
Provable and Practical Security for
Database Outsourcing

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Matthias Christoph Huber

aus Achern

Tag der mündlichen Prüfung: 22.07.2016

Erster Gutachter: Prof. Dr. Jörn Müller-Quade

Zweiter Gutachter: Prof. Dr. Ralf Reussner

iii

Acknowledgement
I am fortunate to have had the support of outstanding people in accomplishing this work.

First an foremost, I would like to thank my advisor Jörn Müller-Quade for his sup-
port, his guidance, his optimism, and his kindness. I am very grateful for the inspiring
discussions we had over the years. Moreover, I would like to thank Ralf Reussner, the
co-referee of my thesis, for his valuable counsel. Furthermore, I want to thank all the
other professors who took interest in this work for their valuable feedback: Bernhard
Beckert, Klemens Böhm, Hannes Hartenstein and Achim Streit.

I was glad to work with many wonderful colleges, co-authors, and students who made
my time at work memorable. In particular, I want to thank my colleges and roommates
Erik Burger, Dirk Achenbach, Jochen Rill, and Patrik Scheidecker for their support and
the many happy memories over the years. Moreover, I very much enjoyed working with
my long time friend Nico Döttling. I also want to thank Matthias Gabel, Gunnar Hartung,
Christian Henrich and Tobias Nilges for the inspiring discussions.

I also want to thank my friends and everyone I did not mention explicitly and who
contributed, directly or indirectly, to this work.

Finally and most importantly, I am deeply grateful for my family and my girlfriend for
their love and their support during hard times. Mama, Papa, Julia, Benjamin, and Maria
thank you.

v

Abstract
Provable security is one of the greatest achievements of modern cryptography. When
proving the security of a cryptographic scheme, its security properties are reduced to
problems known or assumed to be hard to solve. Therefore, breaking the security of
such a scheme in its security model involves solving the corresponding problem which is
deemed infeasible for su�ciently large instances.

Provable security has many bene�ts. For example, it allows to design schemes that
provide security against attacks that have not yet been conceived. Furthermore, formal
security guarantees allow to compare the security of schemes without comparing the
schemes itself which can be a tedious task.

A central focus of cryptographic research is to conceive more and more stronger
security notions and to �nd schemes that ful�l such notions. For example, the gold
standard for encryption schemes is the notion of semantic security, where an adversary is
not allowed to learn even one bit about the plaintext. For many complex applications
such as database outsourcing classical, strong security requirements imply methods with
large overheads. On the other hand, there are more practical data outsourcing schemes
that intuitively provide some security but do not have any proven security properties at
all.

Relaxing the classical security requirements potentially allows for more e�cient
schemes while maintaining provable security properties. This implies a trade-o�: The
resulting security notion should be meaningful in the context of the application while at
the same time it should allow for e�cient schemes. A �eld where such weak security
notions play an essential role is database privacy. While the intention of security notions
for encryption schemes is to hide all information of the plain text from the adversary,
so-called privacy notions describe a trade-o� between the con�dentiality of the original
database and the usefulness of the disclosed database.

Database privacy is closely related to data outsourcing. E�cient data outsourcing
schemes imply leakage of information about the data to the server. Therefore, a security
notion for e�cient data outsourcing schemes also describes a trade-o�, here, between
the con�dentiality of data and queries and the e�ciency of schemes ful�lling this notion.

The goal of this thesis is to bridge the gap between practical methods for data out-
sourcing and the �eld of cryptographic research that is concerned with formal security
notions.

Starting in the �eld of data privacy, we provide a framework for de�ning and reasoning
about privacy notions. In contrast to existing notions and frameworks, our framework
allows for an intuitive de�nition of privacy notions by allowing to de�ne sensitive
predicates and explicitly limiting what an adversary is allowed to learn about them
from a release. Furthermore, we provide meta notions for di�erent privacy goals of data
outsourcing and establish their relations.

As a main contribution of this thesis, we provide a meaningful security notion for
database outsourcing and a practical scheme ful�lling this notion as well as implemen-
tations that demonstrate the viability. Therefore, we capture database outsourcing in a
formal model and de�ne our scheme with the means of this model. We prove the security
of our scheme by a reduction to the security of an internally used encryption scheme.
Additionally, we examine the design space for this scheme by discussing extensions and
optimisations of this scheme for performance as well as for security.

vi

Zusammenfassung

Die Beweisbarkeit der Sicherheit ist einer der größten Erfolge der modernen Kryptogra-
phie. Um die Sicherheit eines Verfahrens zu beweisen, werden seine Sicherheitseigen-
schaften auf ein Problem reduziert, von dem man weiß oder annimmt, dass es schwer
zu lösen ist. Daraus folgt, dass die Sicherheit eines solchen Verfahrens innerhalb des
Modells zu brechen das Lösen des zugehörigen Problems involviert. Für hinreichend
große Instanzen des Problems wird dies als nicht machbar angesehen.

Beweisbaren Sicherheit hat viele Vorteile. Beispielsweise erlaubt sie die Konstruktion
von Verfahren, die auch gegen unbekannte Angri�e sicher sind. Darüber hinaus erlauben
formale Sicherheitsbegri�e den Vergleich der Sicherheit von Verfahren ohne die Verfahren
selbst zu betrachten, was sehr aufwändig werden kann.

Ein Schwerpunkt der Forschung in der Kryptographie ist es immer stärkere Sicherheits-
begri�e und Verfahren zu �nden, die diese erfüllen. Beispielsweise darf ein Angreifer bei
der semantischen Sicherheit, dem Goldstandard der Sicherheitsbegri�e für Verschlüsselung,
nicht ein Bit an Information über den Klartext lernen. Für viele komplexe Anwendungen,
wie beispielsweise das Auslagern von Datenbanken, implizieren solche starken Sicher-
heitsanforderungen Verfahren mit hohen Kosten. Andererseits gibt es praktikablere
Verfahren für das Auslagern von Datenbanken, welche intuitiv ein gewisses Sicherheit-
sniveau bieten, jedoch keine bewiesene Sicherheitseigenschaften haben.

Eine Lockerung der klassichen, staken Sicherheitsanforderungen könnte e�zientere
Verfahren zulassen, ohne jedoch beweisbare Sicherheitseigenschaften zu verlieren. Dies
impliziert ein Kompromiss: Die resultierende formale Sicherheitseigenschaft muss für die
Anwendung sinnvoll sein und gleichzeitig e�ziente Verfahren zulassen. Bei der Privatheit
von Datenbanken spielen solche schwachen Sicherheitsbegri�e eine essentielle Rolle.
Während Sicherheitsbegri�e für Verschlüsselung darauf abzielen, jegliche Information
vor dem Angreifer zu verstecken, beschreiben sogenannte Privatheitseigenschaften einen
Kompromiss zwischen der Vertraulichkeit der Originaldatenbank und der Nützlichkeit
der verö�entlichten Informationen.

Die Privatheit von Datenbanken ist eng verwandt mit dem Auslagern von Daten-
banken. E�ziente Verfahren für das Auslagern von Datenbanken implizieren einen
Ab�uss von Informationen über die Originaldatenbank zum Server. Folglich beschreibt
ein Sicherheitsbegri� für das Auslagern von Datenbanken einen Kompromiss zwischen
der Vertraulichkeit der Originaldatenbank und der E�zienz der Verfahren, die diesen
Begri� erfüllen.

Das Ziel dieser Dissertation ist zwischen praktikablen Verfahren für das Auslagern
von Datenbanken und formalen Sicherheitsbegri�en aus der Kryptographie eine Brücke
zu schlagen.

Ausgangspunkt ist hierbei die Privatheit von Datenbanken. Wir de�nieren ein Rah-
menwerk, welches es erlaubt formale Privatheitsbegri�e zu de�nieren und zu analysieren.
Im Gegensatz zu existierenden Begri�en und Rahmenwerken erlauben wir eine intuitive
De�nition von Privatheitsbegri�en aufgrund der De�nition sensibler Aussagen und einer
expliziten Begrenzung, was ein Angreifer aufgrund einer Verö�entlichung über diese
Aussagen lernen darf. Darüber hinaus de�nieren wir abstrakte Begri�e für die unter-
schiedlichen Privatheitsziele beim Auslagern von Daten und zeigen, wie sie zusammen
hängen.

Hauptbestandteile dieser Dissertation sind ein Sicherheitsbegri�, der für das Auslagern

vii

von Datenbanken sinvoll ist, ein praktikables Verfahren, das diesen Begri� erfüllt, sowie
Implementierungen anhand derer wir die Realisierbarkeit des Verfahrens zeigen. Dazu
formulieren wir das Auslagern von Datenbanken in einem Modell und de�nieren das
Verfahren darin. Wir beweisen die Sicherheit des Verfahrens durch eine Reduktion auf
die Sicherheit eines intern genutzen Verschlüsselungsverfahrens. Zusätzlich zeigen wir
durch eine Diskussion von Erweiterungen und Optimierungen für die Sicherheit als auch
für die E�zienz des Verfahrens weitere Varianten für unser Verfahren auf.

Contents

1. Preamble 1
1. Introduction . 1
2. Contribution and Structure of this Thesis 2

2. Foundations 5
1. Notations . 5

1.1. O Notation and Negligibility . 5
2. Probability Theory and Statistics . 5
3. Data Sets and Databases . 6
4. Cryptographic Mechanisms and Notions 7

4.1. Game-Based Security Notions . 8
4.2. Ind-CPA Security . 8

3. An Introduction to Privacy 11
1. What is Privacy? . 11
2. Anonymisation and Privacy Notions . 12

2.1. Database Anonymisation . 12
2.1.1. Privacy Preserving Database Disclosure 13
2.1.2. Secure Database Outsourcing 13

2.2. Privacy Notions . 14
2.2.1. Structural Privacy Notions 15
2.2.2. Cryptographic Privacy Notions and Frameworks 17

3. Attacks on Structural Privacy Notions . 19
3.1. Attacks on Structural Notions in Literature 19
3.2. Subliminal Channel in k-anonymity 20
3.3. Subliminal Channel in l-diversity 21

4. The Bayes Privacy Framework 23
1. Introduction . 23
2. Formalisations . 24
3. The Bayes Privacy Framework and other Privacy Frameworks 30

3.1. Bayes Privacy and the Privacy Axoims of Kifer and Lin 31
3.2. Bayes Privacy and Pu�er�sh . 35

4. Composition and Decomposition of Bayes Privacy Notions 37
5. Examples . 42

5.1. Di�erential Privacy . 42
5.2. Averages . 46

6. Privacy with Respect to Bounded Adversaries 48
6.1. Computational Bayes Privacy . 49
6.2. Ind-ICP as a Computational Bayes Privacy Notion 51

ix

x Contents

5. Privacy for Data Outsourcing 55
1. Introduction . 55
2. Security Notions for Data Outsourcing in Literature 56

2.1. Security Notions for Data Privacy 57
2.2. Security Notions for Query Privacy 58
2.3. Security Notions for Data Privacy as well as Query Privacy . . . 58
2.4. Modelling Information Leakage 59

3. Formalisations . 59
3.1. Basic Privacy Notions for Outsourced Data Sets 62

3.1.1. Static Security . 62
3.1.2. Privacy in the Presence of Queries 63

4. Fundamental Relations Among the Basic Privacy Notions 65
5. Query Privacy and Private Information Retrieval 73
6. Generalised Security Notions for Data Outsourcing Schemes 74

6. Security Notions for Database Outsourcing 79
1. Introduction . 79
2. Indistinguishability under Independent Column Permutation 80

2.1. Formalisations . 80
2.2. Ind-ICP as an Instance of Ind-CDA 82
2.3. Ind-ICP as a Meaningful Security Notion 82

3. l-Indistinguishability under Independent Column Permutation 83

7. Mechanisms for Database Outsourcing 87
1. Introduction . 87
2. Preliminaries . 88

2.1. Database Outsourcing Schemes in Literature 88
2.2. E�cient Query Execution . 90
2.3. Queries in this Work . 91

3. Di�erential Privacy and Database Outsourcing 92
4. An Ind-ICP Secure Database Outsourcing Scheme 94

4.1. Formalisation of the MimoSecco Database Outsourcing Scheme . 94
4.2. The MimoSecco Database Outsourcing Scheme has Ind-ICP Security 106

5. A Database Outsourcing Scheme with l-Ind-ICP Security in the Presence
of Queries . 108

6. Implementations and Benchmarks . 113
6.1. The MimoSecco Implementation 114

6.1.1. Scheme and Implementation Details 114
6.1.2. Benchmarks . 116

6.2. The Cumulus4j Implementation 119
6.2.1. Scheme and Implementation Details 119
6.2.2. Benchmarks . 120

7. Optimisations of Index Structures . 122
7.1. Compression of Index Lists . 123

7.1.1. Intervals . 124
7.1.2. Exclusive Labels . 124
7.1.3. Normalisation . 124

7.2. Sorted Index Lists - Binary Search 126

Contents xi

7.3. Keyed Hash Index . 127
7.4. Storing Index Lists as B-Trees . 128
7.5. Storing Index Lists in Buckets . 130
7.6. Comparison and Benchmarks . 131

7.6.1. Encryption Overhead and Space Requirements 131
7.6.2. Benchmarks . 133

8. Side Channels in Secure Database Outsourcing 135
8.1. Exclusion of Possible Database Contents 136
8.2. Usage of the Database . 137
8.3. Order of Values on Physical Storage 139
8.4. Active Adversaries . 140

8.4.1. Manipulation of Results 140
8.4.2. Attacks on Availability 141

8. Conclusion and Outlook 143

Author’s Publications 145

Students’ Theses 147

References 149

Acronyms 161

Appendix 163
A. Benchmarks . 163

A.1. MimoSecco: AS/sup 3/AP Benchmark 163
A.1.1. Data Sets and Queries 163
A.1.2. Results . 165

A.2. Cumulus4j: PolePosition . 167
A.2.1. Data Sets and Queries 167
A.2.2. Results . 168

A.3. MimoSecco: Scaling Benchmark 169
A.3.1. Data Sets and Queries 169
A.3.2. Results . 170

1. Preamble

1. Introduction
One of the greatest achievements of modern cryptography is the provable security
methodology. In order to prove the security of cryptographic schemes their security
properties are precisely formulated in a mathematical model. These formalisations are
called security notions. Depending on the scheme, one can prove information theoretic
security or reduce the security properties to a computational hardness assumption. Since
information theoretic security harder to achieve, the latter case, which is also known
as computational security, is more common. A computational hardness assumption
is an assumption about the computational complexity of a problem. Noted hardness
assumptions are for example integer factorisation, the discrete logarithm problem, and
the shortest vector problem. Reducing the security of a cryptographic scheme to such
an assumption implies that successful attacks involve the solution of the corresponding
problem.

The bene�ts of the provable security methodology are widespread. The reduction to a
hardness assumption provides that the security properties hold against any adversary
for which this assumption holds: in general adversaries with a computational power
that is polynomially restricted in the size of the problem. This also a�ects unknown
adversaries and, therefore, even attacks that have not yet been conceived, as long as they
are conducted in the formal model. Therefore, a formal security proof excludes huge
classes of attacks. Furthermore, security notions allow to compare di�erent cryptographic
schemes on an abstract level. They allow the discussion and examination of the security
properties of a scheme without the need to consider the scheme itself. This abstraction
eases the de�nition of more complex provably secure, cryptographic schemes that use
simpler ones as building blocks [Can01]. Classical examples for cryptographic schemes
with provable security and formal security notions are encryption schemes, signature
schemes, and secure multiparty computations. Because of the bene�ts of provable security,
it is desirable to apply this approach to more and more complex applications.

A central focus of cryptographic research is to conceive more and more stronger
security notions and to �nd schemes that ful�l such notions. For example, the gold
standard for encryption is the notion of semantic security [GM82], where an adversary is
not allowed to learn even one bit of information about the plaintext. For many complex
applications, such strong security requirements imply methods with large overheads.
Fully homomorphic encryption schemes [Gen09] or secure multi party computation
schemes [GMW87], for example, allow to realise certain data and computation outsourcing
schemes with strong security properties. Such schemes, however, imply a huge overhead
that, in most cases, cancels the bene�ts of outsourcing. On the other hand, there are more
practical data outsourcing schemes with the goal to provide some security but without
any proven security properties at all.

This implies the question, if there is something in between. Can schemes for complex

1

2 1. Preamble

applications be found that are more practical that classical cryptographic schemes, but at
the same time maintain meaningful provable security properties? There are, for example,
no e�cient single server private information retrieval (PIR) schemes [SC07]. Deliberately
allowing for some information to leak to the adversary, results in a relaxed security
notion. This information may be useful in order to design more e�cient schemes. This
implies a trade-o�: The resulting security notion should be meaningful in the context of
the application while at the same time it should allow for e�cient schemes.

A �eld where weak security notions play an essential role is database privacy. Database
privacy deals with the problem of disclosing a database for subsequent analysis in a
privacy preserving way. Therefore, the database is transformed prior to publication.
While the intention of security notions for encryption schemes is to hide all information
of the plaintext from the adversary, privacy notions describe a trade-o� between the
con�dentiality of the original database and the usefulness of the disclosed database.
Because of trends such as Cloud Computing, Machine Learning and Big Data, recently,
database privacy has received much attention. The current gold standard for data privacy
is the privacy notion Di�erential Privacy [Dwo08a]. If a mechanism ful�ls di�erential
privacy, its output is only marginally a�ected by whether an individual is represented
in the original database or not. Privacy notions can seen as weak security notions that
either implicitly or explicitly model the information that leaks to the adversary.

Therefore, privacy notions are a subject worthwhile to be researched, not only in the
context of database privacy. The approach to explicitly model information that leaks to
the adversary, and, in a second step, exploit this information in order to build e�cient
schemes is promising. Secure database outsourcing deals with the problem encrypting
a database and storing it on a server in a way that it still can be queried e�ciently.
This �eld of research is closely related to database privacy, private information retrieval,
and searchable encryption and, therefore, bene�ts from researching privacy notions in
its context. Encrypting the database as a whole with a, for example, Ind-CCA secure
encryption scheme results in strong security guarantees. Most queries, however, can now
only be executed by downloading end decrypting the whole database. Consequently, more
e�cient solution must involve partial execution of the query on the server. This, however,
implies leakage of information to the server. Privacy notions seem like an appropriate tool
to express this leakage and to formalise the security properties of database outsourcing
schemes.

As mentioned above, there are practical database outsourcing schemes that intuitively
provide some privacy but do not have any formal security notion. For database outsourc-
ing, this arises the research question if there are secure database outsourcing schemes
that support e�cient execution of queries yet have meaningful and provable security
properties.

2. Contribution and Structure of this Thesis
The goal of this thesis is to bridge the gap between practical methods for data outsourcing
and the �eld of cryptographic research that is concerned with formal security notions. In
this work, we show that there are methods for database outsourcing that are practical
yet have provable and meaningful security properties. These properties de�ne a trade-o�
between security and practicability with, in contrast to classical cryptographic methods,
weaker, application speci�c security. Starting point are notions from the �eld of data

2. Contribution and Structure of this Thesis 3

privacy. Then, we de�ne privacy goals of data outsourcing and a security notion for
database outsourcing as well as a scheme ful�lling this notion. The contributions of this
work are:

• A framework for the de�nition and analysis of statistical and computational privacy
notions. Furthermore, results concerning the composability of privacy notions.

• Meta notions that address di�erent privacy goals of data outsourcing as well as
results about their relations. These notions allow for formalising the security of
encryption schemes as well as the security of data outsourcing schemes during
usage.

• A security notion for database outsourcing and an e�cient scheme for database
outsourcing that ful�ls this notion.

• Theoretical performance evaluations of this scheme as well as benchmarks of
two implementations that serve as a validation of the applicability of our work.
Furthermore, we provide optimisations for security in the presence of queries as
well as performance optimisations of the data structures.

In the following, we provide a brief summary of the chapters of this thesis.

• In Chapter 2, we provide the technical background for the following chapters. We
present notations and de�nitions used throughout this thesis.

• In Chapter 3, we introduce into data privacy and privacy notions. We present the
concept of database anonymisation and di�erent privacy notions that can be found
in literature. Furthermore, we motivate semantic privacy notions by presenting
and discussing weaknesses of syntactic notions.

• In Chapter 4, we present the Bayes Privacy framework that, similar to the Pu�er�sh
framework presented in [KM12], allows for modelling privacy notions. The Bayes
Privacy framework, while encompassing the Pu�er�sh framework, is a di�erent
approach to privacy notions by explicitly limiting privacy breaches. Furthermore,
we provide results regarding the composability of privacy notions.

• In Chapter 5, we formalise data outsourcing an provide meta notions for di�erent
privacy goals of data outsourcing. We show how these goals are related and
categorise existing notions from literature regarding these goals. Furthermore, we
present generalisations of the meta notions that allow the de�nition of application
speci�c notions that deliberately leak information to the adversary.

• In Chapter 6, we present two static security notions and a notion that provides
data privacy if the adversary observes the execution of queries. We show that
these notions are instances of the meta notions from Chapter 5. Furthermore, we
discuss how the basic notion de�ned in this chapter is meaningful for database
outsourcing.

• In Chapter 7, we provide schemes that ful�l the notions from Chapter 6. We present
two implementations of our scheme and provide benchmarks. Furthermore, we
discuss optimisations and provide benchmarks for selected optimisations.

2. Foundations

In addition to the foundations in this chapter, there are chapter speci�c preliminaries in
each chapter.

1. Notations

We denote the assignment of a value a to a variable v with the notation v ← b. In order
to assign a uniformly distributed random element of a set B to a variable v , we use the
notation v ← S . For conditional statements we use the clause If in a standard way. We
denote the concatenation of two strings a and b by a|b, the i-th element of a list or a set
c with ci , and the number of elements on that two given sets a and b di�er with a∆b. If
not stated otherwise, the characters i , j , k , l ,m, n are natural numbers.

Throughout this work, we will use the letter k as a security parameter and the letter
K as a cryptographic key. Furthermore, we will us the term id in order to denote the
identity function.

If G (·, ·) is an algorithm or an oracle with two parameters, G (·,K) is the same algorithm
or oracle where the second parameter is hard-wired to K .

1.1. O Notation and Negligibility

De�nition 1 (O). Let f and g be functions N→ R and k ∈ N. We write f (k) ∈ O (g (k))
or f (k) = O (g (k)) if there exists a constant c > 0 and a threshold n0 ∈ N such that

f (n) ≤ c · g (n) for all n > n0.

De�nition 2 (poly). Let f be a function N → R and k ∈ N. We write f (k) ∈ poly(k) or
f (k) = poly(k) if there exists a constant c > 0 such that f (k) ∈ O (kc).

De�nition 3 (Negligibility). Let f be a functions N→ R. We say f is negligible if for every

constant c > 0 if there exists a threshold n0 ∈ N such that f (n) < n−c for all n > n0.

2. Probability Theory and Statistics

De�nition 4 (Conditional Probability). Let A and B be events. The conditional probability
Pr[A|B] of A given B is de�ned as:

Pr[A|B] :=
Pr[A ∩ B]
Pr[B]

5

6 2. Foundations

Lemma 1 (Bayes’ Theorem and the Law of Total Probability). Let A and B be events.

Then the following holds:

Pr[A|B] =
Pr[B |A] Pr[A]

Pr[B]
(Bayes’ Theorem) (2.1)

Pr[A] =
∑
j

Pr[A,Bj] Pr[Bj] (law of total probability) (2.2)

Pr[A] = Pr[A,B] Pr[B] + Pr[A,¬B] Pr[¬B] (law of total probability for binary events)

(2.3)

This lemma can be proven directly with De�nition 4.

3. Data Sets and Databases
De�nition 5 (Data Set). A data set d ∈ D is an element of a domain D .

We de�ne a database, a special case of a data set, as a multiset of tuples:

De�nition 6 (Database). A database d = {d1, d2, ... , dn} is a �nite multiset of tuples from

the same set A1 × A2×, ... ,Am. We call the number of tuples of d the size of d and denote it

with |d | We call the set {A1,A2, ... ,Am} the attributes of d .
Let i ∈ {1, ... , n} and j ∈ {1, ...m}. For an arbitrary but �xed order of d , we call the tuple

di ∈ d row i of d and denote it with d (i , ·). We call the j-th element of row i of d the value

of attribute Aj in row i of d and denote it with d (i , j). We call the multiset of all values of

attribute Aj of d column j of d and denote it with d (·, j).
We call the set of all databases DB.

Throughout this work, we use the terms tuple and row interchangeably. Please note
that, since we de�ned a database as a multiset, there is no speci�c order of its elements.
Since a �nite set of tables always can be normalised to a single table, we do not distinguish
between a table and a database.

De�nition 7 (Selection). A selection σAθv (d) or σAθB (d) is a unary operation where

• d is a database

• A and B are attributes of d

• v is a value of the domain of A

• θ is a binary operation from the set {≤, ≤,=, ≥, ≥,,}

and the result of the selection σAθv (d) are the tuples of d where Aθv holds and the result

of σAθB (d) are the tuples of d where AθB holds. We call Aθv or AθB the condition of the

selection and the attribute A the attribute of the selection.

De�nition 8 (Generalised Selection). A generalised selection is a unary operation σc (d)
where c is a propositional formula of conditions and the logical operators ∨, ∧, and ¬. The

result of σc (d) are the tuples of d for which c holds. We call c the conditions of the selection.

4. Cryptographic Mechanisms and Notions 7

A selection is a special case of a general selection. In this work, we use the term
selection for both.

De�nition 9 (Projection). Let d be a database of size n with attributes {A1,A2, ... ,Am}

and l ≤ m. A projection is a unary operation ΠAΠ1 ,...AΠl
(d) with:

ΠAΠ1 ,...AΠl
(d) := (d (i , j) | ∀j ∈ {Π1, ...Πl) | ∀i ∈ {1, ... n}

The result of a selection is a subset of the columns of the original database.

4. Cryptographic Mechanisms and Notions
De�nition 10 (probabilistic polynomial time (PPT)). An algorithm or Touring machine is

a probabilistic polynomial time (PPT) algorithm or Touring machine if it is in poly(k) for
a security parameter k .

De�nition 11 (Symmetric Encryption Scheme). A symmetric encryption scheme is a tuple

(Gen, Enc,Dec) of three PPTs such that:

• Gen : 1k → {0, 1}n

• Enc : {0, 1}∗ × {0, 1}n → {0, 1}∗

• Dec : {0, 1}∗ × {0, 1}n → {0, 1}∗

• ∀x ∈ {0, 1}∗,K ∈ {0, 1}n : Dec(Enc(x ,K),K) = x

We call Gen the key-generation mechanism, Enc the encryption mechanism, Dec the de-
cryption mechanism, K the encryption key, k the security parameter, the output of Enc as
well as the �rst input of Dec the ciphertext, and the output of Dec as well as the �rst input
of Enc the plaintext.

De�nition 12 (Block Cipher). A block cipher is a symmetric encryption scheme

(Gen, Enc,Dec) with:

• Enc : {0, 1}b × {0, 1}n → {0, 1}b

• Dec : {0, 1}b × {0, 1}n → {0, 1}b

We call {0, 1}b a ciphertext or plaintext block, respectively, and b the block length.

De�nition 13 (Cipher Block Chaining (CBC)). Let P be a vector of plaintext blocks with

block length b. The Cipher Block Chaining (CBC) mode is a mode of operation of a block

cipher (Gen, Enc,Dec) with:

• C0 := IV

• Ci := Enc(Pi ⊕ Ci−1, k)

where IV ∈ {0, 1}b an initialisation vector.

This de�nition implies, that P0 = IV and Pi = Dec(Ci ,K) ⊕ Ci−1.

8 2. Foundations

4.1. Game-Based Security Notions
Game-based security notions are a standard way of de�ning security for cryptographic
schemes. They are modelled as an interactive protocol between an experiment and an
adversary A, where the adversary is presented with a challenge [Nao03; Pas11]. We call
this protocol the security game. In this protocol, the experiment as well as the adversary
receive the length 1k of the security parameter k . In the following rounds of interaction,
the adversary may receive additional information, access to oracles and a challenge. In the
end, the experiment computes an output bit. We say, the adversary wins the experiment
if the bit is 1 and looses the experiment if the output bis is 0. We consider a scheme as
secure, if the success probability of any PPT adversary is at most negligibly better than
the success probability of guessing the result. A well-known game-based security notion
for encryption schemes is Ind-CPA, which is de�ned in the following.

4.2. IND-CPA Security
De�nition 14.

Security Game 1 (Ind-CPAA
(Gen,Enc) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. The adversary A is given input 1k and oracle access to Enc(·,K).

3. A outputs two plaintexts m0 and m1 with the same length.

4. The experiment chooses a random bit b ← {0, 1}.

5. A is given Enc(mb,K).

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

De�nition 15 (Indistinguishability under Chosen Plaintext Attacks). An encryption

scheme (Gen, Enc) has Indistinguishability under Chosen Plaintext Attacks Ind-CPA if

for all PPT adversaries A, there exists a negligible function negl such that:

Pr[Ind-CPAA(Gen,Enc) (k) = 1] ≤
1
2
+ negl (k)

Informally, this means that a scheme provides Ind-CPA it the adversary has only neg-
ligible advantage over guessing in the security game Ind-CPAA

(Gen,Enc) (k). An extension
of the Ind-CPA-experiment is the Ind-mult-CPA-experiment, where the adversary may
choose two vectors of plaintext.

De�nition 16.

Security Game 2 (Ind-mult-CPAA
(Gen,Enc) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. The adversary A is given input 1k and oracle access to Enc(·,K).

4. Cryptographic Mechanisms and Notions 9

3. A outputs two vectors of plaintexts M0 = (m0
0, ... ,m0

n) and M1 = (m1
0, ... ,m1

n) where
m0

i
and m1

i have the same length for i = 0..n.

4. The experiment chooses a random bit b ← {0, 1}.

5. A is given Enc(Mb,K) = (Enc(mb
0 ,K), ... , Enc(mb

n ,K)).

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

De�nition 17 (Indistinguishability under Multiple Chosen Plaintext Attacks). An encryp-
tion scheme (Gen, Enc) has Indistinguishability under Multiple Chosen Plaintext Attacks
Ind-CPA if for all PPT adversaries A, there exists a negligible function negl such that:

Pr[Ind-mult-CPAA(Gen,Enc) (k) = 1] ≤
1
2
+ negl (k)

The security notions Ind-CPA and Ind-mult-CPA imply each other:

Theorem 1 (Ind-CPA⇔ Ind-mult-CPA). Any private-key encryption scheme that has

Ind-CPA security also has Ind-mult-CPA security and vice versa.

Proof. The direction Ind-mult-CPA⇒ Ind-CPA is trivial: The adversary AInd-CPA can
directly be used in the experiment Ind-mult-CPA(Gen,Enc) and we inherit its success
probability. A proof for the direction Ind-CPA⇒ Ind-mult-CPA can be found in [KL07].

�

3. An Introduction to Privacy
This chapter is partially based on work already published in [Hub+11; HM11; Hub10]
and in [HMN14].

1. What is Privacy?
In their article The Right to Privacy [WB90], Samuel Warren and Louis Brandeis de�ne
privacy as the right to be left alone. They argued that there is value in the prevention
of publication of thoughts, sentiments, and emotions. They analysed the laws at that
time and came to the conclusion that these laws did not protect this value. The notion
of privacy was born. This notion lead to modern privacy laws such as the German
Bundesdatenschutzgetz [Bun78], one of the most progressive laws that not only protects
thoughts, sentiments, and emotions, but all data related to a single individual. It forbids
processing data related to single individuals without a legal basis. Furthermore, it even
de�nes a class of particularly sensitive data (besondere Arten personenbezogener Daten) and
the principle of data minimisation (Datensparsamkeit) that states that you may process
just as little data related to single individuals as necessary.

In classical cryptography, on the other hand, privacy is often used as a synonym for
con�dentiality. In the context of encryption, for example, privacy means the con�dential-
ity of messages. A voting scheme that provides privacy for the voters [Dem+13; Lan+09]
guarantees the con�dentiality of single votes. A mix network that provides privacy
guarantees the con�dentiality of the origin of a message [BDG13]. It hides the identity of
the sender of a message from the recipient.

Recently, the social and judicial idea of privacy has also been considered from a
cryptographic point of view in the �eld of database privacy. Here, the goal is to disclose
a database, for example, to third parties that want to analyse it [Swe02]. Applications
that combine and analyse large amounts of data from di�erent sources promise bene�ts
for science and economy. Since a database can contain sensitive information that must
not be disclosed, it has to be sanitised or anonymised prior to disclosure. The goal of
the sanitation or anonymisation is to prevent the disclosure of sensitive data. Consider
an institution (e.g. the census bureau or a hospital organisation) wanting to disclose
a database in order to allow for data mining by third parties. Since the privacy of the
individuals of the database has to be protected, the database has to be anonymised prior
to disclosure (cf. Figure 3.1). On the other hand, the disclosed database still has to hold
information. Otherwise disclosing and analysing it would be pointless. Consequently, a
trade-o� between the protection of sensitive data and the usefulness of the anonymised
database – a trade-o� between privacy and utility – has to be found.

Another application related to database privacy is secure database outsourcing. Here,
a client wants to outsource a database to a not necessarily trustworthy party. For reasons
of e�ciency, this party should be able to execute queries on the database on behalf of
the client while learning as little as possible about the data [HIM02; Pop+11; Hub+13;

11

12 3. An Introduction to Privacy

d mechanism d ′d d ′

Figure 3.1.: Database privacy: In order to protect the sensitive data in the original database
d , a mechanism transforms d to a result d ′ that is disclosed. In order to enable
further processing, the utility of the original data has to be preserved while
sensitive data has to be changed or removed.

AGH11]. Again, there is a trade-o� between privacy and utility. Here, the utility is needed
in order to support e�cient execution of queries. Therefore some structure of the original
database has to be preserved. We will examine secure database outsourcing in this work
in Chapters 6-7.

As mentioned above, in contrast to con�dentiality for message encryption, in database
privacy, leakage of some data is desired – even necessary [Dwo08a] – while the privacy
of individuals has to be protected. An adversary should not be able to learn sensitive
information from the disclosed database. On the other hand it should still have utility in
the sense that the disclosed data is useful, e. g. for data mining. This trade-o� between
utility and privacy is described by formal privacy notions. Privacy notions allow for a
�ne grained de�nition of privacy. Privacy notions allow to distinguish between sensitive
data that should be protected (e. g. sensitive data about individuals) and data that is not
sensitive and therefore can be disclosed. Furthermore, there are privacy notions that even
introduce a measure for the magnitude of the disclosure of sensitive data.

Privacy notions can be classi�ed into syntactic and semantic notions. In order to
provide a motivation for semantic notions, that are designed with adversaries in mind,
we present a discussion of weaknesses of syntactic notions found in literature.

Structure of this Chapter Section 2 introduces the concepts of database anonymisation
and of privacy notions. Furthermore, we present and discuss syntactic and semantic
privacy notions and frameworks for privacy notions found in literature. In Section 3, we
present attacks on and subliminal channels of syntactic privacy notions.

2. Anonymisation and Privacy Notions
This section presents the concepts of database anonymisation and privacy notions. In
this work, database anonymisation is used in two scenarios, privacy preserving database
disclosure and secure database outsourcing, which will be introduced in this section.
There is a rich body of literature on privacy notions, which also will be discussed in this
section.

2.1. Database Anonymisation
Database anonymisation is the transformation of a database by an mechanism, if either the
mechanism itself or the result of the transformation ful�ls a privacy notion (cf. Section 2.2).
The goal of database anonymisation is to protect sensitive data from the public or an
untrusted party while preserving as much information of the original database as possible.

2. Anonymisation and Privacy Notions 13

Note that this sensitive data must not necessarily be data about individuals. We will use
examples with data about individuals but also databases that contain intellectual property,
for example sensitive measurement values of a production line, can be transformed in
order to protect the sensitive data. In both cases, we will call this process anonymisation.
There are two important scenarios for database anonymisation. The �rst scenario is
privacy preserving database disclosure, the second scenario is secure database outsourcing.
In the following, these scenarios will be presented.

2.1.1. Privacy Preserving Database Disclosure

In privacy preserving database disclosure, a database containing sensitive data is trans-
formed in order to be disclosed. Therefore, the database is anonymised prior to disclosure.

d anonymisation d ′ = f (q (d))

q

Figure 3.2.: Privacy preserving database disclosure: An anonymisation mechanism trans-
forms a database d to an anonymised result d ′. Then, the result d ′ is disclosed.
The goal is to protect sensitive data in d , for example sensitive data about
individuals, while preserving the utility of the data, in order to enable further
processing. In some cases, clients may specify a function q that is applied to
d prior to anonymisation.

An anonymisation mechanism is applied to the database. This scenario is depicted in
Figure 3.2: An anonymisation mechanism transforms a database d into the result d ′. In
some scenarios, clients are allowed to specify a function q that is applied to d prior to
anonymisation. This scenario is called online privacy preserving database disclosure. It is
mainly used in the context of Di�erential Privacy [Dwo08a], where clients are allowed
to issue queries to a curator that can query the original database and anonymises the
result of the query. The anonymisation mechanism f can be a probabilistic algorithm
and not necessarily is a function. For example, since the optimal k-anonymity problem is
hard [MW04], in practice polynomial-time heuristics are used. Di�erential Privacy and
k-anonymity will be discussed in detail in Section 2.2.

2.1.2. Secure Database Outsourcing

Another scenario for database anonymisation is secure database outsourcing. Here, a
client wants to outsource a database to a not necessarily trustworthy server. In contrast
to privacy preserving database disclosure, the client wants to be able to access the data in
the outsourced database e�ciently. Therefore, the server has to be able to execute queries
e�ciently on behalf of the client. On the other hand, the server should learn as little as
possible about the original database. Therefore the original database d is transformed.
This scenario is depicted in Figure 3.3. In order to query the outsourced database, a query
q intended for the original database d has to be transformed in order to execute it on

14 3. An Introduction to Privacy

client outsourcing serverd d ′ = f (d)

3.3.1: secure database outsourcing: outsourcing step

client transformation server

q

q (d)

interaction

3.3.2: secure database outsourcing: query handling

Figure 3.3.: Secure database outsourcing: An outsourcing mechanism transforms a
database d to an result d ′. Then, the result d ′ is stored on a not necessarily
trustworthy server (Figure 3.3.1). In order to query the database stored on
the server, queries intended for the database d have to be transformed into
an interactive protocol (Figure 3.3.2). The Server has to be prevented from
learning the original database d , however, the client has to be able to query
the outsourced database e�ciently. Therefore, the server has to be able to
support execution of queries on d ′ on behalf of the client.

the outsourced database. In general, a query is transformed to an interactive protocol
between the client and the server. Again, there is a trade o� between privacy and utility.
Here, the utility a�ects the e�cient support for execution of queries. Additionally, there is
a requirement to the anonymisation mechanism, that is not necessarily needed in privacy
preserving database disclosure: The anonymisation mechanism has to be reversible. Since
the client wants to use the result of the anonymisation as it would use the database d ,
the client needs a trapdoor to reconstruct the original database d from the anonymised
database d ′.

This chapter as well as Chapter 4 focus on privacy preserving database disclosure,
while Chapters 5 and 7 focus on privacy for database outsourcing.

2.2. Privacy Notions

In order to reason about the security properties of an anonymisation mechanism or its
result, we need a formal description. A privacy notion is such a formal description. The
intention of privacy notions is to precisely describe the level of privacy provided either
by an anonymisation mechanism or by an anonymised release.

Privacy notions can be classi�ed into structural or syntactic notions and semantic or
cryptographic notions [De +12]. Structural privacy notions formalise syntactic require-
ments for the result of the anonymisation process. Cryptographic privacy notions are
designed with an adversary in mind and therefore describe semantic guarantees. They can
be compared with security notions for encryption. But, in contrast, cryptographic privacy
notions do not try to prevent leakage of information completely. In order to maintain the
utility of the anonymisation result, they allow for leakage of some information.

Examples for structural notions are k-anonymity [SS98] and notions based thereon.

2. Anonymisation and Privacy Notions 15

They introduce constraints for the anonymisation result. Such notions do not consider
adversaries that try to break the anonymisation directly. This will be further discussed in
Section 3.

An example for a cryptographic notion is Di�erential Privacy [Dwo08a]. Such notions
introduce constraints for the anonymisation process with with respect to adversaries.
These adversaries can be computationally bounded [Mir+09] or unbounded [Dwo08a].
Computationally bounded adversaries are interesting for notions that describe mecha-
nisms based on computational problems. In Chapter 7 we will present methods for secure
data outsourcing that involve encryption.

Privacy notions do have standard methods that are used to achieve them (e. g. adding
noise for Di�erential Privacy, or coarsening attribute values for k-anonymity – cf. Sec-
tions 2.2.1 and 2.2.2). Nevertheless, we stress that we have to distinguish between
methods and guarantees. While Di�erential Privacy is often achieved by the addition of
Laplace noise, another approach to achieve Di�erential Privacy, for example, is presented
in [Bha+11]. This approach does not add noise to the release, but uses the uncertainty of
the adversary about the original database or the intrinsic entropy of the original database
to construct privacy preserving mechanisms. On the other hand, the addition of Laplace
noise does not yield di�erentially private methods in general, but only under certain
assumptions about the distribution of attribute values.

A privacy notion is a guarantee that can be achieved by an anonymisation mecha-
nism. We use the word mechanism instead of function since a mechanism can also be a
probabilistic algorithm. If a privacy notion is achieved by a mechanism, we say that this
mechanism ful�ls this privacy notion.

Privacy notions can be used to reason about anonymisation mechanisms. For example,
if a mechanism ful�ls the privacy notions A and B , the mechanism can be considered to
be more secure than another mechanism that only ful�ls privacy notion A. The Bayes
Privacy framework that we will present in Chapter 4 allows for modelling and for the
comparison of privacy notions without explicitly considering mechanisms.

2.2.1. Structural Privacy Notions

The �rst attempt to formally capture database privacy resulted in the concept of k-
anonymity by Samarati and Sweeney [SS98; Swe02]. The idea of this notion is to achieve
anonymity by letting each individual blend into a crowd of at least k individuals. The
notion k-anonymity implicitly assumes that sensitive traits are rare and that an individual
can not be identi�ed by the sensitive trait itself. Then, we can classify attributes about
individuals into quasi-identi�er and sensitive information. The quasi-identi�er QI is the
set of attributes that allow, linked with external data, to uniquely identify at least one
individual of a table. Formally, k-anonymity is de�ned as follows (taken from [Mac+07]):

De�nition 18. A table T satis�es k-anonymity if for every tuple t ∈ T there exist k − 1
other tuples ti1 , ti2 , ... tik−1 ∈ T such that t[C] = ti1[C] = t21[C] = ... = tik−1[C] for all C
in QI.

In this de�nition, t[C] denotes the projection of the tuple t to the attributes C . This
de�nition implies, that the result has blocks of rows, where the attribute values of
the quasi-identi�er are identical. In literature, the k-anonymity property is achieved
by supression and generalisation. Attribute values of the quasi-identi�er attributes are

16 3. An Introduction to Privacy

either suppressed or generalised until the table ful�ls k-anonymity. An example for an
4-anonymous table is depicted in Figure 3.4.2.

Non-Sensitive Sensitive

Zip Code Age Nationality Condition

1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Viral Infection
4 13053 23 American Viral Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Viral Infection
8 14850 49 American Viral Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer

3.4.1: A medical table with the sensitive attribute condition and the
non-sensitive attributes Zip Code, Age, and Nationality

Non-Sensitive Sensitive

Zip Code Age Nationality Condition

1 130** ≤ 30 * Heart Disease
2 130** ≤ 30 * Heart Disease
3 130** ≤ 30 * Viral Infection
4 130** ≤ 30 * Viral Infection
5 1485* ≥ 40 * Cancer
6 1485* ≥ 40 * Heart Disease
7 1485* ≥ 40 * Viral Infection
8 1485* ≥ 40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

3.4.2: A 4-anonymous version of the Table in 3.4.1. The attributes
Zip Code and Age were generalised while the attribute Nationality

was suppressed.

Figure 3.4.: An example for a medical table and a 4-anonymous version of it (Taken
from [Mac+07]). The rows {1,2,3,4}, {5,6,7,8}, and {9,10,11,12}, each, form a
bucket. In each bucket, the values of the attributes of the quasi identi�er are
identical.

Since this notion has several shortcomings, it was iteratively improved upon in order
to remove the inherent problems, e.g. by Machanavajjhala et al. [Mac+07] in the form of
l-diversity and by Li et al. [LLV07] in the form of t-closeness. The l-diversity principle
requires diversity of the values of the sensitive information attribute within each block.
Formally, l-diversity is de�ned as follows (taken from [Mac+07]):
De�nition 19. A q∗-block is l -diverse if contains at least l well-represented values for the

sensitive attribute S . A table is l-diverse if every q∗-block is l-diverse.

For di�erent instantiations of well-represented, please refer to [Mac+07]. The intention
of this de�nition is to prevent homogeneity attacks [LLV07]. If the values of a sensitive
attribute in a q∗-block are similar, identical, or have the same meaning, a homogeneity
attack allows to determine the value of the sensitive attribute for an individual.

Since l-diversity still had some well-known problems, a lot of variations and improve-
ments followed [MW04; LDR05; BA05; TZ11]. Other approaches involve disassocia-
tion [Ter+12] or fragmentation [De +10; De +13] in order to achieve privacy. Here,
coarsening is used to hide sensitive relations. The approach in [Tao+10] introduces an
independence masking operator with the intention to completely eliminate correlations
between two sets of attributes.

One problem, however, was not solved: The combination of anonymised data sets can
lead to a deanonymisation of at least a part of the database, as was shown by Ganta et al.
[GKS08]. Even today, most privacy notions su�er from this problem. It even has been
proven that for any mechanism that has some utility, there is an adversary that can break
any privacy notion [KM11]. Therefore, frameworks that also specify assumptions and
restrictions about adversaries are needed. In contrast to semantic notions discussed in the
next section, the notions above do not give a guarantee about the process, but describe
the result of an process.

2. Anonymisation and Privacy Notions 17

2.2.2. Cryptographic Privacy Notions and Frameworks

While the intuition behind k-anonymity and, therefore, its variations is reasonable, the
formal instantiation as a syntactic notion allows for a variety of attacks. As it turns out,
in general, the actual goal should not be to achieve anonymity in a crowd, but rather to
directly hide the association of an individual with certain sensitive values from potential
adversaries. An extreme method is to hide the sensitive value itself. In her seminal work
Dwork [Dwo08a] introduced the notion of Di�erential Privacy, which is the �rst privacy
notion de�ned with a cryptographic �avor. In contrast to previous work, Di�erential
Privacy gives a guarantee that for any two databases that di�er in a single entry the
result of the anonymisation process cannot be distinguished except by a small factor. The
intuition of Di�erential Privacy is that the adversary can not learn much about individuals
if the fact that a single individual is present in the original database does not change the
anonymisation result. Implicitly, Di�erential Privacy assumes that the probability of each
tuple is independent. Formally Di�erential Privacy can be described as follows (taken
from [Dwo08a]):

De�nition 20 (ϵ-Di�erential Privacy). A randomized function K gives Di�erential Pri-
vacy if for all data sets D1 and D2 di�ering on at most one element, and all S ⊆ Range (K)

Pr[K (D1) ∈ S] ≤ eϵ × Pr[K (D2) ∈ S]

This can be achieved by adding noise from a Laplacian distribution to the actual result.
In contrast to the approaches approaches based on k-anonymity that release the complete
anonymised database, the de�nition of Di�erential Privacy does not restrict the range
of the anonymisation mechanism to databases. Many mechanisms ful�lling Di�erential
Privacy assume a trusted curator algorithm that answers queries about the data without
releasing a completely anonymised database. Based on the concept of Di�erential Privacy,
follow-up work has been presented, see [Dwo+06c; Dwo+06a; GLP11; Geh+12].

Di�erential Privacy is the current gold standard notion in privacy research, although
there are some drawbacks. In [GLP11] Gherke et. al. show that mechanisms that achieve
Di�erential Privacy when the probability of each tuple is independent can fail to achieve
Di�erential Privacy for databases, where this is not the case. In social networks, for
example, the probability of the presence of an individual can depend on the probability
of the presence of the social cluster the individual is part of. Therefore, they de�ne the
notion Zero Knowledge Privacy which is even stronger as Di�erential Privacy.

Kifer and Machanavajjhala, on the other hand, show in [KM11] that even the de�nition
of Di�erential Privacy is too strict in some cases and thereby diminishes the utility of the
obtained data severely. The term utility in this context means the degree of distortion of
the actual result. The main reason for this is that only worst case scenarios are considered
and thus the amount of noise needed to achieve the desired privacy is very large. Two
di�erent solutions were proposed to circumvent this problem. One proposition is to use
the noise that is implicit in the data such that the utility is not reduced by the addition of
noise. The other approach is to weaken the de�nition such that a privacy breach is not
impossible, but unlikely [Dua09; Bha+11].

Concerning the �rst approach, the assumption is made that an adversary does not have
the complete knowledge of a database except for a single entry. It is assumed that the
adversary’s knowledge has a given uncertainty which can be described as a probability
distribution on the attribute values. From an adversary’s point of view this means that

18 3. An Introduction to Privacy

the data has implicit noise. It was shown by Duan [Dua09] that this uncertainty can be
enough to achieve Di�erential Privacy for sum queries. Additional privacy notion similar
to Di�erential Privacy based on the implicit noise of the data were proposed [Bha+11].
Albeit, to maintain privacy for several queries it is necessary that some fraction of the
database is updated between the queries, otherwise the adversary can learn the complete
database over time. The aforementioned work also incorporates the second idea, namely
a weakening of the privacy guarantee by allowing a privacy breach with small probability.

One of the �rst relaxations of Di�erential Privacy was put forward by Dwork et al.
[Dwo+06c] and is called (ϵ ,δ)-Di�erential Privacy, where δ signi�es the probability that
the factor between the two distributions is greater than eϵ . Other notions [Blu+05; CM06;
EFW10; BLR08; GLP11] also seize this idea, although in somewhat di�erent contexts.
Before the upcoming of Di�erential Privacy, Chaudhuri and Mishra [CM06] used an
(ϵ ,δ)-privacy notion of, where they showed that a random subset of a database can be
released privately if no values with low occurrence are in this subset. The work by Blum
et al. [BLR08] is based on a concept that has proven to be of increasing interest. The
knowledge of the adversary is modelled as a probability distribution of possible databases
which is a generalisation of uncertainty of database entries. They release information for
a class of queries where the utility of the information has only been reduced by a (�xed)
small amount.

