
Analysis of Real-Time Capabilities of
Dynamic Scheduled System Applications

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Matthias Freier

aus Gera

Tag der mündlichen Prüfung: 08.02.2016

Erster Gutachter: Prof. Dr. Jian-Jia Chen

Zweiter Gutachter: Prof. Dr. Wolfgang Karl

Contents

Contents

Abstract v

Zusammenfassung vii

Acknowledgement ix

Symbols and Abbreviations x

1. Introduction 1
1.1. Complex Industrial Applications with an Example of Engine Control Software 1

1.2. Real-Time Multicore / Manycore platforms 2

1.3. Real-Time Scheduling . 4

1.4. Focus of this Thesis . 5

1.5. Contributions and Thesis Overview . 7

2. Background 9
2.1. Traditional Scheduling Concepts for Single-Core Platforms 9

2.2. Overview of Multicore-Related Scheduling Concepts 12

2.3. Network-on-Chip (NoC) Design Space . 14

3. System Models 19
3.1. Multicore and Manycore Platform Models 19

3.2. Independent Sporadic Task Model . 21

3.3. Dependent Periodic Task Model . 22

4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture 27
4.1. Introduction . 27

4.2. Time-Triggered Constant Phase (TTCP) Approach 30

4.3. Computational Analysis for the TTCP Scheduled Tasks 33

4.4. Communication Analysis for Given Phases 37

4.5. Phase Assignment Methods . 40

4.6. Evaluations . 43

4.6.1. Experimental Setup . 43

4.6.2. Experimental Results . 45

5. Time-Triggered Computation and Communication Analysis by using a NoC 49
5.1. Introduction . 49

5.2. Scheduling Analysis on a Manycore Platform with a NoC 51

5.3. Approaches for the Computational and Communication Phase Assignment . 54

5.4. Evaluations . 60

5.4.1. Experimental Setup . 60

5.4.2. Experimental Results . 62

ii

Contents

6. Integration of Sporadic Tasks into Pure Time-Triggered Systems 69
6.1. Introduction . 69
6.2. Time-Triggered Server (TTS) and Slot-Shifting Approach 72
6.3. Scheduling Analysis of Time-Triggered Tasks by Using Slot-Shifting 76
6.4. Scheduling Analysis of Sporadic Tasks by Using Slot-Shifting 78
6.5. TTS Aware Phase Assignment . 82
6.6. Evaluations . 86

6.6.1. Experimental Setup . 86
6.6.2. Experimental Results . 87

7. Exploring the Typical Execution Time Scheduling Approach 91
7.1. Introduction . 91
7.2. Scheme for Exploiting the Typical- and Worst-Case Execution Time 94
7.3. Priority Assignment Problem . 95
7.4. Approaches for Different Task Models . 97

7.4.1. Priority Assignment for Frame-Based Tasks 97
7.4.2. Priority Assignment for Frame-Based Tasks with Constraint Deadlines101
7.4.3. Priority Assignment for Sporadic Tasks 104

7.5. Evaluations . 106

8. Conclusion 111
8.1. Summary . 111
8.2. Outlook . 113

A. SMT Problem Formulations 115
A.1. SMT Problem Formulations for Time-Triggered Constant Phase (TTCP)

Schedule on a Single-Core . 115
A.2. SMT Problem Formulations for the Dependent System Model 116

Bibliography 122

List of Publications 124

iii

Abstract

Abstract

Future embedded real-time systems are expected to exploit increasingly more computing
capabilities to accommodate the increasing application requirements. One of the most
complex and computing-intensive real-time systems is the engine control unit of a vehicle,
which is implemented by software. An engine control device regulates several sub-systems
like fuel injection, exhaust control and diagnostic management. New features are expected
to improve the efficiency, like the reduction of CO2 emissions and fuel consumption. At
present, single-core platforms have reached their computing limits due to the power con-
sumption, which is called a power wall. The idea is to use multiple processing units with
a lower frequency that consume lower power to further increase the computing capability.
A so-called multicore platform has several cores that can execute the software in parallel
and typically share the same memory for communication. If the hardware architecture
does not scale with the number of cores, bottlenecks would reduce the effective usable
computing capability. A scalable hardware architecture named manycore can parallelize
the memory and communication accesses among cores by using a Network-on-Chip ar-
chitecture. A real-time system usually specifies timing requirements e.g. respond within
a certain amount of time, called real-time constraints, which need to be satisfied. The
software of a real-time system comprises tasks characterized by temporal properties to
describe the timing requirements of the application. For safety reasons, the scheduling in
a real-time system has to be analyzed in terms of its temporal properties to guarantee
that the real-time constraints always hold for all tasks. The scheduling policy is critical
to effectively utilize the multicore and manycore platforms. However, tasks are tightly
coupled because controllers exchange a lot of information like measurement values, state
information or control parameters. By releasing the tasks in an arbitrary manner, the
inter-core communications can cause a large delay because in the worst case all cores may
communicate at the same time. Multicore and manycore platforms are used to increase
the computing capabilities, although to ensure a safe execution the worst case significantly
reduces the computing capabilities. The challenge is to determine a feasible schedule on a
multicore or manycore platform for typical industrial real-time applications like an engine
control software.

This thesis explores different real-time scheduling approaches to effectively utilize indus-
trial real-time applications on multicore or manycore platforms. The inter-task commu-
nications can be explicitly modeled in the so-called dependent task model. The proposed
scheduling policy is named the Time-Triggered Constant Phase scheduler for handling pe-
riodic tasks, which determines time windows for each computation and communication in
advance by using the dependent task model. These pre-defined time windows can signifi-
cantly reduce the worst-case behavior, because the communication interference is avoided.
In addition, this thesis proposes a Time-Triggered Server to handle urgent sporadic tasks
like angle-synchronous tasks of an engine control application. The analysis of approaches
to ensure a safe execution of the real-time system is also presented. Experiments confirm
that the proposed scheduler is able to highly utilize the platform for typical industrial
applications like engine control, while satisfying all real-time constraints.

v

Zusammenfassung

Zusammenfassung

Zukünftige eingebettete Echtzeitsysteme haben einen steigenden Bedarf an Rechenleistung.
Eines der komplexesten und rechenintensivsten Echtzeitsysteme ist das Motorsteuergerät
im Kraftfahrzeug, das in Software implementiert ist. Der Rechner eines Motorsteuergerätes
regelt verschiedene Teile, wie z.B. die Kraftstoffeinspritzung, die Abgasnachbehandlung
oder verschiedene Diagnosesysteme. Neue Funktionalitäten werden erwartet, um die Ef-
fizienz noch weiter zu steigern, wie die Reduktion des CO2 Ausstoßes oder der Kraftstoff-
verbrauch vom Fahrzeug. Heutzutage stoßen Rechner mit nur einem Rechen-Kern an ihre
Leistungsgrenze, da ihre Leistungsaufnahme bei steigender Taktfrequenz nicht mehr abge-
führt werden kann. Die Idee ist mehrere Rechnen-Kerne mit einer geringeren Taktfrequenz
zu betreiben, um die gesamte Leistungsaufnahme zu reduzieren, jedoch die Rechenleistung
weiter zu steigern. Ein sogenannter Mehr-Kern-Rechner hat mehre Rechen-Kerne, die die
Software parallel ausführen können und typischerweise über einen geteilten Speicher kom-
munizieren. Wenn die Hardware nicht mit der Anzahl der Rechen-Kerne skaliert, kön-
nen Engpässe die effektiv nutzbare Rechenleistung deutlich reduzieren. Eine skalierbare
Hardware-Architektur kann sowohl die Speicherzugriffe als auch die Kommunikation zwi-
schen den Rechen-Kernen parallelisieren, indem ein Network-on-Chip verwendet wird. Ein
Echtzeitsystem spezifiziert meist Zeitanforderungen, z.B. das Antworten innerhalb einer
bestimmten Zeit, die sichergestellt werden müssen. Die Software von Echtzeitsystemen
besteht aus sogenannten Tasks, die durch ihre zeitlichen Eigenschaften und den zeitlichen
Anforderungen der Anwendung beschrieben werden. Aus Sicherheitsgründen muss das
Scheduling der Tasks analysiert werden, und zu garantieren, das die spezifizierten Zeitan-
forderungen immer erfüllt werden. Dabei spielt die Scheduling Strategie eine wesentliche
Rolle, um Mehr-Kern-Architekturen effektiv auslasten zu können. Allerdings sind die
Tasks eng miteinander gekoppelt, da die Regler im Steuergerät vieler Informationen un-
tereinander austauschen, z.B. Messdaten, Zustandsinformationen oder Regler Parameter.
Wenn die Tasks in einer willkürlichen Art und Weiße aktiviert werden, kann die Kommu-
nikation zwischen den Rechen-Kernen viel Zeit beanspruchen, da im schlimmsten Fall alle
Tasks gleichzeitig kommunizieren wollen. Mehr-Kern-Architekturen sollen die Rechenleis-
tung erhöhen, aber um die Zeitanforderungen sicherzustellen, kann der schlimmste Fall
die maximale Rechenleistung stark begrenzen. Die Herausforderung besteht darin, einen
zulässigen Ausführungsplan aller Tasks für einen Mehr-Kern-Rechner unter Berücksichti-
gung von industriellen Anwendungen wie einer Motorsteuerung zu bestimmen.

Diese Dissertation erforscht verschiedene Echtzeit-Scheduling-Ansätze, um typische Echt-
zeitanwendungen auf Mehr-Kern-Rechner effektiv ausführen zu können. Dabei wird die
Kommunikation zwischen den verschiedenen Tasks explizit im Task-Modell beschrieben.
Als Scheduling Strategie wird ein zeitgetriebenen Scheduler für die periodischen Teile ver-
wendet, der für jeden periodischen Task und deren Datenkommunikation einen festen Zeit-
Slot im Voraus bestimmt. Durch diesen festen Zeit-Slots ist der schlimmste Fall deutlich
kleiner, da Konflikte in der Kommunikation vermieden werden. Weiterhin erforscht diese
Dissertation einen zeit-getriebenen Server-Ansatz, um die nicht periodischen Teile wie
der Drehzahl anhängigen Software eine Motorsteuerung ebenfalls effizient auszuführen.

vii

Zusammenfassung

Die Analyse der Ansätze, um die Einhaltung der Zeitanforderungen zu garantieren, wird
ebenfalls dargelegt. Experimente haben bestätigt, dass dieser zeitgetriebenen Scheduling
Ansatz Mehr-Kern-Architekturen unter Berücksichtigung von typischen industriellen An-
wendungen wie einer Motorsteuerung effektiv auslasten kann.

viii

Acknowledgement

Acknowledgement

This thesis was written during my time as a PhD student at the Corporate Research
Department for Advanced Software Systems (CR/AEA) at the Robert Bosch GmbH in
Renningen.

My deep graduate goes to Prof. Dr. Jian-Jia Chen for supervising my thesis and for
so many fruitful discussions. Even his relocation to the University of Dortmund could not
stop our collaboration, which I appreciate a lot.

I would also like to thank Prof. Dr. Wolfgang Karl, who took on my supervision at the
Karlsruhe Institut of Technology (KIT). He gave me a lot of helpful advice and helped me
to continue my PhD thesis.

My appreciation also extends to my Bosch colleagues especially to Dr. Jochen Härdtlein,
Dr. Björn Saballus and Dr. Dirk Ziegenbein for making this thesis possible and their
ongoing support. They guided me as a PhD student and helped me with path-breaking
decisions.

Thanks also to all members of the Bosch research project ManyCore and the Corpo-
rate Research Department CR/AEA. They taught me not only technical topics, but also
provided useful feedback to improve my skills and personality. I appreciate the friendly
and open-minded working atmosphere in our research office, in which I spend most of the
time. Especially, I would like to thank to all ManyCore PhD students, namely Alexander
Biewer, Sören Braunstein, Martin Lowinski, Peter Munk, and Felix Rützel for the open
and helpful technical discussions.

Last but not least, I am indebted to my family, who stay by my side trough my entire
life. Primarily, my parents and my brother give me uncountable joyful moments in my
life.

Ludwigsburg, September 2016 Matthias Freier

ix

Symbols and Abbreviations

Symbols and Abbreviations

Symbols

Symbol Description

T,|T| computational task set, number of computational tasks
K,|K| communication task set, number of communication tasks
S,|S| sporadic task set, number of sporadic tasks
τi computational task with index i in the set T
κj communication task with index j in the set K
σk sporadic task with index k in the set S

Ck core with index k on the platform
Rm switch with index m on the platform
Ll link with index l on the platform
|C|, |R|, |L| number of {cores, switches, links } on the platform
bL common link bandwidth
dL link delay of the NoC
dR switch delay of the NoC

Pτi , Pκj , Pσk period of task {τi, κj , σk}
Wτi , Wκj , Wσk worst-case execution time (WCET) of {τi, σk} or traversal time of κj
Dτi , Dκj , Dσk relative deadline of task {τi, κj , σk}
Φτi , Φκj phase of the TTCP scheduler of task {τi, κj}
Ψτi , Ψκj hypothetical phase of the TTCP scheduler of task {τi, κj}
Jτi,` , Jσk,` `-th job of task {τi, σk}
aτi,` , aκj,` , aσk,` arrival time of the `-th job or packet of task {τi, κj , σk}
sτi,` , sκj,` , sσk,` starting time of the `-th job or packet of task {τi, κj , σk}
fτi,` , fκj,` , fσk,` completion time of the `-th job or packet of task {τi, κj , σk}
rκj , |rκj | route of task κj , route length of task κj
τSRCj , τDSTj source or destination computational task of task κj
Mi,j conflict matrix of two communication tasks κi,κj
πC0
σk

, πC1
σk

priority of the typical- or exceptional-case execution part of σk
Oσk relative offset of the exceptional-case execution part of σk
Dσk effective relative deadline

RTyp
σk , RExc

σk
WCRT of the typical- or exceptional-case execution part of σk

Rκj , Rσk WCRT of task {κj , σk}
WTTS, PTTS, ΦTTS length, period or phase of the TTS
dTTS(t), dTTS,max slot-shifting delay, maximum slot-shifting delay
V (dTTS) recovering time for a slot-shifting delay dTTS

Uτ , Uκ, Uσ utilization of the task set {T,K,S}
Ωτ , Ωκ task order of the computational T or communication task set K
H hyper-period

x

Abbreviations

Abbreviations

AUTOSAR AUTomotive Open System ARchitecture

BCET best-case execution time

CAN Controller Area Network

COTS commercial off-the-shelf

DAG directed acyclic graph

DM Deadline Monotonic

DM-DS Deadline Monotonic with Density Separation

ECU Electronic Control Unit

EDF earliest-deadline-first

EDPA Effective Deadline aware Priority Assignment

FCFS first-come-first-service

FP Fixed-Priority

G-EDF Global Earliest Deadline First

GRMS generalized rate monotonic scheduling

HPF-NB Higher Periods First with Nested Bin-Packing

ILP Integer Linear Programming

LPF Lower Periods First

NI Network Interface

NoC Network-on-Chip

NPS-F Notional Processor Scheduling Fractional capacity

OSEK Open Systems and their Interfaces for the Electronics in Motor Vehicles

PDMS HPTS Partitioned Deadlinemonotonic Scheduling by allowing the Highest-Priority
Task on a Processor Core to be Split

REETIC Real-Time Scheduling for Exploiting the Typical- and Worst-Case Execution
Times

RM Rate Monotonic

RMnP Rate Monotonic non-Preemptive

RR Round Robin

RTC Real-Time Calculus

SMT Satisfiability Modulo Theories

SQ Sporadic Queue

TDMA Time Division Multiple Access

TTCP Time-Triggered Constant Phase

TTS Time-Triggered Server

WCET worst-case execution time

WCRT worst-case response time

WCTRT worst-case traversal response time

xi

Chapter 1. Introduction

1. Introduction

An embedded system is an information processing system with a particular purpose to
interact with the physical environment. In contrast to general purpose computers, embed-
ded systems have additional requirements like reliability, timing or energy consumption.
For example, modern vehicles use embedded systems to control features like the Electronic
Stabilization Program (ESP) or moving the windshield wiper.

Real-time systems are special embedded systems that need to fulfill their services within
a certain amount of time. If a real-time system does not respond within a time limit
(deadline), the result is less beneficial or completely useless. For example, an airbag system
has to respond within a few milliseconds (e.g. 1ms). If the system responds too late, a
catastrophic consequence could happen, which contradicts the purpose of this system.

1.1. Complex Industrial Applications with an Example of En-
gine Control Software

This thesis focuses on general real-time systems but considers engine control applica-
tions in particular as a demonstrator for a complex industrial application. The engine
control application is one of the most complex and computing-intensive real-time systems
in modern cars [18]. Other examples of complex real-time applications are autonomous
driving or driver assistance systems. Approaches are also assumed to be applicable for less
complex systems.

An engine of a vehicle is a complex and sophisticated part of a vehicle, as presented in
the literature [81]. Many stakeholders intend to improve the next generation of engines for
better fuel efficiencies, less CO2 emission and other new features. Especially the European
Union (EU) releases laws [92] to restrict CO2 emissions, which have a vast impact on
the requirements of new combustion engines. Thus, the engine and its surrounding sub
systems become a complex application, which is controlled by an Electronic Control Unit
(ECU). Different types of a vehicle model further increase the complexity, because they
have different configurations. Figure 1.1 shows an abstract view of a combustion engine,
representing a simplified overview of an engine and its components.

For example, a throttle device needs to control the amount of air (oxygen) required for
the combustion of fuel. The throttle controller needs to sample the air mass in a fixed rate
and calculates the angle for the throttle to set a specific amount of air. All components
need to be controlled, although high-level controllers also exist with more sophisticated
functions, like adaptive cruse control or a lane-keeping assistant [88]. The challenge is to
control these applications to ensure that they meet their requirements.

Engine control applications are dominated by the control theory with a closed or open
feedback loop. There exist many nested and inter-dependent controllers to fulfill the
requirements for next generation engines. The control paradigm demands sampling, pro-
cessing and responding at a certain rate whereby the system can be controlled in a stable
manner. There are controllers with a fixed rate like a throttle controller and those with a
crankshaft-synchronous (angle-synchronous) rate like the fuel injection. Besides the con-
trollers, there are several sensors and actuators that need to be sampled and respond to
the engine, as shown in Figure 1.1.

1

1.2. Real-Time Multicore / Manycore platforms

Fuel tank with an electrical pump

Combustion
chamber valve

Spark plug

Crankshaft

Temperature
sensor

Knock
sensor

Fuel
injector

High pressure pump

Throttle device

Pressure sensor

Air mass meter

Catalytic
converter

Rotation
speed sensor

Oxygen
sensor

Oxygen
sensor

Figure 1.1.: Overview of the combustion engine and its controllable components. All com-
ponents need to be controlled by an engine control unit. The figure and names
are explained in detail in the literature [81].

Due to this complex structure, the controllers of the engine are implemented by real-time
embedded software on an ECU. The software of such a control-dominated application is
modeled by real-time tasks, which represent the different implemented controllers. A task is
an abstract representation of a part of the software, which is executed in a periodic manner.
The control software is tightly coupled because the controllers exchange information like
measurement values, state information or control parameters, which are visualized by
Figure 1.2. The rate of a controller determines the period of a task. Many tasks have
a fixed period, although angle-synchronous tasks also exist. An angle-synchronous task
is triggered by a specific angle of the crankshaft, after which the fuel is injected and
combustion is ignited, considering the crankshaft rotation speed.

The development of an engine control software is a challenge with respect to new feature
and improvement requests. Based upon these requests, more computing capabilities are
necessary to implement more advanced features and support more efficient engines [18].
For example, more accurate models to estimate the required fuel or additional components
in the catalytic converter could be implemented.

1.2. Real-Time Multicore / Manycore platforms

Another challenge is the development of the platform (ECU) to enable more comput-
ing capabilities’ for the real-time software. Due to the complexity and their computing
capabilities demand, single-core platforms have reached their limits. A limit in the power
consumption of single-core platforms prevents satisfying the demand of more computing
capabilities, which is called a power wall [91]. An increased clock frequency significantly
increases the power consumption of a chip, which overheats, if the power cannot drain.
Due to the cooling, a chip has a maximum power consumption, which also limits the
maximum clock frequency.

The idea is to use multiple processing units with a lower processing frequency, which
results in lower power consumption to further increase the computing capabilities. These

2

Chapter 1. Introduction

Figure 1.2.: The software on an engine control can be visualized by a graph, where the
nodes are tasks and the edges are data communications among tasks. A part
of the task graph of a current engine control application [34] with 206 tasks
and 334 communications is shown.

platforms are called multicore, because they use multiple cores to execute the software.
A core represents the processing unit, although it also has its own local memory and a
communication interface to support parallel software execution. According to the com-
mon sense definition, a multicore is a hardware architecture class that comprises multiple
cores, although uncountable implementation possibilities exist. In order to enable more
computing capability, the embedded systems industry has begun to develop products with
multicore platforms [18, 62]. One challenge is to provide a real-time capable multicore
hardware architecture that can effectively be used by industrial software applications.

The communication fabric and the memory architecture of a multicore platform are
critical to enable more computing capabilities than a single-core and scale with the number
of cores. The memory accesses and the communication fabric also need to be parallelized;
otherwise, the increase computing capabilities cannot effectively be used. For example,
suppose a multicore platform with four cores and one shared memory (flash) to store the
program code. If each core is constantly activated, all cores fetch their program code from
the shared memory. Simple memories can only be accessed by one core at a time. Thus,
each core has to wait on average 75% of its time to obtain the program code for execution.
Therefore, the memory access and the communication also need to be parallelized.

A simple approach is that each core has its own local memory to store program code and
temporal data. By considering a scalable communication fabric, a Network-on-Chip (NoC)
architecture is used to parallelize inter-core communications with moderate hardware costs.
In this thesis, a scalable hardware platform is named manycore. Figure 1.3 shows an
example of a multicore and a manycore platform. The challenge is to effectively utilize a
manycore platform with a typical industrial application. This thesis focuses on multicore
and manycore platforms because these platforms are promising approaches to enable more
computing capabilities for real-time applications like an engine control software.

3

1.3. Real-Time Scheduling

core core

core core

(a) Multicore

core core core

core core core

core core core

(b) Manycore

Figure 1.3.: Example of a multicore and a manycore platform. Both platforms have mul-
tiple processing units to enable more computing capabilities. By contrast, a
manycore platform has a scalable hardware architecture with a Network-on-
Chip (NoC) to avoid bottlenecks in the inter-core communications. Thus, the
manycore platform is capable of handling a large number of cores.

1.3. Real-Time Scheduling

The software of a real-time system comprises tasks characterized by temporal proper-
ties and timing requirements of the application. A platform with multiple cores allows
more opportunities to execute tasks. The scheduler is part of the operating system and
determines the timing and the execution order of the tasks [5, 73].

A real-time system usually specifies timing requirements e.g. responding within a certain
amount of time called real-time constraints, which need to be satisfied. These constraints
have a vast impact on the scheduling of real-time systems, because tasks need to be sched-
uled to ensure they can fulfill their real-time constraints. For safety reasons, the temporal
properties of the scheduling in a real-time system have to be analyzed to guarantee that
real-time constraints always hold for all tasks, which is called scheduling analysis. One im-
portant real-time constraint is a deadline of a task, which defines the maximum tolerable
time between the activation and the completion of a task. For example, an airbag system
has a deadline of a few milliseconds (e.g. 1ms), which is a relative definition between the
activation and the response to release the airbag.

There exist many principles to schedule tasks, which are called scheduling policies. For
example, a well-known scheduling policy is the Fixed-Priority (FP) policy, where each
task has a priority level and the activated task with the highest priority is executed. On
a single-core platform, scheduling policies are well explored [17].

On a multicore platform the scheduling is more complex because the mapping of tasks
to cores and interactions between cores also need to be considered. Thus, more advanced
scheduling approaches have to be developed to handle multicore and manycore platforms.
The scheduling of these tasks is essential to effectively utilize multicore and manycore
platforms.

Real-time scheduling is usually divided into an off-line part and an on-line part. In
the off-line part, the timing parameters for the scheduling policy are determined and the
scheduling analysis is performed to guarantee the correct timing behavior. For real-time
systems, this guarantee is important to avoid incidents where human lives are endan-
gered. In the on-line part, the scheduling policy decides the task dispatching, i.e. the task
execution decision in time and space.

There exist many different approaches to schedule real-time applications on multiple
cores [24]. For example, a global scheduler has a global queue to dispatch tasks to avail-
able cores in a global manner, in which tasks can migrate to other cores for improving
the platform utilization. Another approach is to use a partitioned scheduler and apply

4

Chapter 1. Introduction

well-known scheduling policies for the single-core platform. Each core has its own local
scheduler, although the initial task-to-core mapping has to be computed.

Industrial applications typically use a Rate Monotonic (RM) scheduler based upon the
Open Systems and their Interfaces for the Electronics in Motor Vehicles (OSEK) operating
system for single-core platforms. For multicore platforms, proposed scheduling approaches
are difficult to adapt for industrial applications like an engine control software. The reason
is that most approaches assume independent tasks, which is generally over-simplified in
many scenarios. According to Figure 1.2, tasks communicate a lot of data among each
other. On a single-core platform, the data dependencies do not result in run-time overhead,
because the processing unit can only execute tasks one by one such that the execution
order ensures no memory access conflicts. The challenge is to find a feasible schedule on a
multicore or manycore platform for typical industrial real-time applications like an engine
control software.

The inter-core communications can cause a large delay because in the worst case all
cores may communicate at the same time. By releasing the tasks in an arbitrary manner,
the scheduling analysis becomes pessimistic because all inter-core communication may
interfere with each other. This pessimism can significantly reduce the maximum plat-
form utilization to guarantee a feasible schedule of a real-time application. Multicore and
manycore platforms are used to increase the computing capabilities, although to ensure
a safe execution the worst case can significantly reduce the computing capabilities. This
contraction leads to another scheduling policy, which is based upon the time-triggered
principles.

A time-triggered scheduler determines the schedule in advance such that the worst-
case interference can be less pessimistic. Regarding typical industrial applications like an
engine control software, it is challenging to determine a time-triggered schedule that can
satisfy the requirements. Especially in manycore platforms with a NoC, the analysis of
interferences between inter-core communication can require a complex algorithm [23]. In
the communication fabric, there is a similar contradiction because a NoC is used to allow
more communication at the same time, although the worst-case analysis can significantly
reduce the maximum utilization of the communication fabric.

1.4. Focus of this Thesis

This section summarizes assumptions and problems of this thesis.

Assumptions of this thesis

In order to find a feasible schedule, this thesis makes some assumptions about the ap-
plication, which are described in the following. The scheduler can only manage individual
tasks, although in real applications a task usually comprises many software units. The
AUTomotive Open System ARchitecture (AUTOSAR) standard [5] names the software
units as Runnables and a task contains several Runnables. For single-core platforms, this
concept reduces the inter-task dependencies but limits the parallel task executions on a
multicore platform. This thesis exploits the parallelism of the individual software units
(Runnables) by re-defining tasks.

Definition 1. (Task) Each software unit is defined as an individual task.

Considering Definition 1, the number of tasks is assumed in the range of 100–1, 000.
This large range is caused by different requirements of the engine control software. For
example, a smaller vehicle with a simpler and less powerful engine has fewer tasks than a
high-end vehicle with turbo charging and other advanced features [81].

5

1.4. Focus of this Thesis

Due to typical industrial applications, Kramer et al. [49] published numbers of generic
task sets used in the engine control applications. They state that the maximum number of
tasks is 1, 000–1, 500 and the maximum task has 3% utilization. The small maximum task
utilization implies that no heavy-utilized task exists, which simplifies the problem to de-
termine a feasible schedule. Angle-synchronous tasks have a stringent real-time constraint,
i.e the relative deadline of an angle-synchronous task is smaller than its period, because
fuel injection and combustion ignition need to be undertaken relative to the crankshaft
position. The crankshaft rotates around 30 degrees from the angle-synchronous activation
until the relative deadline of the angle-synchronous tasks. Such an a priori not-known
activation pattern is called sporadic activation.

The periods of the tasks are assumed to be harmonic, i.e. each period is an integer
multiple of all lower periods. From the technical perspective, industrial characteristics
[49] show that the periods are modifiable to be harmonic with minor changes, which
significantly simplifies the scheduling analysis. In a control application, the period of a
task is set by the application of Shannon’s sampling theorem [56]. The sampling theorem
is implemented such that the period of a controller is set to (1.5 . . . 15)Pmax, where Pmax

is the maximum observable period in the real system. The adjustment of periods to be
harmonic can add some overhead, which can artificially increase the platform utilization.
However, the problem of finding a feasible schedule is simplified for harmonic periods,
which can increase the maximum feasible utilization and reduce the run-time complexity
of the analysis.

Tasks communicate with each other to exchange data. The scheduler needs to ensure
that the data of each task is available before it can be executed. Thus, a data commu-
nication can have real-time constraints, because the execution of a task can depend on
its receiving data. There exist urgent data communications, which represent a precedence
constraint between two tasks. A precedence constraint is a real-time constraint, which
determines an execution order by considering a certain interval.

The scheduling relevant assumptions are summarized in the following:

• The software comprises tasks that are a priori defined.

• Tasks have harmonic periods (activations).

• Rarely, tasks are sporadic-activated like angle-synchronous activated tasks.

• There exists a large number of tasks (100–1, 000), which have a large number of data
communications (300–3, 000).

• Some data communications are urgent, which represent precedence relations between
any two tasks.

• There are only non-heavy-utilized tasks.

Problem statements

The problems addressed by this thesis are stated in the following:

The scheduling policy selection problem is to select one scheduler that can schedule a
typical industrial application like an engine control application on a multicore/manycore
platform with a high platform utilization (≥ 50%) and satisfy all real-time constraints.

The scheduling analysis problem is to guarantee that all real-time constraints of typical
industrial application like an engine control application on a multicore/manycore platform
always hold for a certain scheduling policy, which has to run with polynomial or pseudo-
polynomial time complexity.

6

Chapter 1. Introduction

The scheduling design problem is to determine parameters of a scheduling policy such
that all real-time constraints of typical industrial applications like an engine control ap-
plication on a multicore/manycore platform hold, which has to run with polynomial or
pseudo-polynomial time complexity.

Note that the run-time complexity has to be polynomial or pseudo-polynomial time
complexity, because there exists a large number of tasks (1, 000).

1.5. Contributions and Thesis Overview

This thesis explores different real-time scheduling approaches to effectively utilize typical
industrial real-time applications on multicore or manycore platforms. Figure 1.4 provides
an overview of the chapters of this thesis. First, related background knowledge is given in
Chapter 2.

The idea is to separate tangled tasks into periodic and sporadic parts, because the sched-
ule of periodic task can be determined a priori to simplify the scheduling analysis. The
inter-task communications are explicitly modeled in the so-called dependent task model,
as presented in the system model of Chapter 3. There are plenty of opportunities to re-
alize multicore platforms in hardware. This thesis defines two different platforms namely
multicore and manycore which represent a simple and a scalable platform with a NoC,
respectively.

Based upon these models, this thesis proposes a Time-Triggered Constant Phase (TTCP)
scheduling approach to handle periodic tasks. A TTCP scheduler determines a periodic
time window for each task, in which a task is allowed to be executed. These time win-
dows are a priori defined such that the time for the communication can statically be
reserved, which significantly reduces the worst-case behavior. This reduces the complexity
of the scheduling analysis because the periodic behavior can be exploited. In addition,
the TTCP scheduling approach reduces the number of values that need to be stored for
the scheduler implementation. Experiments confirm that this scheduler is able to strongly
utilize the platform for typical industrial applications like engine control software. The

Periodic parts

Tangled real-time application

Sporadic parts

Dependent task model and sporadic
task model

multicore manycore manycore

Chapter 4 Chapter 5 Chapter 6

Task models
Chapter 3

Scheduling
approaches

multicore

Independent
task model

Chapter 7

Figure 1.4.: Overview of chapters of this thesis. The applications comprise period and
sporadic parts. The tangled tasks can be modeled by the dependent and the
independent ask model. Each chapter propose a solution for one of these cases.

7

1.5. Contributions and Thesis Overview

TTCP scheduling approach is applied on a multicore platform (Chapter 4) and a manycore
platform with a NoC (Chapter 5).

Chapter 6 presents an approach to handle periodic and sporadic parts with the TTCP
scheduling approach. The idea is to schedule the sporadic-activated tasks in a periodic
time window and delay periodic tasks if an urgent sporadic task arrives. The chapter
contains the scheduling analysis of periodic and sporadic tasks to ensure that all real-time
constraints hold.

The well-known independent task model can be applied if the inter-task communication
is hidden in the execution time of each task, as presented in Chapter 7. On a multicore
platform, inter-task communication can interfere with each other in the worst case. The
chapter presents a scheme that exploits the typical execution of tasks and reserves a core
only to bound the worst-case behavior.

The main contributions of this thesis are described in the following:

• A dependent task model to describe the inter-task communication with timing prop-
erties, which represents typical industrial real-time applications.

• A scheduling policy named TTCP scheduler capable of handling tangled tasks on a
multicore and manycore platform.

• The scheduling analysis of the TTCP scheduler for a multicore and a manycore
platform with a NoC that can be performed in polynomial time complexity.

• A scheduling design approach to determine the parameters of a TTCP scheduler that
can be performed in pseudo-polynomial time complexity and can strongly utilize the
platform (≥ 50%).

• An approach named slot-shifting to handle and increase the responsiveness of sporadi-
cally-activated tasks like angle-synchronous tasks from engine control by using a
Time-Triggered Server (TTS). The scheduling analysis and design is also presented.

• An approach to exploit typical cases of task executions if the data communication is
hidden as part of the execution time of each task.

