 (Schlemm and Stelzer (2012), Lemma 5.2)

Assume that Y is an MCARMA process as in Definition 2.4.4. The sampled process

Y (h) has the state space representation given by the state equation

Xn = eAhXn−1 +R(h)
n , (2.17)

and observation equation

Y (h)
n = CXn, (2.18)

with noise

R(h)
n =

∫ nh

(n−1)h

eA(nh−u)β dL(u). (2.19)

The sequence (R
(h)
n )n∈Z is i.i.d. with mean zero and covariance matrix

Σ̃ = ER(h)
n R(h)T

n =

∫ h

0

eAuβΣLβ
∗eA

∗u du. (2.20)

We have now recalled the most important definitions and results about stationary

MCARMA processes. After this brief review of stationary MCARMA processes we

are going to extend these processes to the non-stationary case in the following.

2.5. Integrated MCARMA Processes

We define in this section integrated MCARMA processes and derive some characteri-

zations. Integrated CARMA processes were first defined in Brockwell and Lindner

[23] in the univariate setting. An integrated CARMA process is given by the integral

of a stationary CARMA process.

Definition 2.5.1 (Integrated CARMA process)

Let Y = (Y (t))t∈R be a univariate stationary CARMA(p, q) process with integers

p > q. The non-stationary d-times integrated CARMA(p, d, q) (ICARMA)
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process I(d), for d ∈ N0 is defined as

I(d)(t) =

∫ t

0

∫ ud−1

0

. . .

∫ u1

0

Y (u) du du1 . . . dud−1. (2.21)

We denote a d-times continuous-time integrated process I by I ∼ I(d). Note that

the ICARMA(p, d, q) process I(d) can be represented in the following way

I(d)(t) =

∫ t

0

(t− u)d−1

(d− 1)!
Y (u) du, d ∈ N0, (2.22)

which can be seen by induction. The representation is similar to the representation

of a fractionally integrated CARMA process as in Marquardt [68].

We can extend the definition straightforwardly to the multivariate case as can be

seen in the next definition.

Definition 2.5.2 (Multivariate Integrated CARMA process)

Let Y = (Y (t))t∈R = (Y1(t), Y2(t), . . . , Ym(t))Tt∈R be an m-dimensional stationary

multivariate CARMA(p, q) process with parameters p > q. The non-stationary

multivariate d-times integrated CARMA(p, d, q) (MICARMA) process

I(d), d ∈ N0, is defined as

I(d)(t) :=

∫ t

0

∫ ud−1

0

. . .

∫ u1

0

Y (u) du du1 . . . dud−1

:=


∫ t

0

∫ ud−1

0
. . .
∫ u1

0
Y1(u) du du1 . . . dud−1

...∫ t
0

∫ ud−1

0
. . .
∫ u1

0
Ym(u) du du1 . . . dud−1

 . (2.23)

The definition of an integrated CARMA process is not restricted to Riemann integrals,

e.g. we could also define it with respect to stochastic integrals, for example integrate

with respect to a Lévy process.

Remark 2.5.3

If we have the differential equation P (D)Y (t) = Q(D)DL(t) and define Pd(z) :=

P (z) · zd, we have

Pd(D)I(d)(t) = P (D)DdI(d)(t) = P (D)Y (t) = Q(D)DL(t) (2.24)

and thus I(d) is itself an MCARMA(p+ d, q) process.

There is an analogous representation of the MICARMA process similar to the
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representation (2.22) in the univariate case

I(d)(t) =

∫ t

0

(t− u)d−1

(d− 1)!
Y (u) du =

∫ t

0

diag

(
(t− u)d−1

(d− 1)!

)
Y (u) du. (2.25)

The integral in the last equation is again defined componentwise. Using the state

space equation we can derive another representation.

Proposition 2.5.4

The MICARMA(p,d,q) process I(d) can be represented in the following way

I(d)(t) =

∫ t

0

(t− u)d−1

(d− 1)!
Y (u) du

= [Im, 0m, . . . , 0m]A−d

[
G(t)−

d−1∑
j=0

Aj

j!

(
tjG(0)−

∫ t

0

(t− u)jβ dL(u)

)]
,

(2.26)

where G and β are defined as in Theorem 2.3.3.

Proof. This can be seen directly by using the state space representation (2.3) recur-

sively.





CHAPTER 3

ARMA Representations of MCARMA

and MICARMA Processes Observed at

Discrete Time Points

3.1. Introduction

Although we consider in this thesis continuous-time models, the discrete-time models

are of special interest for us. The reason for this is that despite having a continuous-

time model, we observe only the process at discrete time points. Hence, we analyze

the representation of the observed process and moreover its autocovariance structure.

The aim of this chapter is to derive a vector autoregressive moving average (VARMA)

representation for stationary and integrated multivariate autoregressive moving

average (MICARMA) processes observed at discrete time points.

Stationary processes have practical properties, however, data often suggest a non-

stationary behavior. Integrated ARMA (ARIMA) processes are a generalization of

stationary ARMA processes allowing for a certain degree of non-stationarity. Taking

the first difference of an ARIMA reduces the non-stationarity. Using this fact one

can still use theory on stationary processes for integrated time series by taking the

first differences. The textbooks of Box, Jenkins and Reinsel [15] and Brockwell and

Davis [20] cover the basic theory on ARIMA processes.

The continuous-time integrated ARMA (ICARMA) processes, which was intro-

duced by Brockwell and Lindner [23] in 2013 is the continuous-time analogue of an
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ARIMA process. It is naturally defined by considering the integral of a stationary

MCARMA process Y , namely
∫ t

0
Y (t) dt. We consider the property of the integrated

sequence, which is nothing else than the increments of the ICARMA process, that is∫ nh
(n−1)h

Y (t) dt.

In order to obtain the VARMA representations of either the stationary MCARMA

process or the integrated sequence of an MCARMA process
∫ n(h)

(n−1)
Y (t) dt, we need a

decomposition of a stationary MCARMA process into MCAR processes. In particular

we obtain the decomposition Y (t) =
∑p

k=1 Yk(t) of a stationary MCARMA(p, q)

process, where Yk(t) are MCAR processes. Decompositions of CARMA processes into

(multivariate) Ornstein-Uhlenbeck processes were considered in the univariate case by

Brockwell, Davis and Yang [21] and by Schlemm and Stelzer [90] in the multivariate

setting. We decompose an MCARMA process into the sum of MCAR processes. The

difference between our decomposition and the one presented in Schlemm and Stelzer

is the kind of process we decompose the original process into.

Necessary for this decomposition are results from the field of matrix polynomials. Ref-

erences about matrix analysis and matrix polynomials are for example the textbooks

of Horn and Johnson [50] and Gohberg et al. [41]. For the sake of comprehensibility,

we briefly recall the main definitions and the required results for this chapter in

Section 3.2 and present an extension to repeated solvents in Appendix 3.7.

Finally, we present weak VARMA representations of stationary MCARMA and

integrated MCARMA observed at discrete time points in Section 3.4. A related

VARMA representation for stationary MCARMA processes can be found in Schlemm

and Stelzer [90], where a different decomposition was used. Furthermore, an ARMA

representation of a sampled univariate CARMA process was also considered in

Brockwell and Lindner [22] and for a univariate integrated CARMA process the

result was given in Brockwell and Lindner [23].

3.2. Theory on Matrix Polynomials

In this section we review main results about matrix polynomials. Of greater interest

for the following considerations is some criterion if a matrix polynomial can be

factorized into
”
linear factors“. This means we have matrix valued

”
roots“ for which

we can factor the matrix polynomial as in the one-dimensional case. However, since

we do not have the Fundamental Theorem of Algebra for matrix polynomials and the

commutativity property does not hold, we need the following definitions and results

to specify a similar result at least for special cases.
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First, we define matrix polynomials. Since in general matrix multiplication is not

commutative, we need to make a difference of the polynomial depending on the side

we multiply the matrix.

Definition 3.2.1

An nth-degree, mth-order monic λ-matrix A : C→Mm(C) is given by

A(λ) = A0λ
n + A1λ

n−1 + . . .+ An−1λ+ An, (3.1)

where Ak ∈Mm(C), k = 0, 1, . . . , n, A0 = Im and λ ∈ C.

Let X be an m×m dimensional complex matrix. The right matrix polynomial

AR : Mm(C)→Mm(C) is given by

AR(X) = A0X
n + A1X

n−1 + . . .+ An−1X + An (3.2)

and analogously the left matrix polynomial AL is given by

AL(X) = XnA0 +Xn−1A1 + . . .+XAn−1 + An.

By considering the determinant of a matrix polynomial, we obtain a one-dimensional

polynomial with
”
classical“ roots. These roots of the determinant of the matrix

polynomial and vectors related to these roots are important for the multivariate

extension of univariate roots. Therefore, we give now a formal definition.

Definition 3.2.2

Let λi be a complex number such that

det(A(λi)) = 0, (3.3)

then λi is called latent root of A(λ). A complex m× 1 vector pi satisfying

A(λi)pi = 0m×1 (3.4)

is called right latent vector of A(λ) associated to λi. Similarly, qi is a left latent

vector if

qTi A(λi) = 01×m.

Finally, we are going extend the definition of a root to the matrix polynomial case.

Since matrices do not commutate in general, we have to differ between left and right

roots, depending on the side we are multiplying the matrix.
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Definition 3.2.3

Let R be an m×m complex matrix such that

AR(R) = A0R
n + A1R

n−1 + . . .+ An−1R + An = 0m×m, (3.5)

then R is called a right solvent of the λ-matrix A(λ) and an m×m complex matrix

L is a left solvent if AL(L) = LnA0 + Ln−1A1 + . . .+ LAn−1 + An = 0m×m.

The companion form of a matrix is a special form closely related to matrix polynomials.

The coefficient matrices build the last row of the companion matrix. This special

form plays a major role for (Vector-)ARMA and (Multivariate-)CARMA processes

as one can use this form to represent these processes. Moreover, it can be easier

to derive some properties of the processes using the companion form instead of the

matrix polynomial form.

Definition 3.2.4

Given a right matrix polynomial M(X) = Xn +A1X
n−1 + . . .+An the corresponding

block companion matrix is given by

AC =



0 Im 0 . . . 0

0 0 Im
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 Im

−An −An−1 . . . . . . −A1


∈Mmn(C). (3.6)

A block companion matrix AC is invertible if An is invertible. If AC is invertible, the

inverse of the block companion matrix is given by

A−1
C =



−Dn −Dn−1 . . . . . . −D1

Im 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 Im 0


∈Mmn(C), (3.7)

where Di = A−1
n Ai−1, for i = 2, . . . n and D1 = A−1

n .

Note that the characteristic polynomial of the companion matrix is given by

det(AC − λIm) = (−1)mn det(Imλ
n + A1λ

n−1 + . . .+ An). (3.8)
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This equation shows clearly the connection between eigenvalues of the companion

matrix and the roots of the matrix polynomial. A profound theory on matrix

polynomials and solvents can be found for example in Dennis et al. [29] and [28].

After we have listed the most important definitions we can now summarize some

useful theorems. We start with a useful connection of latent roots of the matrix

polynomial and eigenvalues of the corresponding companion matrix.

Theorem 3.2.5 (Dennis et al. (1976), Theorem 3.2)

If λ is latent root of A(λ) and p is a right latent vectors, then λ is an eigenvalue of

the matrix AC and

v :=
(
pT λpT · · · λn−1pT

)T
∈Mmn×1(C)

is a right eigenvector of AC.

As earlier mentioned, we can characterize a solvent by its latent roots and latent

vectors, which can be seen easily by the next result of Dennis [28].

Theorem 3.2.6 (Dennis et al. (1976), Lemma 4.1)

If A(λ) has m linearly independent right latent vectors p1, . . . , pm corresponding to

the latent roots λ1, . . . , λm, then

PΛP−1

is a right solvent, where P := (p1, . . . , pm) ∈Mm(C) and Λ := diag(λ1, . . . , λm).

In order to factorize an nth-degree matrix polynomial into linear factors we need

criteria for having n factors. There exist special cases, when one can completely

factorize a matrix polynomial. In order to characterize these cases we need the

following definition.

Definition 3.2.7

A set of right (left) solvents Rk, k = 1, . . . , n (Lk, k = 1, . . . , n) is called a complete

set of right (left) solvents of A(λ) if

σ(A(λ)) =
n⋃
k=1

σ(Rk),

(
σ(A(λ)) =

n⋃
k=1

σ(Lk)

)
, (3.9)

where σ(A(λ)) is the spectrum of A(λ) and σ(Rk) (σ(Lk)) is the spectrum of the right

(left) solvent Rk (Lk).
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As in Markus and Mereuca [66], a right solvent R of A(λ) is called regular if

σ(R) ∩ σ(A(1)(λ)) = ∅, (3.10)

where the monic λ-matrix A(1)(λ) of degree n− 1 is given by

A(λ) = A(1)(λ)(λIm −R). (3.11)

Similarly, a left solvent of A(λ) is called regular if

σ(L) ∩ σ(Â(1)(λ)) = ∅,

where the monic λ-matrix Â(1)(λ) of degree n− 1 satisfies A(λ) = (λIm − L)Â(1)(λ).

Hence, a complete set of regular right (left) solvents Rk (Lk), k = 1, . . . , n of A(λ) is

given by

σ(Rk) ∩ σ(Rj) = ∅, k 6= j, j, k = 1, . . . , n

and

σ(A(λ)) =
n⋃
k=1

σ(Rk), (3.12)

or respectively

σ(Lk) ∩ σ(Lj) = ∅, k 6= j, j, k = 1, . . . , n and σ(A(λ)) =
n⋃
k=1

σ(Lk).

The easiest case, where we have a complete set of eigenvalues is characterized in the

next theorem of Dennis et al. [28].

Theorem 3.2.8 (Dennis et al. (1976), Theorem 4.1)

If the latent roots of A(λ) are distinct, then A(X) has a complete set of right solvents.

Next, we recall the definition of matrix residues and use Cauchy’s integral theorem.

Let X ∈Mm(C) with distinct eigenvalues. We denote by λ1, . . . , λq for q ≤ m the

distinct eigenvalues of the matrix X. Cauchy’s integral theorem (see e.g. Lax [60],

Theorem 17.5) states that for the matrix function f(X) :=
∑∞

n=0 anX
n we have

f(X) =
1

2πi

∮
Γ

f(λ)(λIm −X)−1 dλ =
1

2πi

∮
Γ

(λ− ImX)−1f(λ) dλ, (3.13)
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where λ1, . . . , λq lies in the interior of Γ. Note that Γ is some closed contour in C
winding once around each eigenvalue of X.

Thus, we have for the right matrix polynomial AR : Mm(C)→Mm(C)

AR(X) =
1

2πi

∮
Γ

A(λ)(λIm −X)−1 dλ

=
n∑
k=0

Ak

[
1

2πi

∮
Γ

λn−k(λ− ImX)−1 dλ

]
=

n∑
k=0

AkX
n−k. (3.14)

Consequently, for matrix exponentials we have by Lax [60], Theorem 17.5, a similar

representation given by

eXt =
1

2πi

∮
Γ

ezt(zIm −X)−1 dz. (3.15)

For a more detailed theory on matrix residues of rational λ-matrices see e.g. Tsay

and Shieh [98]. We state the definition of rational λ-matrices and consider their

residues.

Definition 3.2.9

A strictly proper rational left λ-matrix with nth-degree mth-order has the rep-

resentation

F (λ) = Al(λ)−1Bl(λ), (3.16)

Al(λ) =
∑n

k=0Alkλ
n−k with Al0 = Im, and Bl(λ) =

∑n−1
k=0 Blkλ

n−1−k. The rational

λ-matrix F (λ) is irreducible if Al(λ) and Bl(λ) are left coprime.

A rational right λ-matrix F (λ) = Br(λ)Ar(λ)−1 is defined analogously. We denote

by adj(A) the adjugate of A. An alternative representation for a rational λ-matrix

F (λ) is given by

F (λ) =
1

det(Al(λ))
adj(Al(λ))Bl(λ).

For an irreducible F (λ) the roots of det(Al(λ)) are referred to as the poles of

F (λ) and det(Al(λ)) = det(Ar(λ)) holds. Furthermore, we have adj(Al(λ))Bl(λ) =

Br(λ) adj(Ar(λ)). If Al(λ) has a complete set of regular right solvents Ri for i =

1, . . . , n, then the right solvents Ri are called the regular left block poles of F (λ).
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Definition 3.2.10

Let R be a regular right solvent of A(λ), then the residue of the rational λ-matrix

F (λ) at R is defined by

Res[F,R] :=
1

2πi

∮
ΓR

F (λ) dλ, (3.17)

where ΓR is a simple closed contour such that σ(R) is contained in the interior of ΓR

and σ(A(λ)) \ σ(R) is contained in the exterior of ΓR.

The next theorem characterizes a matrix residual and the corresponding rational left

matrix function to a solvent, which can be found in the paper of Tsay and Shieh [98].

Theorem 3.2.11 (Tsay and Shieh (1982), Theorem 3.4)

If F (λ) is defined as above and A(λ) has a set of regular right solvents R1, . . . Rq

with σ(Rk), k = 1, . . . , q and q ≤ n lying in the interior of Γ. Then

1

2πi

∮
Γ

F (λ) dλ =

q∑
k=1

Res[F,Rk] =

q∑
k=1

F
(k)
L (Rk), (3.18)

where F
(k)
L (R) is the rational left matrix function of F (k)(λ) := (λIm − Rk)F (λ)

evaluated at R.

Finally, we recall another theorem of Tsay and Shieh [98], which is going to be

the key result for the proof of the decomposition presented in the next section. It

enables us to separate a rational λ-matrix into a sum using the right solvents and

the corresponding matrix residual.

Theorem 3.2.12 (Tsay and Shieh (1982), Theorem 4.1)

If F (λ) is a strictly proper, irreducible rational λ-matrix, where A(λ) has a complete

set of regular right solvents R1, . . . Rn, then

F (λ) =
n∑
k=1

(λIm −Rk)
−1 Res[F,Rk]. (3.19)

One can also consider repeated right solvents instead of non-recurring solvents. For

the sake of completeness we have summarized the main results for this generalization

in Appendix 3.7. The result in this chapter hold also for repeated solvents. However,

the representations are more technical and thus we forego to present the more general

result.
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3.3. Decomposition of an MCARMA process

Before we present the key results, we first state some assumptions which we need

repeatedly throughout the rest of this chapter. In order to have a properly defined

MCARMA process we make a moment assumption on the Lévy process. Furthermore,

we make two assumptions on the transition matrix A. The first assumption on A
guarantees that we have a stationary MCARMA process and the second one will not

only simplify the notations but also be a sufficient condition for the corresponding

matrix polynomial to have a complete set of regular right solvents.

Assumption A1

The Lévy process L satisfies EL(1) = 0 and E‖L(1)‖2 <∞.

Assumption A2

The eigenvalues of A in equation (2.15) and consequently of A ∈ MN(C) in (2.2),

have strictly negative real parts, where N = pm.

Assumption A3

The eigenvalues λ1, . . . , λN of A in equation (2.15) and consequently of A ∈MN(C)

in (2.2), are distinct, where the dimensions satisfies N = pm.

The following theorem is the multivariate extension to the result of Brockwell, Davis

and Yang [21], Proposition 2, where a univariate CARMA process was decomposed

into CAR(1) processes. In the work of Schlemm and Stelzer [90], Proposition 5.1),

another decomposition was considered. In the latter case, an MCARMA process was

considered and decomposed into a sum of dependent Ornstein-Uhlenbeck processes.

However, we have a matrix in the exponential in contrast to a scalar as in the results

of Schlemm and Stelzer [90].

Theorem 3.3.1

Let Y be a MCARMA(p, q) process and assume that Assumption A1-Assumption A3

hold. Then there exist a complete regular set of right solvents Rk of the autoregressive

matrix polynomial P (λ), for k = 1, . . . , p, such that the process Y can be decomposed

into a sum of dependent, complex-valued multivariate Ornstein-Uhlenbeck processes

as

Y (t) =

p∑
k=1

Yk(t), (3.20a)
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where

Yk(t) = eRk(t−s)Yk(s) +

∫ t

s

eRk(t−u) Res[F,Rk] dL(u), (3.20b)

for s, t ∈ R with s < t and the matrix fraction description F is given by F (λ) :=

P (λ)−1Q(λ).

Proof. Due to Assumption A3 we can apply Theorem 3.2.8 and hence we have a

complete set of regular right solvents of P (λ). Further, let F (λ) := P (λ)−1Q(λ) be

the rational matrix function, where P (λ) and Q(λ) are defined as in (2.5).

By Theorem 3.2.12 we have

F (λ) = P (λ)−1Q(λ) =

p∑
k=1

(λIm −Rk)
−1 Res[F,Rk]. (3.21)

Then, with Cauchy’s integral formula (3.15) we obtain

g(t) = (Im, 0m, . . . , 0m)eAtβ1[0,∞)(t)

=
1

2πi

∮
Γ

etλ(Im, 0m, . . . , 0m)(λIpm − A)−1β dλ

=
1

2πi

∮
Γ

etλP (λ)−1Q(λ)dλ

=
1

2πi

p∑
k=1

∮
Γ

etλ(λIm −Rk)
−1 Res[F,Rk]dλ

=
1

2πi

p∑
k=1

∮
Γk

etλ(λIm −Rk)
−1 Res[F,Rk]dλ

=

p∑
k=1

etRk Res[F,Rk], (3.22)

where Γk is a simple closed contour such that σ(Rk) lies in the interior of Γk and the

residuary spectrum σ(A(λ)) \ σ(Rk) lies in the exterior of Γk and Γ :=
⋃n
k=1 Γk.

Finally, we obtain by using (3.22) and Remark 3.23 in Marquardt and Stelzer [69]

that

Y (t) =

∫ t

−∞
g(t− s)dL(s)

=

p∑
k=1

∫ t

−∞
eRk(t−s) Res[F,Rk] dL(s)
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=

p∑
k=1

eRk(t−s)Yk(s) +

p∑
k=1

∫ t

s

eRk(t−u) Res[F,Rk] dL(u)

and thus we have completed the proof.

Using this decomposition we can also calculate the covariance matrix of the decom-

posed process which depends now on the residuals of the rational matrix function

F (λ). A representation for the covariance matrix of the decomposed process is

derived in the next proposition.

Proposition 3.3.2

Let Y be an MCARMA process, which satisfies Assumption A1, Assumption A2 and

Assumption A3. Then we have the covariance matrix γY (l) = Cov(Y (t+ l), Y (t)) of

the decomposed process given by

γY (l) =

p∑
i=1

p∑
j=1

e|l|Ri
∫ ∞

0

euRi Res[F,Ri]ΣL Res[F,Rj]
TeuR

T
j du. (3.23)

Proof. Due to the assumptions we can apply Theorem 3.3.1 and obtain

γY (l) = Cov(Y (t+ l), Y (t))

= Cov

(
p∑
i=1

Yi(t+ l),

p∑
j=1

Yj(t)

)

=

p∑
i,j=1

Cov

(∫ t+l

−∞
eRi(t+|l|−u) Res[F,Ri] dL(u),

∫ t

−∞
eRj(t−u) Res[F,Rj] dL(u)

)

=

p∑
i,j=1

e|l|Ri
∫ ∞

0

euRi Res[F,Ri]ΣL Res[F,Rj]
TeuR

T
j du.

Thus, we have shown the representation in the proposition.

Last but not least, we comment briefly how the decomposition looks like in the case

of repeated right solvents. In this case the notation gets more complicated due to

the repeated solvents.

Remark 3.3.3

Assume that we have in Theorem 3.3.1 a complete set of repeated solvents Rk, for

k = 1, . . . , µ, with multiplicities ν1, . . . , νµ respectively, instead of distinct eigenval-

ues. Then the stationary MCARMA process Y can be decomposed similar as in
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Theorem 3.3.1 using Theorem 3.7.8 as

Y (t) =

µ∑
i=1

νi∑
j=1

Yij(t), (3.24)

with

Yij(t) = eRi(t−s)Yij(s) +

∫ t

s

eRi(t−u)Fij dL(u), (3.25)

where Fij is the corresponding matrix residue given by (3.54).

3.4. ARMA Representation and Autocovariance

Structure of MCARMA Processes Observed in

Discrete Time

We consider now MCARMA processes observed at discrete time points. The aim of

this section is to derive VARMA representations for both cases in the subsequent

section. Hereafter, we restrict ourselves to the case of distinct eigenvalues for the sake

of simplicity in notations, namely Assumption A3 holds in the following. Besides, we

assume throughout the rest of this chapter that Assumption A1 and Assumption A2

hold. Hence, we have a causal stationary MCARMA process. Furthermore, we use

in the following the state space representation of the sampled process given as in

Lemma 2.4.6.

Let us first prove an auxiliary lemma, c.f. Brockwell and Lindner [22] for the one-

dimensional case. To distinguish the notation between the continuous-time process

and the sampled discrete-time process, we write Yn for Y (n) in the following and

accordingly Yk,n for Yk(n).

Lemma 3.4.1

For each l ∈ N0 and all complex m×m matrices C1, . . . , Cl it holds that

Y
(h)
k,n =

l∑
r=1

CrY
(h)
k,n−r +

[
ehlRk −

l∑
r=1

Cre
h(l−r)Rk

]
Y

(h)
k,n−l

+
l−1∑
r=1

[
ehrRk −

r∑
j=1

Cje
h(r−j)Rk

]
N

(h)
k,n−r , (3.26)

where N
(h)
k,n :=

∫ nh
(n−1)h

eRk(nh−u) Res[F,Rk] dL(u), where the λ-matrix F and the right
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solvents Rk are given as in Theorem 3.3.1.

Proof. We rewrite (2.18) as stated in the lemma. We show the claim by induction.

The assertion is clear for l = 0 since we always set the empty sum to zero. Assume

the equation holds for some l ∈ N. We can then rewrite Yk,n using (3.20b)

Y
(h)
k,n =

l∑
r=1

CrY
(h)
k,n−r +

[
ehlRk −

l∑
r=1

Cre
h(l−r)Rk

](
ehRkY

(h)
k,n−(l+1) +N

(h)
k,n−l

)
+

l−1∑
r=1

[
ehrRk −

r∑
j=1

Cje
h(r−j)Rk

]
N

(h)
k,n−r

=
l+1∑
r=1

CrY
(h)
k,n−r +

[
eh(l+1)Rk −

l∑
r=1

Cre
h(l+1−r)Rk − Cl+1

]
Y

(h)
k,n−(l+1)

+
l∑

r=1

[
ehrRk −

r∑
j=1

Cje
h(r−j)Rk

]
N

(h)
k,n−r,

which completes the induction step.

A polynomial P ∈ Mm(R[z]) is called monic if its leading coefficient is equal to

Im and Schur-stable if the zeros of z 7→ detP (z) all lie in the complement of the

closed unit disc. Eventually, we can obtain a VARMA representation for the sampled

version of an MCARMA process.

Theorem 3.4.2

Assume that Y is an MCARMA process as in Definition 2.3.4 satisfying Assump-

tion A1, Assumption A2 and Assumption A3 and Y (h) is its sampled version. Define

the Schur-stable polynomial Φ ∈Mm(R[z]) by

Φ(z) = (Im − ehSpz) · · · (Im − ehS1z) =: Im − Φ1z
1 − . . .− Φpz

p, (3.27)

such that ehRk , k = 1, . . . , p are right solvents of the polynomial Φ(z) and the matrices

Si are similar matrices to the right solvents Ri, for i = 1, . . . , p, which depend on the

order of the factorization.

Then there exists a monic Schur-stable polynomial Θ ∈Mm(R[z]) of degree at most

p− 1 such that

Φ(B)Y (h)
n = Θ(B)ε(h)

n , n ∈ Z, (3.28)

where B denotes the backshift operator, i.e. BjY
(h)
n = Y

(h)
n−j for every non-negative
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integer j and the white noise sequence ε
(h)
n (not necessarily i.i.d.). Thus, Y

(h)
n admits

a weak V ARMA(p, p− 1) representation.

Proof. By setting t = nh and s = (n − 1)h in (3.20b), we obtain that Y
(h)
n =∑p

k=1 Y
(h)
k,n , where Y

(h)
k,n are the sampled version of the component MCAR(1) process

of Theorem 3.3.1. They satisfy

Y
(h)
k,n = ehRkY

(h)
k,n−1 +N

(h)
k,n , (3.29)

with

N
(h)
k,n =

∫ nh

(n−1)h

eRk(nh−u) Res[F,Rk] dL(u) (3.30)

and hence we obtain (Im − ehRkB)Y
(h)
k,n = N

(h)
k,n .

For each l ∈ N0 and all complex dm×m matrices Φ1, . . . ,Φl it holds by Lemma 3.4.1

that with

Y
(h)
k,n =

p∑
r=1

ΦrY
(h)
k,n−r +

[
ehlRk −

p∑
r=1

Φre
h(p−r)Rk

]
Y

(h)
k,n−l

+

p−1∑
r=1

[
ehrRk −

r∑
j=1

Φje
h(r−j)Rk

]
N

(h)
k,n−r. (3.31)

Note that by [67], Theorem 5.2., (c.f. Theorem 3.7.7) we only have similar matrices

in the factorization instead of the right solvents itself. The fact that ehRk is a right

solvent of z 7→ Φ(z) implies that

ephRk − Φ1e
(p−1)hRk − . . .− Φp = 0.

Hence, we have with l = p and Cr = Φr for (3.31) that

Φ(B)Y
(h)
k,n =

p−1∑
r=0

[
ehrRk −

r∑
j=1

Φje
h(r−j)Rk

]
N

(h)
k,n−r.

Summation over k and rearranging leads to

Φ(B)Y (h)
n =

p∑
k=1

W
(h)
k,n−k+1 := U (h)

n , (3.32)

where the i.i.d. sequences (W
(h)
k,n )n∈Z, k ∈ {1, . . . , p}, are defined analogous as above
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by

W
(h)
k,n :=

∫ nh

(n−1)h

p−1∑
r=0

[
ehrRk −

r∑
j=1

Φje
h(r−j)Rk

]
eRk(nh−u) Res[F,Rk]dL(u). (3.33)

By a multivariate generalization of Brockwell and Davis [20], Proposition 3.2.1, there

exists a monic Schur-stable (due to Assumption A2) polynomial

Θ(z) = Im + Θ1z + . . .+ Θp−1z
N−1

and a multivariate white-noise process (ε
(h)
n ) ∼WN(0,Σ), n ∈ Z and Θi ∈Mm(R),

i = 1, . . . , p, such that (3.28) holds.

Next, we derive the covariance matrix of the series (U
(h)
n )n∈N, which is defined in the

proof of the last theorem.

Proposition 3.4.3

Let U
(h)
n be the multivariate time series defined in (3.32). Then we obtain for the

covariance matrix γU(h) at lag l = −(p− 1), . . . , p− 1 that

γU(h)(l) =

p−|l|∑
i=1

 p∑
ν=1

p∑
µ=1

(
eh(i+m−1)Rν −

i+|l|−1∑
j=1

Φje
h(i+|l|−j−1)Rν

)

· Σ(h)
ν,µ

(
eh(i−1)Rµ −

i−1∑
j=1

Φje
h(i−j−1)Rµ

)T
 , (3.34)

and γU(h)(l) = 0 for |l| ≥ p, where

Σ(h)
ν,µ =

∫ h

0

eRν(h−u) Res[F,Rν ] ΣL Res[F,Rµ]TeR
T
µ(h−u) du. (3.35)

Proof. Let l ∈ {−(p− 1), . . . , p− 1}, then

γU(h)(l) = Cov
(
U

(h)
n+|l|, U

(h)
n

)
= Cov

(
W

(h)
1,n+|l| + . . .+W

(h)
p,n+|l|−p+1,W

(h)
1,n + . . .+W

(h)
p,n−p+1

)
=

p−|l|∑
i=1

Cov
(
W

(h)
i+|l|,n−i+1,W

(h)
i,n−i+1

)
(3.33)
=

p−|l|∑
i=1

 p∑
ν=1

p∑
µ=1

(
eh(i+|l|−1)Rν −

i+|l|−1∑
j=1

Φje
h(i+|l|−j−1)Rν

)
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Cov

(∫ (n−i+1)h

(n−i)h
eRν [(n−i+1)h−u] Res[F,Rν ] dL(u),

∫ (n−i+1)h

(n−i)h
eRµ[(n−i+1)h−u] Res[F,Rµ] dL(u)

)
(

eh(i−1)Rµ −
i−1∑
j=1

Φje
h(i−j−1)Rµ

)T
 ,

where

Σ(h)
ν,µ := Cov

(
N

(h)
ν,n−i+1, N

(h)
µ,n−i+1

)
= Cov

(∫ (n−i+1)h

(n−i)h
eRν [(n−i+1)h−u] Res[F,Rν ] dL(u),

∫ (n−i+1)h

(n−i)h
eRµ[(n−i+1)h−u] Res[F,Rµ] dL(u)

)

=

∫ h

0

eRν(h−u) Res[F,Rν ] ΣL Res[F,Rµ]TeR
T
µ(h−u) du

and finally the assertion follows.

Proposition 3.4.4

Let U
(h)
n be the multivariate time series defined in (3.32). An alternative representa-

tion for the covariance matrix γU(h) is given by

γU(h)(l) =

p−|l|−1∑
k=0

ΘkΣεΘ
T
k+|l|, for |l| ≤ p− 1 (3.36a)

and γU(h)(l) = 0, for |l| > p− 1, (3.36b)

where the matrix coefficient Θ0 = Im and Σε is the covariance matrix of the white

noise sequence ε
(h)
n from equation (3.28).

Proof. With the moving average representation found in Theorem 3.4.2, we obtain

directly the alternative representation for the covariance matrix γU(h) at lag l =

−(p− 1), . . . , p− 1.

Note that comparing the two representations of the autocovariance matrix yields

p−|l|−1∑
k=0

ΘkΣεΘ
T
k+|l| =

p−|l|∑
i=1

 p∑
ν=1

p∑
µ=1

(
eh(i+m−1)Rν −

i+|l|−1∑
j=1

Φje
h(i+|l|−j−1)Rν

)
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· Σ(h)
ν,µ

(
eh(i−1)Rµ −

i−1∑
j=1

Φje
h(i−j−1)Rµ

)T
 .

3.5. ARMA Representation and Autocovariance

Structure of the Integrated Sequence

Now that we have derived the (weak) VARMA representation of a sampled stationary

MCARMA process let us turn to the integrated sequence. Hence, we obtain similar

results for the integrated sequence using again the decomposition from Section 3.2.

Assume that we have in this section a multivariate integrated CARMA (MICARMA)

process given as in Definition 2.5.2. In this context, we consider the integrated

sequence, that is an MICARMA process sampled at discrete time points. Its definition

is the same as in Brockwell and Lindner [23].

Definition 3.5.1 (Integrated Sequence)

The integrated sequence I(h) := (I
(h)
n )n∈N is defined as

I(h)
n := I(1)(nh)− I(1)((n− 1)h) =

∫ nh

(n−1)h

Y (u) du, n ∈ Z, (3.37)

where Y is a stationary multivariate CARMA process satisfying Assumption A1,

Assumption A2 and Assumption A3.

The integrated sequence is thus simply an integrated MCARMA process sampled at

integer time points. The covariance matrix of the integrated sequence is given in the

following proposition.

Proposition 3.5.2

Let I(h) be the integrated sequence as defined in Definition 3.5.1. The covariance

matrix of (I
(h)
n )n∈N is given by

γI(h)(l) =

p∑
i=1

p∑
j=1

h2elRi
∫ ∞

0

eyRi Res[F,Ri]ΣL Res[F,Rj]
TeyR

T
j dy. (3.38)

Proof. This follows immediately from Proposition 3.3.2 and Fubini’s Theorem. We
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justify now the use of Fubini’s Theorem. By the Hölder inequality we have

E
[
‖Yi(t+ l)Yj(t)

T‖
]
≤
(
E‖Yi(t+ l)‖2

) 1
2
(
E‖Yj(t)‖2

) 1
2

≤
(∫ ∞

0

tr
(

eyRi Res[F,Ri]ΣL Res[F,Ri]
TeyR

T
i

)
dy

) 1
2

·
(∫ ∞

0

tr
(

eyRj Res[F,Rj]ΣL Res[F,Rj]
TeyR

T
j

)
dy

) 1
2

≤ C ·
(∫ ∞

0

∥∥eyRi
∥∥2

dy

) 1
2

+ C ·
(∫ ∞

0

∥∥eyRj
∥∥2

dy

) 1
2

≤ K ·
∫ ∞

0

e−2·y·k dy = K · 1

2k

for some constants C,K, k > 0. Note that Ri as well as Rj have eigenvalues with

strictly negative real part and hence the last inequality holds. Lastly, we have∫ (l+1)h

lh

∫ h

0

K

2y
dudv =

K · h2

2 · k
<∞.

Now we use Proposition 3.3.2 and Fubini’s Theorem and obtain

γI(h)(l) =

∫ (l+1)h

lh

∫ h

0

Cov(Y (u), Y (v)) du dv

=

∫ (l+1)h

lh

∫ h

0

Cov

(
p∑
i=1

Yi(t+ l),

p∑
j=1

Yj(t)

)
du dv

=

p∑
i=1

p∑
j=1

∫ (l+1)h

lh

∫ h

0

elRi
∫ ∞

0

eyRi Res[F,Ri]ΣL Res[F,Rj]
TeyR

T
j dy du dv

which completes the proof.

Analogously to Theorem 3.4.2 we proceed in the same manner with the integrated

sequence. First, we derive that the integrated sequence is an autoregressive process

with p-dependent noise.

Theorem 3.5.3

If Y is an MCARMA process satisfying Assumption A1, Assumption A2 and As-

sumption A3, the integrated sequence (I
(h)
n )n∈N defined in (3.37) is an autoregressive

process driven by a p-dependent noise sequence Ũ . It satisfies the difference equation

Φ(B)I(h)
n = Ũn :=

p∑
k=1

∫ 0

−h
W

(h)
k,n−k+1(s) ds, n ∈ Z, (3.39)
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where Φ(z) is given by (3.27) and W
(h)
k,n (s) given by

W
(h)
k,n (s) :=

p−1∑
r=0

∫ nh+s

(n−1)h+s

(
ehrRi −

r∑
j=1

Φje
h(r−j)Ri

)
eRi(nh+s−u) Res[F,Rk] dL(u).

(3.40)

Proof. It follows directly from (3.32) that every stationary MCARMA process Y

satisfies the difference equation

Φ(B)Y (nh+ s) = U (h)
n (s)

for any fixed s ∈ [0, h] and for all n ∈ Z, where

U (h)
n (s) :=

p∑
i=1

W
(h)
k,n−k+1(s).

Hence, it follows with I
(h)
n =

∫ 0

−h Y (nh+ s) ds that the representation (3.39) is valid.

The summands on the right-hand side of (3.39) are not independent but they depend

only on increments of the Lévy process L over the interval [(n− p− 1)h, nh] and

hence the sequence (Ũn)n∈Z is p-dependent.

In order to obtain a (weak) VARMA representation it remains to show that the

p-dependent noise sequence from the previous theorem can be represented as a moving

average process.

Corollary 3.5.4

If Assumption A1 holds true, the sequence (Ũn)n∈Z is a p-dependent stationary

sequence with mean zero and finite variance. It follows that Ũn can be expressed as a

moving average process

Ũn = EŨ0 + εn + Θ1εn−1 + . . .+ Θpεn−p, (3.41)

with coefficients Θi ∈Mm(R[z]). The process (εn)n∈Z is a weak white noise sequence

with zero mean.

Moreover, the (moving average) polynomial Θ(z) := Im + Θ1z + . . .+ Θpz
p has no

zeros in the interior of the unit disc. Thus, (I
(h)
n )n∈Z is a weak VARMA(p,q) process

with q = p or q < p if Θp = 0m.
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Proof. Again by a multivariate generalization of Brockwell and Davis [20], Proposition

3.2.1, there exist coefficients Θi ∈Mm(R), i = 1, . . . , p and a multivariate white-noise

sequence (εn)n∈Z, such that (3.41) holds.

Note that if the driving Lévy process has mean E[L(1)] = µL, the mean of the

MCARMA process Y is given by

E[Y (t)] = −A−1
p BqµL.

Hence, for the integrated process the mean is given by

E[I(h)
n ] =

∫ nh

(n−1)h

E[Y (t)] dt = −hA−1
p BqµL. (3.42)

Once more, we take a closer look on the covariance matrices.

Proposition 3.5.5

Let Ũn be the multivariate time series defined in (3.39). Then we obtain for the

covariance matrix γŨ at lag l = −(p− 1), . . . , p− 1

γŨ(l) =

p−|l|∑
i=1

∫ 0

−h

∫ 0

−h

 p∑
ν=1

p∑
µ=1

(
eh(i+|l|−1)Rν −

i+|l|−1∑
j=1

Φje
h(i+|l|−j−1)Rν

)

ΣN(h)(s)

(
eh(i−1)Rµ −

i−1∑
j=1

Φje
h(i−j−1)Rµ

)T
]

ds dv, (3.43)

where Σ
(h)
µ,ν(s, r) := Cov

(
N

(h)
ν,n−i+1(s), N

(h)
µ,n−i+1(r)

)
.

Proof. We obtain

γŨ(l) = Cov
(
Ũn+|l|, Ũn

)
= Cov

(∫ 0

−h
W

(h)
1,n+|l|(s) ds+ . . .+

∫ 0

−h
W

(h)
p,n+|l|−p+1(s) ds,∫ 0

−h
W

(h)
1,n (r) dr + . . .+

∫ 0

−h
W

(h)
p,n−p+1(r) dr

)
=

p−|l|∑
i=1

∫ 0

−h

∫ 0

−h
Cov

(
W

(h)
i+|l|,n−i+1(s),W

(h)
i,n−i+1(r)

)
ds dr

(3.40)
=

p−|l|∑
i=1

∫ 0

−h

∫ 0

−h

 p∑
µ,ν=1

eh(i+|l|−1)Rν −
i+|l|−1∑
j=1

Φje
h(i+|l|−j−1)Rν
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· Cov

(∫ (n−i+1)h+s

(n−i)h+s

eRν [(n−i+1)h+s−u] Res[F,Rν ] dL(u),

∫ (n−i+1)h+r

(n−i)h+r

eRµ[(n−i+1)h+r−u] Res[F,Rµ] dL(u)

)

·

(
eh(i−1)Rµ −

i−1∑
j=1

Φje
h(i−j−1)Rµ

)T
 ds dr,

where Σ(h)
µ,ν(s, r) := Cov

(∫ (n−i+1)h+s

(n−i)h+s

eRν [(n−i+1)h+s−u] Res[F,Rν ] dL(u),

∫ (n−i+1)h+r

(n−i)h+r

eRµ[(n−i+1)h+r−u] Res[F,Rµ] dL(u)

)
.

The order of integration can be exchanged due to Fubini’s theorem.

Last but not least we consider the autocovariance structure of the p-dependent

stationary sequence Ũ .

Proposition 3.5.6

Let (Ũn)n∈N be the multivariate time series defined in (3.39) and the matrix coefficients

Φi for i = 0, . . . , p are defined as in (3.27). Then the autocovariance function of the

process Ũ is given by

γŨ(l) =


∑p

i=0

∑p
j=0 ΦiγI(h)(|l| − j + i)ΦT

j , if |l| ∈ {0, . . . , p},

0, otherwise.
(3.44)

Proof. This follows immediately from (3.39) and Fubini’s theorem.

3.6. Conclusion

Often continuous-time models are only observed at discrete time points. Hence,

discretised versions of the continuous time model are of great interest. We have

derived in this chapter a decomposition of stationary Lévy driven MCARMA(p, q)

processes into the sum of dependent MCAR processes, namely Y (t) =
∑p

k=1 Yk(t).

This decomposition is also the key result, which enabled us to derive a weak VARMA

representation of order (p, p− 1) of a sampled stationary MCARMA(p, q) process.

We considered the stationary MCARMA process Y observed at equidistant time

points.
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We also derived a weak VARMA representation of order (p, p) for the integrated

sequence
∫ nh

(n−1)h
Y (t) dt, which is for example of interest for stochastic volatility

modelling. Moreover, we investigated the autocovariance structure of these discretised

models. These results could not only be useful in the estimation procedure, but also

in finding a criterion for strict stationarity as in the univariate case.

3.7. Appendix: Partial Fraction Expansion for Repeated

Solvents

We have recalled a partial fraction expansion without repeating right solvents. How-

ever, a right solvent could also appear more often than once. This chapter presents

the extension to these cases. For this purpose, we use a partial fraction expansion for

repeated right solvents. Results on factorization of matrix polynomials with repeated

solvents can be found for example in Maroulas [67].

Definition 3.7.1

For a matrix polynomial A(λ) of degree n and order m we define

A(k)(λ) :=
dk

dλk
A(λ).

A matrix R is defined to be a right solvent with multiplicity ν if and only if it

is a common solvent of the equations

A(R) = 0m, A(1)(R) = 0m, . . . , A(ν−1)(R) = 0m (3.45)

with A(ν)(R) 6= 0m. Thus we can write for the matrix polynomial A(λ)

A(λ) = Aν(λ)(λIm −R)ν . (3.46)

Another special matrix form is the so-called Vandermonde matrix, which is closely

related to the companion matrix and as a consequence with matrix polynomials.

Definition 3.7.2

Given m×m matrices S1, . . . , Sn, the block Vandermonde matrix is defined by

V (S1, . . . , Sn) =


Im Im . . . Im

S1 S2 . . . Sn
...

...
...

Sn−1
1 Sn−1

2 . . . Sn−1
n

 ∈Mmn(C). (3.47)
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The Vandermonde matrix is extended in the next definition, which is necessary in

order to characterize criteria for a factorization with repeated right solvents.

Definition 3.7.3

Suppose R1, . . . , Rq are right solvents of the matrix polynomial A(λ) with multiplicities

ν1, . . . , νq respectively. We define an mn×m(ν1 + . . .+ νq)-dimensional confluent

Vandermonde matrix W (R1, . . . , Rq) = W by W = [W1, . . . ,Wq], where

Wk =



Im 0m 0m . . . 0m

Rk Im 0m ·

R2
k 2Rk Im

. . . ·

R3
k 3R2

k 3Rk
. . . 0m

...
...

... Im
...

...
...

...

Rn−1
k (n− 1)Rn−2

k

(
n−1

2

)
Rn−3
k . . .

(
n−1
νk−1

)
Rn−νkk


. (3.48)

Theorem 3.7.4 (Maroulas (1985), Theorem 2.1)

If the confluent Vandermonde matrix W as defined in (3.48) is left invertible, then

there exists a matrix polynomial A(λ) having roots R1, . . . , Rq with multiplicities

ν1, . . . , νq respectively.

The invertibility of the confluent Vandermonde matrix can be guaranteed if the

eigenvalues are located in a certain way. A sufficient criterion is given in the next

theorem.

Theorem 3.7.5 (Maroulas (1985), Theorem 3.4)

Let R1, . . . , Rq solvents of a matrix polynomial A(λ), of multiplicities ν1, . . . , νq

respectively. The matrix W is invertible if and only if

σ(A) =

q⋃
j=1

σ(Rj)

and

σ(Rj) ∩ σ(Ri) = ∅

for j, i = 1, . . . , q, j 6= i.

This theorem gives an intuitive interpretation, when we have a complete set of right

solvents with multiplicities. The eigenvalues corresponding to a right solvent are not
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allowed to belong to another right solvent, i.e. the spectra of right solvents must have

an empty intersection. Additionally, the union of the spectra of the right solvents

must be the spectra of the original matrix A.

A necessary and sufficient condition to have a root R of multiplicity ν is given by

the following theorem.

Theorem 3.7.6 (Maroulas (1985), Theorem 4.1)

The monic polynomial A(λ) has a right divisor (λIm − R)ν if and only if there exists

an invariant subspace M of the companion matrix AC of A(λ) of the form

M = im(M0)⊕ im(M1)⊕ . . .⊕ im(Mν−1), (3.49)

where

M0 =
(

0m · · · 0m Im
(
k+1
k

)
RT · · ·

(
n−1
k

)
(Rn−k−1)T

)T
.

The set of solvents R1, . . . , Rq is called complete for A(λ) if and only if ν1+. . .+νq = n,

where n is the degree of A(λ). This means the sum of the multiplicities must add up

to the degree of the matrix polynomial.

Theorem 3.7.7 (Maroulas (1985), Theorem 5.2.)

The set of solvents R1, . . . , Rq, (1 ≤ q < n) form a complete set of solvents of A(λ)

with ν1 + . . .+ νq = n. If the matrices W (R1, . . . , Rk), k = 2, 3, . . . q are invertible,

then

A(λ) = Tq(λ) · · ·T2(λ)(λIm −R1)ν , (3.50)

where

Tk(λ) = (λIm − Zk,νk) · · · (λIm − Zk,2)(λIm − Zk,1), k = 2, . . . , q (3.51)

and the matrices Zk,j are similar to Rk for j = 1, . . . , νk.

The block partial fraction expansion with repeated block poles is given in Shieh,

Chang and McInnis [93] or Levya-Ramos [61]. The next theorem is the analogue

version of Theorem 3.2.12. It gives the partial fraction expansion with respect to

repeated right solvents.

Theorem 3.7.8 (Shieh et. al. (1986), Theorem)

Let R1, . . . , Rµ be a complete set of right solvents of the nth degree mth order monic

matrix polynomial A(λ), where µ is the number of distinct solvents and νi is the

multiplicity of Ri, with n =
∑µ

i=1 νi. The block partial fraction expansion of the
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irreducible strictly proper rational left λ-matrix is given by

F (λ) = A(λ)−1B(λ) =

µ∑
i=1

νi∑
j=1

(λIm −Ri)
−jFi,j, (3.52)

where Fi,j ∈Mm,m(C) are the matrix residues associated with Ri.

A formula for the matrix residue is given in Section 6 of Levya-Ramos [61] (c.f.

Equation (6.13)). For a complete set of distinct solvents we have


Res[F,R1]

Res[F,R2]
...

Res[F,Rn]

 = V (R1, . . . , Rn)−1



Im 0m . . . 0m

A1 Im
. . .

...
...

. . .
. . .

. . .
...

An−2

. . . Im 0m

An−1 An−2 . . . A1 Im



−1
B0

B2

...

Bn−1


(3.53)

and for repeated solvents the formula changes to

F1,1

...

F1,ν1

...

Fµ,1
...

Fµ,νµ


= W (R1, . . . , Rµ)−1



Im 0m . . . 0m

A1 Im
. . .

...
...

. . .
. . .

. . .
...

An−2

. . . Im 0m

An−1 An−2 . . . A1 Im



−1
B0

B2

...

Bn−1

 . (3.54)





CHAPTER 4

Characterization of Cointegrated

MCARMA Processes

4.1. Introduction

Many time series do not behave in a stationary way, they rather follow a stochastic

trend. Such time series are obviously non-stationary and fluctuate around a long-run

equilibrium. It was Clive Granger, who showed that statistical inference of such time

series with the classical stationary methodology can lead to inadequate results. He

coined the term cointegration for time series showing such a behavior (c.f. [42]).