This concept was taken a step further by the recent results of Kifer and Machanavajjhala
[KM12], who introduced the Pu�er�sh framework. Instead of a strict and static guarantee,
they allow to specify certain predicates for which the privacy is enforced. This was
already previously used by Blum et al. [Blu+05], where a priori and a posteriori beliefs
over binary predicates were considered, and by Ev�mievski et al. [EFW10] for the case
where a change in the probability of a predicate indicates a privacy breach. The idea of
Pu�er�sh is to specify two mutually exclusive predicates. One of the predicates is the
sensitive predicate to be hidden. After anonymisation, an adversary should not be able to
determine whether the �rst or the second predicate is true. Formally, a privacy notion in
Pu�er�sh is de�ned as follows (taken from [KM12]):

De�nition 21. Given a set of potential secrets S, a set of discriminative pairs Spairs, a set
of data evolution scenarios D, and a privacy parameter ϵ > 0, a (potentially randomised)

algorithmM satis�es ϵ-Pu�erFish (S, Spairs, D) privacy, if

• for all possible outputs ω ∈ range(M)

• for all pairs (si , sj) ∈ Spairs

• for all distributions θ ∈ D for which P (si |ω) , 0 and P (sj |ω) , 0 :

P (M(Data) = ω |si ,θ) ≤ eϵP (M(Data) = ω |sj ,θ)

P (M(Data) = ω |sj ,θ) ≤ eϵP (M(Data) = ω |si ,θ)

This de�nition of privacy notions on the basis of not necessarily exhaustive Spairs might
not seem intuitive at �rst. It, however, allows for mechanisms that release the original
database where all sensitive predicates are false. If the Spairs were exhaustive (i.e. for each
(si , sj) ∈ Spairs, either si is or sj is true), this were not the case.

As Di�erential Privacy, Pu�er�sh requires the probability of an output given a certain
predicate in the input to be close to the probability the same output given another predicate.

3. Attacks on Structural Privacy Notions 19

Pu�er�sh, however, allows domain experts to de�ne their own pairs of predicates. It is
e. g. possible to choose the predicates value x is in the database and value x is not in the

database. With appropriate predicates, Di�erential Privacy can be modelled as a special
case of this framework. Based on the Pu�er�sh framework, Kifer et al. extract a set of
axioms for privacy notions [KL10; KL12] which, as they argue, should be ful�lled by any
privacy notion. They de�ne a privacy de�nition as a set of randomised algorithms. The
�rst axiom states that any privacy de�nition must be invariant to transformations, i. e.
the application of an arbitrary algorithm to the result does not a�ect the privacy of the
result. The second axiom states that any two algorithms that satisfy a privacy de�nition
can be applied interchangeably while still satisfying the privacy de�nition. Based on
these axioms a mathematical analysis is possible, such that semantic guarantees of a
privacy de�nition can be made explicit [LK12]. In Chapter 4, Section 3, we will discuss
these axioms in the context of our Bayes Privacy framework.

3. Attacks on Structural Privacy Notions
The motivation to de�ne privacy originated from the �eld of data mining. The basic
idea to hide the association of individuals with sensitive values seems to be reasonable.
As described in Section 2.2, the �rst attempts to formally capture privacy followed this
idea by hiding individuals in a crowd. Formal notions like k-anonymity, l-diversity,
t-closeness, and variations thereof, however, describe structural properties of the output.
They do not restrict the anonymisation mechanism beyond these structural properties of
the output. Furthermore, they do not consider explicitly what an adversary learns from a
release.

This allows, for example, a malicious anonymiser to encode information into the
result by simply adding additional rows to the database in such a way that the structural
properties needed by the privacy notion are not violated. There are, however, also
subliminal channels, that do not need a malicious anonymiser.

In the remainder of this section, we will show weaknesses in structural notions that
are not already covered in the related work (cf. Sections 2.2 and 3.1). The �rst example
requires a malicious anonymiser that wants to circumvent the privacy notion. The second
example is a side channel that occurs because of the structural requirements to the release
and does not require a malicious anonymiser.

3.1. Attacks on Structural Notions in Literature
In literature, there are two classes of attacks on structural privacy notions, namely the
homogeneity attack [Mac+07] and the background knowledge or composition attack [GKS08;
HMN14]. Summarising, both attacks use additional knowledge to break the anonymity
notion.

The homogeneity attack exploits that all sensitive values in a bucket of a k-anonymous
database can be identical or similar. Consider for example the table in Figure 3.4.2. The
rows {9,10,11,12} form a 4-bucket. Since the only value of the sensitive attribute in this
bucket is cancer, however, an adversary that knows an individual in the database that
falls into this bucket learns that this individual has cancer.

The composition attack exploits the general fact that k-anonymity and many notions
based thereon do not compose with background knowledge. Consider for example the

20 3. An Introduction to Privacy

bucket {1,2,3,4} from the table in Figure 3.4.2. If an adversary knows an individual falling
into this bucket and if she can rule out, for example from another 4-anonymous database,
that this individual has a heart disease, the adversary learns that this individual has a
viral infection. For another example consider the two 2-anonymous tables in Figure 3.6.
These tables are derived from the same original table (cf. Figure 3.5). If these two tables,
however, are joined, the adversary learns for each row the exact values of the attributes of
the quasi-identi�ers of the original database. This breaks the intention of the anonymity
notion.

The homogeneity attack and the composition attack are symptoms of the no free lunch

theorem [KM11] which states that as long as there is utility in the anonymisation result,
there is an adversary that can exploit this utility in order to break the anonymity notion.
In Chapter 4, Section 2, we will provide an intuitive argumentation for this theorem.
Therefore, anonymity notions have not only to be designed with adversaries in mind, but
they also have to restrict adversaries. Notions need to formalise for which adversaries
they hold.

In the following, we will present new attacks on structural notions, that are not already
broadly discussed in literature.

3.2. Subliminal Channel in k-anonymity

The notion k-anonymity allows a malicious adversary to encode information in the result.
Consider for example a table with more than one possible k-anonymous anonymisations.
For k = 2 such a table is depicted in Figure 3.5. For this table, an adversary can choose

name age area code disease

Alice 31 3524 �u
Bob 31 3456 �u
Carol 35 3524 gastritis
X 35 3456 stomach pain

Figure 3.5.: An example for a table that has more than one 2-anonymous tables. The at-
tribute name is an identi�er and suppressed when generating a k-anonymous
database. The attributes age and area code are the quasi-identi�er. These
attributes are generalised until the k-anonymity property is ful�lled. The
attribute disease is the sensitive information and is neither suppressed nor
generalised. Figure 3.6 depicts two 2-anonymous transformations of this table.

either to generalise the attribute age or the attribute area code in order to generate a
2-anonymous result. These results are depicted in Figure 3.6. A malicious anonymiser can,
for example choose to disclose the table in Figure 3.6.1, if the X in the original table is Eve
or to disclose the table in Figure 3.6.2 else. Now, although the result of the anonymisation
process is 2-anonymous, an attacker learns if Eve is in the database just by knowing the
anonymisation process and looking at which attribute was generalised.

This is because the notion k-anonymity was not de�ned with respect to adversaries.
Cryptographic notions are less prone to this kind of attack because they do restrict what
adversaries learn from the information given to them.

3. Attacks on Structural Privacy Notions 21

age area code disease

3* 3524 �u
3* 3456 �u
3* 3524 gastritis
3* 3456 stomach pain

3.6.1: A 2-anonymous version of the table
depicted in Figure 3.5 generated by gener-
alising the attribute age.

age area code disease

31 3* �u
31 3* �u
35 3* gastritis
35 3* stomach pain

3.6.2: A 2-anonymous version of the table
depicted in Figure 3.5 generated by gener-
alising the attribute area code.

Figure 3.6.: Tables adhering 2-anonymity derived from the table in Figure 3.5.

3.3. Subliminal Channel in l -diversity
The example in Section 3.2 needed the cooperation of the anonymiser and the adversary.
The following example, however, will show that structural notions even have subliminal
channels if the anonymiser is trustworthy. Consider a database about a city with three
city parts A, B, and C that have 7, 9 and 20 inhabitants, respectively (cf. Figure 3.7).
The original database consists of a quasi-identi�er the city part, and a binary sensitive

city part # inhabitants

A 7
B 9
C 20

Figure 3.7.: City parts and number of inhabitants of the example for a subliminal channel
in l-diversity.

information attribute p. Consider for example the table depicted in Figure 3.8. Let the
anonymisation process merge city parts (generalise the attribute city part) as long as the
database does not adhere 2-diversity and try to minimise the number of merges. Now,
an adversary can infer information about individuals in the city parts that should be
protected by l-diversity.

If, for example, all city parts in the disclosed database are merged, an attacker can infer
information based on the number of people with p according to Figure 3.9. Consider for
example 8 people with p living in the city. If anybody in city part A had p and without
loss of generality nobody in C had p the anonymisation process would have stopped after
merging A and C. In the other case (people in A, B and C have p) the anonymisation
process would have stopped immediately.

This example shows, that knowing an anonymisation process, an attacker can infer
information that should be protected by l-diversity. As with the example in Section 3.2, this
subliminal channel exists because the enforced privacy notion does not explicitly consider
adversaries. In contrast, semantic privacy notions like Di�erential Privacy (De�nition 20)
or the security notion for database outsourcing Ind-ICP (Chapter 6, De�nition 53), are
designed with adversaries in mind, and therefore, cover many attacks structural notions
are susceptible to. The Bayes Privacy framework we present in Chapter 4 allows for an
intuitive de�nition of such notions.

22 3. An Introduction to Privacy

city part p?

A 1
A 0
...

...
B 0
B 1
...

...
C 1
C 1
...

...

Figure 3.8.: An example for an original table that shows the distribution of people with
the property p among the city parts.

people with p information adversary can infer

1 (nothing to infer)
2 - 7 all inhabitants with p live in the same city part

8,9 nobody living in part A has p
10 - 15 all inhabitants with p live in part C
16 - 20 all inhabitants with p live in part C

or all inhabitants of A and B have p
21 (impossible)

Figure 3.9.: Information an adversary can infer depending on the number of people with
attribute p in the disclosed database adhering 2-diversity.

4. The Bayes Privacy Framework
This chapter is partially based on work already published in [Hub+11; HM11; Hub10;
HMN13] and [HMN14].

1. Introduction
In this chapter, we present the Bayes Privacy framework. It allows for an intuitive de�ni-
tion of semantic privacy notions. These notions are based on what sensitive information
an adversary can learn from a release. It is based on the framework presented in our
previous work [HMN13]. The ideas behind the Bayes Privacy framework are related to the
ideas of other frameworks such as the frameworks presented in [Blu+05] and [KM12]. Pri-
vacy is de�ned with respect to an adversary. For statistical privacy notions, this adversary
is an optimal Bayes estimator: The a priori knowledge of the adversary, the knowledge
before disclosing the anonymised data, is compared to the a posteriori knowledge of the
adversary, the knowledge after disclosing the anonymised data.

A formalisation of a privacy notion requires the de�nition of the information we
want to protect from being disclosed. This can be done by de�ning sensitive predicates.
Predicates are Boolean functions over data sets. For example a sensitive predicate can
be the information if an individual in the data set has a speci�c rare disease or even if a
speci�c individual is present in the database at all.

In [Blu+05] and [KM12], a release must not change the adversaries belief about sensitive
information more than a certain threshold. The a posteriori knowledge is bound to the
a priori knowledge by a security parameter. The Bayes Privacy framework takes this
principle a step further. It introduces privacy breaches based on single sensitive predicates
and, additionally, it considers breaches of di�erent magnitudes separately. This allows
for the de�nition of more precise notions, for example notions that allow for small
breaches in most cases and breaches of a high magnitude in rare cases. Disclosing the
average of an attribute value can be seen as such a mechanism [Dua09]. This mechanism
intuitively preserves privacy. It is, however, not considered as privacy preserving by
notions and frameworks that only consider the worst case, such as classical Di�erential
Privacy [Dwo08a] or the Pu�er�sh framework [KM12].

A downside of privacy notions is that, in general, they do not compose. The combination
of two releases of mechanisms with the same privacy guarantee can break this guarantee.
Therefore results regarding the composability of privacy notions have impact on data
privacy. A distinguished example for a privacy notion that provides some form of
composability is Di�erential Privacy. It provides a graceful degradation under composition.
The combination of two mechanisms that individually provide ϵ-Di�erential Privacy
provides 2ϵ-Di�erential Privacy [Dwo08a]. In this chapter, we will provide general
composability results for notions de�ned in the Bayes Privacy framework.

In cryptography, computational notions are of particular interest, since they allow for
methods that base their security on complexity assumptions. Therefore, we provide a

23

24 4. The Bayes Privacy Framework

computational variant of the Bayes Privacy framework and show that our game-based
computational privacy notion Ind-ICP also can be modelled as a computational Bayes
Privacy notion.

Structure of this Chapter In Section 2, we introduce the Bayes Privacy framework.
The relation of the Bayes Privacy framework to the Pu�er�sh framework is discussed in
Section 3. This Section also discusses the two privacy axioms introduced by Kiefer et.
al. in [KL10], and shows that they do not hold for notions that allow methods to fail to
provide privacy in rare cases. In Section 4 we explore compositional properties of Bayes
Privacy notions. In Section 5, we will provide examples for notions de�ned in the Bayes
Privacy framework. We will show, how Di�erential Privacy, the current gold standard in
privacy notions, can be de�ned in the Bayes Privacy framework. Additionally, we show
on the example of the average mechanism that the Bayes Privacy framework allows for
the de�nition of privacy notions for mechanisms that fail to provide privacy in rare cases.
Finally, Section 6 provides a de�nition of the Bayes privacy framework with respect to
computationally bounded adversaries and prove that Ind-ICP can also be de�ned in the
Bayes Privacy framework.

2. Formalisations
The Bayes Privacy framework de�nes privacy by limiting the knowledge an adversary
gains about sensitive information. Given the anonymised release, the adversary tries to
guess sensitive predicates. If she can determine the value of a sensitive predicate with the
release better than without it, there is a privacy breach. In contrast to existing frameworks,
the Bayes Privacy framework allows to limit breaches individually.

Figure 4.1 provides an overview over the notation used by the framework and Figure 4.2
provides an overview of the knowledge of the adversary.

notation description

U universe of world data sets
X Set of probability distributions X of U
D set of all actual data sets or databases
E mechanism E : U → D , generates a database d ∈ D from a data set u ∈ U
L set of sensitive predicates, l ∈ L, l : U → {true, false}
F anonymisation mechanism, F : D → D
s the release, s := F ◦ E (u) for a u ∈ U
A the adversary

Figure 4.1.: Notation used in the Bayes Privacy framework

The universe U is the set of all data sets. We call the data sets in U world data sets.
Additionally, every data set in U has a probability. The set X of distributions of U allows
to model possible background knowledge of the adversary. For example, the adversary
may know that a data set containing the patients and their diseases of a general hospital
in which all patients have the same disease is less likely than a data set with di�erent
diseases. This can be modelled as a probability distribution of world data sets.

2. Formalisations 25

notation known to adversary?

U known
X known, adversary chooses X ∈ X
u unknown
E known, potential random coins unknown

E (u) unknown
L known
F known, potential random coins unknown

F (d) known

Figure 4.2.: Knowledge of the adversary A about the elements of the framework. The
adversary does not know the world data set drawn from the universe. The
distribution of the universe, however, is known to the adversary.

Actual data sets or databases are abstractions from the real world. They do not contain
all information of the real world. They may even contain inaccuracies owing to the
process that generated the database. For example humans may make mistakes while
entering data. Some survey techniques like randomized response [War65] themselves
even introduce noise to the data set. In the Bayes Privacy framework, this is modelled
with a database generation mechanism E . It generates the actual data set d from the
world data set u ∈ U and is known to the adversary. If E involves probabilistic processes,
however, the randomness is unknown to the adversary. This allows for modelling entropy
in the actual database. If the mechanism E itself prevents the adversary from learning a
sensitive predicate at all, there is no need to consider this predicate in the anonymisation
mechanism F .

The set L contains the sensitive predicates that the adversary should be prevented
from learning. A sensitive predicate l ∈ L is de�ned on all world data sets. For a given
world data set a sensitive predicate either evaluates to true or to false . In order for a
privacy notion to be meaningful, a sensitive predicate must not be a constant. Otherwise,
the adversary already knows its value and there is no point trying to prevent her from
learning it.

The mechanism F is the anonymisation mechanism. The idea of Bayes Privacy is that
given a release anonymised with F , the adversaryA should not be able to learn the value
of any sensitive predicate in L. This can also be interpreted as an experiment with the
adversary: The adversaryA chooses a distribution X ∈ X. According to this distribution,
a world data set u is drawn from U and the actual database d = E (U) is generated. Then,
the adversary gets the anonymisation F (d) and has to output a sensitive predicate l .
Figure 4.3 provides an overview of this process and the interactions of the adversary with
it.

Privacy Breach: The Di�erence of the Adversaries a priori and a posteriori Beliefs If
given the universe of data sets U and a distribution X of U , the probability of a sensitive
predicate l being true di�ers from the probability of l being true given U , X , and the
release s , the adversary A potentially learns something about the value of l from the
release s . We say, there is a privacy breach. In the following, instead of Pr[l = true] we
write Pr[l] and instead of Pr[F (d) = s] we write Pr[s]. Formally, a breach for a sensitive

26 4. The Bayes Privacy Framework

U u d = E (u) s = F (d)

Pr[l] Pr[l |s]

A
↓

X E F

X l ← A

= ?

Figure 4.3.: The anonymisation process and the interactions of the adversary. A world
data set u is drawn from the universe U of all possible data sets according to
a distribution X . The mechanism E generates the actual database from the
world data set. The mechanism F anonymises the resulting database. If, for a
sensitive predicate l , the probabilities Pr [l = true] and Pr [l = true |F (d) = s]
di�er, there is a privacy breach.

predicate l and a release s is de�ned as follows:

De�nition 22 (Privacy Breach for a Predicate and a Release). Let U be a universe of data

sets with distribution X , E : U → D and F : D → S mechanisms , and L a set of sensitive

predicates. A breach for the predicate l ∈ L and the release s ∈ S is de�ned as:

b(l , s) :=

1 Pr [l] ∈ {0, 1}
Pr [l |s]
Pr [l] otherwise

The probability is taken over the distribution X and the random coins used in E and F .

Please note that for meaningful notions, there have to be both, data sets for that the
sensitive predicate is true as well as data sets for that the sensitive predicate is false (i.e.
0 � Pr [l] � 1). Otherwise, there is no point in hiding this predicate. The probability Pr[l]
depends on the distribution of the universe X . If Pr[l] < {0, 1} then there are u, u′ ∈ U
with Pr [u] < {0, 1} and Pr [u′] < {0, 1} and l (u) , l (u′).

Also note that a breach is only de�ned on the probability of a sensitive predicate being
true. This allows for modelling predicates, that are sensitive only if they are true. For
example the information that an individual has AIDS could be considered as sensitive
while the opposite could be considered as not sensitive. If a predicate l is sensitive
irregardless if it is true or false one can also add ¬l to the set of sensitive predicates L.

In particular, a breach for a sensitive predicate l depends on the release s , the distri-
bution of the universe X , and the mechanisms F and E . For two di�erent distributions
of the universe, the same release can cause di�erent breaches for the same sensitive
predicate. If the mechanisms E and F are probabilistic, a given world data set can result
in di�erent releases. Therefore, di�erent breaches, even for a single sensitive predicate
and a single data set, are possible. Consequently, the probability of a breach depends
on the distribution X as well as on the random coins used in the data generation and
anonymisation mechanisms. Additionally, di�erent breaches can vary in their probability.
Consequently, a privacy notion that considers a number of sensitive predicates and al-
lows for probabilistic release mechanisms may limit breaches with di�erent probabilities
di�erently.

2. Formalisations 27

It is reasonable to consider a limited set of possible distributions of the universe, since
it has been proven to be impossible to provide privacy for arbitrary distributions of the
universe without losing all utility of the anonymised data [KM11]. Consider the following
argument:

Let an anonymisation mechanism leak 1 bit of information about the original data
set. Then, the adversary can classify all possible data sets according to this bit. For
every data set in the �rst class, this bit is 0 while it is 1 for every data set in the second
class. Since the adversary may choose the distribution of the universe, she can choose
a distribution where all data sets except a data set u0 in the �rst class and a data set u1
in the second class have probability 0 and where u0 and u1, each, have probability 0.5.
Since the anonymised database now leaks the bit of the class of the original data set, the
adversary can determine the original database exactly. Intuitively, this breaks privacy
and leads to a high breach if the value of a sensitive predicate for u0 di�ers from the value
for u1. Therefore, we have to restrict the adversaries possible background knowledge.

sensitive predicate

breach

probability

1
l1

l2
l2

Figure 4.4.: An example for breach distributions of three sensitive predicates {l1, l2, l3}.
The sensitive predicate axis shows for which predicate the breach occurs, the
breach axis the magnitude of the breach and the probability axis shows the
probability of the breach. Not depicted: breaches of magnitude 1 and lower.

Privacy Notion: An Upper Bound for Breaches Di�erent probabilities of di�erent
breaches induce a probability distribution of breaches. Figure 4.4 depicts an example for
breach distributions of three sensitive predicates. Since breaches of 1 and lower do not
compromise privacy (cf. De�nition 22), only breaches of magnitude greater than 1 are
depicted. Please note, that the probabilities of the breaches depicted for a single predicate
do not necessarily need to add up to 1. The overall probability for breaches greater than
1 can be lower than 1.

In order to reduce the complexity of the resulting privacy notion, for a given release,
only the largest breach can be considered. This is reasonable if all sensitive predicates are
considered as equally critical. Additionally, if there are sensitive predicates of di�erent

28 4. The Bayes Privacy Framework

criticality, they can be considered independently by de�ning separate privacy notions.
Therefore, in the following, we only consider the largest breach caused by a given release.
Formally, such a breach can be de�ned as follows:

De�nition 23 (Privacy Breach for a Set of Predicates and a Release). Let U be a universe

of data sets with distribution X and let E : U → D and F : D → S mechanisms. A breach
b for a set of sensitive predicates L and a release s ∈ S is de�ned as:

b(s) := max
l∈L

b(l , s)

A release can cause multiple breaches. As mentioned above, this de�nition only
considers the largest breach a release causes. With this de�nition, we can de�ne the
probability of a certain breach. Later, we will use this de�nition to limit the probability
of breaches.

De�nition 24 (Breach Probability). Let U be a universe of data sets with distribution X ,

E : U → D and F : D → S mechanisms, and L a set of sensitive predicates. The probability

of a breach b′ is called breach probability of b′ and is de�ned as:

Pr[b′] := Pr
s∈S

[b′ = b(s)]

The probability is taken over the distribution X and the random coins used in E and F .

Please note that the breach probability is not the absolute probability of a breach but
the probability that this breach is the largest one.

This de�nition of breach probabilities induces a probability distribution for breaches.
Consider the example in Figure 4.5. Here, there are three breaches with a probability
greater than 0. Two breaches have a probability of 0.25 and one breach has a probability
of 0.5. Note that di�erent sensitive predicates may be responsible for di�erent breaches.

Breach

Probability

1

Figure 4.5.: Example for a probability distribution of breaches B (dots) and a dominating
function p (dashed line).

Furthermore, an anonymisation mechanism may be well suited for a speci�c predicate,
but not very well for di�erent predicates. Consider for example an anonymisation process
that replaces names in a medical disease database with pseudonyms. This process does
not hide the number of patients with a speci�c disease, but it may hide the disease of

2. Formalisations 29

a speci�c patient very well. Thus, a privacy notion should describe how well speci�c
sensitive predicates are hidden from the adversary. Consequently, a privacy notion can
be described by the sensitive predicates, the background knowledge of the adversary, and
an upper bound of breaches. Formally, this can be de�ned as follows:

De�nition 25 (Bayes Privacy Notion). For a given universe of possible data sets U , a

privacy notion is a tuple (L, p,X), where L is a set of sensitive predicates, p : (1,∞) → [0, 1]
a function, and X is a set of distributions X . An anonymisation mechanism F ful�ls a

privacy notion (L, p,X) with respect to a mechanism E if for all distributions X ∈ X of the

universe U the following holds:

The function p dominates the breach probability distribution in the interval (1,∞) for the
universe U , the distribution X , and the mechanisms E and F .

If the mechanism E is the identity function, we say that F ful�ls a privacy notion (L, p,X)
instead of F ful�ls a privacy notion (L, p,X) with respect to the mechanism E .

A privacy notion limits the breaches a mechanism may cause. For example, if the
dominating function is set constant to 0, any mechanism that ful�ls this notion may not
output releases that cause breaches greater than 1. Or, more intuitively, such a privacy
notion does not allow the adversary to learn anything about a sensitive predicate from a
release.

Privacy notions form a half partial order and therefore allow for the comparison of
notions. For two privacy notions A = (L, p,X) and B = (L′, p′,X′) we say that notion B
is stronger than A (A ⊆ B) i� L ⊆ L′, p′ ≤ p, and X ⊆ X′.

Simplifying Privacy Notions with Cumulative Breach Distributions Considering the
cumulative distribution of a breach probability allows for the de�nition of privacy notions
that guarantee that with a speci�c probability all breaches are equal to or below a
certain threshold. This enables the de�nition of classical privacy notions such as for
example (ϵ ,δ)-Di�erential Privacy [Dwo+06c] in the Bayes Privacy framework. Figure 4.6
shows the cumulative distribution of the breach distribution of Figure 4.5. Here, for

Breach

Σ Probability

1

ϵ

1 − δ

Figure 4.6.: Cumulative distribution of the distribution in Figure 4.5. The probability of a
breach equal or less than ϵ is 1 − δ .

example, as indicated by the dashed lines the probability of a breach equal or less than

30 4. The Bayes Privacy Framework

ϵ is 1 − δ . Depending on the sensitive predicates considered by the breach distribution,
this translates to notions such as (ϵ′,δ)-Di�erential Privacy, while ϵ′ is a function of ϵ .
Section 5 provides an example of the de�nition of Di�erential Privacy in our framework.

Notions that guarantee that with a speci�c probability all breaches are equal to or
below a certain threshold can also be based on privacy notions de�ned in De�nition 25.
Then, the guarantee is not based on the cumulative distribution of breaches, but on the
integral of the function p that dominates all breaches. This allows for the de�nition of
(ϵ ,δ)-privacy notions in the Bayes Privacy framework:

De�nition 26 ((ϵ ,δ)-Bayes Privacy Notion). For a universe of possible data sets U , a

privacy notion A = (L, p,X) according to De�nition 25, a probability δ , and a threshold

ϵ ≥ 1 a (ϵ ,δ)-privacy notion is a tuple (ϵ ,δ , L,X).
An anonymisation mechanism F ful�ls an (ϵ ,δ)-privacy notion (ϵ ,δ , L,X) with respect

to a mechanism E if for all distributions X ∈ X of the universe U the following holds:

In the interval [1, ϵ], the threshold 1 − δ dominates the cumulative breach probability

distribution for E , F , and L.

This means that the probability of breaches greater than ϵ is equal to or smaller than δ .
The advantages of an (ϵ ,δ)-privacy notion are twofold. First, the dominating function,
which is not necessarily a constant, is replaced with a threshold ϵ . This is more in line
with other privacy frameworks. Second, we introduce the threshold δ that speci�es the
probability for which mechanisms that ful�l the notion are allowed to produce breaches
greater than ϵ . Now, in order to check if a mechanism ful�ls a (ϵ ,δ)-privacy notion, we
only need to consider the largest breach that has a probability greater than δ . If the largest
breach with a probability > δ is smaller than ϵ , the mechanism ful�ls the (ϵ ,δ)-privacy
notion.

This de�nition also allows for the comparison of (ϵ ,δ)-privacy notions. The pri-
vacy notion (ϵA,δA, L,X) is stronger than the notion (ϵB ,δB , L,X) i� ϵA ≤ ϵB and
δA ≤ δB . Figure 4.7 shows an example (ϵA,δA) and (ϵB ,δB). A mechanism that ful�ls
the notion (ϵA,δA, L,X) also ful�ls the notion (ϵB ,δB , L,X). A mechanism that ful�ls
notion (ϵB ,δB , L,X) does not necessarily ful�l the notion (ϵA,δA, L,X), since it can have
breaches of ϵB with any probability and breaches bigger than ϵB with probability δB .

3. The Bayes Privacy Framework and other Privacy
Frameworks

In the last section, we introduced privacy notions that are de�ned by limiting the prob-
abilities of breaches. Furthermore, we introduced notions that allow for methods that
fail providing privacy with a small probability, so-called (ϵ ,δ)-notions, into the Bayes
Privacy framework. In [KL10; KL12] Kifer and Lin postulated privacy axioms that all
privacy notions should ful�l. At �rst sight, these axioms seem reasonable as they allow
for a mathematical examination of privacy notions. Unfortunately, these axioms do not
hold for Bayes Privacy notions, as we will show in this section.

Since the Pu�er�sh framework [KM12] follows these axioms [KM14], (ϵ ,δ)-notions can
not be modelled in the Pu�er�sh framework. In this section, we will provide meaningfully
examples of Bayes Privacy notions that do not ful�l the privacy axioms. Furthermore,
we show that for every Pu�er�sh notion there is Bayes Privacy notion that is ful�lled

3. The Bayes Privacy Framework and other Privacy Frameworks 31

Breach

Σ Probability

1

ϵB

1 − δB

ϵA

1 − δA

Figure 4.7.: Cumulative distribution of the distribution in Figure 4.5 and thresholds of
two (ϵ ,δ)-privacy notions. The probability of a breach less than or equal ϵB
is 1 − δB . However, the probability of a breach less than or equal to ϵA is
greater than 1 − δA.

by exactly the same mechanisms, suggesting that the Bayes Privacy framework is more
general than the Pu�er�sh framework and similar frameworks.

3.1. Bayes Privacy and the Privacy Axoims of Kifer and Lin
In order to achieve a consistent basis that allows for a more precise mathematical exam-
ination of privacy notions, Kifer and Lin [KL10; KL12] presented two privacy axioms.
These axioms are deemed to be essential for every privacy notion and are known to hold
for Di�erential Privacy [Dwo08a] and notions of similar structure, for example notions
de�ned in the Pu�er�sh framework.

The �rst axiom states that any computation (without additional input other than the
release and randomness) on the anonymised data should not compromise the privacy. The
privacy de�nition must still hold after the computation, i. e. the combined mechanisms
satisfy the same de�nition.

Axiom 1. (Transformation Invariance) [KL10]

LetM be a privacy mechanism for a particular privacy de�nition and letA be a randomised

algorithm whose input space contains the output space ofM and whose randomness is

independent of both the data and the randomness inM. ThenM′ ≡ A ◦M must also be a

privacy mechanism satisfying the privacy de�nition.

The idea of this axiom is that given anonymised data, an adversary simply can execute
computations on it and change the result, which should not compromise the privacy.
This idea seems reasonable and supports the design of privacy preserving mechanisms
on top of an existing one and enables simple reduction proofs for mechanisms. The �rst
example in this section, however, shows, that Bayes Privacy notions do not necessarily
ful�l this axiom. Consequently, one can argue, that this axiom is too strict.

The second axiom is the convexity axiom. It states that given two mechanisms ful�lling
the same privacy notion, every mechanism that just randomly selects one of these two
mechanisms also ful�ls this privacy notion.

32 4. The Bayes Privacy Framework

Axiom 2. (Convexity) [KL10]
LetM1 andM2 be privacy mechanisms that satisfy a particular privacy de�nition (and such

that the randomness inM1 is independent of the randomness inM2). For any p ∈ {0, 1}, let
Mp be a randomised algorithm that on input i outputsM1(i) with probability p (independent

of the data and the randomness inM1 andM2) and outputsM2(i) with probability 1 − p.
ThenMp is a privacy mechanism that satis�es the privacy de�nition.

The intuition behind the convexity axiom is that if two mechanisms ful�l the same
privacy notion it should not matter which one is used to anonymise data. Therefore they
can be used unchangeably. More precisely, a mechanism that selects randomly one of the
two mechanisms that individually already ful�l a privacy notion should also ful�l this
privacy notion. The second example will show that this also does not hold for (ϵ ,δ)-Bayes
Privacy notions.

Example 1 In the �rst example, the post processing mechanism changes the probabilities
and magnitude of breaches in such a way, that the resulting mechanism does not ful�l the
original notion. The original notion can either be modelled as a (ϵ ,δ)-notion that allows
mechanisms to fail to provide privacy with probability δ = 0.5, or it can be modelled
as a Bayes Privacy notion with a dominating function p = 0.5. In both cases, after post
processing, the original privacy notion will be violated.

Suppose an intelligence service has a release mechanism that answers a binary question,
for example about a secret operation, to a politician truthfully with probability p while
answering “no comment” the rest of the time. The intelligence service might �nd this
mechanism acceptable, because there is only a breach with probability p. With probability
1 − p, the politician does not learn anything about their secret operations.

Further assume the politician has to relay the information to the press, but does not
want to give �shy answers. So instead of the “no comment” the politician answers the
question randomly. In our framework, this example can be modelled with a universe
that contains two data sets. In the �rst one, the answer to the binary question is 0; in the
second one it is 1:

U = {u0 = {t = 0}, u1 = {t = 1}}

For the sake of simplicity, we set the probability of each data set to 0.5:

X = {X = {Pr[u0] = 0.5, Pr[u1] = 0.5}}

The sensitive predicates are the answers to the binary question t . The �rst predicate
de�nes the answer 0 as sensitive, the second predicate de�nes the answer 1 as sensitive:

L = {t = 0, t = 1}

The mechanism E simply extracts the answer to b from the data sets. Therefore, we de�ne
E (u) = t , or more precisely E (u0) = 0,E (u1) = 1. The mechanism F is the mechanism
of the intelligence service. It tells the truth with probability 0.5 and answers ⊥ with the
remaining probability of 0.5. Since the politician does not want to relay �shy answers
the the press, he randomly chooses a possible answer if the answer he gets from the
intelligence service is ⊥. Therefore, the post processing mechanism G returns randomly
0 or 1 if the input is ⊥. Formally, the mechanisms F and G are de�ned as follows:

3. The Bayes Privacy Framework and other Privacy Frameworks 33

F (d) =

d probability p

⊥ probability 1 − p
G (d ′) =

d ′ d ′ ∈ {0, 1}
v , with v ← {0, 1} d ′ = ⊥

If the politician gets an answer other than ⊥ it is the truth. Therefore, the probability
that the sensitive predicate has the same value than the release is 1:

Pr[t = 0 | F (d) = 0] = Pr[t = 1 | F (d) = 1] = 1

In the following, for our calculations and �gures, we set p = 0.5. If the mechanism F
produces a breach (cf. De�nition 22) of a sensitive predicate (either t = 0 or t = 1), the
magnitude of the breach is 2:

b(l ,F (d)) =
Pr[t = 0 | F (d) = 0]

Pr[t = 0]
=

Pr[t = 1 | F (d) = 1]
Pr[t = 1]

=
1
0.5
= 2

Since the probability for F (d) = d is p = 0.5, the probability of a breach of 2 is 0.5.
Figure 4.8 shows the breach distribution for the mechanism F , as well as an example for
a dominating function.

Breach

Probability

1

2

Figure 4.8.: Breach distribution for the mechanism F . Note, that since breaches equal
or less than 1 are not considered to compromise privacy, the domain of the
dominating function is (1,∞) (cf. De�nitions 22 and 25). The probability for
no privacy breach at all is 1 − p = 0.5.

The second mechanism G changes these probabilities. Since the politician guesses
the answer if he gets no answer (⊥) from the intelligence service, it holds true that the
probability that the release after post processing is equal to the value of t is 0.75:

Pr[t = 0 | G (d ′) = 0] = Pr[t = 1 | G (d ′) = 1] = 0.75

Now, however, the probability for this breach is 1 and the magnitude of the breach is
smaller with b(l ,G (F (d))) = 1.5:

b(l ,G (F (d))) =
Pr[t = 0 | ,G (d ′) = 0]

Pr[t = 0]
=

0.75
0.5
= 1.5

Obviously, after application of G , the security de�nition of the �rst algorithm is not
met anymore (cf. Figure 4.9). While our intelligence service might have accepted the
mechanism F , they might reject the mechanism G ◦F , since with G ◦F the public always
learns something about their secret operations.

34 4. The Bayes Privacy Framework

Breach

Probability

1

2

Figure 4.9.: Breach distribution for the Mechanism G ◦ F and the dominating function
for the mechanism F from Figure 4.8. This function does not dominate the
mechanism G ◦ F . Furthermore, there is always a privacy breach.

Example 2 For the second example consider an examination about corruption in politics.
The goal is to �nd the truth about whether a certain politician was bribed or not. A
proof that the politician was bribed would mean the end of his career. Consider the same
universe U , distribution X, mechanism E as in the �rst example. Now, t = 1 means
that the politician was bribed. Therefore, the sensitive predicate (from the view of the
politician) is L = {t = 1}.

Consider the following two mechanisms: Mechanism F1 hides the predicate l1 with a
high probability v , for example say v = 0.99:

F1(d) =

d probability 0.01
⊥ probability 0.99

Here, ⊥means, that the examination could not �nd any evidence. The second mechanism
F2 hides the predicate (perfectly) is a mechanism F2. It simply returns a random bit:

F2(d) = b, with b ← {0, 1}

Separately, both mechanisms hide the sensitive predicate perfectly (ϵ = 0) with at
least probability 0.99. Formally, this means, that the mechanisms F1 and F2 ful�l the
notion A = (L, 0.01,X). This notion can also be de�ned as an (ϵ ,δ)-notion that allows
mechanisms to fail to provide privacy with probability 0.01 for L, X, U , and E as de�ned
above.

Both mechanisms individually might be acceptable by the politician, since the proba-
bility that he can continue his career unharmed is very high.

Now, consider a meta mechanism M that combines F1 and F2. The mechanism M
randomly chooses which of the mechanisms F1 and F2 to use:

M (d) =

F1(d) probability p
F2(d) probability 1-p

Since the random coins used in anonymisation mechanisms are secret, if the output of M
is either 0 or 1, one of both mechanisms of F1 and F2 could have been selected. Therefore,

3. The Bayes Privacy Framework and other Privacy Frameworks 35

in this combination, suddenly, the random output of F2 gets correlated to the real value
of d .

This decreases the probability δ ′ that the predicate is perfectly hidden to p · (1 − v) +
(1 − p) · 0.5, which is smaller than 0.99 for any non trivial probability p. This means that
the combination of the two mechanisms according to Axiom 2 does not ful�l the notion
ful�lled by the individual mechanisms irregardless of the probability (except for p = 0
and p = 1) used in the combination. The breach generated by M (d) = 1 is signi�cantly
lower than the breach generated by F1(d) = 1: However, the probability that M (d) = 1
is higher than the probability that F1(d) = 1 (for 0 < p < 1):

Pr[M (d) = 1] = p · (0.01) + (1 − p) · 0.5 ≥ 0.01 = Pr[F1(d) = 1]

For our politician, this means, that the probability that he can redeem himself without a
doubt is lower for the mechanism M . This might not be acceptable for him, even if he
deems the individual mechanisms to be acceptable.

To summarise the results, there are meaningful privacy guarantees that can be modelled
in the Bayes Privacy framework but do not ful�l the privacy axioms mentioned above.

3.2. Bayes Privacy and Pu�erfish
The last sections showed that the Bayes Privacy framework allows for modelling notions
that can not be modelled in the Pu�er�sh framework or any framework for which
Axioms 1 and 2 hold. In this section, we show that for every notion in the Pu�er�sh
framework, there is a corresponding notion in the Bayes Privacy framework that is
ful�lled by exactly the mechanisms that also ful�l the Pu�er�sh notion.

For all pairs of sensitive predicates, the Pu�er�sh framework requires that the proba-
bility of the output is within a certain range (determined by the security parameter ϵ)
given one of the sensitive predicates is true. This translates to the requirement that all
breaches are below a certain threshold. Consequently, the dominating function p (the
security parameter in our privacy framework, cf. De�nition 25) is a constant. The Bayes
Privacy framework does not restrict p to be constant. Here, p can be a arbitrary function.
This allows for potentially more precise privacy guarantees.

Lemma 2. Let P = (S,Spairs,D) be a Pu�er�sh notion. Let the set M be the set of all

mechanisms that ful�l P . Then there is a Bayes Privacy notion P′ that is ful�lled by exactly

the mechanisms inM.

The following proof shows how to de�ne P′ given P . The basic idea of the proof is
that given a set of mechanisms, there is a dominating function for their breaches. The
proof shows the relation of a notion in Pu�er�sh and the privacy breaches that depend
on the possible output of each mechanism and the on the set of sensitive predicates S.
This allows for de�ning a Bayes Privacy notion that is ful�lled by all mechanisms in M.

Proof. Let P = (S,Spairs,D) be a privacy notion in the Pu�er�sh framework. Then, there
is an upper bound b(l , s) for each release s and each sensitive predicate l ∈ S that depends
on P :

For a given distribution θ ∈ S of databases, Pu�er�sh requires for all pairs of sensitive
predicates (l1, l2) ∈ Spairs and for all possible outputs s of the anonymisation function

36 4. The Bayes Privacy Framework

(cf. De�nition 21) that the probability of s given l1 is bound to the probability of s given
l2:

Pr[s |l1] ≤ eϵ Pr[s |l2]

and
Pr[s |l2] ≤ eϵ Pr[s |l1]

The predicates of a pair (l1, l2) ∈ Spairs are mutually exclusive, but not necessarily ex-
haustive. This means that both predicates can not be true. They can, however, both be
false:

Pr[l1, l2] = 0

Pr[¬l1,¬l2] ≥ 0

Therefore, and with the law of total probability (Lemma 1), we get for (l1, l2) ∈ Spairs:

Pr[s] = Pr[s |l1] Pr[l1] + Pr[s |l2] Pr[l2]
+ Pr[s |¬l1,¬l2] Pr[¬l1,¬l2]

⇔ Pr[s |l2] =
1

Pr[l2]
(Pr[s] − Pr[s |l1] Pr[l1]

− Pr[s |¬l1,¬l2] Pr[¬l1,¬l2])

With this formula, we get:

Pr[s |l1] ≤ eϵ Pr[s |l2]

⇔ Pr[s |l1] ≤ eϵ
1

Pr[l2]
(Pr[s] − Pr[s |l1] Pr[l1]

− Pr[s |¬l1,¬l2] Pr[¬l1,¬l2])

⇔ Pr[s |l1](1 + eϵ Pr[l1]) ≤ eϵ
1

Pr[l2]
(Pr[s] − Pr[s |¬l1,¬l2] Pr[¬l1,¬l2])

According to Bayes’ Theorem (Lemma 1), the equation above is equal to:

⇔
Pr[l1 |s] Pr[s]

Pr[l1]
(1 + eϵ Pr[l1]) ≤ eϵ

1
Pr[l2]

(Pr[s] − Pr[¬l1,¬l2 |s] Pr[s])

⇔
Pr[l1 |s]
Pr[l1]

(1 + eϵ Pr[l1]) ≤ eϵ
1

Pr[l2]
(1 − Pr[¬l1,¬l2 |s])

⇔
Pr[l1 |s]
Pr[l1]

≤
eϵ

1 + eϵ Pr[l1]
1

Pr[l2]
(1 − Pr[¬l1,¬l2 |s])

⇔ b(l1, s) ≤
eϵ

1 + eϵ Pr[l1]
1

Pr[l2]
(1 − Pr[¬l1,¬l2 |s])

Since it is possible that l1 is a sensitive predicate in more than one pairs in Spairs, the
upper bound for a breach is determined by the pair for which b(l1, s) has the largest
value. With the existence of an upper bound for each breach b(s, l) that depends on the
Pu�er�sh notion P , there also exists a dominating function p that is implied by P :

p = max
l1,l2∈Spairs,s

eϵ

1 + eϵ Pr[l1]
1

Pr[l2]
(1 − Pr[¬l1,¬l2 |s]) (4.1)

4. Composition and Decomposition of Bayes Privacy Notions 37

With this domination function, all mechanisms that ful�l the Pu�er�sh notion P =
(S,Spairs,D) also ful�l the Bayes Privacy notion P′ = (S, p,D).

Moreover, let M′ < M be a mechanism that does not ful�l the Pu�er�sh notion P .
Then, there is an (l1, l2) ∈ Spairs for which:

Pr[s |l1] > eϵ Pr[s |l2]

Consequently, analogous to the equations above follows, that:

b(l1, s) >
eϵ

1 + eϵ Pr[l1]
1

Pr[l2]
(1 − Pr[¬l1,¬l2 |s])

Then, the mechanism M′ can cause a breach that is not dominated by the function in
equation 4.1. Thus, M′ does not ful�l the Bayes Privacy notion P′. �

This result seems to be in contradiction to the examples in this section that showed
that Bayes Privacy notions do not necessarily ful�l the privacy axioms that are ful�lled by
Pu�er�sh notions. However, the Bayes Privacy framework allows to express notions that
can not be expressed in the Pu�er�sh framework. For example, the Pu�er�sh framework
demands for every release s and all all pairs of sensitive predicates (l1, l2) ∈ Spairs that
Pr[s |l1] ≤ eϵ Pr[s |l2]. This means that if a certain release is possible given l1, it has also
be possible given l2. The Bayes Privacy framework is not that restrictive and therefore
allows to express notions that can not be expressed in the Pu�er�sh framework.

4. Composition and Decomposition of Bayes Privacy
Notions

An important property of security notions in general is composition. Security mechanisms
are always used in a context that can in�uence the security properties of the mechanism.
If a security notion composes universally, mechanisms retain this property independently
of the context they are used in. Therefore, universal composability is desirable for security
notions.

There are cryptographic frameworks with a focus on composability. The most estab-
lished framework is theUniversal Composability (UC) Framework [Can01]. This framework
follows the ideal-world-real-world paradigm in oder to prove the security properties of
a mechanism and its compositional properties. The UC-framework, however, can not
be used directly to study the composition properties of privacy notions since there can
always be constructed a context in which a mechanism that may ful�l a privacy notion
in di�erent contexts, does fails to provide privacy [KM11] (cf. Section 2).

In the Bayes Privacy framework, the possible background knowledge of the adversary
can also be interpreted as allowed contexts a mechanism can be used in. Therefore, the
Bayes Privacy framework itself allows to study the compositional properties of privacy
notions. Intuitively, one would assume that Bayes Privacy notions self-compose linearly.
A breach changes the adversaries belief about a sensitive predicate. A second breach
for the same sensitive predicate should change the adversaries belief a second time.
Consequently, the overall breach for that predicate should not be larger than the sum of
the individual breaches. In general, however, this is not the case. Consider the following
example:

38 4. The Bayes Privacy Framework

Let our universe U be comprised of four databases d0, ... d3. Let each database be
equally probable (i. e. the set of background knowledge X of adversaries only contains
the uniform distribution.). Let the set of sensitive predicates L contain only one sensitive
predicate l with:

l (d0) = l (d1) = false

l (d2) = l (d3) = true

Let F0 and F1 be anonymisation mechanisms according to Figure 4.10. Individually, the
release of the result of an anonymisation mechanism F0 or F1 does not change the a
posteriori probability of l . Therefore, F0 and F1, individually ful�l the Bayes Privacy
notion (L, 0, X).

Original Database
Mechanism d0 d1 d2 d3

F0 1 0 1 0
F1 a b b a

Figure 4.10.: Output of the Mechanisms F1 and F2 as a function of the input.

If an adversary, however, learns both, a release of F0 and a release of F1, she learns the
original database and, therefore, the exact value of l . For example, if the release generated
by F0 is 1 and the release generated by F1 is b, the original database was d2 an the value
of l is true (cf. Figure 4.11).

F1(dx)
F2(dx) 0 1

a d3 d0
b d1 d2

Figure 4.11.: With the releases generated by F1 and F2, the adversary learns the original
database and therefore the exact value of the sensitive predicate l .

This simple example shows that, in general, Bayes Privacy notions do not compose.
Two releases of mechanisms, that individually ful�l the same Bayes Privacy notion can
completely break privacy. In the following, we will study when and how Bayes Privacy
notions compose. Therefore, we introduce the notion of a posteriori beliefs an adversary
can have after a release from a mechanism that ful�ls a privacy notion P . Consider
Figure 4.12. Prior to the release, the adversary has the knowledge X . The release s
changes the assumptions of the adversary about the original data set. There may be data
sets that can now be excluded, because they can not lead to the release s and there may
be data sets that are now more probable, because they lead to the release s with a high
probability. Therefore, after the release, the adversary has the belief X ′.

If the mechanism that produced the release ful�ls a privacy notion and the adversary
with background knowledge X is considered by this notion, we call the belief X ′ an a
posteriori belief of P :

4. Composition and Decomposition of Bayes Privacy Notions 39

X X ′
s

Figure 4.12.: The a priori knowledge X of an adversary is transformed to the a poste-
riori knowledge X ′ after the release of s . The distributions X and X ′ are
assumptions about the probabilities of the data sets in the universe.

De�nition 27 (A Posteriori Belief of a Bayes Privacy Notion). Let P = (L, p,X) be a
Bayes Privacy notion. An a posteriori belief of P is a belief of an adversary A with an a

priori background knowledge X ∈ X after learning a release from a mechanism that ful�ls

P .

Consequently, a Bayes Privacy notion has a set of a priori beliefs and a set of a posteriori
beliefs. Consider Figure 4.13. The set of a posteriori beliefs for a notion is the result of
conditioning each a priori belief with each release that can be produced by a mechanism
that ful�ls this notion. Note, since a mechanism that does not change any belief, for

X X′

Figure 4.13.: All possible a priori knowledgeX, and all possible a posteriori knowledgeX′
allowed by a notion after a release by a mechanisms that ful�ls this notion.
Note, that X ⊆ X′

example a mechanism that releases just random numbers, does ful�l any notion, the a
priori beliefs of a Bayes Privacy notion are a subset of the a posteriori beliefs. Also note,
that for a given a priori belief, not all a posteriori beliefs are equally possible. If and
with which probability an a posteriori belief can be reached from a given a priori belief
is determined by the dominating function of the Bayes Privacy notion that restricts the
breach probabilities.

With this view of Bayes Privacy notions, we can (de-)compose notions. Consider for
example the notion from Figure 4.13 with the a priori beliefsX and the a posteriori beliefs
X′. Let us assume that there are sets of distributions, that lie in between X and X′. This
allows us to de�ne notions that compose to the original notion. Consider Figure 4.14.
The Bayes Privacy notion has been decomposed into 2 notions. In the following, we

X X1 X′

Figure 4.14.: Decomposition of the notion from Figure 4.13 into two notions.

will examine under which circumstances the composition of two releases ful�ls a Bayes
Privacy notion, or more precisely, how two notions can be combined into a composite
notion. Therefore, we need to de�ne, when we can combine notions:

De�nition 28 (Compatibility of Bayes Privacy Notions). For a Universe U , let P1 =

(L, p1,X1) and P2 = (L, p2,X2) be Bayes Privacy-notions. Let X
′
1 be the set of all a posteriori

beliefs of P1. We say that P2 is compatible to P1 i� X
′
1 = X2.

40 4. The Bayes Privacy Framework

If two Bayes Privacy notions P1 and P2 are compatible, the dominating function of the
notion composed of P1 and P2 depends on the dominating functions of the individual
notions. A dominating function limits the probability of a breach and a breach changes
the adversaries belief. Consequently, the probability of a given a posteriori belief is
determined by the dominating function.

We can, for two compatible Bayes Privacy notions with special dominating functions,
specify the compositional notion easily. In the following, we will do this for notions with
constant dominating functions and for notions with dominating functions, that allow
breaches up to a certain threshold and disallow breaches bigger than this threshold.