8

Chapter 2. Background

2. Background

This chapter provides an overview of the state-of-the-art, which is a prerequisite for this
thesis. These topics are traditional and multicore-related scheduling approaches (Sec-
tion 2.1 and 2.2), and an exploration of NoC design space (Section 2.3).

2.1. Traditional Scheduling Concepts for Single-Core Plat-
forms

This section summarizes the common scheduling knowledge [17, 53] used to analyze
the real-time capability of a real-time embedded system. These concepts originate from
traditional scheduling on single-core platforms or from multicore-related problems [6, 17,
24,53].

Fundamental scheduling concepts

A scheduler is a logic inside of the operating system, which determines the execution
order and the timing of the software. Software applications are modeled by tasks, which
are handled by the scheduler. In most operation systems, there is a task queue, which
contains the tasks that are ready to be executed. The scheduler decides, which task is
dispatched and executed by the processing unit. The procedure to start the execution of
a specific tasks is called task dispatching. A scheduling policy is the theoretical principle
of a scheduler to decide upon the dispatching of tasks.

If a very urgent task is added to the task queue, the scheduler can preempt the current
running task to execute the urgent task first. After finishing the urgent task, the preempted
task is again dispatched to the processing unit. This procedure is called preemption.

A real-time system is a system that needs to respond within a guaranteed upper-bounded
time. To guarantee an upper-bounded response time, the scheduler needs to ensure specific
temporal properties of the application, called real-time constraints. The common concept
defines deadlines as an upper-bounded time limit for each task. If each task completes
before its deadline, the real-time constraints of the system are fulfilled. Real-time systems
are classified into hard and soft real-time systems. A hard real-time system means that if
the system responds too late, human life can be in danger. A soft real-time system means
that if the system responds too late, the result loses its utility. Other real-time constraints
are precedence or resource constraints.

In order to guarantee the real-time constraints, tasks in a real-time system are usually
described by an abstract task model. A task model is an abstract description of an appli-
cation software part, which is used to guarantee the real-time constraints of the system.
Figure 2.1 shows the basic terms that describe a task. In the literature, there are many
task models, like the periodic task model or the sporadic task model [90].

A task is activated in cyclic manner, which is described by realising an infinite number
of task instances (jobs). A task activation means that the task is added to the task queue
at its arrival time for executing a specific job. The activations can be periodic or sporadic,
characterized by a period or a minimum-inter-arrival time, respectively. A period or a

9

2.1. Traditional Scheduling Concepts for Single-Core Platforms

time
task instance (job)

arrival time
execution time

starting time completion time

deadline

Figure 2.1.: The basic task model for a real-time scheduler

minimum-inter-arrival time describe the time difference between two consecutive released
jobs. The deadlines are usually defined relative to the arrival time, called the relative
deadline. In the literature [53], the deadlines are classified into:

• implicit deadlines, for which the relative deadline equals to the period;

• constrained deadlines, for which the relative deadline is smaller or equal to the period;
and

• arbitrary deadlines, for which the relative deadline has no limitation.

Scheduling policies

There exist many principles to schedule tasks and decide the task for the dispatching,
called scheduling policies. These scheduling policies are classified in the following types:

• Cyclic Scheduling Policy: This policy determines all scheduling decisions in advance,
which is also-called static scheduling. One simple approach is to store all jobs in a
list such that the scheduler executes the job that is the next element in the list,
named list scheduling [1]. Another approach is to define the starting times of each
job a priori, named time-triggered scheduling. The advantage is the predictable
execution pattern, whereby timing properties can be easily derived in advance. The
disadvantage is the inflexibility to react to urgent tasks that arrive during run-time.

• Fixed-Priority (FP) Scheduling Policy: This policy defines a priority level for each
task. Based upon all active tasks that need to be scheduled, the task with the highest-
priority level is executed. The different scheduling policies define the priorities with
a certain method. For example, a Rate Monotonic scheduler defines the priority
levels for each task according to the period (rate) of a task, in which the task with
the smallest period has the highest priority [17]. The Rate Monotonic scheduler
is often used in industries like automotive applications, which are stated in OSEK
operating systems for single-core platforms [73]. This scheduler can react quickly to
urgent-arriving tasks like interrupts. If the task with the highest priority has to be
scheduled immediately, it can disturb the current executed task, which cases some
run-time overhead. The overhead includes the mechanism to preempt a task and
calculate the new scheduling decision.

• Dynamic-Priority Scheduling Policy: The priority levels can be changed during run-
time, which is called dynamic-priority scheduling policy. A well-known example is the
earliest-deadline-first (EDF) scheduling policy [59]. A EDF scheduler determines the
priority level of each task according to its absolute deadline, in which the tasks with
the earliest absolute deadline have the highest priority. For a single-core platform,
the EDF scheduler is proven to be optimal, i.e. if there exists a feasible schedule
for a certain task set, the EDF scheduler provide a feasible schedule by considering
some assumption for the task set [59].

10

Chapter 2. Background

Scheduling Analysis

Based upon the task model, the real-time system needs to ensure that the real-time
constraints are satisfied (feasibility). The scheduling analysis is the procedure to verify that
all real-time constraints always hold for all tasks, even in the worst case. The problem is
that each scheduler which follows a specific scheduling policy needs a customized scheduling
analysis.

One possibility is to test all possible scheduling combinations of the application and check
whether any of them fail. However, this simple approach is not realizable because even
small task sets result in too many possibilities to execute the tasks. Another approach
is to prove in a formal way that all real-time constraints hold for all cases. Therefore,
often it is possible to define a critical instant theorem namely a certain task activation
pattern which represents the worst-case timing for a specific task. For example, Liu and
Layland [59] present the critical instant theorem for single-core platforms scheduled under
a fixed-priority scheduler:

Theorem 1. (critical instant theorem [59]) A critical instant for any task occurs whenever
the task is requested simultaneously with a request for all higher-priority tasks.

Proof. Proven by Liu and Layland [59].

Without a critical instant theorem for a certain task for a platform model, it is usually
possible to find a safe upper bound. This upper bound might never appear in the system,
although it is pessimistic enough to sufficiently guarantee safe the executions of tasks,
which hold their real-time constraints.

Typically, the scheduling analysis is performed in the two following steps:

1. WCET Analysis: Determine the worst-case execution time (WCET) for each task.

2. WCRT Analysis: Determine the worst-case response time (WCRT) for each task,
which needs to be smaller than or equal to the relative deadline.

The WCET analysis determines the maximum possible time to execute a certain task,
which strongly depends on the platform. In the literature [96], the WCET analysis is often
referred as an estimation, because the exact WCET is usually not derivable. First, the
binary code a task is disassembled into basic blocks, which compose a graph of all possible
program paths. This graph also contains all execution branches of a program, which
come from loops and if statements. Second, with a concrete model of the processing
unit, each basic block gains an upper-bounded execution time. During this step, the
memory accesses, the instruction set of the processing unit and many other platform-
related features influence the time of each basic block. Third, the graph of basic blocks is
analyzed to find the longest path in the graph, which determines the WCET. Note that the
interference of other tasks is not considered in this WCET analysis. There are several tools
for determining the WCET, like aiT [29], boundT [40], Chronos [58] or RapiTime [80].

Subsequently in the WCRT analysis, the WCET and the scheduling policy are used
to calculate the maximum time for executing a task by considering the worst-case inter-
ference of the other tasks. The worst-case interference occurs in the critical instant. For
example, a task scheduled by a fixed-priority preemptive scheduler can be blocked by other
higher-priory tasks. This blocking by other tasks increases the WCRT. One important
timing constraint is the deadline. If the WCRT for each task is smaller or equal to its
corresponding relative deadline, the deadline constraint holds.

11

2.2. Overview of Multicore-Related Scheduling Concepts

2.2. Overview of Multicore-Related Scheduling Concepts

If this two-step approach from the previous section is applied to a multicore or manycore
platform, the WCET analysis can become very pessimistic because the memory access time
strongly depends on other cores. In the worst-case analysis, this pessimism eliminates the
performance improvement for multicore platforms in comparison to a single-core platform.
Therefore, this thesis applies the classical two-step approach by making the WCET analysis
independent from the inter-core communication and assuming core-local memories. Thus,
it is possible to obtain a tight WCET, in which the interference is decoupled by the
scheduling policy. Suppose that the memory is not assigned to a dedicated core. In
the worst case, all cores may access this memory at the same time, which significantly
restricts the parallel execution due to sequential memory accesses. Note that a motivational
example in Chapter 7 shows the impact of a multicore platform on the WCET estimation.

There exist many different approaches to schedule real-time applications on multiple
cores [24], which are categorized in the following.

Multicore Scheduling Categories

In general, there exist many scheduling approaches for handling the tasks on a multicore
platform, which can be classified into the following three scheduling categories [24]. The
scheduler is part of the operating system and determines the timing and execution order
of the software.

• Global Scheduling: All tasks that need to be executed are collected in one global
queue. A global scheduler assigns the jobs dynamically to all available cores based
upon a global strategy, like Global Earliest Deadline First (G-EDF) [37] or Deadline
Monotonic with Density Separation (DM-DS) [8]. The advantages are the usage
of global optimization strategies like load balancing or energy efficiency by turning
off some cores, as well as a theoretical higher system utilization. One problem of
the global scheduling is the run-time overhead for managing the global queue and
migrating the tasks, which may become a bottleneck considering increasingly more
cores.

• Partitioned Scheduling: In contrast to a global scheduler, each task is statically
mapped to a core. Each core has its own queue for executing its corresponding
tasks. A partitioned scheduler can be implemented like a single-core scheduler and
thus well-known scheduling strategies can be applied. On the one hand, the fixed
task-to-core mapping reduces the maximum possible system utilization and prohibits
dynamic adaptations during run-time, because the fixed mapping can cause irregular
load balancing. On the other hand, the fixed task-to-core mapping ensures more
predictability, which results in less pessimism in the communication analysis, because
the communication paths are also static.

• Semi-Partitioned Scheduling: This scheduling category is a mixture of the global
scheduling and the partitioned scheduling. Each core has its own task queue, al-
though tasks are allowed to migrate between the cores in a limited way. There exist
many semi-partitioned scheduler approaches like Notional Processor Scheduling Frac-
tional capacity (NPS-F) [13], Partitioned Deadlinemonotonic Scheduling by allowing
the Highest-Priority Task on a Processor Core to be Split (PDMS HPTS) [50] and
Carousel-EDF [89]. The limited migration reduces the run-time overhead and makes
the schedule more predictable in comparison to a global scheduler. Tasks can be
split into parts, which are run on different cores to increase the maximum possible
utilization. In contrast to partitioned scheduling, the task migration significantly
increases the effort in the scheduling analysis, especially if communicating tasks are
considered.

12

Chapter 2. Background

capacity

0

max bin size B

bin U1 bin U2 bin UK

. . .

(a) bin packing problem

run-time

0

. . .
makespan

M1 M2 Mm

(b) makespan problem

Figure 2.2.: Bin packing and makespan problem

This thesis presents a partitioned scheduler called a Time-Triggered Constant Phase
(TTCP) scheduler, in which the tasks are statically mapped to cores. This scheduler
increases the predictability, which helps in the communication analysis to obtain tight
communication latencies. The task migration has a vast impact on the scheduling anal-
ysis [71], e.g. the analysis needs to be conducted during run-time with a small run-time
overhead or the WCET analysis may need to consider different core architectures.

Task partitioning problem and typical approaches

By introducing multicore platforms, the problem of mapping the tasks to a certain core
appears. This problem is well known in the literature and can be solved by adapting the
solutions for classical problems named the bin packing problem or makespan problem.
This thesis identifies different packing-related problems to adapt solutions that are well
known in the literature.

The bin packing and makespan problems have evolved from the job machine scheduling
problem [39]. It comes from the problem to optimize the production processes in factories.
These classical problems are defined in the following:

Definition 2. (Bin packing problem by [36])
INSTANCE: Finite Set U of items, a size s(u) ∈ Z+ for each u ∈ U , a positive integer
bin capacity B, and a positive integer K.
QUESTION: Is there a partition of U into disjoint sets U1, U2, . . . , Uk such that the sum
of the sizes of the items in each Ui is B or less?

Definition 3. (makespan scheduling problem by [57, 85])
Suppose a given set of n jobs {J1, . . . , Jn} and m machines {M1, . . . ,Mm}. Each job can
only run on one machine at same time and each machine can process at most one job at
same time. If a job Jj is processed on a machine Mi, it takes a processing time pij.
The makespan Cmax is time between the minimum arrival time of all jobs and the maximum
completion time of all jobs. The problem is to find a schedule such that the makespan Cmax
is minimized.

These two problems are illustrated in Figure 2.2. The complexity of both problems is
proven to be NP-hard in the strong sense [36].

Due to the complexity of the problem, there are several heuristic approaches [4, 15, 85]
to obtain good but not optimal solutions in polynomial time complexity, which are listed
in the following:

• First-Fit: Pack the item into the first bin in the list in which the item fits.

13

2.3. Network-on-Chip (NoC) Design Space

• Next-Fit: Pack the item into the next bin in a cyclic list in which the item fits.

• Worst-Fit: Iterate over all available bins and pack the item into the bin that has the
highest remaining bin capacity.

• Best-Fit: Iterate over all available bins and pack the item into the bin that has the
lowest remaining bin capacity and into which the item fits.

Note that each heuristic can sort the items according to its size in order to increase the
packing quality. The heuristic approaches can also be analyzed to guarantee a certain
performance [15].

This thesis exploits the worst-fit and first-fit heuristics to determine the parameters for
the Time-Triggered Constant Phase (TTCP) scheduling approach. In addition, the worst-
fit heuristic is used to determine the task-to-core mapping dependent task set generator.
By considering one bin for each core on a multicore platform, these heuristics can cal-
culate the task-to-core mapping. This thesis presents solutions for extended bin packing
problems, which relies on these traditional solutions.

2.3. Network-on-Chip (NoC) Design Space

This section describes the Network-on-Chip (NoC) assumptions, which are used for the
manycore platform in this thesis. A NoC is a scalable communication fabric to exchange
data among cores. In general, a NoC can be abstracted, represented by a graph in which
the nodes are cores or switches and the edges are physical connections between nodes, as
shown in Figure 2.3.

The analysis of the inter-core communication strongly depends on the arbitration logic
and mechanism of the NoC. Hence, the NoC model significantly matters. This thesis
only deals with one particular NoC but examines the different NoC design spaces in the
following.

L1

L0

R0

C0

L18

L19

L23 L22

L3

L2

R1

C1

L20

L21

L25 L24

L5

L4

R2

C2

L29 L28

L7

L6

R3

C3

L26

L27

L33 L32

L9

L8

R4

C4

L30

L31

L35 L34

L11

L10

R5

C5

L39 L38

L13

L12

R6

C6

L36

L37

L15

L14

R7

C7

L40

L41

L17

L16

R8

C8

Figure 2.3.: The platform example shows a manycore platform with nine cores connected
by a 3 × 3 2D-mesh NoC, which is used in this thesis (Section 3). The NoC
comprises cores C, switches R and links L.

14

Chapter 2. Background

Topology

There are different possibilities to connect the nodes on a NoC to each other. Figure 2.4
shows several NoC topologies that are conceivable for a scalable architecture. The mesh
and the torus structure are simple to layout on a chip, because the 2D structure can
easily be implemented on a chip. Therefore, these topologies already exist in commercial
off-the-shelf (COTS) hardware, like the Epiphany R© chip [2]. This thesis assumes a mesh
structure, because it is commercially available.

(a) Mesh (b) Torus (c) Tree (d) Arbitrary topology

Figure 2.4.: There exists several possible NoC topology types, like a mesh, torus, tree or
some arbitrary types. The boxes indicate cores inside the NoC and the edges
indicate a physical connection between two cores.

Another topology is a tree structure, which reduces the number of edges in the graph.
Considering the motivation in the introduction, the NoC is used to parallelize the com-
munication. In a tree, bottlenecks are likely to appear unless the application can be easily
partitioned into different independent branches of the tree. Arbitrary topologies may fit
perfectly to application, although they have to be customized to the application, which
cost too much. Nowadays, it is unclear which arbitrary topologies are better than a mesh,
because different applications are possible.

Routing

Depending on the topology, each communication has to select a path to its desired
destination core. In general, there exist many different paths and strategies, particularly
on larger-sized NoCs. In a tree structure, the generation of routes is trivial because there
exists only one possible path to another core. In a mesh topology, the routes are typically
generated by an X-Y routing policy, which ensures a deadlock-free behavior. First, a
message is directly transmitted to the node with the desired x-position before it is further
transmitted to the correct y-position such that the destination is reached.

Another strategy is the adaptive route generation to avoid high utilized edges in the
NoC. For these, it is difficult to guarantee the real-time constraints. In certain cases, the
shortest path is possibly not the best strategy to obtain short communication response
times, because the routes can be defined such that the messages have less contention. This
thesis applies the X-Y routing policy because it is proven to be deadlock-free [26], the
routes are deterministic and it is simple to detect contention between two routes.

Switch implementation

The switch architectures can be implemented by different concepts, as shown in Fig-
ure 2.5. For a mesh topology, a switch has at most five input and five output ports,
namely Inner (I), North (N), South (S), West (W) and East (E). A relatively simple ar-
chitecture as shown in Figure 2.5a costs less chip area when implemented but allows fewer
parallel message transmissions.

For parallelization of the message transmission, many NoC architectures are designed
according to Figure 2.5b [2, 67]. If multiple messages arrive at the switch such that each

15

2.3. Network-on-Chip (NoC) Design Space

RR

Iin
Nin

Sin
Win

Ein

Iout
Nout

Sout
Wout

Eout
(a)

RR

RR

RR

RR

RR

Iin
Nin

Sin
Win

Ein

Iout
Nout

Sout
Wout

Eout
(b)

RR

RR

RR

RR

RR

Iin

Nin

Sin

Win

Ein

Iout

Nout

Sout

Wout

Eout
(c)

Figure 2.5.: Types of switch architectures: (a) All incoming ports have their own input
queue and have a common arbiter. (b) Each output port has its own arbiter
and each input port has its own queue. This type is used in DSPIN NoC [67]
(c) Each incoming packet will first be switched to its own queue of its desired
port to avoid back pressure conflicts. In this figure, each type has a round-
robin arbiter (RR), although other arbitration policies are possible.

message has a different destination port, all messages can be forwarded simultaneously.
In this architecture (Figure 2.5b), the common input buffer for each port can block other
messages, which request another destination. A blocked message can cause back pressure
to other preceding switches. Back pressure is interference between messages that are
present on different switches.

In order to solve this issue, the architecture in Figure 2.5c has its own buffer for each
output and input port. For a mesh topology, 25 buffers are necessary to avoid the blocking
of succeeding messages, although this costs a large chip area.

This thesis assumes an architecture according to Figure 2.5b, because the time-triggered
scheduling approach (Section 4.2) calculates a contention-free schedule. In a contention-
free schedule, there exists no back pressure, although the parallel message transmissions
can be exploited. Another reason is that this architecture (Figure 2.5b) is used in most
NoC implementations.

Switch arbitration logic

As shown in Figure 2.5, each switch architecture has one or more arbiter for the switching
decision. If multiple messages request the same output port, the arbitration logic controls
the access to the link. Typical arbitration policies are Round Robin (RR), Time Division
Multiple Access (TDMA) or FP.

A Fixed-Priority (FP) arbiter switches the messages with the highest priority. Therefore,
each message needs a unique priority for describing its urgency. The problem with this
arbiter is the high implementation effort, because each switch needs a queue for each
priority. Considering typical industrial applications, this would result in 300–3, 000 queues
for each switch. If fewer queues than unique priorities exist, a higher-priority message
could be blocked by a lower priority message. The high number of required queues (300–
3, 000) results in high implementation costs because the switches need to be implemented

16

Chapter 2. Background

in hardware. Due to the high implementation effort, this arbiter only supports a small
number of priorities. This arbiter is not applicable due to the large number of required
queues.

A Time Division Multiple Access (TDMA) arbiter defines several time slots for an
exclusive access from a certain input port, which repeats within a time cycle. The definition
of the individual TDMA time slots requires a sophisticated method. If the TDMA slots
in each switch are not synchronized, a message needs to wait for its slot in each switch
in an otherwise-empty NoC. For the number of messages found in typical industrial-sized
applications, the TDMA design becomes a complex problem. In addition, the TDMA
schedule is stored in memory, which is assigned to the switch. For many messages, the
storage of the TDMA slots become a problem.

A simple arbitration policy is Round Robin (RR). In general, a RR arbiter grants access
for a message from each input to a specific output port in a cyclic manner. For example,
if messages from two input ports Sin, Ein request the output port Iout, the messages are
transmitted in the alternating manner {Sin, Ein, Sin, Ein, Sin, Ein, . . .}. Thus, arbitration
policy is simple to be implemented and is commonly used, e.g. the Epiphany R© chip [2]
has a Round Robin (RR) arbiter logic.

Another concept to forward messages is a contention-free schedule. The idea is to send
messages such that a switch has never to decide which message has to be forwarded, because
at most one message arrives at the same time. Therefore, the messages are isolated by
reserving the path of each message in advance. For these cases, the arbitration logic is
called early access, which implies that the one arriving message is immediately forwarded.
Note that this early access concept can be implemented together with other arbitration
logic, e.g. RR with early access or TDMA with early access. This thesis exploits the early
access concept, because the time-triggered scheduling approach (Section 4.2) determines
the scheduling in the NoC such that no contention occurs.

Message transmission policy

A message can be sent via different transmission policies, namely Store-and-Forward
and Worm Whole Switching. They define how multiple messages are transmitted on a
single path. The Store-and-Forward policy as shown in Figure 2.6a sends a message to
the succeeding switch, until it is completely stored in the buffer of the succeeding switch.
Hence, the buffer of each switch needs to store the entire message. The advantage of
the Store-and-Forward policy is its limited interference with other messages, because a
message can occupy at most one link at a time.

The Worm Whole Switching policy (Figure 2.6b) transmits a message on the same route,
although it does not wait until the message is fully stored in the buffer. The time between
the start of sending the message and the complete transmission the so-called network
traversal time is shorter. The buffers do not need to store entire messages and thus they

(a) Store-and-Forward policy

time
0 1 2 3 4 5

L0
L1
L2
L3
L4

(b) Worm Whole Switching

time
0 1 2 3 4 5

L0
L1
L2
L3
L4

Figure 2.6.: Different message transmission policies are presented. The route r is defined
by a list of edges in the NoC {L0,L1,L2,L3,L4}.

17

2.3. Network-on-Chip (NoC) Design Space

are usually smaller sized. If back pressure occurs, the Worm Whole Switching policy could
block several edges of the NoC in a row, which can interfere with much more messages
than the Store-and-Forward policy.

This thesis uses a Worm Whole Switching policy because it is more common in real
NoC implementations. Furthermore, the proposed time-triggered scheduling approach
(Section 4.2) prevents contention, which results in shorter network traversal times.

Flow control

A flow control logic needs to control contention if a link is too often used by different
messages such that the buffer is not sufficiently sized. There are two general methods to
prevent such overload situations: (i) messages can be dropped if the buffer is full, which
is called buffer overflow ; or (ii) no more massages are allowed to access the buffer for the
link, which can cause back pressure. During back pressure, a buffer is needed to store more
messages than its capacity allows, whereby this buffer blocks further messages, which can
influence messages on other switches. In general, there are several approaches to deal with
back pressure. A credit-based flow control ensures that the preceding switch stops sending
new messages, although this may lead to a deadlock. Therefore, the system needs to be
analyzed to avoid deadlocks.

Due to the time-triggered scheduling approach (Section 4.2), this thesis constructs the
schedule such that messages do not interfere with each other. Hence, in a time-triggered
system, a flow control unit is not required.

Availability

NoC architectures are an active research field, especially for real-time systems. While
there exist only a few COTS NoCs with real-time support, many NoC architectural con-
cepts are published [38, 66, 67, 69], which present different approaches to design a NoC.
Note that this thesis focuses only on real-time capable NoCs [12,23].

As an example of real products, the company Adapteva sells the Epiphany R© chip [2],
which uses a 2D-Mesh NoC. The company Kalray produces a chip called MPPATM [25],
in which the cores are connected by a 2D-Torus NoC. Due to the intellectual property of
the companies, the details of these NoCs are not published.

Other NoC architecture concepts are not manufactured as real chips, although they
are often used in simulators, reviewed by the scientific community and are more likely to
appear in future chip designs. Examples of these concepts include DSPIN [67], Nostrum
[66], Aethereal [38] and HERMES [69]. This thesis assumes the DSPIN NoC architecture
because this architecture is close to our previously-mentioned NoC assumptions.

18

Chapter 3. System Models

3. System Models

This chapter presents the platform and task models that are used in this thesis. The
models include the essential information about the hardware and software required to
analyze the scheduling. In the following, two platform models and two task models are
presented [32–34].

3.1. Multicore and Manycore Platform Models

This section describes an abstract model of the hardware, named the platform model.
In contrast to single-core platforms, multicore and manycore platforms comprise multiple
cores, which are connected by a communication fabric. On a single-core platform, the
communication between tasks can be modeled by their execution time, although for an
increasing number of cores the communication fabric becomes the bottleneck. There exist
many different possible hardware architectures to construct a platform. Thus, this thesis
distinguishes between two general platforms, namely multicore and manycore.

In general, each core on a multicore or a manycore platform has a local memory to
store its program code and temporal data. To obtain access to the communication fabric,
each core has a Network Interface (NI), ∀k ∈ Z+

0 . The NI can access core-local memory
independent from the core. The tasks are executed on a processing unit, as showcased for
one core in Figure 3.1.

Multicore

Definition 4. (multicore platform) A multicore platform comprises identical cores Ck,
which are connected by one common shared resource, where |C| is the number of cores.

On a multicore platform, each core Ck is connected to one common shared resource,
represented by a bus, as shown in Figure 3.1.

The bus can be used by at most one NI at a time to send data to other cores. The
bus access is regulated by a fixed-priority arbiter, as implemented in a Controller Area
Network (CAN) bus [42,51]. The bus architecture is often used for on-chip communication,
because the hardware costs less chip area. The NI implements the arbitration policy to
gain access to the bus.

Core C0 Core C1

. . .

Core C|C|−1

processing
unit

memory

NI

processing
unit

memory

NI

processing
unit

memory

NI

bus

Figure 3.1.: The multicore platform comprises |C| cores. Each core has a NI, a core-local
memory and a processing unit.

19

3.1. Multicore and Manycore Platform Models

Each data transmission is sent under a certain priority and the arbiter decides which
data transmission gains access to the communication fabric first. The data transmission
with the highest priority gains access.

Another advantage is the one-to-all broadcast property, which allows the cores to read
all transmitted data. However, if a lot of data has to be sent between the cores, the
bus can become a bottleneck by increasing the number of cores. If the number of cores
exceeds a certain level, the inter-core communication can limit the computational speed-
up. For such cases, the computational tasks have to wait for the communication data
to arrive. Therefore, applications with a high communication demand require a parallel
communication architecture, which is presented in the following section.

Manycore

Definition 5. (manycore platform) A manycore platform comprises cores Ck, which are
connected by Network-on-Chip (NoC) to allow parallel communication paths, where |C| is
the number of cores.

The cores of a manycore platform have the same structure as in Figure 3.1, although
the communication fabric is different from a multicore platform, defined in Definition 4. A
NoC is a communication fabric that scales with the number of cores by allowing parallel
communication and is designed to be implementable with moderate hardware costs. Note
that methods in this thesis support heterogeneous cores, although the experiments were
performed with identical cores. Since the task-to-core mapping is given, the execution
time is fixed such that the analysis becomes the same. In the following, NoC assumptions
derived in Section 2.3 are described in detail.

The NoC is depicted by a graph, as shown in Figure 3.2. Each node is either a core Ck

for computation or a switch Rm for communication. Each directed edge is a unidirectional
links Ll to indicate a path for transmitting the data from one core to an other. Note that
|C|, |R|, |L| are denoted as the number of cores, the number of switches and the number of
links, respectively. A switch forwards the messages on its path to its desired destination.
In case of contention, the switch decides which message is transmitted first. The NIs

L1

L0

R0

C0

L18

L19

L23 L22

L3

L2

R1

C1

L20

L21

L25 L24

L5

L4

R2

C2

L29 L28

L7

L6

R3

C3

L26

L27

L33 L32

L9

L8

R4

C4

L30

L31

L35 L34

L11

L10

R5

C5

L39 L38

L13

L12

R6

C6

L36

L37

L15

L14

R7

C7

L40

L41

L17

L16

R8

C8

Figure 3.2.: Example of a manycore platform with |C| = 9 cores connected by a 3 × 3
2D-mesh NoC.

20

Chapter 3. System Models

Round-Robin

Round-Robin

Round-Robin

Round-Robin

Round-Robin

Input buffer
Full

connection
Arbiter Output

Iin

Nin

Sin

Win

Ein

Iout

Nout

Sout

Wout

Eout

Figure 3.3.: The inner structure of a NoC switch: Each switch output port has its own
round robin (RR) arbiter. Each switch input port has its own First-In-First-
Out (FIFO) buffer. This represents the DSPIN NoC [67] implementation. The
ports are named based upon their direction with Inner (I), North (N), South
(S), West (W) and East (E).

handle incoming and outgoing data from the core to the NoC. A NI is able to inject the
communication data at a certain time. Thus, a computational task can define the injection
time of its sending data.

The topology of the NoC is a 2D-mesh as shown in Figure 3.2 in which the number
of cores equals the number of switches |C| = |R|. A switch Rm is connected with its
corresponding core Cm and at most four other switches. All connected nodes can transmit
data in full duplex with two links L (one for each direction). Thus, each switch Rm has
at most five input ports and five output ports, which are fully connected, as shown in
Figure 3.3.

If more than one data transmission requests a certain output port, the corresponding
Round Robin (RR) arbiter decides which one gains access. If the arbiter blocks some
messages, these messages are stored in a sufficiently sized buffer such that no data becomes
lost. A sufficiently sized buffer means that the scheduling analysis ensures the maximum
amount of data for each buffer, which needs to be less than its real size. If the buffers
can never overflow, no flow control is required to handle these cases. For routing the data
from switch to switch, the routes are determined according to the dimensional order X-Y
routing policy [69]. The X-Y routing policy avoids deadlocks and ensures deterministic
routes.

Furthermore, a link can transmit data with an upper-bounded link bandwidth bL. Each
link delays the transmitted data by a certain amount of time, called link delay dL. Simi-
larly, a switch delays the data by an upper-bounded switch delay dR on the route to the
next link. As an example, the DSPIN NoC [67] supports the assumed NoC model.

3.2. Independent Sporadic Task Model

This section presents the sporadic real-time task model often found in the literature [68].
A sporadic task σk is defined by its inter-arrival time Pσk , its relative deadline Dσk , its
worst-case execution time (WCET) Wσk and its assigned core cσk , ∀k ∈ Z+

0 . One or more
sporadic tasks compose the sporadic task set S, where |S| is denoted as the number of
sporadic tasks in the set. Each task σk releases an infinite number of jobs Jσk,` , which

arrive at their arrival time aσk,` for the `-th job, ∀` ∈ Z+
0 .

A job can arrive at any time, although two consecutive jobs arrive with the minimum
time distance Pσk , and thus aσk,`+1

− aσk,` ≥ Pσk . The minimum inter-arrival time Pσk
is also named period, because in the worst case the jobs arrive periodically with Pσk .

21

3.3. Dependent Periodic Task Model

Sporadic task σ1
time

Jσ1,0 Jσ1,0 Jσ1,1

aσ1,0 aσ1,1

Sporadic task σ0
time

Jσ0,0

aσ0,0 aσ0,1

Jσ0,1 Jσ0,2

aσ0,2

Dσ0 aσ0,2 − aσ0,1 ≥ Pσ0Wσ0

Figure 3.4.: Visualization of the sporadic task model. In this case, the sporadic task σ0 has
a higher priority than σ1. The arrival times of any two consecutive jobs of a
sporadic task σk are separated by at least Pσk . The dashed line represents the
preemption of job Jσ1,0 by the higher-priority job Jσ0,0 . The arrows indicate
the arrival time and the absolute deadline of each job, respectively.

The WCET Wσk is the maximum amount of time that the task σk needs to be executed.
However, the sporadic task can complete its execution earlier. In order to hold the real-
time constraint, a job needs to be completed before its absolute deadline aσk,` + Dσk .
Otherwise, this job violates its deadline. The assigned core cσk defines the core Ccσk

, on
which the sporadic task is executed. Figure 3.4 visualizes our sporadic task model. Note
that sporadic tasks are scheduled by a Fixed-Priority (FP) scheduler.

3.3. Dependent Periodic Task Model

In the dependent task model, the computational tasks communicate with each other.
This model separates the computation from the communication, defining computational
task set T and a communication task set K.

Computational task model

Each computational task τi ∈ T has a WCET Wτi , a period Pτi , a relative deadline Dτi ,
an assigned core cτi and a list of predecessor tasks Qτi = {τv1 . . . τvq} ⊂ T. The WCET
Wτi is an upper bound of the execution time of the computational task τ . In contrast
to the sporadic task model, the computational tasks τ are executed in a pure periodic
behavior, i.e. once every period Pτi . The number of tasks is denoted by |T|. There exists
a hyper-period H with

H = LCM(Pτ1 , Pτ2 , . . . , Pτ|T|), ∀τi ∈ T, (3.1)

where LCM is the least common multiple. Due to typical industrial characteristics, the
periods are harmonic, i.e. the higher periods are integer multiplies of the lower periods.
Each task τi releases an infinite number of jobs Jτi,` , which arrive at their arrival time
aτi,` . Due to the periodic releases, the arrival times can be defined as

aτi,` = aτi,0 + ` · Pτi , (3.2)

where aτi,0 is the arrival time of the first job Jτi,0 . The first jobs Jτi,0 of all the tasks arrive
at time 0 such that aτ0,0 = aτ1,0 = . . . = aτ|T−1|,0 = 0. To satisfy the real-time constraints,
each computational job needs to be completed before its absolute deadline aτi,` + Dτi .
Note that the relative deadlines are assumed to be implicit, whereby Dτi = Pτi , ∀τi. The
assigned core cτi defines the core Ccτk

, on which the computational task is executed.