The class of cointegrated time series is a subclass of non-stationary time series with

the characterizing property that some linear combinations of a multivariate time

series can be stationary. Examples of cointegrated time series include e.g. exchange

rates or the connection between short and long-term interest rates. The seminal works

by Granger in 1981 [42] and Engle and Granger in 1987 [33] lay the foundation for the

field of cointegration analysis. Robert F. Engle and Clive Granger were awarded with

the Nobel prize in 2003. Clive Granger was awarded for his discovery of the concept

of cointegration. The official motivation of the committee was for his “methods

of analyzing economic time series with common trends (cointegration)“. Robert

Engle was awarded for his developments in the field of autoregressive conditional

heteroscedasticity models.

Also worthy of note is the work of Johansen [53] on discrete-time cointegrated
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vector autoregressive processes. Johansen presented in 1991 a likelihood approach to

such cointegrated VAR models and developed a cointegration rank test in order to

determine the number of cointegration relations in a model. His textbook [54] about

cointegration became the standard literature in this field.

Cointegration in continuous time started being of interest in the early 1990s. In 1991

Phillips [77] considered spectral regression methods for error correction models and

cointegrated systems in special triangular form in the continuous-time framework. In

this work, Phillips regarded stochastic differential equations driven by a differentiable

stationary process. The connection between cointegrated discrete-time models and

continuous-time models were also analyzed by Chambers [25], where discrete-time

representation of cointegrated continuous-time models were considered.

The special case of a p-dimensional Gaussian CAR(1, 0) process was considered in

Kessler and Rahbek [57]. Comte [27] derived a characterization of integrated and

cointegrated processes in continuous-time and particularly derived an error correction

form and characterization of cointegration for CAR(p) processes. We extend this

characterization of cointegration to general MCARMA(p, q) processes in Section 4.2.

The cointegrated model of this chapter includes the models of Comte [27] and also

the model of Phillips [77].

We briefly recall in Section 4.2 the concept of cointegration in discrete-time for

vector autoregressive moving average processes. Then we utilize the definition of an

integrated process of Comte [27], which does not necessarily need differentiability. In

this definition, a continuous-time process is integrated if it has stationary increments

but is itself non-stationary. Moreover, we characterize cointegration via its MCARMA

form with the autoregressive polynomial P (z) and the moving average polynomial

Q(z). We see that the property of cointegration is related to certain matrix coefficients

of the autoregressive polynomial P (z).

These results are very helpful for understanding the concept of cointegration for

MCARMA processes. However, it is rather difficult to derive properties for general

cointegrated MCARMA processes using the MCARMA representation. For this

reason, we use continuous-time cointegrated state space models in Section 4.3. The

continuous-time state space models have the advantage that we can derive an utterly

helpful representation for the cointegrated model, which decouples the non-stationary

and stationary part into subsystems. Thus, we can interpret the cointegrated process

as a sum of a Lévy process and a stationary MCARMA process. We investigate the

probabilistic properties of this model. Several of the properties can be derived due

to the decoupled form.
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After the continuous-time model, we consider the discrete-time sampled version of

this process. The sampled process is observed at equidistant time points and has

therefore an i.i.d. noise. The process has an analogue representation and consists

thus of the sum of a random walk and a stationary process. We investigate the

probabilistic properties of the sampled process as well.

In order to obtain an error correction form of the sampled process, we apply a linear

filter to the model. We obtain with the help of the so-called Kalman filter the linear

innovations, which is a white noise sequence. The name Kalman filter dates back to

Rudolf E. Kalman, who developed a two-step algorithm, which produces estimates of

unknown variables (see Kalman [56]). The Kalman filter is widely used in engineering

sciences for state estimations of linear systems. In Section 4.4 the results of the

Kalman filter are summarized and we obtain a error correction form with respect to

the linear innovations.

It is not obvious how to obtain an error correction form for the sampled process.

With the help of the linear innovations ε(h) we obtain the representation ε
(h)
n =

ΠY
(h)
n−1 + k(B)∆Y

(h)
n , where k(z) is a linear filter. This error correction form has

resemblance to the original error correction form presented by Engle and Granger

[33] for VAR models. The difference to the classical result is that we have an infinite

order linear filter k(z). We show that the cointegration information is contained

in parts of the filter, which is helpful for estimation procedure later on and we are

able to calculate the likelihood function with the help of the linear innovations. The

applicability of the Kalman filter to state space models with unit roots is guaranteed

by the considerations in Appendix 4.6.

4.2. Cointegrated Lévy Driven MCARMA processes

Before we start with cointegrated multivariate CARMA processes, we briefly consider

their discrete time analogue, the vector ARMA (VARMA) processes. We recall

the definition of cointegration for such processes. For more details on cointegrated

processes in discrete-time see e.g. Johansen [54], Lütkepohl [62] or Reinsel [83].

The general form of an m-dimensional vector autoregressive moving average process

(Yn)n∈N is given by the combination of a pth-order vector autoregressive (VAR) process

and a qth-order moving average (MA) process

Yn − Φ1Yn−1 − . . .− ΦpYn−p = εn −Θ1εn−1 − . . .−Θqεn−q, n ∈ N
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or briefly Φ(B)Yn = Θ(B)εn, for n ∈ Z. The noise sequence (εn)n∈N is an m-

dimensional zero mean white noise with nonsingular covariance matrix Σε. The

matrix coefficients are given by Φi,Θj ∈ Mm(R), i = 1, . . . , p, j = 0, . . . q, where

the autoregressive polynomial is given by Φ(B) := Im − Φ1B − . . .− ΦpB
p and the

moving average polynomial by Θ(B) := Im −Θ1B − . . .−ΘqB
q. Let B denote the

backshift operator. The process Y is called a vector autoregressive moving average

process of order (p, q) (VARMA(p, q)).

The VARMA(p, q) process Y is invertible if all roots of det(Θ(z)) = 0 are greater

than one in absolute value, and stationary if all roots of det(Φ(z)) = 0 are greater

than one in absolute value. In the case of stationarity, we have a moving average

representation of Y given by Yn = Ψ(B)εn, where Ψ(z) = Φ(z)−1Θ(z) =
∑∞

i=0 Ψiz
i.

In this case, the covariance matrices are given by Γ(l) =
∑∞

i=0 ΨiΣεΨ
T
i+l.

In order to have integrated and cointegrated processes the roots of det(Φ(z)) = 0

must be greater or equal to one. Thus, we have no longer a stationary time series.

Definition 4.2.1

If the process (Yn)n∈N is non-stationary but its first difference ((1 − B)Yn)n∈N is

stationary, we call (Yn)n∈N integrated of order one. If further there exists a

vector β such that βTY is stationary, we say the process Y is cointegrated with

cointegration vector β.

Assume that the autoregressive polynomial of the process Y has c < m unit roots,

then the matrix Φ(1) has rank r = m − c and r is the cointegration rank. This

implies that we have r linearly independent vectors βi such that βTY is stationary,

where the matrix β consists of the vectors βi for i = 1, . . . , r.

After this brief excursion to cointegration in discrete time, we now define cointegration

in continuous-time. Before we are able to do this, we need first an integrated time

series. Instead of the approach in Section 2.5, where the stationary process is

”
integrated“ (c.f. Definition 2.5.1), we approach cointegration differently by starting

with a non-stationary process. An integrated d-dimensional MCARMA process

in the sense of Definition 2.5.1 cannot be cointegrated since zero is an eigenvalue

with multiplicity d and hence the cointegration rank is zero. However, the different

definition we use in this chapter is flexible in the multiplicity of the eigenvalue zero

and thus the cointegration rank can be modeled freely. The following alternative

definition of integrated CARMA processes can be found in Comte [27].

Definition 4.2.2

A process (Y (t))t≥0 with no deterministic component, which is non-stationary but
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has stationary increments is said to be continuously integrated of order one,

denoted by Y ∼ Ic(1). Further, a process Y is integrated of order b, denoted by

Y ∼ Ic(b) if its increments are continuously integrated of order b− 1.

Similarly as in the discrete-time setting, cointegration is defined by the existence of

stationary linear combinations of the integrated components.

Definition 4.2.3

Let (Y (t))t≥0 be an integrated MCARMA process of order 1, i.e. Y (t) ∼ Ic(1). We

call Y continuously cointegrated with cointegration vector β 6= 0, β ∈ Rd, if the

linear combination (βTY (t))t≥0 is stationary.

Denote by Y ∼ CI(1, 1) that Y is cointegrated of order one. The cointegration

rank is the number of linearly independent cointegrating relations and the space

spanned by all linear independent cointegration vectors is the cointegration space.

Higher orders of cointegration are then defined in the obvious way given in the next

definition.

Definition 4.2.4

The Ic(b) process Y is called continuously cointegrated of order (b, b) (CI(b, b))

for b ∈ {1, . . . , d − 1}, b ∈ {1, . . . , b} with cointegration vectors β if there exists a

non-zero vector β ∈ Rd such that βTY ∼ I(b− b), and there exists no non-zero vector

β′ ∈ Rd such that β′TY ∼ I(b− b′) with b′ > b.

Let us recall some basic results from Comte [27] on integrated and cointegrated

processes, respectively. First, we see that the definition of cointegration using

stationary increments includes the case of differentiation, which is the obvious analog

of the first differences in discrete time.

Proposition 4.2.5 (Comte (1999), Proposition 1)

Let (Y (t))t≥0 be a process with finite second moments and its first-order mean square

derivative DY exists. Then Y (t) ∼ Ic(1) if and only if Y is non-stationary and DY

is stationary.

Furthermore, the integration and cointegration property of the continuous-time model

directly transfers to its sampled version.

Proposition 4.2.6 (Comte (1999), Proposition 3)

Let the continuous-time process Y be continuously integrated of order b, b ∈ N,

then the discrete-time process (Y
(h)
n )n∈N is integrated of order b (in the sense of

Definition 4.2.3).
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Let Y ∼ CI(b, b), for b ≥ b and b, b ∈ N, then the discrete-time process (Y
(h)
n )n∈N is

cointegrated of order (b, b) (in the sense of Definition 4.2.3).

Remark 4.2.7

Theorem 3.4.2 can not be adapted to integrated processes in the sense of Defini-

tion 4.2.2, due to the non-stationarity of Y . Furthermore, an indirect approach is

also not possible, because Y is a non-Markovian process. Hence, the information of

the initial condition of Y might be lost, when we apply Theorem 3.4.2 to DY and

then integrate DY again.

As from now we concentrate on the case CI(1, 1), i.e. on continuously cointegrated

processes of order one. The differentiation operator should be understood as the

mean square differential operator. Recall that an MCARMA(p,q) process is p− q− 1

times differentiable.

The following result is an extension of a result by Comte [27] for CAR(p) processes.

Proposition 4.2.8

Cointegration arises for a d-dimensional MCARMA(p, q) process Y if and only if

P (0) = Ap is singular, i.e. the corresponding companion matrix is not invertible.

The error correction form in continuous time is given by

P ∗(D)DY (t) =− ApY (t) +Q(D)DL(t), (4.1)

where the polynomial P ∗ is given by

P ∗(z) :=
P (z)− Ap

z
. (4.2)

Proof. The crucial role of the matrix coefficient Ap is an immediate consequence of

results known about the companion form, see Definition 3.2.4. The error correction

form is then derived straightforwardly.

The following result characterizes cointegration with respect to the matrix coefficients,

where the coefficients Ap and Ap−1 play a special role. The following result is an

extension of Proposition 7 in Comte [27] to MCARMA processes.

However, we do not (yet) derive a moving average representation as in Comte [27].

Their idea of the proof cannot be extended to general MCARMA processes. On the

one hand, we have the problem that the matrix multiplication is not commutative

and hence we cannot use the same assumptions. On the other hand, the proof would

end up with a process which is not an MCARMA process anymore.
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Nonetheless, we get a characterization of cointegration. Denote by A⊥ ∈Md,r(R) the

full rank matrix satisfying A⊥TA⊥ = Ir and ATA⊥ = 0r×(d−r), this means A⊥ is the

orthogonal complement of A.

Theorem 4.2.9

Let Y be a solution of the differential equation

P (D)Y (t) = Q(D)DL(t), t ≥ 0, (4.3)

with autoregressive polynomial

P (z) = Imz
p + A1z

p−1 + . . .+ Ap,

and moving average polynomial

Q(z) = B0z
q +B1z

q−1 + . . .+Bq,

with Y (0) = 0 as the initial condition. Let the following assumptions hold:

B1: If detP (z) = 0 then either <(z) < 0 or z = 0.

B2: rank(Ap) = rank(P (0)) = r < d and Ap = αβT, where the adjustment matrix

α ∈Md,r(R) and cointegration matrix β ∈Md,r(R) have full rank r.

B3: P ′(0) = P ∗(0) = Ap−1 is such that the matrix α⊥TAp−1β
⊥ is of dimension

(d− r)× (d− r) with full rank (d− r).

Then we have that

i) the process DY is stationary,

ii) the process βTY is stationary,

and thus the Lévy driven MCARMA process Y is cointegrated of order one.

Proof. By multiplying (4.1) with α and α⊥T we obtain with Ap = αβT and α⊥Tα =

0(d−r)×r the following equations

αTQ(D)DL(t) = −αTαβTY (t) + αTP ∗(D)DY (t),

α⊥TQ(D)DL(t) = α⊥TP ∗(D)DY (t). (4.4)

Since the system (4.4) is not invertible in Y and DY , we define new processes

Z(t) := (βTβ)−1βTY (t) and V (t) := (β⊥Tβ⊥)−1β⊥TDY (t) for t ≥ 0



60 Chapter 4. Characterization of Cointegrated MCARMA Processes

and obtain thereby invertibility. The matrix R := (β, β⊥) ∈ Md,d(R) of rank d

satisfies

R(RTR)−1RT = β(βTβ)−1βT + β⊥(β⊥Tβ⊥)−1β⊥T = Id (4.5)

since it is the sum of the projection matrices on the range and the null space of β.

Moreover, for β̄ := β(βTβ)−1 ∈ Md,r(R) and β̄⊥ := β⊥(β⊥Tβ⊥)−1 ∈ Md,d−r(R) we

have due to (4.5) that ββ̄T + β⊥β̄⊥T = Id holds. Furthermore, we have

DY (t) = (ββ̄T + β⊥β̄⊥T)DY (t) = βDZ(t) + β⊥V (t). (4.6)

Rewriting system (4.4) with the newly defined variables yields

αTQ(D)DL(t) = −αTα(βTβ)Z(t) + αTP ∗(D)βDZ(t) + αTP ∗(D)β⊥V (t),

α⊥TQ(D)DL(t) = α⊥TP ∗(D)βDZ(t) + α⊥TP ∗(D)β⊥V (t).

Rearranging the last expressions leads to

P̃ (D)(Z(t)T, V (t)T)T = (α, α⊥)TQ(D)DL(t), (4.7)

where the matrix polynomial P̃ is given by

P̃ (z) :=

(
αTα(βTβ) + αTP ∗(z)βz αTP ∗(z)β⊥

α⊥TP ∗(z)βz α⊥TP ∗(z)β⊥

)
. (4.8)

By assumption B2 and B3 we have

det(P̃ (0)) = det

(
αTα(βTβ) αTP ∗(0)β⊥

0(d−r)×r α⊥TP ∗(0)β⊥

)
= det(αTα) det(βTβ) det(α⊥TP ∗(0)β⊥) 6= 0,

where the matrices in the last line all have full rank and consequently a non-zero

determinant. Then for z 6= 0, we can see due to (4.2) and (4.8) that P̃ (z) =

(α, α⊥)TP (z)(β, β⊥/z) and thus

det(P̃ (z)) =
1

zd−r
det(α, α⊥)T det(P (z)) det(β, β⊥) 6= 0.

Thus P̃ has the same roots as P , except the null ones and the non-zero roots

are assumed to have negative real part due to B1. Hence, the process (Z, V ) is
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asymptotically (exponentially) stable and has a stationary solution. The process

DY is also stationary, as a linear combination of stationary processes DY (t) =

βDZ(t) + β⊥V (t), which finishes the proof of i).

Besides βTY (t) = (βTβ)Z(t) holds and therefore stationarity of βTY (t) follows.

Consequently, we have shown ii).

Thus, the process is continuously cointegrated and this completes the proof.

We make now some remarks on the last result and its implications on cointegration

for MCARMA models.

Remark 4.2.10

The assumption in the Theorem 4.2.9 have the following relevance:

� Assumption B1 guarantees that the process is non-stationary.

� Assumption B2 guarantees that there exist stationary linear combinations.

� Assumption B3 guarantees that the process is only integrated of order one and

not of higher order.

Remark 4.2.11

It is not possible to adopt the proof of Comte [27], Proposition 7, to obtain a

moving average representation for the cointegrated process of the form Y (t) =

C(∞)L(t) +
∫ t
−∞ C̃(t − s) dL(s), since we have now the matrix polynomial P̃ (z),

whose first matrix coefficient is not the identity matrix. Therefore the theory on

MCARMA processes derived by Marquardt and Stelzer [69] cannot be applied.

However, we can make use of the state space representation and derive a moving

average representation in Section 4.3. Additionally, we even get a more precise

representation, because we are going to know the exact representation of C(∞) and

C̃. Furthermore, we can decouple the system into the non-stationary and stationary

part which is nothing else but a stationary MCARMA process as defined in Marquardt

and Stelzer [69].

Remark 4.2.12

If the cointegration rank is zero, i.e. Ap = 0d×d, we have no cointegration vector and

thus the process is not cointegrated. However, the process is integrated of order one

in the sense of Definition 2.5.2. On the other hand, if the rank of Ap is equal to d,

i.e. Ap is of full rank, the process is stationary. This means that all eigenvalues have

negative real part and B1 is satisfied. Additionally, B3 is automatically satisfied,

whereas B2 is violated. Therefore cointegration arises, when the rank of Ap satisfies
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0 < r < d. Hence, it depends on the matrix Ap if we have a stationary, integrated or

even cointegrated MCARMA process.

Remark 4.2.13

There are two natural ways to define an integrated MCARMA process. Both ways

have the property that the process remains in the class of MCARMA processes. This

can be seen by taking a closer look to the defining differential equations.

1. The first method starts with a stationarym-dimensional MCARMA(p,q) process

Y , then an integral is taken to obtain the integrated process given by I(t) =∫ t
0
Y (s) ds. Assume that the process Y satisfies P (D)Y (t) = Q(D)DL(t).

Hence, the equation for the integrated process is

P ∗(D)I(t) = P (D)DI(t) = PY (t) = Q(D)DL(t),

where DI(t) = Y (t) and P ∗(D) := zP (z). The order of P ∗(z) is p∗ := p+ 1.

Obviously, I is also an MCARMA process with parameters (p∗, q). This, implies

that p∗ > q.

2. However, the second method takes as a starting point a non-stationary m-

dimensional MCARMA(p, q) process X, where DX is stationary. Assume, that

the process X satisfies P (D)X(t) = Q(D)DL(t), t ≥ 0. Therefore, we have

P (D)DX(t) = D[P (D)X(t)] = D[Q(D)DL(t)] = Q∗(D)DL(t),

where Q∗(z) := zQ(z). Clearly, DX(t) is an MCARMA(p,q+1) process. Again,

this implies that we need the assumption p > q + 1.

The different definitions of integrated processes are not equivalent. Both have in

common that DY is stationary and DY is a MCARMA process, whereas in the

first definition there exist no β, such that βTY is stationary. Due to the different

definition of integration, Ap is not fixed to be zero, thus we allow the process to be

cointegrated.

We use a different approach to derive useful properties of the cointegrated model in the

next section. Instead of characterizing cointegration via the crucial matrix coefficients

of the autoregressive polynomial, we use instead the matrices of the continuous-time

state space representation of an MCARMA process. We can transform the state space

representation and thus in particular the relevant matrices in an advantageous way,

which was not accomplishable with the autoregressive moving average representation.
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4.3. Representations of Cointegrated Lévy Driven

MCARMA Processes

We work with the cointegrated Lévy driven MCARMA processes in state space form,

i.e. we interpret it as the solution (Y (t))t≥t0 , for some t0 ∈ R, of a continuous-time

state space model.

Definition 4.3.1

An Rd-valued continuous-time linear state space model (A,B,C, L) of dimen-

sion N is characterized by an Rm-valued Lévy process, a transition matrix A ∈MN (R),

an input matrix B ∈MN,m(R) and an observation matrix C ∈Md,N(R). It consists

of the state equation

dX(t) = AX(t)dt+BdL(t) (4.9a)

and the observation equation

Y (t) = CX(t) for t ≥ t0 ≥ 0. (4.9b)

The state vector process (X(t))t≥t0 is an RN -valued process and the output process

(Y (t))t≥t0 is Rd-valued.

Every solution of (4.9b) has the representation

Y (t) = C exp(A(t− t0))X(t0) + C

∫ t

t0

exp(A(t− u))B dL(u). (4.10)

A solution Y is called causal, if for all t ≥ t0, Y (t) is independent of the σ-algebra

generated by {L(s) : s > t}. In the following let the next assumption always hold.

Assumption C1

The Lévy process L satisfies EL(1) = 0d and E‖L(1)‖2 <∞.

There exist state space models with different matrices (A,B,C), which generate the

same output process. In order to describe this phenomena we introduce the notion of

observationally equivalence. First, we give the definitions of some properties of linear

state space systems, which we are going to need subsequently. These definitions

enable us to imply restrictions on the state space model in order to achieve uniqueness

in the state space model and output process relation. For this we define first the

observability of a continuous-time linear state space model.
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Definition 4.3.2

The continuous-time linear state space system (4.9) is observable if the observability

matrix

OCA =


C

CA
...

CAN−1

 ∈MdN,N(R) (4.11)

has full rank, i.e. if rank(OCA) = N or equivalently

rank

(
λIN − A

C

)
= N (4.12)

for all eigenvalues λ of A.

Another desired property for the state space model is to have a minimal dimension,

i.e. that there is no state space system of smaller dimension producing the same

output process.

Definition 4.3.3

The continuous-time linear state space system (4.9) is controllable if the controlla-

bility matrix

CAB =
(
B AB . . . AN−1B

)
∈MN,mN(R) (4.13)

has full rank, i.e. if rank(CAB) = N or equivalently

rank
(
λIN − A B

)
= N (4.14)

for all eigenvalues λ of A.

Another desired property for the state space model is to have a minimal dimension,

i.e. that there is no state space system of smaller dimension producing the same

output process.

Definition 4.3.4

The matrix triple (A,B,C) is called an algebraic realization of a rational matrix

function k ∈ Md,m(R{z}) of dimension N if k(z) = C(zIN − A)−1B, where A ∈
MN(R), B ∈ MN,m(R) and C ∈ Md,N(R). The matrix triple (A,B,C) is called

minimal if there exists no other algebraic realization (Ã, B̃, C̃) with dimension
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smaller than N . The dimension of a minimal realization of k is called the McMillan

degree of k.

Thus, non-minimality is a source of non-uniqueness of the state space model. Mini-

mality guarantees that we consider only components of the state vector, which are

relevant for the output. Therefore, this property implies a one-to-one correspondence

of the unit root properties of the state process and the output process. If we would

have a non-minimal system there could be unit roots having no effect on the output

process. A minimal state space model is unique up to a change of basis of the state

space.

Lemma 4.3.5 (Hannan and Deistler [46], Theorem 2.3.3.)

A realization (A,B,C) is minimal if and only if it is both controllable and observable.

Last but not least, we give the formal definition of observational equivalence of state

space systems.

Definition 4.3.6

A rational matrix function k : z 7→ C(zIn − A)−1B is called transfer function of

the state space model (4.9). A minimal linear state space model (A,B,C) is called

observationally equivalent to the minimal system (Ã, B̃, C̃) if they give rise to

the same transfer function.

Hence, (A,B,C) and (Ã, B̃, C̃) are observationally equivalent if and only if there

exists a nonsingular transformation matrix T ∈ GLN(R) such that A = TÃT−1,

B = TB̃ and C = C̃T−1. Such a transformation leads to a corresponding basis

change of the state vector to X̃(t) = TX(t).

The aim is to define a cointegrated state-space model. For this purpose, we introduce

a convenient canonical form of the state space model. This will be the analogous

result to the canonical form in the discrete-time setting presented by Bauer and

Wagner [8], Theorem 2 and Theorem 3. The advantage of this canonical form is

that the non-stationary and stationary part are decoupled and can be transformed

separately. Moreover, this enables us to use existing results on stationary state space

models and Lévy processes in the following.

Theorem 4.3.7

Let (A,B,C, L) be a d-dimensional minimal state space model which satisfies σ(A) ⊂
{(−∞, 0) + iR} ∪ {0} and the algebraic and geometric multiplicity of the eigenvalue

zero is equal to c, 0 ≤ c ≤ d. Then there exists a unique observationally equivalent
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minimal state space representation given by(
dX1(t)

dX2(t)

)
=

(
0c 0c×(N−c)

0(N−c)×c A2

)(
X1(t)

X2(t)

)
+

(
B1dL(t)

B2dL(t)

)
,

Y (t) = C1X1(t) + C2X2(t), t ≥ t0,

(4.15)

where

i) The non-stationary part of the transition matrix A is the zero matrix 0c and

for the stationary part A2 it holds that |λmax(exp(A2))| < 1.

ii) The matrix C1 ∈ Md,c(R) satisfies CT
1 C1 = Ic and C1 is a positive lower

triangular matrix (c.f. Definition 6.2.1).

iii) The block matrix B1 ∈Mc,d(R) is not restricted.

iv) The stationary part of the transfer function, that is (A2, B2, C2), is real-valued.

It is given in a canonical form for stationary state space models, e.g. in echelon

canonical form (c.f. Lütkepohl and Poskitt [64]).

The cointegrated process can be expressed as the solution of this canonical form.

This solution consists of a sum of the initial value, a Lévy process and a stationary

MCARMA process

Y (t) = C1X1(t0) + C1B1L(t) + C2

∫ t

−∞
exp(A2(t− u))B2 dL(u), t ≥ t0 (4.16)

if we choose X2(t0) appropriately.

Proof. Solving (4.15) leads directly to

Y (t) =C1X1(t0) + C2 exp(A2(t− t0))X2(t0) + C1B1L(t) + C2

∫ t

t0

exp(A2(t− u))B2 dL(u),

which in the end gives (4.16).

We define

A∗ :=

(
0c×c 0c×(N−c)

0(N−c)×c A2

)
, B∗ :=

(
B1

B2

)
and C∗ :=

(
C1 C2

)
. (4.17)

For the existence of the representation (4.15) we need to show that there exists a

T ∈ GLN(R) which transforms the state space model (A,B,C) to the desirable

form (A∗, B∗, C∗) satisfying all restrictions (i)-(iv). In the next step we have to show
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that this transformation matrix is unique which results in the uniqueness of this

representation.

Existence: Due to the eigenvalue assumption on the matrix A the upper part of

A∗ is just the Jordan normal form corresponding to the eigenvalue zero. Thus there

exists a transformation matrix T ′ such that

T ′AT ′
−1

=

(
0c×c 0c×(N−c)

0(N−c)×c A′2

)
=: A′,

where the eigenvalues of A′2 coincide with the non-zero eigenvalues of A which have

by assumption strictly negative real parts. Otherwise A′2 is not specified yet. Further,

B′ := T ′B =
(
B′1

TB′2
T
)T

and C ′ = CT ′−1 =
(
C ′1 C ′2

)
. Since the block-diagonal

structure of A′ is preserved by block transformations, we consider in the following

only block-diagonal transformation matrices T ′′ = Diag(T ′′1 , T
′′
2 ) (see Gantmacher

[40], p.231 ) resulting in

A′′ := T ′′A′T ′′
−1

=

(
0c×c 0c×(N−c)

0(N−c)×c T ′′2A
′
2T
′′
2
−1

)
, B′′ := T ′′B′ =

(
T ′′1B

′
1

T ′′2B
′
2

)
and

C ′′ := C ′T ′′
−1

=
(
C ′1T

′′
1
−1 C ′2T

′′
1
−1
)
.

Obviously there exists a transformation matrix T ′′1 such that C1 := C ′1T
′′
1
−1 satisfies

(ii) and B1 := T ′′1B
′
1 Since the eigenvalues of A′2 have strictly negative real parts,

(A′2, B
′
2, C

′
2) forms a stationary linear state space model. Hence, there exists a

transformation matrix T ′′2 such that

A2 := T ′′2A
′
2T
′′
2
−1
, B2 := T ′′2B

′
2 and C2 := C ′2T

′′
2
−1

satisfy (iv). Moreover, the eigenvalues of A′2 and hence, A2 have strictly negative real

parts so that (i) is satisfied as well. Finally, T = T ′′T ′ and (A∗, B∗, C∗) = (A′′, B′′, C ′′).

Uniqueness: Assume there exists matrices

Ã :=

(
0c×c 0c×(N−c)

0(N−c)×c Ã2

)
, B̃ :=

(
B̃1

B̃2

)
and C̃ :=

(
C̃1 C̃2

)
,

so that the state space model (Ã, B̃, C̃) satisfies the assumptions of this theorem as

well. But then there exists a block diagonal transformation T = Diag(T1, T2) with

(Ã, B̃, C̃) = (TA∗T−1, TB∗, C∗T−1). To be more precise Ã2 = T2A2T
−1
2 , B̃1 = T1B1,

B̃2 = T2B2, C̃1 = C1T
−1
1 and C̃2 = C2T

−1
2 . Since (A2, B2, C2) and (Ã2, B̃2, C̃2),
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respectively are given in canonical form (cf. restriction (iv)), T2 has to be the identity

matrix. In order to prove uniqueness it remains to show that T1 is the identity matrix

as well. Due to C̃T
1 C̃1 = Ic by (ii), we obtain

Ic = C̃T
1 C̃1 = (C1T1)TC1T1 = TT

1 C
T
1 C1T1 = TT

1 T1

and thus, T1 is orthogonal. If we now exploit the fact that C1 and C̃1 must both be

lower triangular matrices, we further get that T1 must be lower triangular itself since

C1T1 =



c11 0 · · · · · · 0

c21 c22 0 · · · 0
...

...
. . .

. . .
...

...
...

. . . 0

cc1 cc2 · · · · · · ccc
...

...
...

cd1 cd2 · · · · · · cdc





t11 · · · t1c

...
. . .

...

tc1 · · · tcc



=



c11t11 c11t12 · · · c11t1c

∗
∑2

i=1 c2iti2
∑2

i=1 c2itic
...

...
...

. . .
. . .

...∑c
i=1 ccitic

∗ · · · ∗ ∗


=



c̃11 0 · · · · · · 0

c̃21 c̃22 0 · · · 0
...

. . .
. . .

...
...

. . . 0

c̃c1 · · · c̃cc
...

...

c̃d1 · · · c̃dc


= C̃1

holds and therefore the entries tij, for i < j, must be zero or otherwise the lower

triangular structure would not be preserved. Real-valued orthogonal matrices have

only eigenvalues equal to 1 or −1 and thus the diagonal of the transformation matrix

T1 consists only of the entries 1 or −1.

We utilize now the restriction that the first non-zero element cjii in each column

of C1 is positive. We start with the last column, where the first positive entry cjcc

is multiplied by tcc. This product must be positive and hence tcc must be positive.

Since the diagonal entries of a triangular matrix are the eigenvalues itself, this implies

that tcc = 1. Thus, all columns of T1 are orthonormal. The (c− 1)-th column has

only two entries which are non-zero and in order to be orthonormal to the c-th unit

vector ec it must be a unit vector itself, i.e. it must be ec−1. Iterating this procedure

leads to T1 = Ic and consequently we have due to the entire restrictions a unique
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form for the state space model.

We abbreviate the stationary part with

Y2(t) := C2

∫ t

−∞
exp(A2(t− u))B2 dL(u), t ≥ t0. (4.18)

We show in the next lemma that we can either assume minimality of the original

state space model (A,B,C, L) or of the stationary part of the state space system

(A2, B2, C2, L) combined with assumptions on the matrices B1 and C1. The assump-

tions on the decoupled system are often easier to verify.

Lemma 4.3.8

Each d-dimensional state space system (A,B,C, L), which satisfies σ(A) ⊂ {(−∞, 0)+

iR} ∪ {0} with algebraic and geometric multiplicity of the eigenvalue zero is equal to

c ≤ d, is minimal if and only if B1 has full row rank and C1 has full column rank,

i.e. rank B1 = rank C1 = c, and the representation (A2, B2, C2) of the stationary

subsystem is minimal.

Proof. Minimality is equivalent to the conditions that the controllability and observ-

ability matrices CAB (cf. (4.13)) and OAC (cf. (4.11)), respectively have full rank.

We prove an alternative criterion for observability (c.f. Bernstein [9], Proposition

12.3.13) . Therefore, we have to determine the rank for all eigenvalues λ of A of λIc 0c×(N−c)

0(N−c)×c λIN−c − A2

C1 C2

 .

We consider two cases, beginning with the eigenvalue λ = 0, which simplifies the

matrix to

rank

 λIc 0c×(N−c)

0(N−c)×c λIN−c − A2

C1 C2

 = rank

(
−A2 0(N−c)×c

C2 C1

)

= (N − c) + rank(C1 + C2A
−1
2 0(N−c)×c) = (N − c) + c = N.

The last equations follow by Bernstein [9], Proposition 2.8.3, the fact that C1 has
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full rank c and the invertibility of A2. In the case λ 6= 0 we get

rank

 λIc 0c×(N−c)

0(N−c)×c λIN−c − A2

C1 C2


= c+ rank

((
λIN−c − A2

C2

)
−

(
0(N−c)×c

C1

)
· λ−1Ic · 0c×(N−c)

)

= c+ rank

(
λIc − A2

C2

)
= N.

Again, we used Bernstein [9], Proposition 2.8.3, in combination with the fact that the

stationary part is minimal by assumption and hence observable. As a consequence, we

have shown that rank(OCA) = N and thus observability of the system. Analogously,

we obtain rank(CAB) = N and together with the observability this gives the minimality

of the system.

Although there is written in Theorem 4.3.7 (iii) that we do not assume any restriction

on B1, the assumption on the minimality of the state space model implies that B1

has full rank c.

Lemma 4.3.9

Let Y be given as in Theorem 4.3.7 with 0 < c < d. Then Y is cointegrated with

cointegration space spanned by C⊥1 and cointegration rank rankC⊥1 = d− c, i.e. C⊥1 Y

is stationary.

Proof. A conclusion of Lemma 4.3.8 is that C1B1 6= 0d×d so that Y as given in (4.16) is

indeed an integrated process since the Lévy process (C1B1L(t))t≥0 is a non-stationary

process with strictly stationary increments. Moreover, C⊥1 Y = C⊥1 Y2 is a stationary

process and hence, C⊥1 spans the cointegration space with rankC⊥1 = d− c.

Note that the parameter c represents the number of common stochastic trends. From

these considerations the next definition is well-defined.

Definition 4.3.10

Let (A,B,C, L) be a d-dimensional minimal state space model of dimension N which

satisfies σ(A) ⊂ {(−∞, 0) + iR} ∪ {0} and the algebraic and geometric multiplicity

of the eigenvalue zero is equal to c with 0 < c < d. Then the output process Y is

called cointegrated continuous-time linear state space model.
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Note that we could define the cointegrated linear state space model in an alternative

way: we define a sum of a stationary state space process and a Lévy process. This

means we have Y (t) = C1L1(t) + Y2(t), where L1 is a LÃ c©vy process and Y2 is a

stationary state space model. From Theorem 4.3.7 we know that both definitions are

equivalent.

Corollary 4.3.11

The cointegrated state space model Y is causal.

Proof. This is obvious due to representation (4.16).

The canonical form helps us later in the parameter estimation of the cointegrated

MCARMA process. Given this representation, we can now deal with the integrated

part and the stationary part completely separately. Because we do not observe

the Lévy process, we have to do a stepwise procedure, where we first estimate the

non-stationary parameters and after that the stationary parameters.

We know that the covariance of the cointegrated state space model can also be

decomposed.

Proposition 4.3.12

Assume that Y is a cointegrated state space process as in (4.15). Then

E[Y (t)] = C1E[X1(t0)] for t ≥ t0.

Suppose X1(t0) = 0. Then for t ≥ t0 and s ≥ 0 we have

Cov(Y (t), Y (t+ s)) = C2 exp(A2 s)Γ0C
T
2 +

∫ t

0

C2 exp(A2u)B2ΣL(C1B1)T du

+

∫ t+s

s

C1B1ΣLB
T
2 exp(AT

2 u)CT
2 du+ t · C1B1ΣL(C1B1)T,

where Γ0 is the covariance matrix of the stationary process X2 given by

Γ0 :=

∫ ∞
0

exp(A2u)B2ΣL (exp(A2u)B2)T du.

Proof. We obtain for the expectation evidently

E[Y (t)] = E
[
C1X1(t0) + C1B1L(t) + C2

∫ t

−∞
exp(A2(t− u))B2 dL(u)

]
= C1E[X1(t0)].
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Setting X1(t0) = 0 leads then to

Cov(Y (t), Y (t+ s)) = E
[
Y (t)Y (t+ s)T

]
= E

[
C1B1L(t) (C1B1L(t+ s))T + C1B1L(t)Y2(t+ s)T

+ Y2(t) (C1B1L(t+ s))T +Y2(t)Y2(t+ s)T
]

= C1B1E
[
L(t)L(t+ s)T

]
(C1B1)T + E[Y2(t)Y2(t+ s)T]

+ C1B1E

[∫ t

0

1 dL(u)

(∫ t+s

−∞
exp(A2(t+ s− u))B2 dL(u)

)T
]
CT

2

+ C2E

[∫ t

−∞
exp(A2(t− u))B2 dL(u)

(∫ t+s

0

1 dL(u)

)T
]

(C1B1)T

= C1B1E
[
L(t)L(t+ s)T

]
(C1B1)T + E[Y2(t)Y2(t+ s)T]

+ C1B1E

[∫ t

0

1 dL(v)

(∫ t

0

exp(A2(t+ s− u))B2 dL(u)

)T
]
CT

2

+ C2E

[∫ t

0

exp(A2(t− u))B2 dL(u)

(∫ t

0

1 dL(v)

)T
]

(C1B1)T

and finally the claimed result follows by calculating all the remaining expectations

using Equation (3.8) as well as Proposition 3.13 in Marquardt and Stelzer [69].

The time dependence of the covariance matrix is obvious in this representation and

hence this process is indeed non-stationary. We assume for reasons of simplicity

from now on that t0 = 0. Note that the process Y2 is a causal stationary MCARMA

process in the sense of Marquardt and Stelzer [69], Definition 3.20. Hereby, the

causality also applies for the cointegrated process.

Lemma 4.3.13

The cointegrated MCARMA process Y given as in Definition 4.3.10 is causal.

Proof. This is obvious due to representation (4.16) (c.f. Definition 3.20 in Marquardt

and Stelzer [69]).

Recall the results about the sampled process by Schlemm and Stelzer [90], Lemma

5.2, which leads to the following discrete-time representation for the sampled process.

We derive the same decoupling for the sampled process as in the continuous-time

case. Hence, we have also the separation of the stationary part and integrated part in

the state space system. Moreover, we can clearly see the connection of the eigenvalue
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zero of the transition matrix A with unit roots in the discrete time case since eA has

eigenvalues equal to one if A has eigenvalues equal to zero.

Lemma 4.3.14

Assume that Y is an MCARMA process as in Definition 4.3.10. The sampled process

Y (h) has the state space representation(
X

(h)
n,1

X
(h)
n,2

)
=

(
X

(h)
n−1,1

eA2hX
(h)
n−1,2

)
+

(
R

(h)
n,1

R
(h)
n,2

)

and observation equation

Y (h)
n = C1X

(h)
n,1 + C2X

(h)
n,2 , (4.19)

with noise term

R(h)
n =

(
R

(h)
n,1

R
(h)
n,2

)
=

(
B1 (L(nh)− L((n− 1)h))∫ nh

(n−1)h
eA2(nh−u)B2 dL(u)

)
, n ∈ N. (4.20)

The sequence (R
(h)
n )n∈N is an i.i.d. sequence with mean zero and covariance matrix

Σ̃(h) = ER(h)
n R(h)T

n =

∫ h

0

(
B1ΣLB

T
1 eA2uB2ΣLB

T
1

B1ΣLB
T
2 eA

T
2u eA2uB2ΣLB

T
2 eA

T
2u

)
du. (4.21)

We write for the different parts of the covariance matrix

Σ̃(h) =

(
Σ̃

(h)
11 Σ̃

(h)
12

Σ̃
(h)
21 Σ̃

(h)
22

)
. (4.22)

Furthermore, we have that (R
(h)
n )n∈Z has finite rth-moments for some r > 0 if

the driving Lévy process L has finite rth-moments. This implies the existence of

rth-moments for the sampled process Y
(h)
n .

Proof. The state space representation follows at once by setting t = nh in (4.15) and

the same holds for the covariance matrix.

The existence of the rth-moment follows immediately from Proposition 3.30 in

Marquardt and Stelzer [69] and Lemma 3.15 in Schlemm and Stelzer [91].

Note that due to Theorem 1 in Bauer and Wagner [8] the class of cointegrated

I(1)-processes with c common trends and the class of state-space models, satisfying
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the assumptions made in this section, are equivalent.

Lemma 4.3.15

The solution of the sampled process given in Lemma 4.3.14 is given by

Y (h)
n = C1X

(h)
1 (t0) + C1B1L(nh) + Y

(h)
n,2 , n ∈ N, (4.23)

where the stationary part is given by

Y
(h)
n,2 = C2

∫ nh

−∞
eA2(nh−u)B2 dL(u). (4.24)

Proof. In the same manner this follows by inserting t = nh into (4.16) and (4.18).

The first two moments of the sampled process are derived in the next lemma.

Lemma 4.3.16

The expectation of the sampled cointegrated state space model (4.23) is given by

E[Y (h)
n ] = C1E[X

(h)
1 (t0)] (4.25)

and for the covariance we get, if we assume E[X
(h)
1 (t0)] = 0, that

Cov(Y (h)
n , Y

(h)
n+s) =C2 exp(A2 s)Σ̃

(h)
2,2C

T
2 (4.26)

+

∫ nh

0

C2 exp(A2u)B2ΣL(C1B1)T du

+

∫ (n+s)h

0

C1B1ΣLB
T
2 exp(AT

2 u)CT
2 du

+ nh · C1Σ̃
(h)
1,1C

T
1 . (4.27)

Proof. Setting t = nh in Proposition 4.3.12 proves the claim.

We need a certain degree of independence of the stationary part of the sampled

process for the estimation procedure. Hence, we give the definition of strong mixing

which gives us a sufficient degree of independence. For more details on mixing

processes see e.g. Bradley [16] or Doukhan [31].

Definition 4.3.17

A continuous-time stationary stochastic process X = (Xt)t∈R is called strongly

mixing if

αl := sup
{
|P(A ∩B)− P(A)P(B)| : A ∈ Fm−∞, B ∈ F∞m+l

} l→∞−−−→ 0,
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where Fm−∞ := σ(Xt : t ≤ n) and F∞m+l := σ(Xt : t ≥ m+ l), m ∈ N.

With regard to already known results, we see quite easily that the stationary part of

the sampled process satisfies the following mixing property.

Lemma 4.3.18

The stationary part Y2 of the continuous cointegrated MCARMA process Y with finite

second moments as given in Theorem 4.3.7 is exponentially strongly mixing and the

same holds true for the stationary part Y
(h)

2 of the sampled process Y (h). There exists

a constant δ > 0 such that the mixing coefficients α
Y

(h)
st

of the sampled process satisfy

∞∑
l=0

[
α
Y

(h)
2

(l)
] δ

2+δ
<∞.

The same holds true for C⊥1 Y = C⊥1 Y2 and C⊥1 Y
(h) = C⊥1 Y

(h)
2 .

Proof. Due to Proposition 3.34 in Marquardt and Stelzer[69], the assertion for the

stationary process holds. This property transfers to the sampled process right away

and we also have the condition on the mixing coefficients. The last claim follows

directly by Bradley [16], Remark 1.8 b).

In the further considerations, we need the first difference of the sampled cointegrated

process and the stationary part of this process. We have already calculated the first

two moments for the stationary part in a previous lemma and the mixing property

of the stationary part of the sampled process. Hence, we turn our attention to the

first difference and calculate a representation in the next lemma.

Lemma 4.3.19

The first difference of the sampled cointegrated process Y (h) (c.f. Lemma 4.3.14) is

given by

∆Y (h)
n = C1R

(h)
n,1 + ∆Y

(h)
n,2

= C1R
(h)
n,1 + C2

∫ nh

(n−1)h

eA2(nh−u)B2 dL(u)

+ C2

(
eA2h − Id

) ∫ (n−1)h

−∞
eA2((n−1)h−u)B2 dL(u), (4.28)

where R
(h)
n,1 is given as in (4.20).
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Proof. To show this we use equation (4.23) and (4.24). We obtain

∆Y (h)
n =C1X

(h)
1 (t0) + C1B1L(nh) + Y

(h)
n,2 − C1X

(h)
1 (t0)− C1B1L((n− 1)h) + Y

(h)
n−1,2

=C1R
(h)
n,1 + C2

∫ nh

−∞
eA2(nh−u)B2 dL(u)− C2

∫ (n−1)h

−∞
eA2((n−1)h−u)B2 dL(u)

=C1R
(h)
n,1 + C2

∫ nh

(n−1)h

eA2(nh−u)B2 dL(u)

+ C2

(
eA2h − Id

) ∫ (n−1)h

−∞
eA2((n−1)h−u)B2 dL(u),

where the second and third summand together are nothing else than ∆Y
(h)
n,2 .

Note that the first difference of the sampled cointegrated process ∆Y (h) is obviously

stationary and the rth-moment exists if the rth-moment of the Lévy process exists

since due to Lemma 4.3.14 Y (h) has then a finite rth-moment. Furthermore, note that

∆Y
(h)

2 is also strongly mixing since its the difference and consequently a measurable

function of the finite past values of a strongly mixing process (c.f. Remark 1.8 b) in

Bradley [16]). Moreover, we know that (C1R
(h)
n,1)n∈N is obviously an i.i.d. sequence.

The last lemma showed that we can interpret the first difference of the sampled

process Y (h) also as a sum of an i.i.d. sequence and the difference of the sampled

process of the stationary part Y
(h)

2 of the cointegrated MCARMA process Y . This

representation is obvious due to the decoupled state space system and thus the form

of the solution in Lemma 4.3.15.

Last but not least, we present typical realizations of two bivariate cointegrated

MCARMA processes in Figure 4.1. On the left side we have an MCARMA process

driven by a Brownian motion and on the right side driven by a normal-inverse

Gaussian process. Moreover, the figure shows the sampled versions the stationary

linear combination and the common stochastic trend of each process.

4.4. Error Correction Form of Cointegrated State Space

Model Sampled at a Discrete Time-grid

Assume that we have a cointegrated multivariate CARMA process driven by a Lévy

process as given in Definition 4.3.10. The d-dimensional cointegrated process has the
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Figure 4.1.: Two Examples of Cointegrated Processes
Left: Brownian Motion - Right: Normal-inverse Gaussian
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representation (c.f. (4.16))

Y (t) = C1X1(t0) + C1B1L(t) + C2

∫ t

−∞
exp(A2(t− u))B2 dL(u) for t ≥ t0

and satisfies the assumptions of Theorem 4.3.7. Accordingly, it consist of a starting

value, an integrated part and a stationary part, which coincides with a stationary

MCARMA process. Furthermore, assume that X1(t0) is independent of (L(t))t≥0

and the covariance matrix of the Lévy process ΣL is positive definite.

Since we want to estimate the model parameters from observations of the MCARMA

process Y at discrete time points, we consider the sampled version of the cointegrated

MCARMA process.

We briefly recall the state space representation with state equation(
X

(h)
n,1

X
(h)
n,2

)
=

(
X

(h)
n−1,1

eA2hX
(h)
n−1,2

)
+

(
R

(h)
n,1

R
(h)
n,2

)
,

noise (
R

(h)
n,1

R
(h)
n,2

)
=

(
B1 (L(nh)− L((n− 1)h))∫ nh

(n−1)h
eA2(nh−u)B2 dL(u)

)

and the observation equation given by

Y (h)
n = C1X

(h)
n,1 + C2X

(h)
n,2 . (4.29)

Definition 4.4.1

Assume that the process L has finite second moments. The linear innovations

ε(h) = (ε
(h)
n )n∈Z of Y (h) are defined by

ε(h)
n = Y (h)

n − Pn−1Y
(h)
n , (4.30)

where Pn is the orthogonal projection onto span{Y (h)
i : −∞ < i ≤ n} and the closure

is taken in the Hilbert space of square-integrable random variables with inner product

(X, Y ) 7→ E〈X, Y 〉.

We want to obtain an error correction form and calculate the likelihood function

corresponding to this state space model later on. However, the linear state space

model is not in innovation form and thus we apply a linear filter to this model. We use
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the Kalman filter, which is a useful tool in estimation theory to calculate the linear

innovations. Before we can apply the Kalman filter to the cointegrated model we have

to check the applicability of the Kalman filter to the cointegrated model. The Kalman

filter can be applied to the cointegrated model if Assumption K1-Assumption K3 in

Section 4.6 are satisfied.

The discrete-time state space model (4.29) satisfies Assumption K1, Assumption K2

and Assumption K3. To see this note that Wn = 0d holds, which immediately implies

R ≡ 0d×d. Assumption K1 is automatically satisfied due to the definition of the

cointegrated MCARMA model. Furthermore, we have ΓZn = R
(h)
n in our model,

which has a positive definite covariance matrix. Hence, Assumption K2 is satisfied.

In our model we have C = H with rankC = d. This implies CΣ̃(h)CT has full rank

and thus Assumption K3 holds.

Therefore, by Appendix 4.6 we can apply the Kalman filter to the cointegrated model.

Hence, we obtain the linear innovations of Y (h) and a new state space model in

innovation form. In order to estimate the cointegrated process, we use the linear

innovations. They describe the new information at time point n, which was not

available one step before, i.e. at time point n− 1.

Let us sum up the important results concerning the Kalman filter in the next

proposition.

