
Karlsruher Schriften
zur Anthropomatik

Band 27

Janko Petereit

Adaptive State × Time Lattices:
A Contribution to Mobile Robot Motion Planning
in Unstructured Dynamic Environments

B
an

d
 2

7
J.

 P
et

er
ei

t

A
d

ap
ti

ve
 S

ta
te

 ×
 T

im
e

La
tt

ic
es

Janko Petereit

Adaptive State × Time Lattices

A Contribution to Mobile Robot Motion Planning
in Unstructured Dynamic Environments

Karlsruher Schriften zur Anthropomatik

Band 27

Herausgeber: Prof. Dr.-Ing. Jürgen Beyerer

Eine Übersicht aller bisher in dieser Schriftenreihe
erschienenen Bände finden Sie am Ende des Buchs.

Adaptive State × Time Lattices

A Contribution to Mobile Robot Motion Planning
in Unstructured Dynamic Environments

by
Janko Petereit

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Informatik, 2016

Print on Demand 2017

ISSN	 1863-6489
ISBN	 978-3-7315-0580-8
DOI	 10.5445/KSP/1000058693

This document – excluding the cover, pictures and graphs – is licensed
under the Creative Commons Attribution-Share Alike 3.0 DE License
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):
http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Adaptive State× Time Lattices:
A Contribution to Mobile Robot
Motion Planning in Unstructured

Dynamic Environments

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Janko Petereit

aus Kassel

Tag der mündlichen Prüfung: 22. Juli 2016
Erster Gutachter: Prof. Dr.-Ing. habil. Jürgen Beyerer
Zweiter Gutachter: Prof. Dr.-Ing. habil. Christoph Ament

Abstract

Besides comprehensive perception of the environment, planning the future
motion of the robot is a key element for autonomous driving. Depending
on the intended application, the requirements imposed onmotion planning
may vary. The characteristics of the environment, the potential presence
of further participants in the scene, as well as kinematical and dynami-
cal properties of the robotic platform significantly affect the complexity
of motion planning. This thesis focuses on unmanned ground vehicles
(UGVs) which operate in unstructured environments as they may occur,
for example, after a natural disaster has struck. The consideration of dy-
namic obstacles (e.g., rescue workers or other rescue vehicles) requires to
incorporate the dynamics of the robot itself into the planning. Since the
environment may not be known in advance and may change at any time,
a fast reaction is necessary.

Conventional motion planning for mobile robots usually consists of
two separate steps: first, a path planning algorithm computes a global
path to the goal on the basis of a map; afterward, a subsequent obstacle
avoidance algorithm ensures that no collision with previously unknown or
dynamic obstacles occurs. This subordinate obstacle avoidance algorithm
usually operates only locally, which means that the global goal is not con-
sidered while planning the avoidance maneuver. As a result, the overall

i

Abstract

solution may be suboptimal in a global sense caused by the decoupling of
the planning stages.

This thesis presents a holistic approach which drops the decoupling of
global path planning and local obstacle avoidance and performs only one
single integrated motion planning. The novel planning algorithm relies on
the fact that the individual state variables are not equally relevant during
the course of the future route to the goal. Instead, the relevance of the state
variables depends on the (spatial and temporal) distance from the robot. For
example, the robot’s dynamics (i.e., velocity, time-parametrization) need to
be considered in the vicinity of the robot and for the immediate future, to
be able to react to dynamic obstacles; with increasing distance (and time,
respectively) the dynamics of the robot become less important and it is
sufficient to plan an ordinary, kinematically feasible path, which respects
nonholonomic constraints. Restricting the high-dimensional planning to
relevant regions considerably reduces the size of the search space and
thus enables a faster generation of motion plans. In addition, also the
requirements on planning resolution—and thus on the discretization of
the planning result—decrease with increasing distance from the robot and
from obstacles. Therefore, the ability to perform multi-resolution planning
has also been integrated into the proposed planning framework.

The developed algorithm is based on state× time lattices which can
be thought of as a generalized grid. The lattice points are connected by
so-called motion primitives. In this thesis, a generic algorithm is proposed
which is able to probabilistically generate motion primitives from arbitrary
system models by running simulations of the robot’s motion for random
inputs. This is an offline procedure during the preparatory phase. In the
subsequent planning phase, those motion primitives are used to construct
a search graph that encodes the permissible state transitions. In this way,
the motion planning problem is converted to the standard problem of find-
ing the shortest path in a graph. The developed algorithm is designed to

ii

Abstract

be universally usable and open for straightforward extension with addi-
tional capabilities. For example, the algorithm has been extended to enable
combined motion planning for multiple waypoints, which makes the robot
arrive at the next waypoint with an orientation that is optimal for the
further travel to subsequent waypoints.

The result of the motion planning algorithm is of a hybrid nature: the
first section is a real trajectory, which also includes temporal information;
the next section is a dynamically feasible path, which at least contains the
velocity information; the remaining section to the goal is represented by a
pure kinematically feasible path, which only encodes the robot’s position
and orientation.

The proposed algorithm has been implemented in C++ and was eval-
uated using real recorded map data. It enables fast and reliable motion
planning with a practical planning frequency of at least 10 Hz. The holistic
approach, which integrates successive dimensionality reduction and the
utilization of multiple resolutions, makes it possible to plan local maneu-
vers (and thus the imminent motion of the robot) which not only assess the
global goal heuristically but rather consider it explicitly. This results in a
globally optimal motion plan (of course, within the limits of the employed
discretization).

iii

Kurzfassung

Neben einer umfassenden Wahrnehmung der Umgebung ist das Planen
der zukünftigen Roboterbewegung ein wichtiger Bestandteil des autono-
men Fahrens. Je nach Anwendungsszenario werden hierbei unterschied-
liche Anforderungen an die Bewegungsplanung gestellt. Die Beschaffen-
heit der Umgebung, die etwaige Gegenwart weiterer Akteure sowie die
kinematischen und dynamischen Eigenschaften der Plattform beeinflussen
maßgeblich die Komplexität der Bewegungsplanung. Der Fokus der vor-
liegenden Arbeit liegt auf Landrobotern, welche in einer unstrukturierten
Umgebung, wie sie z. B. nach einer Naturkatastrophe vorliegt, agieren sol-
len. Die Einbeziehung dynamischer Hindernisse (z. B. Rettungshelfer oder
andere Rettungsfahrzeuge) macht es erforderlich, auch die dynamischen
Eigenschaften des Roboters selbst zu berücksichtigen. Da die Umgebung
nicht a priori bekannt ist und sich auch während der Fahrt jederzeit ver-
ändern kann, ist eine kurze Reaktionszeit erforderlich.

Die herkömmliche Bewegungsplanung für mobile Roboter erfolgt
meist zweistufig: Ein Pfadplanungsalgorithmus bestimmt auf Basis einer
Karte einen globalen Pfad zum Ziel; anschließend stellt ein lokaler Hin-
dernisvermeidungsalgorithmus sicher, dass keine Kollision mit vorher
unbekannten oder dynamischen Objekten stattfindet. Dieser unterlagerte
Hindernisvermeidungsalgorithmus operiert in der Regel nur lokal, was

v

Kurzfassung

bedeutet, dass er bei der Planung eines Ausweichmanövers das globale Ziel
nicht berücksichtigt. Die Folge ist ein – global betrachtet – suboptimales
Ergebnis, welches aus der Separierung dieser beiden Planungsalgorithmen
resultiert.

Diese Arbeit stellt ein ganzheitliches Verfahren vor, welches die Ent-
kopplung von globaler Pfadplanung und lokaler Hindernisvermeidung auf-
hebt und stattdessen nur noch eine integrierte Bewegungsplanung vor-
nimmt. Das neue Konzept nutzt hierbei die Tatsache aus, dass nicht alle
Zustandsgrößen gleich relevant entlang des zukünftigen Weges bis zum
Ziel sind. Vielmehr hängt die Relevanz der einzelnen Zustandsgrößen von
der (räumlichen und zeitlichen) Entfernung zur aktuellen Roboterposition
ab. So muss z. B. die Dynamik der Bewegung (Geschwindigkeit, zeitliche
Parametrisierung) im Nahbereich und in der nahen Zukunft zwingend bei
der Planung berücksichtigt werden, um korrekt auf dynamische Hinder-
nisse reagieren zu können; mit steigendem Abstand (bzw. fortschreitender
Zeit) ist die Dynamik aber immer weniger von Bedeutung und es ist aus-
reichend, einen gewöhnlichen, kinematisch zulässigen Pfad (unter Berück-
sichtigung nichtholonomer Randbedingungen) zu planen. Die Beschrän-
kung der hochdimensionalen Planung auf die relevanten Bereiche führt zu
einem reduzierten Suchraum und ermöglicht somit eine deutlich schnellere
Bewegungsplanung. Ebenso sinken die Anforderungen an die räumliche
Auflösung des Suchraums, und somit die Diskretisierung des Planungs-
ergebnisses, mit zunehmender Entfernung von der Roboterposition und
etwaigen Hindernissen. Daher wurde das Verfahren um entsprechende
Fähigkeiten zur Multi-Resolution-Planung erweitert.

Der entwickelte Algorithmus basiert auf state× time lattices, welche als
ein generalisiertes Gitter aufgefasst werden können. Die einzelnen Punkte
des Gitters sind durch sogenannte Bewegungsprimitive miteinander ver-
bunden. In dieser Arbeit wird ein generischer Algorithmus vorgestellt,
welcher in der Lage ist, auf probabilistische Weise Bewegungsprimitive

vi

Kurzfassung

aus einem beliebigen Systemmodell zu generieren, indem die Bewegung
des Roboters für zufällige Eingangsgrößen simuliert wird. Dies geschieht
offline in einer Vorbereitungsphase. Anschließend werden die Bewegungs-
primitive genutzt, um für die letztendliche Bewegungsplanung einen Gra-
phen aufzuspannen, der die erlaubten Übergänge zwischen den Zuständen
abbildet. Auf diese Art und Weise wird das Bewegungsplanungsproblem
auf das Standardproblem der Suche eines kürzesten Weges in einem Gra-
phen zurückgeführt. Der entwickelte Algorithmus ist sehr universell und
offen gestaltet, sodass er sich leicht um weitere Fähigkeiten ergänzen lässt.
Er wurde z. B. dahingehend erweitert, dass eine kombinierte Bewegungs-
planung über mehrere Wegpunkte hinweg erfolgen kann, was den Roboter
in die Lage versetzt, den jeweils nächstenWegpunkt mit einer Ausrichtung
zu erreichen, welche optimal für die weitere Fahrt zum darauffolgenden
Wegpunkt ist.

Das Ergebnis der Bewegungsplanung ist hybrider Natur: Es besteht
zum Teil aus einer echten Trajektorie, welche also auch eine zeitliche Infor-
mation beinhaltet; daran schließt sich ein dynamisch zulässiger Pfad an,
welcher zumindest noch eine Geschwindigkeitsinformation besitzt; der
restliche Abschnitt bis zum Ziel wird durch einen nur noch kinematisch
zulässigen Pfad repräsentiert, der also nur noch eine Information über
Position und Ausrichtung des Roboters beinhaltet.

Der vorgestellte Algorithmus wurde vollständig mittels C++ umge-
setzt und auf der Basis von realen Kartendaten evaluiert. Das Verfahren
erlaubt eine schnelle, robuste Bewegungsplanung mit einer praxistaug-
lichen Planungsfrequenz von mindestens 10 Hz. Durch die ganzheitliche
Integration der schrittweisen Dimensionsreduktion und der Verwendung
mehrerer Auflösungen wird es möglich, lokale Fahrmanöver (und somit
die unmittelbare Roboterbewegung) zu planen, bei denen das globale Ziel
nicht nur abgeschätzt, sondern vielmehr explizit berücksichtigt wird. Die
Konsequenz ist ein global optimales Planungsergebnis (natürlich im Rah-
men der gewählten Diskretisierung).

vii

Acknowledgments

First and foremost, I would like to express my particular gratitude to my
advisor Prof. Dr.-Ing. habil. Jürgen Beyerer for his continuous support
and confidence in my work and for giving me the opportunity to pursue
my PhD in a most encouraging research environment at the Fraunhofer
Institute of Optronics, System Technologies and Image Exploitation IOSB.
I would also like to thank my co-advisor Prof. Dr.-Ing. habil. Christoph
Ament for his dedication and genuine interest in my research.

I am deeply grateful to my wonderful colleagues in the research group
multi-sensor systems. This dissertation would not have been possible with-
out their support. I would like to thank Christian Frey for always finding
a way to provide us with the latest and greatest gadgets and for giving me
the freedom to pursue my own ideas. I am most grateful for the support
of Thomas Emter, Angelika Zube, and Christian Frese, who put tremen-
dous effort into the development of the autonomy toolkit for our mobile
robots. Special thanks go to my students for their unwavering dedication
and commitment to many projects that substantially advanced the capa-
bilities of our robots. I would like to thank Philipp Woock for inspiring
debates on typography and Terry Atkinson for fruitful discussions about
the peculiarities of the English language.

Last but not least, I would like to acknowledge the unbridled support
and patience provided by my family and friends during this journey.

ix

Contents

List of Figures . xv

Acronyms . xix

Symbols . xxi

1 Introduction . 1
1.1 Problem Statement . 4

1.1.1 Path Planning . 5
1.1.2 Kinodynamic Motion Planning 6
1.1.3 Time-Parametrized Motion Planning 8

1.2 Scope and Objectives . 9
1.3 Scientific Contributions . 10
1.4 Thesis Structure . 12

2 State of the Art . 15
2.1 Early Planning Approaches 16
2.2 Path vs. Motion Planning . 17
2.3 Global vs. Local Planning . 19
2.4 Nonholonomic Path Planning 20

xi

Contents

2.5 Sampling-Based Planning 22
2.5.1 Probabilistic Roadmaps 22
2.5.2 Rapidly-Exploring Random Trees 24

2.6 Search-Based Planning . 26
2.6.1 Hybrid A* . 28
2.6.2 State Lattices . 29
2.6.3 Heuristic Graph Search Algorithms 31

2.7 Planning with Graduated Fidelity 36
2.8 Unresolved Issues . 37

3 Multi-Resolution State Lattices with Hybrid Dimensionality . 39
3.1 Overview of the Planning Concept 41
3.2 State Lattices . 42
3.3 State×Time Lattices . 46
3.4 Case Study: Mobile Robot Motion Planning 48

3.4.1 Robot Model . 49
3.4.2 Construction of State×Time Lattices 50
3.4.3 State Space Metric . 55

3.5 Lattice-Conforming Motion 57
3.5.1 Motion Primitives . 57
3.5.2 Motion Primitive Bunches 59
3.5.3 Motion Primitive Sets 61
3.5.4 Sampling of Motion Primitive Sets 62
3.5.5 Decomposition of Motion Primitives 72

3.6 Hybrid Dimensionality . 74
3.6.1 Repeated Dimensionality Reduction 79
3.6.2 Removing Redundant Motion Primitives 83

3.7 Multiple Resolutions . 84
3.7.1 Construction of Resolution-Specific Lattices 86
3.7.2 Application of Multiple Resolution Levels 88

3.8 Multiple Waypoints . 90

xii

Contents

3.9 Bringing It All Together . 92
3.10 Summary . 94

4 Modeling the Environment . 95
4.1 Static Obstacles . 96

4.1.1 Distance-Based Collision Checking 98
4.1.2 Risk Zones . 98

4.2 Terrain . 100
4.3 Dynamic Obstacles . 102

4.3.1 Probabilistic Modeling of Disk-Shaped Obstacles . . . 103
4.3.2 Probabilistic Modeling of Obstacles

with Arbitrary Shape 106
4.4 Overall Collision Risk . 110
4.5 Summary . 111

5 Searching the Lattice . 113
5.1 Building the Search Graph 114

5.1.1 Motion Primitive Concatenation without
Changing Dimensionality or Resolution 114

5.1.2 Transitions Between Different Dimensionalities 115
5.1.3 Transitions Between Different Resolutions 117
5.1.4 Regions of High-Resolution Planning 118
5.1.5 Multiple Waypoints . 121
5.1.6 Multi-Resolution Trajectory

with Hybrid Dimensionality 121
5.2 Finding the Shortest Path in the Graph 124

5.2.1 Choice of Graph Search Algorithm 124
5.2.2 Anytime Repairing A* 125

5.3 Costs . 128
5.4 Heuristics . 130

5.4.1 Heuristics for Multiple Waypoints 133

xiii

Contents

5.4.2 Obstacle-Aware 2D Heuristics 134
5.5 Complexity . 145
5.6 Summary . 146

6 Results and Analysis . 149
6.1 Implementation . 149
6.2 Construction of Lattices and Motion Primitive Sets 151
6.3 Evaluation: Simulation Results 153

6.3.1 Hybrid Dimensionality 156
6.3.2 Multiple Resolutions 162
6.3.3 Dynamic Obstacles . 171
6.3.4 Multiple Waypoints . 175

6.4 Evaluation: Real-World Demonstrator 178
6.5 Evaluation: Further Metrics 183
6.6 Evaluation: Comparison with Other Algorithms 190
6.7 Summary . 196

7 Conclusions and Future Work 199
7.1 Summary of Contributions 200
7.2 Future Work . 201

A Proofs . 203

B Algorithms . 209

Bibliography . 213

List of Publications . 239

xiv

List of Figures

1.1 Relevance of planning fidelity 4
2.1 Operating principle of Hybrid A* 29
3.1 Uniform input sampling . 40
3.2 Uniform state sampling . 41
3.3 Kinematics for a mobile robot with four-wheel steering 50
3.4 Heading quantization strategies 52
3.5 Metric for the set of robot headings 55
3.6 Sample motion primitive bunch for a simple 2D robot 60
3.7 Construction of full motion primitive set 69
3.8 Sampling statistics . 71
3.9 Decomposition of a motion primitive 73
3.10 Motion primitive bunches for θ̃0 = 0 75
3.11 Motion primitive bunches for θ̃0 = arctan 1

2 76
3.12 Motion primitive bunches for θ̃0 = π/4 77
3.13 Projection of motion primitives 82
3.14 Comparison of two bunches with different resolution level . . 89
3.15 Planning strategies for tasks with multiple waypoints 91
4.1 Exact Euclidean distance transform 99
4.2 Collision probability with static obstacles 100
4.3 Risk zone construction for static obstacles 101

xv

List of Figures

4.4 Calculation of collision probability (4.3) 105
4.5 Stack of time slices for one obstacle 109
5.1 Temporal thresholds for dimensionality reduction 116
5.2 Determination of high-resolution planning regions 120
5.3 Graph for multiple-waypoint planning 122
5.4 Heuristics for one waypoint . 133
5.5 Heuristics for multiple waypoints 135
5.6 Overestimation of heuristic distance 136
5.7 Obstacle-aware 2D heuristic distance function computation . . 138
5.8 Comparison of 2D obstacle-aware heuristic distances 142
5.9 Comparison of 2D obstacle-aware heuristic

distances: “wave front” propagation 143
5.10 Comparison of 2D obstacle-aware heuristic

distances: absolute and relative difference 144
6.1 Computation time for map processing 156
6.2 ARA* planning in a high-resolution lattice 157
6.3 Accumulated cost of expanded nodes

for the high-resolution scenario 159
6.4 Heuristic cost of expanded nodes

for the high-resolution scenario 160
6.5 Characteristics of ARA* iterations

for the high-resolution scenario 161
6.6 Influence of temporal thresholds on computation time

in the high-resolution scenario 163
6.7 Influence of distance threshold d̄obst on computation time . . . 164
6.8 ARA* planning in a multi-resolution lattice 165
6.9 Accumulated cost of expanded nodes

for the multi-resolution scenario 166
6.10 Heuristic cost of expanded nodes

for the multi-resolution scenario 167

xvi

List of Figures

6.11 Characteristics of ARA* iterations
for the multi-resolution scenario 168

6.12 Influence of temporal thresholds on computation time
in the multi-resolution scenario 169

6.13 Influence of high-resolution planning area extent
in the multi-resolution scenario 170

6.14 Multi-resolution planning of a reverse parking maneuver . . . 171
6.15 Planning with and without dynamic obstacle prediction 173
6.16 Dynamic obstacle avoidance based on time slices 174
6.17 Planning through a region with increased collision risk 175
6.18 Multiple-waypoint planning in a multi-resolution lattice 176
6.19 Comparison of separate and combined multi-waypoint planning 177
6.20 Mobile all-terrain robot IOSB.amp Q2 179
6.21 Planning result for a real-world scenario 181
6.22 Computation time for the scenario from Figure 6.21 182
6.23 Variation of cumulative computation time

with the iterative refinement of solutions 183
6.24 Result of pseudo-continuous planning 186
6.25 Planning with Hybrid A* for the scenario from Figure 6.2 . . . 195

xvii

Acronyms

ARA* Anytime Repairing A*
BVP boundary value problem
CSI Cauchy-Schwarz inequality
CPU central processing unit
DAG directed acyclic graph
DARPA Defense Advanced Research Projects Agency
DWA Dynamic Window Approach
EDT Euclidean distance transform
GPS Global Positioning System
HLUT heuristic look-up table
IMU inertial measurement unit
IP interior point
LIDAR light detection and ranging
NLP nonlinear programming
NMPC nonlinear model predictive control
OCP optimal control problem
OMPL Open Motion Planning Library
POMDP Partially Observable Markov Decision Process
PRM Probabilistic Roadmap
R&D research and development

xix

Acronyms

ROS Robot Operating System
RRT Rapidly-exploring Random Tree
SBPL Search-Based Planning Library
SENEKA Sensornetzwerk mit mobilen Robotern für das

Katastrophenmanagement
SQP sequential quadratic programming
UGV unmanned ground vehicle

xx

Symbols

Operators
:= Definition
∪ Union
∩ Intersection
\ Relative complement
× Cartesian product
⊂ Proper subset
⊆ Subset or equality
| · | Absolute value, cardinality of a set
∥ · ∥ Euclidean norm
⌈ ·⌉ Ceiling function
⌊ ·⌉ Round to nearest integer

Roman letters
a Acceleration (input)
b Basis vector
c Cost
C Compatibility relation
d Dimensionality level
ddyn Relative distance of robot and dynamic obstacle

xxi

Symbols

dstat Distance to static obstacle
erq Quantization error for resolution level r
f Priority queue key
f System model
g Goal
д Accumulated costs in graph search

¯
д Projected accumulated costs in graph search
G Set of goals
h Heuristic cost estimate
J Cost functional
Jq Quantization loss
l (m) Length of a motion primitive’s trajectory
l̄ (s̃) Length of trajectory to state s̃ during the graph search
Ld,r State (× time) lattice
m Motion primitive
M Size of time slice
Nexpl Number of exploration samples per bunch
Ntotal Total number of samples per bunch
p Vector between critical points
pcoll Overall probability for collision
p̄coll (s̃) Collision probability for trajectory to state s̃
pdyn Probability for collision due to dynamic obstacle
pstat Probability for collision due to static obstacle
pterrain Probability for collision due to terrain
q Configuration
qg Goal configuration
qs Start configuration
r Resolution level
r Transformed vector between critical points
Rg Goal radius

xxii

Symbols

R Robot mask
s (Time-augmented) state
s̃0 Discrete start state of motion primitive
s̃e Discrete end state of motion primitive
sg Goal state
ss Start state
s̃d,r Discrete state, lattice point of Ld,r

s̃d,rs Discrete start state
Sri Set of discrete values for state variable si with resolution r

t Time
t0 Initial time
tf Final time
t (m) Duration of a motion primitive’s trajectory
t̄ (s̃) Duration of trajectory to state s̃ during the graph search
T r Set of discrete time values with resolution r

u Input, control
v Velocity
V r Set of discrete velocity values with resolution r

x Position (x-coordinate)
X r Set of discrete x-position values with resolution r

y Position (y-coordinate)
Y r Set of discrete y-position values with resolution r

Greek letters
α Weighting factor
β Steering angle (input)
γ Decay rate for collision probability
δ rx Increment for variable x at resolution level r
∆t Temporal quantization for collision checking
∆xy Resolution of robot mask and time slice
∆tm Duration of a motion primitive

xxiii

Symbols

ϵ Heuristic inflation factor
ϵ ′ Suboptimality bound
ϵd Relative cost increase for decomposition
ζ Enlarged footprint radius
ηb Penalty for driving backwards
ηr Weighting factor for collision risk
ηt Weighting factor for trajectory duration
θ Heading
Θr Set of discrete heading values with resolution r

κ Kinematical constant
λr (s) Nearest lattice point for state s
Λ Lattice
µ Metric
ν Upper bound on overestimation of heuristic distance
ξ State to configuration mapping
π Projection
ρ Minimum distance to next obstacle
Σ Covariance matrix of dynamic obstacle
τ Path parameter
τd Temporal threshold for dimensionality level d
ϕ Path
ϕ∗ Optimal path
ϕsteer Steering policy
ϕ∗steer Optimal steering policy
Φ State evolution
ψ Multi-resolution trajectory with hybrid dimensionality
Ω Time slice

xxiv

Symbols

Miscellaneous
A Robot
Bd,r Motion primitive bunch
C Configuration space
Cfree Free space
Cg Set of goal configurations
d General heuristic distance
dEucl Euclidean heuristic distance
dLik Likhachev’s heuristic distance
dobst Improved obstacle-aware heuristic distance
d̄obst Threshold for computation of obstacle-aware heuristic distance
Md,r Motion primitive set
N0 Set of natural numbers (including 0)
N+ Set of natural numbers (excluding 0)
O Obstacle set
R Set of real numbers
S1 Unit circle
S State space
Sg Set of states for goal g
S̃g Set of discrete states for goal g
t Heuristic remaining duration
T Set of continuous points in time
T Continuous-state trajectory
U Input space
W World
wi Minimum distance between goal gi−1 and gi
Z Set of integers

xxv

Chapter 1

Introduction

Since their successful application for exploration tasks in disaster areas
[Mur04; Nag13], mobile robots have established themselves as a valuable
assistance for rescue teams. In the majority of cases, those robots are tele-
operated and require a high level of attention from well-trained operators.
Capabilities for (semi-) autonomous task execution for search and rescue
robots can support the operators and are thus subject of active research.
The R&D project SENEKA1, which was funded under the Fraunhofer re-
search program Markets Beyond Tomorrow, aimed at the development of
concepts for networked heterogeneous robot teams [Kun14]. Mobile robot
motion planning in an unknown, changing environment was a major topic
within the SENEKA project. The majority of the research and development
in this thesis was conducted in the context of this project.

At least since theDefenseAdvanced Research Projects Agency (DARPA)
has provided substantial funding for participants of their competitions for
self-driving cars (DARPA Grand Challenge in 2005 [Iag06] and DARPA Ur-

1. SENEKA: Sensornetzwerk mit mobilen Robotern für das Katastrophenmanagement (Engl.
sensor network with mobile robots for disaster management).

1

Chapter 1. Introduction

ban Challenge in 2007 [Bue08]), mobile robot motion planning is an active
field of research. Consequently, the main focus is on research for robotic
vehicles driving on roads. This direction of research is also strongly pro-
moted by vehicle manufactures (for an example see Daimler’s technology
demonstrator Bertha [Zie14]). Accordingly, specific aspects like coopera-
tive driving [Fre11] or energy-efficient driving [Gua15] are common topics
of research. Driving on roads has the big advantage that the basic path is
known in advance because it is predetermined by the course of the road.
This is why motion planning for mobile robots in urban areas generally
relies on precise maps of the environment, which need to be built prior to
driving [Zie14].

The scenarios considered in this thesis are entirely different: It is as-
sumed that no map is available or that existing maps are no longer valid
due to—possibly catastrophic—changes in the environment. Therefore, it
does not suffice to merely plan a velocity profile and which lane of the
road to use. Instead, the robot needs to find its way to the goal in an
unstructured environment. This corresponds to the classical path plan-
ning problem; however, in addition, it is also assumed that the robot acts
in a dynamic environment, which is populated by other vehicles or peo-
ple. Conventional approaches (see Section 2.3) use hierarchical, decoupled
methods for motion planning in unstructured dynamic environments: in
the first phase, only a path to the goal is computed; in a secondary phase, a
trajectory or velocity profile that tries to track the previously planned path
is computed. If the planned motion leads to a collision with a dynamic
obstacle, the trajectory is locally modified in order to let the robot slow
down and let the obstacle pass or to perform a local avoidance maneuver.
The local modification is generally performed without considering global
optimality, which might lead to suboptimal results of the overall motion.

This thesis presents an approach that integrates global path planning
and local obstacle avoidance in a unified, consistent motion planning algo-

2

Chapter 1. Introduction

rithm without the separation of path planning and trajectory generation.
Considering dynamic obstacles requires planning in a high-dimensional
state× time space, which essentially amounts to solving an optimal control
problem (OCP). Besides the optimization of design parameters of robotic
mechanisms (cf. [Mil10]), the calculation of optimal motion plans is an
often-encountered optimization problem in robotics. The efficient plan-
ning of optimal trajectories for nonholonomic robots, i.e., systems with
differential constraints, is still an interesting field of research in robotics
with many open questions—especially for planning in dynamic environ-
ments (see Section 2.8).

Calculating a high-dimensional optimal trajectory is computationally
expensive, even more so, when planning over a long distance. Even with
today’s computing power, a comprehensive solution of the global optimiza-
tion problem in unstructured environments is impracticable for real-time
operation. This thesis presents a method that is based on the observation
that it is not necessary to plan a full-dimensional high-fidelity trajectory
up to the goal because the relevance of the individual state variables does
not remain constant for the whole planning horizon. Instead, the relevance
decreases with increasing distance and time. This applies to the relevance
of the state variables themselves as well as to the resolution of each state
variable (see Figure 1.1).

The algorithm proposed in this thesis performs full-dimensional high-
fidelity time-parametrized motion planning in the vicinity of the robot
(both spatially and temporally). A subsequent segment drops the time-
parametrization and thus the consideration of dynamic obstacles; however,
it still uses the full system state for planning, which allows the consider-
ation of the system’s dynamics. The final segment performs only path
planning without considering derivatives of the configuration variables.
This still allows to take kinematical constraints (like nonholonomicity) into
account and ensures that the planned path can be tracked by the robot.

3

Chapter 1. Introduction

Position, heading
Velocity
Time

Relevance

Distance from robot

Figure 1.1: Relevance of planning fidelity. The state variables corresponding to the robot’s
position and heading are relevant from the start to the goal in order to guarantee a kinemati-
cally feasible solution; however, their resolution might be chosen more coarse with increasing
distance from the robot. Considering velocity and time is especially important in the vicinity
of the robot for planning among dynamic obstacles.

This thesis aims at the development of a holistic extensible approach that
integrates global path planning and local time-parametrized motion plan-
ning. It supports additional features like the incorporation of terrain char-
acteristics and combined planning alongmultiple waypoints in a consistent
way without the need for the differentiation of special cases. The method
is derived using the example of mobile robot motion planning; however,
the algorithm is stated in a generic way and is applicable to a wide range
of robotic systems.

1.1 Problem Statement

In order to lay out the groundwork for the following chapters, this section
formally states the robot motion planning problem. The notation closely
follows common conventions widely used throughout the literature, e.g.,
[LaV06]. This section concentrates on the definitions most specific to
this thesis. Particular attention is paid to the differentiation between path
planning, kinodynamic motion planning, and time-parametrized motion
planning as the authors cited use slightly different terminology.

4

1.1. Problem Statement

Each robot operates in a given environment, which is also commonly re-
ferred to as its world W . Due to a broad variety of mapping algorithms,
there exist a lot of different representations for this world (such as 2D oc-
cupancy grids [Thr96; Thr06a; Emt12], 3D Normal Distribution Transform
maps [Mag07], cost maps based on drivability [Neu09], etc.). In its most
general form, the world is composed of a region O ⊂ W occupied by
obstacles and the remaining free space W \O.

The configuration q of the robot completely determines the position of
each point of the robot and the set of all possible configurations is called
the configuration space C. The robot is denoted with A(q), which maps
the robot’s configuration q ∈ C to the part of the worldW occupied by the
robot for this particular configuration. A configuration may, for example,
consist of the joint angles for a robotic arm or of the position and heading
for amobile robotic platform. The robot is said to be in a collisionwhenever

A(q) ∩O , ∅ . (1.1)

1.1.1 Path Planning

The basic path planning problem consists of finding a continuous transition
from a given start configuration qs to a goal configuration qg or even an
entire set of goal configurations Cg. No part of the planned transition must
be in a collision with any obstacle, i.e., all admissible configurations must
be part of the free space2

Cfree := {
q �� A(q) ∩O = ∅

}
. (1.2)

The temporal evolution of the robotic system (including its dynamics)
is not considered during mere path planning. Thus, the basic problem

2. Although, strictly speaking, Cfree is the free configuration space, it is commonly referred
to just as free space.

5

Chapter 1. Introduction

of planning a path ϕ can be formally stated as follows [LaV11a]: Find a
continuous mapping

ϕ : [0, 1]→ Cfree
τ 7→ q

(1.3)

with ϕ (0) = qs and ϕ (1) ∈ Cg. For the most basic form of path planning,
any path satisfying this condition constitutes a valid solution; however,
given a specific application, it might be beneficial to search for an optimal
solution ϕ∗ by minimizing an appropriate cost functional J :

ϕ∗ = arg min
ϕ (τ)

J (ϕ (τ)) . (1.4)

1.1.2 Kinodynamic Motion Planning

For systems with high dynamics or differential constraints, planning a path
in configuration space only is often not sufficient. Although the terms path
planning and motion planning are often used interchangeably by many
authors, in the context of this thesis, the term motion planning is used to
express the explicit consideration of a dynamic robot motion model during
planning. This is also referred to as kinodynamic planning [Don93].

To include the additional constraints, a transition from the configura-
tion space C to the state space S has to be made. A state vector s ∈ S can
be regarded as the generalized extension of the configuration vector q and
its derivatives,

s =



q
q̇
q̈
...



, (1.5)

6

1.1. Problem Statement

with an accompanying mapping ξ that maps the state s to its associated
configuration q,

ξ : S → C
s 7→ q .

(1.6)

With (1.5) the dynamics of the robot can be modeled as a generic nonlinear
control system

ṡ(t) = f (s(t), u(t)) (1.7)

where u ∈ U is the vector of input (i.e., control) variables. This intuitively
leads to the definition of the general motion planning problem: Find a
steering policy ϕsteer that moves the dynamic system (1.7) from its initial
state ss to a goal state sg ∈ Sg while avoiding any collision. This can be
formally stated—following [LaV06]—as

ϕsteer : [0, tf]→ U
t 7→ u

(1.8)

with its accompanying state trajectory

s(t) = s(0) +
t∫

0

f (s(τ), u(τ)) dτ (1.9)

and subject to

s(0) = ss ,

s(tf) ∈ Sg ,
(1.10)

and
∀t ≤ tf ξ (s(t)) ∈ Cfree . (1.11)

7

Chapter 1. Introduction

Similar to the path planning problem, basic motion planning does not im-
pose any constraints on optimality, and especially the final time tf may
be chosen arbitrarily. However, in many applications an optimal solution
with respect to a given optimality criterion is often desired. For this pur-
pose, the motion planning problem can be converted to the optimization
problem

ϕ∗steer = arg min
u(t),tf

J (s(t), u(t), tf) (1.12)

constrained by (1.10) and (1.11). This formulation amounts to the classical
definition of an OCP with the additional free space constraint (1.11). Thus,
the general motion planning problem can be regarded as a special case of
OCPs.

1.1.3 Time-Parametrized Motion Planning

So far, the definitions of the path and motion planning problem both have
assumed a static environment for the robot. However, especially beyond
traditional industrial applications, this assumption is unrealistic. For ex-
ample, sensors may gather additional information about the environment
while the robot is moving, or the environment itself may be dynamic be-
cause of moving obstacles. In order to distinguish between motion plan-
ning in a static environment and planning in a dynamic environment, the
latter is referred to as time-parametrized motion planning in this thesis.

The formal definition of the time-parametrized motion planning prob-
lem is identical to the definition of the motion planning problem in Sec-
tion 1.1.2 with one important exception: the time-invariant free space Cfree
becomes the time-variant free space Cfree (t), and thus the problem of time-
parametrized motion planning can be stated as

ϕ∗steer = arg min
u(t),tf

J (s(t), u(t), tf)

s.t. ∀t ≤ tf ξ (s(t)) ∈ Cfree (t) .
(1.13)

8

1.2. Scope and Objectives

1.2 Scope and Objectives

This thesis is concerned with time-parametrized motion planning in un-
structured dynamic environments. As already mentioned in the beginning
of the introduction, this differs from planning motions in on-road scenar-
ios because unstructured environments lack the a priori information of a
basic path to the goal and require to take the terrain characteristics into
account. This thesis aims at the development of a unified motion planning
concept that integrates global path planning and local trajectory planning
in a consistent way. The idea is to guarantee robust avoidance of collisions
with dynamic obstacles while still having the optimality of the overall
global plan to a possibly distant goal in mind. The motion planning al-
gorithm should be able to generate resolution-optimal plans with respect
to a user-specified cost function. Thus, the proposed method will provide
an approximate solution for the time-parametrized motion planning prob-
lem (1.13), for which only local continuous solutions can be computed;
all methods for finding a globally optimal solution need to employ some
form of sampling [How07]. Furthermore, the proposed algorithm is also
resolution-complete, which means that it will always return a solution if
such a solution exists (assuming a given resolution); or on the other hand,
if no solution exists, the algorithm will report this fact in finite time.

Besides performing genuine time-parametrized motion planning in the
vicinity of the robot for the consideration of dynamic obstacles, the algo-
rithm is able to cope with a wide range of robot kinematics (e.g., kinematics
with nonholonomic constraints). In addition, the algorithm intends to be
as generic as possible and allows the straightforward integration of further
capabilities. This is shown using the example of planning along multiple
waypoints or taking terrain characteristics into account. In order to be suit-
able for real-world operation, i.e., to be able to react to sudden changes in
the environment, the algorithm should be capable of computing solutions
with a rate of at least 10 Hz.

9

Chapter 1. Introduction

This thesis focuses on the solution of the motion planning problem. Of
course, autonomous driving requires the availability of many more compo-
nents like mapping of the environment (e.g., [Gri05; Mon07]), localization
(e.g., [Mou06; Agh13]), and trajectory tracking and execution (e.g., [Lam08;
How10]). These are all wide-ranging research fields of their own and are
not part of this thesis. Nonetheless, some of them had to be touched on to
allow a meaningful evaluation of the proposed planning concept.

1.3 Scientific Contributions

The key contribution of this thesis is a novel holistic concept that integrates
local maneuver planning in the presence of dynamic obstacles and global
path planning in a unified consistent approach. The proposed method
is not a composition of existing algorithms with individual capabilities;
instead, it is one single algorithm that is designed to make the most of
the available information. The approach converts the continuous OCP to
a search for the shortest path in a graph in order to be able to draw on
the large body of established graph search algorithms. Thus, the main
contribution of this thesis is a method to construct this search graph in the
form of a hybrid-dimensional multi-resolution state× time× goal lattice.
The individual contributions are as follows.

• A method for systematic successive dimensionality reduction
has been developed to reduce the computational complexity [Pet14].
To consider dynamic obstacles, planning starts in a full-dimensional
state× time lattice. At a certain threshold, planning continues in a
high-dimensional state lattice that is still capable of correctly repre-
senting the robot’s dynamics. The last part of the planning produces
only paths, which do, however, still respect the kinematical con-
straints of the robot.

10

1.3. Scientific Contributions

• In order to reduce the computation time even further,multi-resolu-
tionplanning has been integrated into the holistic concept [Pet13b].
For this purpose, a newmethod that uses themap of the environment
to derive the planning resolution has been developed.

• The edges of the search graph are made up of motion primitives.
An offline method for the sampling of motion primitives from
arbitrary systemmodels has been developed [Pet13b; Pet14]. The
method is based on the minimization of the quantization error be-
tween lattice points and the end points of the motion primitives. In
addition, motion primitive sets for state lattices with lower dimen-
sionality are derived from the full-dimensional motion primitive set.

• The planning algorithm has been extended with combined plan-
ning alongmultiplewaypoints [Pet13c]. This is also directly inte-
grated into the structure of the search graph. The combined planning
enables the robot to arrive at a waypoint in an optimal pose to reach
its next destination.

• For the efficient application of existing graph search algorithms,
heuristics suitable for multi-waypoint planning have been de-
veloped [Pet13c]. In addition, a Dijkstra-based 2D heuristic has been
improved in order to be more informative than the existing method
is.

• For time-parametrized planning in the vicinity of the robot, a method
for probabilistic modeling of dynamic obstacles has been devel-
oped. For this purpose, an existing algorithm for circular obstacles
has been extended with caching capabilities [Pet13c], and a novel
algorithm, based on time slices, for obstacles with arbitrary shape
has been devised.

11

Chapter 1. Introduction

The proposed algorithm has been thoroughly evaluated and a comprehen-
sive analysis and discussion is provided in this thesis. In order not to be
restricted to simulation results, the algorithm has also been implemented
on a robotic platform and was tested in real-world operation [Kun14].

1.4 Thesis Structure

So far, Chapter 1 has stated the basic problem of robot motion planning
in a dynamic environment and the objectives of this thesis together with
a brief outline of the proposed planning approach. Chapter 2 summa-
rizes the results of previous research in order to put the proposed planning
concept into relation with the state of the art in motion planning. Spe-
cial attention is given to the open issues in the field. Chapter 3 presents
the novel holistic planning concept. It is explained how a state× time lat-
tice can be defined for a given system model and how the corresponding
motion primitives can be computed. The chapter deductively describes
how the initial state× time lattice is used to derive further state lattices
with decreased dimensionality and variable resolution (once again with
the corresponding motion primitives). Additionally, it is shown how the
state× time lattice can be extended to a state× time× goal lattice to allow
for combined planning over multiple waypoints. Although the application
of the proposed concept is not restricted tomobile robots, the concept is il-
lustrated using the example of a four-wheeled robot, which is also revisited
later on for the evaluation of the results. Chapter 4 is a brief interlude that
describes how the environment and especially dynamic obstacles are mod-
eled to allow for realistic testing of the proposed planning algorithm both
in simulation and real-world operation. Chapter 5 shows how the state
lattices and motion primitives from Chapter 3 can be used to construct a
search graph which allows the conversion of the general motion planning
problem to the problem for finding the shortest path in a graph, for which

12

1.4. Thesis Structure

well-established algorithms exist. One of these algorithms, namely Any-
time Repairing A* (ARA*), which is able to iteratively improve the solution,
is explained in detail including necessary modifications and extensions.
Chapter 6 presents the results which have been obtained both from sim-
ulations based on real recorded environment data and from application of
the algorithm on a physical robotic platform. This allows for a compre-
hensive evaluation of the proposed planning concept and comparison with
other algorithms. Finally, Chapter 7 summarizes the contributions of this
thesis and discusses potential future work.

13

Chapter 2

State of the Art

Since the beginning of industrial robotics in the late 1970s, planning algo-
rithms for robotics have been subject of extensive research. Early work
was strongly limited to mere path planning problems within the industrial
context. It was mostly of a theoretical nature without practical applica-
bility to challenging tasks. The limited processing power rendered the
consideration of realistic robot and environment models impossible.

As computer technology evolved, research in robot planning algo-
rithms gathered pace, which led to a huge amount of publications and
some very comprehensive books that attempt to organize the topic and
compile the various methods [Lat91; Lau98; Cho05; LaV06].

Today, the problem of robot motion planning for industrial standard
applications can be considered as solved. However, in mobile robotics—
especially for autonomous vehicles operating in unstructured and dynamic
outdoor environments—many open questions still exist. This is the reason
why ongoing research is conducted in this field. The substantial funding
(e.g., Defense Advanced Research Projects Agency (DARPA) Grand Chal-
lenge [Iag06] and Urban Challenge [Bue08]) shows the particular need

15

Chapter 2. State of the Art

for the development of improved techniques. Automotive companies see
autonomous driving as a future key technology and have established cor-
responding research departments.

This chapter gives an overview of the current state of the art in mobile
robot motion planning. First, robot path and motion planning in general
is briefly covered in order to lay the foundations for the more advanced
topics. Following this, the results of the latest research which focus on
mobile robot motion planning in unstructured dynamic environments are
presented. Where applicable, the particular advantages and limitations of
the presented methods are discussed.

2.1 Early Planning Approaches

Robot path planning by means of visibility graphs [Loz79] was one of the
first methods for finding collision-free paths among polyhedral obstacles.
The method computes shortest paths by design as the resulting path con-
sists of straight line segments connecting the obstacle corners. However,
for safety reasons, it might not be desirable for the final path to touch the
obstacles. Therefore, algorithms based on Voronoi graphs have been pro-
posed [ÓDú85]. They maximize the clearance between robot and obstacles
by tying the planned path to the Voronoi diagram of the planning space.