A computational task can have a set of predecessor tasks Qτi . This results in prece-
dence relations between tasks, which is stated in Definition 6. No cycles are allowed in

22

Chapter 3. System Models

τ0 τ2τ3τ6

τ1 τ4τ5τ8

τ7 τ9

Figure 3.5.: The DAG of a computational task set with |T| = 10 computational tasks. The
directed edges represent the precedence relations between the tasks.

the precedence relations, because this lead to an infeasible schedule. Thus, a directed
acyclic graph (DAG) can represent the precedence relations of the computational tasks.
An example of a DAG is shown in Figure 3.5.

Definition 6. (task precedence) A precedence constraint between tasks is defined based
upon their jobs that they release. Suppose the computational task τi is a predecessor of
the computational task τj, then the l-th job Jτi,l of τi needs to complete its execution and
transmits its data to τj, before k-th job Jτj ,k of τj starts, if aτi,l ≤ aτj,k , where aτi,l and
aτj,k are the corresponding arrival times of the jobs, ∀l, k.

Note that each computational task comprises two succeeding segments. First the task is
executed without any inter-core communication and second the task activates its inter-core
communication without execution. Therefore, the computation and inter-core communica-
tion can be separated. This model is similar to the acquisition-execution-replication (AER)
model proposed by Schranzhofer et al. [84]. By default computational tasks are scheduled
by a Time-Triggered Constant Phase (TTCP) scheduling policy, which is explained in
Section 6.2.

Communication task model

The communication task set K comprises communication tasks κ, where |K| is the num-
ber of communication tasks. The communication tasks represent dependencies between
two computational tasks that exchange data with each other. Each communication task
has a traversal time Wκj , a period Pκj , a relative deadline Dκj , a route rκj , a source task
τSRCj and a destination task τDSTj .

Each communication task κ releases an infinite number of packets (messages), which
traverse via the communication fabric from the source task τSRCj to the destination task
τDSTj . If the source and destination tasks are placed on the same core cτSRCj

= cτDSTj
, the

traversal time is Wκj = 0. In the general case when cτSRCj
6= cτDSTj

, the traversal time

Wκj is defined as the time that it takes to inject the packet into the network fabric.

In every period Pκj , exactly one packet is injected into the communication fabric. Each
packet arrives at its arrival time aκj,` , which is equal to the completion time of the source
job JτSRCj,`

. The packet has to be completely transferred to the destination within its

absolute deadline aκj,` + Dκj to satisfy the real-time constraints. The maximum time
between the complete transmission of a packet and its arrival time is called worst-case
traversal response time (WCTRT). The route rκj is defined as a list of nodes in which
the packet is forwarded by the communication fabric. The route rκj contains |rκj | nodes,
which represent the number of hops to reach the destination of the packet. Based upon the
network delays dL and dR, the network traversal time W κj is the time to fully transmit a

23

3.3. Dependent Periodic Task Model

packet via all nodes of the NoC, with

W κj = Wκj + |rκj |(dR + dL). (3.3)

The precedence constraints of the computational tasks create two types of communica-
tion tasks, namely κ-precedence and κ-non-precedence. If τSRCj is a predecessor of τDSTj

(or not), the related communication task becomes κ-precedence (or κ-non-precedence).
The different types of the communication tasks are shown in Figure 3.6.

Each computational job commonly sends its data after its execution, although some
communication is unnecessary for different periods of source and destination job. This
thesis defines specific jobs that send and receive the data to avoid futile communications.
Only certain jobs communicate data to its destination, which are indexed as the h-th jobs
of τSRCj with

h =

⌈
PτDSTj

PτSRCj

⌉
g, g ∈ Z+

0 . (3.4)

Note that the periods Pτi , Pκj are harmonic and each computational task τi releases their
first job Jτi,0 at the same time 0.

To receive the data from JτSRCj
,h, only a certain job JτDSTj

,k has to receive the data.

The destination job JτDSTj
,k is the earliest job that

• starts its execution at time sτDSTj
,k no earlier than aτSRCj

,h if κj-precedence, or

• starts its execution at time sτDSTj
,k no earlier than aτSRCj

,h + PτSRCj
if κj-non-

precedence.

All computational and communication tasks compose a task graph, in which the nodes
are computational tasks and the edges are communication tasks. This task graph shows the
complexity of the inter-task dependencies and can be used to find less dependent partitions.
The communication model only supports sending (non-blocking) communication that does
not wait for a response of the destination task. Bi-directional (blocking) communication
can be modeled by multiple computational tasks, which consecutively send data to each
other. By default, communication tasks are scheduled by a Time-Triggered Constant
Phase (TTCP) scheduling policy, which is explained in Section 6.2.

Example of the dependent task model

The dependent task model is more comprehensive than the sporadic task model. There-
fore, in the following an example demonstrates this model. The example has |T| = 10

τ7
time

aτ7,0 aτ7,1 aτ7,2

τ3
time

aτ3,0 aτ3,1 aτ3,2 aτ3,3 aτ3,4

τ1
time

aτ1,0 aτ1,1 aτ1,2 aτ1,3 aτ1,4 aτ1,5 aτ1,6 aτ1,7 aτ1,8

Figure 3.6.: Example of precedence and non-precedence communication tasks. If the com-
munication task is of type κj-precedence, the edge is a solid line. If the com-
munication task is of type κj-non-precedence, the edge is a dashed line.

24

Chapter 3. System Models

τ0 τ2τ3τ6

τ1 τ4τ5τ8

τ7 τ9

Core C0 Core C1 Core C2 Core C3

κj with precedence

κj without precedence

Figure 3.7.: The task graph of the dependent task model example. Solid and dashed lines
represent precedence constraints and communication tasks, respectively.

Table 3.1.: The computational tasks of the example of the dependent task model.

Computational task Wτi/µs Dτi/µs Pτi/µs cτi Qτi
τ0 1432 10000 10000 1
τ1 5223 10000 10000 1 τ0

τ2 7219 20000 20000 3
τ3 12610 20000 20000 2
τ4 2138 20000 20000 3 τ2, τ3

τ5 415 20000 20000 2 τ2, τ3

τ6 9994 20000 20000 0
τ7 304 40000 40000 0 τ5

τ8 6940 40000 40000 0 τ6

τ9 1387 40000 40000 3 τ5

Table 3.2.: The communication tasks of the example of the dependent task model.

Communication task Wκi/µs Dκi/µs Pκi/µs τSRCj τDSTj Type

κ0 45 12451 20000 τ1 τ2 κ-non-precedence
κ1 418 12610 20000 τ2 τ5 κ-precedence
κ2 628 20000 20000 τ3 τ1 κ-non-precedence
κ3 300 18321 40000 τ5 τ7 κ-precedence
κ4 629 19994 20000 τ1 τ8 κ-non-precedence

κ5 611 20000 20000 τ4 τ6 κ-non-precedence
κ6 85 10000 20000 τ0 τ3 κ-non-precedence
κ7 561 15225 20000 τ3 τ4 κ-precedence
κ8 221 20000 20000 τ4 τ5 κ-non-precedence
κ9 378 20000 20000 τ5 τ6 κ-non-precedence

κ10 288 20000 20000 τ9 τ7 κ-non-precedence
κ11 512 20000 20000 τ2 τ3 κ-non-precedence
κ12 216 16934 40000 τ5 τ9 κ-precedence
κ13 29 20000 20000 τ6 τ4 κ-non-precedence
κ14 392 40000 40000 τ7 τ3 κ-non-precedence

κ15 679 20000 20000 τ8 τ9 κ-non-precedence
κ16 96 20000 20000 τ2 τ3 κ-non-precedence
κ17 171 15225 20000 τ3 τ4 κ-precedence
κ18 20 20000 20000 τ4 τ5 κ-non-precedence
κ19 546 18321 20000 τ0 τ7 κ-non-precedence

25

3.3. Dependent Periodic Task Model

6 678C0 time
ms

0 0 0 01 1 1 1C1 time
ms

3 35 5C2 time
ms

2 24 49C3 time
ms

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Figure 3.8.: A feasible schedule of an example of the dependent task model. The time-
line is shown for each core. The computational tasks are visualized by gray
rectangles. The numbers of the rectangles represent the task index i for task
τi.

computational tasks and |K| = 20 communication tasks. The platform is generic and has
four cores, which are connected by a communication fabric (bus or NoC).

All computational tasks are represented by nodes in Figure 3.7. The computational tasks
are specified in Table 3.1 by the WCET Wτi , the period Pτi , the relative deadline Dτi , the
assigned core cτi and the list of predecessor tasks Qτi . The arrow at the edges indicates
the communication direction, in which the tip means the destination task. The details of
the communication tasks are provided in Table 3.2, which specifies the traversal time Wκj ,
the period Pκj , the relative deadline Dκj , the source task τSRCj and the destination task
τDSTj .

All communication tasks of type κj-precedence compose a DAG of the computational
task. The DAG is shown in Figure 3.7 if only κj-precedence are focused. The precedence
constraints only define a sequence of jobs in a certain interval. For example, τ4 is scheduled
after τ3 and the transmitted packet of κ7. Figure 3.8 shows a possible feasible schedule
for all computational and communication tasks that satisfy the precedence and real-time
constraints.

26

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

4. Time-Triggered Constant Phase
Scheduling Analysis with a Bus
Architecture

This chapter presents the approach to schedule and analyze a tangled system for a mul-
ticore platform with a bus architecture. The proposed approach uses a TTCP scheduler
to schedule the computational tasks. With this scheduler, the scheduling analysis can be
efficiently performed, whereas the platform can be highly utilized. The general ideas of
this chapter have already been published [33] by the author.

4.1. Introduction

This section introduces the proposed approach to schedule a dependent task model (Sec-
tion 3.3) with a high platform utilization. In contrast to the dependent task model, this
chapter assumes only non-precedence communication tasks. The literature [17,24,59] usu-
ally assumes an independent task model, because this model significantly simplifies the
scheduling analysis. The dependent task model is more difficult to handle, although this
model represents typical industrial applications, where the tasks communicate with each
other, better. Especially on multicore and manycore platforms, the inter-core communi-
cation occurs in the scheduling analysis, which is the focus of this chapter.

In the proposed platform model (Section 3.1), each core has a local memory for storing
its program code and temporally-required data. Thus, communication via the shared
communication fabric to fetch the program code is not required. If the tasks are placed
on different cores and exchange data, these tasks must use the communication fabric.
In our case, this is a shared bus. The problem is that in the worst case all inter core
communications may arrive at the same time.

On a single-core platform, the communication time can be modeled as part of the WCET.
However, on a multicore platform, the worst case significantly increases this modeled
communication time. Even if the communication time to transmit data is short on average,
in the worst case the data transmission is blocked by all other communication tasks. One
the one hand, if the arrival pattern of the communication tasks is known, the scheduling
analysis for fixed-priority scheduling is NP-hard [14]. On the other hand, the scheduling
analysis can be performed in pseudo-polynomial time complexity [14] for unknown arrival
times. In order to guarantee the real-time capability, the timing analysis assumes the worst
case to obtain a reliable result. For example, suppose two tasks. If the arrival pattern
is not known, these tasks may interfere with each other such that one task is blocked,
which increases its response time. If the arrival pattern is known, the interference is clear,
although the arrival pattern has to be designed.

The proposed approach is to improve the worst-case behavior by defining the starting
time of the computational tasks τ . If the computational starting times are a priori known,
the communication arrival times to transmit data are determined by the latest completion
time of the computational tasks. By knowing each communication arrival time aκj,` , the
communication schedule can be determined without assuming that all communication

27

4.1. Introduction

tasks may arrive at the same time. Thus, the communication response times can be
tightly determined and a feasible solution can accommodate higher possible communication
utilization. Communication utilization represents the proportion of the used time and the
maximum available time for the usage of communication fabric.

The class of scheduler which determines the schedule a priori is called a static scheduler.
A typical static scheduler requires exponential time complexity to analyze the timing
considering the number of tasks. To overcome the complexity issue, the proposed approach
is to schedule the computational task set T with a TTCP scheduler. The TTCP scheduler
executes each computational task in a certain periodic time window, which starts at a
fixed time offset, named a phase.

A real-time scheduler needs its own scheduling analysis to verify whether the schedule
is feasibly schedulable. The scheduling analysis is divided into two problems, the compu-
tational analysis (Section 4.3) and the communication analysis (Section 4.4). The TTCP
approach claims to be analyzable in pseudo-polynomial time complexity, which is also
shown.

Related work

The problems with the data communications in a multicore system has been shown
in several publications [48, 70, 84]. Schranzhofer et al. [84] evaluate different resource
access patterns to a common shared resource and propose separating the execution phase
from the communication read-write phases to reduce the completion time. The proposed
approach adopts this acquisition-execution-replication (AER) model to achieve a tight
WCET. Munk et al. [70] analyze different communication patterns to bound the worst
case in on a NoC architecture. In the worst case, all data transmissions collide with each
other, which results in large response times or a limited sending rate. By comparison,
the time-triggered approach schedules each communication at a certain time to avoid the
worst-case pessimism.

The time-triggered approach in general is widely adopted [31, 48, 72, 74]. The classic
time-triggered scheduler defines the starting time of each individual job within the hyper-
period. The hyper-period is the least common multiple of the periods of a task set. The
problem is that a scheduling design and analysis algorithm needs to unfold the schedule
to the hyper-period. By contrast, this thesis uses a special time-triggered scheduling
approach namely a TTCP, which can significantly reduce the effort to design and analyze
the schedule.

Closely related, some researchers also assume the TTCP scheduling concept [11, 45, 61,
64, 82], although they only implicitly present their TTCP approach. Most of these ap-
proaches [11, 61, 82] formulate the TTCP scheduling problem as a set of equations and
calculate the schedule by a solver-based approach. The problem is that the solvers run
in exponential time complexity considering the number of tasks. In contrast to these
approaches, this thesis provides an approach to construct the TTCP schedule in pseudo
polynomial time complexity and is thus applicable to typical industrial applications. Fo-
cusing on the TTCP scheduling analysis, Marouf and Sorel [64] provide a feasibility test
that runs in polynomial time complexity. Kermia and Sorel [45] design a heuristic to de-
termine the starting times, although the algorithm in [45] was not presented sufficiently
clearly to be adopted. Moreover, their approach is limited to single-core scheduling without
considering communications and multicore platforms.

Motivational example

In the following, a motivational example demonstrates the inter-core communication
problem and the proposed TTCP approach. In order to keep the example simple, there are

28

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

Core C2

Core C0

Core C3

Core C1

Priority-based bus

τ0 τ1 τ2 τ3

τ4 τ5

τ0

τ1τ2

τ3τ4

τ5

κ0

κ1

κ2

κ3

κ4 κ5

κ6

κ7

κ8

κ9

(a) (b)

Figure 4.1.: Motivational example: (a) The computational tasks are mapped to a four-core
platform, which is connected by a priority-based bus. (b) The task graph shows
the communications between the tasks, where each dashed edge represents an
inter-core communication.

only |T| = 6 computational tasks τ and |K| = 10 communication tasks κ. The platform
comprises four cores, which are connected by a priority-based bus. The computational
tasks are mapped to the platform as shown in Figure 4.1a where the tasks τ0, τ1 are
mapped to the same core and the tasks τ2, τ3 are mapped to another core. The task
graph shown in Figure 4.1b represents the data transmission dependencies of the tasks.
A directed edge means that a task has to send data after its completion to another task
(the destination task is depicted by the tip of the edge). The detailed properties of this
task model are described in Table 4.1 for the computational task set T and Table 4.2
for the communication task set K. The communication task set K is sorted according to
the priority-based on the bus, in which each communication task κj has a unique priority
denoted by the index j. The communication task κ0 has the highest priority. A higher
index j indicates a lower communication priority.

One possibility is to allow the release of a communication task at any time. For the
scheduling analysis, this freedom implies that in the worst case all ten communication
tasks arrive at the same time. Due to priority-based arbitration, the communication task
κ1 can be blocked by one task, which may already communicate. Thus, if κ0 is blocked by
κ8, its worst-case traversal time is 8ms. In comparison to the TTCP scheduling approach,
the resulting response time is 1ms, because the other communication tasks are assigned
to a certain time window such that κ0 is not blocked. An a priori defined schedule can
significantly reduce the traversal response time for the communication tasks κ. Another
advantage is the a priori known schedule, which is shown in Figure 4.2. In the schedule

Table 4.1.: The computational task set T of the motivational example.

Given by the application
To be

determined

task Wτi/ms Pτi/ms cτi Qτi Φτi/ms

τ0 10 20 1 κ0, κ1 0
τ1 9 40 1 κ2, κ3 10
τ2 5 20 2 κ4 1
τ3 14 80 2 κ5,κ6 46
τ4 25 40 3 κ7 2
τ5 46 80 4 κ8, κ9 26

29

4.2. Time-Triggered Constant Phase (TTCP) Approach

Table 4.2.: The communication task set K of the motivational example.

Given by the application To be determined

task τSRCj τDSTj Wκj/ms Pκj/ms Dκj/ms Φκj/ms

κ0 τ0 τ2 1 20 5 10
κ1 τ0 τ4 1 40 3 10
κ2 τ1 τ5 2 80 5 19
κ3 τ1 τ2 1 40 Pκj 19
κ4 τ2 τ4 2 40 4 6
κ5 τ3 τ1 1 80 Pκj 60
κ6 τ3 τ4 3 80 Pκj 60
κ7 τ4 τ0 4 40 Pκj 27
κ8 τ5 τ1 7 80 Pκj 72
κ9 τ5 τ3 1 80 20 72

τ0 τ0 τ0 τ0C0
t/ ms

τ1 τ1

τ2 τ2 τ2 τ2C1
t/ ms

τ3

τ4 τ4C2
t/ ms

τ5C3
t/ ms

0 10 20 30 40 50 60 70 80

Bus
t/ ms

κ4 κ0

κ1
κ2

κ3
κ7 κ0 κ4 κ5

κ6
κ0

κ1
κ3 κ7 κ0 κ8

κ9

Figure 4.2.: The schedule within one hyper-period [0 . . . 80]ms for the example task sets,
given in Table 4.1 and 4.2.

visualization, the scheduling problem in this chapter is finding a time window for each
computational task such that they do not overlap in the schedule.

Problem definition

The assumption is to use the TTCP scheduling approach, which results in a scheduling
analysis and design problem. The problem is to define

• an efficient feasibility test running in polynomial time or pseudo polynomial time,

• feasible starting times of the TTCP scheduled computational task set T, and

• feasible starting times of the TTCP scheduled communication task set K,

while satisfying all real-time constraints on a multicore platform.

The following sections of this chapter present the proposed TTCP approach.

4.2. Time-Triggered Constant Phase (TTCP) Approach

The Time-Triggered Constant Phase (TTCP) approach is presented in this section,
which is used in proposed approaches in Chapters 4-6. In general, the time-triggered
approach is widely adopted [31,47,48,61,72,74]. In contrast to event-based approaches, all

30

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

tasks are activated based upon a global time. Thus, all cores on a multicore or manycore
platform need to have the same time base. Based upon this time base, the tasks are
activated and scheduled in a coordinated and a priori known manner. Each periodic
activated task is started at an a priori known starting time, which needs to be determined
in advance.

This thesis uses a special type of time-triggered scheduler, called the TTCP scheduler,
which defines a phase Φ for each task rather than defining the starting time for each
individual job. The phase Φ is defined as the first starting time of a task. Hence, the
starting time sτ of jobs of the computational task τ can be defined by

sτi = Φτi + Pτi · k, k ∈ Z+
0 . (4.1)

Note that each computational and communication task has a phase Φτi , Φκi , respectively,
although the equation only shows the computational tasks. Figure 4.3 provides an overview
of the relevant timing parameters of the TTCP scheduler.

time

arrival time aτi,k
phase Φτi WCET Wτi

start time sτi,k

job Jτi,k

deadline Dτi

aτi,k+1 = aτi,k + Pτi

Figure 4.3.: The parameters of the TTCP scheduler

The advantage of the TTCP scheduler is that all execution windows can be expressed
by three parameters, namely Φτi ,Pτi and Wτi . This reduces the complexity of the anal-
ysis, because the periodic behavior of the job activations can be exploited. Having less
parameters also implies that the scheduler has to store less information, which results in
a significant reduction for embedded real-time platforms. The TTCP scheduler is able to
dynamically calculate the starting times of the jobs during run-time.

The TTCP scheduler assumes the existence of a hyper-period H. Hence, there also
exists a greatest common divisor (GCD), which is required by the analysis. For task sets
with harmonic periods, the GCD and LCM are the minimum and maximum periods in
the task set, respectively. For modern processing units, the period can be expressed by an
integer number of processing units cycles, and thus exists a least common multiple exists.

The TTCP approach applies the TTCP scheduler to each core and the communication
fabric. The TTCP schedule can be constructed such that all tasks on all cores satisfy all
the real-time constraints such as deadlines, precedence and communication constraints.
All cores need to be synchronized to be able to execute the TTCP scheduler. In addition,
the communication tasks are also scheduled in the TTCP manner. However, in contrast,
the injection time for the communication fabric is determined.

Owing to the a priori known time windows for executing a task, two tasks are not
allowed to be executed at the same time and the same core. Therefore, the proposed
method has to construct a contention-free schedule in which no task time window overlaps
another. Therefore, if the execution of a task overlaps with another task, the resulting
TTCP schedule is infeasible. This chapter assumes the TTCP approach and deals with
TTCP scheduling analysis and design problem, for which the workflow of the proposed
solution is presented in the following.

31

4.2. Time-Triggered Constant Phase (TTCP) Approach

Application with hardware information

T

WCET
Analyzer

K

Comp
Analyzer

Comm
Analyzer

&computational feasibility communication feasibility

overall feasibility result

Figure 4.4.: The workflow for determining a feasible set of computational and communi-
cation phases Φτ ,Φκ is shown. The schedule of the computational tasks is
analyzed on each core before the communication analysis can be performed.
The system is only feasible if both analyzers return a feasible result.

Workflow for analyzing and designing the TTCP schedule

The workflow describes the approach to solve the previously-defined problem in this
chapter. The steps to determine a feasible TTCP schedule are shown in Figure 4.4.

The dependent task model and the multicore platform model provide all required pa-
rameters. The WCET Wτi can be determined with a WCET analyzer. In general, the
problem of determining the WCET is difficult and an active research area [95]. There
are several tools e.g. aiT [29] or Bound-T [40] for extracting the WCET based upon
a static binary code analysis. The TTCP approach can simplify the WCET analysis,
because the over-approximation of the inter-core communication can be neglected. The
communication tasks are scheduled such that they do not interfere with the computational
execution. Based upon the system model, each task follows the two segments: first the
task is executed; and second, the task activates its inter-core communication.

The proposed approach is to determine the computational schedule first, before the
communication schedule is subsequently analyzed. Thus, the arrival time for the commu-
nication tasks are known, because the computational execution windows are previously
calculated. The computational analyzer (Comp Analyzer) in Figure 4.4 determines and
analyzes the computational phases Φτi to schedule the computational tasks with a TTCP
scheduling policy. The main idea of the computational analyzer is to define an efficient
feasibility test (Section 4.3) and design a greedy heuristic (Section 4.5), which assigns the
phases in a feasible manner. The communication analyzer (Comm Analyzer) is similar to
the computational analyzer because it also uses a greedy heuristic with an a priori defined
feasibility test. Of course, the system can only be feasibly scheduled if both analyzers
return a feasible solution.

If no feasible result can be found, there may exist no feasible result at all. An alternative
is to formulate the scheduling problem based upon equations and let a solver find the
feasibility results. The solver finds a solution if a feasible solution exists. However, the
solver may take longer than a certain time limit and return no solution. For comparison,
this solver-based approach is presented in Section 4.5.

32

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

network fabric (e.g. bus)

core C0 core C1 . . . core Cn

time-triggered
shaper

other network fabric

other core C other core C

synchronized with the same time-base

Figure 4.5.: According to the platform model, each core injects traffic to the network fab-
ric in a time-triggered manner. Therefore, the cores need to be synchronized
with the same time base for a tight analysis. Unsynchronized cores are con-
nected via another network fabric and through a synchronisation block (time-
triggered shaper), which needs to be analyzed separately.

Remark for integration with non-TTCP components

The TTCP approach requires that all cores are synchronized with the same time for
executing the a priori defined TTCP schedule. This section discusses an alternative if
cores are operated with a different time base.

In general, the TTCP approach implies predictable and periodic activations to trigger
the computation and communication tasks. Upon first glance, it may seem to be restricted
as this excludes the possibility of having cores with a different time base. A component
called time-triggered shaper is introduced to further schedule the traffic injected from these
cores in a time-triggered manner to keep the TTCP schedule feasible. The unsynchronized
cores can still send data to the TTCP scheduled core, as in the scenario described in Fig-
ure 4.5. The communication analysis of TTCP scheduled cores together with unsynchro-
nized cores (other cores in Figure 4.5) is easier than totally unsynchronized cores because
the arrival times are partly known.

The time-synchronized cores including the time-triggered shaper compose a time-triggered
domain. The time-triggered shaper can avoid collisions of messages from outside the time-
triggered domain to safeguard the TTCP schedule. This method separates the time- and
non-time-triggered tasks.

4.3. Computational Analysis for the TTCP Scheduled Tasks

This section presents the feasibility analysis of the computational task set T for a multi-
core platform. The computational analysis is part of the computational analyzer, as shown
in the workflow in Figure 4.4. In order to determine a feasible set of computational phases
Φτ , first the feasibility test is defined, which is used for defining the phase assignment
algorithm.

The TTCP schedule ensures that each task can be executed in its pre-defined time
window. Hence, a task execution window is not allowed to overlap with another window.
For the feasibility analysis, a computational task τi is legally executed during the time
interval

[Φτi + k · Pτi ,Φτi + k · Pτi +Wτi) , ∀k ∈ Z+
0 , (4.2)

33

4.3. Computational Analysis for the TTCP Scheduled Tasks

which is a priori known by the TTCP scheduler. This time-overlap test is performed by
first determining the overlap for two computational tasks and iterating this overlap test
for all computational task pairs.

In the following, the time-overlap test based upon two computational tasks is presented.
Marouf et al. [63] introduced an efficient feasibility test for the TTCP scheduler with
the target of single-core scheduling. The time-overlap test is defined slightly differently,
whereby it is easier to construct an algorithm.

Lemma 1 states an elementary property for handling non-harmonic periods. Theorems 2
and 3 define the feasibility test for two computational tasks. For harmonic periods, the
feasibility test can be simplified to a single overlap test by virtually shifting the execution
window of the computational task with a higher period, as shown in Figure 4.6. For
arbitrary periods, Figure 4.7 visualizes Theorem 2 as a graphical representation.

Lemma 1. Suppose that a, b ∈ Z+ with gcd(a, b) = 1, then for a given integer c ∈ Z

∃α · a− β · b = c, (4.3)

with α, β ∈ Z+
0 and gcd is the greatest common divisor.

Proof. This Lemma is partly proven by [16] on page 324 (5.198b). The gcd comprises a
linear combination of two integers

gcd(a0, a1) = cn−2a0 + dn−2a1, (4.4)

where a0, a1 ∈ Z+
0 and cn−2, dn−2 ∈ Z. This implies

c · gcd(a, b) = c · (α · a+ β · b), (4.5)

which proves the existence of the linear combination of two integer numbers.

τ0

τ1

aτ0,0 aτ0,1 aτ0,2 aτ0,3 aτ0,4

aτ1,0 aτ1,1

t

t

τ0

τ1

aτ0,0 aτ0,1

aτ1,0 aτ1,1

t

t

Figure 4.6.: A conflict detection example with harmonic periods between two tasks τ0 and
τ1: All jobs of τ0 are periodic, whereby the jobs of τ1 can be shifted into a
common interval I = (0 . . . Pτ1) to check for a conflict.

Theorem 2. For two periodic time-triggered constant phase scheduled tasks τi and τj with
known Φτi and Φτj , the computational task set is feasible if, and only if, ∀0 ≤ δi < Wτi,
and 0 ≤ δj < Wτj : (

Φτi + δi

)
mod gcdi,j 6=

(
Φτj + δj

)
mod gcdi,j , (4.6)

where gcdi,j is the greatest common divisor of the periods Pτi and Pτj .

34

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

τ0

τ1

aτ0,0 aτ0,1 aτ0,2 aτ0,3 aτ0,4

aτ1,0 aτ1,1 aτ1,2 aτ1,3

t

t

τ0

τ1

aτ0,0 aτ0,0 +3 · gcd

aτ1,0 aτ1,0 +4 · gcd

t

t

τ0

τ1

aτ0,0 aτ0,0 +3 · gcd

aτ1,0 aτ1,0 +4 · gcd

t

t

interval to check

Figure 4.7.: A conflict detection example with arbitrary periods between two tasks τ0 and
τ1: All jobs of τ1 can theoretically be shifted into a common interval I =
(0 . . . gcd(Pτ0 , Pτ1)). The jobs in this interval are periodic, whereby a potential
conflict can be detected in this single interval.

Proof. All job executions of a task τi can be expressed by

texecution = Φτi + δi + k · Pτi , k ∈ Z+
0 , (4.7)

for any δi in the range of [0,Wτi) represents the execution time. Therefore, the task set
is not feasible by using TTCP if, and only if, there exist k, l ∈ Z+

0 , 0 ≤ δi < Wτi , and
0 ≤ δj < Wτj such that

Φτi + δi + k · Pτi = Φτj + δj + l · Pτj . (4.8)

By adopting Lemma 1, its known that Equation (4.8) holds if, and only if, there exist
q ∈ Z, 0 ≤ δi < Wτi , and 0 ≤ δj < Wτj such that

Φτi + δi = Φτj + δj + q · gcdi,j , (4.9)

where q is defined as
k·Pτi−l·Pτj

gcdi,j
. Therefore, Equation (4.9) holds if, and only if,

q =
Φτi + δi
gcdi,j

−
Φτj + δj

gcdi,j
. (4.10)

Given that q is an integer, Equation (4.10) holds if, and only if, the fractional part

of
Φτi+δi
gcdi,j

is equal to the fractional part of
Φτj+δj

gcdi,j
. Accordingly, Equation (4.10) has the

structure q =
(
a + r

)
−
(
b + r

)
, a, b ∈ Z and 0 ≤ r < 1, r ∈ R. By using the flooring

operation, the result is sill the same:

ba+ rc − bb+ rc = a− b = q =
(
a+ r

)
−
(
b+ r

)
. (4.11)

As a result, Equation (4.10) holds if, and only if, there exists an integer q with

q =
Φτi + δi
gcdi,j

−
Φτj + δj

gcdi,j
=

⌊
Φτi + δi
gcdi,j

⌋
−
⌊

Φτj + δj

gcdi,j

⌋
(4.12)

⇔ Φτi + δi
gcdi,j

−
⌊

Φτi + δi
gcdi,j

⌋
=

Φτj + δj

gcdi,j
−
⌊

Φτj + δj

gcdi,j

⌋
(4.13)

⇔
(

Φτi + δi

)
mod gcdi,j =

(
Φτj + δj

)
mod gcdi,j . (4.14)

As a result, it is shown that the theorem holds.

35

4.3. Computational Analysis for the TTCP Scheduled Tasks

Theorem 3. (computational task overlap) For two periodic time-triggered constant phase
scheduled tasks τi and τj with known Φτi and Φτj , suppose that Ψτi = Φτi mod gcdi,j,
Ψτj = Φτj mod gcdi,j, in which Ψτi ≥ Ψτj without loss of generality. These two tasks are
feasibly scheduled by TTCP if, and only if,

(Wτi < gcdi,j and Wτj < gcdi,j and

((Ψτi > Ψτj +Wτj) and (Ψτj > Ψτi +Wτi − gcdi,j))) (4.15)

Proof. This comes directly from Theorem 2. It is not difficult to prove that there exist 0 ≤
δi < Wτi and 0 ≤ δj < Wτj such that

(
Φτi+δi

)
mod gcdi,j is equal to

(
Φτj +δj

)
mod gcdi,j

if and only if all the conditions in Equation (4.15) hold. The proof is focused on the if
part, because the only-if part is similar.

Clearly, if Wτi ≥ gcdi,j , the operation
(

Φτi + δi

)
mod gcdi,j covers any value in the

range of [0, gcdi,j), which will overlap with a certain
(

Φτj + δj

)
mod gcdi,j . It is similar

if Wτj ≥ gcdi,j .

The other cases are now proven under the conditions Wτi < gcdi,j and Wτj < gcdi,j .
The proof is achieved through contrapositive. Suppose that tasks τi and τj cannot be
feasibly scheduled by TTCP under the given Φi and Φj , which implies the existence of
0 ≤ δ∗i < Wτi < gcdi,j and 0 ≤ δ∗j < Wτj < gcdi,j such that

Φτi + δ∗i −
⌊

Φτi + δ∗i
gcdi,j

⌋
gcdi,j = Φτj + δ∗j −

⌊
Φτj + δ∗j

gcdi,j

⌋
gcdi,j . (4.16)

The parameter ` ∈ {i, j} represents the operations when they work both for i and j. Due
to Wτi < gcdi,j and Wτj < gcdi,j , the fractional part with the flooring operation can result
in the two different cases:

⌊
Φτ` + δ∗`

gcdi,j

⌋
=


⌊

Φτ`
gcdi,j

⌋
if Ψτ` + δ∗` < gcdi,j

⌊
Φτ`

gcdi,j

⌋
+ 1 otherwise.