Proposition 1. For a universe U , let P1 = (L, p1,X1) and P2 = (L, p2,X2) be Bayes

Privacy notions with p1(b) = pr1 and p2(b) = pr2 for all b ∈ (1,∞) with pr1, pr2 ∈ [0, 1]
Furthermore, let P2 be compatible to P1 and let M = (M1,M2) with M (d) = (M1(d),M2(d))
be a mechanism with M1 ful�lling P1 and M2 ful�lling P2. Then, the following holds:

ThemechanismM ful�ls the Bayes Privacy notionP = (L, p,X) with p(b) = max{pr1, pr2}.

In the following proof, we calculate the breach for a sensitive predicate and a release
of the composite mechanism M .

Proof. Let P ,P1,P2, and M be de�ned as in Proposition 1. Then, for all breaches b1, b2 > 1,
data sets d ∈ U , sensitive predicates l ∈ L and releases M (d) = (s1, s2) holds:

Pr[b(l , s1) = b1] ≤ pr1

with respect to an adversary with background knowledge X ∈ X, and

Pr[b(l , s2) = b2] ≤ pr2

with respect to an adversary with background knowledge X ′ ∈ X′. For an adversary with
background knowledge X ∈ X, a breach b for a sensitive predicate l ∈ L and a release
s = M (d) is de�ned as:

b(l , s) =
Pr[l |s]
Pr[l]

In the following, we explicitly state the background knowledge of the adversary in the
formulas:

b(l , s) =
Pr[l |s]
Pr[l]

=
Pr[l |s,X]
Pr[l |X]

=
Pr[l |s1, s2,X]

Pr[l |X]

Let X ′ be the a posteriori belief of the adversary after the release of s1. Then we get:

(l , s) =
Pr[l |s1, s2,X]

Pr[l |X]
=

Pr[l |s2,X ′]
Pr[l |X]

b(l , s1) =
Pr[l |s1,X]
Pr[l |X]

=
Pr[l |X ′]
Pr[l |X]

4. Composition and Decomposition of Bayes Privacy Notions 41

Combining these two formulas, we get:

b(l , s) =
Pr[l |s2,X ′]
Pr[l |X ′]

· b(l , s1)

b(l , s) ≤ b(l , s2) · b(l , s1) (4.2)

Since in P1 all breaches have probability pr1 and in P2, all breaches have probability pr2,
the probability for a breach b > 1 in P is:

Pr[b(l , s) > 1] ≤ Pr[b(l , s2) · b(l , s1) > 1] ≤ max{pr1, pr2}

Which is the behaviour as de�ned by the dominating function p in Proposition 1. �

Intuitively, this is the expected result. Since we did not restrict the magnitude of
breaches but only their probabilities, the probability that a breach occurs depends on the
probabilities of breaches occurring in the individual notions. If for example M1 causes a
breach, it does not matter if M2 causes a breach and vice versa. Therefore, the probability
for a breach only depends on the maximal probability for a breach in the individual
notions.

In the following, we study how notions compose, if we restrict the magnitude of
breaches. Therefore, we de�ne two compatible notions, that allow breaches up to certain
thresholds:

Proposition 2. For a universe U , let P1 = (L, p1,X1) and P2 = (L, p2,X2) be Bayes Privacy
notions with

p1(b) =

1, b ∈ (1, b1]
0, b ∈ (b1,∞)

and

p2(b) =

1, b ∈ (1, b2]
0, b ∈ (b2,∞)

Furthermore, let P2 be compatible to P1 and let M = (M1,M2) with M (d) = (M1(d),M2(d))
be a mechanism with M1 ful�lling P1 and M2 ful�lling P2. The mechanism M ful�ls the

Bayes Privacy-notion P = (L, p,X) with

p(b) =

1, b ∈ (1, b1 · b2]
0, b ∈ (b1 · b2,∞)

for all breaches b ≥ 1.

Proof. In the proof for Proposition 1, we got the following equation (Equation 4.2):

b(l , s) ≤ b(l , s2) · b(l , s1)

From this equation follows that the biggest breach of P is equal to or smaller than the
product of the individually biggest breaches in P1 and P2. The biggest breach allowed in
P1 is b1; the biggest breach allowed in P2 is b2. Therefore, the biggest breach that can be
caused by a release of M is b1 · b2. Breaches greater than b1 · b2 can not be caused by M ,
which proves Proposition 2. �

42 4. The Bayes Privacy Framework

The proofs for Propositions 1 and 2 suggest, that two compatible notions that individu-
ally restrict the breach probability of possible breaches and only allow breaches up to a
certain threshold compose according to Proposition 1 and Proposition 2. This holds true:

Proposition 3. For a universe U , let P1 = (L, p1,X1) and P2 = (L, p2,X2) be Bayes Privacy
notions with

p1(b) =

pr1, b ∈ (1, b1]
0, b ∈ (b1,∞)

and

p2(b) =

pr2, b ∈ (1, b2]
0, b ∈ (b2,∞)

with z1, z2 ∈ (1,∞) and pr1, pr2 ∈ [0, 1]. Furthermore, let P2 be compatible to P1 and let

M = (M1,M2) with M (d) = (M1(d),M2(d)) be a mechanism with M1 ful�lling P1 and

M2 ful�lling P2. The mechanism M ful�ls the Bayes Privacy-notion P = (L, p,X) with

p(b) =

max{pr1, pr2}, b ∈ (1, b1 · b2]
0, b ∈ (b1 · b2,∞)

for all breaches b ≥ 1.

Proof. From Proposition 2 follows that the largest breach possible is b1 · b2. From Proposi-
tion 1 follows that the probability for a breach is equal to or lower than max{pr1, pr2}. �

Propositions 1, 2, and 3 show that the Bayes Privacy framework allows to study
the composition properties of privacy notions. Privacy notions with more complex
dominating functions require an individual, more profound analysis of their compositional
properties. In practice, one can substitute such complex notions with notions with simple
dominating functions such as in the Propositions 1, 2, and 3 in order to get an upper
bound for the dominating function of the composed notion. In Section 5.1 we will study
the composition properties of Di�erential Privacy and we will show that Di�erential
Privacy composes according to Proposition 2.

5. Examples
In this section we show how the Bayes Privacy framework can be applied. Since Di�eren-
tial Privacy is the gold standard in privacy notions, in Section 5.1, we show how to express
Di�erential Privacy as notion in the Bayes Privacy framework. Furthermore, we show
the compositional properties of Di�erential Privacy in the Bayes Privacy framework. In
Section 5.2 we provide an example that shows how Bayes Privacy allows for modelling a
notion for an averaging mechanism. This is particularly interesting because intuitively
disclosing the average value of an attribute provides privacy. Furthermore, the averaging
mechanism is extensively used in practice, for example during election periods.

5.1. Di�erential Privacy
As the Pu�er�sh framework, the Bayes Privacy framework allows to model Di�erential
Privacy, even (ϵ , δ)-Di�erential Privacy. In order to model Di�erential Privacy in the

5. Examples 43

Bayes Privacy framework, we need to explicitly model the background knowledge of the
adversary. Since the intention of Di�erential Privacy is to hide for any individual if it is
represented in the database, we assume the worst adversary that, for a given individual,
knows if all other individuals are in the database. This can be done with the following
universe and distributions:

De�nition 29 (Di�erential Privacy Background Knowledge). For a universe U containing

all possible data sets of a given domain, we de�ne the set XU,dp as the set of all distributions

of U with the following property: There are data sets u0 and u1 with probability p0, p1 > 0,
with d0∆d1 = 1. All other data sets have probability 0.

Di�erential Privacy hides for any individual whether it is in the database. This can be
formalised in the form of predicates as follows:

De�nition 30 (Di�erential Privacy Predicates). For a given universe U with data about

individuals I1, ... In, we de�ne the set of predicates LU,dp as the set that contains all predicates

of the form:

individual Ii is in the database d

for all individuals Ii .

With these de�nitions, we can state and prove the following lemma:

Proposition 4. Let U be a universe of databases. Then, a mechanism F that ful�ls

(
eϵ

1+Pr[l](eϵ−1) , δ , LU,dp , XU,dp)-privacy also ful�ls (ϵ , δ)-Di�erential Privacy.

Proof. For the sake of readability, in this proof, we write L instead of LU,dp andX instead of
XU,dp . In order to prove Proposition 4, we use Bayes’ Theorem the law of total probability
for binary events (cf. Lemma 1). According to De�nition 26 ful�lling (eϵ

1+Pr[l](eϵ−1) , δ , L,
X)-privacy means, that the probability of all breaches with a maximum magnitude of

eϵ

1+Pr[l](eϵ−1) is equal or less than 1 − δ . Therefore, for all l ∈ L and all d ∈ U holds:

Pr[b(l , s) ≤
eϵ

1 + Pr[l](eϵ − 1)
] ≤ 1 − δ

For Pr[l] = 0, we get:

1 = b(l , s) ≤
eϵ

1 + Pr[l](eϵ − 1)
= eϵ

This is true for all ϵ ≥ 0. For Pr[l] = 1, we get:

1 = b(l , s) ≤
eϵ

1 + Pr[l](eϵ − 1)
=

eϵ

eϵ

44 4. The Bayes Privacy Framework

This also is true for all ϵ . Therefore, we only have to examine the case where Pr[l] > 0
and Pr[¬l] > 0. This is the case when l distinguishes the two databases d0 and d1. Let
w.l.o.g. l (d0) = true and l (d1) = false . Then, the following holds:

b(l , s) ≤
eϵ

1 + Pr[l](eϵ − 1)

⇔
Pr[l |s]
Pr[l]

≤
eϵ

1 + Pr[l](eϵ − 1)

⇔
Pr[l |s]
Pr[l]

Pr[s] ≤
eϵ

1 + Pr[l](eϵ − 1)
Pr[s]

⇔
Pr[l |s]
Pr[l]

Pr[s] ≤
eϵ

1 + eϵ Pr[l] − Pr[l]
Pr[s]

With Bayes’ Theorem, we get:

⇔ Pr[s |l] ≤
eϵ

1 + eϵ Pr[l] − Pr[l])
Pr[s]

⇔ Pr[s |l](1 + eϵ Pr[l] − Pr[l]) ≤ eϵ Pr[s]
⇔ Pr[s |l](1 − Pr[l]) ≤ eϵ (Pr[s] − Pr[s |l] Pr[l])

⇔ Pr[s |l] ≤ eϵ
Pr[s] − Pr[s |l] Pr[l]

1 − Pr[l]

Since Pr[l] = 1 − Pr[¬l], this is equal to:

⇔ Pr[s |l] ≤ eϵ
Pr[s] − Pr[s |l] Pr[l]

Pr[¬l]

With the law of total probability, we get:

⇔ Pr[s |l] ≤ eϵ Pr[s |¬l]

Since l distinguishes the two databases d0 and d1, this es equal to:

⇔ Pr[F (d0) = s] ≤ eϵ Pr[F (d1) = s]

This only holds, when the mechanism F ful�ls ϵ-Di�erential Privacy.

�

Proposition 4 implies that the largest possible breach for a sensitive predicate gets
smaller when the probability of this predicate gets larger. Since, in order to satisfy
Di�erential Privacy, for any sensitive predicate l ∈ L there is also its negation ¬l ∈ L, the
largest possible breach for all l ∈ L is smallest for Pr[l] = 1

2 for all sensitive predicates l .
For Pr[l] = 1

2 , we get:

b(l , s) ≤
eϵ

1 + Pr[l](eϵ − 1)
=

eϵ

1
2eϵ + 1

2
= 2

eϵ

eϵ + 1
< 2

5. Examples 45

This means, that if for an individual, the probability to be represented in the database
is equal to the probability to not be represented in the original database, Di�erential
Privacy implies an upper bound for the worst privacy breach for this individual. This
upper bound is independent of the security parameter ϵ of Di�erential Privacy since with
a breach of 2 for an individual, the adversary learns if this individual is in the database,
which is prevented by Di�erential Privacy.

In Section 4 we showed that the Bayes Privacy framework allows to study the compo-
sition properties of privacy notions. We know that Di�erential Privacy composes linearly.
This means that the composition of two mechanisms that are ϵ1 and ϵ2 di�erentially
private, respectively, is ϵ1 + ϵ2 di�erentially private [McS09]. This can also be shown in
the Bayes Privacy framework.
Proposition 5. Let U be a universe of databases and E be the identity function. Let M1

and M2 be mechanisms that ful�l (

eϵ1
1+Pr[l](eϵ1 −1)

, δ , LU,dp , XU,dp)-privacy and (

eϵ2
1+Pr[l](eϵ2 −1)

,

δ , LU,dp , XU,dp)-privacy with respect to E , respectively.

Then, the mechanism M = (M1,M2) ful�ls (
eϵ1+ϵ2

1+Pr[l](eϵ1+ϵ2−1) , δ , LU,dp , XU,dp)-privacy.

Proof. In the following, we show with Proposition 2, that the biggest breach b of a
mechanism, that is a composition of two mechanisms ful�lling ϵ1-Di�erential Privacy
and ϵ2-Di�erential Privacy, respectively, is bound by eϵ1+ϵ2

1+Pr[l](eϵ1+ϵ2−1) .
In order to apply Proposition 2, we need to show, that the two privacy notions in

Proposition 5 are compatible. The possible background knowledge of the adversaryXU,dp

contains all distributions according to De�nition 29. After a release with a di�erentially
private mechanism, the a posteriori knowledge of the adversary is also in XU,dp . Other-
wise she would have learned for an individual if it is in the database. Therefore the two
privacy notions in Proposition 5 are compatible. Now we can apply Proposition 2. From
equation 4.2 follows for distributions X ∈ X and X ′ ∈ X′, where X ′ is the a posteriori
distribution of X after the release of s1:

b(l , s) ≤
eϵ1

1 + Pr[l |X](eϵ1 − 1)
·

eϵ2

1 + Pr[l |X ′](eϵ2 − 1)

We need to show the following equation:

b(l , s) ≤
eϵ1+ϵ2

1 + Pr[l |X](eϵ1+ϵ2 − 1)
(4.3)

Therefore, we show that:
eϵ1

1 + Pr[l |X](eϵ1 − 1)
·

eϵ2

1 + Pr[l |X ′](eϵ2 − 1)
≤

eϵ1+ϵ2

1 + Pr[l](eϵ1+ϵ2 − 1)

Since each denominator and numerator in this equation is greater than 0, we get:

eϵ1+ϵ2 (1 + Pr[l |X](eϵ1+ϵ2 − 1)) ≤ eϵ1+ϵ2 ((1 + Pr[l |X](eϵ1 − 1)) · (1 + Pr[l |X ′](eϵ2 − 1)))
⇔

1 + Pr[l |X](eϵ1+ϵ2 − 1) ≤ (1 + Pr[l |X](eϵ1 − 1)) · (1 + Pr[l |X ′](eϵ2 − 1))
⇔

1 + Pr[l |X]eϵ1+ϵ2 − Pr[l |X] ≤ 1 + Pr[l |X]eϵ1 − Pr[l |X]
+ Pr[l |X ′]eϵ2 + Pr[l |X] Pr[l |X ′]eϵ1+ϵ2 − Pr[l |X] Pr[l |X ′]eϵ2

− Pr[l |X ′] − Pr[l |X] Pr[l |X ′]eϵ1 + Pr[l |X] Pr[l |X ′]

46 4. The Bayes Privacy Framework

We subtract 1 on both sides, divide through Pr[l |X] and, for the sake of readability, we
set c := Pr[l |X ′]

Pr[l |X] (Please note, that c > 0.):

eϵ1+ϵ2 − 1 ≤ eϵ1 − 1 + ceϵ2 + Pr[l |X ′]eϵ1+ϵ2 − Pr[l |X ′]eϵ2 − c − Pr[l |X ′]eϵ1 + Pr[l |X ′]
⇔

0 ≤ c (−1 + eϵ2) + Pr[l |X ′](eϵ1+ϵ2 − eϵ1 − eϵ2 + 1) + eϵ1 (4.4)

Since ϵ1, ϵ2 > 0, the following holds:

• −1 + eϵ2 > 0

• eϵ1+ϵ2 + 1 > eϵ1 + eϵ2

As a result, Equation 4.4 is true. Therefore, Equation 4.3 also is true.
�

5.2. Averages
Averages are commonly used without even questioning the privacy properties of the
averaging mechanism. A common example are election periods, where projections of the
result and �ne grained results of every district are published frequently. Without strong
assumptions about the distribution of the universe, there are cases when the averaging
mechanism fails to provide privacy. A meaningful notion for this mechanism can not be
modelled in frameworks that only consider the worst case. For example, if all individuals
voted for the same party, the average over all votes allows to determine the vote of each
individual.

In this section, we will show how the privacy properties of the averaging mechanism
can be captured in the Bayes Privacy framework. A similar approach can be found
in [Bha+11], where the entropy in the original database is used to privacy preservingly
answer linear queries over reals in a database without the addition of noise to the result.
Their notion ϵ-Noiseless Privacy is similar to Di�erential Privacy and only considers the
worst case. It is achieved through strong assumptions about the adversaries background
knowledge and the distribution of attribute values and possible databases.

Since the Bayes Privacy framework allows to model privacy notions that fail to provide
privacy in some rare cases, it allows for modelling a notion for a mechanism that calculates
the average value of an attribute for a given data set without such strong assumptions. For
example publishing the average of all salaries of the employees of a company intuitively
preserves the privacy of individuals if the uncertainty of the adversary is high enough.
However, there are possible but very improbable average salaries that cause high breaches.
If a privacy notion does not allow for high breaches with a small probability, averaging
can not be considered to be a privacy preserving mechanism. Consider the following
example, where each salary is either 1, 2, or 3 and each salary has an identical independent
probability of p = 1

3 . If the company employs 3 individuals, every database has a
probability of (13)

3. W.l.o.g., the salary of employee A is considered sensitive and the goal
is to publish the average salary of all employees. Figure 4.15 shows an example for an
original database where the average salary is 7

3 .
There are 3 di�erent salaries and 3 employees, therefore there there are 27 di�erent

databases and 7 di�erent possible average salaries. For a given salary x ∈ {1, 2, 3} the

5. Examples 47

employee salary

A 1
B 3
C 3

Figure 4.15.: An example database that shows the salaries of three employees. Here, the
average salary is 7

3 . In our example, there are 6 possible databases with this
average salary.

average salary probability of release conditional probability of l breach
s Pr[s] Pr[salary(A) = 1, 2, 3|s] b(s)

1 1
27 1, 0, 0 3

4
3

3
27

2
3 , 1

3 , 0 2
5
3

6
27

3
6 , 2

6 , 1
6

3
2

2 7
27

2
7 , 3

7 , 2
7

9
7

7
3

6
27

1
6 , 2

6 , 3
6

3
2

8
3

3
27 0, 1

3 , 2
3 2

3 1
27 0, 0, 1 3

Figure 4.16.: Average salaries and their probabilities in the averaging mechanism exam-
ple. Figure 4.17 depicts the breach distribution and the cumulative breach
distribution.

a priori probability that employee A has salary x is 1
3 . Note that we chose this simple

distribution as an example. Di�erent distributions of databases, that do not assume
independence of attribute values can also be used in the Bayes Privacy framework. The a
priori probability that an employee has a certain salary changes after publication of the
average salary. The table in Figure 4.16 shows the probabilities of each average salary,
and the breach caused by its publication.

Publishing an average salary of 2, for example, results in a breach of 9
7 . Publishing

an average salary of 1 results in fully disclosing the salary of A and a breach of 3. This
event, however, has a probability of 1

27 and, therefore, is rather unlikely. In this example,
publishing the average is a mechanism that ful�ls privacy with ϵ = 3

2 and δ = 8
27 .

Figure 4.17 depicts the breach distribution and the cumulative breach distribution as well
as ϵ and δ for this example. This is a very simple example and larger databases with a
bias to an average salary di�erent to the expected value are even less probable. This will
result in a smaller ϵ and δ . Consequently, high breaches are even less probable in larger
examples.

48 4. The Bayes Privacy Framework

ϵ

1 − δ

Breach

Probability

3
27

1
7

1

1 2 3

4.17.1: Breach distribution. The maximal breaches of 2 and 3 have a low probability.

ϵ

1 − δ

Breach

Σ Probability

3
27

1
7

1

1 2 3

4.17.2: Cumulative breach distribution.

Figure 4.17.: Breach distribution 4.17.1 and cumulative breach distribution 4.17.2 for the
averaging mechanism example. Even in this small example, the thresholds δ
and ϵ are relatively small.

6. Privacy with Respect to Bounded Adversaries

Notions de�ned in the Bayes Privacy framework do not allow for methods based on
computational complexity assumptions. For example simply encrypting a database with
RSA prior to release will always lead to a high breach since an optimal bayes estimator is
able to guess the plaintext to an RSA ciphertext. There are, however, many mechanisms
that rely on complexity assumptions which are deemed to be secure, since a real world
adversary is always bounded in its computational power. Therefore, privacy notions that
consider complexity assumptions allow for much more methods than statistical privacy
notions without losing security in the real world.

Computational privacy notions enables the use of, for example, encryption and crypto-
graphic hash functions in mechanisms for database anonymisation. Another example
is the average mechanism. The example in Section 5 showed, that there is an intuitive

6. Privacy with Respect to Bounded Adversaries 49

(ϵ ,δ)-privacy notion that the averaging mechanism ful�ls. Since the problem of inverting
a mechanism that computes the average value of an attribute can be seen as a knap-
sack problem, it is computationally hard to invert the averaging mechanism. Therefore,
mechanisms such as the averaging mechanism may provide an even stronger privacy
guarantee in a model that considers computational complexity than in a purely statistical
model.

In this section, we will present a variant of the Bayes Privacy framework that allows
to model privacy notions with respect to bounded adversaries. Furthermore, in order to
show that game-based security notions also can be modelled as Bayes Privacy notions,
we model Ind-ICP, a computational security notion for secure database outsourcing
(cf. De�nition 53 in Chapter 6), as a Computational Bayes Privacy notion.

6.1. Computational Bayes Privacy
In the following, we will adapt the Bayes Privacy framework presented in Section 2
with respect to bounded adversaries. In order to do so, the de�nition of a breach needs
to be adapted. In Section 2, a breach is de�ned without considering a computationally
bounded adversary. For a bounded adversary, a breach can be de�ned by the relation of
the probability that the adversary determines the value of a sensitive predicate given a
release and the probability that the sensitive predicate has this value.

Now, a breach is not caused by the release but rather by the adversary interpreting the
release. Therefore, we de�ne the following experiment:

Security Game 3 (PrivA (X , l , s, k)).

1. The adversary A is given the inputs 1k , X , l , and s .

2. A outputs a guess b.

The result of the experiment is b.

In this experiment, the adversary gets the background knowledge X and the sensitive
predicate l . Additionally, she can learn the release s . If the adversary can determine the
value of the sensitive predicate better than without it, the adversary causes a privacy
breach. If the adversary gains no information about the value of the sensitive predicate l
from the release, there is no privacy breach for l because of the release.

Note that if X can not be sampled e�ciently by the adversary and the adversary
might not learn something about the value of l from the release s , the probability, that
she guesses the value of l right (Pr[PrivA (X , l , s, k) = l (u)]) may be lower than the
probability that an optimal Bayes estimator guesses the value of l right without the
release (Pr [l = l (u)]).

As mentioned above, we de�ne a breach by the relation of the probabilities that the
adversary wins this experiment to the probability that an maximum likelihood estimator
without access to the release determines the value of the sensitive predicate.

De�nition 31 (Privacy Breach for a Predicate and a Release Caused by an Adversary). Let
U be a universe of data sets with distribution X , E : U → D and F : D → S mechanisms,

l ∈ L a sensitive predicate, A an adversary, and k a security parameter.

A breach b for the predicate l caused by an adversary A given a release s ∈ S is de�ned

as:

50 4. The Bayes Privacy Framework

b(l , s,A) :=

1 Pr [l] ∈ {0, 1}
Pr[PrivA (X ,l ,s,k)=l (u)]

Pr [l=l (u)] otherwise

while l (u) is the value of the sensitive predicate l given the world data set u.

The adversaryA causes a maximal breach if she maximises the probability of guessing
l (u) right. The probability Pr[PrivA (X , l , s, k) = l (u)] is maximal, if the adversary
determines the value of the sensitive predicate in Security Game 3 and returns it.

Since we do not only want to be able to consider breaches a single sensitive predicate,
but for sets of sensitive predicates, we de�ne the breach b(s,A) with respect to a set of
sensitive predicates analogously to De�nition 23:

De�nition 32 (Privacy Breach for a Set of Predicates an a Release Caused by an Adver-
sary). Let U be a universe of data sets with distribution X , E : U → D and F : D → S
mechanisms, L a set of sensitive predicates, A an adversary, and k a security parameter. A

breach b caused by the adversary A for a set of sensitive predicates L given a release s ∈ S
is de�ned as:

b(s,A) := max
l∈L

b(s, l ,A)

As in De�nition 24, we de�ne the probability of an speci�c breach, but now with
respect to an adversary:

De�nition 33 (Breach Probability with Respect to an Adversary). Let U be a universe

of data sets with distribution X , E : U → D and F : D → S mechanisms, and L a set of

sensitive predicates. The probability of a speci�c breach b′ with respect to an adversaryA is

called breach probability of b′ with respect to adversary A and is de�ned as:

Pr(b′,A) := Pr
s∈S

[b′ = b(s,A)]

The probability is taken over the distribution X , the random coins of the adversary, and the

random coins used in F and E .

With this de�nition of breach probabilities, we can de�ne a computational privacy
notion by restricting adversaries that can generate breaches to probabilistic polynomial
time algorithms. As in the statistical setting, a dominating function limits the distribution
of allowed breaches.

De�nition 34 (Computational Bayes Privacy Notion). For a given universe of possible

data sets U , a computational privacy notion is a tuple (L, p,X), where L is a set of sensitive

predicates, p : (1,∞) → [0, 1] a function, andX is a set of distributionsX . An anonymisation

mechanism F with a security parameter k ful�ls a privacy notion (L, p,X) with respect to

a mechanism E if for all distributions X ∈ X of the universe U and all PPT (probabilistic

polynomial time) adversaries A the following holds:

There is a function q that is negligible in k such that the function p + q (k) dominates the

breach probability distribution with respect to the adversaryA in the interval (1,∞) for the
universe U , the distribution X , and the mechanisms E and F .

If the mechanism E is the identity function, we say that F ful�ls the computational

privacy notion (L, p,X) instead of F ful�ls the computational privacy notion (L, p,X) with
respect to the mechanism E .

6. Privacy with Respect to Bounded Adversaries 51

Each distribution X ∈ X models possible background knowledge given to the adversary.
A mechanism ful�ls a privacy notion, if it only produces releases, that enable an adversary
only to cause breaches limited by the notion. These breaches are limited by the dominating
function p and a function that is negligible in the security parameter of the anonymisation
mechanism.

In Section 6.2, we will show that Ind-ICP, a practical security notion for secure database
outsourcing, can be modelled as a Computational Bayes Privacy notion.

6.2. IND-ICP as a Computational Bayes Privacy Notion
Computational privacy notions can be useful for searchable encryption and secure
database outsourcing, since they allow to use methods like encryption, signatures, or
cryptographic hash functions in the anonymisation mechanism.

In Chapter 6, Section 2, we introduce the game-based security notion Ind-ICP. The
notion Ind-ICP allows for practical mechanisms for secure database outsourcing and
searchable encryption. Although this notion is weaker than classical notions for encryp-
tion (e. g. Ind-CPA), it has a game-based de�nition that is similar to the experiment used
in the de�nition of Ind-CPA (cf. De�nition 1 in Chapter 2 and De�nition 14 in Chapter 6).

In this section, we use the Computational Bayes Privacy framework to model Com-
putational Bayes Ind-ICP. We introduce the notion Computational Bayes Ind-ICP and
show that this notion is the same notion as Ind-ICP. This proof serves as an example
that game-based security notions can also be modelled in the Bayes Privacy framework.

For the proof in this section, we reference de�nitions from Chapter 6. In the follow-
ing, we de�ne computational Bayes Ind-ICP. For this de�nition, we use independent

column permutations (independent column permutation (icp)), a special form of database
transformations (cf. De�nition 52, Chapter 6).

De�nition 35 (Computational Bayes Ind-ICP). For

• a universe U that contains for each database d ∈ U all databases d ′ with ∃ icp π with

π (d) = d ′.

• a set of distributions X, with: ∀d ∃X ∈ X with ∀ icp π : Pr[d] = Pr[π (d)] > 0 and
Pr[d ′] = 0 i� @ icp π with d = π (d ′).

• for all attributes i , i ′ a set of all predicates L of the form: The value vi [j] of attribute
i stands in relation to the value vi ′[j ′] of attribute i ′, where vi is a list of all values of
attribute i

• a function p : (1,∞) → 0.

We call the computational privacy notion (L, p,X) Computational Bayes Ind-ICP.

In order to de�ne a Computational Bayes Privacy notion, we de�ned the universe and
the background knowledge of the adversary explicitly. Informally, the idea of Ind-ICP is
to hide relations between attribute values. Therefore, we assume that an adversary knows
everything about the database except the relations of the attribute values. This is modelled
with distributions where all databases with identical attribute values but di�erent relations
between attribute values are equally probable. This is an implicit assumption of Ind-ICP.
In the Bayes Privacy-framework, we have to model this assumption explicitly.

52 4. The Bayes Privacy Framework

An adversary with background knowledge X ∈ X knows the size of the original
database and how often each attribute value occurs in the original database. Furthermore,
we need to de�ne the set of predicates that the notion considers as sensitive. We do this
directly by de�ning each relation of two attribute values as a sensitive predicate.

The notion Ind-ICP does not allow the adversary to learn anything about the relations
of the attribute values. Therefore, we set the dominating function p to 0.

With this de�nition of computational Bayes Ind-ICP, the following proposition holds:

Proposition 6. A mechanism that ful�ls Ind-ICP for all databases in U , also ful�ls Com-

putational Bayes Ind-ICP. A mechanism that ful�ls Computational Bayes Ind-ICP for all

databases in U , also ful�ls Ind-ICP.

In order to prove Proposition 6, we assume in the �rst step, that there is an adversary
that can break Ind-ICP and use her to break Computational Bayes Ind-ICP. In the second
step, we assume there is an adversary that can break computational Bayes Ind-ICP and
use her to break Ind-ICP. In the following, we will prove this proposition by reducing
the two experiments PrivA (X , l , s, k) and Ind-ICPA

(Gen,Enc) (k) to each other.

Proof. Let U , X, L, and p be as de�ned in De�nition 35.

EPriv A

AInd-ICP

1k

1k
d ,π

l , s

s

b

b

Figure 4.18.: The adversaryAInd-ICP that wins the experiment Ind-ICP is used to win the
Privacy experiment for computational Bayes Ind-ICP. The Adversary A
wins the epxeriment if f (s) ∈ d ,π (d) and l (π (d)) , l (d).

i)
Let AInd-ICP be a PPT that can break Ind-ICP. This means, that the advantage of A
according to De�nition 53 in Chapter 6 is not negligible.

We will show, how a non negligible advantage in the Ind-ICP experiment can be used
to produce a breach of (L, p,X)-privacy. If the adversary AInd-ICP can break Ind-ICP,
she wins the game Ind-ICPA

(Gen,Enc) (k) (cf. De�nition 14, Chapter 6) with a probability
of 1

2 + q, while q is non negligible in k . We use this adversary to generate a breach
of (L, p,X) privacy with non negligible probability. Figure 4.18 shows the reduction
of the privacy experiment of (L, p,X)-privacy to the adversary AInd-ICP of the Ind-ICP
experiment Ind-ICPA

(Gen,Enc) (k).
The adversary AInd-ICP returns a database d and an independent column permuta-

tion π for which she has a non negligible advantage. This means, that the adversary
can distinguish f (d), the anonymisation of d , from f (π (d)), the anonymisation of the
independent column permutation of d , non negligibly better than randomly guessing.

6. Privacy with Respect to Bounded Adversaries 53

Since the independent column permutation chosen by the adversary cannot be id , there
is at least one pair of attribute values (vi [j], vi ′[j ′]) with i , i ′ that are in relation in d
but are not in relation to each other in π (d). The adversary learns the relation of these
attribute values from f (d) or f (π (d)), respectively, with probability 1

2 + q.
Since we modelled these relations as sensitive predicates, our adversary A that uses

the adversary AInd-ICP learns this sensitive predicate with probability 1
2 + q. This results

in a breach probability > 0 for a breach for this sensitive predicate. Since this predicate is
w.l.o.g. true for the database d and false for database π (d), this breach is greater than 1.

This means, that our adversary A wins the experiment PrivA (X , l , f (d ′), k) i�:

• the database d ′ given to A by the experiment matches the database d or the
database π (d) returned by AInd-ICP.

• the sensitive predicate l can be used to distinguish d from π (d).

What is left, is to show that this happens with a non negligible probability:
The size of the databases in U is limited (and independent of the security parameter).

For a database d , there is a limited (and independent of the security parameter) number
of independent column permutations. Therefore, the probability of d is non negligible.
Consequently, the database d ′ given to A by the experiment matches the database d or
the database π (d) returned by AInd-ICP with a non negligible probability.

Furthermore, also there is a limited number of independent column permutations, the
adversary AInd-ICP can return, the probability, that l can be used to distinguish d and
π (d) is also non negligible. Since our adversary A knows l (input from the experiment)
and π and d (input from AInd-ICP), she can determine, when l can be used to distinguish
d from π (d).

However restarting the adversary AInd-ICP after our adversary A got the sensitive
predicate l from the experiment may not yield such a database d and an independent
column permutation l . This is because d and pi may not be in the set of databases or
independent column permutations, respectively, the adversary AInd-ICP can return. Then
however there is sensitive predicate l ′ that can be used to distinguish f (d) and f (π (d)),
and the adversary AInd-ICP can be used in the experiment PrivA (X , l ′, f (d ′), k) in order
to cause a breach.

ii)
Now, let the adversaryAPriv be a PPT that can break Computational Bayes Ind-ICP. This
means, that the adversary can cause a breach non negligibly greater than 1 with a non
negligible probability. Consequently, there is at least one sensitive predicate l ′ ∈ L and
one database d ′ for which APriv can determine the value l (d) non negligibly better than
random guessing.

We simply use this adversary in the experiment Ind-ICPA
(Gen,Enc) (k) as follows (cf. Fig-

ure 4.19):
In the �rst step, we get an security parameter which we forward to the adversaryAPriv .

Now, APriv is expecting a distribution X and l and the experiment Ind-ICPA
(Gen,Enc) (k)

is expecting an independent column permutation π and a database d . We choose the
sensitive predicate l , the database d , and the independent column permutation π randomly
but with l (d) , l (π (d)). This means, that the predicate l can be used to distinguish
the databases l (d) and l (π (d)). For X we chose the distribution from X where ∀ icp
π : Pr[d] = Pr[π (d)] > 0.

54 4. The Bayes Privacy Framework

EInd-ICP A

APriv

1k

1k

l , d ,π random
with
l (d) , l (π (d))

d ,π

f (d) =: d0
f (π (d)) =: d1
{0, 1} → b

f (db)

X , l , f (db)

b′

b′

Figure 4.19.: The adversaryAPriv that wins the computational Bayes privacy experiment
is used to win the experiment Ind-ICP experiment. The adversaryA chooses
l and d randomly. Therefore, A eventually chooses l and d so that the
adversaryAPriv has a non negligible advantage in determining the value of l
from f (d). Then, and if f (db) = f (d) the adversaryA has an non negligible
advantage in the computational Bayes privacy experiment.

We get an anonymisation f (db) from the experiment and forward it to the adversary
APriv . Then, we get a bit b′ from APriv and forward it to the experiment.

Since we choose l and d random, we eventually choose l and d so that the adversary
can determine the value of l from f (d) non negligibly better than guessing. This is the
case, when l = l ′ and d = d ′

In these cases, we get with a probability of 1
2 f (d ′) = f (db) from the experiment. Then,

Ind-ICP will not hold, since the bit b′ we get from the adversary will be equal to the bit
b chosen at random in the experiment with a probability non negligibly greater than 1

2 .
Therefore, Proposition 6 holds. �

The advantage of modelling notions such as Ind-ICP in the Bayes Privacy framework is
that it forces already in the de�nition of the notion to explicitly formalise the background
knowledge of the adversary. In the game-based de�nition provided in Chapter 6, Section 2,
this is only made implicitly and made explicitly not until used in a proof for a method
that realises Ind-ICP. Implicit assumptions for example about the background knowledge
of the adversary may lead to a false sense of security and to uses of a mechanism that
enable attacks that break the security notion. We will show in Chapter 7, Section 8 that
additional background knowledge of an adversary about the distribution of the original
databases enables her to break a method that provably ful�ls Ind-ICP.

5. Privacy for Data Outsourcing
This chapter is partially based on work already published in [Hub+11; Hei+10] and
in [Ach+16].

1. Introduction
In the last two decades, the IT industry has seen numerous trends such as service ori-
entation, mobile IT, and cloud computing. A majority of these trends is connected with
a common paradigm shift concerning data processing and storage: Data is processed
and stored less and less on local devices or in a self maintained computing centre, but is
outsourced to external data processing centres and accessed over the Internet as a service.
There are examples for applications such as o�ce suites [Mic; Goo], image manipulation
software [Ado; Aut], application development systems [IBM; Cod], and even desktop
environments [Ama; Cit; VMw] that can be accessed as a service.

Outsourcing data and computation has many advantages, for example more e�cient
use of computing and storage resources. Furthermore, pay-per-use models can reduce
costs for IT infrastructures. Also, the risk of fatal data loss or incidents caused by external
hackers is minimised due to specialisation of the individual service providers.

There are, however, still security concerns that pose a huge impediment for data
outsourcing. A client using a service loses control over his data. For example, the client
can not control whether his data is copied or misused. An adversary, like a malicious
system administrator, may copy sensitive data and sell it to e. g. competitors. Providers
may even be required by law to disclose the data of their clients to government agencies.
Current security measures of cloud computing providers focus on external adversaries. For
example, authentication and authorisation mechanisms prohibit access from unauthorised
clients and encryption and signature schemes protect the client’s data during sending
over the Internet. Measures against internal adversaries mostly try to restrict physical
access to servers to authorised sta�. Examples such as Wikileaks, however, show that
legal insiders also have to be taken into account.

In this chapter, we provide a framework for security notions for data outsourcing, that
takes internal adversaries into account. We distinguish three fundamental security goals,
namely Data Privacy, Query Privacy, and Result Privacy, and show their relations. In
contrast to plain encryption, outsourced data is accessed, for example in order to �nd
the occurrences of a keyword or in order to retrieve a tuple with certain conditions. An
adversary observing such accesses potentially gains additional information that can be
used to break the con�dentiality of the data, the queries, or the result.

The goal of Query Privacy is related to private information retrieval (PIR), where the
goal is to achieve query indistinguishability for queries to an outsourced database. For the
sake of e�ciency, the time to access a single �eld in a database should be sublinear in the
size of the database. For single server solutions, this is in con�ict with the requirement of
query indistinguishability. Query indistinguishability for single server solutions requires

55

56 5. Privacy for Data Outsourcing

that each �eld is part of the result. Otherwise, the adversary can use the �elds that are
not part of the result sets to distinguish queries. In real world scenarios, this security
requirement might be to strong. Sometimes it may be su�cient, that the adversary can not
distinguish two queries, if they are in a certain subset of all possible queries. For example,
for certain applications it may be enough that an adversary observing queries is not able
to break the security notion of the encryption scheme used to encrypt the outsourced data.
Therefore, we generalise the framework in order to support the de�nition of application
speci�c security notions. We introduce leakage relations for data and queries that allow
the adversary to learn certain properties about the database or the query.

Structure of this Chapter Section 2 provides an overview over security notions for
data outsourcing in literature and motivates the three distinct privacy goals of data
outsourcing. We de�ne basic privacy notions for each privacy goal of data outsourcing in
Section 3. In Section 4, we show and prove fundamental relations of these basic privacy
notions. In Section 5, we show that private information retrieval is an instance of one
of these fundamental notions. Section 6 provides generalisations of the basic notions
de�ned in Section 3 that can be used to de�ne application speci�c privacy notions with a
controlled leakage of information (cf. Chapter 6).

2. Security Notions for Data Outsourcing in Literature
Outsourcing data involves one or multiple clients that provide the data and one or multiple
servers that store the data. To retrieve parts of the outsourced data, a client submits
queries to the servers which then execute them and return the result. Applications that �t
into this paradigm are not restricted to relational databases, but to any information that
can be structured meaningfully, for example searchable documents, Structured Query
Language (SQL) databases, and image or email archives.

As already mentioned in the introduction, entrusting private data to a service provider
introduces a security risk. While an IT service provider can be trusted to provide the
contractually agreed-on services faithfully, one can easily imagine that a curious employee
might try to learn con�dential information from the outsourced data. Cryptographic
methods promise to secure con�dentiality in such a scenario.

Theoretically, well-known cryptographic schemes, namely fully homomorphic encryp-
tion and secure multi party computations can be used to build schemes for secure database
outsourcing and searchable encryption with strong, provable security properties.

The �eld of secure multi-party computation (MPC) [GMW87; Yao82] deals with the
following problem: How can a set of parties, each with an individual secret input, securely
perform a joint function evaluation without any of the parties learning the input of the
others? A prominent MPC example is Yaos millionaire problem [Yao82]: How can two
millionaires—without openly discussing their wealth—determine who is the richer of the
two? Theoretically, secure multi-party computation protocols can be used in outsourcing
scenarios. However, most results in MPC don’t yield practical techniques applicable to
outsourcing scenarios.

The �eld of fully homomorphic encryption (FHE) [Gen09] deals with encryption
schemes with a privacy homomorphism. This homomorphism allows to perform calcula-
tions on two ciphretexts, with the result being an encryption of the sum or the product
of the two plaintexts, respectively. Consequently, an FHE scheme allows to perform

2. Security Notions for Data Outsourcing in Literature 57

arbitraty calculations on encrypted data. In theory, FHE can be applied to many scenarios
that involve data outsourcing. Clients can encrypt their data prior to outsourcing, service
providers perform their calculations on encrypted data and send the encrypted results
back to the clients.

The huge overhead, however, would cancel out the bene�ts of outsourcing. For example,
in order to transform an existing service into one, that operates fully homomorphic on
encrypted data, the service itself has to be expressed and executed as a circuit. Moreover,
there are outsourcing scenarios, where MPC or FHE can not even theoretically be applied
to [VJ10]. Therefore, in the following, we will consider schemes with a trade-o� between
security and e�ciency. For example, an e�cient and practical database outsourcing
scheme should provide support for sublinear query execution time in the size of the
database [KC05]. Practical approaches that can be found in literature attempt to �nd a
trade-o� between security and e�cient support a large number of queries.

Since we distinguish between data privacy, query privacy, and result privacy and since
the latter implies the former two, which we will formally prove in Section 4, we structure
the related work into three categories:

• privacy of outsourced data

• privacy of queries

• privacy of outsourced data and queries

This work focuses on game-based de�nitions for security notions, therefore, we also
focus on presenting game-based security notions from literature.

2.1. Security Notions for Data Privacy
Security notions for the privacy of outsourced data extensively have been studied in the
context of searchable encryption. The idea of searchable encryption is to encrypt data in
such a way that it can e�ciently be searched for the positions or presence of keywords.
Consequently, searchable encryption is strongly related to database outsourcing.

There are game-based notions [Goh03; EFG10; ABO07] as well as simulation-based
notions [Cas+13; Cas+14; KP13]. There are also notions modelled in the UC Frame-
work [Can01; SPS13; KO15], a well-known framework for the de�nition of simulation-
based security notions.

Consequently, there is a huge variance between notions, even between notions that
only consider data privacy: There are notions which consider di�erent kinds of adaptive
adversaries and notions which only consider static security.

An example for an adaptive game-based security notion is semantic security against

adaptive chosen keyword attacks (IND-CKA) established by Goh et al. [Goh03] and im-
proved by Curtomola et al. [Cur+06]. The intuition of IND-CKA is that an adversary
should not be able to distinguish two sets of data even if she can issue and observe queries
on encrypted sets of data of her choosing. The queries the adversary is allowed to choose
are restricted to keyword queries with keywords that occur in both data sets.

Another example for a game-based security notion for Data Privacy is pp-security

[ABO07]. Here the adversary is not allowed to repeat queries to oracles. Moreover, the
adversary has to query its oracles with di�erent classes of queries based on the state of
the experiment. These constraints regarding the oracles are well-suited for the approach

58 5. Privacy for Data Outsourcing

presented in [ABO07] but they might be to restrictive for a wide range of real world
scenarios, for example scenarios where adversaries are allowed to issue the same query
twice.

2.2. Security Notions for Query Privacy
The privacy of queries on data outsourced to a single server has been studied in the
context of single server PIR [Cho+98]. The idea of PIR is to retrieve information from a
database without the database learning which information has been retrieved. This lead
to the notion of query indistinguishability.

There are various PIR schemes with sublinear communication complexity ([KO97;
CMS99; GR05]). All single server PIR schemes inherently have a computational complexity

which is linear in the size of the data [SC07]. In order to achieve query indistinguishability,
for every query, each part of the database has to be processed in order to calculate the
result. Otherwise, the server learns which parts of the database are not part of the query
result. Consequently, the server can distinguish two queries. Please note that PIR does
not guarantee that the adversary does not learn the data itself [Cho+98]. The adversary
may learn the complete data, as long as the queries are hidden from her.

Because of their communication complexity, PIR schemes can not be considered prac-
tical in our sense. Even schemes that are communication e�cient seem less practical than
the trivial solution of transferring the complete data: According to an argument by Sion et
al. [SC07] single server solutions for PIR will always remain less e�cient than the trivial
solution as long as Moore’s Law on computation power and Nielsen’s Law on bandwidth
increase hold. Therefore, practical PIR schemes involve multiple servers. In [DG15], for
example, Di Crescenzo and Gosh show how approaches for a two party model can be
adapted in a three party model resulting in schemes with a logarithmic run time for each
party. As mentioned above, the notion of PIR requires that an adversary observing access
patterns cannot distinguish any two queries. This notion is adaptive. This means, that
the adversary can query the oracle multiple times (even for the challenge).

In the context of Oblivious RAM (ORAM), the privacy of queries has also been studied.
The concept of ORAM has �rst been �rst introduced by Goldreich and Ostrovsky [GO96]
and then further explored and improved upon [PR10; Shi+11; DMN11]. An oblivious RAM
can not distinguish access patterns. Also, similar to PIR, the data itself is not required
to be private. Similar to PIR, ORAM constructions can not be considered e�cient in our
sense: Either they have poly-logarithmic computation cost while requiring the client to
store a constant amount of data [Shi+11] or they have logarithmic computation cost but
require the client to store at least a sublinear amount of data dependent on the size of the
RAM [Goo+11].

2.3. Security Notions for Data Privacy as well as Query Privacy
Security notions that consider both, data privacy as well as query privacy, can also be
found in literature. For example Chase et al. [CS14] model the privacy of queries and
that of the data in their simulation-based notion chosen query attacks. In this notion,
the privacy of queries and the privacy of data cannot be considered isolated. Here, both
concepts are intertwined which makes it di�cult to compare this notion to notions that
only consider one concept and, consequently, to model schemes that only posses one of
the two properties.

3. Formalisations 59

Haynberg et al. [Hay+13] try to separate both properties with the introduction of the
notions data privacy, which has a somewhat-adaptive adversary, and the complement
notion pattern privacy, which is similar to PIR. Their notion for data privacy, however,
only allows the adversary to observe the execution of one query. While the notion works
for their scheme, this limitation is too strict for other schemes.

2.4. Modelling Information Leakage

A reoccurring pattern in security notions for practical schemes is the usage of one ore
multiple leakage functions [KPR12; HK14]. A leakage function describes the information
the scheme leaks to the adversary during execution. In order to allow for e�cient schemes,
a certain amount of of leakage seems necessary. In fact, there are no e�cient single server
schemes without leakage of information about the queries [KC05].

In their work in [Cas+13; Cas+14], Cash et al. investigate the construction of e�cient
and practical schemes that also have a formal security analysis. Their analyses follow a
simulation-based approach. Simulation-based notions are outside of our scope, however.
Their constructions leak information about the plaintext and the query to the adversary
which they explicitly model by a leakage function L. The simulator is given access to this
leakage function.

This is similar to the work of Chase et al. [CS14]. Their notion allows to describe
the information that leaks through the encryption itself and the information about the
ciphertext and the queries combined that is leaked by evaluating queries. The same
technique is employed by Stefanov et al. [SPS13] in the UC Framework.

In game-based notions, leakage can be modelled by restricting the challenges the ad-
versary can choose. In our framework, we de�ne leakage relations that model information
leakage and optionally restrict adversaries to choose data sets or queries ful�lling such a
leakage relation.

3. Formalisations

Classical encryption schemes such as, for example, the Elgamal encryption scheme [Elg85],
are de�ned by three algorithms: Key Generation, Encryption, and Decryption and are
classically used to send con�dential messages from a sender to a receiver. Messages are
de- and encrypted as a whole. In contrast, data outsourcing schemes have to provide
means to search or even change the encrypted data. In this section, we provide a formal
de�nition of a data outsourcing scheme.

We model the interactions in a data outsourcing scheme in two phases. In the �rst
phase, the initialisation phase, the data set to be outsourced is encrypted and outsourced.
In the second phase, the query phase, the outsourced data set is queried. These two phases
are depicted in Figure 5.1. In the initialisation phase, the data set d is encrypted by a
preprocessor using an encryption key K . Then, the encryption Enc(d ,K) is sent to the
server. In the query phase, the client queries the encrypted data. In order to do so, the
client runs an interactive protocol πq with the server. The preprocessor and the client
are not necessarily the same entities. The inputs of the client are the query q and the
encryption key K . The input of the server is the encrypted data set Enc(d ,K). At the end
of the protocol, the client outputs the result of the query q (d) and the server outputs the

60 5. Privacy for Data Outsourcing

preprocessor server

d ,K
Enc(d ,K)

5.1.1: initialisation phase

client server

q,K

q (d)

Enc(d ,K)

Enc(dq,K)

πq

...

5.1.2: query phase

Figure 5.1.: The two phases in an outsourcing scheme. In the initialisation phase (5.1.1) a
preprocessor receives and encrypts the data set d and uploads the encrypted
data set Enc(d ,K) to the server. In the query phase (5.1.2) the client executes
queries q by running an interactive protocol πq with the server. After the
interaction, the client outputs the query result q (d) and the server outputs
the updated encrypted data set Enc(dq,K). In the protocol for the next query,
the input of the server is the updated encrypted data set Enc(dq,K).

updated encrypted data set Enc(dq,K). For subsequent queries, the updated encrypted
data set is the input of the server.

Consequently and in order to be useful, a data outsourcing scheme allows the client
to use the outsourced data set like a local data set. The interactive protocol πq for a
query q retrieves the result set q (d). Additionally, the interactive protocol πq updates
the outsourced data set to Enc(dq,K), while dq is the database d after execution of query
q. Note that, depending on the outsourcing scheme, some queries may only retrieve
information from the outsourced data set but not update it (dq = d). For example, queries
of classical searchable encryption schemes only retrieve information from the encrypted
data. In the following, we provide formal de�nitions of data outsourcing schemes.