Cell decomposition methods [Cha87] convert the planning space to a
very reduced representation while maintaining topological equivalence.
The resulting graph can then be searched using standard shortest path
algorithms.

Artificial potential fields [Kha86] are a completely different approach
that models the robot as a particle moving in a potential field. Obstacles
exert a repelling force on the particle while the goal is modeled by an
attracting force. The basic version of this algorithm is prone to getting
stuck in local minima and thus only works if all obstacles are convex.

16

2.2. Path vs. Motion Planning

All these methods are unable to incorporate a model of the robot’s kine-
matics or dynamics during the planning. They only consider the simple
path planning problem from Section 1.1.1 in unrealistic polygonal environ-
ments.

2.2 Path vs. Motion Planning

Motion planning as defined in Section 1.1.2 is computationally expensive.
Therefore, a popular approach is to plan a path first and then compute
a suitable velocity profile [Kan86]. Although this method of decoupled
position and velocity planning clearly is not able to guarantee optimality
or completeness, it works reasonably well in practical applications and is
still frequently employed, e.g., during both the DARPA Grand Challenge
by the CMU team [Urm06] and the DARPA Urban Challenge by team
AnnieWAY [Kam08].

Donald et al. were one of the first to systematically examine the dif-
ferences between path and motion planning [Don93]. The authors intro-
duced the term kinodynamic motion planning for planning problems that
have to deal with both kinematic and dynamic constraints. According to
their definition, kinematic constraints limit the configuration of the robot
(e.g., obstacles and joint limits); dynamic constraints limit the respective
time-derivatives (e.g., bounded velocity or acceleration). Donald et al. also
introduced a third category of constraints, called strictly kinodynamic con-
straints, to describe dynamic constraints that depend on kinematic prop-
erties (e.g., speed-dependent obstacle-avoidance margin). Essentially, the
proposed method performs a breadth-first search in a regular grid embed-
ded in the state space.

For motion planning in a dynamic environment, most often local plan-
ning strategies (see Section 2.3) are employed. Velocity obstacles [Fio98]
are a widely used concept, that models the potential collision region of

17

Chapter 2. State of the Art

a robot and obstacle on the basis of their relative velocity vector. While
the original version was limited to linear obstacle motions only, it was
later extended to cope with nonlinear obstacle trajectories [Lar02; Shi07].
However, all variants are limited to both circular robots and obstacles, so
other shapes have to be approximated by multiple circles.

In [Lin05; Lin09] the authors propose a method for smooth feedback
planning by exploiting a combination of cell decomposition and artificial
potential fields, called global vector field. The basic version, being lim-
ited to holonomic point robots, was extended to car-like robots in [Lin07].
Both variants operate in a polygonal environment, for which efficient cell
decomposition methods exist, but unfortunately are difficult to apply to
unstructured, possibly dynamic environments.

As stated in Section 1.1.2, motion planning can also be thought of as a
special case of optimal control. For planning the motion of a Mars rover
in rough terrain, [How07] converts the motion planning problem to a
nonlinear programming (NLP) problem. It comprises a complex dynamical
model for a wheeled mobile robot. The solver relies on good initial values,
which are obtained from a look-up table1.

A partially closed-loop receding horizon control is proposed in [DuT10]
for motion planning in dynamic, cluttered, uncertain environments. How-
ever, it is not clear whether the proposed method is real-time capable.
Generally speaking, motion planning and the subsequent robot control
can be thought of as nonlinear model predictive control (NMPC) [How14].
However, the cycle time in robotic applications is much shorter compared
to the well-established NMPC application field of process control [Pet10].

In order to cope with the demanding real-time requirements of robotic
motion planning, it might be a viable strategy to compute a suboptimal plan
first and then further optimize the trajectory in an additional processing
step [Bet98].

1. A look-up table is a predefined/precomputed data set “library”.

18

2.3. Global vs. Local Planning

2.3 Global vs. Local Planning

Another widely used approach for keeping the computational burden low
is the separation of the planning problem into global path planning and
local motion planning / obstacle avoidance. The global path usually does
not consider kinematic or dynamic constraints and is planned with a mod-
erately low rate. A subsequent local motion planning algorithm tries to
track the global path and is executed at a higher rate in order to react
to changes in the environment. This separated approach sacrifices global
optimality in favor of local responsiveness.

The curvature-velocity method [Sim96] models the planning problem
as a constraint optimization in the velocity space and is closely related to
the local Dynamic Window Approach (DWA) [Fox97]. In order to guide
the local planning in the direction of the global optimum, the DWA was
augmented with the global navigation function NF1 [Bar91b] in [Bro99] for
holonomic robots. [Phi03] combined the DWA with Elastic Bands [Qui93]
for a differential-drive tour guide robot. On the basis of DWA, [Phi07]
proposed the E* algorithm for car-like robots. It exploits a new navigation
function that is aware of environment characteristics like traversability
risk.

In [Shi91] the authors propose an algorithm that consists of two stages:
First, multiple global path candidates are computed; secondly, the most
promising global path is selected and further optimized locally. A similar
approach is presented in [Reu98], where trajectory generation is performed
by solving an optimal control problem in order to continuously track a
previously computed global path.

Sometimes, it might even be possible to spare the global planning. For
example, the Stanford Racing Team, whowon theDARPAGrandChallenge,
relied on a local planner only, because an exact geometrical description of
the road-network was available [Thr06b]. Their local planner (as well as
many others, e.g., [Ger08]) is based on the simulation of a set of many local

19

Chapter 2. State of the Art

trajectory candidates, among which the best is chosen on the basis of an
appropriate optimality criterion. This approach is also known as trajectory
rollout.

The hierarchical motion planning proposed in [How08] led to the al-
gorithm used for Boss in the DARPA Urban Challenge [Fer08a]. This two-
layered approach consists of a high-speed trajectory generator (described
in [How07]) for on-road driving and a state lattice planner with subse-
quent trajectory generator for driving in unstructured areas like parking
lots. Furthermore, hierarchical planning concepts have been successfully
applied in the context of mobile manipulation [Kne10].

For dynamic street scenarios, local trajectory generation has been de-
veloped in [Wer10; Wer11]. The algorithm simultaneously maximizes driv-
ing comfort (minimum jerk) and tracking performance using optimal con-
trol techniques. The authors of [Zie15] underline that continuous local
methods may generally get stuck in local minima which is why they pro-
pose the transformation of their variational method to a method based on
Hidden Markov Models for global trajectory planning. Moreover, Partially
Observable Markov Decision Processes (POMDPs) have been used to de-
vise planning algorithms that explicitly take both perception and action
uncertainty into account; however, in real-world applications only approx-
imate methods can be used for planning with POMDPs due to the high
complexity of the planning problem [Thr06a].

2.4 Nonholonomic Path Planning

Planning under differential constraints is still a major field of research.
If the number of action variables is less than the dimensionality of C, a
system is called to be underactuated [LaV11b]. Most mobile robots are
nonholonomic systems due to the rolling wheels that constrain the possible
velocities of the robot with regard to its instantaneous configuration.

20

2.4. Nonholonomic Path Planning

One of the first papers to address nonholonomic planning problems was
[Lau87], which demonstrated that fundamentally new methods needed to
be introduced to tackle nonholonomic planning problems. First approaches
modified existing methods in order to cope with the new requirement. For
example, [Jia92] extended the visibility graph method to a kinematically
feasible visibility graph.

Most nonholonomic planning algorithms can be split into two separate
steps. First, a relatively simple and often holonomic solution is planned.
Secondly, this initial solution is modified in order to satisfy the nonholo-
nomic constraints.

In order to support the modification phase, [Sek99] proposed an exten-
sion to artificial potential fields by incorporating a nonholonomic metric.
This results in an initial solution that is easier to modify with regard to the
nonholonomic constraints. This modification might be performed by re-
cursively subdividing the initial path and trying to connect the end points
by Reeds-Shepp shortest paths [Ree90] and a subsequent path optimiza-
tion [Lau94; Lam01]. Some authors have proposed methods to progres-
sively introduce kinematic constraints until the path correctly represents
the nonholonomic robot motion [Fer98]. An algorithm for tractor-trailer
systems with multiple nonholonomic constraints was presented in [Sek98].
It consists of several planning iterations: First, a solution considering only
one nonholonomic constraint is planned. Then, the path is iteratively “re-
paired” by adding one additional constraint at a time. For this purpose,
the authors propose two methods: pick and link (similar to [Lau94]) and a
probabilistic planning in a tube along the path.

Obviously, a two-staged approach with initial unconstrained global
path planning and subsequent local modification and optimization cannot
provide any guarantees on global optimality or completeness. Further-
more, the above-mentioned algorithms deal with path planning only. They
do not address the general motion planning problem with a complete in-
corporation of the system’s dynamics.

21

Chapter 2. State of the Art

2.5 Sampling-Based Planning

Sampling-based planning algorithms try to reduce the complexity of a plan-
ning problem by probabilistically sampling configurations from a (possibly
high-dimensional) configuration space instead of enumerating every pos-
sible configuration. The sampling process attempts to rapidly explore the
entire search space while capturing its topology as accurate as possible.
The improvement in computation time comes at the expense of solution
quality. The result is non-deterministic and generally not optimal. The al-
gorithms are only probabilistically complete, i.e., they can only guarantee
to find an existing solution if the sample count tends to infinity.

Nevertheless, sampling-based planning algorithms have proved their
worth and are backed by a large community. There exist several open-
source projects that provide free implementations of well-known and es-
tablished algorithms, the most popular being the Open Motion Planning
Library (OMPL) [Şuc12b], which is extensively used by MoveIt! [Chi12],
the main planning framework of the Robot Operating System (ROS).

The two major groups of sampling-based planning algorithms, namely
Probabilistic Roadmaps and Rapidly-exploring RandomTrees are discussed
in the following sections.

2.5.1 Probabilistic Roadmaps

Planning with Probabilistic Roadmaps (PRMs) consists of two phases: First,
a configuration space roadmap is constructed by randomly sampling con-
figurations and trying to connect these configurations using a local planner.
Secondly, the graph constructed in phase one is queried for the shortest
path between a particular start and goal configuration [Kav96]. Originally
developed for holonomic planning problems, the method was extended to
car-like robots in [Šve97].

22

2.5. Sampling-Based Planning

PRM methods have difficulties with narrow passages. These difficulties
may be overcome by a temporary dilation of passages to capture the con-
nectivity of the configuration space [Hsu98].

In order to reduce the roadmap construction time, Lazy PRMalgorithms
have been proposed [Boh00]. They defer collision checking to the query
phase, whereas the original PRM algorithm performs the collision check-
ing during roadmap building. Therefore, Lazy PRM is especially suited for
single query problems. To further improve the planning performance, a
bi-directional Lazy PRM method has been proposed [San01]. It simultane-
ously uses two search trees rooted at the start and goal configuration.

Finding a good sampling strategy is the major challenge for PRM-based
algorithms. Quasi-random PRM (Q-PRM) extends Lazy PRM with a low-
discrepancy and low-dispersion sampling strategy [Bra01]. This sampling
of configurations in a regular pattern leads to a faster configuration space
coverage and avoids the clustering of the samples. Because of the improved
sampling strategy, the algorithm becomes resolution-complete, i.e., if a so-
lution exists for the specified resolution, the algorithm is guaranteed to
find it. An iterative refinement to this sampling strategy was introduced
in [Lin03] by exploiting an incremental low-discrepancy lattice. Although
it was initially thought that the strength of PRMs lies in the probabilistic
sampling approach, research showed that random sampling is not advan-
tageous over deterministic sampling [LaV04].

Originally developed for planning in configuration space only, PRMs
have been extended for planning in state× time space [Hsu02]. For this
purpose, a tree of (state, time)-tuples (called milestones) is grown by ran-
domly applying controls to randomly selected milestones of the tree.

A method for efficient roadmap updating was proposed in [Jai04] for
dynamic environments which are mainly static but contain a relatively
small changing region. The algorithm presented in [Şuc12a] improves the

23

Chapter 2. State of the Art

search space exploration strategy by employing an underlying grid to keep
track of the search space coverage.

All PRMmethods depend on the availability of an efficient local planner
in order to connect two nodes of the roadmap. For path planning only, this
local “connect” step can be performed by using geometrical primitives like
Dubins or Reeds-Shepp paths [Dub57; Ree90]. A more advanced method
adds continuous curvature to the local paths by composing them from
straight line segments, circular arcs and clothoids [Fra04a]. For motion
planning incorporating the robot’s dynamics, the “connect” step becomes
muchmore involved as each connection requires the solution of a boundary
value problem.

2.5.2 Rapidly-Exploring Random Trees

Rapidly-exploring Random Trees (RRTs) [LaV98] mitigate the connection
problem of PRMs. The operating principle of an RRT rooted at a given start
configuration is as follows: First, a configuration is sampled from the free
space and the nearest neighbor in the RRT is selected. Secondly, a control
is applied to this selected configuration to move the system toward the
previously sampled configuration (“extend” step). Finally, if no collision
occurred, the resulting new configuration is added to the RRT. These steps
are repeated until the tree connects to the goal configuration. RRTs are
well suited for single query planning in high-dimensional spaces because
the sampling strategy biases the growing of the tree toward unexplored
regions of the search space. Likemost sampling-based planning algorithms,
RRTs are probabilistically complete but not asymptotically optimal.

A thorough analysis of RRTs was performed in [LaV00], which also
proposed several improvements: Better sampling strategies focused the
search toward the goal, and the authors experimented with various sizes
of the “extend” step (extreme case: directly connecting the tree with the
random sample). The authors provided a lot of application results for

24

2.5. Sampling-Based Planning

holonomic, nonholonomic, and kinodynamic planning problems in static
environments.

The RRT-connect algorithm [Kuf00] extends the basic RRT with bidi-
rectional planning. The advantages—especially in the context of kinody-
namic planning—are discussed in depth in [LaV01]. A resolution-complete
version of RRT was presented in [Che02] and exploits the neighborhood
structure of the state space.

Similar to PRMs, there has been a trend toward derandomizing RRTs:
Multi-Sample RRT was proposed in [Lin04] and effectively captures the
Voronoi structure of the search space. However, the algorithm has difficul-
ties in narrow corridors and is susceptible to local minima.

The authors of [Fra02] applied analytically derived optimal control
policies (e.g., obtained by minimizing a quadratic cost function) to the
“extend” step, that move the system to equilibrium points (i.e., states with
zero velocity). In the DARPA Urban Challenge, this algorithm constituted
the basis for TeamMIT’s vehicle Thalos, which employed Closed-loop RRT,
an algorithm that samples reference inputs for closed-loop stable vehicle
dynamics [Kuw08; Kuw09].

Anytime RRT was proposed in [Fer06a]. It quickly generates an initial
solution and then iteratively refines the solution quality as long as the
allocated computation time allows. Another approach for reducing the
computational effort was explored in [Mor04] by applying sampling-based
planning to discretized search spaces. The authors of [Vah08] proposed
a variant of RRT with adaptive dimensionality for humanoid robots with
many degrees of freedom.

For planning in dynamic environments multipartite RRTs [Zuc07] and
methods based on Gaussian processes [Ful08] have been suggested.

A rigorous analysis of sampling-based planning algorithms was con-
ducted in [Kar11]. The authors proved that PRMs and RRTs, although prob-
abilistically complete, are generally not asymptotically optimal. Hence, the

25

Chapter 2. State of the Art

authors present two algorithms (namely, RRT* and PRM*) that are asymp-
totically optimal. However, they do not consider differential constraints
or dynamic environments. The algorithms were extended to kinodynamic
planning in [Kar10] and nonholonomic planning in [Kar13] but only for
static environments. The algorithms depend on the availability of an opti-
mal solution to the short-time steering problem. Since the authors mention
planning times within the range of several seconds, it is not clear whether
the proposed algorithms are real-time capable for mobile robot applica-
tions.

2.6 Search-Based Planning

Search-based planning, also known as combinatorial planning [LaV11a],
is an alternative approach to sampling-based planning. Search-based plan-
ning works by (implicitly) enumerating all possible robot motions in order
to determine the optimal motion with respect to a particular optimality
criterion. This enumeration might be done either for the inputs or directly
for configurations or states. The necessary discretization of the search
space might lead to missed solutions if the quantization is chosen too
coarse. On the other hand, in contrast to sampling-based planning algo-
rithms, search-based planning algorithms are normally guaranteed to be
resolution-complete: If, given the discretization of the search space, a so-
lution exists, the algorithm will find it. If no solution exists, the algorithm
will report that fact in finite time. Because of their deterministic nature,
search-based algorithms deliver reproducible results.

For mobile robots, Barraquand and Latombe proposed a search-based
planning algorithm that discretizes control variables and can account for
nonholonomic constraints [Bar89]. The algorithm performs a best-first
search by applying one control value at a time and simulating the robot’s
motion for a certain period. In order to reduce the computational costs, the

26

2.6. Search-Based Planning

authors map the configuration space to a grid structure to keep track of
already explored regions. The algorithm was extended in [Bar91a; Bar93]
for faster planning and forms the basis for the Hybrid A* algorithm (see
Section 2.6.1). Despite being restricted to path planning only, the algorithm
is very popular and still constitutes the key idea ofmany current algorithms
(e.g., the multi-resolution planner proposed in [Lin06] and the off-road-
restrictions-aware planner in [Lin08]).

A search-based motion planning method, which relies on piecewise
constant acceleration input (called acceleration bang motion), was pre-
sented in [Fra93] for planning in state× time space.

Since search-based planning algorithms suffer from the curse of di-
mensionality, most approaches try to keep the planning dimensionality
low. For this purpose, a two-layered planning concept has been developed
in [Che99]: It first plans for sub-goals in a dimensionally reduced subspace
(e.g., only position and heading) and then uses these sub-goals as input
for a second, subsequent full-dimensional planning step considering the
physical model of the robot. The method is not optimal and with planning
times ranging in the magnitude of hours, the algorithms application is
limited to systems with slow dynamics (e.g., Mars rover).

The use of motion primitives for path planning was introduced in
[Lac98]: The planning is split into two phases, offline motion primitive
generation (integration of system model) and online search by combining
the previously computed motion primitives. To reduce the computation
time, the authors suggest the use of low-fidelity trajectories in distant re-
gions.

In order to reduce the computational complexity even further, the con-
cept ofmotion planning in state lattices has been developed [Piv09c], which
is discussed in more detail in Section 2.6.2. Another approach to speed the
planning upwas proposed in [Phi11] and hinges on the idea of compressing
the time dimension by using so-called safe intervals. The basic algorithm

27

Chapter 2. State of the Art

can only use travel time as a cost function, but it was extended to arbitrary
cost functions in [Gon12].

A method called path set relaxation was proposed in [Krü10]. It im-
proves the solution quality by simultaneously optimizing the motion prim-
itives during the graph search.

Variants of the above-mentioned search-based motion planning algo-
rithms are used in a variety of mobile robot applications, e.g., for au-
tonomous mine mapping [Bak04] and in the DARPA Urban Challenge
by Team AnnieWAY [Kam08]. The Search-Based Planning Library (SBPL)
[Lik16] provides building blocks for many search-based algorithms but
focuses on path planning problems only.

2.6.1 Hybrid A*

Building on the ideas of [Bar91a; Bar93], a very successful path planning
algorithm called Hybrid A* was proposed in [Dol08] and further detailed
in [Dol10]. The algorithm exhibits a hybrid nature between discrete graph
search and continuous planning, hence the name. The path is composed
of simple motion primitives (circular arcs) with quantized heading change.
These motion primitives are concatenated during an A*-like graph search.
In addition, a grid for the translational robot states is used to keep track of
already explored regions: When a node is added to the graph, the continu-
ous robot position associated with that node is stored in the corresponding
cell of the underlying grid (see Figure 2.1). This continuous position consti-
tutes the starting point for the subsequent graph expansion. The Hybrid A*
algorithm allows for the generation of smooth paths yet benefiting from
the fast exploration speed of grid-based search algorithms.

The Stanford Racing Team successfully used Hybrid A* for their robot
Junior in the DARPA Urban Challenge [Mon08]. They extended the algo-

28

2.6. Search-Based Planning

Figure 2.1: Operating principle of Hybrid A* (2D projection) [Pet12]: already explored cell,
cells with newly added nodes.

rithmwith multi-resolution capabilities, i.e., adaptive arc lengths, for faster
planning and with a subsequent trajectory optimization step for smoother
paths.

The Hybrid A* algorithm was further extended in [Pet12] particularly
with regard to the special needs of off-road planning: Besides the efficient
incorporation of terrain characteristics, simultaneous planning along mul-
tiple waypoints was introduced including the required advanced heuristic
techniques.

2.6.2 State Lattices

Planning in state lattices is another successful method for mobile robot mo-
tion planning and was simultaneously developed by Pancanti et al. [Pan04]
and Pivtoraiko and Kelly [Piv05b; Piv06]. While the former focused on the
investigation of theoretical properties of the dynamical systems and pro-
vided only theoretical observations for polyhedral environments, the latter
proved the applicability of state lattice planning to real-world motion plan-
ning problems. The technical details of the algorithm are comprehensively
described in the corresponding technical report [Piv07], the journal arti-
cle [Piv09c], as well as in Pivtoraiko’s PhD thesis [Piv12].

29

Chapter 2. State of the Art

Like many other motion planning algorithms, this algorithm is also com-
posed of two separate steps: an offline motion primitive generation phase
and an online graph search phase. The outline of the algorithm is as fol-
lows: First, the state space is discretized, which results in a lattice structure
of the search space. Secondly, a set of kinematically feasible motion primi-
tives is carefully crafted such that the start and end state of each motion
primitive coincides with a lattice point of the state space. Finally, in the on-
line planning phase, a graph is constructed by concatenating these motion
primitives. The planning solution is obtained by finding the shortest path
in this graph, where nodes represent states and edges represent controls,
i.e., motion primitives.

The original algorithm considers only the general path planning prob-
lem: States consist of the robot’s position, heading, and curvature in order
to guarantee kinematically feasible paths. An extended algorithm, able to
respect the robot’s dynamics, was proposed in [Fer08a; Lik09] and field-
tested on Boss, the robot that won the DARPA Urban Challenge [Urm08].
The planning is performed in a state space consisting of position, head-
ing, and velocity, but no temporal dimension. Dynamic obstacles are thus
represented as static risk zones appearing in a certain distance from the
current robot position. Near the vehicle and near the goal a more densely
sampled action space is employed resulting in basic multi-resolution capa-
bilities of the algorithm. The graph search through the lattice is performed
using the AD* algorithm [Lik05] together with a heuristic look-up table
(HLUT) [Kne06]. The planned paths are finally tracked by an additional
trajectory generation algorithm.

Several extensions have been developed to the original state lattice
planner: A method to consider translational and rotational velocities was
proposed in [Piv09a], which uses the ARA* algorithm [Lik03a] for effi-
cient anytime planning. For on-road planning scenarios, the concept of
deformable input-/state-lattice graphs has been introduced [Ruf10]. The

30

2.6. Search-Based Planning

algorithm is able to bend the lattice along an arbitrary continuously dif-
ferentiable path. However, the solution quality may suffer from the non-
uniformly sampled heading dimension and configuration-dependent steer-
ing angle quantization. Furthermore, the fact that the satisfaction of kine-
matic constraints has to be checked during the online planning may result
in increased planning times.

Mobile robot motion planning using spatiotemporal lattices was first
proposed in [Zie09] for on-road driving scenarios. The method utilized
quintic splines for the geometric representation of path segments. Since
planning in a spatiotemporal lattice results in searching a directed acyclic
graph (DAG), an exhaustive search of the graph becomes possible. On
the basis of this method and incorporating results from the work on time-
parametrized planning in [Ruf09b], an algorithmwas proposed in [McN11]
with focus on short-horizon on-road driving scenarios exhibiting fast dy-
namics like leader following or swerving around dynamic obstacles.

2.6.3 Heuristic Graph Search Algorithms

Most search-based motion planning algorithms rely on the use of efficient
graph search algorithms. This is a vast research field of its own and an
exhaustive discussion is far beyond the scope of this thesis; however, in
order to understand the motivation and implications of the graph search
algorithm utilized in this thesis, a short overview will be given in the
following.

For DAGs, which emerge in pure time-parametrized planning methods,
the optimal solution can be computed with computation time linear in the
number of vertices due to the topological ordering based on time [Zie09].
However, time-parametrized planning for the entire motion is only fea-
sible for a relatively short time horizon as is the case, for example, in
planning for on-road driving. In an unstructured environment, where no
a priori information on the route to a distant goal is available, complete

31

Chapter 2. State of the Art

time-parametrized planning is computationally intractable. Unfortunately,
as soon as the time dimension is removed from some nodes in the graph,
cycles may occur. In this case, one must resort to generic algorithms that
are capable to find shortest paths in arbitrary directed graphs.

The oldest and most known graph search algorithms are Dijkstra’s
algorithm for finding shortest paths [Dij59] and its heuristic derivative
A* [Har68], which were invented already fifty years ago. Especially heuris-
tic methods are very attractive for application to mobile robot motion plan-
ning because the structure of the state space with its embedded xy-plane
allows for a simple and intuitive definition of a well-informed heuristic
based on the Euclidean distance to the goal. The term heuristic search is
somewhat misleading: heuristic graph search algorithms always find the
optimal solution; the heuristics are only used to speed up the planning by
guiding the search toward the goal. In fact, it can be even proved that A* is
optimally efficient for any given heuristic function, which means that there
is no other optimal algorithm that is guaranteed to expand fewer nodes
than A* [Rus95].

After a long time of moderate activity, research in the field of heuris-
tic graph search algorithms for robot motion planning applications has
gained pace in the decade and brought a plethora of new algorithms. A
comprehensive overview can be found in the survey “Heuristic search
comes of age” [Stu12]. Besides static planning like A*, heuristic graph
search algorithms for robot motion planning can be roughly categorized
into incremental replanning algorithms, anytime algorithms, and anytime
replanning algorithms [Fer05].

Incremental replanning algorithms

Incremental replanning algorithms, often just called replanning algorithms,
are designed for repeatedly planning paths in a changing environment. Af-
ter the initial planning phase, in each planning cycle, the algorithms try to

32

2.6. Search-Based Planning

repair the solution obtained during the previous planning cycle in order to
make it consistent with the changed graph. If only a small fraction of the
graph has changed during two planning cycles, this repairing may be con-
siderably faster than planning from scratch. Popular members of this class
of algorithms are the D* [Ste94] and D* Lite [Koe05] algorithms, where
“lite” refers to the simpler implementation of the latter without sacrificing
efficiency. Specifically for planning shortest paths in gridmaps, the Field D*
algorithm [Fer06b] has been developed. It can plan paths that lead through
any point on the edge between two adjacent cells and is thus not restricted
to the cell centers. This allows motions with arbitrary angles that are not
restricted to grid-inherent 45° steps. This generally leads to smoother and
hence shorter geometric paths through a grid map. A different approach
is used by the Adaptive A* algorithm [Koe06]. It incrementally improves
the heuristic after each planning cycle by exploiting information from the
optimal solution of the previous planning cycle. This concept is further
extended by the Multipath Adaptive A* (MPAA*) [Her14], which can addi-
tionally reuse parts of the previous solution that are still valid despite the
changed environment. A similar replanning strategy is also known from
sampling-based motion planning algorithms like the Multipartite Rapidly-
exploring Random Tree (MP-RRT) [Zuc07].

Replanning algorithms usually perform a backward search from the
goal to the start because it is assumed that the goal is static and that the
robot is moving toward the goal. As a result, only the last part of the search
graph changes, which benefits the efficient incremental update of the so-
lution. For the intended application in this thesis, incremental replanning
algorithms have some severe disadvantages: Due to the backward search,
it is difficult to consider dynamic obstacles, since their prediction is based
on the elapsed time from the start state, which is not known until finally
reaching the start state during the backward search. The second drawback
is the fact that, depending on the extent of changes in the environment,

33

Chapter 2. State of the Art

the effort to repair a previous solution may exceed the effort for planning
from scratch. Thus, incremental replanning algorithms are usually capable
of reducing the average planning time, but, due to the overhead for book-
keeping, they tend to increase the worst case planning time. The latter
is, however, of particular importance in the presence of dynamic obsta-
cles since a timely availability of a valid obstacle avoidance maneuver is
essential for effective collision avoidance.

Anytime algorithms

Anytime algorithms constitute the second class of planning algorithms.
They focus on a quick initial solution, which may be suboptimal. This
solution is then iteratively refined until the maximum allotted computa-
tion time is exceeded for the current planning cycle or the optimal so-
lution is found. The simplest approach is the utilization of A* with an
increased heuristic inflation factor ϵ > 1, which focuses the search toward
the goal [Poh70]. This method is called Weighted A* and usually results in
a faster, albeit possibly suboptimal, solution. If there is computation time
left for the current planning cycle, the search is repeated with successively
reduced ϵ until finally the optimal solution is found for ϵ = 1 or, alterna-
tively, the time budget is exhausted. Planning each refinement step from
scratch, however, is unnecessarily expensive. This is why Anytime Re-
pairing A* (ARA*) has been proposed [Lik03a], which is capable of reusing
information from previous iterations (for details see Section 5.2.2). Once
again, the algorithm is based on the successive reduction of the heuristic
inflation factor ϵ until the optimal solution is found.

The rapid availability of a valid, i.e., collision-free, initial solution is
particularly important for motion planning in the presence of dynamic
obstacles. Even if this initial solution may be suboptimal, it is still a valid
solution and thus avoids collisions effectively. If the time budget allows, the
subsequent refinement steps can still provide the robot with the optimal

34

2.6. Search-Based Planning

solution. Besides the successive reduction of ϵ , the anytime strategy can be
further extended to return only partial solutions: The authors of [Piv09a]
start the search with an initially large goal region and then iteratively
reduce the size of the goal region whenever a state in the goal is about to
be expanded and if there is still some computation time left.

Anytime replanning algorithms

The third class of graph search algorithms contains the anytime replan-
ning algorithms, which combine the advantages of incremental replanning
and anytime algorithms. They are able to improve an initially suboptimal
solution in an anytime fashion and in addition can exploit information
from previous planning cycles. A prominent member of this class of algo-
rithms is Anytime Dynamic A* (AD*) [Lik05], which is compared to ARA*
in [Lik08]. The flexibility of anytime replanning algorithms is accompanied
by an increased implementation complexity and besides the advantages
they also inherit the disadvantages of incremental replanning algorithms,
namely the backward search from goal to start and the increased worst
case complexity if the environment has changed substantially. While the
latter is unlikely for on-road driving scenarios, unstructured environments
are more challenging in this respect. Consider for example a robot that
drives around the corner of a building: Suddenly a previously unknown
wall may come into view and thus change a large part of the occupancy
grid map.

The fact that almost all of the teams of the DARPA Urban Challenge used
A* or one of the above variants for planning in unstructured parking areas
[Dol10] shows that the application of heuristic graph search algorithms for
mobile robot motion planning has proved its worth in practice and forms
the backbone of virtually all state-of-the-art mobile robot motion planning
algorithms.

35

Chapter 2. State of the Art

2.7 Planning with Graduated Fidelity

Robot motion planning is computationally demanding because of the high-
dimensional search space commonly involved. This is why today most
research concentrates on making existing methods more efficient.

A multi-resolution path planner for relatively uncluttered high-dimen-
sional configuration spaces was proposed in [Boh01] for holonomic robots.
The algorithm iteratively refines an implicit grid until a collision-free path
is found or the final discretization size is reached.

Other methods exploit the fact that the requirements on planning ac-
curacy decrease with increasing distance from the robot. A combination of
a local trajectory generator, which simulates the vehicle’s dynamics for a
certain distance, and a simple global grid planner, which plans the remain-
ing path to the goal, was proposed in [Kel06]. This two-staged concept
was extended in [Kus09] to use a time-parametrized state lattice planner
for the local planning step. However, both methods are not able to find
kinematically feasible paths up to the goal because they only considered a
simple grid for the global planning.

Besides the combination of local and global planners, multi-resolution
state lattice methods have been developed, which apply a fine resolution
near the start and goal, and a coarse resolution in between [Lik09; Ruf09a].
The term graduated fidelity was introduced in [Piv08] to describe a plan-
ning strategy that may vary in resolution and dimensionality. The authors
proposed a planner that uses a four-dimensional (position, heading, and
curvature) state lattice in the vicinity of the vehicle and an eight-connected
grid (position only) elsewhere. Similar to the above-mentioned algorithms,
this generally leads to kinematically infeasible paths. Furthermore, their
proposed algorithm does not consider time-parametrized planning and is
thus inapplicable for true motion planning among dynamic obstacles. To
mitigate this problem, the authors propose a replanning approach in order
to increase the planning frequency [Piv09b].

36

2.8. Unresolved Issues

Path planning with adaptive dimensionality of the configuration space
was also applied in the context of robotic manipulation [Coh11]. The
approach is an extension to manipulation planning based on motion prim-
itives [Coh10]. Depending on the distance to the goal, motion primitives
with variable dimensionality are employed during a graph search, which al-
lows for precise end effector positioning while still providing good overall
planning performance.

The method suggested in [Goc11] exploits a hybrid-dimensional search
graph: The algorithm first plans a path with hybrid dimensionality and
then tries to track that path using a high-dimensional planning. The search
space dimensionality is adapted such that difficult regions are permanently
represented using high-dimensional states. The method was extended
in [Zha12] for application in changing environments. For this purpose, a
three-dimensional search space (position and heading) was used for the
high-dimensional planning and a simple two-dimensional search space
(position only) for the low-dimensional states. The method was applied
to planning for mobile manipulation in [Goc12] and extended to incorpo-
rate an incremental planning scheme in [Goc13]. These methods are pure
path planning methods and do not consider vehicle dynamics or dynamic
obstacles.

2.8 Unresolved Issues

The basic path planning problem (as defined in Section 1.1.1) can be consid-
ered solved thanks to the massive amount of research carried out in the last
decades [LaV11b]. However, especially for mobile robot applications, the
strong focus on configuration space planning is insufficient. The nonholo-
nomic nature of most mobile robots imposes complex restrictions on the
possible motions. This is in contrast to the case of well-known industrial
manipulator kinematics and requires the explicit incorporation of differ-
ential constraints during the planning. In addition, applications exhibiting

37

Chapter 2. State of the Art

fast dynamics usually require to plan high-dimensional trajectories consist-
ing of all relevant state variables. But for dynamic environments, even this
is still inadequate. In the presence of dynamic obstacles, these obstacles
have to be taken into account explicitly during the trajectory planning. For
this purpose, a temporal dimension needs to be added to the search space
so that the motion planning can check for collisions with the predicted
obstacles. All these requirements result in a high-dimensional planning
problem with challenging demands on planning responsiveness for safe
real-time operation. The common solution for this problem is the separa-
tion of the motion planning problem into several consecutive steps, e.g., a
coarse global path planning and a subsequent local trajectory generation
in order to track the global path and avoid collisions (see Section 2.3). This
separation leads to suboptimal results by design due to different optimiza-
tion scopes for global and local planning.

To this day, there exists no holistic resolution-optimal approach that
combines global path planning over long distances and multiple waypoints
with reactive local trajectory planning among moving obstacles in a uni-
fied, consistent, and convenient way.

To quote Steven M. LaValle [LaV11b]:

[D]ifferential constraints, feedback, optimality, sensing un-
certainty, and numerous other issues continue to bring ex-
citing new challenges. In some sense, combining the com-
ponents [. . .] leads to merging planning and control theory.
Thus, the subject of planning at this level might just as well
be considered as algorithmic control theory in which con-
trol approaches are enhanced to take advantage of geometric
data structures, sampling-based searching methods, collision-
detection algorithms, and other tools familiar to motion plan-
ning. The wild frontiers are open, and there are plenty of
interesting places to explore.

38

Chapter 3

Multi-Resolution State
Lattices with Hybrid
Dimensionality

As was pointed out in Section 2.8, the limited integration of global and
local planning in today’s algorithms is a big issue on the way to powerful
mobile robot navigation methods. This thesis presents an approach that
tackles the problem of separated local motion and global path planning by
introducing a unified, consistent method for mobile robot motion planning
in unstructured, dynamic environments. The method builds on the concept
of planning in state lattices that was described in-depth by Pivtoraiko,
Knepper, and Kelly in [Piv09c].

There are basically two possibilities for search-based motion planning
algorithms: One class (e.g., Hybrid A*) obtains the discrete search space by
directly discretizing the input space of the robot. This generally leads to a
set of reachable states that forms a tree (see Figure 3.1). The other class of

39

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

Start

Figure 3.1: Uniform input sampling: the reachable set forms a tree.

algorithms directly discretizes the state space and subsequently constructs
robot controls that move the dynamical system between those discrete
states; thus, the resulting reachable set forms a lattice (see Figure 3.2).
The significant advantage of this lattice structure is that it reduces the
branching factor of the associated search graph because the number of
states in a certain region of the state space is bounded. Thus, different
path hypotheses might be merged again during the graph search. Details
on the state of the art regarding planning in state lattices can be found in
Section 2.6.2.

Planning trajectories to distant goals is computationally expensive.
Therefore, current algorithms either consider only a very short time hori-
zon for time-parametrizedmotion planning and then fall back to a kinemat-
ically infeasible grid search [Kus09], or they operate in a confined search
space only, e.g., in on-road-only planning scenarios [Zie09]. The method
proposed in this thesis extends the ordinary state lattice planning scheme
with a search space representation consisting of variable resolution and
dimensionality. This reflects the idea of decreasing relevance of certain
state variables with increasing distance and time from the robot’s current
state.

40

3.1. Overview of the Planning Concept

Start

Figure 3.2: Uniform state sampling: the reachable set forms a lattice.

3.1 Overview of the Planning Concept

This section gives a short overview on the concept of the motion planning
algorithm proposed in this thesis in order to provide some guidance on the
relevance of the following sections in the overall context. The planning
algorithm can be roughly split into four major parts.

Construction of discrete search space

In a first step, the transition from a continuous state space to a discrete
representation of the search space is made. This discrete representation is
called a state lattice, which gave this class of motion planning algorithms
its name. Sections 3.2 to 3.4 describe the procedure for obtaining this
discrete representation from a continuous state space.

Sampling of motion primitives

Next, a method to move the dynamical system along the quantized states
is developed. For this purpose, motion primitives are employed that are
guaranteed to start and arrive at quantized states only while still correctly

41

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

capturing the robot’s dynamics. The generation of such motion primitives
is explained in detail in Section 3.5.

Introduction of varying resolution and dimensionality

Near the robot, time-parametrized planning is performed with maximum
fidelity in order to incorporate the robot’s dynamics and dynamic obstacles
thanks to an explicit representation of time for the imminent future. A
systematic gradual fidelity reduction (in terms of both dimensionality and
resolution) allows for fast planning speed while maintaining kinematic
feasibility throughout the whole solution (see Sections 3.6 and 3.7). This
is even true for far-distant regions, where alternative algorithms often fall
back to a mere grid search.

Search in the lattice

By concatenating the motion primitives, the motion planning problem can
finally be reduced to an ordinary search for the shortest path in a graph,
for which a variety of well-known algorithms exists. Particular attention
is payed to the seamless integration of regions with different fidelity into
one consistent graph. The proposed planning algorithm produces hybrid
solutions being partly trajectory and partly path (see Chapter 5).

3.2 State Lattices

A latticeΛ is a discrete subset of a vector space and the generalized concept
of a grid. For the vector spaceRn , a lattice can be specified as (see [Buh08])

Λ =



m∑
i=1

kibi
������
ki ∈ Z



, m ≤ n (3.1)

42

3.2. State Lattices

and thus consists of regularly spread points defined by all possible inte-
ger combinations ofm linearly independent basis vectors bi ∈ Rn . It was
proven in [Bic02] that the reachable set of a dynamical system represented
in chained form can be constrained to a lattice if the set of admissible con-
trols is chosen appropriately. However, the practical implications of this
property are rather limited. In the context of mobile robots, it was shown
in [Ruf10] that the necessary transformation of the system equation to
its chained form representation induces an unfavorable irregularity of the
quantization of some states, and to make matters even worse, the quanti-
zation of some states becomes configuration-dependent, e.g., the steering
angle quantization becomes dependent on the heading.

In order to achieve a more evenly distributed discretization, the follow-
ing notion of a state lattice is less rigorous compared to the strict mathemat-
ical formulation (3.1) of a lattice. In this thesis, the term state lattice is used
to describe a discrete subset of the robot’s state space S . A state lattice L
covers the whole state space and can be thought of as some kind of state
space quantization. It is possible to define irregular custom quantization
values for certain dimensions of S (e.g., for heading or velocity); however,
it might be advantageous to use a regular pattern, whenever possible, for
a more concise representation of feasible motions (see Section 3.5).

A state lattice is constructed by discretizing the set of admissible val-
ues for each state variable si of the state vector1 s ∈ S individually and
subsequently combining the respective sets. Let Si be the quantized set of
admissible values for the state variable si . The quantization can be per-
formed in multiple ways. The straightforward approach is to use a regular
discretization scheme

Si := {
kδsi

�� k ∈ Z
} (3.2)

1. In the remainder of this thesis, the state vector s = [s1 s2 . . .]⊤ will often be more
generally considered as a tuple and thus written s = (s1, s2, . . .).

43

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

with δsi being the quantization step size for state variable si ; thus, Si it-
self is a one-dimensional lattice in the mathematical sense. However, any
other quantization scheme is also possible. The most general discretization
approach is the explicit enumeration of quantization points s̃i,k for a state
variable si :

Si := {
s̃i,1, s̃i,2, s̃i,3, . . .

}
. (3.3)

After discretizing each of then dimensions of the state space S individually,
the state lattice L, embedded in S , is defined by the Cartesian product of
all one-dimensional sets Si of admissible values:

L :=
n∏
i=1

Si . (3.4)

The quantized states constituting the state lattice are called lattice points

s̃ ∈ L ⊂ S . (3.5)

They are decoratedwith a tilde to disambiguate them from their continuous
counterparts.

For the application of a discrete search space to an actual (i.e., continu-
ous) planning problem, it is necessary to develop means for the transition
from continuous states to discrete states. Therefore, in order to find the
nearest lattice point s̃ for a continuous state s, the mapping

λ : S → L

s 7→ arg min
s̃∈ L

µ (s, s̃) (3.6)

is introduced. Thus, the nearest quantized state is obtained by minimizing
its distance to the continuous state based on a metric

µ : S × S → R (3.7)

44

3.2. State Lattices

that appropriately reflects the topology of the search space. An example
is given in Section 3.4.

Utilizing the metric (3.7), the quantization error eq can be defined as
follows:

eq : S → R

s 7→ µ (s,λ(s)) .
(3.8)

It quantifies how well the continuous state s can be represented by a dis-
crete state from L, i.e., the quantization error can be considered to be the
generalized distance from the state s to its nearest discrete state s̃ = λ(s)
that is part of the state lattice.

Finally, a trajectory that connects the quantized start state

s̃s = λ(ss) (3.9)

with the discrete goal region

S̃g =
{
λ(s) ��� s ∈ Sg

}
(3.10)

can be specified as a sequence

(s̃k) = (s̃0, s̃1, . . . , s̃K) , s̃k ∈ L, k = 0, . . . ,K (3.11)

with s̃0 = s̃s and s̃K ∈ S̃g. Two consecutive states s̃k and s̃k+1 are linked in
a particular manner using motion primitives in order to guarantee that the
trajectory (3.11) correctly represents a feasible motion of the dynamical
system. This is explained in depth in Section 3.5.

45

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

3.3 State×Time Lattices

The planning concept proposed in this thesis addresses path planning to
possibly far goals as well as motion planning among moving obstacles
in a dynamic environment. As was pointed out in Section 2.3, these two
kinds of planning are commonly tackled separately. This is due to the large
computational burden that results from the required dimensionality of the
search spaces and the associated combinatorial complexity.

For planning in dynamic environments, it is at least necessary to in-
clude the temporal dimension in the search space so that the planning
algorithm can check for collisions with predicted obstacles at any future
point in time. If there exist further differential constraints for the robot’s
motion—as is the case with most mobile robot applications—more dimen-
sions have to be introduced to properly reflect the robot’s dynamics. Those
additional dimensions are equivalent to time-derivatives of the robot’s con-
figuration and are already encoded in the robot’s state space S . The tempo-
ral dimension, however, has to be taken care of separately. For this purpose,
the concept of state lattices is extended to the concept of state× time lattices
in the following.

Without loss of generality, it can be assumed that the trajectory which
is to be planned starts at an initial time t0 = 0. The trajectory evolves with
time strictly increasing, thus the set

T := { t ∈ R | t ≥ 0 } (3.12)

denotes all future points in time (including the starting point t0 = 0) for
which a trajectory might be defined. Similar to the quantization of the
individual state space dimensions, the temporal dimension has to be dis-
cretized in order to be incorporated into a search-based planning algorithm.
Although it is possible to choose an arbitrary quantization scheme, a reg-
ular discretization simplifies the construction and handling of the motion

46

3.3. State× Time Lattices

primitive sets (see Section 3.5.3) without introducing any limitations on
the planning problem. Therefore, the set of quantized points in time, T , is
defined as follows throughout this thesis:

T := { kδt | k ∈ N0 } . (3.13)

Analogously to the regular discretization scheme (3.2) for state variables,
δt denotes the increment between two quantized points in time. The choice
of δt naturally depends on the dynamics of the considered robotic system.