(4.17)

Therefore, Equation (4.16) can be formulated as

Φτ` + δ∗` −
⌊

Φτ` + δ∗`
gcdi,j

⌋
gcdi,j =

{
Ψτ` + δ∗` if Ψτ` + δ∗` < gcd

Ψτ` + δ∗` − gcdi,j otherwise.
(4.18)

By Equation (4.18), the existence of δ∗i and δ∗j to make Equation (4.16) hold implies that
either one of the following cases occurs:

• case 1: Ψτi + δ∗i = Ψτj + δ∗j , if Ψτi ≤ Ψτj +Wτj

• case 2: Ψτi + δ∗i − gcdi,j = Ψτj + δ∗j ,if Ψτi +Wτi − gcdi,j ≥ Ψτj

• case 3: Ψτi + δ∗i = Ψτj + δ∗j − gcdi,j , true due to δ∗j < gcdi,j

• case 4: Ψτi + δ∗i − gcdi,j = Ψτj + δ∗j − gcdi,j , if Ψτi ≤ Ψτj +Wτj

Therefore, it is known that either (Ψτi ≤ Ψτj +Wτj) or (Ψτj ≥ Ψτi +Wτi − gcdi,j) should
hold, if tasks τi and τj are not feasibly scheduled by TTCP under the given Φi and Φj .
Hence, the proof can be concluded for the if-part due to contrapositive.

36

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

Algorithm 1 Feasibility test for the computational tasks scheduled by a TTCP scheduler

Input: T, τi ∈ f(Wτi , Pτi , Dτi ,Φτi ,Φτi,min);
Output: Feasibility result;

1: for i = 0, · · · , |T| − 1 stepped by 1 do
2: if (Φτi < Φτi,min) or (Φτi > Dτi −Wτi) then
3: return “not feasible”;
4: for j = i+ 1, · · · , |T| − 1 stepped by 1 do
5: Calculate the greatest common divisor (gcdi,j) of τi,τj ;
6: Ψτi ← Φτi mod gcdi,j ;
7: Ψτj ← Φτj mod gcdi,j ;
8: if (Ψτi < Ψτj) then
9: if (Ψτj < Ψτi+Wτi) or (Ψτi+gcdi,j < Ψτj+Wτj) then

10: return “not feasible”;
11: else
12: if (Ψτi < Ψτj+Wτj) or (Ψτj+gcdi,j < Ψτi+Wτi) then
13: return “not feasible”;
14: return “feasible”;

Note that the feasibility test can also be performed by unfolding the time-triggered
schedule to all individual jobs and perform the time-overlap test based upon the jobs.
For this case, the schedule only needs to be unfolded until the hyper-period, because the
time-triggered schedule ensures the periodic behavior in further cycles.

In addition to the feasibility test for the computational tasks, the proposed approach
defines a range of valid phases for the communication tasks. A computational task may
require data from other tasks before executing. Accordingly, there exists a lower bound for
the computational phase called minimum computational phase Φτi,min. This lower bound
Φτi,min ensures that the incoming data for the tasks already arrived at the starting time
sτi . For typical industrial applications, the relative deadlines are implicitly defined by the
period Dτi = Pτi . In case of constraint deadlines Dτi ≤ Pτi , the relative phases also limit
the range of valid phases. Feasible computational phases Φτi need to fulfill Theorem 3 and
are in the range

Φτi,min ≤ Φτi ≤ Dτi −Wτi . (4.19)

If there is a time overlap between any two computational tasks the phases are infeasible.

According to (4.19) and Theorem 3, the time-overlap test between two tasks can be
calculated by an algorithm with constant time complexity O(1). Algorithm 1 presents
the feasibility test for all computational tasks τ , which includes the time-overlap test.
Algorithm 1 iterates over all computational task pairs and performs the time-overlap test
based upon (4.15) from Theorem 3. The time complexity of Algorithm 1 is dominated by
the two for-loops, which loop over all computational tasks |T| times. Therefore, the time
complexity is polynomial with O(|T|2), where |T| is the number of computational tasks.

This feasibility test is used to build our heuristic algorithm to determine a feasible as-
signment of computational phases. This heuristic algorithm and other approaches are
presented in Section 4.5. Another problem is the communication analysis and the corre-
sponding time window assignment, which is presented in the following section.

4.4. Communication Analysis for Given Phases

This section describes the feasibility analysis of the communication tasks κ, which are
scheduled on a multicore platform with a bus architecture. According to the workflow

37

4.4. Communication Analysis for Given Phases

(Figure 4.4), the communication analysis is represented by the communication analyzer.
In general, many different communication arbitration policies are conceivable to regulate
the access to the communication fabric. The system model assumes a priority-based bus,
which transmits packets in a non-preemptive manner. This chapter assumes only non-
precedence communication tasks. In Chapter 5, communication tasks of type κj-precedence
are taken into consideration.

The TTCP approach injects the communication packets at an a priori known time
window such that the worst-case injection pattern can be tightly bounded. The commu-
nication packets are injected into the communication fabric at the end of its execution
window. Thus, the communication arrival time aκj is defined as

aκj,l = l · Pκj + ΦτSRCj
+WτSRCj

l ∈ Z+
0 , (4.20)

where τSRCj is the source computational task for sending this communication task κj .
Note that the timing definitions of communication tasks are relatively defined based upon
the arrival time of the computational jobs.

A common approach to define the period Pκj of the communication task κj is to send
the data after each computational job execution. If the periods of the source and desti-
nation task are different PτSRCj

6= PτDSTj
, some data may not be further processed at the

destination. Therefore, in the proposed approach, the period Pκj is defined based upon
the maximum period of the source and destination task with

Pκj = max(PτSRCj
, PτDSTj

). (4.21)

to avoid futile communications. Hence, the communication fabric can be more effectively
used by communications. The first job sends data to the destination, although in an in-
dustrial application a system designer can choose, which job sends the data. Theoretically,
any job could be selected as long as it is always the same job in the hyper-period, given
that the communication needs to be predictable.

For a feasible communication task set, each packet has to arrive before its relative
deadline Dκj ,

Rκj ≤ Dκj ∀κj , (4.22)

where the WCTRT Rκj is the maximum time between the arrival aκj,l of the communi-
cation packet and its full transmission to the destination including the contention on the
bus. In the following, the analysis for obtaining the WCTRT and the definition of the
relative communication deadline is presented.

WCTRT analysis

The benefit of the TTCP scheduler is in knowing the arrival times of the communication
tasks a priori. Hence, the WCTRT can be tightly bound. There are different possibilities
to determine the WCTRT(κj), through either a formal upper-bounded approximation or
a simulation-based approach. A simple method is to simulate the schedule until the hyper-
period and extract the WCTRT(κj) based upon the constructed schedule. The property of
a predicable schedule by the TTCP principle and the existence of a hyper-period enables
this simulation-based approach to be a tight upper bound.

Figure 4.8 presents the constructed bus schedule for the motivational example (Sec-

tion 4.1). In general, this communication analysis results in
∑|K|

j=1
H
Pκj

packets, which need

to be placed in the schedule. Note that H represents the hyper-period of the communica-
tion periods. To construct the communication schedule, tasks are analyzed chronologically

38

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

Bus
t/ ms

κ4 κ0

κ1
κ2

κ3
κ7 κ0 κ4 κ5

κ6
κ0

κ1
κ3 κ7 κ0 κ8

κ9

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Figure 4.8.: Due to the TTCP scheduler, the bus schedule can be constructed from the
motivational example within one hyper-period [0 . . . 80]ms. The WCTRT Rκ4
of κ4 isRκ4 = 2 = Wκ4 , because this communication task has no interference to
other communication tasks. The arrows represent the communication arrival
times.

to determine their specific time windows until the hyper-period is reached. During this
analysis, the WCTRT Rκj can be determined by finding the maximum response time of
all individual packets of each communication task κj . In case of bus contention, the bus
arbitration policy decides which packet is transmitted first.

By contrast, the worst-case response time analysis for sporadic communications is more
pessimistic. If the communication injection times are not known, all communications may
arrive at the same time. Thus, for a fixed-priority non-preemptive scheduled bus, the
WCTRT is calculated according to

WCTRTnon time-triggered(κj) = tnP(κj) + tHP(κj), (4.23)

where tnP and tHP are the blocking times from the non-preemptive and higher-priority
communication tasks, respectively. These blocking times are calculated according to

tnP(κj) = max
∀κ`∈K|` 6=j

(Wκ`) (4.24)

tHP(κj) = Wκj +
∑

∀κ` with higher priority

(
Wκ`

⌈
tHP(κj)

Pκ`

⌉)
. (4.25)

Note that the arrival times are not a priori known for a fixed-priority scheduler, although
the periodic release pattern of the tasks ensures no arrival jitter.

For demonstration, Figure 4.9 provides an example of the WCTRT for both methods.
This figure shows three different methods to set the bus schedule. The two presented
methods of a priority-based bus with and without the known arrival times of the com-
munication tasks are named TTCP-FPnP and FPnP. Another arbitration policy is Time
Division Multiple Access (TDMA), which is also shown for comparison.

Calculation of the relative communication deadline

Another problem related to the communication analysis is the relative communication
deadline. The communications tasks of type τj-non-precedence also request data at least
a certain time bound. The TTCP scheduler communicates the data based upon the com-
putational phases and the system model (Section 3.3). There are only two cases for
non-precedence communication tasks to define the absolute deadline:

• aτSRCj
,h + ΦτDSTj

if PτSRCj
≤ PτDSTj

and PτSRCj
≤ ΦτDSTj

, or

• aτSRCj
,h + ΦτDSTj

+ PτSRCj
if PτSRCj

> PτDSTj
or PτSRCj

> ΦτDSTj
.

To shorten the relative deadline Dκj , the equation can be represented with respect to
the arrival time of a job of its source computational task as follows:

Dκj = ΦτDSTj
+ PτSRCj

⌈
PτSRCj

− ΦτDSTj

PτDSTj

⌉
(4.26)

39

4.5. Phase Assignment Methods

4

8

12

16

20

24

28

32

WCTRT / ms

κ0 κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9

TTCP-FPnP FPnP TDMA

Figure 4.9.: WCTRT from motivational example: The analysis for the WCTRT in com-
parison of different non-preemptive priority bus arbitration policies from the
motivational example from Section 4.1.

4.5. Phase Assignment Methods

Several methods to assign the computational and communication phases are presented
in this section. Based upon the previous two sections, the feasibility test for the com-
putational and communication task set T, K is used to assign the phases Φτ , Φκ. This
section provides an answer to the problem definition, which has to define a feasible phase
assignment.

The three presented algorithms are the heuristic Lower Periods First (LPF), the heuristic
Higher Periods First with Nested Bin-Packing (HPF-NB) and the Satisfiability Modulo
Theories (SMT) solver approach, which are explained in the following. The heuristic
algorithms greedily assign the phases Φτ , Φκ without reassigning. Hence, the heuristics
need to define an order for the phase assignment and strategy to assign the phases regarding
the already-assigned phases.

Heuristic Lower Periods First (LPF)

This heuristic sorts the computational tasks according to their periods, beginning with
the lowest period. If two tasks have the same period, the tasks with a lower minimum
computational phase Φτi,min are selected first. Thus, all computational tasks compose a
task order Ωτ .

The phase assignment strategy searches greedily for gaps in the schedule to determine
each computational phase Φτi . Therefore, the proposed heuristic algorithm iterates chrono-
logically through time to find a feasible phase regarding other computational tasks. To
check, whether the phase is feasible by considering the already-assigned tasks, this heuris-
tic uses the previously-defined feasibility test (Section 4.3). Algorithm 2 presents the
proposed heuristic, which is explained in detail in the following.

First, Algorithm 2 orders the computational tasks according to the strategy with lower
periods first and lower minimum phases first. The first for-loop iterates over all compu-
tational tasks τ and assigns the phases step by step. The proposed algorithm assumes a

40

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

Algorithm 2 Lower Periods First (LPF)

Input: computational task set T;
Output: the computational phases Φτi ;

1: Ωτ ← Order τi in a non-descending period, same periods according to lower Φτi,min first;
2: for i = 0, · · · , |T| − 1 stepped by 1 according to Ωτ do
3: Ψτi ← Φτi,min;
4: t ← false;
5: while Ψτi < Pτi and t = false do
6: t ← true;
7: if Dτi −Wτi < Ψτi then
8: return “not feasible”;
9: for j = 0, · · · , (i− 1) stepped by 1 do

10: Calculate the gcdi,j of Pτj , Pτi ;
11: Ψ′

τi ← Ψτi mod gcdi,j ;
12: Ψ′

τj ← Ψτj mod gcdi,j ;
13: if (Ψ′

τj < Ψ′
τi) then

14: if (Ψ′
τi < Ψ′

τj+Wτj) then
15: Ψτi ← Ψτi + Ψ′

τj +Wτj −Ψ′
τi ;

16: t ← false;
17: else if (Ψ′

τj+gcdi,j < Ψ′
τi+Wτi) then

18: Ψτi ← Ψτi + Ψ′
τj + gcdi,j +Wτj −Ψ′

τi ;
19: t ← false;
20: else
21: if (Ψ′

τj < Ψ′
τi+Wτi) then

22: Ψτi ← Ψτi + Ψ′
τj +Wτj −Ψ′

τi ;
23: t ← false;
24: else if (Ψ′

τi+gcdi,j < Ψ′
τj+Wτj) then

25: Ψτi ← Ψτi + Ψ′
τj +Wτj − (Ψ′

τi + gcdi,j);
26: t ← false;
27: Φτi ← Ψτi ;
28: return all phases Φτi and task set is “feasible”;

hypothetical phase Ψτ , which is an intermediate result to find a valid phase. In the first
iteration, Ψτ is the minimum computational phase Φτi,min. Lines 10–31 in Algorithm 2
perform a feasibility test to validate the hypothetical phase with all already-assigned com-
putational tasks. If the hypothetical phase Ψτi is feasible, the computational phase is
set by the hypothetical phase Φτi ← Ψτi . If the hypothetical phase Ψτi is invalid, the
algorithm increments the hypothetical phase by a value such that the conflict cause by
the feasibility test is solved. Lines 16, 19, 24 and 27 resolve the conflict by shifting the
phase to the end of this particular conflict. The feasibility test is constructed such that
this conflict-resolving is possible with low time complexity.

Due to the chronological search through the time to find a valid hypothetical phase
Ψτi , no feasible phase exists for the already-assigned computational phases. In addition,
each phase has a unique value, because otherwise it causes a conflict. With these proper-
ties, there exists an optimal task ordering for the computational tasks to find a feasible
computational phase assignment.

The communication phases are determined based upon the computational phases with

Φκj = ΦτSRCj
+WτSRCj

(4.27)

Higher Periods First with Nested Bin-Packing (HPF-NB)

In this heuristic algorithm, all computational tasks are ordered by Ωτ according to the
non-ascending period. In contrast to LPF, this strategy requires another greedy assignment
method. Both approaches seem reasonable, although they perform completely differently.

41

4.5. Phase Assignment Methods

time

pack computational tasks here

0 2 4 6 8 10 12

Figure 4.10.: The concept of packing higher periodic tasks into time windows (bins), which
prevents an overlap with lower periodic tasks. E.g. twenty tasks with three
different periods {2, 4, 12} need to be assigned. The red circles represent the
time windows, in which the computational tasks are assigned first.

Algorithm 3 Higher Periods First with Nested Bin-Packing (HPF-NB)

Input: computational task set T with harmonic period;
Output: all computational phases Φτi ;

1: sort task set according to their period, start with highest period;
2: max size ← 0;
3: for all different periods Pp ∈ {Pτ1 , · · · , Pτr} by following Ωτ do
4: if Pp 6= Pτr then

5: b ← Pp
Pp+1

;

6: else
7: b ← 1;
8: bin` ← 0, ∀`;
9: bin0 ← max size;

10: for all τ` with Pτ` = Pp do
11: selected bin f ← worst-fit bin-packing of Wτ` in one of the b bins;
12: if p 6= Pτr then
13: Φτi ← binf + f ·Pp+1;
14: else
15: Φτi ← binf ;
16: binf ← binf + Wτ` ;
17: max size ← max∀`(bin`);
18: return all phases Φτi ;

The concept of this heuristic is illustrated in Figure 4.10. The assignment of the phases
Φτi of the higher periodic tasks can obstruct the lower periodic tasks such that no further
feasible phase can be found. The computational tasks are assigned into bins, which are
periodic time windows in the timeline, as shown in Figure 4.10. Therefore, the phases are
packed in periodic time windows (bins) to reserve time for the lower periodic computational
tasks.

Algorithm 3 presents the proposed heuristic to determine the phases based upon a
bin-packing approach. After ordering the computational tasks into an order Ωτ , the
algorithm iterates over all different periods P in the task set T. There are usually several
tasks with the same periods, although each period Pp is processed only once. The param-
eter r represents the number of different periods in the task set T. In each iteration of this
for-loop (line 3), the heuristic performs a bin packing to a set of selected time windows
depicted as red circles in Figure 4.10. The bins represent the timeline inside the hyper-
period H, which is divided into several time windows (bins) to improve the computational
phase assignment. The number of bins b is determined by the division of two consecutive
periods Pp, Pp+1. Line 9 sets up the bins for packing the computational tasks with the
same period Pτ` = Pp.

There may already be assigned tasks with a higher period, which can be represented by
one bin with an initial capacity of max size. The for-loop (line 10) performs a worst-fit

42

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

bin packing and assigns the computational phase Φτ` respecting their selected bin. After
all tasks with the highest period are packed into their time windows, the maximum bin
size (max size) is set to the initial bin size for the packing of tasks with the second highest
period.

Note that this approach only supports task sets with harmonic periods, because the
number of bins to pack needs to be an integer. As with the heuristic LPF, the communi-
cation phases are determined based upon the computational phases as shown in (4.27).

The Satisfiability Modulo Theories (SMT)-based approach

In contrast to the heuristic algorithms LPF and HPF-NB, this section presents another
complete method for determining the computational phases Φτ . The Satisfiability Modulo
Theories (SMT) solver is an algorithm to check, whether a set of equations is satisfiable by
a certain parameter setting. In order to determine valid phases, an SMT problem needs
to be formulated, which represents the feasibility test by a set of equations. The SMT
approach is widely used in the literature [11,61,82].

There exist two possibilities to formulate the SMT problem. On the one hand, the
SMT problem can be defined at a task-level by using the feasibility test from Theorem 3
and (4.19). On the other hand, the starting times of all individual jobs are known such
that all equations can be defined based upon the job-level within the hyper-period. The
experimental results show that formulating the problem at the task-level requires more
run-time for the SMT solver than the job-level formulation. This thesis presents only
the job-level formulation as a base-line for comparison, although both formulations were
implemented in the experiments.

The Algorithm 13 (Appendix A.1) shows the SMT problem formulation for the job-
level. If a feasible parameter setting exists that satisfies the SMT problem, the solver
theoretically returns one valid parameter setting. In general, the SMT solver requires
more time to determine the phases than the heuristic, owing to its exponential run-time
complexity. In the experiments, run-time measurements confirm this behavior. Identically
to the heuristics, the communication phases are determined based upon the computational
phases as shown in (4.27).

4.6. Evaluations

In this section, experiments show the correctness of the TTCP approach and evaluate
its performance in contrast to other approaches. The specific settings for the experiments
are described in the following.

4.6.1. Experimental Setup

This section summarizes the experimental settings used in the experiments. Each exper-
iment has an individual setting to show a particular effect. In general, the feasibility anal-
ysis returns a Boolean result. Synthetic random task sets T, K are generated to evaluate
the scheduling algorithm. The generated task sets have typical industrial characteristics.
Tasks in the task sets T, K have (i) mostly harmonic periods, (ii) are non-heavy tasks and
(iii) there exists a large number (100–1, 000) of computational and communication tasks.

The multicore platform comprises four cores, which are connected by a priority-based
bus scheduled by a Rate Monotonic non-Preemptive (RMnP) scheduler [7]. Our strategy is
to use a TTCP scheduler on each core and evaluate different phase assignment approaches.
In addition, the TTCP approach is compared with a RMnP scheduler on each core. The
RM or fixed-priority scheduling approach is often used in industry and is proven to be

43

4.6. Evaluations

optimal [59] for harmonic periods and independent tasks. The RMnP scheduler performs
similar to the RM scheduler with non-heavy tasks. Different versions of RMnP exist,
whereby the experiments use an implementation from Bertogna et al. [7]. The proposed
Algorithm 2 is capable of handling task sets with arbitrary periods. Due to the typical
industrial characteristics, most experiments are performed with harmonic periods. One
experiment examines the capabilities for non-harmonic period.

System set generator

The computational and communication task sets T, K are randomly generated, which
are described by the following by four steps.

1. Generate the four core platform with a bus architecture

2. Generate the computational task set T

3. Task-to-core mapping

4. Generate the communication task set K

These four steps are explained in the following.

Step 1: The platform comprises four individual schedulable cores, which share the same
time (synchronization) such that the TTCP approach is applicable. To avoid bottlenecks
in the instruction fetching, each core has sufficient local memory to store its program code
and temporally-required data.

Step 2: First, the computational utilization UT and the number of tasks |T| are defined.
Second, the generator defines the first period Pτ1 . Due to the condition that a hyper-period
exists, each period has an integer value. Based upon the first period, all periods can be
calculated according to

Pτi+1 = Pτi · wi wi ∈ {1, 2, 3} ⊂ Z|T|−1, (4.28)

where wi is a set of randomized numbers that varies in each period Pτi . In order to generate
a random set wi, the probabilities are calculated with

wi = min(

⌈
2.5

|T| · xi

⌉
, 3) xi ∈ (0 . . . 1) ⊂ R|T|−1, (4.29)

which generates approximately five different periods. Third, a uniform distributed set
of random numbers yi is generated with 0 < yi < 1 for each task τi. Accordingly, the
execution time can be defined with

Wτi =
Pτi · UT · yi∑

τj∈T yj
. (4.30)

Fourth, the relative deadlines Dτ are calculated with another additional uniform dis-
tributed set of randomized numbers zi with 0 < zi <

1
4 , thus,

Dτi = Pτi · (1− zi). (4.31)

Step 3: The scheduling analysis and phase assignment methods assume a given task
mapping. As the task mapping is not focused in this thesis, a simple bin packing heuristic
distributes the task set T to the cores C. The generator applies the worst-fit bin-packing
approach to assign the computational task τ to the cores. Each computational task uti-

lization
Wτi
Pτi

is packed into a number of bins |C| such that the load is balanced.

44

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

Step 4: To generate the communication tasks κj , the bus utilization Ubus and the
number of communication tasks |K| is defined. Each κj is randomly mapped to two
randomized tasks τSRCj and τDSTj placed on different cores with cτSRCj

6= cτDSTj
. The

periods Pκj are calculated according to equation (4.21) and the relative deadlines according
to (4.26). The traversal times Wκj are computed similar to the execution times Wτi in
(4.30) by given Ubus and Pκj .

SMT solver-related settings

The hardware for the experiments is an Intel i5-2520M processor with 2.5GHz and 8GB
RAM. There are several SMT solver implementations available, such as STP [19], miniSmt
[97], or Z3 [27]. For the evaluation, the Z3 solver implementation (version 4.3.2.0) [27] is
chosen for the SMT solver.

The solver is set to stop its execution beyond 10 min as a timeout bound. After a time-
out, the solution is neither feasible nor infeasible. The resulting plots show the timeouts
as a gray area to indicate the uncertainty in the experiments. It emerges that the SMT
solver takes too much time for larger computational task sets. Therefore, the SMT solver
experiments are performed with only 100 tasks. Note that for larger computational task
sets, the SMT solver also failed due to its memory requirement. The SMT solver problem
definition and solver itself have an exponential memory requirement relative to the number
of tasks.

4.6.2. Experimental Results

This section presents the experiments with their results to demonstrate the proposed
TTCP approach and heuristic phase assignment algorithm. Each experiment uses the
default setting described above, unless otherwise specified.

Dynamic scheduling approach

This experiment evaluates the feasibility of computational tasks scheduled by different
approaches. The proposed two heuristics LPF and HPF-NB are compared with a dynamic
scheduler, namely RMnP. The feasibility test RMnP scheduler is implemented accord-
ing to the literature [7], which assumes the maximum blocking time and the worst-case
interference of all higher-priority tasks. Figure 4.11 shows the comparison, in which the
simulator generates 1, 000 randomized system sets, assigns the priorities or phases and
plots the feasibility ratio.

If only non-heavy computational tasks exist, RMnP is close to the results of Rate-
Monotonic preemptive, which has a very high utilization rate Uτ ≈ 100%. The LPF algo-
rithm performs very well and is capable of reaching a utilization above 90%, which reaches
almost the same maximal utilization as RMnP. For the HPF-NB algorithm, the relative
deadlines are implicitly defined Dτi = Pτi , where the parameter zi is set to zero only
for this algorithm. Even for this simplification, the experiment shows that the HPF-NB
algorithm has a lower maximal utilization barrier.

Furthermore, the experiments show that the heuristic LPF algorithm runs approximately
5s for large computational task sets with 1, 000 tasks and U = 75%. Considering an offline
calculation of the parameters Φτi , a maximum run-time of 5s is satisfactory for practical
applications.

45

4.6. Evaluations

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100��

Computational utilization Uτ

F
ea

si
b
le

so
lu

ti
on

s
/

%

LPF
HPF-NB

� RMnP

Figure 4.11.: Dynamic scheduling approach: The proposed heuristic approach compared
to Rate Monotonic non-Preemptive (RMnP).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Communication utilization Uκ

F
ea

si
b
le

so
lu

ti
on

s
/

%

TTCP
RMnP

Figure 4.12.: Communication enhancement: Different bus utilizations by constraining the
relative communication deadlines Dκj .

Communication enhancement

Another experiment focuses on the network analysis. Similar to the motivational exam-
ple, this experiment considers a four-core platform with 250 computational tasks and 500
communication tasks randomly mapped to each other. Figure 4.12 presents a feasibility
ratio for the system with constraint deadlines Dκj , in which different bus utilizations are
explored.

Each of the four cores has a 50% task utilization in this experiment. The bus is scheduled
with a non-preemptive fixed-priority arbitration e.g. a CAN bus in which the communica-
tion arrival time rj,l is calculated with different approaches. Figure 4.12 shows that TTCP
reaches a higher maximum bus utilization. The a priori knowledge of the arrival times
of the communication tasks facilitates a tighter communication analysis, which increases
the feasibility ratio of the bus in the experiment; otherwise, the worst case has to be
considered, where all communication tasks arrive at the same time.

Harmonic task sets

In the following, the SMT solver is applied to evaluate the efficiency of the proposed
LPF heuristic. Figure 4.13 presents the algorithm under harmonic periodic. Note that
number of tasks is set to 100 and no heavy task is in the task set. The heuristic can reach
over 90% task set utilization, which is close the result of the exhaustive search approach.

46

Chapter 4. Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Computational utilization Uτ

F
ea

si
b
le

so
lu

ti
on

s
/

%

LPF
SMT solver

Figure 4.13.: Harmonic task sets: Each task set comprises 100 tasks with harmonic periods.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Computational utilization Uτ

F
ea

si
b
le

so
lu

ti
on

s
/

%

LPF
SMT solver

Figure 4.14.: Non-harmonic tasks: All tasks randomly have a period of {1,2,5,10,20,50,100}
ms, which are not harmonic.

Non-harmonic tasks

This experiment examines the case of arbitrary periods based upon industrial character-
istics, defining a set of non-harmonic periods. 100 tasks have a randomly period of the set
{1,2,5,10,20,50,100} ms. The proposed algorithm LPF can now reach only 65% utilization
(see Figure 4.14). By contrast, the SMT solver again reaches over 90%. In order to reach
high utilization, the heuristic no longer works.

Influence of heavy tasks

The existence of a feasible phase assignment significantly depends on the heavy tasks,
namely those with the highest task set utilization. For harmonic periods, the execution
time of the heavy task needs to be smaller than the lowest period in the task set

max
∀i

(Wτi) < min
∀i

(Pτi).

Otherwise, no feasible assignment exists. As shown in Figure 4.15, increasing the heavy
task utilization leads to less feasible solutions. The task set has 100 tasks with an overall
75% utilization and harmonic periods. The LPF algorithm has a slightly lower feasibility
rate than the exhaustive search for heavy tasks under 10%. However, for larger heavy tasks,
the SMT solver more commonly finds a feasible solution than the heuristic. Furthermore,
if the heavy task is assigned to the lowest period of the task set, the probability of finding
a feasible phase assignment is very high.

47

4.6. Evaluations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

utilization of the heavy task

F
ea

si
b
le

so
lu

ti
on

s
/

%

LPF
SMT solver

Figure 4.15.: Influence of heavy tasks: The task generation is similar to the harmonic task
generation, although a random task has a higher utilization.

R
u
n

-t
im

e
/

s

10 16 25 40 63 100 158 251

100µs

1ms

10ms

100ms

1s

10s

100s time out border of 10 min

Number of tasks

LPF
SMT solver

Figure 4.16.: Run-time measurements: The run-time of the phase assignment is measured
by using the proposed heuristic or an SMT solver for different sizes of task
sets. The linear ramp in the double logarithmic scale indicates an exponential
growth considering the number of tasks.

Run-time measurements

This experiment measures the time to find a solution for a certain task set with the SMT
solver and the LPF heuristic. Thereby, the feasibility of the solution does not matter. In
this experiment, 50 task sets with 75% utilization with harmonic non-heavy tasks are
generated to measure the run-time of the phase assignment. The algorithm sometimes
terminates earlier, if the task set is infeasible. Note that the run-time also depends on the
overall task set utilization, because particularly the SMT solver requires much more time
if the solution space is small. Considering a larger hyper-period or an increasing number
of tasks, the SMT solver requires more resources. For such cases, the memory or run-
time requirements could exceed the limits, whereby the solver is incapable of returning
a solution. With such conditions, the heuristic algorithm may still provide a solution
using a moderate amount of resources. Figure 4.16 shows that in general the heuristic is
approximately three magnitudes (103) faster than the SMT solver.

48

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

5. Time-Triggered Computation and
Communication Analysis by using a NoC

This chapter applies the proposed TTCP approach to a manycore platform with a Network-
on-Chip (NoC) structure. An iterative approach can handle the dependent system model
in which computational tasks communicate with each other. The schedulability analysis
proposed in this chapter provides an efficient heuristic to compute a feasible schedule for
both computation and communication tasks that meets its timing constraints. All methods
and techniques proposed in this thesis have been published [34] by the author.

5.1. Introduction

The previous chapter presents methods that can be used to compute a feasible schedule
for an application, which are executed on a multicore platform and communicate with
a shared communication bus. It is also shown that architectures with a shared commu-
nication bus tend to be inefficient with an increasing computation and communication
demand. Therefore, this chapter proposes methods to schedule a dependent system on a
manycore platform with a NoC. This chapter presents an approach to compute a feasible
time-triggered schedule for a dependent system model considering a manycore platform
with a NoC.

In comparison to a shared bus, the NoC provides a higher bandwidth for communication,
because it allows the possibility of simultaneous communication without resource conflicts.
However, in order to fully utilize a NoC, communication tasks have to be carefully sched-
uled. Otherwise, packets can interfere with each other at a NoC switch, which can reduce
the effective bandwidth. In addition, there are several side effects like back pressure or
indirect contention, which can increase the run-time complexity of a communication anal-
ysis. Back pressure occurs if too many packets are sent over one switch such that the
packets cannot be stored in the buffer of a switch. The problem is that succeeding packets
can be blocked on another switch. This can cause indirect contention, where two packets
interfere with each other even if they have independent routes. This chapter proposes
avoiding contention between packets in the NoC to simplify the feasibility and response
time analysis of a communication task set.

In the literature, a large design space for NoC architectures exists, as shown in Sec-
tion 2.3. However, this chapter focuses on a DSPIN NoC architecture [67], which allows
applying the TTCP approach to an effective communication infrastructure. For typical
industrial applications, the run-time complexity of the approach becomes critical for its
applicability. In particular, an industrial-sized application comprises 300–3, 000 commu-
nication tasks, where the challenge is to find an arbitration policy to handle this number
of communication tasks. In addition, this arbitration policy has to be analyzed to design
a feasible communication schedule.

If the communication injection times of packets are not carefully defined a priori, the
worst-case traffic pattern [70] significantly reduces the maximum possible NoC utilization.
The main idea is to apply the TTCP approach to the NoC by defining the injection time
of each communication task. There are two possibilities to apply the TTCP approach to
the NoC structure.

49

5.1. Introduction

1. Inject packets at the completion of the sending computational task and determine
the worst-case traversal response time (WCTRT) by analyzing contention. Based
upon the TTCP scheduled computational tasks, the completion times are a priori
known.

2. Delay the injection of the communication task such that packets never interfere. In
this case, the injection times have to be defined such that the communication task
can meet its real-time constraints.

This thesis considers the second possibility as the adopted system model allows assigning
priorities to communication tasks for the phase assignments, which can be leveraged to
avoid contentions of urgent communication tasks. Thus, the proposed approach constructs
a contention-free communication task schedule. Additionally, if all communication phases
are determined, the WCTRT of each task can be easily determined by injection delay and
the network traversal time.

However, there exists a cyclic dependency between the computation and the communi-
cation analysis. To determine time windows for the computational tasks, the WCTRT are
required. However, the communication analysis determines the WCTRT based upon time
windows for the computational task.