De�nition 36 (Data Outsourcing Scheme). An outsourcing scheme for data sets is a tuple
(Gen, Enc) such that

Gen : 1k → {0, 1}n

Enc : D × {0, 1}n → Γ

For an outsourcing scheme (Gen, Enc) and a data set d , we call Enc(d ,K) the outsourced
data set. We call an outsourcing scheme for a data set retrievable if there is a function

Dec : Γ × {0, 1}n → ∆ such that ∀K ∈ {0, 1}n, d ∈ D : Dec(Enc(d ,K),K) = d .

This de�nition does not require encrypted data sets to be decryptable. The idea
of outsourcing schemes is not to upload and download data sets as a whole, but to
execute queries on outsourced data sets. Note that outsourcing schemes may use internal

encryption schemes to realise their algorithms Gen, Enc, and Dec. In fact, in our database
outsourcing scheme in Chapter 7, Section 4, we use an internal Ind-CPA secure encryption
scheme. Also note that this de�nition uses the same key K for de- and encryption. The
extension into an asymmetric scheme is straightforward.

3. Formalisations 61

Queries are used in order to insert information into or extract information from
outsourced data sets. We de�ne queries as follows:

De�nition 37 (Query). A query q : D → P × D is a PPT algorithm that, on input of a

data set d ∈ D returns a result set q (d) ∈ P and an updated data set dq ∈ D . We denote

the set of all queries with Q.

Based on this de�nition, we can distinguish between two types of queries. Queries
that do not chance the data and queries that potentially do. In this work, we focus on
relational databases and relational algebra or SQL as query language. Here, the domain of
the result sets P is the domain of databases (DB). Furthermore, a query that potentially
changes the database can add, remove or change tuples of d . In SQL, these queries are
called INSERT, UPDATE, and DELETE queries. We will discuss queries in more detail in
Chapter 7, Section 2.3. Without loss of generality we assume that queries are functions of
the data, i.e. ∀q ∃ d1, d2 ∈ D : q (d1) , q (d2). Furthermore, the query result is the same if
evaluated twice.

Given the de�nition of queries, we can de�ne protocols that execute queries. Our idea
of the correctness of a protocol is relative to a given query q. If running the two-party
protocol on outsourced data has the same e�ect as if query q had been executed before

outsourcing the data, we say the protocol executes query q:

De�nition 38 (Protocol that Executes a Query on an Outsourced Data Set). A two-party

protocol πq ∈ Π between a serverS and client C executes a query q for an outsourced data

set Enc(d ,K) if

• The client, on input of a key K , outputs the result set q (d) = πCq (K , Enc(d ,K)).

• The server, on input the outsourced data set Enc(d ,K), outputs an updated outsourced
data set Enc(dq,K) = πSq (Enc(d ,K)).

The �rst property demands that the client gets the correct result: the result set to
the query q for the database d . The second property demands that the server gets the
correct result: the updated and encrypted data set. Please note that, since we focus on
single server outsourcing, De�nition 38 involves only two parties, namely a server and
a client. The extension of this de�nition to multiple servers or even multiple clients is
straightforward. Now, we can de�ne data outsourcing schemes, that can execute queries.

De�nition 39 (Queryable Outsourcing Scheme). A queryable outsourcing scheme for

data sets is a tuple (Gen, Enc,Q) such that

• (Gen, Enc) is an outsourcing scheme for data sets, and

• Q ⊆ Π is a non-empty set of e�cient two-party protocols that execute a query for

outsourced data sets.

Note that the client has no direct access to the data when interacting with the server
in order to execute a query (cf. De�nition 38 and Figure 5.1).

Since the focus of this work is on database outsourcing, we need a de�nition of a
database outsourcing scheme. A database outsourcing scheme is simply a specialisation
of a queryable outsourcing scheme: a queryable outsourcing scheme that operates on
databases.

62 5. Privacy for Data Outsourcing

De�nition 40 (Database Outsourcing Scheme). A database outsourcing scheme is a

queryable outsourcing scheme (Gen, Enc,Q) such that

• The input domain of Enc is DB, and

• each protocol in Q executes a query for databases.

In oder to security privacy notions for data outsourcing schemes, we need a de�nition
for what a party sees during an execution of a protocol. We call this the view of a party.

De�nition 41 (View of a Protocol Party). A view of a protocol party is the totality of its

inputs, received messages, sent messages and outputs. To denote the view of protocol party

P ∈ {C,S} in protocol π with inputs c , we write

viewπ
P
(c).

In particular, the encrypted data is part of the server’s view.

In our game-based notions, we will give the adversary oracle access to certain views.

3.1. Basic Privacy Notions for Outsourced Data Sets
In this section, we de�ne basic privacy notions for outsourced data sets. We di�erentiate
between Static Security, where the adversary does not observe queries, and security where
the adversary observes queries. In the latter case, we de�ne notions for the three privacy
goals Data Privacy, Query Privacy, and Result Privacy. Later in Section 4, we establish
fundamental relations between these notions. In Section 6, based on the notions de�ned
in this section, we introduce a framework for generalised notions for data outsourcing.
This framework allows for de�ning application speci�c, relaxed security notions.

Please note that we only consider honest but curious adversaries. We do not consider
active adversaries, that manipulate the outsourced data or the protocol. For a brief
discussion of actively malicious adversaries, please refer to Chapter 7, Section 8.4.

As stated earlier, we de�ne the notions for Static Security and security where the ad-
versary observes queries as game-based notions. Therefore, we de�ne a privacy game for
each notion. The corresponding privacy notions holds, if the advantage of the adversary
winning this game compared to mere guessing is negligible.

3.1.1. Static Security

In the game for Static Security, the adversary may chooses two data sets and gets the
encryption of one of these data sets. Then, the adversary guesses which data set has been
encrypted. the game is won, if the adversary guesses right. In this case, the result of the
experiment is 1.

The static notion of privacy for outsourced data captures the intuition that no adversary
may deduce any information about the data from its ciphertext alone (indistinguishability
under chosen-data attacks).

Security Game 4 (IND-CDAA
(Gen,Enc) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. The adversary A is given input 1k and oracle access to Enc(·,K).

3. Formalisations 63

3. A outputs two data sets d0 and d1 of equal length to the experiment.

4. The experiment chooses a random bit b ← {0, 1}.

5. A is given Enc(db,K).

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

We say an outsourcing scheme has Static Security if the adversary can not win the
game de�ned above with a probability that is non negligibly greater than gussing (i. e. 1

2).

De�nition 42 (Static Security). An outsouring scheme (Gen, Enc) has indistinguishable
encryptions under chosen-data attacks IND-CDA or Static Security, if for all PPT adver-

saries A, there exists a negligible function negl such that:

Pr[IND-CDAA(Gen,Enc) (k) = 1] ≤
1
2
+ negl (k)

De�nition 47 is similar to the security notion IND-CPA for encryption schemes, but is
de�ned on data sets rather than plaintexts (cf. De�ntion 15).

3.1.2. Privacy in the Presence of Queries

In contrast to encrypted messages, which, in most cases, are en- and decrypted as a whole,
outsourced data is intended to be queried. Therefore, we also have to consider security,
when the adversary can observe the execution of queries. Then, there can be distinguished
three conceptually di�erent privacy goals for data outsourcing (cf. Section 2):

• keeping the data private

• keeping the queries private

• keeping the results private

We model these privacy goals with the means of three security games. The adversary is
supplied with an oracle for views (cf. De�nition 41) on the interaction between client
and server and tries to learn a challenge bit.

In all three security games, the adversary is supplied with an open view oracle in
addition to the challenge oracle. This open oracle provides views of the server for
arbitrary queries executed on an encryption of arbitrary data sets using the challenge

key without giving the adversary direct access to the challenge key. This oracle has two
purposes for the adversary. On the one hand it serves as an encryption oracle since the
server view contains the encrypted data. Consequently, the dynamic notions directly
imply Static Security. Further, the open view oracle facilitates replay attacks for the
adversary. She easily can check the challenge candidates against the open view oracle.
This implies that the probabilistic property of Static Security expands to schemes with
security in the presence of queries in the sense that an access pattern of a protocol
executing a query does not reveal information about the data (Data Privacy), the query
(Query Privacy), or the query result (Result Privacy).

For example, this probabilistic property can be achieved by accessing all of the out-
sourced data for each query. Nontrivial solutions can involve randomising the structure
of the encrypted ciphertext (as in the work of Haynberg et al. [Hay+13]), randomising
the protocol which realises the query, or even secure hardware.

64 5. Privacy for Data Outsourcing

Data Privacy In the Data Privacy experiment, the adversary tries to discern information
about the data from the queries.

Security Game 5 (D-INDA
(Gen,Enc,Q)

(k)).
1. The experiment chooses a key K ← Gen(1k).

2. The adversary A is given input 1k , receives access to an oracle for viewπ ·
S
(Enc(·,K)),

and continues to have access to it. The oracle takes a query q and a data set d as input

and returns viewπq
S
(Enc(d ,K)).

3. A outputs two data sets d0 and d1 of equal length to the experiment.

4. The experiment draws a random bit b ← {0, 1}.

5. Challenge oracle: A is given access to an oracle for viewπ ·
S
(Enc(db,K)). That is, the

oracle takes any query q such that πq ∈ Q as input, internally runs the protocol πq
on Enc(db,K), and outputs viewπq

S
(Enc(db,K)) to the adversary.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

De�nition 43 (Data Privacy). An outsourcing scheme (Gen, Enc,Q) has Data Privacy, if
for all PPT adversaries A, there exists a negligible function negl such that:

Pr[D-INDA(Gen,Enc,Q) (k) = 1] ≤
1
2
+ negl (k)

Query Privacy The notion of Query Privacy captures the goal of hiding the queries
themselves from the adversary. This notion is equivalent to Private Information Retrieval
(see Section 5 for a discussion and proof).

Security Game 6 (Q-INDA
(Gen,Enc,Q)

(k)).
1. The experiment chooses a key K ← Gen(1k).

2. The adversary A is given input 1k , receives access to an oracle for viewπ ·
S
(Enc(·,K)),

and continues to have access to it. The oracle takes a query q and a data set d as input

and returns viewπq
S
(Enc(d ,K)).

3. A outputs two queries q0 and q1 to the experiment. q0 and q1 must yield protocols

πq0 and πq1 with the same number of protocol messages.

4. The experiment draws a random bit b ← {0, 1}.

5. Challenge oracle: A is given access to an oracle for view
πqb
S

(Enc(·,K)). That is, the
oracle takes any data set d ∈ D as input, internally runs the protocol πqb on Enc(d ,K),

and outputs view
πqb
S

(Enc(d ,K)) to the adversary.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

De�nition 44 (Query Privacy). An outsouring scheme (Gen, Enc,Q) has Query Privacy,
if for all PPT adversaries A, there exists a negligible function negl such that:

Pr[Q-INDA(Gen,Enc,Q) (k) = 1] ≤
1
2
+ negl (k)

4. Fundamental Relations Among the Basic Privacy Notions 65

Result Privacy The third privacy goal, Result Privacy, captures the idea that the adver-
sary must not learn the result of any query executed on any data. In order to formalise
this idea, we allow the adversary to output two data-set-query-pairs (d0, q0) and (d1, q1).
A query result is always determined by a query and a data set on which it is evaluated.
Then, the adversary is challenged on the view of query qb executed on data set db . If she
cannot deduce b from the view, we say the scheme has result privacy.

Security Game 7 (R-INDA
(Gen,Enc,Q)

(k)).
1. The experiment chooses a key K ← Gen(1k).

2. The adversary A is given input 1k , receives access to an oracle for viewπ ·
S
(Enc(·,K)),

and continues to have access to it. The oracle takes a query q and a data set d as input

and returns viewπq
S
(Enc(d ,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment. (|d0 | = |d1 |
and q0 and q1 must yield protocols πq0 and πq1 with the same number of protocol

messages.)

4. The experiment draws a random bit b ← {0, 1}.

5. Challenge: A is given access to the oracles for view
πqb
S

(Enc(db,K)), view
πqb
S

(Enc(·,K)),
and viewπ ·

S
(Enc(db,K)) and continues having access to them.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

De�nition 45 (Result Privacy). An outsourcing scheme (Gen, Enc,Q) has Result Privacy,
if for all PPT adversaries A, there exists a negligible function negl such that:

Pr[R-INDA(Gen,Enc,Q) (k) = 1] ≤
1
2
+ negl (k)

Result Privacy implies Data Privacy and Query Privacy and vice versa. See Section 4
for a proof.

4. Fundamental Relations Among the Basic Privacy
Notions

In this Section, we examine and establish fundamental relations among the three concepts
of Data Privacy, Query Privacy, and Result Privacy. Concretely, our �ndings are:

• Data Privacy and Query Privacy are independent concepts.

• Result Privacy is equivalent to having Data Privacy and Query Privacy at the same
time.

In order to show that Data Privacy and Query Privacy are independent concepts, we take
a scheme that has Data Privacy and modify it in such a way that the resulting scheme
still has Data Privacy but does not have Query Privacy and, in reverse, we modify a
scheme that has Query Privacy which results in a scheme with Query Privacy but no
Data Privacy.

66 5. Privacy for Data Outsourcing

Theorem 2 (D-IND 6=⇒ Q-IND). If a data outsourcing scheme that has Data Privacy

exists, there is a data outsourcing scheme that has Data Privacy but no Query Privacy.

Proof. Let (Gen, Enc,Q) be a data outsourcing scheme that has Data Privacy. We modify
it in a way to violate Query Privacy, but keep Data Privacy intact. To this end, we amend
the protocols that execute queries to have the client transmit the executed query in the
clear after the actual protocol is complete. We have to show that the modi�cation violates
Query Privacy but does not violate Data Privacy.

With the modi�cation, the adversary in experiment Q-IND can easily extract the
executed query from any view and thus determine the challenge bit with certainty. Thus
the modi�cation violates Query Privacy. To see that this modi�cation does not violate
Data Privacy, �rst note that the modi�ed scheme retains its Data Privacy up until the
point of the modi�cation. We argue that the transmission of the query in the clear does
not break Data Privacy. Consider experiment D-IND. Because the experiment draws
the key K after the scheme is �xed, the scheme is independent of the actual key used
to encrypt the data set d . Further, because the query is supplied by the adversary in the
experiment and the adversary has learned neither db nor K up to this point, the query is
also independent of db and K . This concludes the argument. �

Theorem 3 (Q-IND 6=⇒ D-IND). If there is a retrievable data outsourcing scheme that

has Static Security, there is a data outsourcing scheme that has Query Privacy and Static

Security, but no Data Privacy.

For this proof, we change each protocol of the given outsourcing scheme. Each changed
protocol transfers the encryption key K to the server, retrieves the outsourced data set,
and executes the query locally. Please note that Theorem 3 also separates Static Security
from Data Privacy.

Proof. Let (Gen, Enc,Q) be a retrievable data outsourcing scheme that has Static Security.
We construct a modi�ed scheme (Gen, Enc,Q′) that suits our purposes. By adopting
Gen and Enc, we retain static security. We design Q′ such that it has query privacy, but
trivially loses Data Privacy. Q′ is constructed iteratively, starting with an empty set. For
each protocol πq ∈ Q that realises a query q, we de�ne a protocol π ′q ∈ Q′ as follows:

(Recall that the client’s input is the encryption key K and a query q; the server’s input
is an encrypted data set Enc(d ,K).)

1. Client: Transfer K to the Server.

2. Server: Decrypt Enc(d ,K) and send d = Dec(Enc(d ,K),K) back to the Client.

3. Client: Execute query q locally on d and output q (d).

Protocol π ′ transmits the data set d in the open, violating Data Privacy. Because the client
executes q locally and never transmits any information that depends on q, the scheme
(Gen, Enc,Q′) does have Query Privacy. �

The following theorems show that Result Privacy is equivalent to both Data Privacy
and Query Privacy (at the same time).

Theorem 4 (R-IND =⇒ D-IND). There is no data outsourcing scheme that has Result

Privacy but no Data Privacy.

4. Fundamental Relations Among the Basic Privacy Notions 67

Proof. Assume a data outsourcing scheme (Gen, Enc,Q) for which there is an e�cient
adversary AD against experiment D-IND. We give an e�cient reduction for AD that
breaks the Result Privacy (experimentR-IND) of the scheme, contradicting the assumption.
The reduction is straightforward. It has to provide a challenge oracle viewπ ·

S
(Enc(db,K)).

R-IND A

AD
K ← Gen(1k) 1k

1k
viewπ·

S
(Enc(·,K))

viewπ·
S
(Enc(·,K))

d0, d1

q0, q1 ← Q(d0, q0), (d1, q1)

b ← {0, 1} viewπ·
S
(Enc(db,K))

viewπqb
S

(Enc(·,K))

viewπqb
S

(Enc(db,K)) viewπ·
S
(Enc(db,K))

b′

b′

Figure 5.2.: Sketch for the proof of Theorem 4: An e�cient reduction of an adversaryAD

that breaks Data Privacy to an adversary A, that breaks Result Privacy.

Such an oracle is provided by experiment R-IND and only has to be passed through (see
Figure 5.2). �

Theorem 5 (R-IND =⇒ Q-IND). There is no data outsourcing scheme that has Result

Privacy but not Query Privacy.

Proof. The proof of Theorem 5 is analogous to the proof of Theorem 4. Instead of
passing through the oracle for viewπ ·

S
(Enc(db,K)), now, the reduction A passes the

oracle view
πqb
S

(Enc(·,K)) to the adversary AQ (see Figure 5.3). �

Theorem 6 (D-IND ∧ Q-IND =⇒ R-IND). Data Privacy and Query Privacy together

imply Result Privacy: There is no data outsourcing scheme that has Data Privacy and Query

Privacy but no Result Privacy.

We prove the statement using a game-hopping technique. Assume any adversary
against R-IND. We replace both view oracles for db and qb with an oracle for �xed
challenges d0 and q0, respectively. We argue the indistinguishability of these steps
with Data Privacy and Query Privacy. Finally, in the now-transformed experiment, the
adversary has no advantage since her input is independent of b. Concluding, given a
scheme with Data Privacy and Query Privacy, no adversary against result privacy has a
non-negligible advantage in the game R-IND.

68 5. Privacy for Data Outsourcing

R-IND A

AQ
K ← Gen(1k) 1k

1k
viewπ·

S
(Enc(·,K))

viewπ·
S
(Enc(·,K))

q0, q1

d0, d1 ← D(d0, q0), (d1, q1)

b ← {0, 1} viewπ·
S
(Enc(db,K))

viewπqb
S

(Enc(·,K))

viewπqb
S

(Enc(db,K)) viewπqb
S

(Enc(·,K))

b′

b′

Figure 5.3.: Sketch of the proof for Theorem 5: An e�cient reduction of an adversary
AQ that breaks Query Privacy to an adversaryA, that breaks Result Privacy.

Proof. Starting from the result privacy experiment R-IND, we de�ne two game trans-
formations: R-IND′ and R-IND′′. In the unmodi�ed experiment R-IND, the adversary is
supplied with the following view oracles:

• viewπ ·
S
(Enc(db,K))

• view
πqb
S

(Enc(·,K))

• view
πqb
S

(Enc(db,K))

In the following two steps, we set the bit b in the two view oracles to 0.
In the modi�cation R-IND′ (cf. Figure 5.4), we replace the oracle viewπ ·

S
(Enc(db,K))

with an oracle for viewπ ·
S
(Enc(d0,K)) and the oracle view

πqb
S

(Enc(db,K)) with
view

πqb
S

(Enc(d0,K)). This modi�cation is indistinguishable for the adversary. If she could
distinguish R-IND from R-IND′, she could also break Data Privacy which is impossible by
our assumptions. We prove the indistinguishability of R-IND from R-IND′ in Lemma 3.

In the gameR-IND′′ (cf. Figure 5.5), we replace viewπqb
S

(Enc(·,K)) by viewπq0
S

(Enc(·,K))

and further view
πqb
S

(Enc(d0,K)) by view
πq0
S

(Enc(d0,K)). In R-IND′′ the adversary re-
ceives no input that is dependent on the challenge bit b. Consequently, the adversary
in R-IND′′ can not have an advantage over guessing b. This modi�cation is also indis-
tinguishable for the adversary. If she could distinguish R-IND′ from R-IND′′, she could
also break Query Privacy, which is impossible by assumption. She thus has no advantage
over guessing b. We have to argue that R-IND′′ is indistinguishable from R-IND′ for the
adversary. We prove the indistinguishability of R-IND′ from R-IND′′ in Lemma 4. �

Lemma 3. An adversary who can distinguish between running in experiment R-IND and

experiment R-IND′ yields a successful adversary against Data Privacy.

4. Fundamental Relations Among the Basic Privacy Notions 69

R-IND′ A1k

viewπ·
S
(Enc(·,K))

(d0, q0), (d1, q1)

b ← {0, 1} viewπ·
S
(Enc(d0,K))

viewπqb
S

(Enc(·,K))

viewπqb
S

(Enc(d0,K))

b′

Figure 5.4.: The experiment R-IND′. In contrast to the experiment R-IND, the adversary
gets the oracles for viewπ ·

S
(Enc(d0,K)) and view

πqb
S

(Enc(d0,K)).

We model the distinction between the two R-IND and R-IND′ with an experiment
D-Oracle-IND in which the adversary must decide whether she is running in R-IND or
in R-IND′ (see Figure 5.6). The di�erence between the experiments R-IND and R-IND′ is
whether the �rst challenge oracle is viewπ ·

S
(Enc(db,K)) or viewπ ·

S
(Enc(d0,K)).

Thus, in D-Oracle-IND the adversary is challenged on deciding whether she has access
to an oracle viewπ ·

S
(Enc(db,K)) or whether she is accessing oracle viewπ ·

S
(Enc(d0,K)),

where the bit b is set to 0. This is decided by a random challenge bit c , which is drawn by
the experiment D-Oracle-IND and has to be guessed by the adversary. (The query view
oracle viewπqb

S
(Enc(·,K)) is provided to the adversary with no change.) To clearly separate

the di�erent challenge bits, we name the challenge bit in the distinction experiment
D-Oracle-IND c .

Security Game 8 (D-Oracle-INDA
(Gen,Enc,Q)

(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives oracle access to viewπ ·
S
(Enc(·,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment (under the

restrictions that |d0 | = |d1 | and that πq0 and πq1 have the same number of messages).

4. The experiment draws two random bits b ← {0, 1} and c ← {0, 1}.

5. Challenge:

If c = 0: A oracle receives access to viewπ ·
S
(Enc(d0,K)).

If c = 1: A oracle receives access to viewπ ·
S
(Enc(db,K)).

6. A receives access to view
πqb
S

(Enc(·,K)).

7. If c = 0: A oracle receives access to view
πqb
S

(Enc(d0,K)).

If c = 0: A oracle receives access to view
πqb
S

(Enc(db,K)).

70 5. Privacy for Data Outsourcing

R-IND′′ A1k

viewπ·
S
(Enc(·,K))

(d0, q0), (d1, q1)

b ← {0, 1} viewπ·
S
(Enc(d0,K))

viewπq0
S

(Enc(·,K))

viewπq0
S

(Enc(d0,K))

b′

Figure 5.5.: The experiment R-IND′′. In contrast to the experiment R-IND′, the adversary
gets the oracles for viewπq0

S
(Enc(·,K)) and view

πq0
S

(Enc(d0,K)).

8. A outputs a guess c′ for c .

In order to prove Lemma 3, we give an e�cient reduction A which transforms an
adversary AD-Oracle-IND that has an advantage over guessing c in this experiment into an
adversary on Data Privacy.

Proof. Assume an adversary AD-Oracle-IND with a non-negligible advantage in experi-
ment D-Oracle-IND. We construct a reduction that has a non-negligible advantage in
experiment D-IND (also see Figure 5.6). We need to simulate the following oracles:

• Step 2: viewπ ·
S
(Enc(·,K)).

This oracle is provided by the experiment D-IND and can be relayed.

• Step 5: viewπ ·
S
(Enc(db,K)).

This oracle is provided by the experiment D-IND and can be relayed.

• Step 6: viewπqb
S

(Enc(·,K)).
From the experiment D-IND, we get the oracle viewπ ·

S
(Enc(·,K)). We �x q1 and

output viewπq1
S

(Enc(·,K)).

• Step 7: viewπqb
S

(Enc(db,K)).
From the experiment D-IND, we get the oracle viewπ ·

S
(Enc(db,K)). We �x q1 and

output viewπq1
S

(Enc(db,K)).

Now, we can distinguish two cases for the challenge b in the experiment D-IND:

1. b = 0:
We forwarded the oracles

• viewπ ·
S
(Enc(·,K)),

• viewπ ·
S
(Enc(d0,K)),

4. Fundamental Relations Among the Basic Privacy Notions 71

D-IND A

AD-Oracle-IND
K ← Gen(1k)

1k

1k
viewπ·

S
(Enc(·,K))

viewπ·
S
(Enc(·,K))

(d0, q0), (d1, q1)
(d0, d1)

b ← {0, 1}
viewπ·

S
(Enc(db,K))

viewπ·
S
(Enc(db,K))

viewπq1
S

(Enc(·,K))

viewπq1
S

(Enc(db,K))

c ′
b′ := c ′

b′

Figure 5.6.: Sketch of the proof for Lemma 3. An e�cient adversary that can decide
whether she is running in experiment R-IND or R-IND’ yields an e�cient
adversary against D-IND.

• view
πq1
S

(Enc(·,K)), and

• view
πq1
S

(Enc(d0,K)).
The views are inconsistent. We simulated D-Oracle-IND with b = 1 and c = 0.

2. b = 1:
We forwarded the oracles

• viewπ ·
S
(Enc(·,K)),

• viewπ ·
S
(Enc(d1,K)),

• view
πq1
S

(Enc(·,K)),

• and view
πq1
S

(Enc(d1,K)).
We simulated D-Oracle-IND with b = 1 and c = 1.

Please note that if in the experiment D-Oracle-IND the random bit b is 0, the challenge
is independent of c . Therefore, the advantage from the adversary over guessing c has
to be from the cases above, where b = 1. Thus, we return AD-Oracle-IND’s guess c′ as our
guess b′ to inherit AD-Oracle-IND’s success probability. �

Lemma 4. An adversary who can distinguish between R-IND′ and R-IND′′ yields a suc-
cessful adversary on Query Privacy.

The proof of Lemma 4 is analogous to that of Lemma 3: We de�ne a distinction
experiment AQ-Oracle-IND in which the adversary has to decide whether she is running in
the experiment R-IND′ or in the experiment R-IND′′.

72 5. Privacy for Data Outsourcing

Security Game 9 (Q-Oracle-INDA
(Gen,Enc,Q)

(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives oracle access to for viewπ ·
S
(Enc(·,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment (under the

restrictions that |d0 | = |d1 | and that πq0 and πq1 have the same number of messages).

4. The experiment draws two random bits b ← {0, 1} and c ← {0, 1}.

5. A receives oracle access to viewπ ·
S
(Enc(d0,K)).

6. Challenge:

If c = 0: A receives oracle access to view
πq0
S

(Enc(·,K)).

If c = 1: A receives oracle access to view
πqb
S

(Enc(·,K))

7. If c = 0: A receives oracle access to view
πq0
S

(Enc(d0,K)).

If c = 0: A receives oracle access to view
πqb
S

(Enc(d0,K)).

8. A outputs a guess c′ for c .

Proof. Assume an adversary AQ-Oracle-IND with a non-negligible advantage in experi-
ment Q-Oracle-IND. We construct a reduction that has a non-negligible advantage in
experiment D-IND (also see Figure 5.7). We need to simulate the following oracles:

• Step 2: viewπ ·
S
(Enc(·,K)).

This oracle is provided by the experiment Q-IND and can be relayed.

• Step 5: viewπ ·
S
(Enc(d0,K)).

To simulate this oracle we use the viewπ ·
S
(Enc(·,K)) oracle provided by the experi-

ment Q-IND and �x d0.

• Step 6: viewπqb
S

(Enc(·,K)).
This oracle is provided by the experiment Q-IND and can be relayed.

• Step 7: viewπqb
S

(Enc(d0,K)).
From the experiment Q-IND, we get the oracle view

πqb
S

(Enc(·,K)). We �x d0 and
output viewπqb

S
(Enc(d0,K)).

Now, we can distinguish two cases for the challenge b in the experiment D-IND:

1. b = 0:
We forwarded the oracles

• viewπ ·
S
(Enc(·,K)),

• viewπ ·
S
(Enc(d0,K)),

• view
πq0
S

(Enc(·,K)), and

• view
πq0
S

(Enc(d0,K)).

The challenge is consistent. We simulated Q-Oracle-IND with c = 0.

5. Query Privacy and Private Information Retrieval 73

Q-IND A

AQ-Oracle-IND
K ← Gen(1k)

1k

1k
viewπ·

S
(Enc(·,K))

viewπ·
S
(Enc(·,K))

(d0, q0), (d1, q1)
(q0, q1)

b ← {0, 1}
viewπqb

S
(Enc(·,K))

viewπ·
S
(Enc(d0,K))

viewπqb
S

(Enc(·,K))

viewπqb
S

(Enc(db,K))

c ′
b′ := c ′

b′

Figure 5.7.: Sketch of the proof for Lemma 4. An e�cient adversary that can decide
whether she is running in experiment R-IND’ or R-IND” yields an e�cient
adversary against Q-IND.

2. b = 1:
We forwarded the oracles

• viewπ ·
S
(Enc(·,K)),

• viewπ ·
S
(Enc(d0,K)),

• view
πq1
S

(Enc(·,K)), and

• view
πq1
S

(Enc(d0,K)).
The challenge is inconsistent. We simulated Q-Oracle-IND with c = 1 and b = 1.
Please note that for b = 1 and for c = 0, the adversary would receive the same
oracles as for b = 0. Therefore, we only have to consider the case c = 1, here.

Thus, we return AQ-Oracle-IND’s guess as the reduction’s own guess b′ = c′ to inherit
AQ-Oracle-IND’s success probability. �

The Theorems 4, 5 and 6 lead to the following corollary:

Corollary 1 (R-IND ⇐⇒ D-IND ∧ Q-IND). Result Privacy is equivalent to both, Data
Privacy and Query Privacy (at the same time).

5. Query Privacy and Private Information Retrieval
In the original de�nition of (single server) Computational Private Information Retrieval
(cPIR) [KO97], the notion is de�ned for a pair of polynomial time Turing machines, a
database, and a user. The user queries the database once. The database machine has a

74 5. Privacy for Data Outsourcing

n-bit input string on its input tape, reads the query from its read only communication
tape, and writes a reply to its write only communication tape. The user �nally outputs a
bit. We give a de�nition of the cPIR notion using our notation and conventions.

De�nition 46 (Private Information Retrieval). A queryable outsourcing scheme

(Gen, Enc,Q) exhibits Computational Single Server Private Information Retrieval when
for any n ∈ N, any security parameter k ∈ N, and any data set d over Σ = {0, 1}n the

following two conditions hold:

1. Correctness: ∀ i ∈ {0, ... , n − 1} ∃ πi ∈ Q : πCi (d) = d[i].

2. Privacy: ∀c ∈ N, i , j ∈ {0, ... , n − 1},∀A ∃K ∈ N such that ∀k > K :

|Pr[A (viewπi
S
(Enc(d ,K))) = 1] − Pr[A (viewπj

S
(Enc(d ,K))) = 1]| <

1
max(k , n)c

Theorem 7. Private Information Retrieval is equivalent to Query Privacy.

In our proof, we implicitly exclude schemes that store unretrievable information in
the data set. We assume that each queryable outsourcing scheme has, for each bit in its
data set, a query that retrieves it. This is not a restriction, as one can easily construct a
non-redundant scheme from one that stores unretrievable information.

Proof. For this proof, let the domain of all data sets be ∆ = {0, 1}∗. We �x a security
parameter k ∈ N. W.l.o.g., we assume any queryable outsourcing scheme (Gen, Enc,Q)
with a protocol πi that outputs the i + 1th bit of the data set for all i ∈ {0, ... , n− 1}, where
n is the length of the data set d ∈ ∆. We prove the theorem in two steps.

PIR =⇒ Q-IND:
Assume any e�cient adversary A who is successful in the experiment Q-IND with a
non-negligible advantage over guessing. We show that there are i , j ∈ {0, ... , n − 1}, and
an e�cient algorithm A′ such that they violate the privacy condition of De�nition 46.

Construct A′ as follows: Simulate experiment Q-IND to obtain πi ,πj from A. i and
j are the required indices. Now relay the input viewπb

S
(Enc(d ,K)) (for b ∈ {i , j }) to A.

Output A’s guess b′.
Q-IND =⇒ PIR:

Assume any i , j ∈ {0, ... , n − 1} and any e�cient algorithm A′ such that A′ violates the
privacy condition of De�nition 46 at indices i and j . We construct an e�cient adversary
A that has a non-negligible advantage over guessing in the experiment Q-IND: Output
πi and πj as the challenge queries. Output b′ = A (viewπb

S
(Enc(d ,K))) (for b ∈ {i , j }).

(For any adversary with a success probability < 1
2 there is an adversary with a success

probability > 1
2 , easily obtained by �ipping its guess.) �

6. Generalised Security Notions for Data Outsourcing
Schemes

In this section, we generalise the security notions of Data Privacy, Query Privacy, and Re-
sult Privacy. This allows for restricting the adversary’s power. We use two generalisations
on our notions from Section 3.1:

6. Generalised Security Notions for Data Outsourcing Schemes 75

• bounds that limit the number of oracle calls the adversary is allowed to

• leakage relations that limit the adversaries choices for data sets and queries

A special case for a bound is 1 which renders the notions non-adaptive. Further, we
explicitly model the issuing of queries independently of handing out the results. This
allows us to capture security notions where the adversary can alter the state of the
database, but can not see the immediate result (e. g. she can only observe the result of the
last issued query).

In Section 5, we showed that Query Privacy is equivalent to private information
retrieval. As it is notoriously hard to realise practical (single server) PIR protocols [SC07]
a natural consequence is to investigate weaker security notions with an eye on practical
feasibility. Similarly, protocols that, in order to execute queries e�ciently, base decisions
on the content of the queried data leak information about the data.

In order to model potential information leakage about the data and the queries (also
see Section 2.4), we introduce the leakage relations Rd and Rq . Challenges the adversary
can choose are subject to equivalence under these relations. This way, one can explicitly
rule out speci�c distinction advantages. To model the leakage of the length of a data set
for example, one would de�ne Rd ⊂ D2 as the set of all data set pairs with equal length.

Goh et al. [Goh03] introduce restricting parameters into their security notion as well.
They allow for a bound on the running time, the advantage, and the number of oracle
calls. Our approach is similar to these concepts but introduces further generalisations.

In the following, we de�ne the generalised security notions for Static Security, Data
Privacy, Query Privacy, and Result Privacy. In Section 6, we use the generalised notion of
Static Security in order to instantiate Ind-ICP, our notion for secure database outsourcing
and we use the generalised notion of Data Privacy to instantiate a generalisation of
Ind-ICP that holds in the presence of queries.

Since, in the static case, the adversary has no access to a query oracle and does not
issue queries, only the introduction of the leakage relation Rd is meaningful.

Security Game 10 (IND-CDAA,Rd

(Gen,Enc) (k)).

1. The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.

2. The adversary A is given input 1k and oracle access to Enc(·,K).

3. A outputs two data sets d0 and d1 to the experiment. The choice of d0 and d1 is
restricted to data set pairs that are equivalent with regard to equivalence relation

Rd ⊆ D2
, i. e. (d0, d1) ∈ Rd .

4. A is given Enc(db,K).

5. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

De�nition 47 (Static Security). An outsourcing scheme (Gen, Enc) has indistinguishable
encryptions under chosen-data-attacks (Ind-CDA) or Static Security with respect to Rd , if

for all PPT adversaries A, there exists a negligible function negl such that:

Pr[IND-CDAA,Rd

(Gen,Enc) (k) = 1] ≤
1
2
+ negl (k)

76 5. Privacy for Data Outsourcing

The generalisations for the notions Data Privacy, Query Privacy, and Result Privacy
are straightforward. We introduce the bounds n1, n2, and n3 that limit the number of
times, the adversary can access the oracles given to her in each security game. The bound
n1 limits the times, the adversary can access the oracle viewπ ·

S
(Enc(·,K)). This allows to

model security notions, where the adversary is limited in what she is allowed to learn
about outputs of the scheme. For example setting the bound n1 to zero allows to model
security notions for deterministic schemes. The bound n2 limits the times, the adversary
can access the challenge oracle. The bound n3 limits the times, the adversary can access
a run oracle, that has no output but can be used to simulate query executions. This run
oracle serves the purpose to capture hypothetical schemes that, for example upload the
encryption key after n2 + t (with t < n3) queries. For Query Privacy and Result Privacy,
analogous to Static Security, we introduce Rq a leakage relation of queries, that restricts
the adversary.

Security Game 11 (D-INDA,Rd ,n1,n2,n3
(Gen,Enc,Q)

(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ ·
S
(Enc(·,K)), and continues to have access to

it. A is only allowed to query viewπ ·
S
(Enc(·,K)) for a total number of n1 times.

3. A outputs two data sets d0 and d1 to the experiment. The choice of d0 and d1 is
restricted to data set pairs that are equivalent with regard to equivalence relation

Rd ⊆ D2
, i. e. (d0, d1) ∈ Rd .

4. The experiment draws a random bit b ← {0, 1}.

5. Challenge: A is given access to an oracle for viewπ ·
S
(Enc(db,K)), and continues to

have access to it. A may call the challenge oracle for a total number of n2 times.

6. Run oracle: A is given access to an oracle runπ ·
S
(Enc(db,K)). The run oracles execute

queries just as the view oracle does, but has no output. A is allowed to call the run

oracle for a total number of n3 times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Please note that if an adversary is given access to an oracle, she continues having
access to it until to the end of the security game. For example, the adversary can call
the oracle for viewπ ·

S
(Enc(db,K)) after calling the oracle runπ ·

S
(Enc(db,K)) as long as she

does not exceed the number of calls allowed by the respective bounds.

De�nition 48 (n1, n2, n3-Data Privacy). An outsourcing scheme (Gen, Enc,Q) has
n1, n2, n3-Data Privacy with respect to Rd , if for all PPT adversaries A, there exists a

negligible function negl such that:

Pr[D-INDA,Rd ,n1,n2,n3
(Gen,Enc,Q)

(k) = 1] ≤
1
2
+ negl (k)

Security Game 12 (Q-INDA,Rq,n1,n2,n3
(Gen,Enc,Q)

(k)).

1. The experiment chooses a key K ← Gen(1k).

6. Generalised Security Notions for Data Outsourcing Schemes 77

2. A receives access to an oracle for viewπ ·
S
(Enc(·,K)), and continues to have access to

it. A is only allowed to query viewπ ·
S
(Enc(·,K)) for a total number of n1 times.

3. A outputs two queries q0 and q1 to the experiment. The choice of q0 and q1 is restricted
to query pairs that are equivalent with regard to equivalence relation Rq ⊆ Π2

, i. e.

(q0, q1) ∈ Rq .

4. The experiment draws a random bit b ← {0, 1}.

5. Challenge: A is given access to an oracle for view
πqb
S

(Enc(·,K)). A may call the

challenge oracle for a total number of n2 times.

6. Run oracle: A is given access to an oracle runπb
S
(Enc(·,K)), and continues to have

access to it. The run oracle executes queries just as the view oracle does, but has no

output. A is allowed to call the run oracle for a total number of n3 times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.
De�nition 49 (n1, n2, n3-Query Privacy). An outsouring scheme (Gen, Enc,Q) has
n1, n2, n3-Query Privacy with respect to Rq , if for all PPT adversaries A, there exists a

negligible function negl such that:

Pr[Q-INDA,Rq,n1,n2,n3
(Gen,Enc,Q)

(k) = 1] ≤
1
2
+ negl (k)

Security Game 13 (R-INDA,Rd ,Rq,n1,n2,n3
(Gen,Enc,Q)

(k)).
1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ ·
S
(Enc(·,K)), and continues to have access to

it. A is only allowed to query viewπ ·
S
(Enc(·,K)) for a total number of n1 times.

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment. The choice

of d0, d1, q0, and q1 is restricted to (d0, d1) ∈ Rd and (q0, q1) ∈ Rq .

4. The experiment draws a random bit b ← {0, 1}.

5. Challenge: A is given access to the oracles for view
πqb
S

(Enc(db,K)), viewπ ·
S
(Enc(db,K)),

and view
πqb
S

(Enc(·,K)) and continues to having acces to them. A may call these ora-

cles for a total number of n2 times.

6. Run oracle: A is given access to the oracles runπ ·
S
(Enc(db,K)), and runπb

S
(Enc(·,K)),

and continues having access to them. The run oracle executes queries just as the view

oracle does, but has no output. A is allowed to call the run oracles for a total number

of n3 times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.
De�nition 50 (n1, n2, n3-Result Privacy). An outsourcing scheme (Gen, Enc,Q) has
n1, n2, n3-Result Privacy with respect to Rd and Rq , if for all PPT adversariesA, there exists

a negligible function negl such that:

Pr[R-INDA,Rd ,Rq,n1,n2,n3
(Gen,Enc,Q)

(k) = 1] ≤
1
2
+ negl (k)

6. Security Notions for Database
Outsourcing

This chapter is partially based on work already published in [AGH11; Hub+13; Hei+10;
Hub+11; HMN13; HMN14; HH14; Har11] and [Ach+16].

1. Introduction
In order to be e�cient, a database outsourcing scheme needs to support queries with a
sublinear search time with regards to the size of the database. As of today, there are no
known e�cient (single server) database outsourcing schemes that ful�l a strong, classical
security notion such as Ind-CPA. If the data is stored on the server, e�cient schemes
have to execute at least parts of the queries on the server. Application speci�c, weaker
security notions leak information about the data to the server. This information, then,
can be exploited to build e�cient schemes.

This is one of the main di�erence between classical security notions for encryption
and notions tailored for secure database outsourcing and database privacy. The goal of
strong encryption schemes is to hide every aspect of the plaintext (except for the length).
The intention schemes for database outsourcing, searchable encryption, and database
privacy is to hide certain aspects of the plain text or the queries, while preserving other
aspects in order to provide some form of utility.

For database privacy, this utility is the accuracy results of analyses on the disclosed
database in comparison to results of analyses on the original database. For database
outsourcing and searchable encryption this utility is the support for e�cient execution
of queries. Therefore, a privacy notion can be seen as a trade o� between con�dentiality
and utility.

Based on the generalised security notions for data outsourcing presented in Chapter 5,
in this Chapter, we de�ne indistinguishability over independent column permutations
(Ind-ICP), a static notion for secure database outsourcing that allows for e�cient execu-
tion of SQL queries. Based on this notion, we de�ne the notion l-Ind-ICP, that provides
security when the adversary is allowed to observe the execution of queries. In Chapter 7,
we provide a database outsourcing scheme that ful�ls Ind-ICP as well as an extension of
this scheme that ful�ls l-Ind-ICP.

Structure of this Chapter In this Chapter, we will de�ne our security notions for
database outsourcing. We will de�ne Ind-ICP, a static security notion, in Section 2.
Furthermore, we show, that Ind-ICP is an instance of generalised Ind-CDA, the gener-
alised Static Security notion for data outsourcing de�ned in Chapter 5. In Section 3, we
will de�ne l-Ind-ICP, a generalisation of Ind-ICP, and a dynamic variant of Ind-ICP that
provides security if the adversary observes query executions. This dynamic variant, is a
direct instance of the generalised notion for Data Privacy from Chapter 5.

79

80 6. Security Notions for Database Outsourcing

2. Indistinguishability under Independent Column
Permutation

In this section, we present the notion Indistinguishability under Independent Column

Permutation (Ind-ICP), a security notion for secure database outsourcing. It allows for
database outsourcing schemes that enable e�cient execution of queries on the outsourced
database. In Chapter 7, we will present such a scheme, discuss its e�ciency, present and
discuss implementations of this scheme, and provide benchmarks.

Informally, Ind-ICP guarantees that an adversary does not learn the relations of the
attribute values in the original database. The idea of Ind-ICP is inspired from k-anonymity.
The intention of the notion k-anonymity is to hide the relations of values of the sensitive
predicate and individuals. While this intention seems reasonable, the notion k-anonymity
is implemented as a syntactical notion without considering adversaries explicitly. We
improve on this by carrying over the intention of k-anonymity to a semantic, game-
based notion that considers PPT adversaries. Since Ind-ICP is a cryptographic privacy
notion, it overcomes some of the shortcomings of k-anonymity (cf. Chapter 4, Section 2.2).
Furthermore, we do not di�erentiate between identi�ers, quasi-identi�ers, and sensitive
information, resulting in a notion of a more general applicability. For example, a scheme
that provides Ind-ICP can also be used in scenarios that do not involve data related to
individuals.

2.1. Formalisations
Since we operate on databases, we de�ne mechanisms that transform databases as follows:

De�nition 51 (Database Transformation). A database transformation is a PPT algorithm

f : DB′ → DB′′ with DB′,DB′′ ⊆ DB. If f is a function, we call f a database function.

An example of database transformations are database anonymisation mechanisms. Note
that not all database transformations are functions. Consider for example transformations
that involve probabilistic processes. A special case of database functions are independent

column permutations:

De�nition 52 (Independent Column Permutation). A column permutation is a database

function that applies a permutation to a single column of a database. An icp is a set of

column permutations. We call Φ the set of all icp.

A B C

a1 b1 c1
a2 b2 c2
a3 b3 c3

6.1.1: Database d

A B C

a3 b3 c1
a2 b1 c2
a1 b2 c3

6.1.2: Database p(d)

Figure 6.1.: An example for a database before 6.1.1 and after 6.1.2 an independent column
permutation p = {p1, p2, p3} with p1 = (13), p2 = (123), and p3 = id .

An icp permutes the attribute values of a database within columns. Consider for
example the databases depicted in Figure 6.1. The right database (Figure 6.1.2) is the result

2. Indistinguishability under Independent Column Permutation 81

of applying the permutation p1 = (13) to the �rst column, the permutation p2 = (123) to
the second column, and the permutation p3 = id to the last column of the left database
(Figure 6.1.1).

We use these independent column permutations to de�ne a relation between databases.
This relation will be the leakage relation (cf. Chapter 5, Section 6) for our security notion.
Our security notion allows the adversary to learn the equivalence class of a given database.
This is modelled with the following security game:

Security Game 14 (Ind-ICPA
(Gen,Enc) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. The adversaryA is given input 1k and oracle access to Enc(·,K) and continues having
access to it.

3. A outputs a database d and an icp p.

4. The experiment chooses a random bit b ← {0, 1} and sets d0 = d and d1 = p(d).

5. A is given Enc(db,K).

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

In this security game, the adversary chooses a database and an icp. Then, the adversary
has to guess whether this icp has been applied to the database prior to encryption. The
oracle Enc(·,K) serves as an encryption oracle that lets the adversary encrypt arbitrary
databases without revealing the encryption key K to the adversary. The experiment
returns 1 if the adversary guessed right and 0 otherwise. Based on this security game, we
can de�ne the Ind-ICP notion:

De�nition 53 (Indistinguishability under Independent Column Permutation). A database

outsourcing scheme (Gen, Enc,Q) has Indistinguishability under Independent Column
Permutation (Ind-ICP), if for all PPT adversaries A, there exists a negligible function negl
such that:

Pr[Ind-ICPA(Gen,Enc) (k) = 1] ≤
1
2
+ negl (k)

Since the relations are destroyed by independent column permutations, the notion
Ind-ICP prevents the adversary from learning them from the encrypted database. This
security notion is weaker than classical cryptographic security notions for encryption.
In classical experiments used to de�ne security notions for encryption, the adversary
is allowed to freely choose two elements either from a set of plaintexts (Ind-CPA) or
from a set of ciphertexts (Ind-CCA). In the security game Ind-ICPA

(Gen,Enc) , the adversary
can only select two databases that can be transformed into each other with an icp. This
e�ectively weakens the security of the notion based on this game. For example, the
adversary is allowed to learn the attribute values that occur in the database. We will
later use this information to build an e�cient and Ind-ICP secure database outsourcing
scheme.

Please note that the notion Ind-ICP does not compose with arbitrary background
knowledge. According to the No-Free-Lunch Theorem [KM11], this is not possible while
maintaining some utility. We will discuss this and other shortcomings of the notion
Ind-ICP as well as shortcomings of schemes that ful�l this notion in Chapter 7, Section 8.

82 6. Security Notions for Database Outsourcing

2.2. IND-ICP as an Instance of IND-CDA
Ind-ICP is a direct instance of the generalised Static Security notion Ind-CDA (De�ni-
tion 47 in Chapter 5). We de�ne the leakage relation as the relation induced by Φ, the set
of all independent column permutations.

Theorem 8. Ind-ICP is equivalent to Static Security for databases with respect to RΦ =

DB/Φ(DB) .

Ind-ICP A

K ← Gen(1k) 1k

Enc(·,K)

d ,p

b ← {0, 1}
d0 := d

d1 := p(d) Enc(db,K)

b′

6.2.1: Ind-ICP

Ind-CDA A

K ← Gen(1k) 1k

Enc(·,K)

d0, d1 with d0Rdd1

b ← {0, 1}

Enc(db,K)

b′

6.2.2: Ind-CDA

Figure 6.2.: The security games Ind-ICPA
(Gen,Enc) and IND-CDAA,Rd

(Gen,Enc) .

Proof. We set D = DB. Each adversary that has a non-negligible advantage in
IND-ICPA

(Gen,Enc) can e�ciently be reduced to an adversary that has non negligible ad-
vantage in IND-CDAA,RΦ

(Gen,Enc) and vice versa. The reductions are straightforward (cf. Fig-
ure 6.2): The reduction from IND-ICPA

(Gen,Enc) to IND-CDAA,RΦ

(Gen,Enc) sets d0 := d and
d1 := p(d), while the reduction IND-CDAA,RΦ

(Gen,Enc) to IND-ICPA
(Gen,Enc) sets d = d0 and

determines an icp p with p(d0) = d1. �

2.3. IND-ICP as a Meaningful Security Notion
Security notions are not an end in itself. They have to be meaningful. Designing a scheme
�rst and a security notion that is ful�lled by this scheme second can lead to a notion
that very well describes the security properties of the scheme but is not meaningful
for the context the scheme is used in. Since Ind-ICP is a security notion for database
outsourcing it has to be meaningful in the context database outsourcing. Databases are
sets of tuples of the same domain. These tuples, for example, describe individuals or
measurement results. In our model, the adversary knows the scheme of the database.
Therefore, potential attribute values are not a secret.

In reality, often not the data points itself but their context – their relation to other points
are of increased interest. For example for in a medical database not a single symptom

3. l-Indistinguishability under Independent Column Permutation 83

itself but its relations to other symptoms and to properties of the individual showing
them may be relevant for diagnosis or �nding side e�ects of drugs. Applications that
combine large amounts of data and analyse relations, so-called Big Data applications,
promise huge bene�ts for example for automation, arti�cial intelligence, and optimisation
of infrastructures. Therefore, the assumption that not the data points itself but their
relations are valuable is reasonable for many scenarios. Often, these valuable relations are
also sensitive and have to be protected. Therefore, a security notion that hides relations
is a meaningful notion.