On the basis of the above definitions, the search space can be finally
extended with a temporal dimension to form a state× time lattice. Since
the resulting elements of the search space are given by all combinations of
every quantized state with every quantized point in time, the state× time
lattice L′ is defined by

L′ := *
,

n∏
i=1

Si+
-
×T . (3.14)

Thus, a state× time lattice is represented by the Cartesian product of the
regular state lattice (3.4) and the set of quantized points in time (3.13).

The elements of the state× time lattice can be thought of as ordered
pairs

(s̃, t̃) ∈ L′ ⊂ S × T (3.15)

with t̃ ∈ T denoting a quantized point in time. Similar to regular state
lattices, it is necessary to provide amapping of a continuous state s together
with a continuous point in time t to the nearest point of the corresponding
state× time lattice. Thus, by analogy to (3.6), the mapping

λ′ : S × T → L′

(s, t) 7→ arg min
(s̃, t̃)∈ L′

µ ′(s, t , s̃, t̃) (3.16)

47

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

is introduced, which now also includes the temporal dimension in the
corresponding metric

µ ′ : S × T × S × T → R . (3.17)

As previously stated, the start time of the trajectory which is to be planned
can be set to t = 0 without loss of generality. This results in a quantized
start state-time pair

(s̃s, 0) = λ′(ss, 0) . (3.18)

If the time of arrival at the goal region is left unspecified as a free parameter,
a trajectory that explicitly associates a discrete point in time with each
quantized state can be written as the sequence(

(s̃, t̃)k
)
=

(
(s̃, t̃)0, (s̃, t̃)1, . . . , (s̃, t̃)K

)
, (s̃, t̃)k ∈ L′ , (3.19)

where (s̃, t̃)0 = (s̃s, 0) and (s̃, t̃)K ∈ S̃g × T with S̃g defined according to
(3.10).

3.4 Case Study: Mobile Robot
Motion Planning

The previous two sections described the theory for constructing state×
time lattices regardless of a specific application. Planning in state× time
lattices is a universal concept and not limited to a particular kind of dy-
namical systems. However, this thesis focuses on the development of a
motion planning method for mobile robots. For the sake of clarity and to
demonstrate the practical applicability of the proposed concept, the devel-
oped motion planning method will be illustrated by the application to an
exemplary robotic platform throughout this thesis.

48

3.4. Case Study: Mobile Robot Motion Planning

3.4.1 Robot Model

The motion planning algorithms proposed in this thesis have been devised
in order to extend the autonomous driving capabilities of robotic platforms
developed at Fraunhofer IOSB. The unmanned ground vehicle IOSB.ampQ2
is a wheeled mobile robot with four-wheel steering. Details on the design,
equipment, and capabilities of this robot are given in Section 6.4.

The robot’s dynamical model, which is used for the actual motion plan-
ning, can be specified as a system of differential equations [Pet13c]:

ẋ (t) = v (t) cosθ (t)
ẏ (t) = v (t) sinθ (t)
θ̇ (t) = κ v (t) tan β (t)
v̇ (t) = a(t)

(3.20)

This is an incarnation of the generic nonlinear system model (1.7) with
state

s = (x ,y,θ ,v) (3.21)

and input
u = (a, β) . (3.22)

The state variables x and y denote the robot’s position, θ the orientation
andv the scalar velocity in driving direction. The kinematical constant κ is
twice the inverse of the wheelbase (see Figure 3.3). The system’s inputs are
given by the acceleration a in driving direction and the steering angle β . Of
course, the system equations could be extended to include further deriva-
tives like jerk or steering velocity. However, the chosen model suffices for
the computation of smooth trajectories and allows for a straightforward
exemplification of the proposed planning concept.

49

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

v , a

W
he
elb

as
e

β

β

θ

y

x

Figure 3.3: Instantaneous kinematics for a mobile robot with four-wheel steering. The
geographical coordinate system used in this thesis follows the north-east-down (NED) con-
vention, which is why the x -axis points upward and the y-axis to the right. Note that this is
still a right-handed coordinate system.

3.4.2 Construction of State×Time Lattice

Using the exemplary motion model described in the previous section, this
section shows how the construction of a state× time lattice is performed
in practice. For this purpose, the structure of the state space corresponding
to the system model (3.20) needs to be first analyzed. The associated state
space S consists of the sets of admissible values for each state variable,
which are discussed individually in the remainder of this section.

50

3.4. Case Study: Mobile Robot Motion Planning

Position

The state variables x and y, which denote the position of the robot, are
only limited by the size of the environment (or the range of the robot).
Thus, for the state lattice construction, the position of the robot can be
considered unbounded, i.e., x ∈ R and y ∈ R.

Since—a priori—no position is preferred over another, it is reasonable
to discretize the robot position in a uniform manner according to the gen-
eral scheme (3.2). Thus, the sets of quantized x-positions X and quantized
y-positions Y can be specified by

X :=
{
kδxy

��� k ∈ Z
}
, (3.23)

Y :=
{
kδxy

��� k ∈ Z
}
. (3.24)

Both x- and y-position use the same increment δxy because no direction
is preferred over the other.

Heading

The robot’s heading is represented by the angle θ . Its value is in the in-
terval [0, 2π) together with the additional identification of 0 and 2π . This
representation is homeomorphic to the one-dimensional manifold

S1 =
{
(x ,y) ∈ R2 ��� x

2 + y2 = 1
}
, (3.25)

which is the unit circle, and which in turn is homeomorphic to SO (2), the
set of all 2D rotation matrices, called the special orthogonal group [LaV06].
The consideration of this particular topological structure is especially im-
portant for the definition of the metric (3.7), which needs to be defined for
the state space (see Section 3.4.3).

At first glance, it may seem convenient to quantize the admissible head-
ing values in a uniform fashion according to (3.2). Thus, the set of quantized

51

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

(a) Uniform quantization (nθ = 16). (b)Optimized for smooth motion.

Figure 3.4: Heading quantization strategies.

heading values would be given by

Θuni :=
{
i
2π
nθ

�����
i ∈ N0 ∧ i < nθ

}
,

nθ
4 ∈ N

+ . (3.26)

The parameter nθ denotes the total number of discrete headings. It is
beneficial to specify it as a multiple of 4 in order to exploit the rotational
symmetry of theX ×Y sub-lattice with respect to the angle 2π/4. However,
the uniform quantization strategy has one major drawback: As soon as the
number of discrete headings nθ is chosen to be greater than 8, the robot
may not be able to travel along points of the X × Y sub-lattice in straight
motion. Instead, the robot needs to move along a wiggly line in order
to reach a lattice point with a heading identical to the starting point (see
Figure 3.4a).

Since discretizing the heading in a uniformway prevents straightmove-
ments, one should choose a discretization scheme that explicitly enables
the robot to move along lattice points with constant heading as suggested
in [Piv09c]. This can be achieved by defining the set of quantized heading

52

3.4. Case Study: Mobile Robot Motion Planning

values according to the non-uniform discretization scheme

ΘZ :=
{

atan2(i, j) ��� (i, j) ∈ Z × Z ∧ (i, j) , (0, 0)
}

(3.27)

with atan2 being the quadrant-aware arctangent function. Depending on
the desired number of discrete heading values, the actual pairs (i, j) are
restricted to a subset of Z × Z for practical applications. The example in
Figure 3.4b shows this non-uniform heading quantization strategy for pairs
(i, j) ∈ { 0,±1,±2 } × { 0,±1,±2 } \ { (0, 0) }, which results in a total number
of |ΘZ | = 16 unique discrete heading values. In this way, all sets ΘZ

of discrete heading values obtained by (3.27) guarantee by design that a
straight motion of the robot with constant heading θ̃ ∈ ΘZ leads through
points of the X × Y sub-lattice. The remainder of this thesis assumes the
use of this non-uniform discretization scheme, and therefore ΘZ will be
briefly denoted by Θ.

Velocity

The robot’s velocity v is limited by the physical capabilities of the robotic
platform. Therefore, admissible values for the velocity are generally given
by v ∈ [vmin,vmax] ⊂ R. The interval may be directly inferred from the
physical limitations of the platform or deliberately restricted to a subset
of physically possible velocities. For example, the lower bound may be
chosen to bevmin = 0 in order to allow only forwardmotions in a particular
scenario (e.g., driving on highways).

Various discretization schemes can be applied to obtain the set of quan-
tized velocitiesV . The simplest approach is to use the regular discretization
scheme (3.2) with the additional constraint V ⊂ [vmin,vmax]. However, it
might be beneficial to explicitly enumerate the discrete velocity values

53

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

following the scheme (3.3):

V := { ṽ1, ṽ2, . . . } ∪ { 0 } . (3.28)

This allows for fine-grained planning in the anticipated range of veloci-
ties while considering velocities in less likely ranges with lesser sampling
density. This reduces planning complexity considerably.

Whatever the chosen discretization scheme is, if the robot is operating
in a dynamic environment, the robot has to be able to come to a stop in
order to let other dynamic objects pass. This implies that ṽ = 0 has to be
included in the set of admissible discrete velocities (3.28).

Time

The quantization of time has already been discussed in detail in Section 3.3.
Likewise, the exemplary state lattice employs the uniform quantization
strategy (3.13), which is restated here for the sake of completeness:

T := { kδt | k ∈ N0 } . (3.29)

Bringing it all together

The previous sections explained how the individual dimensions of the
state× time space can be converted to their discretized counterparts. On
this basis, the entire state× time lattice L′ can finally be composed accord-
ing to (3.14) by the Cartesian product of the respective discrete sets for
each dimension:

L′ = X × Y × Θ ×V ×T . (3.30)

This section has described the basic procedure for the construction of a
state× time lattice using an example of a use case for mobile robot motion
planning. This state× time lattice also constitutes the basis for the imple-

54

3.4. Case Study: Mobile Robot Motion Planning

−2π −π 0 π 2π
0

π

θ − θ ′

µ Θ
(θ
,θ
′)

Figure 3.5:Metric for the set of robot headings

mentation and evaluation of the motion planning algorithm proposed in
this thesis. The specific parameter values used for the discretization are
described in Chapter 6 together with the corresponding results.

3.4.3 State Space Metric

It was mentioned in Section 3.3 that for each state× time space a corre-
sponding metric has to be defined in order to transform the continuous
planning problem into a discrete form. This metric depends on the topo-
logical structure of the planning space and this section explains how an
appropriate metric can be defined for the state× time space in the mobile
robot case study.

Special attention must be paid to the heading dimension, which is
homeomorphic to the special orthogonal group SO (2). A possible metric
for SO (2) is the traveled distance on the unit circle S1 between two angles.
Because of the identification of the angles 0 and 2π , this metric can be
defined by (see [LaV06])

µΘ (θ ,θ
′) := min {|θ − θ ′ |, 2π − |θ − θ ′ |} (3.31)

and is depicted in Figure 3.5.
Furthermore, the following relation holds [LaV06]: Let (Xi , µXi (xi ,x

′
i)),

i = 1, . . . ,n be nmetric spaces consisting of the setsXi with corresponding

55

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

metrics µXi (xi ,x
′
i). Moreover, let Z =∏n

i=1 Xi be the Cartesian product of
the sets Xi . Then

µZ (z, z′) = *
,

n∑
i=1

(
ci µXi (xi ,x

′
i)
)p+

-

1/p

(3.32)

with z = (x1, . . . ,xn), ci > 0, and p ∈ N+ is a metric for Z . The positive
constants ci can be chosen arbitrarily and function as scale factors for the
respective sets Xi .

With (3.32), the metric (3.17) for the sample state× time space in the
mobile robot case study can be composed of the metrics for each individual
dimension. Thus, one possible metric is

µ ′ : S × T × S × T → R

(s, t , s′, t ′) 7→
(
(cx |x − x ′ |)2 + (cy |y − y ′ |)2

+ (cθ µΘ (θ ,θ
′))2 + (cv |v −v ′ |)2

+ (ct |t − t ′ |)2
)1/2

(3.33)

with s = (x ,y,θ ,v). In this metric, µΘ (θ ,θ ′) is defined according to (3.31)
for the heading dimension. The remaining dimensions of S × T employ
the standard Euclidean metric. The constants cx , cy , cθ , cv , and ct are used
to tune the ratio of the individual metrics, which is equivalent to scaling
the respective dimensions. This is necessary because the metric (3.33)
consolidates the different quantities represented by each dimension in a
single expression. The state-space-only metric (3.7) can easily be derived
from (3.33) by

µ (s, s′) := µ ′(s, t , s′, t ′) |t=t ′ . (3.34)

56

3.5. Lattice-Conforming Motion

3.5 Lattice-Conforming Motion

The previous section illustrated the methods to derive a discrete search
space representation, namely a state× time lattice, from its continuous
counterpart. In contrast to regular path planning approaches operating in
C-space only, the algorithm proposed in this thesis shall be able to obey
the differential constraints of an arbitrary dynamical model (1.7). For this
purpose, the following sections formulate the concept of motion primitives,
which provide the basis for motion through the state× time lattice.

3.5.1 Motion Primitives

A motion primitive is a rule that moves the dynamical system from a time-
augmented start state (s̃, t̃) ∈ L′, located at a point of the state× time lattice,
to a new time-augmented state (s̃′, t̃ ′) ∈ L′, which remains a member of
the state× time lattice. Let

s(t) = Φ(s0, t0, u, t), t ≥ t0 (3.35)

denote the evolution of the dynamical system (1.7) starting at state s0 and
time t0, with input u(τ) applied until time t . The evolution can be defined
by means of (1.9) as follows:

Φ(s0, t0, u, t) := s0 +

t∫
t0

f (s(τ), u(τ)) dτ . (3.36)

For the system’s evolution the following two properties hold:

1. After a zero-length duration, the dynamical system is still in its start
state, i.e.,

Φ(s0, t0, u, t0) = s0 . (3.37)

57

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

This proposition is immediately clear from the definition (3.36).

2. The evolution over a period [t0, t2] can be calculated either at once
or by concatenation, i.e.,

Φ(s0, t0, u1 + u2, t2) = Φ(Φ(s0, t0, u1, t1), t1, u2, t2) (3.38)

with t0 ≤ t1 ≤ t2 and uk (τ) = 0 for τ ∈ R \ [tk−1, tk), i.e., the
input uk (τ) is only active during the time interval [tk−1, tk) and zero
otherwise.

Proof. Substituting (3.36) into the left-hand side of (3.38) gives

Φ(s0, t0, u1 + u2, t2) = s0 +

t2∫
t0

f (s(τ), u1 (τ) + u2 (τ)) dτ

= s0 +

t1∫
t0

f (s(τ), u1 (τ)) dτ

︸ ︷︷ ︸
Φ(s0,t0,u1,t1) = s(t1)

+

t2∫
t1

f (s(τ), u2 (τ)) dτ

= Φ(Φ(s0, t0, u1, t1), t1, u2, t2) ,

which is the right-hand side of (3.38). □

Hence, a state s(tK) can be obtained by successively integrating over
the intervals [tk−1, tk] for k = 1, . . . ,K . The intermediate states s(tk)
evaluated during the integration can be collected into the sequence

T :=
(
(s, t)k

)
=

(
(Φ(s0, t0, u, tk), tk)

)
. (3.39)

of state× time pairs, which represents the system’s trajectory for the
applied input u.

58

3.5. Lattice-Conforming Motion

A motion primitive is always associated with a particular start state s̃0 ∈ L.
Throughout this thesis, it is assumed that the dynamical system of the
robot, and hence the corresponding state evolution (3.36), is time-invariant,
i.e.,

Φ(s0, t0, u(τ), t) = Φ(s0, t0 + δτ , u(τ + δτ), t + δτ) (3.40)

holds for all time delays δτ . Thus, all motion primitives can safely be
defined to start at time t̃0 = 0 and can later be translated in time when
needed.

Now a motion primitivem starting at s̃0 ∈ L can be formally defined
as the tuple

m := (s̃0, s̃e, u,T,∆tm) (3.41)

such that
s̃e = λ(Φ(s̃0, 0, u,∆tm)) (3.42)

with ∆tm being the duration of the motion primitive, u : [0,∆tm) → U
being the system’s input during the time interval [0,∆tm), and T being
the trajectory (3.39) associated with the motion primitive. The state s̃e
denotes the discrete end state of the motion primitive and can be obtained
by discretizing the last state of the trajectory T. In order to be able to
represent smooth motion of the dynamical system through the discrete
lattice, the quantization error eq (Φ(s̃0, 0, u,∆tm)) of the end state needs to
be as small as possible (and should ideally vanish). As a consequence, the
construction of a motion primitive involves the solution of a boundary
value problem (BVP) for the system equation (1.7). The generation of
motion primitives is explained in detail in Section 3.5.4.

3.5.2 Motion Primitive Bunches

In general, there are many motion primitives all sharing the same start
state s̃0 but having different duration and inputs and thus lead to different

59

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

s̃0

Figure3.6: Samplemotion primitive bunch for a simple 2D robotwith eight discrete headings.

end states. These motion primitives are grouped in the set

B(s̃0) := {m |m starts at s̃0 } , (3.43)

which will be called a bunch due to its characteristic shape (see Figure 3.6).
In order to be able to perform arbitrary motions based on motion primi-

tive chaining, in theory each discrete state s̃ requires a distinct correspond-
ing motion primitive bunch. However, this is impossible in practice since
the number of possible discrete states is generally unbounded. Fortunately,
especially in mobile robotics, many dynamical models exhibit a form of
translational invariance with respect to some state variables, which is the
driving idea for the lattice representation of the state space. In this context
translational invariance means that it does not matter whether a state vari-
able is translated before or after the system’s input is applied (cf. [Fra05]).
In both ways, the dynamical system will be in the same state after inte-
gration. Formally speaking, the dynamical system is translation-invariant
with respect to the state variable si if the relation

Φ(s0 + δs, t0, u, t) = Φ(s0, t0, u, t) + δs (3.44)

60

3.5. Lattice-Conforming Motion

holds for arbitrary values of δsi , where δsi is the i-th component of the
translation vector δs and corresponds to the state variable si .

The dynamical model from the case study in Section 3.4 exhibits trans-
lational invariance with respect to the position variables x and y since
f (s, u), as defined in (3.20), does not depend on x or y, meaning the result
of the integral in (3.36) is also independent of x and y. Thus, condition
(3.44) holds for all δs = (δx ,δy, 0, 0) with δx ,δy ∈ R. The translational
invariance of the position state variables considerably reduces the number
of motion primitive bunches that are necessary to represent all admissible
motions. The sample application requires a motion primitive bunch only
for every combination of discrete heading and velocity values. The starting
position of the bunches can be safely set to be x0 = y0 = 0. The actual
position of the robot can be computed by applying the motion primitive
first (i.e., integrating the system model) and afterward adding the start
offsets x0 andy0 to the system’s state. Thus, in this example, a bunch B(s̃0)

can be more concisely denoted by B(θ̃0, ṽ).

3.5.3 Motion Primitive Sets

The aggregate of all motion primitive bunches for all possible start states
s̃ ∈ L forms the motion primitive set M corresponding to the lattice L.
A motion primitive set completely defines the admissible motion of the
dynamical model through the corresponding state lattice and is constructed
by

M :=
⋃
s̃∈L

B(s̃) . (3.45)

As mentioned in the previous section, it is not necessary to explicitly com-
pute and maintain a motion primitive bunch for all potential start states if
some state variables exhibit translational invariance. This applies to whole
motion primitive sets, too. For example, the motion primitive set corre-
sponding to the state lattice from the mobile robot sample application (see

61

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

Section 3.4) is more appropriately represented by

M :=
⋃
θ̃ ∈Θ
ṽ ∈V

B
(
θ̃ , ṽ

)
. (3.46)

The total number of necessary motion primitive bunches, in order to fully
define all feasible motions in this sample state lattice, is thus given by
|Θ ×V | = |Θ| × |V |.

3.5.4 Sampling of Motion Primitive Sets

The previous sections have introduced the notion ofmotion primitives,mo-
tion primitive bunches and motion primitive sets and explained how they
can be used to define a lattice-conforming motion of the associated dy-
namical model. However, it has not been discussed yet how these motion
primitives are actually constructed. This section describes the various pos-
sibilities for motion primitive construction and presents the method that
was developed in the context of this thesis and implemented for the sample
mobile robot application.

The sampling of motion primitives is an offline process, i.e., it is per-
formed only once before the actual planning takes place. The resulting
motion primitive set is then stored and exploited during the online plan-
ning phase. The shift of time-consuming computations from the planning
phase to an upstream offline phase is a key part of the motivation for
planning in state lattices.

Usually, motion primitives are constructed for one bunch at a time.
According to the definition (3.41), constructing a motion primitive means
finding an input u(t) which, when applied for the duration ∆tm ∈ T , moves
the dynamical system to a state s̃(∆tm) ∈ L, which again is part of the
state lattice. Generally, there is an infinite number of potential endpoints
and thus motion primitives, so that a representative subset needs to be

62

3.5. Lattice-Conforming Motion

determined. A widely used approach is to directly choose the set of desired
end states s̃(∆tm) ∈ L and then compute the corresponding inputs u(t) that
move the dynamical system to these states. This constitutes a classic BVP,
which usually needs to be solved by numerical methods.

The construction of motion primitives for planning in state lattices was
first mentioned in Pivtoraiko’s technical report [Piv04], which introduced
the concept of motion planning in state lattices. The employed method,
presented in detail in [Piv05a], uses curvature polynomials computed by
inverse path generation based on the algorithm proposed in [Kel03]. It
formulates the motion primitive construction as the solution of an optimal
control problem (OCP) by using a variant of Newton’s numerical optimiza-
tion algorithm. However, the method produces only geometric motion
primitives (i.e., paths) without velocity or time component. Nonetheless,
this motion primitive construction method proved very efficient and has
been the basis for more advanced techniques like construction of motion
primitives suitable for kinodynamic planning [Piv11]. All of these tech-
niques generally rely on the availability of a BVP solver for the differential
equation describing the dynamical model of the robot. However, such a
solver may be difficult to obtain for complex dynamical systems. An ad-
ditional challenge is the a priori choice of desired end states. It is hard to
tell beforehand which end states and hence motion primitives should be
contained in a motion primitive bunch.

Optimal sampling of paths has been an active research field of its own
in the past decade. There is an immanent trade-off between the total num-
ber of motion primitives (fewer motion primitives result in faster planning
speed) and the exact representation of the system’s dynamics (higher fi-
delity means better solution quality). The authors of [Gre07] proposed a
method to minimize the dispersion of paths, i.e., maximize their diversity,
at the cost of solution optimality. A similar approach, presented in [Bra08],
maximizes path diversity based on the survival probability of paths among

63

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

obstacles in a grid-world. The method was extended in [Eri09] to arbitrary
environments. The authors also underline the difficulty to determine the
appropriate number of necessary motion primitives by stating that it is not
clear whether the determining factor is the dimension of the state space,
the dimension of the control space, or a combination of both. The qual-
ity of path sets obtained by different sampling strategies was compared
in [Kne09]. The authors found that random subsets of the full path set may
performmuch better andmuch worse compared to the respective sampling
strategies. The actual performance is difficult to determine a priori: e.g., al-
though most random subsets showed poor performance, the best random
subset turned out to be superior to the Green-Kelly approach [Gre07].

Since sampling of optimal path sets has been comprehensively studied
by many researchers, it is not the focus of this thesis. Instead, this thesis
concentrates on methods to build an efficient search space representation
for high performance motion planning. These methods are independent
of the motion primitive sampling procedure. Nonetheless, the planning
method proposed in this thesis requires the availability of appropriate mo-
tion primitive sets, too. The goal of this thesis is a highly generic planning
method and this is why a motion primitive sampling approach has been
developed that is capable of producing motion primitive sets for arbitrary
dynamical systems.

Generic sampling approach

The algorithm developed in this thesis is based on probabilistic sampling
of a large number of possible motion primitive candidates [Pet14]. The
method applies forward integration only. Thus, it is not necessary to solve
a BVP, which can be very demanding depending on the complexity of the
dynamical system. The only prerequisite is the capability to compute the
state evolution (3.36) for a given start state and system input. Each motion
primitive bunch is constructed separately, which allows for efficient paral-

64

3.5. Lattice-Conforming Motion

lelization of the algorithm. The final motion primitive set M is obtained
by consolidating all bunches in a common set according to (3.45).

The algorithm for sampling a bunch B(s̃0) consists of two phases: Dur-
ing the exploration phase, feasible motion primitives are added to the bunch.
During the subsequent consolidation phase (and also already during the ex-
ploration phase), the previously sampled motion primitives are constantly
optimized. The detailed steps of the algorithm are as follows:

1. Create an initially empty bunchB(s̃0) = ∅, and choose themaximum
duration of a motion primitive ∆tm,max = nmaxδt with nmax ∈ N+.
Furthermore, specify the total number Ntotal of samples to be eval-
uated for this bunch as well as the number of samples in the explo-
ration phase, Nexpl, where Nexpl < Ntotal. Now perform the following
steps Ntotal times to simulate and evaluate the motion primitive can-
didates.

2. Initialize the trajectory T to the empty set and repeat the following
steps for k = 1, . . . ,nmax:

(a) Sample a random input uk : [0,∆tm,max) → U such that

uk (t) =



urand for t ∈ [tk−1, tk) ,
0 otherwise ,

(3.47)

wherein tk = kδt and urand is a constant input randomly sam-
pled from a uniform distribution representing the space of valid
inputs U . In this way, it is possible to effectively include con-
trol limits (e.g., limited steering angle) in the motion primitive
construction process. To further improve the feasibility of the
motion primitive, admissible inputs might be restricted to a
subset of U if it is foreseeable that a particular input value will

65

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

lead to a violation of state constraints in the future (e.g., accel-
erating while already driving at maximum speed).

(b) Compute the new end state of the dynamical system

se (kδt) = Φ(s̃0, 0, u(t),kδt) (3.48)
with

u(t) =
k∑
i=1

ui (t) (3.49)

and append se (kδt) to the current trajectory T. The computa-
tion of the state evolution in (3.48) can be efficiently performed
by reusing the result of the previous iteration thanks to the
concatenation property (3.38).

(c) Check whether the trajectory Tfrom s̃0 to se (kδt) violates any
static or dynamic state constraints. If yes, dismiss this mo-
tion primitive and start again beginning with step 2; otherwise
compute the quantization error eq (se (kδt)). If the quantization
error is less than a threshold eq,max, i.e., the end state se (kδt)
is sufficiently close to a lattice point, construct a new motion
primitivem = (s̃0, s̃e, u,T,kδt) with u(t) defined according to
(3.49) and s̃e = λ(se (kδt)), and check whether B(s̃0) already
contains a motion primitive with the same discrete end state s̃e:

i. Motion primitive with same end state already in bunch: The
quality of the newly sampled motion primitivem and the
already existing motion primitivem′ is assessed. For this
purpose, the quantization loss

Jq (m) :=
(
eq (se (kδt))

)2
+ αc (m) (3.50)

66

3.5. Lattice-Conforming Motion

is computed for each motion primitive. The quantization
loss is composed of the square of the already computed
quantization error eq and the cost c (m) for executing the
motion primitive. This cost may include, for example, the
length of the trajectory corresponding to the motion prim-
itive or the necessary actuating energy (see Section 5.3).
The weighting factor α ≥ 0 is used to scale the cost c (m)

such that cost and squared quantization error are in the
same order of magnitude. Thus, a reasonable value for α
is the ratio of the average expected cost and the squared
quantization error threshold.
If Jq (m) < Jq (m

′), i.e., if the newly sampled motion primi-
tivem is superior to the existing motion primitivem′,m′

is replaced withm.
ii. No motion primitive with same end state in bunch: If still in

exploration phase (i.e., number of evaluated motion prim-
itives less than or equal to Nexpl), add the newly sampled
motion primitivem to the bunch.

3. Terminate the algorithm when the total number of evaluated motion
primitives exceeds Ntotal.

The algorithm’s pseudocode is provided in Appendix B, Algorithm 1 on
page 210. After the individual bunches have been sampled for all relevant
start states s̃0, the complete motion primitive setM is finally composed ac-
cording to (3.45). An exemplary implementation of the sampling algorithm
for the mobile robot case study is described in the next section.

As already mentioned, the proposed algorithm relies on simulation,
i.e., system model integration, only. For very simple models (see next
section), this may be done in closed form. For more complicated models,
one has to resort to numerical methods like Euler or Runge-Kutta meth-
ods. However, the proposed sampling algorithm is not restricted to system

67

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

models for which an analytical representation is available. In fact, Φ may
be implemented in terms of an arbitrary numerical simulation algorithm
as long as it is capable of computing the system’s evolution given a partic-
ular starting state and system input. It might even be possible to capture
trajectories of the real system together with the corresponding controls
for a given time and use this data to extract potential motion primitive
candidates. Regardless of the specific model representation, the dynami-
cal system can be assumed to be a black box, which makes the proposed
algorithm very flexible and generic.

Mobile robot example

This section illustrates the sampling algorithm using the mobile robot
example from Section 3.4. The system model (3.20) allows for an almost
closed form computation of the state evolution (3.36). For a system input
u(t) = (a(t), β (t)) that is constant during each interval [kδt , (k + 1)δt), the
differential equations (3.20) can be converted to the following time-discrete
recurrence equations [Pet13c]:

xk+1 = xk +




sinθk+1 − sinθk
κ tan β if β , 0(

1
2aδt +vk

)
δt cosθk if β = 0

(3.51a)

yk+1 = yk +




cosθk − cosθk+1
κ tan β if β , 0(

1
2aδt +vk

)
δt sinθk if β = 0

(3.51b)

θk+1 = θk +
(

1
2aδt +vk

)
κδt tan β (3.51c)

vk+1 = vk + aδt (3.51d)

68

3.5. Lattice-Conforming Motion

Figure 3.7: Construction of full motion primitive set through mirror symmetry of the first
octant.

To keep notation short, the variables in this equation are named follow-
ing the scheme xk = x (kδt). With the set of recurrence equations (3.51),
the state evolution (3.36) can be computed without expensive numerical
integration.

As already mentioned in Section 3.5.2, the considered mobile robot sys-
tem exhibits translational invariance with respect to the position variables
x andy. Thus, only all combinations of heading and velocity values need to
be considered in order to obtain the relevant start states for which motion
primitive bunches are then computed.

Furthermore, the dynamical system features rotational as well as mir-
ror symmetries. Thus, it is not necessary to sample a motion primitive
bunch B

(
θ̃ , ṽ

)
for every possible combination of θ̃ ∈ Θ and ṽ ∈ V : Instead,

69

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

Table 3.1: Parameters for sampling of motion primitive set.

Parameter Description Value Unit
δxy Position increment 0.6 m
|Θ| Number of heading values 16
V Set of velocities { −2, 0, 3 } m/s
δt Time increment 0.5 s
∆tm,max Max. motion primitive duration 2.0 s
Ntotal Number of samples per bunch 1 × 108

Nexpl Exploration threshold 5 × 107

eq,max Max. quantization error 0.2
α Weighting factor in (3.50) 0.002

it is sufficient to consider start heading values in the first octant only,
i.e., θ̃ ∈ [0,π/4]. Next, the remaining bunches are constructed by appro-
priate mirror symmetry (see Figure 3.7). Obviously, when applicable, this
exploitation of system symmetries considerably reduces the construction
time of the full motion primitive set M.

Figure 3.8 shows an example of the development of the quantization
error (3.8) and the quantization loss (3.50) as well as the total number of mo-
tion primitives per bunch during the sampling process. The sampling was
performed using the parameters in Table 3.1 on an Intel Xeon E5-2687W
CPU. Although the processing time was approximately 10 minutes, this
is irrelevant because this offline motion primitive sampling is performed
only once before the actual planning.

The computation of the quantization error eq was conducted using a
metric based on (3.33). The individual dimensions of the metric have been
scaled such that the quantization error is normalized with respect to the
quantization step sizes of each state space dimension. In addition, extra
weight (factor 10) was given to the errors in x- and y-position to emphasize
smoothmotion along the grid. The cost c (m)was computed by determining

70

3.5. Lattice-Conforming Motion

0.08

0.10

0.12

0.14

0.16
Exploration Consolidation

e q
(s
e)

0.01

0.02

0.03

J q
(m

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
× 108

0

250

500

Number of samples

|B
(θ̃
,ṽ
)|

Figure 3.8: Sampling statistics: average quantization error (top), quantization loss (middle),
and number of motion primitives per bunch (bottom) for a total of 1 × 108 samples.

71

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

the total path length of the motion primitive. The final motion primitive
set contained a total of 13 916 motion primitives and the average number
of motion primitives per bunch, |M|/|Θ ×V |, was approximately 290.

3.5.5 Decomposition of Motion Primitives

The motion primitive sampling performed according to Section 3.5.4 usu-
ally results in motion primitive bunches with a high number of motion
primitives. This leads to a large branching factor during the graph search
(see Chapter 5), which slows down the actual motion planning. Hence, it
is desirable to reduce the number of motion primitives in M and thus the
average number of motion primitives per bunch. Fortunately, the motion
primitive set normally exhibits some kind of redundancy so that a subset
of the full motion primitive set suffices to accurately encode the dynamics
of the robot. The redundant motion primitives are those which can be
reconstructed by the concatenation of shorter motion primitives and thus
carry only limited additional information (see Figure 3.9 for an example).
In this thesis, a motion primitive decomposition method was implemented
that is closely based on the approach proposed in [Piv11]. It assumes that
a small increase of execution costs could be tolerated if a motion primitive
can be decomposed into a sequence of shorter motion primitives in return.

As was pointed out in [Piv11], the complexity of the decomposition
would be exponential if all possible decompositions were enumerated ex-
plicitly. Therefore, a greedy approach, based on the fact that longer motion
primitives are more likely to be decomposable than shorter motion primi-
tives, is chosen. The algorithm works as follows.

First, all motion primitivesm ∈M are sorted by descending costs c (m).
The reduced set of atomic motion primitivesM′ is initialized to the empty
set. Now, each motion primitive ofM is checked for decomposability: In

72

3.5. Lattice-Conforming Motion

s̃0

s̃e

Figure 3.9: Decomposition of a motion primitive. The original motion primitive (dashed,
black) is decomposed into three shorter motion primitives (cyan).

order to determine the next decomposition candidate, the motion primitive

mmax = arg max
m∈M

c (m) (3.52)

with maximum cost is selected and removed fromM. Next, an A* search
[Har68] is applied to find the cost-optimal concatenation of motion primi-
tives from M \ {mmax } which arrives at the same end state as the motion
primitivemmax. If no such sequence can be found or if the cost of the opti-
mal sequence exceeds c (mmax) by a certain factor ϵd, the motion primitive
mmax is added toM′ and the decomposition procedure continues with the
next most expensive motion primitive according to (3.52) until all motion
primitives have been considered for decomposition and thusM is empty
andM′ contains all remaining atomic motion primitives.

The cost factor ϵd > 1 determines the relative increase in cost that is
acceptable for decomposing a motion primitive in return. Reasonable val-
ues of ϵd are in the range 1 to 1.05, which equals a maximum accepted cost
increase of 5 %. Of course, the exact value of ϵd is application specific and
can be adjusted according to the user’s preference. Thanks to the motion
primitive decomposition, the cardinality of the motion primitive set and
thus the average number of motion primitives per bunch, i.e., the branch-

73

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

ing factor during the graph search, could be reduced by approximately
70 % for the mobile robot example from Section 3.4.

Figures 3.10 to 3.12 show the resulting motion primitive bunches after
applying the decomposition process to the setM from Section 3.5.4. Only
the bunches in the first heading octant are shown, since the remaining
bunches can be obtained by symmetry (see Section 3.5.4). Furthermore,
only the projection of the motion primitives onto the xy-plane is visible
from the plots; the actual motion primitives, of course, also contain a ve-
locity and time component.

3.6 Hybrid Dimensionality

Amotion primitive set that has been obtained by the procedure described in
Section 3.5.4 allows for an accurate representation of the system’s dynam-
ics and thus forms the basis for high-fidelitymotion planning. However, for
practical applications, which require real-time operation, planning based
on this complex representation is generally not feasible: The large num-
ber of motion primitives, which results from the high-dimensional search
space (curse of dimensionality), implies a high branching factor during the
graph search. Especially for distant goals, this may slow down the plan-
ning substantially. This trade-off between planning accuracy and planning
speed is the major topic of this thesis. This section proposes an approach
for speeding-up planning while still providing a high-quality planning re-
sult in relevant regions. The approach hinges on the idea that the required
planning accuracy generally varies for different parts of the planning do-
main (see Figure 1.1). Especially for the near future, high planning quality
is required as the imminent system inputs are derived from the planning
result and passed to the robot. With increasing distance from the robot’s
actual state (both spatially and temporally), the accuracy requirements can
be relaxed. This is, on the one hand, justified by the system and measure-

74

3.6. Hybrid Dimensionality

−5

0

5

s̃0

x
/
m

θ̃0 = 0
ṽ0 = −2m/s

−5

0

5

s̃0

x
/
m

θ̃0 = 0
ṽ0 = 0m/s

−5 0 5
−5

0

5

s̃0

y / m

x
/
m

θ̃0 = 0
ṽ0 = 3m/s

Figure 3.10:Motion primitive bunches for θ̃0 = 0.

75

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

−5

0

5

s̃0
x
/
m

θ̃0 = arctan 1
2

ṽ0 = −2m/s

−5

0

5

s̃0x
/
m

θ̃0 = arctan 1
2

ṽ0 = 0m/s

−5 0 5
−5

0

5

s̃0

y / m

x
/
m

θ̃0 = arctan 1
2

ṽ0 = 3m/s

Figure 3.11:Motion primitive bunches for θ̃0 = arctan 1
2 ≈ 26.6°.

76

3.6. Hybrid Dimensionality

−5

0

5

s̃0

x
/
m

θ̃0 = π/4
ṽ0 = −2m/s

−5

0

5

s̃0x
/
m

θ̃0 = π/4
ṽ0 = 0m/s

−5 0 5
−5

0

5

s̃0

y / m

x
/
m

θ̃0 = π/4
ṽ0 = 3m/s

Figure 3.12:Motion primitive bunches for θ̃0 = π /4 = 45°.

77

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

ment uncertainties, which generally cause the robot to deviate from the
initially computed plan after some given time. On the other hand, due
to the dynamic environment and those uncertainties, plans are continu-
ously recomputed anyway while the robot is moving toward the goal; thus,
due to the receding horizon principle, each region along the traveled path
eventually falls into the high-quality-planning region.

A viable option to reduce the computational complexity is the reduc-
tion of the dimensionality of the search space. In this thesis, an approach
has been developed that allows for a systematic gradual dimensionality
reduction for state× time lattices [Pet14; Pet13a]. Initial research on this
topic was presented in [Piv08] for path planning with two different dimen-
sionalities in the context of state-only lattices by combining kinodynamic
path planning with a simple grid search, which, however, makes it impos-
sible to consider the nonholonomic constraints of wheeled mobile robots.

For the formal derivation of the proposed gradual dimensionality re-
duction scheme, the notation introduced so far has to be slightly extended
in order to make the involved dimensionality of some entities more explicit.
The dimensionality level is expressed in terms of an additional superscript

d ∈ { 0, 1, . . . ,dmin } , (3.53)

which denotes the number of applied dimensionality reductions. The level
d = 0 corresponds to the maximum dimensionality used during the plan-
ning. Levels with less dimensions are labeled with indices in ascending
order for decreasing dimensionality. The index dmin denotes the level with
lowest dimensionality employed during the planning.

The variable dimensionality affects, first and foremost, the state (× time)
lattice itself so that Ld denotes the state (× time) lattice that corresponds to
the dimensionality level d . Maximum dimensionality (level d = 0) means
planning in state× time space considering full robot dynamics; thus, L0 =

L′, i.e., L0 is tantamount to the state× time lattice L′ defined by (3.14). In

78

3.6. Hybrid Dimensionality

general, the dimensionality of the state lattice Ld will briefly be denoted
by dimLd .

Furthermore, all discrete states s̃d are associated with a particular di-
mensionality level as they are elements of the corresponding state lat-
tice Ld . The same applies for all symbols describing the motion through
the lattice, e.g., the motion primitive bunch Bd and the motion primitive
set Md . To keep notation short, the superscript d may be omitted if it is
clear from the context. For example, µd (sd1 , sd2) is a metric that, of course,
matches the state’s dimensionality level d and can thus be briefly denoted
by µ (sd1 , sd2).

3.6.1 Repeated Dimensionality Reduction

The dimensionality reduction is performed by successively projecting the
state× time lattice onto subspaces with lower dimensionality. In what fol-
lows, regular states s and time-augmented states (s, t) will be consolidated
in a generalized state sd such that s0 = (s, t) by analogy to L0 = L′. With
this, the projection of generalized states can be concisely defined by

πd : Ld → Ld+1

s̃d 7→ s̃d+1 ,
(3.54)

where dimLd > dimLd+1. Once again, the superscript d may be omitted
from π because the associated dimensionality level follows directly from
the argument. In the simplest case, the projection (3.54) is defined to simply
strip the appropriate dimensions, e.g., time t̃ , from the state lattice such
that

π
(
s̃0

)
= π

(
(s̃, t̃)

)
= s̃ = s̃1 . (3.55)

79

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

One possible choice of a projection scheme for the mobile robot example
from Section 3.4 is as follows:

s̃0 = (x̃ , ỹ, θ̃ , ṽ, t̃) ∈ L0 = X × Y × Θ ×V ×T (3.56)
π (s̃0) = s̃1 = (x̃ , ỹ, θ̃ , ṽ) ∈ L1 = X × Y × Θ ×V (3.57)
π (s̃1) = s̃2 = (x̃ , ỹ, θ̃) ∈ L2 = X × Y × Θ (3.58)

In this equations, the various degrees of planning fidelity can clearly be
seen: The planning in L0—see (3.56)—corresponds to planning with full
robot dynamics in a time-varying environment; planning inL1—see (3.57)—
yields a dynamically feasible trajectory (but now without incorporation
of dynamic obstacles); and finally, planning in L2—see (3.58)—can at least
guarantee a kinematically feasible path (i.e., ignoring any time derivatives
of the system’s configuration variables). In theory, even a further reduction
to L3 = X × Y would be conceivable; however, this would make consid-
ering the nonholonomic constraints of a wheeled robotic platform during
the motion planning impossible. Nonetheless, this might be of interest for
practical applications if computation time is scarce. An approach that is
based on short-term high-fidelity time-parametrized planning combined
with subsequent kinematically infeasible planning in X × Y has been pro-
posed in [Kus09]. This thesis, however, pursues a method that is able to
gradually lessen the planning fidelity while guaranteeing a solution that is
at least kinematically feasible for all segments up to the goal. This ensures
that the robot is able to actually execute the planned motion.

In order to define the admissible motion through a lattice with reduced
dimensionality, it is necessary to construct motion primitive sets with cor-
responding dimensionality. This is accomplished by individually project-
ing all high-dimensional motion primitives onto the respective subspace
associated with the dimensionality level. Since in the end only the discrete
start and end states of a motion primitive are relevant for the construction

80

3.6. Hybrid Dimensionality

of the planning graph (see Section 5.1), it is sufficient to apply the dimen-
sionality reduction only to those two components of the motion primitive.
Hence, a motion primitive

md =
(
s̃d0 , s̃

d
e , u,T,∆tm

)
, (3.59)

belonging to the dimensionality level d , can be transformed by application
of (3.54) to a motion primitive

md+1 =
(
π (s̃d0),π (s̃

d
e), u,T,∆tm

)
=

(
s̃d+1

0 , s̃
d+1
e , u,T,∆tm

)
(3.60)

for the new dimensionality level d + 1. Figure 3.13 shows this projection
scheme in the context of the mobile robot case study.

For dimensionality levels with d > 1 the meaningfulness of the trajec-
tory Twith duration ∆tm and the system input u becomes somewhat lim-
ited because they are strongly linked to the high-dimensional start state s̃0

0.
Nonetheless, valuable information can be extracted especially from T, like
the trajectory’s geometry, which is required for collision avoidance (see
Section 4.1).

By application of (3.43) and (3.45), motion primitive bunches

Bd+1
(
s̃d+1

0
)

:=
{
md+1 ���m

d+1 starts at s̃d+1
0

}
(3.61)

and motion primitive sets

Md+1 :=
⋃

s̃d+1∈Ld+1

Bd+1
(
s̃d+1

)
(3.62)

for planning in Ld+1 can be finally composed from the projected motion
primitives (3.60).

81

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

s̃2
0 s̃2

e

s̃2
e
′

x

y

s̃1
0

s̃1
e

s̃1
e
′v

y

x

Discrete start state Discrete end state

Figure 3.13: Projection of motion primitives from L1 to L2, see (3.57) and (3.58). The heading
dimension is not shown.