Proposition 4.4.2

The discrete-time algebraic Riccati equation

Ω(h) =eAhΩ(h)eA
Th − eAhΩ(h)CT(CΩ(h)CT)−1CΩ(h)eA

Th + Σ̃(h) (4.31)

has a positive definite solution Ω(h) ∈ S++
N (R) and the steady state Kalman gain

matrix K(h) is given by

K(h) :=eAhΩ(h)CT(CΩ(h)CT)−1 ∈MN,d(R). (4.32)

The linear innovations ε(h) of Y (h) are the unique stationary solution of the linear

state space model

X̂(h)
n =

(
eAh −K(h)C

)
X̂

(h)
n−1 +K(h)Y

(h)
n−1,

ε(h)
n = Y (h)

n − CX̂(h)
n , n ∈ N. (4.33)
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Then, we have a moving average representation for the linear innovations given by

ε(h)
n =

(
Id − C

[
IN −

(
eAh −K(h)C

)
B
]−1

K(h)B
)
Y (h)
n

= Y (h)
n − C

∞∑
i=1

(
eAh −K(h)C

)i−1
K(h)Y

(h)
n−i, (4.34)

where B denotes the backshift operator, which is defined by BY
(h)
n = Y

(h)
n−1. The

covariance matrix of the innovations is given by

V (h) = Eε(h)
n ε(h)T

n = CΩ(h)CT ∈ S++
d . (4.35)

Thus, the process Y (h) is in innovations form given by

X̂(h)
n = eAhX̂

(h)
n−1 +K(h)ε

(h)
n−1,

Y (h)
n = CX̂(h)

n + ε(h)
n , n ∈ N. (4.36)

Define now the rational matrix-valued transfer function

k(z) : = Id − C
[
IN −

(
eAh −K(h)C

)
z
]−1

K(h)z

= Id − C
∞∑
i=1

(
eAh −K(h)C

)i−1
K(h)zi, for z ∈ C. (4.37)

Obviously, we have k(0) = Id and

k(1) = Id − C
[
IN −

(
eAh −K(h)C

)]−1
K(h) ∈Md(R). (4.38)

Due to Lemma 4.6.7 from Appendix 4.6 we know that |λmax(eAh − K(h)C)| < 1,

hence IN −
(
eAh−K(h)C

)
is invertible and k(1) is well defined. Since the matrix eAh

has eigenvalues equal to one, we have an integrated process.

Lemma 4.4.3

The eigenvalues of eAh are strictly within the unit circle or at one and the algebraic

multiplicity of the eigenvalue one of eAh is equal to its geometric multiplicity c.

Proof. This assertion is automatically satisfied by the sampled process from (4.29),

due to the eigenvalue condition on the cointegrated continuous-time model (see

Theorem 4.3.7). Recall that the matrix exponential has the following property

eAh = exp(Diag(0c, A2h)) = Diag(Ic, exp(A2h)).
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Hence, by Lemma 4.4.3 we have indeed a cointegrated state space model (4.36) of

order one. We want to show that k(1) maintains the requirements for cointegration.

Hence, we show that k(1) has rank r = d− c and contains the information about the

cointegration space. In order to analyze the matrix k(1) we need first the following

assumption guaranteeing that the filtered system is still minimal.

Assumption C2

The linear system given in (4.36) is controllable, i.e.

CeAhK(h) :=
(
K(h) eAhK(h) . . .

(
eAh
)N−1

K(h)
)
∈MN,pN(R) (4.39)

has rank N .

This assumption can be formulated in a different way using an alternative criterion

for controllability (c.f. [9, Proposition 12.6.13]). It holds by Fact 2.11.1 in Bernstein

[9] that for all λ ∈ σ(eAh)

rank CeAhK(h) = N ⇔ ker
(
eAh − λIN

)T ∩ kerK(h)T = {0}. (∗)

Obviously, ker
(
eAh − λIN

)T
is the eigenspace corresponding to the eigenvalue λ of

eA
Th. Taking a closer look on kerK(h)T we see that the following equalities must hold

kerK(h)T = ker
(
eAhΩ(h)CT(CΩ(h)CT)−1

)T
= ker

(
Ω(h)CT

)T
= ker

(
CΩ(h)

)
= ker (C) Ω(h).

Therefore, the condition (∗) is satisfied if z′ := Ω(h)z lies not in ker(C) for all

eigenvectors z of eA
Th corresponding to the eigenvalue λ. Besides, due to the

observability condition (see Bernstein [9], Fact 2.11.3) we know that for all eigenvectors

z̃ corresponding to the eigenvalue λ of eAh that z̃ 6∈ kerC.

Moreover, the linear system (4.36) is also observable due to the fact that the discrete-

time and continuous-time observability matrix do coincide. Finally, minimality

follows due to Assumption C2 and the observability of the system combined with

Lemma 4.3.5.

The filtered minimal state space system (4.36) is obviously given in decoupled form(
X̂

(h)
n+1,1

X̂
(h)
n+1,2

)
=

(
Ic 0c×(N−c)

0(N−c)×c eA2h

)(
X̂

(h)
n,1

X̂
(h)
n,2

)
+

(
K

(h)
1

K
(h)
2

)
ε(h)
n ,

Y (h)
n =

(
C1 C2

)(X̂(h)
n,1

X̂
(h)
n,2

)
+ ε(h)

n . (4.40)
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Further, we can also make an assumption on the subsystems instead of the original

system. The system (eAh,K(h), C) is minimal if and only if K
(h)
1 has full row rank

and C1 has full column rank, i.e. rankK
(h)
1 = rankC1 = c and the representation

(eA2h, K
(h)
2 , C2) of the stationary subsystem is minimal due to Lemma 4.3.8. This is

automatically satisfied due to the minimality of the continuous-time cointegrated

model and Assumption C2.

We adapt now a result from Ribarits and Hanzon, [84] (Lemma 3.1) in order charac-

terize the rank of k(1). Furthermore, we see that the cointegration information is

contained in the linear filter, to be precise in the matrix k(1).

Lemma 4.4.4

Suppose that the linear state space model (4.36) satisfies Assumption C2 and has

the representation (4.40). Further, let r denote the number of linearly independent

cointegration relations of the corresponding process Y (h). Then we have

1. r = d− c,

2. rank k(1) = rank
(
Id − C

[
IN −

(
eAh −K(h)C

)]−1
K(h)

)
= r.

Proof. Lemma 4.4.3 gives us the eigenvalue structure of the sampled process.

1. X̂
(h)
n,2 is stationary with the special choice of X̂

(h)
0,2 =

∑∞
j=0 eA2hjK

(h)
2 ε

(h)
−j , thus

we have X̂
(h)
n,2 =

∑∞
j=1 eA2h(j−1)K

(h)
2 ε

(h)
n−j. For any arbitrary initial value X̂

(h)
0,1 ,

which we assume to be independent of (ε
(h)
n )n∈N, the solution for n ≥ 0, is given

by

Y (h)
n = C1X̂

(h)
0,1 + C1K

(h)
1

n−1∑
j=1

ε
(h)
n−j +

[
∞∑
j=1

C2eA2h(j−1)K
(h)
2 ε

(h)
n−j + ε(h)

n

]
(4.41)

= C1X̂
(h)
0,1 + C1K

(h)
1

n−1∑
j=1

ε
(h)
j + Y

(h)
n,2 ,

where the part in the brackets corresponds to a stationary discrete time moving

average process.

Due to this representation and the minimality, the number of common trends is

obviously equal to rankC1K
(h)
1 = c. By (4.41) we see that (Y

(h)
n ) consists of a

random constant (C1X̂
(h)
0,1 ), a stationary part (Y

(h)
n,2 ) and an integrated process

(C1K
(h)
1

∑n−1
j=1 ε

(h)
n−j).

Denote by C⊥1 ∈Md,(d−c)(R) the full rank matrix satisfying C⊥T1 C⊥1 = Id−c and

CT
1 C1

⊥ = 0c×(d−c), this means C1
⊥ is the orthogonal complement of C1 and
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rank(C⊥1 ) = d− c. Thus, it follows that

(C⊥T1 Y (h)
n )n∈Z = (C⊥T1 Y

(h)
n,2 )n∈Z,

where Y
(h)

2 is given above. Because r denotes the number of independent

cointegration relations, we have r ≥ rankC⊥1 = d − c. On the other hand,

since CT
1 C1 = Ic the number of cointegration relations r ≤ d − c. Finally,

r = d− c which concludes the first part. Hence, the column space of C⊥1 spans

the cointegration space.

2. We obtain for k(1) the following representation by applying the decoupling into

subsystems to (4.38)

k(1) = Id −
(
C1 C2

)(K(h)
1 C1 K

(h)
1 C2

K
(h)
2 C1 K

(h)
2 C2 + IN−c − eA2h

)−1(
K

(h)
1

K
(h)
2

)
. (4.42)

Since K
(h)
1 and C1 have full rank c, the c×c matrix K

(h)
1 C1 is regular and has also

rank c. We set Ñ := N−c. Furthermore, the matrix (K
(h)
2 C2 +IÑ−eA2h) is also

nonsingular due to the Kalman filter, which implies |λmax(eA2h −K(h)
2 C2)| < 1.

Thus, we can apply the Matrix Inversion Lemma (see e.g. Bernstein [9],

Proposition 2.8.7) and obtain

k(1) = Id −
(
C1 C2

)
·M ·

(
K

(h)
1

K
(h)
2

)
, (4.43)

where the matrix M is defined by

M :=

(
M11 M12

M21 M22

)
(4.44)

where

M11 := (K
(h)
1 C1)−1 + (K

(h)
1 C1)−1K

(h)
1 C2Q

−1K
(h)
2 C1(K

(h)
1 C1)−1,

M12 := −(K
(h)
1 C1)−1K

(h)
1 C2Q

−1,

M21 := −Q−1K
(h)
2 C1(K

(h)
1 C1)−1,

M22 := Q−1,
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with

Q := IÑ − eA2h +K
(h)
2 C2 −K(h)

2 C1(K
(h)
1 C1)−1K

(h)
1 C2.

Define P := Id − C1(K
(h)
1 C1)

−1K
(h)
1 ∈Md(R), which is obviously idempotent

since P 2 = P holds. Note that the matrix product K
(h)
1 C1 is a nonsingular

c × c matrix and consequently C1(K
(h)
1 C1)

−1K
(h)
1 has rank c. Then we can

rewrite the matrix k(1) once more using the representation (4.44) and obtain

k(1) =Id −
(
C1 C2

)
·M ·

(
K

(h)
1

K
(h)
2

)
=Id − C1M11K

(h)
1 − C2M21K

(h)
1 − C1M12K

(h)
2 − C2M22K

(h)
2

=(Id − C1(K
(h)
1 C1)−1K

(h)
1 )− C2Q

−1K
(h)
2

+ C1(K
(h)
1 C1)−1K

(h)
1 C2Q

−1K
(h)
2

+ C2Q
−1K

(h)
2 C1(K

(h)
1 C1)−1K

(h)
1

− C1(K
(h)
1 C1)−1K

(h)
1 C2Q

−1K
(h)
2 C1(K

(h)
1 C1)−1K

(h)
1

=P − (Id − C1(K
(h)
1 C1)−1K

(h)
1 )C2Q

−1K
(h)
2 (Id − C1(K

(h)
1 C1)−1K

(h)
1 )

=P − PC2Q
−1K

(h)
2 P.

Since the matrix P is idempotent and I−P = C1(K
(h)
1 C1)−1K

(h)
1 has obviously

rank c, we have due to the rank equation for an idempotent matrix, i.e.

rankP+rank(I−P ) = d (see e.g. Bernstein [9], Fact 3.12.9), that rankP = d−c.
As above, by the Matrix Inversion Lemma (see e.g. Bernstein [9], Corollary

2.8.8) we can rewrite the matrix Q−1 as

Q−1 =[IÑ − eA2h +K
(h)
2 P 2C2]−1

=
(
IÑ − eA2h

)−1

−
(
IÑ − eA2h

)−1
K

(h)
2 P [Id + PC2

(
IÑ − eA2h

)−1
K

(h)
2 P ]−1PC2

(
IÑ − eA2h

)−1
.

For the sake of brevity, we write R := C2

(
IÑ − eA2h

)−1
K

(h)
2 . Substituting the

previous result into the formula of k(1) leads to

k(1) = P − PRP + PRP (Id + PRP )−1PRP

= P − PRP + (PRP )2(Id + PRP )−1

= [(P − PRP )(P + PRP ) + (PRP )2](Id + PRP )−1

= P (Id + PRP )−1,
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where we used the fact that (Id + AB)−1A = A(Id + BA)−1 for matrices

A(:= PRP ) and B(:= Id) such that Id +AB is nonsingular (see e.g. Bernstein

[9], Fact 2.16.16) for the second equality. Since we have

rank k(1) = rankP (Id + PRP )−1 = rankP = d− c.

Since rank k(1) = d − c there exists α, β ∈ Md,r(R) with full row rank such that

k(1) = −αβT . Note that k(z)− k(1)z = 0 for z = 1 and k(z)− k(1)z = Id for z = 0.

Hence, we can rewrite k(z) as

k(z) = k(1)z + [k(z)− k(1)z] = k(1)z + (1− z)[Id − k̃(z)]

= k(1)z + Id(1− z)− k̃(z)(1− z) = −αβTz + Id(1− z)− k̃(z)(1− z),

where

k̃(z) := Id −
k(z)− k(1)z

1− z
(4.45)

We can now state an error correction form, where we consider a linear state space

model instead of a VAR process in the classical error correction form. The so-called

transfer function error correction form, was presented by Ribarits and Hanzon [84]

for discrete-time state space models. However, we have a continuous-time state space

model observed at discrete time points. Therefore, our error correction form will

have a similar form as the one of Ribarits and Hanzon but we will have different

matrices.

Definition 4.4.5

The error correction form is given by

∆Y (h)
n = αβTY

(h)
n−1 + k̃(B)∆Y (h)

n + ε(h)
n , n ∈ N. (4.46)

For comparison see the classical error correction model for a cointegrated VARMA

process for example in Lütkepohl [62], Section 14.2.

Lemma 4.4.6

βTY (h) is stationary and the rows of β span the cointegration space.

Proof. By the Matrix Inversion Lemma (see e.g. Bernstein [9], Corollary 2.8.8) and
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(4.43) we obtain

k(1) = Id −
(
C1 C2

)
·

(
K

(h)
1 C1 K

(h)
1 C2

K
(h)
2 C1 K

(h)
2 C2 + IN−c − eA2h

)−1

·

(
K

(h)
1

K
(h)
2

)
= [Id − C2(IÑ − eA2h +K

(h)
2 C2)−1K

(h)
2 ]

−[Id − C2(IÑ − eA2h +K
(h)
2 C2)−1K

(h)
2 ]

·C1(K
(h)
1 [Id − C2(IÑ − eA2h +K

(h)
2 C2)−1K

(h)
2 ]C1)−1

·K(h)
1 [Id − C2(IÑ − eA2h +K

(h)
2 C2)−1K

(h)
2 ].

We receive

k(1)C1 =[Id − C2(IÑ − eA2h +K
(h)
2 C2)−1K

(h)
2 ]C1

− [Id − C2(IÑ − eA2h +K
(h)
2 C2)−1K

(h)
2 ]C1

· (K(h)
1 [Id − C2(IÑ − eA2h +K

(h)
2 C2)−1K

(h)
2 ]C1)−1

·K(h)
1 [Id − C2(IÑ − eA2h +K

(h)
2 C2)−1K

(h)
2 ]C1

=[Id − C2(IÑ − eA2h +K
(h)
2 C2)−1K

(h)
2 ]C1

− [Id − C2(IÑ − eA2h +K
(h)
2 C2)−1K

(h)
2 ]C1 · Ic

=0d×c.

This means αβTC1 = k(1)C1 = 0d×c. Since α and β have full rank r = d − c and

rankC⊥1 = d − c, C⊥1 and β span the same space. Due to Lemma 4.3.9 we can

conclude the statement.

In particular ε(h) is then as a sum of stationary processes stationary itself. In the

following we present some alternative representations for the innovation sequence

which help to derive some further properties of the innovation sequence.

Lemma 4.4.7

Write k(z) =
∑∞

j=1 Ljz
j and k̃(z) =

∑∞
j=1 K̃jz

j, and define

k(z) := Id − k̃(z). (4.47)

Then the following alternative representations for the innovation sequence hold.

(a) ε
(h)
n = k(B)Y

(h)
n,2 + k(B)C1R

(h)
n,1, n ∈ N.

(b) ε
(h)
n =

∑∞
j=0

(
K̃jC1B

j
∑j

k=0 LkC2eA2h(j−k)Bj
)
R

(h)
n , n ∈ N, where

K̃0 = 0 and K̃j = C
∑∞

i=j+1

(
eAh −K(h)C

)i−1
K(h), for j ≥ 1.
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From (a) we see that the innovations consist of two summands containing on the one

hand, the filtered version of the stationary part and on the other hand, the filtered

version of the increments of the driving Lévy process.

Proof.

(a) Using (4.45) we obtain

k(z)− k(1)z = (1− z)[Id − k̃(z)] = (1− z)k(z)

so that (4.46) and (4.28) result in

ε(h)
n = ∆Y (h)

n + k(1)BY (h)
n − k̃(B)∆Y (h)

n = k(1)BY
(h)
n,2 + k(B)∆Y (h)

n

= k(1)BY
(h)
n,2 + k(B)

(
C1R

(h)
n,1 + (1−B)Y

(h)
n,2

)
= k(B)Y

(h)
n,2 + k(B)C1R

(h)
n,1, n ∈ N.

(b) With the moving average representation of Y
(h)

2 and the Cauchy product we

receive

ε(h)
n = k(B)C1R

(h)
n,1 + k(B)Y

(h)
n,2

=
∞∑
j=0

K̃jB
jC1R

(h)
n−j,1 +

∞∑
j=0

LjB
jC2

∞∑
i=0

eA2hiBiR
(h)
n,2

=
∞∑
j=0

K̃jB
jC1R

(h)
n,1 +

∞∑
i=0

k∑
j=0

LjB
jC2eA2h(i−j)Bi−jR

(h)
n,2

=
∞∑
j=0

K̃jB
jC1R

(h)
n,1 +

∞∑
j=0

j∑
k=0

LkC2eA2h(j−k)BjR
(h)
n,2

=
∞∑
j=0

(
K̃jC1B

j
∑j

k=0 LkC2eA2h(j−k)Bj
)(R(h)

n,1

R
(h)
n,2

)

=
∞∑
j=0

(
K̃jC1B

j
∑j

k=0 LkC2eA2h(j−k)Bj
)
R(h)
n , n ∈ N.

We determine the matrix coefficients K̃i in the subsequent considerations. It can

easily be seen that k̃(0) = K̃0 = 0. By rearranging (4.45) we obtain k(z)− k(1)z =

(1− z)[Id − k̃(z)], which is equivalent to

(1− z)

[
Id −

∞∑
i=1

K̃iz
i

]
=

(
Id − C

∞∑
i=1

(eAh −K(h)C)i−1K(h)zi

)
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−

(
Id − C

∞∑
i=1

(eAh −K(h)C)i−1K(h)

)
z

and thus by comparison of the coefficients we obtain

z1 : −CK(h) − Id + C

∞∑
i=1

(
eAh −K(h)C

)i−1
K(h) = −Id − K̃1

⇒ K̃1 = C

∞∑
i=2

(
eAh −K(h)C

)i−1
K(h),

z2 : −C
(
eAh −K(h)C

)
K(h) = K̃2 − K̃1

⇒ K̃2 = C
∞∑
i=3

(
eAh −K(h)C

)i−1
K(h),

...

zj : −C
(
eAh −K(h)C

)j−1
K(h) = K̃j − K̃j−1

⇒ K̃j = C
∞∑

i=j+1

(
eAh −K(h)C

)i−1
K(h), for j ≥ 1.

This concludes the proof.

We already have seen that the linear innovations are stationary. We investigate now

the ergodicity of the innovations and sum up useful properties of the linear innovation

sequence in the next proposition. These enable us in the next chapter to derive limit

results necessary for the theoretical foundation of the quasi maximum likelihood

estimation.

Proposition 4.4.8

The linear innovations ε(h) given by (4.33) are a stationary, ergodic and uncorrelated

sequence. Furthermore, the linear innovations ε(h) have finite second moments.

Proof. As already mentioned ε(h) is stationary because all other terms appearing in

(4.46) are stationary. For the ergodic property we first note R
(h)
1 is an i.i.d. sequence

and Y
(h)

2 is ergodic, which was already shown in Schlemm and Stelzer [91]. Then,

the vector process

(Z(h)
n )n∈N =

(
Y

(h)
n,2

C1R
(h)
n,1

)
n∈N

is obviously stationary and ergodic. Since, we can define a measurable function f
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such that

ε(h)
n = f(Z(h)

n ), n ∈ N

we obtain that ε(h) is ergodic with Bradley [16], Proposition 2.10 (ii). Note that we

could have proved stationarity of the linear innovations ε(h) using the same arguments

as for the ergodicity.

Recall that |λmax(eAh − K(h)C)| < 1 holds and the form of the transfer function

(4.37). Hence, the existence of second moments of the linear innovations ε(h) follows

directly from the finite second moments of the driving Lévy process and the fact that

the transfer function k(z) has exponentially decaying coefficients.

All remaining assertions follow by Hannan and Deistler, [46], Chapter 4, and Brockwell

and Davis, [20], Chapter 12.

Note that if we have a Lévy process consisting only of a Brownian motion, the noise

is Gaussian. This even implies that the linear innovations are a sequence of i.i.d.

random variables.

Due to the representations and results on the linear innovations ε(h) and the sampled

process Y (h) in this section we are able to derive several asymptotic results later

on. Not only does a law of large numbers for the innovations hold, but we have

in particular a functional central limit theorem and thus weak convergence to a

stochastic integral due to the integrated part of Y (h). These weak convergence results

are the key results enabling us to derive all necessary asymptotic results, in order

to prove the consistency of the step-wise quasi maximum likelihood estimator and

derive the asymptotic distribution in Chapter 5. For a profound derivation of the

auxiliary asymptotic results we refer to Appendix 5.8.

4.5. Conclusion

Many time series do not behave in a stationary way, e.g. financial time series

data. Hence, non-stationary models are of particular interest in order to model such

behavior. One particular class of non-stationary processes are cointegrated models.

We extended in this chapter existing continuous-time cointegrated models to the

general Lévy driven MCARMA case.

Moreover, we have seen in this section a type of Johansen-Granger Representation

Theorem characterizing cointegration. We considered the cointegrated Lévy driven

MCARMA process from two different perspectives. On the one hand, we used the
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representation with the autoregressive and moving average polynomial and on the

other hand, the state space representation. In the first case we characterized the

cointegration property in terms of certain matrix coefficients. In contrast, a state

space model is cointegrated if the system matrix A has several eigenvalues equal to

zero. This leads into a decoupled state space system, where the integrated part is

decoupled of the stationary part. The derived representation is very flexible since

we can freely model these two parts. This has the advantage that we can make a

restriction to these parts only and can find very easily a unique parametrization.

Above all, we investigated the probabilistic properties of the cointegrated process.

Furthermore, the solution of the cointegrated state space model is a sum of a Lévy

process and a stationary MCARMA process. Hence, this representation enables to

use the properties of the stationary MCARMA process. This representation is a

continuous-time analogue to the representation in the discrete-time case given in the

Johansen-Granger Representation Theorem. Besides, the cointegration space can be

easily recovered from this representation. We investigated the representation and

probabilistic properties of the sampled process, which inherits many properties from

the continuous-time cointegrated MCARMA process.

Last but not least, we showed the applicability of the Kalman filter in the non-

stationary setting with unit roots. By means of the Kalman filter, we obtained the

linear innovations ε(h) of the discrete observations Y (h) and derived a error correction

representation for the linear innovations which resembles the classical error correction

form of cointegrated processes, i.e. we have ε
(h)
n = ΠY

(h)
n−1 + k(B)∆Y

(h)
n . Furthermore,

we showed that the cointegration information is preserved in the filtered model. To

be precise the matrix Π is singular and contains the cointegration space and thus the

cointegration rank.

4.6. Appendix: Derivation of the Kalman Filter for State

Space Models with Unit Roots

We are going use the notation of Schlemm and Stelzer [91] in the succeeding part,

where we derive the Kalman filter for a cointegrated state space model. The stan-

dard approach does not work here since the continuous cointegrated model is only

semistable and not asymptotically stable. This property transfers to the discretised

process. Hence, we have to check the applicability of the Kalman filter first. For an

introduction to Kalman Filtering and Linear State Space Models see e.g. Anderson

and Moore [3] or Hannan and Deistler [46].
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Before we can use the properties of the Kalman filter, we have to check if the Kalman

filter is applicable in this setting. Due to the unit roots we have to check under which

additional assumptions the standard framework of the Kalman filter works. As we

will see in this section, we have to initialize the Kalman filter with a positive definite

matrix. Moreover, we have that under standard assumption also the convergence

of the Kalman filter for the cointegrated model holds. However, we do not verify

the results for the special form the cointegrated model takes. Instead, we consider a

more general state space model which includes the model considered in Chapter 5.

Definition 4.6.1

An Rd-valued discrete-time linear stochastic state space model (F,H, Z,W )

of dimension N is characterized by a strictly stationary Rp+d-valued sequence (ZT WT)T

with zero mean and finite covariance matrix

E

[(
Zn

Wn

)(
ZT
n WT

n

)]
= δm,n

(
Q 0

0 R

)
, n,m ∈ Z, (4.48)

for some matrices Q ∈ S+
p (R), R ∈ S++

d (R) or R ≡ 0d×d; a state transition matrix

F ∈MN (R); and an observation matrix H ∈Md,N (R). It consist of a state equation

Xn = FXn−1 + ΓZn−1, n ∈ Z (4.49a)

and an observation equation

Yn = HXn +Wn, n ∈ Z, (4.49b)

where Γ ∈ MN,p. The RN -valued autoregressive process X = (Xn)n∈Z is called the

state vector process, and Y = (Yn)n∈Z is the output process.

Note that the concept of observability and controllability are the same as in the

continuous time case. The linear system (4.49) is observable if the observability

matrix OHF has full rank. Observability guarantees that we can reconstruct the

state vector Xn given the observations Yn, . . . , Yn+N−1.

The same holds for controllability, where the linear system (4.49) is controllable if

the controllability matrix CFΓ has full rank. Controllability guarantees that for a

fixed value Xn we can reach any arbitrary specified value X∗ at time point n+N by

designing a certain input sequence for which we obtain the required terminal state.

We give now the analogue definition of minimality for the discrete-time case (c.f.

Definition 4.3.4).
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Definition 4.6.2

Let k ∈ Md,m(R{z}) be a rational matrix function. A matrix triple (F,Γ, H) is

called an algebraic realization of k of dimension N if k(z) = H(zIN − F )−1Γ,

where F ∈MN(R), Γ ∈MN,p(R) and H ∈Md,N(R). The matrix triple (F,Γ, H) is

called minimal if there exists no other algebraic realization (F̃ , Γ̃, H̃) with dimension

smaller than N .

This is the state space equivalent to left coprimeness for VARMA processes. Mini-

mality can be characterized by observability and controllability, which is stated in

the next theorem.

Theorem 4.6.3 (Hannan and Deistler (1988), Theorem 2.3.3.)

The linear system (4.49) is minimal if it is controllable and observable, i.e.

rank CFΓ = rankOHF = N. (4.50)

In order to prove the results in this section we postulate a number of assumptions.

Assumption K1

The initial state X0 is independent of Z and W , i.e. E(X0Z
T
n ) = 0 and E(X0W

T
n ) = 0

for all n.

The formal derivation of the Kalman filter, in the case of R ∈ S++
d (R), can be found

e.g. in Harvey [48] or Chui and Chen [26]. In the case Gaussian case we derive the

optimal minimum mean-square error estimator, whereas in the non-Gaussian case

the Kalman filter is derived as the best linear estimator.

Normally in the Kalman filter setting one has the following results (see e.g. Brockwell

and Davis [20], Proposition 12.2.3, or Hamilton [45], Proposition 13.2). The optimal

linear filter for the system (4.49) is given by

X̂n+1 =(F −KnH)X̂n +KnYn, X̂0 = x0, (4.51)

where the Kalman gain matrix Kn satisfies

Kn :=FΩnH
T[HΩnH

T +R]−1 ∈MN,d(R) (4.52)

and Ωn satisfies the matrix Riccati difference equation

Ωn+1 =FΩnF
T − FΩnH

T(HΩnH
T +R)−1HΩnF

T + ΓQΓT ∈ S+
N(R). (4.53)
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If Ωn converges for n → ∞, then the limiting solution Ω satisfies the following

algebraic Riccati equation obtained from (4.53)

Ω =FΩFT − FΩHT(HΩHT +R)−1HΩFT + ΓQΓT ∈ S++
N (R) (4.54)

and the steady state Kalman gain matrix K is given by

K :=FΩHT[HΩHT +R]−1 ∈MN,d(R). (4.55)

However, for R ≡ 0d×d some inverses above might not be well defined. Since we have

not found a derivation of the Kalman filter for the case of R ≡ 0d×d in the literature,

without the problem of singular matrices (compare Hamilton [45], Proposition 13.1

and 13.2), we present a derivation in the subsequent part in order to validate the

results we just presented in the last few lines for the cointegrated setting.

We follow Chui and Chen [26] and adapt their proofs to our setting in order to

be able to work with the derived state space form in the MCARMA setting (c.f.

Proposition 4.4.2).

The Kalman filter minimizes the mean square error of the estimated parameter

vectors. In particular, the Kalman filter is the best estimator in the Gaussian case

among all filters. Nevertheless, if the noise is non-Gaussian, it is the best linear

filter among all linear filters, i.e. a non-linear estimator might perform better (c.f.

Anderson and Moore [3], Section 5.4).

Assumption K2

Let R ≡ 0d×d and ΓQΓT ∈ S++
N (R) , i.e. ΓQΓT is positive-definite.

The a priori and a posteriori estimator of Xn in the Gaussian (respectively non-

Gaussian) setting are given by

X̂n|n−1 =E[Xn|Y0, . . . , Yn−1](= Pn−1Xn),

X̂n|n =E[Xn|Y0, . . . , Yn](= PnXn)

and the error of the estimation is given by the error covariance matrix

Ωn+1,n =E
[
(Xn+1 − X̂n+1)(Xn+1 − X̂n+1)T|Y0, . . . , Yn

]
.

For reasons of brevity we write Ωn := Ωn,n−1 and X̂n := X̂n|n.
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The Kalman filtering equations are given by (see e.g. Anderson and Moore [3])

Ω0,−1 = Var(X0)

Ωn+1,n = F [Ωn,n−1 − Ωn,n−1H
T(HΩn,n−1H

T)−1HΩn,n−1]FT + ΓQΓT

= FΩn,nF
T + ΓQΓT

Ωn,n = Ωn,n−1 − Ωn,n−1H
T(HΩn,n−1H

T)−1HΩn,n−1

X̂0|−1 = E[X0]

X̂n+1|n = (F −KnH)X̂n|n−1 +KnYn = FX̂n|n

X̂n|n = X̂n|n−1 + Ωn,n−1H
T(HΩn,n−1H

T)−1(Yn −HX̂n|n−1)

Kn = Ωn,n−1H
T(HΩn,n−1H

T)−1,

(4.56)

where Kn is the so-called Kalman gain matrix.

In order to guarantee well-defined Kalman filtering equations we need the following

assumptions.

Assumption K3

Let H be of full rank and Ω0 be positive definite.

Then HΩ0H
T is non-singular. Likewise, we show later that HΩnH

T is non-singular

for all n ∈ N, hence the Kalman gain matrix and the Riccati equation are well-defined.

The recursion for the covariance Ωn is given by using the Kalman filtering equations

Ωn = FΩn−1,n−1F
T + ΓQΓT

= (F −Kn−1H)Ωn−1,n−2F
T + ΓQΓT (4.57)

= (F − FΩn−1,n−2H
T(HΩn−1,n−2H

T)−1H)Ωn−1,n−2F
T + ΓQΓT

= (F − FΩn−1H
T(HΩn−1H

T)−1H)Ωn−1F
T + ΓQΓT,

then we define analogous to Chui and Chen

Ψ(T ) := (F − FTHT(HTHT)−1H)TFT + ΓQΓT. (4.58)

Hence, we have for Ωn the discrete-time Riccati difference equation Ωn = Ψ(Ωn−1)

and the discrete-time algebraic Riccati equation (DARE) Ω = Ψ(Ω). We can rewrite

the Riccati equation in the following form using (4.57)

Ωn =(F −Kn−1H)Ωn−1F
T + ΓQΓT

=(F −Kn−1H)Ωn−1(F −Kn−1H)T + ΓQΓT
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+ (F −Kn−1H)Ωn−1(Kn−1H)T

=(F −Kn−1H)Ωn−1(F −Kn−1H)T + ΓQΓT (4.59)

The last equation holds because (F −Kn−1H)Ωn−1(Kn−1H)T is zero, which can be

seen by inserting the definition of Kn.

In order to show the convergence some auxiliary results are necessary, which are

adapted versions of Lemmas from Chui and Chen [26]. The first Lemma provides an

upper bound for the covariance Ωn.

Lemma 4.6.4 (c.f. Chui and Chen (2009), Lemma 6.1)

Suppose that the linear system (4.49) is observable. Then there exists a non-negative

definite symmetric constant matrix W independent of the positive-definite initial

value Ω0 such that for all n ≥ N + 1

Ωn ≤ W.

Proof. We define 〈x,w〉 := Cov(x,w) = E[(x − E[x])(w − E[w])T] and ‖w‖2
N :=

〈w,w〉 := ‖w‖N‖w‖TN . Let X̂n−1|n−1 be the (linear) minimum variance estimate of

Xn−1 and

Ωn =‖Xn − X̂n|n−1‖2
N

=‖FXn−1 + ΓZn−1 − FX̂n−1|n−1‖2
N

=F‖Xn−1 − X̂n−1|n−1‖2
NF

T + ΓQΓT,

which holds due to the independence of Xn−1 − X̂n−1|n−1 and ΓZn−1. Since X̂n−1|n−1

is the (linear) minimum variance estimate, we have

‖Xn − X̂n−1|n−1‖2
N ≤ ‖Xn − X̃n−1‖2

N

for any arbitrary unbiased estimate X̃n−1 of Xn−1. The observation matrix has full

rank, hence OT
HFOHF is a non-singular matrix given by

OT
HFOHF =

N−1∑
i=0

(FT)iHTHF i.

Choose

X̃n−1 :=FN(OT
HFOHF )−1

N−1∑
i=0

(FT)iHTYn−N−1+i
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=FN(OT
HFOHF )−1

N−1∑
i=0

(FT)iHT

(
HF iXn−N−1 +

i−1∑
j=0

HF jΓZi−1−j

)

=FNXn−N−1 + FN(OT
HFOHF )−1

N−1∑
i=0

(FT)iHT

(
i−1∑
j=0

HF jΓZi−1−j

)
,

for n ≥ N + 1. Then we obtain

Xn−1 − X̃n−1

=
N−1∑
i=0

F iΓZN−1+i − FN(OT
HFOHF )−1

N−1∑
i=0

(FT)iHT

(
i−1∑
j=0

HF jΓZi−1−j

)
.

Obviously, we have that ‖Xn − X̃n−1‖2
N is independent of n for all n ≥ N + 1. Thus,

Ωn = F‖Xn−1 − X̂n−1|n−1‖2
NF

T + ΓQΓT

≤ F‖Xn−1 − X̃n−1|n−1‖2
NF

T + ΓQΓT

≤ F‖XN − X̃N |N‖2
NF

T + ΓQΓT =: W, for all n ≥ N + 1.

Additionally, W is independent of the initial condition Ω0 = Ω0,−1 = ‖X0 − X̂0|−1‖2
N .

Thus, we have shown all claims.

The next Lemma states, that the Riccati equation satisfies an ordering property. The

proof can be found in Anderson and Moore [3] or Chui and Chen [26].

Lemma 4.6.5 (Chui and Chen (2009), Lemma 6.2)

If A and B are both positive-definite and symmetric with A ≥ B, then Ψ(A) ≥ Ψ(B)

for Ψ(·) as in (4.58).

Due to the ordering property we can guarantee that the Riccati difference equation

will be well-defined.

Lemma 4.6.6 (c.f. Chui and Chen (2009), Lemma 6.3)

Suppose that the linear system (4.49) is observable. Then with the initial condition

Ω0 = Ω0,−1 = ΓQΓT, the sequence {Ωn} converges componentwise to some symmetric

positive definite matrix Ω > 0 as n → ∞. Further, we have that Ωn is positive

definite for all n ∈ N and thus the Riccati difference equation is always well-defined.

Proof. Since by Assumption K2 Ω0 = ΓQΓT > 0 holds and by (4.59), we have

Ω1 = (F −K0H)Ω0(F −K0H)T + ΓQΓT > 0.
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Further, we have

Ω1 − Ω0 = (F −K0H)Ω0(F −K0H)T + ΓQΓT − ΓQΓT ≥ 0.

Since Ω1 and Ω0 are symmetric, we have by Lemma 4.6.5 that

Ωn+1 ≥ Ωn > 0 for all n = 0, 1, . . . .

Hence, Ωn is monotonic nondecreasing and bounded by the matrix W due to

Lemma 4.6.4. Therefore, we have for any y ∈ RN

0 < yTΩ0y ≤ yTΩny ≤ yTWy,

thus the real-valued sequence {yTΩny} is also bounded and monotonic nondecreasing

and converges therefore to some positive constant. Choose y = [0 . . . 0 1 0 . . . 0]T,

where the ith component is non-zero. It follows that for Ωn = [Ω
(n)
ij ]

yTΩny = Ω
(n)
ii → pii as n→∞,

where pii > 0. Now, choose y = [0 . . . 0 1 0 . . . 0 1 0 . . . 0]T, where the ith and jth

component is non-zero. Then we have

yTΩny = Ω
(n)
ii + Ω

(n)
ij + Ω

(n)
ji + Ω

(n)
jj

= Ω
(n)
ii + 2Ω

(n)
ij + Ω

(n)
jj → q as n→∞,

where q > 0. Thus

Ω
(n)
ij →

1

2
(q − Ωii − Ωjj) as n→∞,

i.e. Ωn → Ω. Since Ωn is symmetric and positive definite, so is Ω.

Now, we have the limit of the Kalman gain matrix given by Lemma 4.6.6

K = lim
n→∞

Kn = FΩHT(HΩHT)−1. (4.60)

The analogue alternative representation for the (DARE) of an observable system is

given by taking the limit in (4.59). We have

Ω = (F −KH)Ω(F −KH)T + ΓQΓT, (4.61)

where K was defined in (4.60).
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Lemma 4.6.7

Suppose that the linear system (4.49) is observable. Let the initial matrix be Ω0 =

ΓQΓT and Ω be defined as in Lemma 4.6.6. Then all eigenvalues of (F −KH) must

be inside the unit circle and consequently the Kalman filter is asymptotically stable.

Proof. Let x ∈ CN denote an eigenvector of (F −KH)T and λ its eigenvalue, then

(F −KH)Tx = λx. (4.62)

Then

x∗(F −KH)Ω(F −KH)Tx = [(F −KH)Tx]∗Ω[(F −KH)Tx]

= [λx]∗Ω[λx]

= |λ|2x∗Ωx. (4.63)

Now, we multiply the (DARE) (4.61) from left with x∗ and from right with x, we

obtain

x∗Ωx = |λ|2x∗Ωx+ x∗ΓQΓTx,

which is equivalent to

(1− |λ|2)x∗Ωx = x∗ΓQΓTx. (4.64)

Since ΓQΓT > 0 by Assumption K2, the right-hand side of (4.64) is positive. Further,

according to Lemma 4.6.6 Ω is positive definite. In order to be well-defined |λ| < 1

must hold, i.e. all eigenvalues of (F −KH) must be inside the unit circle.

Lemma 4.6.8

Suppose that the linear system (4.49) is observable. For any positive definite sym-

metric initial matrix Ω0, we have Ωn > 0 and thereby Ωn+1 is well defined for all

n ∈ N.

Proof. According to (4.59) we have by Bernstein [9], Proposition 8.1.2., that

Ω1 = (F −K0H)Ω0(F −K0H)T + ΓQΓT > 0.

Again, since ΓQΓT > 0 and (F − Kn−1H)Ωn−1(F − Kn−1H)T ≥ 0, we have by

induction that Ωn > 0 and Ωn is well-defined for all n ∈ N for an arbitrary positive
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symmetric initial matrix Ω0.

Lemma 4.6.9 (c.f. Chui and Chen (2009), Lemma 6.4)

Suppose that the linear system (4.49) is observable and Ω defined as in Lemma 4.6.6.

Then the following relation

Ω− Ωn = (F −KH)(Ω− Ωn)(F −Kn−1H)T (4.65)

holds for all n = 1, 2, . . ., and any positive-definite symmetric initial condition Ω0.

Proof. By Lemma 4.6.8 all equations in the following proof are well defined. Let

Ω0 be an arbitrary symmetric positive definite initial matrix. Since Kn−1 =

FΩn−1H
T(HΩn−1H

T)−1 and ΩT
n−1 = Ωn−1, the matrix Kn−1HΩn−1F

T is non-negative

definite and symmetric. Using (4.58), we have

Ω− Ωn = Ψ(Ω)−Ψ(Ωn−1)

= (FΩFT −KHΩFT)− (FΩn−1F
T −Kn−1HΩn−1F

T)

= F (Ω− Ωn−1)FT −KHΩFT + FΩn−1H
TKT

n−1. (4.66)

Now,

(F −KH)(Ω− Ωn−1)(F −Kn−1H)T

= F (Ω− Ωn−1)FT −KHΩFT + FΩn−1H
TKT

n−1 +Re, (4.67)

where

Re = KHΩn−1F
T − FΩHTKT

n−1 +KHΩHTKT
n−1 −KHΩn−1H

TKT
n−1.

(4.68)

It remains to show that Re = 0, then (4.66) and (4.67) are equal and the result

follows. According to the definition of the Kalman gain matrix Kn−1, we have

Kn−1(HΩn−1H
T) = FΩn−1H

T (4.69)

and hence, taking n→∞ with initial condition Ω0 = ΓQΓT we gain this equation

also for the limit

KHΩHT = FΩHT. (4.70)
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Lastly, if we insert (4.69) and (4.70) in (4.68), we have proven that Re = 0.

If we use (4.65) repeatedly, we obtain

Ω− Ωn = (F −KH)n−N−1(Ω− ΩN+1)BT
n , (4.71)

where

Bn = (F −Kn−1H) · · · (F −KN+1H), (4.72)

for n = N + 2, N + 3, . . . and Bn+1 = IN .

Lemma 4.6.10 (Chui and Chen (2009), Lemma 6.7)

Suppose that the linear system (4.49) is observable. Then

BnB
T
n ≤M, n ≥ N + 1, (4.73)

for some constant matrix M independent of Ω0. Consequently, if Bn = [b
(n)
ij ], then it

holds that |b(n)
ij | ≤ m, for some constant m ∈ R and for all i, j and n.

Proof. According to Lemma 4.6.4, Ωn ≤ W for n ≥ N + 1. Using (4.59) we have

W ≥ Ωn = (F −Kn−1H)Ωn−1(F −Kn−1H)T + ΓQΓT

≥ (F −Kn−1H)Ωn−1(F −Kn−1H)T

≥ (F −Kn−1H)(F −Kn−2H)Ωn−2(F −Kn−2H)T(F −Kn−1H)T

≥ . . .

≥ BnΩN+1B
T
n . (4.74)

Since ΩN+1 is real, symmetric and by Lemma 4.6.8 positive definite, all its eigenvalues

are positive real numbers. Let λ
(N+1)
min be the smallest eigenvalue of ΩN+1, hence

according to Bernstein [9], Corollary 8.4.2, we have ΩN+1 ≥ λ
(N+1)
min IN . All in all, we

obtain

W ≥ Bnλ
(N+1)
min INB

T
n = λ

(N+1)
min BnB

T
n .

Choosing M :=
(
λ

(N+1)
min

)−1

W gives us an upper bound.

The results of Lemma 4.6.4, Lemma 4.6.5 and Lemma 4.6.6 guarantee the convergence

of the Kalman filter for the special choice Ω0 = ΓQΓT. In addition, Lemma 4.6.7
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gives us the asymptotic stability of the Kalman filter. In order to relax the restriction

on the initial matrix we use Lemma 4.6.8 to ensure all equations are well-defined.

Eventually, Lemma 4.6.9 and Lemma 4.6.10 give us the convergence for arbitrary

symmetric positive definite initial matrices. Finally, we have that Bn is bounded

by Lemma 4.6.10 and Lemma 4.6.7 guarantees that the matrix (F − KH)n−N−1

converges to zero as n→∞ and thus Ωn → Ω as n→∞.

Theorem 4.6.11 (c.f. Chui and Chen (2009), Theorem 6.1)

Let the linear system (4.49) be observable and Assumption K1, Assumption K2 and

Assumption K3 hold. Then, for any initial state X0 such that Ω0 = Ω0,−1 = Var(X0)

is a positive definite and symmetric matrix, Ωn = Ωn,n−1 → Ω as n→∞.

Moreover, Ω > 0 is symmetric and exists for any arbitrary initial value X0. Further-

more, the order of convergence is geometric, that is,

tr(Ωn − Ω)(Ωn − Ω)T ≤ Crn, (4.75)

where 0 < r < 1 and C > 0, independent of n. Consequently,

tr(Kn −K)(Kn −K)T ≤ Crn. (4.76)

Proof. In order to abbreviate the notations, we define F̃ := (F −KH). Using (4.71)

and Lemma 4.6.10 gives us

(Ωn − Ω)(Ωn − Ω)T = F̃ n−N−1(ΩN+1 − Ω)BnB
T
n (ΩN+1 − Ω)(F̃ n−N−1)T

≤ F̃ n−N−1M̃(F̃ n−N−1)T,

for some positive definite symmetric constant matrix M̃ = (ΩN+1−Ω)M(ΩN+1−Ω).

Furthermore, we have F̃ n → 0 as n → ∞ because Lemma 4.6.7 guarantees that

all eigenvalues lie inside the unit disc. Next, Lemma 4.6.8 gives us that Ω > 0,

symmetric and exists for an arbitrary positive definite matrix Ω0. By Bernstein [9],

Fact 8.12.15., and Chui and Chen [26], Lemma 1.10, we have

tr(Ωn − Ω)(Ωn − Ω)T ≤ tr F̃ n−N−1(F̃ n−N−1)T · tr M̃ ≤ Crn, (4.77)

where 0 < r < 1 and C is independent of n and depends only on M̃ . Further, we
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have

Kn −K =F (Ωn − Ω)HT(HΩnH
T)−1

+ FΩHT(HΩnH
T)−1[H(Ω− Ωn)HT](HΩHT)−1.

And therefore we have

(Kn −K)(Kn −K)T ≤2[F (Ωn − Ω)HT(HΩnH
T)−1][F (Ωn − Ω)HT(HΩnH

T)−1]T

+ 2[FΩHT(HΩnH
T)−1[H(Ω− Ωn)HT](HΩHT)−1]

· [FΩHT(HΩnH
T)−1[H(Ω− Ωn)HT](HΩHT)−1]T.

Additionally, we have

Ω1 = (F −K0H)Ω0(F −K0H)T + ΓQΓT ≥ ΓQΓT

and analogous Ωn ≥ ΓQΓT for n ≥ 1. As a consequence, we have

HΩnH
T ≥ HΓQΓTHT

and

(HΩnH
T)−1 ≤ (HΓQΓTHT)−1.

According to Chui and Chen [26], Lemma 1.9,

tr
(
(HΩnH

T)−1(HΩnH
T)−1

)
≤
(
tr(HΓQΓTHT)−1

)2

and again as in (4.77) we get

tr(Kn −K)(Kn −K)T ≤2 tr(Ωn − Ω)(Ωn − Ω)T trFFT trHTH(tr(HΓQΓTHT)−1)2

+ 2 tr ΩΩT trFFT trHTH(tr(HΓQΓTHT)−1)2 trHHT

· tr(Ω− Ωn)(Ω− Ωn)T trHTH tr(HΩHT)−1(HΩHT)−1

≤C1 tr(Ωn − Ω)(Ωn − Ω)T

≤Crn,

where C1 and C are constants, independent of n.

We obtain the steady-state (limiting) Kalman filter by replacing the Kalman gain

matrix Kn by its limit version K, therefore the prediction-correction equations are
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then given by

X0|−1 = E[X0]

Xn+1|n = (F −KH)Xn|n−1 +KYn = FXn|n

Xn|n = Xn|n−1 + ΩHT(HΩHT)−1(Yn −HXn|n−1)

K = FΩHT(HΩHT)−1.

(4.78)

Theorem 4.6.12 (c.f. Chui and Chen (2009), Theorem 6.2)

Let the linear system (4.49) be observable and Assumption K1, Assumption K2 and

Assumption K3 hold. Then

lim
n→∞

‖Xn −Xn,n−1‖2
N = Ω = lim

n→∞
‖Xn − X̂n,n−1‖2

N (4.79a)

and

lim
n→∞

‖Xn −Xn,n‖2
N = Ω− ΩHT(HΩHT)−1HΩ = lim

n→∞
‖Xn − X̂n,n‖2

N . (4.79b)

Proof. The right hand side of (4.79a) is obvious and the right hand side of (4.79b)

follows directly from the definition.

lim
n→∞

‖Xn − X̂n‖2
N = lim

n→∞
Ωn,n

= lim
n→∞

Ωn,n−1 − Ωn,n−1H
T(HΩn,n−1H

T)−1HΩn,n−1

= Ω− ΩHT(HΩHT)−1HΩ.

For the left hand side of (4.79a) we need first some calculations. We have

Xn −Xn,n−1 = (FXn−1 + ΓZn−1)− ((F −KH)Xn−1,n−2 +KYn−1)

= (F −KH)Xn−1 + ΓZn−1 − (F −KH)Xn−1,n−2

= (F −KH)(Xn−1 −Xn−1,n−2) + ΓZn−1.

Hereby, we obtain with the independence

‖Xn −Xn,n−1‖2
N =(F −KH)‖Xn−1 −Xn−1,n−2‖2

N(F −KH)T + ΓQΓT.

Subtracting Ω from the previous result together with (4.61) gives us

‖Xn −Xn,n−1‖2
N − Ω =(F −KH)‖Xn−1 −Xn−1,n−2‖2

N(F −KH)T + ΓQΓT − Ω
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=(F −KH)
(
‖Xn−1 −Xn−1,n−2‖2

N − Ω
)

(F −KH)T.

Iterating this procedure leads to

‖Xn −Xn,n−1‖2
N − Ω = (F −KH)n

(
‖X0 −X0,−1‖2

N − Ω
)

[(F −KH)T]n

Since the eigenvalues of the matrix (F − KH) lie in the unit circle, the matrix

(F −KH)n tends to zero for n→∞ and finally we have

lim
n→∞

‖Xn −Xn,n−1‖2
N = Ω. (4.80)

For the left hand side (4.79b) we have by (4.78)

Xn −Xn,n = (Xn −Xn,n−1)− ΩHT(HΩHT)−1(Yn −HXn|n−1)

=
(
IN − ΩHT(HΩHT)−1H

)
(Xn −Xn|n−1).

and consequently

‖Xn −Xn,n‖2
N =

(
IN − ΩHT(HΩHT)−1H

)
‖Xn −Xn|n−1‖2

N

·
(
IN − ΩHT(HΩHT)−1H

)T
and by taking the limit using the result (4.80).

lim
n→∞

‖Xn −Xn,n‖2
N =

(
IN − ΩHT(HΩHT)−1H

)
Ω
(
IN − ΩHT(HΩHT)−1H

)T
= Ω + ΩHT(HΩHT)−1HΩHT(HΩHT)−1ΩH − 2ΩHT(HΩHT)−1ΩH

= Ω− ΩHT(HΩHT)−1ΩH,

which completes the proof of this theorem.