As a result, the approach proposed in this chapter performs the computational and
communication analysis iteratively to derive a feasible solution. In the first iteration, the
WCTRT are estimated, whereas in further iterations, these times are adjusted. The chal-
lenge is to define the computational and communication analysis such that the iterations
converge to a feasible solution even for highly-utilized systems. The feasibility test pre-
sented in Section 4.3 is adapted to the NoC structure to build up a heuristic algorithm.
This algorithm computes the TTCP phase for each communication and computational
task.

Experiments confirm that large task sets can still be successfully scheduled by the pro-
posed iterative approach. In comparison to a bus architecture, the NoC-based approach
allows simultaneous communications, which increases the common bandwidth for all inter-
core communications. For typical industrial task sets with 1, 000 computational tasks and
3, 000 communication tasks, the proposed approach can utilize a 3×3 NoC by around 60%.
Thus, a core sends on average 60% of its time data to another core without interfering
other packets.

Related work

This thesis specifically focuses on the DSPIN NoC [67] architecture [67], while other
NoC architectures are summarized in Section 2.3. The communication analysis strongly
depends on the given NoC architecture, although techniques already exist for analysing
the communication response times [23, 46, 52, 78]. Kiasari et al. [46] summarize different
NoC analysis methods.

One method is to apply network calculus [52, 78], which uses the min-plus algebra to
calculate the interference between different packet streams. Network Calculus is a generic
mathematical framework for analysing time bounds given a set of arrival and service curves.
An arrival curve is a model that describes the arrival pattern of consecutive tasks with dif-
ferent impacts. A service curve is an abstract resource that can be utilized by the arriving
tasks. Dasari et al. propose a branch-and-prune algorithm [23] to determine the com-
munication response times in a NoC. By using network calculus, their branch-and-prune
algorithm results in tighter models for the arrival and service curves, However, determin-
ing and bounding contention between different communication tasks remains difficult. By
contrast, by assuming a contention-free TTCP schedule, the analysis can be enhanced

50

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

to support the dependent system model and target typical industrial-sized applications
comprising thousands of computational and communication tasks.

The time-triggered scheduling approach has also been extensively studied in the liter-
ature [33, 45, 64, 74]. In the TTCP approach [33, 74], each task is statically scheduled
in a predefined time window. The time-triggered scheduling analysis with periodic tasks
on a single-core platform is presented by Marouf and Sorel [64]. However, the available
approaches support neither the dependent task model nor the NoC communication fabric.

Closely related, there are approaches for constructing the time-triggered schedule for a
manycore platform with a NoC communication fabric [10, 22, 61, 82, 83]. However, these
approaches rely on mathematical solvers to construct a feasible schedule. Specifically, the
time-triggered scheduling problem is formulated as a set of equations to be solved by an
Integer Linear Programming (ILP) or Satisfiability Modulo Theories (SMT) solver. For
example, Biewer et al. [10] demonstrate the use of an SMT solver for constructing and
analysing the time-triggered schedule. The main problem with the solver-based approach
is the exponential run-time complexity. For problems with typical industrial-sizes, the
solver-based approach is not always applicable.

Problem definition

Chapter 4 highlighted that the TTCP approach is capable of efficiently utilizing a mul-
ticore platform, as the communication tasks are known a priori. The idea is to apply the
TTCP approach to a NoC structure to schedule the communication tasks. Therefore, this
chapter assumes that each computational and communication task is scheduled under the
TTCP policy with a corresponding time window, which starts at the so-called phase.

For a dependent system model scheduled by a TTCP scheduler on a manycore platform
with a NoC, the problem comprises two parts:

1. Assigning a computational phase Φτi to each computational task τi, and

2. Assigning a communication phase Φκj to each communication task κj

such that all real-time constraints are satisfied.

In the following, this problem is solved within two steps. First, the feasibility analysis
is defined to know whether a given set of computational and communication phases are
valid. Second, methods are presented to determine the phases of communication and
computation tasks based upon the feasibility analysis.

In contrast to a bus architecture, a NoC offers possibilities for simultaneous commu-
nication, although the communication analysis requires more advanced methods. The
communication analysis on a NoC adapts the computational analysis from the core to
schedule and determines the feasibility of the packets.

5.2. Scheduling Analysis on a Manycore Platform with a NoC

In order to solve the above-defined problem, this section defines the feasibility test of
the dependent system model for a manycore platform with a NoC. This includes the
computational and communication analysis.

Computational feasibility analysis

The basic computational feasibility test for the computational tasks is presented in Chap-
ter 4.3. This chapter adapts the proposed basic feasibility test to handle computational
tasks with precedence constraints, as stated in Definition 6 in Section 3.3. Theorem 3

51

5.2. Scheduling Analysis on a Manycore Platform with a NoC

provides an efficient test to determine whether a computational task overlaps in time with
another computational task. In addition, the computational phases Φτi need to be in a
certain range to be feasible

Φτi,min ≤ Φτi ≤ Dτi −Wτi , (5.1)

where Φτi,min is the minimum computational phase. In order to satisfy the precedence con-
straints, a computational phase Φτi needs to be greater than or equal to the computational
phase of the preceding tasks Φτ` :

Φτi,min = max
∀τ`∈Qτi

(Φτ` +Wτ`). (5.2)

Note that the data from a predecessor task which is mapped to another core needs to
be available at a certain time. This time is represented by the relative deadline of the
corresponding communication task.

The computational task set is feasible if Equation (5.1) and Theorem 3 which is imple-
mented in Algorithm 1 hold.

Communication feasibility analysis

Due to the proposed TTCP scheduling, the communication tasks are not allowed to
overlap with each other. An overlap occurs if any two packets request the same link at
the same time. Each communication task has a communication phase Φκj , which defines
the offset for injecting a corresponding packet into the NoC. The specific offset ensures
that packets do not interfere at a network switch, which is essential for achieving real-time
simultaneous communication over a NoC. In particular, the time instants tinject, at which
packets of a communication task κj are injected into the NoC, are given by:

tinject = Φκj + Pκj · l, l ∈ Z+
0 (5.3)

The time-overlap analysis of the communication tasks is adapted from the time-overlap
test in Theorem 3. Consequently, Lemma 2 reveals that there exists at most one switch
in the given NoC, where packets from two communication tasks can interfere with each
other.

Lemma 2. (critical switch) Suppose two periodic time-triggered constant phase scheduled
communication tasks κi and κj, which are scheduled by the TTCP approach with in X-Y
routing on a 2-D mesh, these two communication tasks can only collide at most once at
the switch Rcrit.

Proof. Proven by Munk et al. [70].

Based upon Lemma 2, if there is no time overlap at the critical switch Rcrit, the com-
munication task can be feasibly scheduled. To find the critical switch Rcrit between two
communication tasks κi, κj , the routes rκi , rκj need to be analyzed. The first shard link of
the routes indicates the location of the critical switch Rcrit, since packets could be delayed
at this switch.

Let zi,j be the number of hops on the routing path rκi of task κi to the critical switch
Rcrit between task κj , i.e. κi and κj can collide at the critical switch Rcrit, where κi needs
zi,j hops to Rcrit via the x-y routing. A packets needs some time dL to traverse to the
critical switch Rcrit, while the NoC needs a finite time dR to forward the packets to the

52

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

L1

L0

R0

C0

L8

L9

L11 L10

L3

L2

R1

C1

L13 L12

L5

L4

R2

C2

L14

L15

L7

L6

R3

C3

(a) (b)

κ2

κ1

time
0 5 10 15 20 25

C1

R1

R0

C0

R3

R2

C2

Figure 5.1.: Example of Mi,j : The routing (a) and the schedule (b) are presented for κ1

and κ2 colliding at switch Rcrit = R1, with route rκ1 = {R0,R1,C1}, route
rκ2 = {R2,R3,R1,C1}, number of hops z1,2 = 2, number of hops z2,1 = 3,
the network delays dR + dL = 2ms, M1,2 = 4ms, M2,1 = 6ms, Wκ1 = 7ms,
Wκ2 = 10ms, Φκ1 = 0, Φκ2 = 5.

correct output link. For the communication analysis, these additional times in the NoC
are described by a conflict matrix Mi,j , which is defined as

Mi,j =

{
zi,j(dL + dR) if rκi overlaps with rκj
∅ otherwise.

(5.4)

Figure 5.1 provides an example demonstrating the usage of the conflict matrix Mi,j . The-
orem 4 makes use of the conflict matrix Mi,j to formulate the time-overlap test for com-
munication tasks.

Theorem 4. (communication task overlap) Suppose two periodic time-triggered constant
phase scheduled communication tasks κi and κj with Mi,j 6= ∅ and with known Φκi and
Φκj . Let Ψκi = (Φκi + Mi,j) mod gcdi,j, Ψκj = (Φκj + Mj,i) mod gcdi,j with Ψκi ≥ Ψκj .
These two tasks are feasibly scheduled by TTCP (in X-Y routing), if

(Ψκi ≥ Ψκj +Wκj)and (Ψκj ≥ Ψκi +Wκi − gcdi,j) (5.5)

Proof. With X-Y routing and no back pressure in the NoC, two packets can collide at
most once at a particular switch, which is proven in Lemma 2. Otherwise, this particular
switch would sequentialize the packets such that no further conflict can occur. The elapsed
time to the critical switch is represented by Mi,j after the communicating task is started.
Therefore, this critical switch can be considered as a resource that may be used by more
than one task in the time-triggered manner. The collision detection on this critical switch
is hence the same as in Theorem 3.

Even if communication tasks do not conflict with each other at any Rcrit, communication
phases can still be infeasible because they need to be in a certain range. This feasible range
for each communication phase Φκj is given by:

Φκj ,min ≤Φκj ≤ Dκj −Wκj − |rκj |(dR + dL), (5.6)

where Φκj ,min is the minimum communication phase, which equals the end of the sending
computational task τSRCj with Φκj ,min = ΦτSRCj

+WτSRCj
. Packets of the communication

53

5.3. Approaches for the Computational and Communication Phase Assignment

task κj cannot be injected earlier than Φκj ,min, because the required data is not produced.

Note that the network traversal time W κj is defined as

W κj = Wκj + |rκj |(dR + dL), (5.7)

which is the total time to fully transmit the packet to its desired destination including all
network delays without interference from other communication tasks. Each communication
task κj has a relative deadline Dκj , at which the data has been fully transmitted to the
destination core, where the computational task τDSTj at the destination requires this data.
The relative deadline of a communication task κj is defined relative to the arrival time
aτSRCj ,k

of the computational tasks τSRCj , which triggers the communication task κj .

Due to different periods in the task set, only a subset of jobs of a computational task
send their data to avoid futile communications. Thus, this thesis defines specific jobs that
send and receive the data. In particular, jobs that communicate data are indexed as the
h-th jobs of the task τSRCj . According to the definition of computational jobs that need
to communicate (Section 3.3), the following three cases determine the absolute deadline
of the corresponding packet:

• aτSRCj ,h
+ ΦτDSTj

, if κj-precedence, or

• aτSRCj ,h
+ ΦτDSTj

, if κj-non-precedence and PτSRCj
≤ PτDSTj

and PτSRCj
≤ ΦτDSTj

, or

• aτSRCj ,h
+ΦτDSTj

+PτSRCj
, if κj-non-precedence and PτSRCj

>PτDSTj
or PτSRCj

>ΦτDSTj
.

The calculation of the relative communication deadline Dκj can be reformulated with
respect to the arrival time aτSRCj ,h

of a job of its source task τSRCj as follows:

Dκj =

ΦτDSTj
if κj precedence

ΦτDSTj
+ PτSRCj

⌈
PτSRCj

−ΦτDSTj

PτDSTj

⌉
otherwise.

(5.8)

By applying Theorem 4 to all possible pairs of two communication tasks, the commu-
nication task set is feasible if no time overlap exists. This feasibility test can be easily
implemented, as shown in Algorithm 4, which calculates all the above-mentioned equations
required for a feasible communication task set.

5.3. Approaches for the Computational and Communication
Phase Assignment

In the first part, this section proposes a heuristic approach to determine the computa-
tional and communication phases of a TTCP scheduled system. The approach uses the
feasibility test presented in Section 5.2 to determine a heuristic algorithm. In the second
part, a solver based approach [27] is presented.

Overview of the iterative approach to determine phases of a TTCP scheduler

The computational and communication phase assignments are performed in two consec-
utive steps. As mentioned earlier, there exists a cyclic dependency between these two steps,
which needs to be taken into account. In the computational phase assignment, the heuristic
reserves time windows for the communication tasks to construct a feasible communication
phase assignment. These reserved time windows equal the worst-case traversal response
time (WCTRT), which are determined in the communication phase assignment. In the
communication phase assignment, the communication arrival times have to be known,
which also depends on the computational phase assignment.

54

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

Algorithm 4 Feasibility test for the communication task set

Input: Communication task set K
Output: Feasibility result;

1: Calculate the route conflict Matrix M ;
2: feasibility ← true;
3: for a = 0, · · · , |K| − 1 stepped by 1 do
4: if (Φκa < Φκa,min) or (Φκa > Dκa −W κa) then
5: return “not feasible”;
6: for b = a+ 1, · · · , |K| − 1 stepped by 1 do
7: if ∃ conflict between Route rκa and rκb via M then
8: ta ← Ma,b · (dL + dR);
9: tb ← Mb,a · (dL + dR);

10: Calculate gcda,b of Pκa and Pκb ;
11: Ψκa ← (Φκa + ta) mod gcda,b;
12: Ψκb ← (Φκb + tb) mod gcda,b;
13: if (Ψκa < Ψκb) then
14: if (Ψκb < Ψκa+Wκa) or (Ψκa+gcda,b < Ψκb+Wκb) then
15: feasibility ← false;
16: else
17: if (Ψκa < Ψκb+Wκb) or (Ψκb+gcda,b < Ψκa+Wκa) then
18: feasibility ← false;
19: return feasibility;

time
job Jτi,l destination jobpacket of κj

aτi,l

Φτi,min

Wτi Rκj
W κj

Φτi Φκj ,min Φκj Dκj

aτi,l+1
= aτi,l + Pτi

Figure 5.2.: Overview of the parameters for TTCP scheduled computational and commu-
nication tasks τi, κj .

In view of such circular dependency, the idea is to use an iterative approach that per-
forms the computational and communication phase assignment repeatedly, as shown in
Figure 5.3. The iterations are represented by the iteration counter q, where q is incre-
mented in each iteration. The iterative process is repeated for a predetermined number
of cycles I. In the first iteration, each worst-case traversal response time (WCTRT) is
optimistically estimated, such that each communication task κj responds within its net-
work traversal time W κj . Due to the constructed contention-free communication schedule,
the WCTRT is only influenced by the delay for injecting packets into the communication
network, i.e. the communication phase. Let Rκj be the worst-case traversal response
time (WCTRT) of the communication taskκj , which is influenced by the injection delay,
defined as

Rκj = Φκj +W κj − Φκj ,min. (5.9)

Initially, the WCTRT Rκj is estimated as the network traversal time ∀Rκj = W κj . Fig-
ure 5.2 provides an overview of the parameters of the computational and communication
analysis.

Referring to Figure 5.2, the block “Analyze T” represents the computational phase
assignment, which is described later in this section. The block “Analyze K” computes the
communication phase assignment Φκj based upon the computation phase assignment Φτi

55

5.3. Approaches for the Computational and Communication Phase Assignment

Estimate
WCTRT Rκj

Analyze
T

Analyze
K

feasible?

Update
WCTRT Rκj

Feasible

Infeasible

Rκj Φτi
Φτi

Φκj

q ← q+1Rκj q>I

Figure 5.3.: The workflow for handling the cyclic dependencies among each T and K.

given by the block “Analyze T”.

Based upon the calculated phases Φτi and Φκj , the feasibility test from Section 5.2
determines whether both the communication and computation task set T and K are
feasible. In case of an infeasible result, another iteration is performed with an updated
WCTRT, which leads to improved computation and communication phases Φτi , Φκj . The
block Update WCTRT Rκj prepares the next iterations by calculating the WCTRT for
each communication task κj based upon (5.9).

Further iterations tend to a fixed point because there is a specific order of computational
and communication phase assignment. However, in case that no feasible solution after I
iterations can be found, the algorithm terminates. Experiments show that usually a few
iterations are sufficient to determine a feasible phase assignment and thus the parameter
is set to I = 10.

Another approach is to formulate the phase assignment into an SMT problem and use
a solver to find a feasible phase assignment. In the following, the two phase assignment
parts “Analyze T” and “Analyze K” from Figure 5.3 are described in detail.

Computational phase assignment under given WCTRT Rκj

The computational phase assignment requires the WCTRT Rκj to reserve time for the
communication in the TTCP schedule. The communication response times Rκj are deter-
mined according to (5.9).

The proposed heuristic algorithm greedily assigns computational phases without re-
assigning a phase. All tasks are sorted in a topological order Ωτ such that precedence
constrained tasks are ordered first. In this step, communication tasks of type κj-non-
precedence are ignored.

According to the topological order Ωτ , the computational phases are assigned step by
step. Suppose that task τi is the i-th task in Ωτ . The algorithm searches chronologically
through the time to find a feasible phase Φτi for the computational task τi regarding
the already-assigned phases. The feasibility is determined by the time-overlap test from
Theorem 4. The heuristic proposed in the Algorithm 2 LPF in Section 4.5 is used to
determine all computational phases.

A problem is to define the minimum computational phase Φτi,min, because the prece-
dence and non-precedence communication tasks may limit the feasible range for the com-
putational phase τi. To derive Φτi,min, communication tasks are divided into two sets
depending on their associated type. Let Eprec,τi be the set of communication tasks κj ,
which comprises κj-precedence with τi = τDSTj , i.e.

Eprec,τi =
{
κj | κj-precedence and τDSTj = τi

}
. (5.10)

56

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

Algorithm 5 Communication task ordering algorithm

Input: T, K;
Output: Communication phase assignment order Ωκ;

1: Ωκ ← ∅;
2: for a = 0, · · · , |K| − 1 stepped by 1 do
3: Calculate Dκj according to Equation 5.8;
4: Ωκa ← ∀ κj 6∈ Ωκ assign κj lowest relative deadline Dκj ;
5: return Ωκ;

Similarly, Enp,τi only considers κj-non-precedence. Accordingly, let Enp,τi be the set of
communication tasks κj , which comprises κj-non-precedence with τi = τDSTj , i.e.

Enp,τi =
{
κj | κj-non-precedence and τDSTj = τi

}
. (5.11)

For κj-precedence, computational phases Φτi cannot be assigned before their predecessor
tasks finish and their corresponding packets are received. Thus, τi cannot start earlier than:

bprec,i = max
κj∈Eprec,τi

(ΦτSRCj
+WτSRCj

+Rκj). (5.12)

If communication tasks are of type κj-precedence, computational phases cannot legally be
assigned before receiving the packet of the previous job. Therefore, τi cannot start before

bnp,i = max
κj∈Enp,τi

(Φκj ,min − PτSRCj
+Rκj). (5.13)

By respecting both κj-precedence and κj-non-precedence, the minimum computational
phase can be calculated by

Φτi,min = max(0, bnp,i, bprec,i). (5.14)

Communication phase assignment under given computational phases Φτi

The communication phases are determined by the proposed heuristic algorithm, which is
described in the following. The proposed algorithm defines a communication phase assign-
ment order Ωκ. The communication tasks are ordered according to non-decreasing relative
deadlines, i.e. deadline monotonic, which are computed according to (5.8). The order Ωκ

expresses the urgency of communication tasks. The proposed Algorithm 5 calculates the
communication phase assignment order Ωκ.

Suppose κj is the j-th task in the communication order Ωκ. The minimum communi-
cation phase is determined based upon the completion time of the source computational
task, whereby Φκj ,min ← ΦτSRCj

+WτSRCj
. Algorithm 6 implements the proposed approach

to assign phases Φκj for communication tasks κj . The algorithm searches chronolog-
ically through time to find a feasible phase Φκj for κj with respect to already-assigned
communication tasks.

First, Algorithm 6 calculates minimum communication phases Φκj ,min and conflict ma-
trix according to (5.4). The outer for-loop iterates over all communication tasks in the
topological order Ωκ to determine communication phases step by step. The while-loop
performs the chronologically search through the time, in which the parameter feasible in-
dicates, whether the proposed communication phase is valid. The inner for-loop iterates
over each other communication task and checks, whether there is a time overlap between
another task. The function ResolveCommConflict() checks the time overlap and returns a

57

5.3. Approaches for the Computational and Communication Phase Assignment

Algorithm 6 Heuristic algorithm for assigning the communication phases Φκj of the
communication task set K

Input: T, K, Ωκ, and platform;
Output: Phases Φκj , packet delay Rκj and feasibility;

1: ∀κj Φκj ,min ← ΦτSRCj
+WτSRCj

;

2: Calculate a route conflict matrix M for given platform;
3: for ` = 0, · · · , |K| − 1 stepped by 1 according to Ωκ do
4: Φκ` ← Φκ`,min;
5: feasible ← false;
6: while (Φκ` < Pκ`) and (feasible = false) do
7: feasible ← true;
8: for each κj with j < ` do
9: δ` ← ResolveCommConflict(κ`,κj ,M);

10: if δ` 6= 0 then
11: Φκ` ← Φκ` + δ`;
12: feasible ← false;
13: if (feasible=false) then
14: return “not feasible”;
15: Rκ` ← Φκ` +W κ` − Φκj ,min;
16: return “feasible”;

time delay δ` for κj to resolve the time overlap with this communication task. If δ` = 0,
there is no time overlap to the other task.

Algorithm 7 presents the function ResolveCommConflict(), which implements the time-
overlap test of Theorem 4. In addition, it calculates for different cases the time delay to
resolve the time overlap between another communication task.

The algorithm can decide which communication task becomes a short response time.
The reason is the contention-free schedule, because it guarantees a specific response time
for a fixed communication phase.

Run-time complexity of the proposed iterative algorithm

In the following, the complexity of the proposed iterative approach is analyzed, as shown
in Figure 5.3. The overall run-time complexity is dominated by the computational and
communication phase assignment.

First, Algorithm 6 is analyzed to determine communication phases. The time com-
plexity of determining the conflict matrix M is O(|K|2 · |R|), where |R| is the number
of switches in the NoC and |K| is the number of communication tasks. Algorithm 7 for
determining the time-overlap test has O(1) run-time complexity. The run-time complexity
for sorting communication tasks into the topological order Ωκ according to Algorithm 5 is
O(|K| log |K|). The outer for-loop has at most |K| iterations. The while-loop iterates |K|
times for the inner for-loop, which results in O(|K|) to execute one while-loop. Let ν be
the number of iterations of the while-loop, thus

ν = |K|(
⌈
Pκ`
Pκ0

⌉
+

⌈
Pκ`
Pκ1

⌉
+ . . .+

⌈
Pκ`

Pκ(`−1)

⌉
, (5.15)

because each packet of κ` collides at most once with the
⌈
Pκ`
Pκj

⌉
packets of κj . Hence,

ν ≤
⌈
Pmax
Pmin

⌉
|K|2. As a result, the run-time complexity of Algorithm 6 isO(

⌈
Pmax
Pmin

⌉
|K|3|R|).

58

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

Algorithm 7 ResolveCommConflict() algorithm to determine the time difference until
the next possible phase

Input: κa, κb, M ;
Output: time shift t;

1: t ← 0;
2: if ∃ conflict between route rκa and rκb via M then
3: Calculate gcda,b of Pκa and Pκb ;
4: Ψτa ← (Φκa +Ma,b · (dL + dR)) mod gcda,b;
5: Ψτb ← (Φκb +Mb,a · (dL + dR)) mod gcda,b;
6: if (Ψτa < Ψτb) then
7: if Ψτb < Ψτa+W κa then
8: t ← Ψτa +W κa −Ψτb

9: else if Ψτa+gcda,b < Ψτb+W κb then

10: t ← Ψτa + gcda,b +W κa −Ψτb ;
11: else
12: if Ψτa < Ψτb+W κb then
13: t ← Ψτa +W κa −Ψτb ;
14: else if Ψb+gcda,b < Ψa+W κa then

15: t ← Ψτa +W κa −Ψτb − gcda,b;
16: return t;

Similar to the communication phase assignment, the computational phase assignment

has run-time complexity of O(
⌈
Pmax
Pmin

⌉
|T|3). As a conclusion, the overall run-time com-

plexity of the iterative approach as depicted in Figure 5.3 is

O

(
I

⌈
Pmax
Pmin

⌉(
|T|3 + |K|3|R|

))
, (5.16)

where I is the maximum number of iterations.

Solver-based approach by using SMT

In contrast to the heuristic algorithm for defining the computational and communication
phases, another approach is to use a Satisfiability Modulo Theories (SMT) solver [27]. As
mentioned in Section 4.5, the phase assignment problem can be formulated into a set of
equations that can be solved by SMT. Both computational and communication phases
Φτi , Φκj need to be determined by the SMT solver. The detailed Algorithm 14 is found
in the Appendix A.2, which describes the implemented SMT problem formulation.

Due to typical industrial applications, a large number of communication tasks (300–
3, 000) is assumed to be present in the system. This is a challenge for solver-based
approaches, in which the time requirement of a solver (e.g. Z3 SMT solver) increases
exponentially with the number of tasks. With |T| = 100 computational and |K| = 300
communication tasks, the SMT solver was able to provide a feasible solution, although
larger problem sizes exceed its limit. For instance, with |T| = 1, 000 and |K| = 3, 000,
the common SMT problem definition (e.g. Z3 SMT solver) requires ˜8 · 109 ASSERT
statements to describe the SMT problem. Such a large number of ASSERT statements
exceeds the solver capacity and no feasible solution could be returned. Thus, solver-
based approaches are not applicable to typical industrial-sized problems. By contrast,
the proposed heuristic is able to successfully solve scheduling problems associated with
industrial-sized applications. Nevertheless, the SMT solver is used in the evaluations as a
comparison to the heuristic approach.

59

5.4. Evaluations

5.4. Evaluations

This section presents an evaluation of different approaches to determine computational
and communication phases of a TTCP scheduled system. The experiments highlight the
advantages and limitations of the iterative approach in comparison to a solver-based ap-
proach [10], which is proposed in the previous Section 5.3.

5.4.1. Experimental Setup

This subsection describes the configuration used for the experiments. A generator uses
the dependent system model to create synthetic task sets, which are described in the
following.

Dependent system model generator

In order to test the proposed iterative approach for different variations of the generated
dependent system model, the generator produces randomized synthetic system sets with
characteristics of typical industrial applications. The generator performs several steps to
determine all parameters of the system model, as described in the following:

1. Platform: Build a 2× 2. . .8× 8 manycore platform with a NoC.

2. Computational task set: Generate 100–1, 000 computational tasks with no heavy
task and only harmonic periods.

3. Commutation task set: Generate |K| = 3|T| communication tasks, in which 20% are
κj-precedence.

4. Mapping: Calculate the task-to-core mapping for each computational task τi based
upon the communications.

5. Routing: Generate the route for each κj according to the X-Y routing policy.

6. Clean up: Remove the communication tasks κ, which are no inter-core communica-
tions.

In the following, these steps are explained in detail.

Step 1 Platform: The generator builds quadratic 2D-mesh NoC structures, for which
the 3× 3 NoC with |R| = |C| = 9 cores is the default platform. Each core is connected to
its corresponding switch. Each connection between two nodes in the NoC used two links,
one for transmitting packets in each direction. In the generated NoC, there are a certain
number of links |L|, which depend on the NoC size with |L| = 6|C| − 4

√
|C|. Figure 3.2

shows the default manycore platform. Each core has sufficient local memory to store its
program code and temporal required data.

Step 2 Computational task set: First, the computational utilization UT and the
number of computational tasks |T| are defined. Subsequently, the generator defines the
first period Pτ1 . Due to the assumption that a hyper-period exists, all periods are integer
values, i.e. periods are integer multiples of the time unit of 1µs. Based upon the first
period, all periods can be calculated as:

Pτi+1 = Pτi · k k ∈ {1, 2, 3}, (5.17)

where k is a randomized number, which varies in each period Pτi . In order to generate a
random variable k, the probability is calculated with

k = min(

⌈
2.5

|T| · kr

⌉
, 3) kr ∈ (0 . . . 1) ⊂ R|T|−1, (5.18)

60

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

which generates approximately five different periods in T. Third, a uniform distributed
random number ρi is generated with 0 < ρi < 1 for each task τi. Accordingly, the execution
time can be defined with

Wτi =
Pτi · UT · ρi∑

τ`∈T ρ`
. (5.19)

The relative deadlines are implicit, whereby

Dτi = Wτi , ∀τi. (5.20)

Note that the precedence constraints are calculated within the communication task set
generation in step 3 and the task-to-core mapping is calculated in step 4.

Step 3 Commutation task set: First, the input parameters are defined, which are
(i) the communication utilization UK, (ii) the number of communication tasks |K| and
(iii) the precedence rate p. The precedence rate is in the range of [0% . . . 100%], which
indicates the probability that a communication task has κj-precedence.

Next, the generator determines the source τSRCj and destination tasks τDSTj for each
communication task. Therefore, the generator defines an order Ωprecedence of all computa-
tional tasks, which is used to build a consistent DAG. Based upon this computational task
order Ωprecedence, only tasks with a lower order can be a predecessor of computational task
τDSTj . The generator uses two randomly-mixed strategies to define the source and desti-
nation tasks. On the one hand, a list of computational tasks τi which are sorted according
to Ωprecedence defines consecutive communication tasks to define the source τSRCj and des-
tination τDSTj . One the other hand, single randomized pairs of computational tasks are
used to define the source and destination computational tasks τSRCj , τDSTj . Each commu-
nication task has a precedence constraint, which is quantified by the precedence rate p, if
this communication task is valid ordered according to Ωprecedence.

Periods are generated based upon the source τSRCj and destination τDSTj task with

Pκi = max (PτSRCj
, PτDSTj

), (5.21)

and the relative deadlines according to (5.8). The traversal times Wκj are computed similar
to the execution times Wτi in (5.19) by given UK and Pκj .

Step 4 Mapping: Although the mapping of computational tasks to cores is not the
focus of this thesis, our generator uses a heuristic for task-to-core mapping. The overall
mapping procedure is depicted in Figure 5.4. In the dependent task model, the DAG has
to be considered in the mapping (Figure 5.4a). The proposed heuristic exploits parallel

(a) DAG

τ0 τ1

τ2

τ3

τ4

τ5

(b) Precedence levels

τ0 τ1

τ2

τ3

τ4

τ5

0
level

1 2

(c) Virtual bins

bin 2

bin 1

bin 0τ0 τ1

τ2

τ3

τ4

τ5

(d) Core mapping

core 1

core 0τ0 τ1

τ2

τ3

τ4

τ5

Figure 5.4.: An example of the workflow for the proposed task-to-core mapping heuristic
of the dependent system model generator.

61

5.4. Evaluations

executions by defining precedence levels based upon the DAG (Figure 5.4b). Each prece-
dence level ` contains a set of computational tasks τi, which have a precedence constraint
to the previous level. Based upon these levels, the maximum communication utilization
determines, whether the succeeding task is assigned to the same virtual bin. Thus, the
objective is to minimize the inter-core communication while keeping parallel tasks execu-
tions. In one precedence level, each task has a different virtual bin to maximize parallel
task executions (Figure 5.4c). The generator applies the worst-fit bin packing approach to
assign the virtual bin to the cores (Figure 5.4d), wherein the task utilization determines
the bin quantity.

Step 5 Routing: With a given task-to-core mapping, the generator determines the
routes rκj for each communication task κj according to the X-Y routing policy. Note that
a route contains all nodes on the path from the source core cτSRCj

to its destination core

cτDSTj
except the source core cτSRCj

.

Step 6 Clean up: Based upon the task-to-core mapping, some communication tasks κj
possibly communicate within the same core, whereby cτSRCj

= cτDSTj
. These communica-

tion tasks κj can be removed from the communication task set K, because only inter-core
communication is considered. Such communications can be implemented with writing and
reading the data to the local memory, which is a well-known method from the single-core
architecture.

Default parameter settings

In the experiment, the generator creates 100 randomized system sets to evaluate the
different approaches and algorithms. The NoC comprises a 3× 3 2D-mesh in most exper-
iments. The computational UT and communication utilization UK are varied separately
in the range [0 . . . |C|). Note that UT = |C| means that each core is 100% utilized and
UK = |C| means that each core alway sends data. The smallest platform has |C| = 4 cores
and the largest platform has up to |C| = 64 cores. The precedence rate p is 20%, i.e. 20%
of all communication tasks are of type κj-precedence and 80% are κj-non-precedence.

The Z3 solver (version 4.3.2.0) [27] is used to solve the SMT problem, which is generated
for each system set. After a 10 min timeout, the solver is terminated and the result is
counted as unknown marked as gray areas in the plots. For a large number of compu-
tational and communication tasks (|T| > 150), the solver often failed due to its memory
requirement. Such results are also counted as unknown.

5.4.2. Experimental Results

This subsection presents experiment exploring the capabilities of the proposed iterative
approach to determine the TTCP schedule.

Computational and communication utilization

This experiment determines the reachable utilization of the TTCP approach. The ex-
periment examines different computational UT and communication UK utilization of the
system set to determine a limit on the feasibility rate. The parameters UT and UK increase
the WCET and traversal times of the system set such that the scheduling problem is more
difficult. The computational and communication utilization UT, UK are defined as

UT =
∑
∀τi

(
Wτi

Pτi
) and UK =

∑
∀κi

(
Wκi

Pκi
). (5.22)

62

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Computational utilization UT

F
ea

si
b
le

so
lu

ti
o
n

s/
%

Heuristic
Upper bound

SMT solver

Figure 5.5.: Computational and communication utilization: Different computational uti-
lization on a 3× 3 NoC

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Communication utilization UK

F
ea

si
b
le

so
lu

ti
o
n

s/
%

Heuristic
Upper bound

SMT solver

Figure 5.6.: Computational and communication utilization: Different communication uti-
lization on a 3× 3 NoC

Note that UT = 1 represents the maximum single-core platform utilization and UK = 1
represents the maximum bus utilization. Figures 5.5 and 5.6 show the plots of different
methods.