82

3.6. Hybrid Dimensionality

3.6.2 Removing Redundant Motion Primitives

Due to the projection process, there will be multiple motion primitives
with identical start and end states present in a bunch, i.e., for d > 0 there
may exist two motion primitives

md =
(
s̃d0 , s̃

d
e , u,T,∆tm

)
∈ Bd

(
s̃d0

)
(3.63)

and
md ′ =

(
s̃d0
′
, s̃de
′
, u′,T′,∆tm ′

)
∈ Bd

(
s̃d0
′) (3.64)

with s̃d0 = s̃d0
′ and s̃de = s̃de

′. This would result in unnecessary redundancy
during the eventual graph search. However, the key intention of this thesis
is the exploitation of repeated motion primitive projections in order to
reduce the total number of motion primitives and thus the branching factor
during the planning. For this purpose, only one motion is allowed to exist
in a bunch Bd for any end state s̃de . This is ensured by the following
procedure.

The projection is conducted bunch-wise. Whenever the new bunch
of already projected motion primitives, Bd , contains a motion primitive
whose end state coincides with the end state of the currently projected
motion primitive, a scoring of these two motion primitives is performed
and the motion primitive with the higher cost is dropped. This scheme is
analogous to the selection scheme for sampling the original, non-projected
motion primitives (see Section 3.5.4). Thus, the same assessment rules, i.e.,
the quantization loss Jq, equation (3.50), may be employed. However, other
scoring schemes may be used as well, e.g., it is sensible to put more weight
on the execution costs of a motion primitive by using an increased value for
the weighting factor α in (3.50) because the considered end states already
exhibit small quantization errors due to the original sampling process.

In order to reduce the branching factor, i.e., the number of motion
primitives per bunch, even further, the decomposition approach from Sec-

83

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

tion 3.5.5 is also applied to each projected bunch. Thus, the algorithm
attempts to replace long motion primitives by the concatenation of shorter
motion primitives.

These two reduction strategies are able to significantly reduce the num-
ber of motion primitives per bunch. This allows for the construction of
an efficient planning graph, which is the key motivation for the hybrid-
dimensional planning algorithm developed during this thesis. The tran-
sition between different dimensionality levels during the graph search is
described in Section 5.1.2.

3.7 Multiple Resolutions

The dimensionality reduction explained in the previous section is a valu-
able strategy for reducing the overall planning complexity. Moreover, the
employed resolution is another determining factor to control the fidelity
of the search space. Once again it is only the immediate future and envi-
ronment that requires high planning quality; this accuracy requirement
decreases with increasing distance (both spatially and temporally) from
the actual robot position (cf. Figure 1.1). This approach is justified by the
fact that measurement and system uncertainties make it necessary to con-
tinuously replan the robot’s motion.

While the choice of the dimensionality level is independent of the en-
vironment (as long as Mdmin correctly models the robot’s kinematics), the
choice of the resolution may directly affect the existence of a solution to
the planning problem. For example, a solution involving a path through a
narrow corridor may exist for planning with fine resolution but may be lost
when switching to a more coarse resolution. Therefore, multi-resolution
planning is a common strategy for mitigating these kind of problems. It
was first mentioned in [Lik09] in the context of single-dimensionality state-
only-based lattice planning. This thesis generalizes the concept and pro-

84

3.7. Multiple Resolutions

poses the simultaneous utilization of different dimensionalities and regions
with varying resolutions in order to find a compromise between complete-
ness, solution quality and planning speed [Pet13b].

In order to integrate planning with variable resolution into the holistic
motion planning concept, a resolution level is introduced by analogy to the
dimensionality level from Section 3.6. The resolution level

r ∈ { 0, 1, . . . , rmin } (3.65)

characterizes the quantization Sri of the individual state space dimensions.
Here, the resolution level r has been attached as a superscript to the set
of discrete state values Si , in order to make this connection explicit. The
level r = 0 denotes the finest resolution used during the planning. Levels
with less refined resolution are labeled with indices in ascending order for
decreasing resolution. The index rmin denotes the most coarse resolution
employed during the planning.

For a state variable si that is discretized according to the regular scheme
(3.2), the resolution level directly affects the quantization increment δsi ,
which therefore becomes the resolution-dependent increment δ rsi . This is
also true for state variables that are discretized in a custom way; however,
in this case the procedure for obtaining the sets of discrete states Sri with
different resolutions is slightly more complicated (see Section 3.7.1). Since
the individual sets Sri eventually form the state (× time) lattice Ld,r , this
lattice also becomes resolution-dependent and is thus henceforth carrying
two superscripts to denote its associated dimensionality level d and reso-
lution level r . From this follows directly that the discrete states s̃d,r , which
essentially are the lattice points of Ld,r , are also resolution-dependent. The
same is true for the resolution-dependent mapping λr , see (3.16), which
yields the nearest lattice point for a generalized2 continuous state sd , and

2. For the notion of a generalized state see Section 3.6.1.

85

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

the associated quantization error erq , see (3.8). Finally, as a consequence of
the introduction of additional resolutions, the set of admissible motions
through the lattice, which was defined in Section 3.5, needs to be addition-
ally expressed in a resolution-dependent way and is therefore from here
on denoted by md,r for a motion primitive, Bd,r for a motion primitive
bunch, andMd,r for a motion primitive set.

3.7.1 Construction of Resolution-Specific Lattices

All lattices are inherently resolution-dependent due to their underlying
discretization scheme. Thus, constructing multiple state (× time) lattices
with various resolutions is similar to constructing individual lattices based
on the procedure described in Sections 3.2 and 3.3 with appropriately cho-
sen discretization strategies. However, special care must be taken while
choosing the design parameters, i.e., the discretization scheme, of the lat-
tice in order to guarantee smooth interoperability of lattices with different
resolutions for the joint planning with multiple resolutions.

It is generally desirable that all solutions that can be found in a lattice
Ld,r1 with a coarse resolution can also be found in a lattice Ld,r2 with a finer
resolution (r1 > r2). This requires the set of admissible motions Md,r1 to
be also contained in Md,r2 , i.e.,

Md,r1 ⊂Md,r2 (3.66)
and

Ld,r1 ⊂ Ld,r2 (3.67)

must hold for r1 > r2.
For the regular discretization according to (3.2), condition (3.67) can be

easily satisfied by choosing the increments δ rsi such that

δ r1
si = nδ

r2
si , n ∈ N+ (3.68)

86

3.7. Multiple Resolutions

for r1 > r2. From this follows immediately that Sr1
i ⊆ Sr2

i .
This trivial procedure for obtainingmultiple-resolution representations

is not applicable for dimensions of the state space S that are discretized
by irregular discretization schemes, like the heading discretization scheme
(3.27) or the velocity discretization scheme (3.28). Instead, the sets of dis-
crete states Sr+1

i need to be directly obtained from their corresponding
sets Sri with finer resolution. For an initial heading discretization that con-
sists of 32 different orientations, i.e., |Θ0 | = 32, this might be, for example,
achieved by using only every other heading, resulting in |Θ1 | = 16.

Even an entirely manual selection of the desired values is perfectly ac-
ceptable. This is, for example, useful to define the low-resolution setV 1 of
discrete velocities by picking appropriate values from the high-resolution
set V 0. It might even be sensible to choose Sr+1

i = Sri for some of the
dimensions of S , but not for all dimensions simultaneously because then
Ld,r1 = Ld,r2 would hold, which would violate condition (3.67). In this
case it would be meaningless to introduce an additional lattice since both
lattices would be identical.

The sets of discrete states Sr+1
i and time T r+1 with reduced resolution

form the new resolution-specific state× time lattice

L0,r+1 = *
,

n∏
i=1

Sr+1
i

+
-
×T r+1 . (3.69)

On the basis of this lattice the corresponding motion primitive setsMd,r+1

can be constructed using the method described in Section 3.5.4. Then, the
projection procedure from Section 3.6 is applied to each resolution level
individually in order to obtain state lattices with variable dimensionality.

While condition (3.67) is satisfied by design, extra measures need to be
taken in order to satisfy condition (3.66). Let Md,r ′ be a motion primitive
set obtained by themotion primitive sampling procedure from Section 3.5.4.

87

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

The final motion primitive setMd,r is determined by the following recur-
rence system:

Md,rmin :=Md,rmin ′ (3.70)

Md,r−1 :=Md,r−1 ′ ∪Md,r . (3.71)

This method guarantees that all motions that can be found in a low-
resolution lattice can also be found in lattices with higher resolution and
thus higher planning fidelity [Pet13b].

3.7.2 Application of Multiple Resolution Levels

To illustrate the multiple-resolution approach, Figure 3.14 shows two mo-
tion primitive bunches with different resolution levels. The bunch in Fig-
ure 3.14a is the high-resolution motion primitive bunch B1,0 (s̃1,0

0) and the
bunch in Figure 3.14b is the corresponding low-resolution motion prim-
itive bunch B1,1 (s̃1,1

0). Both bunches originate from the same start state,
i.e., s̃1,0

0 = s̃1,1
0 . It can be seen that all the motion primitives from B1,1 are

also contained in B1,0 in compliance with (3.66).
Beside its variable dimensionality, the final motion planning solution

simultaneously comprises trajectory and path sections with different res-
olutions. The resolution level r and dimensionality level d can be cho-
sen independently of each other. They constitute orthogonal concepts for
varying the fidelity of the planning. Section 5.1.3 describes the transitions
between search space regions with different resolution levels. The criteria
for choosing a particular resolution level during the course of the planning
are discussed in depth in Section 5.1.4.

88

3.7. Multiple Resolutions

−4 −2 0 2 4

−2

0

2

s̃1,00

y / m

x
/
m

(a)High-resolution motion primitive bunch B1,0.

−4 −2 0 2 4

−2

0

2

s̃1,10

y / m

x
/
m

(b) Low-resolution motion primitive bunch B1,1.

Figure 3.14: Comparison of two bunches with different resolution level.

89

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

3.8 Multiple Waypoints

Moving along a chain of sub-goals gi , i = 1, . . . ,N , is a common task in
robotics. In the context of mobile robots, these sub-goals are also called
waypoints. Each waypoint is associated with the set of states Sgi which
satisfy the desired (sub-)goal condition. This condition can be very restric-
tive (e.g., for a parking task with exact goal position and orientation) or
rather open (e.g., a desired position with specified tolerance and arbitrary
orientation).

For planning along multiple waypoints, the naive approach is to plan to
the next waypoint only and then continue with a separate planning to the
following waypoint. Especially if a goal configuration has many degrees of
freedom, this naive approachmay be problematic andwill often lead to sub-
optimal global results. For example, consider Figure 3.15a: It is the robot’s
task to travel to the goal waypoint g2 via waypoint g1, which is located
next to an obstacle. If the motions from the start to g1 and from g1 to g2 are
planned separately, a needless turning maneuver will result for the second
segment because the robot’s orientation when arriving at g1 is disadvan-
tageous for the subsequent motion to g2. Hence, the overall solution will
be suboptimal. In contrast to the naive planning approach, consider the
combined planning for g1 and g2 in Figure 3.15b: The trajectory is directly
planned to the final goal waypoint g2 with the additional constraint that
the trajectory must lead through the via-waypoint g1, i.e., the trajectory
must contain at least one state s ∈ S̃g1 .

For this thesis, a novel approach has been developed which seamlessly
and consistently integrates the combined multi-waypoint planning into
the unified planning concept of hybrid dimensionality and multiple reso-
lution planning. Early work used a tight integration with the graph search
algorithm in order to jointly plan for multiple waypoints [Pet12]. However,
the approach described in this thesis generalizes those ideas by augment-
ing the search space with an additional goal dimension [Pet13c]. For this

90

3.8. Multiple Waypoints

g1

g2

Start

(a)Naive planning to next waypoint
only.

g1

g2

Start

(b)Combined planning for two way-
points.

Figure 3.15: Planning strategies for tasks with multiple waypoints.

purpose, the state (× time) lattice is extended with an additional dimen-
sion G, which is independent of the resolution and not affected by the
dimensionality reduction process. Therefore, the lattice (3.14) is extended
to

Ld,r = *
,

n∏
i=1

Sri
+
-
×T r ×G . (3.72)

This results in
L0,r = X r × Y r × Θr ×V r ×T r ×G . (3.73)

for the mobile robot motion planning example from Section 3.4. The set of
goals

G =
{
g1, . . . ,gN

} (3.74)

contains all waypoints of the current task (with N being the total number
of waypoints of the task).

The goal-augmented lattice (3.72) consists of goal-augmented states

s̃d,r = (s̃1, s̃2, . . . , t̃ ,g) . (3.75)

91

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

The component g denotes the segment in which a state belongs; more
precisely, g denotes the next waypoint during the planning. Thus, the
search starts with a state

s̃d,rs = (s̃1,s, s̃2,s, . . . , t̃s,g1) (3.76)

and ends with a goal state

s̃d,rg = (s̃1,g, s̃2,g, . . . , t̃g,gN) . (3.77)

The transition between different goal segments during the graph search is
explained in detail in Section 5.1.5.

3.9 Bringing It All Together

So far, this chapter has inductively described how a state lattice, being state
of the art, can be extended with additional features in order to form a goal-
augmentedmulti-resolution state× time latticewith hybrid dimensionality,
which is the basis for efficient motion planning in unstructured dynamic
environments. This section puts all the aspects together and explains the
workflow for the application of the algorithm.

The first step is to decide on the relevant state variables for motion
planning and to obtain the systemmodel for the later generation of motion
primitives. Secondly, the required planning fidelity has to be specified. This
means one has to choose the number of dimensionality and resolution
levels (i.e., the parameters dmin and rmin) taking into consideration the
trade-off between accuracy and planning speed. Furthermore, a decision
has to be made on the discretization strategy for every state variable si .
This includes choosing the respective quantization increments δ rsi for each
resolution level r .

92

3.9. Bringing It All Together

Now, themotion primitive setsM0,0, . . . ,Mdmin,rmin can be sampled, which
define the admissible motion of the dynamic system through the lattices
L0,0, . . . ,Ldmin,rmin (see Section 3.5.4). The procedure is as follows. First,
the high-dimensional motion primitive sets M0,0, . . . ,M0,rmin are gener-
ated. Care must be taken to ensure that motion primitive sets with fine
resolution include motions from motion primitive sets with a more coarse
resolution, i.e., condition (3.66) must be satisfied. Secondly, the dimen-
sionality level is successively reduced (see Section 3.6). The first projection
yieldsM1,0, . . . ,M1,rmin . Once again, condition (3.66) needs to be ensured.
This projection procedure is repeated until the lowest dimensionality level
d = dmin is reached. With this, all required motion primitive sets have
finally been obtained:

M0,0 · · · M0,rmin

...
. . .

...

Mdmin,0 · · · Mdmin,rmin

lower resolution

lo
w
er

di
m
.

(3.78)

with their corresponding lattices

L0,0 · · · L0,rmin

...
. . .

...

Ldmin,0 · · · Ldmin,rmin

lower resolution

lo
w
er

di
m
.

(3.79)

The elements of at least each first row, i.e., the motion primitive sets
M0,0, . . . ,M0,rmin and the corresponding lattices L0,0, . . . ,L0,rmin , contain

93

Chapter 3. Multi-Resolution State Lattices with Hybrid Dimensionality

the time among their dimensions; thus, they allow for explicit considera-
tion of dynamic obstacles during the planning.

If multiple-waypoint planning is required, all lattices in (3.79) are aug-
mented with an additional goal dimension (see Section 3.8). Finally, the
search graph can be constructed on the basis of the generated motion
primitives (3.78). This is explained in detail in Chapter 5.

3.10 Summary

In this chapter, a novel unified approach for multi-resolution robot motion
planning with hybrid dimensionality has been presented [Pet13a; Pet13b;
Pet13c; Pet14]. It is a consistent approach that transparently integrates
time-parametrized motion planning as well as combined planning for mul-
tiple waypoints without the need for differentiation of special cases. The
scientific contribution of this thesis is a novel rigorous formulation of a
holistic method that enables the use of established and proven concepts
like time-parametrized planning, multi-resolution planning, or planning
with adaptive dimensionality together with new capabilities like multi-
waypoint planning. The aim is not to target a specific application but to
provide a universal approach for a wide variety of robotic motion plan-
ning tasks. The user has fine-grained control of the fidelity graduation
desired for the actual usage scenario. For this purpose, a procedure for
systematically obtaining state lattices with variable resolution and dimen-
sionality was presented. This includes the automatic generation of the
corresponding motion primitive sets from a given system model. For the
sake of clarity, all these steps have been illustrated using a case study of
motion planning for a mobile robot.

94

Chapter 4

Modeling the Environment

The approach developed in this thesis has been implemented on a robotic
platform (see Section 6.4) based on the case study from Section 3.4. This
chapter explains the modeling of the robot’s environment so that this
model can be used in Chapter 5 to construct the search graph on the basis
of the lattice described in Chapter 3. Since the proposed planning scheme
allows for time-parametrized planning, both the static environment and
dynamic obstacles need to be modeled appropriately.

It is well known that most of the computation time during motion
planning is spent on collision checking [LaV06]. Thus, efficient collision
checking is an active research field of its own and hence is not the focus of
this thesis. Nonetheless, there need to be means available for fast collision
checking for real-world application of the proposed motion planning algo-
rithm. Therefore, this chapter only touches the topic and briefly describes
the collision checking strategies used in this thesis in order to facilitate the
sound interpretation of the results in Chapter 6.

The proposedmethod distinguishes three reasons for collisions, namely
static obstacles, terrain characteristics, and dynamic obstacles. It is an at-

95

Chapter 4. Modeling the Environment

tempt to establish a unified, consistent model that incorporates the per-
ception and prediction uncertainty in a probabilistic formulation.

4.1 Static Obstacles

There are many ways to acquire a model of the robot’s surroundings. In an
unknown outdoor environment—which, for example, needs to be explored
after a natural disaster has struck—a preliminary drivability map may be
obtained from aerial imagery by photogrammetric methods [Cur15]. The
actual execution of the motion is generally based on an up-to-date local
mapW of the environment, which is obtained by a LIDAR1 scanner. The
map is commonly encoded in terms of a grid consisting of both free and
occupied cells. It is the collision checker’s task to determine whether the
robot A with its configuration q is in a collision with any occupied cell
of the grid map (cf. (1.1)). For this purpose, many methods have been
proposed, which most notably differ in the way they handle the robot’s
geometry.

One approach for collision checking is the convolution of the whole
grid map with the robot’s footprint for each possible orientation, which
results in multiple map slices [Zie08; Lin08]. Then, to check for a collision
during the planning, one must only pick the appropriate map slice and
perform a simple look-up of the cell that corresponds to the robot’s posi-
tion. This method, however, is disadvantageous for large maps because
it is always the whole map that needs to be convolved with the robot’s
footprint several times. For this reason, this method is particularly well
suited for stationary environments that do not change between planning
cycles.

This thesis focuses on applications for unknown, unstructured envi-
ronments, and it is therefore assumed that the entire map may change

1. Light detection and ranging.

96

4.1. Static Obstacles

between planning cycles during exploration as more and more informa-
tion becomes available. This condition can be regarded as a worst-case
scenario. Thus, in the context of this thesis, static environment refers to
the part of the environment that does not move as opposed to the dynamic
obstacles that do move such as people or other robots.

Another approach for collision checking is presented in [Fer08b; Lik09]:
The authors precompute convolution kernels for all robot orientations and
then perform on-demand collision checking during the planning for each
robot pose by convolution of the appropriately shifted kernel with the
map. In order to avoid unnecessary computational work, the following
two checks are performed in advance: If there is a collision with the in-
scribed circle of the robot footprint, the actual robot footprint is also in
a colliding configuration irrespectively of the robot’s orientation. If even
the circumscribed circle of the robot’s footprint is collision-free, then the
actual robot footprint is also guaranteed to be collision-free. In both cases,
computationally expensive convolution with the exact robot footprint can
be avoided. A further approach to speed up the costly convolution process
is proposed by [Zie10]. The authors approximate the robot footprint by
multiple disks and then perform a fast convolution by exploiting an axis-
aligned rectangle representation of the disks. A similar method, which has
been proposed in [Kin09], uses a decomposition of the robot’s footprint
into a set of disks and a set of remaining cells which are not covered by
the disks.

Collision checks are commonly performed for discrete points in time
along the examined trajectory. It is, however, also possible to assess the
entire region swept over by the robot (called swath) when executing a
motion primitive [Pet12; Piv09c].

97

Chapter 4. Modeling the Environment

4.1.1 Distance-Based Collision Checking

The demonstrator that has been developed during this thesis has an almost
square footprint; hence, it is legitimate to approximate its shape with a
disk and perform orientation-independent collision checking. This is done
on the basis of the exact Euclidean distance transform (EDT) of the grid
map, which is computed at the beginning of each planning cycle by the
algorithm proposed in [Mau03]. The EDT assigns each cell of the map the
Euclidean distance to the next occupied cell (see Figure 4.1 for an example).
With this, a collision can be easily checked for by inspecting the cell corre-
sponding to the robot’s position: If the distance to the next obstacle is less
than the radius of the robot’s circumscribing circle, the robot is assumed
to be in a colliding state. This distance may be enlarged by an additional
safety zone (see Section 4.1.2) if desired. The trajectories (3.39) of the re-
spective motion primitives (3.41) have been incrementally sampled with
the temporal resolution δ rt in Section 3.5.4. This allows an efficient colli-
sion checking for each intermediate state of the trajectory Tof a motion
primitivem for each increment δ rt . Of course, it has to be ensured that δ rt is
small enough in order not to skip over obstacles during collision checking.

4.1.2 Risk Zones

In addition to simple collision checking, it can be useful to consider a
generalized collision risk with the static environment. This allows for an
intuitive modeling of the fact that collisions are more likely the closer the
robot gets to an obstacle. This can be used to create a safety zone around
obstacles to account for uncertainties in perception, localization, and in
the execution of the planned motion. The safety zone is defined on the
basis of the result of the exact Euclidean distance transform in the previous
section. It assigns each cell of the map a probability pstat for collision with

98

4.1. Static Obstacles

1.41 1 1 1 1 1 1.41

1 0 0 0 0 0 1

1.41 1 1 0 0 1 1.41

2.24 2 1.41 1 0 1 2

3.16 2.83 2.24 1.41 1 1.41 2.24

EDT

Figure 4.1: Exact Euclidean distance transform (EDT). Top: occupancy grid map (occupied,
free). Bottom: distance map after application of EDT.

99

Chapter 4. Modeling the Environment

0 1 2 3
0

0.5

1

dstat / m

p
st
at

Figure 4.2: Collision probability (4.1) with static obstacles for ρ = 1 m and γ = 4 m−2.

a static obstacle on the basis of the distance dstat to the next occupied cell:

pstat (dstat) :=



1 if dstat ≤ ρ
e−γ (dstat−ρ)

2 else
. (4.1)

The parameter ρ denotes the minimum distance to the next obstacle. This
minimum distance needs to be observed at all times, i.e., a distance below
this threshold results in a collision probability of 100 %. The parameter γ
denotes the rate at which the collision probability decreases with increas-
ing distance from the obstacle. By evaluating pstat according to (4.1), the
separate collision check from Section 4.1.1 becomes redundant and can
thus be omitted. Figure 4.2 shows an example of a typical collision prob-
ability for ρ = 1 m. The complete process of computing the risk zones is
visualized in Figure 4.3.

4.2 Terrain

Especially for planning in rough, unstructured outdoor environments, it
is important to take the characteristics of the terrain into account, since
there may be regions that are not particularly well suited for driving. In
order to identify such regions, methods that determine the roughness of

100

4.2. Terrain

2 m

5 m

0 m

100 %

0 %

EDT

pstat

Figure 4.3: Risk zone construction for static obstacles. Top: grid map obtained from the
LIDAR scanner (occupied, free). Middle: distance map after application of EDT. Bottom:
map with collision probabilities for obstacles and risk zones respectively.

101

Chapter 4. Modeling the Environment

the ground using LIDAR data can be employed [Neu09]. The classification
of the terrain allows for each cell—similar to the previously described risk
zones—an association with a probability pterrain for collision due to rough
terrain.

In addition, it is, at this point, possible to integrate a priori knowledge
of the environment into the model by manually defining static hazardous
regions with increased collision risk [Pet13c]. This may be, for example,
interesting in a logistics application, where forklift trucks cause heavy
traffic on a route known in advance. In such a scenario, the robot should
avoid such regions where feasible, or, if the robot’s task leads through
such a region, the robot should cross it using the shortest way possible
(see Figure 6.17). These custom regions with increased collision probability
are handled in the same way the terrain characteristics are handled and
are thus also modeled by the respective collision probability pterrain.

4.3 Dynamic Obstacles

Large portions of this thesis have been developed in the context of the
SENEKA project [Kun14]. The main goal of SENEKA is the fast and effec-
tive reconnaissance of disaster areas by human-robot teams. Besides the
potentially rough terrain, the robot needs to be able to cope with moving
participants in the scene. These may be, for example, members of rescue
teams or other vehicles, both human-controlled or autonomously operat-
ing. All these objects are collectively referred to as dynamic obstacles in
the following. They are assumed to move in a—from a planning perspec-
tive—non-cooperative way. This is in contrast to scenarios like cooperative
planning for road vehicles [Fre11].

A lot of research has been conducted in the past on avoiding collisions
with dynamic obstacles. For example, the authors of [Fra04b] propose
the concept of inevitable collision states, which are defined as regions of

102

4.3. Dynamic Obstacles

the state space that will inevitably lead to a collision in the future. The
inevitable collision states are computed on the basis of set-theoretic con-
siderations for obstacles of arbitrary shape. Unfortunately, the authors do
not readily supply any information on the computational expense of their
method. In order to perform collision checking in real-time, a common
approach is to approximate the dynamic obstacles’ footprint by a disk. For
example, in [Ber06], the disk-shaped footprint of the obstacles is propa-
gated in time on the basis of their estimated trajectory and, for an efficient
collision checking, the robot’s footprint is assumed to be circular, too. An-
other approach is the integration of fake obstacles into the static obstacle
map by predicting the dynamic obstacle’s motion for a limited duration
and determining the swept over area [Fer08b]. In this way, it is, of course,
impossible to perform truly time-parametrized motion planning among
dynamic obstacles. Furthermore, many collision checking approaches sim-
ply ignore the fact that the present—not to mention future—position of a
dynamic obstacle is not precisely known because it is only estimated by
some form of obstacle tracker. Therefore, this thesis focuses on a proba-
bilistic modeling of dynamic obstacles in order to integrate them into a
consistently formulated concept of collision probability computation.

4.3.1 Probabilistic Modeling of Disk-Shaped Obstacles

One collision checking method that was implemented in this thesis as-
sumes approximately circular dynamic obstacles. This assumption is, for
example, justified if people make up most of the dynamic objects in a scene.
The collision checking is based on the method presented in [Kus09] but
adds some extensions for better performance and accuracy. The method re-
lies on the availability of a perception module that provides an estimation
of the obstacles’ states together with the corresponding uncertainty. The
state variables are assumed to be normally distributed random variables.
With an appropriate system model (e.g., a simple constant velocity model),

103

Chapter 4. Modeling the Environment

this state can be used to predict the future trajectory of the dynamic ob-
stacle and the evolution of the associated uncertainty. For this purpose,
the standard prediction step of an extended Kalman filter [Kle12] may be
used if the obstacle’s linear (or even rotational) velocity is known from the
obstacle tracker.

For this kind of modeling, the risk for colliding with a dynamic obstacle
depends on the position, orientation, size, and uncertainty (covariance ma-
trix with six distinct elements) of the obstacle as well as on the position and
orientation of the robot. This results in a 13-dimensional parameter vector,
which prevents any reasonable precomputation of collision risks. Because
of this, dynamic obstacles are reduced to point obstacles and the original ex-
tent of a dynamic obstacle is added to the size of the circular robot footprint.
With this simplification, the number of parameters necessary to define the
probability for a collision with the i-th obstacle is reduced to six, namely
the relative position of robot and obstacle, ddyn,i = [ddyn,x,i ddyn,y,i]⊤, the
predicted covariance matrix

Σi =



σxx,i σxy,i
σxy,i σyy,i


, (4.2)

consisting of three distinct values, and the enlarged robot footprint ra-
dius ζi , which is the sum of the robot radius and the obstacle radius. The
computation of the probability for colliding with the i-th obstacle at a
particular instant of time is done by integrating the predicted probability
distribution of the dynamic obstacle over the enlarged robot footprint Ri :

pdyn,i =

"
Ri

1
2π
√|Σi |

exp *
,
−1

2
[
x y

]
Σ−1
i



x

y


+
-
dx dy (4.3)

with
Ri =

{
(x ,y) ��� (x − ddyn,x,i)

2 + (y − ddyn,y,i)2 ≤ ζi 2
}
. (4.4)

104

4.3. Dynamic Obstacles

−4 −2 0 2 4
−4
−2

0
2

4
0

1

2

3

× 10−2

Ri

pdyn,i

y / m

x / m

Pr
ed
ic
te
d
pr
ob
ab
ili
ty

Figure 4.4: Calculation of collision probability (4.3) [Pet13a].

The probability (4.3) for collision with a single dynamic obstacle needs to
be computed for each dynamic obstacle individually. Figure 4.4 illustrates
this computation. The combined probability for colliding with any of N
present obstacles is obtained by the joint probability

pdyn = 1 −
N∏
i=1

(1 − pdyn,i) , (4.5)

which exploits the simplifying assumption that each collision is probabilis-
tically independent.

The authors of [Kus09] use a look-up table with precomputed values
of (4.3) for common parameter values. However, a six-dimensional look-up
table allows only a limited resolution for the quantization of each param-

105

Chapter 4. Modeling the Environment

eter. For example, already 25 distinct values for each parameter would
lead to a total of 2.4 × 108 entries in the look-up table requiring 1 GB of
memory when stored as 4-byte floating-point numbers. For this reason,
an approach that computes the integral (4.3) on demand and caches the
result for each triple (x ,y, t) visited during a planning cycle has been de-
veloped in this thesis [Pet13c]. The proposed approach does not restrict
the collision probability computation to a limited set of robot-obstacle
constellations thus increasing the accuracy. The caching is a good compro-
mise between exhaustive precomputation and permanent recomputation
of (4.3). Figure 6.15 shows an example for motion planning in the presence
of a circular dynamic obstacle.

4.3.2 Probabilistic Modeling of Obstacles
with Arbitrary Shape

The second collision checking method that was developed in this thesis can
handle dynamic obstacles of arbitrary shape. This is especially useful for
scenarios containing dynamic obstacles like cars or trucks with footprints
substantially deviating from a circular shape. Furthermore, the proposed
method does not impose any restrictions on the robot’s shape. The ap-
proach aims at precise modeling of each object and its collision probability
with fast and efficient means for computation in mind.

The method assumes a polygonal description of both the robot and
dynamic obstacles. It is not restricted to convex polygons; however, most
robots and obstacles feature a convex shape. The polygons serve mainly
as the input for the algorithm; most of the collision risk computation is
performed using a grid representation. First, some parameters need to be
determined that control the granularity of the collision risk computation:
the resolution ∆xy of the grids that are used in the following computation
process, the number of distinct robot orientations for collision checking,
and the temporal granularity∆t for the prediction of the dynamic obstacles.

106

4.3. Dynamic Obstacles

The grid resolution ∆xy can be chosen independently of the map resolution
or the state lattice quantization δ rxy , and also the number of robot orien-
tations is not restricted to the previously chosen set of admissible robot
headings Θ, see (3.27). On the other hand, it makes sense to choose the
temporal granularity ∆t in accordance with the temporal increment δt , see
(3.13), which has also been used in the motion primitive sampling process
(see Section 3.5.4).

Robot masks

Once during the initialization of the algorithm, a set of robot masks needs
to be created. For any of the considered orientations the robot polygon is
rotated and then converted to a grid representation (i.e., a matrix)

R(θ) = (ri j), R ∈ Rm (θ)×n (θ) (4.6)

with occupied cells set to 1 and free cells set to 0. This rasterization process
can be efficiently performed by using a scan-line algorithm, which is a
well-known image processing technique [Hug14]. The robot masks are
stored in memory and will serve as a stencil in order to compute the region
simultaneously occupied by the robot and an obstacle in the following
collision risk computation.

Time slices

For each planning cycle, a set of time slices is generated containing infor-
mation on the location of the dynamic obstacles. A time slice is a square
matrix

Ω(t) = (ωi j), Ω ∈ RM (t)×M (t), M (t) odd , (4.7)

which is a grid representation of the xy-plane at a particular time t =

n′∆t , n′ ∈ N+. The total number of time slices depends on the temporal

107

Chapter 4. Modeling the Environment

horizon for planning with full dimensionality in the state× time lattice
(see Section 5.1.2).

Each time slice needs to be large enough to cover the robot’s entire ra-
dius of action at time t . Thus, the sizeM (t) of time slice Ω(t) is determined
by

M (t) := 2⌈dmax (t)/∆xy⌉ + 1 (4.8)

withdmax (t) = vmaxt , wherevmax is the maximum velocity of the robot (see
Figure 4.5). Consequently, the size of the time slices increases with time.
Each time slice is centered on the robot’s position, (x0,y0), at the start of the
planning cycle. This provides a global referencing with the environment
and its objects. If there are multiple dynamic objects in a scene, a separate
tentative stack of time slices is generated for each obstacle.

The polygon of each dynamic obstacle is predicted forward in time
on the basis of the information provided by the perception module. De-
pending on the available motion hypotheses, various transformations are
possible, like translations and rotations. Theoretically, even the shape of
the dynamic obstacles may change over time; however, this is rarely en-
countered in practice. After the transformation for a particular time t , the
new polygon is rasterized into the corresponding time slice. The value of
each cell of a time slice can be interpreted as the probability of being part
of an obstacle, which means that occupied cells are assigned the value 1
and free cells are assigned the value 0.

The estimation and prediction of the obstacles’ trajectories is generally
associated with a certain degree of uncertainty. This information is utilized
by performing a convolution of each time slice with a Gaussian smoothing
kernel, whose variance is determined on the basis of the estimated uncer-
tainty. As an example, Figure 4.5 shows the resulting stack of time slices
for one obstacle after this process.

Finally, if there are N obstacles, their respective stacks of time slices
Ωk (t), k = 1, . . . ,N are merged into one single stack by combining con-

108

4.3. Dynamic Obstacles

Ω(∆t)

Ω(2∆t)

Ω(3∆t)

Ω(4∆t)

Ti
m
e

dmax = vmaxt

Figure 4.5: Stack of time slices for one obstacle (red triangle). The slices are centered around
the current robot position (blue dot).

temporaneous time slices into one:

Ω(t) =
(
ωi j (t)

)
= *

,
1 −

N∏
k=1

(
1 − ωk,i j (t)

)+
-
. (4.9)

This is equivalent to (4.5) and assumes that the events of being occupied
by the k-th obstacle are probabilistically independent. This concludes the
preparatory computations at the beginning of each planning cycle.

Collision probability

The actual collision probability computation is performed for each sampled
state of the motion primitives’ trajectories (3.39). First, the time slice that
corresponds to the time associated with the currently examined state needs

109

Chapter 4. Modeling the Environment

to be selected. Next, the robot mask is translated according to the current
robot position and then superimposed on the time slice. Finally, the sum
of the values of all cells that are covered by the robot is computed:

pdyn (x ,y,θ , t) = min *
,
1,

m (θ)∑
i=1

n (θ)∑
j=1

ri j (θ)ωi+i′ (x,t), j+j′ (y,t) (t)+
-
, (4.10)

withm and n denoting the size of the robot mask and

i ′(x , t) =
⌊
x − x0
∆xy

⌉
+
M (t) − 1

2 − m(θ) − 1
2 , (4.11)

j ′(y, t) =
⌊
y − y0
∆xy

⌉
+
M (t) − 1

2 − n(θ) − 1
2 , (4.12)

where (x0,y0) is the robot’s position at the start of the planning cycle and
⌊ ·⌉ denotes rounding to the nearest integer. The computation corresponds
to the correlation of robot mask and time slice evaluated at the current
position of the robot. For point obstacles (i.e., obstacles without physical
extent) the evaluation of (4.10) yields the collision probability pdyn = 1 if
all time slice cells that are affected by the dynamic obstacle are located in-
side the robot footprint. For spatially extended obstacles, the sum in (4.10)
may become larger than 1. This would prevent the utilization of (4.10) as
a probability measure, which is why the sum is clipped to 1. This approxi-
mate approach for a probabilistic interpretation of the collision probability
allows a quick assessment of the collision risk and proved its worth in
practice (see Section 6.3.3).

4.4 Overall Collision Risk

The overall collision probability is evaluated for each state of the trajec-
tory Tof each motion primitivem expanded during the planning (see Sec-

110

4.5. Summary

tion 5.3). It is assumed that the events of colliding due to static obstacles,
terrain characteristics, or dynamic obstacles are mutually independent.
Thus, the overall collision probability pcoll, i.e., the collision risk, can be
obtained by (cf. [Pet13c])

pcoll = 1 − (1 − pstat) (1 − pterrain) (1 − pdyn) . (4.13)

It is composed of the probability pstat for colliding with static obstacles
according to (4.1), the probability pterrain for colliding due to terrain char-
acteristics according to Section 4.2, and the probability pdyn for colliding
with dynamic obstacles according to (4.5) or (4.10).

4.5 Summary

This chapter gave a short overview of the methods that have been devel-
oped during this thesis for modeling the environment of a mobile robot.
This has been necessary in order to put the proposed planning approach
into practice and build a real-world demonstrator (see Section 6.4) that
is capable of autonomous driving in unstructured and dynamic environ-
ments. For this purpose, a probabilistic approach based on the computation
of a collision risk has been developed. This collision risk consists of three
components, namely the collision probability with static obstacles, the
collision probability due to terrain characteristics, and the collision prob-
ability with dynamic obstacles. For the latter, two alternative approaches
have been developed: an extended version of the method that has been
proposed in [Kus09] for circular obstacles and a novel method for obsta-
cles with arbitrary shape, which is based on a grid representation in the
form of time slices. This environment model provides the basis for the cost
computation during the graph search (see Section 5.3).

111

Chapter 5

Searching the Lattice

Chapter 3 established the building blocks for mobile robot motion plan-
ning in unstructured dynamic environments, namely the concept of a
multi-resolution state× time lattice with hybrid dimensionality and the
corresponding sets of motion primitives that define the admissible motion
conforming to the lattice structure. This chapter explains how the build-
ing blocks can be used to construct a search graph for finding the optimal
motion plan. The search for the optimal path/trajectory of the robot is
converted to the problem of finding the shortest path in a graph. The un-
derlying lattice structure guarantees that the planning is complete (i.e., if
a solution exists, it will be found, and if there is no solution, the algorithm
will report this fact in finite time). Furthermore, the graph search algo-
rithm guarantees that the motion planning is optimal (with respect to the
employed resolution and the sampled motion primitives). A lot of well-
known algorithms exist for finding shortest paths in a graph. However,
especially in the presence of dynamic obstacles, quick solutions to the plan-
ning problem are vital in order to guarantee collision-free motion of the
robot. This imposes significant demands on the graph search algorithm.

113

Chapter 5. Searching the Lattice

5.1 Building the Search Graph

The search graph is constructed by the concatenation of motion primitives.
In order to define admissible combinations of motion primitives, the no-
tation of compatibility is borrowed from [Fra05], where it is used in the
context of an automaton-based maneuver planning algorithm. The notion
is adapted to fit the method proposed in this thesis and is extended for the
advanced concepts of variable resolution and dimensionality.

5.1.1 Motion Primitive Concatenation without
Changing Dimensionality or Resolution

To illustrate the concept of compatibility, concatenation of motion primi-
tives without changing the resolution level r or dimensionality level d is
considered first. A discrete state s̃d,r ∈ Ld,r is said to be compatible with a
motion primitive

md,r =
(
s̃d,r0 , s̃d,re , u, T, ∆tm

)
∈Md,r (5.1)

if there exists a translation vector δs such that

s̃d,r = s̃d,r0 + δs , (5.2)

where δs may only have nonzero components δsi for the translation-
invariant state variables si (see Section 3.5.2 for the definition of trans-
lational invariance). Following the notation of [Fra05], this compatibility
relation is briefly written as

s̃d,rCmd,r . (5.3)

The application of a compatible motion primitivemd,r to a state s̃d,r , de-
noted by s̃d,rmd,r , can be thought of as a mapping Ld,r ×Md,r → Ld,r .

114

5.1. Building the Search Graph

The motion primitivemd,r is first translated by the vector δs according to
the compatibility condition (5.2), which results in a new motion primitive

md,r ′ =
(
s̃d,r0 + δs, s̃d,re + δs, u, Tδ s, ∆tm

)
. (5.4)

Then, the new discrete state s̃d,r ′ after the application ofmd,r is given by
the new end state

s̃d,r
′
= s̃d,rmd,r = s̃d,re + δs . (5.5)

The transformed trajectory Tδ s is obtained by shifting each state s ∈ T

individually by the translation vector δs and provides the basis for the
collision checking.

When a state s̃d,r is expanded during the graph search, its successors
are obtained by application of all compatible motion primitives, i.e., the
set of successor states is given by

succ (s̃d,r) =
{

s̃d,rmd,r ��� s̃d,rCmd,r ∧md,r ∈Md,r
}
. (5.6)

5.1.2 Transitions Between Different Dimensionalities

Gradually reducing the planning dimensionality is a key idea of the ap-
proach that has been developed in this thesis (see Section 3.6). This allows
high-fidelity planning for the immediate future and more coarse planning
for more distant regions. The desired dimensionality is selected on the
basis of the elapsed time to reach the considered state [Pet14]. For this
purpose, the time t̄ (s̃d,r) for reaching a state s̃d,r in the search graph is
stored alongside the state s̃d,r . The time t̄ (s̃d,r) is the sum of the durations
of the individual motion primitives leading to this state. The application
of the motion primitivemd,r = (s̃d,r0 , s̃d,re , u, T, ∆tm) to a state s̃d,r leads
to a new state s̃d,r ′ with

t̄ (s̃d,r
′
) = t̄ (s̃d,r) + ∆tm . (5.7)

115

Chapter 5. Searching the Lattice

τ0 τ1

0

1

2 Incre
asing

dime
nsion

ality
level

,

decre
asing

numb
er of

dime
nsion

s

t̄ (s̃d,r)

d

Figure 5.1: Temporal thresholds for dimensionality reduction.

During the planning, the employed dimensionality level is controlled by
temporal thresholds τd with d ∈ { 0, . . . ,dmin − 1 } and τd ≤ τd ′ for d < d ′.
Startingwithd = 0, a dimensionality leveld is used until the corresponding
temporal threshold τd , at which the transition to a lower dimensionality
occurs. This is illustrated in Figure 5.1.

The dimensionality transition in the search graph is performed during
the appropriate generation of a state’s successors. If a dimensionality re-
duction is pending for the currently expanded state s̃d,r and time t̄ (s̃d,r),
i.e., if t̄ (s̃d,r) exceeds τd , the successors of s̃d,r are determined not on
the basis of this very state s̃d,r but on the basis of the projected state
s̃d+1,r = π (s̃d,r). Thus, when switching the dimensionality level, the suc-
cessors of a state s̃d,r are given, by analogy to (5.6), as

succ (s̃d,r) =
{
π (s̃d,r)md+1,r ��� π (s̃

d,r)Cmd+1,r ∧md+1,r ∈Md+1,r
}
,

(5.8)
wheremd+1,r is now an element of the motion primitive setMd+1,r with
reduced dimensionality.

116

5.1. Building the Search Graph

In the context of the mobile robot example from Section 3.4, the dimen-
sionality reduction essentially means the following: From t̄ = 0 to t̄ = τ0 a
full-dimensional planning including the temporal dimension is performed.
This allows for true time-parametrized motion planning among dynamic
obstacles. At t̄ = τ0 the temporal dimension is dropped and the plan-
ning proceeds with dynamically feasible planning (i.e., still considering
the robot’s dynamics) until t̄ = τ1. Finally, at t̄ = τ1 the velocity dimension
is also dropped, and the planning changes to only kinematically feasible
planning until reaching the goal.

5.1.3 Transitions Between Different Resolutions

The employed planning resolution is the second possibility for adjusting
the planning fidelity. The criteria for a reasonable resolution selection are
described in Section 5.1.4. This section explains the change of the resolu-
tion during the search graph construction [Pet13b]. The currently used
resolution is specified by the resolution level r (see Section 3.7). In contrast
to the dimensionality reduction, a change of resolution may be made in
any direction, i.e., both to more coarse as well as to finer resolutions.