Theorem 4.6.13 (c.f. Chui and Chen (2009), Theorem 6.3)

Let the linear system (4.49) be observable and Assumption K1, Assumption K2 and

Assumption K3 hold.

Then there exist a real number r, with 0 < r < 1 and a positive constant C,

independent of n, such that

tr ‖X̂n −Xn‖2
N ≤ Crn. (4.81)

Proof. The proof is an adapted version of Chui and Chen [26], where R ≡ 0d×d. Let

Gn and G be defined by Gn = ΩnH
T(HΩnH

T)−1 and G := ΩHT(HΩHT)−1 then we
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have

X̂n −Xn = (IN −GH)F (X̂n−1 −Xn−1)

+ (Gn −G)(HF (Xn−1 − X̂n−1) +HΓZn−1).

Since 〈Zn−1, X̂n − Xn〉 = 0 and 〈Zn−1, Xn − X̂n〉 = 0, we have by writing shortly

Ã := (IN −GH)F that

‖X̂n −Xn‖2
N =Ã‖X̂n−1 −Xn−1‖2

N Ã
T

+ (Gn −G)(HF‖Xn−1 − X̂n−1‖2
NF

THT +HΓQΓTHT)(Gn −G)T

+ Ã〈X̂n−1 −Xn−1, Xn−1 − X̂n−1〉FTHT(Gn −G)T

+ (Gn −G)HF 〈Xn−1 − X̂n−1, X̂n−1 −Xn−1〉ÃT

and repeating this n− 1-times we obtain

‖X̂n −Xn‖2
N

= Ãn‖X̂0 −X0‖2
N(Ãn)T

+
n−1∑
i=0

Ãi(Gn−i −G)HF‖Xn−1−i − X̂n−1−i‖2
NF

THT(Gn−i −G)T(Ãi)T

+
n−1∑
i=0

Ãi(Gn−i −G)HΓQΓTHT(Gn−i −G)T(Ãi)T

+
n−1∑
i=0

Ãi+1〈X̂n−1−i −Xn−1−i, Xn−1−i − X̂n−1−i〉FTHT(Gn−i −G)TÃi

+
n−1∑
i=0

Ãi(Gn−i −G)HF 〈Xn−1−i − X̂n−1−i, X̂n−1−i −Xn−1−i〉(Ãi+1)T.

Furthermore, we have

0 ≤ 〈X̂j −Xj − (Xj − X̂j), X̂j −Xj − (Xj − X̂j)〉

= 〈X̂j −Xj, X̂j −Xj〉 − 〈X̂j −Xj, Xj − X̂j〉

− 〈Xj − X̂j, X̂j −Xj〉+ 〈Xj − X̂j, Xj − X̂j〉

and thus with Theorem 4.6.12, we obtain

〈X̂j −Xj, Xj − X̂j〉+ 〈Xj − X̂j, X̂j −Xj〉

≤ 〈X̂j −Xj, X̂j −Xj〉+ 〈Xj − X̂j, Xj − X̂j〉
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= 2‖Xj − X̂j‖2
N + ‖Xj −Xj‖2

N + 〈Xj −Xj, X̂j −Xj〉+ 〈X̂j −Xj, Xj −Xj〉

≤ 3‖Xj − X̂j‖2
N + 2‖Xj −Xj‖2

N

j→∞−→ 5(Ω− ΩHT(HΩHT)−1HΩ).

Therefore, it follows that the terms 〈X̂j −Xj, Xj − X̂j〉FTHT are componentwise

uniformly bounded.

Thus, we obtain Chui and Chen [26] Lemma 1.6, 1.7 and 1.10 as well as Theorem 4.6.11

tr
(
Ã〈X̂n−1−i −Xn−1−i, Xn−1−i − X̂n−1−i〉FTHT(Gn−i −G)T

+(Gn−i −G)HF 〈Xn−1−i − X̂n−1−i, X̂n−1−i −Xn−1−i〉Ã
)
≤ C1r

n−i+1
1 ,

for some r1, 0 < r1 < 1 and some positive constant C1, which is independent of n

and i. In the same manner it holds that

tr ‖X̂n −Xn‖2
N ≤ tr ‖X̂0 −X0‖2

NC2r
n
2 +

n−1∑
i=0

C3r
i
3C4r

n−i
4 +

n−1∑
i=0

C5r
i
5C1r1

n−i+1

≤p(n)rn6 ,

where 0 < r2, r3, r4, r5 < 1, r6 = max(r1, r2, r3, r4, r5) < 1, C2, C3, C4, C5 are positive

constants independent of i and n, and p(n) is a polynomial of n. Hence, there exists

a real number r, such that r6 < t < 1 and a positive constant C independent of n

satisfying p(n)
(
r6
r

)n ≤ C, where

tr ‖X̂n −Xn‖2
N ≤ Crn.

This completes the proof.

Finally, we have checked that the Kalman filter is applicable for the cointegrated

model, i.e. a model with unit roots. Hence, we can make use of its equations and

properties in Chapter 5.



CHAPTER 5

Asymptotic Inference of Cointegrated

Lévy Driven MCARMA Models

5.1. Introduction

This chapter forms the main part of this thesis and deals with the statistical inference

of the cointegrated Lévy driven MCARMA model. The step-wise quasi-maximum

likelihood estimator estimates the model parameters and thus also the cointegration

space using equidistant observations in discrete time. The estimation method works

not only for Gaussian MCARMA models, but also for more general Lévy driven

models.

A famous method for estimating the parameters of a cointegrated VAR(p) model is the

approach presented by Johansen [53] and [54] using a method of reduced rank regres-

sion. This method estimates the cointegration vectors, however, the parametrization

of the cointegration vectors is unrestricted. Furthermore, the Johansen test for the

cointegration rank is a direct implication of this estimation procedure. However,

the cointegration vectors are not unique and one gets nested models. Applying

such a method to the sampled cointegrated MCARMA model seems not applicable

since several assumptions of this procedure are not satisfied. For example we have

an infinite order error correction form. Moreover, identifiability would be an issue.

The estimation of cointegrated VARMA models in echelon form was presented by

Lütkepohl and Poskitt [64], where the identifiability problem is solved due to the

unique parametrization.
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Special cases of cointegrated MCARMA models were considered by Fasen [34], where

a multiple regression model is treated with multivariate Ornstein-Uhlenbeck processes

as integrated processes, and in Fasen [35], where the noise term is an MCARMA

process embedded in the cointegrated model observed at a high-frequency time

grid. Besides, statistical inference and identification of an ergodic continuously

observed Gaussian MCAR(1) process were considered in Kessler and Rahbek [57] and

observations at discrete time points in Kessler and Rahbek [58]. Kessler and Rahbek

solve for this simple cointegrated MCARMA model the identification and aliasing

problem and derive the asymptotic distribution of the co-integration parameters.

There exists several results for quasi-maximum likelihood estimation of stationary

processes. There is a connection of some of these results to our estimation method

for cointegrated MCARMA processes. Quasi-maximum likelihood estimation for

strongly mixing stationary ARMA processes is considered in Francq and Zaköıan [39],

Boubacar and Mäınassara [13] present an estimation procedure for weak VARMA

processes, however, they use the strong mixing assumption on the linear innovations.

As Schlemm and Stelzer [90] showed, this assumption is very difficult to verify in the

stationary MCARMA setting. However, in another work by Schlemm and Stelzer

[91] they show a quasi-maximum likelihood estimation, where the strongly mixing

assumption is made for the stationary process itself. This assumption is always

satisfied for stationary MCARMA processes due to a result by Marquardt and Stelzer

[69]. We capitalize on this result since the cointegrated MCARMA process is the

sum of a stationary MCARMA process, for which the strong mixing assumptions

hold, and a Lévy process. Since we use a step-wise estimation method, main ideas of

the estimation procedure for stationary MCARMA processes in Schlemm and Stelzer

[91] are used and adapted to our setting.

The idea of a step-wise estimation approach for integrated and cointegrated models

dates back to Saikkonen [85] and [86]. We customize this idea to the cointegrated

MCARMA model. The ideas of Saikkonen were also employed in the work of Bauer

and Wagner [7], who consider a cointegrated state space model in the discrete-time

framework. We state the log-likelihood function in Section 5.2 and separate the

log-likelihood function in the same way as the parameter space. To be more precise,

we split the parameter vector into two parts containing on the one hand the long-

run parameter and on the other hand the short-run parameter. Accordingly, the

log-likelihood function is separated in one part depending on all parameters and

the other only on the short-run parameters. This is the key idea to the step-wise

approach.
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As we need some kind of uniform convergence, we derive in Section 5.4 such results

using the closely related continuous weak convergence. The results of Section 5.4

are based on the asymptotic results derived in Appendix 5.8. However, we use the

concepts of continuous convergence in combination with a stochastic equicontinuity

condition in order to deal with the different rates of convergence occurring due to

the non-stationary setting.

A major problem arising in the estimation of multivariate continuous-time models is

the identifiability problem. The models can not only have many redundancies due to

a high dimension, but also they may be indistinguishable in the sampling procedure.

We overcome these problems in Section 5.3 and find sufficient conditions on the

parametrization in order to have a unique parameterizations, which is identifiable

from the discrete time observations. Furthermore, we immediately obtain a unique

basis of the cointegration space as well.

We prove in Section 5.5 the consistency of the quasi-maximum likelihood estimators.

Because we have different rates of convergence, we also have different orders of

consistency. The long-run parameter estimator is super-consistent, i.e. the estimator

converges in probability to the true value proportional to the inverse of the sample

size. Hence, it converges at a faster rate than the classical
√
n rate for stationary

estimators. We cannot show consistency of the short-run quasi-maximum likelihood

estimator without the knowledge of the consistency rate of the long-run quasi-

maximum likelihood estimator. Hence, we show the consistency result in three

steps:

1. Consistency of the long-run parameter estimator.

2. Order of consistency of the long-run parameter estimator.

3. Consistency of the short-run parameter estimator.

In the end, we derive the asymptotic distributions of the parameter estimators in

Section 5.6. The short-run parameter estimator is asymptotically normal, whereas

the long-run parameter estimator is asymptotically mixed normal. In order to prove

these result, we use a classical Taylor series expansion of the score vector. Thus,

we derive the asymptotic behavior of the score vector. Furthermore, we show that

the Hessian matrix converges to a block diagonal matrix which is positive definite.

Finally, we employ the continuous convergence and stochastic equicontinuity results

from Section 5.4 for the Taylor series expansion and thus derive the asymptotic

distribution of the estimators using the previous results of this chapters.
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5.2. Quasi-Maximum Likelihood Estimation

We estimate the model parameters via an adapted quasi-maximum likelihood estima-

tion method. In difference to the classical quasi-maximum likelihood approach, we

use a step-wise version. We state in this section most of the assumptions needed for

the estimation procedure and derive some properties of the sampled system which are

inherited from the assumptions on the continuous-time model. In particular, we show

a separation of the parameter space and accordingly for the log-likelihood function

with respect to the long-run and short-run parameters. This separation is the key

idea to prove later on the asymptotic normality and consistency of the estimators.

Before we start with the estimation procedure we briefly recall the definition and the

representation of a cointegrated MCARMA process. We refer to Definition 4.3.10 for

a profound definition of a cointegrated MCARMA process.

A cointegrated continuous-time linear state space model (A,B,C, L) driven by a

Lévy process L is given by the state equation

dX(t) = AX(t)dt+BdL(t)

and the observation equation

Y (t) = CX(t),

for t ≥ 0, where A ∈ RN×N , B ∈ RN×m and C ∈ Rd×N . The spectrum A satisfies

σ(A) ⊂ {(−∞, 0) + iR} ∪ {0} and the algebraic and geometric multiplicity of

the eigenvalue zero is c ≤ d. Assume that the m-dimensional Lévy process L

has mean zero, satisfies E‖L(1)‖2 < ∞ and has a non-singular covariance matrix

ΣL = EL(1)L(1)T. The solution (Y (t))t≥0 is then given by

Y (t) = C exp(At)X(0) + C

∫ t

0

exp(A(t− u))B dL(u)

for t ≥ 0. A minimal state space system (A,B,C, L) has due to Theorem 4.3.7 the

representation

Y (t) = C1X1(0) + C1B1L(t) + C2

∫ t

−∞
exp(A2(t− u))B2 dL(u).

The stationary part is abbreviated by

Y2(t) := C2

∫ t

−∞
exp(A2(t− u))B2 dL(u).
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Since we want to estimate the model parameters of the continuous-time model from

discrete time observations, we are interested in an representation of the process

observed at equidistant time points. The sampled version of this process is given, as

in Lemma 4.3.14, by the state space representation with state equation(
X

(h)
n,1

X
(h)
n,2

)
=

(
X

(h)
n−1,1

eA2hX
(h)
n−1,2

)
+

(
R

(h)
n,1

R
(h)
n,2

)
,

and the observation equation is given by

Y (h)
n = C1X

(h)
n,1 + C2X

(h)
n,2 , n ∈ N. (5.1)

The noise sequence (R
(h)
n )n∈N is an i.i.d. sequence given by

R(h)
n =

(
R

(h)
n,1

R
(h)
n,2

)
=

(
B1 (L(nh)− L((n− 1)h))∫ nh

(n−1)h
eA2(nh−u)B2 dL(u)

)
, n ∈ N

with mean zero and covariance matrix

Σ̃(h) = ER(h)
n R(h)T

n =

∫ h

0

(
B1ΣLB

T
1 eA2uB2ΣLB

T
1

B1ΣLB
T
2 eA

T
2u eA2uB2ΣLB

T
2 eA

T
2u

)
du. (5.2)

For some parameter space Θ ⊂ Rs, s ∈ N, we have for each ϑ ∈ Θ matrices

Aϑ ∈ MN(R), Bϑ ∈ MN,m(R), Cϑ ∈ Md,N(R) and a Lévy process Lϑ. Further,

we denote the true parameter vector with ϑ0. Let us now state some standard

assumptions.

Assumption M1

Assume that the cointegrated MCARMA process is driven by a Lévy process Lϑ

with mean zero and non-singular covariance matrix ΣL
ϑ = ELϑ(1)Lϑ(1)T. Assume

further that there exists a δ > 0 such that E‖Lϑ(1)‖4+δ <∞ .

Assumption M2

Assume that the matrix Aϑ has c eigenvalues equal to zero and the remaining

eigenvalues have strictly negative real parts for all ϑ ∈ Θ. Moreover, the matrix Cϑ

has full rank for all ϑ ∈ Θ.

At this point the cointegration rank needs to be known somehow beforehand. With

this knowledge we know the dimensions of the subsystems and are therefore able

to estimate the model adequately. In reality, it is necessary to estimate first the

cointegration rank r and then proceed as in the subsequent considerations.
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Assumption M3

The triplet (Aϑ, Bϑ, Cϑ) is minimal for all ϑ ∈ Θ with McMillan degree N .

Under Assumption M1 - Assumption M3 we also have the canonical form given in

Theorem 4.3.7. Hence, we can consider the decoupled matrices of the subsystems

(A2,ϑ, B1,ϑ, B2,ϑ, C1,ϑ, C2,ϑ, Lϑ) instead of (Aϑ, Bϑ, Cϑ, Lϑ), where the matrices have

the following dimensions A2,ϑ ∈ MN−c(R), B1,ϑ ∈ Mc,m(R), B2,ϑ ∈ Md−c,m(R),

C1,ϑ ∈Md,c(R) and C2,ϑ ∈Md,N−c(R) for all ϑ ∈ Θ. Additionally, we need to impose

the following rank condition on the parametrization.

Assumption M4

The matrices B1,ϑ and C1,ϑ have full rank c for all ϑ ∈ Θ.

As in Proposition 4.4.2 we have due to the properties of the Kalman filter the following

matrices depending now on the parameter vector ϑ:

The unique solution Ω
(h)
ϑ of the discrete-time algebraic Riccati equation

Ω
(h)
ϑ =eAϑhΩ

(h)
ϑ eA

T
ϑh − eAϑhΩ

(h)
ϑ CT

ϑ

(
CϑΩ

(h)
ϑ CT

ϑ

)−1
CϑΩ

(h)
ϑ eA

T
ϑh + Σ̃

(h)
ϑ

is used to calculate the steady-state Kalman gain matrix with respect to the parameter

ϑ ∈ Θ given by K
(h)
ϑ = eAϑhΩ

(h)
ϑ CT

ϑ

(
CϑΩ

(h)
ϑ CT

ϑ

)−1
and the prediction covariance

matrix of the Kalman filter V
(h)
ϑ = CϑΩ

(h)
ϑ CT

ϑ .

Recall the sampled version of a continuous cointegrated MCARMA process as in

(4.29). The class of continuous-time cointegrated state space models (Aϑ, Bϑ, Cϑ, Lϑ),

for ϑ ∈ Θ, is mapped at sampling distance h to the discrete-time state space models

(eAϑh, Cϑ, R
(h)
ϑ ) for ϑ ∈ Θ. The i.i.d. noise sequence R

(h)
ϑ is given by

R
(h)
k,ϑ =

(
B1,ϑ (Lϑ(kh)− Lϑ((k − 1)h))∫ kh

(k−1)h
eA2,ϑ(nh−u)B2,ϑ dLϑ(u)

)
=

(
R

(h)
k,1,ϑ

R
(h)
k,2,ϑ

)
, k ∈ N. (5.3)

This state space model is not in innovation form and hence we use the result from

the previous subsection to calculate the pseudo-innovations of the observations

(Y
(h)

1 , . . . , Y
(h)
n ) of the output process Y (h). Hence, the pseudo-innovations are given

by

ε
(h)
k (ϑ) =

(
Id − Cϑ[IN − (eAϑh −K(h)

ϑ Cϑ)B]−1K
(h)
ϑ B

)
Y

(h)
k , k ∈ N (5.4)

and they can also be represented in the error correction form

ε
(h)
k (ϑ) =− Π(ϑ)Y

(h)
k−1 + k(B, ϑ)∆Y

(h)
k , k ∈ N (5.5)
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where Π(ϑ) := α(ϑ)βT(ϑ) and the transfer function k(z, ϑ) := Id − k(z, ϑ) is given

similarly as in (4.47). We omit the notation of the sampling distance h in the

denotation of Π(ϑ) and k(z, ϑ) to save notation. Recall that the matrix coefficients

of k̃(z, ϑ) are given as in Lemma 4.4.7.

Minus two over n times the logarithm of the pseudo-Gaussian likelihood function,

denoted with Ln, is given by

L(h)
n (ϑ) :=

1

n

n∑
k=1

`(h)
n (ϑ)

:=
1

n

n∑
k=1

[
d log 2π + log detV

(h)
ϑ + ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
ε

(h)
k (ϑ)

]
. (5.6)

The quasi-maximum likelihood estimator ϑ̂n can be obtained by minimizing the

Gaussian log-likelihood function L(h)
n (ϑ). Hence, the estimator based on the sample

(Y
(h)

1 , . . . , Y
(h)
n ) is given by

ϑ̂n = argminθ∈ΘL(h)
n (ϑ). (5.7)

An alternative estimation method is the least squares estimation, where we calculate

the sum of squares function given by

Q(h)
n (ϑ) =

1

n

n∑
k=1

ε
(h)
k (ϑ)Tε

(h)
k (ϑ).

However, in this thesis we use the quasi-maximum likelihood approach and prove

the results for this approach. All results immediately hold then for the least squares

estimation as well.

We need some further assumption concerning the parametrization in order to be able

to estimate the model parameters via quasi-maximum likelihood estimation.

Assumption M5

The parameter space Θ is a compact subset of Rs.

Assumption M6

The mappings ϑ 7→ A2,ϑ, ϑ 7→ Bi,ϑ, ϑ 7→ Ci,ϑ for i ∈ {1, 2} and ϑ 7→ ΣL
ϑ are

continuous.

As a consequence, all matrix functions arising in the estimation procedure are

continuous, c.f. subsection 5.9.1. Additionally, we need a representation of the
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pseudo-innovations and the behavior of the related matrix coefficients. The next

lemma shows that the coefficients decay exponentially fast independently of the

parameter vector we use.

Lemma 5.2.1

Assume that Assumption M1-Assumption M6 hold. Then the pseudo-innovations

sequence ε(h)(ϑ) as given in equation (5.5) has the following property:

The pseudo-innovations ε(h)(ϑ) are linear functions of Y (h), i.e. there exist matrix

sequences (K̃i(ϑ))i∈N, such that

ε
(h)
k (ϑ) = −Π(ϑ)Y

(h)
k−1 +

(
∆Y

(h)
k −

∞∑
i=1

K̃i(ϑ)∆Y
(h)
k−i

)
k ∈ N. (5.8)

The matrices K̃i(ϑ) are uniformly exponentially bounded, i.e. there exist a positive

constants c and ρ < 1, such that supϑ∈Θ ‖K̃i(ϑ)‖ ≤ cρi, i ∈ N.

Proof. The proof follows in the same line as Lemma 2.6 in Schlemm and Stelzer [91],

using equation (5.5) and Lemma 5.9.2 ii).

We can split up the innovation sequence analogously to Saikkonen [85],[86]. For this

we separate the s-dimensional parameter vector ϑ = (ϑT1 , ϑ
T
2 )T, where ϑ1 denotes the

s1-dimensional vector of long-run parameters, i.e. the parameters corresponding to

the non-stationary part and ϑ2 the s2-dimensional vector of short-run parameters

corresponding to the stationary part.

Therefore, we write the parameter space as the product space of the sub-spaces

Θ = Θ1 ×Θ2 with Θ1 ⊂ Rs1 and Θ2 ⊂ Rs2 and parameterize the matrices with the

following sub-vectors

(A2,ϑ2 , B1,ϑ2 , B2,ϑ2 , C1,ϑ1 , C2,ϑ2 , Lϑ2), for ϑ1 ∈ Θ1, ϑ2 ∈ Θ2. (5.9)

We know from our previous considerations that the matrix C1,ϑ is responsible for

the cointegration property. Hence, we use only for this matrix the sub-vector ϑ1 for

the long-run parameters. For all the other matrices we use the sub-vector ϑ2 for

short-run parameters.

This partitioning transfers immediately to the matrix Π(ϑ) because we know the

rank of this matrix is equal to r. Therefore, we can factorize the matrix into two

(d× r)-dimensional matrices α(ϑ) and β(ϑ) with rank r satisfying Π(ϑ) = α(ϑ)β(ϑ)T.

We choose the rank factorization in such a way that β(·) depends only on ϑ1. This
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is possible due to our previous results, where we have seen that β(ϑ1) and C⊥1,ϑ1
must span the same cointegration space. Hence, we interpret β(ϑ1) always as the

orthogonal complement of C1,ϑ1 .

The special form of the adjustment matrix α(ϑ) is not of importance, we only need

the rank of this matrix, which is equal to r for all ϑ ∈ Θ. If necessary for the

further considerations, we write α(ϑ)β(ϑ1)
T otherwise we remain with the shorter

notation Π(ϑ). Sometimes it is important to know if the columns of β(·) lie in the

cointegration space or not. In such cases the more detailed representation is used.

Assumption M7

We assume that the true parameter vector ϑ0 lies in the interior of the parameter

space Θ.

Now we have with the separation of the parameter space the following decomposition

of the pseudo-innovations

ε
(h)
k (ϑ) =ε

(h)
k,1(ϑ) + ε

(h)
k,2(ϑ), (5.10a)

where

ε
(h)
k,1(ϑ) :=−

[
Π(ϑ1, ϑ2)− Π(ϑ0

1, ϑ2)
]
Y

(h)
k−1

+
[
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
]

∆Y
(h)
k (5.10b)

and

ε
(h)
k,2(ϑ) :=ε

(h)
k,2(ϑ2) = k(B, ϑ0

1, ϑ2)∆Y
(h)
k − Π(ϑ0

1, ϑ2)Y
(h)
k−1. (5.10c)

Furthermore, it holds that ε
(h)
k,1(ϑ0

1, ϑ2) = 0 for all ϑ2 ∈ Θ2 and k ∈ N. When we use

the true long-run parameter vector we have Π(ϑ0
1, ϑ2)Y (h) = α(ϑ0

1, ϑ2)β(ϑ0
1)TY (h) =

Π(ϑ0
1, ϑ2)Y

(h)
2 for all ϑ2 ∈ Θ2 and thus we have a stationary process. The process(

ε
(h)
k,2(ϑ2)

)
k∈N is obviously stationary as it consists only of stationary processes.

However, the process
(
ε

(h)
k,1(ϑ)

)
k∈N is non-stationary for ϑ1 6= ϑ0

1 under the assumption

that we have an identifiable model. We achieve this in Section 5.3, where we solve

the identifiability problem.

Henceforth, we have the separated log-likelihood function L(h)
n (ϑ) given by

L(h)
n (ϑ) = L(h)

n,1(ϑ) + L(h)
n,2(ϑ2), (5.11a)
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where

L(h)
n,1(ϑ) :=

1

n

n∑
k=1

ε
(h)
k,1(ϑ)T

(
V

(h)
ϑ1,ϑ2

)−1
ε

(h)
k,1(ϑ)

+
1

n

n∑
k=1

[
2 · ε(h)

k,1(ϑ)T
(
V

(h)
ϑ1,ϑ2

)−1
ε

(h)
k,2(ϑ2) + ε

(h)
k,2(ϑ2)T

(
V

(h)
ϑ1,ϑ2

)−1
ε

(h)
k,2(ϑ2)

]
+

1

n

n∑
k=1

[
log detV

(h)
ϑ1,ϑ2
− log detV

(h)

ϑ01,ϑ2
− ε(h)

k,2(ϑ2)T
(
V

(h)

ϑ01,ϑ2

)−1
ε

(h)
k,2(ϑ2)

]
:=

1

n

n∑
k=1

`
(h)
k,1(ϑ) (5.11b)

and

L(h)
n,2(ϑ2) :=

1

n

n∑
k=1

[
d log 2π + log detV

(h)
ϑ2

+ ε
(h)
k,2(ϑ2)T

(
V

(h)
ϑ2

)−1
ε

(h)
k,2(ϑ2)

]
:=

1

n

n∑
k=1

`
(h)
k,2(ϑ2), (5.11c)

where we have written shortly V
(h)
ϑ2

for V
(h)

ϑ01,ϑ2
. Furthermore, for reasons of brevity we

write shortly εk for εk(ϑ
0), whenever we insert the true parameter ϑ0. The same also

goes for all the other cases, where we can save notation, e.g., we write C1 instead of

C0
1 and so on.

Obviously, L(h)
n,2(ϑ2) depends only on the short-run parameters, whereas L(h)

n,1(ϑ) de-

pends on all parameters. Furthermore, we have the following relations L(h)
n,1(ϑ0

1, ϑ2) = 0

and L(h)
n (ϑ0

1, ϑ2) = L(h)
n,2(ϑ2) for every ϑ2 ∈ Θ2. This immediately implies L(h)

n (ϑ0) =

L(h)
n,2(ϑ0).

Note that the interesting part for the asymptotic behavior of L(h)
n,1(ϑ) and L(h)

n,2(ϑ2)

are only the parts, where the pseudo-innovations are included, since the constant

d log 2π and the log det terms do not depend on n. For a representation of these

parts we refer to Appendix 5.9.2.

Accordingly, the quasi-maximum likelihood estimator (5.7) is divided into two parts

ϑ̂n,1 and ϑ̂n,2. The estimator ϑ̂n,1 estimates the long-run parameters, i.e. the subvector

of parameters corresponding to the non-stationary part, and the estimator ϑ̂n,2

estimates the short-run parameters, i.e. the subvector of parameters corresponding

to the stationary part.

For reasons of brevity, we write for the partial derivatives ∂1
i := ∂

∂ϑ1i
with respect to
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the ith-component of the non-stationary parameter vector ϑ1 ∈ Θ1 for i ∈ {1, . . . , s1}
and similar with respect to the stationary part ∂stj := ∂

∂ϑ2j
with respect to the

jth-component of the stationary parameter vector ϑ2 ∈ Θ2 for j ∈ {1, . . . , s2}.

Assumption M8

Let the functions ϑ 7→ A2,ϑ, ϑ 7→ Bi,ϑ, ϑ 7→ Ci,ϑ for i ∈ {1, 2} and ϑ 7→ ΣL
ϑ be twice

continuously differentiable.

Like the continuity, the differentiability property is inherited by the matrices built

from the system matrices as can be seen by Lemma 5.9.3. Moreover, the continuous

differentiability and the compact parameter space imply Lipschitz continuity. This

property is crucial as it limits the behavior of the functions sufficiently if we change

the parameter vector.

The Jacobian matrix of the d× d matrix function k(z, ·) with respect to the si × 1

parameter vector ϑi in the interior of Θi is defined by

∇ϑik(z, ·) :=
∂ vec(k(z, ·))

∂ϑi
T

and analogous for the d × d matrix function Π(·) = α(·)β(·)T with respect to the

si × 1 parameter vector ϑi in the interior of Θi by

∇ϑiΠ(·) : =
∂ vec(Π(·))

∂ϑi
T

= (Id ⊗ α(·)) ∂ vec(β(·)T)

∂ϑi
T

+ (β(·)⊗ Id)
∂ vec(α(·))

∂ϑi
T

,

for i = 1, 2. Note that the Jacobian matrices ∇ϑik(z, ϑ) and ∇ϑiΠ(ϑ) have dimension

d2 × si. For differentiation rules and helpful formulas of matrix differential calculus

we refer to Appendix B.4.

The derivatives with respect to the stationary and non-stationary parameters of the

pseudo-innovations are given by

∂1
i ε

(h)
k (ϑ) = ∂1

i k(B, ϑ)∆Y
(h)
k − ∂1

i Π(ϑ)Y
(h)
k−1, for i ∈ {1, . . . , s1} (5.12a)

and

∂sti ε
(h)
k (ϑ) = ∂sti k(B, ϑ)∆Y

(h)
k − ∂sti Π(ϑ)Y

(h)
k−1, for i ∈ {1, . . . , s2}. (5.12b)

Note that ∂sti ε
(h)
k (ϑ0) is stationary due to the fact that ∂sti Π(ϑ0) = (∂sti α(ϑ0)) β(ϑ0

1)T.

Hence, we still multiply with the matrix β(ϑ0
1)T, which is in the cointegration space

and thereby the non-stationary part is canceled out. However, ∂1
i ε

(h)
k (ϑ0) is non-
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stationary since ∂1
i Π(ϑ0) = (∂1

i α(ϑ0)) β(ϑ0
1)T +α(ϑ0)

(
∂1
i β(ϑ0

1)T
)
. The first summand

still cancels out the non-stationarity in contrast to the second one, as ∂1
i β(ϑ0

1)T does

in general not lie in the cointegration space.

The last lemma in this section is the analogue version of Lemma 5.2.1, where we

consider now partial derivatives of the pseudo-innovations.

Lemma 5.2.2

Assume that Assumption M1-Assumption M6 and Assumption M8 hold. The pseudo-

innovation sequence ε(h)(ϑ) as defined in equation (5.5) has the following properties.

i) For each v ∈ {1, . . . , s}, the random sequences
(
∂vε

(h)
k (ϑ)

)
k∈N is a linear func-

tion of Y (h), i.e. there exist matrix sequences (K̃
(v)
i (ϑ))i∈N, such that

∂vε
(h)
k (ϑ) = −∂vΠ(ϑ)TY

(h)
k−1 −

(
∞∑
i=1

K̃
(v)
i (ϑ)∆Y

(h)
k−i

)
. (5.13)

The matrices K̃
(v)
i (ϑ) are uniformly exponentially bounded, i.e. there exist a

positive constants c and ρ < 1, such that supϑ∈Θ ‖K̃
(v)
i (ϑ)‖ ≤ cρi, i ∈ N.

ii) For each u, v ∈ {1, . . . , s}, the random sequences
(
∂2
u∂

2
vε

(h)
k (ϑ)

)
k∈N are linear

functions of Y , i.e. there exist matrix sequences (K̃
(u,v)
i (ϑ))i∈N, such that

∂2
u∂

2
vε

(h)
k (ϑ) = −∂2

u∂
2
vΠ(ϑ)TY

(h)
k−1 −

(
∞∑
i=1

K̃
(u,v)
i (ϑ)∆Y

(h)
k−i

)
. (5.14)

The matrices K̃
(u,v)
i (ϑ) are uniformly exponentially bounded, i.e. there exist a

positive constants c and ρ < 1, such that supϑ∈Θ ‖K̃
(u,v)
i (ϑ)‖ ≤ cρi, i ∈ N.

Proof. For a proof see Schlemm and Stelzer [91], Lemma 2.11, and recall that the

coefficients K̃i(ϑ) are uniformly exponentially bounded due to Lemma 5.2.1.

5.3. Identifiability

In order to properly estimate our model, it is important that we can guarantee a

unique minimum to our likelihood function. The models should not be nested, i.e.

that a smaller model can be included in a larger one. We want to exclude this

and thus present in the following sufficient identifiability conditions. In other words

we want the state space system to be identifiable. Therefore, redundancies in the
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parametrization are averted. Most importantly this gives us a unique minimum of

the log-likelihood function for our considered model.

We have also to deal with the problem of the aliasing effect, which only affects the

stationary part of our estimation procedure. This means that the reconstruction of

the continuous-time model from the discrete time observation could be different. The

aliasing effect is a general problem, which appears in the identification of parameters

from discrete time data. For more details see e.g. Phillips [74] or Hansen and Sargent

[47].

The aim is to derive sufficient assumptions which guarantee that we have different

processes for different parameters. We derive in the following these assumptions. For

this purpose we consider three different cases. First, we consider the identifiability

for ϑ1, then for ϑ2 and in the last step combine both results.

Case 1:

Let us first assume that ϑ0
2 = ϑ2 and ϑ0

1 6= ϑ1 ∈ Θ1. We show that the resulting

processes must then be different. The aliasing effect plays no role in this case since

the matrix C1,ϑ1 does not depend on the sampling distance. To be precise the

continuous-time model and the sampled model contain the same matrix C1,ϑ1 , so the

cointegration property is the same for both processes.

Assumption M9

The matrices C1,ϑ1 and C⊥1,ϑ1 = β(ϑ1) are positive lower triangular matrices for all

ϑ1 ∈ Θ1 as in Theorem 4.3.7 satisfying CT
1,ϑ1

C1,ϑ1 = Ic and C⊥T1,ϑ1
C⊥1,ϑ1 = Id−c.

We need to clarify, what we understand by the distance between subspaces. For this

we use the gap metric, i.e. for two subspaces W1,W2 ∈ Rn×m the distance between W1

and W2 is given by dist(W1,W2) := ‖PW1 −PW2‖ = max{‖PW1 ·PW⊥2 ‖, ‖PW2 ·PW⊥1 ‖},
where PWi

is the orthogonal projection onto Wi for i = 1, 2. For more details on

the gap metric see e.g. Fact 10.9.18. in Bernstein [9], Chapter II.4 in Stewart and

Sun [94] or Chapter S4.3. in Gohberg et. al. [41]. This means that two subspaces

are different as long as there exists a positive angle between them in at least one

direction. In the following result, we have the equality between the two expressions

in the maximum and hence the Gap metric simplifies in this case.

Lemma 5.3.1

Assume that Assumption M2 - Assumption M4 and Assumption M9 hold, then we
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have for all ϑ0
1 6= ϑ1 ∈ Θ1 that

β(ϑ1)T = C⊥T1,ϑ1
6= C⊥1 =β(ϑ0

1)T (5.15)

and for all ϑ0 6= ϑ ∈ Θ that

‖Π(ϑ)C1‖ = ‖α(ϑ)β(ϑ1)TC1‖ > 0. (5.16)

Proof. Recall that CT
1 C1 = Ic, where C1 ∈ Rd×c with c ≤ d and this implies

(C1C
T
1 )C1 = C1. Hereby, C1C

T
1 is a projection on the c-dimensional subspace spanned

by the orthonormal columns of C1. As a consequence, it has c eigenvalues equal to

one and d− c eigenvalues equal to zero. Accordingly, Id − C1C
T
1 is the projection on

the (d− c)-dimensional orthogonal complement of C1.

Likewise, we see that C⊥1,ϑ1C
⊥T
1,ϑ1

is the unique orthogonal projection on the (d− c)-
dimensional subspace spanned by the columns of C1,ϑ1 . The projection matrix

C⊥1,ϑ1C
⊥T
1,ϑ1

is the zero matrix if and only if d = c and therefore C1 = Id since we

project onto a zero dimensional space. In this case the true matrix C1 is already

known and given by C1 = Id and we have an integrated process in this case which

we will exclude in the following considerations, i.e. we have c < d.

Eventually, we have due to Assumption M9 and the defining property of projection

matrices (P = P 2) that

‖C⊥1,ϑ1C
⊥T
1,ϑ1

C1‖ = tr
(
C⊥1,ϑ1C

⊥T
1,ϑ1

C1C
T
1 C
⊥
1,ϑ1

C⊥T1,ϑ1

)
= tr

(
C⊥1,ϑ1C

⊥T
1,ϑ1

C1C
T
1

)
= tr

(
C1C

T
1 C
⊥
1,ϑ1

C⊥T1,ϑ1
C1C

T
1

)
= ‖C1C

T
1 C

⊥
1,ϑ1
‖ = tr

(
C1C

T
1 C

⊥
1,ϑ1

C⊥T1,ϑ1

)
= tr

((
Id − C⊥1 C⊥T1

)
·
(
Id − C1,ϑ1C

T
1,ϑ1

))
= tr(Id)− tr

(
C⊥1 C

⊥T
1

)
− tr

(
C1,ϑ1C

T
1,ϑ1

)
+ tr

(
C⊥1 C

⊥T
1 C1,ϑ1C

T
1,ϑ1

)
= d− (d− c)− c+ ‖C⊥1 C⊥T1 C1,ϑ1‖

= ‖C⊥1 C⊥T1 C1,ϑ1‖ = ‖C1,ϑ1C
T
1,ϑ1

C⊥1 ‖ > 0.

Therefore, C⊥1,ϑ1 does not span the entire cointegration space and at least at one

angle of the subspaces do not coincide. Thus, in at least one direction we have that

the spaces are not orthogonal and it holds that

C⊥T1,ϑ1
C1 6= 0(d−c)×c and 0(d−c)×c 6= CT

1,ϑ1
C⊥1 .

The fact that α(ϑ) has rank r for all ϑ ∈ Θ proves the assertion.
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In conclusion, the lemma states that only for the true parameter value we have that

all column vectors of β(ϑ1) lie in the cointegration space. Since the same unique

representation applies to the original subspace spanned by C1, we immediately get

C1,ϑ1 6= C1 for ϑ0
1 6= ϑ1 ∈ Θ1.

Theorem 5.3.2

Assume that Assumption M1 - Assumption M4 and Assumption M9 hold. Then we

have for ϑ0
1 6= ϑ1 ∈ Θ1 that the processes cannot coincide, in other words we have for

all n ∈ N and all h > 0 that

Y (h)
n (ϑ0

1, ϑ
0
2) 6= Y (h)

n (ϑ1, ϑ
0
2) (5.17)

with probability one.

Proof. Recall the representation (4.23) for the sampled process. From the previous

considerations we have C1 6= C1,ϑ1 and B1 has full rank due to Assumption M4. This

implies

Y (h)
n (ϑ0

1, ϑ
0
2)− Y (h)

n (ϑ1, ϑ
0
2) = (C1 − C1,ϑ1)X1(0) + (C1 − C1,ϑ1)B1,ϑ2Lϑ2(nh) 6= 0d

with probability one.

In the end, we know now that only for the true long-run parameter the span of β(ϑ0
1)

matches the cointegration space and thus the process
(
ε

(h)
k,1(ϑ)

)
k∈N is indeed always

non-stationary for all long-run parameters ϑ1 6= ϑ0
1.

Case 2:

On the other hand, if we assume now ϑ0
2 6= ϑ2 ∈ Θ2 and ϑ1 = ϑ0

1, we know with

the previous consideration that we can reduce the problem of identifiability to the

stationary part in this setting

Y (h)
n (ϑ0

1, ϑ
0
2)− Y (h)

n (ϑ0
1, ϑ2) = Y

(h)
n,2 (ϑ0

2)− Y (h)
n,2 (ϑ2)

= C2

∫ nh

−∞
eA2(nh−u)B2 dL(u)− C2,ϑ2

∫ nh

−∞
eA2,ϑ2

(nh−u)B2,ϑ2 dL(u).

Since we only have to consider a stationary MCARMA process, we can utilize the

results of Schlemm and Stelzer [91] (see Chapter 3.3 and 3.4) on the identifiability of

a stationary MCARMA process.

In addition, we have to deal with the aliasing effect arising in the estimation of
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continuous-time models as already mentioned. We follow the ideas presented in

Schlemm and Stelzer [91] in order to guarantee identifiability. First, we give some

definitions and make further necessary assumptions.

Definition 5.3.3

Two stochastic processes, irrespective of whether their index sets are continuous

or discrete, are L2-observationally equivalent if their spectral densities are the

same.

Definition 5.3.4

A family (Y2(ϑ2), ϑ2 ∈ Θ2) of continuous-time stochastic processes is identifiable

from the spectral density if for every ϑ2 6= ϑ′2 ∈ Θ2 the processes Y2(ϑ2) and

Y2(ϑ′2) are not L2-observationally equivalent.

It is h-identifiable from the spectral density, for some h > 0, if for every ϑ2 6=
ϑ′2 ∈ Θ2, the two sampled processes Y

(h)
2 (ϑ2) and Y

(h)
2 (ϑ′2) are not L2-observationally

equivalent.

Note that the spectral density f
(h)
Y2

: [−π, π] 7→ S+
d (R(eiω)) of the stationary part Y

(h)
2

is given by (see Schlemm and Stelzer [91], Proposition 3.6)

f
(h)
Y2

(ω) = C2

(
eiωIN − eA2h

)−1
Σ̃

(h)
22

(
eiωIN − eA

T
2h
)−1

CT
2 , (5.18)

where Σ̃
(h)
22 =

∫ h
0

eA2uB2ΣLB
T
2 eA

T
2udu.

Assumption M10

Assume that the collection of the stationary parts of the output processes, denoted

by

K(Θ2) := (Y2(ϑ2), ϑ2 ∈ Θ2),

corresponding to the linear state space model (A2,ϑ2 , B2,ϑ2 , C2,ϑ2 , Lϑ2) is identifiable

from the spectral density.

Thus, we need another assumption in order to guarantee h-identifiability and to

overcome the aliasing effect.

Assumption M11

For all ϑ2 ∈ Θ2 the spectrum of A2,ϑ2 is a subset of {z ∈ C : |=z| ≤ π
h
}.

Theorem 5.3.5 (Theorem 3.13, Schlemm and Stelzer [91])

Assume that Θ2 3 ϑ2 7→ (A2,ϑ2 , B2,ϑ2 , C2,ϑ2 , Lϑ2) is a parameterizations of the sta-

tionary part of the continuous-time cointegrated process satisfying Assumption M1 -

Assumption M3, Assumption M10 and Assumption M11. Then the corresponding
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collection of output processes K(Θ2) is h-identifiable from the spectral density.

Hence, by the results of Schlemm and Stelzer [91] we can also guarantee identifiability

of the stationary part due to the decoupled system in our setting and in addition to

that find a sufficient condition that avoids the aliasing effect.

Case 3:

Lastly, we consider the case, where ϑ0
2 6= ϑ2 ∈ Θ2 and ϑ0

1 6= ϑ1 ∈ Θ1 holds.

Identifiability follows directly due to a combination of both previous cases if we

compare the stationary and non-stationary parts of the processes separately.

Now with these results in hand, we want to show that the identifiability transfers

to the transfer function corresponding to the moving average representation of the

pseudo-innovations, i.e. k(z, ϑ) 6= k(z, ϑ0) for ϑ0 6= ϑ ∈ Θ.

Lemma 5.3.6

Assume that Assumption M1 - Assumption M4, and Assumption M9-Assumption M11

hold. Then it follows that for ϑ0
1 6= ϑ1 ∈ Θ1 and ϑ2 6= ϑ0

2 ∈ Θ there exists a complex

number z ∈ C such that

Cϑ

[
IN −

(
eAϑh −K(h)

ϑ Cϑ
)
z
]−1

K
(h)
ϑ 6= C

[
IN −

(
eAh −K(h)C

)
z
]−1

K(h) (5.19a)

or

V
(h)

ϑ01,ϑ2
6= V (h) (5.19b)

or for all n ∈ N and all h > 0 that with probability one

Y (h)
n (ϑ0

1, ϑ
0
2) 6= Y (h)

n (ϑ1, ϑ
0
2). (5.19c)

Proof. If ϑ1 6= ϑ0
1 Theorem 5.3.2 proves the claim. Thus it suffices that the non-

stationary part is unique. If this is not the case a combination of Lemma 2.3 in

Schlemm and Stelzer [91] and Theorem 5.3.5 proves the claim.

5.4. Stochastic Equicontinuity and Continuous

Convergence

The aim of this section is to derive in some sense uniform weak convergence results.

Following the ideas of Saikkonen, we use the concept of continuous weak convergence,
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which is similar to uniform convergence. Several continuous convergence results

combined with a stochastic equicontinuity condition are sufficient for the derivation

of the asymptotic distribution later on.

First, we formally define continuous weak convergence and stochastic equicontinuity.

For further details on these concepts see e.g. Sweeting [96], Basawa and Scott [6]

and the articles of Saikkonen [85] and [86].

Let S be a separable metric space with metric d. Furthermore, we have an S-valued

random vector Xn(ϑ) defined on the probability space (Ωn,An,Pn,ϑ), where Pn,ϑ is a

sequence of probability measures defined on the Borel sets of S for each ϑ ∈ Θ.

Definition 5.4.1

Let C(S) be the set of all bounded, continuous, real valued functions on S. We say

that the probability measures Pn,ϑn converge weakly in the continuous sense

to Pϑ (Pn,ϑ
w−−→
c

Pϑ) if and only if for all f ∈ C(X), for all ϑ ∈ Θ and all sequences

ϑn → ϑ ∫
fdPn,ϑn →

∫
fdPϑ (5.20)

for n→∞ holds.

The concept of continuous convergence cannot only be defined for weak convergence,

but also for convergence in probability.

Definition 5.4.2

Let ϑn and ϑ be as in Definition 5.4.1 and c(ϑ) be a deterministic function from Θ to

S. We say that the sequence of random vectors Xn(ϑn) converges continuously

in probability to c(ϑ), denoted with Xn(ϑ)
p−−→
c
c(ϑ) if and only if for every ε > 0

we have

Pn,ϑn (d(Xn(ϑn), c(ϑ)) > ε)→ 0 (5.21)

as n→∞.

We briefly recall the definition of stochastic equicontinuity as in the works of Saikkonen

[85], [86], in 1993 and 1995. For this purpose, we define the closed ball with radius δ

by

B(ϑ2, δ) := {ϑ∗2 ∈ Θ2 : ‖ϑ∗2 − ϑ2‖ ≤ δ}
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and the set

Nn(ϑ1, δ) := {ϑ∗1 ∈ Θ1 : ‖D1n(ϑ∗1 − ϑ1)‖ ≤ δ}, (5.22)

where D1n ∈ Mr1,r1(R) is a diagonal matrix, whose diagonal elements are positive

and increasing functions of n. Thus, the set Nn(ϑ1, δ) is decreasing in n.

Definition 5.4.3 (Condition SE)

Denote with C the class of all sequences ϑn with ϑn → ϑ0 and ϑ0 varies over all

points in Θ. For every {ϑn} ∈ C, every ε > 0 and every η > 0, there exists an integer

n(ε, η) and a real number δ2 > 0 such that for all δ1 > 0,

Pn,ϑn

(
sup

ϑ∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

‖Xn(ϑ)−Xn(ϑn)‖ > ε

)
≤ η, (SE)

for n ≥ n(ε, η). The set Nn(ϑ1, δ) is defined as in (5.22).

The probability measure Pn,ϑ describes the distribution of the n observations which

are used to estimate the parameter ϑ.

Note that if the condition (SE) holds true for the case ϑ reduced to ϑ2, we even have

uniform convergence due to Theorem 2.1 in Newey [71]. The theorem states that

if we have a compact parameter space, pointwise convergence and condition (SE)

holds for an open subset, these three assertions together are equivalent to uniform

convergence. Moreover, it is in general easier to show the stochastic equicontinuity

condition in contrast to uniform convergence.

Note that k(z, ϑ1, ϑ2)−k(z, ϑ0
1, ϑ2) is uniformly exponentially bounded by Lemma 5.2.1,

i.e. there exist constants c <∞ and 0 < ρ < 1 such that

sup
ϑ∈Θ
‖K̃j(ϑ1, ϑ2)− K̃j(ϑ

0
1, ϑ2)‖

≤ sup
ϑ∈Θ
‖K̃j(ϑ1, ϑ2)‖+ sup

ϑ2∈Θ2

‖K̃j(ϑ
0
1, ϑ2)‖

≤ cρj. (5.23)

The next result shows the stochastic equicontinuity condition for different combina-

tions of filtered version of the stationary processes ∆Y (h) and Y
(h)

2 . It is an adaption

of results shown by Saikkonen (c.f. [85], Corollary 4.1).

Theorem 5.4.4

Assume that Assumption M1-Assumption M8 hold. Let L(z, ϑ) =
∑∞

i=0 Li(ϑ)zi and
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L(z, ϑ) =
∑∞

i=0 Lj(ϑ)zj, ϑ ∈ Θ be d × d uniformly exponentially bounded families

of matrix polynomials. Furthermore, let ξ and ξ be placeholders either for the

stationary process ∆Y (h) or Y
(h)

2 . Suppose the matrix Din = nγiIsi×si is given as in

Definition 5.4.3 with γi > 0, for i = 1, 2. Denote by Γξξ(h) := EξkξTk+h
.

Then we have

1

n

n∑
k=1

L(z, ϑ)ξkξ
T

k+h
L(z, ϑ)T

p−−→
c

∞∑
i=0

∞∑
j=0

Li(ϑ)Γξξ(h+ i− j)Lj(ϑ)T (5.24)

and the stochastic equicontinuity condition (SE) holds with Xn(ϑ) given by the left-

hand side of (5.24).

Proof. The proof follows directly by Corollary 4.1 of Saikkonen [85] if we can show

that all assumptions of the Corollary are satisfied. Note that we have two different

coefficient matrices, whereas the results in Saikkonen [85] are shown for the same

coefficient matrix. However, this result also holds if the coefficient matrices are differ-

ent as long as each sequence of matrix coefficients satisfies the necessary conditions

as mentioned in the paper of Saikkonen [85] (p. 163).