The approaches namely Heuristic, Upper bound and SMT solver determine the phases
of the generated system. Based upon the determined phases for 100 generated system
sets, the test counts the number of feasible solutions, which results in a feasibility rate
called Feasible solutions. The number of computational and communication tasks are set
to |τ | = 100 and |κ| = 300.

The curve Heuristic represents the proposed iterative approach described in Section 5.3.
For comparison, the SMT solver formulates the SMT problem based upon the generated
system set and uses the Z3 solver to determine the phases. If the solver does not provide
any result called unknown, e.g. time-out or out-of-memory error, the plots are marked
for such results as gray areas. The curve Upper bound represents an upper bound on the
feasibility rate, which is determined by each individual core and link utilization. If any
link or core in the system is utilized with more than 100%, there cannot exist a feasible
schedule. If the curve Upper bound returns an infeasible result, there cannot exist a feasible
result because the system generator creates an infeasible system.

The figures show that both the solver and the proposed iterative algorithm are capable
of efficiently utilizing the manycore platform. The SMT solver has a higher success rate

63

5.4. Evaluations

0 5 10 15 20 25 30
0

20

40

60

80

100

Computational utilization UT

F
ea

si
b
le

so
lu

ti
on

s/
%

2× 2
3× 3
4× 4
5× 5
6× 6
7× 7
8× 8

Figure 5.7.: NoC scalability: Computational utilization for different-sized mesh NoCs

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Communication utilization UK

F
ea

si
b
le

so
lu

ti
on

s/
%

2× 2
3× 3
4× 4
5× 5
6× 6
7× 7
8× 8

Figure 5.8.: NoC scalability: Communication utilization for different-sized mesh NoCs

(feasibility rate) in terms of the proportion of feasible solutions computed, although it
also requires more time for its calculation. This experiment only uses sets with |τ | = 100
computational tasks to compare the proposed iterative approach with an SMT solver.

However, the solver fails to find feasible solutions for an application with more compu-
tational and communication tasks. The curve Upper bound shows that the generator only
rarely creates feasible system sets with a high utilization UT > 8.5 and UK > 7. Another
interesting aspect is that for more computational tasks like |τ | = 1, 000 the feasibility rate
of the proposed iterative approach is higher.

NoC scalability

This experiment explores different-sized NoCs to determine the scalability of the ap-
proach. The NoC sizes are always quadratic 2D-meshed and in range of 4–64 cores.
Figures 5.7 and 5.8 show the results for different computational UT and communication
utilizations UK. The generator creates |τ | = 250 computational and |τ | = 750 communica-
tion tasks for each system set. The curves only visualize the proposed iterative algorithm
and the upper bound, because the SMT does not provide feasible results.

Smaller NoC platforms can be highly utilized. With |C| ≥ 36 cores, the curves have
only minor improvements because the platform cannot be further utilized due its sequential
software parts. The curve upper bound drops down UT > 25 under less than 30%, i.e. the
system generator is unable to generate feasible system sets.

64

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Computational utilization UT

F
ea

si
b
le

so
lu

ti
on

s/
%

Heuristic DM
Heuristic DAG
Heuristic LPF
Random order
Upper bound

Figure 5.9.: Communication task ordering: Different methods to define the order Ωκ are
compared to each other.

Communication task ordering

This experiment varies the communication order Ωκ to determine the performance of
competitive ordering approaches. The proposed iterative approach in the previous Sec-
tion 5.3 uses a Deadline Monotonic (DM) ordering of the communication tasks κj . Fig-
ure 5.9 shows the performance of other approaches namely DAG, LPF and random order.

The ordering according to the DAG of the computational tasks τi sorts the communica-
tion task κj on critical path in the DAG first. All paths in the DAG are scored based upon
the execution and traversal time to determine the urgency of each path. Based upon these
scores, the communication tasks with a high scored path are ordered before those with a
lower scored path. Another possibility is to determine the order based upon the Lower
Periods First (LPF) approach, in which communication tasks with the same period are
ordered with lower minimum communication phases Φκi,min first. The random order sorts
the communications tasks κj in a randomized order, in which each task could be ordered
first. Note that the curve Upper bound represents an upper bound to the feasibility rate,
which is based upon a utilization test for each core and link in the system.

The experiment highlights that the proposed DM communication task ordering outper-
forms other approaches. The DAG ordering has exponential run-time complexity.

Precedence rate influence

This experiment evaluates the parameter precedence rate p, reflecting is the probability
that a communication task becomes a κj-precedence. A precedence constraint defines
a sequence of computational tasks that cannot be parallelized. Therefore, precedence
constraints can limit parallel executions of the system set. Figure 5.10 shows the feasibility
rates for different precedence rates from p = 0% to p = 80%. The generator creates
|τ | = 250 computational and |τ | = 750 communication tasks for each system set.

The experiments highlights that the possible computational utilization strongly depends
upon the precedence constraints. With p = 0, the system set can be utilized up to
UT = 8.5, even if NoC with |τ | = 750 communication tasks are used. For high precedence
rates, the possible computational utilization is significantly lower, although a parallel plat-
form can still be utilized around UT = 3.5. This means that dependent tasks can be highly
parallelized, although only certain dependencies called precedence constraints limit paral-
lelization.

65

5.4. Evaluations

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Computational utilization UT

F
ea

si
b
le

so
lu

ti
o
n

s/
%

0%

20%

40%

60%

80%

Figure 5.10.: Precedence rate influence: Different precedence rates significantly determine
the reachable computational utilization UT.

24 42 75 133 237 422 750 1334
1ms

10ms

100

1s

10s

100s

1000s

area of interest

time out border of 10 min

Number of computational tasks |T|

R
u
n

-t
im

e

Heuristic
SMT solver

Figure 5.11.: Run-time and solver feasibility: Double logarithmic plot of the run-time for
different phase assignment methods.

Run-time and solver feasibility

This experiment shows the run-time for different-sized system sets, which significantly
influences the SMT solver approach. In the computational and communication utilization
experiment (Figure 5.5), the SMT solver has a higher feasibility rate than the iterative
algorithm. The exponential run-time complexity of the SMT solver limits its scalability
to a large application comprising thousands of computational and communication tasks.

Figure 5.11 presents a run-time measurement for the proposed iterative algorithm (Heuris-
tic) and the Z3 solver (SMT solver). The experiment uses different-sized system sets with
|K| = 3|T| and a 3× 3 NoC structure. For this platform, the computational utilization is
set to UT = 4.5 and the communication utilization is set to UK = 1. The SMT solver sets
a timeout after 10 min. The iterative algorithm is around three magnitudes (103) faster,
as shown in Figure 5.11.

For smaller system sets |T| = 100, the SMT solver is able to compute a feasible phase
assignment, although for larger system sets |T| > 200, the solver usually returns errors
or timeout, as shown in Figure 5.12. If the SMT problem size is too large, it takes too
much time to obtain a solution. Another issue is the memory requirement. For larger
system sets, the SMT solver often returns an out-of-memory error because the solver or
the SMT problem formulation exceeds the physical memory of the simulation computer.

66

Chapter 5. Time-Triggered Computation and Communication Analysis by using a NoC

24 42 75 133 237 422 750 1334
0

20

40

60

80

100

Number of computational tasks |T|

F
ea

si
b
le

so
lu

ti
on

s/
%

Heuristic
SMT solver

Figure 5.12.: Run-time and solver feasibility: Semi-logarithmic plot of the feasibility of
different phase assignment methods. With more than |T| > 133 tasks, the
solver reaches its limits depending on the hyper-period, such that no solution
can be found.

For instance, for |T| = 1, 000 computational tasks, the SMT problem formulation results in
approximately 8·109 ASSERT statements. Considering system sets with typical industrial-
sizes, the SMT approach is not applicable for large system sets, while the proposed iterative
algorithm scales with the number of computational and communication tasks.

67

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

6. Integration of Sporadic Tasks into Pure
Time-Triggered Systems

This chapter describes concepts to handle sporadic tasks in a Time-Triggered Constant
Phase (TTCP) scheduled system. The TTCP scheduler is extended to additionally support
sporadic tasks of typical industrial applications. The general ideas of this chapter have
already been published [35] by the author.

6.1. Introduction

This section introduces approaches to handle sporadic tasks in a TTCP scheduled sys-
tem. The previous chapter has highlighted that the TTCP approach is capable of ef-
fectively utilizing a manycore platform with a NoC. However, sporadic tasks are not
considered in the TTCP approach. The approach is incapable of handling sporadic tasks,
because schedule is determined a priori. The sporadic events are represented by sporadic
tasks, for which the arrival time is not a priori known.

In general, a periodic task represents a special case of a sporadic task. In contrast to
a periodic task, a sporadic task can have a large response time on a manycore platform,
because the communication interference cannot be avoided by design. Following the ex-
ample as described in the thesis introduction, in an engine control application exists a
so-called angle-synchronous task [49], which is activated at a specific rotation angle of a
crankshaft of an engine. After an additional rotation of 30 degrees, the angle-synchronous
task needs to output its calculated results to control the engine in a safe manner. There-
fore, this sporadic task has a stringent timing constraint. This chapter assumes that each
sporadic tasks has a constraint relative deadline, i.e. the relative deadline is smaller than
the period of the task. Note that the period of a sporadic task is defined as the minimum
time difference between two consecutive arrival times of a task (Section 3.2). The problem
is to schedule the time-triggered and the sporadic tasks in the same system such that a
manycore platform can be highly utilized.

The time-triggered tasks are the computational τi and communication tasks κj , which
are activated in a time-triggered manner. If a sporadic task arrives in a TTCP scheduled
system, a time-triggered task could be delayed. This delay can cause a missed deadline,
because the TTCP schedule is precisely designed to fulfill all real-time constraints without
additional interference. Without applying correct mechanisms to handle the sporadic
tasks, the sporadic tasks would disrupt the predefined TTCP schedule. In addition, a
sporadic task communicates with other tasks, which may interfere with time-triggered
communication tasks.

The proposed approach is to define a Time-Triggered Server (TTS) that can handle
the sporadic tasks. The TTS is a resource reservation method to handle and execute
sporadic tasks. It is represented by periodic time-triggered time slots (similar to a com-
putational task), in which no computational or communication task is allowed to execute
or communicate. These reserved time windows (slots) are used to execute sporadic tasks
including their related communications. Considering the constrained relative deadline of

69

6.1. Introduction

the angle-synchronous task, the response time could be too large to satisfy its real-time
constraint.

For example, suppose a sporadic task with a WCET of 2ms, a relative deadline of
5ms and a period (minimum inter-arrival time) of 10ms. If the sporadic task responds
within 5–10ms due to interference of time-triggered tasks, the deadline is violated. Hence,
the proposed slot-shifting method improves the responsiveness of the sporadic tasks by
exploiting the TTS. In slot-shifting, the time-triggered tasks are delayed to temporally ac-
complish more computing time to execute the sporadic task. After executing the sporadic
tasks, the delayed time-triggered tasks are executed to recover the delay.

The slot-shifting approach was initially introduced by Fohler [30,43] for the purpose of
utilizing idle times on single-core platforms. By contrast, the proposed approach explicitly
reserves time through the TTS for the sporadic tasks and is able to shift both TTCP
scheduled computational and communication tasks. The delay of the time-triggered tasks
is recovered by skipping the time slots of the TTS. Moreover, this thesis presents an
algorithm to optimize the phase assignment of the time-triggered tasks to maximize the
capacity of the TTS, because there is a trade-off between the capacity and the period of
the TTS. Experiments confirm that the proposed slot-shifting approach can enhance the
responsiveness of a sporadic task and thus reduce the worst-case response time by 25% of
a typical industrial application.

Related work

The problem that time-triggered and sporadic tasks may coexist in a real-time system
has also been discussed in the literature [3,21,76]. Claesson and Suri present an approach
to insert a virtual event-triggered channel in a time-triggered bus. Albert [3] highlights
the advantages and disadvantages of using a time-triggered or sporadic communication
arbitration. The Flex Ray protocol [76] separates time-triggered parts from sporadic parts,
in which both parts have a guaranteed utilization and latency. By considering a NoC, these
approaches cannot be applied because they only assume a single resource, namely a bus
architecture.

In contrast to the TTS, another possibility is to use idle times from the TTCP scheduler
to handle the sporadic tasks [30,43,93]. In general, time-triggered tasks may communicate
in idle times such that the sporadic task could disrupt the time-triggered communication
schedule. Thus, idle times are not applicable for handling sporadic tasks with constraint
relative deadlines. Another approach is to separate time-triggered from sporadic tasks in
time or space [76], although a sporadic task may need to be scheduled immediately to
improve the run-time performance.

Closely related to this chapter, the slot-shifting approach has already been presented
[30, 43, 93]. Fohler [30] introduces the slot-shifting approach to delay the time-triggered
scheduled jobs for some time to handle periodic and aperiodic events. This approach has
been extended by Isovic et al. [43] and van den Heuvel et al. [93] to additionally support
firm task deadlines and limited preemptive tasks, respectively. Note that a firm deadline
must be met once if the task is accepted by an on-line scheduler. The presented slot-
shifting approach is capable of handing sporadic tasks in a time-triggered system, which
is extended in this chapter. By contrast, their approaches neither support a NoC nor shift
the communications between the tasks to additionally allow the sporadic tasks to safely
communicate.

Motivational example

The following example demonstrates a TTS and the proposed slot-shifting approach.
Suppose five time-triggered computational tasks {τ0, . . . , τ4} and one sporadic task σ0.

70

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

T
T
S

T
T
S

T
T
S

T
T
S

T
T
S

T
T
S

T
T
S

T
T
Sτ0 τ0 τ0 τ0τ1 τ1 τ1 τ1τ2 τ2τ3 τ4

time / ms

(a) TTCP schedule with a TTS:

T
T
S

T
T
S

T
T
Sτ0 τ0 τ0 τ0τ1 τ1 τ1 τ1τ2 τ2τ3 τ4

time / ms
σ0 σ0 σ0 σ0

(b) Using TTS for σ0:

(c) Slot-shifting for σ0:

0 1 2 3 4 5 6 7 8

σ0 τ3 τ0 τ1 τ2 τ0 τ1τ0 τ0τ1 τ1τ2 τ4

T
T
S

T
T
S

T
T
S

time / ms

Figure 6.1.: Motivational example: Five tasks are scheduled by a normal TTCP scheduler
(a). The gray boxes represent spare time, which is reserved for the Time-
Triggered Server (TTS) and is not used by the time-triggered tasks scheduler.
The arrow indicates the arrival of a sporadic task σ0. On the one side (b),
σ0 can be scheduled by the TTS. One the other side (c), the time-triggered
tasks can be delayed to temporally enable more computational resources for
σ0. After σ0 is executed, the scheduler uses the spare times (gray boxes) to
recover delayed time-triggered tasks.

These tasks are scheduled by a TTCP scheduler, as shown in Figure 6.1a. The TTS
can be represented by the time slots of an additional time-triggered task. The TTS is
represented by the gray boxes, in which the time-triggered tasks are not allowed to be
executed.

One approach is to use the time slots of the TTS to execute the sporadic task σ0, as
shown in Figure 6.1b. The sporadic tasks are only allowed to be executed in the time slots
of the TTS. The TTS slot is arranged into the TTCP schedule in a way that no time-
triggered task is disturbed, although the response time for σ0 is large. The TTS fits into the
TTCP schedule such that no time-triggered task is disturbed, although the response time
for σ0 is large. Figure 6.1c depicts another approach, which delays time-triggered tasks
to temporally allow more execution time for σ0, called slot-shifting. After the completion
of σ0, the time slots of the TTS are used to recover the delayed time-triggered tasks,
where recover means the reduction of the delay of time-triggered tasks. The disadvantage
of the slot-shifting is the disruption of the time-triggered tasks, because time slots are
not executed in a priori determined slots. The advantage is a shorter response time of
the sporadic task σ0, which increases the schedulability of sporadic task with constrained
relative deadlines.

Problem definition

This chapter solves two problems, namely slot-shifting and TTS phase assignment prob-
lem. The slot-shifting problem is to determine an on-line scheduling algorithm that is able
to shift time-triggered tasks and handle sporadic tasks, such that all real-time constraints
hold. The TTS phase assignment problem is to define TTS by periodic time slots and
determine the phases of the time-triggered tasks such that:

• the period of the TTS is minimized to shorten the response times of the sporadic
tasks;

• the TTS utilization is maximized to increase the service for the sporadic tasks; and

• the entire system satisfies its real-time constraints.

71

6.2. Time-Triggered Server (TTS) and Slot-Shifting Approach

Note that the time-triggered task utilization is fixed. The maximization of the TTS
utilization uses the remaining time to obtain a high platform utilization.

6.2. Time-Triggered Server (TTS) and Slot-Shifting Approach

The solution of the slot-shifting problem is divided in two parts. The first part, presented
in this section, defines the proposed slot-shifting approach and our on-line scheduler im-
plementation. The second part deals with the related timing analysis, and provides proofs
of the correctness of the proposed approach, which is presented in the subsequent section.

Concept of the TTS and the slot-shifting approach

The proposed slot-shifting approach can delay the time-triggered tasks to improve the
responsiveness of sporadic tasks σk. The slot-shifting approach was originally introduced
by Fohler [30] with the purpose of exploiting the idle times while guaranteeing the real-time
constraints of the sporadic tasks. In contrast to his approach, a TTS reserves additional
time for sporadic tasks and the proposed slot-shifting approach is also capable of shifting
the inter-core communication in manycore platforms.

A Time-Triggered Server (TTS) is a periodic time slot like a time-triggered task that
handles sporadic tasks such that they do not interfere with time-triggered tasks. In the
time slot of a TTS, no computational or communication task is allowed to execute or
communicate. For the integration to the TTCP schedule, the TTS has a slot length
WTTS, a period PTTS and a phase ΦTTS. With these parameters, time slots of the TTS
are determined by

[ΦTTS + ` · PTTS,ΦTTS + ` · PTTS +WTTS) ∀` ∈ Z+
0 . (6.1)

All time-triggered tasks arrive at time synchronized at time 0. In difference to the compu-
tational task model, the TTS has neither a deadline nor a list of predecessor tasks. Each
core has a TTS for handling sporadic tasks.

In addition to the TTS definition, the proposed slot-shifting approach can be used
to reduce the response time of a sporadic task σk. The slot-shifting delay dTTS(t) de-
fines the delay between the currently-scheduled time-triggered tasks and its corresponding
statically-defined version. Without using the proposed slot-shifting approach, the slot-
shifting delay is dTTS(t) = 0. To guarantee the feasibility of time-triggered computational
and communication tasks, there exists a maximum tolerable slot-shifting delay dTTS,max,
which is defined as

dTTS,max = min
∀τi

(slackτi) (6.2)

where slackτi is the slack of the computational tasks. The slack is defined as

slackτi = Dτi −Wτi − Φτi , (6.3)

where Dτi is the relative deadline, Wτi is the WCET and Φτi is the phase of the compu-
tational task τi.

The principles of the slot-shifting approach are visualized in Figure 6.2. A system always
operates in one of four states:

• Normal : Time-triggered tasks are executed at their statically-defined time slots. The
TTS does not exceed its time slot to execute a sporadic job. The slot-shifting delay
is dTTS(t) = 0.

• Shift : The sporadic job of σk is executed until it finishes or the maximum delay
dTTS,max of the TTS is reached. Only the TTS can start a sporadic job.

72

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

• Retain: If the sporadic job is not finished but the maximum tolerable delay is reached
dTTS(t) = dTTS,max, the delayed time-triggered tasks is executed. In the retain state,
the sporadic task is only allowed to be executed in the corresponding periodic time
slots of the TTS.

• Recover : The TTS does not execute a sporadic job such that its time slots are used
to execute the time-triggered tasks. Thus, skipping of TTS slots reduces the slot-
shifting delay dTTS(t). Each skipped time slot of the TTS reduces the delay by
dTTS(t)← dTTS(t)−WTTS.

Considering a manycore platform, the slot-shifting approach requires a TTS on each core,
which are synchronized. Otherwise the communications of a sporadic job could disrupt the
time-triggered schedule, i.e. a time-triggered task becomes delayed such that it miss its
deadline. Therefore, each core needs to be in the same state. This can be implemented by
sending the synchronization information at the beginning of the sporadic job, because at
this time no time-triggered task is allowed to communicate. If the slot-shifting approach
is not used but the TTS is used to handle the sporadic tasks, the configuration of each
TTS can be different for each core, unless the sporadic task needs to communicate via the
same communication fabric.

According to the sporadic task model, a sporadic job can arrive at any time, as shown
in Figure 6.2. Thus, an arriving sporadic job will be delayed until the time slot of the
TTS. Time-triggered tasks are only delayed if a sporadic task requires more time, which
is determined based upon its WCET Wσk . The TTS determines the delay dTTS(t), which
is communicated at the beginning of the sporadic job during a time slot of the TTS. Each
core delays its time-triggered tasks, regardless whether a sporadic task is executed on this
core, to keep all cores at the same state. This allows the sporadic job to occupy the entire
platform at is execution. If a sporadic job only needs one core for its execution, the other
cores also have to wait for this job to be completed.

If a sporadic job completes before the maximum tolerable delay dTTS(t) < dTTS,max,
the delay is recovered without entering the Retain state. The Retain state prevents time-
triggered tasks from missing their deadline. This state uses the slots of the TTS to continue
executing the sporadic job. In contrast to immediately recovering the delay dTTS(t), the

T
T
S

T
T
S

T
T
S

T
T
S

T
T
S

T
T
S

T
T
S

T
T
Sτ0 τ0 τ0 τ0τ1 τ1 τ1 τ1τ2 τ2τ3 τ4

time / ms

Normal TTCP schedule with TTS:

With slot-shifting:

0 1 2 3 4 5 6 7 8

σ0 τ3 σ0 τ0 τ1 τ2 τ0 τ1τ0 τ0τ1 τ1τ2 τ4

T
T
S

T
T
S

time / ms

Normal

sσ0

Shift Retain

fσ0

Recover

d
T

T
S
(t

) dTTS,max

0 1 2 3 4 5 6 7 8
time / ms

Figure 6.2.: The concept of shifting the time-triggered schedule comprises four states,
namely Normal, Shift, Retain and Recover. The delay dTTS(t) is upper-
bounded by dTTS,max to ensure a feasible time-triggered schedule. sσ0 and
fσ0 are the starting and completion time, respectively.

73

6.2. Time-Triggered Server (TTS) and Slot-Shifting Approach

Retain can reduce the response time of the sporadic job because the job is executed in this
state.

Figure 6.2 shows the completion time fσ0 of the sporadic task σ0. In general, the Recover
state begins at fσ0 . Tasks are executed in the same order as they appear in the statically-
defined TTCP schedule, i.e. the most delayed time-triggered tasks are executed first. The
slot-shifting delay dTTS(t) is is reduced by skipping the time reserved for the TTS.

Slot-shifting on-line scheduler implementation

In the following, a scheduler is presented, which implements the proposed slot-shifting
approach. This algorithm is analyzed in the subsequent section.

A usual scheduler operates on a task queue for handling incoming tasks. By contrast,
a TTCP scheduler determines timer interrupts, which activate the corresponding time-
triggered jobs without requiring a task queue. The idea is to use a dedicated queue for
handling the sporadic jobs called Sporadic Queue (SQ). Furthermore, the timer interrupts
of time-triggered tasks are updated if the delay dTTS(t) changes. The approach is presented
in Algorithm 8.

The scheduler initialization (init) sets up SQ. In a normal TTCP scheduler, each time-
triggered computational task τi triggers a timer interrupt to start the execution of its jobs.
The TTCP scheduler ensures a continuously time-triggered job execution (uninterrupted),
before the next timer interrupt triggers another job.

The timer interrupt (also referred as an alarm) for τi has the same period Pτi as its
corresponding time-triggered task τi. The phase Φτi determines the time of the first
timer interrupt. If a time-triggered task needs to be delayed due to the proposed slot-
shifting approach, the timer interrupts are shifted according to the slot-shifting delay
dTTS(t). Therefore, timer interrupts need to be dynamically configurable to adjust the
delay dTTS(t).

In the implementation presented in Algorithm 8, the TTS is activated and scheduled
like a time-triggered task. An arriving sporadic job is added the SQ. There are two
interrupts, namely TTS-begin-timer-interrupt and TTS-end-timer-interrupt, which
trigger each other and represent the begin or end of the TTS slot. When a TTS-begin-

timer-interrupt is triggered, the scheduler checks the slot-shifting state and reacts appro-
priately. An TTS-end-timer-interrupt suspends the running sporadic job if its time ca-
pacity is depleted, by disabling the sporadic flag. The sporadic flag indicates wether
the TTS slot is active and determines whether an arriving sporadic job can be immediately
executed.

If the delay dTTS(t) reaches its maximum tolerable value i.e. dTTS(t) = dTTS,max the
execution time capacity for the sporadic job of τk is limited to the slot length WTTS of the
TTS. If no sporadic task needs to be executed, the TTS-begin-timer-interrupt routine
starts to recover the delay dTTS(t) by skipping the slots of TTS. The Recover state is
implemented by defining the next TTS-begin-timer-interrupt without defining the TTS-
end-timer-interrupt. The interrupt Sporadic task finish is activated if a sporadic
job of τk completes its execution. This interrupt triggers the TTS-begin-timer-interrupt
to continue the execution of delayed time-triggered tasks. The function SetTimers sets the
timer interrupts for all computational and communication tasks based upon the current
delay dTTS(t).

A normal TTCP scheduler without slot-shifting has a run-time complexity of O(1)
because the timer interrupts are configured once according to the a priori determined
phases. The run-time complexity of scheduler in Algorithm 8 is dominated by the function

74

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

Algorithm 8 On-line slot-shifting scheduler

Retain

Shift

Normal

Recover

Input: T, run-time interrupts;
Output: On-line scheduling decisions;

1: Init:
2: Set a timer interrupt for each computational task τi to Φτi with period Pτi ;
3: Set a timer interrupt for each communication task κj to Φκj with period Pκj ;
4: Set the task TTS-begin-timer-interrupt in ΦTTS;
5: Set Sporadic Queue (SQ) ← ∅;
6: dTTS(t) ← 0; sporadic flag ← false;

7: Regular timer interrupt for τi:
8: Execute the time-triggered task τi;

9: Sporadic task interrupt:
10: add sporadic job in SQ;
11: if sporadic flag = true then
12: execute sporadic task;

13: TTS-begin-timer-interrupt:
14: if SQ 6= ∅ then
15: if dTTS(t) = dTTS,max then
16: Set TTS-end-timer-interrupt in WTTS;
17: sporadic flag ← true; continue Sporadic task in SQ;
18: else
19: dTTS(t)← min(dTTS(t) +Wσk , dTTS,max); SetTimers();
20: Set TTS-begin-timer-interrupt in dTTS,max − dTTS(t);
21: sporadic flag ← true; continue Sporadic task in SQ;
22: else
23: if dTTS(t) = 0 then
24: Set TTS-end-timer-interrupt in WTTS;
25: sporadic flag ← true;
26: else
27: Set the task TTS-begin-timer-interrupt in ΦTTS;
28: dTTS(t)← max(dTTS(t)−WTTS, 0); SetTimers();

29: TTS-end-timer-interrupt:
30: sporadic flag ← false;
31: Suspend the sporadic task, if still running;
32: Set the task TTS-begin-timer-interrupt in ΦTTS;

33: Sporadic task finish interrupt:
34: Remove sporadic task from SQ;
35: Activate TTS-begin-timer-interrupt;

36: function SetTimers():
37: for each time-triggered computational task interrupt do
38: Set timer interrupt to Φτi + dTTS(t) with period Pτi ;
39: for each time-triggered communication task interrupt do
40: Set timer interrupt to Φτj + dTTS(t) with period Pκi ;

75

6.3. Scheduling Analysis of Time-Triggered Tasks by Using Slot-Shifting

SetTimers. The TTCP scheduler with slot-shifting has a run-time complexityO(|T|+|K|),
where |T| is the number of computational tasks and |K| is the number of communication
tasks. Moreover, Algorithm 8 requires additional memory to store additional interrupt
service routines and store the sporadic jobs in SQ.

6.3. Scheduling Analysis of Time-Triggered Tasks by Using
Slot-Shifting

This section presents the scheduling analysis of the proposed slot-shifting approach by
regarding time-triggered tasks. In order to feasibly shift time-triggered tasks, the scheduler
needs to ensure several properties. Algorithm 8 is analyzed in this section to guarantee
the feasibility of the proposed slot-shifting approach, which defines an upper bound of the
slot-shifting delay dTTS(t) for the delay according to (6.2). This upper bound dTTS,max is
necessary to ensure that computational tasks do not miss their deadline.

In a TTCP schedule, each computational task completes its execution at a certain
time, which is smaller than its relative deadline. Otherwise, the given TTCP schedule is
infeasible. The time between its completion and its deadline is called slack slackτi (6.3).
If the slot-shifting delay exceeds the slack dTTS(t) > slackτi of task τi, this task misses its
deadline. Lemma 3 proves that the bound dTTS,max is not exceeded.

Lemma 3. (Upper-bounded delay) In a statically-feasible TTCP scheduled system with
a Time-Triggered Server (TTS) and a many core platform with synchronized cores by
following the proposed slot-shifting approach (Algorithm 8), the time delay dTTS(t) between
the shifted time-triggered schedule and a never-shifted (normal) schedule cannot exceed
dTTS,max, thus

dTTS(t) ≤ dTTS,max. (6.4)

Proof. If all cores are synchronized, each core operates in one of the four states. If the
delay dTTS(t) cannot exceed dTTS,max in any state, then (6.4) holds. The condition holds
in all four states, as shown in the following.

• In the Normal state, the slot-shifting delay is by definition dTTS(t) = 0. Therefore,
the equation dTTS(t) ≤ dTTS,max holds.

• In the Shift state, Algorithm 8 preempts the sporadic task and changes to the Retain
state if the delay reaches its upper bound dTTS,max.

• The Retain state is only entered if the Shift state reaches dTTS(t) = dTTS,max. In
the Retain state, the delay does not further increase. Thus, the delay remains at the
the upper bound dTTS(t) = dTTS,max. Therefore, dTTS(t) ≤ dTTS,max holds.

• The Recover state only reduces the delay dTTS(t) by executing the time-triggered
tasks and skipping the time reserved for the TTS. Thus, if the other states fulfill
dTTS(t) ≤ dTTS,max, then dTTS(t) ≤ dTTS,max also holds for the Recover state.

The slot-shifting approach is feasible if the time-triggered tasks fulfill all of their real-
time constraints. Feasible time-triggered tasks satisfy the following conditions:

Definition 7. (feasibility of time-triggered tasks) The shifted schedule is feasible if

1. no pair of jobs or packets overlap (interfere) with each other,

2. no relative computation deadline Dτi is violated, and

3. no relative communication deadline Dκj is violated.

76

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

Note that the precedence constraints are implicitly ensured by the communication dead-
lines considered in (5.8). Based upon Definition 7, the slot-shifting approach needs to
ensure that the TTCP schedule remains feasible. Theorem 5 proves the feasibility of the
time-triggered tasks by using the proposed slot-shifting method.

Theorem 5. (time-triggered feasibility) In a statically-feasible TTCP scheduled system
with a TTS and a many core platform with synchronized cores by following the proposed
slot-shifting approach (Algorithm 8), the time-triggered tasks can be feasibly scheduled if

dTTS(t) ≤ dTTS,max = min
∀τi

(sτi). (6.5)

Proof. Lemma 3 proves that dTTS(t) ≤ dTTS,max. According to Definition 7, each of the
three conditions need to be proven.

Condition 1. The time-triggered jobs or packets do no overlap with each over if they
have no overlap in each of the four slot-shifting states, represented by the TTS-begin-

timer-interrupt in Algorithm 8. Note that all time-triggered task interrupts have the
same delay due to the synchronized cores.

• In the Normal state, no time-triggered task is delayed. Thus, the time-triggered
jobs do not overlap to each other since the given time-triggered schedule (without
slot-shifting) is feasible.

• The Shift state only executes sporadic tasks. Therefore, it has no overlap with
the time-triggered tasks. The end of this state is ensured by the TTS-end-timer-

interrupt.

• The Retain state is similar to the normal state, except that all the time-triggered
tasks are delayed by dTTS,max. Thus, the equally delayed time-triggered jobs do
not overlap with each other if the given time-triggered schedule is feasible. The
TTS-end-timer-interrupt ensures that the sporadic task stops its execution if a
time-triggered task has to be executed.

• In the Recover state no sporadic tasks are present. Accordingly, there is no overlap
between the sporadic tasks and the time-triggered tasks. The statically-given time-
triggered schedule is feasible if the slots of the TTS are not used for computation
or communication, which is ensured by design. The delay of the timer interrupts is
reduced by WTTS and thus the schedule skips the time reserved for TTS. According
to this, the time-triggered tasks cannot have any overlap if the given time-triggered
schedule is feasible.

Due to the on-line slot-shifting scheduler (Algorithm 8), time-triggered tasks cannot be
preempted by any other sporadic or time-triggered tasks. Thus, time-triggered tasks can-
not overlap with each other.