With the compatibility relation (5.2), the transition between different
resolutions can be concisely formulated: If a transition from a state s̃d,r

with corresponding resolution level r to the new resolution level r ′ is in-
tended, the successors of s̃d,r can be obtained by

succ (s̃d,r) =
{

s̃d,rmd,r ′ ��� s̃d,rCmd,r ′∧md,r ′∈Md,r ′
}
. (5.9)

If r ′ < r , i.e., a transition is made to a region with finer resolution, the
prerequisites (3.66) and (3.67) guarantee that s̃d,r ∈ Ld,r is also an element
of Ld,r ′ and thus motion primitives compatible with s̃d,r exist inMd,r ′. On
the other hand, if the resolution is decreased, i.e., r ′ > r , the state s̃d,r

is not necessarily also an element of Ld,r ′, which may result in an empty

117

Chapter 5. Searching the Lattice

set of successors (5.9). In this case, the currently expanded branch of the
graph is closed. Thus, a transition from s̃d,r ∈ Ld,r to a state s̃d,r

′ ∈ Ld,r
′

with a more coarse resolution can only happen if s̃d,r is already an element
of Ld,r ′.

The change of resolution is totally independent of the dimensionality
reduction process. Moreover, both may occur at the same time, and the
successors of s̃d,r are then obtained by the combination of (5.8) and (5.9),

succ (s̃d,r) =
{
π (s̃d,r)md+1,r ′ ��� π (s̃

d,r)Cmd+1,r ′∧md+1,r ′∈Md+1,r ′
}
.

(5.10)

5.1.4 Regions of High-Resolution Planning

A particular planning resolution is associated with each part of the search
space. The planning scheme proposed in this thesis allows an arbitrary
number of resolution levels; however, in practice, two resolution levels
are often sufficient. Thus, this section describes the methods that are used
to determine the low- and high-resolution planning regions of the search
space. The selection of the desired resolution can be realized on the basis
of various criteria. The authors of [Ruf09a] suggest the differentiation
between task-based and environment-based criteria.

Task-based criteria are the most commonly employed criteria, and
have been, for example, also used by Boss in the DARPA Urban Chal-
lenge [Lik09]. They basically define high-resolution planning regions for
the vicinity of the robot and the goal. This allows high-fidelity planning
for the immediate future as well as for intricate goal configurations, e.g., in
a parking maneuver. Due to the initial high-resolution planning region,
the continuous replanning scheme produces trajectories with an overall
quality similar to what would have been achieved by planning in a high-
resolution lattice only [Ruf09a].

118

5.1. Building the Search Graph

Environment-based criteria form the second class of criteria. Many dif-
ferent strategies for defining high-resolution regions are possible. For
example, one may opt for high-resolution planning near obstacles or
in areas with increased collision risk. These regions can be easily ob-
tained from the Euclidean distance transform (EDT) of the occupancy
map (see Section 4.1) and the corresponding collision probability pstat.
In order to reduce the extent of high-resolution planning regions and
thus the computation time, it might be reasonable to restrict the high-
resolution areas to narrow passages. In this way, it can be ensured that
solutions leading through narrow passages are not missed because of
too coarse planning. The authors of [Ruf09a] use the so-called bridge
test [Sun05] for detection of narrow passages. This randomized algorithm
has been developed in the context of Probabilistic Roadmaps (PRMs) and
is especially useful for high-dimensional configuration spaces. The ob-
stacle maps for mobile robot motion planning applications, however, are
usually two-dimensional occupancy grid maps and therefore a different,
morphology-based approach has been implemented in this thesis in order
to enable fast and deterministic identification of narrow passages. For this
purpose, the occupancy grid map is first dilated with an appropriately
sized structuring element (depending on the size of the robot) and subse-
quently eroded with the same structuring element. This corresponds to
the well-known morphological closing operation [Har87]. The difference
of the resulting grid map and the original grid map marks the narrow
passages and hence high-resolution planning regions (see Figure 5.2).
The map of the desired planning resolution is stored alongside the ob-
stacle map and is evaluated for each expanded state during the graph
search.

119

Chapter 5. Searching the Lattice

5 m

Structuring
element

Dilate

Erod
e

Difference

Figure 5.2: Determination of high-resolution planning regions. Top left: the original occu-
pancy grid map. Top right: dilated occupancy grid map. Bottom left: occupancy grid map
after closing operation. Bottom right: the high-resolution planning region is obtained by
the difference of closed and original occupancy map (obstacle, low-resolution planning
region, high-resolution planning region).

120

5.1. Building the Search Graph

5.1.5 Multiple Waypoints

Planning for multiple waypoints was introduced in Section 3.8. For this
purpose, each state s̃d,r was augmented with an additional component,
namely the next goal g, which assigns each state to a particular waypoint
segment.

During the graph search, a transition from a state s̃d,r = (. . . ,gi) of
the currently considered planning segment to a state s̃d,r ′ = (. . . ,gi+1) of
the next planning segment is performed if and only if s̃d,r ′ is located inside
the next waypoint gi , i.e.,

s̃d,r
′∈ S̃gi . (5.11)

Figure 5.3 illustrates this concept for a simple two-dimensional state space
and a task consisting of two waypoints.

The introduction of multiple-waypoint planning does not necessarily
lead to increased computational complexity. Since all states are explicitly
assigned to a waypoint segment at any given time, the addition of the
goal dimensionG to the lattice does not increase the dimensionality of the
planning problem. Thus, the computational complexity does not depend
on the actual number of waypoints but only on the length and intricacy
of the final solution. However, special care must be taken when applying
heuristic graph search methods. Since a heuristic cost function that only
directs the search toward the final waypoint gN would be too optimistic, it
is required to use a specialized heuristic cost function that properly reflects
the geometric relation of all waypoints g1, . . . ,gN . This is explained in
detail in Section 5.4.1.

5.1.6 Multi-Resolution Trajectory
with Hybrid Dimensionality

With the transitions defined in the previous sections, the multi-resolution
trajectoryψ with hybrid dimensionality, which constitutes the solution of

121

Chapter 5. Searching the Lattice

s̃s
g1

g2

x

y

s̃s = (x̃s, ỹs,g1)

s̃′ = (x̃g1 , ỹg1 ,g2)

s̃goal = (x̃g2 , ỹg2 ,g2)

g

y

x

Start state Waypoints

Figure 5.3: Graph for multiple-waypoint planning. The state s̃′ is the only connection be-
tween the g1- and the g2-layer in the search graph. Thus, the optimal path to the final goal g2
is required to pass the intermediate waypoint g1.

122

5.1. Building the Search Graph

the proposed algorithm to the motion planning problem, is given by

ψ =
(
s̃0,r0

0 , s̃0,r1
1 , . . . , s̃

0,ri
i , s̃1,ri+1

i+1 , . . . , s̃
dmin−1,r j
j , s̃dmin,r j+1

j+1 , . . . , s̃dmin,rK
K

)
,

(5.12)
where s̃0,r0

0 = s̃0,r0
s is the start state and s̃dmin,rK

K ∈ S̃gN is a state satisfy-
ing the goal condition. The trajectory ψ is a sequence of lattice points,
i.e., discrete states, with decreasing dimensionality: A full-dimensional
trajectory is available until state s̃0,ri

i with t̄ (s̃0,ri
i) ≤ τ0. From s̃1,ri+1

i+1 on,
with t̄ (s̃1,ri+1

i+1) > τ0, the dimensionality is reduced by one level. Such a di-
mensionality reduction may occur several times until finally the transition
to the lowest dimensionality is made at s̃dmin,r j+1

j+1 where it remains till the
last goal, which is reached after a total of K states. The resolution level rk ,
k = 0, . . . ,K of each state in ψ may change at any time according to the
criteria described in Section 5.1.4. In addition, a transition between differ-
ent waypoint segments could occur anywhere along the trajectory and is
fully independent of the dimensionality or resolution (see Section 5.1.5).

Since the state sequence in (5.12) originates from the sequential applica-
tion of motion primitives, the motion primitives can be used to reconstruct
the associated system controls u. Due to potential discontinuities of state
variables that have been dropped by the projection process, the system
inputs are most meaningful for the beginning of the trajectory, which con-
sists of full-dimensional states. It is precisely these early controls that are
relevant for the imminent motion of the robot. The planning method pro-
posed in this thesis provides an approximation to the solution of the general
time-parametrized motion planning problem (1.13), for which no analytic
solution exists for real-world applications in complex environments.

If a full-dimensional trajectory that is also optimal in the continuous
sense is required, one has to resort to conventional numerical optimiza-
tion techniques like sequential quadratic programming (SQP) or interior
point (IP) methods in order to solve the optimal control problem (OCP)

123

Chapter 5. Searching the Lattice

(1.13). For these methods, which are inherently only able to find a local op-
timum, the lattice-based motion planning algorithm can provide valuable
initial values, that are already a good guess for the optimal continuous so-
lution since by design the graph search provides solutions that are globally
optimal for the chosen resolution and set of motion primitives. The contin-
uous optimization of the trajectory directly leads to the topic of trajectory
smoothing, which is a research area of its own (for examples see [Bet98;
Thr06b; Xu12]) and is therefore not discussed in this thesis. However, tests
on a real robotic platform showed that the proposed hybrid-dimensional
planning scheme is able to produce high-quality solutions without the need
for further optimization. The planned trajectories can easily be tracked by
conventional control methods in order to achieve a robust and accurate
overall motion (see Section 6.4).

5.2 Finding the Shortest Path in the Graph

The approach that has been developed in this thesis converts the motion
planning problem to the task of finding shortest paths in a graph. The
construction of the search graph has been described in Section 5.1. Since
the entire graph may be very large and extend to regions that are never
explored during the actual graph search, the graph is not built up at the
beginning of the planning cycle, but the relevant part is incrementally
constructed as the search progresses and nodes get expanded.

5.2.1 Choice of Graph Search Algorithm

Finding shortest paths in a graph is an often-encountered task in robotics
for which a wide range of established algorithms are readily available.
An overview of heuristic graph search algorithms was provided in Sec-
tion 2.6.3. There, it was pointed out that the backward search of incre-

124

5.2. Finding the Shortest Path in the Graph

mental replanning algorithms is disadvantageous for the consideration of
dynamic obstacles. Additionally, in the context of the proposed hybrid-
dimensional planning scheme, it is not clear when a transition to another
dimensionality level should be made because the thresholds τi are based
on the duration measured from the start state, which is not known until
finally reaching the start state during the backward search. On the other
hand, anytime algorithms are able to quickly provide an initial (possibly
suboptimal but perfectly valid) solution. This is why Anytime Repairing A*
(ARA*) has been chosen for the computation of shortest paths through the
lattice-based search graph in this thesis.

5.2.2 Anytime Repairing A*

This section highlights the key ideas of the ARA* algorithm and illustrates
the basic concept. For the sake of clarity and in order to keep the notation
short, the superscripts indicating the dimensionality and resolution level
of a state s̃d,r are omitted in the following sections, and thus a state of the
search graph is briefly denoted by s̃.

ARA* was proposed by Likhachev, Gordon, and Thrun in [Lik03a].
Similar to the regular A* algorithm, states that have yet to be expanded are
collected in a priority queue called OPEN. They are sorted based on a key,
also called f -value,

f (s̃) := д(s̃) + ϵ h(s̃) . (5.13)

The state with minimum f -value is always expanded first and added to
the CLOSED set, which keeps track of all expanded states. The f -value is
computed by the sum of the accumulated cost д(s̃) for reaching s̃ and the
estimated remaining cost to the goal, which is the heuristic cost h(s̃). The
parameter ϵ is called the heuristic inflation factor. For ϵ = 1, the f -value
(5.13) is a lower bound for the cost of a path to the goal leading through s̃.

125

Chapter 5. Searching the Lattice

It is assumed that the heuristic h(s̃) is consistent, which means that

h(s̃) ≤ h(s̃′) + c (s̃, s̃′) (5.14)

holds for any s̃′ ∈ succ(s̃). Here, c (s̃, s̃′) denotes the cost for the transi-
tion from s̃ to s̃′. A consistent heuristic implies that it is also admissible,
i.e., it never overestimates the actual cost to the goal [Pea84]. With an
admissible heuristic, A* is guaranteed to find the optimal path when ex-
panding the states in increasing order of f -values. A heuristic that is in
addition consistent ensures that A* expands each state at most once during
the search [Lik03a].

The basic idea of ARA* is to deliberately violate the consistency as-
sumption (5.14) and perform the initial planning with an increased heuris-
tic inflation factor ϵ > 1 similar to Weighted A*. This way, the algorithm
can quickly provide an initial—but possibly suboptimal—solution, which
is then iteratively refined by lowering the inflation factor ϵ until the allo-
cated computation time is spent or the optimal solution is found for ϵ = 1.
Since iteratively replanning from scratch is prohibitively expensive, ARA*
makes extensive use of search results from previous iterations. For this
purpose, the notion of local inconsistency is introduced [Lik03a]. A state s̃
is called locally inconsistent if its д-value д(s̃) has been lowered in the cur-
rent iteration but the state s̃ itself is yet to be expanded. Before lowering
д(s̃), the accumulated cost of a successor s̃′ ∈ succ(s̃) is obtained by

д(s̃′) = д(s̃) + c (s̃, s̃′) . (5.15)

However, after lowering д(s̃), equation (5.15) is no longer valid; instead,
the decreased д(s̃) results in

д(s̃′) > д(s̃) + c (s̃, s̃′) , (5.16)

126

5.2. Finding the Shortest Path in the Graph

and thus s̃ is said to be locally inconsistent. The inconsistency is corrected
as soon as s̃ is expanded and its successors’ costs are updated according
to (5.15), which in turn renders their own successors locally inconsistent,
thus propagating the local inconsistency to the children of s̃.

While regular A* guarantees that no state is expanded more than once
due to the consistent heuristic, this is no longer true when planning with
an increased heuristic inflation factor ϵ > 1. This is why, besides the
OPEN set, which contains all states that are yet to be expanded, and the
CLOSED set, which contains all states that have already been expanded,
ARA* introduces an additional set, namely INCONS, which contains all
states that have been found to be inconsistent but are not a member of
OPEN. This inconsistency will be corrected by re-expanding those states in
the next ARA* iteration. For this purpose, at the beginning of each ARA*
iteration, the heuristic inflation factor ϵ is reduced and all states of INCONS
are moved to OPEN. Due to the changed ϵ , the f -value (5.13) of all states
in OPEN needs to be re-evaluated in order to update the sorting of the
priority queue which consists of the states in OPEN. The set of expanded
states from the previous iteration, CLOSED, is cleared so that it can record
expanded states of the current ARA* iteration. With this preparation, the
actual graph search is performed in a similar manner to the regular A*
algorithm. However, as soon as a state that has been expanded before is
revisited and its д-value is lowered, it is marked as inconsistent by adding
it to INCONS. The algorithmic details of ARA* are cited in Appendix B,
Algorithm 2 on page 211 for reference.

The solution of an ARA* iteration is guaranteed to be at most subopti-
mal by a factor of ϵ [Lik03b]. In fact, an even more accurate suboptimality
bound can be obtained by the ratio of д(s̃goal), i.e., the accumulated cost
to the goal from the previous iteration, and the non-inflated minimum
f -value

¯
f = mins̃∈OPEN∪INCONS (д(s̃) + h(s̃)) (5.17)

127

Chapter 5. Searching the Lattice

of all inconsistent states [Lik08]. Since both ϵ and the ratio д(s̃goal)/
¯
f are

valid suboptimality bounds, their minimum

ϵ ′ = min
(
ϵ,

д(s̃goal)
mins̃∈OPEN∪INCONS (д(s̃) + h(s̃))

)
(5.18)

is also a valid suboptimality bound [Lik08]. This suboptimality bound
provides a valuable assessment of the optimality of the planned motion
if the computation time budget is exhausted before the provably optimal
solution for ϵ = 1 is found by ARA*.

The ARA* algorithm achieves a substantial speed-up over iteratively
planning from scratch in a Weighted A* manner. For example, the au-
thors of [Lik03a] observed a 140-fold speed-up when planning a path for
a robotic arm with six degrees of freedom. They found the overhead of
ARA* compared to optimal A* search to be about 4 % when planning with
an initial ϵ = 3 and successively reducing ϵ in steps of 0.02 until the optimal
solution was found for ϵ = 1. The results for application of ARA* for mo-
tion planning in multi-resolution state× time× goal lattices with hybrid
dimensionality in the context of this thesis are presented in Chapter 6.

5.3 Costs

The computation of the д-value (5.15) is based on the cost c (s̃, s̃′) of the
transition from s̃ to s̃′. Various quantities may contribute to that cost: The
most obvious and most frequently used component is the distance traveled
from the start state, but also the elapsed travel time since the start may
be of interest. In addition, the traversed terrain may be incorporated into
the cost. This can be done either by applying a penalty for traversing
certain areas or by computing the terrain’s influence on the robot (e.g., roll
and pitch angle [Lin08]). For autonomous passenger vehicles, maximizing
comfort (e.g., by minimizing jerk) is generally a high priority [Lev11].

128

5.3. Costs

Besides the traveled distance and time, the implementation of the planning
algorithm for the mobile robot from Section 3.4 also strives to minimize
the collision risk caused by static and dynamic obstacles or terrain-specific
features (see Chapter 4) during the execution of a motion primitive

m = (s̃0, s̃e, u,T,∆tm) . (5.19)

The length of the motion primitive is defined by the length of the 2D path
corresponding to its trajectory Tand is denoted by l (m). For a state s̃, the
traveled distance since the start state s̃s is the sum of the individual lengths
of all motion primitives that led to s̃ and is denoted by l̄ (s̃). The time for
executing a motion primitive is tantamount to its duration ∆tm, which may
also be written as t (m) for consistency. The cumulative time for reaching
a state s̃ is denoted by t̄ (s̃). The collision risk pcoll (m) for executing the
motion primitive is obtained by (4.13), and the overall collision risk for
executing the trajectory from the start state s̃s to a given state s̃ is denoted
by p̄coll (s̃).

With these quantities the cost of the trajectory from the start state s̃s
to a state s̃ can be defined as

д(s̃) := l̄ (s̃) + ηt t̄ (s̃) + ηr p̄coll (s̃) (5.20)

with ηt > 0 and ηr ≥ 0 being weighting factors to adapt the cost function to
suit the particular requirements of a scenario [Pet13c]. The factor ηr con-
trols the acceptable detour for finding a path with lower collision risk. The
cost for reaching a successor s̃′ ∈ succ(s̃) is computed using the quantities
of the corresponding motion primitive:

д(s̃′) = l̄ (s̃′) + ηt t̄ (s̃′) + ηr p̄coll (s̃′)

= l̄ (s̃) + l (m) + ηt (t̄ (s̃) + t (m))

+ ηr
(
1 − (1 − p̄coll (s̃)) (1 − pcoll (m))

)
.

(5.21)

129

Chapter 5. Searching the Lattice

This formulation of the successors’ д-value ensures that the cost for ex-
panded nodes is monotonically increasing along the path, i.e., c (s̃, s̃′) > 0
for all s̃′ ∈ succ(s̃) (see Proposition 1, p. 203). This property is required for
the application of ARA* [Lik03b]. A graph with arbitrary edge costs would
require the application of more general algorithms, like the Bellman-Ford
algorithm, for finding the shortest path in the graph [Cor09].

The cost formulation (5.21) may be extended to reflect further prefer-
ences. For example, driving backwards may be penalized by multiplying
l (m) with a factor ηb > 1 whenever m causes backward motion of the
robot.

A graph search algorithm finds the least-cost path to the goal. This is
equivalent to solving the optimization problem

д∗ (s̃goal) = min
s̃goal∈S̃gN

д(s̃goal) . (5.22)

where д(s̃goal) depends on the trajectory/path to s̃goal, which is constructed
by the motion primitive concatenation according to Section 5.1. The ac-
cumulated costs д in (5.22) are the graph search counterpart to the cost
functional J in (1.13).

5.4 Heuristics

Heuristics provide an estimate of the remaining costs to the goal. Since the
state× time lattice is a metric space, heuristic search algorithms are well
suited for mobile robot motion planning because the inherent structure
of the search space allows a relatively straightforward estimation of the
remaining costs. For fast computation of the heuristic costs, it is a common
approach to solve a surrogate relaxed problem [Rus95]. In the context of
robot motion planning, such a relaxation may be obtained by disregarding

130

5.4. Heuristics

of obstacles in the environment or considering of kinematical paths instead
of the full-dimensional trajectory.

The most pragmatic approach is the computation of the Euclidean dis-
tance to the goal; however, more advanced strategies may be employed,
like Dubins curves [Dub57], which allow the analytical computation of
a vehicle’s shortest path by concatenation of circular arcs and straight
line segments. They have been extended to include backward motion
(Reeds-Shepp curves) [Ree90] and to consider continuous curvature of
the path [Sch98]. All these heuristics assume a mostly free configuration
space, which is generally not true for unstructured environments. The
more obstacles there are in the environment, the less informative is such a
heuristic. This is why efforts have been made to incorporate the structure
of the free space into the heuristic cost. For example, an approach that
constructs a Voronoi diagram of the free space and derives a heuristic cost
function from this diagram is investigated in [Zie08]; however, the authors
did not prove that their proposed heuristic is admissible or even consistent.
In addition, the Voronoi diagram needs to be recomputed from scratch each
time the map has changed, which may be prohibitively expensive for large
maps. In pursuit of more accurate, and thus more informative, heuristics,
the authors of [Kne06] compute a heuristic look-up table (HLUT) which
contains the costs for all admissible motions in a four-dimensional state
lattice without consideration of obstacles; of course, this can only be done
for a spatially confined region due to memory limitations for storing the
HLUT. This approach has been combined with an obstacle-aware 2D grid
search in [Fer08b] by using the maximum of the individual heuristics. This
strategy proved its worth in practice and similar methods have been used
by team Stanford’s Junior [Dol10] or team AnnieWAY [Kam08] during the
DARPA Urban Challenge.

The heuristics used in this thesis build on these established concepts but
are substantially extended to fit the requirements for multiple-waypoint

131

Chapter 5. Searching the Lattice

planning (Section 5.4.1). Additionally, an improved 2D obstacle-aware
heuristic is developed in Section 5.4.2, which is able to providemore precise
estimates on the remaining distance than the Dijkstra-based algorithm
proposed in [Lik09].

Following the definition of the cost function (5.20), the heuristic costs
comprise a spatial and a temporal component. The collision risk, however,
is not considered since it is impossible to draw conclusions on the expected
minimum collision risk without time-consuming examination of the actual
environment. Therefore, the minimum expected collision risk is set to zero.

Unless otherwise stated, the remainder of this thesis assumes disk-
shaped goal regions, also called waypoints, which are specified by their
center (xg,yg) and their radius Rg. The target orientation of the robot when
reaching a goal is left unspecified as an optimization parameter. Thus, the
set of goal states is given by

S̃g :=
{

s̃ ��� (x̃ − xg)
2 + (ỹ − yg)2 ≤ R2

g

}
. (5.23)

A lower bound d(s̃) on the distance from a state s̃ = (x̃ , ỹ, . . . ,g) to the
goal g with its associated set of goal states S̃g can be obtained by the
Euclidean distance

d(s̃) := max
(
0,

√
(x̃ − xg)2 + (ỹ − yg)2 − Rg

)
, (5.24)

which is illustrated in Figure 5.4. On the basis of this minimum distance,
the temporal component of the heuristic cost function can be defined as
follows. It is the remaining time t(s̃) that is at least necessary to reach the
goal:

t(s̃) := d(s̃)
ṽmax

, (5.25)

where ṽmax = maxṽ ∈V |ṽ | with V defined according to (3.28).

132

5.4. Heuristics

(xg,yg)

Rg
d(s̃)

g

(x̃ , ỹ)

Figure 5.4: Heuristics for one waypoint.

With the spatial and temporal components (5.24) and (5.25), the heuristic
cost function for single-waypoint planning is finally given by

h(s̃) := d(s̃) + ηt t(s̃) =
(
1 + ηt

ṽmax

)
d(s̃) . (5.26)

The heuristic cost function (5.26) is both admissible and consistent. As
(5.26) is a special case of the multi-waypoint heuristics derived in the next
section, the same proof applies (see Proposition 2, p. 204).

5.4.1 Heuristics for Multiple Waypoints

When planning for multiple waypoints simultaneously (see Sections 3.8
and 5.1.5), specially tailored heuristics are required in order to reflect the
structure of the state× time× goal lattice with its corresponding search
graph. The heuristic cost function needs to guide the state expansion
during the graph search along the chain of waypoints. For this purpose, a
generalized formulation has been developed to obtain a lower bound on
the remaining costs for a task consisting of N waypoints.

Similar to the single-waypoint case, the heuristic cost function consists
of a spatial and a temporal part according to (5.26). Thus, it is sufficient
to derive a formula for the lower bound d(s̃) on the remaining distance to
the last waypoint along a path that leads through all intermediate way-
points. For a state s̃ = (x̃ , ỹ, . . . ,gi) belonging to the planning segment

133

Chapter 5. Searching the Lattice

to waypoint gi , the lower bound d(s̃) can be split into two parts, namely
the minimum distance di (s̃) to the next waypoint gi and the remaining
minimum distance from gi to gN via gi+1, . . . ,gN−1:

d(s̃) := di (s̃) +
N∑

j=i+1
wj (5.27)

with di (s̃) defined analogously to (5.24),

di (s̃) := max
(
0,

√
(x̃ − xgi)2 + (ỹ − ygi)2 − Rgi

)
, (5.28)

and the inter-waypoint distance

wj := max
(
0,

√
(xgj − xgj−1)

2 + (ygj − ygj−1)
2 − Rgj−1 − Rgj

)
. (5.29)

The computation of the heuristic distance (5.27) is illustrated in Figure 5.5
for a sample task consisting of three waypoints. The final spatiotemporal
heuristic cost function h(s̃) can be computed by substituting (5.27) into
definition (5.26). For N = 1, i.e., single-waypoint planning, the multi-
waypoint heuristic distance (5.27) is equivalent to its single-waypoint coun-
terpart (5.24). The proposed heuristic multi-waypoint cost function is con-
sistent and thus also admissible (see Proposition 2, p. 204, for the proof).

5.4.2 Obstacle-Aware 2D Heuristics

The heuristic cost function proposed in the previous section allows a very
fast computation of a lower bound on the remaining distance to the goal.
However, as those heuristics ignore all obstacles and thus the topology of
the environment, they may vastly underestimate the remaining distance
and may thus be not as informative as it is desirable. For this reason,

134

5.4. Heuristics

(xg1 ,yg1)

Rg1
d1 (s̃)

g1

(x̃ , ỹ)

(xg2 ,yg2)

Rg2

w2

g2(xg3 ,yg3)

Rg3
w3

g3

Figure 5.5: Heuristics for multiple waypoints.

additional obstacle-aware heuristics are often employed [Fer08b]. They
commonly consist of a heuristic cost map that is obtained by a simple
grid search. For example, the details of the heuristics used in [Fer08b] are
provided in [Lik09]: The authors apply a Dijkstra-based search to an eight-
connected grid to determine the shortest paths from the goal to each cell
of the map. Horizontal and vertical motions incur a cost of 1 and moving
to a diagonally connected cell incurs a cost of

√
2. Since only directions

of motion that are a multiple of π/4 are allowed in an eight-connected
grid, the least-cost paths generally overestimate the true distance under an
Euclidean metric (except for purely straight or diagonal paths). This error
attains its maximum value for paths with straight and diagonal portions of
equal length (see Figure 5.6). In this case, the grid search may overestimate
the Euclidean distance by a factor of

ν := 1
cos(π/8) ≈ 1.0824 , (5.30)

135

Chapter 5. Searching the Lattice

A a B

a

C

2a cos(π/
8)

π/8 π/4

Figure5.6:Worst-case scenario for overestimation of heuristic distance in an eight-connected
grid: The shortest path from A to C computed by the Dijkstra-like search in an eight-
connected grid [Lik09] has a total length of 2a (solid lines); however, the Euclidean distance
from A toC is only 2a cos(π /8) (dashed line). Thus, the shortest path in the eight-connected
grid overestimates the Euclidean distance by a factor of 1/cos(π /8).

or roughly 8 %. In order to guarantee that the computed heuristic cost func-
tion is still admissible, the authors divide all costs by ν . As a consequence,
the computed heuristic costs for all cases that do not follow the worst-case
scenario from Figure 5.6 are now in turn underestimated. Especially for
mostly straight or diagonal paths, the remaining distance may be under-
estimated by up to the factor ν , which makes the heuristic cost function
less informative. This results in more states to be unnecessarily expanded
during the actual ARA* graph search.

In order to avoid the disadvantages mentioned above, a new obstacle-
aware 2D heuristic has been developed in this thesis. It is also based on a
Dijkstra-like grid search but uses a different cost function. For the deriva-
tion of the improved heuristic, the cost computation during the search in
an eight-connected grid for the established heuristic from [Lik09] is re-
stated in closed-form in the following. In the remainder of this section,
a state s̃i = (x̃i , ỹi , . . .) is interpreted as the vector [x̃i ỹi]⊤ to be able
to draw on some tools of linear algebra. Without loss of generality, it is
assumed that the optimal path from a state s̃0 to a state s̃N leads through

136

5.4. Heuristics

N − 1 critical points (i.e., states) that are determined by the obstacles in
the environment. The derivation of the improved heuristic assumes that
the critical points are known; however, this is not necessary for the actual
implementation.

Figure 5.7a shows an example for the optimal 2D path from s̃0 to s̃2 via
the critical point s̃1. The dashed line depicts the shortest path from s̃0 to
s̃2 via s̃1 under the Euclidean metric. Its length is obtained by the sum of
the length of its straight-line segments pi := s̃i − s̃i−1,

dEucl :=
N∑
i=1
∥pi ∥ =

N∑
i=1
∥s̃i − s̃i−1∥ , (5.31)

where N is the number of straight-line segments for N − 1 critical points,
and ∥ · ∥ denotes the Euclidean norm. With this notation, the length of the
shortest path computed by the Dijkstra-like grid search in [Lik09] can be
computed by

dLik := 1
ν

N∑
i=1

(
max (|px,i |, |py,i |) + (

√
2 − 1) min (|px,i |, |py,i |)

)
. (5.32)

This corresponds to the length of the solid lines in Figure 5.7a (with the
additional correction factor ν). To shorten notation, the vector

ri :=


max(|px,i |, |py,i |)
min(|px,i |, |py,i |)


(5.33)

is introduced, which mirrors and/or rotates pi such that its largest absolute
component points in x-direction and its minimum absolute component
points in y-direction. This transformation does not change the length of

137

Chapter 5. Searching the Lattice

s̃0

p1

s̃1

p2

s̃2

(a) Initial setup: Euclidean distance dEucl (dashed lines) and heuristic distance func-
tion νdLik (solid lines).

s̃0

r1

s̃1 ′
r2

s̃2 ′

(b) Scenario after application of transformation (5.33): Euclidean distance dEucl
(dashed lines), heuristic distance function νdLik (solid lines), and novel improved
heuristic distance function dobst (blue line).

Figure 5.7: Obstacle-aware 2D heuristic distance function computation: sample scenario
with one critical point.

138

5.4. Heuristics

the vector, i.e., ∥ri ∥ = ∥pi ∥. With (5.33), (5.32) can be rewritten as

dLik =
1
ν

N∑
i=1

(
rx,i + (

√
2 − 1)ry,i

)
=

1
ν

N∑
i=1



1√
2 − 1



⊤
ri .

(5.34)

This still corresponds to the solid line in Figure 5.7a (leaving aside the
factor ν). Instead of adding the length of each segment, (5.34) can also be
written as

dLik =
1
ν



1√
2 − 1



⊤ N∑
i=1

ri , (5.35)

which first sums all vectors ri before performing the distance computation.
This is illustrated by the black solid lines in Figure 5.7b, whose length is
identical to the length of the solid lines in Figure 5.7a. On the basis of
(5.35), a new improved obstacle-aware 2D heuristic distance function is
proposed in this thesis. It exploits definition (5.33) and is defined by

dobst :=

N∑
i=1

ri

. (5.36)

This corresponds to the length of the vector resulting from the summation
of all vectors ri , which is visualized by the blue line in Figure 5.7b. The
new heuristic (5.36) is admissible since it never overestimates the Euclidean
distance (5.31). This becomes clear from looking at Figure 5.7b and can be
proved by the application of the triangle inequality:

dobst =

N∑
i=1

ri

≤

N∑
i=1
∥ri ∥ =

N∑
i=1
∥pi ∥ = dEucl . (5.37)

139

Chapter 5. Searching the Lattice

In addition, the new heuristic dobst also dominates the heuristic dLik, i.e., it
is always more or equally informative (dobst ≥ dLik). To prove this property,
the vector

a := 1
ν



1√
2 − 1


(5.38)

is introduced. Its norm can be computed with the help of the half-angle
formula for the cosine,

cos(α/2) =
√

1 + cos(α)
2 , (5.39)

see [Olv10], to give

∥a∥ =

cos(π/8)


1√
2 − 1



=

√
1 + cos(π/4)

2

√
4 − 2

√
2 = 1 . (5.40)

The dominance of dobst over dLik can now be proved by exploiting the
Cauchy-Schwarz inequality (CSI) [Olv10]:

dLik = a⊤
N∑
i=1

ri =

a⊤
N∑
i=1

ri

CSI≤ ∥a∥

N∑
i=1

ri

(5.40)
=

N∑
i=1

ri

= dobst .

(5.41)

The new heuristic dobst is also implemented in terms of a Dijkstra-like
search in an eight-connected grid. Its cost, however, is computed differ-
ently from the method proposed in [Lik09]. While the latter assigns the
cost in an incremental fashion by adding 1/ν for vertical and horizontal
motion and

√
2/ν for diagonal motion, the new heuristic dobst keeps track

of the sum ∑N
i=1 ri by using ri =

[1
0
] for horizontally or vertically adjacent

cells and ri =
[1

1
] for diagonally adjacent cells (corresponding to definition

140

5.4. Heuristics

(5.33)). With this sum, the heuristic distance dobst can then be computed by
(5.36). This formulation does not require explicit knowledge of the actual
critical points, which were used in the derivation of the heuristic. It is
sufficient to know the sum of the segments ri that connect those points.

Figures 5.8 to 5.10 show a comparison of dLik and dobst. At a first glance,
both heuristics seem to be identical (Figure 5.8). Therefore, Figure 5.9 vi-
sualizes the same data with a more expressive color map, which better
illustrates the propagation of the “wave fronts,” i.e., cells with identical
heuristic distance. It can be observed that the propagation of dobst (Fig-
ure 5.9b) is more circular and thus more realistic than the propagation of
dLik (Figure 5.9a). Figure 5.10 shows the quantitative difference between
the two heuristics: The absolute difference, dobst − dLik, increases with in-
creasing distance from the goal (Figure 5.10a) while the relative difference,
(dobst−dLik)/dobst, is especially large in the vicinity of the goal (Figure 5.10b).
The maximum difference is roughly 8 %, which corresponds to 1−1/ν . Fur-
thermore, it can be seen very clearly that the difference is particularly
prominent in straight and diagonal directions since the application of the
correction factor ν is most misleading for these directions.

For multiple-waypoint planning, the obstacle-aware 2D heuristics need
to be computed for each waypoint segment individually. In principle, it
is possible to compute the obstacle-aware 2D heuristics for each cell of
the map. However, since the map may be very large, this would poten-
tially involve computing the heuristics for large regions of the map that are
never visited during the actual graph search. For this reason, restricting
the computation of the heuristics to a threshold d̄obst of about 100 m proved
reasonable in practice. For all other cells, for which an obstacle-aware 2D
heuristic is not available, the already introduced obstacle-unaware heuris-
tic distance (5.27) is used. Whenever a transition is made between these
two heuristics during the graph search, it may happen that the consistency
condition for a heuristic cost function, see (A.4), is violated. Fortunately,

141

Chapter 5. Searching the Lattice

goal

0 25 50 75 1000

25

50

75

y / m

x
/

m

0 m

50m

100m

150m

200m

(a)Heuristic distance dLik.

goal

0 25 50 75 1000

25

50

75

y / m

x
/

m

0 m

50m

100m

150m

200m

(b)Heuristic distance dobst.

Figure 5.8: Comparison of 2D obstacle-aware heuristic distances dLik and dobst. Obstacles
are shown in black.

142

5.4. Heuristics

goal

0 25 50 75 1000

25

50

75

y / m

x
/

m

0 m

50m

100m

150m

200m

(a)Heuristic distance dLik.

goal

0 25 50 75 1000

25

50

75

y / m

x
/

m

0 m

50m

100m

150m

200m

(b)Heuristic distance dobst.

Figure 5.9: Comparison of 2D obstacle-aware heuristic distances dLik and dobst: “wave front”
propagation. Obstacles are shown in black.

143

Chapter 5. Searching the Lattice

goal

0 25 50 75 1000

25

50

75

y / m

x
/

m

0 m

2m

4m

6m

8m

(a)Absolute difference of heuristic distances: dobst − dLik.

goal

0 25 50 75 1000

25

50

75

y / m

x
/

m

0 %

2 %

4%

6%

8%

(b) Relative difference of heuristic distances: (dobst − dLik)/dobst.

Figure 5.10: Comparison of 2D obstacle-aware heuristic distances dLik and dobst: difference.
Obstacles are shown in black.

144

5.5. Complexity

a consistent heuristic h can be easily constructed from any admissible
heuristic h′ by application of the pathmax equation [Rus95],

f (s̃′) = max (f (s̃), д(s̃′) + h′(s̃′)) (5.42)

or, alternatively,

h(s̃′) = max (h(s̃) + д(s̃) − д(s̃′)︸ ︷︷ ︸
c (s̃, s̃′)

, h′(s̃′)) (5.43)

with s̃′ ∈ succ(s̃) and h′(s̃′) being the tentative heuristic for the successor
state s̃′. The pathmax equation is therefore used to ensure the consistency
of the overall heuristic cost function.

5.5 Complexity

The main contribution of this thesis is the construction of a search graph
based on a state× time× goal lattice structure for multi-resolution, multi-
waypoint motion planning with hybrid-dimensionality (see Chapter 3).
The proposed approach converts the complex motion planning problem to
a regular search for a shortest path in a graph (Chapter 5). This allows the
application of many well-established graph search algorithms—each one
having its advantages and disadvantages as was discussed in Sections 2.6.3
and 5.2. Consequently, the achievable performance of the overall motion
planning may vary depending on the selected algorithm and the particular
scenario.

For the implementation in the context of this thesis a heuristic graph
search method, ARA*, has been chosen. Thus, the performance of the plan-
ning does strongly depend on the quality of the utilized heuristics. If a
constant heuristic cost function h = 0 was used, i.e., if the heuristic did
not provide any information on the remaining cost (worst case), the search

145

Chapter 5. Searching the Lattice

would degenerate to a breadth-first search with complexity exponential
in the length of the solution. On the other hand, using a perfect heuris-
tic which exactly matches the true remaining distance would result in a
complexity linear in the length of the solution, since only states along the
shortest path would ever be expanded [Pea84]. Of course, such a perfect
heuristic is generally not available since its computation would be tan-
tamount to solving the original planning problem. Thus, in reality, the
performance is somewhere in between, and it is generally better the more
informative the employed heuristic is.

In the context of mobile robot motion planning, suitable heuristics have
been defined in Section 5.4. Since the informativeness of these heuristics
depends on the structure of the respective environments and waypoint
setups, a universal statement on the theoretical complexity cannot be made
and would be rather unrewarding for the assessment of the real-world per-
formance of the planning algorithm. For this reason, actual computation
times observed during simulations and in the application for the real-world
demonstrator are provided together with the results in Chapter 6 for a va-
riety of scenarios. The results also evaluate the algorithm’s susceptibility
to changes in the parameters like the temporal thresholds τi .

Since the proposed algorithm reduces the motion planning problem to
a regular search for a shortest path in a graph, it can directly benefit from
future advances in graph search algorithms or advances in the construction
of more informative heuristics, which can be easily integrated into the
developed framework.

5.6 Summary

This chapter has explained the construction of a search graph based on
the multi-resolution state× time× goal lattice with hybrid dimensionality
in order to reduce the motion planning problem to a regular search for a

146

5.6. Summary

shortest path in a graph. For this purpose, conditions for the transition
between regions with different resolution and dimensionality levels have
been derived. The search graph has been extended to allow for combined
planning via multiple waypoints.

Especially heuristic search algorithms are very well suited for effi-
ciently finding shortest paths in the obtained graphs. One can choose from
a wide range of established algorithms. In this thesis, the ARA* algorithm
is used for the actual implementation and therefore it has been presented
in detail in this chapter. Like any other heuristic graph search algorithm,
ARA* requires the definition of a suitable cost function and informative
heuristics. Since especially the latter is a prerequisite for the successful
real-world application of the algorithm, multiple-waypoint heuristics that
are both fast to compute and obstacle-aware have been developed. A dis-
cussion of the algorithm’s complexity and the implications for the expected
performance of the algorithm concluded the chapter.

147

Chapter 6

Results and Analysis

The previous chapters have established the theory for the proposed motion
planning algorithm. This chapter provides information on the actual imple-
mentation of the motion planning framework and the results obtained both
in simulation and for real-world applications. The quality of the results is
evaluated and compared with other state-of-the-art planning algorithms.

6.1 Implementation

To ensure maximum portability, the proposed planning approach has been
implemented in the form of a platform-independent C++ library. The avail-
ability of an efficient implementation for finding shortest paths in a graph
is an essential requirement for several components of the proposed mo-
tion planning framework, since it is utilized for the decomposition of mo-
tion primitives (see Section 3.5.5), the computation of 2D obstacle-aware
heuristics (see Section 5.4.2), and, of course, the main motion planning
itself (see Section 5.2). All these algorithms maintain an internal prior-

149

Chapter 6. Results and Analysis

ity queue to manage the list of states that may be expanded during the
search (e.g., the OPEN list in Algorithm 2, p. 211). The most frequent oper-
ations on the priority queues are the insertion of new elements (Insert),
the extraction of the element with highest priority, i.e., lowest f -value,
(ExtractMin), increasing the priority of an element, i.e., decreasing the
f -value, (DecreaseKey), and checking whether an element is contained
in the queue (Find). In order to perform these operations efficiently, a spe-
cially tailored data structure based on a combination of Fibonacci heap and
hash map [Cor09] has been developed in this thesis. It makes use of the
Fibonacci heap implementation provided by the C++ library Boost.Heap
[Ble11a]. It allows to perform the operations Insert and DecreaseKey
with an amortized complexity of O (1) and ExtractMin with an amor-
tized complexity of O (logn), where n is the number of elements in the
heap [Ble11b]. The heap data structure is combinedwith a hashmapwhose
implementation is taken from the C++ library Boost.Unordered [Jam08].
The hash map associates each state with its corresponding element in the
heap and thus allows for an O (1) implementation of the Find operation.
The presented priority queue implementation forms the basis for various
graph search algorithms used in the proposed motion planning frame-
work: The A* algorithm is used for the motion primitive decomposition,
a Dijkstra-like algorithm is used for the computation of the 2D obstacle-
aware heuristics, and Anytime Repairing A* (ARA*) is used for the actual
motion planning through the state× time× goal lattice.

The developed motion planning library can be easily employed for
various applications. In the context of this thesis, a MEX1 wrapper has
been developed, which enables the use of the proposed planning algorithms
from within MATLAB. This allow comprehensive offline simulations of
planning scenarios (see Section 6.3) since the algorithm’s internals can be
easily accessed for analysis and visualization purposes.

1. Mechanism to extend MATLAB with custom C, C++, or Fortran functions.

150

6.2. Construction of Lattices and Motion Primitive Sets

The second use case of the motion planning library is its integration into
the Robot Operating System (ROS) [ROS16]. For this purpose, a thin wrap-
per with ROS-specific functionality has been developed around the C++
motion planning library. ROS is the de facto standard for middlewares in
robotics. The framework relies on the concept of modularization and pro-
vides an efficient infrastructure for the communication between individual
software components [Qui09]. For example, the developed motion plan-
ning module uses the infrastructure to receive data from the perception
module and forward the planned motion to the trajectory controller mod-
ule. The modular approach of ROS allows a straightforward application
of the proposed motion planning algorithm to a real-world demonstrator
(see Section 6.4).

6.2 Construction of Lattices and
Motion Primitive Sets

As with all search-based planning algorithms, there exists a tradeoff be-
tween search speed and quantization fidelity. A coarse quantization en-
ables rapid exploration of the search space, whereas a fine quantization
allows for a more accurate representation of feasible robot motions. This
is especially important in order not to miss any existing solution since
planning in state lattices is only resolution-complete. The proposed multi-
resolution concept tries to get the best out of those two worlds. Nonethe-
less, a concrete discretization scheme has to be chosen for the actual ap-
plication. Good guidance is provided by the physical dimensions of the
robotic platform: The mobile robot (see Section 3.4.1), which has been
used for testing purposes both in simulation and experiments, has a size of
2.2 m× 1.3 m. The robot should be able to travel through narrow passages
with about 0.5 m remaining space to each side. Furthermore, the map of
the environment is assumed to have a resolution of 0.1 m × 0.1 m per cell.