Since we have uniformly stable families of matrix polynomials, Assumption 4.1 of

Saikkonen [85] is obviously satisfied. Moreover, the stationary processes ∆Y (h) and

Y
(h)

2 do not depend on ϑ and have finite moments due to Assumption M1. The last

remaining conditions are the necessary convergence results, which are satisfied due

to Lemma 5.8.2.

The last claim of the theorem is a consequence of Lemma 5.2.1 and this completes

the proof.

We need for the following proofs a continuous version of Slutsky’s Theorem, which

can be derived from Proposition 2.4 and 2.5 in Saikkonen [85]. Proposition 2.4 is a

version of the continuous mapping theorem for continuous weak convergence. We

neglect the difference between the different versions and speak only of the continuous

mapping theorem or Slutsky’s Theorem. Whether we use the standard version or the

version for continuous weak convergence will be clear from the context.

Theorem 5.4.5

Assume that Assumption M1-Assumption M8 hold. Suppose Din = nγiIsi×si as in

Definition 5.4.3 for γi > 0, i = 1, 2. We can conclude for any value γ2 that
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i) the weak convergence result

n−2

n∑
k=1

Π(ϑ)Y
(h)
k−1Y

(h)T
k−1 Π(ϑ)T

w−−→
c

Π(ϑ)C1B1

∫ 1

0

W (r)W (r)T dr (Π(ϑ)C1B1)T (5.25)

and condition (SE) holds with γ1 >
1
2

for

Xn(ϑ) = n−1

n∑
k=1

Π(ϑ)Y
(h)
k−1Y

(h)T
k−1 Π(ϑ)T;

ii) the weak convergence result

n−1

n∑
k=1

Π(ϑ)Y
(h)
k−1∆Y

(h)T
k k(B, ϑ)T

w−−→
c

Π(ϑ)
(
C1B1

) ∫ 1

0

W (r)dW (r)T
(
C1B1

)T
k(1, ϑ)T

+ Π(ϑ)
(
C1B1

) ∫ 1

0

W (r)dW (r)T Ψ̃(1)Tk(1, ϑ)T + Σ1(ϑ) (5.26)

and condition (SE) holds for Xn(ϑ) given by the left-hand side of (5.26) with

γ1 > 0, where Ψ̃(1) is defined in Appendix 5.8 and

Σ1(ϑ) :=Π(ϑ)ΓY∆Y k(1, ϑ)T + Π(ϑ)C1B1Σ̃(h)B2

∞∑
j=1

Ψ̃j

∞∑
i=j+1

K̃i(ϑ)

+
∞∑
j=0

Π(ϑ)
[
ΓY2∆Y (−j)− ΓY2∆Y (−j + 1)

] ∞∑
i=j+1

K̃i(ϑ)

is a matrix valued function depending on the parameter vector ϑ ∈ Θ.

The stated weak convergence results also hold jointly as well as the stochastic equicon-

tinuity condition (SE).

Proof. i) Due to Proposition 5.8.4 iii) and the continuous version of Slutzky’s

Theorem we have

Π(ϑ)

[
n−2

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1

]
Π(ϑ)T

w−−→
c

Π(ϑ)

∫ 1

0

C1B1W (r)W (r)TBT
1 C

T
1 drΠ(ϑ)T. (5.27)
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In the next step we want to prove the stochastic equicontinuity condition. Note

that Π(·) is Lipschitz continuous due to Lemma 5.9.3. Hence, we can find the

following upper bound

sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

‖(Π(z, ϑ∗1, ϑ
∗
2)− Π(z, ϑn,1, ϑ

∗
2))‖

≤ sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

c · ‖ϑ∗1 − ϑn,1‖

≤ cδ1n
−γ1 , (5.28)

for some constant c > 0. Note that we can rewrite

[Π(ϑ∗)− Π(ϑn)]Zn[Π(ϑ∗)− Π(ϑn)]T

+ Π(ϑn)Zn[Π(ϑ∗)− Π(ϑn)]T + [Π(ϑ∗)− Π(ϑn)]ZnΠ(ϑn)T

= Π(ϑ∗)ZnΠ(ϑ∗)T + Π(ϑn)ZnΠ(ϑn)T − Π(ϑn)ZnΠ(ϑ∗)T − Π(ϑ∗)ZnΠ(ϑn)T

+ Π(ϑn)ZnΠ(ϑ∗)T − Π(ϑn)ZnΠ(ϑn)T + Π(ϑ∗)ZnΠ(ϑn)T − Π(ϑn)ZnΠ(ϑn)T

= Π(ϑ∗)ZnΠ(ϑ∗)T − Π(ϑn)ZnΠ(ϑn)T, (5.29)

and

[Π(ϑ∗)− Π(ϑn)]Zn[Π(ϑ∗)− Π(ϑn)]T

= [Π(ϑ∗1, ϑ
∗
2)− Π(ϑn,1, ϑ

∗
2) + Π(ϑn,1, ϑ

∗
2)− Π(ϑn,1, ϑn,2)]Zn

· [Π(ϑ∗1, ϑ
∗
2)− Π(ϑn,1, ϑ

∗
2) + Π(ϑn,1, ϑ

∗
2)− Π(ϑn,1, ϑn,2)]T

= [Π(ϑ∗1, ϑ
∗
2)− Π(ϑn,1, ϑ

∗
2)]Zn[Π(ϑ∗1, ϑ

∗
2)− Π(ϑn,1, ϑ

∗
2)]T

+ [Π(ϑn,1, ϑ
∗
2)− Π(ϑn,1, ϑn,2)]Zn[Π(ϑ∗1, ϑ

∗
2)− Π(ϑn,1, ϑ

∗
2)]T

+ [Π(ϑ∗1, ϑ
∗
2)− Π(ϑn,1, ϑ

∗
2)]Zn[Π(ϑn,1, ϑ

∗
2)− Π(ϑn,1, ϑn,2)]T

+ [Π(ϑn,1, ϑ
∗
2)− Π(ϑn,1, ϑn,2)]ZnΠ(ϑn,1, ϑ

∗
2)− Π(ϑn,1, ϑn,2)]T, (5.30)

where Zn is a placeholder for n−1
∑n

k=1 Y
(h)
k−1Y

(h)T
k−1 . Thus, condition (SE) follows

similar as in the proof of Corollary 2.2 in Newey [71] due to the submultiplica-

tivity since

sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

‖Xn(ϑ∗)−Xn(ϑn)‖

= sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

∥∥∥∥Π(ϑ∗)n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1 Π(ϑ∗)T

− Π(ϑn)n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1 Π(ϑn)]T

∥∥∥∥
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(5.29)

≤ sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

∥∥∥∥∥[Π(ϑ∗)− Π(ϑn)]n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1 [Π(ϑ∗)− Π(ϑn)]T

∥∥∥∥∥
+ sup

ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

2 ·

∥∥∥∥∥[Π(ϑ∗)− Π(ϑn)]n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1 Π(ϑn)T

∥∥∥∥∥
(5.30)

≤ sup
ϑ∗∈Nn(ϑn,1,δ1)

‖Π(ϑ∗1, ϑ
∗
2)− Π(ϑn,1, ϑ

∗
2)‖2 ·

∥∥∥∥∥n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1

∥∥∥∥∥
+ sup

ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

2 · ‖Π(ϑ∗1, ϑ
∗
2)− Π(ϑn,1, ϑ

∗
2)‖

· ‖α(ϑn,1, ϑ
∗
2)− α(ϑn,1, ϑn,2)‖

∥∥∥∥∥n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1 β(ϑn,1)

∥∥∥∥∥
+ sup

ϑ∗∈Nn(ϑn,1,δ1)

‖α(ϑn,1, ϑ
∗
2)− α(ϑn,1, ϑn,2)‖2

·

∥∥∥∥∥n−1

n∑
k=1

β(ϑn,1)TY
(h)
k−1Y

(h)T
k−1 β(ϑn,1)

∥∥∥∥∥
+ sup

ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

2 · ‖Π(ϑ∗)− Π(ϑn)‖

∥∥∥∥∥n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1 Π(ϑn)T

∥∥∥∥∥
(5.28)

≤ c2δ2
1

∥∥∥∥∥n−1−2γ1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1

∥∥∥∥∥
+ c2δ1δ2

∥∥∥∥∥n−1−γ1
n∑
k=1

Y
(h)
k−1Y

(h)T
k−1,2β(ϑn,1)

∥∥∥∥∥
+ cδ2

∥∥∥∥∥n−1

n∑
k=1

β(ϑn,1)TY
(h)
k−1,2Y

(h)T
k−1,2β(ϑn,1)

∥∥∥∥∥
+ cδ1

∥∥∥∥∥n−1−γ1
n∑
k=1

Y
(h)
k−1Y

(h)T
k−1,2β(ϑn,1)

∥∥∥∥∥
+ cδ2

∥∥∥∥∥n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1,2β(ϑn,1)

∥∥∥∥∥ .
We are going to apply Proposition 5.8.4 to these result in order to determine

the asymptotic behavior. The first term converges continuously in probability

to zero due to Proposition 5.8.4 iii) for γ1 >
1
2
.

The definition of continuous convergence combined with Lemma 5.8.2 for the

third and Proposition 5.8.4 v) for the fifth term imply that they are of order

OPn,ϑn (1). Thus, there exists a δ2 > 0 that these terms are small enough, which

yields the claim.

The remaining claims all hold for γ1 > 0 and thus in particular for γ1 >
1
2
. The
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second and fourth term converge as well continuously in probability to zero

due to the fact that β(ϑn,1)TYk−1,2 is stationary under the probability measure

Pn,ϑn (c.f. Saikkonen [85] p.170) and Proposition 5.8.4 v).

In summary, we have established condition (SE) for γ1 >
1
2
.

ii) For the second part we obtain with the Beveridge-Nelson decomposition (c.f.

Saikkonen [86], (9)) applied to k(B, ϑ)∆Y
(h)
k = k(1, ϑ)∆Y

(h)
k + ηk(ϑ)− ηk−1(ϑ)

with ηk(ϑ) := −
∑∞

j=0

∑∞
i=j+1 K̃i(ϑ)∆Y

(h)
k−j that

n−1

n∑
k=1

Π(ϑ)Y
(h)
k−1∆Y

(h)T
k k(B, ϑ)T

= n−1

n∑
k=1

Π(ϑ)Y
(h)
k−1∆Y

(h)T
k k(1, ϑ)T + n−1

n∑
k=1

Π(ϑ)Y
(h)
k−1 (ηk(ϑ)− ηk−1(ϑ))

= n−1

n∑
k=1

Π(ϑ)Y
(h)
k−1∆Y

(h)T
k k(1, ϑ)T

+ n−1

n∑
k=1

Π(ϑ)
k−1∑
i=1

C1R
(h)
i,1 (ηk(ϑ)− ηk−1(ϑ))

+ n−1

n∑
k=1

Π(ϑ)Y
(h)
k−1,2 (ηk(ϑ)− ηk−1(ϑ))

=: In,1(ϑ) + In,2(ϑ) + In,3(ϑ).

We consider in the following the asymptotic behavior of In,i(ϑ) for i = 1, 2, 3.

Step 1:

The first term In,1(ϑ) converges due to the continuous mapping theorem and

Proposition 5.8.4 iv).

Step 2:

One can easily see the convergence of the second term In,2(ϑ) by applying

the summation by parts formula and the Beveridge-Nelson decomposition (c.f.

Saikkonen [85], (A.8))

In,2 = n−1

n∑
k=1

Π(ϑ)
k−1∑
i=1

C1R
(h)
i,1 (ηk(ϑ)− ηk−1(ϑ))

= n−1Π(ϑ)C1R
(h)
n,1ηn(ϑ)− n−1

n∑
k=1

Π(ϑ)C1R
(h)
k,1ηk(ϑ)

p−−→
c

Π(ϑ)C1B1Σ̃(h)B2

∞∑
j=1

Ψ̃j

∞∑
i=j+1

K̃i(ϑ).
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Step 3:

The third term In,3(ϑ) converges due to Theorem 5.4.4 (c.f. Saikkonen [85],

(A.9)) continuously in probability

In,3(ϑ) = n−1

n∑
k=1

Π(ϑ)Y
(h)
k−1,2 (ηk(ϑ)− ηk−1(ϑ))

p−−→
c

∞∑
j=0

Π(ϑ) (ΓY2∆Y (−j)− ΓY2∆Y (−j + 1))
∞∑

i=j+1

K̃i(ϑ).

We set

Σ1(ϑ) :=Π(ϑ)ΓY∆Y k(1, ϑ)T + Π(ϑ)C1B1Σ̃(h)B2

∞∑
j=1

Ψ̃j

∞∑
i=j+1

K̃i(ϑ)

+
∞∑
j=0

Π(ϑ)
[
ΓY2∆Y (−j)− ΓY2∆Y (−j + 1)

] ∞∑
i=j+1

K̃i(ϑ)

To sum it up we obtain with the previous considerations and Slutzky’s lemma

that the sum of the In,i(ϑ) converges continuously weakly to

In,1(ϑ) + In,2(ϑ) + In,3(ϑ)

w−−→
c

Π(ϑ1)
(
C1B1, 0d×(N−c)

) ∫ 1

0

W (r) dW (r)T
(
C1B1, Ψ̃(1)

)T
k(1, ϑ)T

+ Π(ϑ1)ΓY∆Y k(1, ϑ)T + Π(ϑ)C1B1Σ̃(h)B2

∞∑
j=1

Ψ̃j

∞∑
i=j+1

K̃i(ϑ)

+
∞∑
j=0

Π(ϑ) (ΓY2∆Y (−j)− ΓY2∆Y (−j + 1))
∞∑

i=j+1

K̃i(ϑ). (5.31)

Now, we have similar as in the proof of part (i)

Xn(ϑ∗)−Xn(ϑn)

=
1

n

n∑
k=1

[Π(ϑ∗)− Π(ϑn)]Y
(h)
k−1∆Y

(h)T
k

[
k(B, ϑ∗)− k(B, ϑn)

]T
+

1

n

n∑
k=1

Π(ϑn)Y
(h)
k−1∆Y

(h)T
k

[
k(B, ϑ∗1)− k(B, ϑn)

]T
+

1

n

n∑
k=1

[Π(ϑ∗)− Π(ϑn)]Y
(h)
k−1∆Y

(h)T
k k(B, ϑn)T. (5.32)

We can also use the Lipschitz continuity of k(z, ·) due to Lemma 5.9.3. Note
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that we have a compact parameter space Θ and thus δ1 > 0 is bounded. By

taking the supremum we have similar to (5.28)

sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

∥∥(k(z, ϑ∗1, ϑ
∗
2)− k(z, ϑn,1, ϑn,2)

)∥∥
≤ sup

ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

c · ‖ϑ∗ − ϑn‖

= sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

c · (‖ϑ∗1 − ϑn,1‖+ ‖ϑ∗2 − ϑn,2‖)
1
2

≤ sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

c · (‖ϑ∗1 − ϑn,1‖+ ‖ϑ∗2 − ϑn,2‖)

≤ cδ1n
−γ1 + cδ2 ≤ c1(n−γ + δ2), (5.33)

for some constant c, c1 > 0.

Finally, we make once more use of the submultiplicativity and this leads with

a bounding argument to

sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

∥∥Xn(ϑ∗)−Xn(ϑn)
∥∥

(5.32)

≤ sup
ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

‖Π(ϑ∗)− Π(ϑn)‖ ·

∥∥∥∥∥n−1

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k k(B, ϑn)T

∥∥∥∥∥
+ sup

ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

∥∥(k(B, ϑ∗)− k(B, ϑn)
)∥∥ ∥∥∥∥∥n−1

n∑
k=1

Π(ϑn)Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥
+ sup

ϑ∗∈Nn(ϑn,1,δ1)×B(ϑn,2,δ2)

∥∥(k(B, ϑ∗)− k(B, ϑn)
)∥∥ ‖Π(ϑ∗)− Π(ϑn)‖

·

∥∥∥∥∥n−1

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥
(5.33)

≤ c1

(
n−γ1 + δ2

) ∥∥∥∥∥n−1

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k k(B, ϑn)T

∥∥∥∥∥
+ c1

(
n−γ1 + δ2

) ∥∥∥∥∥n−1

n∑
k=1

Π(ϑn)Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥
+ c1

(
n−2γ1 + δ2

) ∥∥∥∥∥n−1

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥ .
The following assertions all hold for γ1 > 0. To begin with, the first term in

the norm converges continuously in probability due to (5.31) (c.f. Saikkonen

[85], Theorem 4.2(iv) and 4.4). Next, the second term in the norm converges

continuously in probability since it satisfies the conditions of Theorem 5.4.4 and
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Π(ϑn,1)Y
(h)
k−1 is stationary under Pn,ϑn (c.f. Proof of Theorem 4.5, Saikkonen

[85]). Finally, the last term in the norm also converges continuously on the

basis of Proposition 5.8.4 iv). Thus, we have three terms which are all of order

Op(1) and prefactors which consists of a term converging to zero as n → ∞
and δ2 > 0 can be chosen small enough such that the stochastic equicontinuity

(SE) holds for γ1 > 0.

In the end, it only remains to show joint convergence of the results. Note that we have

shown all assumptions (c.f. Lemma 5.8.2, Lemma 5.8.3 and Proposition 5.8.4) which

are necessary for the corresponding results in Saikkonen’s articles [85] (Assumptions

of Theorem 4.5) and [86] (Assumptions of Theorem 4.1). This being the case, one

obtains joint convergence as a consequence of these results.

5.5. Consistency of the Quasi-Maximum Likelihood

Estimator

In order to show the consistency, we follow the ideas of Saikkonen [86]. Thus, we

prove the consistency in three steps. In the first two steps, we prove the consistency

of the long-run parameter estimator ϑ̂n,1 and determine the consistency rate. Lastly,

we prove the consistency of the short-run parameter estimator ϑ̂n,2 by using the

results from the first two steps.

Before we prove the consistency result we first show that the limiting function of the

log-likelihood function of the stationary part has a unique minimum at ϑ0
2. Let us

derive first the limiting function.

Proposition 5.5.1

Assume that Assumption M1-Assumption M8 hold. Then we have that the sequence

of random functions
(
L(h)
n,2(ϑ2)

)
ϑ2∈Θ2

converges continuously in probability for n→∞

to the limiting function L(h)
2 : Θ2 → R given by

L(h)
2 (ϑ2) = d log(2π) + log detV

(h)
ϑ2

+ Eε(h)
1,2(ϑ2)T

(
V

(h)
ϑ2

)−1
ε

(h)
1,2(ϑ2).

Proof. We can prove the claim by using Theorem 5.4.4 and the continuous mapping

theorem. Recall the representation of L(h)
n,2(ϑ2)

L(h)
n,2(ϑ2) = d log 2π + log detV

(h)

ϑ01,ϑ2
+ tr

((
V

(h)

ϑ01,ϑ2

)−1 · 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

)
.
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We realize that the only term of interest for the convergence is the last one. Note

that we have by Lemma 5.9.2 iii) that
∥∥(V (h)

ϑ01,ϑ2

)−1∥∥ ≤ c for some constant c > 0.

Besides, for all ϑ2 ∈ Θ2 we have the continuous convergence due to Theorem 5.4.4

and the form of
(
ε

(h)
k,2(ϑ2)

)
given in (5.10) with uniformly stable matrix coefficients

due to Lemma 5.2.1.

Lemma 5.5.2

Let Assumption M1-Assumption M8, Assumption M10 and Assumption M11 hold.

The function L(h)
2 : Θ2 → R has a unique global minimum at ϑ0

2.

Proof. The proof is analogous to Lemma 2.10 in Schlemm and Stelzer [91] since

Assumption D5 is satisfied due to Lemma 5.3.6.

Assume throughout the rest of this section that Assumption M1-Assumption M11

always hold.

We begin with the estimator ϑ̂n,1 of the parameter ϑ0
1, which is connected to the

non-stationary part. For this purpose, let us define the following set for n ∈ N

Nn,γ(ϑ
0
1, δ) :=

{
ϑ1 ∈ Θ1 : ‖ϑ1 − ϑ0

1‖ ≤ δn−γ
}
, (5.34)

which is decreasing in n.

As in Saikkonen [86], we want to show that ϑ̂n,1−ϑ0
1 = op(n

−γ) holds for all 0 ≤ γ < 1

by proving a sufficient condition. The existence of the estimator is guaranteed due

to the assumptions made. Among other things, we have a compact parameter space

and a continuous log-likelihood function.

To show the consistency for the long run parameter, it suffices to show that for all

δ > 0 we have

lim
n→∞

Pn,ϑ0

(
inf

ϑ∈Nn,γ(ϑ01,δ)×Θ2

L(h)
n (ϑ)− L(h)

n (ϑ0) > 0

)
= 1, (5.35)

where the complement of Nn,γ(ϑ
0
1, δ) is naturally given by

Nn,γ(ϑ
0
1, δ) :=

{
ϑ1 ∈ Θ1 : ‖ϑ1 − ϑ0

1‖ ≥ δn−γ
}
. (5.36)

Let us now begin with the first step, where we show the consistency of the long-run

parameter estimator.
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Step 1:

First, we consider the special case, where γ = 0 in condition (5.35), i.e. for brevity

we write for the set (5.36) shortly Nn,0(ϑ
0
1, δ) = B(ϑ0

1, δ). Using the fact that

L(h)
n,1(ϑ0

1, ϑ2) = 0, we obtain

inf
ϑ∈B(ϑ01,δ)×Θ2

L(h)
n (ϑ)− L(h)

n (ϑ0) ≥ inf
ϑ∈B(ϑ01,δ)×Θ2

L(h)
n,1(ϑ) + inf

ϑ∈Θ2

(
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ0
2)
)

= inf
ϑ∈B(ϑ01,δ)×Θ2

L(h)
n,1(ϑ) + op(1). (5.37)

Note that infϑ∈Θ2(L
(h)
n,2(ϑ2) − L(h)

n,2(ϑ
0
2)) = op(1) follows by the convergence result

in Proposition 5.5.1 and the global minimum at ϑ0
2 as shown in Lemma 5.5.2 (c.f.

Saikkonen [86], Section 5.3).

We need to show that there exists for every δ > 0 a constant c > 0 such that

lim
n→∞

Pn,ϑ0

(
inf

ϑ∈B(ϑ01,δ)×Θ2

L(h)
n,1(ϑ) ≥ c

)
= 1. (5.38)

Note that we can write the terms inside the norm as a trace and cyclical permutate

the matrices. We will further use the submultiplicativity of the norm and Lemma 5.9.1

iii). We have for L(h)
n,1(ϑ), using the representation (5.11b), the following lower bound

L(h)
n,1(ϑ) ≥

∥∥∥∥∥ 1

n

n∑
k=1

(
V

(h)
ϑ

)−1
ε

(h)
k,1(ϑ)ε

(h)
k,1(ϑ)T

∥∥∥∥∥− ∣∣∣log detV
(h)
ϑ

∣∣∣− ∣∣∣log detV
(h)
ϑ2

∣∣∣
−

∥∥∥∥∥ 2

n

n∑
k=1

(
V

(h)
ϑ

)−1
ε

(h)
k,1(ϑ)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥−
∥∥∥∥∥ 1

n

n∑
k=1

(
V

(h)
ϑ

)−1
ε

(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
−

∥∥∥∥∥ 1

n

n∑
k=1

(
V

(h)
ϑ2

)−1
ε

(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
≥ σmin

((
V

(h)
ϑ

)−1
)∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,1(ϑ)T

∥∥∥∥∥− ∣∣∣log detV
(h)
ϑ

∣∣∣− ∣∣∣log detV
(h)
ϑ2

∣∣∣
−
∥∥∥(V (h)

ϑ

)−1
∥∥∥(∥∥∥∥∥ 2

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
)

−
∥∥∥(V (h)

ϑ2

)−1
∥∥∥∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥ (5.39a)

≥ c ·

∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,1(ϑ)T

∥∥∥∥∥− c ·
∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
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− c ·

∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥− c1, (5.39b)

for some constants c, c1 > 0. The inequality including the minimal singular value

σmin of the non-singular matrix
(
V

(h)
ϑ

)−1
follows by Bernstein [9], Corollary 9.6.7.

Lastly, due to the compact parameter space, entailed by Assumption M5, and the

continuity of V
(h)
ϑ , we can also bound the log det terms and the minimal singular

value. All in all, we see that the asymptotic behavior depends only on the parts,

where combinations of ε
(h)
2 (ϑ2) and ε

(h)
1 (ϑ) appear.

Let us consider all three terms in (5.39b) separately. We begin with the last

one, which is stationary for all ϑ2 ∈ Θ2. We obtain with Theorem 5.4.4 and the

form of (ε
(h)
k,2(ϑ2)) given in (5.10) the continuous convergence in probability, namely∥∥∥ 1

n

∑n
k=1 ε

(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥ = Op(1).

The second term in (5.39b) is a combination of a stationary and a non-stationary pro-

cess. Hence, we have to use additionally the second result of Theorem 5.4.5 to obtain

the desired convergence result. Recall the representation of the pseudo-innovations

ε
(h)
1 (ϑ) and ε

(h)
2 (ϑ2) given in (5.10) and note that Π(ϑ0

1, ϑ2)Y
(h)
k = Π(ϑ0

1, ϑ2)Y
(h)
k,2 .

Therefore, we obtain the lower bound for the mixed term∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
≥

∥∥∥∥∥[Π(ϑ1, ϑ2)− Π(ϑ0
1, ϑ2)

] 1

n

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1,2Π(ϑ0

1, ϑ2)T

∥∥∥∥∥
−

∥∥∥∥∥[Π(ϑ1, ϑ2)− Π(ϑ0
1, ϑ2)

] 1

n

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k k(B, ϑ0

1, ϑ2)T

∥∥∥∥∥
−

∥∥∥∥∥ 1

n

n∑
k=1

(
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
)

∆Y
(h)
k ∆Y

(h)T
k k(B, ϑ0

1, ϑ2)T

∥∥∥∥∥
−

∥∥∥∥∥ 1

n

n∑
k=1

(
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
)

∆Y
(h)
k Y

(h)T
k−1,2Π(ϑ0

1, ϑ2)T

∥∥∥∥∥ . (5.40)

The last two terms are stationary and hence we can use Theorem 5.4.4 and for the

first two terms we use Theorem 5.4.5. Consequently, we have also for the mixed term∥∥∥ 1
n

∑n
k=1 ε

(h)
k,1(ϑ)ε

(h)
k,2(ϑ2)T

∥∥∥ = Op(1).

Ultimately, we have to deal with the first term in (5.39b) including a product of two
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non-stationary processes. As before, we derive a lower bound given by∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,1(ϑ)T

∥∥∥∥∥
≥

∥∥∥∥∥ 1

n

n∑
k=1

[
Π(ϑ1, ϑ2)− Π(ϑ0

1, ϑ2)
]
Y

(h)
k−1Y

(h)T
k−1

[
Π(ϑ1, ϑ2)− Π(ϑ0

1, ϑ2)
]T∥∥∥∥∥

−

∥∥∥∥∥ 1

n

n∑
k=1

(k(B, ϑ1, ϑ2)− k(B, ϑ0
1, ϑ2))∆Y

(h)
k ∆Y

(h)T
k

(
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
)T∥∥∥∥∥

−

∥∥∥∥∥ 2

n

n∑
k=1

[
Π(ϑ1, ϑ2)− Π(ϑ0

1, ϑ2)
]
Y

(h)
k−1∆Y

(h)T
k (k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2))T

∥∥∥∥∥ .
(5.41)

The first term is the dominant term, which we have to investigate in more detail.

In contrast, the second and third terms are of order Op(1) by Theorem 5.4.4 and

Theorem 5.4.5 respectively.

Finally, let us now take a closer look on the dominant term in (5.41). Define

λmin(S(n)) as the smallest eigenvalue of

S(n) :=
1

n2

n∑
k=1

k−1∑
i=1

R
(h)
i,1

k−1∑
i=1

R
(h)T
i,1 ,

where R
(h)T
i,1 is as in (4.20). Note that C1S(n)CT

1 is the dominant part of the

term 1
n2

∑n
k=1 Y

(h)
k−1Y

(h)T
k−1 due to the results in the proof of Proposition 5.8.4 iii).

Furthermore, we have that S(n) converges weakly to B1

∫ 1

0
W (r)W (r)T drBT

1 .

Hence, we have a lower bound, using again Bernstein [9], Corollary 9.6.7. and

Proposition 5.8.4 iii), given by∥∥∥∥∥[Π(ϑ1, ϑ2)− Π(ϑ0
1, ϑ2)

] 1

n2

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1

[
Π(ϑ1, ϑ2)− Π(ϑ0

1, ϑ2)
]T∥∥∥∥∥

=

∥∥∥∥∥Π(ϑ1, ϑ2)
1

n2

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1 Π(ϑ1, ϑ2)T

∥∥∥∥∥+Op
(

1

n

)
=
∥∥CT

1 Π(ϑ)TΠ(ϑ)C1S(n)
∥∥+Op

(
1

n

)
≥ λmin(S(n))‖Π(ϑ)C1‖2 +Op

(
1

n

)
, (5.42)

where the sequence λmin(S(n)) converges weakly to the smallest eigenvalue of the
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almost surely positive-definite matrix
∫ 1

0
B1W (r)W (r)TBT

1 dr (c.f. for example

Johansen and Schaumburg [55]). Furthermore, the infimum of L(h)
n,1(ϑ) is taken over

a set where ϑ1 ∈ B(ϑ0
1, δ), thus by Lemma 5.3.1 we obtain ‖Π(ϑ)C1‖2 ≥ dδ, for some

constant dδ > 0. All in all, we obtain

inf
ϑ∈B(ϑ01,δ)×Θ2

L(h)
n,1(ϑ) ≥n · dδλmin(S(n))−Op(1),

which tends to infinity at the rate Op(n) and thus we have shown (5.38). In other

words, we have shown that for a fixed lower bound for ‖ϑ1 − ϑ0
1‖ and arbitrary ϑ2

the infimum of the log-likelihood function tends to infinity. By doing this, we achieve

consistency of the long-run parameter estimator.

Step 2:

Since the result from the first step is insufficient to show the consistency of the short-

run parameter we determine now the consistency rate of the long-run parameter

estimator. Thus, we use the complement of the set (5.34) without the restriction of

γ = 0 in order to determine the consistency rate. In consequence, we consider the

sufficient condition (5.35) with 0 < γ < 1 and have

inf
ϑ∈Nn,γ(ϑ01,δ)×Θ2

n ·
(
L(h)
n (ϑ)− L(h)

n (ϑ0)
)

≥ inf
ϑ∈Nn,γ(ϑ01,δ)×Θ2

n · L(h)
n,1(ϑ) + inf

ϑ∈Θ2

n ·
(
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ0
2)
)

= inf
ϑ∈Nn,γ(ϑ01,δ)×Θ2

n · L(h)
n,1(ϑ) +Op(1). (5.43)

In order to see the last equality we take an infeasible estimator ϑ̂st2 for ϑ0
2, which is

the QML-estimator of Schlemm and Stelzer [91] minimizing L(h)
n,2(ϑ2). This estimator

is infeasible since it is only an estimator for a stationary MCARMA process Y2.

Note that L(h)
n,2(ϑ2) depends only on the short-run parameter and the true long-run

parameter value is already inserted in the log-likelihood function. For this reason,

we can interpret this as a
”
classical“ stationary estimation problem. However, this

estimator is not applicable for this setting as a suitable estimator. We know that

ϑ̂stn,2 − ϑ0
2 = Op(n−

1
2 ) and the score vector is asymptotically normal due to Theorem

3.16 in Schlemm and Stelzer [91]. Thus, applying a mean value expansion yields

n ·
(
L(h)
n,2(ϑ̂st2 )− L(h)

n,2(ϑ0
2)
)

=
(√

n∇L(h)
n,2(ϑn,2)

)
·
(√

n(ϑ̂stn,2 − ϑ2)
)

= Op(1) for an

appropriate intermediate value ϑ2 (c.f. also Saikkonen [86], p. 904).

The last line in (5.43) tends to infinity in probability if we can show for every δ > 0
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and every d > 0,

lim
n→∞

Pn,ϑ0

(
inf

ϑ∈Nn,γ(ϑ01,δ)×Θ2

n · L(h)
n,1(ϑ) ≥ d

)
= 1. (5.44)

To show this we first note that due to the results in the first step we only have to

consider for n large enough the set

Mn,γ(ϑ
0
1, δ1) = Nn,γ(ϑ

0
1, δ1) ∩B(ϑ0

1, δ1) ⊂ B(ϑ0
1, δ1)

instead of the complete set Nn,γ(ϑ
0
1, δ1).

We need another assumption, this time on the gradient of the matrix Π(·). A rank

condition on the gradient is not only relevant for the proof of the consistency, but it

is also central for the derivation of the asymptotic distribution in the next section.

Assumption M12

Assume that the (d2 × s1)- dimensional gradient matrix ∇ϑ1

(
Π(ϑ0

1, ϑ2)T
)

has full

column rank s1 for all ϑ2 ∈ Θ2.

We need the following result in order to know the exact speed of convergence of

the subspace to the cointegration space. With the following lemma we are able to

determine the consistency rate of ϑ̂n,1 afterwards.

Lemma 5.5.3

Assume that Assumption M2-Assumption M9 and Assumption M12 hold. For δ1

small there exists a constant c > 0 such that

inf
(ϑ1,ϑ2)∈Mn,γ(ϑ01,δ1)×Θ2

‖Π(ϑ)C1‖ ≥ c · δ1n
−γ.

Proof. Applying a mean value expansion will prove the claim. First, we have due

to Assumption M8 that Π(·) is continuously differentiable and Assumption M12

guarantees for δ1 small enough that the gradient ∇ϑ1Π(ϑ) is of full column rank.

Hence, the smallest eigenvalue of ∇ϑ1Π(ϑ)T∇ϑ1Π(ϑ) is bounded away from zero and

accordingly the smallest singular value of ∇ϑ1Π(ϑ) for δ1 small enough.

Recall the facts about the Frobenius norm, the vec operator and the Kronecker

product in Appendix B. Hence,
(
CT

1 ⊗ Id
)

has dimension dr × d2 and rank dr. Then,

the smallest singular value σmin of
(
CT

1 ⊗ Id
)

is positive by Bernstein [9], Equation

(5.6.4).
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B(ϑ0
1, δ1)

Mn,γ(ϑ
0
1, δ1)

Nn,γ(ϑ
0
1, δ1)

δ1

n−γδ1

ϑ0
1

Figure 5.1.: Illustration of considered sets for the parameter ϑ1.

Eventually, using a mean value expansion and Bernstein [9], Corollary 9.6.7 twice,

leads to

∥∥Π(ϑ)C1

∥∥ =
∥∥vec(Π(ϑ)C1)

∥∥
=

∥∥∥∥ vec
(
Π(ϑ0

1, ϑ2)C1

)︸ ︷︷ ︸
=0dr

+∇ϑ1

(
Π(ϑ1, ϑ2)C1

)
(ϑ1 − ϑ0

1)

∥∥∥∥
=
∥∥(CT

1 ⊗ Id
)
∇ϑ1

(
Π(ϑ1, ϑ2)

)
(ϑ1 − ϑ0

1)
∥∥

≥ σmin
(
CT

1 ⊗ Id
)
σmin

(
∇ϑ1Π(ϑ1, ϑ2)

)
‖ϑ1 − ϑ0

1‖

≥ c‖ϑ1 − ϑ0
1‖ ≥ c · δn−γ, (5.45)

for vectors ϑ1,i ∈ Θ of the form ϑ1,i = ϑ0
1 + ci(ϑ̂1 − ϑ0

1), 0 ≤ ci ≤ 1 such that

∇ϑ1Π(ϑ1, ϑ2) denotes the matrix, whose ith row, for i = 1, . . . , s1, is equal to the ith

row of ∇ϑ1Π(ϑ1,i, ϑ2).

Besides, due to the Lipschitz continuity of Π(·) we have in the set Mn,γ(ϑ
0
1, δ1) the

following upper bound

∥∥Π(ϑ1, ϑ2)− Π(ϑ0
1, ϑ2)

∥∥ ≤ cΠ

∥∥ϑ1 − ϑ0
1

∥∥ ≤ cΠδ1.

Knowing the speed of convergence of the subspace, we can relate this directly to the
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speed of convergence of ϑn,1 to the true long-run parameter value. We have seen that

it converges up to a constant with the same speed as n→∞ in the set Mn,γ(ϑ
0
1, δ1).

Lemma 5.5.4

Assume that Assumption M2-Assumption M9 and Assumption M12 hold. Then we

have as n→∞

sup
ϑ1∈Mn,γ(ϑ01,δ)×Θ2

‖ϑ1 − ϑ0
1‖

n · ‖Π(ϑ)C1‖2
= o(1). (5.46)

Proof. First, we know that supϑ1∈Mn,γ(ϑ01,δ)×Θ2
(n·‖Π(ϑ)C1‖)−1 = o(1) for all 0 ≤ γ < 1

by Lemma 5.5.3. Again, we have by using a intermediate step of Equation 5.45

sup
ϑ1∈Mn,γ(ϑ01,δ)×Θ2

‖ϑ1 − ϑ0
1‖

‖Π(ϑ)C1‖
≤ sup

ϑ1∈Mn,γ(ϑ01,δ)

c · ‖ϑ1 − ϑ0
1‖

‖ϑ1 − ϑ0
1‖

<∞,

for some positive constant c.

As in Step 1 we have the lower bound of L(h)
n,1(ϑ) given by (5.39). We use similar

derivations as in (5.40), (5.41) and (5.42) to further improve this lower bound.

Moreover, we make use of the Lipschitz continuity of Π(·), k(z, ·) and V(·), which

finally leads to using Lemma 5.5.3

n · L(h)
n,1(ϑ)

(5.39a)

≥ n · c ·

∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,1(ϑ)T

∥∥∥∥∥− n · c ·
∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
− n ·

∥∥∥(V (h)
ϑ

)−1 −
(
V

(h)
ϑ2

)−1
∥∥∥∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
− n

∣∣∣log detV
(h)
ϑ − log detV

(h)
ϑ2

∣∣∣
≥ n2 · c

[
− ‖Π(ϑ1, ϑ2)− Π(ϑ0

1, ϑ2)‖
n

(∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1,2

∥∥∥∥∥
)

︸ ︷︷ ︸
:=Xn,1

− ‖ϑ1 − ϑ0
1‖

n
·

(∥∥∥∥∥ 1

n

n∑
k=1

∆Y
(h)
k ∆Y

(h)T
k

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1,2∆Y

(h)T
k

∥∥∥∥∥
)

︸ ︷︷ ︸
:=Xn,2

− ‖ϑ1 − ϑ0
1‖

n

(∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥+ 1

)
︸ ︷︷ ︸

:=Xn,3

+ λmin(S(n))‖Π(ϑ)C1‖2

]
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≥ n2 · c‖Π(ϑ)C1‖2 ·
(
λmin(S(n))− c1 · ‖ϑ1 − ϑ0

1‖
n · ‖Π(ϑ)C1‖2

(Xn,1 +Xn,2 +Xn,3)− op(1)

)
︸ ︷︷ ︸

:=Xn

≥ n2−2γ · c · δ2 ·Xn, (5.47)

for some c, c1 > 0 and δ > 0.

Due to Lemma 5.5.4 the fraction in front of Xn1 + Xn2 + Xn3 is of order o(1).

Proposition 5.8.4 and Theorem 5.4.4 imply Xn1 + Xn2 + Xn3 = Op(1). Note that

as previously λmin(S(n)) converges weakly to the smallest eigenvalue of the ma-

trix B1

∫ 1

0
W (r)W (r)T dr BT

1 due to Proposition 5.8.4 iii). Combining these re-

sults further implies that Xn converges to the smallest eigenvalue of the matrix

B1

∫ 1

0
W (r)W (r)T dr BT

1 in probability, which is almost surely positive definite.

Thus, the smallest eigenvalue is almost surely positive. In conclusion, the prod-

uct also diverges to infinity. Hence, we have shown (5.44), which finally leads to

ϑ̂n,1 − ϑ0
1 = op(n

−γ), for 0 ≤ γ < 1. In difference to the standard approach in the

stationary setting, we need the order of consistency due to the different convergence

rates depending if the parameters belong to the stationary or non-stationary part.

Step 3:

Next, we consider the consistency of the estimator ϑ̂n,2 of the short-run parameter

with the help of the order of consistency we obtained in the previous step. We show

the sufficient condition for consistency

lim
n→∞

Pn,ϑ0

(
inf

ϑ∈Θ1×B(ϑ02,δ)
n ·
(
L(h)
n (ϑ)− L(h)

n (ϑ0)
)
> 0

)
= 1 (5.48)

for δ > 0. Let us assume for this step that 1
2
< γ < 1. Apparently, the parameter

subspace Θ1 is the union of the following sets Θ1 = Nn,γ(ϑ
0
1, δ1) ∪Nn,γ(ϑ

0
1, δ1) and

thus we have already shown (5.48) for the set Nn,γ(ϑ
0
1, δ1) × B(ϑ0

2, δ) in Step 2.

This insight enables us to use the convergence rate of the long-run estimator in the

following. Hence, for arbitrary δ1 > 0 we obtain

lim
n→∞

Pn,ϑ0

(
inf

ϑ∈Nn,γ(ϑ01,δ1)×B(ϑ02,δ)
n ·
(
L(h)
n (ϑ)− L(h)

n (ϑ0)
)
> 0

)

≥ lim
n→∞

Pn,ϑ0

(
inf

ϑ∈Nn,γ(ϑ01,δ1)×B(ϑ02,δ)
nL(h)

n,1(ϑ) + inf
ϑ2∈B(ϑ02,δ)

n
(
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ0
2)
)
> 0

)

≥ lim
n→∞

Pn,ϑ0

(
inf

ϑ∈Nn,γ(ϑ01,δ1)×B(ϑ02,δ)
|L(h)

n,1(ϑ)| ≤ ε ; inf
ϑ2∈B(ϑ02,δ)

L(h)
n,2(ϑ2)− L(h)

n,2(ϑ0
2) > ε

)
.
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Consequently, we have to prove that the following two conditions hold in order to

prove (5.48). First, we need to show that for all δ > 0, every ε > 0 and some δ1 > 0

we have

lim
n→∞

Pn,ϑ0

(
sup

ϑ∈Nn,γ(ϑ01,δ1)×B(ϑ02,δ)

|L(h)
n,1(ϑ)| ≤ ε

)
= 1 (5.49a)

and secondly that for all δ > 0 and some ε > 0

lim
n→∞

Pn,ϑ0

(
inf

ϑ2∈B(ϑ02,δ)
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ0
2) > ε

)
= 1. (5.49b)

Eventually, to show (5.49a) we derive an upper bound in a similar way to the lower

bound given in (5.39). Note that
∥∥(V (h)

ϑ

)−1∥∥ is bounded due to Lemma 5.9.2 iii). As

usual make use of the submultiplicativity of the norm and use (5.39a)

|L(h)
n,1(ϑ)| ≤

∣∣∣∣∣log

(
detV

(h)
ϑ

detV
(h)
ϑ2

)∣∣∣∣∣+
∥∥∥(V (h)

ϑ

)−1
∥∥∥∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,1(ϑ)T

∥∥∥∥∥
+ 2 ·

∥∥∥(V (h)
ϑ

)−1
∥∥∥∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
k=1

((
V

(h)
ϑ

)−1 −
(
V

(h)
ϑ2

)−1
)
ε

(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

∥∥∥∥∥
≤

∣∣∣∣∣log

(
detV

(h)
ϑ

detV
(h)
ϑ2

)∣∣∣∣∣+ c

∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)Tε

(h)
k,1(ϑ)

∥∥∥∥∥
+
∥∥∥(V (h)

ϑ

)−1 −
(
V

(h)
ϑ2

)−1
∥∥∥∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)Tε

(h)
k,2(ϑ2)

∥∥∥∥∥
+ c

∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)Tε

(h)
k,2(ϑ2)

∥∥∥∥∥ , (5.50)

for some constant c > 0.

Since log det is a smooth function, we can use the Lipschitz continuity to obtain for

ϑ1 ∈ Nn,γ(ϑ
0
1, δ1) (c.f. the definition of the set in (5.34))∣∣∣log

(
detV

(h)
ϑ

)
− log

(
detV

(h)
ϑ2

)∣∣∣ ≤ c‖ϑ1 − ϑ0
1‖ ≤ c1n

−γ,

for some constant c, c1 > 0. Therefore, we have this upper bound depending on n.

Alike, we use the Lipschitz continuity of the functions k(1, ·), Π(·) and
(
V

(h)
(·)
)−1

and

the submultiplicativity of the norm.
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Finally, due to the representation given in (5.87) and the fact that Π(ϑ0
1, ϑ2)Y

(h)
k−1 =

Π(ϑ0
1, ϑ2)Y

(h)
k−1,2, we obtain the following upper bound

sup
ϑ∈Nn,γ(ϑ01,δ1)×B(ϑ02,δ)

|L(h)
n,1(ϑ)|

(5.50)

≤

∣∣∣∣∣log

(
detV

(h)
ϑ

detV
(h)
ϑ2

)∣∣∣∣∣+ c

∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)Tε

(h)
k,1(ϑ)

∥∥∥∥∥+ c

∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,1(ϑ)Tε

(h)
k,2(ϑ2)

∥∥∥∥∥
+
∥∥∥(V (h)

ϑ

)−1 −
(
V

(h)
ϑ2

)−1
∥∥∥∥∥∥∥∥ 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)Tε

(h)
k,2(ϑ2)

∥∥∥∥∥
≤ c1 · n−γ + c1‖ϑ1 − ϑ0

1‖2

∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1

∥∥∥∥∥+ c1‖ϑ1 − ϑ0
1‖2

∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥
+ c1‖ϑ1 − ϑ0

1‖2

∥∥∥∥∥ 1

n

n∑
k=1

∆Y
(h)
k ∆Y

(h)T
k

∥∥∥∥∥+ c1‖ϑ1 − ϑ0
1‖

∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1,2

∥∥∥∥∥
+ c1‖ϑ1 − ϑ0

1‖

∥∥∥∥∥ 1

n

n∑
k=1

∆Y
(h)
k ∆Y

(h)T
k

∥∥∥∥∥+ c1‖ϑ1 − ϑ0
1‖

∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1,2∆Y

(h)T
k

∥∥∥∥∥
+ c1‖ϑ1 − ϑ0

1‖

∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥+ c1‖ϑ1 − ϑ0
1‖

∥∥∥∥∥ 1

n

n∑
k=1

Y
(h)
k−1,2Y

(h)T
k−1,2

∥∥∥∥∥
≤ c1n

−γ + c1

∥∥∥∥∥n−1−2γ

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1

∥∥∥∥∥+ c1

∥∥∥∥∥n−1−2γ

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥
+ c1

∥∥∥∥∥n−1−2γ

n∑
k=1

∆Y
(h)
k ∆Y

(h)T
k

∥∥∥∥∥+ c1

∥∥∥∥∥n−1−γ
n∑
k=1

Y
(h)
k−1Y

(h)T
k−1,2

∥∥∥∥∥
+ c1

∥∥∥∥∥n−1−γ
n∑
k=1

∆Y
(h)
k ∆Y

(h)T
k

∥∥∥∥∥+ c1

∥∥∥∥∥n−1−γ
n∑
k=1

Y
(h)
k−1,2∆Y

(h)T
k

∥∥∥∥∥
+ c1

∥∥∥∥∥n−1−γ
n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

∥∥∥∥∥+ c1

∥∥∥∥∥n−1−γ
n∑
k=1

Y
(h)
k−1,2Y

(h)T
k−1,2

∥∥∥∥∥ ,
for some c1 > 0. The different exponents arising depend on how often we used the

Lipschitz continuity per summand. The second term of the right-hand side is of

order op(1) for γ > 1
2
. The remaining terms are all of op(1) for every γ > 0 due to

Proposition 5.8.4.

We have shown (5.49a) and only the second and final part (5.49b) is left to be

considered. In order to show the condition (5.49b) note that Proposition 5.5.1 yields

L(h)
n,2(ϑ2)

p−−→
c

L(h)
2 (ϑ2). Therefore, using the ideas of Poetscher and Prucha [80], Proof

of Lemma 3.1, we obtain

lim inf
n→∞

inf
ϑ2∈B(ϑ02,δ)

(
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ0
2)
)
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= lim inf
n→∞

inf
ϑ2∈B(ϑ02,δ)

(
L(h)
n,2(ϑ2)−L(h)

2 (ϑ2)− L(h)
n,2(ϑ0

2) + L(h)
2 (ϑ0

2) + L(h)
2 (ϑ2)−L(h)

2 (ϑ0
2)
)

≥ lim inf
n→∞

inf
ϑ2∈B(ϑ02,δ)

(
L(h)
n,2(ϑ2)−L(h)

2 (ϑ2)
)

+ lim inf
n→∞

(
−L(h)

n,2(ϑ0
2) + L(h)

2 (ϑ0
2)
)

+ inf
ϑ2∈B(ϑ02,δ)

(
L(h)

2 (ϑ2)−L(h)
2 (ϑ0

2)
)

> ε, P− a.s. (5.51)

where the constant ε > 0 is determined by infϑ2∈B(ϑ02,δ)

(
L(h)

2 (ϑ2)−L(h)
2 (ϑ0

2)
)

since

L(h)
2 (ϑ2) has its unique minimum at ϑ0

2 due to Lemma 5.5.2.

In summary, we want to collect the obtained results of this section into one theorem,

which is the main result of this section.

Theorem 5.5.5

Let Assumption M1-Assumption M12 hold. Then we obtain the super-consistency of

the long-run parameter estimator ϑ̂n,1, i.e.

ϑ̂n,1 − ϑ0
1 = op(n

−γ), for all 0 ≤ γ < 1, (5.52a)

and the consistency of short-run parameter estimator ϑ̂n,2, i.e.

ϑ̂n,2 − ϑ0
2 = op(1). (5.52b)

5.6. Asymptotic Distributions

The aim of this section is to derive the asymptotic distributions of the short-run

parameter estimator and the long-run parameter estimator. These two estimators

have a different asymptotic behavior and different convergence rates. On the one

hand, we prove the asymptotic normality of the estimator corresponding to the

short-run parameters. However, on the other hand, we show that the estimator

corresponding to the long-run parameters is mixed normal distributed.

Assume throughout this section that Assumption M1-Assumption M12 always hold.

5.6.1. Asymptotic Distribution of the Long-run Estimator

We derive in this section the asymptotic distribution of the long-run QMLE using

a mean-value expansion. Thus, we consider first the asymptotic behaviour of the
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score vector and then of the Hessian matrix. First, we show the convergence to a

stochastic integral of the gradient with respect to the non-stationary parameters.

The partial derivatives with respect to ith-component of the parameter vector ϑ, for

i = 1, . . . , s of the log-likelihood function (5.6) are given by

∂iL(h)
n (ϑ) =

1

n

n∑
k=1

∂i`
(h)
ϑ,k, (5.53a)

where we obtain with the differentiation rules for matrix functions (c.f. Appendix

B.4)

∂i`
(h)
ϑ,k = tr

((
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
− tr

((
V

(h)
ϑ

)−1
ε

(h)
k (ϑ)ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
+ 2 ·

(
∂iε

(h)
k (ϑ)T

) (
V

(h)
ϑ

)−1
ε

(h)
k (ϑ). (5.53b)

Let us now derive the asymptotic behaviour of the gradient with respect to the

long-run parameters.