Note that, of course, there are cases where the occurrence of a certain attribute value
itself, independent of its relations to values of other attributes, deserves protection. A
simple example are licence codes of software. The notion Ind-ICP is a application speci�c
and not an one �ts all solution. As with all security measures, an evaluation in respect
to the security requirements is necessary prior to a potential deployment of an Ind-ICP
secure mechanism.

3. l -Indistinguishability under Independent Column
Permutation

In order to hide sensitive information, methods that ful�l the privacy notion k-anonymity
partition the database into blocks of at least size k (cf. Chapter 3 Section 2.2.1). Based on
this idea, the notion Ind-ICP can be generalised.

In the security game Ind-ICPA
(Gen,Enc) (De�nition 14), the adversary may choose a

arbitrary independent column permutation. Now, we partition the database into smaller
blocks and restrict the icp to only permute values within these blocks. We use l for
the size of the blocks in order to avoid confusion with the security parameter k of the
encryption scheme. We de�ne a subset of all independent column permutations, that
only permute attribute values within a block of the database. The result of restricting the
adversary in Ind-ICP security game to only chose independent column permutations of
this subset is a notion that generalises Ind-ICP. We call this notion l-Ind-ICP. We will
use l-Ind-ICP to de�ne a database outsourcing scheme that provides l-Ind-ICP in the
presence of queries in Chapter 7, Section 5.

In order to de�ne this generalised notion, we need to de�ne independent column
permutations that only operate within a speci�c partition of a database. Therefore, we
de�ne a partitioning scheme of a database:

De�nition 54. (Partitioning Scheme) Let f : DB → 2DB be a function that partitions a

database d into subsets of d with:

• d =
⋃

pi∈f (d) pi .

• |f (d1) | = |f (d2) | and ∀pi ∈ f (d1), qi ∈ f (d2) : |pi | = |qi |

We call f a partitioning scheme for databases and i the partition id of partition pi .

The �rst condition ensures that the result of f (d) actually is a partitioning of d . The
second condition guarantees that f only depends on the size of d , but not on the data in
d .

84 6. Security Notions for Database Outsourcing

De�nition 55 (Partitioning Scheme with Partitions of Size l). Let f be a partitioning

scheme for databases with ∀pi ∈ f (d) : |pi | ≥ l . we call f a partitioning scheme with
partitions of size l . For a database d ∈ DB , we call an element of f (d) a partition of d or

an l-bucket of d .

Please note, that if the database has less then 2 · l tuples, than f (d) = d for any
partitioning scheme f with partitions of size l . With a partitioning scheme, we now
can de�ne independent column permutations that respect partitions of a database. This
means that the individual permutations only operate within a partition.

De�nition 56 (Partitioning Respecting Independent Column Permutation). Let f be a

partitioning scheme for databases. A column permutation p that respects f is a column

permutation where f (d) and f (p(d)) only di�er in one element. An independent column
permutation (icp) that respects f is a set multiple column permutations that respect f .

Note, that an icp that respects a partitioning scheme can permute attribute values in all
partitions and columns, since an icp is comprised of multiple column permutations. With
this de�nition of special independent column permutations, we can de�ne l-Ind-ICP as
follows:

De�nition 57 (l-Indistinguishability under Independent Column Permutation). Adatabase

outsourcing scheme (Gen, Enc,Q) has l-Indistinguishability under Independent Column
Permutation for f (l-Ind-ICP), if for all PPT adversaries Af that only choose independent

column permutations that respect f , there exists a negligible function negl such that:

Pr[Ind-ICPAf

(Gen,Enc) (k) = 1] ≤
1
2
+ negl (k)

Note that if nmax is the size of the biggest database in DB, and if l ≥ b nmax
2 c than

l-Ind-ICP is equivalent to Ind-ICP, since the only partitioning of a database with par-
titions of at least size l is the database itself. If, however, l is smaller than b nmax

2 c a
method that ful�ls l-Ind-ICP does not necessary ful�l Ind-ICP. Consider the example
depicted in Figure 6.3. Figure 6.3.1 shows the original database while Figure 6.3.2 shows

Name Surname

1 Bob Jones
2 Alice Smith
3 Carol Jones
4 Eve Brown

6.3.1: input

Name Surname

{Alice, Bob} {Jones, Smith}
{Carol, Eve} {Brown, Jones}

6.3.2: transformed database

Figure 6.3.: An example for the input 6.3.1 and the output 6.3.2 of a mechanism that ful�ls
l-Ind-ICP for l = 2 but not Ind-ICP.

the database transformed by a mechanism that ful�ls 2-Ind-ICP for this database. The
original database can be partitioned into two 2-buckets comprised of the rows 1 and 2, and
rows 3 and 4. An adversary does not learn more about the relations of the attribute values
than the fact that the attribute values within the 2-buckets are related. The adversary can,
however, given the database in Figure 6.3.2, infer that no one named Alice Brown is in

3. l-Indistinguishability under Independent Column Permutation 85

the original database. If the mechanism used to transform the database ful�lled Ind-ICP,
the adversary would not be able to infer this.

Based on the static notion l-Ind-ICP, we can instantiate a dynamic notion, that con-
siders the adversary observing the execution of queries. We call this notion no query
advantage over l-Ind-ICP:

De�nition 58. (No Query Advantage over l-Ind-ICP) A database outsourcing scheme

(Gen, Enc,Q) for databases of size n has no query advantage over l-Ind-ICP if it has

n1, n2, n3-Data Privacy with respect to RΦf with:

• RΦf is the relation implied by independent column permutations that respect a parti-

tioning scheme f

• n1 = poly(k)

• n2 = poly(k)

• n3 = poly(k)

In Chapter 7, Section 5, we provide a scheme that ful�ls no query advantage over
l-Ind-ICP.

7. Mechanisms for Database
Outsourcing

This chapter is partially based on work already published in [AGH11; Hub+13; Hub+11;
Hei+10; HMN13; HMN14; HH14; Boe13; Bar14; Har11; Mar13] and [Ach+16].

1. Introduction

Formal notions, their relations, and composability properties are important for crypto-
graphic research. For example, they enable the comparison of the security of mechanisms
and the reasoning about security properties without the need to consider mechanisms
explicitly. In order to realise secure applications, however, there also have to be mecha-
nisms that ful�l these notions. Considering the trend of outsourcing data and calculations
and the fact that many applications rely on databases, mechanisms for secure database
outsourcing are especially desirable. Clients outsourcing their data with mechanisms
that do not provide any security guarantees are dependent on the goodwill of the service
provider and all potential internal adversaries. They lose control over their data and risk
misuse or disclosure to third parties.

In order to be used in applications, mechanism with security guarantees have to be
practical. The overhead they introduce has to be reasonable. One may argue that the
overhead of a security mechanism for outsourcing has to be lower than the bene�t of out-
sourcing. The overhead can be considered at design time in the O notation and measured
after implementation of the mechanism. Since the O notation does not consider constant
factors that can play a huge role for implementations, both, theoretical scaling properties
as well as actual benchmarks have to be considered when choosing a implementation of
a security mechanism.

Furthermore, implementing a scheme with provable security properties introduces
a context switch. The security properties are proven in an abstract model whereas the
implementation of the scheme is used in the real world. This can introduce side channels
that allow to break the security of the scheme.

In this section, we will de�ne the MimoSecco database outsourcing scheme, discuss its
scaling properties in the O notation, prove that it ful�ls Ind-ICP, present implementations
of this scheme, and provide benchmarks. One implementation, the MimoSecco research
prototype, has been integrated in a prototype of a commercial database abstraction and
synchronisation layer. The other implementation, the Cumulus4j plug-in, is free software
under the GNU Afero General Public License (AGPL) and already used in a commercial
invoice processing software as a service. Furthermore, we present optimisations of the
MimoSecco scheme with di�erent performance properties, depending on the data stored
and the queries. In the last section of this chapter, we discuss potential side channels of
implementations of database outsourcing schemes.

87

88 7. Mechanisms for Database Outsourcing

Structureof thisChapter In Section 2, we provide the preliminaries for this chapter: We
provide an overview of database outsourcing schemes found in literature, discuss e�cient
query execution in the context of database outsourcing schemes, and de�ne the classes
of queries used by our schemes. Section 3 discusses Di�erential Privacy in the context of
database outsourcing. In Section 4, we de�ne the MimoSecco scheme, discuss its e�ciency
and prove that it ful�ls Ind-ICP. In Section 5, we provide a variant of this database
outsourcing scheme that provides provable security even if the adversary is allowed
to observe query executions. Section 6 presents and discusses the implementations
MimoSecco and Cumulus4j and provides benchmark results. In Section 7, we present
performance optimisations of the index structures of our scheme and provide benchmarks.
Section 8 discusses side channels of database outsourcing schemes and implementations.

2. Preliminaries
In this section, we provide an overview over database outsourcing schemes, that can
be found in literature. These schemes use cryptographic primitives such as encryption
and hash functions as well as fragmentation of databases and generation of indices in
order to support e�cient execution of queries. In contrast to our scheme, many of these
schemes, however, do not provide a formal de�nition of their security properties. We
do not focus on searchable encryption schemes, since database outsourcing schemes, in
general, provide support for a larger range of queries (e. g. SQL). Since many searchable
encryption schemes provide a formal de�nition of their security, they already heave been
discussed in the context of privacy notions for data outsourcing in Section 2 in Chapter 5.

In the remainder of this section, we discuss what can be considered an e�cient execu-
tion of a query for a database outsourcing scheme and de�ne the classes of queries that
we di�erentiate and consider in this chapter.

2.1. Database Outsourcing Schemes in Literature
To our knowledge, the �rst practical approach to secure database outsourcing was pre-
sented by Hacigümüs et. al. in [HIM02]. Based on this approach, additional solutions have
been suggested [Hac+02; Dam+03; HMT04; Ces+05]. The basic idea of these approaches
is to encrypt the database row-wise and, in order to support e�cient query processing,
to enhance this encrypted database with coarse grained indices. A coarse grained index
for an attribute partitions its value space and assigns a unique id to each partition. An
attribute value can be accessed by the id of its partition. Figure 7.1 shows an example
from [Hac+02]. The goal of this approach is to increase the uncertainty of the adversary
about concrete attribute values. An approach to model and assess inference exposure
for coarse grained indices can be found in [Ces+05]. Since coarse grained indices lead to
false positives in the (intermediate) query result sets, such an approach, depending on
the data, introduces a large overhead.

Another idea is to achieve practical Data Privacy by data partitioning. The approaches
in [Agg+05; De +10; SHJ12] introduce privacy constraints with the goal to ful�l them
by fragmenting or encrypting the data [Agg+05; De +10; De +13] or fragmentation and
addition of dummy data [SHJ12].

In [NC11], Nergiz et. al. use the Anatomy approach [XT06] with the goal to achieve
Data Privacy in a database outsourcing scenario. Since this approach focuses on hiding re-

2. Preliminaries 89

eid ename salary addr did

23 Tom 70k Maple 40
860 Mary 60k Main 80
320 John 50k River 50
875 Jerry 55k Hopewell 110

7.1.1: emp

etuple eidS enameS salaryS addrS didS

1100110011110010. . . 2 19 81 18 2
1000000000011101. . . 4 31 59 41 4
1111101000010001. . . 7 7 7 22 2
1010101010111110. . . 4 71 49 22 4

7.1.2: empS

Figure 7.1.: The tables emp and empS (taken from [Hac+02]). The attribute etuple of table
empS holds encrypted rows of the table emp. The attributes eidS , enameS ,
salaryS , addrS , and didS are coarse grained indices for the attributes eid ,
ename , salary , addr , did . An attribute value of a coarse graind index stands
for a partition of the corresponding attribute’s value space.

lations, it is related to the database outsourcing scheme we present in Section 4. Instead of
explicitly de�ning privacy constraints, similar to k-anonymity (cf. Chapter 3, Section 2.2),
the Anatomy approach introduces blocks of tuples (quasi-identi�er-group (QI-group) or
equivalence class, cf. Section 2.2 in Chapter 3). Instead of generalising or suppressing
the attribute values of the quasi-identi�er attributes, the Anatomy approach partitions
the original table into two tables: One containing the quasi-identi�er attributes and
one containing the sensitive information. Additionally, an attribute GID is introduced.
This attribute maps a row to its equivalence class. In order to reconstruct the original
database, Nergiz et. al. introduce a unique sequence number for each tuple of the original
database. The table with the quasi-identi�er attributes contains these sequence num-
bers in plain text, in the table with the sensitive information, the sequence numbers are
hashed. Figure 7.2 shows an example. One advantage of this scheme is that the attribute
GID allows to compute a table containing a join of multiple tables on the server. While
the Anatomy approach for database outsourcing also intends to hide relations between
attribute values, it does not provide a formal security notion. Furthermore it requires,
similar to k-anonymity, a classi�cation of attributes into quasi identi�er and a single
sensitive information attribute, which can be unclear for certain databases, for example
databases with attributes that are sensitive but also can be used to identify individuals.

The SECURUS approach [KJ14], also, uses privacy constraints. A privacy constraint,
for example, prohibits unencrypted storage of certain attributes on the same server. The
focus of SECURUS is to automatically �nd an outsourcing scheme based on a catalogue of
privacy preserving techniques such as data partitioning and encryption that ful�ls a given
set of privacy constraints and supports the e�cient execution of queries from a given
set. An approach similar to SECURUS is described in [Cir+10]. The advantage of privacy
constraints is that they can easily be de�ned by a domain expert. The domain expert,
however, also has to keep in mind the underlying mechanisms used to ful�l the privacy

90 7. Mechanisms for Database Outsourcing

Patient Age Adress GID SEQ

Ike 41 Dayton 1 1
Eric 22 Richmond 1 2
Olga 30 Lafayette 2 3
Kelly 35 Lafayette 2 4
Faye 24 Richmond 3 5
Mike 47 Richmond 3 6
Jason 45 Lafayette 4 7
Max 31 Dayton 4 8

7.2.1: PatientQIT

HSEQ GID Disease

Hk (1) 1 Cold
Hk (2) 1 Fever
Hk (3) 2 Flu
Hk (4) 2 Cough
Hk (5) 3 Flu
Hk (6) 3 Fever
Hk (7) 4 Cough
Hk (8) 4 Flu

7.2.2: PatientSNT

Figure 7.2.: An example for an anatomised database (taken from [NC11]). The quasi-
identi�er attributes are separated from the sensitive information (the attribute
disease). Equivalence classes are de�ned by the attribute GID. The original
data can be restored with the attributes SEQ and HSEQ. Only the client has
the key k and can calculate the hashes Hk (·).

constraints. Otherwise he may de�ne privacy constraints that cannot be ful�lled or can
only be ful�lled by a scheme that does not support e�cient query execution. Another
drawback of these privacy constraints is that they do not consider adversaries. There are
no guarantees for which adversaries the constraints hold. Furthermore, fragmentation-
approaches involve multiple servers, while this work focuses on single server solutions.
Note that there are other multi server solutions, for example Blind Seer [Pap+14], a multi
server DBMS based on Bloom �lters that supports arbitrary Boolean queries. The security
properties of Blind Seer are modelled in a simulation-based framework. Leakage pro�les
describe what each party learns.

CryptDB [Pop+11] is an approach di�erent to the approaches above. Instead of relying
on explicit indices or fragmentation, it uses the concept of onions of encryptions. Onions
nest encryptions of attribute values encrypted with schemes with di�erent properties. If
a query cannot be executed because of the current encryption level of an attribute, the
outermost layer of all entries of this attribute is removed. The security of CryptDB is not
de�ned as formal security notion and depends on the queries issued to the database. In a
model where the adversary may choose queries CryptDB provides no security at all.

Another interesting, more recent approach is the Shu�e Index [Vim+15]. This approach
combines dummy accesses, caching of accesses, and shu�ing of nodes of the index tree in
order to provide data privacy as well as query privacy. This approach reminds of oblivious
RAMs [GO96] (cf. Chapter 5, Section 2.2). The authors do provide an elaborate security
analysis and show that the server can not distinguish searches from inserts, which is also
similar to oblivious RAMs. They do not use formal security notions, for example from
previous work on oblivious RAMs, but show that the entropy of the adversary increases
over time and provide experimental results.

2.2. E�icient Query Execution
When speaking about query execution, we consider the computational overhead on
the client and the server as well as the message overhead between them. In [KC05],

2. Preliminaries 91

Kantarcioglu and Clifton propose that a practical database outsourcing scheme should
support e�cient execution of queries. The argue that a database outsourcing scheme
where the cost of every query is linear in the size of the database cannot be considered
as e�cient. The requirement of an execution time that is sublinear in the size of the
database, however, can not be met for any query. For example, there are queries where
the whole database is the result set. Another example are queries where every tuple in
the database in�uences the result set. Therefore, when speaking about e�cient query
support, we compare the cost of the query execution on the plain database with the
complexity of the query execution on the outsourced database and call the di�erence the
overhead. We call a data outsourcing scheme e�cient, if it has a low overhead in the O
notation. Optimally, the overhead is in O (1).

2.3. Queries in this Work
In De�nition 37 in Section 3, we de�ned a query as a PPT that operates on data sets.
A query returns a result set and an updated data set. For our database outsourcing
schemes, we focus on relational databases and relational algebra or SQL as query language.
Therefore, we di�erentiate between SELECT, DELETE, INSERT and UPDATE queries. We
de�ne these queries with the use of projections and selections from relational algebra
(cf. Chapter 2, Section 3).

De�nition 59 (SELECT queries). We de�ne the set Qselect ⊂ Q such that q ∈ Qselect i�

for all d ∈ DB the following conditions hold:

• q : DB → DB × DB

• q contains a selection σ and a projection Π.

• qd = d

• q (d) = Π(σ (d))

A SELECT query only retrieves information and does not change the state of the
database.

De�nition 60 (DELETE queries). We de�ne the set Qdelete ⊂ Q such that q ∈ Qdelete i�

for all d ∈ DB the following conditions hold:

• q : DB → DB × DB

• q contains a selection σ

• dq = d \ σ (d)

• q (d) = {}

A DELETE query deletes tuples from a database.

De�nition 61 (INSERT queries). We de�ne the set Qinsert ⊂ Q such that q ∈ Qinsert i�

for all d ∈ DB with attributes A the following conditions hold:

• q : DB → DB × DB

• q contains a tuple t with attributes At

• If At = A:

92 7. Mechanisms for Database Outsourcing

– dq = d ∪ {t}

– q (d) = {idt }

• If At , A:

– dq = d

– q (d) = {}

An INSERT query inserts a single tuple t into a database and returns the (unique) row
id of the newly inserted tuple. In this work, we only consider correct INSERT queries.
This means, we only consider the case where At = A.

De�nition 62 (UPDATE queries). We de�ne the set Qupdate ⊂ Q such that q ∈ Qupdate

i� for all d ∈ DB with attributes A the following conditions hold:

• q : DB → DB × DB

• q contains a selection σ of an attribute Aq and an attribute value v of Aq

• If Aq ∈ A: dq = (d \ σ (d)) ∪ σ (d)v , where σ (d)v is σ (d) with all attribute values of

attribute Aq changed to v

• If Aq < A: dq = d

• q (d) = {}

According to this de�nition, an UPDATE query allows to change the values of a single
attribute. In order to change the values of more than one attribute or in order to apply
more than one change to the values of a single attribute, one can combine multiple update
queries. In this work, we only consider correct UPDATE queries. This means, we only
consider the case where At = A. For examples of queries, we will use a representation
similar to SQL.

3. Di�erential Privacy and Database Outsourcing
Since its introduction, the notion Di�erential Privacy [Dwo08a], has received much
attention in the �elds of data privacy and privacy preserving data analysis [Dwo08b;
KM14; McS09]. In this chapter, we examine Di�erential Privacy as a notion for secure
database outsourcing. We recall De�nition 20:

De�nition 20 (ϵ-Di�erential Privacy). A randomized function K gives Di�erential Pri-
vacy if for all data sets D1 and D2 di�ering on at most one element, and all S ⊆ Range (K)

Pr[K (D1) ∈ S] ≤ eϵ × Pr[K (D2) ∈ S]

Since our goal is a database outsourcing mechanism, we can not remove or alter tuples
in the original database. Therefore, the idea for an database outsourcing mechanism (or
the mechanism Enc of an outsourcing scheme, to be more precise), that ful�ls Di�erential
Privacy is to add so-called dummy tuples to the database prior to outsourcing. For the
sake of simplicity, we assume, that the client has an oracle to tell original tuples and
dummy tuples apart. In implementations, this can be done by an encrypted dummy bit.
With this oracle of the client, we can use the statistic Di�erential Privacy de�nition that
is much simpler than the computational counterparts [MT07].

With such a dummy mechanism, however, we can not achieve Di�erential Privacy
under practicability constraints:

3. Di�erential Privacy and Database Outsourcing 93

Theorem 9 (Impracticality of Dummy Mechanisms that ful�l ϵ-Di�erential Privacy).
Let U be the universe of all possible tuples of databases with attributes A. A mechanism

K : U∗ → U∗, that adds dummy tuples to a database but does not always output all tuples

of U does not ful�l ϵ-Di�erential Privacy.

The following proof is a proof by contradiction. It assumes the existence of a dummy
mechanism that ful�ls Di�erential Privacy and does not always output all tuples in the
universe.

Proof. Let U be the universe of all possible tuples for a database with attributes A. Fur-
thermore, let K : U∗ → U∗ be a mechanism that adds tuples from U to a given database
but does not always output all tuples of U .

Then, there is a database d0 = {r
0
1 , r 02 ,r

0
n , } ∈ U∗ and a tuple r1 ∈ U with Pr[r1 <

K (d0)] > 0. Then, there is a database d ′ ∈ Range (K) with r1 < d ′ and Pr[K (d0) = d ′] >
0. We set the database d1 = {r1, r 02 , ... r 0n , } and get Pr[K (d1) = d ′] = 0. The databases d0
and d1 di�er in exactly one tuple. Consequently, K does not ful�l di�erential privacy,
since there is no ϵ such that the following holds:

0 < Pr[K (d0) = d ′] ≤ eϵ × Pr[K (d1) = d ′] = 0

This concludes our proof. �

According to Theorem 9, there are no practical mechanisms, that only add dummy data
and ful�l ϵ-Di�erential Privacy. There are however more relaxed de�nitions of Di�erential
Privacy. One of them is (ϵ ,δ)-Di�erential Privacy, that allows for mechanisms that do
not ful�l ϵ-Di�erential Privacy for unlikely events [Dwo+06b; MT07]:

De�nition 63 ((ϵ ,δ)-Di�erential Privacy). A randomised function K gives

(ϵ ,δ)-Di�erential Privacy if for all data sets D1 and D2 di�ering on at most one element,

and all S ⊆ Range (K)

Pr[K (D1) ∈ S] ≤ eϵ × Pr[K (D2) ∈ S] + δ

In the following, we de�ne a dummy mechanism and discuss its bounds for δ in order
for the mechanism to ful�l (ϵ ,δ)-Di�erential Privacy.

De�nition 64 (Dummy Mechanism). Let U be the universe of all possible tuples for a

database with attributes A. Furthermore, let DB be the set of all databases with attributes A,
r ∈ U , d ∈ DB and p ∈ [0, 1]. We de�ne the dummy mechanismK : DB→ DB as follows:

• K (d) = d , with probability p

• K (d) = K (d) ∪ r , with probability (1 − p) · Pr[r]

The idea of this mechanism is to output the original database with a probability p and
to recursively add a random tuple to the output with probability 1 − p. We assume a
uniform and independent probability distribution for the tuples in universe U and get:

• Pr[K (d) = d] = p

• Pr[K (d) = d |d ′] = p · (1 − p) |d
′ |
∏

r∈d ′ (Pr[r]), for d ′ ∈ DB

94 7. Mechanisms for Database Outsourcing

For this mechanism, it is possible that Pr[K (d0) ∈ S] > 0 and Pr[K (d1) ∈ S] = 0. For
example, this is the case for S = K (d0) = d0. According to De�nition 64, this event has
probability p.

In order to �nd a lower bound for δ , we have to consider all cases where Pr[K (d0) ∈
S] > 0 and Pr[K (d1) ∈ S] = 0 for all d0, d1 with d0∆d1 = 1.

When two databases d0, d1 di�er in one row, w.l.o.g. the database d1 contains a tuple
r1 that is not contained in d0. The biggest S ⊆ Range (K) with Pr[K (d0) ∈ S] > 0 and
Pr[K (d1) ∈ S] = 0 is the set of all databases, that contain all tuples of d0 and, depending
on their size, additional tuples of U but not the tuple r1. We call this set S ′. The dummy
mechanism chooses and adds an r ∈ U with r , r1 to a given database with probability
n−1
n . Therefore, the probability of K (d0) ∈ S ′ is:∑

i

p(1 − p)i (
n − 1

n
)i =

p

1 − n(1−p)
n−1

=
p(n − 1)
np − 1

=
n − 1
n − 1

p

Since n is the size of the universe U (i.e. the number of all possible tuples), this lower
bound for δ gets close to 1 for real world examples. Consequently, one can argue that it
does not make much sense to describe the privacy of the dummy mechanism in terms of
(ϵ ,δ)-Di�erential Privacy. Since the dummy mechanism has similarities to randomised
response [War65], intuitively, the dummy mechanism provides a certain level of privacy.
A suitable formal notion for the privacy of the dummy mechanism could certainly provide
more insights into this mechanism.

4. An Ind-ICP Secure Database Outsourcing Scheme
In De�nition 53 in Chapter 6, Section 2, we de�ned the notion Ind-ICP. We argued that
this notion allows for e�cient and secure database outsourcing. In this section, we will
de�ne such an outsourcing scheme and discuss its e�ciency.

4.1. Formalisation of the MimoSecco Database Outsourcing Scheme
A database outsourcing scheme (Gen, Enc,Q) consists of PPTs for key generation (Gen)
and encryption (Enc) and of a set Q of e�cient two party protocols that execute a query
for outsourced databases (cf. De�nition 40 in Chapter 5). Thus, in order to de�ne an
outsourcing scheme, we need to de�ne Gen, Enc, and Q . Our scheme will use an internal
encryption scheme and inherit the key generation from it. In order to distinguish the PPTs
from each other and from the PPTs of the framework of Section 3, we will call the internal
encryption scheme (GenI, EncI,DecI) and our outsourcing scheme (GenDB, EncDB,QDB).
We will start with the de�nition of the PPT EncDB for our scheme.

Encryption Mechanism We de�ne the mechanism EncDB as a set of tables that is
parametrised by the original database. Therefore, we need some preliminary de�ni-
tions. The set of all attribute values of a column of a database is de�ned as follows:

De�nition 65 (Set of all Values of a Column). Let d be database of size n and with m
attributes and j ∈ {1, ... ,m}. The set of all values of column j is de�ned asV (d (·, j)) :=
{d (i , j) |i ∈ {1, ... , n}}. Let this set be ordered.

4. An Ind-ICP Secure Database Outsourcing Scheme 95

Note, that V (d (·, j)) is a set in contrast to a database which is a multiset. The set
V (d (·, j)) contains each attribute value of a column only once, even if the attribute value
occurs multiple times in this column.

Next, we de�ne the set of all row indices an attribute value occurs in a certain column:

De�nition 66 (Set of all Row Ids of an Attribute Value). Let d be a database of size n
and with m attributes and j ∈ {1, ... ,m}. For a value v ∈ d (·, j), we de�ne R (d , j , v) :=
{i | d (i , j) = v }, the set of all indices of all rows containing value v in column j .

row A1 = name A2 = surname

1 Alice Smith
2 Bob Smith
3 Alice Jones

Figure 7.3.: The table names. The setsV and R as de�ned in De�nitions 65 and 66 are
depicted in Figure 7.4

The tables in Figures 7.3 and 7.4 show an example forV (d (·, j)) and R (d , j , v). Table
names in Figure 7.3 contains two attributes name and surname and three rows. The
row ids are indicated with the additional column row id. The order of the attributes are
indicated with A1 and A2, respectively. For this table, the set of all attribute values of the

V (names (·, ·))

V (names (·, 1)) = {Alice, Bob}
V (names (·, 2)) = {Smith, Jones}

7.4.1: V (names (·, ·))

R (names, 1, ·) R (names, 2, ·)

R (names, 1,Alice) = {1, 3} R (names, 2, Smith) = {1, 2}
R (names, 1,Bob) = {2} R (names, 2, Jones) = {3}

7.4.2: R (names, ·, ·)

Figure 7.4.: The sets V (names (·, ·)) and R (names, ·, ·) for the example table names in
Figure 7.3.

�rst attribute (name) and the second attribute (surname) as well as the list of row ids for
each attribute value are depicted in Figure 7.4.

As mentioned above, our encryption mechanism EncDB transforms a database into a
set of tables. With the help of De�nitions 65 and 66 we now de�ne these tables:

De�nition 67 (Data Table). Let (GenI, EncI,DecI) be an encryption scheme and let d be a

database of size n with attributes {A1,A2, ... ,Am}. We de�ne the table ddata as:

ddata := {(i , EncI(d (i , ·),K) | i ∈ {1, ... , n}}

with attributes {row, data (A1,A2, ... ,Am)}. This table is ordered according to the �rst

column and the order of N.

96 7. Mechanisms for Database Outsourcing

The data table contains a row-wise encryption of the original database d . Additionally
to the data table, we de�ne an index table for each attribute of the original database.
These index tables will be used by the protocols in order to e�ciently execute queries.

De�nition 68 (Index Table). Let (GenI, EncI,DecI) be an encryption scheme, d a database

with attributes {A1,A2, ... ,Am}, and j ∈ {1, ... ,m}. We de�ne dindex ,Aj as the table

dindex ,Aj := {(v , EncI(R (d , j , v)),K) | v ∈ V (d (·, j))}

with the attributes {values, rows }. This table is ordered according to �rst column and the

order ofV (d (·, j)).

With the de�nition of the data table and the index tables, we can de�ne the encryption
mechanism of our outsourcing scheme:

De�nition 69 (EncDB). Let d be a database with attributes {A1,A2, ... ,Am} and let

(GenI, EncI,DecI) be an encryption scheme. We de�ne the PPT EncDB as follows:

EncDB(d) = {ddata, dindex ,A1 , ... , dindex ,Am }

The PPT EncDB takes a database as input and outputs the data table a well as an index
table for each attribute of the input database.

For an example consider the database depicted in Figure 7.5. This database has the the
attributes name and surname. Figure 7.6 depicts EncDB(d). Our encryption mechanism

name surname

Alice Smith
Bob Smith

Alice Jones

Figure 7.5.: A simple example database d . Figure 7.6 depicts EncDB(d).

generates the data table ddata that contains each row of the original table encrypted
with the mechanism EncI. Furthermore, for each attribute of the original table, EncDB
generates an index table. Each index table contains the attribute values that occur in the
corresponding column and for each attribute value an encrypted list of the rows, the
value occurs as a value of this attribute. For example the �rst row of the table dindex ,name

row data (name,surname)

1 EncI((Alice, Smith),K)
2 EncI((Bob, Smith),K)
3 EncI((Alice, Jones),K)

7.6.1: ddata

values rows

Alice EncI((1, 3),K)
Bob EncI(2,K)

7.6.2: dindex ,name

values rows

Smith EncI((1, 2),K)
Jones EncI(3,K)

7.6.3: dindex ,surname

Figure 7.6.: The tables EncDB(d ,K) : The data table ddata 7.6.1 and the index tables
dindex ,name 7.6.2 and dindex ,surname 7.6.3. The index tables contain encrypted
row indices of the data table.

4. An Ind-ICP Secure Database Outsourcing Scheme 97

in Figure 7.6.2 contains the attribute value Alice and an encrypted list of the indices {1, 3}
since the surname Alice occurs in the �rst and the second row in the original database in
Figure 7.5.

In Section 2.3, we de�ned the sets of queries Qselect , Qdelete , Qinsert , and Qupdate (cf.
De�nitions 59-62). In the following, we will de�ne the protocols of QDB that execute
these queries for outsourced databases EncDB(d ,K).

We de�ne the sets of protocols πqselect , πqdelete , πqinsert , and πqupdate , that execute SELECT,
DELETE, INSERT, and UPDATE queries, respectively. Furthermore, we argue their
correctness. Consistent with De�nition 38 in Chapter 5, the parties of each (meta)
protocol are a serverS and a client C. The input of the client C is a query and a secret
encryption key K. The input of the server is the encrypted database EncDB(d ,K). The
output of the client is the result set and the output of the server is the (updated) outsourced
database.

Protocol for SELECT Queries The following protocol executes SELECT queries for
EncDB(d ,K):

Protocol 1 (πqselect : Protocol for SELECT Queries).
Input of client C: qselect ∈ Qselect ,K
Input of serverS: EncDB(d ,K)
Let σ be the selection of qselect, Π be the projection of qselect, and c be the conditions of σ .

1. The client C sends the conditions c = c1, ... cl of σ to the serverS.

2. For each condition ci with attribute Ai , the server S returns the tuples of dindex ,Ai

where ci holds for the attribute values to the client C.

3. The client C decrypts the value of the attribute rows of every tuple received by the

serverS and receives for each ci ∈ c a set of ids of tuples for which the condition ci
holds.

4. The client C computes idsc , the set of ids of tuples for which the condition c holds. If

idsc is empty, client C sends ⊥ to the serverS, outputs an empty database and the

protocol ends, otherwise the client C sends idsc to the serverS.

5. The serverS returns the tuples of ddata whose ids are in idsc to the client C.

6. The client C decrypts the received tuples and applies the projection Π to them (and

returns them).

Output of client C: projection Π of received tuples

Output of serverS: EncDB(d ,K)

In Steps 1 and 2, the client queries the index tables for tuple ids relevant to the query.
Since the conditions c may contain more than one atomic condition, the client may get
false positives in this step. This means that the client gets ids of rows that do ful�l a
single condition of c but do not ful�l c . Therefore, the client has to compute the set of
ids according to the operators in c .

Correctness. In order to show the correctness of Protocol πqselect , this means that the
Protocol πqselect correctly executes SELECT queries qselect ∈ Qselect for EncDB(d ,K), we

98 7. Mechanisms for Database Outsourcing

have to show that the output of the client is qselect (d). This is straightforward due to the
construction of the protocol and EncDB(d ,K): The tuples selected in Steps 4 and 5, are
the tuples that match the conditions of the query qselect . After applying the projection Π,
the tuples are identical to qselect (d).

E�ciency. In order to discuss the e�ciency of our protocols, we make the following
assumptions:

• The server can access a single tuple in ddata in O (log (n)), where n > 1 is the size
of the database d .

• The number |A| of attributes of d as well as the number of possible di�erent attribute
values is �xed and independent from n.

• There is an upper bound for the number of conditions in a query that is independent
of n.

A consequence from the second assumption is, that the server is able retrieve a tuple in
the index tables in O (1). The third assumption is reasonable due the �xed number of
attributes and possible attribute values. Figure 7.7 provides an overview of the scaling
properties of all protocols presented in this section.

query single atomic condition multiple atomic conditions

SELECT O (|q (d) | · log (n)) max{O (m),O (|q (d) | · log (n))}
UPDATE O (|t | · (log (n) + I)) max{O (m),O (|t | · (log (n) + I))}
INSERT O (m + I)
DELETE O (|t | · (log (n) + I)) max{O (m),O (|t | · (log (n) + I))}

7.7.1: overview

symbol meaning

m maximum number an attribute value that is part
of the conditions occurs in d

t the tuples to be deleted/the tuple to be updated
I time needed to update the server’s internal indices

7.7.2: legend

Figure 7.7.: Overview of the scaling properties of the protocols. Note that INSERT queries
do not have a condition.

The number of messages in the protocol for SELECT queries is constant. The size of
the message in Step 1 depends on the number of conditions in the query. For a SELECT
query with one condition, the communication of Step 2 is in O (|q (d) |) and the encrypted
list of row ids sent to the client contains the same number of ids than there are tuples in
the result set. For a SELECT query with multiple conditions, the communication of Step 2
is in O (n): Consider for example an attribute, that has the same value for all tuples in the
database. If this attribute value ful�ls an atomic condition, the server sends an encrypted
list of all row ids to the client. If, furthermore, no tuple ful�ls the condition c of the
query, the size of the result set is 0 which is independent of n. Then, the complexity of
the SELECT Protocol depends on the size of the database, while size of the result set does

4. An Ind-ICP Secure Database Outsourcing Scheme 99

not. Optimisations for the index structures of our scheme that alleviate this e�ect, are
discussed in Chapter 7, Section 7. There, we will present methods, that allow to e�ciently
(∈ O (log (n))) select a single row id in an index.

The computation complexity in Step 4 depends linearly on the size of messages in step
3. The computation in Step 5 is in O (|q (d) | · log (n)): The server has to retrieve each
tuple that is part of the result set. The communication of Steps 5 and 6 as well as the
computation of Step 6 is in O (|q (d) |).

Consequently, for SELECT queries with one condition, the the protocol for SELECT
queries is in O (|q (d) | · log (n)), which can be considered as optimal, since this is a
lower bound for retrieving |q (d) | random tuples from a database. For SELECT queries
with multiple conditions, the the protocol for SELECT queries is in max{O (m),O (|q (d) | ·
log (n))}, where m is the maximum number an attribute value that is part of the conditions
occurs in d .

The following example provides more insight into the SELECT Protocol. Consider the
following query qselect for the database d depicted in Figure 7.5:

SELECT ∗ FROM d WHERE name = Alice AND surname = Smith

The condition of this query (name = Alice AND surname = Smith) is comprised of two
atomic conditions. In the �rst two steps of Protocol 1, the Client gets all ids of rows
that ful�l an atomic condition of the query. This can be realised with the following two
queries to the index tables (cf. Figure 7.6):

SELECT rows FROM dindex ,name WHERE values = Alice

SELECT row FROM dindex ,surname WHERE values = Smith

After decrypting the values of the rows attribute of the results, the client has two sets of
tuple ids: {1, 3} and {1, 2}. Since the two atomic conditions are joined with an AND (∧),
the client has to compute {1, 3} ∩ {1, 2} = {1}. Thus, in the next step, the client gets the
tuple with id 1 from the data table:

SELECT data(name, surname) FROM ddata WHERE row IN {1}

After decrypting the result, the protocol ends, since the query q does not contain a non
trivial projection (Π = id) and the client returns the result set {(Alice, Smith)}.

Protocol for DELETE Queries A DELETE query deletes tuples from a database that
match a condition given in the query. The following protocol executes DELETE queries:

Protocol 2 (πqdelete : Protocol for DELETE Queries).
Input of client C: qdelete ∈ Qdelete ,K
Input of serverS: EncDB(d ,K)

1. The client C sends the conditions c = c1, ... cl of σ to the serverS.

2. For each condition ci with attribute Ai , the server S returns the tuples of dindex ,Ai

where ci holds for the attribute values to the client C.

100 7. Mechanisms for Database Outsourcing

3. The client C decrypts the value of the attribute rows of every tuple received by the

serverS and receives for each ci ∈ c a set of ids of tuples for which the condition ci
holds.

4. The client C computes idsc , the set of ids of tuples for which the condition c holds. If

idsc is empty, client C sends ⊥ to the serverS, the server outputs EncDB(d ,K) and
the protocol ends, otherwise the client C sends idsc to the serverS.

5. The serverS returns the tuples of ddata whose ids are in idsc to the client C.

6. The serverS deletes the tuples of ddata whose ids are in idsc .

7. The client C decrypts the received tuples.

8. For each attribute Aj ∈ A and each (unique) value v of the tuples:

8.1. The client C sends the condition Aj = v to the serverS.

8.2. The serverS returns the tuple of dindex ,Aj where the condition values = v holds

to the client C.

8.3. The client C decrypts the rows value of the received tuple and removes all indices

from the list that are also in idsc .

8.4a. If the resulting list is empty:

8.4a.1 The Client C sends DELETE to the ServerS.

8.4a.2 The Server deletes the tuple from dindex ,Ai where the condition values = v
holds

8.4b. If the resulting list is not empty:

8.4b.1 The Client C encrypts the resulting list and sends it the ServerS.

8.4b.2 The Server C updates the value of attribute rows of the tuple from dindex ,Ai

where the condition values = v holds with the encrypted list received from

the client.

Output of client C: {}

Output of serverS: updated outsourced database

Steps 1-5 are identical to the SELECT protocol. In these steps, the client determines
the tuples to be deleted. In the next steps, the tuples are deleted and the index entries are
updated. If an index entry is no longer needed, it is also deleted. This protocol can be
optimised in terms of rounds of communications. The index tables that are queried in
Steps 1 and 2 of the protocol are queried again in the Steps 8.1. and 8.2. In an optimised
protocol, the client can check in Step 8.1 if it already received the tuple in Step 2.

Correctness. In order to show the correctness of Protocol πqdelete , this means that the
Protocol πqdelete correctly executes DELETE queries qdelete ∈ Qdelete for EncDB(d ,K), we
have to show that the output of the server is EncDB(dqdelete ,K). The encrypted database
EncDB(dqdelete ,K) is an encryption of the database d without the tuples deleted by the
query qdelete. This means that the index tables of EncDB(dqdelete ,K) do not contain entries
for the deleted tuples and the data table of EncDB(dqdelete ,K) does not contain the deleted
tuples. In Step 8.4 of the Protocol πqdelete , the index entries of the tuples to be deleted are

4. An Ind-ICP Secure Database Outsourcing Scheme 101

removed from the index tables. In Step 6, the tuples to be deleted are removed from the
data table.

E�ciency. Let t be the tuples to be deleted, let m be the maximum number of times
that an attribute value that is part of the conditions occurs in d . Furthermore, let updating
the server’s internal indices be in O (I).

Steps 1-5 are identical to the SELECT Protocol (∈ max{O (m),O (|t | · log (n))}). Step 6
is in O (|t | · (log (n) + I)), since the server has to search |t | times for a tuple in order to
delete all tuples to be deleted and update its internal indices accordingly. The number of
loops in Step 8 depends the number of attributes of d and the number of unique attribute
values of each attribute, which are independent from n. The complexity of Steps 8.1 -
8.4 is in max{O (m),O (I)}, since the encrypted tuple returned by the server in the worst
case contains m row ids.

Therefore, the DELETE Protocol is in max{O (m),O (|t | · (log (n) + I))}. For DELETE
queries with a single condition, since then O (m) = O (|t |), the DELETE Protocol is in
O (|t | · (log (n) + I)), which can be considered as optimal, since this is a lower bound for
deleting |t | random tuples from a database and updating the indices accordingly.

As an example for the execution of a DELETE query consider the following query:

DELETE FROM d WHERE surname = Jones

In order to execute the protocol for this query on our example data set EncDB(d ,K), the
client queries the server for tuples, that ful�l the condition surname = Jones . Therefore,
the client �rst has to query the corresponding index table:

SELECT rows FROM dindex ,surname WHERE values = Jones

After encrypting the result, the client can query the tuples to be deleted, and instruct the
server to delete the tuples.

SELECT data(name, surname) FROM ddata WHERE row IN {3}

DELETE FROM ddata WHERE row IN {3}

Now, the client has to update the indices. The client retrieves the relevant indices with
the following queries:

SELECT rows FROM dindex ,surname WHERE values = Jones

SELECT rows FROM dindex ,name WHERE values = Alice

Since the client already queried dindex ,surname for the value Jones, the �rst of these two
queries can be omitted. Now, the client has to decrypt the index lists, remove the id 3
from them, encrypt the results and send them to the server:

DELETE FROM dindex ,surname WHERE values = Jones

UPDATE dindex ,name SET rows = EncI (1,K) WHERE values = Alice

102 7. Mechanisms for Database Outsourcing

Protocol for INSERT Queries An INSERT query contains a tuple t (cf. De�nition 61).
Since we only consider INSERT queries with the same attributes as the database (correct
INSERT queries), we omit checking for correctness in Step 1. The following protocol
executes insert queries:

Protocol 3 (πqinsert : Protocol for INSERT Queries).
Input of client C: qinsert ∈ Qinsert ,K
Input of serverS: EncDB(d ,K)
Let t be the tuple in qinsert , A be the attributes of t and d .

1. The Client C sends EncI(t,K) to the serverS.

2. The ServerS appends ddata with EncI(t,K) and sends the row id r of EncI(t,K) to
the client C.

3. For each attribute Ai ∈ A

3.1. The client C sends the condition Ai = ti to the serverS.

3.2. The serverS returns the tuple of dindex ,Ai where the condition values = ti holds
to the client C.

3.3a. If the client received a non empty tuple:

3.3a.1. The client C decrypts the rows value of the tuple, adds the row id r to the
list, encrypts the list, and sends it to the serverS.

3.3a.2. The ServerS replaces the value of attribute rows of the tuple in dindex ,Ai

where the condition values = ti holds with the encrypted list received by

the client.

3.3b. If the client received an empty tuple:

3.3b.1. The client C sends EncI(r ,K) to the serverS.

3.3b.2. The serverS appends dindex ,Ai with the tuple (ti , EncI(r ,K))

Output of client C: r
Output of serverS: EncDB(dqinsert ,K)

In this protocol, the client encrypts the tuple to be inserted and sends it to the server.
The server inserts the encrypted tuple into the data table. Then, for each attribute value,
the client updates the corresponding index table. If the attribute value did not occur
previously in the database d , a new index entry has to be created.

Correctness. In order to show the correctness of Protocol πqinsert , this means that the
Protocol πqinsert correctly executes INSERT queries qdelete ∈ Qinsert for EncDB(d ,K), we
have to show that the output of the client is the row id of the inserted tuple and the output
of the server is EncDB(dqinsert ,K). The row ids in d are the same ids as the row ids of the
corresponding tuples in ddata inserting a new tuple into ddata (Step 2) returns the same
row id as inserting a new tuple into d . Therefore the client returns the same row id as the
query qinsert (d). The encryption EncDB(dqinsert ,K) is the encryption of d after inserting
tuple t . After executing Protocol πqinsert , the data table is appended with (r , EncI(t,K)),
therefore the new data table is (modulo the randomness used in EncI) identical to the
data table of EncDB(dqinsert ,K). Since in Step 3, the index tables are updated accordingly,
the same is correct for the index tables.

4. An Ind-ICP Secure Database Outsourcing Scheme 103

E�ciency. Let m be the maximum number an attribute value that occurs in t also
occurs in d (in the corresponding column). Furthermore, let updating the server’s internal
indices be in O (I).

The complexity of Step 1 linearly depends on the number of attributes. Step 2 is in O (I),
since the server has to update its internal indices after inserting a tuple. The number of
loops in Step 3 is constant. Steps 3.1 - 3.3a are in O (m), since the encrypted list returned
by the server in the worst case contains m row ids. Step 3.3b is in O (I), since the server
adds a new tuple. Therefore, the INSERT Protocol is in O (m + I).

As an example for the execution of an INSERT query, consider the following query
qinsert for our database in Figure 7.5:

INSERT INTO d VALUES (Carol, Jones). (7.1)

The new database dqinsert is depicted in Figure 7.8. Executing Protocol 3 for query qinsert

name surname

Alice Smith
Bob Smith

Alice Jones
Carol Jones

Figure 7.8.: A simple example database dqinsert from Figure 7.5 after application of the
INSERT query Query 7.1. Figure 7.9 depicts the result of the transformation
EncDB of this database.

and EncDB(d ,K) can be done as follows: In the �rst step, the client encrypts the tuple
given by the query and sends it to the server to be appended to the data table:

INSERT INTO ddata (data (name, surname)) VALUES (EncI ((Carol, Jones), K))

After this step, the server returns the row id 4. With this new row id, the client can update
the index tables. The client retrieves the row ids for attribute value Carol of attribute
name with:

SELECT rows FROM dindex ,name WHERE values = Carol

Since there is no index entry for this value, the client has to create one:

INSERT INTO dindex ,name VALUES (Carol, EncI (4, K))

There is an index entry for the surname Jones. Thus, the client can update it:

SELECT rows FROM dindex ,surname WHERE values = Jones

UPDATE dindex ,surname SET rows = EncI ((3, 4), K) WHERE values = Jones

Figure 7.9 depicts the outsourced database after the execution of the insert protocol for
our query qinsert. Compared to the tables in Figure 7.6, the data table, as well as the index
table of the attribute name has a new entry. The index table of the attribute surname has
an updated entry.

104 7. Mechanisms for Database Outsourcing

row data (name,surname)

1 EncI ((Alice, Smith), K)
2 EncI ((Bob, Smith), K)
3 EncI ((Alice, Jones), K)
4 EncI ((Carol, Jones), K)

7.9.1: d ′data

values rows

Alice EncI ((1, 3), K)
Bob EncI (2, K)

Carol EncI (4, K)
7.9.2: d ′index ,name

values rows

Smith EncI ((1, 2), K)
Jones EncI ((3, 4), K)

7.9.3: d ′index ,surname

Figure 7.9.: The database EncDB(dqinsert ,K). For the sake of readability, we set d ′ = dqinsert .

Protocol forUPDATEQueries The UPDATE Protocol is the most complex one. UPDATE
queries can be simulated by a SELECT query, a DELETE query, and several INSERT queries.
The following protocol, however, executes UPDATE queries more e�ciently:

Protocol 4 (πqupdate : Protocol for UPDATE Queries).
Input of client C: qupdate ∈ Qupdate ,K
Input of serverS: EncDB(d ,K)
Let σ be the selection, Aq the attribute, and v be the attribute value in qupdate .

1. The client C sends the conditions c = c1, ... cl of σ to the serverS.

2. For each condition ci with attribute Ai , the server S returns the tuples of dindex ,Ai

where ci holds for the attribute values to the client C.

3. The client C decrypts the value of the attribute rows of every tuple received by the

serverS and receives for each ci ∈ c a set of ids of tuples for which the condition ci
holds.

4. The client C computes idsc , the set of ids of tuples for which the condition c holds. If

idsc is empty, client C sends ⊥ to the serverS, the server outputs EncDB(d ,K) and
the protocol ends, otherwise the client C sends idsc to the serverS.

5. The serverS returns the tuples of ddata whose ids are in idsc to the client C.

6. The client C decrypts the encrypted tuples in the result received by the server.

7. For each unique attribute value vi , v of attribute Aq in the decrypted tuples:

7.1. The client C sends the condition Aq = vi to the serverS.

7.2. The serverS returns the tuple of dindex ,Aq where values = vi holds.

7.3. The client C decrypts the list of row ids received by the server.

7.4. The client C removes all ids from the list that are also in idsc .

7.5a. If the resulting list is empty:

7.5a.1. The Client C sends DELETE to the ServerS.

7.5a.2. The Server deletes the tuple from dindex ,Ai where the condition values = vi
holds

7.5b. If the resulting list is not empty:

7.5b.1. The Client C encrypts the resulting list and sends it the ServerS.

4. An Ind-ICP Secure Database Outsourcing Scheme 105

7.5b.2. The Server C updates the value of attribute rows of the tuple from dindex ,Ai

where the condition values = vi holds with the encrypted list received from

the client.

8. The client C sends the condition Aq = v to the serverS.

9. The serverS returns the tuple of dindex ,Ai where the condition values = v holds to the

client C.