151

Chapter 6. Results and Analysis

Table 6.1: Parameters for sampling of motion primitive sets used in the evaluation in Sections
6.3 to 6.5.

Parameter Description Value Unit

State lattice configuration
d Dimensionality levels { 0, 1, 2 }
r Resolution levels { 0, 1 }

High-resolution motion primitive set
δ0
xy Position increment 0.2 m
|Θ0 | Number of heading values 32
V 0 Set of velocities { 0, 1, 2 } m/s
δ0
t Time increment 0.25 s
∆t0

m,max Max. motion primitive duration 1.5 s

Low-resolution motion primitive set
δ1
xy Position increment 0.6 m
|Θ1 | Number of heading values 16
V 1 Set of velocities { 0, 1, 2 } m/s
δ1
t Time increment 0.25 s
∆t1

m,max Max. motion primitive duration 2.0 s

Resolution-independent
Ntotal Number of samples per bunch 1 × 108

Nexpl Exploration threshold 5 × 107

eq,max Max. quantization error 0.2
α Weighting factor in (3.50) 0.002
ϵd Admissible cost increase for decomp. 1.02

Robot model
κ Kinematical constant in (3.20) 1.47 m−1

a Admissible accelerations [−5, 5] m/s2

β Admissible steering angles [−0.35, 0.35] rad

152

6.3. Evaluation: Simulation Results

Considering these constraints, a position discretization δ 0
xy = 0.2 m is a

sensible choice for the high-resolution planning portions (r = 0). To speed
up planning in large free regions of the map, an additional resolution level
(r = rmin = 1) is employed with δ 1

xy = 0.6 m. For the discretization of
the robot’s heading, 16 distinct orientations for the low-resolution plan-
ning and 32 orientations for the high-resolution planning proved to be a
reasonable choice (see [Pet13b]). The heading values are defined using
the discretization scheme (3.27), which optimizes for smooth motion along
the specified orientations. The complete list of all sampling parameters
for the construction of the motion primitive sets is provided in Table 6.1
for reference. For the definition of the multi-resolution state× time lat-
tice with hybrid dimensionality a total of three distinct dimensionalities
(i.e., dmin = 2) are used in correspondence with the projection scheme
(3.56) to (3.58). The construction of the motion primitive sets is performed
according to the method outlined in Sections 3.5 to 3.7. Table 6.2 provides
some statistics of the obtained motion primitive sets, which constitute the
basis for the evaluation of the proposed motion planning concept in the
remainder of this chapter. The table shows the total number of motion
primitives per motion primitive set (“count”), the average number of mo-
tion primitives per bunch (“avg. bunch size”), and the average length of a
motion primitive (“avg. length”) both before and after the decomposition
process.

6.3 Evaluation: Simulation Results

This section focuses on the evaluation of the proposed planning algorithm
with respect to its functionality and capabilities. In order to show the
correct functioning and effectiveness of the planning approach, extensive
simulations have been carried out. For this purpose, the developed plan-
ning software has been integrated into MATLAB (see Section 6.1). On the

153

Chapter 6. Results and Analysis

Table 6.2:Motion primitive set characteristics.

Before decomposition After decomposition

Md,r Count
Avg.

bunch size
Avg.
length Count

Avg.
bunch size

Avg.
length

M0,0 4904 51.1 1.05 m 4556 47.5 1.04 m
M1,0 4136 43.1 1.06 m 2876 30.0 1.03 m
M2,0 1176 36.8 1.21 m 624 19.5 1.13 m
M0,1 596 12.4 1.25 m 472 9.8 1.19 m
M1,1 368 7.7 1.40 m 316 6.6 1.39 m
M2,1 96 6.0 1.62 m 96 6.0 1.62 m

basis of a previously recorded map of the environment, arbitrary scenarios
consisting of the robot’s current state ss, N waypoints gi , i = 1, . . . ,N , and
possibly some dynamic obstacles can be specified. The map of the environ-
ment and the robot’s location therein are assumed to be perfectly known.
This allows an undistorted evaluation of the motion planning results with-
out potential side effects of other involved algorithms. For the very same
reason, no additional trajectory smoothing or any post-processing is ap-
plied. The following figures directly show the result of a single planning
query. The execution of the planned motion is not included in the simula-
tion since this would involve further algorithms like a trajectory tracking
controller, which might distort the actual planning results. The complete
algorithmic chain for autonomous driving is described in Section 6.4 to-
gether with some real-world results of the proposed planning framework.

The holistic motion planning approach that has been developed in
this thesis is capable of simultaneously planning in a hybrid-dimensional
search space with multiple resolutions and along multiple waypoints while
considering dynamic obstacles. Although this unified planning scheme is
the key feature of the proposed approach, each of the following scenarios
highlights one specific aspect for the sake of clarity. Nonetheless, all com-

154

6.3. Evaluation: Simulation Results

ponents of the planning algorithm are always active during the planning
for each scenario.

Unless stated otherwise, the planning uses the temporal thresholds
τ0 = 3 s and τ1 = 6 s, i.e., dynamic obstacles are considered during the
time-parametrized planning of the first three seconds. The next three sec-
onds still consider the vehicle dynamics while after six seconds planning
changes to mere kinematical planning. The respective dimensionality of
the trajectory is visualized by graduated shadings of the robot’s footprint
(see Figure 6.2). The costs of the planned trajectories are computed accord-
ing to (5.21) with ηt = 0.1 and ηr = 10. Besides the strong preference to
avoid any risk, the planning focuses on a short trajectory. The duration
of the trajectory is of lower priority because the accuracy of the estimated
trajectory duration is limited due to the projection process of the mo-
tion primitives. Additionally, driving backwards is penalized by the factor
ηb = 1.5. The chosen weights for the individual components of the cost
function serve as an example and may, of course, be changed according
to the user’s preference or the task’s demands. This section focuses on
the universal applicability of the proposed planning concept and therefore
does not try to tune the parameters for any specific scenario.

The occupancy grid map of the environment is processed according
to the method explained in Section 4.1, which defines risk zones for col-
lision with static obstacles. Dynamic obstacles are represented by the
time slices that have been introduced in Section 4.3.2. Finally, the high-
resolution planning regions are determined using the method from Sec-
tion 5.1.4. All simulations are performed on a desktop computer with an
Intel Xeon E5-2687W CPU. Computing the time slices takes about 5 ms.
The computational effort for the risk zone creation and determination of
high-resolution planning regions depends on the map size (cell count) and
is visualized in Figure 6.1. These computations need to be performed only
when a new map of the environment is available. Thus, the computation

155

Chapter 6. Results and Analysis

0 0.2 0.4 0.6 0.8 1

× 106

0

20

40

Map size / cells

Co
m
p.
tim

e/
m

s High-res. planning area
Risk zones

Figure 6.1: Computation time for map processing.

time listed for the following scenarios denotes the pure planning time
without the computation time for map processing.

6.3.1 Hybrid Dimensionality

Figure 6.2 shows the result of high-resolution planning (r = 0), i.e., using
onlyM0,0,M1,0, andM2,0 in an unstructured environment. This scenario
serves as an example to explain the hybrid-dimensional planning scheme
and the anytime character of the ARA* planning (cf. Section 5.2.2). All sim-
ulations use an initial heuristic inflation factor ϵ = 2 for the ARA* search.
The corresponding result of the first ARA* iteration is shown in blue in
Figure 6.2. This initial trajectory is generally suboptimal; however, it is
still a perfectly valid solution, i.e., it is guaranteed to avoid any collision
with static or dynamic obstacles. This is exactly why anytime search algo-
rithms are superior to classical planning algorithms in this context: They
are capable of quickly generating avoidance maneuvers in critical situa-
tions. After having found the initial solution, the heuristic inflation factor ϵ
is successively decreased by 0.05 in each ARA* iteration until the optimal2

2. Unless stated otherwise, the term optimal denotes the resolution-optimal solution with
respect to the possible motions defined by the motion primitive sets and the utilized cost
function. For ϵ = 1, ARA* is guaranteed to find the shortest path in the search graph (see
Section 5.2.2).

156

6.3. Evaluation: Simulation Results

s̃sτ0τ1

g

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/
m

Figure 6.2: ARA* planning in a high-resolution lattice. ARA* iterations: ϵ = 2, ϵ =
1.1, ϵ = 1. Dimensionality of hybrid solution: s̃0,0

i ∈ L0,0 = X 0×Y 0×Θ0×V 0×T 0,
s̃1,0
i ∈ L1,0 = X 0 × Y 0 × Θ0 ×V 0, s̃2,0

i ∈ L2,0 = X 0 × Y 0 × Θ0.

solution is eventually found for ϵ = 1 (depicted in green). Additionally, the
intermediate solution for ϵ = 1.1 is shown (red).

Besides the anytime planning scheme, Figure 6.2 illustrates the hybrid
nature of the solutions: The dark tiles at the beginning indicate a full-
dimensional trajectory (including the temporal dimension), which is the
result of time-parametrized planning in L0,0 until the temporal threshold τ0.
This initial segment of the solution corresponds to the planning segment
that is able to consider dynamic obstacles (for examples see Section 6.3.3).
The next segment (medium-shaded tiles) corresponds to planning in L1,0,
which still respects the dynamics of the vehicle. At τ1 the planning tran-
sitions to mere path planning in L2,0 (white tiles) considering only the
vehicle’s kinematics. One can see that the segment from τ0 to τ1 is consid-
erably shorter than the first segment to τ0. This is due to the projection
process (3.57) in which the temporal dimension is removed and thus a
motion primitive might be superseded by a motion primitive with longer
duration but shorter length due to the scoring with ηt < 1.

157

Chapter 6. Results and Analysis

Figures 6.3 and 6.4 show the expanded nodes for the respective ARA* it-
erations of the scenario depicted in Figure 6.2. More precisely, Figure 6.3
shows the accumulated costs of each expanded state. For visualization
purposes, all costs are projected onto the xy-plane by

¯
д(x̃ , ỹ) := min

θ̃,ṽ, t̃
д(s̃d,r) , (6.1)

i.e., the diagram shows the minimum cost for each position under all pos-
sible headings, velocities and times (if applicable). Figure 6.4, on the other
hand, shows the heuristic costs h(s̃) = h(x̃ , ỹ) according to (5.26). For the
unbiased assessment of the planning result, the planning uses a simple
Euclidean heuristic. The effect of using the improved 2D obstacle-aware
heuristic is discussed at the end of this section.

Figure 6.5 shows some characteristics of the ARA* planning process.
The most interesting parameter is the cumulative computation time, which
is the sum of the computation time for all ARA* iterations up to the cur-
rently considered ϵ . The initial solution for ϵ = 2 is available after 85 ms.
A total of 4.6 s pass until the optimal solution is found for ϵ = 1. The latter
contradicts the requirement for a planning frequency of approximately
10 Hz and shows that planning in a high-resolution lattice only is not prac-
tical. This is where multi-resolution planning comes into action (see next
section). Furthermore, the suboptimality bound ϵ ′, defined according to
(5.18), is shown in Figure 6.5. The very first ARA* iteration for ϵ = 2 is
able to find a solution whose cost is guaranteed to exceed the optimal cost
for ϵ = 1 by at most the factor ϵ ′ = 1.33. The accumulated cost to the
goal, д(s̃g), decreases from 91.02 for ϵ = 2 to 74.38 for ϵ = 1 during the
ARA* iterations. The observed data in each ARA* iteration is visualized by
points in the plot; the connecting lines are only shown for visualization
purposes.

158

6.3. Evaluation: Simulation Results

s̃s
τ0

τ1

s̃g

0

10

20

30

x
/

m

ϵ = 2.0

s̃s
τ0τ1

s̃g

0

10

20

30

x
/

m

ϵ = 1.1

s̃s
τ0τ1

s̃g

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/

m

ϵ = 1.0

0 10 20 30 40 50 60 70 80 90
Accumulated cost

¯
д

Figure 6.3: Accumulated cost
¯
д of expanded nodes for the ARA* iterations of the high-

resolution scenario from Figure 6.2.

159

Chapter 6. Results and Analysis

s̃s
τ0

τ1

s̃g

0

10

20

30

x
/
m

ϵ = 2.0

s̃s
τ0τ1

s̃g

0

10

20

30

x
/
m

ϵ = 1.1

s̃s
τ0τ1

s̃g

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/
m

ϵ = 1.0

0 10 20 30 40 50 60
Heuristic cost h

Figure 6.4: Heuristic cost h of expanded nodes for the ARA* iterations of the high-resolution
scenario from Figure 6.2.

160

6.3. Evaluation: Simulation Results

11.21.41.61.82
1

1.1

1.2

1.3

Su
bo

pt
im

al
ity

bo
un

d
ϵ
′

11.21.41.61.82
75

80

85

90

Ac
cu
m
ul
at
ed

co
st
д
(s̃
g)

11.21.41.61.82
0
2
4
6
8
× 105

To
ta
ln

um
be
ro

f
ex
pa
nd

ed
no

de
s

11.21.41.61.82
0

2

4

Heuristic inflation factor ϵ

Cu
m
ul
at
iv
e

co
m
p.
tim

e/
s

Figure 6.5: Characteristics of ARA* iterations for the high-resolution scenario from Fig-
ure 6.2.

161

Chapter 6. Results and Analysis

In the high-resolution planning scenario depicted in Figures 6.2 to 6.4, the
choice of the planning dimensionality was made on the basis of the tempo-
ral thresholds τ0 = 3 s and τ1 = 6 s. Figure 6.6 shows how the computation
time depends on these thresholds. As one would expect, the computation
time increases for greater thresholds since this results in planning with
high dimensionality for a longer period. It can also be seen that the com-
putation time for ϵ ≤ 1.4 is nearly constant. This is caused by the strong
overestimation of the heuristics, which forces the graph to connect to the
goal as fast as possible.

The required planning time can be reduced by using the improved
obstacle-aware 2D heuristics from Section 5.4.2. The benefit of using the
obstacle-aware 2D heuristic with respect to its computation threshold d̄obst
(see p. 141) is visualized in Figure 6.7. It can be seen that for very small com-
putation thresholds, the total planning actually increases. This is caused
by the heuristic inflation factor ϵ > 1 during most of the ARA* plan-
ning, which deliberately violates the admissibility of the heuristics. From
d̄obst = 27 m on, the planning time decreases steadily in this scenario (ex-
cept for small oscillations). If the computation of the obstacle-aware 2D
heuristic extends all the way from the goal to the start, the planning time
can be reduced from 4.6 s to 1.4 s, which is a reduction by 70 %.

6.3.2 Multiple Resolutions

In order to demonstrate the advantages of the multi-resolution planning
approach, this section presents the planning results for the very same sce-
nario laid out in the previous section but now with utilization of all motion
primitives from Table 6.2. Both task- and environment-based criteria are
applied for the determination of high-resolution planning regions: High-
resolution planning takes place within a radius of 2 m around the start
and goal, and, additionally, further environment-specific high-resolution

162

6.3. Evaluation: Simulation Results

0 1 2 3 4 5
0

5

10

15

Cu
m
ul
at
iv
e

co
m
p.
tim

e/
s

τ1 = τ0
τ1 = 2τ0
τ1 = 3τ0

0 1 2 3 4 5
0

5

10

15

Temporal threshold τ0 / s

Cu
m
ul
at
iv
e

co
m
p.
tim

e/
s

ϵ = 1.0
ϵ = 1.1
ϵ = 1.4
ϵ = 2.0

ϵ = 1.0

τ1 = 2τ0

Figure 6.6: Influence of temporal thresholds on computation time in the high-resolution
scenario from Figure 6.2.

163

Chapter 6. Results and Analysis

0 20 40 60
0

2

4

6

d̄obst / m

Co
m
pu

ta
tio

n
tim

e/
s

Planning
Heuristics

Figure 6.7: Influence of distance threshold d̄obst on computation time.

planning regions are computed on the basis of the method described in
Section 5.1.4.

Figure 6.8 illustrates the result of the multi-resolution planning so that
it can be easily compared to the high-resolution planning in Figure 6.2.
Once again, the (intermediate) ARA* solutions for ϵ = 2, ϵ = 1.1, and ϵ = 1
are shown. It can be seen that the optimal multi-resolution trajectory
does not fully reach the quality of the optimal high-resolution trajectory.
This is primarily due to the lesser number of discrete headings in the low-
resolution planning regions. Nonetheless, the multi-resolution trajectory
is a perfectly usable solution, whose cost increased only slightly from
74.38 for the high-resolution planning to 76.32 for the multi-resolution
planning, which amounts to 2.6 % (see Figure 6.13). Moreover, only the
high-resolution part of the trajectory is actually executed by the robot in
each cycle due to the continuous replanning approach.

164

6.3. Evaluation: Simulation Results

s̃sτ0τ1

g

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/
m

Figure 6.8: ARA* planning in a multi-resolution lattice. Computation time 67 ms. ARA*
iterations: ϵ = 2, ϵ = 1.1, ϵ = 1. Dimensionality of hybrid solution:

s̃0,r
i ∈ L0,r = X r × Y r × Θr × V r × T r, s̃1,r

i ∈ L1,r = X r × Y r × Θr × V r,
s̃2,r
i ∈ L2,r = X r × Y r × Θr.

Figures 6.9 and 6.10 show the expanded states analogously to Figures 6.3
and 6.4 for three ARA* iterations. Again, the projection (6.1) has been per-
formed for the accumulated costs in Figure 6.9 for visualization purposes.
Figure 6.10 shows the heuristic costs, which do not depend on the resolu-
tion and are thus identical to the heuristic costs in 6.4. The regions with
different planning resolutions are clearly distinguishable in the figures:
While the largest part of the search space is processed by low-resolution
planning, high-resolution planning is employed near the start and goal
and in the narrow passage in the center of the map.

Figure 6.11 shows some characteristics of themulti-resolution planning
for comparison with the corresponding high-resolution planning charac-
teristics in Figure 6.5. The multi-resolution planning is able to find an
initial solution after only 1 ms. After a total of 67 ms, the optimal solution
for ϵ = 1 is found. Thus, for the given scenario, the multi-resolution plan-
ning could reduce the total planning time to 1.5 % of the high-resolution
planning time.

165

Chapter 6. Results and Analysis

s̃s
τ0

τ1

s̃g

0

10

20

30

x
/

m

ϵ = 2.0

s̃sτ0τ1

s̃g

0

10

20

30

x
/

m

ϵ = 1.1

s̃sτ0τ1

s̃g

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/

m

ϵ = 1.0

0 10 20 30 40 50 60 70 80 90
Accumulated cost

¯
д

Figure 6.9: Accumulated cost
¯
д of expanded nodes for the ARA* iterations of the multi-

resolution scenario from Figure 6.8.

166

6.3. Evaluation: Simulation Results

s̃s
τ0

τ1

s̃g

0

10

20

30

x
/
m

ϵ = 2.0

s̃sτ0τ1

s̃g

0

10

20

30

x
/
m

ϵ = 1.1

s̃sτ0τ1

s̃g

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/
m

ϵ = 1.0

0 10 20 30 40 50 60
Heuristic cost h

Figure 6.10: Heuristic cost h of expanded nodes for the ARA* iterations of the multi-
resolution scenario from Figure 6.8.

167

Chapter 6. Results and Analysis

11.21.41.61.821

1.1

1.2

1.3
Su

bo
pt
im

al
ity

bo
un

d
ϵ
′

11.21.41.61.8275

80

85

90

Ac
cu
m
ul
at
ed

co
st
д
(s̃
g)

11.21.41.61.820

2

4

× 104

To
ta
ln

um
be
ro

f
ex
pa
nd

ed
no

de
s

11.21.41.61.820

20

40

60

Heuristic inflation factor ϵ

Cu
m
ul
at
iv
e

co
m
p.
tim

e/
m

s

Figure 6.11: Characteristics of ARA* iterations for the multi-resolution scenario from Fig-
ure 6.8.

168

6.3. Evaluation: Simulation Results

0 1 2 3 4 50

50

100

150
Cu

m
ul
at
iv
e

co
m
p.
tim

e/
m

s
τ1 = τ0
τ1 = 2τ0
τ1 = 3τ0

0 1 2 3 4 50

50

100

150

Temporal threshold τ0 / s

Cu
m
ul
at
iv
e

co
m
p.
tim

e/
m

s

ϵ = 1.0
ϵ = 1.1
ϵ = 1.5
ϵ = 2.0

ϵ = 1.0

τ1 = 2τ0

Figure 6.12: Influence of temporal thresholds on computation time in the multi-resolution
scenario from Figure 6.8.

As expected, computation time increases with greater temporal thresholds
τ0 and τ1 also in case of multi-resolution planning (see Figure 6.12). For
this particular scenario, the intended planning frequency of 10 Hz can be
achieved for thresholds below τ1 = 2τ0 = 8 s.

The cost of a solution decreases with increasing size of the high-resolu-
tion planning regions. This property is guaranteed by condition (3.66).
Figure 6.13 shows the influence of this high-resolution planning region
extent on solution cost and computation time. The extent is specified by the

169

Chapter 6. Results and Analysis

0 10 20 30 400

2

4
Cu

m
ul
at
iv
e

co
m
p.
tim

e/
s

0 10 20 30 40

75

76

77

Extent of high-resolution planning region / m

Ac
cu
m
ul
at
ed

co
st
д
(s̃
g)

Figure 6.13: Influence of high-resolution planning area extent in the multi-resolution sce-
nario from Figure 6.8 for ϵ = 1.0.

radius of the high-resolution planning area at the start and goal (task-based
criterion). It can be seen that from 35 m on the computation time does not
increase any more and the solution cost remains the same. This is because
for this radius the start and goal high-resolution planning regions meet
and thus the complete planning takes place in the high-resolution lattice.
With this, the planning becomes identical to the planning in Section 6.3.1.

An additional multi-resolution planning scenario is depicted in Fig-
ure 6.14: The task is to plan a motion that moves the robot into the narrow
parking space with a fixed end orientation (namely rear-facing). This re-
quires, of course, a motion primitive set that allows the robot to drive
forward and backward, which is why this scenario uses a motion primitive
set that was sampled with V r = { −2 m/s, 0 m/s, 2 m/s }; the other param-
eters from Table 6.1 remained unchanged. The purpose of this scenario
is to demonstrate the necessity of multi-resolution planning: The lattice
points of the low-resolution lattice are too close to the boundary of the

170

6.3. Evaluation: Simulation Results

s̃s

τ0

τ1

g

0 5 10 15 20 250

5

10

15

20

y / m

x
/
m

Figure 6.14: Multi-resolution planning of a reverse parking maneuver. Only the optimal
solution for ϵ = 1 is shown.

parking space, which prevents low-resolution-only planning from finding
a solution. Only the high-resolution planning near the goal enables the suc-
cessful planning of the parking maneuver. The multi-resolution planning
finds a solution (see Figure 6.14) in 85 ms while the full high-resolution
planning would have taken 1.4 s.

6.3.3 Dynamic Obstacles

This section provides some results for motion planning in the presence
of dynamic obstacles. Figure 6.15 depicts a scenario in which the robot
is located next to a dynamic obstacle, which is moving left with a ve-
locity of 2 m/s. The scenario clearly shows why a holistic approach,
which combines global path planning and local obstacle avoidance by
time-parametrized motion planning techniques, is superior to separate
planning and obstacle avoidance. Figure 6.15a shows the result of conven-

171

Chapter 6. Results and Analysis

tional planning, which only considers the obstacle’s current position at
t = 0. Relying on pure path planning would inevitably lead to a collision.
Therefore, a subsequent algorithm is necessary in order to locally modify
the planned path and thus avoid the collision. This local path or trajectory
modification is often performed in a continuous fashion, which means that
it cannot skip over static obstacles (see the small static obstacle (black)
directly below the dynamic obstacle in Figure 6.15a). Instead, a local ob-
stacle avoidance strategy might be to simply wait while the obstacle has
passed. By contrast, Figure 6.15b shows the result of combined planning
according to the hybrid-dimensional multi-resolution planning scheme.
The planning incorporates the prediction of the dynamic obstacle from
t = 0 to t = τ0 = 3 s. The resulting plan is a smooth avoidance maneuver
which allows the robot to continue its journey without any risk for a
collision with the dynamic obstacle. The dynamic obstacle is assumed to
have circular shape and is modeled according to Section 4.3.1. The red
uncertainty ellipses show the 90 % confidence intervals of the predicted
obstacle location. The proposed planning concept allows the computation
of safe local avoidance maneuvers while still optimizing the overall global
plan.

A further example for planning in the presence of dynamic obstacles
is shown in Figure 6.16. In this scenario, the obstacle is modeled using
the concept of time slices devised in Section 4.3.2. This allows the correct
consideration of the actual shape of the obstacle, which is often rectan-
gular (other vehicles) instead of circular. It can be seen that during the
full-dimensional planning phase the robot plans an avoidance maneuver
and then waits until the obstacle has passed. The initial—slightly subopti-
mal—avoidance maneuver is available after only 26 ms. This is where the
anytime nature of ARA* shows its strengths. In addition, it becomes clear
from the planned motion that all components of the proposed planning
approach are simultaneously active: Besides the utilization of variable di-

172

6.3. Evaluation: Simulation Results

s̃s

g

0 10 20 30 400

10

20

y / m

x
/
m

(a) Conventional path planning without obstacle prediction. Computation time less
than 1 ms.

s̃s
τ0

τ1

g

0 10 20 30 400

10

20

y / m

x
/
m

(b) Combined planning of local avoidance maneuver and global path. Computation
time 43 ms.

Figure 6.15: Planning with and without dynamic obstacle prediction.

173

Chapter 6. Results and Analysis

s̃s

τ0

τ1

g1
g2

0 5 10 15 20 25 300

5

10

15

20

25

30

y / m

x
/
m

Figure 6.16: Dynamic obstacle avoidance based on time slices and planning for multiple
waypoints simultaneously. An initial (suboptimal) avoidance maneuver (, ϵ = 2) is
available after 26 ms. The optimal solution (, ϵ = 1) is found after a total of 75 ms.

mensionality and multiple resolutions, the planning is jointly performed
for two waypoints. This is discussed in detail in Section 6.3.4.

The consideration of custom regions with increased collision risk is
shown in Figure 6.17. The region extends from the bottom of the map
to the top and divides it into two halves. Thus, the robot is required to
traverse this risk region in order to reach the goal. The planned motion
tries to minimize the collision risk by crossing the region with increased
collision risk at the shortest way possible (i.e., perpendicularly).

174

6.3. Evaluation: Simulation Results

s̃s

τ0

τ1

g

0 10 20 300

10

20

30

y / m

x
/
m

Figure 6.17: Planning through a region with increased collision risk (red zone). Computation
time 68 ms.

6.3.4 Multiple Waypoints

The combined planning for multiple waypoints is a key feature of the pro-
posedmotion planning algorithm. This section highlights some advantages
of multiple-waypoint planning in various scenarios.

Figure 6.18 shows the multi-resolution planning scenario from Fig-
ure 6.8, but now, additionally, a waypoint g1 was added halfway between
start s̃s and goal g2. Since g1 is located on the optimal path from s̃s to g2,
the solution for additionally planning via g1 is identical to the solution
from Figure 6.8. The required computation time slightly decreases from
67 ms for directly planning to g2 to 61 ms for planning to g2 via g1. This is
due to the fact that the intermediate waypoint g1 directs the search toward
the goal g2 right from the beginning. The initial planning (ϵ = 2, blue) is

175

Chapter 6. Results and Analysis

s̃sτ0τ1

g1

g2

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/
m

Figure 6.18: Multiple-waypoint planning in a multi-resolution lattice. Computation time
61 ms. ARA* iterations: ϵ = 2, ϵ = 1.1, ϵ = 1. Dimensionality of hybrid
solution: s̃0,r

i ∈ L0,r = X r × Y r × Θr ×V r × T r ×G , s̃1,r
i ∈ L1,r = X r × Y r ×

Θr ×V r ×G , s̃2,r
i ∈ L2,r = X r × Y r × Θr ×G .

already close to the optimal solution (green). This scenario clearly shows
that the extension of the state× time lattice to a state× time× goal lattice
(i.e., the introduction of an additional goal dimension, see Section 5.1.5)
does not necessarily increase the planning time, which only depends on
the length and complexity of the solution.

A second example for multiple-waypoint planning is depicted in Fig-
ure 6.19. This basically corresponds to the motivating scenario in Fig-
ure 3.15. In Figure 6.19a, planning is performed to the next waypoint
only, which results in the robot reaching the waypoint g1 in a disadvan-
tageous orientation: The robot needs to perform an unnecessary turn-
ing maneuver in order to continue its journey to waypoint g2. Once
again, the planning was performed using the same motion primitive sets
as in the parking scenario in Figure 6.14. The discrete set of velocities
V r = { −2 m/s, 0 m/s, 2 m/s } allows the robot to drive forward and back-
ward. If the motion primitive sets did not allow for backward motion, the

176

6.3. Evaluation: Simulation Results

s̃s
g1

g2

0 5 10 15 20 25 300

5

10

15

y / m

x
/
m

(a)Multi-waypoint scenario with separate planning. Computation time was less than
1 ms for the first segment and 51 ms for the second segment.

s̃s
g1

g2

0 5 10 15 20 25 300

5

10

15

y / m

x
/
m

(b)Multi-waypoint scenario with combined planning. Total computation time was
95 ms.

Figure 6.19: Comparison of separate and combined multi-waypoint planning. The shading
of the robot’s footprint corresponds to the evolution of time along the planned segments to
emphasize the two separate plans in (a).

177

Chapter 6. Results and Analysis

robot’s journey would even have ended at g1 since the mobile robot could
not free itself from this situation.

On the other hand, Figure 6.19b shows the combined planning for g1
and g2. One can see that the robot touches g1 in an optimal way in order
to continue its way to g2. The shading of the robot’s tiles in Figure 6.19
visualizes the time along the planned trajectory instead of its dimension-
ality so one can clearly see that the plan in Figure 6.19a consists of two
separate segments whereas only one joint planning was performed in Fig-
ure 6.19b. In this scenario, the total planning time increased from 52 ms
(Figure 6.19a) to 95 ms (Figure 6.19b) because the computation of the first
part of the trajectory to g1 becomes much more involved. The increase in
the total planning time is considered reasonable as the unnecessary turn-
ing maneuver should typically be avoided. Like in the previous scenarios,
all elements of hybrid-dimensional multi-resolution planning among dy-
namic obstacles have been active during the planning of the scenarios in
this section.

6.4 Evaluation: Real-World Demonstrator

The results presented in Section 6.3 were obtained by simulations that were
based on real recorded sensor data, which is why those results already ex-
hibit high significance and are directly applicable to practice. Nonetheless,
the proposed planning algorithm has additionally been implemented on
several real robotic platforms in order to prove the practical suitability. One
of them is the technology demonstrator IOSB.amp Q2 (see Figure 6.20),
which was developed at the Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation IOSB in Karlsruhe, Germany, during
the course of this thesis.

This robotic vehicle is equipped with four-wheel steering and thus its
kinematics correspond to the system model described in Section 3.4. With

178

6.4. Evaluation: Real-World Demonstrator

Figure 6.20:Mobile all-terrain robot IOSB.amp Q2.

a hybrid drive, the robot has an operating range of 200 km and a permis-
sible load capacity of 150 kg. The robotic platform is equipped with many
sensors for environment perception and navigation. A 3D laser scanner
generates 700 000 range values per second, which are used to build a map
of the environment [Emt12; Emt14]. Besides additional line laser scanners,
which have been installed for safety reasons, the vehicle is also equipped
with an inertial measurement unit (IMU). The IMU comprises three ac-
celerometers and three gyroscopes. These sensors are used together with
wheel encoders and a GPS for localization purposes. The data of individual
sensors is combined by means of sensor fusion to take advantage of the
strengths of each sensor system [Emt10; Emt14]. The generated map of the
environment and the estimated state of the robot serve as inputs for the
motion planning module. A supervisory behavior control module specifies

179

Chapter 6. Results and Analysis

the list of waypoints and detects if a waypoint has been reached by the
robot. The planned trajectory is finally tracked by a path controller for
nonholonomic robots that is based on [DeL98]. The robot makes extensive
use of the infrastructure provided by the Robot Operating System (ROS).
The motion planning algorithm is implemented in terms of a ROS node
which is a thin wrapper around the developed portable C++ library.

Figure 6.21 shows the recorded trajectory of the physical robot in a
multi-waypoint scenario. Here, planning was performed for two way-
points at a time. In contrast to the illustrations in Section 6.3, which depict
a single snapshot of the instantaneous planning result, Figure 6.21 shows
the full traveled path, which is the result of alternating planning and con-
trol. The robot footprint is plotted every 0.5 s. It can be clearly seen that the
robot’s motion is very smooth and similar to what a human driver would
achieve. At this point, it is worth mentioning again that the path controller
directly operated on the output of the motion planning algorithm with-
out employing any intermediate trajectory smoothing. The computation
time of the motion planning algorithm during the run of this scenario is
depicted in Figures 6.22 and 6.23. One can see that the computation time
stays well below the intended 100 ms. The initial solution for 99 % of the
computed plans was available after 25 ms and computing the optimal so-
lution took 62 ms in total. Further aspects of the planning concept (like
hybrid dimensionality, multiple resolutions, and multiple waypoints) are
not discussed here since the observations on planning the motion of the
physical robot are identical to the simulated results in Section 6.3 due to
the identical software core.

180

6.4. Evaluation: Real-World Demonstrator

g1

g2

g3

g4

g5

g6

s̃s

0 10 20 30 40 50 600

10

20

30

40

50

y / m

x
/
m

Figure 6.21: Planning result for a real-world scenario with six waypoints (g1, . . . , g6). The
result is visualized on top of a georeferenced orthomosaic obtained by means of photogram-
metric methods. The shown robot footprints correspond to the actual motion and are thus
the result of the whole data processing cycle. No intermediate trajectory smoothing was
employed. The shading depicts the travel time from t = 0 s (cyan) to t = 55 s (white).

181

Chapter 6. Results and Analysis

0 10 20 30 40 500

20

40

60

80

100

Time / s

Cu
m
ul
at
iv
e
co
m
pu

ta
tio

n
tim

e/
m
s ϵ = 1

ϵ = 2

(a) Variation of cumulative computation time with travel time.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

Cumulative computation time / ms

N
um

be
ro

fc
om

pu
te
d
pl
an
s ϵ = 1

ϵ = 2

(b)Histogram of cumulative computation time.

Figure 6.22: Computation time for the scenario from Figure 6.21.

182

6.5. Evaluation: Further Metrics

11.21.41.61.820

20

40

60

Heuristic inflation factor ϵ

Cu
m
ul
at
iv
e
co
m
p.
tim

e/
m

s 99th percentile
Mean

Figure 6.23: Variation of cumulative computation time with the iterative refinement of solu-
tions, i.e., ARA* iterations with decreasing heuristic inflation factor ϵ , for the scenario from
Figure 6.21.

6.5 Evaluation: Further Metrics

While the previous sections focused on the evaluation of the capabilities of
the proposed planning algorithm, this section is concerned with the discus-
sion of commonly considered evaluationmetrics. The evaluation of motion
planning algorithms for mobile robots is a challenging topic. The authors
of [Bal00] acknowledge the fact that a meaningful performance measure
strongly depends on the particular task of the robot and that verifiable
statements require the consideration of the entire processing cycle (sens-
ing→ perception→ reasoning→ acting). But also the representation of the
environment and the implementation of the algorithm itself (e.g., choice of
programming language) may have a strong impact on performance. This is
why evaluation is commonly conducted empirically in pertinent challenges
like RoboCup, ELROB, or the DARPA challenges [Now10]. Nonetheless,
the robotic community strives for quantitative assessment of single al-
gorithms. For this purpose, various benchmark frameworks have been

183

Chapter 6. Results and Analysis

proposed for mobile robots in the past (e.g., [Bal00; Cal08; Muñ10]), which,
however, did not gain broad acceptance due to the lack of standardized
interfaces [Now10].

A promising approach is described in [Coh12]; however, it is strongly
focused on manipulator motion planning and the applicability to mobile
robots is somewhat limited (e.g., relatively simple environment represen-
tation). Nonetheless, the paper proposes some fundamental performance
metrics which are also applicable to mobile robot motion planning: compu-
tation time, path length, minimum clearance, smoothness, and success rate.
In addition, the authors of [Muñ10] suggest to also consider the occurrence
of collisions and the robustness in narrow spaces. Further criteria are reac-
tion time, number of parameters to tune and the precision for reaching the
target [Now10]. The remainder of this section provides a detailed discus-
sion of the mentioned performance measures with respect to the proposed
planning algorithm.

Computation and reaction time

Computation time is the most implementation-dependent metric. The pro-
cessing capabilities of the hardware, the employed programming language,
as well as programming skills heavily influence the performance. The
planning algorithm developed in this thesis has been implemented in C++
and has been evaluated on an Intel Xeon E5-2687W (see Section 6.1). It
has already been mentioned in Section 6.4 that the software which runs
on the real robot is identical to the software that was used for the simu-
lations in Section 6.3 (besides a thin visualization layer). Furthermore, all
simulations were based on real recorded sensor data. Thus, a thorough
quantitative evaluation of the proposed planning algorithm with respect to
the required computation time has already been conducted in Section 6.3,
which explicitly stated the computation time for each scenario. For all
hybrid-dimensional multi-resolution planning scenarios from that section,

184

6.5. Evaluation: Further Metrics

a solution was found in less than 100 ms. An analysis of the influence of
the temporal thresholds on computation time is provided in Figure 6.12.
All these computation times refer to the time which is required to compute
the optimal solution for ϵ = 1. An initial, possibly suboptimal, but still
perfectly valid solution is available much faster. An example is given in
Figure 6.16, where an initial avoidance maneuver (ϵ = 2) is available after
26 ms, which is one-third of the total computation time for the optimal solu-
tion. The decrease in computation and thus reaction time in the presence
of dynamic obstacles is due to the simultaneous employment of hybrid
dimensionality and multiple resolutions (see Sections 6.3.1 and 6.3.2).

Path length

This metric, which assesses the optimality of the solution, originates from
the field of probabilistic planning algorithms. The proposed planning algo-
rithm produces, by design, plans that are always optimal with respect to
the chosen discretization of the search space. Since the method computes
hybrid solutions that are part trajectory and part path, considering only the
path length is not enough. Instead, one needs to take the time necessary
to execute the planned motion additionally into account. Although path
length and execution time correlate, it is up to the user to specify any pref-
erences by choosing appropriate penalties for the individual components
of the cost function. This in turn depends on the particular task, which is
why general figures are not meaningful in this context.

It is, however, necessary to keep in mind that the optimal discrete
solution based on the state× time lattice lags behind the optimal solution
in the continuous sense. Figure 6.13 has shown how the solution cost varies
with the extent of the high-resolution planning region. For scenarios based
on real data, the true continuous optimum is very difficult to obtain because
this would amount to solving a nonlinear programming (NLP) problem
with very complex constraints induced by the unstructured environment

185

Chapter 6. Results and Analysis

s̃sτ0τ1

g

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/
m

Figure 6.24: Result of pseudo-continuous planning (, ϵ = 1). The solution of the more
coarse planning from Figure 6.2 is also shown for comparison (, ϵ = 1). The shadings
show dimensionality as usual.

and dynamic obstacles. Yet, in order to provide an assessment for the
influence of discretization, the scenario from Figure 6.2 has been replanned
with a finer resolution of δ 0

xy = δ
1
xy = 10 cm and 96 distinct orientations

and with disabled motion primitive decomposition. This is already at the
scale of the map representation, which is based on 10 cm × 10 cm cells.
Therefore, it can be assumed that the result (see Figure 6.24) is very close
to the continuously optimal solution. The costs decreased only marginally
from 74.38 (Figure 6.2) to 73.38 (Figure 6.24), which is further indication that
the proposed planning algorithm is able to compute high-quality motion
plans.

Obstacle clearance

When planning a path for robotic manipulators, maximum clearance from
any obstacle is often desired [Coh12]. However, in the context of mobile
robots, this metric only plays a minor role: Unless there is an immediate
danger for collision, there is generally no need to deviate from an otherwise

186

6.5. Evaluation: Further Metrics

optimal trajectory just to increase the distance to the next obstacle. In the
proposed planning framework, the observance of the minimum clearance
from all obstacles is guaranteed by the modeling of the environment (see
Chapter 4) and the incorporation of this model into the planning algorithm.

Robustness in narrow spaces

This metric also originates from planning algorithms based on probabilis-
tic sampling, for which narrow passages are notoriously difficult. Since
the proposed planning algorithm is a deterministic search-based planning
algorithm, it is very well suited for planning in narrow spaces. Of course,
the planning resolution needs to be chosen fine enough to allow the safe
passage of narrow corridors.

Smoothness

Since the proposed planning scheme relies on a discretized representa-
tion of the state space, the computed motion plans cannot be as smooth
as the result of continuous methods are. If desired for a particular task,
one can always apply additional trajectory smoothing in a subsequent
post-processing step. This is, however, not considered in this thesis since
practice has shown that already a simple path controller is sufficient to
produce very smooth overall motion on the basis of the computed plan
(see Figure 6.21).

Success rate

The evaluation of the success rate also originates from the field of proba-
bilistic sampling-based algorithms. Since those algorithms are generally
only probabilistically complete, they may fail to find an existing solution.
The proposed algorithm, however, is a search-based approach and thus is

187

Chapter 6. Results and Analysis

guaranteed to find a solution if one exists within the chosen discretization.
This class of algorithms is called resolution-complete [LaV06].

As with virtually all planning algorithms, computation time depends
on the environment and the distance to the goal. If computation time is lim-
ited, an algorithm may fail to find a solution within the allotted time. For
search-based planning algorithms, the computation time depends, besides
the implementation details, particularly on the employed graph search
algorithm. In this thesis, ARA* was used as it is capable of quickly provid-
ing an initial, possibly suboptimal, but valid solution, which is iteratively
improved if there is still computation time available in the current cycle.
Further details and precise figures were given in Section 6.3.

In addition to the success rate of the planning itself, also the success rate
of the actual motion execution needs to be considered. With its combined
planning for multiple waypoints, the proposed algorithm can prevent the
robot from arriving at an intermediate waypoint in an orientation that
might be disadvantageous for the further journey to the final goal or would
even lead to the robot getting stuck (see Figure 6.19). This is a unique
feature of the proposed planning algorithm.

Occurrence of collisions

The proposed planning algorithm always produces collision free plans (as
long as such a plan exists and the future motion of dynamic obstacles is
predicted correctly). In this respect, the proposed unified planning of local
avoidance maneuvers and global paths may be advantageous over hierar-
chical methods, which first compute a path without considering dynamic
obstacles and then try to modify this initial solution in order to avoid any
collision with dynamic obstacles (see Figure 6.15).

188

6.5. Evaluation: Further Metrics

Precision for reaching the target

The required precision for reaching the target depends on the particular
task. Themulti-resolution scheme allows for the specification of a very fine
resolution in the vicinity of the goal. This makes it possible to robustly plan
complex scenarios like parking in narrow spaces (Figure 6.14) with high
precision for the robot’s end configuration. On the other hand, waypoint
regions may also be specified in a very general manner if high precision is
not required. This allows the planning algorithm to determine the optimal
state of the robot for reaching each waypoint.

Number of parameters to tune

The parameters needed for the construction of the state× time lattices
and the sampling of the corresponding motion primitive sets are listed in
Table 6.1. They depend on the particular system model of the robot and
need to be chosen in such a way that the robot is able to reach a different
lattice point within the duration of a motion primitive. Moreover, the
discretization of the high-resolution lattice needs to be fine enough to allow
the passage of narrow corridors. The remaining resolution-independent
parameters (e.g., maximum quantization error during motion primitive
sampling and admissible cost increase for motion primitive decomposition)
are relative parameters and the values according to Table 6.1 proved to be
sensible in practice. Thus, there will be probably no need to explicitly
tune those parameters. Furthermore, additional parameters are required to
describe the robot’s geometry as well as the desired clearance to obstacles;
this is, however, true for any motion planning algorithm.

The choice of the employed cost function is technically independent
of the proposed planning algorithm. Nonetheless, a cost function that
assesses duration, length and collision risk was provided in this thesis as
an example. The choice of the particular weights depends on the user’s

189

Chapter 6. Results and Analysis

preferences and the concrete scenario and is thus not the focus of this
thesis.

Finally, there are some planning-specific parameters. These are the
temporal thresholds τi , which were investigated in Figure 6.12, and the
extent of the high-resolution planning regions, for which an example has
been provided in Figure 6.13.

All in all, the number of parameters to tune is well manageable. Therefore,
one can expect a straightforward application of the proposed planning
framework to a large variety of robotic platforms and a wide range of
scenarios.