Proposition 5.6.1

For the gradient with respect to the non-stationary parameters we have

∇ϑ1L(h)
n (ϑ0)

w−−→ J1(ϑ0), (5.54)

where the limit is given by J1(ϑ0) :=
(
J (1)

1 (ϑ0) · · · J (s1)
1 (ϑ0)

)T
with the following

components

J (i)
1 (ϑ0) :=2 tr

((
V

(h)

ϑ0

)−1 (
∂1
i Π(ϑ0)

) (
C1B1, 0d×(N−c)

) ∫ 1

0

W (r) dW (r)T

·
(
−
(
C1B1, Ψ̃(1)

)
k(1, ϑ0) +

(
0d×c,Ψ(1)

)
Π(ϑ0)

)T)
+ 2 tr

((
V

(h)

ϑ0

)−1
Σ

(i)

ϑ0

)
.

The matrix Σ
(i)

ϑ0 is defined in the proof.

Proof. We know from (5.53) that for i = 1, . . . , s1 we have

∂1
i L(h)

n (ϑ0) = tr
((
V

(h)

ϑ0

)−1
∂1
i V

(h)

ϑ0

)
− tr

((
V

(h)

ϑ0

)−1(
∂1
i V

(h)

ϑ0

)(
V

(h)

ϑ0

)−1 1

n

n∑
k=1

ε
(h)
k (ϑ0)ε

(h)
k (ϑ0)T

)
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+ 2 · tr

(
1

n

n∑
k=1

(
V

(h)

ϑ0

)−1(
∂1
i ε

(h)
k (ϑ0)

)
ε

(h)
k (ϑ0)T

)
.

Note that the second term converges due to Lemma 5.8.1 (Birkhoff’s Ergodic Theo-

rem), i.e. we obtain

tr

((
V

(h)

ϑ0

)−1(
∂1
i V

(h)

ϑ0

)(
V

(h)

ϑ0

)−1 1

n

n∑
k=1

ε
(h)
k (ϑ0)ε

(h)
k (ϑ0)T

)
a.s.−−→ tr

((
V

(h)

ϑ0

)−1(
∂1
i V

(h)

ϑ0

)(
V

(h)

ϑ0

)−1
V

(h)

ϑ0

)
= tr

((
V

(h)

ϑ0

)−1
∂1
i V

(h)

ϑ0

)
.

Hence, this term and the first term cancel each other out. Thus, it only remains

to show the convergence of the last term. Hence, we obtain with Proposition 5.8.4,

Theorem 5.4.4, Theorem 5.4.5 and the continuous mapping theorem

2 · tr

((
V

(h)

ϑ0

)−1 · 1

n

n∑
k=1

(
∂1
i ε

(h)
k (ϑ0)

)
ε

(h)
k (ϑ0)T

)

= −2 tr

((
V

(h)

ϑ0

)−1 · 1

n

n∑
k=1

∂1
i Π(ϑ0)Y

(h)
k−1∆Y

(h)T
k k(B, ϑ0)T

)

+ 2 tr

((
V

(h)

ϑ0

)−1 · 1

n

n∑
k=1

∂1
i Π(ϑ0)Y

(h)
k−1Y

(h)T
k−1,2Π(ϑ0)T

)

+ 2 tr

((
V

(h)

ϑ0

)−1 · 1

n

n∑
k=1

∂1
i k(B, ϑ0)∆Y

(h)
k ∆Y

(h)T
k k(B, ϑ0)T

)

− 2 tr

((
V

(h)

ϑ0

)−1 · 1

n

n∑
k=1

∂1
i k(B, ϑ0)∆Y

(h)
k Y

(h)T
k−1,2Π(ϑ0)T

)
w−−→
c
−2 tr

((
V

(h)

ϑ0

)−1 ·
(
∂1
i Π(ϑ0)

) (
C1B1, 0d×(N−c)

)
·
∫ 1

0

W (r)dW (r)T
(
C1B1, Ψ̃(1)

)T
k(1, ϑ0)T

)
− 2 tr

((
V

(h)

ϑ0

)−1 (
∂1
i Π(ϑ0)

)
C1B1Σ̃(h)B2

∞∑
j=1

Ψ̃j

∞∑
i=j+1

K̃i(ϑ)

)
− 2 tr

((
V

(h)

ϑ0

)−1 ·
(
∂1
i Π(ϑ0)

)
ΓY∆Y k(1, ϑ)T

)
− 2 tr

((
V

(h)

ϑ0

)−1 ·
(
∂1
i Π(ϑ0)

) ∞∑
µ=0

[
ΓY2∆Y (−µ)− ΓY2∆Y (−µ+ 1)

] ∞∑
ν=µ+1

K̃ν(ϑ)

)
+ 2 tr

((
V

(h)

ϑ0

)−1 (
∂1
i Π(ϑ0)

) (
C1B1, 0d×(N−c)

)
·
∫ 1

0

W (r) dW (r)T
(
0d×c,Ψ(1)

)T
Π(ϑ0)T

)
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+ 2 tr
((
V

(h)

ϑ0

)−1 (
∂1
i Π(ϑ0)

)
ΓY Y2Π(ϑ0)T

)
+ 2 tr

((
V

(h)

ϑ0

)−1 ·
∞∑
ν=0

∞∑
µ=0

∂1
i K̃ν(ϑ

0)Γ∆Y∆Y (ν − µ)K̃µ(ϑ0)T

)

− 2 tr

((
V

(h)

ϑ0

)−1 ·
∞∑
ν=0

∂1
i K̃ν(ϑ

0)Γ∆Y Y2(ν)Π(ϑ0)T

)

= 2 tr

((
V

(h)

ϑ0

)−1 (
∂1
i Π(ϑ0)

) (
C1B1, 0d×(N−c)

) ∫ 1

0

W (r) dW (r)T

·
(
−
(
C1B1, Ψ̃(1)

)
k(1, ϑ0) +

(
0d×c,Ψ(1)

)
Π(ϑ0)

)T)
+ 2 tr

((
V

(h)

ϑ0

)−1
Σ

(i)

ϑ0

)
=: J (i)

1 (ϑ0), (5.55)

where Σ
(i)

ϑ0 is given by all the remaining parts of the limit.

Next we continue with the Hessian matrix for this we need the second partial

derivatives of the innovations which are given by

∂2
i,jε

(h)
k (ϑ) = −∂2

i,jΠ(ϑ)Yk−1 + ∂2
i,j k̃(B, ϑ)∆Yk, for i, j = 1, . . . , s (5.56)

and the second partial derivatives of the log-likelihood function (5.6) are given by

∂2
i,jL(h)

n (ϑ) =
1

n

n∑
k=1

∂2
i,j`

(h)
ϑ,k, (5.57a)

where we obtain with the differentiation rules for matrix functions (c.f. Appendix

B.4) and equation (5.53b)

∂i∂j`
(h)
ϑ,k = tr

((
V

(h)
ϑ

)−1
∂2
i,jV

(h)
ϑ −

(
V

(h)
ϑ

)−1(
∂iV

(h)
ϑ

)(
V

(h)
ϑ

)−1(
∂jV

(h)
ϑ

))
− tr

((
V

(h)
ϑ

)−1
ε

(h)
k (ϑ)ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
∂2
i,jV

(h)
ϑ

)
+ tr

((
V

(h)
ϑ

)−1(
∂jV

(h)
ϑ

)(
V (h)

)−1
ε

(h)
k (ϑ)ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
+ tr

((
V

(h)
ϑ

)−1
ε

(h)
k (ϑ)ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1(
∂jV

(h)
ϑ

)(
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
− tr

((
V

(h)
ϑ

)−1(
∂jε

(h)
k (ϑ)ε

(h)
k (ϑ)T

)(
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
+ 2 ·

(
∂2
i,jε

(h)
k (ϑ)T

) (
V

(h)
ϑ

)−1
ε

(h)
k (ϑ)

+ 2 ·
(
∂iε

(h)
k (ϑ)T

) (
V

(h)
ϑ

)−1
(
∂jε

(h)
k (ϑ)

)
− 2 · tr

((
V

(h)
ϑ

)−1
ε

(h)
k (ϑ)

(
∂iε

(h)
k (ϑ)T

)(
V

(h)
ϑ

)−1
∂jV

(h)
ϑ

)
. (5.57b)
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Now we can derive the asymptotic distribution of the Hessian matrix with respect to

the long-run parameters.

Proposition 5.6.2

For each sequence ϑn → ϑ0 we have

n−1∂1
i ∂

1
jL(h)

n (ϑn)
w−−→ [Z1(ϑ0)]i,j,

where the (s1 × s1)-dimensional matrix Z1(ϑ0) is given for i, j = 1, . . . , s1 by

[Z1(ϑ0)]i,j :=2 · tr
((
V (h)

)−1
∂1
i Π(ϑ0)C1B1

∫ 1

0

W (r)W (r)T dr
(
∂1
jΠ(ϑ0)C1B1

)T)
.

(5.58)

Moreover, for some δ > 0 and 0 ≤ γ < 1 the condition (SE) holds for n−1∂1
i ∂

1
jL

(h)
n (·)

and Z1(ϑ0) is a random matrix which is almost surely positive definite.

Proof. First, we prove that the condition (SE) holds. Next, we derive the convergence

result and lastly we show the positive definiteness of the limiting matrix.

Step 1: The stochastic equicontinuity condition for all parts is a direct consequence

of Theorem 5.4.5 since the derivatives still satisfy the necessary assumptions. We

could proceed similar as in the proof of these theorems. Under these circumstances,

we would derive the results with the derivative with respect to ϑ of the transfer

function instead of the original transfer function.

Step 2: The first term in (5.57) converges to zero due to the additional normalizing

rate of n−1. The remaining terms in (5.57) can all be dealt in a similar way except

the last term. Thus, we consider exemplarily the fifth term

− tr

(
1

n2

n∑
k=1

(
V

(h)

ϑn

)−1(
∂jε

(h)
k (ϑn)ε

(h)
k (ϑn)T

)(
V

(h)

ϑn

)−1
∂iV

(h)

ϑn

)
.

We can ignore the trace operator and the factors V
(h)
ϑ since the convergence follows

then by the continuous mapping theorem. Hence, it suffices to consider

1

n

n∑
k=1

∂jε
(h)
k (ϑn)ε

(h)
k (ϑn)T.

Due to the assumption ϑn
n→∞−−−→ ϑ0, we can therefore apply a mean value expansion
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for a suitable intermediate value ϑ̃n and obtain

1

n2

n∑
k=1

∂jε
(h)
k (ϑn)ε

(h)
k (ϑn)T =

1

n2

n∑
k=1

∂jε
(h)
k (ϑn)ε

(h)T
k

+
s∑

l1=1

1

n2

n∑
k=1

∂jε
(h)
k (ϑn)∂l1ε

(h)
k (ϑ̃n)T

(
ϑn,l1 − ϑ0

l1

)
.

The first term converges to zero in probability as n→∞ due to the normalizing rate

of n−2 since it is the product of a stationary and non-stationary process. The term
1
n2

∑n
k=1 ∂jε

(h)
k (ϑn)∂l1ε

(h)
k (ϑn)T is of order Op(1) due to Theorem 5.4.5 and

(
ϑn,l1−ϑ0

l1

)
converges to zero and thus the whole expression.

Finally, we have to deal with the last term of (5.57), i.e.

1

n2

n∑
k=1

(
∂jε

(h)
k (ϑ)

)(
∂iε

(h)
k (ϑ)T

)
.

We obtain due Lemma 5.2.2 and Theorem 5.4.5 for i, j = 1, . . . , s1 that

n−1∂1
i ∂

1
jL(h)

n (ϑn) = 2 · tr
((
V

(h)

ϑn

)−1 1

n2

n∑
k=1

∂1
i ε

(h)
k (ϑn)∂1

j ε
(h)
k (ϑn)T

)
+ op(1)

= 2 · tr
((
V

(h)

ϑn

)−1 1

n2

n∑
k=1

∂1
i Π(ϑn)Y

(h)
k−1Y

(h)T
k−1 ∂

1
jΠ(ϑn)T

)
+ op(1)

w−−→ 2 · tr
((
V

(h)

ϑ0

)−1
∂1
i Π(ϑ0)C1B1

∫ 1

0

W (r)W (r)T dr
(
∂1
jΠ(ϑ0)C1B1

)T)
.

Step 3: We ignore the prefactor 2 in (5.58) in the following and transform the

matrix Z1(ϑ0). For this purpose define M := B1

∫ 1

0
W (r)W (r)T drBT

1 , which is a

P-a.s. positive definite c× c matrix. Hence, we apply the Cholesky decomposition

M = LLT. Then we have by using properties of the vec operator and the Kronecker

product (see for example [9, Chapter 7.1])

tr
((
V (h)

)− 1
2∂1

i Π(ϑ0)C1M
((
V (h)

)− 1
2∂1

i Π(ϑ0)C1

)T)
= vec

((
V (h)

)− 1
2∂1

i Π(ϑ0)C1L
)T

vec
((
V (h)

)− 1
2∂1

jΠ(ϑ0)C1L
)

= vec
(
∂1
i Π(ϑ0)C1

)T (
L⊗

(
V (h)

)− 1
2

)(
LT ⊗

(
V (h)

)− 1
2

)
vec
(
∂1
jΠ(ϑ0)C1

)
= vec

(
∂1
i Π(ϑ0)C1

)T (
M ⊗

(
V (h)

)−1
)

vec
(
∂1
jΠ(ϑ0)C1

)
.
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Furthermore, due to Bernstein [9, Fact 7.4.23],

rank
(
M ⊗

(
V (h)

)−1)
= rank(M) · rank

((
V (h)

)−1)
holds and thus M ⊗

(
V (h)

)−1
has full rank c · d.

Now, if we consider the Hessian matrix Z1(ϑ0), we have with vi := vec
(
∂1
i Π(ϑ0

1)TC1

)

Z1(ϑ0) =


vT1

(
M ⊗

(
V (h)

)−1
)
v1 · · · vT1

(
M ⊗

(
V (h)

)−1
)
vs1

...
...

vTs1

(
M ⊗

(
V (h)

)−1
)
v1 · · · vTs1

(
M ⊗

(
V (h)

)−1
)
vs1


=
(
v1 · · · vs1

)T
M
(
v1 · · · vs1

)
= ∇ϑ1 (Π(ϑ)C1)Tϑ=ϑ0 M∇ϑ1 (Π(ϑ)C1)ϑ=ϑ0 . (5.59)

Thus, Z1(ϑ0) is obviously positive semi-definite. Due to Assumption M12 the (dc×s1)-

dimensional matrix ∇ϑ1 (Π(ϑ)C1)ϑ=ϑ0 is of full column rank and hence the product

has full rank s1. Therefore, we have a regular positive semi-definite matrix and as a

consequence the positive definiteness P-almost surely.

After we have shown the asymptotic behaviour of the score vector and the Hessian

matrix we are able to derive the mixed normality of the long-run parameter estimator.

Theorem 5.6.3

Assume that Assumption M1 - Assumption M12 hold then we have as n→∞

n(ϑ̂n,1 − ϑ0
1)

w−−→ Z1(ϑ0)−1 · J1(ϑ0) (5.60)

where J1(ϑ
0) is the weak limit of ∇ϑ1L

(h)
n (ϑ0) and Z1(ϑ0) is the weak limit of

n−1∇2
ϑ1
L(h)
n (ϑ0) as n→∞.

Proof. We have shown in Theorem 5.5.5 the consistency of ϑ̂n where for the long-

run QMLE ϑ̂n,1 holds ϑ̂n,1 − ϑ0
1 = op(n

−γ), for 0 ≤ γ < 1. The true parameter

ϑ0 = ((ϑ0
1)

T, (ϑ0
2)

T)T is an element of the interior of the compact parameter space

Θ = Θ1 ×Θ2 due to Assumption M5. Hence, the estimator ϑ̂n,1 is at some point also

an element of the interior of Θ1 with probability one.

Because the parametrization is assumed to be twice continuously differentiable, we

can find the minimizing ϑ̂n,1 via the first order condition ∇ϑ1L
(h)
n (ϑ1, ϑ2) = 0s1 . We

apply a Taylor expansion of the score vector around the point ϑ0
1. Thus, we obtain
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the existence of parameter vectors ϑn,1,i ∈ Θ1 of the form ϑn,1,i = ϑ0
1 + ci(ϑ̂n,1 − ϑ0

1),

0 ≤ ci ≤ 1 such that

0s1 = ∇ϑ1L(h)
n (ϑ0

1, ϑ̂n,2) + n−1∇2
ϑ1
L(h)
n (ϑn,1, ϑ̂n,2)n(ϑ̂n,1 − ϑ0

1), (5.61)

where ∇2
ϑ1
L(h)
n (ϑn,1, ϑ̂n,2) denotes the matrix whose ith row, for i = 1, . . . , s1, is

equal to the ith row of ∇2
ϑ1
L(h)
n (ϑn,1,i, ϑ̂n,2). We have already shown the asymptotic

behavior of the first term in Proposition 5.6.1. Due to Proposition 5.6.2 we have that

n−1∇2
ϑ1
L(h)
n (ϑn,1, ϑ̂n,2) converges weakly to the random matrix Z1(ϑ0). Thus, (5.61)

together with the almost sure positive definiteness of Z1(ϑ0), allows us to take the

inverse and reorder the equation. Finally, we obtain

n(ϑ̂n,1 − ϑ0) = −
(
n−1∇2

ϑ1
L(h)
n (ϑn,1, ϑ̂n,2)

)−1

∇ϑ1L(h)
n (ϑ0

1, ϑ̂n,2).

In particular, Theorem 5.4.5 also guarantees the joint convergence of the expressions.

From the previous results and the continuous mapping theorem this converges weakly

to the limit given in (5.60).

5.6.2. Asymptotic Distribution of the Short-run Estimator

Lastly, we derive the asymptotic normality of the short-run quasi-maximum likelihood

estimator ϑ̂n,2 which we also prove by using a mean value expansion as for the long-

run estimator. We prove in the next lemma that the partial derivatives have finite

variance.

Lemma 5.6.4

For each ϑ2 ∈ Θ2 and every i = 1, . . . , s2, the random variable ∂sti
(
L(h)
n (ϑ0

1, ϑ2)
)

has

finite variance.

Proof. We have due to Lemma 5.9.5 and the Cauchy-Schwarz inequality

E
∣∣∣∣− tr

((
V

(h)
ϑ2

)−1
ε

(h)
k,2(ϑ2)ε

(h)
k,2(ϑ0

1, ϑ2)T
(
V

(h)
ϑ2

)−1
∂sti V

(h)
ϑ2

)
+ 2 ·

(
∂sti ε

(h)
k,2(ϑ2)T

) (
V

(h)
ϑ2

)−1
ε

(h)
k,2(ϑ2)

∣∣∣∣2
≤ C · E‖ε(h)

k,2(ϑ2)‖4 + C ·
(
E‖ε(h)

k,2(ϑ2)‖4E‖∂sti ε
(h)
k,2(ϑ2)‖4

) 1
2
<∞

so that the statement follows with (5.53).
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Now we can prove the convergence of the covariance matrix of the score vector, i.e.

the gradient of the log-likelihood function, where the true long-run parameter is

inserted.

Lemma 5.6.5

We have for all ϑ2 ∈ Θ2 that

Var
(
∇ϑ2L(h)

n (ϑ0
1, ϑ2)

) n→∞−−−→ I(ϑ2), (5.62)

where I(ϑ2) is given for i, j ∈ {1, . . . , s2} by

I(ϑ2) :=

[∑
l∈Z

Cov
(
∂sti `

(h)
1,2(ϑ2), ∂stj `

(h)
1+l,2(ϑ2)

)]
i,j

(5.63)

and `
(h)
1,2(ϑ2) are defined as in (5.11c).

Proof. We can derive the results in a similar way as in Lemma 2.14 in Schlemm

and Stelzer [91]. Hence, we only sketch the proof to show the differences in the

representations. We know by Lemma 4.3.18 that the strong-mixing coefficients α
Y

(h)
2

of the stationary part of the sampled process satisfy
∑

m[α(m)]
δ

2+δ < ∞ for some

constant δ > 0. Due to Remark 1.8b) in Bradley [16], we also know that ∆Y
(h)

2 is

strongly mixing.

Note that
(
ε

(h)
k,2(ϑ2)

)
k∈N

is a stationary sequence, compare with equation (5.10c). We

can restrict ourselves to show that for all ϑ2 ∈ Θ2 and all i, j = 1, . . . , s2 the sequence

I
(i,j)
n (ϑ) given by

I(i,j)
n (ϑ2) := n−1

n∑
k1=1

n∑
k2=1

Cov
(
∂sti `

(h)
k1,2

(ϑ2), ∂stj `
(h)
k2,2

(ϑ2)
)

(5.64)

converges. Recall the representation of the partial derivatives in (5.53b). By station-

arity, the covariance of (5.64) depends only on the difference l of k1 and k2. As in

Schlemm and Stelzer [91], Lemma 2.14, it suffices to show that

Cov
(
∂sti `

(h)
1,2(ϑ2), ∂stj `

(h)
1+l,2(ϑ2)

)
, l ∈ Z, (5.65)

is absolutely summable for all i, j = 1, . . . , s2. Then the Dominated Convergence

Theorem implies that

I(i,j)
n (ϑ2) = n−1

n∑
l=−n

(n− |l|) Cov
(
∂sti `

(h)
1,2(ϑ2), ∂stj `

(h)
1+l,2(ϑ2)

)
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n→∞−−−→
∑
l∈Z

Cov
(
∂sti `

(h)
1,2(ϑ2), ∂stj `

(h)
1+l,2(ϑ2)

)
<∞.

The absolute summability follows in a similar way as in the proof of Lemma 2.14

in Schlemm and Stelzer [91] using on the one hand the bilinearity of the covariance

matrix, the Cauchy-Schwarz inequality and a covariance inequality which is a con-

sequence of Davydov’s inequality (c.f. Lemma 2.13, Schlemm and Stelzer [91]). To

be more precise, we use the representation given in Lemma 5.2.1 and Lemma 5.2.2

and the same splitting as in the proof of Lemma 2.14 in Schlemm and Stelzer [91].

Furthermore, the exponential decay of the coefficients given in Lemma 5.2.1 and

Lemma 5.2.2 is used. More details on the lengthy calculations are given in Appendix

5.9.3.

Now we have all auxiliary results needed to consider the asymptotic behavior of the

score vector. We will see that the gradient with respect to the short-run parameters

is asymptotically normal with a truncation argument.

Proposition 5.6.6

For the gradient with respect to the stationary parameters we have the following

asymptotic behavior

√
n · ∇ϑ2L(h)

n (ϑ0)
w−−→ N (0, I(ϑ0

2)), (5.66)

where I(ϑ0
2) is the asymptotic covariance matrix given in (5.63).

Proof. We know that ∂iε
(h)
k (ϑ) is an element of the Hilbert space generated by{

Y
(h)
l , l < k

}
. Furthermore, the fact that E

[
ε

(h)
k (ϑ0)ε

(h)
k (ϑ0)T

]
= V

(h)

ϑ0 and the

orthogonality of ε
(h)
k (ϑ0)T to the Hilbert space generated by

{
Y

(h)
l , l < k

}
shows that

E
[
∇ϑ2L

(h)
n (ϑ0)

]
= 0s2 (c.f. (5.53b)).

Recall that the derivatives of the pseudo-innovations with respect to the stationary

parameters are stationary as well, since the non-stationary part is still canceled out

by β(ϑ0
1)T = C⊥1 .

Due to the representation (5.5) we can rewrite (5.53b) for m ∈ N as

∂iL(h)
n (ϑ0) =

1

n

n∑
k=1

(
Y

(i)
m,k − EY (i)

m,k

)
+

1

n

n∑
k=1

(
Z

(i)
m,k − EZ(i)

m,k

)
,
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where

Y
(i)
m,k = tr

((
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
− tr

((
V

(h)

ϑ0

)−1
Π(ϑ0)Y

(h)
k−1,2Y

(h)T
k−1,2Π(ϑ0)T

(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
+

m∑
ι1=0

tr
((
V

(h)

ϑ0

)−1
K̃ι1(ϑ

0)∆Y
(h)
k−ι1Y

(h)T
k−1,2Π(ϑ0)T

(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
+

m∑
ι2=0

tr
((
V

(h)

ϑ0

)−1
Π(ϑ)Y

(h)
k−1,2∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
−

m∑
ι1,ι2=0

tr
((
V

(h)

ϑ0

)−1
K̃ι1(ϑ

0)∆Y
(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
+ 2 · tr

((
∂iΠ(ϑ0)Y

(h)
k−1,2

)(
V

(h)

ϑ0

)−1
Y

(h)T
k−1,2Π(ϑ0)T

)
− 2 ·

m∑
ι1=0

tr
((
∂iK̃ι1(ϑ

0)∆Y
(h)
k−ι1

)(
V

(h)

ϑ0

)−1
Y

(h)T
k−1,2Π(ϑ0)T

)
− 2 ·

m∑
ι2=0

tr
((
∂iΠ(ϑ0)Y

(h)
k−1,2

)(
V

(h)

ϑ0

)−1
∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
)

+ 2 ·
m∑

ι1,ι2=0

tr
((
∂iK̃ι1(ϑ

0)∆Y
(h)
k−ι1

)(
V

(h)

ϑ0

)−1
∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
)

(5.67a)

Z
(i)
m,k =U

(i)
m,k + V

(i)
m,k (5.67b)

and

U
(i)
m,k =

∞∑
ι2=m+1

tr
((
V

(h)

ϑ0

)−1
Π(ϑ)Y

(h)
k−1,2∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
−
∞∑
ι1=0

∞∑
ι2=m+1

tr
((
V

(h)

ϑ0

)−1
K̃ι1(ϑ

0)∆Y
(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
− 2 ·

m∑
ι2=m+1

tr
((
∂iΠ(ϑ0)Y

(h)
k−1,2

)(
V

(h)

ϑ0

)−1
∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
)

+ 2 ·
∞∑
ι1=0

∞∑
ι2=m+1

tr
((
∂iK̃ι1(ϑ

0)∆Y
(h)
k−ι1

)(
V

(h)

ϑ0

)−1
∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
)

V
(i)
m,k =

∞∑
ι1=m+1

tr
((
V

(h)

ϑ0

)−1
K̃ι1(ϑ

0)∆Y
(h)
k−ι1Y

(h)T
k−1,2Π(ϑ0)T

(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
−

∞∑
ι1=m+1

∞∑
ι2=0

tr
((
V

(h)

ϑ0

)−1
K̃ι1(ϑ

0)∆Y
(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
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− 2 ·
∞∑

ι1=m+1

tr
((
∂iK̃ι1(ϑ

0)∆Y
(h)
k−ι1

)(
V

(h)

ϑ0

)−1
Y

(h)T
k−1,2Π(ϑ0)T

)
+ 2 ·

∞∑
ι1=m+1

∞∑
ι2=0

tr
((
∂iK̃ι1(ϑ

0)∆Y
(h)
k−ι1

)(
V

(h)

ϑ0

)−1
∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
)
.

We define

Ym,k = (Y
(1)
m,k · · · Y

(s2)
m,k )T and Zm,k = (Z

(1)
m,k · · · Z

(s2)
m,k )T (5.68)

and use a truncation argument analogous to the proof of Lemma 2.16 in Schlemm

and Stelzer [91]. We show the claim in three steps.

Step 1:

The process Ym,k depends only on m+ 1 past values of Y
(h)

2 . Hence, it inherits the

strong mixing property of Y
(h)

2 and satisfies αYm(l) ≤ α
Y

(h)
2

(max{0, l−m− 1}). Thus

by Lemma 4.3.18 we have
∑∞

l=1 (αYm(l))
δ

2+δ < ∞. Using the Cramér-Wold device

and the univariate central limit theorem of Ibragimov [51], Theorem 1.7, for strongly

mixing random variables we obtain

1√
n

n∑
k=1

(Ym,k − EYm,k)
w−−→ N (0s2 , Îm(ϑ0

2)) (5.69)

as n→∞ and Îm(ϑ0
2) =

∑
l∈Z Cov(Ym,1;Ym,1+l).

Next we need to show that

Îm(ϑ0
2)

m→∞−−−→ I(ϑ0
2). (5.70)

Note that the bilinearity property of the covariance operator implies

Cov
(
Y

(i)
m,k, Y

(j)
m,k+l

)
− Cov

(
∂i`

(h)

ϑ0,k, ∂j`
(h)

ϑ0,k+l

)
= Cov

(
Y

(i)
m,k, Y

(j)
m,k+l − ∂j`

(h)

ϑ0,k+l

)
+ Cov

(
Y

(i)
m,k − ∂i`

(h)

ϑ0,k, ∂j`
(h)

ϑ0,k+l

)
.

These terms can be treated in a similar way and hence we only consider the second

one. Due to the definitions it yields that

Y
(i)
m,k − ∂i`

(h)

ϑ0,k = −
∞∑

ι1=m+1

tr
((
V

(h)

ϑ0

)−1
K̃ι1(ϑ

0)∆Y
(h)
k−ι1Y

(h)T
k−1,2Π(ϑ0)T

(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
−

∞∑
ι2=m+1

tr
((
V

(h)

ϑ0

)−1
Π(ϑ)Y

(h)
k−1,2∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)
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+
∑
ι1,ι2

max{ι1,ι2}>m

tr
((
V

(h)

ϑ0

)−1
K̃ι1(ϑ

0)∆Y
(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
(
V

(h)

ϑ0

)−1
∂iV

(h)

ϑ0

)

+ 2 ·
∞∑

ι1=m+1

tr
((
∂iK̃ι1(ϑ

0)∆Y
(h)
k−ι1

)(
V

(h)

ϑ0

)−1
Y

(h)T
k−1,2Π(ϑ0)T

)
+ 2 ·

∞∑
ι2=m+1

tr
((
∂iΠ(ϑ0)Y

(h)
k−1,2

)(
V

(h)

ϑ0

)−1
∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
)

− 2 ·
∑
ι1,ι2

max{ι1,ι2}>m

tr
((
∂iK̃ι1(ϑ

0)∆Y
(h)
k−ι1

)(
V

(h)

ϑ0

)−1
∆Y

(h)T
k−ι2 K̃ι2(ϑ

0)T
)
.

We obtain with the Cauchy-Schwarz inequality, the exponentially decreasing coeffi-

cients and the finite (4+δ)-moments (c.f. Assumption M1) that Var(Y
(i)
m,k−∂i`

(h)

ϑ0,k) ≤
Cρm, which does no longer depend on n. Thus, the L2 continuity of the covariance

operator implies that Cov
(
Y

(i)
m,k − ∂i`

(h)

ϑ0,k, ∂j`
(h)

ϑ0,k+l

)
converges uniformly in l and at

an exponential rate to zero as m→∞.

Hence, we have Cov
(
Y

(i)
m,k, Y

(j)
m,k+l

) m→∞−−−→ Cov
(
∂i`

(h)

ϑ0,k, ∂j`
(h)

ϑ0,k+l

)
and the same ar-

guments as in the proof of Lemma 5.6.5 guarantee that there exists a summable

sequence, which dominates |Cov
(
Y

(i)
m,k, Y

(j)
m,k+l

)
|. Finally, these two results imply that

the covariance matrix converges as in (5.70).

Step 2:

In this step, we show that 1√
n

∑n
k=1 (Zm,k − EZm,k) is asymptotically negligible. It

holds that

tr Var

(
1√
n

n∑
k=1

Zm,k

)

≤ 2

(
tr Var

(
1√
n

n∑
k=1

Um,k

)
+ tr Var

(
1√
n

n∑
k=1

Vm,k

))
, (5.71)

where Um,k and Vm,k are defined as Zm,k. Since both terms can be treated similarly

we consider only the first one

tr Var

(
1√
n

n∑
k=1

Um,k

)
=

1

n
tr

n∑
k,k′=1

Cov(Um,k,Um,k′)

≤ 1

n

s2∑
i,j=1

n−1∑
l=−n+1

(n− |l|)u(i,j)
m,l

≤
s2∑

i,j=1

∑
l∈Z

|u(i,j)
m,l |, (5.72)
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where

u
(i,j)
m,l = Cov(U

(i)
m,k, U

(j)
m,k+l).

As in the proof of Lemma 2.16 in Schlemm and Stelzer [91], we find an upper bound

for |u(i,j)
m,l | independent of i and j, using the Davydov inequality, Cauchy-Schwarz

inequality and the same arguments as in the proof of Lemma 5.6.5. Namely, we

obtain

|u(i,j)
m,l | ≤ Cρm

([
α
Y

(h)
2

(⌊
l

2

⌋)] δ
δ+2

+ ρ
l
2

)
.

Moreover, we have by considering the sum over l the upper bound

∞∑
l=0

|u(i,j)
m,l | ≤

2m∑
l=0

|u(i,j)
m,l |+

∞∑
l=2m+1

|u(i,j)
m,l |

≤ Cρm

(
m+

∞∑
l=0

[
α
Y

(h)
2

(l)
] δ
δ+2

)
,

which implies tr Var
(

1√
n

∑n
k=1 Um,k

)
≤ C(m+ C̃)ρm due to (5.72).

With the same steps one obtains an equivalent bound for tr Var
(

1√
n

∑n
k=1 Vm,k

)
and

thus we have with (5.71)

tr Var

(
1√
n

n∑
k=1

Zm,k

)
≤ C(m+ C̃)ρm. (5.73)

Step 3:

With the multivariate Chebyshev inequality (see e.g. Schlemm [89], Lemma 3.19) we

obtain for every ε > 0 that

lim
m→∞

lim sup
n→∞

P

(∥∥∥∥∥√n∇ϑ2L(h)
n (ϑ0)− 1√

n

n∑
k=1

[Ym,k − EYm,k]

∥∥∥∥∥ > ε

)

≤ lim
m→∞

lim sup
n→∞

s2

ε2
tr Var

(
1√
n

n∑
k=1

Zm,k

)
≤ lim

m→∞

s2

ε2
C(m+ C̃)ρm = 0,

where we used the result from Step 2. All in all, the previous results and Proposition

6.3.9 of [20] yield the asymptotic normality in (5.66).
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Next, we consider the asymptotic behaviour of the Hessian matrix with respect to

the stationary parameters. For this we define the following matrix, which plays an

important role in order to make sure that the Hessian matrix is positive definite.

We denote shortly Fϑ := eAϑh −K(h)
ϑ Cϑ. The function is similar to the function in

Schlemm and Stelzer [91], Assumption C11. However, we define Fϑ slightly different

since we do not have a moving average representation of Y (h) with respect to the

innovations. Though, we have a moving average representation of ε(h) with respect

to Y (h), c.f. (4.34). Hence, we have to adapt the criterion slightly and define the

function

ψϑ,j :=

([
1j+1 ⊗KT

ϑ ⊗ Cϑ
] [

(vec 1N)T (vec Fϑ)T . . . (vec F j
ϑ)T
]T

vec V
(h)
ϑ

)
. (5.74)

Assumption M13

Assume that there exists a positive index j0 such that the [(j0 + 2)d2 × s2] matrix

∇ϑ2ψϑ0,j0 has rank s2.

Proposition 5.6.7

Assume that Assumption M13 additionally holds. Then, for each sequence ϑn =

(ϑn,1, ϑn,2)→ ϑ0 with ϑn,1 ∈ Nn,γ(ϑ
0
1, δ), we have

∂sti ∂
st
j L(h)

n (ϑn)
p−−→ [Zst]i,j,

where the (s2 × s2)-dimensional matrix Zst is given for i, j = 1, . . . , s2 by

[Zst]i,j :=2E
(
∂iε

(h)
1 (ϑ0)T

)(
V (h)

)−1(
∂jε

(h)
1 (ϑ0)

)
+ tr

((
V (h)

)− 1
2
(
∂iV

(h)
)(
V (h)

)−1
∂jV

(h)
(
V (h)

)− 1
2

)
.

Moreover, for some δ > 0 and 0 ≤ γ < 1 the condition (SE) holds for ∂sti ∂
st
j L

(h)
n (ϑn)

and the limiting matrix Zst is almost surely a non-singular constant matrix.

Proof. We proceed as in the proof of Proposition 5.6.2.

Step 1: The condition (SE) is again a direct consequence of Theorem 5.4.4 and

Theorem 5.4.5.

Step 2: The first term in (5.57) is asymptotically a constant. Let us now consider

all other terms in (5.57) except the last one. They follow all in a similar way, hence

we consider again for example the relevant part of the fifth term. As in the proof of
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Proposition 5.6.2 we use a mean value expansion

1

n

n∑
k=1

∂jε
(h)
k (ϑn)ε

(h)
k (ϑn)T =

1

n

n∑
k=1

∂jε
(h)
k (ϑn)ε

(h)T
k

+
s∑

l1=1

1

n

n∑
k=1

∂jε
(h)
k (ϑn)∂l1ε

(h)
k (ϑ̃n)T

(
ϑn,l1 − ϑ0

l1

)
.

The first term converges due to Theorem 5.4.5 to E
[
∂jε

(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

]
. For the

second term we have to differ between two cases. First, if ∂l1 is taken with respect

to a non-stationary parameter, we have that
(
ϑn,l1 − ϑ0

l1

)
is of order op(n

−γ) for

0 ≤ γ < 1 due to the assumption. The condition (SE) implies that for n large enough
1
n

∑n
k=1 ∂jε

(h)
k (ϑn)∂l1ε

(h)
k (ϑ̃n)T is stochastically bounded. Then as a consequence

we have convergence to zero. Secondly, if ∂l1 is taken with respect to a stationary

parameter we have that
(
ϑn,l1−ϑ0

l1

)
is of order op(1) and the analogous argumentation

leads to the convergence to zero.

After these reflections, it remains to consider the last term of (5.57) which has not

yet been investigated, i.e. we have due to Theorem 5.4.4

2 tr

((
V

(h)

ϑn

)−1 1

n

n∑
k=1

∂sti ε
(h)
k (ϑn)∂stj ε

(h)
k (ϑn)T

)
p−−→ 2 tr

((
V (h)

)−1E
[
∂sti ε

(h)
1 (ϑ0)∂stj ε

(h)
1 (ϑ0)T

])
.

Note that ε
(h)
k (ϑ0) is orthogonal to the Hilbert space spanned by {Yi, i < k}. But

∂iε
(h)
k (ϑ0) as well as ∂2

i,jε
(h)
k (ϑ0) are an element of {Yi, i < k}. Furthermore, we have

E
[
ε

(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

]
= V (h). Thus, combining the results for all terms leads finally

to

∂sti ∂
st
j L(h)

n (ϑn) (5.75)

p−−→ tr
((
V (h)

)−1
∂2
i,jV

(h) −
(
V (h)

)−1(
∂iV

(h)
)(
V (h)

)−1(
∂jV

(h)
))

− tr
((
V (h)

)−1E
[
ε

(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

] (
V (h)

)−1
∂2
i,jV

(h)
)

+ tr
((
V (h)

)−1(
∂jV

(h)
)(
V (h)

)−1E
[
ε

(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

] (
V (h)

)−1
∂iV

(h)
)

+ tr
((
V (h)

)−1E
[
ε

(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

] (
V (h)

)−1(
∂jV

(h)
)(
V (h)

)−1
∂iV

(h)
)

− tr
((
V (h)

)−1E
[
∂jε

(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

] (
V (h)

)−1
∂iV

(h)
)

+ 2 · tr
((
V (h)

)−1E
[
ε

(h)
1 (ϑ0)

(
∂2
i,jε

(h)
1 (ϑ0)T

)])
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− 2 · tr
((
V (h)

)−1E
[
ε

(h)
1 (ϑ0)∂iε

(h)
1 (ϑ0)T

] (
V (h)

)−1
∂jV

(h)
)

+ 2 · E
[(
∂iε

(h)
1 (ϑ0)T

) (
V (h)

)−1
(
∂jε

(h)
1 (ϑ0)

)]
= tr

((
V (h)

)−1(
∂iV

(h)
)(
V (h)

)−1
∂jV

(h)
)

+ 2 · E
[(
∂iε

(h)
1 (ϑ0)T

)(
V (h)

)−1(
∂jε

(h)
1 (ϑ0)

)]
. (5.76)

Step 3: Next we check that Zst is positive definite with probability one, which we

show by contradiction. In conclusion, we have as n→∞ the following representations,

which are similar to the ones in Schlemm and Stelzer [91], Lemma 3.22, or respectively

Boubacar and Francq [14], Lemma 4. From Step 2 we know that

∇2
ϑ2
L(h)
n (ϑ0)

p−−→ Zst = Zst,1 + Zst,2, (5.77)

where

Zst,1 := 2 ·
[
E
(
∂iε

(h)
1 (ϑ0)T

) (
V (h)

)−1
(
∂jε

(h)
1 (ϑ0)

)]
i,j

and Zst,2 :=
[
tr
((
V (h)

)− 1
2
(
∂iV

(h)
)(
V (h)

)−1
∂jV

(h)
(
V (h)

)− 1
2

)]
i,j
.

We can factorize Zst,2 in the following way

Zst,2 =
(
a1 . . . as2

)T (
a1 . . . as2

)
with

ai :=
((
V (h)

)− 1
2 ⊗

(
V (h)

)− 1
2

)
vec
(
∂iV

(h)
)

and thus Zst,1 and Zst,2 as given in (5.77) are obviously positive semi-definite. It

remains to check that for any c ∈ Rs2 \ {0s2} we have cTZst,ic > 0 for at least one

i ∈ {1, 2}. We assume for the sake of contradiction that there exists a vector c such

that

cTZst,1c+ cTZst,2c = 0. (♦)

The matrix Zst,1 can be rewritten similar as in the proof of Proposition 5.6.2 as

2E
(
∂iε

(h)
k (ϑ0)T

)(
V

(h)

ϑ0

)−1(
∂jε

(h)
k (ϑ0)

)
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= 2 tr
((
V

(h)

ϑ0

)−1
∞∑
l1=0

∞∑
l2=0

∂sti Kl1(ϑ
0)ΓY (l1 − l2)∂stj Kl2(ϑ

0)T
)

= 2
∞∑
l1=0

∞∑
l2=0

vec
((
V

(h)

ϑ0

)− 1
2∂sti Kl1(ϑ

0)ΓY (l1 − l2)
1
2

)T
· vec

((
V

(h)

ϑ0

)− 1
2∂stj Kl2(ϑ

0)ΓY (l1 − l2)
1
2

)
= 2

∞∑
l1=0

∞∑
l2=0

vec
((
∂sti Kl1(ϑ

0)
)T (

ΓY (l1 − l2)⊗ V (h)

ϑ0

)−1
)

vec
(
∂stj Kl2(ϑ

0)
)
.

Furthermore, it holds that
(

ΓY (l1 − l2)⊗
(
V

(h)

ϑ0

)−1
)

has P-a.s. full rank and this

implies that under the assumption (♦)

∇ϑ2

[
[KT

ϑ0 ⊗ Cϑ0 ]vec
((

eAϑh −K(h)
ϑ Cϑ

)l−1
)]
c = 0d2

must hold for all l ∈ N. Analogous as in [91, Proof of Lemma 2.17.] we obtain that

due to the assumption (♦) the existence of a c 6= 0s2 such that ∇ϑ2vec
(
V

(h)

ϑ0

)
c = 0.

The definition of ψϑ,j in (5.74) implies that ∇ϑ2ψϑ0,j0c = 0(j+2)d2 holds for all j ∈ N,

which is in contradiction with Assumption M13. Hence, Zst is almost surely positive

definite.

Finally, we can state and prove the last main result of this chapter, namely, the

asymptotic normality of the short-run estimator.

Theorem 5.6.8

Assume that Assumption M1 - Assumption M13 hold then we have as n→∞

√
n(ϑ̂n,2 − ϑ0

2)
w−−→ N (0,Ξ). (5.78)

The asymptotic covariance matrix of the stationary part is given by

Ξ := Z−1
st IZ

−1
st

where

I = lim
n→∞

Var
(
∇ϑ2L(h)

n (ϑ0)
)

and Zst = lim
n→∞

∇2
ϑ2
L(h)
n (ϑ0).

Proof. We have shown in Theorem 5.5.5 the consistency of the estimator ϑ̂n. Due to

Assumption M5 the estimator ϑ̂n,2 is at some point also an element of the interior of

Θ2 with probability one.
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With the first order condition and a Taylor expansion of the score vector around

the point ϑ0
2 we obtain that there exist ϑn,i ∈ Θ of the form ϑn,i = ϑ0 + ci(ϑ̂n − ϑ0),

0 ≤ ci ≤ 1 such that

0s2 =
√
n∇ϑL(h)

n (ϑ̂n,1, ϑ
0
2) +∇2

ϑL(h)
n (ϑ̂n,1, ϑn)

√
n(ϑ̂n,2 − ϑ0

2). (5.79)

The first term is asymptotically normal due to Proposition 5.6.6. Note that due

to Theorem 5.5.5 we have ϑ̂n,1 ∈ Nn,γ(ϑ
0
1, δ) for some δ > 0. By Proposition 5.6.7

follows that ∇2
ϑL

(h)
n (ϑ̂n,1, ϑn) converges in probability in its continuous form to the

matrix Zst(ϑ
0), which is P-a.s. a constant positive definite matrix. Hence, we obtain

√
n(ϑ̂n,2 − ϑ0

2) = −
(
∇2
ϑ2
L(h)
n (ϑ̂n,1, ϑn)

)−1 ·
√
n∇ϑ2L(h)

n (ϑ0).

Slutzky’s theorem shows finally the claim.

5.7. Conclusion

We developed in this paper a method to estimate the model parameters of a cointe-

grated Lévy driven MCARMA model based on equidistant observations in discrete

time. For this purpose, we used a step-wise quasi-maximum likelihood approach. The

estimation procedure works for quite general Lévy processes with finite (4 + δ)-th

moments.

We separated the parameter space into a non-stationary and a stationary parameter

space resulting in long-run and short-run parameter estimators. Using this splitting

of the parameter vector, we showed the super-consistency of the long-run QMLE and

the consistency of the short-run QMLE. Furthermore, we derived the asymptotic

distributions of these estimators using the concept of weak continuous convergence,

a stochastic equicontinuity condition and a Taylor series expansion. The long-run

parameter estimator is mixed normal distributed, whereas the short-run parameter

estimator is asymptotically normal as usually for a stationary QMLE. These results

are in accordance with the results derived for discrete-time cointegrated models (c.f.

for example Yap and Reinsel [99]). Besides, we showed the asymptotic independence

of the estimators.

The identifiability problem is solved by a set of sufficient conditions on the parametriza-

tion, which guarantees that different values of the parameter generate different

probability distributions of the observable variables. These identifiability conditions

also avoid the aliasing effect. The assumptions we require are very similar to the



164 Chapter 5. Asymptotic Inference of Cointegrated MCARMA Models

stationary case as well as assumptions in the discrete-time case. Mainly, we need

only some assumptions on the (co)integrated part, which are obviously not necessary

in the stationary case.

5.8. Appendix: Asymptotic Results

We derive several necessary asymptotic results in the following. First, we state a law

of large numbers for the innovations in the first auxiliary lemma. Then we derive

limit results for parts of ∆Y
(h)
k and Y

(h)
k−1 in the next lemmas, which we use in the

derivation of the results in Chapter 5.

Assume that throughout this chapter the assumptions of Section 4.4 are satisfied. We

know from Proposition 4.4.8 that the innovation sequence ε is a stationary ergodic

sequence in the case of a driving Lévy process. On the other side, in the case of

a driving Brownian motion we even have that the linear innovations form an i.i.d.

sequence. However, the derived properties for a driving Lévy process are sufficient

for the asymptotic theory, which we derive in Chapter 5.

References to the asymptotic results needed for the subsequent proofs can be found

e.g. in the papers of Phillips et al. [72], [78],[75], [76], [73] and [79]. A good summary

of these results for an i.i.d. noise can be found in Lütkepohl [62], Appendix C,

Hamilton [45], Chapter 18, or Johansen [54], Appendix B.7. Moreover, one can find

references for asymptotic results also in Pötscher and Prucha [80] and [81]. For limit

results and the general theory concerning ergodic processes, see e.g. Krengel [59],

Bradley [16], Billingsley [12] or Doukhan [31].

The first result is a law of large numbers for the linear innovations, which follows

due to the ergodicity and stationary of the linear innovations.

Lemma 5.8.1

The innovations εk sequence satisfies

n−1

n−h∑
k=1

ε
(h)
k ε

(h)T
k+h

a.s.−−→ δ0,lE
[
ε

(h)
1 ε

(h)T
1

]
= δ0,lV

(h) = δ0,lCΩ(h)CT, (5.80)

where δ0,l = 1 for l = 0 and zero else.

Proof. Note that
(
ε

(h)
k ε

(h)
k+h

)
k∈N is stationary and ergodic due to the same argumenta-

tion as in the proof of Proposition 4.4.8 and E|ε(h)
k ε

(h)
k+h| <∞. Thus, the proof is an

immediate consequence of a law of large numbers for ergodic stationary processes
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(Birkhoff’s Ergodic Theorem) and equation (4.35). As a reference for the law of

large numbers see e.g. Durrett [32], Theorem 7.2.1, or Bradley [16], 2.3 Ergodic

Theorem.

Recall the representations for Y (h) in Lemma 4.3.15, which gives us the following

representations

Y (h)
n = C1X

(h)
1 (0) + C1B1L(nh) + Y

(h)
n,2 (5.81)

and ∆Y (h) in (4.28)

∆Y (h)
n = C1R

(h)
n,1 + ∆Y

(h)
n,2

= C1R
(h)
n,1 + C2

∞∑
j=0

eA2hjR
(h)
n−j,2 − C2

∞∑
j=0

eA2hjR
(h)
n−1−j,2

= C1R
(h)
n,1 +

∞∑
j=0

Ψ̃jR
(h)
n−j,2, (5.82)

where the matrix polynomial Ψ(z) is given by

Ψ(z) =
∞∑
j=0

Ψjz
j = Id +

∞∑
j=1

C2eA2hjzj (5.83)

and the new matrix polynomial is defined by Ψ̃(z) := (1− z)Ψ(z) with coefficient

matrix Ψ̃(z), i.e. Ψ̃i = Ψi −Ψi−1 and Ψ̃0 = Ψ0 = Id for i ∈ N.

We consider now the properties of the moving average part of ∆Y (h) and the integrated

part of Y (h). Note that the first order difference of an infinite order moving average

process is again a moving average process.