10a. If the client received a non empty tuple:

10a.1. The client C decrypts the rows value of the tuple, adds the row ids idsc , that are
not already in the list, to the list, encrypts the list, and sends it to the serverS.

10a.2. The ServerS replaces the value of attribute rows of the tuple in dindex ,Ai where

the condition values = v holds with the encrypted list received by the client.

10b. If the client received an empty tuple:

10b.1. The client C sends (v , EncI(idsc ,K)) to the serverS.

10b.2. The serverS appends dindex ,Aq with the tuple (v , EncI(idsc ,K))

11. The client C changes each value of attribute Aq of the decrypted tuples to v .

12. The client C encrypts the tuples and sends them to the serverS.

13. The serverS replaces the encrypted values of the tuples of ddata sent to the client in
Step 5 with the encrypted tuples received by the client.

Output of client C: {}

Output of serverS: updated outsourced database

Correctness. In order to show the correctness of Protocol πqupdate , this means that the
Protocol πqupdate correctly executes UPDATE queries qupdate ∈ Qupdate for EncDB(d ,K),
we have to show that the output of the server is EncDB(dqupdate ,K). The database dqupdate
is the database d after changing each value of attribute Aq of each tuple ful�lling the
conditions of the query to v . In the Steps 1-6, the client determines the tuples to be
changed by the query qupdate . In Step 7, the client updates the index entries for the old
values. If an index entry is no longer needed (if the list of row ids is empty), it is deleted.
In Steps 8-10, the client updates the index entry for the new attribute value v . If there is
no index entry for attribute Aq and value v , one is created. In Steps 11-13, the data table
is updated with the updated tuples.

This protocol can be optimised similarly to the DELETE Protocol: by checking in Step
7.1, if the client already received dindex ,Aq is Step 2. Additionally, in Step 12, the client
can only send encrypted tuples to the server that were changed in Step 11.

E�iciency. Let updating the server’s internal indices be in O (I), let t be the tuples
a�ected by the UPDATE query, and let m be the maximum number of times that an
attribute value that is part of the conditions occurs in d .

Steps 1 - 5 are identical to Steps 1 - 5 of the SELECT Protocol (∈ max{O (m),O (|t | ·
log (n))}) The number of loops in Step 7 depends on the number of unique attribute values
of attribute Aq , the attribute in the selection of the query qupdate . Steps 7.1 - 7.4 are in

106 7. Mechanisms for Database Outsourcing

O (m), since the encrypted list returned by the server in the worst case contains m row
ids. Step 7.5a is in O (I), since the server has to insert a tuple. Step 7.5b, again, is in O (m).
Steps 8 - 10 are in the same complexity class as Step 7. Steps 11 and 12 is in O (|t |), since
the client changes a value of every tuple in t , and sends the result to the server after
encrypting it. In Step 13, the server updates |t| tuples in ddata. therefore, Step 13 is in
O (|t | · I)

Consequently, the UPDATE Protocol is in max{O (m),O (|t | · (log (n)+ I))}. As with the
SELECT, and the DELETE Protocol, for queries with a single condition, where O (m) =
O (|t |), the UPDATE Protocol is in O (|t | · (log (n) + I)). This also can be considered as
optimal since this is a lower bound for updating |t | random tuples in a database and
updating the indices accordingly.

Definition of the MimoSecco Database Outsourcing Scheme With the de�nition of
EncDB and the de�nitions of the protocols πqselect , πqdelete , πqinsert , and πqupdate , we can de�ne
our outsourcing scheme.

De�nition 70 (MimoSecco Database Outsourcing Scheme). Let (GenI, EncI,DecI) be an
encryption scheme with Ind-CPA security. We de�ne the MimoSecco database outsourcing
scheme as (GenDB, EncDB,QDB) with:

• GenDB = GenI

• EncDB as de�ned in De�nition 69

• QDB = πqselect ∪ πqdelete ∪ πqinsert ∪ πqupdate as de�ned in Protocols 1 - 4

4.2. The MimoSecco Database Outsourcing Scheme has IND-ICP
Security

In the last section, we de�ne the MimoSecco database outsourcing scheme. In De�nition 53
in Chapter 6, Section 2, we de�ned Ind-ICP, a security notion for database outsourcing.
In this section, we prove that MimoSecco database outsourcing scheme provides Ind-ICP
security.

Theorem 10. The MimoSecco database outsourcing scheme has Ind-ICP security.

In the following proof, we reduce a successful adversary on the MimoSecco database
outsourcing scheme to a successful adversary to the underlying Ind-CPA secure encryp-
tion scheme.

Proof. We prove Theorem 10 by contradiction. We assume there is an adversaryAInd-ICP,
that has non negligible advantage over guessing in experiment Ind-ICPA

(Gen,Enc) (Security
Game 14). Furthermore, we assume that there is no adversary A that has non negligible
advantage over guessing in experiment Ind-mult-CPAA

(Gen,Enc) (Security Game 2). Recall
that the security notions Ind-CPA and Ind-mult-CPA imply each other (cf. Theorem 1).

In the following, we provide an e�cient reduction fromAInd-ICP. Consider Figure 7.10.
In the �rst step, we forward the length of the security parameter 1k to the adversary
AInd-ICP. Our reductionA has oracle access to EncI(·,K). We use this oracle, to simulate
an oracle for EncDB(·,K) (cf. De�nition 69) with the internal encryption mechanism

4. An Ind-ICP Secure Database Outsourcing Scheme 107

Ind-mult-CPA A

AInd-ICP
K ← Gen(1k) 1k

1k
EncI (·,K)

EncDB (·,K)

d ,p

M0,M1

b ← {0, 1} EncI (Mb,K)

EncDB (db,K)

b′

b′

Figure 7.10.: Sketch of the proof for Theorem 10: An e�cient reduction of an adversary
AInd-ICP that breaks Ind-ICP to an adversaryA that breaks Ind-mult-CPA.

EncI and give the adversary AInd-ICP access to it. Now, the adversary AInd-ICP returns a
database d and an independent column permutation p. We set d0 = d and d1 = p(d) and
return two vectors M0 and M1 of plaintexts de�ned as follows:

Mb =

*.....................
,

db (·, 1)
...

db (·, n)
R (db, 1, v1,1)

...
R (db, 1, v1,l1)

...
R (db,m, vm,1)

...
R (d ,m, vm,lm)

+/////////////////////
-

Where:

• n = |d0 | = |d1 | is the size of d .

• m = |A| is the number of attributes of d .

• li is the number of (di�erent) attribute values of attribute Ai in d .

• vj ,lk = V (d (·, j))lk (V (d (·, j)) is the set of all values of column j , cf. De�nition 65.)

The vector Mb contains the plaintexts of all encrypted entries of EncDB(db,K) (cf. Def-
inition 69). The experiment returns the challenge EncI(Mb,K), an element-wise en-
cryption of Mb. Since EncI(Mb,K) contains all encrypted entries of EncDB(db,K), we
use EncI(Mb,K) to construct EncDB(db,K), the challenge for the adversary AInd-ICP.
The adversary returns her guess b′, which we return to the experiment. We win the

108 7. Mechanisms for Database Outsourcing

security game if b′ = b. Therefore, we inherit the success probability of the adversary
AInd-ICP, and get a successful adversary for Ind-mult-CPA, which is a contradiction to
our assumption. �

5. A Database Outsourcing Schemewith l -IND-ICP
Security in the Presence of Queries

The MimoSecco database outsourcing scheme de�ned in the previous section only pro-
vides static security. If the adversary is given access to the messages sent to the server,
she can break static security: Consider the example database d from Section 4 depicted in
Figure 7.5 (restated in this section in Figure 7.11) and EncDB(d ,K) depicted in Figure 7.6
(restated in this section in Figure 7.12). Furthermore, consider a SELECT query with the

name surname

Alice Smith
Bob Smith

Alice Jones

Figure 7.11.: A simple example database d from Figure 7.5.

conditions name = Alice ∧ surname = Smith. During execution of this query (cf. Proto-
col 1), the client sends these conditions to the server (Step 1). In Step 4, the client sends
all row ids of tuples that ful�l these conditions to the server. In our example, this is row
id 1. Now, the server learns that (only) the encrypted tuple in row 1 of the data table
contains the attribute values Alice and Smith. Therefore, an adversary given access to the
view of the server can break Ind-ICP. In this simple example, the view of the server for
one query is su�cient to reconstruct the original database.

An obvious solution for this problem is to alter all messages sent from the client to
the server that depend on the actual data in the outsourced database. For the SELECT
protocol, this is the message sent in Step 4.

By adding dummy row ids to the row ids sent in this step, we can prevent the adversary
from breaking Ind-ICP. If the number of row ids sent to the server is identical for all
independent column permutations p(d) of d , the adversary can not use this step to
distinguish the database Enc(d ,K) from Enc(p(d),K). For our example database the
client needs to send 2 row ids, since there is an independent column permutation of d
that has two tuples with the attribute values Alice and Smith. The client can compute
this number with the row ids received in in Step 3 of the SELECT Protocol and add and
additional row id to the message to the server.

This alteration of the select protocol provides Ind-ICP security in the presence of one
query. If the adversary is allowed to observe additional queries, however, she can break
Ind-ICP: In our example, the client has two possibilities for the needed dummy id in Step
3. Either the client sends the ids {1, 2} or the client sends the ids {1, 3}. If the client sent
{1, 2}, the adversary knows that if there are two tuples with attribute values Alice and
Smith in the database, they are in rows 1 and 2 of ddata. Now, if the adversary observes the
execution of a SELECT query with the condition name = Alice, she knows that the tuples
with attribute value Alice are in rows 1 and 3 of ddata. Together with the static view of the

5. A Database Outsourcing Scheme with l-Ind-ICP Security in the Presence of Queries 109

row data (name,surname)

1 EncI((Alice, Smith),K)
2 EncI((Bob, Smith),K)
3 EncI((Alice, Jones),K)

7.12.1: ddata

values rows

Alice EncI((1, 3),K)
Bob EncI(2,K)

7.12.2: dindex ,name

values rows

Smith EncI((1, 2),K)
Jones EncI(3,K)

7.12.3: dindex ,surname

Figure 7.12.: The example tables EncDB(d ,K) from Figure 7.6.

index tables, now, the adversary can reconstruct the original database. If the client sent
{1, 3}, the adversary knows that if there are two tuples with attribute values Alice and
Smith in the database, they are in rows 1 and 3 of ddata. Now, if the adversary observes
the execution of a SELECT query with the condition surname = Smith, she knows that
the tuples with attribute value Smith are in rows 1 and 2 of ddata. Together with the static
view of the index tables, the adversary, again, can reconstruct the original database.

This example shows that there is a di�erence between security notions for outsourced
data sets that allow the adversary to observe the execution of one query and notions that
allow the adversary to observe the execution of two or more queries. Such notions can
be captured by the generalised notions of our framework de�ned in Chapter 5, Section 6.
Since an outsourced database that can only be queried a single time is of limited use, we
omit a formal de�nition of the scheme and security proofs.

A trivial scheme that provides security for arbitrary many queries is one that for each
query downloads the outsourced database, decrypts it, and executes the query locally.
This, however, induces a huge communication overhead, especially for large databases.

In the following, we de�ne a scheme that provides no query advantage over l-Ind-ICP
(cf. De�nitions 57 and 58 in Chapter 6). This scheme is based on the MimoSecco database
outsourcing scheme. Since the notion Ind-ICP implies the notion l-Ind-ICP, we do
not need to alter the mechanism EncDB. Therefore, we only alter the protocols of the
MimoSecco database outsourcing scheme Since the notion no query advantage over
l-Ind-ICP is de�ned for databases of �xed size, we only consider the protocols for SELECT
and UPDATE queries.

Note that database outsourcing schemes that allow to change the size of the database
by allowing INSERT or DELETE queries introduce a signi�cant overhead. The adversary
must not be able to distinguish two outsourced databases that have been queried multiple
times by their size. For example, a row removed by a DELETE query has to be replaced
by dummy data if, in the security game, the adversary can choose a database, where this
DELETE query does not remove a row.

In order to provide no query advantage over l-Ind-ICP we alter the protocols to operate
on buckets instead of single tuples. For the SELECT Protocol, we need to alter Step 4.
Here, instead of sending the row ids of tuples that ful�l the conditions of the query, the
client has to send the ids of the buckets that potentially contain tuples that ful�l the
conditions. Formally, we de�ne potentially containing tuples that ful�l a condition as
follows:

De�nition 71 (Ful�lling a Condition under icp). A database d ful�ls a condition under

icp, i� there is an icp p such that there is at least one tuple t ∈ p(d) that ful�ls the condition.
A partition of a database d ful�ls a condition c under icp, i� there is an icp p that respects

110 7. Mechanisms for Database Outsourcing

the partitioning scheme of d such that there is at least one tuple t ∈ p(d) that ful�ls the
condition c .

Additionally, we need to introduce a partitioning scheme with partitions of size l to our
database. This can, for example, be implemented by introducing an additional attribute to
the index tables an the data table. Consider for example Figure 7.13. Here, we introduced

values rows (surname) buckets (surname)

Alice EncI ((1,2), K) 1,2
Bob EncI (3, K) 2
Carol EncI (4, K) 1

7.13.1: dindex,surname

values rows (name) buckets (name)

Jones EncI ((2,3,4), K) 1,2
Smith EncI (1, K) 1

7.13.2: dindex,name

row bucket data (name,surname)

1 1 EncI ((Alice, Smith), K)
2 2 EncI ((Alice, Jones), K)
3 2 EncI ((Bob, Jones), K)
4 1 EncI ((Carol, Jones), K)

7.13.3: ddata

Figure 7.13.: An outsourced database d with buckets introduced to the data table and to
the index tables. Here, the size of the buckets is 2.

bucket ids to the data table and the index tables. This, however, implies an adapted
mechanism EncDB. For the sake of simplicity, in the following protocols, we assume that
there is a partitioning scheme with partitions of size l that is known to the client and to
the server.

Protocol 5 (π l-Ind-ICP
qselect : Protocol for SELECT Queries).

Input of client C: qselect ∈ Qselect ,K
Input of serverS: EncDB(d ,K)
Let σ be the selection of qselect, Π be the projection of qselect, and c be the conditions of σ .

1. The client C sends the conditions c = c1, ... cj of σ to the serverS.

2. For each condition ci with attribute Ai , the server S returns the tuples of dindex ,Ai

where ci holds for the attribute values to the client C.

3. The client C decrypts the value of the attribute rows of every tuple received by the

serverS and receives for each ci ∈ c a set of ids of rows and a set of ids of buckets

that contain tuples for which the condition ci holds.

5. A Database Outsourcing Scheme with l-Ind-ICP Security in the Presence of Queries 111

4. The client C computes idsc , the set of ids of tuples for which the condition c holds

and pidsc , the set of ids of buckets that ful�l c under icp. If pidsc is empty, client C

sends ⊥ to the serverS, the client outputs an empty database and the protocol ends,

otherwise the client C sends pidsc to the serverS.

5. The serverS returns the partitions of ddata whose ids are in pidsc to the client C.

6. The client C decrypts the received tuples and applies the selection σ and the projection

Π to them (and returns them).

Output of client C: projection Π of selection σ of received tuples

Output of serverS: EncDB(d ,K)

This protocol is similar to the SELECT Protocol of the MimoSecco database outsourcing
scheme in Section 4. It operates on buckets instead of tuples. Therefore, the client has
to sort out the false positive tuples in Step 6 by applying the selection σ . Note that it
is possible that the list idsc is empty, while the list pidsc is not empty. This means, that
there are buckets, that ful�l the conditions under icp but no tuples that ful�l them. In
this case, in Step 6, the client returns an empty database.

The modi�ed UPDATE Protocol also operates on buckets:

Protocol 6 (π l-Ind-ICP
qupdate : Protocol for UPDATE Queries).

Input of client C: qupdate ∈ Qupdate ,K
Input of serverS: EncDB(d ,K)
Let σ be the selection, Aq the attribute, and v be the attribute value in qupdate .

1. The client C sends the conditions c = c1, ... cj of σ to the serverS.

2. For each condition ci with attribute Ai , the server S returns the tuples of dindex ,Ai

where ci holds for the attribute values to the client C.

3. The client C decrypts the value of the attribute rows of every tuple received by the

serverS and receives for each ci ∈ c a set of ids of rows and a set of ids of buckets

that contain tuples for which the condition ci holds.

4. The client C computes idsc , the set of ids of tuples for which the condition c holds and

pidsc , the set of ids of buckets that ful�l c under icp. If pidsc is empty, client C sends

⊥ to the serverS, the server outputs EncDB(d ,K) and the protocol ends, otherwise the
client C sends pidsc to the serverS.

5. The serverS returns the buckets of ddata whose ids are in pidsc to the client C.

6. The client C decrypts the encrypted tuples in the result received by the server.

7. For each unique attribute value vi , v of attribute Aq in the decrypted tuples:

7.1. The client C sends the condition Aq = vi to the serverS.

7.2. The serverS returns the tuple of dindex ,Aq where values = vi holds.

7.3. The client C decrypts the list of row ids received by the server.

7.4. The client C removes all ids from the list that are also in idsc .

7.5. The Client C encrypts the resulting list and sends it the ServerS.

112 7. Mechanisms for Database Outsourcing

7.6. The Server C updates the value of attribute rows of the tuple from dindex ,Ai where

the condition values = vi holds with the encrypted list received from the client.

8. The client C sends the condition Aq = v to the serverS.

9. The serverS returns the tuple of dindex ,Ai where the condition values = v holds to the

client C.

10a. If the client received a non empty tuple:

10a.1. The client C decrypts the rows value of the tuple, adds the row ids idsc , that are
not already in the list, to the list, encrypts the list, and sends it to the serverS.

10a.2. The ServerS replaces the value of attribute rows of the tuple in dindex ,Ai where

the condition values = v holds with the encrypted list received by the client.

10b. If the client received an empty tuple:

10b.1. The client C sends (v , EncI(idsc ,K)) to the serverS.

10b.2. The serverS appends dindex ,Aq with the tuple (v , EncI(idsc ,K))

11. The client C changes each value of attribute Aq of the decrypted tuples that ful�l the

conditions c to v .

12. The client C encrypts the tuples and sends them to the serverS.

13. The serverS replaces the encrypted values of the tuples of ddata sent to the client in
Step 5 with the encrypted tuples received by the client.

Output of client C: {}

Output of serverS: updated outsourced database

The omission of the case distinction in Step 7.5 potentially generates unnecessary
index entries with empty encrypted lists. This leaves potential for optimisation. While
maintaining the security property, an empty index entry can be deleted, if after the
execution of the UPDATE query there are no buckets that ful�l its conditions under icp.
For the sake of understandability of the security proof, we omitted this case distinction.
Please note that in Step 7, all indices for tuples in the buckets sent to the client are
re-encrypted.

With these two protocols, we can de�ne our modi�ed database outsourcing scheme.

De�nition 72 (l-Ind-ICP MimoSecco Database Outsourcing Scheme). Let DBn ⊂ DB
be all databases of size n, let s be the maximal length of an encrypted index entry for any

d ∈ DBn, let f be a partitioning scheme with partitions of size l , and let (GenI, EncI,DecI)
be an encryption scheme with Ind-CPA security that pads index entries to length s . We

de�ne the l-Ind-ICP MimoSecco database outsourcing scheme as (GenDB, EncDB,QDB)
with:

• GenDB = GenI

• EncDB as de�ned in De�nition 69 constrained to DBn

• QDB = π
l-Ind-ICP
qselect ∪ π l-Ind-ICP

qupdate as de�ned in Protocols 5 and 6.

6. Implementations and Benchmarks 113

Theorem 11. The l-Ind-ICPMimoSecco database outsourcing scheme has Ind-ICP security

and no query advantage over l-Ind-ICP.

Proof. Since we did not change the encryption mechanism EncDB the proof for Theorem 10
(The MimoSecco database outsourcing scheme has Ind-ICP security.) still holds. For the
property no query advantage over l-Ind-ICP, we show that the transcript of the execution
of a query q on EncDB(d ,K) is indistinguishable from the transcript of the execution of
query q on EncDB(p(d),K) for any icp p that respects the partitioning scheme f . This
means, p only permutes attribute values within the partitions f (d) of d . If the two
transcripts are indistinguishable, we can use any successful adversary on l-Ind-ICP to
build a successful adversary for the underlying encryption scheme (GenI, EncI,DecI).

Since the scheme already provides Ind-ICP, we only need to consider steps with
messages from the client to the server. In the SELECT Protocol, steps that contain
messages from the client to the server are Steps 1 and 4. The message in Step 1 only
depends on the query. In Step 4, the client sends pidsc , the ids of buckets that ful�l
the conditions of the query under icp, to the server. For a query with conditions c ,
these bucket ids pidsc are identical for EncDB(d ,K) and EncDB(p(d),K) for any icp p that
respects f (cf. De�nition 71): The icp p only permutes attribute values within buckets.
Therefore, if a bucket of d contains certain attribute values (for example those that match
the condition), the corresponding bucket of p(d) contains these attribute values as well.

Now for the modi�ed UPDATE Protocol: Steps with messages from the client to the
server are Steps 1, 4, 7.1, 7.5, 8, 10a.1, 10b.1, and 12. We already covered Steps 1 and 4
above. The messages in Step 7.1 and in Step 8 only depend on the query. The messages
in Steps 10a.1 , and 10b.1 only depend on the index tables, which can not be used to
distinguish EncDB(d ,K) from EncDB(p(d),K) for any p, since our internal encryption
scheme pads index lists to a �xed length. This leaves Step 7.5. which also can not be used
to distinguish EncDB(d ,K) from EncDB(p(d),K) for any p, for the same reason. This
concludes our proof. �

Note, that we did only need the padding of index entries to length s for the proof of
the modi�ed UPDATE protocol. If we only want to retrieve information from a database,
we do not need an encryption scheme with this property.

6. Implementations and Benchmarks
Estimations of theoretical scaling properties play an important role in the design of an
algorithm or a scheme and in the selection of alternatives. For implementations, the
theoretical overhead in the O notation is only one performance in�uencing factor that
has to be considered. For practical applications, also factors that are irrelevant in the O
notation can play an important role. Such factors for, are example, constant overhead
factors or performance overheads introduced by concrete implementation choices of
data structures or programming languages. Optimisations of implementations, while
irrelevant from a theoretical point of view, now, a�ect the performance of the application.

In this chapter, we present two implementations of the MimoSecco database outsourc-
ing scheme: the MimoSecco implementation and the Cumulus4j implementation.

The MimoSecco implementation is a research prototype written in Java that provides an
SQL interface and uses an SQL backend. It has been presented at CeBIT, the biggest fair
for information technology, as well as on the yearly reception of the KIT. In the context

114 7. Mechanisms for Database Outsourcing

of the MimoSecco research project, it has been integrated into a prototype of a database
abstraction and synchronisation layer for CRM applications.

The Cumulus4j implementation is a Java plug-in for the database abstraction layer
DataNucleus [Dat] and provides Java Persistence API (JPA), Java Data Objects (JDO), and
SQL interfaces. DataNucleus can use numerous backends including most SQL databases
(e. g. PostgreSQL, MySQL, SQLite, Oracle), map based databases (e. g. Cassandra) and web
based backends (e. g. Amazon S3, Google Storage, JSON). The Cumulus4j implementation
is free software under the AGPL. In the context of the Cumulus4j research project, it has
been integrated in a commercial invoice processing software.

The overhead of our database outsourcing scheme depends on the queries as well as
on the data stored. We provide benchmark results for both implementations for di�erent
scenarios, queries, and data. In Section 7, we present and discuss di�erent optimisations of
the index structures of our scheme and provide benchmark results for these optimisations.

Please note, that for our implementations, we used AES for the internal encryption
scheme. Therefore, strictly speaking, the implementations do not provide Ind-CPA
security, since AES in CBC mode does not provably provide Ind-CPA security. This is a
potential source for side channels. It is, however believed, that the AES is a pseudorandom
function. If this holds true, AES in CBC mode provides Ind-CPA security. Additionally,
the internal encryption scheme can be exchanged for one that provides Ind-CPA security.

6.1. The MimoSecco Implementation
The MimoSecco implementation is a research prototype of a database adaptor that pro-
vides Ind-ICP security [HH14]. It has been used in the MimoSecco Project [AGH11]. In
this context, it has been integrated into a prototype of a database abstraction and syn-
chronisation layer for CRM applications of the CAS Software AG [CAS]. The MimoSecco
implementation has been presented in 2011, in 2012, and in 2014 at CeBIT, the biggest
fair for information technology, as well as on the yearly reception of the KIT in 2012
(cf. Figure 7.14).

6.1.1. Scheme and Implementation Details

The MimoSecco implementation is written in Java. It is realised as an adaptor that can be
deployed between the application and the database. It provides an SQL interface and uses
a Java Database Connectivity (JDBC) driver for the back end database connection. For our
benchmarks, we used a PostgreSQL database for the back end database. Additionally, the
MimoSecco adaptor uses a local PostgreSQL database internally. The internal database
is used for query processing and only stores data during the execution of a query. The
usage of an internal database as a part of the query engine minimised implementation
time and e�ort. Moreover, since the result set returned by the adaptor is generated in the
internal database, SQL compliant result sets are generated automatically.

The scheme implemented in the MimoSecco implementation deviates from the scheme
described in Section 4: Instead of generating a separate index table for each attribute of
the original database, the MimoSecco adaptor manages index tables for di�erent data
types of attributes. For example all indices for Integer attributes are stored in a single
index table while the indices for String attributes are stored in a di�erent index table.
Additionally, the MimoSecco adaptor stores meta information that allows to map index
entries to attributes and to tables. Figure 7.15 shows the back end database scheme with

6. Implementations and Benchmarks 115

7.14.1: The MimoSecco prototype at CeBIT

7.14.2: The MimoSecco prototype at the yearly reception of the KIT

Figure 7.14.: The MimoSecco prototype at CeBIT and at the yearly reception of the KIT:
Tables are stored on the PCs in the saves/castles and can be accessed by
a separate client. In order to demonstrate the security properties of the
MimoSecco scheme, a laptop shows parts of the encrypted contents of the
outsourced database.

the index tables for String and Integer attributes. The table TableMeta holds names of
tables stored in the back end. The name as well as the type of each column or attribute is
stored in the table FieldMeta. Since a table has at least one column, there is at least one
entry in FieldMeta for each entry in TableMeta. As mentioned above, the index entries of
an attribute are stored in the index table for the data type of the attribute. For example, if
the data type of the attribute is Integer, its index entries are stored in the table IntIndex.
For the sake of clarity, Figure 7.15 only shows two di�erent types of index tables (String
and Integer). Index entries and data are stored according to the MimoSecco scheme: The
index tables hold attribute values and an encrypted list of ids (keys of the table Data), the
value occurs in. The table Data holds encrypted rows of the original databases. While
preserving its security property, this extension to the original scheme has the following
bene�ts:

• The scheme allows for the storage of multiple databases.

• The back end database scheme is independent from the original databases stored.
There is no need to change the scheme in order to store a new or an additional
database.

• Di�erent data types have di�erent orders. Storing them in separate index tables,
each with the correct data type, ensures correct results for example for range
queries and for comparisons executed in the back end DBMS.

116 7. Mechanisms for Database Outsourcing

TableMeta

id Integer
name String

FieldMeta

id Integer
table_id Integer
name String
data type String

StringIndex

�eld_id Integer
key String
value String

IntIndex

�eld_id Integer
key Integer
value String

Data

key String
value String

1 1..*

1

0..*

1

0..*

1 1..*

Figure 7.15.: The back end data structure of the MimoSecco and the Cumulus4j imple-
mentations. The attribute value of the Index tables holds encrypted ids of the
Data table. This is indicated by the dashed line. The attribute value of the
table Data holds encrypted rows of the original databases. Due to the meta
tables, this scheme allows for Ind-ICP secure storage of multiple databases.

6.1.2. Benchmarks

We measured the time from issuing a query until retrieving the result in three di�erent
scenarios. For each scenario, we used the same hardware, queries, and, as far as possible,
software. In the following, we will describe the benchmarks of the MimoSecco imple-
mentation, the scenarios, the hard- and software, the queries, and the data in detail. In
the last paragraph of this section, we present and discuss the benchmark results.

Benchmark Scenarios In order to provide meaningful benchmarks, we deployed the
database back end on a di�erent machine than the MimoSecco implementation. Fig-
ure 7.16 depicts the deployment used for the benchmarks. We compared the MimoSecco
implementation to two di�erent scenarios. All three scenarios involve a client and a
server. The time needed to process a query is measured on the client, while the database
sever is used for storage.

The �rst scenario (JDBC, Figure 7.16.1) is without the usage of any encryption. The
original database is stored on the server in plaintext. Our benchmark component connects
via a Java JDBC driver directly to the database component on the server. Since in this
scenario, queries are processed directly by the database component with no additional
software as well as no encryption involved, it should provide the best benchmark results.

For the second scenario (SSHFS, Figure 7.16.2), we deployed the database component
on the client. The idea of this scenario is to use the server as a �le server for the database
component. Therefore, we mounted parts of the �le system of the server on the client.
Additionally, we encrypted the �le system on the side of the client. As a result, the
database component writes its data into an encrypted �le system stored on the server.
We realised the encryption of the outsourced �le system by a chain of Filesystem in
Userspace (fuse) drivers. For mounting the �le system on the server, we used the Secure
SHell FileSystem (SSHFS). For �le system encryption, we used encfs, an encrypted �le
system extension for fuse. Assuming encfs provides an Ind-CPA-secure encryption,

6. Implementations and Benchmarks 117

Benchmark Component Database

Client Server

7.16.1: JDBC

Benchmark Component Database FS-Encrypt FS-Mount File System

Client Server

7.16.2: SSHFS

Benchmark Component Mimosecco Adaptor Database

Client Server

7.16.3: MimoSecco

Figure 7.16.: Benchmark scenarios for the benchmarks of the MimoSecco implementation

compared to the other two scenarios, this scenario has the strongest security properties.
However, this scenario has the drawback that the database component has to use the
potentially slow network connection for each �le system access. The extend in which
parts of queries can be outsourced to the server depends on the �le system on the server,
the fuse chain and the usage of the �le system by the database component. Therefore,
this solution might scale di�erently than the JDBC scenario or the MimoSecco scenario.
Additionally, the client has to support a fully �edged database server component.

The third scenario is the MimoSecco scenario (Figure 7.16.3). Therefore, the MimoSecco
adapter, which connects via JDBC to the database component on the server, is deployed
on the client. The MimoSecco adapter is deployed between the benchmark component
and the back end database.

Hard- and So�ware The database component used in each scenario is a PostgreSQL
(version 9.1) database. The hardware speci�cations of the server are as follows:

• Processor: 2 AMD Opteron, 6 Cores @ 2.4GHz

• RAM: 32 GB

The hardware speci�cations of the client are a follows:

• Processor: Intel Pentium Dualcore @ 2GHz

• RAM: 2 GB

The client and the server are connected with 100Mbit/s Ethernet.

118 7. Mechanisms for Database Outsourcing

Queries and Data The queries and data used in the benchmark are from the AS/sup

3/AP benchmark [TOB89]. Since the current MimoSecco implementation does not fully
support SQL, we chose a subset of the queries of the AS/sup 3/AP benchmark. We used
SELECT, INSERT, UPDATE, DELETE, ALTER TABLE, and DROP TABLE queries. The
times measured in the next paragraph are averages over di�erent queries and multiple
runs.

For the benchmarks, we used two di�erent data sets of the AS/sup 3/AP benchmark,
each with 10,000 tuples. In the data set uniques, all attributes have unique values. In the
data set hundreds, most of the attributes have exactly 100 di�erent values. Furthermore,
the attribute values are correlated. The hundreds data set has a selectiveness of 100.
A more detailed explanation of the data sets and the queries used can be found in the
appendix in Chapter A.1.

Results Figure 7.17 provides an overview over the benchmark results. Here, the results
from the benchmarks for the two data sets hundreds and uniques are averaged. Detailed
benchmark results can be found in the appendix in Section A.1 in Figures A.4, A.5, and A.6.
This benchmark does not show the scaling properties of the three scenarios but rather
allows for a comparison of the overhead of di�erent query types. Scaling benchmarks
of the MimoSecco implementation are presented in Section 7. The benchmark results

SELECT INSERT UPDATE DELETE ALTER DROP
0

200

400

8 8 13 9 8 115 5
34 9 3 26

217

32

261 273

481

78

tim
e

in
m

s

JDBC direct SSHFS MimoSecco Adaptor

Figure 7.17.: An overview over the benchmarks of the MimoSecco implementation

show that the JDBC and the SSHFS scenarios do have about the same overhead. Only for
UPDATE and DROP queries, the SSHFS solution is slower than direct database access.
Furthermore, the results show a signi�cant overhead of the MimoSecco implementation
compared to direct database access. This overhead can be explained by the additional
queries introduced by the MimoSecco adaptor, the overhead for de- and encryption, and
the overhead introduced by the query parser. In the MimoSecco adaptor, query parsing,
query generation, and de- and encryption are realised using String operations in Java,
which can be very expensive from a performance point of view.

Additionally, the focus of the MimoSecco research prototype is to demonstrate real-
isability. However, some performance optimisations were introduced in a later stage.
Figure 7.18 compares benchmark results of an early variant of the MimoSecco implemen-
tation with results of a recent variant that, for example, uses batch statements. This shows

6. Implementations and Benchmarks 119

the optimisation potential of the MimoSecco research prototype. A more e�cient String
processing in the query parser and in the internal database engine or parallelisation of
queries potentially lead to additional performance enhancements.

SELECT INSERT UPDATE DELETE ALTER DROP
0

2,000

4,000

6,000

8,000

746
259

7,990

2,423

3,576

196217 32 261 273 481 78

tim
e

in
m

s

MimoSecco adaptor (non optimised older version)

Figure 7.18.: During this work, the MimoSecco research prototype has been improved
and extended. This chart shows a comparison of the benchmark results
of one of the �rst and one of the most recent version of the MimoSecco
prototype showing the optimisation potential. The recent version uses batch
statements and has improved query handling.

The MimoSecco benchmark results in Figure 7.17 show that the overheads for SELECT,
UPDATE and DELETE queries are about the same. The overhead for INSERT queries is
signi�cantly lower. This can be explained by the fact that all inserted values are unique.
Therefore, the adaptor created new index entries. Inserting values into existing index
entries, which involves a SELECT query, a decryption, String operations, an encryption,
and an UPADATE query is not necessary. This also explains the lower overhead of the
DROP queries: They also no not involve retrieval end decryption of index entries, which,
in turn, involves potentially expensive String operations.

6.2. The Cumulus4j Implementation
The Cumulus4j implementation is a plug-in for the database abstraction layer DataNucleus.
It has been developed and used in the Cumulus4j project [Hub+13], where it has also
been integrated in Ax Easy [AX], a commercial invoice processing software as a service.
The full source code of Cumulus4j as well as the benchmarks are available online [Nig]
under the AGPL.

6.2.1. Scheme and Implementation Details

Cumulus4j integrates into DataNucleus as an OSGi plug-in. Figure 7.19 depicts the
coarse architecture of a database application that uses DataNucleus with Cumulus4j.
The application component uses DataNucleus and DataNucleus accesses the underlying
database. Cumulus4j enhances DataNucleus. The integration of our plug-in, and therefore
the encryption of the underlying database, is, except for a minimum of Cumulus4j API
calls controlling the key management, fully transparent to the application. Thus, existing

120 7. Mechanisms for Database Outsourcing

Aplication

DataNucleusCumulus4j Database

Figure 7.19.: Coarse architecture of an database application with DataNucleus and Cu-
mulus4j. The integration of Cumulus4j as a plug-in for DataNucleus is
transparent for the application.

applications using DataNucleus can be easily enhanced with Cumulus4j. In contrast to
MimoSecco, the encryption keys have to be unlocked for the Cumulus4j plug-in, for
example by the application itself. During database operations, the encryption keys are in
the memory of the server Cumulus4j is deployed to. Note, that the back end databases can
and should be deployed to di�erent servers. The Cumulus4j implementation uses a back
end data structure similar to the back end data structure of the MimoSecco implementation
(cf. Figure 7.15).

6.2.2. Benchmarks

We measured the performance of Cumulus4j with PolePosition [Polb], a generic open
source Java benchmark suite for object relational mappings. We measured two scenarios:
DataNucleus without Cumulus4j and DataNucleus with Cumulus4j. In both cases, in
order to minimise the impact of the e�ects of the OS and the Java garbage collection,
the benchmark ran multiple times and the results were averaged. For our benchmarks,
we used two machines: a client application and benchmark server and a database server.
The application and benchmark server hosted DataNucleus and Cumulus4j and ran
PolePosition. The back end database (MySQL 5.5) was deployed on the database server.

Queries and Data The PolePosition benchmark suite is organised in so-called circuits.
These circuits are di�erent benchmark scenarios. They di�er in the object data structures
and the queries. The idea of these circuits is to replicate di�erent complex application
scenarios. A detailed description of the di�erent circuits can be found in the appendix in
Chapter A.2 and on the PolePosition website [Pola].

Hardware As mentioned above, we used two servers: an application and benchmark
server and a database server. The application and benchmark server has the following
hardware:

• Processor: Intel Core i7-2700K

• RAM: 16 GB

The hardware of the database server is as follows:

• Processor: AMD Phenom II X6

6. Implementations and Benchmarks 121

• RAM: 8 GB RAM

The servers are connected via Gigabit Ethernet.

Results An overview over the benchmark results is shown in Figure 7.20. Detailed
benchmark results can be found in the Appendix in Chapter A.2.2. In order to cope with

Write Read Query Update Delete

104

105

tim
e

in
m

s

Datanucleus Datanucleus with Cumulus4j

7.20.1: Complex

Write QIS QII Update Delete
104

105

106

tim
e

in
m

s
7.20.2: Flatobject

Write Read Query Delete

103

104

105

106

tim
e

in
m

s

7.20.3: Inheritancehierarchy

Create Read Update Delete

106

107

tim
e

in
m

s

7.20.4: Nestedlists

Figure 7.20.: Benchmark results in ms of the PolePosition benchmark circuits Complex,
Flatobject, Inheritancehierarchy, and Nestedlists for Datanucleus with and
without Cumulus4j. In order to cope with outliers, the time axis is in log-
arithmic scale. QIS are queries of indexed Strings and QII are queries of
indexed Integers.

outliers, the mean time for all results is shown on a logarithmic scale.
The initial creation of the data sets and insertion of new data sets (WRITE and CREATE)

is more complex due to the additional overhead introduced by the Cumulus4j plug-in.
Data encryption and the creation of indices result in an overhead of roughly factor 5.

Since the implicit use of indices in Cumulus4j and the fact that MySQL does not use
indices per default, reading data (QUERY and READ) with the Cumulus4j plug-in is
faster than without it, except for the Inheritancehierarchy circuit. Enabling indexing
techniques of MySQL also speeds up queries of Cumulus4j, but may reduce the bene�t of
the Cumulus4j indices and, therefore, the speed-up relative to queries without Cumulus4j.
The higher overhead of the Inheritancehierarchy queries can be explained with the data
structures used in this circuit. Objects in this circuit have a class hierarchy with a depth
of �ve levels. This results in subsequent queries to the index structures and additional

122 7. Mechanisms for Database Outsourcing

decryption operations between these queries. Updates take almost the same time while
deletes are marginally slower with Cumulus4j. The benchmark results show, that the
overhead introduced by Cumulus4j highly depends on the data structures and the queries
used. According to the benchmark results, Cumulus4j is best suited for applications
with many read and few write queries. Please note that when using Cumulus4j in web
application, end users would probably not notice any slowdown at all, because the overall
response time is only marginally a�ected by Cumulus4j.

7. Optimisations of Index Structures
The index tables of the MimoSecco database outsourcing scheme presented in Section 4
enable sublinear search of individual index values with respect to the size of the database
and, therefore, allow for e�cient execution of queries. There are, however, scenarios
where the overall database outsourcing scheme does not scale sublinearly. In an index
table, the rows ids of index values are stored in lists. In general, the size of these lists
linearly scales with the size of the database. Therefore, checking if an id is in a list can
involve a linear (in the size of the database) overhead.

Consider for example the database depicted in Figure 7.21. The index tables after

row name gender salary

1 Johnson male 10
2 Johnson female 10
3 Johnson male 10
4 Johnson - 10
5 Johnson male 9
6 Johnson male 9
7 Jones male 8
8 Smith male 9
9 Jones male 7

row name gender salary

10 Jones male 7
11 Jones male 7
12 Jones male 7
13 Williams female 8
14 Williams male 8
15 Jones male 7
16 Johnson female 8
17 Johnson female 10
18 Williams male 8

Figure 7.21.: An example employee database empl . We use this database to illustrate
examples of the index optimisations. The attribute row is added for easier
traceability. We use this example throughout this section in order to illustrate
the optimisations.

outsourcing are depicted in Figure 7.22. Now consider for an example that we want to
check if there are any male employees with the name Smith. The query for this example
is as follows:

SELECT ∗ FROM empl WHERE gender = male AND name = Smith

Executing this query on the outsourced database results in the following queries to the
index tables:

SELECT rows FROM emplindex ,gender WHERE gender = male

SELECT rows FROM emplindex ,name WHERE name = Smith

7. Optimisations of Index Structures 123

values rows

Johnson EncI((4, 3, 17, 5, 1, 2, 6, 16),K)
Jones EncI((10, 12, 11, 15, 7, 9),K)
Smith EncI(8,K)

Williams EncI((18, 13, 14),K)

7.22.1: emplindex ,name

values rows

10 EncI((3, 1, 17, 4, 2),K)
9 EncI((8, 6, 5),K)
8 EncI((14, 16, 7, 18, 13),K)
7 EncI((12, 15, 9, 10, 11),K)

7.22.2: emplindex ,salary

values rows

male EncI((15, 18, 6, 7, 8, 9, 10, 11, 1, 3, 5, 12, 14),K)
female EncI((2, 17, 13, 16),K)

- EncI(4,K)

7.22.3: emplindex ,gender

Figure 7.22.: The index tables for our example database in Figure7.21 for the attributes
name, salary and gender. The lists of row ids are encrypted with an internal
encryption mechanism EncI and an encryption key K .

The result of the �rst query is EncI((1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18),K) and the
result of the second query is EncI(8,K). Now, the client has to decrypt both results
and execute a set intersection on the decrypted sets of row ids. Since the �rst set is
comparatively large and the second set only contains one element (the id 8), the client
had to fetch a large number of false positives from the database, which induces a large
overhead.

Therefore, in the following section, we propose di�erent optimisations for the index
tables in order to reduce this overhead. We will see that the individual optimisations are
suited for di�erent scenarios that depend on the data in the database and the queries.
Note that these optimisations can be used independently of each other. For each attribute
a di�erent optimisation can be applied. Furthermore, some of these optimisations can be
combined.

The �rst class of optimisations are methods for compressing the lists of row ids in
order to directly reduce the transportation and decryption overhead. After presenting
these compression optimisations, we will examine di�erent data structures for the index
tables and their impact of the e�ciency of query execution.

7.1. Compression of Index Lists

In this section, we present di�erent ways of compressing the row lists in the index entries.
The basic idea is to decrease the size of the lists in order to decrease the transportation
and the decryption overhead. The three compression methods discussed in this section
are Intervals, Exclusive Labels, and Normalisation. Since in an index list every entry is
unique, there are no recurring patterns and, therefore, classic compression algorithms
such as LZW are not considered here.

124 7. Mechanisms for Database Outsourcing

7.1.1. Intervals

The lists of index entries can be compressed by replacing sequences rows ids with
a representation of the interval. The table in Figure 7.23 shows the index table for

values rows

Johnson EncI((1 − 6, 16, 17),K)
Jones EncI((7, 9 − 12, 15),K)
Smith EncI(8,K)

Williams EncI((13, 14, 18),K)

Figure 7.23.: Interval compression: More than two subsequent ids of rows are replaced
with a representation of their interval.

the attribute name for our example database empl with an interval compression. This
compression is well suited for attributes with few di�erent attribute values and long
sequences. The drawback of this optimisation is the overhead for sorting the lists of row
ids.

7.1.2. Exclusive Labels

Instead of storing the ids of rows where an attribute value occurs, you can store the id of
rows where an attribute value does not occur. This is suited for attributes with values
that occur in more than half of the rows of the database. Consider for example the index

values rows

male EncI((¬2, 4, 13, 16, 17),K)
female EncI((2, 13, 16, 17),K)

- EncI(4,K)

Figure 7.24.: Exclusive Labels compression: The attribute value male occurs in more than
half of the rows in the database (n = 15). Therefore, the row id list of this
attribute value is replaced by the symbol ¬ followed by the list of ids of the
rows, the attribute value does not occur.

table in Figure 7.24. Here, the attribute value male occurs in 13 of 18 rows. With the use
of the exclusive label, we have only to store 5 row ids in its index list if we store the ids
of the rows it does not occur. Here, the symbol ¬ marks the use of exclusive labels.

The drawback of this compression is the overhead introduced to INSERT and DELETE
queries. If a query, for example, inserts a row with gender = female, we have also to
change the index entry for all attribute values to of the attribute gender that are di�erent
to female and use exclusive labels.

7.1.3. Normalisation

If two attributes are correlated, certain values of these attributes often occur together.
Then, there are multiple row ids that occur in both index entries of these attribute values.

7. Optimisations of Index Structures 125

We can store such correlations normalised in an separate table. We call this table the
normalisation table. This normalisation table can save space and communication overhead.
For an example, consider Figure 7.25. The tables emplindexn,name and emplindexn,salary show

values rows

Johnson EncI((∗1, ∗2, 16),K)
Jones EncI((7, ∗3, 15),K)
Smith EncI(8,K)

Williams EncI(∗4,K)

7.25.1: emplindexn,name

values rows

10 EncI(∗1,K)
9 EncI((∗2, 8),K)
8 EncI((7, ∗4, 16),K)
7 EncI((∗3, 15),K)

7.25.2: emplindexn,salary

reference rows

1 EncI((1, 2, 3, 4, 17),K)
2 EncI((5, 6),K)
3 EncI((9, 10, 11, 12),K)
4 EncI((13, 14, 18),K)

7.25.3: empln(name,salary)

Figure 7.25.: Normalisation optimisation: The row ids of values of di�erent attributes
that occur together twice ore more are stored together in a separate table.

the normalised index tables for the attributes name and salary. The symbol ∗ marks
the use of a normalisation while the number afterwards represents the number of the
normalisation. The table empln(name,salary) holds the normalised correlations.

The downside of this optimisation is the additional overhead for normalisation man-
agement. Consider for example the following query:

UPDATE empl SET salary = 10 WHERE row = 5 (7.2)

This query changes the row with (5, Johnson, male, 9) in the original database to (5,
Johnson, male, 10). The execution of this query induces the following changes to the
index tables:

• table empln(name,salary) , row 1:
update value of attribute rows to EncI((1, 2, 3, 4, 17, 5),K)

• table empl ′
n(name,salary)

:
deletion of row 2

• table emplindexn,salary , row 2:
update value of attribute rows to EncI((6, 8),K)

• table emplindexn,name , row 1:
update value of attribute rows to EncI((∗1, 6, 16),K)

Figure 7.26 shows the resulting tables after execution of our example query.
There are, however, queries that can be executed very e�ciently with the normalisation

optimisation. Replacing one normalised relation with another one can be done without
changing any row ids, but only with changing pointers to the normalisation table.

126 7. Mechanisms for Database Outsourcing

values rows

Johnson EncI((∗1, 6, 16),K)
Jones EncI((7, ∗3, 15),K)
Smith EncI(8,K)

Williams EncI(∗4,K)

7.26.1: empl ′indexn,name

values rows

10 EncI(∗1,K)
9 EncI((6, 8),K)
8 EncI((7, ∗4, 16),K)
7 EncI((∗3, 15),K)

7.26.2: empl ′indexn,salary

refernece rows

1 EncI((1, 2, 3, 4, 17, 5),K)
3 EncI((9, 10, 11, 12),K)
4 EncI((13, 14, 18),K)

7.26.3: empl ′
n(name,salary)

Figure 7.26.: The normalised index tables after execution of Query 7.2. The execution of
this query changes four entries in the index tables.

7.2. Sorted Index Lists - Binary Search
The implementationsMimoSecco and Cumulus4j use a block cipher (e. g. AES with a
block length of 256 Bit) in CBC mode for en- and decryption of the row id lists. This
mode allows to decrypt individual cipher blocks without the need to decrypt all previous
cipher blocks.

If a list of row ids has to be split into several blocks in order to encrypt it, sorting the
list prior to encryption can decrease the decryption overhead. For example, in order to
check if a certain row id is in a list, instead of decrypting the complete list (ie. decrypting
all cipher blocks), binary search on cipher blocks can be used. Figure 7.27 depicts the

values rows

male EncI((1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18),K)
female EncI((2, 13, 16, 17),K)

- EncI(4,K)

Figure 7.27.: The index tables of the attribute gender of our example with sorted lists of
row ids.

index table for the attribute gender of our example database with sorted lists of row ids.
Furthermore, assume we want to check if the entry in row 11 is male and that a cipher

block can hold two row ids. Figure 7.28 depicts a representation of the sorted row id list
of the attribute valuemale.

Applying a binary search pattern, we �rst have to decrypt cipher block 3. The decryp-
tion of cipher block 3 yields the ids 6 and 7. Since 11 > 7, we have to search in the higher
part of the list. We decrypt cipher block 5 and get the ids 10 and 11 which concludes our
binary search. Due to the CBC mode, in order to decrypt cipher blocks 3 and 5, we also
need to decrypt cipher blocks 2 and 4.

In this example, we decrypted 4 cipher blocks. If the list was not sorted, we had to

7. Optimisations of Index Structures 127

11?

7<11

11=11

1,3 5,6 7,8 9,10 11,12 14,15 18

cb1 cb2 cb3 cb4 cb5 cb6 cb7

Figure 7.28.: A representation of the cipher blocks (cbi) of the sorted row id list of the
attribute valuemale assuming a cipher block can hold two ids.

decrypt 7 cipher blocks in the worst case. In the O calculus, the number of cipher blocks
that need to be decrypted in order to check if a row id is in a list is in O (ld n). Note, that
in order optimise queries such as the query in the example above, we need to determine
the number of row ids in a list. This can be done, for example, by storing this number in
an additional column of the index tables. Additionally, these numbers can be encrypted.

7.3. Keyed Hash Index
In our scheme, the index lists are encrypted. This has the disadvantage that there are
queries that introduce a large communication and decryption overhead. For example, the
server can not calculate the result of a JOIN or the result of a WHERE clause containing
more than one condition. A possible solution for this problem is the Keyed Hash Index.
This is a similar approach as Anatomization [NC11].

Instead of encrypted lists of indices, the Keyed Hash Index introduces a key that points
to an additional table, the Keyed Hash Index table. This additional table holds hashed
pointers with the lists of row ids in plaintext. Consider Table 7.29 which depicts the

values sequence

Johnson 1
Jones 2
Smith 3

Williams 4
7.29.1: emplindexkh,name

hsequence rows

Hκ(1) 4,3,17,5,1,2,6,16
Hκ(2) 10,12,11,15,7,9
Hκ(3) 8
Hκ(4) 18,13,14

7.29.2: emplindexkh

Figure 7.29.: The Keyed Hash Index. The index table holds pointers to the Keyed Hash
Index table. The Keyed Hash Index table holds hashed pointers and the
corresponding lists of row ids in plaintext.