6.6 Evaluation: Comparison
with Other Algorithms

A comprehensive overview of alternative existing methods has already
been given in Chapter 2 providing information on the respective fields of
application and the particular advantages and disadvantages. In this sec-
tion, an additional, more detailed comparison of some selected algorithms
will be provided in an attempt to provide a fair comparison of the pro-
posed algorithm with a competitive subset of existing methods. Table 6.3
gives a concise summary of the individual features and properties of each
algorithm.

The first column summarizes the properties of sampling-based plan-
ning algorithms and underlines the advantages of search-based planning
algorithms in the context of mobile robot motion planning. These are
first and foremost the resolution-completeness and ability to compute
resolution-optimal plans. Since sampling-based planning algorithms have
been developedmainly for robotic manipulators with many degrees of free-

190

6.6. Evaluation: Comparison with Other Algorithms

Table 6.3: Comparison of algorithms.

(se
e
Se
ct
io
n
2.5

)
Sa
m
pl
in
g-
ba
se
d
pl
an
ne
rs

pl
an
ne
r[
Pi
v0
8;
Pi
v0
9c
;L

ik
09
]

Ki
no

dy
na
m
ic
st
at
e
la
tti
ce

la
tti
ce
s[
Ku

s0
9]

Ti
m
e-
bo

un
de
d

fo
ro

n-
ro
ad

dr
iv
in
g
[Z
ie
09
]

Sp
at
io
te
m
po

ra
ls
ta
te

la
tti
ce
s

[D
ol
08
;M

on
08
;P

et
12
]

H
yb

rid
A*

[P
et
13
b;
Pe
t1
3c
;P

et
14
]

Ad
ap
tiv

e
st
at
e×

tim
e
la
tti
ce
s

Domain of application

Dynamic environments
Unstruct. environments
Rough terrain
Multiple waypoints

Planner properties

Variable dimensionality
Multiple resolutions
Prob. obstacle model

primitive sampling
Probabilistic motion

Solution properties

path
Kinematically feasible

trajectory
Dynamically feasible

Resolution-complete
Resolution-optimal

applicable partially applicable not applicable

191

Chapter 6. Results and Analysis

dom, planning with cost maps, i.e., consideration of terrain characteristics,
is generally not considered.

The second column of Table 6.3 addresses the kinodynamic state lattice
planner of Pivtoraiko, Knepper, and Kelly [Piv09c]. It is similar to the state
lattice planner of Likhachev and Ferguson [Lik09], which was used by
Boss, the robot that won the DARPA Urban Challenge, and established the
successful application of state lattice planners. The method was extended
to planning with graduated fidelity in [Piv08]. The authors propose the
combination of a four-dimensional high-fidelity lattice and a low-fidelity
two-dimensional lattice which corresponds to planning in a simple grid.
This makes it impossible to guarantee kinematical feasibility of the com-
plete solution. Planning in a dynamic environment is not considered.

In contrast to the kinodynamic state lattice planner, the time-bounded
lattice planner of Kushleyev and Likhachev [Kus09] directly addresses
planning in a dynamic environment (Table 6.3, third column). However,
as is the case with the former algorithm, no successive dimensionality re-
duction is employed: at a certain point in time, the search transitions to
a search in a simple two-dimensional grid, which neglects the vehicle’s
kinematics. On the other hand, the algorithm is capable of including (cir-
cular) dynamic obstacles using a probabilistic model, which has been the
basis for one of the methods adopted in this thesis for the representation
of dynamic obstacles.

Column four of Table 6.3 outlines the properties of the spatiotemporal
lattice planner of Ziegler and Stiller [Zie09] which has been developed
specifically for on-road driving. Due to the restriction of the search space
to the road, the algorithm can perform an exhaustive search of the entire
lattice and is able to compute high-quality time-parametrized trajectories.
While this is desired for on-road driving, it prevents the computation of
global plans in unstructured environments.

192

6.6. Evaluation: Comparison with Other Algorithms

The three last-mentioned algorithms are all based on planning in state
lattices. In order to provide an additional comparison with a non-lattice
planner, the proposed planning algorithm is also compared to theHybrid A*
algorithm of Dolgov et al. [Dol08], which was used by team Stanford’s Ju-
nior in the DARPA Urban Challenge [Mon08]. The properties of Hybrid A*
are outlined in Table 6.3, column five. In contrast to state lattice planners,
Hybrid A* employs direct discretization of the input space (cf. Figure 3.1).
An underlying grid is used to reduce the branching factor of the search
graph by limiting the amount of nodes in already visited regions of the
search space (see Section 2.6.1). In preparatory work for this thesis, Hy-
brid A* has been extended with the capability for multi-waypoint planning
and was implemented and successfully field-tested on a mobile outdoor
robot [Pet12]. Hybrid A*, however, is only concerned with planning kine-
matically feasible paths; it does not consider dynamic obstacles nor is it
capable of planning dynamically feasible trajectories.

The above-mentioned algorithms have been developed with specific
applications in mind. As one can see from Table 6.3, none of these algo-
rithms is able to cover all requirements addressed in this thesis. Therefore,
a novel highly generic algorithm has been developed to provide a unified
framework for computing resolution-optimal motion plans in unstructured
dynamic environments. The distinctive feature of the proposed algorithm
is the combined planning of local obstacle avoidance maneuvers and global
paths while guaranteeing dynamical feasibility of the short-term trajectory
and kinematical feasibility of the global path. For this purpose, a novel ap-
proach based on time slices for modeling dynamic obstacles with arbitrary
shape has been developed in this thesis. The flexible planning frame work
allows the straightforward integration of additional features like planning
along multiple waypoints or consideration of terrain characteristics. This
makes the proposed algorithm usable for a broad range of scenarios.

193

Chapter 6. Results and Analysis

So far, only the differences regarding the capabilities of the individual
algorithms have been discussed. An additional important criterion for
the practical applicability is the required planning time of the algorithms.
There are mainly two factors that make a fair comparison difficult. On the
one hand, the software implementation that has been used to obtain the
presented results in the respective papers is generally not publicly avail-
able. On the other hand, the used test environments and scenarios are
only briefly described in the papers and are hard to reproduce. This is
why one needs to rely on the timing results that the authors provide in
their publications. For the kinodynamic state lattice planner (Pivtoraiko,
Knepper, and Kelly) and the spatiotemporal state lattice planner (Ziegler
and Stiller), the authors report computation times in the double-digit mil-
lisecond range for typical on-road scenarios; for the time-bounded lattice
planner (Kushleyev and Likhachev) and the Hybrid A* planner (Dolgov et
al.) planning times in the range of several hundred milliseconds have been
reported. In order to provide some reliable figures for the performance
comparison of the motion planning algorithm that has been developed in
this thesis, an implementation of Hybrid A*, which was built from scratch,
has been used to obtain reproducible results for identical problem setups,
environments, and robot models. Hybrid A* has been chosen for several
reasons. It is well-suited for planning in unstructured environments, it
is capable of planning kinematically feasible paths, and it is—with the
extension from [Pet12]—able to plan paths via multiple waypoints. In ad-
dition, the kinodynamic state lattice planner of Pivtoraiko, Knepper, and
Kelly can be considered as a special case of the proposed planning algo-
rithm (i.e., without considering multiple waypoints or dynamic obstacles
and thus time-parametrized planning), which is why similar performance
can be expected if the proposed algorithm is parametrized accordingly.
On the other hand, Hybrid A* is based on the different concept of input
space discretization, which makes a comparison much more interesting.

194

6.6. Evaluation: Comparison with Other Algorithms

ss

g1

g2

0 10 20 30 40 50 60 70 800

10

20

30

y / m

x
/
m

Figure 6.25: Planning with Hybrid A* for the scenario from Figure 6.18. The result is a pure
path.

Figure 6.25 shows the result of planning with Hybrid A* for the scenario
from Figure 6.18. The computation times stated in [Dol08] could be con-
firmed: the total planning time was 597 ms. Faster planning times—like
the 100 ms mentioned in [Pet12]—can only be achieved for maps with
smaller cell count since the size of the underlying grid is coupled with
the map resolution. In contrast, planning with the proposed novel al-
gorithm took only 61 ms (see Section 6.3.4). Thus the state× time× goal
lattice planner with variable dimensionality and multiple resolutions is
a worthy candidate to replace the Hybrid A* planning algorithm. Fur-
thermore, the result of Hybrid A* is a pure path which cannot guarantee
dynamic feasibility of the solution nor does it take dynamic obstacles into
account. With regard to the optimality of the solution, the resulting path
of Hybrid A* is also slightly inferior in the discussed scenario: the path
has a total length of 72.0 m while the length of the lattice planner solu-
tion from Figure 6.18 is only 71.4 m. On a positive note, the path planned
by Hybrid A* is much smoother due to the lack of state space discretiza-
tion.

195

Chapter 6. Results and Analysis

Since mobile robot motion planning is a very broad field, the limited scope
of a thesis inevitably restricts the comparison to a subset of existing meth-
ods. Nonetheless, an attempt was made to select a competitive and repre-
sentative set of current state-of-the-art algorithms for comparison with the
novel approach developed in this thesis. It was shown that the algorithm
performs similar to existing state lattice planners with regard to compu-
tation time; in addition, it provides further features like simultaneously
planning local avoidance maneuvers for dynamic obstacles or motion plans
via multiple waypoints. This is made possible by the holistic and generic
formulation of the motion planning concept, which provides a sound basis
for the integration of additional capabilities.

6.7 Summary

This chapter has presented the results as well as a detailed evaluation and
analysis of the proposed planning concept. First, the implementation of the
planning algorithm in terms of a portable C++ software library has been
described. This implementation has been used to evaluate the planning
algorithm both in simulation and on a real robotic platform. Appropriate
test scenarios were chosen to highlight specific properties of the planning
algorithm. Of course, all features of the planning algorithm were simul-
taneously active during each planning. The results showed the effective
use of successive dimensionality reduction, planning with multiple resolu-
tions, consideration of dynamic obstacles, and combined planning along
multiple waypoints. For all presented scenarios3 the resolution-optimal
solution could be computed in—often considerably—less than 100 ms. In
field tests, the results of the entire processing pipeline showed that, despite

3. The result of the scenario from Figure 6.2 is an exception since it employed high-resolution
planning only and was provided for reference and comparison with the multi-resolution
result from Figure 6.8.

196

6.7. Summary

the discretizing approach, the planning algorithm enables smooth overall
motion of the robot without any intermediate trajectory smoothing. The
performance of the proposed planning scheme was discussed on the basis
of various evaluation criteria and it has been compared to a competitive
set of state-of-the-art motion planning algorithms. A particularly detailed
comparison was made with an implementation of the Hybrid A* planning
algorithm, which allowed a fair comparison in identical environments and
with identical test setups. The proposed planning algorithm was superior
to Hybrid A* both in terms of planning time and solution quality. The
results presented and discussed in this chapter showed that the hybrid-
dimensional multi-resolution state× time× goal lattice planner is able to
efficiently compute motion plans that combine local obstacle avoidance
and global path planning for a wide range of scenarios.

197

Chapter 7

Conclusions and
Future Work

In this thesis, an algorithm for robot motion planning has been devel-
oped that allows the joint planning of local obstacle avoidance maneuvers
and global, kinematically feasible paths. The theoretic foundations of the
planning scheme have been formally stated and the algorithm has been im-
plemented in the form of a portable C++ library. A case study of a mobile
robot was used to explain the concept throughout the thesis. After devis-
ing a scheme for modeling the environment, a comprehensive evaluation
of the planning framework has been conducted, and it was shown that the
proposed planning algorithm is capable of computing resolution-optimal
motion plans with a rate of approximately 10 Hz that reliably avoid colli-
sions with dynamic obstacles while still optimizing for global optimality
of the overall solution.

199

Chapter 7. Conclusions and Future Work

7.1 Summary of Contributions

The main scientific contribution of this thesis is the rigorous formulation
of a holistic planning concept which allows a successive dimensionality
reduction and variation of the planning resolution in a consistent way. The
planning algorithm produces hybrid solutions which are part trajectory
and part path. It is based on state× time lattices, which have been extended
to state× time× goal lattices in this thesis to enable the joint planning for
multiple waypoints. Furthermore, a generic method has been proposed
that probabilistically samples motion primitives, which connect the lat-
tice points, from arbitrary dynamical system models. It was explained
how these motion primitives can be used to construct a search graph that
converts the motion planning problem to the general problem of finding
shortest paths in a graph. For solving the latter, the planning framework
proposed in this thesis used the Anytime Repairing A* (ARA*) algorithm,
which is capable of quickly finding an initial, possibly suboptimal, but
perfectly valid, solution; if there is computation time left for the current
planning cycle, ARA* iteratively refines the solution. Since ARA* belongs
to the class of heuristic graph search algorithms, appropriate consistent
heuristics have been devised, which guide the graph search along the chain
of waypoints by estimating the remaining distance to the goal.

Moreover, in order to test the planning algorithm for a wide range of
scenarios, it was necessary to develop a method for modeling the envi-
ronment of the robot—although this was not the focus of this thesis. For
this purpose, a scheme has been devised that models the risk for colli-
sions with static and dynamic obstacles in a probabilistic way. An existing
method for modeling circular dynamic obstacles has been extended and a
novel method based on time slices has been developed for obstacles with
arbitrary shape. In addition, consideration of terrain characteristics has
been integrated into the environment model. The employed scheme for
modeling the environment is only one of many possibilities since the plan-

200

7.2. Future Work

ning algorithm is totally independent of the utilized scheme for collision
checking and can thus be easily extended should the need arise.

The proposed planning algorithm was extensively evaluated both in
simulation and on a real robotic platformwith respect to various criteria. It
was shown that the proposed algorithm especially stands out with respect
to its capabilities and wide applicability while being at least as fast as other
competing algorithms.

7.2 Future Work

The proposed planning concept has been developed with maximum flexi-
bility and extensibility in mind. Therefore, future work might investigate
the application of the planning algorithm to other domains. Fore example,
it might be interesting to apply the algorithm to multi-waypoint mobile
manipulation tasks. These are characterized by many degrees of freedom
and therefore constitute a challenging field for search-based planning al-
gorithms. This is where the proposed scheme of successive dimensionality
reduction might prove to be beneficial, especially if the motion of the robot
is restricted by additional kinematical constraints. In addition, the applica-
bility of the proposed planning algorithm to multi-robot motion planning
might be worth investigating (cf. [Fre11; Cir14]).

A further interesting question is whether the proposed planning
scheme can profit from advances in multi- and many-core architectures by
employing parallelization techniques. The implementation of the motion
primitive sampler that has been developed in this thesis already utilizes
all available processor cores by sampling all motion primitive bunches in
parallel. However, the subsequent search through the lattice is performed
sequentially. In the last few years, there have been substantial advances in
parallel graph search algorithms (e.g., [Bra12; Phi14; Zho15]), and it might
be worthwhile to investigate their applicability and practicability within
the proposed planning framework.

201

Appendix A

Proofs

Proposition 1 (Monotonic cost): Let s̃ be the currently expanded state dur-
ing the graph search, s̃′ ∈ succ(s̃) a successor that is reached by the execution
of a motion primitivem, and c (s̃, s̃′) the cost for the transition from s̃ to s̃′

by the application ofm. If the accumulated costs д(s̃) and д(s̃′) are defined
according to (5.20) and (5.21) with weighting factors ηt > 0 and ηr ≥ 0, then
c (s̃, s̃′) > 0.

Proof. According to (5.15), the relation c (s̃, s̃′) = д(s̃′) − д(s̃) holds. There-
fore, in order to prove c (s̃, s̃′) > 0, it is sufficient to show that

д(s̃) < д(s̃′) . (A.1)

Substituting (5.20) and (5.21) into (A.1) yields

l̄ (s̃) + ηt t̄ (s̃) + ηr p̄coll (s̃)

< l̄ (s̃) + l (m) + ηt (t̄ (s̃) + t (m))

+ ηr
(
1 − (1 − p̄coll (s̃)) (1 − pcoll (m))

)
,

(A.2)

203

Appendix A. Proofs

which can be simplified to the equivalent inequality

0 < l (m) + ηt t (m) + ηr pcoll (m) (1 − p̄coll (s̃)) . (A.3)

The first term of the right-hand side in (A.3) is the length of the motion
primitive, l (m). It is by definition a non-negative quantity; however, in case
of the “wait” primitive, it may be zero. Thus l (m) ≥ 0. The second term in
(A.3) is the weighted duration of the motion primitive, ηt t (m). Since time is
always progressing, there is no motion primitive with zero duration, thus
t (m) > 0 and therefore ηt t (m) > 0 if and only if ηt > 0. The third term
in (A.3) is always non-negative for ηr ≥ 0 because pcoll (m) and p̄coll (s̃) are
probabilities and thus in the closed interval [0, 1]. The correctness of (A.3)
follows directly from these observations, which concludes the proof. □

Proposition2 (Consistentheuristics): LetN be the number of waypoints,
s̃ = (x̃ , ỹ, . . . ,gi) the currently expanded state during the graph search, s̃′ =
(x̃ ′, ỹ ′, . . . ,gk) ∈ succ(s̃) a successor that is reached by the execution of a
motion primitivem, and c (s̃, s̃′) the cost for the transition from s̃ to s̃′ by the
application ofm. The heuristic function h(s̃) defined according to (5.26) with
d(s̃) defined according to (5.27) is consistent.

Proof. For a heuristic function h(s̃) to be consistent, the relation

h(s̃) ≤ h(s̃′) + c (s̃, s̃′) ∀ s̃, s̃′ | s̃′ ∈ succ(s̃) (A.4)

must hold [Pea84]. The cost c (s̃, s̃′) can be obtained by substituting (5.20)
and (5.21) into (5.15):

c (s̃, s̃′) = д(s̃′) − д(s̃) = l (m) + ηt t (m) + ηr pcoll (m) (1 − p̄coll (s̃))︸ ︷︷ ︸
=:p (s̃,m)

. (A.5)

204

Appendix A. Proofs

To shorten notation, the expression for the costs induced by the colli-
sion risk is briefly denoted by p. Note that p (s̃,m) ≥ 0 since ηr ≥ 0 and
pcoll (m), p̄coll (s̃) ∈ [0, 1]. With (5.26) and (5.27), the consistency condition
(A.4) becomes

(
1 + ηt

ṽmax

)
*.
,
di (s̃) +

N∑
j=i+1
wj

+/
-

≤
(
1 + ηt

ṽmax

)
*.
,
dk (s̃′) +

N∑
j=k+1
wj

+/
-
+ l (m) + ηt t (m) + p (s̃,m) .

(A.6)

In order to prove the correctness of (A.6), two cases need to be considered:
a) s̃ = (x̃ , ỹ, . . . ,gi) and s̃′ = (x̃ ′, ỹ ′, . . . ,gk) belong to the same planning
segment, i.e., gk = gi ; b) s̃ and s̃′ belong to different planning segments,
i.e., gk = gi+1, because waypoint gi has been reached by s̃′. For the sake of
clarity, the abbreviations

s :=


x̃

ỹ


, s′ :=



x̃ ′

ỹ ′

, sgi :=



xgi
ygi


(A.7)

are used in the remainder of this proof since no confusion may arise in
this context.

a) same planning segment: gk = gi . With k = i , the two sums in (A.6) are
equivalent and can thus be subtracted from both sides of the inequality:(

1 + ηt
ṽmax

)
di (s̃) ≤

(
1 + ηt

ṽmax

)
di (s̃′) + l (m) + ηt t (m) + p (s̃,m) . (A.8)

With definition (5.28) for the heuristic distance di (s̃) and the abbreviations
from (A.7), (A.8) can be written as

205

Appendix A. Proofs(
1 + ηt

ṽmax

)
max

(
0, ∥s − sgi ∥ − Rgi

)
≤

(
1 + ηt

ṽmax

)
max

(
0, ∥s′ − sgi ∥ − Rgi

)
+ l (m) + ηt t (m) + p (s̃,m) ,

(A.9)

where ∥ · ∥ is the Euclidean norm of a vector. As the left-hand side attains
its maximum value for ∥s − sgi ∥ − Rgi ≥ 0 and the right-hand side attains
its minimum value for ∥s′ − sgi ∥ − Rgi ≤ 0, it is sufficient to consider this
particular case and prove(

1 + ηt
ṽmax

) (
∥s − sgi ∥ − Rgi

)
≤ l (m) + ηt t (m) + p (s̃,m) . (A.10)

The proof starts with the left-hand side and makes use of the average
velocity v (m) = l (m)/t (m), 0 ≤ v (m) ≤ ṽmax of the motion primitivem.(

1 + ηt
ṽmax

) (
∥s − sgi ∥ − Rgi

)
=

(
1 + ηt

ṽmax

) (
∥s − sgi + s′ − s′∥ − Rgi

)
≤

(
1 + ηt

ṽmax

) (
∥s − s′∥ + ∥s′ − sgi ∥ − Rgi︸ ︷︷ ︸

≤0 by assumption

)
≤

(
1 + ηt

ṽmax

)
∥s − s′∥

≤
(
1 + ηt

ṽmax

)
l (m) ≤

(
1 + ηt

v (m)

)
l (m) = l (m) + ηt t (m)

≤ l (m) + ηt t (m) + p (s̃,m) ,

(A.11)

which is the right-hand side of (A.10) and thus concludes the proof for the
case gk = gi .

206

Appendix A. Proofs

b) different planning segments: gk = gi+1. With k = i + 1, inequality (A.6)
becomes(

1 + ηt
ṽmax

)
*.
,
di (s̃) +

N∑
j=i+1
wj

+/
-

≤
(
1 + ηt

ṽmax

)
*.
,
di+1 (s̃′) +

N∑
j=i+2
wj

+/
-
+ l (m) + ηt t (m) + p (s̃,m) ,

(A.12)

which can be simplified to(
1 + ηt

ṽmax

) (
di (s̃) +wi+1

)
≤

(
1 + ηt

ṽmax

)
di+1 (s̃′) + l (m) + ηt t (m) +p (s̃,m) .

(A.13)
With definition (5.28) for the heuristic distance di (s̃), definition (5.29) for
the inter-waypoint distance wj , and the abbreviations from (A.7), (A.13)
can be written as(

1 + ηt
ṽmax

) (
max

(
0, ∥s − sgi ∥ − Rgi

)
+max

(
0, ∥sgi+1 − sgi ∥ − Rgi+1 − Rgi

))
≤

(
1 + ηt

ṽmax

)
max

(
0, ∥s′ − sgi+1 ∥ − Rgi+1

)
+ l (m) + ηt t (m) + p (s̃,m) .

(A.14)

The left-hand side attains its maximum value for ∥s − sgi ∥ − Rgi ≥ 0 and
∥sgi+1 −sgi ∥−Rgi+1 −Rgi ≥ 0; the right-hand side attains its minimum value
for ∥s′ − sgi+1 ∥ − Rgi+1 ≤ 0. Thus it is sufficient to consider this particular
case and prove(

1 + ηt
ṽmax

) (
∥s − sgi ∥ − Rgi + ∥sgi+1 − sgi ∥ − Rgi+1 − Rgi

)
≤ l (m) + ηt t (m) + p (s̃,m) .

(A.15)

207

Appendix A. Proofs

Again, the proof starts with the left-hand side andmakes use of the average
velocity v (m) = l (m)/t (m), 0 ≤ v (m) ≤ ṽmax of the motion primitivem.
Additionally, the relation

∥s′ − sgi ∥ − Rgi ≤ 0 (A.16)

holds because s′ caused a transition to the next planning segment and thus
must lie inside waypoint gi , i.e., s̃′ ∈ S̃gi according to (5.11) and (5.23).(

1 + ηt
ṽmax

) (
∥s − sgi ∥ − Rgi + ∥sgi+1 − sgi ∥ − Rgi+1 − Rgi

)
=

(
1 + ηt

ṽmax

) (
∥s − sgi + s′ − s′∥ − Rgi
+ ∥sgi+1 − sgi + s′ − s′∥ − Rgi+1 − Rgi

)
≤

(
1 + ηt

ṽmax

) (
∥s − s′∥ + ∥s′ − sgi ∥ − Rgi︸ ︷︷ ︸

≤0 by (A.16)

+ ∥s′ − sgi ∥ − Rgi︸ ︷︷ ︸
≤0 by (A.16)

+ ∥s′ − sgi+1 ∥ − Rgi+1︸ ︷︷ ︸
≤0 by assumption

)

≤
(
1 + ηt

ṽmax

)
∥s − s′∥ ≤

(
1 + ηt

ṽmax

)
l (m)

≤
(
1 + ηt

v (m)

)
l (m) = l (m) + ηt t (m)

≤ l (m) + ηt t (m) + p (s̃,m) ,

(A.17)

which is the right-hand side of (A.15) and thus concludes the proof for the
case gk = gi+1. □

208

Appendix B

Algorithms

This appendix provides the pseudocode for two major components of the
proposedmotion planning algorithm, namely the sampling of motion prim-
itive bunches and theAnytime RepairingA* (ARA*) graph search algorithm.
The entire motion planning algorithm has been implemented in C++ to
guarantee fast execution and easy portability (see Section 6.1).

Sampling of Motion Primitive Bunches

Sampling motion primitive sets from arbitrary system models has been
introduced in Section 3.5.4. Algorithm 1 describes the procedure for sam-
pling a singlemotion primitive bunchB(s̃0) starting at the respective lattice
point s̃0. Since the algorithm has no side effects, the sampling of all motion
primitive bunches can be performed in parallel.

209

Appendix B. Algorithms

Algorithm 1 Sampling of a motion primitive bunch.
Inputs:

s̃0 Start state of bunch
Ntotal Total number of samples
Nexpl Number of samples during exploration phase
eq,max Maximum quantization error
nmax Maximum number of time intervals for a motion primitive
δt Time increment

1: procedure SampleBunch(s̃0, Ntotal, Nexpl, eq,max, nmax, δt)
2: B(s̃0) ← ∅
3: for i ← 1 to Ntotal do
4: T← ()
5: for k ← 1 to nmax do
6: uk (t) ← SampleInput(tk−1, tk) ▷ see (3.47)
7: u(t) ← ∑k

j=1 uj (t)
8: se ← Φ(s̃0, 0, u,kδt) ▷ see (3.36)
9: T←

(
T, (se,kδt)

)
10: break if trajectory Tviolates state constraints
11: if eq (se) < eq,max then ▷ see (3.8)
12: s̃e ← λ(se) ▷ see (3.6)
13: m ← (s̃0, s̃e, u,T,kδt)
14: if ∃m′ = (s̃0, s̃′e, u′,T′,∆t ′m) ∈ B(s̃0) : (s̃e = s̃′e) then
15: if Jq (m) < Jq (m

′) then ▷ see (3.50)
16: B(s̃0) ← B(s̃0) \ {m′ } ∪ {m }
17: end if
18: else if i ≤ Nexpl then
19: B(s̃0) ← B(s̃0) ∪ {m }
20: end if
21: end if
22: end for
23: end for
24: return B(s̃0)
25: end procedure

210

Appendix B. Algorithms

Anytime Repairing A* (ARA*)

The Anytime Repairing A* (ARA*) algorithm was proposed in [Lik03a] and
is cited here for reference. Due to its anytime nature, ARA* is very well
suited for planning fast avoidance maneuvers in a dynamic environment
(see Section 5.2.2), which is why it is used extensively in this thesis for
solving the eventual graph search problem.

Algorithm 2 Anytime Repairing A* (ARA*) [Lik03a]
1: procedure fvalue(s̃)
2: return д(s̃) + ϵ h(s̃) ▷ see (5.13)
3: end procedure

4: procedure ImprovePath
5: while fvalue(s̃goal) > mins̃∈OPEN fvalue(s̃) do
6: remove s̃ with the smallest fvalue(s̃) from OPEN
7: CLOSED ← CLOSED ∪ { s̃ }
8: for each successor s̃′ of s̃ do ▷ see (5.10)
9: if s̃′ was not visited before then
10: д(s̃′) ← ∞
11: end if
12: if д(s̃′) > д(s̃) + c (s̃, s̃′) then
13: д(s̃′) ← д(s̃) + c (s̃, s̃′) ▷ see (5.15)
14: if s̃′ < CLOSED then
15: insert s̃′ into OPEN with fvalue(s̃′)
16: else
17: insert/update s̃′ in INCONS ▷ see [Lik08]
18: end if
19: end if
20: end for
21: end while
22: end procedure

211

Appendix B. Algorithms

Algorithm 2 (Continued) Anytime Repairing A* (ARA*) [Lik03a]
23: procedure Main
24: д(s̃goal) ← ∞
25: д(s̃start) ← 0
26: ϵ ← ϵstart
27: OPEN ← CLOSED ← INCONS ← ∅
28: insert s̃start into OPEN with fvalue(s̃start)
29: ImprovePath
30: ϵ ′ ← min (ϵ, д(s̃goal)/mins̃∈OPEN∪INCONS (д(s̃) + h(s̃))) ▷ see (5.18)
31: publish current ϵ ′-suboptimal solution
32: while ϵ ′ > 1 do
33: decrease ϵ
34: move states from INCONS into OPEN
35: update the priorities for all s̃ ∈ OPEN according to fvalue(s̃)
36: CLOSED ← ∅
37: ImprovePath
38: ϵ ′ ← min (ϵ, д(s̃goal)/mins̃∈OPEN∪INCONS (д(s̃) + h(s̃)))
39: publish current ϵ ′-suboptimal solution
40: end while
41: end procedure

212

Bibliography

[Agh13] F. Aghili and A. Salerno. “Driftless 3-D attitude determination and
positioning of mobile robots by integration of IMU with two RTK
GPSs.” In: IEEE/ASME Transactions onMechatronics 18.1 (2013), pp. 21–
31.

[Bak04] C. Baker, A. Morris, D. Ferguson, S. Thayer, C. Whittaker, Z. Omohun-
dro, C. Reverte, W. Whittaker, D. Hahnel, and S. Thrun. “A campaign
in autonomous mine mapping.” In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation. 2004, pp. 2004–2009.

[Bal00] J. Baltes. “A benchmark suite for mobile robots.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems.
2000.

[Bar89] J. Barraquand and J.-C. Latombe. “On nonholonomic mobile robots
and optimal maneuvering.” In: Proceedings of the IEEE International
Symposium on Intelligent Control. 1989, pp. 340–347.

[Bar91a] J. Barraquand and J.-C. Latombe. “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles.” In: Proceedings of the IEEE International Conference on Robotics
and Automation. 1991, pp. 2328–2335.

[Bar91b] J. Barraquand and J.-C. Latombe. “Robot motion planning: a dis-
tributed representation approach.” In: The International Journal of
Robotics Research 10.6 (1991), pp. 628–649.

213

Bibliography

[Bar93] J. Barraquand and J.-C. Latombe. “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles.” In: Algorithmica 10.2–4 (1993), pp. 121–155.

[Ber06] J. van den Berg, D. Ferguson, and J. Kuffner. “Anytime path planning
and replanning in dynamic environments.” In: Proceedings of the IEEE
International Conference on Robotics and Automation. 2006, pp. 2366–
2371.

[Bet98] J. T. Betts. “Survey of numerical methods for trajectory optimization.”
In: AIAA Journal of Guidance, Control, and Dynamics 21.2 (1998),
pp. 193–207.

[Bic02] A. Bicchi, A. Marigo, and B. Piccoli. “On the Reachability of Quantized
Control Systems.” In: IEEE Transactions on Automatic Control 47.4
(2002), pp. 546–563.

[Ble11a] T. Blechmann. Boost.Heap. 2011. url: http://www.boost.org/doc/
libs/1_60_0/doc/html/heap.html (retrieved on Feb. 4, 2016).

[Ble11b] T. Blechmann. Boost.Heap. Data Structures. 2011. url: http://www.
boost.org/doc/libs/1_60_0/doc/html/heap/data_structures.

html (retrieved on Feb. 4, 2016).

[Boh00] R. Bohlin and L. E. Kavraki. “Path planning using Lazy PRM.” In: Pro-
ceedings of the IEEE International Conference on Robotics and Automa-
tion. 2000, pp. 521–528.

[Boh01] R. Bohlin. “Path planning in practice; lazy evaluation on a multi-
resolution grid.” In: Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. 2001, pp. 49–54.

[Bra01] M. S. Branicky, S.M. LaValle, K. Olson, and L. Yang. “Quasi-randomized
path planning.” In: Proceedings of the IEEE International Conference on
Robotics and Automation. 2001, pp. 1481–1487.

[Bra08] M. S. Branicky, R. A. Knepper, and J. J. Kuffner. “Path and trajectory
diversity: Theory and algorithms.” In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation. 2008, pp. 1359–1364.

214

http://www.boost.org/doc/libs/1_60_0/doc/html/heap.html
http://www.boost.org/doc/libs/1_60_0/doc/html/heap.html
http://www.boost.org/doc/libs/1_60_0/doc/html/heap/data_structures.html
http://www.boost.org/doc/libs/1_60_0/doc/html/heap/data_structures.html
http://www.boost.org/doc/libs/1_60_0/doc/html/heap/data_structures.html

Bibliography

[Bra12] S. Brand and R. Bidarra. “Multi-core scalable and efficient pathfind-
ing with Parallel Ripple Search.” In: Computer Animation and Virtual
Worlds 23.2 (2012), pp. 73–85.

[Bro99] O. Brock and O. Khatib. “High-speed navigation using the global dy-
namic window approach.” In: Proceedings of the IEEE International
Conference on Robotics and Automation. 1999, pp. 341–346.

[Bue08] M. Buehler, K. Iagnemma, and S. Singh, eds. Journal of Field Robotics
25.8–10 (2008): Special Issue on the 2007 DARPA Urban Challenge, Part
I–III.

[Buh08] J. P. Buhler and P. Stevenhagen. Algorithmic Number Theory. Lattices,
Number Fields, Curves and Cryptography. Mathematical Sciences Re-
search Institute Publications 44. Cambridge: Cambridge University
Press, 2008.

[Cal08] D. Calisi, L. Iocchi, and D. Nardi. “A unified benchmark framework for
autonomous mobile robots and vehicles motion algorithms (MoVeMA
benchmarks).” In:Workshop on experimental methodology and bench-
marking in robotics research. 2008.

[Cha87] B. Chazelle. “Approximation and decomposition of shapes.” In: Algo-
rithmic and Geometric Aspects of Robotics. Ed. by J. T. Schwartz and
C.-K. Yap. Hillsdale, NJ: L. Erlbaum Associates, 1987, pp. 145–185.

[Che02] P. Cheng and S.M. LaValle. “Resolution complete rapidly-exploring
random trees.” In: Proceedings of the IEEE International Conference on
Robotics and Automation. 2002, pp. 267–272.

[Che99] M. Cherif. “Kinodynamic motion planning for all-terrain wheeled ve-
hicles.” In: Proceedings of the IEEE International Conference on Robotics
and Automation. 1999, pp. 317–322.

[Chi12] S. Chitta, I. A. Şucan, and S. Cousins. “MoveIt!” In: IEEE Robotics &
Automation Magazine 19.1 (2012). url: http://moveit.ros.org.

[Cho05] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementation. Cambridge, MA: MIT Press, 2005.

215

http://moveit.ros.org

Bibliography

[Cir14] M. Cirillo, T. Uras, and S. Koenig. “A lattice-based approach to multi-
robot motion planning for non-holonomic vehicles.” In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems.
2014, pp. 232–239.

[Coh10] B. J. Cohen, S. Chitta, and M. Likhachev. “Search-based planning for
manipulation with motion primitives.” In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation. 2010, pp. 2902–
2908.

[Coh11] B. J. Cohen, G. Subramanian, S. Chitta, and M. Likhachev. “Planning
for manipulation with adaptive motion primitives.” In: Proceedings of
the IEEE International Conference on Robotics and Automation. 2011,
pp. 5478–5485.

[Coh12] B. Cohen, I. A. Şucan, and S. Chitta. “A generic infrastructure for
benchmarking motion planners.” In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2012, pp. 589–
595.

[Cor09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. 3rd ed. Cambridge, MA: MIT Press, 2009.

[Cur15] F. Curatella, P. Vinetti, G. Rizzo, T. Vladimirova, L. D. Vendictis, T.
Emter, J. Petereit, C.W. Frey, D. Usher, I. Stanciugelu, J. Schaefer, E.
den Breejen, L. Gisslén, and D. Letalick. “Toward a multifaceted plat-
form for humanitarian demining.” In: 13th IARPWorkshop on Humani-
tarian Demining and Risky Intervention. 12th International Symposium
“MINE ACTION 2015”. 2015, pp. 133–144.

[DeL98] A. De Luca, G. Oriolo, and C. Samson. “Feedback control of a nonholo-
nomic car-like robot.” In: Robot Motion Planning and Control. Ed. by
J.-P. Laumond. Lecture Notes in Control and Information Sciences 229.
Berlin: Springer, 1998, pp. 171–253.

[Dij59] E.W. Dijkstra. “A note on two problems in connexion with graphs.”
In: Numerische Mathematik 1.1 (1959), pp. 269–271.

216

Bibliography

[Dol08] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. “Practical search
techniques in path planning for autonomous driving.” In: Proceedings
of the First International Symposium on Search Techniques in Artificial
Intelligence and Robotics. 2008.

[Dol10] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. “Path planning for
autonomous vehicles in unknown semi-structured environments.” In:
The International Journal of Robotics Research 29.5 (2010), pp. 485–501.

[Don93] B. Donald, P. Xavier, J. Canny, and J. Reif. “Kinodynamic motion plan-
ning.” In: Journal of the Association for Computing Machinery 40.5
(1993), pp. 1048–1066.

[Dub57] L. E. Dubins. “On curves of minimal length with a constraint on aver-
age curvature, and with prescribed initial and terminal positions and
tangents.” In: American Journal of Mathematics 79.3 (1957), pp. 497–
516.

[DuT10] N. E. Du Toit and J.W. Burdick. “Robotic motion planning in dynamic,
cluttered, uncertain environments.” In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation. 2010, pp. 966–973.

[Emt10] T. Emter, A. Saltoǧlu, and J. Petereit. “Multi-sensor fusion for local-
ization of a mobile robot in outdoor environments.” In: Proceedings of
the 41st International Symposium on Robotics /6th German Conference
on Robotics (ISR/ROBOTIK 2010). 2010.

[Emt12] T. Emter and T. Ulrich. “Fusion of geometrical and visual information
for localization andmapping in outdoor environments.” In:Ubiquitous
Positioning, Indoor Navigation, and Location Based Service (UPINLBS).
2012, pp. 1–5.

[Emt14] T. Emter and J. Petereit. “Integrated multi-sensor fusion for mapping
and localization in outdoor environments for mobile robots.” In: Pro-
ceedings of SPIE, volume 9121. Multisensor, Multisource Information
Fusion: Architectures, Algorithms, and Applications. 2014.

217

Bibliography

[Eri09] L. H. Erickson and S.M. LaValle. “Survivability: Measuring and ensur-
ing path diversity.” In: Proceedings of the IEEE International Conference
on Robotics and Automation. 2009, pp. 2068–2073.

[Fer05] D. Ferguson, M. Likhachev, and A. Stentz. “A guide to heuristic-based
path planning.” In: Proceedings of the International Conference on Au-
tomated Planning and Scheduling. 2005.

[Fer06a] D. Ferguson and A. Stentz. “Anytime RRTs.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems.
2006, pp. 5369–5375.

[Fer06b] D. Ferguson and A. Stentz. “Using interpolation to improve path plan-
ning: the field D* algorithm.” In: Journal of Field Robotics 23.2 (2006),
pp. 79–101.

[Fer08a] D. Ferguson, T.M. Howard, and M. Likhachev. “Motion planning in
urban environments.” In: Journal of Field Robotics 25.11–12 (2008),
pp. 939–960.

[Fer08b] D. Ferguson and M. Likhachev. “Efficiently using cost maps for
planning complex maneuvers.” In: IEEE International Conference on
Robotics and Automation: Workshop on Planning with Cost Maps. 2008.

[Fer98] P. Ferbach. “A method of progressive constraints for nonholonomic
motion planning.” In: IEEE Transactions on Robotics and Automation
14.1 (1998), pp. 172–179.

[Fio98] P. Fiorini and Z. Shiller. “Motion planning in dynamic environments
using velocity obstacles.” In: The International Journal of Robotics Re-
search 17.7 (1998), pp. 760–772.

[Fox97] D. Fox, W. Burgard, and S. Thrun. “The dynamic window approach
to collision avoidance.” In: IEEE Robotics & Automation Magazine 4.1
(1997), pp. 23–33.

[Fra02] E. Frazzoli, M. A. Dahleh, and E. Feron. “Real-time motion planning
for agile autonomous vehicles.” In: AIAA Journal of Guidance, Control,
and Dynamics 25.1 (2002), pp. 116–129.

218

Bibliography

[Fra04a] T. Fraichard and A. Scheuer. “From Reeds and Shepp’s to continuous-
curvature paths.” In: IEEE Transactions on Robotics 20.6 (2004),
pp. 1025–1035.

[Fra04b] T. Fraichard andH. Asama. “Inevitable collision states – a step towards
safer robots.” In: Advanced Robotics 18.10 (2004), pp. 1001–1024.

[Fra05] E. Frazzoli, M. A. Dahleh, and E. Feron. “Maneuver-based motion plan-
ning for nonlinear systems with symmetries.” In: IEEE Transactions
on Robotics 21.6 (2005), pp. 1077–1091.

[Fra93] T. Fraichard. “Dynamic trajectory planning with dynamic constraints:
A ‘state-time space’ approach.” In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 1993, pp. 1393–
1400.

[Fre11] C. Frese and J. Beyerer. “A comparison of motion planning algorithms
for cooperative collision avoidance of multiple cognitive automo-
biles.” In: Proceedings of the IEEE Intelligent Vehicles Symposium. 2011,
pp. 1156–1162.

[Fre15] C. Frey, T. Emter, J. Petereit, I. Tchouchenkov, T. Müller, M. Tittel, R.
Worst, K. Pfeiffer, M. Walter, J. Wöllenstein, S. Rademacher, A. Wen-
zel, and F. Müller. “Situation responsive networking of mobile robots
for disaster management.” In: Proceedings of the IEEE International
Symposium on Technologies for Homeland Security. 2015.

[Ful08] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier. “Probabilistic nav-
igation in dynamic environment using Rapidly-exploring Random
Trees and Gaussian processes.” In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2008, pp. 1056–
1062.

[Ger08] B. P. Gerkey and K. Konolige. “Planning and control in unstructured
terrain.” In: IEEE International Conference on Robotics and Automation:
Workshop on Planning with Cost Maps. 2008.

219

Bibliography

[Goc11] K. Gochev, B. J. Cohen, J. Butzke, A. Safonova, andM. Likhachev. “Path
planning with adaptive dimensionality.” In: Proceedings of the Fourth
International Symposium on Combinatorial Search. 2011.

[Goc12] K. Gochev, A. Safonova, and M. Likhachev. “Planning with adaptive
dimensionality for mobile manipulation.” In: Proceedings of the IEEE
International Conference on Robotics and Automation. 2012, pp. 2944–
2951.

[Goc13] K. Gochev, A. Safonova, and M. Likhachev. “Incremental planning
with adaptive dimensionality.” In: Proceedings of the Twenty-Third
International Conference on Automated Planning and Scheduling. 2013.

[Gon12] J. P. Gonzalez, A. Dornbush, and M. Likhachev. “Using state domi-
nance for path planning in dynamic environments with moving ob-
stacles.” In: Proceedings of the IEEE International Conference on Robotics
and Automation. 2012, pp. 4009–4015.

[Gre07] C. J. Green and A. Kelly. “Toward optimal sampling in the space of
paths.” In: 13th International Symposium of Robotics Research. 2007.

[Gri05] G. Grisetti, C. Stachniss, and W. Burgard. “Improving grid-based
SLAM with Rao-Blackwellized particle filters by adaptive proposals
and selective resampling.” In: Proceedings of the IEEE International
Conference on Robotics and Automation. 2005, pp. 2432–2437.

[Gua15] T. Guan and C.W. Frey. “Reuse historic costs in dynamic program-
ming to reduce computational complexity in the context of model
predictive optimization.” In: IEEE International Conference on Vehicu-
lar Electronics and Safety. 2015, pp. 256–263.

[Har68] P. E. Hart, N. J. Nilsson, and B. Raphael. “A formal basis for the heuris-
tic determination of minimum cost paths.” In: IEEE Transactions on
Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[Har87] R.M. Haralick, S. R. Sternberg, and X. Zhuang. “Image analysis using
mathematical morphology.” In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 9.4 (1987), pp. 532–550.

220

Bibliography

[Her14] C. Hernández, J. A. Baier, and R. Asín. “Making A* run faster than
D*-Lite for path-planning in partially known terrain.” In: Proceed-
ings of the 24th International Conference on Automated Planning and
Scheduling. 2014.

[How07] T.M. Howard and A. Kelly. “Optimal rough terrain trajectory gen-
eration for wheeled mobile robots.” In: The International Journal of
Robotics Research 26.5 (2007), pp. 141–166.