The covariance matrix of the difference process is denoted by

Γ∆Y (l) := E
[
∆Y

(h)
k ∆Y

(h)T
k+l

]
, for l ∈ N0, (5.84)

and the covariance matrix for the stationary part Y
(h)

2 is analogously by

ΓY2(l) := E
[
Y

(h)
k,2 Y

(h)T
k+l,2

]
, for l ∈ N0. (5.85)

The stationary part of Y (h) has a moving average representation with absolutely

summable matrix coefficients Ψi and the same holds for the matrix coefficients Ψ̃i
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the moving average representation of ∆Y (h), i.e. we have

∞∑
s=0

s‖Ψs‖ <∞ and
∞∑
s=0

s‖Ψ̃s‖ <∞. (5.86)

The absolute summability of ‖Ψs‖ follows directly by

∞∑
s=0

‖Ψs‖ ≤ ‖Id‖+
∞∑
s=1

‖C2‖
∥∥eA2hs

∥∥ <∞,
due to the negative real part of the eigenvalues of A2. Now we obtain with Ψ−1 = 0d

by using the last result

∞∑
s=0

‖Ψ̃s‖ =
∞∑
s=0

‖Ψs −Ψs−1‖ ≤
∞∑
s=0

‖Ψs‖+
∞∑
s=1

‖Ψs−1‖ <∞.

Lastly,
∑∞

s=1 s‖Ψs‖ <∞ also holds true due to the exponentially decreasing matrix

coefficients. Thus, with the previous inequality this holds also true for Ψ̃. Moreover,

since the linear innovations ε are a stationary ergodic process the same holds for

∆Y (h) and Y
(h)

2 , which can easily be seen as for ε itself.

Lemma 5.8.2

We have for l ∈ N0

i) n−1
∑n

k=1 Y
(h)
k−1,2

a.s.−−→ E[Y
(h)
k−1,2] = 0;

ii) n−1
∑n

k=1 Y
(h)
k−1,2Y

(h)T
k+l−1,2

a.s.−−→ E[Y
(h)
k−1,2Y

(h)T
k+l−1,2] = ΓY2(l);

iii) n−1
∑n

k=1 ∆Y
(h)
k ∆Y

(h)T
k+l

a.s.−−→ E[∆Y
(h)
k ∆Y

(h)T
k+l ] = Γ∆Y (l);

iv) n−1
∑n

k=1 Y
(h)
k−1,2∆Y

(h)(h)T

k+l

a.s.−−→ E[Y
(h)
k−1,2∆Y

(h)T
k+l ] = ΓY2∆Y (l).

Proof. The moments exists for theses processes due to the results in Section 4.3. The

results all follow by Birkhoff’s Ergodic Theorem. This can easily be seen since ε is

a stationary ergodic process and we consider in all cases measurable functions of ε,

which inherit by Bradley [16], Proposition 2.10 (ii), the stationarity and ergodicity.

We can restrict the temporal dependence of the first difference of the process.

Lemma 5.8.3

It holds that
∑∞

l=−∞ supn ‖E∆Y
(h)
n ∆Y

(h)T
n+l ‖ <∞.
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Proof. The supremum can be neglected due to the stationarity of the process. Fur-

thermore, it suffices to consider l ∈ N instead of l ∈ Z due to the symmetry. Note

that ∆Y is strongly mixing due Lemma 4.3.18 combined Remark 1.8 b) in Bradley

[16] and thus we can apply the covariance inequality (Lemma 2.13, Schlemm and

Stelzer). Recall that (R
(h)
n )n∈N =

(
R

(h)T
n,1 R

(h)T
n,2

)T
n∈N

is an i.i.d. sequence. Hence, we

obtain by (5.82) that there exists constants c1, c2 > 0 such that

∞∑
l=0

‖E∆Y (h)
n ∆Y

(h)T
n+l ‖

=
∞∑
l=0

∥∥∥∥∥∥E
(
C1R

(h)
n,1 +

∞∑
j=0

Ψ̃jR
(h)
n−j,2

)(
C1R

(h)
n+l,1 +

∞∑
j=0

Ψ̃jR
(h)
n+l−j,2

)T
∥∥∥∥∥∥

≤
∥∥∥EC1R

(h)
1,1R

(h)T
1,1 CT

1

∥∥∥+
∥∥∥EΨ̃0R

(h)
1,2R

(h)T
1,1 CT

1

∥∥∥+
∞∑
l=0

∞∑
j=0

∥∥∥EC1R
(h)
n,1R

(h)T
n+l−j,2Ψ̃T

j

∥∥∥
+
∞∑
l=0

∥∥∥E∆Y
(h)
n,2 ∆Y

(h)T
n+l,2

∥∥∥
≤ c2 +

∞∑
l=0

c1 · ‖eA2hl‖
∥∥∥∥∫ h

0

C1B1Σ
(h)
L BT

2 eA
T
2hudu

∥∥∥∥+ c1 ·
∞∑
l=0

[
α
Y

(h)
2

(l)
] δ

2+δ
<∞,

due to the finite expectations, the eigenvalues with non-negative real part of A2 and

Lemma 4.3.18.

Lastly we show some convergence results with respect to the cointegrated process.

Proposition 5.8.4

We have the following asymptotic results for 0 ≤ r ≤ 1

i) n−
1
2Y

(h)
[nr]

w−−→ C1B1W (r);

ii) n−
3
2

∑n
k=1 Y

(h)
k−1

w−−→
∫ 1

0
C1B1W (r) dr;

iii) n−2
∑n

k=1 Y
(h)
k−1Y

(h)T
k−1

w−−→
∫ 1

0
C1B1W (r)W (r)TBT

1 C
T
1 dr;

iv) n−1

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

w−−→
(
C1B1, 0d×(N−c)

) ∫ 1

0

W (r) dW (r)T
(
C1B1, Ψ̃(1)

)T
+ ΓY∆Y ,

v) n−1

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1,2

w−−→
(
C1B1, 0d×(N−c)

) ∫ 1

0

W (r) dW (r)T
(
0d×c,Ψ(1)

)T
+ ΓY Y2 ,
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where W is a Brownian motion with covariance matrix Σ
(h)
L and ΓY Y2 as well as

ΓY∆Y are covariance matrices defined in the proof.

Proof. i) We have

n−
1
2Y

(h)
bnrc = n−

1
2Y

(h)
bnrc,2 + n−

1
2C1X

(h)
1 (0) + n−

1
2

bnrc∑
i=1

C1R
(h)
i,1 .

Note that C1R
(h)
i,1 is an i.i.d. sequence with mean zero and finite positive definite

covariance matrix ER(h)
i,1 R

(h)T
i,1 = hB1ΣLB

T
1 . The claim follows with a functional

central limit theorem (see e.g. Johansen [54], Theorem B.12) combined with

Slutzky’s Theorem if the remaining part is op(1). We use the Markov inequality

and obtain for all ε > 0

lim
n→∞

P
(∥∥n− 1

2Y
(h)
bnrc,2

∥∥ ≥ ε
)

= lim
n→∞

P
(∥∥Y (h)

bnrc,2

∥∥ ≥ √nε)
≤ lim

n→∞

1√
nε

E
∥∥Y (h)

1,2

∥∥ −→ 0.

Hence, the same holds true for the starting value and we have shown the claim.

ii) We use the functional central limit theorem from i) and the continuous mapping

theorem. Using equation (5.81), we have the following representation

n−
3
2

n∑
k=1

Y
(h)
k−1 = n−

3
2

n∑
k=1

Y
(h)
k−1,2 + n−

1
2C1X

(h)
1 (0) + n−

3
2

n∑
k=1

k−1∑
i=1

C1R
(h)
i,1

=

∫ 1

0

n− 1
2

[nr]∑
i=1

C1R
(h)
i,1

 dr + op(1)

w−−→
∫ 1

0

C1B1W (r) dr.

Recall that Y
(h)
k−1,2 is stationary and ergodic. Thus, the op(1) term follows due

Lemma 5.8.2 i) and for the starting value with the same argument as in the

aforementioned part.

iii) Due to the representation given in equation (5.81), it holds by similar arguments

as before and Lemma 5.8.2 that

n−2

n∑
k=1

Y
(h)
k−1Y

(h)T
k−1 = n−2

n∑
k=1

k−1∑
i=1

C1R
(h)
i,1 R

(h)T
i,1 CT

1 + op(1)
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w−−→
∫ 1

0

C1B1W (r)W (r)TBT
1 C

T
1 dr.

iv) As already mentioned R(h) is an i.i.d. noise with mean zero and positive definite

covariance matrix given in (5.2). We use Theorem B.13 of Johansen [54]. This

convergence results allows different linear filters. The linear filter in our case

are given by (C1, 0d×(N−c)) and (C1, Ψ̃(z)). Due to the exponentially decreasing

matrix coefficients of Ψ̃(z) the assumptions of the theorem are satisfied.

Thus, Theorem B.13 of Johansen combined with (5.82) and Lemma 5.8.2 iv)

yields

n−1

n∑
k=1

Y
(h)
k−1∆Y

(h)T
k

= n−1

n∑
k=1

k−1∑
i=1

C1R
(h)
i,1 ∆Y

(h)T
k + n−1

n∑
k=1

Y
(h)
k−1,2∆Y

(h)T
k + op(1)

w−−→
(
C1B1, 0d×(N−c)

) ∫ 1

0

W (r) dW (r)T
(
C1B1, Ψ̃(1)

)T
+
∞∑
l=1

(C1, 0d×(N−c))Σ̃
(h)(C1, Ψ̃l)

T + ΓY2∆Y (0).

We set for reasons of brevity

ΓY∆Y :=
∞∑
l=1

(C1, 0d×(N−c))Σ̃
(h)(C1, Ψ̃l)

T + ΓY2∆Y (0).

v) This claim follows similar to part iv). To sum it up, we can conclude

n−1

n∑
k=1

Y
(h)
k−2Y

(h)T
k−1,2

= n−1

n∑
k=1

k−1∑
i=1

C1R
(h)
i,1 Y

(h)T
k−1,2 + n−1

n∑
k=1

Y
(h)
k−1,2Y

(h)T
k−1,2 + op(1)

w−−→
(
C1B1, 0d×(N−c)

) ∫ 1

0

W (r) dW (r)T
(
0d×c,Ψ(1)

)T
+ ΓY Y2 ,

where ΓY Y2 is defined analogous to ΓY∆Y .

In the end, we have a foundation of asymptotic results on the processes appearing

in the cointegrated model, which helps us in the proofs in Chapter 5. Furthermore,
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note that we have shown Assumption 4.3 of Saikkonen [85] with the results of this

chapter.

5.9. Appendix: Auxiliary Results and Proofs of Chapter 5

5.9.1. Auxiliary Results of Chapter 5

We derive in this subsection several technical results which we need in the proofs of

Chapter 5.

Lemma 5.9.1

Assumption M1-Assumption M6 imply that the following assertions hold for all

ϑ ∈ Θ:

i) The functions ϑ 7→ eA2,ϑh and ϑ 7→ ER(h)
ϑ,nR

(h)T
ϑ,n are continuous.

ii) The covariance matrix Σ̃
(h)
ϑ = ER(h)

ϑ,nR
(h)T
ϑ,n is positive definite.

iii) The matrix V
(h)
ϑ = CϑΩ

(h)
ϑ CT

ϑ is non-singular.

Proof. The proof is analogous to the proof of Lemma 3.14 in Schlemm and Stelzer

[91].

i) The continuity is obvious since by Assumption M6 we have a composition of

continuous functions.

ii) The positive-definiteness of Σ̃
(h)
ϑ follows by Corollary 3.9 in [91]. The assump-

tions of Corollary 3.9 are satisfied due to Assumption M1 and Assumption M3.

iii) The non-singularity of V
(h)
ϑ follows by the full rank condition on Cϑ in Assump-

tion M2 and the non-singularity of Ω
(h)
ϑ , which follows by Proposition 4.4.2.

Note that Ω
(h)
(·) is a continuous functions of the coefficient matrices (see Schlemm and

Stelzer [91], Proof of Lemma 2.2 or Sun [95]). Hence, the steady-state Kalman gain

matrix K
(h)
(·) is also a continuous function and this implies the continuity of Π(·) and

k(z, ·). Due to the same reason V
(h)

(·) is as well a continuous function.

Some bounds on the matrix functions are given in the next lemma.

Lemma 5.9.2

Under Assumption M1-Assumption M6 the following results hold.
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i) There exists a positive number ρ ≤ 1 such that for all ϑ ∈ Θ it holds that

max{|λ| : λ ∈ σ(eAϑh)} ≤ ρ.

Furthermore, there exists a positive number ρ < 1 such that for all ϑ ∈ Θ it

holds that

max{|λ| : λ ∈ σ(eAϑ,2h)} ≤ ρ.

ii) There exists a positive number ρ < 1 such that for all ϑ ∈ Θ it holds that

max{|λ| : λ ∈ σ(eAϑh −K(h)
ϑ Cϑ)} ≤ ρ.

iii) There exists a positive number c such that
∥∥(V (h)

ϑ

)−1∥∥ ≤ c for all ϑ ∈ Θ.

Proof. The result of i) and iii) is a direct consequence of Lemma 2.2 in Schlemm and

Stelzer [91]. Note that the second part of i) follows directly due to the decoupled

state space form. Part iii) follows directly due to the derivation of the Kalman filter

in Section 4.6.

Next, we check that the differentiability of the parametrization transfers to the other

matrices occurring in the following.

Lemma 5.9.3

Let Assumption M1-Assumption M6 and Assumption M8 hold. Then the following

functions are all twice continuously differentiable as well:

1. ϑ 7→ exp(Aϑ);

2. (Aϑ, Bϑ,Σ
L
ϑ) 7→

∫ h
0

eAϑuBϑΣL
ϑB

T
ϑ eA

T
ϑudu;

3. ϑ 7→ Π(ϑ);

4. ϑ 7→ k(z, ϑ).

Moreover, the functions Π(·), k(z, ·) and
(
V

(h)
(·)
)−1

are Lipschitz continuous, i.e. we

have for some constants 0 < cV , cΠ, ck < ∞ that ‖Π(ϑ) − Π(ϑ′)‖ ≤ cΠ‖ϑ − ϑ′‖,
‖k(z, ϑ)− k(z, ϑ′)‖ ≤ ck‖ϑ− ϑ′‖ and

∥∥(V (h)
ϑ

)−1−
(
V

(h)
ϑ′

)−1∥∥ ≤ cV ‖ϑ− ϑ′‖, whenever

ϑ and ϑ′ are in Θ.

Proof. The first two functions are twice continuously differentiable (c.f. Schlemm

and Stelzer [91], Proof of Lemma 3.15). Note that due to the results on the algebraic

Riccati equation in Sun [95] the matrix function V
(h)

(·) is twice continuous differentiable.
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We prove the twice continuous differentiability of Π(·) and k(z, ·) together by showing

that k(z, ·) is twice continuous differentiable. Recall that the transfer function has the

form k(z, ϑ) = Id−Cϑ
∑∞

l=1(eAϑh−K(h)
ϑ Cϑ)l−1K

(h)
ϑ zl. Due to the uniform exponential

bound of the matrix coefficients and the fact that the partial derivatives ∂ik(z, ϑ)

as well as ∂2
i,jk(z, ϑ) are also uniformly exponentially bounded due to Lemma 5.2.1

and Lemma 5.2.2, we can exchange summation and differentiation. Since we have

only sums and products of at least twice continuous differentiable functions, k(z, ·) is

twice continuous differentiable itself. The same argumentation holds for Π(·) and

k(z, ·) holds and the assertion follows.

Due to the continuous differentiability and the compact parameter space we receive

that Π(·), k(z, ·) and
(
V

(h)
(·)
)−1

are Lipschitz continuous.

As already mentioned, we need the existence of higher moments, finite second

moments are not sufficient to derive the aforementioned results. The assumption of

finite moments of the Lévy process transfers to the other processes as can be seen in

the following results.

The finite moments of the Lévy process due to Assumption M1 imply finite moments

of the i.i.d. noise of the sampled process.

Lemma 5.9.4

The noise R
(h)
ϑ is given as in (4.20). It follows that E‖R(h)

ϑ ‖4+δ <∞.

Proof. This follows similar to Lemma 3.15 in Schlemm and Stelzer [91].

Moreover, the pseudo-innovations and its partial derivatives have also finite fourth

moment.

Lemma 5.9.5

It holds that E‖ε(h)
k (ϑ)‖4 <∞ and E‖∂iε(h)

k (ϑ)‖4 <∞, for i = 1, . . . , s.

Proof. Note that the following inequality (a + b)4 ≤ 23(a4 + b4) holds due to the

concavity. We use (5.10) and obtain

E‖ε(h)
k (ϑ)‖4 ≤ E

∥∥∥∥∥Π(ϑ)TY
(h)
k−1 +

∞∑
i=0

K̃i(ϑ)∆Y
(h)
k−i

∥∥∥∥∥
4

≤ C · E
∥∥∥Π(ϑ)TY

(h)
k−1

∥∥∥4

+ C · E

∥∥∥∥∥
∞∑
i=0

K̃i(ϑ)∆Y
(h)
k−i

∥∥∥∥∥
4

.
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The matrix coefficients K̃i(ϑ) decay exponentially fast due to Lemma 5.2.1. Hence, we

have using Assumption M1 and the finite fourth moments of Y (h) in the same manner

as in the proof of Lemma 3.16 in Schlemm [89] that E‖ε(h)
k (ϑ)‖4 <∞. Similarly we

can derive the second statement with Lemma 5.2.2 i).

5.9.2. Representation of Asymptotically Dominant Part

We see that the interesting parts for the asymptotic behavior are for L(h)
n,1(ϑ) given by

Q(h)
n,1(ϑ) := tr

(
1

n

n∑
k=1

(
V

(h)
ϑ

)−1
ε

(h)
k,1(ϑ)ε

(h)
k,1(ϑ)T

)

+ 2 · tr

(
1

n

n∑
k=1

(
V

(h)
ϑ

)−1
ε

(h)
k,2(ϑ2)ε

(h)
k,1(ϑ)T

)

+ tr

(
1

n

n∑
k=1

[(
V

(h)
ϑ

)−1 −
(
V

(h)
ϑ2

)−1
]
ε

(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

)

and for L(h)
n,2(ϑ2) by

Q(h)
n,2(ϑ2) :=

1

n

n∑
k=1

tr
((
V

(h)
ϑ2

)−1
ε

(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)T

)
.

Using the representation (5.5) of the pseudo-innovations we can rewrite these expres-

sions. Doing this for Q(h)
n,1(ϑ) gives us

Q(h)
n,1(ϑ) =

1

n

n∑
k=1

tr
[(
V

(h)
ϑ

)−1 [
Π(ϑ1, ϑ2)−Π(ϑ0

1, ϑ2)
]
Y

(h)
k−1Y

(h)T
k−1

[
Π(ϑ1, ϑ2)−Π(ϑ0

1, ϑ2)
]T]

+
1

n

n∑
k=1

tr

((
V

(h)
ϑ

)−1

·
(
−2 ·

[
Π(ϑ1, ϑ2)−Π(ϑ0

1, ϑ2)
]
Y

(h)
k−1∆Y

(h)T
k

[
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
]T

+
[
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
]

∆Y
(h)
k ·∆Y (h)T

k

[
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
]T))

+ 2 · 1

n

n∑
k=1

tr

((
V

(h)
ϑ1,ϑ2

)−1
(
−
[
Π(ϑ1, ϑ2)−Π(ϑ0

1, ϑ2)
]
Y

(h)
k−1∆Y

(h)T
k k(B, ϑ0

1, ϑ2)T

+
[
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
]

∆Y
(h)
k ∆Y

(h)T
k k(B, ϑ0

1, ϑ2)T

+
[
Π(ϑ1, ϑ2)−Π(ϑ0

1, ϑ2)
]
Y

(h)
k−1Y

(h)T
k−1,2Π(ϑ0

1, ϑ2)T

−
[
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
]

∆Y
(h)
k Y

(h)T
k−1,2Π(ϑ0

1, ϑ2)T
))
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+
1

n

n∑
k=1

tr

([(
V

(h)
ϑ1,ϑ2

)−1 −
(
V

(h)

ϑ01,ϑ2

)−1
]
·
[
k(B, ϑ0

1, ϑ2)∆Y
(h)
k ∆Y

(h)T
k k(B, ϑ0

1, ϑ2)T

+ Π(ϑ0
1, ϑ2)Y

(h)
k−1,2Y

(h)T
k−1,2Π(ϑ0

1, ϑ2)T − 2 · k(B, ϑ0
1, ϑ2)∆Y

(h)
k Y

(h)T
k−1,2Π(ϑ0

1, ϑ2)T
])

(5.87)

and Q(h)
n (ϑ2) as

Q(h)
n,2(ϑ2) = tr

(
1

n

n∑
k=1

(
V

(h)

ϑ01,ϑ2

)−1
[
k(B, ϑ0

1, ϑ2)∆Y
(h)
k ∆Y

(h)T
k k(B, ϑ0

1, ϑ2)T

+ Π(ϑ0
1, ϑ2)Y

(h)
k−1,2Y

(h)T
k−1,2Π(ϑ0

1, ϑ2)T

− 2 · k(B, ϑ0
1, ϑ2)∆Y

(h)
k Y

(h)T
k−1,2Π(ϑ0

1, ϑ2)T
])

. (5.88)

In this chapter we are going to use an extension of Davydov’s inequality, which was

shown by Schlemm and Stelzer [91]. We briefly recall this result.

Lemma 5.9.6 (Lemma 2.13, Schlemm and Stelzer [91])

Let X be a strictly stationary, strongly mixing d-dimensional stochastic process with

finite (4 + δ)-th moments for some δ > 0. Then there exists a constant κ, such

that for all d × d matrices A,B, every n ∈ Z, l ∈ N, and time indices ν, ν ′ ∈ N0,

µ, µ′ = 0, 1, . . . ,
⌊
l
2

⌋
, it holds that

Cov(XT
n−νAXn−ν′ , X

T
n+l−µBXn+l−µ′) ≤ κ‖A‖‖B‖

[
αX

(⌊
l

2

⌋)] δ
δ+2

, (5.89)

where αX denote the strong mixing coefficients of the process X.

5.9.3. Parts of the Proof of Lemma 5.6.5

We give here intermediate steps of the proof Lemma 5.6.5 in order to make the upper

bound clearer which guarantees the necessary absolute summability.

Instead of considering every term in (5.65), which occurs by using the representation

(5.53b), we consider exemplarily only∣∣∣Cov
(
∂sti ε

(h)
k,2(ϑ2)

(
V

(h)
ϑ

)−1
ε

(h)
k,2(ϑ2)T , ∂stj ε

(h)
k+l,2(ϑ2)

(
V

(h)
ϑ

)−1
ε

(h)
k+l,2(ϑ2)T

)∣∣∣ .
The covariance matrix can be bounded from above using the representation given in

Lemma 5.2.2 by
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∣∣∣Cov
(
∂sti ε

(h)
k,2(ϑ2)

(
V

(h)
ϑ

)−1
ε

(h)
k,2(ϑ2)T , ∂stj ε

(h)
k+l,2(ϑ2)

(
V

(h)
ϑ

)−1
ε

(h)
k+l,2(ϑ2)T

)∣∣∣
≤ 4 · c1 ·

(∣∣∣Cov
(
Y

(h)
k−1,2Y

(h)T
k−1,2 , Y

(h)
k−1+l,2Y

(h)T
k−1+l,2

)∣∣∣
+

∞∑
ι4=0

∣∣∣Cov
(
Y

(h)
k−1,2Y

(h)T
k−1,2 , Y

(h)
k−1+l,2∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

)∣∣∣
+
∞∑
ι3=0

∣∣∣Cov
(
Y

(h)
k−1,2Y

(h)T
k−1,2 , ∂

st
j K̃ι3(ϑ2)∆Y

(h)
k+l−ι3Y

(h)T
k−1+l,2

)∣∣∣
+

∞∑
ι3,ι4=0

∣∣∣Cov
(
Y

(h)
k−1,2Y

(h)T
k−1,2 , ∂

st
j K̃ι3(ϑ2)∆Y

(h)
k+l−ι3∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

)∣∣∣
+

∞∑
ι2=0

∣∣∣Cov
(
Y

(h)
k−1,2∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T , Y

(h)
k+l−1,2Y

(h)T
k+l−1,2

)∣∣∣
+

∞∑
ι2,ι4=0

∣∣∣Cov
(
Y

(h)
k−1,2∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T , Y

(h)
k+l−1,2∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

)∣∣∣
+

∞∑
ι2,ι3=0

∣∣∣Cov
(
Y

(h)
k−1,2∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T , ∂stj K̃ι3(ϑ2)∆Y

(h)
k+l−ι3Y

(h)T
k+l−1,2

)∣∣∣
+

∞∑
ι2,ι3,ι4=0

∣∣∣Cov
(
Y

(h)
k−1,2∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T , ∂stj K̃ι3(ϑ2)∆Y

(h)
k+l−ι3∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

)∣∣∣
+

∞∑
ι1=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1Y

(h)T
k−1,2 , Y

(h)
k−1+l,2Y

(h)T
k−1+l,2

)∣∣∣
+

∞∑
ι1,ι4=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1Y

(h)T
k−1,2 , Y

(h)
k−1+l,2∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

)∣∣∣
+

∞∑
ι1,ι3=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1Y

(h)T
k−1,2 , ∂

st
j K̃ι3(ϑ2)∆Y

(h)
k+l−ι3Y

(h)T
k−1+l,2

)∣∣∣
+

∞∑
ι1,ι3,ι4=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1Y

(h)T
k−1,2 , ∂

st
j K̃ι3(ϑ2)∆Y

(h)
k+l−ι3∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

)∣∣∣
+

∞∑
ι1,ι2=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T , Y

(h)
k−1+l,2Y

(h)T
k−1+l,2

)∣∣∣
+

∞∑
ι1,ι2,ι4=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T , Y

(h)
k−1+l,2∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

)∣∣∣
+

∞∑
ι1,ι2,ι3=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T , ∂stj K̃ι3(ϑ2)∆Y

(h)
k+l−ι3Y

(h)T
k−1+l,2

)∣∣∣
+

∞∑
ι1,ι2,ι3,ι4=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆Y
(h)
k+l−ι3∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

) ∣∣∣). (F)
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We consider one example for each class of the different combinations appearing in

the equation above. First, we have the covariance matrix, where only the stationary

part appears. In this case we have with Lemma 2.13 in Schlemm and Stelzer [91]

and Lemma 4.3.18 that∣∣∣Cov
(
Y

(h)
k−1,2Y

(h)T
k−1,2 , Y

(h)
k−1+l,2Y

(h)T
k−1+l,2

)∣∣∣ ≤ C ·
[
α
Y

(h)
2

(l)
] δ

2+δ
. (♣)

Next, we consider the summand in the equation (F) above, where only the process

∆Y (h) appears. It holds that

∞∑
ι1,ι2,ι3,ι4=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆Y
(h)
k+l−ι3∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

) ∣∣∣
=

∞∑
ι1,ι2,ι3,ι4=0

max{ι1,ι2,ι3,ι4}> l
2

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆Y
(h)
k+l−ι3∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

) ∣∣∣
+

b l2c∑
ι1,ι2,ι3,ι4=0

∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆Y
(h)
k+l−ι3∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

) ∣∣∣
=:S+ + S−.

We can apply the Cauchy-Schwarz inequality to S+. Further, we use the finite fourth

moment of ∆Y (h) and the exponential decay of the coefficients to obtain that there

exists constants C > 0 and ρ < 1 such that

S+ ≤
∞∑

ι1,ι2,ι3,ι4=0

max{ι1,ι2,ι3,ι4}> l
2

∥∥∥∂sti K̃ι1(ϑ2)
∥∥∥∥∥∥K̃ι2(ϑ2)

∥∥∥∥∥∥∂stj K̃ι3(ϑ2)
∥∥∥∥∥∥K̃ι4(ϑ2)

∥∥∥E∥∥∥∆Y
(h)
k

∥∥∥4

≤ C · ρ
l
2 .

Consequently S+ is absolutely summable.

Next, we show that the same holds for S−. In order to show this there are some

tedious calculations necessary. However, we see immediately that we can write

∆Y
(h)
k = ∆L(kh) + ∆Y

(h)
k,2 . We obtain by using this decomposition on the covariance
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in S− that∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T , ∂stj K̃ι3(ϑ2)∆Y

(h)
k+l−ι3∆Y

(h)T
k+l−ι4K̃ι4(ϑ2)T

) ∣∣∣
≤ C ·

∣∣∣Cov
(
K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆L((k + l − ι3)h)∆L((k + l − ι4)h)TK̃ι4(ϑ2)T
) ∣∣∣

+
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆L((k + l − ι3)h)∆Y
(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
+
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆Y
(h)
k+l−ι3,2∆L((k + l − ι4)h)TK̃ι4(ϑ2)T

) ∣∣∣
+
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆Y
(h)
k+l−ι3,2∆Y

(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣. (5.90)

The sum in S− goes from ι3, ι4 = 0 to
⌊
l
2

⌋
, which implies that k+ l− ι3 > k as well as

k+ l− ι4 > k. Thus, the first summand of (5.90) is equal to zero since ∆Y
(h)
k−ι1∆Y

(h)T
k−ι2

is independent of ∆L((k+ l−ι3)h)∆L((k+ l−ι4)h)T for all ι1, ι2, ι3, ι4 ∈
{

0, . . . ,
⌊
l
2

⌋}
.

The second and third summand of (5.90) can be dealt with in a similar fashion.

Hence, we only consider the second term. Therefore, we obtain for the second one∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆L((k + l − ι3)h)∆Y
(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣ (�)

≤
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆L((k + l − ι3)h)Y
(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
+
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆L((k + l − ι3)h)Y
(h)T
k+l−ι4−1,2K̃ι4(ϑ2)T

) ∣∣∣
= 0.

To see this we only consider the first one, because once more the two summands can

be dealt with analogously. We know for ι3 < ι4 that due to the independence the

covariance is in this case equal to zero. For 0 ≤ ι4 < ι3 ≤
⌊
l
2

⌋
we have∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆L((k + l − ι3)h)Y
(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
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≤
∣∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆L((k + l − ι3)h)

(
C2

∫
M1

eA2((k+l−ι4)h−u)B2 dL(u)

)T

K̃ι4(ϑ2)T
)∣∣∣∣

+

∣∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆Y

(h)
k−ι1∆Y

(h)T
k−ι2 K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)∆L((k + l − ι3)h)

(
C2

∫
M2

eA2((k+l−ι4)h−u)B2 dL(u)

)T

K̃ι4(ϑ2)T
)∣∣∣∣

= 0, (♠)

whereupon M1 is the interval, where the processes of the second part in the covariance

overlap, i.e. M1 := (−∞, (k+ l− ι4)h)∩ ((k+ l− ι3−1)h, (k+ l− ι3)h) and M2 is the

interval given by M2 := (−∞, (k+ l− ι4)h) \M1. Hence, the second summand has to

be zero, which follows once more by the independence of the ∆L((k + l − ι3)h) with

the integral term. On the other side, the process ∆L((k+ l− ι3)h) is not independent

of the integral term over M1, but the product on the right-hand side is independent

of the product term on the left-hand side in the covariance. Thus, this covariance is

also equal to zero.

Lastly, let us consider the fourth summand of (5.90). Analogously, it suffices to

consider Y
(h)
k,2 instead of the ∆Y

(h)
k,2 with the same arguments as in (�). Thus, we

exemplarily consider∣∣∣Cov
(
∂sti K̃ι1(ϑ2)

(
Y

(h)
k−ι1,2 + ∆L(k − ι1)

)(
Y

(h)
k−ι2,2 + ∆L(k − ι2)

)T
K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)Y
(h)
k+l−ι3,2Y

(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
≤
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)Y

(h)
k−ι1,2Y

(h)T
k−ι2,2K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)Y
(h)
k+l−ι3,2Y

(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
+
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆L

(
(k − ι1)h

)
Y

(h)T
k−ι2,2K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)Y
(h)
k+l−ι3,2Y

(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
+
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)Y

(h)
k−ι1,2∆L

(
(k − ι2)h

)T
K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)Y
(h)
k+l−ι3,2Y

(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
+
∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆L

(
(k − ι1)h

)
∆L
(
(k − ι2)h

)T
K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)Y
(h)
k+l−ι3,2Y

(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
≤ C ·

[
α
Y

(h)
2

(l)
] δ

2+δ
+ C · ρ

l
2 ,
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for some constant C > 0, where we used similar arguments as in (♠). We justify the

upper bound with the subsequent estimations.

The first summand is bounded from above by the mixing coefficients just as in (♣)

due to Lemma 2.13 in Schlemm and Stelzer [91]. We have due to the definition of

S− that ι3, ι4 <
l
2

holds and thus we can apply this lemma. As a consequence, there

are three terms left. The second and third one are yet again be dealt with in the

same manner. Thus, we have, with the same methods as in (♠) and the fact that

ι3, ι4 <
l
2
, for the second term∣∣∣Cov
(
∂sti K̃ι1(ϑ2)∆L

(
(k − ι1)h

)
Y

(h)T
k−ι2,2K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)Y
(h)
k+l−ι3,2Y

(h)T
k+l−ι4,2K̃ι4(ϑ2)T

) ∣∣∣
≤
∣∣∣∣Cov

(
∂sti K̃ι1(ϑ2)∆L

(
(k − ι1)h

)(
C2

∫
N

eA2((k−ι2)h−u)B2 dL(u)

)T

K̃ι2(ϑ2)T ,

∂stj K̃ι3(ϑ2)

(
C2

∫
N

eA2((k+l−ι3)h−u)B2 dL(u)

)
·
(
C2

∫
N

eA2((k+l−ι4)h−u)B2 dL(u)

)
K̃ι4(ϑ2)T

) ∣∣∣∣,
≤ C ·

(
E
∥∥∥∥∆L

(
(k − ι1)h

)(
C2eA2(ι1−ι2)h

∫
N

eA2((k−ι1)h−u)B2 dL(u)

)T∥∥∥∥2
) 1

2

·

(
E
∥∥∥∥(C2eA2

l
2
heA2( l

2
−ι3)h

∫
N

eA2(kh−u)B2 dL(u)

)

·
(
C2eA2

l
2
heA2( l

2
−ι4)h

∫
N

eA2(kh−u)B2 dL(u)

)T∥∥∥∥2
) 1

2

≤ C · ρ
l
2 ,

for some constants c, C > 0, where the set N is given by the intersection of the

following sets

N :=
(
(k − ι1 − 1)h, (k − ι1)h

)
∩
(
−∞, (k − ι2)h

)
∩
(
−∞, (k + l − ι3)h

)
∩
(
−∞, (k + l − ι4)h

)
.

Note that the set N is either the empty set if ι2 − 1 > ι1 or otherwise N =(
(k− ι1−1)h, (k− ι1)h

)
. The remaining parts of the integral can be ignored as before

due to the independence. Hence, we have also shown for these two the absolute

summability.

The last summand follows in the same way. The difference is the intersection, which

is in this case given by
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N ′ :=
(
(k − ι1 − 1)h, (k − ι1)h

)
∩
(
(k − ι2 − 1)h, (k − ι2)h

)
∩
(
−∞, (k + l − ι3)h

)
∩
(
−∞, (k + l − ι4)h

)
.

In conclusion, we have shown that S− ≤ C ·
[
α
Y

(h)
2

(l)
] δ

2+δ
+ C · e−c·lh and thus

absolutely summable.

If we proceed with all remaining terms of (F) and then for all remaining terms in

(5.65) analogously, we are able to show that the original covariance matrix is absolute

summable.



CHAPTER 6

Simulation Study

6.1. Introduction

The practical applicability of the quasi-maximum likelihood estimation procedure for

cointegrated MCARMA processes in Chapter 5 is considered in this chapter. We test

the theoretical results shown for the step-wise estimation procedure in simulation

studies. The consistency of the long-run and short-run estimators, which we have

shown in Section 5.5, suggest that the estimated results should be quite close in the

mean to the true value for a large sample.

However, in order to apply the estimation method, we need first a parametrization

of the model matrices satisfying the assumptions of Chapter 5. For this purpose, we

present a suitable parametrization of the matrix C1, i.e. the matrix corresponding to

the long-run behavior of the time series. We describe an algorithm in Section 6.2

how to construct the matrix C1 from a given parameter vector. This algorithm is

based on the ideas of Bauer and Wagner [7], who parameterized a complex valued

matrix satisfying similar constraints. The parametrization of the stationary part is

standard as we use the echelon canonical form. The echelon canonical form is widely

used in the VARMA context, see e.g. Lütkepohl and Poskitt [64] and the textbooks

of Lütkepohl [62], or Hannan and Deistler [46]. In the context of linear state space

models canonical representations can also be found, see for example in Guidorzi [44].

Another approach is to combine the error correction form with the echelon form,

which was done in Lütkepohl and Claasen [63] for cointegrated VARMA models.
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However, this approach has the disadvantage that it relies on the finite order form

of the error correction form, whereas we have an infinite order term in the error

correction form.

In Section 6.3 we present the results of the simulation studies. We consider two

different cases, which differ in the dimension of the model. On the one hand we

simulate a two-dimensional cointegrated MCARMA process and on the other hand a

three-dimensional model. As a driving Lévy process we use a normal-inverse Gaussian

process and a Brownian motion respectively. The two dimensional model is chosen

in such a way that the stationary part corresponds one-to-one with the simulation

study in Schlemm and Stelzer [91] for a stationary bivariate MCARMA process. We

added one common stochastic trend to this model in order to make it cointegrated.

The three-dimensional model is considered in order to have more complexity in the

non-stationary part, where we added two common stochastic trends.

6.2. Parametrization

We give now an example for the parametrization of C1,ϑ1 ∈Md,c(R), which is based on

the parameterizations presented in Bauer and Wagner [7]. They presented a complex

version of this parametrization. There is a major difference between the complex

version and the real-valued version. This is due to the fact that the orthogonal

constraints on the matrix have a greater effect in the real-valued case. If we consider

a two dimensional subspace and choose a unique basis, it is enough to know the first

vector. The second vector is then uniquely determined by the first one. This is not

the case in the complex-valued case because C is isomorphic to R2. Hence, this gives

more “degrees of freedom“ for being orthogonal to a vector. Consequently, in the

real-valued case more vectors are predetermined due to the orthogonality constraints.

One can think of the parametrization as choosing a special, unique orthonormal basis

of the space spanned by C1,ϑ1 .

The parametrization of C1,ϑ1 should satisfy Assumption M4, Assumption M6 and

Assumption M8. Furthermore, C1,ϑ1 must be of the form given in Theorem 4.3.7.

Hence, we want the matrix C1,ϑ1 to be a positive lower triangular matrix (c.f.

Definition 6.2.1) with rank c satisfying CT
1,ϑ1

C1,ϑ1 = Ic. We assume to know the

indices 1 ≤ j1 < j2 < . . . < jc ≤ d, which denotes the first positive entry in each

column of C1,ϑ1 . Furthermore, we denote the jth-column of C1,ϑ1 with cj such that

C1,ϑ1 = [c1, c2, . . . , cc] because we parameterize the columns step by step.

Let us now formally define what we understand by a positive lower triangular matrix.



6.2. Parametrization 183

Definition 6.2.1

A matrix C1 = [ci,j]i=1,...d,j=1,...,c ∈ Md,c(R) is positive lower triangular if there

exist indices 1 ≤ j1 < j2 < . . . < jc ≤ d, such that ci,j = 0, ji < j, 0 < cji,i, i.e. C1 is

of the form 

0 0 0 · · · 0
...

...

0 0

cj1,1
... · · ·

∗
...

...

0 · · ·
... cj2,2

...

∗

... 0 · · ·
...

... cj3,3

∗ 0
... · · · cjc,c

...
... ∗

...

∗ ∗ ∗ · · · ∗



, (6.1)

where ∗ denote arbitrary entries.

We denote in the following with f(·) a function which maps a vector onto the unit-

sphere, i.e. f : Rn → Sn ⊂ Rn+1. Consequently, f(x) ∈ Rn+1 is a real unit norm

vector parameterized by the vector x ∈ Rn. Furthermore, we require an additional

constraint on f , namely that eT1 f(x) > 0 holds, where e1 is the first unit vector of the

appropriate dimension. One could use any mapping which satisfies the first part. One

example satisfying these assumptions is the inverse stereographic projection. However,

one has to be careful that the additional constraint is satisfied. For stereographic

projections this can be done quite easily by restricting the parameter space.

We use in the following the inverse stereographic projection. Let us recall briefly the

inverse stereographic projection and some of its properties.
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Remark 6.2.2

The inverse stereographic projection f : Rn → Sn ⊂ Rn+1, Rn 3 x 7→ f(x) ∈ Sn is

given by

f(x) =
1

‖x‖2 + 1

(
‖x‖2 − 1

2x

)
. (6.2)

This function has a positive first entry for all x ∈ Rn satisfying ‖x‖ > 1. The inverse

stereographic projection is a smooth and bijective function with Jacobian matrix

Jf (x) =
2

(‖x‖2 + 1)2

(
2xT

(‖x‖2 − 1) In − 2xxT

)
. (6.3)

Although, we could use a general function f satisfying all restrictions we constrain

ourselves hereafter on the inverse stereographic projection.

We need therefore at most

s1 =

(
c∑
i=1

d− ji

)
−
(
c

2

)
(6.4)

parameters for a given multi-index j = (j1, . . . , jc), with 1 ≤ j1 < . . . < jc ≤ d.

The subtraction of ji is due to the normalization of each column to unity and the

positive triangular form. The positiveness of the first entry in each column is needed

since otherwise we would have two vectors satisfying the constraints. Thus we

would not have uniqueness. Due to the orthogonality we can reduce the amount of

parameters needed even further. Since all columns have to be pairwise orthogonal,

the orthogonality implies
(
c
2

)
additional equations, which is the reason for the last

minus term.

Depending on the values of c, the dimension d and the multi-index j we might know

a priori the last few columns due to the unique representation. These last columns

consist in this case only of unit vectors, for example for the last column we have

cc = ed. If jc = d holds, the column must be the unit vector to satisfy the unique

representation. However, due to the orthogonality this implies that the last row must

be equal to eTc . If we have also jc−1 = d− 1, this implies cc−1 = ed−1. This is due to

the fact that the last row of C1,ϑ1 is equal to eTc and the orthogonality. We proceed

in the same manner until the deviation of adjacent multi-indices is greater than one.

Hence, we introduce the value bd,c,j, which denotes the number of the first column

of C1,ϑ1 from where on only unit vectors follow, i.e. cbd,c,j = ejbd,c,j , . . . , cc = ed. The
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value bd,c,j is given by

bd,c,j := inf{1 ≤ i ≤ c : ji − i = d− c} ∧ c+ 1, (6.5)

where we set inf{∅} =∞. We omit the dependence on the parameters and simply

write b instead of bd,c,j in the following.

As a consequence, all entries in the range jb to d of the first b− 1 columns of C1,ϑ1

are equal to zero due to the orthogonality condition. For example, if b ≤ c the matrix

C1,ϑ1 then has the following block form

C1,ϑ1 =

(
C̃1,ϑ1 0(d−c+b−1)×(c−b+1)

0(d−c+b−1)×(c−b+1) I(c−b+1)×(c−b+1)

)
, (6.6)

where the (d− c+ b)× (c− b) matrix block C̃1,ϑ1 satisfies the same constraints as

the original matrix C1,ϑ1 . Hence, the construction of the matrix C1,ϑ1 reduces to

constructing the upper left block C̃1,ϑ1 . Note that we interpret 0−a, for a ≥ 0 as an

empty vector and the same applies for matrices.

Before we start, let us introduce the auxiliary variable

ni := (d− c+ b− ji) ∨ 0 (6.7)

for 1 ≤ i ≤ b− 1. The value of ni can be interpreted as the number of components

of the ith column which depend somehow on the parameter vector. They are not

as in the previous considerations inevitable equal to zero or one. We need at most

(ni − i) ∨ 0 parameters for the ith column. Quite often no additional parameters are

needed to construct a column due to all the constraints (c.f. Table 6.1).

Before we present the parametrization we give one last definition. Since we want all

matrices in the following to be of a special form, we introduce an abbreviation for

this special form.

Definition 6.2.3

We say an m× n matrix A, for n ≤ m, is in Nplt-form if it satisfies ATA = In and

A is of positive lower triangular form.

In the next lemma we present the algorithm, which constructs the matrix C1,ϑ1

uniquely for a given multi-index j. More importantly, we see that all the assumptions

needed of the parametrization are indeed satisfied. Note that each column depends

on the parameters of the previous parameterized columns due to the orthogonality.
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Lemma 6.2.4

Assume that we have the multi-index j given as in Definition 6.2.1 with 1 ≤ j1 <

j2 < . . . < jc ≤ d. Furthermore, we assume that we have a real parameter vector

ϑ1 ∈ Rs1 of dimension s1, where s1 is determined via (6.4). Then we can construct

the matrix C1,ϑ1 in the following manner.

First, we calculate bd,c,j as defined in (6.5). Next, we know that the matrix has

to have the form given in (6.6). Therefore, we can consider the reduced problem

of constructing C̃1,ϑ1. In the following, we write without loss of generality for the

columns of C̃1,ϑ1 as well c1, . . . , cb−1.

The parameter vector is divided into

ϑ1 = [ϑT
1,1, ϑ

T
1,2, . . . , ϑ

T
1,ld,c,j

]T,

where the number ld,c,j of sub-vectors depends on the parameters d, c and j. We do

not specify the exact number here. However, the algorithm presented below will make

clear how to divide the parameter vector in sub-vectors of appropriate size.

We denote with fi always an inverse stereographic projection of a dimension depending

on the size of the parameter sub-vector.

If b = 1 holds, the complete matrix is already given by C1 =

(
0(d−c)×c

Ic×c

)
. Hence, we

assume from now on b > 1. It remains to determine the columns c1, . . . , cb−1. We

construct one column after the other by the following algorithm.

� First Vector:

In this reduced block matrix, we have for the first vector no orthogonality

constraint. The only constraint is the normalization and hence it is given right

away by the inverse stereographic projection and the first index j1. Insofar, we

have the first column given by

c1 =

(
0j1−1,1

f1(ϑ1,1)

)
, (6.8)

where the vector ϑ1,1 ∈ Rn1−1 is the vector containing the first n1− 1 entries of

ϑ1.

If b = 2 holds, we have determined all columns. Otherwise, it remains to calculate

the columns c2, ..., cb−1.
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� Second Vector:

We have to distinguish between two cases. In order to determine the case we

are in, we consider the auxiliary variable nb−1 and check if it is equal to two.

If nb−1 = 2, we have two entries of the (b − 1)th column, which can depend

on new parameters. However, due to the normalization and orthogonality to

c1 these entries are already uniquely determined. Thus, we need no additional

parameters. In the other case, we cannot compute any column directly. Again,

we have to take the normalization into account. This is done by the stereographic

projection f2(·). And the orthogonality to c1 is guaranteed by the multiplication

with a matrix Q2, which is going to be specified further below. Obviously, the

matrix Q2 depends on the parameter sub-vector ϑ1,1 and can be interpreted

as the mapping, which maps the normalized vector f2(·) into the orthogonal

complement of c1.

1. Case 1: nb−1 6= 2:

In this case the column vector c2 is given by

c2 =

(
0j2−1,1

Q2f2(ϑ1,2)

)
, (6.9a)

where Q2 denotes the unique orthogonal complement in Nplt-form of the

matrix product

[0n2,j2−1, In2 ][c1].

Note that Q2 has dimension n2 × (n2 − 1) and f1(ϑ1,2) is a unit vector

of dimension n2 − 1. Hence, we need n2 − 2 parameters in this case to

parameterize the second column.

2. Case 2: nb−1 = 2:

In this case column vector cb−1 is already determined via the unique

orthonormal complement of

[02,jb−1−1, I2][c1]

in Nplt-form. We denote this unique orthonormal complement in Nplt-form

by Q∗2, which is a two-dimensional vector. Consequently, cb−1 is given by

cb−1 =

(
0jb−1−1,1

Q∗2

)
. (6.9b)

We did not need any parameters in this case since cb−1 has only two non-
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zero entries. They are uniquely determined due to the normalization, the

orthogonal constraint and the restriction of a positive first entry.

Denote by C(2) the matrix containing all columns of C̃1,ϑ1 which are already

determined. Depending on the considered case, it holds that either C(2) = [c1, c2]

or C(2) = [c1, cb−1].

We proceed iteratively until we have determined the b− 1 columns. However, we state

only one more step. The rest will follow in the same way.

� Third Vector:

We have already determined the two columns stacked in the matrix C(2).

a) Case 1: nb−2 6= 3:

In this case we determine the vector ci. Depending on the considered case,

this is either going to be c2 or c3, i.e. i ∈ {2, 3}. Hence we have

ci =

(
0ji−1,1

Q3fi(ϑ1,i)

)
, (6.10a)

where Q3 denotes the unique orthogonal complement in Nplt-form of

[0ni,ji−1, Ini ]C(2).

Note that Q3 has dimension ni× (ni−2) and f(ϑ1,i) is a normalized vector

of dimension ni − 2. Hence, we need ni − 3 parameters in this case to

parameterize either the second or the third column.

b) Case 2: nb−2 = 3:

In this case cb−2 is already determined via the unique orthonormal com-

plement of

[03,jb−1−1, I3]C(2)

in Nplt-form. We denote this unique orthonormal complement in Nplt-form

by Q∗3, which is a three-dimensional vector. Consequently, cb−2 is given by

cb−2 =

(
0jb−2−1,1

Q∗3

)
. (6.10b)

Denote by C(3) the matrix containing all columns of C̃1,ϑ1 which are already

determined. Depending on the considered case, the matrix C(3) is given

by one of the following possibilities C(3) = [c1, c2, c3], C(3) = [c1, c2, cb−1]

or C(3) = [c1, cb−2, cb−1].
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The matrix C̃1,ϑ1 constructed by the above algorithm satisfies Assumption M4, As-

sumption M6 and Assumption M8 and is of the form given in Theorem 4.3.7, i.e. it

satisfies Assumption M9.

Proof. The matrix C1,ϑ1 is obviously in positive lower triangular form due to the

construction. Note that Qj satisfies QT
j Qj = Ini−i by definition. Then, one can easily

see that each column has norm one since

‖cj‖2 = ‖Qjf(ϑ1,j)‖2 = f(ϑ1,j)
TQT

j Qjf(ϑ1,j) = f(ϑ1,j)
Tf(ϑ1,j) = 1

and the same holds obviously true for Q∗j .

Assume without loss of generality that j < i. The orthogonality of the columns is

given due to

cTj ci = cTj Qifi(ϑ1,i) = 0

since Qi is the orthogonal complement of a matrix which contains cj as a column.

The rank condition in Assumption M4 is obviously satisfied as well. Hence, C1,ϑ1 is

given in the canonical form of Theorem 4.3.7.

To see the continuity (Assumption M6) and smoothness (Assumption M8) of C1,· note

that each column is the product of two smooth functions. After all the stereographic

projection is a smooth function and Q∗j as well as Qi are function compositions of

smooth functions.

In conclusion, the parametrization presented satisfies all desired assumptions.