Condition 2. Proof by contradiction: Suppose a time-triggered computational task τv
can violate its deadline Dτv . Due to the non-preemptive scheduler, the time-triggered task
τv can only violate its relative deadline if the k∗-th job of task τv is started too late with

sτv ,k∗ +Wτv > aτv ,k∗ +Dτv , (6.6)

where sτv ,k∗ is the starting time and aτv ,k∗ is the arrival time of the k∗-th job of task
τv. According to Lemma 3, this job can be delayed at most by dTTS,max. Therefore, the
starting time is at most sτv ,k∗ = aτv ,k∗ + Φτv + dTTS,max, which gives

dTTS,max + Φτv +Wτv > Dτv . (6.7)

77

6.4. Scheduling Analysis of Sporadic Tasks by Using Slot-Shifting

Due to the definition of dTTS,max in (6.2), this results in

min
∀τi

(Dτi −Wτi − Φτi) > Dτv −Wτv − Φτv . (6.8)

(6.8) cannot be fulfilled and thus the deadline cannot be violated.

Condition 3. Proof by contradiction: Suppose a communication task κv can violate
its deadline,

sκv ,k∗ +W κv > aκv ,k∗ +Dκv . (6.9)

The absolute communication deadline is determined based upon the starting time of the
destination task τDSTv . If there is no relative variation (time shift) between sending and
receiving of κv, the deadline violation is only possible if the given TTCP schedule is
infeasible. Due to the feasibility of the TTCP schedule and the definition of the TTS, the
communication task κv is not allowed to transmit any data within the time slot of the
TTS.

In case of a time shift of the destination task τDSTv by dTTS(t) ≥ 0, the absolute
communication deadline is also shifted. With sκv ,k∗ = aκv ,k∗ + Φκv + dTTS(t1), (6.9)
results in

Φκv +W κv + dTTS(t1) > Dκv + dTTS(t2), (6.10)

where t1 and t2 are the injection time of the communication packet and the starting time
of the successor job of τDSTv . A feasible TTCP schedule ensures Φκv + W κv ≤ Dκv .
Therefore, the deadline violation of κv with dTTS(t1) ≤ dTTS(t1) is only possible, if the
already-given time-triggered schedule is infeasible.

For dTTS(t1) > dTTS(t1), the delay is only reduced step-wise by dTTS(t) ← dTTS(t) −
WTTS at the starting times of the TTS. If the dTTS(t) is reduced, it skips the statically-
defined time reserved for theTTS, which is not to be used by the communication tasks
unless the given TTCP schedule is infeasible. Therefore, κv can only violate its deadline
if an infeasible time-triggered schedule is given.

According to Theorem 5, the feasibility of the slot-shifting depends on (6.5). The feasi-
bility test of the given time-triggered schedule is presented in Section 5.2.

6.4. Scheduling Analysis of Sporadic Tasks by Using Slot-
Shifting

This section deals with the feasibility of sporadic tasks in a time-triggered system. Two
approaches are considered in this section. On the one hand, the TTS can be used to
handle sporadic tasks without slot-shifting named only using TTS. On the other hand,
the proposed slot-shifting approach can handle sporadic tasks by using the TTS slot, which
shortens the WCRT.

First, this section presents the scheduling analysis of one sporadic task σ0. In a typical
industrial application like an engine control, all sporadic tasks (angle-synchronous tasks)
are activated by one sporadic interrupt, which depends on the crankshaft position. There-
fore, the sporadic software units of the angle-synchronous tasks can be modeled by one
sporadic task, which consecutively executes all sporadic software units. The scheduling
analysis can be performed using a tool like Real-Time Calculus (RTC) [20] with given ser-
vice curves or by a given minimum inter-arrival time, which represents a simplified timing
analysis. Second, the problem of handling multiple sporadic tasks is discussed.

78

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

500

1,000

1,500

∆

β
l (

∆
)

βlTTS(∆) (Pσ0=1000)

βlshift(∆) (Pσ0=1000)

βlTTS(∆) (Pσ1=400)

βlshift(∆) (Pσ1=400)

Figure 6.3.: The service curves for handling of sporadic tasks are compared between the
slot-shifting approach and the non-shifting TTS. The gap between the curves
for the same period is the improvement of the slot-shifting approach.

Feasibility analysis of one sporadic task for given arrival curves

One sporadic task σ0 could be the angle-synchronous task from an engine control unit.
There exist tools to perform the scheduling analysis of a sporadic task called Real-Time
Calculus (RTC). RTC models sporadic tasks with arrival cures and uses services curves
for modeling the available resources. An arrival curve is the maximum computational
demand in a defined time interval ∆. The lower service curve βl(∆) of TTS is the minimum
accumulated service when the TTS is active (in the Shift and Retain states) in an interval
length ∆. The sporadic task can be modeled by arrival curves. In the following, the service
curves of the different approaches are presented.

RTC [20] requires a lower-bounded service curve βl(∆) and an upper-bounded arrival
curve. If the sporadic task only uses the TTS, the service of the periodic TTS is only
provided in time slots of the TTS, which results in

βlTTS(∆) = max

(⌊
∆

PTTS

⌋
WTTS,∆−

⌈
∆

PTTS

⌉
(PTTS −WTTS)

)
. (6.11)

In comparison to βlTTS(∆), the proposed slot-shifting approach provides more service in
the time by delaying time-triggered tasks. In the Retain state, a sporadic task has as much
service as in the Normal state. The service curve βlshift(∆) for the proposed slot-shifting
approach starts with a sporadic job of σ0, thus

βlshift(∆) =

{
max(∆− PTTS +WTTS, 0) if ∆ < PTTS + dTTS,max

βlTTS(∆− dTTS,max) + dTTS,max otherwise.
(6.12)

Figure 6.3 shows different service curves of βlTTS(∆) and βlshift(∆).

Feasibility analysis of one sporadic task for a given minimum inter-arrival time

Another way to analyze the feasibility of one sporadic task σ0 is to assume a minimum
inter-arrival time Pσ0 . The idea is to ensure a minimum time difference between two
sporadic jobs of a sporadic task σ0. Accordingly, this minimum time difference has to be
larger than the time to execute the sporadic job and recover delayed time-triggered tasks,
which is represented by dTTS. Thus, the situation to schedule another sporadic job is the
same.

79

6.4. Scheduling Analysis of Sporadic Tasks by Using Slot-Shifting

TT0 TT1 TT2 TT3
t

Normal schedule:

TTS TTS TTS TTS

With slot-shifting:

TT0 σ1 TT1 TT2 σ1TT3
t

WTTS PTTS

dTTS(t1)tfree twait

Wσ1

t1

V (dTTS)

Figure 6.4.: Parameters for analysing the slot-shifting approach. For simplicity, TT repre-
sents the time reserved for the time-triggered tasks σ1.

The worst case for σ0 is determined by the maximum response time of a sporadic job.
This happens, if the arrival time of a job of σ0 is briefly after the end of the time slot
for the TTS. For this arrival time, the sporadic jobs are blocked the maximum possible
time, before time-triggered tasks are delayed by the slot-shifting algorithm. The worst
case maximizes the worst-case response time (WCRT) Rσ0 of the sporadic task σ0, called
Rσ0 .

If only the TTS is used to handle the sporadic task σ0 without slot-shifting, the response
time RTTS

σ0 is similar to the TDMA response time analysis [94] and results in

RTTS
σ0 = Wσ0 + (PTTS −WTTS)

⌈
Wσ0

WTTS

⌉
. (6.13)

Equation (6.13) can be extended to the proposed slot-shifting. The parameters twait and
tfree represent additional time intervals, which depend on the arrival time of the sporadic
job, as shown in Figure 6.4. twait is the delay between the starting time and the arrival
time of the sporadic task σ0 if the sporadic task is blocked by time-triggered tasks. tfree is
the time interval between the arrival time of a sporadic job and the completion of the TTS
time slot if the sporadic task arrives in the time slot of TTS. During tfree the sporadic
job is executed, although the time-triggered tasks that are not started are delayed. The
parameters twait and tfree are interdependent. The time interval is twait = 0 if, and only
if, tfree < WTTS. The time interval is tfree = WTTS if, and only if, twait > 0. By further
assuming that the sporadic job arrives in the Normal state, this results in

Rσ0 = twait +Wσ0 + (PTTS −WTTS)

⌈
max(Wσ0 − dTTS,max − tfree, 0)

WTTS

⌉
. (6.14)

In the worst case, the parameters twait and tfree are defined as twait = PTTS −WTTS and
tfree = WTTS. Thus, response time Rσ0 results in the WCRT

RWC
σ0 = Wσ0 + (PTTS −WTTS)

⌈
max(Wσ0 − dTTS,max, 0)

WTTS

⌉
(6.15)

In addition to the response timeRσ0 , the recovering time V (dTTS) matters in the schedul-
ing analysis. The recovering time V (dTTS) is the time interval between the completion of
a sporadic job and the time when time-triggered tasks are not further delayed dTTS(t) = 0,
as shown in Figure 6.4. If a sporadic job delays a time-triggered task by dTTS, it takes
a certain amount of time to recover from the delay, called Recover state. V (dTTS) is an

80

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

integer multiple of the of the time-triggered slot, because the slot for the TTS is skipped
during the Recover state, which results in

V (dTTS) = (PTTS −WTTS)

⌈
dTTS(t)

WTTS

⌉
. (6.16)

The maximum recovering time Vmax is required if the slot-shifting delay reaches its upper
bound dTTS,max. Hence, the maximum recovering time Vmax = V (dTTS = dTTS,max) is
calculated according to

Vmax = (PTTS −WTTS)

⌈
dTTS,max

WTTS

⌉
. (6.17)

Based upon the response time Rσ0 of the sporadic job and the recovering time V (dTTS),
the feasibility of the approach can be proven by Theorem 6.

Theorem 6. (feasibility of sporadic task) In a statically-feasible TTCP scheduled system
with a TTS and a many core platform with synchronized cores by following the proposed
slot-shifting approach (Algorithm 8), a single sporadic task σ0 is feasibly schedulable if

(Rσ0 ≤ Dσ0) and (Rσ0 + V (dTTS) ≤ Pσ0) (6.18)

and if the sporadic task starts in the Normal state, where V (dTTS) is the recovering time
and Rσ0 the response time of σ0.

Proof. The sporadic task is feasibly scheduled if the real-time constraints are fulfilled
Rσ0 ≤ Dσ0 and the delayed schedule is fully recovered such that the state is Normal.

Suppose a sporadic task σ0, which generates sporadic jobs arriving at time aσ0,k, ∀k ∈
Z+

0 . The real-time constraints are fulfilled if the worst-case response time Rσ0 is upper-
bounded by Dσ0 . The worst-case response time Rσ0 is upper-bounded by (6.15), if the
sporadic job arrives in the Normal state.

The delayed schedule is fully recovered if two consecutive jobs arrive with a minimum
inter-arrival time larger than the time that it takes to fully execute a sporadic job and the
time to recover the schedule, thus Rσ0 + V (dTTS) ≤ Pσ0 must hold.

The feasibility of the sporadic task σ0 is primarily influenced by its relative deadline
Rσ0 ≤ Dσ0 . A sporadic task with a shorter response time is more likely feasible. Theorem 6
assumes that the sporadic job starts in the Normal state. This property is fulfilled if the
entire system starts in the Normal state, which is given by a TTCP scheduler.

Feasibility analysis of |S| ≥ 2 sporadic tasks for given minimum inter-arrival
times

In contrast to the feasibility of one sporadic task, a system may have |S| ≥ 2 sporadic
tasks with real-time constraints, where |S| is the number of sporadic tasks. Each sporadic
task σk needs to be scheduled on the time-triggered system. The proposed slot-shifting
approach is capable of handling several sporadic tasks if all tasks are activated by the same
trigger like angle-synchronous tasks in typical industrial applications. In general, sporadic
tasks are activated by different independent triggers.

These sporadic tasks compete with each other for the time reserved for the sporadic
tasks (slot-shifting capacity), which can be expressed by the delay dTTS(t). By default,
each sporadic task can use the slot sifting capacity in a first-come-first-service (FCFS)
policy. This results in the worst case that all other sporadic tasks have already depleted the

81

6.5. TTS Aware Phase Assignment

capacity immediately before a certain sporadic task arrives. This is extremely pessimistic
such that the worst-case response time (WCRT) could result as long as the response times
of using only the TTS for handling the sporadic tasks. For such cases, the slot-shifting
approach cannot shorten the worst-case response time (WCRT) of the sporadic tasks.

One approach to deal with multiple sporadic tasks is to select one sporadic task in
the ready queue, which is allowed to occupy the slot-shifting capacity. An engine control
application would select the angle-synchronous task, which has a high impact in contrast
to other sporadic tasks. The other sporadic tasks would be handled by the TTS without
shifting the time-triggered schedule. This ensures that the slot-shifting capacity is not
empty, if the selected sporadic task arrives such that the response time can be shortened.

Another approach is to establish an arbiter like a FP arbiter to limit the maximum
usable shifting capacity to certain tasks. Depending on the slot-shifting access policy,
the scheduling analysis needs to consider the maximum blocking time by other sporadic
tasks, which is presented by the literature [17, 24]. Another possibility is to establish a
generalized rate monotonic scheduling (GRMS) [86] to use the TTS.

6.5. TTS Aware Phase Assignment

This section presents the proposed approach to determine the time-triggered schedule
with respect to the Time-Triggered Server (TTS). In general, there exist approaches to
determine the phases of the TTCP schedule, as shown in Section 5.3. The TTS has
additional requirements because in this time slot no computational or communication task
is allowed to compute or communicate on any core. This section provides a computational
and communication phase assignment method that constructs a maximized time slot for
the TTS in terms of utilization, in which no computational or communication task τi, κj
occurs, respectively.

Overview of the phase assignment approach considering the TTS

The Time-Triggered Server (TTS) is not a usual time-triggered task because the TTS is
present on all cores of the manycore platform and during this time slot no communication
task is allowed to communicate. In addition, the TTS has to be defined such that:

• its period is minimized to increase the responsiveness of sporadic tasks;

• its utilization is maximized; and

• the other time-triggered tasks still hold their real-time constraints.

The known phase assignment methods requires a period Pτi ,Pκj for each time-triggered
task τi, κj . The constraints allow different periods PTTS for the TTS. The idea is to use
a selection of periods and determine the provided service for the sporadic tasks for each
period PTTS. If a period fulfills the real-time constrains of time-triggered and sporadic
tasks, the period can be selected. Thus, the proposed phase assignment algorithm assumes
a given period PTTS.

One simple solution is to use an existing phase assignment approach (Section 5.3) and
define the TTS as a time-triggered task. The slot length WTTS of the TTS can be de-
termined with a binary search by applying such a phase assignment algorithm. Such an
approach can easily be implemented, although the time complexity is high. Therefore, this
section presents a more efficient method.

The idea is to insert the TTS time slot in the TTCP schedule and avoid assigning
time-triggered tasks in this slot. The workflow uses an iterative algorithm to determine

82

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

Estimate
WCTRT Rκj

Analyze
T with

TTS aware
packing

Analyze
K

feasible?

Update
WCTRT Rκj

Set TTS
and shift κj

feasible

infeasible
q←q+1 q>I

Figure 6.5.: The workflow for assigning the phases of time-triggered tasks τi, κj by handling
the cyclic dependencies among T and K with respect to the TTS.

TTS TTS

timeline

0 PTTS 2PTTS
time

τ1 τ2 τ3

0

PTTS
virtual bins

τ1

τ2
τ3

Figure 6.6.: The phases of the time-triggered tasks are assigned in the timeline (left). The
timeline can be split into virtual bins (right). If the time-triggered tasks are
only placed at the beginning of these time intervals [k · PTTS, (k + 1) · PTTS),
k ∈ Z+

0 , the TTS is maximized, which is equivalent to the makespan problem.

computational phases, communication phases and the TTS time slots, as shown in Fig-
ure 6.5. In the first iteration the worst-case traversal response time (WCTRT) Rκj of each

communication task κj is estimated based upon the network traversal times W κj . Within
several iterations, the cyclic dependencies between the computational and communication
phases assignment converge to fixed point. During the computational phase assignment,
the TTS slot is not directly assigned. Instead, the phases Φτi are assigned with a packing
strategy, which implicitly optimizes the slot length WTTS for the TTS.

The communication phases Φκj are assigned according to Algorithm 6 from Section 5.3.
After the communication phase assignment, time slots for TTS are determined based upon
the unused time of the computational and communication tasks. In order to maximize
this time slot, communication phases Φκj are partly reassigned to increase the slot length
WTTS for the TTS. If phases and TTS slot assignment is feasible, the algorithm stops the
iteration and returns the phase assignment with the definition of the TTS. Based upon
the approach from Section 5.3, in the following only the two modified steps Analyze T
with TTS aware packing and Set TTS and shift κj are presented.

Analyze T with TTS aware packing

Computational phases Φτi are calculated such that the slot length WTTS of the TTS
is maximized. Due to the TTCP approach, each computational task τi reserves a time
window for its execution. The idea is to insert the TTS time slot in the TTCP schedule
and avoid assigning time-triggered tasks in this slot, as shown in Figure 6.6. The TTS is
greedily placed at the end of each interval [k · PTTS, (k + 1) · PTTS), k ∈ Z+

0 , which can
be represented by virtual bins. Thus, the phase assignment is related to the well-known
makespan problem, in which our objective here is to assign the phases of the time-trigger
tasks so that they are only executed in the interval [k ·PTTS, (k+ 1) ·PTTS). Accordingly,
if the virtual bins have available space, the time slot for the TTS is maximized. To solve

83

6.5. TTS Aware Phase Assignment

Algorithm 9 Heuristic algorithm for assigning the phases of the computational task set
T with TTS aware packing

Preparation of
virtual bins

Find valid phases by
packing tasks

to virtual bins

Input: T, Ωτ ;
Output: Phases Φτi and feasibility;

1: for each τi by following Ωτ do
2: feasible ← false; UΣ ← 0;

3: binb ← 0, ∀b ∈ {0, 1, . . . , Pτi
PTTS
};

4: for each τk with an allready assigned phase do
5: ` ← bΦτk/PTTSc;
6: bin` ← max(Φτk mod PTTS + Wτk ,bin`);

7: UΣ ← UΣ +
Wτk
Pτk

;

8: Ψ ← Φτi,min;

9: binb ← max
(

min(Ψ− b · PTTS, PTTS), 0
)

, ∀b;
10: while (Ψ < Pτi)and(feasible = false) do
11: feasible ← true;
12: FF size ← UΣ · PTTS/|C|;
13: s ← select bin with First-Fit bin packing to FF size;
14: if First-Fit bin packing fails then
15: s ← select bin with Worst-Fit bin packing;
16: Ψ ← bins + s · PTTS;
17: δΨ ← Resolve conflicts to already-assigned tasks with Φτi ← Ψ;
18: if δΨ 6= 0 then
19: Ψ ← Ψ + δΨ; feasible ← false;
20: bins ← bins + δΨ;
21: if Ψ > Pτi then
22: return “not feasible”
23: return “feasible”;

the makespan problem, heuristics exist to perform the packing, e.g. a worst-fit or first-fit
packing strategy.

Algorithm 9 packs the computational task into virtual bins. The feasibility analysis
in Section 5.2 determines whether a phase is Φτi valid. Our algorithm uses topological
ordering Ωτ for assigning the computational phases of T in a specific sequence. The order
Ωτ is sorted such that it satisfies the following conditions.

1. Tasks with a precedence relation are ordered first. (high priority)

2. Tasks with a lower period are ordered first.

3. Tasks with a larger number of predecessor tasks are ordered first.

4. Tasks with a larger WCET are ordered first. (low priority)

A condition could be violated to satisfy a condition with a higher priority, which are
indicated by smaller numbers.

Algorithm 9 assigns the phase for each computational task τi step by step. Overall, the
algorithm performs two consecutive segments named preparation of virtual bins and find
valid phases by packing the task to virtual bins.

In the first segment preparation of virtual bins, the algorithm defines some common
variables and sets up the virtual bins considering the already-assigned tasks. The number
of bins |binb| is determined based upon periods of computational tasks, with |binb| =
Pτi/PTTS. The for-loop iterates over all computational tasks τk, which are already assigned.

84

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

Algorithm 10 Set up TTS and reassign the phases of the communication task set K to
maximize the TTS utilization

Input: T, K and platform;
Output: TTS with ΦTTS, WTTS and changed Φκj

1: Θτ ← max∀τi

(
(Φτi mod PTTS) +Wτi

)
;

2: repeat

3: Θκ ← max∀κj

(
(Φκj mod PTTS) +W κj

)
;

4: Determine κ` with maximum Θκ;
5: Ψ ← dΦκ`/PTTSePTTS; b ← Φκ` ;
6: while (Ψ < Pκj)and(δκ 6= 0) do
7: δκ ← Resolve conflicts ∀κj with Φκ` = Ψ; {see Algorithm 7 in Section 5.3}
8: Ψ ← Ψ + δκ;
9: if Ψ ≥ Pκj then

10: Φκ` ← b; shifting ← false;
11: else
12: shifting ← true;
13: until (shifting= true)and(Θκ > Θτ)

14: Θκ ← max∀κj

(
(Φκj mod PTTS) +W κj

)
;

15: ΦTTS ← min(max(Θτ ,Θκ), PTTS);
16: WTTS ← PTTS − ΦTTS;

The parameter ` determines the bin, in which a task is assigned. The corresponding bin
size is set by the completion time of the assigned task τk to indicate that this time window is
already occupied. The parameter UΣ indicates the summation of the utilization of already-
assigned tasks. Considering the minimum computational phase Φτi,min from (5.14), the
computational task τi can only be feasibly be packed after that time. These bins are set
to their maximum bin size PTTS.

In the second segment find valid phases by packing the task to virtual bins, the algorithm
searches for a feasible phase Φτi of task τi. Based upon the prepared bins, a makespan
heuristic can propose a phase for Φτi , which is verified by the feasibility test. The parameter
FF size determines a limit for the first-fit heuristic to verify whether the computational
phase Φτi fit into a certain bin. If the first-fit heuristic does not find a valid phase due
to the limit FF size, the worst-fit heuristic is used to select one. The selected bin bins
determines the hypothetical phase Ψ, which is used to verify the computational phase
Φτi = Ψ. The parameter δΨ represents the time interval between the next free time
window and the hypothetical phase Ψ. If δΨ = 0, a valid phase is found; otherwise, the
selected bin bins is artificially filled by δΨ such that the next iteration can propose another
bin. This iteration with the while-loop continues until a valid computational phase is found
or the range for a valid phase is exceeded.

Set TTS and shift κj

The definition of the TTS slot and the refinement of Φκj is a step after the compu-
tational and communication phase assignment, as shown in Figure 6.5. The problem is
that communication tasks could be placed at any time, although during the TTS slot, no
communication task is allowed to communicate. The idea is to define the TTS slot based
upon computational tasks and shift the most limiting communication tasks κj to increase
the slot length WTTS. Algorithm 10 determines the TTS slot and is able to refine the
communication phases Φκj . The time slot of the TTS is at the end of its period PTTS,
so WTTS + ΦTTS = PTTS.

85

6.6. Evaluations

Furthermore, two parameters are defined named Θτ and Θκ, which represent a lower
bound for determining ΦTTS with respect to the computational or communication phases
Φτi ,Φκj . These are calculated with

Θτ = max
∀τi

(
(Φτi mod PTTS) +Wτi

)
, (6.19)

Θκ = max
∀κj

(
(Φκj mod PTTS) +W κj

)
. (6.20)

Due to the TTS aware computational phases assignment, Θτ is already optimized. Typi-
cally, communication tasks limit the slot length WTTS of the TTS such that Θκ > Θτ . Note
that the makespan approach is not applicable to the communication phase assignment, be-
cause communication tasks need to be scheduled immediately to reduce the WCTRT Rκj .
Communication phases are only refined if they limit the slot length WTTS of the TTS.

Algorithm 10 first determines Θτ . The repeat-until-loop performs the communication
phase refinement. With Θκ, the repeat-until-loop selects a communication task κ`, which
limits the TTS at most. For this critical communication task κ`, a hypothetical phase Ψ
is the temporary phase used to find a valid communication phase Φκ` .

The while-loop represents the iteration to find a valid communication phase Φκ` . If the
hypothetical phase Ψ is invalid, the delay δκ is added to Ψ to continue the searching (see
Algorithm 7 in Section 5.3), where δκ is the time between the hypothetical phase and the
next potential free time window.

In case of a valid communication phase Φκ` , the slot for this communication task κ`
is shifted and another critical communication task is investigated. The communication
phase refinement is complete if a critical communication task cannot be validly shifted or,
if Θκ ≤ Θτ . After the repeat-until-loop, the parameters of the TTS are determined by

ΦTTS = min(max(Θτ ,Θκ), PTTS) (6.21)

WTTS = PTTS − ΦTTS (6.22)

6.6. Evaluations

This section presents experiments to determine the limits of the slot-shifting approach
by considering industrial settings. The reduction of the response time Rσ0 by using the
proposed slot-shifting approach is quantified in this section.

6.6.1. Experimental Setup

This subsection describes the environment for running the experiments of one sporadic
task σ0. Considering typical industrial applications, sporadic tasks are activated by the
same sporadic interrupt. For the experiments, these tasks are modeled to one sporadic
task σ0.

The system generator uses the dependent system model generator from Section 5.4.1
as a base for further extensions. In addition, the sporadic task σ0 is defined as one of
three template sporadic tasks that represent typical industrial characteristics. In each
experiment, 100 randomized dependent system sets are generated. The TTS aware phase
assignment algorithm is applied to each of the randomized system sets. Based upon the
definition of the TTS slot, the WCTRT Rσ0 of the sporadic task is determined with and
without the slot-shifting approach.

For the definition of the TTS, there are several possibilities to generate the period PTTS

of the TTS. The algorithm sets the period PTTS such that the response time is minimized.

86

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

Table 6.1.: Sporadic Service Selection: A selection of different configurations of the TTS
depending on the period PTTS. Only one period of the TTS slot is selected.

Period PTTS /µs WTTS /µs UTTS dTTS,max/µs Vmax/µs

200 56 28.0% 1581 4032

250 79 31.6% 216 342

400 232 58.0% 318 168

500 297 59.4% 409 203

625 412 65.9% 455 213

1000 708 70.8% 790 292

1250 906 72.5% 1035 344

2500 1934 77.4% 2044 566

This could result in different periods for the slot-shifting approach and the sporadic task
handling by only using the TTS.

By default, the generator uses a 3 × 3 manycore platform with a NoC. There are
|T| = 500 computational tasks and |K| = 1, 500 communication tasks. The precedence rate
is set to p = 20%. The default computational utilization and communication utilization
is Uτ = 1 and Uκ = 1, which represent the maximum single-core or a bus utilization,
respectively.

6.6.2. Experimental Results

This subsection presents the experiments handling sporadic tasks by defining a TTS slot
for the TTCP scheduler.

Sporadic service curve selection

This experiment examines the problem to define the period PTTS for the TTS. In
addition, it visualizes the improvement of the slot-shifting approach. To define PTTS,
there is a trade-off between a short blocking time to start the sporadic execution and a
large slot length WTTS to have more time for executing the sporadic task σ0. Table 6.1
and Figure 6.7 show the possible configurations of PTTS and their resulting parameters.

Note that UTTS represents the TTS utilization with UTTS = WTTS/PTTS. For smaller
periods PTTS, the utilization UTTS is smaller because the packing heuristic adds more
pessimism for unused time windows of the time-triggered task. Due to the trade-off, no
period PTTS dominates. Thus, the selection of the period PTTS depends on the setting of
the sporadic task σ0.

In addition, Figure 6.7 visualizes our two approaches for handling the sporadic task,
namely slot-shifting and only TTS. The service curves are visualized for different periods
indicated by the number in the legend. The slot-shifting approach is marked with S. As
shown in Figure 6.7, the service curve of the proposed slot-shifting approach is greater
than or equal to the only TTS approach. The experiment illustrates that the slot-shifting
approach can increase the service for a certain amount of time, resulting in a shorter
response time Rσ0 for the sporadic task.

Example of TTCP schedule with the TTS

The TTS aware phase assignment influences the TTCP schedule. The TTS is like a
computational task, although it run synchronously on each core. During the time slot of the
TTS, no computational or communication tasks are allowed to compute or communicate.

87

6.6. Evaluations

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

1,000

2,000

3,000

4,000

time / µs

S
er
v
ic
e
C
u
rv
es
β
l

P250
P250-S
P400
P400-S
P500
P500-S
P625
P625-S

P1000
P1000-S
P2500
P2500-S

Figure 6.7.: Sporadic Service Selection: For a specific system set, the configuration of the
TTS with different periods results in different service curves βl. The number
indicates the period. S and the solid lines indicate that the proposed slot-
shifting approach is used. The dashed lines represent the approach by only
using the TTS for handling the sporadic task.

Table 6.2.: Load Examples: Different sporadic tasks to examine the slot-shifting approach

Task WCET Relative deadline Inter-arrival Worst-case response
name / µs / µs time / µs time reduction by

Fast 100 1000 5000 6 ◦ 10.9%
Async 1500 3000 30000 6 ◦ 25.4%
Heavy 3000 20000 20000 6 ◦ 20.7%

Figure 6.8 provides an example of the TTCP schedule, where the yellow area represents
the time slots for the TTS.

In this example, there are |T| = 100 computational tasks and |K| = 300 communication
tasks. The manycore platform comprises |C| = 9 cores with a NoC, in which the time
reservation of in the |L| = 42 links are visualized. The computational utilization is set to
Uτ = 4.5 and the communication utilization is Uτ = 2.5. Figure 6.8 shows the schedule of
each core Ck and link Ll in the system within the hyper-period H = 80ms.

Load examples

For this experiment, there are three different sporadic tasks named Fast, Async and
Heavy. The sporadic task represents different load example that could be used in industrial
application. Table 6.2 gives the corresponding timing parameters of the three sporadic
tasks. Note that the minimum period of time-triggered tasks is 10ms.

The sporadic task Fast has a short WCET and a short minimum inter-arrival time,
which represents a short but urgent sporadic task. The sporadic task Async represents
the angle-synchronous task from an engine control unit. This task has a short relative
deadline and a moderate WCET. The sporadic task Heavy has a large WCET, which
represents a high computing demanding task.

This experiment determines the WCTRT for each sporadic task, as shown in Figure 6.9.
Considering the selection period PTTS of the TTS, the shortest WCTRT is used in the

88

Chapter 6. Integration of Sporadic Tasks into Pure Time-Triggered Systems

C0 t
C1 t
C2 t
C3 t
C4 t
C5 t
C6 t
C7 t
C8 t

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms

L0 tL1 tL2 tL3 tL4 tL5 tL6 tL7 tL8 tL9 tL10 tL11 tL12 tL13 tL14 tL15 tL16 tL17 tL18 tL19 tL20 tL21 tL22 tL23 tL24 tL25 tL26 tL27 tL28 tL29 tL30 tL31 tL32 tL33 tL34 tL35 tL36 tL37 tL38 tL39 tL40 tL41 t

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms

Figure 6.8.: Example of the TTS aware TTCP schedule. The yellow areas in each timeline
represent the time slots for the TTS on the core Ck and link Ll schedule, in
which no time-triggered task is allowed to compute or communicate.

evaluation. Note that the plot in Figure 6.9 shows normalized response times to compare
the different load examples. The corresponding relative deadlines are marked as dashed
lines to show whether the sporadic task can reach its deadline. The proposed slot-shifting
approach always has a shorter response time than only using the TTS.

Given that the slot sifting approach always increases the responsiveness of the sporadic
task, it can better utilize the system. In general, the worst-case response time (WCRT)
Rσ of the sporadic task could be reduced by up to 25% depending on the load, as shown in
Table 6.2. Note that the average reduction of the response time depends on the definition
of the sporadic task.

89

6.6. Evaluations

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

relative deadline Fast

relative deadline Async

deadline Heavy

Computational utilization Uτ

N
or

m
al

iz
ed

re
sp

on
se

ti
m

e
R
σ

P
T
T
S

Fast - slot-shifting
Fast - only TTS
Async - slot-shifting
Async - only TTS
Heavy - slot-shifting
Heavy - only TTS

Figure 6.9.: Load Examples: The worst-case response times are presented for different
sporadic tasks Fast, Async and Heavy, as shown in Table 6.2. The response
times are normalized to their respective period. The computational utilization
of the time-triggered part of the system is varied. The dashed lines represent
the relative deadlines.

90

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

7. Exploring the Typical Execution Time
Scheduling Approach

In contrast to the TTCP scheduling approach, this chapter assumes that the inter-task
communication can be modeled as a part of the execution time, whereby tasks can be
scheduled independently. The proposed approach exploits different execution times of the
same task, which are scheduled on a multicore platform. The author has already published
the primary results of this chapter [32].

7.1. Introduction

Typical industrial applications comprise tasks that communicate data among each other.
Communication requires additional time, which needs to be considered. The literature
[17, 24] usually includes data communication in the worst-case execution time (WCET)
to derive independently schedulable tasks. The WCET is a safe upper bound on the
execution time of a particular task, which takes the hardware effects into account. Thus,
the scheduler is able to schedule independent tasks without considering the communication.
This chapter uses the independent sporadic task model, as given in Section 3.2.

For the scheduling analysis, it is essential to know a safe upper bound on the execution
time, although it is a complex problem to derive a tight WCET. There exist different tools
and approaches to derive the WCET of a specific task scheduled on a specific platform.
The basic approach is to decompose a task into basic blocks, which are atomic operations of
the software, for which an execution time can be derived. A graph describes the execution
order of basic blocks, in which for example if or while statements define branches and loops
in the graph. This graph is analyzed such that all possible paths are examined, while the
path that requires the most execution time defines the WCET. In addition, the WCET
analysis requires a hardware model to determine the execution times for each basic block,
the latencies of memory requests and other hardware-dependent times. For instance, tools
like aiT [29] or BoundT [40] can derive the WCET as an upper bound to the maximum
execution time.