[How08] T.M. Howard, C. J. Green, A. Kelly, and D. Ferguson. “State space
sampling of feasible motions for high-performance mobile robot nav-
igation in complex environments.” In: Journal of Field Robotics 25.6–7
(2008), pp. 325–345.

[How10] T.M. Howard, C. J. Green, and A. Kelly. “Receding horizon model-
predictive control for mobile robot navigation of intricate paths.” In:
Field and Service Robotics. Results of the 7th International Conference.
Ed. by A. Howard, K. Iagnemma, and A. Kelly. Springer Tracts in
Advanced Robotics 62. Berlin: Springer, 2010, pp. 69–78.

[How14] T.M. Howard, M. Pivtoraiko, R. A. Knepper, and A. Kelly. “Model-
predictivemotion planning.” In: IEEE Robotics & AutomationMagazine
21.1 (2014), pp. 64–73.

[Hsu02] D. Hsu, R. Kindel, J.-C. Latombe, and S.M. Rock. “Randomized kinody-
namic motion planning with moving obstacles.” In: The International
Journal of Robotics Research 21.3 (2002), pp. 233–256.

[Hsu98] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin. “On
finding narrow passages with probabilistic roadmap planners.” In:
Proceedings of the third Workshop on the Algorithmic Foundations of
Robotics: The Algorithmic Perspective. 1998, pp. 141–153.

[Hug14] J. F. Hughes, A. van Dam, M. McGuire, D. F. Sklar, J. D. Foley, S. K.
Feiner, and K. Akeley. Computer graphics: principles and practice.
3rd ed. Upper Saddle River, NJ: Addison-Wesley, 2014.

[Iag06] K. Iagnemma and M. Buehler, eds. Journal of Field Robotics 23.8–9
(2006): Special Issue on the DARPA Grand Challenge, Part 1 and 2.

221

Bibliography

[Jai04] L. Jaillet and T. Simeon. “A PRM-based motion planner for dynami-
cally changing environments.” In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2004, pp. 1606–
1611.

[Jam08] D. James and J. B. Maitin-Shepard. Boost.Unordered. 2008. url: http:
/ / www . boost . org / doc / libs / 1 _ 60 _ 0 / doc / html / heap . html

(retrieved on Feb. 4, 2016).

[Jia92] K. Jiang, L. D. Seneviratne, S.W. E. Earies, and W. S. Ko. “Minimum-
time smooth path planning for a mobile robot with kinematic con-
straints.” In: Proceedings of the IEEE International Workshop on Emerg-
ing Technologies and Factory Automation. 1992, pp. 531–536.

[Kam08] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J.
Schröder, M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink, C. Frese,
and C. Stiller. “Team AnnieWAY’s autonomous system for the 2007
DARPA Urban Challenge.” In: Journal of Field Robotics 25.9 (2008),
pp. 615–639.

[Kan86] K. Kant and S.W. Zucker. “Toward efficient trajectory planning: the
path-velocity decomposition.” In: The International Journal of Robotics
Research 5.3 (1986), pp. 72–89.

[Kar10] S. Karaman and E. Frazzoli. “Optimal kinodynamic motion planning
using incremental sampling-based methods.” In: Proceedings of the
49th IEEE Conference on Decision and Control. 2010, pp. 7681–7687.

[Kar11] S. Karaman and E. Frazzoli. “Sampling-based algorithms for optimal
motion planning.” In: The International Journal of Robotics Research
30.7 (2011), pp. 846–894.

[Kar13] S. Karaman and E. Frazzoli. “Sampling-based optimal motion planning
for non-holonomic dynamical systems.” In: Proceedings of the IEEE
International Conference on Robotics and Automation. 2013, pp. 5041–
5047.

222

http://www.boost.org/doc/libs/1_60_0/doc/html/heap.html
http://www.boost.org/doc/libs/1_60_0/doc/html/heap.html

Bibliography

[Kav96] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M.H. Overmars. “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces.” In: IEEE Transactions on Robotics and Automation 12.4 (1996),
pp. 566–580.

[Kel03] A. Kelly and B. Nagy. “Reactive nonholonomic trajectory genera-
tion via parametric optimal control.” In: The International Journal of
Robotics Research 22.7-8 (2003), pp. 583–601.

[Kel06] A. Kelly, A. Stentz, O. Amidi,M. Bode, D. Bradley, A. Diaz-Calderon,M.
Happold, H. Herman, R. Mandelbaum, T. Pilarski, P. Rander, S. Thayer,
N. Vallidis, and R. Warner. “Toward reliable off road autonomous ve-
hicles operating in challenging environments.” In: The International
Journal of Robotics Research 25.5–6 (2006), pp. 449–483.

[Kha86] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile
robots.” In: The International Journal of Robotics Research 5.1 (1986),
pp. 90–98.

[Kin09] J. King and M. Likhachev. “Efficient cost computation in cost map
planning for non-circular robots.” In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2009, pp. 3924–
3930.

[Kle12] L. A. Klein. Sensor and data fusion. A tool for information assessment
and decision making. 2nd ed. Bellingham, WA: SPIE – The Interna-
tional Society for Optical Engineering, 2012.

[Kne06] R. A. Knepper and A. Kelly. “High performance state lattice planning
using heuristic look-up tables.” In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2006, pp. 3375–
3380.

[Kne09] R. A. Knepper and M. T. Mason. “Empirical sampling of path sets for
local area motion planning.” In: Experimental Robotics. The Eleventh
International Symposium. Ed. by O. Khatib, V. Kumar, and G. Pap-
pas. Springer Tracts in Advanced Robotics 54. Berlin: Springer, 2009,
pp. 451–462.

223

Bibliography

[Kne10] R. A. Knepper, S. S. Srinivasa, andM. T. Mason. “Hierarchical planning
architectures for mobile manipulation tasks in indoor environments.”
In: Proceedings of the IEEE International Conference on Robotics and
Automation. 2010, pp. 1985–1990.

[Koe05] S. Koenig and M. Likhachev. “Fast replanning for navigation in un-
known terrain.” In: IEEE Transactions on Robotics 21.3 (2005), pp. 354–
363.

[Koe06] S. Koenig and M. Likhachev. “A new principle for incremental heuris-
tic search: Theoretical results.” In: Proceedings of the Sixteenth In-
ternational Conference on Automated Planning and Scheduling. 2006,
pp. 402–405.

[Krü10] P. Krüsi, M. Pivtoraiko, A. Kelly, T.M. Howard, and R. Siegwart. “Path
set relaxation for mobile robot navigation.” In: 10th International Sym-
posium on Artificial Intelligence, Robotics and Automation in Space.
2010, pp. 456–463.

[Kuf00] J. J. Kuffner and S.M. LaValle. “RRT-connect: An efficient approach to
single-query path planning.” In: Proceedings of the IEEE International
Conference on Robotics and Automation. 2000, pp. 995–1001.

[Kun14] H.-B. Kuntze, C. Frey, T. Emter, J. Petereit, I. Tchouchenkov, T. Müller,
M. Tittel, R. Worst, K. Pfeiffer, M. Walter, S. Rademacher, and F.
Müller. “Situation responsive networking of mobile robots for disas-
ter management.” In: Proceedings of the 45th International Symposium
on Robotics /8th German Conference on Robotics (ISR/ROBOTIK 2014).
2014.

[Kus09] A. Kushleyev and M. Likhachev. “Time-bounded lattice for efficient
planning in dynamic environments.” In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation. 2009, pp. 1662–
1668.

[Kuw08] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How. “Motion
planning in complex environments using closed-loop prediction.” In:
AIAA Guidance, Navigation and Control Conference and Exhibit. 2008.

224

Bibliography

[Kuw09] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How.
“Real-time motion planning with applications to autonomous urban
driving.” In: IEEE Transactions on Control Systems Technology 17.5
(2009), pp. 1105–1118.

[Lac98] A. Lacaze, Y. Moscovitz, N. DeClaris, and K. Murphy. “Path planning
for autonomous vehicles driving over rough terrain.” In: Proceedings
of the joint IEEE International Symposium on Intelligent Control / Com-
putational Intelligence in Robotics and Automation / Intelligent Systems
and Semiotics. 1998, pp. 50–55.

[Lam01] F. Lamiraux and J.-P. Laumond. “Smooth Motion Planning for Car-
Like Vehicles.” In: IEEE Transactions on Robotics and Automation 17.4
(2001), pp. 498–502.

[Lam08] A. Lambert, D. Gruyer, G. Saint Pierre, and A.N. Ndjeng. “Collision
probability assessment for speed control.” In: Proceedings of the 11th
International IEEE Conference on Intelligent Transportation Systems.
2008, pp. 1043–1048.

[Lar02] F. Large, S. Sekhavat, Z. Shiller, and C. Laugier. “Towards real-time
global motion planning in a dynamic environment using the NLVO
concept.” In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2002, pp. 607–612.

[Lat91] J.-C. Latombe. Robot Motion Planning. Dordrecht: Kluwer Academic,
1991.

[Lau87] J.-P. Laumond. “Feasible trajectories for mobile robots with kinematic
and environment constraints.” In: Intelligent Autonomous Systems. Ed.
by L. O. Hertzberger and F. C. A. Groen. Amsterdam: North-Holland
Publishing Co., 1987, pp. 346–354.

[Lau94] J.-P. Laumond, P. E. Jacobs, M. Taix, and R.M. Murray. “A motion
planner for nonholonomic mobile robots.” In: IEEE Transactions on
Robotics and Automation 10.5 (1994), pp. 577–593.

[Lau98] J.-P. Laumond, ed. Robot Motion Planning and Control. Lecture Notes
in Control and Information Sciences. Berlin: Springer, 1998.

225

Bibliography

[LaV00] S.M. LaValle and J. J. Kuffner Jr. “Rapidly-exploring random trees:
progress and prospects.” In: Algorithmic and Computational Robotics:
New Directions. 2000.

[LaV01] S.M. LaValle and J. J. Kuffner Jr. “Randomized kinodynamic planning.”
In: The International Journal of Robotics Research 20.5 (2001), pp. 378–
400.

[LaV04] S.M. LaValle, M. S. Branicky, and S. R. Lindemann. “On the relation-
ship between classical grid search and probabilistic roadmaps.” In: The
International Journal of Robotics Research 23.7–8 (2004), pp. 673–692.

[LaV06] S.M. LaValle. Planning Algorithms. Cambridge: Cambridge University
Press, 2006.

[LaV11a] S.M. LaValle. “Motion planning: the essentials.” In: IEEE Robotics &
Automation Magazine 18.1 (2011), pp. 79–89.

[LaV11b] S.M. LaValle. “Motion planning: wild frontiers.” In: IEEE Robotics &
Automation Magazine 18.2 (2011), pp. 108–118.

[LaV98] S.M. LaValle. Rapidly-exploring random trees: a new tool for path plan-
ning. Tech. rep. TR 98-11. Department of Computer Science, Iowa
State University, Oct. 1998.

[Lev11] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens,
A. Teichman, M. Werling, and S. Thrun. “Towards fully autonomous
driving: Systems and algorithms.” In: Proceedings of the IEEE Intelligent
Vehicles Symposium. 2011, pp. 163–168.

[Lik03a] M. Likhachev, G. Gordon, and S. Thrun. “ARA*: anytime A* with prov-
able bounds on sub-optimality.” In: Proceedings of the Conference on
Neural Information Processing Systems. 2003.

[Lik03b] M. Likhachev, G. Gordon, and S. Thrun. ARA*: formal analysis. Tech.
rep. CMU-CS-03-148. School of Computer Science, Carnegie Mellon
University, July 2003.

226

Bibliography

[Lik05] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. “Any-
time Dynamic A*: an anytime, replanning algorithm.” In: Proceedings
of the International Conference on Automated Planning and Scheduling.
2005, pp. 262–271.

[Lik08] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. “Any-
time search in dynamic graphs.” In:Artificial Intelligence 172.14 (2008),
pp. 1613–1643.

[Lik09] M. Likhachev and D. Ferguson. “Planning long dynamically feasible
maneuvers for autonomous vehicles.” In: The International Journal of
Robotics Research 28.8 (2009), pp. 933–945.

[Lik16] M. Likhachev et al. Search-Based Planning Lab. url: http://sbpl.net
(retrieved on Feb. 4, 2016).

[Lin03] S. R. Lindemann and S.M. LaValle. “Incremental low-discrepancy lat-
tice methods for motion planning.” In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation. 2003, pp. 2920–2927.

[Lin04] S. R. Lindemann and S.M. LaValle. “Steps toward derandomizing
RRTs.” In: Proceedings of the Fourth International Workshop on Robot
Motion and Control. 2004, pp. 271–277.

[Lin05] S. R. Lindemann and S.M. LaValle. “Smoothly blending vector fields
for global robot navigation.” In: 44th IEEE Conference on Decision and
Control, and European Control Conference. 2005, pp. 3553–3559.

[Lin06] S. R. Lindemann and S.M. LaValle. “A multiresolution approach for
motion planning under differential constraints.” In: Proceedings of
the IEEE International Conference on Robotics and Automation. 2006,
pp. 139–144.

[Lin07] S. R. Lindemann and S.M. LaValle. “Smooth feedback for car-like ve-
hicles in polygonal environments.” In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation. 2007, pp. 3104–3109.

[Lin08] R. Linker and T. Blass. “Optimal path planning for car-like off-road ve-
hicles.” In: Proceedings of the IEEE Conference on Robotics, Automation
and Mechatronics. 2008, pp. 150–154.

227

http://sbpl.net

Bibliography

[Lin09] S. R. Lindemann and S.M. LaValle. “Simple and efficient algorithms
for computing smooth, collision-free feedback laws over given cell
decompositions.” In: The International Journal of Robotics Research
28.5 (2009), pp. 600–621.

[Loz79] T. Lozano-Pérez and M.A. Wesley. “An algorithm for planning
collision-free paths among polyhedral obstacles.” In: Commununica-
tions of the ACM 22.10 (1979), pp. 560–570.

[Mag07] M. Magnusson, A. Lilienthal, and T. Duckett. “Scan registration for au-
tonomousmining vehicles using 3D-NDT.” In: Journal of Field Robotics
24.10 (2007), pp. 803–827.

[Mau03] C. R. Maurer Jr., R. Qi, and V. Raghavan. “A linear time algorithm for
computing exact Euclidean distance transforms of binary images in
arbitrary dimensions.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 25.2 (2003), pp. 265–270.

[McN11] M. McNaughton, C. Urmson, J.M. Dolan, and J.-W. Lee. “Motion plan-
ning for autonomous driving with a conformal spatiotemporal lat-
tice.” In: Proceedings of the IEEE International Conference on Robotics
and Automation. 2011, pp. 4889–4895.

[Mil10] G. Milighetti, J. Petereit, and H.-B. Kuntze. “Mobile experimental plat-
form for the development of environmentally interactive control al-
gorithms towards the implementation on a walking humanoid robot.”
In: Proceedings of the 41st International Symposium on Robotics /6th
German Conference on Robotics (ISR/ROBOTIK 2010). 2010.

[Mon07] M. Montemerlo and S. Thrun. FastSLAM. A Scalable Method for the
Simultaneous Localization and Mapping Problem in Robotics. Springer
Tracts in Advanced Robotics 27. Berlin: Springer, 2007.

[Mon08] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston,
S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Oren-
stein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D.
Stavens, A. Vogt, and S. Thrun. “Junior: The Stanford entry in the

228

Bibliography

Urban Challenge.” In: Journal of Field Robotics 25.9 (2008), pp. 569–
597.

[Mor04] S. Morgan and M. S. Branicky. “Sampling-based planning for discrete
spaces.” In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2004, pp. 1938–1945.

[Mou06] A. Mourikis and S. Roumeliotis. “On the treatment of relative-pose
measurements for mobile robot localization.” In: Proceedings of the
IEEE International Conference on Robotics and Automation. 2006,
pp. 2277–2284.

[Muñ10] N. D. Muñoz Ceballos, J. A. Valencia, and N. L. Ospina. “Quantitative
performance metrics for mobile robots navigation.” In: Mobile Robots
Navigation. Ed. by A. Barrera. Rijeka: InTech, 2010.

[Mur04] R. R. Murphy. “Human-robot interaction in rescue robotics.” In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 34.2 (2004), pp. 138–153.

[Nag13] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Ta-
dokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, and
S. Kawatsuma. “Emergency response to the nuclear accident at the
Fukushima Daiichi Nuclear Power Plants using mobile rescue robots.”
In: Journal of Field Robotics 30.1 (2013), pp. 44–63.

[Neu09] F. Neuhaus, D. Dillenberger, J. Pellenz, andD. Paulus. “Terrain drivabil-
ity analysis in 3D laser range data for autonomous robot navigation
in unstructured environments.” In: Proceedings of the IEEE Conference
on Emerging Technologies & Factory Automation. 2009.

[Now10] W. Nowak, A. Zakharov, S. Blumenthal, and E. Prassler. Benchmarks
for mobile manipulation and robust obstacle avoidance and navigation.
Deliverable D3.1. Best Practice in Robotics (BRICS), FP7 grant agree-
ment no. 231940, Apr. 2010.

[ÓDú85] C. Ó’Dúnlaing and C. K. Yap. “A ‘retraction’ method for planning the
motion of a disc.” In: Journal of Algorithms 6.1 (1985), pp. 104–111.

229

Bibliography

[Olv10] F.W. J. Olver, D.W. Lozier, R. F. Boisvert, and C.W. Clark, eds. NIST
Handbook of Mathematical Functions. Cambridge: Cambridge Univer-
sity Press, 2010.

[Pan04] S. Pancanti, L. Pallottino, D. Salvadorini, and A. Bicchi. “Motion plan-
ning through symbols and lattices.” In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation. 2004, pp. 3914–3919.

[Pea84] J. Pearl. Heuristics. Intelligent search strategies for computer problem
solving. Artificial Intelligence. Reprinted with corrections October,
1985. Reading, MA: Addison-Wesley, 1984.

[Pet10] J. Petereit and T. Bernard. “Real-time nonlinear model predictive con-
trol of a glass forming process using a finite element model.” In: Pro-
ceedings of the 8th IFAC Symposium on Nonlinear Control Systems. 2010.

[Pet12] J. Petereit, T. Emter, C.W. Frey, T. Kopfstedt, and A. Beutel. “Applica-
tion of Hybrid A* to an autonomous mobile robot for path planning
in unstructured outdoor environments.” In: Proceedings of the 7th Ger-
man Conference on Robotics (ROBOTIK 2012). 2012.

[Pet13a] J. Petereit and T. Emter. “Kombinierte Pfad- und Trajektorienplanung
für autonome mobile Roboter.” In: Tagungsband des 19. Workshop
Computer-Bildanalyse in der Landwirtschaft und 2. Workshop Unbe-
mannte autonom fliegende Systeme (UAS) in der Landwirtschaft. Born-
imer Agrartechnische Berichte 81. Leibniz-Institut für Agrartechnik
Potsdam-Bornim e. V., 2013, pp. 24–30.

[Pet13b] J. Petereit, T. Emter, and C.W. Frey. “Mobile robot motion planning in
multi-resolution lattices with hybrid dimensionality.” In: Proceedings
of the IFAC Intelligent Autonomous Vehicles Symposium. 2013.

[Pet13c] J. Petereit, T. Emter, and C.W. Frey. “Safe mobile robot motion plan-
ning for waypoint sequences in a dynamic environment.” In: Proceed-
ings of the IEEE International Conference on Information Technology.
2013.

230

Bibliography

[Pet14] J. Petereit, T. Emter, and C.W. Frey. “Combined trajectory generation
and path planning for mobile robots using lattices with hybrid dimen-
sionality.” In: Robot Intelligence Technology and Applications 2. Results
from the 2nd International Conference on Robot Intelligence Technol-
ogy and Applications. Ed. by J.-H. Kim, E. T. Matson, H. Myung, P. Xu,
and F. Karray. Advances in Intelligent Systems and Computing 274.
Springer International Publishing Switzerland, 2014, pp. 145–157.

[Phi03] R. Philippsen and R. Siegwart. “Smooth and efficient obstacle avoid-
ance for a tour guide robot.” In: Proceedings of the IEEE International
Conference on Robotics and Automation. 2003, pp. 446–451.

[Phi07] R. Philippsen, S. Kolski, K. Maček, and R. Siegwart. “Path planning,
replanning, and execution for autonomous driving in urban and of-
froad environments.” In: IEEE International Conference on Robotics
and Automation: Workshop on Planning, Perception and Navigation for
Intelligent Vehicles. 2007.

[Phi11] M. Phillips and M. Likhachev. “SIPP: Safe interval path planning for
dynamic environments.” In: Proceedings of the IEEE International Con-
ference on Robotics and Automation. 2011, pp. 5628–5635.

[Phi14] M. Phillips, M. Likhachev, and S. Koenig. “PA*SE: parallel A* for slow
expansions.” In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling. 2014.

[Piv04] M. Pivtoraiko and A. Kelly. A study of polynomial curvature clothoid
paths for motion planning for car-like robots. Tech. rep. CMU-RI-TR-
04-68. Robotics Institute, Carnegie Mellon University, Dec. 2004.

[Piv05a] M. Pivtoraiko and A. Kelly. “Generating near minimal spanning con-
trol sets for constrained motion planning in discrete state spaces.”
In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2005, pp. 3231–3237.

[Piv05b] M. Pivtoraiko and A. Kelly. “Efficient constrained path planning via
search in state lattices.” In: Proceedings of the 8th International Sympo-
sium on Artificial Intelligence, Robotics and Automation in Space. 2005.

231

Bibliography

[Piv06] M. Pivtoraiko and A. Kelly. “Constrained motion planning in discrete
state spaces.” In: Field and Service Robotics. Results of the 5th Interna-
tional Conference. Ed. by P. Corke and S. Sukkarieh. Springer Tracts
in Advanced Robotics 25. Berlin: Springer, 2006, pp. 269–280.

[Piv07] M. Pivtoraiko, R. A. Knepper, and A. Kelly. Optimal, smooth, nonholo-
nomicmobile robot motion planning in state lattices. Tech. rep. CMU-RI-
TR-07-15. Robotics Institute, Carnegie Mellon University, May 2007.

[Piv08] M. Pivtoraiko and A. Kelly. “Differentially constrained motion replan-
ning using state lattices with graduated fidelity.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems.
2008, pp. 2611–2616.

[Piv09a] M. Pivtoraiko. “Adaptive anytime motion planning for robust robot
navigation in natural environments.” In: Advanced Technologies for
Enhanced Quality of Life. 2009, pp. 123–129.

[Piv09b] M. Pivtoraiko and A. Kelly. “Fast and feasible deliberative motion
planner for dynamic environments.” In: IEEE International Conference
on Robotics and Automation: Workshop on Safe Navigation in Open and
Dynamic Environments: Application to Autonomous Vehicles. 2009.

[Piv09c] M. Pivtoraiko, R. A. Knepper, and A. Kelly. “Differentially constrained
mobile robot motion planning in state lattices.” In: Journal of Field
Robotics 26.3 (2009), pp. 308–333.

[Piv11] M. Pivtoraiko and A. Kelly. “Kinodynamic motion planning with state
lattice motion primitives.” In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2011, pp. 2172–2179.

[Piv12] M. Pivtoraiko. “Differentially constrained motion planning with state
lattice motion primitives.” PhD thesis. Robotics Institute, Carnegie
Mellon University, Feb. 2012.

[Poh70] I. Pohl. “Heuristic search viewed as path finding in a graph.” In: Arti-
ficial Intelligence 1.3 (1970), pp. 193–204.

232

Bibliography

[Qui09] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A. Y. Ng. “ROS: an open-source robot operating sys-
tem.” In: IEEE International Conference on Robotics and Automation:
Workshop on Open Source Software. 2009.

[Qui93] S. Quinlan and O. Khatib. “Elastic bands: connecting path planning
and control.” In: Proceedings of the IEEE International Conference on
Robotics and Automation. 1993, pp. 802–807.

[Ree90] J. A. Reeds and R. A. Shepp. “Optimal paths for a car that goes both
forwards and backwards.” In: Pacific Journal of Mathematics 145.2
(1990), pp. 367–393.

[Reu98] J. Reuter. “Mobile robots trajectories with continuously differen-
tiable curvature: an optimal control approach.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems.
1998, pp. 38–43.

[ROS16] ROS.org | Powering the world’s robots. url: http://www.ros.org
(retrieved on Feb. 4, 2016).

[Ruf09a] M. Rufli, D. Ferguson, and R. Siegwart. “Smooth path planning in
constrained environments.” In: Proceedings of the IEEE International
Conference on Robotics and Automation. 2009, pp. 3780–3785.

[Ruf09b] M. Rufli and R. Siegwart. “On the application of the D* search algo-
rithm to time-based planning on lattice graphs.” In: Proceedings of The
4th European Conference on Mobile Robotics. 2009.

[Ruf10] M. Rufli and R. Siegwart. “On the design of deformable input-/state-
lattice graphs.” In: Proceedings of the IEEE International Conference on
Robotics and Automation. 2010, pp. 3071–3077.

[Rus95] S. J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1995.

[San01] G. Sanchéz and J.-C. Latombe. “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking.” In: Proceedings
of the International Symposium on Robotics Research. 2001.

233

http://www.ros.org

Bibliography

[Sch98] A. Scheuer and C. Laugier. “Planning sub-optimal and continuous-
curvature paths for car-like robots.” In: Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. 1998, pp. 25–
31.

[Sek98] S. Sekhavat, P. Švestka, J.-P. Laumond, and M.H. Overmars. “Multi-
level path planning for nonholonomic robots using semiholonomic
subsystems.” In: The International Journal of Robotics Research 17.8
(1998), pp. 840–857.

[Sek99] S. Sekhavat and M. Chyba. “Nonholonomic deformation of a potential
field for motion planning.” In: Proceedings of the IEEE International
Conference on Robotics and Automation. 1999, pp. 817–822.

[Shi07] Z. Shiller, F. Large, S. Sekhavat, and C. Laugier. “Motion planning
in dynamic environments.” In: Autonomous Navigation in Dynamic
Environments. Ed. by C. Laugier and R. Chatila. Springer Tracts in
Advanced Robotics 35. Berlin: Springer, 2007, pp. 107–119.

[Shi91] Z. Shiller and Y.-R. Gwo. “Dynamic motion planning of autonomous
vehicles.” In: IEEE Transactions on Robotics and Automation 7.2 (1991),
pp. 241–249.

[Sim96] R. Simmons. “The curvature-velocity method for local obstacle avoid-
ance.” In: Proceedings of the IEEE International Conference on Robotics
and Automation. 1996, pp. 3375–3382.

[Ste94] A. Stentz. “Optimal and efficient path planning for partially-known
environments.” In: Proceedings of the IEEE International Conference on
Robotics and Automation. 1994, pp. 3310–3317.

[Stu12] N. R. Sturtevant, A. Felner, M. Likhachev, and W. Ruml. “Heuristic
search comes of age.” In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence. 2012, pp. 2186–2191.

[Şuc12a] I. A. Şucan and L. E. Kavraki. “A sampling-based tree planner for sys-
tems with complex dynamics.” In: IEEE Transactions on Robotics 28.1
(2012), pp. 116–131.

234

Bibliography

[Şuc12b] I. A. Şucan, M. Moll, and L. E. Kavraki. “The Open Motion Planning
Library.” In: IEEE Robotics & Automation Magazine 19.4 (2012), pp. 72–
82. url: http://ompl.kavrakilab.org.

[Sun05] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. H. Reif. “Narrow passage
sampling for probabilistic roadmap planning.” In: IEEE Transactions
on Robotics 21.6 (2005), pp. 1105–1115.

[Šve97] P. Švestka and M.H. Overmars. “Motion planning for carlike robots
using a probabilistic learning approach.” In: The International Journal
of Robotics Research 16.2 (1997), pp. 119–143.

[Thr06a] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Cambridge,
MA: MIT Press, 2006.

[Thr06b] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M.
Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek,
C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessan-
drini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P.
Mahoney. “Stanley: The robot that won the DARPAGrand Challenge.”
In: Journal of Field Robotics 23.9 (2006), pp. 661–692.

[Thr96] S. Thrun and A. Bücken. “Integrating grid-based and topological maps
for mobile robot navigation.” In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence AAAI. 1996.

[Urm06] C. Urmson, C. Ragusa, D. Ray, J. Anhalt, D. Bartz, T. Galatali, A. Gutier-
rez, J. Johnston, S. Harbaugh, H. “Yu” Kato, W. Messner, N. Miller, K.
Peterson, B. Smith, J. Snider, S. Spiker, J. Ziglar, W. “Red” Whittaker,
M. Clark, P. Koon, A. Mosher, and J. Struble. “A robust approach to
high-speed navigation for unrehearsed desert terrain.” In: Journal of
Field Robotics 23.8 (2006), pp. 467–508.

[Urm08] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J.
Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T.M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B.

235

http://ompl.kavrakilab.org

Bibliography

Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. “Red” Whittaker,
Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,
J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms,
and D. Ferguson. “Autonomous driving in urban environments: Boss
and the Urban Challenge.” In: Journal of Field Robotics 25.8 (2008),
pp. 425–466.

[Vah08] N. Vahrenkamp, C. Scheurer, T. Asfour, J. Kuffner, and R. Dillmann.
“Adaptive motion planning for humanoid robots.” In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems.
2008, pp. 2127–2132.

[Wer10] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. “Optimal trajectory
generation for dynamic street scenarios in a Frénet frame.” In: Proceed-
ings of the IEEE International Conference on Robotics and Automation.
2010, pp. 987–993.

[Wer11] M. Werling, S. Kammel, J. Ziegler, and L. Gröll. “Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds.”
In: The International Journal of Robotics Research 31.3 (2011), pp. 346–
359.

[Xu12] W. Xu, J. Wei, J.M. Dolan, H. Zhao, and H. Zha. “A real-time mo-
tion planner with trajectory optimization for autonomous vehicles.”
In: Proceedings of the IEEE International Conference on Robotics and
Automation. 2012, pp. 2061–2067.

[Zha12] H. Zhang, J. Butzke, and M. Likhachev. “Combining global and local
planningwith guarantees on completeness.” In: Proceedings of the IEEE
International Conference on Robotics and Automation. 2012, pp. 4500–
4506.

[Zho15] Y. Zhou and J. Zeng. “Massively parallel A* search on a GPU.” In: Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.
2015, pp. 1248–1254.

236

Bibliography

[Zie08] J. Ziegler, M. Werling, and J. Schröder. “Navigating car-like robots
in unstructured environments using an obstacle sensitive cost func-
tion.” In: Proceedings of the IEEE Intelligent Vehicles Symposium. 2008,
pp. 787–791.

[Zie09] J. Ziegler and C. Stiller. “Spatiotemporal state lattices for fast trajec-
tory planning in dynamic on-road driving scenarios.” In: Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. 2009, pp. 1879–1884.

[Zie10] J. Ziegler and C. Stiller. “Fast collision checking for intelligent vehi-
cle motion planning.” In: Proceedings of the IEEE Intelligent Vehicles
Symposium. 2010, pp. 518–522.

[Zie14] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T.
Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrtwich,
C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler, C. Knöp-
pel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke, M. Ghanaat,
M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and E. Zeeb. “Making
Bertha drive – An autonomous journey on a historic route.” In: IEEE
Intelligent Transportation Systems Magazine 6.2 (Summer 2014), pp. 8–
20.

[Zie15] J. Ziehn,M. Ruf, B. Rosenhahn, D.Willersinn, J. Beyerer, andH. Gotzig.
“Correspondence between variational methods and Hidden Markov
Models.” In: Proceedings of the IEEE Intelligent Vehicles Symposium.
2015, pp. 380–385.

[Zuc07] M. Zucker, J. Kuffner, and M. Branicky. “Multipartite RRTs for rapid
replanning in dynamic environments.” In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation. 2007, pp. 1603–
1609.

237

List of Publications

[Cur15] F. Curatella, P. Vinetti, G. Rizzo, T. Vladimirova, L. D. Vendictis, T.
Emter, J. Petereit, C.W. Frey, D. Usher, I. Stanciugelu, J. Schaefer, E.
den Breejen, L. Gisslén, and D. Letalick. “Toward a multifaceted plat-
form for humanitarian demining.” In: 13th IARPWorkshop on Humani-
tarian Demining and Risky Intervention. 12th International Symposium
“MINE ACTION 2015”. 2015, pp. 133–144.

[Fre15] C. Frey, T. Emter, J. Petereit, I. Tchouchenkov, T. Müller, M. Tittel, R.
Worst, K. Pfeiffer, M. Walter, J. Wöllenstein, S. Rademacher, A. Wen-
zel, and F. Müller. “Situation responsive networking of mobile robots
for disaster management.” In: Proceedings of the IEEE International
Symposium on Technologies for Homeland Security. 2015.

[Emt14] T. Emter and J. Petereit. “Integrated multi-sensor fusion for mapping
and localization in outdoor environments for mobile robots.” In: Pro-
ceedings of SPIE, volume 9121. Multisensor, Multisource Information
Fusion: Architectures, Algorithms, and Applications. 2014.

[Kun14] H.-B. Kuntze, C. Frey, T. Emter, J. Petereit, I. Tchouchenkov, T. Müller,
M. Tittel, R. Worst, K. Pfeiffer, M. Walter, S. Rademacher, and F.
Müller. “Situation responsive networking of mobile robots for disas-
ter management.” In: Proceedings of the 45th International Symposium
on Robotics /8th German Conference on Robotics (ISR/ROBOTIK 2014).
2014.

239

List of Publications

[Pet14] J. Petereit, T. Emter, and C.W. Frey. “Combined trajectory generation
and path planning for mobile robots using lattices with hybrid dimen-
sionality.” In: Robot Intelligence Technology and Applications 2. Results
from the 2nd International Conference on Robot Intelligence Technol-
ogy and Applications. Ed. by J.-H. Kim, E. T. Matson, H. Myung, P. Xu,
and F. Karray. Advances in Intelligent Systems and Computing 274.
Springer International Publishing Switzerland, 2014, pp. 145–157.

[Pet13a] J. Petereit and T. Emter. “Kombinierte Pfad- und Trajektorienplanung
für autonome mobile Roboter.” In: Tagungsband des 19. Workshop
Computer-Bildanalyse in der Landwirtschaft und 2. Workshop Unbe-
mannte autonom fliegende Systeme (UAS) in der Landwirtschaft. Born-
imer Agrartechnische Berichte 81. Leibniz-Institut für Agrartechnik
Potsdam-Bornim e. V., 2013, pp. 24–30.

[Pet13b] J. Petereit, T. Emter, and C.W. Frey. “Mobile robot motion planning in
multi-resolution lattices with hybrid dimensionality.” In: Proceedings
of the IFAC Intelligent Autonomous Vehicles Symposium. 2013.

[Pet13c] J. Petereit, T. Emter, and C.W. Frey. “Safe mobile robot motion plan-
ning for waypoint sequences in a dynamic environment.” In: Proceed-
ings of the IEEE International Conference on Information Technology.
2013.

[Pet12] J. Petereit, T. Emter, C.W. Frey, T. Kopfstedt, and A. Beutel. “Applica-
tion of Hybrid A* to an autonomous mobile robot for path planning
in unstructured outdoor environments.” In: Proceedings of the 7th Ger-
man Conference on Robotics (ROBOTIK 2012). 2012.

[Emt10] T. Emter, A. Saltoǧlu, and J. Petereit. “Multi-sensor fusion for local-
ization of a mobile robot in outdoor environments.” In: Proceedings of
the 41st International Symposium on Robotics /6th German Conference
on Robotics (ISR/ROBOTIK 2010). 2010.

[Mil10] G. Milighetti, J. Petereit, and H.-B. Kuntze. “Mobile experimental plat-
form for the development of environmentally interactive control al-
gorithms towards the implementation on a walking humanoid robot.”

240

List of Publications

In: Proceedings of the 41st International Symposium on Robotics /6th
German Conference on Robotics (ISR/ROBOTIK 2010). 2010.

[Pet10] J. Petereit and T. Bernard. “Real-time nonlinear model predictive con-
trol of a glass forming process using a finite element model.” In: Pro-
ceedings of the 8th IFAC Symposium on Nonlinear Control Systems. 2010.

241

Jürgen Geisler
Leistung des Menschen am Bildschirmarbeitsplatz. 2006
ISBN 3-86644-070-7

Elisabeth Peinsipp-Byma
Leistungserhöhung durch Assistenz in interaktiven Systemen
zur Szenenanalyse. 2007
ISBN 978-3-86644-149-1

Jürgen Geisler, Jürgen Beyerer (Hrsg.)
Mensch-Maschine-Systeme. 2010
ISBN 978-3-86644-457-7

Jürgen Beyerer, Marco Huber (Hrsg.)
Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and
Institute for Anthropomatics, Vision and Fusion Laboratory. 2010
ISBN 978-3-86644-469-0

Thomas Usländer
Service-oriented design of environmental information systems. 2010
ISBN 978-3-86644-499-7

Giulio Milighetti
Multisensorielle diskret-kontinuierliche Überwachung und
Regelung humanoider Roboter. 2010
ISBN 978-3-86644-568-0

Jürgen Beyerer, Marco Huber (Hrsg.)
Proceedings of the 2010 Joint Workshop of Fraunhofer IOSB and
Institute for Anthropomatics, Vision and Fusion Laboratory. 2011
ISBN 978-3-86644-609-0

Eduardo Monari
Dynamische Sensorselektion zur auftragsorientierten
Objektverfolgung in Kameranetzwerken. 2011
ISBN 978-3-86644-729-5

Karlsruher Schriftenreihe zur Anthropomatik
(ISSN 1863-6489)

Herausgeber: Prof. Dr.-Ing. Jürgen Beyerer

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

Band 7

Band 8

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar
oder als Druckausgabe bestellbar.

Thomas Bader
Multimodale Interaktion in Multi-Display-Umgebungen. 2011
ISBN 3-86644-760-8

Christian Frese
Planung kooperativer Fahrmanöver für kognitive Automobile. 2012
ISBN 978-3-86644-798-1

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2011 Joint Workshop of Fraunhofer IOSB and
Institute for Anthropomatics, Vision and Fusion Laboratory. 2012
ISBN 978-3-86644-855-1

Miriam Schleipen
Adaptivität und Interoperabilität von Manufacturing Execution
Systemen (MES). 2013
ISBN 978-3-86644-955-8

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2012 Joint Workshop of Fraunhofer IOSB and
Institute for Anthropomatics, Vision and Fusion Laboratory. 2013
ISBN 978-3-86644-988-6

Hauke-Hendrik Vagts
Privatheit und Datenschutz in der intelligenten Überwachung:
Ein datenschutzgewährendes System, entworfen nach dem

„Privacy by Design“ Prinzip. 2013
ISBN 978-3-7315-0041-4

Christian Kühnert
Data-driven Methods for Fault Localization in Process Technology. 2013
ISBN 978-3-7315-0098-8

Alexander Bauer
Probabilistische Szenenmodelle für die Luftbildauswertung. 2014
ISBN 978-3-7315-0167-1

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2013 Joint Workshop of Fraunhofer IOSB and
Institute for Anthropomatics, Vision and Fusion Laboratory. 2014
ISBN 978-3-7315-0212-8

Michael Teutsch
Moving Object Detection and Segmentation for Remote Aerial
Video Surveillance. 2015
ISBN 978-3-7315-0320-0

Band 9

Band 10

Band 11

Band 12

Band 13

Band 14

Band 15

Band 16

Band 17

Band 18

Marco Huber
Nonlinear Gaussian Filtering:
Theory, Algorithms, and Applications. 2015
ISBN 978-3-7315-0338-5

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2014 Joint Workshop of Fraunhofer IOSB and
Institute for Anthropomatics, Vision and Fusion Laboratory. 2014
ISBN 978-3-7315-0401-6

Todor Dimitrov
Permanente Optimierung dynamischer Probleme
der Fertigungssteuerung unter Einbeziehung von
Benutzerinteraktionen. 2015
ISBN 978-3-7315-0426-9

Benjamin Kühn
Interessengetriebene audiovisuelle Szenenexploration. 2016
ISBN 978-3-7315-0457-3

Yvonne Fischer
Wissensbasierte probabilistische Modellierung für die
Situationsanalyse am Beispiel der maritimen Überwachung. 2016
ISBN 978-3-7315-0460-3

Jürgen Beyerer, Alexey Pak (Hrsg.)
Proceedings of the 2015 Joint Workshop of Fraunhofer IOSB and
Institute for Anthropomatics, Vision and Fusion Laboratory. 2016
ISBN 978-3-7315-0519-8

Pascal Birnstill
Privacy-Respecting Smart Video Surveillance
Based on Usage Control Enforcement. 2016
ISBN 978-3-7315-0538-9

Philipp Woock
Umgebungskartenschätzung aus Sidescan-Sonardaten
für ein autonomes Unterwasserfahrzeug. 2016
ISBN 978-3-7315-0541-9

Janko Petereit
Adaptive State × Time Lattices: A Contribution to Mobile Robot
Motion Planning in Unstructured Dynamic Environments. 2017
ISBN 978-3-7315-0580-8

Band 19

Band 20

Band 21

Band 22

Band 23

Band 24

Band 25

Band 26

Band 27

Lehrstuhl für Interaktive Echtzeitsysteme
Karlsruher Institut für Technologie

Fraunhofer-Institut für Optronik, Systemtechnik und
Bildauswertung IOSB Karlsruhe

B
an

d
 2

7

Mobile robot motion planning in unstructured dynamic environments is a
challenging task. Thus, often suboptimal methods are employed which per-
form global path planning and local obstacle avoidance separately. This work
introduces a holistic planning algorithm which is based on the concept of
state × time lattices with variable dimensionality and multiple resolutions.
The algorithm relies on the fact that the individual state variables are not
equally relevant during the course of the future route to the goal. This re-
duces the computational complexity which makes it possible to plan local
maneuvers that not only assess the global goal heuristically but rather con-
sider it explicitly. The result is a globally optimal motion plan – of course,
within the limits of the employed discretization.

J.
 P

et
er

ei
t

A

d
ap

ti
ve

 S
ta

te
 ×

 T
im

e
La

tt
ic

es

ISSN 1863-6489
ISBN 978-3-7315-0580-8 9 783731 505808

ISBN 978-3-7315-0580-8

	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	List of Figures
	Acronyms
	Symbols
	Introduction
	Problem Statement
	Path Planning
	Kinodynamic Motion Planning
	Time-Parametrized Motion Planning

	Scope and Objectives
	Scientific Contributions
	Thesis Structure

	State of the Art
	Early Planning Approaches
	Path vs. Motion Planning
	Global vs. Local Planning
	Nonholonomic Path Planning
	Sampling-Based Planning
	Probabilistic Roadmaps
	Rapidly-Exploring Random Trees

	Search-Based Planning
	Hybrid A*
	State Lattices
	Heuristic Graph Search Algorithms

	Planning with Graduated Fidelity
	Unresolved Issues

	Multi-Resolution State Lattices with Hybrid Dimensionality
	Overview of the Planning Concept
	State Lattices
	State × Time Lattices
	Case Study: Mobile Robot Motion Planning
	Robot Model
	Construction of State × Time Lattices
	State Space Metric

	Lattice-Conforming Motion
	Motion Primitives
	Motion Primitive Bunches
	Motion Primitive Sets
	Sampling of Motion Primitive Sets
	Decomposition of Motion Primitives

	Hybrid Dimensionality
	Repeated Dimensionality Reduction
	Removing Redundant Motion Primitives

	Multiple Resolutions
	Construction of Resolution-Specific Lattices
	Application of Multiple Resolution Levels

	Multiple Waypoints
	Bringing It All Together
	Summary

	Modeling the Environment
	Static Obstacles
	Distance-Based Collision Checking
	Risk Zones

	Terrain
	Dynamic Obstacles
	Probabilistic Modeling of Disk-Shaped Obstacles
	Probabilistic Modeling of Obstacles with Arbitrary Shape

	Overall Collision Risk
	Summary

	Searching the Lattice
	Building the Search Graph
	Motion Primitive Concatenation without Changing Dimensionality or Resolution
	Transitions Between Different Dimensionalities
	Transitions Between Different Resolutions
	Regions of High-Resolution Planning
	Multiple Waypoints
	Multi-Resolution Trajectory with Hybrid Dimensionality

	Finding the Shortest Path in the Graph
	Choice of Graph Search Algorithm
	Anytime Repairing A*

	Costs
	Heuristics
	Heuristics for Multiple Waypoints
	Obstacle-Aware 2D Heuristics

	Complexity
	Summary

	Results and Analysis
	Implementation
	Construction of Lattices and Motion Primitive Sets
	Evaluation: Simulation Results
	Hybrid Dimensionality
	Multiple Resolutions
	Dynamic Obstacles
	Multiple Waypoints

	Evaluation: Real-World Demonstrator
	Evaluation: Further Metrics
	Evaluation: Comparison with Other Algorithms
	Summary

	Conclusions and Future Work
	Summary of Contributions
	Future Work

	Proofs
	Algorithms
	Bibliography
	List of Publications