Furthermore, we know that the partial derivative of the inverse stereographic projec-

tions is orthogonal to the original inverse stereographic projection f , that is(
∂

∂ϑj
f(ϑ1,j)

T

)
f(ϑ1,j) = 0,

hence if follows that
∂

∂ϑj
C1,ϑ1 /∈ span C1,ϑ1 ,

for j = 1, . . . , s1. Besides, the set of all partial derivatives is linearly independent.

We present now an example in order to clarify, how the parametrization algorithm

works. In this example we have the following parameters given:

d = 6, c = 4, r = 2

i1 = 1, i2 = 2, i3 = 3, i4 = 5.
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With this we can calculate b, which is equal to 5, furthermore we have the auxiliary

variables given by n2 = 5, n3 = 4, n4 = 2. The first column c1 is parameterized by

the parameter vector ϑ1,1 = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5)T ∈ R5 and hence given as

c1 =



‖ϑ1,1‖2−1

‖ϑ1,1‖2+1

2ϑ1
‖ϑ1,1‖2+1

2ϑ2
‖ϑ1,1‖2+1

2ϑ3
‖ϑ1,1‖2+1

2ϑ4
‖ϑ1,1‖2+1

2ϑ5
‖ϑ1,1‖2+1


,

where ‖ϑ1,1‖2 − 1 must be a positive real number. Since n4 = 2, we know directly

due to the orthogonality constraints that

c4 =
(

0 0 0 0 ϑ5√
ϑ24+ϑ25

− ϑ4√
ϑ24+ϑ25

)T
,

where ϑ5 must be a positive real number. We see, that there is no free parameter

needed for c4, whereas we only get an additional constraint on the parameter space.

Next, we compute c2 with the knowledge of c1 and c4. First, we compute the unique

positive orthogonal complement of

2ϑ1
‖ϑ1,1‖2+1

0
2ϑ2

‖ϑ1,1‖2+1
0

2ϑ3
‖ϑ1,1‖2+1

0
2ϑ4

‖ϑ1,1‖2+1
ϑ5√
ϑ24+ϑ25

2ϑ5
‖ϑ1,1‖2+1

− ϑ4√
ϑ24+ϑ25


.

The orthogonal complement space must be three dimensional. As a consequence, we

obtain

Q2 =


q1 0 0

q1 · ϑ1ϑ2 q2 0

q1 · ϑ1ϑ3 q2 · ϑ2ϑ3 q3

q1 · ϑ1ϑ4 q2 · ϑ2ϑ4 q3 · ϑ3ϑ4

q1 · ϑ1ϑ5 q2 · ϑ2ϑ5 q3 · ϑ3ϑ5

 ,

where q1 :=

√
ϑ22+ϑ23+ϑ24+ϑ25√

ϑ21+ϑ22+ϑ23+ϑ24+ϑ25
, q2 :=

√
ϑ23+ϑ24+ϑ25√

ϑ22+ϑ23+ϑ24+ϑ25
and q3 :=

√
ϑ24+ϑ25√

ϑ23+ϑ24+ϑ25
. In order to

obtain c2 we have to multiply Q2 with f(ϑ1,2) using the parameter vector ϑ1,2 =
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(ϑ6, ϑ7)T ∈ R2. Calculating this product gives us

c2 = Q2 ·



0

q1 · ‖ϑ1,2‖
2−1

‖ϑ1,2‖2+1

−q1 · ϑ1ϑ2 · ‖ϑ1,2‖
2−1

‖ϑ1,2‖2+1
+ q2 · 2ϑ6

‖ϑ1,2‖2+1

−q1 · ϑ1ϑ3 · ‖ϑ1,2‖
2−1

‖ϑ1,2‖2+1
− q2 · ϑ2ϑ3 · 2ϑ6

‖ϑ1,2‖2+1
+ q3 · 2ϑ7

‖ϑ1,2‖2+1

−q1 · ϑ1ϑ4 · ‖ϑ1,2‖
2−1

‖ϑ1,2‖2+1
− q2 · ϑ2ϑ4 · 2ϑ6

‖ϑ1,2‖2+1
− q3 · ϑ3ϑ4 · 2ϑ7

‖ϑ1,2‖2+1

−q1 · ϑ1ϑ5 · ‖ϑ1,2‖
2−1

‖ϑ1,2‖2+1
− q2 · ϑ2ϑ5 · 2ϑ6

‖ϑ1,2‖2+1
− q3 · ϑ3ϑ5 · 2ϑ7

‖ϑ1,2‖2+1


,

where ‖ϑ1,2‖2 − 1 > 0 must hold. As of now, we also know c3 due to the orthogonality

constraints, which is given by the orthogonal complement and thus we get

c3 :=



0

0
ϑ7
√

(ϑ23+ϑ24+ϑ25)

‖ϑ1,2‖
√
ϑ22+ϑ23+ϑ24+ϑ25

− ϑ2ϑ3ϑ7

‖ϑ1,2‖
√
ϑ22+ϑ23+ϑ24+ϑ25

√
ϑ23+ϑ24+ϑ25

− ϑ6
√
ϑ24+ϑ25

‖ϑ1,2‖
√
ϑ23+ϑ24+ϑ25

− ϑ2ϑ4·ϑ7
‖ϑ1,2‖
√
ϑ22+ϑ23+ϑ24+ϑ25

√
ϑ23+ϑ24+ϑ25

− ϑ3ϑ4·ϑ6
‖ϑ1,2‖
√
ϑ24+ϑ25

√
ϑ23+ϑ24+ϑ25

− ϑ2ϑ5·ϑ7
‖ϑ1,2‖
√
ϑ22+ϑ23+ϑ24+ϑ25

√
ϑ23+ϑ24+ϑ25

− ϑ3ϑ5·ϑ6
‖ϑ1,2‖
√
ϑ24+ϑ25

√
ϑ23+ϑ24+ϑ25


.

Hence, we could calculate now C⊥1,ϑ1 by taking the unique orthogonal complement of

C1,ϑ1 in Nplt-form.

In Table 6.1 we show the number of parameters needed for different combinations

of the number of common stochastic trends c, the dimension of the output process

d and the multi-index j. We give the number of parameters per column vector, i.e.

for example (3, 2, 0) means that the first column vector is parameterized with three

parameters the second one with two and the last needs no additional parameter.

We omit the trivial case of c = d, because the process is then integrated but not

cointegrated. Moreover, it follows that C1 = Id and no estimation of long-run

parameters has to be done. The table shows that in most cases we do not need

many parameters due to all the constraints. Note further that for c = d− 1 we only

have to parameterize the first vector. All other vectors are then given due to the

orthogonality constraints. So the more complicated cases of parametrization occur

only for 1 < c < d − 1. For one common stochastic trend (c = 1) we always need

d− i1 parameters. Moreover, we excluded the multi-indices in the table, which belong

to the class, where it suffices to consider the reduced problem. In the subsequent

overview, we present the parameters needed up to dimension d = 6.
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Figure 6.1.: Illustration of the algorithm for constructing C1,ϑ1
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Dimension d = 4
c j # Parameters

2
(1,2) (3,1)
(1,3) (3,0)
(2,3) (2,0)

Dimension d = 5
c j # Parameters

2

(1,2) (4,2)
(1,3) (4,1)
(2,3) (3,1)
(1,4) (4,0)
(2,4) (3,0)
(3,4) (2,0)

3

(1,2,3) (4,2,0)
(1,2,4) (4,1,0)
(1,3,4) (4,0,0)
(2,3,4) (3,0,0)

Dimension d = 6
c j # Parameters

2

(1,2) (5,3)
(1,3) (5,2)
(1,4) (5,1)
(1,5) (5,0)
(2,3) (4,2)
(2,4) (4,1)
(2,5) (4,0)
(3,4) (3,1)
(3,5) (3,0)
(4,5) (2,0)

3

(1,2,3) (5,3,1)
(1,2,4) (5,3,0)
(1,2,5) (5,2,0)
(1,3,4) (5,2,0)
(1,3,5) (5,1,0)
(1,4,5) (5,0,0)
(2,3,4) (4,2,0)
(2,3,5) (4,1,0)
(2,4,5) (4,0,0)
(3,4,5) (3,0,0)

4

(1,2,3,4) (5,3,0,0)
(1,2,3,5) (5,2,0,0)
(1,2,4,5) (5,1,0,0)
(1,3,4,5) (5,0,0,0)
(2,3,4,5) (4,0,0,0)

Table 6.1.: Number of Parameters needed for the Parametrization

We can freely select the parametrization for the stationary part due to the decoupled

system derived in Theorem 4.3.7. Therefore, we choose the canonical echelon form for

this part. We omit a detailed description of this parametrization and only mention

that it satisfies all necessary assumptions which we made in Chapter 5 in order to

gain consistency and the asymptotic distributions. A list of all assumptions can be

found in Appendix A. For a reference on this canonical parametrization we refer

to Schlemm and Stelzer [91], Section 4.1, where the necessary facts and results are

summarized. Other references would be for example the article of Lütkepohl and

Poskitt [64], and the textbooks of Lütkepohl [62], or Hannan and Deistler [46].

In order to use the echelon form for the stationary subsystem, namely the matrices

(A2,ϑ2 , B2,ϑ2 , C2,ϑ2), we need to know the Kronecker index. We assume that we can

somehow estimate the Kronecker index of the model with an information criterion.
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Well-known information criteria are for example the Akaike Information Criterion

(AIC), which was introduced by Akaike [2] in 1973, or the Bayesian Information

Criterion (BIC) dates back to Schwarz [92] in 1978. The profound treatment of the

order selection problem for discrete-time weak VARMA processes can be found e.g.

in Boubacar [13]. A recent work on information criteria for stationary MCARMA

processes is Fasen and Kimmig [38]. However, to treat information criteria for the

cointegrated model is beyond the scope of this thesis.

Lastly, we consider the parametrization of the remaining system matrices. The

matrix B1,ϑ2 is parameterized using the vec operator, i.e. each entry of B1,ϑ2 consists

of a an entry of a (d · c)-dimensional sub-vector of ϑ2. Moreover, the covariance

matrix of the Lévy process ΣL
ϑ2

is parameterized via the vech operator. We make

use of the symmetric form and hence only need to parameterize the lower or upper

triangular matrix respectively. As for B1,ϑ2 each entry consists of a an entry of a(
m(m+1)

2

)
-dimensional sub-vector of the short-run parameter vector ϑ2.

6.3. Simulation Results

At this point, we would like to thank Eckhard Schlemm and Robert Stelzer, who

kindly provided the MATLAB code for the simulation and parameter estimation of

the stationary MCARMA process. This MATLAB code was the foundation for the

simulation studies of this thesis. We adapted the code in order to include not only

stationary MCARMA processes, but also the cointegrated MCARMA model. In this

respect, we have used the same methods as described in Section 4.2 of Schlemm and

Stelzer [91].

In the course of the extension we have heavily used the decoupling of the cointegrated

model given by Theorem 4.3.7. Moreover, we have implemented the step-wise quasi-

maximum likelihood estimation approach as described in Chapter 5. Evidently, we

use the parametrization described in Section 6.2 for the matrix C1,ϑ1 along with

the other parametrization methods mentioned for the matrices corresponding to the

short-run parameters. The exact parametrization for both model scenarios considered

are presented in the following.

6.3.1. Bivariate Examples

We test the performance of the estimation method presented in Chapter 5 with the

example used in Schlemm and Stelzer [91], Section 4.2. Hence, we simulate a bivariate
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CARMA process with Kronecker indices (1, 2) and cointegration multi-index i1 = 1.

This implies that the stationary MCARMA process has order (p, q) = (2, 1) and we

have one cointegration relation.

We consider as a driving Lévy process a normal-inverse Gaussian (NIG) process

(L(t))t≥0 with mean zero. Additionally, we simulate the case, where we have a

Brownian motion as a driving Lévy process (L(t))t≥0. We adjust the covariance

matrices such that they coincide in both scenarios. The covariance matrix is thus

given as in Schlemm and Stelzer by

ΣL =
1

31
3
2

(
82 −28

−28 64

)
≈

(
0.4751 −0.1622

−0.1622 0.3708

)
. (6.11)

We used the following set of parameters for the simulation of the bivariate CARMA

process

ϑ0 =
(
−1 −2 1 −2 −3 1 2 1 1 0.4751 −0.1622 0.3708 3

)T
. (6.12)

For this setting, the dimension of the matrices are as follows

A ∈M4,4(R), B ∈M4,2(R) and C ∈M2,4(R).

The canonical parametrization of the model has the following state space form

dX(t) =


ϑ1 ϑ2 0 0

0 0 1 0

ϑ3 ϑ4 ϑ5 0

0 0 0 0

X(t)dt+


ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

ϑ8 ϑ9

 dL(t),

and

Y (t) =

(
1 0 0

ϑ213−1

ϑ213+1

0 1 0 2·ϑ13
ϑ213+1

)
X(t). (6.13)

Furthermore, we set the initial value X(0) = 03 and the covariance matrix was

parameterized by (ϑ10, ϑ11, ϑ12) = vechΣL.

The cointegration space is directly found by taking the span of the orthogonal

complement of C1 =

(
0.8

0.6

)
, i.e. we have C⊥1 =

(
−0.6

0.8

)
.
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We simulate on a grid 0, 0.01, 0.02, . . . , 2000 using an Euler scheme to the stochastic

differential equation (6.13). The sampling distance was set to h = 1.

Case 1: Normal-Inverse Gaussian

Since the parameters were chosen accordingly to the simulation study of Schlemm

and Stelzer, we also briefly recall the properties of a multivariate NIG-Lévyprocess

(for more details see e.g. Barndorff-Nielsen [5]). Moreover, we remain closely to the

notation of Schlemm and Stelzer [91] in this section.

The increment of a two-dimensional NIG-Lévy process L(t)−L(t− 1) has the density

fNIG(x;µ, α, β, δ,∆) =
δeδκ

2π
· e〈β,x〉(1 + αg(x))

eαg(x)g(x)3
, (6.14)

where g(x) =
√
δ2 + 〈x− µ,∆(x− µ)〉

and κ2 = α2 − 〈β,∆β〉 > 0.

The covariance of the process is in this case given by

Σ = δ(α− βT∆β)−
1
2

(
∆ + (α2 − βT∆β)−1∆ββT∆

)
(6.15)

and in order to obtain the covariance matrix in (6.11) and mean zero, we have to set

the parameters of the NIG-process to

δ = 1, α = 3, β =

(
1

1

)
, ∆ =

(
1.2 −0.5

−0.5 1

)
and µ = − 1

2
√

31

(
3

2

)
.

The results for a sample of 350 replicates of the bivariate NIG-driven MCARMA

process are summarized in Table 6.2. One realization of the cointegrated MCARMA

process driven by a normal-inverse Gaussian process is given in Figure 6.2 and the

corresponding stationary linear combination in Figure 6.3.
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Figure 6.2.: Typical realization of bivariate NIG-driven CARMA process

Bivariate NIG-driven MCARMA process
parameter true param. sample mean bias sample std. dev.

ϑ1 -1 -0.9857 -0.0143 0.0515
ϑ2 -2 -2.0025 0.0025 0.0573
ϑ3 1 0.9919 0.0081 0.0749
ϑ4 -2 -1.9758 -0.0242 0.1126
ϑ5 -3 -2.9774 -0.0226 0.0497
ϑ6 1 1.0129 -0.0129 0.1071
ϑ7 2 2.0005 -0.0005 0.0690
ϑ8 1 1.0078 -0.0078 0.0684
ϑ9 1 0.9872 0.0128 0.0761
ϑ10 0.4751 0.4715 0.0036 0.0678
ϑ11 -0.1622 -0.1572 -0.0050 0.0381
ϑ12 0.3708 0.3698 0.0010 0.0314
ϑ13 3 2.9999 0.0001 0.0075

Table 6.2.: Estimates for the parameters of a bivariate NIG-driven CARMA process
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Figure 6.3.: Typical realization the stationary linear combination

Case 2: Brownian Motion

Now we consider the case we the Lévy process is a Brownian motion. The only

difference to the previous case is the driving process. In this case the parameters

(ϑ10, ϑ11, ϑ12) directly give the covariance matrix ΣL. The results for a sample of 350

replicates of the bivariate BM-driven cointegrated MCARMA process are summarized

in Table 6.3 and one realization is given in Figure 6.4.

Bivariate BM-driven MCARMA process
parameter true param. sample mean bias sample std. dev.

ϑ1 -1 -0.9895 -0.0105 0.0425
ϑ2 -2 -1.9934 -0.0066 0.0459
ϑ3 1 0.9898 0.0102 0.0570
ϑ4 -2 -1.9701 -0.0299 0.0872
ϑ5 -3 -2.9898 -0.0102 0.0324
ϑ6 1 1.0155 -0.0155 0.0789
ϑ7 2 2.0068 -0.0068 0.0441
ϑ8 1 1.0096 -0.0096 0.0482
ϑ9 1 0.9777 0.0223 0.0599
ϑ10 0.4751 0.5200 -0.0449 0.0518
ϑ11 -0.1622 -0.1283 -0.0339 0.0266
ϑ12 0.3708 0.3195 0.0513 0.0213
ϑ13 3 2.9981 0.0019 0.0068

Table 6.3.: Estimates for the parameters of a bivariate BM-driven CARMA process
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Figure 6.4.: Typical realization of bivariate BM-driven CARMA process
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Figure 6.5.: Typical realization the stationary linear combination

In summary, we conclude that the theoretical results proven in Chapter 5 have

given us an estimation procedure, which performs quite well in the two simulation

studies for the two-dimensional case. The results of the NIG-case are comparable

to the results of the simulation study in Section 4.2. of Schlemm and Stelzer [91].

This simulation study was done for a stationary MCARMA process with the same

parameters. Hence, for reasons of comparability we have chosen the true parameters

as in (6.12). Compare for this purpose Table 6.2 with Table 3 in Schlemm and Stelzer

[91].

In Figure 6.6 we compare the bias and sample standard deviation of the two simulation

studies. We have chosen two completely different Lévy processes with respect to the

continuity of the sample paths. The Brownian motion has continuous sample paths,

whereas the normal-inverse Gaussian process is a pure jump process. The Kalman

filter as well as the quasi-maximum likelihood function are constructed marginally for
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Figure 6.6.: Bias and Sample Standard Deviation of both Simulation Studies

the Gaussian case. The figure shows that the sample standard deviation is smaller in

the case of a driving Brownian motion is to be expected. It is very apparent that the

cointegration parameter is estimated extremely well. Accordingly, the cointegration

parameter ϑ13 has in both cases the smallest bias and standard deviation of all

parameters. This is based on the fact that in this simple two-dimensional model

there is only one long-run parameter. Hence, the complexity of this estimation is

quite low and consequently the optimization performs quite narrowly, which is in

accordance with the consistency results shown in Section 5.5.

Lastly, we compare for the Gaussian MCARMA case the minimal likelihood values if

we do not use the right model. To be precise, we estimated the Brownian motion-

driven MCARMA model of this subsection using all possible models with respect

to the cointegration rank of appropriate dimension. There are four cases which are

given by

1. A stationary MCARMA model (A2, B2, C2, L);

2. A cointegrated MCARMA model with multi-index (2);

3. The true cointegrated MCARMA model with multi-index (1);

4. An integrated MCARMA model.
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Minimal value of the log-likelihood function
True Model (1) Stationary Model Coint. Model (2) Integrated model
5.24 5.28 14.36 14.97 27.63 22.27 5.16 5.25
5.23 5.19 14.75 19.13 9.62 8.15 5.21 5.44
5.23 5.26 13.40 11.51 7.31 19.06 5.30 5.24
5.30 5.21 29.55 18.12 18.15 10.73 5.35 5.23
5.22 5.21 50.86 46.63 16.41 13.25 5.18 5.33
5.24 5.24 33.29 21.84 7.39 11.59 5.59 5.31
5.27 5.24 20.43 32.78 10.91 8.01 5.24 5.32
5.25 5.16 14.85 47.20 18.84 11.62 5.29 5.28
5.27 5.24 18.15 54.99 9.87 11.14 5.33 5.20
5.20 5.29 17.21 41.14 43.01 9.89 5.29 5.39
5.25 5.18 13.03 22.90 10.31 10.98 5.42 5.21
5.21 5.24 10.90 14.02 13.28 10.41 5.24 5.26
5.25 5.31 16.18 17.50 32.19 13.46 5.31 5.25
5.18 5.16 12.53 13.18 8.07 30.89 5.40 5.16
5.21 5.26 43.47 14.26 24.32 12.34 5.29 5.23
5.29 5.25 85.46 14.55 16.55 24.56 5.31 5.24
5.25 5.27 10.53 16.38 13.34 8.90 5.54 5.19
5.25 5.21 42.85 15.45 14.40 22.44 5.31 5.22
5.30 5.30 27.48 25.55 6.48 8.92 5.33 5.32
5.19 5.25 23.54 11.66 10.82 10.37 5.24 5.23
5.31 5.23 19.08 16.28 10.55 16.11 5.35 5.23
5.34 5.21 23.16 18.01 12.22 12.24 5.21 5.44
5.24 5.18 30.15 22.79 23.87 9.54 5.30 5.28
5.22 5.21 16.05 12.93 12.56 8.80 5.22 5.21
5.23 5.23 14.31 51.27 10.69 9.61 5.25 5.24
5.31 5.20 12.70 11.20 14.80 11.13 5.44 5.25
5.23 5.28 11.21 44.18 9.79 52.56 5.25 5.23
5.27 5.23 34.06 52.53 10.95 22.10 5.23 5.17
5.29 5.19 16.34 17.44 45.28 79.37 5.40 5.45
5.13 5.24 9.62 22.56 12.92 23.48 5.22 5.21
5.26 5.29 15.28 16.69 19.68 31.53 5.29 5.34
5.21 5.13 11.57 19.32 8.78 9.93 5.28 5.26
5.33 5.27 9.45 11.96 10.19 56.78 5.25 5.32
5.16 5.22 19.84 14.10 22.24 6.21 5.14 5.25
5.17 5.19 14.60 34.31 30.04 9.42 5.41 5.24
5.17 5.20 11.07 11.20 24.11 21.86 5.27 5.43
5.28 5.24 39.36 13.03 20.62 9.15 5.29 5.32
5.26 5.24 52.76 17.96 6.40 10.85 5.21 5.18
5.21 5.20 20.09 41.32 10.43 23.59 5.75 5.36
5.12 5.22 21.04 17.98 11.53 8.14 5.17 5.21
5.28 5.21 13.65 31.78 20.07 8.80 5.20 5.44
5.19 5.18 14.74 23.95 22.55 7.69 5.24 5.30
5.17 5.17 13.23 31.73 9.18 22.29 5.34 5.16
5.22 5.24 11.49 15.52 8.98 21.41 5.19 5.29
5.22 5.22 14.53 20.71 12.30 16.51 5.23 5.17
5.21 5.20 17.37 30.97 8.45 11.63 5.25 5.34
5.17 5.25 44.94 13.59 18.10 10.65 5.31 5.36
5.25 5.20 12.77 14.15 16.82 12.52 5.25 5.28
5.22 5.28 19.21 82.80 6.05 10.94 5.21 5.20
5.16 5.29 88.27 13.95 13.01 11.25 5.29 5.31

Table 6.4.: Minimum of the likelihood function for the four different models and 100
simulations each
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We compare for each model the minimal value of the likelihood function, namely

L(h)
n (ϑ̂n), for 100 simulations in Table 6.4. We see that the true model and the

integrated model behave similar in the sense of the value of the likelihood function.

The mean, standard deviation, minimal and maximal value of the minimum of

likelihood function for the 100 simulations are summarized in Table 6.5.

True Coint.
Model (1)

Stationary
Model

Cointegrated
Model (2)

Integrated
model

mean 5.2303 23.8473 16.2713 5.2851
st. dev. 0.0449 16.0159 11.3465 0.0956

min 5.1226 9.4492 6.0526 5.1367
max 5.3356 88.2747 79.3741 5.7509

Table 6.5.: Minimum of the Likelihood function for the four different models

The results indicate that the likelihood function is not converging for the cases where

the stationary model and the wrong cointegrated model are chosen as would be

expected by the theoretical results in Chapter 5. The reason for this is that there is

no chance to estimate the true cointegration space due to the unique parametrization.

Hence, the non-stationary subsystem is estimated with a stationary model in both

cases. The likelihood function for the integrated model seems to converge which

is probably the case due to the fact that the integrated model estimates the non-

stationary part with a non-stationary model. However, it
”
overfits“ the model

in a sense. In other words, the integrated model includes another dimension of

non-stationary which is not present in the true model.

6.3.2. Three-dimensional Examples

We also simulate a three-dimensional CARMA process with Kronecker indices (1, 2, 1)

and cointegration multi-index (i1, i2) = (1, 2). This implies that the MCARMA

process has order (p, q) = (2, 1) and two common stochastic trends. The cointegration

space is accordingly a one-dimensional subspace of R3. We need 28 parameters in

total to parameterize all matrices of this model.

As before we simulate the cointegrated process using either a normal-inverse Gaussian

(NIG) process with mean zero or a Brownian motion. We set the covariance matrix
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for the three-dimensional process in both cases to

ΣL ≈

 0.5310 −0.1934 0.1678

−0.1934 0.3784 −0.2227

0.1678 −0.2227 0.5632

 . (6.16)

The true parameter values for the simulation of the three-dimensional MCARMA

process are given in Table 6.6.

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8 ϑ9 ϑ10

-2 -3 -3 1 1 -1 2 -1 -3 -3

ϑ11 ϑ12 ϑ13 ϑ14 ϑ15 ϑ16 ϑ17 ϑ18 ϑ19 ϑ20

-1 -1 2 1 1 0 1 1 -2 0

ϑ21 ϑ22 ϑ23 ϑ24 ϑ25 ϑ26 ϑ27 ϑ28

0.5310 -0.1934 0.1678 0.3784 -0.2227 0.5632 1 2

Table 6.6.: Parameters for the simulation of the three-dimensional MCARMA process

The dimensions of the model matrices are as follows

A ∈M6,6(R), B ∈M6,3(R) and C ∈M3,6(R).

The canonical parametrization of the model has the following state space form

dX(t) =

(
A2 04×2

02×4 02×2

)
X(t)dt+

(
B2

B1

)
dL(t)

and

Y (t) =
(
C2 C1

)
X(t), (6.17)

where the matrices are given by

A2 =


ϑ1 ϑ2 0 ϑ3

0 0 1 0

ϑ4 ϑ5 ϑ6 ϑ7

ϑ8 ϑ9 ϑ10 ϑ11

 ,
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C2 =

1 0 0 0

0 1 0 0

0 0 0 1

 , C1 =


ϑ227+ϑ228−1

ϑ227+ϑ228+1
0

2·ϑ27
ϑ227+ϑ228+1

ϑ28√
ϑ227+ϑ228

2·ϑ28
ϑ227+ϑ228+1

− ϑ27√
ϑ227+ϑ228

 ,

B2 =


ϑ1 ϑ2 ϑ3

ϑ12 ϑ13 ϑ14

ϑ4 + ϑ6ϑ12 ϑ5 + ϑ6ϑ13 ϑ7 + ϑ6ϑ14

ϑ8 + ϑ10ϑ12 ϑ9 + ϑ10ϑ13 ϑ11 + ϑ10ϑ14

 and B1 =

(
ϑ15 ϑ16 ϑ17

ϑ18 ϑ19 ϑ20

)
.

Furthermore, we set the initial value X(0) = 06 and the covariance matrix is once

again parameterized by the vector (ϑ21, ϑ22, ϑ23, ϑ24, ϑ25, ϑ26) = vechΣL.

In this model we have is now

C1 =

 0.6667 0

0.3333 0.8944

0.6667 −0.4472


and the orthogonal complement is given by

C⊥1 =

 0.7454

−0.2981

−0.5963

 .

Once more, we simulate on a grid 0, 0.01, 0.02, . . . , 2000 using an Euler scheme to

the stochastic differential equation (6.17) and use a sampling distance of h = 1.

Case 1: Normal-Inverse Gaussian

The NIG-process has covariance matrix (6.11) and mean zero if we set the parameters

of the normal-inverse Gaussian distribution to

δ = 1, α = 3, β =

1

1

1

 , ∆ =

1.25 −0.5 1
6

√
3

−0.5 1 −1
3

√
3

1
6

√
3 −1

3

√
3 4

3


and µ = − 1

2
√

31

(
3

2

)
.
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This implies that the covariance matrix of the NIG-process is indeed

ΣL ≈

 0.5310 −0.1934 0.1678

−0.1934 0.3784 −0.2227

0.1678 −0.2227 0.5632


as in (6.16).

We proceed as in the two dimensional case. The results for a sample of 350 replicates

of the 3-dimensional NIG-driven MCARMA process are summarized in Table 6.7

and a realization can be found in Figure 6.7.

3-dim. NIG-driven MCARMA process
parameter true param. sample mean bias sample std. dev.

ϑ1 -2 -1.9910 -0.0090 0.0583
ϑ2 -3 -3.0042 0.0042 0.0407
ϑ3 -3 -3.0194 0.0194 0.0456
ϑ4 1 0.9887 0.0113 0.0440
ϑ5 1 0.9977 0.0023 0.0351
ϑ6 -1 -0.9861 -0.0139 0.0544
ϑ7 2 2.0122 -0.0122 0.0396
ϑ8 -1 -1.0039 0.0039 0.0442
ϑ9 -3 -2.9937 -0.0063 0.0342
ϑ10 -3 -2.9904 -0.0096 0.0490
ϑ11 -1 -1.0055 0.0055 0.0449
ϑ12 -1 -1.0023 0.0023 0.0386
ϑ13 2 1.9984 0.0016 0.0363
ϑ14 1 1.0034 -0.0034 0.0353
ϑ15 1 0.9984 0.0016 0.0351
ϑ16 0 -0.0345 0.0345 0.0644
ϑ17 1 0.9840 0.0160 0.0521
ϑ18 1 1.0010 -0.0010 0.0314
ϑ19 -2 -1.9841 -0.0159 0.0388
ϑ20 0 0.0111 -0.0111 0.0347
ϑ21 0.5310 0.5279 0.0031 0.0605
ϑ22 -0.1934 -0.1870 -0.0064 0.0385
ϑ23 0.1678 0.1678 0.0000 0.0467
ϑ24 0.3784 0.3816 -0.0032 0.0293
ϑ25 -0.2227 -0.2127 0.0100 0.0334
ϑ26 0.5632 0.5585 0.0047 0.0476
ϑ27 1 1.0002 0.0002 0.0030
ϑ28 2 2.0000 0.0000 0.0079

Table 6.7.: Estimates for the parameters of a three-dimensional NIG-driven CARMA
process
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Figure 6.7.: Typical realization of 3-dimensional NIG-driven CARMA process

Case 2: Brownian Motion

Lastly, we have the Brownian Motion case for the three-dimensional model. The
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Figure 6.8.: Typical realization of 3-dimensional Brownian motion-driven CARMA
process

covariance matrix is given as in (6.16) and thus coincides with the covariance matrix

in the previous case.
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3-dim. BM-driven MCARMA process
parameter true param. sample mean bias sample std. dev.

ϑ1 -2 -1.9958 -0.0042 0.0475
ϑ2 -3 -3.0005 0.0005 0.0339
ϑ3 -3 -3.0309 0.0309 0.0401
ϑ4 1 0.9987 0.0013 0.0381
ϑ5 1 0.9895 0.0105 0.0316
ϑ6 -1 -0.9763 -0.0237 0.0431
ϑ7 2 2.0113 -0.0113 0.0342
ϑ8 -1 -1.0075 0.0075 0.0399
ϑ9 -3 -2.9896 -0.0104 0.0348
ϑ10 -3 -2.9892 -0.0108 0.0444
ϑ11 -1 -1.0097 0.0097 0.0461
ϑ12 -1 -1.0242 0.0242 0.0367
ϑ13 2 2.0077 -0.0077 0.0295
ϑ14 1 0.9740 0.0260 0.0353
ϑ15 1 1.0175 -0.0175 0.0284
ϑ16 0 -0.0361 0.0361 0.0513
ϑ17 1 0.9623 0.0377 0.0417
ϑ18 1 0.9877 0.0123 0.0303
ϑ19 -2 -1.9868 -0.0132 0.0306
ϑ20 0 -0.0090 0.0090 0.0362
ϑ21 0.5310 0.5849 -0.0539 0.0478
ϑ22 -0.1934 -0.2037 0.0103 0.0328
ϑ23 0.1678 0.1513 0.0165 0.0396
ϑ24 0.3784 0.4209 -0.0425 0.0259
ϑ25 -0.2227 -0.2209 -0.0018 0.0300
ϑ26 0.5632 0.4814 0.0818 0.0356
ϑ27 1 0.9995 0.0005 0.0033
ϑ28 2 2.0004 -0.0004 0.0091

Table 6.8.: Estimates for the parameters of a three-dimensional MCARMA process
driven by Brownian motion

The results for a sample of 350 replicates of the three-dimensional cointegrated

MCARMA process driven by a Brownian motion are summarized in Table 6.8 and a

realization can be found in Figure 6.8.

In conclusion, we see that in this case we have an excellent performance of the

estimation procedure for both cases as well. We have comparable accuracy of the

estimation results in terms of the bias and standard deviation of the sample. In this

model we had two common stochastic trends. The bias and standard deviation of the

long-run parameters (ϑ27, ϑ28) are also in this framework the lowest. In this respect,
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Figure 6.9.: Bias and Sample Standard Deviation of both Simulation Studies

there are no noteworthy differences in the simulation results between the four cases.

The bias and standard deviation is again visualized in Figure 6.9.
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A. Summary of Assumptions

In this part of the appendix we sum up all the assumptions of each chapter in order

to give an overview.

A.1. Assumptions in Chapter 3

Assumption A1

The Lévy process L satisfies EL(1) = 0 and E‖L(1)‖2 <∞.

Assumption A2

The eigenvalues of A in equation (2.15) and consequently of A ∈ MN(C) in (2.2),

have strictly negative real parts, where N = pm.

Assumption A3

The eigenvalues λ1, . . . , λN of A in equation (2.15) and consequently of A ∈MN(C)

in (2.2), are distinct, where the dimensions satisfies N = pm.

A.2. Assumptions in Chapter 4

Assumption C1

The Lévy process L satisfies EL(1) = 0d and E‖L(1)‖2 <∞.

Assumption C2

The linear system given in (4.36) is controllable, i.e.

CeAhK(h) :=
(
K(h) eAhK(h) . . .

(
eAh
)N−1

K(h)
)
∈MN,pN(R) (4.39)
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has rank N .

Assumption K1

The initial state X0 is independent of Z and W , i.e. E(X0Z
T
n ) = 0 and E(X0W

T
n ) = 0

for all n.

Assumption K2

Let R ≡ 0d×d and ΓQΓT ∈ S++
N (R) , i.e. ΓQΓT is positive-definite.

Assumption K3

Let H be of full rank and Ω0 be positive definite.

A.3. Assumptions in Chapter 5

Assumption M1

Assume that the cointegrated MCARMA process is driven by a Lévy process Lϑ

with mean zero and non-singular covariance matrix ΣL
ϑ = ELϑ(1)Lϑ(1)T. Assume

further that there exists a δ > 0 such that E‖Lϑ(1)‖4+δ <∞ .

Assumption M2

Assume that the matrix Aϑ has c eigenvalues equal to zero and the remaining

eigenvalues have strictly negative real parts for all ϑ ∈ Θ. Moreover, the matrix Cϑ

has full rank for all ϑ ∈ Θ.

Assumption M3

The triplet (Aϑ, Bϑ, Cϑ) is minimal for all ϑ ∈ Θ with McMillan degree N .

Assumption M4

The matrices B1,ϑ and C1,ϑ have full rank c for all ϑ ∈ Θ.

Assumption M5

The parameter space Θ is a compact subset of Rs.

Assumption M6

The mappings ϑ 7→ A2,ϑ, ϑ 7→ Bi,ϑ, ϑ 7→ Ci,ϑ for i ∈ {1, 2} and ϑ 7→ ΣL
ϑ are

continuous.

Assumption M7

We assume that the true parameter vector ϑ0 lies in the interior of the parameter

space Θ.

Assumption M8

Let the functions ϑ 7→ A2,ϑ, ϑ 7→ Bi,ϑ, ϑ 7→ Ci,ϑ for i ∈ {1, 2} and ϑ 7→ ΣL
ϑ be twice



Summary of Assumptions 211

continuously differentiable.

Assumption M9

The matrices C1,ϑ1 and C⊥1,ϑ1 = β(ϑ1) are positive lower triangular matrices for all

ϑ1 ∈ Θ1 as in Theorem 4.3.7 satisfying CT
1,ϑ1

C1,ϑ1 = Ic and C⊥T1,ϑ1
C⊥1,ϑ1 = Id−c.

Assumption M10

Assume that the collection of the stationary parts of the output processes, denoted

by

K(Θ2) := (Y2(ϑ2), ϑ2 ∈ Θ2),

corresponding to the linear state space model (A2,ϑ2 , B2,ϑ2 , C2,ϑ2 , Lϑ2) is identifiable

from the spectral density.

Assumption M11

For all ϑ2 ∈ Θ2 the spectrum of A2,ϑ2 is a subset of {z ∈ C : |=z| ≤ π
h
}.

Assumption M12

Assume that the (d2 × s1)- dimensional gradient matrix ∇ϑ1

(
Π(ϑ0

1, ϑ2)T
)

has full

column rank s1 for all ϑ2 ∈ Θ2.

Assumption M13

Assume that there exists a positive index j0 such that the [(j0 + 2)d2 × s2] matrix

∇ϑ2ψϑ0,j0 has rank s2.
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B. Collection of Matrix Formulas

In this part of the appendix we sum up several basic formulas, facts and calculation

rules in the field of matrix theory. This section ought to give an overview of formulas

which are used several times throughout this thesis.

B.1. Facts on the Trace Operator and Frobenius Norm

For a reference on the properties of trace and Frobenius norm we refer to Bernstein

[9]. Let a, b ∈ R, A ∈ Mm,n(R), B ∈ Mn,m(R) and C ∈ Mm,k. Then the following

formulas hold:

(i) tr(AB) = tr(BA) ((2.2.25), [9]);

(ii) tr(aA+ bB) = a tr(A) + b tr(B) ((2.2.29), [9]);

(iii) Let A and B be symmetric then we have tr(AB) ≤ | tr(AB)| ≤ 1
2

tr(A2 +B2)

(Fact 8.12.8, [9]);

(iv) ‖A‖F = ‖vecA‖F ((9.2.6), [9]);

(v) ‖AB‖F ≤

{
σmax(A)‖B‖F
σmax(B)‖A‖F

}
≤ ‖A‖F‖B‖F (Corollary 9.3.7, [9]);

(vi) If m ≤ n then σmin(A)‖C‖F ≤ ‖AC‖F and if m ≤ k then σmin(C)‖A‖F ≤
‖AC‖F (Corollary 9.6.7, [9]);

(vii) σmax(A) ≤ ‖A‖F (Fact 9.8.12, [9]);

(viii) ‖A⊗B‖F = ‖A‖F‖B‖F (Fact 9.14.37, [9]);

(ix) σmax = σ1 ≥ · · · ≥ σmin(A) = σmin{n,m} > 0 ((5.6.4), [9]).

B.2. Facts on Partitioned Matrices

For a reference on the properties of partitioned matrices we refer to Bernstein [9].

Proposition B.1 (Proposition 2.8.3., Bernstein [9])

Let A ∈Mn,n(R), B ∈Mn,m(R), C ∈Ml,n, D ∈Ml,m and A is invertible. Then we

have

rank

(
A B

C D

)
= n+ rank(D − CA−1B) (B.1)
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and

det

(
A B

C D

)
= det(A) det(D − CA−1B). (B.2)

Proposition B.2 (Proposition 2.8.7., Bernstein [9])

Let A ∈Mn,n(R), B ∈Mn,m(R), C ∈Mm,n, D ∈Mm,m. If A and M := D−CA−1B

are invertible then(
A B

C D

)−1

=

(
A−1 + A−1BM−1CA−1 −A−1BM−1

−M−1CA−1 M−1

)
. (B.3)

Proposition B.3 (Corollary 2.8.8., Bernstein [9])

Let A ∈Mn,n(R), B ∈Mn,m(R), C ∈Mm,n, D ∈Mm,m. If A, D − CA−1B and D

are invertible then

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1. (B.4)

B.3. Vec Operator and Kronecker Product

For a reference on the properties of the vec operator and the Kronecker product see

for example Chapter 7.1 in Bernstein [9] or Lütkepohl [62], Appendix A.11 and A.12.

Rules for the Kronecker product and Vectorization operator:

Let the matrices A,B,C,D have appropriate dimensions.

(i) A⊗ (B + C) = A⊗B + A⊗ C;

(ii) (A⊗B)(C ⊗D) = AC ⊗BD;

(iii) (A⊗B)T = AT ⊗BT;

(iv) If A and B are invertible then (A⊗B)−1 = A−1 ⊗B−1;

(v) If A and B are square matrices then tr(A⊗B) = tr(A) tr(B);

(vi) vec(A+B) = vec(A) + vec(B);

(vii) vec(ABC) = (CT ⊗ A)vec(B) = (I ⊗ AB)vec(C) = (CTBT ⊗ I)vec(A);

(viii) vec(A+B) = vec(A) + vec(B);

(ix) vec(BT)Tvec(A) = tr(AB) = tr(BA) = vec(AT)Tvec(B).
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B.4. Matrix Differential Calculus

For differentiation rules and helpful formulas of matrix differential calculus see e.g.

the books by Horn and Johnson [49], Section 6.5 and 6.6, Magnus and Neudecker

[65] or Abadir and Magnus [1].

Proposition B.4 (Chain Rule (Horn and Johnson, Corollary 6.6.19))

Assume that g : R → Mm,n(R) and h : Mm,n(R) → R are differentiable functions.

Then we have

∂

∂x
h(g(x)) = tr

([
∂

∂MT
h(M)

∣∣∣
M=g(x)

](
∂

∂x
g(x)

))
, (B.5)

where M = [mi,j]i,j ∈Mm,n(R) and x ∈ R. We denote

∂

∂MT
h(M) =

[
∂

∂mi,j

h(M)

]
i,j

∈Mn,m(R) (B.6)

and

∂

∂x
g(x) =

[
∂

∂x
[g(x)]i,j

]
i,j

∈Mn,m(R). (B.7)

Proposition B.5 (Differentiation Rules)

Let M ∈Mm(R) be invertible and A ∈Mn,m(R) and B ∈Mm,k(R). Furthermore, let

v ∈ Rd, C(v) ∈Mm(R) and D(v) ∈Mk,r(R) be differentiable functions, then we have

the following formulas:

(i) ∂
∂MT tr(AMB) = BA;

(ii) ∂
∂MT log | detM | = M−1;

(iii) ∂
∂MT tr(AM−1B) = −M−1BAM−1;

(iv) ∂
∂vT

vec(AC(v)B) = (BT ⊗ A)∂vec(C(v))
∂vT

;

(v) ∂
∂vT

vec(C(v)BD(v)) = (Ir ⊗ C(v)B)∂vec(D(v))
∂vT

+ (D(v)TBT ⊗ Im)∂vec(C(v))
∂vT

.

For proofs see e.g. Lütkepohl [62], Appendix A.13 (6), (7), (13), (15) and (17) or

Horn and Johnson [49], Section 6.5.
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[4] Applebaum, D. (2004) Lévy processes and stochastic calculus . 1. publ., Cambridge

Stud. Adv. Math. 93, Cambridge Univ. Press, Cambridge.

[5] Barndorff-Nielsen, O. E. (1997) Normal inverse Gaussian distributions and

stochastic volatility modelling. Scand. J. Stat. 24 (1), 1–13.

[6] Basawa, I. V. & Scott, D. J. (1983) Asymptotic optimal inference for non-ergodic

models . Lecture Notes in Statist. 17, Springer, New York.

[7] Bauer, D. & Wagner, M. (2002) Asymptotic properties of pseudo maximum

likelihood estimates for multiple frequency I(1) processes. Diskussionsschriften,

Universitaet Bern, Departement Volkswirtschaft.

[8] Bauer, D. & Wagner, M. (2012) A state space canonical form for unit root

processes. Econometric Theory 28 (6), 1313–1349.

[9] Bernstein, D. S. (2009) Matrix mathematics: theory, facts, and formulas. 2nd

ed., Princeton Univ. Press, Princeton.
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[14] Boubacar Mäınassara, Y. & Francq, C. (2011) Estimating structural VARMA

models with uncorrelated but non-independent error terms. J. Multivar. Anal.

102 (3), 496–505.

[15] Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. (1994) Time series analysis:

forecasting and control . 3rd ed., Prentice Hall, Englewood Cliffs.

[16] Bradley, R. C. (2007) Introduction to strong mixing conditions , vol. 1. Kendrick,

Heber City.

[17] Brenner, R. J. & Kroner, K. F. (1995) Arbitrage, cointegration, and testing the

unbiasedness hypothesis in financial markets. J. Financ. Quant. Anal. 30 (01),

23–42.
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continuous-time autoregressive moving average (CARMA) stochastic volatility

models. J. Bus. Econom. Statist 24 (4), 455–469.

[98] Tsay, Y. T. & Shieh, L. S. (1982) Some applications of rational matrices to

problems in systems theory. Internat. J. Systems Sci. 13 (12), 1319–1337.

[99] Yap, S. F. & Reinsel, G. C. (1995) Estimation and testing for unit roots in a

partially nonstationary vector autoregressive moving average model. J. Amer.

Statist. Assoc. 90 (429), 253–267.



Index

Block companion matrix, 30

Block Vandermonde matrix, 48

Confluent Vandermonde matrix, 49

Cointegration

Cointegrated MCARMA process,

57, 70

Cointegrated State Space Model,

70

Cointegration rank, 56, 57

Cointegration vector, 56, 57

Consistency, 133

Continuous Convergence in Probability,

124

Continuous Weak Convergence, 124

Echelon form, 66, 193

Error Correction Form, 58

Gap metric, 119

ICARMA process, 23

Identifiability, 118

h-identifiability, 122

L2-observational equivalence, 122

Integrated CARMA process, 23, 56

Integrated MCARMA process, 24

Integrated process, 23, 56

Integrated sequence, 43

Kalman Filter, 92

Algebraic Riccati Equation, 79, 93,

94, 112

Innovations form, 80

Kalman Filtering Equations, 94

Kalman Gain Matrix, 94, 97

Kalman Gain matrix, 92

Kalman gain matrix, 112

Limiting Kalman Gain Matrix, 103

Linear Innovations, 79

Riccati Difference Equation, 92

Steady-state Kalman Filter, 103

Kronecker index, 193

Kronecker product, 213

Lévy
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List of Abbreviations

A := B A is defined by B

[a, b], (a, b), (a, b], [a, b) closed, open, half-open interval from a to b

N,N0 {1, 2, . . .}, {0, 1, 2, . . .}
Z {. . . ,−2,−1, 0, 1, 2, . . .}
R,R+,R−, R̄ (−∞,∞), [0,∞), (−∞, 0], [−∞,∞]

C complex numbers

<(z),=(z) real and imaginary part of z ∈ C

Sn unit n-sphere in Rn+1

Im m×m identity matrix

0m m×m zero matrix

ei i-th unit vector

λmin(A) smallest eigenvalue of the matrix A

λmax(A) largest eigenvalue of the matrix A

σmin(A) smallest singular value of the matrix A

σmax(A) largest singular value of the matrix A

Mm,n(R) space of all m× n real-valued matrices

Mm,n(C) space of all m× n complex-valued matrices

Mm space of all m×m matrices

SN set of N -dimensional symmetric matrices

S+
N set of N -dimensional symmetric positive-semidefinite matrices

S++
N set of N -dimensional symmetric positive-definite matrices

GLm(·) invertible m×m matrices



226 List of Abbreviations

A ≥ 0 A positive-semidefinite

A > 0 A positive-definite

A ≥ B A−B positive-semidefinite

A > B A−B positive-definite

A−1 inverse of the matrix A

AT transposed of the matrix A

A∗ complex conjugate of the matrix A

adj(A) adjugate of the matrix A

det(A) determinant of the matrix A

tr(A) trace of the matrix A

σ(A) spectrum of the matrix A

A ⊂ B A is contained in B or A = B

kerA kernel of A

im A image of A

A⊥ If A is a n× p matrix with rank q then A⊥ is n× (n− q) with

rank n− q, lies in the null space of A and A⊥TA = 0(n−q)×q

and ATA⊥ = 0q×(n−q)

PA projection matrix onto the subspace spanned by the columns

of the matrix A

Diag(i1, . . . , im) diagonal matrix with entries i1, . . . , i,

M/N is the set of all members of M which are not members of N

vec(A) is an operator which converts the matrix A into a column

vector

vech(A) is an operator which converts the symmetric matrix A into a

column vector by vectorizing only the lower triangular part

of A

A⊗B is the Kronecker product of A and B

a ∨ b, a ∧ b maximum, minimum of a and b

a+ a+ := 0 ∨ a
a− a− := 0 ∧ a
log, exp natural logarithm, exponential function

log+(a) log+(a) := log(a ∨ 1)
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bxc is the largest integer less than or equal to x

dxe is the largest integer greater than or equal to x

δi,j δi,j = 1 for i = j and 0 else

1A indicator function of the set A

∅ empty set

〈x,w〉 inner product x,w ∈ Rm

‖x‖ Euclidean norm of x ∈ Rm

‖A‖ Frobenius norm of A ∈Mm, i.e. ‖A‖ = ‖A‖F =
√

trATA

〈A,B〉 Frobenius inner product, i.e. 〈A,B〉 = tr(ATB)

∠(u, v) angle between the vectors u and v

B(R) Borel-σ-algebra over R

Lp Lebesgue spaces

P,E,Var,Cov probability measure, expected value, variance and covariance

X
d
= Y the distribution of X coincides with the distribution of Y

p−−→ convergence in probability

a.s.−−→ almost sure convergence

w−−→ weak convergence

L2

−−→ convergence in L2

w−−→
c

continuous weak convergence

p−−→
c

continuous convergence in probability

N (0, 1) standard normal distribution

N (µ,Σ) normal distribution with mean µ and variance Σ

B = {B(t)}t≥0 Brownian motion

D Differential operator

L = {L(t)}t≥0 Lévyprocess

ARMA Autoregressive Moving Average Process

VARMA Vector Autoregressive Moving Average Process

MA Moving Average Process

VAR Vector Autoregressive Process

ARIMA Integrated Autoregressive Moving Average Process
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CARMA Continuous-Time Autoregressive Moving Average Process

ICARMA Integrated Continuous-Time Autoregressive Moving Average

Process

MCARMA Multivariate Continuous-Time Autoregressive Moving Aver-

age Process

MICARMA Multivariate Integrated Continuous-Time Autoregressive Mov-

ing Average Process

DARE Discrete Algebraic Riccati Equation

QMLE Quasi-Maximum Likelihood Filter

SE Stochastic Equicontinuity Condition

TFECM Transfer Function Error Correction Model
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