Keyed Hash Index for the attribute name of our example database. The column rows

of the index table is replaced with a column sequence holding sequence numbers. The
additional Keyed Hash Index table (Table 7.29.2) holds hashes of sequence numbers and
the corresponding row ids in plaintext. In order to retrieve the row ids for an attribute
value, we �rst have to retrieve the sequence number for this attribute value, calculate the
hash of this sequence number and then retrieve the corresponding list of the Keyed Hash

128 7. Mechanisms for Database Outsourcing

Index table. Consider for example the following query:

SELECT ∗ FROM employees WHERE name = Smith

Executing this query on the outsourced example database results in the following two
queries:

SELECT sequence FROM emplindexkh,name WHERE name = Smith

SELECT rows FROM emplindexkh WHERE hsequence = Hκ (3)

The client has to calculate the value of Hκ (3) locally. Since there is no need to decrypt any
indices and computing a hash, in general, can be done very e�ciently, the Keyed Hash
Index has great potential for reducing the overhead of database outsourcing schemes,
even for simple queries. For example, joins and computing the result of two conditions in
the WHERE clause combined by AND can be computed on the server. Therefore, there is
no need to retrieve potentially long lists of row ids in order to execute such queries.

Using the Keyed Hash Index in our database outsourcing scheme, however, breaks the
security notion Ind-ICP. Consider for example the tables depicted in Figure 7.31 that
show index tables for the two databases in Figure 7.30.2. From the �rst Keyed Hash Index,

row name gender

1 Jones male
2 Johnson female
3 Johnson female

7.30.1: empl2

row name gender

1 Jones female
2 Johnson male
3 Johnson female

7.30.2: p(empl2)

Figure 7.30.: An example employees database. Table 7.30.1 depicts the original database
and Table 7.30.2 the database after application of an independent column
permutation p that permutes two attribute values of the attribute gender.

the adversary learns that there are two identical rows in the original database. Namely
the rows 2 and 3. From the second Keyed Hash Index, the adversary learns that there
are no identical rows in the database. Therefore, the adversary can distinguish the two
original databases and break our security notion Ind-ICP.

It is an open question to formalise the level of privacy a database outsourcing scheme
with a Keyed Hash Index provides. Given the support for more e�cient execution of
queries, an analysis of the privacy guarantees of the Keyed Hash Index seems worthwhile.

7.4. Storing Index Lists as B-Trees
In order to support e�cient execution of range queries, database management systems
use B-Trees. B-Trees store a sorted list of attribute values that also can be accessed
through a tree structure. B-Trees combine the advantages of Trees and Linked Lists. A
starting value of a range query can be found in sublinear time, while the next value can
be found in O (1) since the leaves of the B-Tree are linked.

In order to support e�cient query execution, Damiani et al. propose in [Dam+03] to
use B-Trees for database outsourcing schemes as well. For security reasons, they propose
to encrypt the leaves of the B-Tree.

7. Optimisations of Index Structures 129

values sequence

Jones 1
Johnson 2
7.31.1: empl2indexkh,name

values sequence

male 3
female 4

7.31.2: empl2indexkh,gender

hsequence rows

Hκ(1) 1
Hκ(2) 2,3
Hκ(3) 1
Hκ(4) 2,3

7.31.3: empl2indexkh

values sequence

Jones 1
Johnson 2

7.31.4: p(empl2)indexkh,name

values sequence

male 3
female 4

7.31.5:
p(empl2)indexkh,gender

hsequence rows

Hκ(1) 1
Hκ(2) 2,3
Hκ(3) 2
Hκ(4) 1,3

7.31.6: p(empl2)indexkh

Figure 7.31.: The Keyed Hash indices of the tables in Figure 7.30.2. The adversary can
distinguish these two indices since she learns from the Keyed Hash Index of
empl2, there are two identical lines in the original database empl2, while she
learns from the Keyed Hash Index of p(empl2) that every line in p(empl2)
is di�erent.

In the following, we adapt B-Trees for our indices. Here, the advantages of B-Trees are
similar to the advantages of sorted lists. They support e�ciently checking if a row in the
original database has a certain attribute value. Additionally, B-Trees e�ciently support
INSERT queries if each child and leaf is stored in a di�erent table cell. Therefore, the
B-Tree optimisation can be seen as a extension of the sorted list optimisation proposed in
Section 7.2. Figure 7.32 shows an example representation of the B-Tree for the attribute
name and the attribute value Johnson of our example database employees . The interval
and leaf sizes are small in order to show the tree structure. Implementations of this
optimisation should have leaf sizes that are multiples of the length of a cipher block.
Furthermore, in an implementation of this tree, the intervals can be replaced with keys
and pointers. For example the node [1,6] can be stored as:

< pointer to node [1, 3] > 4 < pointer to node [4, 5] >

Storing pointers in separate cells allows for traversing a path in the tree on the server
with a single query.

The leaves of the tree hold the row ids and are encrypted. In contrast to regular B-
Trees, we need empty leaves and nodes that point to empty leaves. Otherwise, our secure
database outsourcing scheme that uses the B-Tree optimisation does not ful�l Ind-ICP.
Consider for example two B-Trees for two attribute values of di�erent attributes. If there
is no leaf in both trees that potentially holds the same row id, these two attribute values
can not be related in the original database.

For our example, this would be the case with the B-Trees for the attribute name and
the value Smith and the attribute gender and the values female and -, the third value
of the attribute gender. Assuming an interval size of 3, there would be no leaves in the
B-Trees for female and - that potentially hold the row id 8 (cf. Figure 7.21). Therefore, the
adversary learns that Smith in the original database is male.

130 7. Mechanisms for Database Outsourcing

name = Johnson
#entries = EncI (8,K)

[1,6] [7,12] [13,18]

[1,3] [4,6] [7,9] [10,12] [13,15] [16,18]

EncI ((1, 2, 3),K) EncI ((4, 5, 6),K) EncI ((−),K) EncI ((−),K) EncI ((−),K) EncI ((16, 17),K)

Figure 7.32.: An example B-Tree with t = 3 for the root node and an interval size of 3.
This B-Tree stores the row ids for the attribute name and the value Johnson

of our example database employees . Row ids are stored encrypted in the leaf
nodes. The last inner nodes before the actual leaves are not needed and are
only depicted to illustrate the interval sizes of the leaf nodes.

Storing empty leaves and nodes that point to empty leaves introduces a storage over-
head, especially for attributes with a large range and sparse attribute values. Adaptively
choosing di�erent node intervals for each attribute value results in a lower storage over-
head. Since the optimal parameters depend on the data stored in the tree, during runtime,
the optimal intervals may change which also results in a reorganisation overhead for the
whole tree.

Also, encrypting the nodes, in addition to the leaves, allows for B-Trees with no empty
leaves or nodes that point to empty leaves, since the adversary does not learn anything
about ranges of rows the attribute value occurs. This, however, introduces additional
decryption overhead for each node. Additionally, as mentioned above, without encryption
and depending on how links to other nodes are stored, traversing a path in the B-Tree
can be implemented with a single query. If each node is encrypted, each node has to be
retrieved an encrypted in order to determine the next node the be retrieved.

7.5. Storing Index Lists in Buckets
Instead of building a B-Tree manually, we also can roll out the tree into buckets and
rely on the indexing by the database management system. The leaves of the B-Tree
(cf. Section 7.4) partition the room of possible row ids. This also is the idea of the bucket
optimisation. But instead of accessing a single partition with a tree structure, we store
the interval for each partition. Consider for example Figure 7.33. The table in this �gure
depicts the Bucket Index for the attribute name and attribute value Johnson. Each row
holds the start of the interval and the encrypted row ids of the interval. Similar to the
B-Tree, in order to ful�l the security notion Ind-ICP, we also have to store empty buckets.
For accessing a bucket, we need the following formula:

b(r) = (r div (i + 1)) · i + 1

7. Optimisations of Index Structures 131

start rows

1 EncI((1, 2, 3),K)
4 EncI((4, 5, 6),K)
7 EncI(−,K)

10 EncI(−,K)
12 EncI(−,K)
16 EncI((16, 17),K)

Figure 7.33.: Bucket Index for the attribute name and the attribute value Johnson. A row
in the Bucket Index holds the start of the interval of row ids as well as the
encrypted list of row ids the attribute value occurs in this bucket. This
optimisation is similar to the B-Tree Index but relies directly on the indexing
mechanisms of the database management system.

Here, i is the length of the interval and r is the row id. Then, b(r) is the start of the bucket
for the row id r . Consider for example, we want to check if the value of attribute name in
the rows 3 and 8 is Johnson. In our example the bucket size i is 3. Therefore, we calculate:

b(3) = (3 div 4) · 3 + 1 = 0 · 3 + 1 = 1

and
b(8) = (8 div 4) · 3 + 1 = 2 · 3 + 1 = 7

and fetch the rows of the Bucket Index with start = 1 and start = 7. In the �rst case, the
attribute value of the row in question is Johnson, in the latter case it is not, since the
Bucket that starts with row id 7 is empty. For a given row id, calculating the bucket can
be done in O (1), while fetching the bucket relies on the index structure of the database
management system. The overhead for fetching a bucket usually is between O (1) and
O (ld (nt)) while n is the number of rows in the database and t is the interval size of the
buckets.

Similar to the B-Tree optimisation, the Bucket optimisation has the drawback of the
need to store empty buckets. A solution for this is encrypting the start column of the
Bucket Index. Then, as it is the case with the B-Tree optimisation, we trade storage space
overhead for additional encryption overhead. For our benchmarks in Section 7.6.2 we
chose to accept the additional storage overhead and store the start of a bucket in plaintext.

7.6. Comparison and Benchmarks
The goal of the optimisations proposed in Sections 7.1-7.5 is the reduction of the de-
cryption overhead as well as of the message overhead for queries. In order to provide a
comparison of the overhead, we compare the overhead of each optimisation on the O
calculus in Section 7.6.1. Since, the overall performance of an optimisation depends on
the data in the database as well as on the queries, we provide benchmarks of selected
optimisations in Section 7.6.2.

7.6.1. Encryption Overhead and Space Requirements

For each optimisation, we examine the number of row ids we need to decrypt in order to
check if a row id is in an index. Figure 7.34 provides an overview of the overheads for

132 7. Mechanisms for Database Outsourcing

each optimisation.

optimisation decrypted row ids for retrieval
of a single row id

List O (l)
Compression O (l)
Binary Search O (ld l)
Keyed Hash O (1)
B-Tree O (t)
Bucket O (t)

Figure 7.34.: Complexity class of the number id row ids needed to decrypt in order to
look up a single row id, while l is the number of row ids of an attribute value
and t is the interval, leaf, or bucket size.

Without any optimisation, the number of row ids, the adaptor needs to decrypt in order
to look up a single row id scales linearly with the number of row ids of the corresponding
attribute, which depend on the size of the database.

The Compression optimisations are similar to the standard indices. They only decrease
the overhead by a value that depends on the compression method an on the data in the
database.

The Binary Search decreases the decryption overhead to O (ld l) while only needing to
store an additional value, the length of the list (cf. Section 7.2).

With the Keyed Hash optimisation, the row ids are stored in plaintext. Furthermore, this
optimisation has the potential for e�cient execution of two classes of queries. However,
with this optimisation, the Ind-ICP security notion is not ful�lled (cf. Section 7.29). The
storage overhead of the Keyed Hash optimisation is the space needed for the sequence
numbers, their hash values (h), as well as the row ids in plaintext.

Since the B-Tree optimisation and the Bucket optimisation, both, partition the space of
row ids into buckets, the number of row ids needed to be decrypted for a single row id
depends on the number of ids in a bucket (O (t)).

For the Bucket optimisation, we need to store each each bucket (t + r +m) as well as a
starting value for each bucket (m · l). The B-Tree optimisation needs additional storage
space for the tree structure and, for each leaf, a pointer to the next leaf.

The Compression, the Binary Search and the Keyed Hash optimisations are more space
e�cient than the B-Tree and the Bucket optimisations. On the other hand, the Keyed
Hash, the B-Tree, and the Bucket optimisations require less decryptions of row ids. The
Keyed Hash seems to be the best optimisation for decreasing decryption overhead as well
as in storage space overhead.

For real applications, we have to consider how a DBMS handles the additional space
requirements. A DBMS may introduce additional overhead or compression. Therefore,
we measured the space needed on the hard disk for the plain data set, the adaptor without
optimisations (List), the adaptor with the Keyed Hash optimisation, and the adaptor with
the Bucket optimisation for the uniques and the hundreds data set of the benchmarks from
Section 6.1. Figure 7.35 shows the results. Figure 7.35.1 shows the absolute space required
for just the empty tables, the hundreds data set, and the uniques data set. Figure 7.35.2

7. Optimisations of Index Structures 133

empty tables hundreds uniques
0

0.5

1

1.5

2
si

ze
in

10
8

By
te

s

7.35.1: absolute

hundreds uniques
0

1

2

3

4

5

si
ze

in
10

6
By

te
s

JDBC
List
Hash
Bucket

7.35.2: relative

Figure 7.35.: Comparison of absolute and relative disk space requirements of the plain data
sets and the data sets transformed with the database outsourcing schemes
and its optimisations. The �gure for relative space requirements shows the
space needed by the data without the space needed by the empty tables.

shows the disk space requirements of the data without the initial overhead for the table
structures.

Irregardless of the optimisation, data transformed by the adaptor needs roughly 7-8
times the space of the plain data sets. The comparison of Figures 7.35.1 and 7.35.2 shows
that the most space is needed for the data structures. For the data sets used (10,000 entries,
each), the actual data does only make up a fraction of the space requirements. Depending
on the optimisation, the data transformed by the adaptor needs about 1-4 times the space
of the plain data.

7.6.2. Benchmarks

Hardware We use the same set-up and hardware as in the benchmarks of the MimoSecco
adaptor in Section 6.1 in the MimoSecco scenario (cf. Figure 7.16.3). The benchmark
component as well as the adaptor is deployed on the client with an Intel Pentium Dualcore
@ 2Ghz and with 2 GB RAM. The back end database (PostreSQL 9.1) is deployed on a
server with 2 AMD Opteron with 6 Cores @ 2.4Ghz, each, and with 32 GB of RAM.

Queries and Data Since we want to benchmark the scaling e�ects we did not use the
queries and the data set of the AS/sup 3/AP benchmark [TOB89], but created data sets
with with 1,000, 2,000, 4,000, 8,000, 16,000, and 32,000 entries, each. The scheme of the
data set, as well as an excerpt is depicted in Figure 7.36. Each data set has the attributes
gender, prename, name, and age. The attribute gender has a distribution of 7% female and
93% male. The names are from a service called Fake Name Generator [Cor]. The values of
the attribute age are chosen uniformly at random from [1, 99].

The queries used in this benchmark are the INSERT queries needed to initially create
each data set and SELECT queries with di�erent properties and result sets. Figure 7.37
depicts the SELECT queries used in this benchmark. In the benchmarks, we used a simple

134 7. Mechanisms for Database Outsourcing

gender prename name age

male Frank Kluge 23
male Marko Schmid 4
male Mike Herrmann 95
male Jens Fenstermacher 54

female Sabrina Moeller 33

Figure 7.36.: An excerpt of the data sets used in the optimisations benchmarks.

Query Nr. Query

S1 SELECT * FROM users WHERE prename = Maximilian
S2 SELECT * FROM users WHERE prename = Maximilian AND gender = male
S3 SELECT * FROM users WHERE name = Moeller AND gender = female

Figure 7.37.: The SELECT queries used in the scaling benchmark. The query S1 is a simple
query with one condition. In the data set used, 93% of all tuples ful�l the
condition gender = male.

SELECT query with one condition and two SELECT queries with two conditions, each.
The second condition of the second query is ful�lled by 93% of all tuples, while the second
condition of the third query is ful�lled by only 7% of all tuples.

Results According to Figure 7.34, the Compression optimisations behave similar to the
standard implementation. Furthermore, the Bucket optimisation behaves similar to the
B-Tree optimisation which, in turn, is an extension to the Binary Search optimisation
(cf. Section 7.4). Therefore, we compare the standard implementation (List), the Keyed
Hash optimisation, and the Bucket optimisation. For the Bucket optimisation, we chose a
bucket size of 10.

Figures 7.38 to 7.39 depict the benchmark results. More detailed benchmark results
can be found in the appendix in Chapter A.3. The results show that for INSERT queries,
the Hash and the Bucket optimisation scale better than the standard implementation. As
expected, the Bucket optimisation has the lowest overhead. The Bucket optimisation has a
�xed size of buckets and, therefore, each row in the index tables only holds a �xed number

1k 2k 4k 8k 16k 32k
0

50

100

150

tim
e

in
m

s

List
Hash
Bucket

Figure 7.38.: The average execution time in ms of an insert operation depending on the
optimisation and the size of the data set.

8. Side Channels in Secure Database Outsourcing 135

1k 2k 4k 8k 16k 32k
0
20
40
60
80
100

tim
e

in
m

s

List Hash Bucket

7.39.1: S1

1k 2k 4k 8k 16k 32k
0

500

1,000

1,500

tim
e

in
m

s

7.39.2: S2

1k 2k 4k 8k 16k 32k
0

20

40

tim
e

in
m

s

7.39.3: S3

Figure 7.39.: Average execution times in ms of the select queries S1, S2, and S3 depending
on the optimisation and the size of the data set.

of row ids. Consequently, the Bucket optimisation leverages the search optimisations of
the back end database better than the standard adaptor or the Hash optimisation.

Figure 7.39 depicts the benchmark results for the SELECT queries S1, S2, and S3. The
results for S1 suggest, that the Keyed Hash and the Bucket optimisations scale better for
attributes with many di�erent and equally distributed values. The results for S2 show,
that the bucket optimisation does not scale very well for queries that a�ect a high number
of buckets. Since 93% of all rows are a�ected by the query S2, the adaptor has to query
nearly all buckets. The results for select query S3 show that there is not much di�erence
in the overheads of the optimisations if a very small number of rows is a�ected.

Overall, the Bucket optimisation seems to be most suited for attributes with many
di�erent values. For attributes with a distribution similar to the attribute gender in our
test data sets, the Bucket optimisation should not be used. Please note, that for each
attribute an individual index optimisation can be used.

8. Side Channels in Secure Database Outsourcing
When implementing or using implementations of cryptographic primitives, protocols,
or schemes, so-called side channels have to be considered. Side channels are security
issues of implementations. Cryptographic models that are used to prove security are

136 7. Mechanisms for Database Outsourcing

abstractions and, therefore, do not capture every aspect of the real world. For example
power consumption is not covered in classic cryptographic security models. There are so
called power attacks, that allow an adversary to learn partially or fully the secret input of
a cryptographic scheme by observing the power consumption. In this case, observing the
power consumption and deducing parts of the secret input is a side channel attack. Other
common examples for side channels are electromagnetic emission or timing.

When a provably secure method, protocol, or scheme is implemented and used, from a
security point of view, there is a context switch from a formal model to the real world.
This context switch can introduce side channels. Note that side channels are not security
relevant bugs of an implementation but can occur even if the implementation itself is
bug free.

For the security proof of our secure database outsourcing scheme, we also used an
abstract model. Consequently, it is important to study possible side channels of implemen-
tations of this scheme that exploit aspects of reality that are not covered in the security
model. In this section, we will discuss potential security issues of implementations of
database outsourcing schemes on the example of the MimoSecco database outsourcing
scheme. The side channels discussed in this section, however, are not speci�c our scheme
but have to be considered when implementing database outsourcing schemes in general.
We will analyse the side channels presented in this section and discuss how to avoid
them.

8.1. Exclusion of Possible Database Contents

In contrast to Bayes Privacy, the model that we used to prove the security of our se-
cure database outsourcing scheme does not consider background speci�c knowledge of
adversaries. In the experiment Ind-ICPA

(Gen,Enc) (cf. De�nition 14), the adversary has to
choose two databases. The adversary chooses the �rst database directly and the second
one by choosing an independent column permutation of the �rst one. Therefore, the
model implicitly assumes that all possible database have equal probability. We pointed
this out in Chapter 4, Section 6.2, where we modelled the security notion Ind-ICP as a
Computational Bayes Privacy notion.

In reality, an adversary would not choose a database, but is presented with the out-
sourced database and wants to determine one or several relations of the original database.
If the adversary has speci�c background knowledge about the domain of the content of
the database, she can potentially exclude possible original databases. As an example, con-
sider the tables in Figure 7.40.2. These tables depict a database that has been transformed
according to EncDB of the MimoSecco database outsourcing scheme (cf. De�nition 69).
Due to the low number of rows of the data table (2), there are only two possible original
databases. These two candidates for the original database are depicted in Figure 7.40.1.
An adversary with the background knowledge that men can not be pregnant, however,
can rule out the second database in Figure 7.40.1 as the original database, which gives
the adversary a non negligible advantage in the security game Ind-ICPA

(Gen,Enc) and,
consequently, breaks Ind-ICP.

This problem is not speci�c to our scheme. According to the No-Free-Lunch Theo-

rem [KM11] this problem is always present in schemes that allow adversaries to learn
something about the database, even if the model captures speci�c background knowledge.
As a result, for the security of a database outsourcing scheme it is vital to check if the

8. Side Channels in Secure Database Outsourcing 137

name pregnant

Alice yes
Bob no

name pregnant

Alice no
Bob yes

7.40.1: d0 and d1

values rows

Alice EncI(1,K)
Bob EncI(2,K)

values rows

yes EncI(1,K)
no EncI(2,K)

row data (name, condition)

1 EncI((Alice, yes),K))
2 EncI((Bob, no),K)

7.40.2: M (d0) =M (d1)

Figure 7.40.: Potential original databases 7.40.1 and the tables of an outsourced database
7.40.2. With domain speci�c background knowledge, it is possible to deter-
mine the original database.

assumptions about the background knowledge still hold given the data to be outsourced.

8.2. Usage of the Database

Static security notions such as Ind-ICP do not consider the usage of the outsourced
database. In the Experiment Ind-ICPA

(Gen,Enc) (De�nition 14), the adversary can not
observe the execution of queries or has acces to access statistics of the database. In reality,
adversaries that observe how the database is used are possible and have to be considered.
They can, for example, observe sequences of queries and the their result.

We examine notions for data outsourcing schemes for adversaries that observe the
usage of outsourced databases in Chapter 5, Section 3.1.2 and Chapter 6, Section 3. We
present a scheme with provable security against adversaries that observe queries in
Section 5. Nevertheless, we discuss these side channels as they may aid designers and
programmers in implementations of data outsourcing schemes.

Access Statistics Rows in the index and data tables that are queried in short intervals
are more likely to be correlated than other rows. By observing access patterns over time,
an adversary can learn the parts of the database that are queried often. Attacks involving
access statistics, however, are not speci�c to our database outsourcing scheme. Even if a
database is completely encrypted, an adversary with access to access statistics can gain
information about the database [KC05]. There are so-called private information retrieval

(PIR) schemes [Cho+98] that consider this issue. For databases the notion of PIR implies
the notion of Query Privacy (cf. Chapter 5, Section 5).

As mentioned above, countermeasures to this attack involve PIR or mechanisms that
prevent an adversary from learning the information a client queries from the server. Such
mechanisms, however, do have a very high overhead and are not applicable under the
performance constraints of most realistic scenarios.

Another method to counter this attack is to rely on architectural assumptions (as in
e. g. [Agg+05]). For example we can distribute each table to a di�erent server. Assuming

138 7. Mechanisms for Database Outsourcing

they do not collaborate maliciously a single server does not have access to the access
statics of the other servers and therefore can not conduct the attack described above.

Database Updates Adversaries can not only observe the execution of queries on an
outsourced database. They also can observe how queries change the database. In contrast
to message encryption or searchable encryption, a database can change over time. Queries
can add, remove, and change tuples. Consider for example Figure 7.41. This Figure depicts

values rows

Alice EncI(1,K)
Bob EncI(2,K)
Eve EncI(3,K)

values rows

�u EncI((1, 3),K)
cancer EncI(2,K)

row data (name, condition)

1 EncI((Alice, flu),K)
2 EncI(Bob, cancer),K)
3 EncI((Eve, flu),K)

7.41.1: The tables patientsindex ,name , patientsindex ,condition, and patientsdata prior to the update

values rows

Alice EncI(1,K)
Bob EncI(2,K)
Eve EncI(3,K)

Carol EncI(4,K)

values rows

�u EncI((1, 3),K)
cancer EncI(2,K)
lupus EncI(4,K)

row data(name, condition)

1 EncI((Alice, flu),K)
2 EncI((Bob, cancer),K)
3 EncI((Eve, flu),K)
4 EncI((Carol , lupus),K)

7.41.2: example tables after the update

Figure 7.41.: Example for an outsourced database before 7.41.1 and after 7.41.2 execution
of Query 7.3. An adversary observing both states can determine the new
tuple.

the states of a database before (Figure 7.41.1) and after (Figure 7.41.2) the execution of
the following update query:

INSERT INTO patients VALUES (Carol, lupus) (7.3)

Given the tables in Figure 7.41.1, this query will be transformed into the following INSERT
queries:

INSERT INTO patientsdata VALUES EncI ((Carol, lupus), K)

INSERT INTO patientsindex ,name VALUES (Carol, EncI (4, K))

INSERT INTO patientsindex ,condition VALUES (lupus, EncI (4, K))

If an adversary observes the state before and after execution of Query 7.3, she can
determine the new tuple (Carol, lupus) inserted into the database and therefore get
information she should not get according to the static security notion. This is possible
since the security model does not consider database updates.

This attack can be prevented, for example, by methods like distributing the tables to
di�erent severs, caching updates, or encryption of the index tables.

Our framework for notions for data outsourcing in Chapter 5, Section 3 as well as the
extension of our outsourcing scheme in Chapter 7, Section 5 already consider this side
channel, since the database is in the view (cf. De�nition 41) of the server. The MimoSecco

8. Side Channels in Secure Database Outsourcing 139

and Cumulus4j implementations, however, do not since they only provide Ind-ICP which
is a Static Security notion.

For future implementations of database outsourcing schemes, this side channel should
be considered. In contrast to usage scenarios for message encryption, updates are an
important aspect of databases.

8.3. Order of Values on Physical Storage

Using sets or multisets is a common approach in order to model databases (e. g. [Hac+02;
NC11; Agg+05] and in this work in Chapter 2, De�nition 6). Sets and mutisets do not
have a speci�c order of their elements. In some cases, however, for example if we want
to address single tuples of the database, we assume it to be ordered.

The elements of real databases, always do have an order. Databases are stored on phys-
ical devices that are organised in storage cells with addresses. Additionally some storage
devices use �le systems that also introduce an order of stored entities. Consequently,
elements of databases stored on physical devices do have an order implied by the storage
device or the �le system. This order can potentially be di�erent to the order used in the
abstract model.

An adversary can exploit this order and potentially break the security of the data
outsourcing scheme. This problem, is not speci�c to our outsourcing scheme. Any
scheme, that stores data in plain text on the back end (e. g. [NC11; De +10]) is potentially
vulnerable to this kind of attack.

In realistic scenarios, application data is stored in the database over time by using the
application. Consequently, the order of data on the physical device can re�ect the order
it has been stored in the database.

For our database outsourcing schemes, this means that in such a scenario, the adversary
may learn correlations of attribute values by simply reconstructing them from the physical
order of the entries of the index table on the storage device. This attack is similar to
the update attack described in Section 8.2. Now, however, the adversary does not need
to observe di�erent states of the database. She can reconstruct di�erent states simply
by the order of the tuples stored on the physical storage device. Consider for example
Figure 7.42. If an adversary knows by the order of the data on the physical storage, as
indicated by the additional column storage order that the tuples (Eve, EncI(1,K)) and
(yes, EncI(1,K)) were added after the other tuples in their respective tables, she learns
that the original database has to be the second table in Figure 7.42.1.

Please note, that the row ids (the attribute values of the row columns) do not necessarily
re�ect the temporal order of their creation. In this work, for the sake of readability, the
row ids are subsequent numbers. In implementations, there can be missing row ids due
to DELETE queries or due to mechanisms that generate new row ids completely di�erent
to using subsequent numbers.

This side channel can be prevented by either enforcing the order of the database and
the model to be the same or by enforcing a random order on the physical storage device
or �le system. This, however, induces a substantial performance overhead. Another
solution could be caching changes until there are l cached and independent queries and
then executing them in random order. The overall system would then provide Ind-ICP
only for blocks of size l in the database (cf. De�nition 57).

Another method that prevents this side channel is the encryption of the index tables.

140 7. Mechanisms for Database Outsourcing

name pregnant

Alice yes
Eve no

name pregnant

Alice no
Eve yes

7.42.1: Potential original patients tables for the Tables
in Figures 7.42.2-7.42.4

storage order values rows

1 Alice EncI(2,K)
2 Eve EncI(1,K)

7.42.2: patientsindex ,name

storage order values rows

1 no EncI(2,K)
2 yes EncI(1,K)

7.42.3: patientsindex ,condition

storage order row data (name, condition)

1 2 EncI((Alice, no),K)
2 1 EncI((Eve, yes),K)

7.42.4: patientsdata

Figure 7.42.: An example for patients database (Figures 7.42.2-7.42.4) oursourced with
EncDB of the MimoSecco database outsourcing scheme with an additional
column storage order that indicates the order of the tuples on the physical
storage device. Potential original databases are shown in Figure 7.42.1. If the
adversary knows that the tuples in the database were added subsequently
and learns the order of the tuples on the storage device, she learns that the
original database is the second table of Figure 7.42.1.

This either restricts the number of queries that can be executed e�ciently or introduces
an additional overhead. For example in order to e�ciently support substring queries,
searchable encryption has to be used for the attribute values. This introduces additional
index structures and the need for additional queries as well additional decryption steps.

8.4. Active Adversaries
In our security models, we only consider honest but curious or passive adversaries.
Therefore, the goal of our scheme is not to improve the security of a database system
against active adversaries. For example, an actively malicious database server could
manipulate results before sending them to the client or even suppress answers. Active
adversaries are out of the scope of this work. However, for the sake of completeness,
and in order to show potential future research directions, we discuss these attacks in the
remainder of this section.

8.4.1. Manipulation of Results

Instead of returning the correct answer for a query issued to the database, an active
adversary can exchange encrypted parts of a result. Consider the example an index
table with two rows, and a query with the result of the rows cell of the �rst row of this

8. Side Channels in Secure Database Outsourcing 141

index table. The adversary can intercept this result and replace it with rows cell of the
second row of this index table. This leads to an inconsistent view of the database and can
compromise the functionality of the client application. It can, however, be detected. One
method to detect this speci�c behaviour is to add the value of the values attribute of each
row to its encrypted list of row ids. Please note, that this measure, however, does not
prevent all possible manipulations of results. Other methods can involve cryptographic
signature schemes, timestamps, distribution and cryptographic proofs.

8.4.2. Attacks on Availability

Instead of manipulating results prior to sending them to the client, an actively malicious
adversary also can delay or completely suppress results. Similar to manipulation, such
behaviour can compromise the functionality of the client application. Such behaviour,
also, can be easily detected by the client. A straightforward solution to a database service
that does not ful�l a certain quality of service is to switch the service provider.

8. Conclusion and Outlook
We will conclude this thesis by a short summary of Chapters 3 to 7 and with a discussion
of problems left open and potential directions of future research.

Data Privacy and the Bayes Privacy Framework In Chapters 3 and 4, we provided an
introduction to database privacy and presented the Bayes Privacy framework. The Bayes
Privacy framework, however, does not ful�l the privacy axioms postulated by Kifer and
Lin in [KL10] that allow for a thorough mathematical examination of notions ful�lling
these axioms. An examination of the subset of the Bayes Privacy framework that ful�ls
the privacy axioms and its properties could provide more insights into the theoretical
aspects of data privacy. On the other hand, support for the design of mechanisms that
ful�l notions de�ned in a privacy framework would be of great bene�t for practical
applications and contribute to closing the gap that exists between theoretical research of
data privacy and application of data privacy methods in practice. Another potentially
interesting direction of research is the extension of the Bayes Privacy framework, for
example, by the inclusion of the expected number of individuals a�ected by a breach into
the framework. This can lead to notions that represent more detailed trade-o� decisions.
Furthermore a more detailed examination of composability properties of formal privacy
notions would enable profound reasoning about the security of composed mechanisms.

PrivacyNotions forDataandDatabaseOutsourcing In Chapters 5 and 6, we presented
a model for data outsourcing, meta notions for the privacy goals of data outsourcing, and
instantiations of these meta notions for database outsourcing. We established relations
between the basic notions Static Security, Data Privacy, Query Privacy, and Result Privacy.
An interesting question is if and how these relations hold for the generalised notions
for data outsourcing. We showed on the example of database outsourcing, that provable
security with a meaningful guarantee can be achieved under practicability constraints.
There are, however, database outsourcing schemes without a formal security guarantee
(cf. Section 2 in Chater 7 and Section 3 in Chapter 6) that intuitively o�er some form of
security. Capturing their security properties with formal notions would help evaluate
and compare the security of such schemes. Furthermore, on a broader scope, this will be
an additional contribution bridging the gap between the �elds of provable security and
practical security mechanisms.

Mechanisms for Database Outsourcing In Chapter 7, we presented schemes and im-
plementations for secure database outsourcing. We argued that the overhead of a security
mechanism for data outsourcing should, in order to be used, not cancel out the bene�ts of
outsourcing. This may not be true for all scenarios. Furthermore, since the formalisation
of the bene�ts of outsourcing is out of the scope of this work, we could not prove that
implementations of our candidate, the MimoSecco scheme, can ful�l such economical
constraints. We, however, presented benchmarks that point into a promising direction.

143

144 8. Conclusion and Outlook

Furthermore, the implementations provided leave room for additional optimisations
such as an automated selection of the index optimisation based on the data and the queries,
an extension to provide security even if the adversary observes query executions for
example through the scheme provided in Chapter 7, Section 5 or through the introduction
of shu�es and caching such as in [Vim+15]. Additionally, e�cient support for more
complex operations that allow for secure outsourcing of data analysis steps would be of
bene�t for privacy preserving data mining applications.

Author’s Publications
[Ach+16] Dirk Achenbach et al. “Closing the Gap: A Universal Privacy Framework for

Outsourced Data”. English. In: Cryptography and Information Security in the

Balkans. Ed. by Enes Pasalic and Lars R. Knudsen. Vol. 9540. Lecture Notes
in Computer Science. Springer International Publishing, 2016, pp. 134–151.
isbn: 978-3-319-29171-0. url: http://dx.doi.org/10.1007/978-3-
319-29172-7_9.

[AGH11] Dirk Achenbach, Matthias Gabel, and Matthias Huber. “Improving Complex
Systems Today: Proceedings of the 18th ISPE International Conference
on Concurrent Engineering”. In: ed. by D. Daniel Frey, Shuichi Fukuda,
and Georg Rock. London: Springer London, 2011. Chap. MimoSecco: A
Middleware for Secure Cloud Storage, pp. 175–181. isbn: 978-0-85729-799-0.
url: http://dx.doi.org/10.1007/978-0-85729-799-0_20.

[Hei+10] Clemens Heidinger et al. “Privacy-aware Folksonomies”. In: Proceedings
of the 14th European Conference on Research and Advanced Technology for

Digital Libraries. ECDL’10. Glasgow, UK: Springer-Verlag, 2010, pp. 156–
167. isbn: 3-642-15463-8, 978-3-642-15463-8. url: http://dl.acm.org/
citation.cfm?id=1887759.1887783.

[HH14] Matthias Huber and Gunnar Hartung. “Trusted Cloud Computing”. In: ed.
by Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Cham: Springer
International Publishing, 2014. Chap. Side Channels in Secure Database
Outsourcing on the Example of the MimoSecco Scheme, pp. 35–48. isbn:
978-3-319-12718-7. url: http://dx.doi.org/10.1007/978-3-319-
12718-7_3.

[HM11] Matthias Huber and Jörn Müller-Quade. “Methods to Secure Services in an
Untrusted Environment”. In: Software Engineering 2011: Fachtagung des GI-
Fachbereichs Softwaretechnik, 21.-25. Februar 2011 in Karlsruhe. Ed. by Ralf
Reussner et al. Vol. 183. LNI. GI, 2011, pp. 159–170. isbn: 978-3-88579-277-2.

[HMN13] Matthias Huber, Jörn Müller-Quade, and Tobias Nilges. “Number Theory
and Cryptography: Papers in Honor of Johannes Buchmann on the Occasion
of His 60th Birthday”. In: ed. by Marc Fischlin and Stefan Katzenbeisser.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Chap. De�ning Privacy
Based on Distributions of Privacy Breaches, pp. 211–225. isbn: 978-3-642-
42001-6. url: http://dx.doi.org/10.1007/978-3-642-42001-
6_15.

[HMN14] Matthias Huber, Jörn Müller-Quade, and Tobias Nilges. “Structural Com-
position Attacks on Anonymized Data”. In: GI Informatik 2014 - Sicherheit,

Schutz und Zuverlässigkeit. 2014, pp. 443–460.

145

http://dx.doi.org/10.1007/978-3-319-29172-7_9
http://dx.doi.org/10.1007/978-3-319-29172-7_9
http://dx.doi.org/10.1007/978-0-85729-799-0_20
http://dl.acm.org/citation.cfm?id=1887759.1887783
http://dl.acm.org/citation.cfm?id=1887759.1887783
http://dx.doi.org/10.1007/978-3-319-12718-7_3
http://dx.doi.org/10.1007/978-3-319-12718-7_3
http://dx.doi.org/10.1007/978-3-642-42001-6_15
http://dx.doi.org/10.1007/978-3-642-42001-6_15

146 Author’s Publications

[Hub+11] Matthias Huber et al. “Towards Secure Cloud Computing through a Separa-
tion of Duties”. In: Informatik 2011: Informatik scha�t Communities, Beiträge

der 41. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 4.-7.10.2011,

Berlin (Abstract Proceedings). Ed. by Hans-Ulrich Heißand Peter Pepper,
Holger Schlinglo�, and Jörg Schneider. Vol. 192. LNI. GI, 2011. isbn: 978-
88579-286-4-7.

[Hub+13] Matthias Huber et al. “Security Engineering and Intelligence Informatics:
CD-ARES 2013 Workshops: MoCrySEn and SeCIHD, Regensburg, Germany,
September 2-6, 2013. Proceedings”. In: ed. by Alfredo Cuzzocrea et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013. Chap. Cumulus4j: A Provably
Secure Database Abstraction Layer, pp. 180–193. isbn: 978-3-642-40588-4.
url: http://dx.doi.org/10.1007/978-3-642-40588-4_13.

[Hub10] Matthias Huber. “Towards Secure Services in an Untrusted Environment”. In:
Proceedings of the Fifteenth International Workshop on Component-Oriented

Programming (WCOP) 2010. Ed. by Barbora Bühnová et al. Vol. 2010-14.
Interne Berichte. Karlsruhe, Germany: Karlsruhe Institue of Technology, Fac-
ulty of Informatics, June 2010, pp. 39–46. isbn: ISSN 1432 - 7864. url: http:
//digbib.ubka.uni-karlsruhe.de/volltexte/1000018464.

http://dx.doi.org/10.1007/978-3-642-40588-4_13
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018464
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018464

Students’ Theses
[Bar14] Maximilian Baritz. Evaluation von Optimierungen des Index eines Schemas

zur sicheren Auslagerung von Datenbanken. Bachelorarbeit. 2014.
[Boe13] Jonas Boehler. Optimierung des MimiSecco-Datenbankadapters. Studienar-

beit. 2013.
[Har11] Gunnar Hartung. Sicherheitsanalyse eines Verfahrens zur transparenten

Datenbankverschlüsselung. Bachelorarbeit. 2011.
[Mar13] Jan-Frederic Markert. Di�erentially Private One Way Trapdoor Functions for

Database Outsourcing. Bachelorarbeit. 2013.

147

References
[ABO07] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. “Provably-

secure Schemes for Basic Query Support in Outsourced Databases”. In:
Proceedings of the 21st Annual IFIP WG 11.3 Working Conference on Data

and Applications Security. Redondo Beach, CA, USA: Springer-Verlag, 2007,
pp. 14–30. isbn: 978-3-540-73533-5. url: http://dl.acm.org/citatio
n.cfm?id=1770560.1770563.

[Ado] Adobe Systems Inc. Adobe Creatice Cloud. url: http://www.adobe.com/
creativecloud.html (visited on 15/10/2015).

[Agg+05] Gagan Aggarwal et al. “Two Can Keep a Secret: A Distributed Architec-
ture for Secure Database Services”. In: The Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005). 2005. url: http://ilpubs.
stanford.edu:8090/659/.

[Ama] Amazon Web Services Inc. Amazon Workspaces. url: http:/aws.amazon.
com/workspaces/ (visited on 15/10/2015).

[Aut] Autodesk Inc. Pixlr. url: https://pixlr.com/editor/ (visited on
15/10/2015).

[AX] AX Business Solutions AG. Ax Easy. url: http://www.ax-easy.de/
(visited on 04/03/2016).

[BA05] Roberto J. Bayardo and Rakesh Agrawal. “Data Privacy Through Optimal
k-Anonymization”. In: Proceedings of the 21st International Conference on
Data Engineering. ICDE ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 217–228. isbn: 0-7695-2285-8. url: http://dx.doi.org/10.
1109/ICDE.2005.42.

[BDG13] Johannes Buchmann, Denise Demirel, and Jeroen van de Graaf. “Towards a
Publicly-Veri�able Mix-Net Providing Everlasting Privacy”. In: Financial
Cryptography. 2013, pp. 197–204.

[Bha+11] Raghav Bhaskar et al. “Noiseless Database Privacy”. In: Proceedings of the
17th International Conference on The Theory and Application of Cryptology

and Information Security. ASIACRYPT’11. Seoul, South Korea: Springer-
Verlag, 2011, pp. 215–232. isbn: 978-3-642-25384-3. url: http://dx.doi.
org/10.1007/978-3-642-25385-0_12.

[BLR08] Avrim Blum, Katrina Ligett, and Aaron Roth. “A Learning Theory Approach
to Non-interactive Database Privacy”. In: Proceedings of the Fortieth An-

nual ACM Symposium on Theory of Computing. STOC ’08. Victoria, British
Columbia, Canada: ACM, 2008, pp. 609–618. isbn: 978-1-60558-047-0. url:
http://doi.acm.org/10.1145/1374376.1374464.

149

http://dl.acm.org/citation.cfm?id=1770560.1770563
http://dl.acm.org/citation.cfm?id=1770560.1770563
http://www.adobe.com/creativecloud.html
http://www.adobe.com/creativecloud.html
http://ilpubs.stanford.edu:8090/659/
http://ilpubs.stanford.edu:8090/659/
http:/aws.amazon.com/workspaces/
http:/aws.amazon.com/workspaces/
https://pixlr.com/editor/
http://www.ax-easy.de/
http://dx.doi.org/10.1109/ICDE.2005.42
http://dx.doi.org/10.1109/ICDE.2005.42
http://dx.doi.org/10.1007/978-3-642-25385-0_12
http://dx.doi.org/10.1007/978-3-642-25385-0_12
http://doi.acm.org/10.1145/1374376.1374464

150 References

[Blu+05] Avrim Blum et al. “Practical Privacy: The SuLQ Framework”. In: Proceed-
ings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems. PODS ’05. Baltimore, Maryland: ACM, 2005,
pp. 128–138. isbn: 1-59593-062-0. url: http://doi.acm.org/10.1145/
1065167.1065184.

[Bun78] Deutscher Bundestag. Bundesdatenschutzgesetz. Jan. 1978. url: http://
www.gesetze-im-internet.de/bdsg_1990/ (visited on 04/12/2014).

[Can01] R. Canetti. “Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols”. In: Proceedings of the 42Nd IEEE Symposium on Founda-

tions of Computer Science. FOCS ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 136–. isbn: 0-7695-1390-5. url: http://dl.acm.org/
citation.cfm?id=874063.875553.

[CAS] CAS Software AG. CAS Software AG. url: http://www.cas.de/ (visited
on 04/03/2016).

[Cas+13] David Cash et al. “Advances in Cryptology – CRYPTO 2013: 33rd An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I”. In: ed. by Ran Canetti and Juan A. Garay. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013. Chap. Highly-Scalable Searchable
Symmetric Encryption with Support for Boolean Queries, pp. 353–373. isbn:
978-3-642-40041-4. url: http://dx.doi.org/10.1007/978-3-642-
40041-4_20.

[Cas+14] David Cash et al. “Dynamic searchable encryption in very-large databases:
Data structures and implementation”. In: Network and Distributed System
Security Symposium, NDSS. Vol. 14. 2014.

[Ces+05] Alberto Ceselli et al. “Modeling and Assessing Inference Exposure in En-
crypted Databases”. In: ACM Trans. Inf. Syst. Secur. 8.1 (Feb. 2005), pp. 119–
152. issn: 1094-9224. url: http://doi.acm.org/10.1145/1053283.
1053289.

[Cho+98] Benny Chor et al. “Private Information Retrieval”. In: J. ACM 45.6 (Nov.
1998), pp. 965–981. issn: 0004-5411. url: http://doi.acm.org/10.
1145/293347.293350.

[Cir+10] Valentina Ciriani et al. “Combining Fragmentation and Encryption to Pro-
tect Privacy in Data Storage”. In: ACM Trans. Inf. Syst. Secur. 13.3 (July 2010),
22:1–22:33. issn: 1094-9224. url: http://doi.acm.org/10.1145/
1805974.1805978.

[Cit] Citrix Systems Inc. Citrix Daas. url: http://www.citrix.com/produc
ts/daas/overview.html (visited on 15/10/2015).

[CM06] Kamalika Chaudhuri and Nina Mishra. “When Random Sampling Preserves
Privacy”. In: Proceedings of the 26th Annual International Conference on

Advances in Cryptology. CRYPTO’06. Santa Barbara, California: Springer-
Verlag, 2006, pp. 198–213. isbn: 3-540-37432-9, 978-3-540-37432-9. url:
http://dx.doi.org/10.1007/11818175_12.

http://doi.acm.org/10.1145/1065167.1065184
http://doi.acm.org/10.1145/1065167.1065184
http://www.gesetze-im-internet.de/bdsg_1990/
http://www.gesetze-im-internet.de/bdsg_1990/
http://dl.acm.org/citation.cfm?id=874063.875553
http://dl.acm.org/citation.cfm?id=874063.875553
http://www.cas.de/
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://doi.acm.org/10.1145/1053283.1053289
http://doi.acm.org/10.1145/1053283.1053289
http://doi.acm.org/10.1145/293347.293350
http://doi.acm.org/10.1145/293347.293350
http://doi.acm.org/10.1145/1805974.1805978
http://doi.acm.org/10.1145/1805974.1805978
http://www.citrix.com/products/daas/overview.html
http://www.citrix.com/products/daas/overview.html
http://dx.doi.org/10.1007/11818175_12

References 151

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. “Computationally
Private Information Retrieval with Polylogarithmic Communication”. En-
glish. In: Advances in Cryptology — EUROCRYPT ’99. Ed. by Jacques Stern.
Vol. 1592. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1999, pp. 402–414. isbn: 978-3-540-65889-4. url: http://dx.doi.org/
10.1007/3-540-48910-X_28.

[Cod] Codenvy Inc. Codeenvy. url: https : / / codenvy . com/ (visited on
15/10/2015).

[Cor] Corban Works, LLC. Fake Name Generator. url: http://fakenamegener
ator.com/ (visited on 12/23/2015).

[CS14] Melissa Chase and Emily Shen. Pattern Matching Encryption. Cryptology
ePrint Archive, Report 2014/638. http://eprint.iacr.org/. 2014.

[Cur+06] Reza Curtmola et al. “Searchable Symmetric Encryption: Improved De�-
nitions and E�cient Constructions”. In: Proceedings of the 13th ACM Con-

ference on Computer and Communications Security. CCS ’06. Alexandria,
Virginia, USA: ACM, 2006, pp. 79–88. isbn: 1-59593-518-5. url: http:
//doi.acm.org/10.1145/1180405.1180417.

[Dam+03] Ernesto Damiani et al. “Balancing Con�dentiality and E�ciency in Un-
trusted Relational DBMSs”. In: Proceedings of the 10th ACM Conference on

Computer and Communications Security. CCS ’03. Washington D.C., USA:
ACM, 2003, pp. 93–102. isbn: 1-58113-738-9. url: http://doi.acm.org/
10.1145/948109.948124.

[Dat] DataNucleus. DataNucleus AccessPlattform. url: http://datanucleus.
org/ (visited on 12/26/2015).

[De +10] Sabrina De Capitani di Vimercati et al. “Fragments and loose associations:
respecting privacy in data publishing”. In: Proc. VLDB Endow. 3.1-2 (Sept.
2010), pp. 1370–1381. issn: 2150-8097. url: http://dl.acm.org/citat
ion.cfm?id=1920841.1921009.

[De +12] Sabrina De Capitani di Vimercati et al. “Data Privacy: De�nitions and Tech-
niques”. In: International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 20.6 (Dec. 2012), pp. 793–817.

[De +13] Sabrina De Capitani di Vimercati et al. “Extending Loose Associations to
Multiple Fragments”. English. In: Data and Applications Security and Privacy
XXVII. Ed. by Lingyu Wang and Basit Sha�q. Vol. 7964. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pp. 1–16. isbn: 978-3-
642-39255-9. url: http://dx.doi.org/10.1007/978-3-642-39256-
6_1.

[Dem+13] Denise Demirel et al. “Prêt à Voter Providing Everlasting Privacy”. In: VOTE-
ID. 2013, pp. 156–175.

http://dx.doi.org/10.1007/3-540-48910-X_28
http://dx.doi.org/10.1007/3-540-48910-X_28
https://codenvy.com/
http://fakenamegenerator.com/
http://fakenamegenerator.com/
http://eprint.iacr.org/
http://doi.acm.org/10.1145/1180405.1180417
http://doi.acm.org/10.1145/1180405.1180417
http://doi.acm.org/10.1145/948109.948124
http://doi.acm.org/10.1145/948109.948124
http://datanucleus.org/
http://datanucleus.org/
http://dl.acm.org/citation.cfm?id=1920841.1921009
http://dl.acm.org/citation.cfm?id=1920841.1921009
http://dx.doi.org/10.1007/978-3-642-39256-6_1
http://dx.doi.org/10.1007/978-3-642-39256-6_1

152 References

[DG15] Giovanni Di Crescenzo and Abhrajit Ghosh. “Privacy-Preserving Range
Queries from Keyword Queries”. English. In: Data and Applications Security
and Privacy XXIX. Ed. by Pierangela Samarati. Vol. 9149. Lecture Notes in
Computer Science. Springer International Publishing, 2015, pp. 35–50. isbn:
978-3-319-20809-1. url: http://dx.doi.org/10.1007/978-3-319-
20810-7_3.

[DMN11] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. “Perfectly Se-
cure Oblivious RAM Without Random Oracles”. In: Proceedings of the 8th
Conference on Theory of Cryptography. TCC’11. Providence, RI: Springer-
Verlag, 2011, pp. 144–163. isbn: 978-3-642-19570-9. url: http://dl.acm.
org/citation.cfm?id=1987260.1987274.

[Dua09] Yitao Duan. “Privacy Without Noise”. In: Proceedings of the 18th ACM

Conference on Information and Knowledge Management. CIKM ’09. Hong
Kong, China: ACM, 2009, pp. 1517–1520. isbn: 978-1-60558-512-3. url:
http://doi.acm.org/10.1145/1645953.1646160.

[Dwo+06a] Cynthia Dwork et al. “Calibrating Noise to Sensitivity in Private Data
Analysis”. In: Proceedings of the Third Conference on Theory of Cryptography.
TCC’06. New York, NY: Springer-Verlag, 2006, pp. 265–284. isbn: 3-540-
32731-2, 978-3-540-32731-8. url: http://dx.doi.org/10.1007/
11681878_14.

[Dwo+06b] Cynthia Dwork et al. “Our Data, Ourselves: Privacy Via Distributed Noise
Generation”. English. In: Advances in Cryptology - EUROCRYPT 2006. Ed. by
Serge Vaudenay. Vol. 4004. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2006, pp. 486–503. isbn: 978-3-540-34546-6. url: http:
//dx.doi.org/10.1007/11761679_29.

[Dwo+06c] Cynthia Dwork et al. “Our data, ourselves: privacy via distributed noise
generation”. In: Proceedings of the 24th annual international conference on The
Theory and Applications of Cryptographic Techniques. EUROCRYPT’06. St.
Petersburg, Russia: Springer-Verlag, 2006, pp. 486–503. isbn: 3-540-34546-9,
978-3-540-34546-6. url: http://dx.doi.org/10.1007/11761679_29.

[Dwo08a] Cynthia Dwork. “Di�erential Privacy: A Survey of Results”. In: Proceedings
of the 5th International Conference on Theory and Applications of Models of

Computation. TAMC’08. Xi’an, China: Springer-Verlag, 2008, pp. 1–19. isbn:
3-540-79227-9, 978-3-540-79227-7. url: http://dl.acm.org/citation.
cfm?id=1791834.1791836.

[Dwo08b] Cynthia Dwork. “Di�erential Privacy: A Survey of Results”. English. In:
Theory and Applications of Models of Computation. Ed. by Manindra Agrawal
et al. Vol. 4978. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2008, pp. 1–19. isbn: 978-3-540-79227-7. url: http://dx.doi.org/
10.1007/978-3-540-79228-4_1.

[EFG10] Sergei Evdokimov, Matthias Fischmann, and Oliver Günther. “Provable
Security for Outsourcing Database Operations”. In: Int. J. Inf. Sec. Priv. 4.1
(Jan. 2010), pp. 1–17. issn: 1930-1650. url: http://dx.doi.org/10.
4018/jisp.2010010101.

http://dx.doi.org/10.1007/978-3-319-20810-7_3
http://dx.doi.org/10.1007/978-3-319-20810-7_3
http://dl.acm.org/citation.cfm?id=1987260.1987274
http://dl.acm.org/citation.cfm?id=1987260.1987274
http://doi.acm.org/10.1145/1645953.1646160
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11761679_29
http://dl.acm.org/citation.cfm?id=1791834.1791836
http://dl.acm.org/citation.cfm?id=1791834.1791836
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.4018/jisp.2010010101
http://dx.doi.org/10.4018/jisp.2010010101

References 153

[EFW10] Alexandre Ev�mievski, Ronald Fagin, and David Woodru�. “Epistemic
Privacy”. In: J. ACM 58.1 (Dec. 2010), 2:1–2:45. issn: 0004-5411. url: http:
//doi.acm.org/10.1145/1870103.1870105.

[Elg85] T. Elgamal. “A public key cryptosystem and a signature scheme based on
discrete logarithms”. In: Information Theory, IEEE Transactions on 31.4 (July
1985), pp. 469–472. issn: 0018-9448.

[Geh+12] Johannes Gehrke et al. “Advances in Cryptology – CRYPTO 2012: 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings”. In: ed. by Reihaneh Safavi-Naini and Ran Canetti. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012. Chap. Crowd-Blending Pri-
vacy, pp. 479–496. isbn: 978-3-642-32009-5. url: http://dx.doi.org/
10.1007/978-3-642-32009-5_28.

[Gen09] Craig Gentry. “A Fully Homomorphic Encryption Scheme”. AAI3382729.
PhD thesis. Stanford, CA, USA, 2009. isbn: 978-1-109-44450-6.

[GKS08] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam Smith.
“Composition Attacks and Auxiliary Information in Data Privacy”. In: Pro-
ceedings of the 14th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. KDD ’08. Las Vegas, Nevada, USA: ACM, 2008,
pp. 265–273. isbn: 978-1-60558-193-4. url: http://doi.acm.org/10.
1145/1401890.1401926.

[GLP11] Johannes Gehrke, Edward Lui, and Rafael Pass. “Towards Privacy for Social
Networks: A Zero-knowledge Based De�nition of Privacy”. In: Proceedings
of the 8th Conference on Theory of Cryptography. TCC’11. Providence, RI:
Springer-Verlag, 2011, pp. 432–449. isbn: 978-3-642-19570-9. url: http:
//dl.acm.org/citation.cfm?id=1987260.1987294.

[GM82] Sha� Goldwasser and Silvio Micali. “Probabilistic Encryption &Amp; How
to Play Mental Poker Keeping Secret All Partial Information”. In: Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing. STOC
’82. San Francisco, California, USA: ACM, 1982, pp. 365–377. isbn: 0-89791-
070-2. url: http://doi.acm.org/10.1145/800070.802212.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play ANY Mental
Game”. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory

of Computing. STOC ’87. New York, New York, USA: ACM, 1987, pp. 218–
229. isbn: 0-89791-221-7. url: http://doi.acm.org/10.1145/28395.
28420.

[GO96] Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simulation
on Oblivious RAMs”. In: J. ACM 43.3 (May 1996), pp. 431–473. issn: 0004-
5411. url: http://doi.acm.org/10.1145/233551.233553.

[Goh03] Eu-Jin Goh. Secure Indexes. Cryptology ePrint Archive, Report 2003/216.
http://eprint.iacr.org/2003/216/. 2003.

[Goo] Google Inc. Google Docs. url: https://www.google.com/docs/about/
(visited on 15/10/2015).

http://doi.acm.org/10.1145/1870103.1870105
http://doi.acm.org/10.1145/1870103.1870105
http://dx.doi.org/10.1007/978-3-642-32009-5_28
http://dx.doi.org/10.1007/978-3-642-32009-5_28
http://doi.acm.org/10.1145/1401890.1401926
http://doi.acm.org/10.1145/1401890.1401926
http://dl.acm.org/citation.cfm?id=1987260.1987294
http://dl.acm.org/citation.cfm?id=1987260.1987294
http://doi.acm.org/10.1145/800070.802212
http://doi.acm.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420
http://doi.acm.org/10.1145/233551.233553
http://eprint.iacr.org/2003/216/
https://www.google.com/docs/about/

154 References

[Goo+11] Michael T. Goodrich et al. “Oblivious RAM Simulation with E�cient Worst-
case Access Overhead”. In: Proceedings of the 3rd ACM Workshop on Cloud

Computing Security Workshop. CCSW ’11. Chicago, Illinois, USA: ACM,
2011, pp. 95–100. isbn: 978-1-4503-1004-8. url: http://doi.acm.org/
10.1145/2046660.2046680.

[GR05] Craig Gentry and Zul�kar Ramzan. “Single-Database Private Information
Retrieval with Constant Communication Rate”. English. In: Automata, Lan-

guages and Programming. Ed. by Luís Caires et al. Vol. 3580. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2005, pp. 803–815. isbn:
978-3-540-27580-0. url: http://dx.doi.org/10.1007/11523468_65.

[Hac+02] Hakan Hacigümüş et al. “Executing SQL over Encrypted Data in the
Database-service-provider Model”. In: Proceedings of the 2002 ACM

SIGMOD International Conference on Management of Data. SIGMOD ’02.
Madison, Wisconsin: ACM, 2002, pp. 216–227. isbn: 1-58113-497-5. url:
http://doi.acm.org/10.1145/564691.564717.

[Hay+13] R. Haynberg et al. “Symmetric searchable encryption for exact pattern
matching using directed Acyclic Word Graphs”. In: Security and Cryptogra-

phy (SECRYPT), 2013 International Conference on. July 2013, pp. 1–8.
[HIM02] Hakan Hacigümüs, Bala Iyer, and Sharad Mehrotra. “Providing Database

as a Service”. In: ICDE ’02: Proceedings of the 18th International Conference

on Data Engineering. Washington, DC, USA: IEEE Computer Society, 2002,
p. 29.

[HK14] Florian Hahn and Florian Kerschbaum. “Searchable Encryption with Secure
and E�cient Updates”. In: Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security. CCS ’14. Scottsdale, Arizona,
USA: ACM, 2014, pp. 310–320. isbn: 978-1-4503-2957-6. url: http://doi.
acm.org/10.1145/2660267.2660297.

[HMT04] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. “A Privacy-preserving Index
for Range Queries”. In: Proceedings of the Thirtieth International Conference

on Very Large Data Bases - Volume 30. VLDB ’04. Toronto, Canada: VLDB
Endowment, 2004, pp. 720–731. isbn: 0-12-088469-0. url: http://dl.acm.
org/citation.cfm?id=1316689.1316752.

[IBM] IBM. IBM Bluemix DevOps Services. url: https://hub.jazz.net/
(visited on 15/10/2015).

[KC05] Murat Kantarcioglu and Chris Clifton. “Security Issues in Querying En-
crypted Data”. English. In: Data and Applications Security XIX. Ed. by Sushil
Jajodia and Duminda Wijesekera. Vol. 3654. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2005, pp. 325–337. isbn: 978-3-540-
28138-2. url: http://dx.doi.org/10.1007/11535706_24.

[KJ14] Jens Köhler and Konrad Jünemann. “Privacy and Identity Management for
Emerging Services and Technologies: 8th IFIP WG 9.2, 9.5, 9.6/11.7, 11.4, 11.6
International Summer School, Nijmegen, The Netherlands, June 17-21, 2013,
Revised Selected Papers”. In: ed. by Marit Hansen et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014. Chap. Securus: From Con�dentiality and

http://doi.acm.org/10.1145/2046660.2046680
http://doi.acm.org/10.1145/2046660.2046680
http://dx.doi.org/10.1007/11523468_65
http://doi.acm.org/10.1145/564691.564717
http://doi.acm.org/10.1145/2660267.2660297
http://doi.acm.org/10.1145/2660267.2660297
http://dl.acm.org/citation.cfm?id=1316689.1316752
http://dl.acm.org/citation.cfm?id=1316689.1316752
https://hub.jazz.net/
http://dx.doi.org/10.1007/11535706_24

References 155

Access Requirements to Data Outsourcing Solutions, pp. 139–149. isbn:
978-3-642-55137-6. url: http://dx.doi.org/10.1007/978-3-642-
55137-6_11.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography

(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman
& Hall/CRC, 2007. isbn: 1584885513.

[KL10] Daniel Kifer and Bing-Rong Lin. “Towards an axiomatization of statistical
privacy and utility”. In: Proceedings of the twenty-ninth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems. PODS ’10.
Indianapolis, Indiana, USA: ACM, 2010, pp. 147–158. isbn: 978-1-4503-0033-
9. url: http://doi.acm.org/10.1145/1807085.1807106.

[KL12] Daniel Kifer and Bing-Rong Lin. “An Axiomatic View of Statistical Privacy
and Utility”. In: Journal of Privacy and Con�dentiality: Vol. 4: Iss. 1, Article 2.
2012. url: http://repository.cmu.edu/jpc/vol4/iss1/2.

[KM11] Daniel Kifer and Ashwin Machanavajjhala. “No Free Lunch in Data Pri-
vacy”. In: Proceedings of the 2011 ACM SIGMOD International Conference on

Management of Data. SIGMOD ’11. Athens, Greece: ACM, 2011, pp. 193–
204. isbn: 978-1-4503-0661-4. url: http://doi.acm.org/10.1145/
1989323.1989345.

[KM12] Daniel Kifer and Ashwin Machanavajjhala. “A Rigorous and Customizable
Framework for Privacy”. In: Proceedings of the 31st Symposium on Principles

of Database Systems. PODS ’12. Scottsdale, Arizona, USA: ACM, 2012, pp. 77–
88. isbn: 978-1-4503-1248-6. url: http://doi.acm.org/10.1145/
2213556.2213571.

[KM14] Daniel Kifer and Ashwin Machanavajjhala. “Pu�er�sh: A Framework for
Mathematical Privacy De�nitions”. In: ACM Trans. Database Syst. 39.1 (Jan.
2014), 3:1–3:36. issn: 0362-5915. url: http://doi.acm.org/10.1145/
2514689.

[KO15] Kaoru Kurosawa and Yasuhiro Ohtaki. How to Construct UC-Secure Search-

able Symmetric Encryption Scheme. Cryptology ePrint Archive, Report
2015/251. http://eprint.iacr.org/. 2015.

[KO97] E. Kushilevitz and R. Ostrovsky. “Replication is Not Needed: Single Database,
Computationally-private Information Retrieval”. In: Proceedings of the 38th
Annual Symposium on Foundations of Computer Science. FOCS ’97. Washing-
ton, DC, USA: IEEE Computer Society, 1997, pp. 364–. isbn: 0-8186-8197-7.
url: http://dl.acm.org/citation.cfm?id=795663.796363.

[KP13] Seny Kamara and Charalampos Papamanthou. “Parallel and dynamic search-
able symmetric encryption”. In: Financial Cryptography and Data Security.
Springer, 2013, pp. 258–274.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. “Dynamic
Searchable Symmetric Encryption”. In: Proceedings of the 2012 ACM Confer-

ence on Computer and Communications Security. CCS ’12. Raleigh, North
Carolina, USA: ACM, 2012, pp. 965–976. isbn: 978-1-4503-1651-4. url: http:
//doi.acm.org/10.1145/2382196.2382298.

http://dx.doi.org/10.1007/978-3-642-55137-6_11
http://dx.doi.org/10.1007/978-3-642-55137-6_11
http://doi.acm.org/10.1145/1807085.1807106
http://repository.cmu.edu/jpc/vol4/iss1/2
http://doi.acm.org/10.1145/1989323.1989345
http://doi.acm.org/10.1145/1989323.1989345
http://doi.acm.org/10.1145/2213556.2213571
http://doi.acm.org/10.1145/2213556.2213571
http://doi.acm.org/10.1145/2514689
http://doi.acm.org/10.1145/2514689
http://eprint.iacr.org/
http://dl.acm.org/citation.cfm?id=795663.796363
http://doi.acm.org/10.1145/2382196.2382298
http://doi.acm.org/10.1145/2382196.2382298

156 References

[Lan+09] Lucie Langer et al. “Classifying Privacy and Veri�ability Requirements for
Electronic Voting”. In: GI Jahrestagung. 2009, pp. 1837–1846.

[LDR05] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. “Incognito:
E�cient Full-domain K-anonymity”. In: Proceedings of the 2005 ACM SIG-

MOD International Conference on Management of Data. SIGMOD ’05. Bal-
timore, Maryland: ACM, 2005, pp. 49–60. isbn: 1-59593-060-4. url: http:
//doi.acm.org/10.1145/1066157.1066164.

[LK12] Bing-Rong Lin and Daniel Kifer. “A Framework for Extracting Semantic
Guarantees from Privacy”. In: CoRR abs/1208.5443 (2012). url: http://
arxiv.org/abs/1208.5443.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-Closeness:
Privacy Beyond k-Anonymity and l-Diversity.” In: ICDE. Ed. by Rada
Chirkova et al. IEEE Computer Society, 2007, pp. 106–115. isbn: 1-
4244-0802-4. url: http://dblp.uni-trier.de/db/conf/icde/
icde2007.html#LiLV07.

[Mac+07] Ashwin Machanavajjhala et al. “L-diversity: Privacy Beyond K-anonymity”.
In: ACM Trans. Knowl. Discov. Data 1.1 (Mar. 2007). issn: 1556-4681. url:
http://doi.acm.org/10.1145/1217299.1217302.

[McS09] Frank D. McSherry. “Privacy Integrated Queries: An Extensible Platform for
Privacy-preserving Data Analysis”. In: Proceedings of the 2009 ACM SIGMOD

International Conference on Management of Data. SIGMOD ’09. Providence,
Rhode Island, USA: ACM, 2009, pp. 19–30. isbn: 978-1-60558-551-2. url:
http://doi.acm.org/10.1145/1559845.1559850.

[Mic] Microsoft Corporation. Microsoft O�ce 365. url: https://products.
office.com (visited on 15/10/2015).

[Mir+09] Ilya Mironov et al. “Advances in Cryptology - CRYPTO 2009: 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2009. Proceedings”. In: ed. by Shai Halevi. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009. Chap. Computational Di�erential Privacy, pp. 126–
142. isbn: 978-3-642-03356-8. url: http://dx.doi.org/10.1007/978-
3-642-03356-8_8.

[MT07] Frank McSherry and Kunal Talwar. “Mechanism Design via Di�erential
Privacy”. In: Proceedings of the 48th Annual IEEE Symposium on Foundations

of Computer Science. FOCS ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 94–103. isbn: 0-7695-3010-9. url: http://dx.doi.
org/10.1109/FOCS.2007.41.

[MW04] Adam Meyerson and Ryan Williams. “On the Complexity of Optimal K-
anonymity”. In: Proceedings of the Twenty-third ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems. PODS ’04. Paris,
France: ACM, 2004, pp. 223–228. isbn: 158113858X. url: http://doi.
acm.org/10.1145/1055558.1055591.

http://doi.acm.org/10.1145/1066157.1066164
http://doi.acm.org/10.1145/1066157.1066164
http://arxiv.org/abs/1208.5443
http://arxiv.org/abs/1208.5443
http://dblp.uni-trier.de/db/conf/icde/icde2007.html#LiLV07
http://dblp.uni-trier.de/db/conf/icde/icde2007.html#LiLV07
http://doi.acm.org/10.1145/1217299.1217302
http://doi.acm.org/10.1145/1559845.1559850
https://products.office.com
https://products.office.com
http://dx.doi.org/10.1007/978-3-642-03356-8_8
http://dx.doi.org/10.1007/978-3-642-03356-8_8
http://dx.doi.org/10.1109/FOCS.2007.41
http://dx.doi.org/10.1109/FOCS.2007.41
http://doi.acm.org/10.1145/1055558.1055591
http://doi.acm.org/10.1145/1055558.1055591

References 157

[Nao03] Moni Naor. “Advances in Cryptology - CRYPTO 2003: 23rd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003. Proceedings”. In: ed. by Dan Boneh. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003. Chap. On Cryptographic Assumptions and Chal-
lenges, pp. 96–109. isbn: 978-3-540-45146-4. url: http://dx.doi.org/
10.1007/978-3-540-45146-4_6.

[NC11] AhmetErhan Nergiz and Chris Clifton. “Query Processing in Private Data
Outsourcing Using Anonymization”. English. In: Data and Applications

Security and Privacy XXV. Ed. by Yingjiu Li. Vol. 6818. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, pp. 138–153. isbn:
978-3-642-22347-1. url: http://dx.doi.org/10.1007/978-3-642-
22348-8_12.

[Nig] NightLabs Consulting GmbH. Cumulus4j. url: http://cumulus4j.org/
(visited on 12/23/2015).

[Pap+14] Vasilis Pappas et al. “Blind Seer: A Scalable Private DBMS”. In: Proceedings
of the 2014 IEEE Symposium on Security and Privacy. SP ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 359–374. isbn: 978-1-4799-4686-0.
url: http://dx.doi.org/10.1109/SP.2014.30.

[Pas11] Rafael Pass. “Limits of Provable Security from Standard Assumptions”.
In: Proceedings of the Forty-third Annual ACM Symposium on Theory of

Computing. STOC ’11. San Jose, California, USA: ACM, 2011, pp. 109–
118. isbn: 978-1-4503-0691-1. url: http://doi.acm.org/10.1145/
1993636.1993652.

[Pola] PolePosition. PolePosition Circuits. url: http://polepos.sourceforge.
net/circuits.html (visited on 05/06/2016).

[Polb] PolePosition. PolePosition - The Open Source Database Benchmark. url:
http://polepos.sourceforge.net (visited on 12/26/2015).

[Pop+11] Raluca Ada Popa et al. “CryptDB: Protecting Con�dentiality with Encrypted
Query Processing”. In: Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles. SOSP ’11. Cascais, Portugal: ACM, 2011,
pp. 85–100. isbn: 978-1-4503-0977-6. url: http://doi.acm.org/10.
1145/2043556.2043566.

[PR10] Benny Pinkas and Tzachy Reinman. “Oblivious RAM Revisited”. In: Proceed-
ings of the 30th Annual Conference on Advances in Cryptology. CRYPTO’10.
Santa Barbara, CA, USA: Springer-Verlag, 2010, pp. 502–519. isbn: 3-642-
14622-8, 978-3-642-14622-0. url: http://dl.acm.org/citation.cfm?
id=1881412.1881447.

[SC07] Radu Sion and Bogdan Carbunar. “On the Computational Practicality of
Private Information Retrieval”. In: In Proceedings of the Network and Dis-

tributed Systems Security Symposium, 2007. Stony Brook Network Security

and Applied Cryptography Lab Tech Report. 2007.

http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-642-22348-8_12
http://dx.doi.org/10.1007/978-3-642-22348-8_12
http://cumulus4j.org/
http://dx.doi.org/10.1109/SP.2014.30
http://doi.acm.org/10.1145/1993636.1993652
http://doi.acm.org/10.1145/1993636.1993652
http://polepos.sourceforge.net/circuits.html
http://polepos.sourceforge.net/circuits.html
http://polepos.sourceforge.net
http://doi.acm.org/10.1145/2043556.2043566
http://doi.acm.org/10.1145/2043556.2043566
http://dl.acm.org/citation.cfm?id=1881412.1881447
http://dl.acm.org/citation.cfm?id=1881412.1881447

158 References

[Shi+11] Elaine Shi et al. “Oblivious RAM with O((Logn)3) Worst-case Cost”. In:
Proceedings of the 17th International Conference on The Theory and Applica-

tion of Cryptology and Information Security. ASIACRYPT’11. Seoul, South
Korea: Springer-Verlag, 2011, pp. 197–214. isbn: 978-3-642-25384-3. url:
http://dx.doi.org/10.1007/978-3-642-25385-0_11.

[SHJ12] Abbas Taheri Soodejani, Mohammad Ali Hadavi, and Rasool Jalili. “k-
Anonymity-Based Horizontal Fragmentation to Preserve Privacy in Data
Outsourcing.” In: DBSec. Ed. by Nora Cuppens-Boulahia, Frédéric Cup-
pens, and Joaquín García-Alfaro. Vol. 7371. Lecture Notes in Computer
Science. Springer, 2012, pp. 263–273. isbn: 978-3-642-31539-8. url: http:
/ / dblp . uni - trier . de / db / conf / dbsec / dbsec2012 . html #
SoodejaniHJ12.

[SPS13] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. “Practical Dy-
namic Searchable Encryption with Small Leakage.” In: IACR Cryptology

ePrint Archive 2013 (2013), p. 832.
[SS98] Pierangela Samarati and Latanya Sweeney. Protecting Privacy when Disclos-

ing Information: k-Anonymity and Its Enforcement through Generalization

and Suppression. Tech. rep. CMU SRI, 1998.
[Swe02] Latanya Sweeney. “K-anonymity: A Model for Protecting Privacy”. In: Int.

J. Uncertain. Fuzziness Knowl.-Based Syst. 10.5 (Oct. 2002), pp. 557–570. issn:
0218-4885. url: http://dx.doi.org/10.1142/S0218488502001648.

[Tao+10] Yufei Tao et al. “Correlation hiding by independence masking”. In: Data
Engineering (ICDE), 2010 IEEE 26th International Conference on. Mar. 2010,
pp. 964–967.

[Ter+12] Manolis Terrovitis et al. “Privacy Preservation by Disassociation”. In: Proc.
VLDB Endow. 5.10 (June 2012), pp. 944–955. issn: 2150-8097. url: http:
//dx.doi.org/10.14778/2336664.2336668.

[TOB89] C. Turby�ll, C. Orji, and D. Bitton. “AS/sup 3/AP-a comparative relational
database benchmark”. In: COMPCON Spring ’89. Thirty-Fourth IEEE Com-

puter Society International Conference: Intellectual Leverage, Digest of Papers.

Feb. 1989, pp. 560–564.
[TZ11] Hongwei Tian and Weining Zhang. “Extending L-diversity to Generalize

Sensitive Data”. In: Data Knowl. Eng. 70.1 (Jan. 2011), pp. 101–126. issn: 0169-
023X. url: http://dx.doi.org/10.1016/j.datak.2010.09.001.

[Vim+15] Sabrina De Capitani Di Vimercati et al. “Shu�e Index: E�cient and Private
Access to Outsourced Data”. In: Trans. Storage 11.4 (Oct. 2015), 19:1–19:55.
issn: 1553-3077. url: http://doi.acm.org/10.1145/2747878.

[VJ10] Marten Van Dijk and Ari Juels. “On the Impossibility of Cryptography
Alone for Privacy-preserving Cloud Computing”. In: Proceedings of the
5th USENIX Conference on Hot Topics in Security. HotSec’10. Washinton,
DC: USENIX Association, 2010, pp. 1–8. url: http://dl.acm.org/
citation.cfm?id=1924931.1924934.

[VMw] VMware Inc. VMWare Desktop. url: http://www.vmware.com/cloud-
services/desktop/horizon-air-desktop (visited on 15/10/2015).

http://dx.doi.org/10.1007/978-3-642-25385-0_11
http://dblp.uni-trier.de/db/conf/dbsec/dbsec2012.html#SoodejaniHJ12
http://dblp.uni-trier.de/db/conf/dbsec/dbsec2012.html#SoodejaniHJ12
http://dblp.uni-trier.de/db/conf/dbsec/dbsec2012.html#SoodejaniHJ12
http://dx.doi.org/10.1142/S0218488502001648
http://dx.doi.org/10.14778/2336664.2336668
http://dx.doi.org/10.14778/2336664.2336668
http://dx.doi.org/10.1016/j.datak.2010.09.001
http://doi.acm.org/10.1145/2747878
http://dl.acm.org/citation.cfm?id=1924931.1924934
http://dl.acm.org/citation.cfm?id=1924931.1924934
http://www.vmware.com/cloud-services/desktop/horizon-air-desktop
http://www.vmware.com/cloud-services/desktop/horizon-air-desktop

References 159

[War65] Stanley L. Warner. “Randomized Response: A Survey Technique for Elimi-
nating Evasive Answer Bias”. In: Journal of the American Statistical Associa-

tion 60.309 (1965), pp. 63–69. url: http://amstat.tandfonline.com/
doi/abs/10.1080/01621459.1965.10480775.

[WB90] Samuel Warren and Louis Brandeis. “The Right to Privacy”. In: Harvard
Law Review (Dec. 1890). url: http://groups.csail.mit.edu/mac/c
lasses/6.805/articles/privacy/Privacy_brand_warr2.html.

[XT06] Xiaokui Xiao and Yufei Tao. “Anatomy: simple and e�ective privacy preser-
vation”. In: Proceedings of the 32nd international conference on Very large

data bases. VLDB ’06. Seoul, Korea: VLDB Endowment, 2006, pp. 139–150.
url: http://dl.acm.org/citation.cfm?id=1182635.1164141.

[Yao82] Andrew C. Yao. “Protocols for secure computations”. In: 2013 IEEE 54th

Annual Symposium on Foundations of Computer Science (1982), pp. 160–164.
issn: 0272-5428.

http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1965.10480775
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1965.10480775
http://groups.csail.mit.edu/mac/classes/6.805/articles/privacy/Privacy_brand_warr2.html
http://groups.csail.mit.edu/mac/classes/6.805/articles/privacy/Privacy_brand_warr2.html
http://dl.acm.org/citation.cfm?id=1182635.1164141

Acronyms
PPT probabilistic polynomial time (also see: De�nition 10 in Chapter 2)

CBC Cipher Block Chaining (also see: De�nition 13 in Chapter 2)

JDBC Java Database Connectivity

JPA Java Persistence API

JDO Java Data Objects

AGPL GNU Afero General Public License

SSHFS Secure SHell FileSystem

fuse Filesystem in Userspace

UC Universal Composability

PIR private information retrieval (also see: De�nition 46 in Chapter 5)

ORAM Oblivious RAM

SQL Structured Query Language

icp independent column permutation (also see: De�nition 52 in Chapter 6)

161

Appendix

A. Benchmarks
In this section of the appendix, we present details of the benchmark data, queries, and
results for the three benchmarks, we used in this work:

• AS/sup 3/AP [TOB89], a benchmark, for SQL databases, which we used to bench-
mark the MimoSecco implementation against a plain PostgreSQL database and
against locally mounted and encrypted remote �le system with a local database

• PolePosition [Polb], an open source database benchmark, which we used to bench-
mark DataNucleus with Cumulus4j against Datanucleus without Cumulus4j

• the scaling benchmark, we used to benchmark di�erent optimisations of the Mi-
moSecco implementation

A.1. MimoSecco: AS/sup 3/AP Benchmark
A.1.1. Data Sets and Queries

Since the current MimoSecco implementation does not fully support SQL, we chose a
subset of the queries of the AS/sup 3/AP Benchmark. We used the SELECT, INSERT,
UPDATE, DELETE, ALTER TABLE, and DROP TABLE queries.

For the benchmarks, we used two di�erent data sets of the AS/sup 3/AP benchmark,
each with 10,000 tuples: the data set uniques and the data set hundreds. In the data set
uniques, all attributes have unique values. In the data set hundreds, most of the attributes
have exactly 100 di�erent values. Furthermore, the attribute values are correlated. The
data set hundreds data set has a selectiveness of 100. Each data set has 10 attributes
comprised of attributes of the types Int, Long, Float, Date, and String of size 10, 20, and
variable size. The queries used for the data set hundreds are depicted in Figure A.1 and
the queries used for the data set uniques are depicted in Figure A.2.

163

164 8. Appendix

Nr. Query

H1 INSERT INTO hundreds (testint, testlong, testint2, test�oat, testint3, testint4,
testdate, teststring10, teststring20, testvariable) VALUES (’2674’, ’949894990’,
’191’, ’-227272727.00’, ’-858585859’, ’-858585859’, ’12/16/1947’, ’mE20QkdN38’,
’:FwWAJf7xCKHGzSTs3zR’, ’t JNabKQPcNE’)

H2 SELECT min(testint) FROM hundreds GROUP BY testint
H3 SELECT min(testlong) FROM hundreds GROUP BY testlong
H4 SELECT min(testint2) FROM hundreds GROUP BY testint2
H5 SELECT min(test�oat) FROM hundreds GROUP BY test�oat
H6 SELECT min(testint3) FROM hundreds GROUP BY testint3
H7 SELECT min(testint4) FROM hundreds GROUP BY testint4
H8 SELECT min(testdate) FROM hundreds GROUP BY testdate
H9 SELECT min(teststring10) FROM hundreds GROUP BY teststring10
H10 SELECT min(teststring20) FROM hundreds GROUP BY teststring20
H11 SELECT min(testvariable) FROM hundreds GROUP BY testvariable
H12 SELECT count(testint) FROM hundreds WHERE testlong <= 1000000 AND testint3 <

99999999 AND testint3 > 1 AND (test�oat < 0 or test�oat > 450000000)
H13 SELECT avg(testint3), min(testint4), max(testint4), max(testdate), min(testdate),

count(distinct teststring10), count(teststring10), teststring10, testint FROM hundreds
WHERE test�oat < 9800000 GROUP BY teststring10, testint

H14 UPDATE hundreds SET testint = 5000 WHERE testint > 5000
H15 UPDATE hundreds SET testint2 = 5000, teststring10 = ’abcdefghi’, testint4 = 49999

WHERE testint = 5000
H16 UPDATE hundreds SET testint = 4000 WHERE testint2 > 5000
H17 UPDATE hundreds SET testint = 3000 WHERE testint3 > 5000
H18 UPDATE hundreds SET testint = 2000 WHERE testint4 > 5000
H19 UPDATE hundreds SET testint = 1000 WHERE test�oat > 5000.0
H20 DELETE FROM hundreds WHERE testint3 < 0
H21 ALTER TABLE hundreds ADD COLUMN land varchar(10)
H22 ALTER TABLE hundreds RENAME COLUMN land TO newland
H23 ALTER TABLE hundreds DROP COLUMN newland
H24 DROP TABLE IF EXISTS hundreds

Figure A.1.: Queries from the AS/sup 3/AP benchmark used for the MimoSecco benchmark
with the hundreds data set.

Figure A.3 depicts mapping of the queries for the data sets hundreds and uniques to
the query types SELECT, INSERT, UPDATE, DELETE, ALTER AND DROP.

A. Benchmarks 165

Nr. Query

U1 INSERT INTO uniques (testint, testlong, testint2, test�oat, testint3, testint4,
testdate,teststring10,teststring20,testvariable) VALUES (’949894990’, ’949894990’,
’130163016’, ’-277777778.00’, ’-446615527’, ’-264126413’, ’12/16/1947’, ’mE20QkdN38’,
’IJylrEPltCIBhNn4p:dr’, ’5CZD’)

U2 SELECT min(testint) FROM uniques GROUP BY testint
U3 SELECT min(testlong) FROM uniques GROUP BY testlong
U4 SELECT min(testint2) FROM uniques GROUP BY testint2
U5 SELECT min(test�oat) FROM uniques GROUP BY test�oat
U6 SELECT min(testint3) FROM uniques GROUP BY testint3
U7 SELECT min(testint4) FROM uniques GROUP BY testint4
U8 SELECT min(testdate) FROM uniques GROUP BY testdate
U9 SELECT min(teststring10) FROM uniques GROUP BY teststring10
U10 SELECT min(teststring20) FROM uniques GROUP BY teststring20
U11 SELECT min(testvariable) FROM uniques GROUP BY testvariable
U12 SELECT count(testint) FROM uniques WHERE testlong <= 1000000 AND testint3 <

99999999 AND testint3 > 1 AND (test�oat < 0 or test�oat > 450000000)
U13 SELECT avg(testint3), min(testint4), max(testint4), max(testdate), min(testdate),

count(distinct teststring10), count(teststring10), teststring10, testint FROM uniques
WHERE test�oat < 9800000 GROUP BY teststring10, testint

U14 UPDATE uniques SET testint = 5000 WHERE testint > 5000
U15 UPDATE uniques SET testint2 = 5000, teststring10 = ’abcdefghi’, testint4 = 49999 WHERE

testint = 5000
U16 UPDATE uniques SET testint = 4000 WHERE testint2 > 5000
U17 UPDATE uniques SET testint = 3000 WHERE testint3 > 5000
U18 UPDATE uniques SET testint = 2000 WHERE testint4 > 5000
U19 UPDATE uniques SET testint = 1000 WHERE test�oat > 5000.0
U20 DELETE FROM uniques WHERE testint3 < 0
U21 ALTER TABLE uniques ADD COLUMN land varchar(10)
U22 ALTER TABLE hundreds RENAME COLUMN land TO newland
U23 ALTER TABLE uniques DROP COLUMN newland
U24 DROP TABLE IF EXISTS uniques

Figure A.2.: Queries from the AS/sup 3/AP benchmark used for the MimoSecco benchmark
with the uniques data set.

A.1.2. Results

Figures A.4 and A.5 show benchmark results for individual queries, Figure A.6 shows
averaged benchmark results for query types.

166 8. Appendix

Query Type Query Numbers

SELECT H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13,
U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12, U13

INSERT H1,
U1

UPDATE H14, H15, H16, H17, H18, H19,
U14, U15, U16, U17, U18, U19

DELETE H20,
U20

ALTER H21, H22, H23,
U21, U22, U23

DROP H24,
U24

Figure A.3.: Mapping of the queries from Figure A.1 and Figure A.2 to Query types

Query No. Adaptor JDBC SSHFS Adaptor Optimised

H1 330.0 8.4 5.3 32.0
H2 1428.2 22.6 28.0 265.0
H3 910.0 8.2 9.7 250.0
H4 771.2 3.8 1.0 250.0
H5 807.2 4.0 2.0 265.0
H6 780.2 3.4 1.0 344.0
H7 760.8 3.6 1.3 312.0
H8 768.2 10.4 11.3 281.0
H9 764.4 7.8 8.7 328.0
H10 786.4 12.6 7.0 219.0
H11 793.0 9.2 7.3 203.0
H12 60.8 1.4 1.0 46.0
H13 270.6 15.2 9.0 172.0
H14 4191.0 11.2 64.0 250.0
H15 17300.0 15.6 50.7 550.0
H16 10.4 8.0 4.7 15.0
H17 4774.8 9.0 31.7 234.0
H18 7198.2 18.0 42.0 297.0
H19 5052.6 15.6 29.7 188.0
H20 4306.2 8.6 11.3 312.0
H21 5222.2 8.4 3.0 780.0
H22 17.0 8.0 3.0 48.0
H23 5619.6 8.6 3.0 624.0
H24 218.0 12.4 26.8 94.0

Figure A.4.: Averaged benchmark results in ms for the hundreds data set

A. Benchmarks 167

Query No. Adaptor JDBC SSHFS Adaptor Optimised

U1 187.8 8.0 4.0 32.0
U2 856.0 5.4 4.3 172.0
U3 828.2 5.0 2.0 265.0
U4 827.4 4.8 1.3 172.0
U5 827.6 2.4 1.0 174.0
U6 822.8 5.6 1.3 187.0
U7 845.6 5.4 1.3 172.0
U8 848.6 5.4 1.0 172.0
U9 838.0 5.6 1.3 250.0
U10 822.8 6.8 1.3 171.0
U11 829.2 7.0 1.7 312.0
U12 83.6 2.0 0.3 48.0
U13 580.2 21.8 8.0 172.0
U14 9955.2 12.8 63.7 280.0
U15 30665.0 18.0 51.7 858.0
U16 4.2 8.4 4.7 16.0
U17 5372.6 13.8 26.7 141.0
U18 10581.4 18.2 35.0 250.0
U19 771.8 8.0 6.0 47.0
U20 540.0 9.0 6.7 234.0
U21 5630.8 8.0 3.0 655.0
U22 8.0 8.6 2.7 63.0
U23 4957.0 8.4 3.0 718.0
U24 180.8 8.8 26.0 62.0

Figure A.5.: Averaged benchmark results in ms for the uniques data set

Query Type Adaptor JDBC SSHFS Adaptor Optimised

SELECT 746.3 7.5 4.7 216.8
INSERT 258.9 8.2 4.5 32.0

UPDATE 7989.8 13.1 34.1 260.5
DELETE 2423.1 8.8 9.3 273.0

ALTER 3575.8 8.3 2.9 481.3
DROP 195.8 10.6 26.3 78.0

Figure A.6.: Averaged benchmark results in ms by query type. (cf. Table A.3)

A.2. Cumulus4j: PolePosition
A.2.1. Data Sets and Queries

The PolePosition benchmark suite is organised in so-called circuits. These circuits are dif-
ferent benchmark scenarios. They di�er in the object data structures and the queries. The
idea of these circuits is to replicate di�erent complex application scenarios. PolePosition
features the four circles Complex, Flatobject, Inheritancehierarchy, and Nestetdlists:

• Complex uses a deep object graph of di�erent classes with an inheritance hierarchy
of �ve levels.

168 8. Appendix

Query Type Hundreds Uniques

SELECT 244.6 188.9
INSERT 32.0 32.0

UPDATE 255.7 265.3
DELETE 312.0 234.0

ALTER 484.0 478.7
DROP 94.0 62.0

Figure A.7.: Average benchmark results in ms for the MimoSecco adaptor by data set

• Flatobject uses simple �at objects with indexed �elds.

• Inheritancehierarchy operates on objects of a class hierarchy with a depth of �ve
levels.

• Nestetdlists uses a deep graph of lists for traversing.

The goal of PolePosistion is to mimic behaviour of di�erent applications in di�erent
scenarios. Therefore, PolePosistion integrates the following operations on its circuits:

• Write stores all objects into an initially empty database.

• Read loads all attached objects into memory and traverses them by calculating a
checksum over all objects.

• Query queries for instances over an indexed �eld.

• Update traverses all objects, updates a �eld in each object.

• Delete traverses all objects and deletes each object individually.

• QueryIndexedString simulates querying for a number of �at objects by an indexed
string member.

• QueryIndexedInt simulates querying for a number of �at objects by an indexed int
member.

A.2.2. Results

The results for each circuit are depicted in Figure A.8.

A. Benchmarks 169

Query Type Datanucleus Datanucleus with Cumulus4j Factor

write 9353 33249 3.55
read 20817 3633 0.17

query 8058 1745 0.22
update 21531 19784 0.92
delete 3097 3800 1.23

A.8.1: Complex

Query Type Datanucleus Datanucleus with Cumulus4j Factor

write 52297 1644934 31.5
queryIndexedString 30831 20056 0.7

queryIndexedInt 31156 10328 0.3
update 31513 28920 0.9
delete 30602 25451 0.8

A.8.2: Flatobject

Query Type Datanucleus Datanucleus with Cumulus4j Factor

write 159012 681954 4.3
read 407 41903 103.0

query 6467 252 0.0
delete 88204 462788 5.2

A.8.3: Inheritancehierarchy

Query Type Datanucleus Datanucleus with Cumulus4j Factor

create 192845 1057807 5.5
read 1806679 169003 0.1

update 1476851 827583 0.6
delete 6324391 1153253 0.2

A.8.4: Nestedlists

Figure A.8.: Results of the PolePosition Benchmarks for each circuit in ms

A.3. MimoSecco: Scaling Benchmark

A.3.1. Data Sets and Queries

The data set of the benchmark we used to test the scaling properties of the di�erent
index optimisations for the MimoSecco implementation has the four attributes name,
surname, gender and age. The values of the attribute gender are distributed unevenly with
93% male and 7% female. The values of the attributes names and surnames are Strings
generated with the Fake Name Generator [Cor]. The values of the attribute age is and
Integer chosen randomly from [1, 99].

The queries used for this benchmark are depicted in Figure 7.37 in Chapter 7, Sec-
tion 7.6.2 which we restate in the following in Figure A.9 In order to benchmark the
scaling properties of the optimisations, we generated six data sets with 1,000, 2,000, 4,000,
8,000, 16,000, and 32,000 tuples, each.

170 8. Appendix

Query Nr. Query

S1 SELECT * FROM users WHERE prename = Maximilian
S2 SELECT * FROM users WHERE prename = Maximilian AND gender = male
S3 SELECT * FROM users WHERE name = Moeller AND gender = female

Figure A.9.: The SELECT queries used in the scaling benchmark. The query S1 is a simple
query with one condition. In the data set used, 93% of all tuples ful�l the
condition gender = male.

A.3.2. Results

For each data set and each optimisation and for the scenarios JDBC and SSHBF, the results
of the benchmarks are depicted in Figures A.10-A.15. Please refer to Chapter 7, Section 6.1
for a description of the scenarios.

The times depicted in Figure A.10 are the average times needed to insert a single tuple
while �lling an initially empty database with the corresponding data set.

INSERT 1k 2k 4k 8k 16k 32k

JDBC 0.2 0.2 0.2 0.2 0.2 0.2
SSHFS 0.2 0.2 0.1 0.1 0.2 0.2

Adapter 51.6 54.5 59.2 67.2 91.4 135.6
Hash 56.1 57.7 59.1 62.4 76.8 97.5

Bucket 46.9 42.5 42.0 41.9 50.0 53.5

Figure A.10.: Average execution times in ms of an insert query while �lling initially empty
databases with each data set depending on the scenario/optimisation

S1 1k 2k 4k 8k 18k 32k

JDBC 2.0 2.0 3.1 5.3 8.0 10.1
SSHFS 0.6 0.5 0.8 1.4 2.5 4.7

Adapter 25.2 26.1 35.3 43.7 55.9 73.7
Hash 26.0 31.5 36.5 40.0 48.4 73.1

Bucket 24.0 26.1 39.5 36.7 48.8 61.7

Figure A.11.: Average execution times in ms of the query S1 depending on the sce-
nario/optimisation and the size of the data set

A. Benchmarks 171

S2 1k 2k 4k 8k 16k 32k

JDBC 2.0 2.0 3.9 5.9 8.3 10.2
SSHFS 2.0 2.0 2.9 5.0 7.9 9.3

Adapter 35.3 37.7 38.8 73.4 107.3 212.9
Hash 36.6 40.7 40.0 67.3 91.1 199.3

Bucket 34.7 43.1 51.4 81.5 243.2 1354.7

Figure A.12.: Average execution times in ms of the query S2 depending on the sce-
nario/optimisation and the size of the data set

S3 1k 2k 4k 8k 16k 32k

JDBC 2.0 2.0 2.9 5.0 7.9 9.3
SSHFS 0.4 0.5 0.8 1.4 2.5 4.9

Adapter 23.8 25.2 23.0 30.8 38.0 39.5
Hash 30.1 32.8 24.3 31.9 36.3 43.2

Bucket 30.5 30.0 25.4 28.5 38.5 37.5

Figure A.13.: Average execution times in ms of the query S3 depending on the sce-
nario/optimisation and the size of the data set

AVG SELECT 1k 2k 4k 8k 16k 32k

JDBC 2.0 2.0 3.3 5.4 8.1 9.9
SSHFS 0.5 0.5 0.8 1.4 2.5 4.8

Adapter 28.1 29.7 32.4 49.3 67.1 108.7
Hash 30.9 35.0 33.6 46.4 58.6 105.2

Bucket 29.7 33.1 38.8 48.9 110.2 484.6

Figure A.14.: Averaged execution times in ms for the queries S1, S2, and S3 depending on
the scenario/optimisation and the size of the data set

AVG ALL 1k 2k 4k 8k 16k 32k

JDBC 1.5 1.5 2.5 4.1 6.1 7.4
SSHFS 0.4 0.4 0.6 1.1 1.9 3.6

Adapter 34.0 35.9 39.1 53.8 73.1 115.4
Hash 37.2 40.7 40.0 50.4 63.2 103.3

Bucket 34.0 35.4 39.6 47.2 95.1 376.8

Figure A.15.: Averaged execution times in ms for the insert queries and for the queries
S1, S2, and S3 depending on the scenario/optimisation and the size of the
data set

	Contents
	1 Preamble
	1 Introduction
	2 Contribution and Structure of this Thesis

	2 Foundations
	1 Notations
	1.1 O Notation and Negligibility

	2 Probability Theory and Statistics
	3 Data Sets and Databases
	4 Cryptographic Mechanisms and Notions
	4.1 Game-Based Security Notions
	4.2 Ind-CPA Security

	3 An Introduction to Privacy
	1 What is Privacy?
	2 Anonymisation and Privacy Notions
	2.1 Database Anonymisation
	2.1.1 Privacy Preserving Database Disclosure
	2.1.2 Secure Database Outsourcing

	2.2 Privacy Notions
	2.2.1 Structural Privacy Notions
	2.2.2 Cryptographic Privacy Notions and Frameworks

	3 Attacks on Structural Privacy Notions
	3.1 Attacks on Structural Notions in Literature
	3.2 Subliminal Channel in k-anonymity
	3.3 Subliminal Channel in l-diversity

	4 The Bayes Privacy Framework
	1 Introduction
	2 Formalisations
	3 The Bayes Privacy Framework and other Privacy Frameworks
	3.1 Bayes Privacy and the Privacy Axoims of Kifer and Lin
	3.2 Bayes Privacy and Pufferfish

	4 Composition and Decomposition of Bayes Privacy Notions
	5 Examples
	5.1 Differential Privacy
	5.2 Averages

	6 Privacy with Respect to Bounded Adversaries
	6.1 Computational Bayes Privacy
	6.2 Ind-ICP as a Computational Bayes Privacy Notion

	5 Privacy for Data Outsourcing
	1 Introduction
	2 Security Notions for Data Outsourcing in Literature
	2.1 Security Notions for Data Privacy
	2.2 Security Notions for Query Privacy
	2.3 Security Notions for Data Privacy as well as Query Privacy
	2.4 Modelling Information Leakage

	3 Formalisations
	3.1 Basic Privacy Notions for Outsourced Data Sets
	3.1.1 Static Security
	3.1.2 Privacy in the Presence of Queries

	4 Fundamental Relations Among the Basic Privacy Notions
	5 Query Privacy and Private Information Retrieval
	6 Generalised Security Notions for Data Outsourcing Schemes

	6 Security Notions for Database Outsourcing
	1 Introduction
	2 Indistinguishability under Independent Column Permutation
	2.1 Formalisations
	2.2 Ind-ICP as an Instance of Ind-CDA
	2.3 Ind-ICP as a Meaningful Security Notion

	3 l-Indistinguishability under Independent Column Permutation

	7 Mechanisms for Database Outsourcing
	1 Introduction
	2 Preliminaries
	2.1 Database Outsourcing Schemes in Literature
	2.2 Efficient Query Execution
	2.3 Queries in this Work

	3 Differential Privacy and Database Outsourcing
	4 An Ind-ICP Secure Database Outsourcing Scheme
	4.1 Formalisation of the MimoSecco Database Outsourcing Scheme
	4.2 The MimoSecco Database Outsourcing Scheme has Ind-ICP Security

	5 A Database Outsourcing Scheme with l-Ind-ICP Security in the Presence of Queries
	6 Implementations and Benchmarks
	6.1 The MimoSecco Implementation
	6.1.1 Scheme and Implementation Details
	6.1.2 Benchmarks

	6.2 The Cumulus4j Implementation
	6.2.1 Scheme and Implementation Details
	6.2.2 Benchmarks

	7 Optimisations of Index Structures
	7.1 Compression of Index Lists
	7.1.1 Intervals
	7.1.2 Exclusive Labels
	7.1.3 Normalisation

	7.2 Sorted Index Lists - Binary Search
	7.3 Keyed Hash Index
	7.4 Storing Index Lists as B-Trees
	7.5 Storing Index Lists in Buckets
	7.6 Comparison and Benchmarks
	7.6.1 Encryption Overhead and Space Requirements
	7.6.2 Benchmarks

	8 Side Channels in Secure Database Outsourcing
	8.1 Exclusion of Possible Database Contents
	8.2 Usage of the Database
	8.3 Order of Values on Physical Storage
	8.4 Active Adversaries
	8.4.1 Manipulation of Results
	8.4.2 Attacks on Availability

	8 Conclusion and Outlook
	Author's Publications
	Students' Theses
	References
	Acronyms
	Appendix
	A Benchmarks
	A.1 MimoSecco: AS/sup 3/AP Benchmark
	A.1.1 Data Sets and Queries
	A.1.2 Results

	A.2 Cumulus4j: PolePosition
	A.2.1 Data Sets and Queries
	A.2.2 Results

	A.3 MimoSecco: Scaling Benchmark
	A.3.1 Data Sets and Queries
	A.3.2 Results