For a multicore platform, the WCET estimation becomes more pessimistic because the
communication to other cores also needs to be modeled in the WCET. In the worst
case, this communication becomes interfered by communications of all other cores, which
results in a larger WCET. The best-case execution time (BCET) remains the same,
because communications are assumed to interfere with each other. Another possibility to
determine the WCET of a task is to run the given task on the desired platform and measure
its execution time. The problem with run-time measurements is that no guarantee exists
for the worst case, because usually too many combinations of software and hardware states
exist for a comprehensive test. Therefore, measured execution times do not represent a
safe upper bound. Figure 7.1 visualizes the problem of determining the WCET of a task.

If the gap between the best-case and the worst-case execution time is large for a task,
it typically completes its execution much earlier than its WCET. A typical execution
can be defined based upon a percentile, e.g. 90%, 99% or up to 100%, of the meassured
execution times. However, the platform reserves resources (like processing time) for tasks

91

7.1. Introduction

BCET

Minimal
observation

Maximal
observation

Measurements

WCET

Safe upper bound
of the WCET

Execution
time

P
ro

b
ab

il
it

y

Figure 7.1.: The difficulty in obtaining the worst-case execution time (WCET). Note that
there also exists a lower bound for the execution time called best-case execu-
tion time (BCET). Image adapted from [96].

that are only used in the worst case. In typical executions, these reserved resources are not
used, which results in low resource utilization. For example, suppose a multicore platform
with |C| = 2 cores with a bus architecture to handle inter-core communication. In order to
ensure a safe system behavior in the worst case, both cores are required, although in typical
cases (e.g. 90%) of executions only one core is required. Thus, both cores are mostly used
with a low utilization. This is a waste of energy, because two cores are regularly on power.

Multiple cores open a new possibility to deal with such behavior. The proposed scheme
is to use mostly one core and use another core to deal with the worst case, which is only
rarely used. This approach can also handle industrial applications, which exceeds a single-
core platform in the worst case. However, considering typical cases, a single-core platform
is sufficient to handle the application.

This chapter introduces a scheme that exploits the typical-case execution times of a task
on two cores. The idea is to use separated cores for the typical-case execution part and the
worst-case execution part of a task such that one core can handle most task executions.
Thus, one core is highly utilized to handle the typical cases of the task execution, whereas
another core is used to handle with the rare worst-case workloads.

Based upon this scheme, the problem is to derive a schedule by following the scheme
for each core such that the real-time constraints of the independent tasks hold. Industrial
applications often use a Fixed-Priority (FP) scheduler. The FP scheduling policy schedules
the task with the highest priority first.

Example of the WCET estimation on a multicore platform

Suppose a multicore platform with two cores, a bus with a priority-based arbitration and
a common shared resource like an external communication controller or a shared memory,
as shown in Figure 7.2. In this example, each task comprises two parts. The first part is a
computation for 2ms and the second part is a communication using the shared resource for
1ms. During the computation, the cores clearly do not interfere with each other. During
the communication part, a task can be blocked by another higher-priority communication.

In the worst case, the communication is blocked by all other higher-priority communica-
tions from the other core. Under the assumption that the communication is a part of the
WCET, this blocking can increase the WCET on a multicore platform. In contrast to a
single-core platform, the communications are performed in a sequential manner such that

92

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

bus

Core C0

σ0 σ2

σ4

Core C1

σ1 σ3

σ5

Shared
resource

(other core)

Task Bus Core Pσk WCET WCET
priority /ms (single-core) (multicore)

σ0 0 (high) C0 15 3ms 3ms
σ1 1 C1 15 3ms 4ms
σ2 2 C0 15 3ms 4ms
σ3 3 C1 15 3ms 5ms
σ4 4 C0 15 3ms 5ms
σ5 5 (low) C1 15 3ms 6ms

Figure 7.2.: WCET estimation on a multicore platform: Several sporadic tasks run on
different cores. Each sporadic task computes for 2ms and then communicates
for 1ms with the shared resource. For independent tasks, the communication
is part of the WCET. On a single-core platform, the sequential nature of
a task execution ensures no access conflicts to the shared resource. On a
multicore platform, the access to the shared resource can be blocked by all
higher-priority messages in the worst case. Thus, if the the communication is
modeled as part of the WCET, it is increased on a multicore platform.

no interference in the communication is possible. Therefore, the gap between the BCET
and the WCET increases on a multicore platform such that typically the reserved time
for the worst case is only rarely needed. The proposed approach exploits this gap and
schedules the typical- and the exceptional-case execution parts on different cores.

Related work

The model of independent tasks is commonly used in the literature [17, 24, 59]. The
proposed approach of separating typical-case executions from worst-case executions is to
our knowledge the first one, where multiple cores are exploited to separate these two parts
of a task. Quinton et al. [79] exploit the gap between the typical-case execution time and
the worst-case execution time by considering overloaded situations. Rather than reserving
another core for handling the worst case, they do not provide a safe guarantee for the
worst case such that all deadlines can be satisfied. In general, the scheduling analysis can
use statistical or probabilistic methods [28, 60], although these methods cannot provide a
guarantee satisfying real-time constraints.

The proposed approach can be modeled as a special case of a real-time system that needs
to meet its end-to-end deadlines [9,41]. The two parts of typical- and worst-case executions
can be modeled as two tasks with a sequencing constraint and different dedicated core
assignments. For such a problem, the execution of a task instance has to follow the given
sequence of processors. Bettati and Liu [9] propose a strategy to handle a sequence of tasks
under a Fixed-Priority (FP) scheduler, in which they calculate the relative deadline as a
fixed portion of the period for each task. This approach is not effective in our case, which is
also presented in this chapter. Hong et al. [41] use an EDF scheduling policy and calculate
relative deadlines by an on-line algorithm. Considering industrial application, the fixed
priory scheduling approach is widely used [5], because it has a low on-line overhead.

Melani et al. [65] propose separating the memory access phase and the computing phase
to different cores. Thus, the worst case can be improved by avoiding contention on shared
resources. Their proposed approach cannot handle tasks with different computing de-

93

7.2. Scheme for Exploiting the Typical- and Worst-Case Execution Time

mands, in which a single-core platform lack sufficient computing capabilities for the worst-
case execution of tasks.

7.2. Scheme for Exploiting the Typical- and Worst-Case Ex-
ecution Time

In this section, a scheme is introduced to handle different execution parts of a task. The
idea to split each sporadic task σk into two parts, namely the typical-case execution part
and exceptional-case execution part. Thus, the WCET Wσk of a sporadic task can also

be split into two parts, named the typical-case execution time WTyp
σk and exceptional-case

execution time WExc
σk

with

WTyp
σk

+WExc
σk

= Wσk . (7.1)

There are several possibilities to define the typical-case execution time WTyp
σk . One pos-

sibility is to split the task according to a percentile (e.g. 95%) of its messured execution
times that would handle the most cases. Another possibility is to define the typical-case
execution time WTyp

σk , based upon the maximum observed execution time. Thus, the dif-
ference between the maximum measured execution time and the safe upper bound by a
WCET analyzer can be handled by the proposed approach.

After defining the typical-case execution time WTyp
σk , this time becomes a fixed time

bound, at which the task σk stops its execution on core C0 and continues on core C1.
Therefore, in most cases a task completes its execution before its typical-case execution
time. Only in rare cases, a task σk need additional execution time, although this time is
upper-bounded by its WCET Wσk .

Considering a multicore platform with |C| = 2 cores and a bus architecture, the scheme
is to execute all typical-case execution parts on one core and all worst-case execution part
on another core. In addition, each core schedules its assigned sporadic tasks σk according to
a Fixed-Priority (FP) scheduling policy. Thus, typical-case execution parts are executed
on core C0 under a Fixed-Priority (FP) scheduler. Core C1 executes exceptional-case
execution parts of sporadic tasks σk, which rarely occur due to the definition of the typical
cases.

If a task is split into two parts executed on different cores, the system needs to support
task migration. In particular, a job of a sporadic task σk migrates from core C0 to core
C1 if the time exceeds its typical-case execution time WTyp

σk . The migration overhead can
be modeled as part of the exceptional-case execution time.

In order to guarantee a feasible execution, the time to start the exceptional-case exe-
cution part is defined. The time between the arrival of the typical-case execution part
and the exceptional-case execution part of a sporadic task σk is referred to the relative
offset Oσk . Figure 7.3 provides an example of two sporadic tasks visualizing the migration
overhead and the relative offset Oσk . If exceptional-case execution parts of a sporadic task
σk are greedily activated, the inter-arrival time of two consecutive executions could be
smaller than its period. This could cause an incorrect response time analysis on core C1.
Therefore, exceptional-case execution part arrive at aσk,` + Oσk , where aσk,` is the arrival
time of the `-th job of sporadic task σk.

Thus, the relative offset Oσk represents a fixed offset to the arrival time of a sporadic
job to activate the exceptional-case execution part. The offset is defined by the worst-case
response time (WCRT) RTyp

σk of the typical-case execution part of σk, thus

Oσk = RTyp
σk

. (7.2)

94

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

time
Core C0 σ0σ1

WTyp
σ1

time
Core C1 σ1

Oσ1 WExc
σ1

migration overhead

Figure 7.3.: An example of two tasks: σ1 needs unusual plenty of time for its execution.
After exceeding the typical-case execution time WTyp

σ1 , σ1 migrates to core C1.
Accordingly, σ0 is able to be executed on C0. Note that the exceptional part
of task σ1 is not allowed to start before the relative offset Oσ1 . The relative
offset is the time between the arrival of the typical and the exceptional part
of the task. The arrows represent the arrival and the deadlines, respectively.

For a feasible schedule, the relative offset Oσk could also be defined with larger values,
although this would result in larger response times for the sporadic task σk. Hence, the
task set would be harder to be feasible.

Due to the FP scheduling policy of each core, each sporadic task part has a unique
priority, i.e. no task has the same priority as another one. Thus, the typical-case execution
part and the exceptional-case execution part can have different priorities. On core C0, the
priority for a typical-case execution part is defined as πC0

σk
of a sporadic task σk. Similarly,

πC1
σk

represents the priority for an exceptional-case execution part of σk. The unique
priorities are indicated by integer numbers, where each number exists only once in the πC0

σk
and πC1

σk
. A lower number πC0

σk
< πC0

σl
indicates a higher priority, whereby task σk has a

higher priority than task σl.

7.3. Priority Assignment Problem

This section defines the problem of this chapter. In addition, a straight forward ap-
proach is shown that handles typical- and exceptional-case execution parts of sporadic
tasks ineffectively.

Problem

Under a Fixed-Priority (FP) scheduler on each of the two cores and an independent
sporadic task set S with |S| sporadic tasks σk, the so-called Real-Time Scheduling for
Exploiting the Typical- and Worst-Case Execution Times (REETIC) problem is to

• define the priority of each task part πC0
σk

, πC1
σk

, and

• define a relative offset Oσk to start the exceptional-case execution part of each task
σk

such that all real-time constraints are satisfied.

Considered tasks models for determining the priority assignment

Based upon this scheme, the major problem is to define the priority assignment of each
task part. This chapter uses three sightly different task models namely:

• Frame-based tasks are independent sporadic tasks, where periods are identical Pσk =
Pσ and relative deadlines are implicit Dσk = Pσ, ∀σk ∈ S.

• Frame-based tasks with constraint deadlines are independent sporadic tasks, where
periods are identical Pσk = Pσ and relative deadlines are constraint Dσk ≤ Pσ,
∀σk ∈ S.

95

7.3. Priority Assignment Problem

• Independent sporadic tasks are defined in Section 3.2.

These different task models are use to find methods for the priority assignment.

Same priority assignments on both cores

In this paragraph, first frame-based tasks are assumed. A simple and straight forward
approach is to assign the priorities of typical- and exceptional-case execution parts with
same priority πC0

σk
= πC1

σk
, ∀σk ∈ S. The priorities are assigned according to the index

k = πC0
σk

= πC1
σk

of the frame-based task σk. Thus, frame-based tasks with a larger index k
have a lower priority. Clearly, if the relative deadline exceeds the typical- or exceptional-
case execution part, there cannot exist a feasible priority assignment, whereby

|S|−1∑
l=0

WTyp
σl
≤ Dσ and

|S|−1∑
l=0

WExc
σl
≤ Dσ must hold, (7.3)

where |S| is the number of tasks in the set S and Dσ is the common relative deadline for
the frame-based tasks.

The worst case occurs if all tasks require their WCET Wσk . Thus, each task executes
its exceptional-case execution part completely. In addition, by considering the lowest
priority task σ|S|−1, the worst-case response time (WCRT) occurs if all tasks release their
exceptional-case execution part at almost the same time, as shown in Figure 7.4. For
frame-based tasks, the same priority assignment for each core causes a large WCRT for the
task with the lowest priority σ|S|−1. Figure 7.4 provides an example of three frame-based
tasks, where tasks are preempted shortly before they complete their typical-case execution
part. Therefore, the WCRT RTyp

σk with the same priority πC0
σk

= πC1
σk

of a frame-based task
σk can be calculated according to

Rσk =

|S|−1∑
l=0

WTyp
σl

+

|S|−1∑
l=0

WExc
σl

=
∑
∀σl∈S

(WTyp
σl

+WExc
σl

) (7.4)

Based upon this response time analysis, the specific priority assignment does not matter,
because the summation also represents the worst case for a single-core platform. Thus, for
this priority assignment, a multicore platform cannot effectively use more than one core.

σ0

σ1Core C0

time
σ2

σ0

σ1Core C1

time
σ2

Rσ2

Figure 7.4.: Example of the worst case if typical- and exceptional-case execution parts are
scheduled with the same priority. Task σ0 has the highest priority and task σ2

has the lowest priority. Thus, the resulting WCRT Rσ2 for σ0 is large. Note
that a dashed line represents a preemption of a sporadic task with a higher
priority.

96

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

In addition, this response time analysis is tight, i.e. if the analysis returns a feasible result,
no feasible solution exists.

Another possibility is to apply the approach from Bettati et al. [9] to solve the REETIC
problem. Suppose sporadic tasks with implicit deadlines Dσk = Pσk , ∀σk ∈ S. For this
approach, further parameters are defined, namely a minimum utilization Umin, a maximum
utilization Umax and a constant λ. The minimum and maximum utilization are defined

as Umin = min{
∑

σk∈S
WTyp
σk
Pσk

,
∑

σk∈S
WExc
σk
Pσk
} and Umax = max{

∑
σk∈S

WTyp
σk
Pσk

,
∑

σk∈S
WExc
σk
Pσk
}.

The constant λ is used to define the relative offset for releasing the exceptional-case exe-
cution part with Oσk = λPσk . They use a Rate Monotonic (RM) scheduler to define the
priorities of the sporadic tasks and hence a task with a lower period has a higher priority.
The schedulability test can be performed based upon the sporadic task utilization.

If Umin ≤ 0.5, Umax ≤ |S|((2(1 − Umin))1/|S| − 1) + Umin and by setting λ or (1 − λ) to
Umin, the resulting schedule is feasible for the REETIC problem. These two inequalities
can be enforced by

∑
σk∈S

WTyp
σk +WExc

σk

Pσk
≤ |S|((2(1− Umin))1/|S| − 1) + 2Umin ≤ 1, (7.5)

where the ≤ 1 comes from the fact that |S|((2(1−Umin))1/|S| − 1) + 2Umin is a decreasing
function with respect to |S| and an increasing function with respect to Umin.

As a conclusion, their approach [9] to set the relative offset Oσk of the sporadic task σk
cannot solve the REETIC problem. In the following, a different priority for each part of
a task σk is assumed to improve the WCRT. The approach employing the same priorities
for the typical- and exceptional-case execution part of the task is used as a comparison in
later sections.

7.4. Approaches for Different Task Models

As previously defined, this chapter explores three different task models namely Frame-
based tasks, Frame-based tasks with constraint deadlines and sporadic tasks. The idea is
to increase the complexity of the problem step by step to derive solutions for a complex
problem. For each task model, the scheduling analysis and different priority assignment
methods are presented.

7.4.1. Priority Assignment for Frame-Based Tasks

First, this chapter considers a frame-based task model in which all tasks have the same
period Pσk = Pσ and implicit releative deadlines Dσk = Pσ, ∀σk ∈ S. For this task
model, the limitation of the feasibility comes by the maximum WCRT of all frame-based
tasks. Considering only frame-based tasks, the REETIC problem represents a so-called
two-staged flow-shop problem, which is a well-known scheduling problem [75]. Therefore,
the priority assignment problem can be solved by applying methods of flow-shop problems.

Two-stage flow-shop problem

A flow-shop problem is a well-known problem [75] that comes from the traditional pro-
duction problem where different machines in a manufactures need to be utilized [77]. Thus,
a flow-shop is an abstract name to schedule different jobs on different machines. A staged
flow-shop describes when a job has to be scheduled in a specified order for different ma-
chines. Therefore, these jobs can be considered as a sequence of sub-jobs, which need to
be scheduled in a predefined order on given machines. A two-staged flow-shop problem has

97

7.4. Approaches for Different Task Models

two given machines upon which jobs have to be processed, first on one machine and then
on another.

The REETIC problem can be represented by a two-staged flow-shop problem, where the
two machines are the cores C0, C1 and frame-based tasks represent flow-shop jobs. The
first stage of a job represents the typical-case execution time WTyp

σk and the second stage
represents the exceptional-case execution time WExc

σk
. The difference from the two-staged

flow-shop problem is the periodicity of frame-based tasks, although it is simple to assume
that the execution order from flow-shop jobs can be used to define priorities of frame-based
tasks. Thus, tasks that are ordered first, have a higher priority.

The objective in a flow-shop problem is to minimize the makespan, which is the maxi-
mum completion time of all jobs if all jobs arrive at the same time. Thus, the makespan
represents the maximum WCRT of all tasks in S. The optimal approach to solve this
two-staged flow-shop problem by using frame-based tasks is to use an approach called
Johnson’s sequence [44]. In the following, this approach is rephrased to the notation of the
REETIC problem. Johnson’s sequence [44] is defined as an order of jobs of a two-stage
flow-shop problem. For frame-based tasks, all jobs are assumed to arrive at the same time.
Thus, Johnson’s sequence can be defined as follows:

The frame-based tasks are split into two sets S1 and S2. The first set S1 contains all
frame-based tasks in which the typical-case execution time is smaller than or equal to the
exceptional-case execution time WTyp

σk ≤ WExc
σk

. The second set S2 contains all frame-
based tasks in which the typical-case execution time is larger than the exceptional-case
execution time WTyp

σk > WExc
σk

. In Johnson’s sequence, all frame-based tasks from the first
set S1 are ordered before the tasks in the second set S2. In set S1, the tasks are ordered
in a non-decreasing manner of WTyp

σk . In the other set S2, the tasks are ordered in a
non-increasing manner according to WExc

σk
.

S1 = {σk ∈ S|WTyp
σk
≤WExc

σk
}

S2 = {σk ∈ S|WTyp
σk

> WExc
σk
}.

Note that the original flow-shop scheduling problem was focused on the scheduling of
the first machine and thus the scheduling policy for the second machine can be any kind
of workload-conserving policy.

Lemma 4. (Optimality Johnson’s sequence) Johnson’s sequence is optimal for the two-
stage flow-shop problem to minimize the makespan.

Proof. This has been proven in [44].

Priority ordering and schedulability analysis

Based upon Johnson’s sequence, the priorities of the frame-based tasks can be defined.
The idea is to assign tasks that are earlier ordered with higher priority on the first core
C0, which handles the typical-case execution parts. The priorities of the exceptional-case
execution parts for the second core C1 are inverse to the first core C0.

Suppose the frame-based tasks are ordered according to Johnson’s sequence, i.e. the
index k of a task σk is its order in Johnson’s sequence. Thus, the proposed approach to
determine the priorities is as follows:

πC0
σk

= k, ∀σk ∈ S (7.6)

πC1
σk

= |S|+ 1− k, ∀σk ∈ S. (7.7)

98

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

σ0

σ1Core C0

time
σ2

σ2

σ1Core C1

time
σ0

Rσ2

Figure 7.5.: Example of the worst case, if typical- and exceptional-case execution parts
are scheduled with different priorities. Task σ0 has the highest priority and
task σ2 has the lowest priority. The resulting WCRT Rσ2 for of the improved
priority assignment is smaller.

This priority assignment can easily be implemented by an algorithm with a run-time
complexity of O(|S| log |S|), where |S| is the number of frame-based tasks. This run-time
complexity is dominated by the sorting of frame-based tasks. Figure 7.5 shows an example
of the resulting WCRT Rσk , which are smaller in comparison to the simple approach if
the typical- and exceptional case execution parts have the same priority.

With Lemma 4, the necessary condition for the scheduling analysis can be defined.

Lemma 5. (Necessary condition frame-based tasks) Suppose that the tasks are indexed
according to the Johnson’s sequence for the corresponding two-stage flow-shop problem. If

∃σk ∈ S, such that

k∑
l=0

WTyp
σl

+

|S|−1∑
l=k

WExc
σl

> Dσ, (7.8)

then there is no feasible solution for the REETIC problem, where Dσ is the common relative
deadline.

Proof. A special case is considered, in which all the tasks arrive at time 0, whereby the
proof shows that the condition in (7.8) leads to the non-existence of feasible solutions.
This proof is achieved by contradiction. Suppose a feasible solution exists. Based upon
Lemma 4, it means that the resulting makespan of the Johnson’s sequence for the cor-
responding two-stage flow-shop problem is less than or equal to Dσ. Suppose that the
second machine continues to execute after σk∗ finishes its execution on the first machine
in the schedule based upon the Johnson’s sequence for of the two-stage flow-shop problem.
The makespan is defined by task σk∗ . Accordingly,

k∗∑
l=0

WTyp
σl

+

|S|−1∑
l=k∗

WExc
σl
≤ Dσ.

Moreover, for any task σk in S, this is

k∑
l=0

WTyp
σl

+

|S|−1∑
l=k

WExc
σl
≤

k∗∑
l=0

WTyp
σl

+

|S|−1∑
l=k∗

WExc
σl
≤ Dσ.

Therefore, this contradicts to (7.8). As a result, there is no feasible solution for such a
case.

99

7.4. Approaches for Different Task Models

Based upon the defined priority assignment (7.6) and (7.7), the WCRT RTyp
σk for the

typical-case execution part can be defined as

RTyp
σk

=

k∑
l=0

WTyp
σl

. (7.9)

With this response time, the relative offset Oσk = RTyp
σk can be defined according to (7.2).

The following lemma presents the feasibility test by using the proposed priority assignment
approach.

Lemma 6. (Feasibility test frame-based tasks) Suppose that the priorities of the frame-
based tasks on C0 are defined to Johnson’s sequence and πC1

σk
= |S|+ 1− k for all σk ∈ S.

Moreover, let Oσk be
∑k

l=0W
Typ
σl . If

k∑
l=0

WTyp
σl

+

|S|−1∑
l=k

WExc
σl
≤ Dσ, ∀σk ∈ S, (7.10)

then the priority assignment is guaranteed to be feasible for the REETIC problem.

Proof. According to the critical instant theorem in [59], releasing all the higher-priority
tasks at time 0 together with task σk results in the longest (worst-case) response time for
task σk. The worst-case response time (WCRT) RTyp

σk of task σk on C0 is

RTyp
σk

=
k∑
l=0

WTyp
σl

, (7.11)

as
∑|S|−1

l=0 WTyp
σl ≤ Dσ has been implicitly assumed.

Based upon the proposed scheme in Section 7.2, if task σk has an instance arriving at
time t and it requires the second core for executing the exceptional case, the corresponding
instance for the task on the second core will be activated on t+RTyp

σk . Moreover, according
to the scheme, the resulting job arrivals of task σk on C1 will still have a minimum inter-
arrival time equals to Pσ ≥ Dσ. Therefore, again according to the critical instant theorem
and the definition πC1

σk
= |S| + 1 − k, the worst-case response time RExc

σk
of task σk on

the second core (the finishing time minus the arrival time of the exceptional case on the
second core) is

RExc
σk

=

|S|−1∑
l=k

WExc
σl

. (7.12)

As a result, the overall worst-case response time WCRT (σk) of task σk by considering
the exceptional case on both cores is

Rσk = RTyp
σk

+RExc
σk

=

k∑
l=0

WTyp
σl

+

|S|−1∑
l=k

WExc
σl
≤ Dσ, (7.13)

where the inequality comes from the statement in (7.10) in the theorem. Therefore, if (7.10)
holds, the priority assignment provides a feasible solution under the proposed scheme in
Section 7.2.

Based upon Lemma 6, it can be proven that this priority assignment is optimal i.e. if
there exists a feasible priority assignment the proposed approach determines a feasible
solution.

100

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

Theorem 7. For frame-based real-time tasks, it is optimal for the REETIC problem to
assign the priorities, i.e. πC0

σk
= k, on C0 based upon the corresponding Johnson’s sequence,

πC1
σk

= |S|+ 1− k for σk ∈ S, and Oσk =
∑k

l=0W
Typ
σl . Together with the priority ordering,

the schedulability test in (7.10) requires O(|S| log |S|) time complexity.

Proof. The first part comes directly from Lemmas 5 and 6. After the priority ordering is
done, to verify whether (7.10) holds with run-time complexity of O(|S|). Therefore, the
time complexity is dominated by the complexity O(|S| log |S|) for priority ordering.

7.4.2. Priority Assignment for Frame-Based Tasks with Constraint Dead-
lines

This section deals with the priority assignment problem of frame-based tasks with con-
straint deadlines Pσk = Pσ, Dσk ≤ Pσ, ∀σk ∈ S.

One approach is to use the same strategy as for frame-based tasks with implicit deadlines,
as presented in the previous section. The priority assignment according to Johnson’s
sequence can be modified for constrained deadlines. Consequently, the schedulability test
(7.10) from Lemma 6 needs to be modified to

k∑
l=0

WTyp
σl

+

|S|−1∑
l=k

WExc
σl
≤ Dσk , ∀σk ∈ S, (7.14)

Based upon (7.14), constraint relative deadlines Dσk influence the feasibility. Thus,
another priority assignment can improve the feasibility, e.g. suppose an urgent task with a
short relative deadline Dσk , which should have a higher priority. The idea is to first assign
the priority of each typical-case execution part of a task σk on core C0. The priority
assignment on core C0 changes the worst-case response time behavior on the second core
C1. Hence, the relative offset Oσk depends on the priority assignment of the first core C0.

The proposed approach defines an effective relative deadline Dσk for the typical-case
execution parts of each task σk with respect to the relative offset Oσk , as defined with

Dσk = Dσk −Oσk (7.15)

With Dσk , the exceptional-case execution part of σk on core C0 can use an optimal
priority assignment approach, i.e. the Deadline Monotonic (DM) scheduling policy [55].
Thus, the proposed approach is to use the DM scheduling policy to determine priorities of
exceptional-case execution parts on core C1 with the proposed effective relative deadlines
Dσk . For all task pairs σk, σl, the priorities are defined such that πC1

σk
< πC1

σl
holds, if

Dσk < Dσl .

The relative offset Dσk depends on the priority assignment of core C0. Accordingly, our
problem is to define the priorities for the typical-case execution parts on core C0. One
approach is to go through all priority assignments with an exhaustive search, although this
takes factorial time complexity of O(|S|!), where |S| is the number of sporadic tasks. Thus,
the proposed approach uses a heuristic algorithm to determine the priority assignment.
Algorithm 11 is called Effective Deadline aware Priority Assignment (EDPA), which iter-
atively determines the priorities of typical-case execution parts on core C0. The algorithm
assigns the priorities step by step from the lowest to the highest priority.

Algorithm 11 iterates over all tasks σk ∈ S. Each iteration assigns one of the priorities
with a descending manner, starting with the index k = |S| − 1, which indicates the lowest

101

7.4. Approaches for Different Task Models

Algorithm 11 Effective Deadline aware Priority Assignment (EDPA)

Input: frame-based task set S with constrained deadlines;
Output: priority ordering for S on C0 and C1;

1: G← ∅;
2: for k = |S| − 1, · · · , 0 stepped by 1 do
3: for each σj in S \G do

4: D
′
σj ← Dσj −

∑
σk∈S\GWTyp

σk ;
5: calculate slackj,j and slackj,` according to (7.17) and (7.18);

6: slackj ← min

slackj,j , min
σ`∈G with Dσ`≥D

′
σj

{slackj,`}

;

7: if there exists σj in S \G with slackj ≥ 0 then
8: choose task σj∗ ∈ S \G with the max slackj ;
9: for all σ` ∈ G do

10: update r` with r` ← r` +WExc
σj∗

if Dσ` ≥ D
′
σj∗

;

11: rj∗ ←WExc
σj∗

+
∑

σ`∈G with Dσ`<D
′
σj∗

WExc
σ`

;

12: set πC0
σj∗

to k; put σj∗ to G; set Dσj∗ to D
′
σj∗

;
13: else
14: return “no feasible solution is found”;
15: set πC1

σk
∀σk ∈ S with the DM policy with effective relative deadlines Dσk (in case of

the same effective relative deadline Dσk = Dσ` , assign σk with the higher priority
πC0
σk

< πC0
σ`

);
16: return the resulting priority orderings πC0

σk
, πC1

σk
;

priority σ|S|−1. In each iteration, the proposed algorithm greedily assigns the priority πC0
σj∗

to k without re-assigning any priority. The temporary task set G is used to track the
already-assigned priorities and thus G contains tasks with an already-assigned priority.
First, the effective relative deadline Dσj of each task σj is calculated by their WCRT∑

σk∈S\GWTyp
σk on core C0. If the task σj would be assigned by the current priority k,

Step 4 in Algorithm 11 calculates D
′
σj to represent the relative deadline for the exceptional-

case execution part in the worst-case priority assignment.

Suppose task σj is assigned with the priority k, this assignment can also affect the
worst case of the already-assigned priorities in G because the priorities on core C1 are
still unknown. Those tasks σ` ∈ G that can affect the WCRT of σj , have a larger effective

relative deadline D
′
σj > Dσ` . Tasks σ` could miss their deadline by assigning the priority

k to σj . Thus, algorithm EDPA calculates the impact of σj with priority k to σ`, which
is denoted as r`. r` represents the WCRT on core C1 by excluding the tasks that are not
already assigned with a priority with

r` =
∑

σ`∈G with Dσ`<D
′
σj

WExc
σ`

. (7.16)

By knowing this impact r`, the slack can be defined.

In general, the slack is the time between the absolute deadline and the completion time
of a specific task σj . In our case, the slack depends on the priority assignment of the

already-assigned tasks and tasks σ` ∈ G with Dσ` < D
′
σj . Thus, the slack for a task σj

can be defined as

slackj,j = D
′
σj −W

Exc
σj −

∑
σ`∈G with Dσ`<D

′
σj

WExc
σ`

. (7.17)

102

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

Table 7.1.: Example frame-based task set with constrained deadlines.

task WTyp
σk /ms WExc

σk
/ms Dσk/ms Pσk/ms πC0

σk
πC1
σk

σ0 2 4 12 25 0 (high) 3 (low)
σ1 1 2 10 25 1 0 (high)
σ2 3 1 15 25 2 2
σ3 7 2 20 25 3 (low) 1

Considering tasks σ` ∈ G, the slack is defined with respect to the impact r` with

slackj,` = Dσ` −W
Exc
σj − r`. (7.18)

In Step 6 in Algorithm 11, the slack for each task σj can be calculated as the minimum
of (7.17) and (7.18) to ensure a safe assignment. If the calculated slackj is negative, the
task σj cannot be feasibly be set by the priority πC0

σj = k because another task would miss

its deadline. The proposed heuristic approach is to set the priority πC0
σj of the task with

the maximum slack slackj to k. However, if the calculated slackj is negative, there cannot
exist a feasible priority assignment. From Step 9 to 12, the parameters are updated for
the next iteration, which determines the priority k + 1 of another task.

Finally, the priorities of exceptional-case execution parts πC1
σk

can be determined based

upon effective relative deadlines Dσk . Algorithm Effective Deadline aware Priority Assign-
ment (EDPA) uses a DM scheduling policy to determine the priority of each exceptional-
case execution part of σk. In contrast to the normal DM approach, relative deadlines are
replaced by the proposed effective relative deadlines Dσk .

Regarding the time complexity of Algorithm 11, the slack calculation is the domination
part. The slack calculation is performed for each task σj and requires time complexity of
O(k(|S| − k + 1)). Thus, the time complexity of algorithm EDPA is O(|S|3), where |S| is
the number of frame-based tasks.

Theorem 8. For frame-based real-time tasks with different deadlines, the priority assign-
ments πC0

σk
and πC1

σk
derived by Algorithm EDPA (with time complexity O(n3)) can meet

the timing constraints for the REETIC problem.

Proof. This comes directly from the sufficient condition for the schedulability analysis in
each iteration. Accordingly, at the end of each iteration i, the non-negative slackj∗ ensures
that the timing constraints will be satisfied on both C0 and C1.

Example of algorithm EDPA

In the following, an example demonstrates the usage with their intermediate steps of al-
gorithm Effective Deadline aware Priority Assignment (EDPA). Table 7.1 provides an
example of |S| = 4 frame-based tasks, for which the priorities for their typical- and
exceptional-case execution part need to be determined. Note that the initial task or-
dering is artificially prepared according to the priority ordering. In the following, each
individual iteration of the outer-for loop of Algorithm 11 is presented.

1. k = 3 (first iteration): The variables of the algorithm are defined as follows: D
′
σj =

(−1ms,−3ms, 2ms, 7ms), slackj = (−5ms,−5ms, 1ms,5ms) for σ0 to σ3. Based
upon the maximum slackj , σ3 gains priority πC0

σ3 = 3 on core C0 and σ3 is added to
G. With this assignment, the remaining parameters are Dσ3 = 7ms and r3 = 2ms.

103

7.4. Approaches for Different Task Models

2. i = 2 (second iteration): The variables of the algorithm are defined as follows:

D
′
σj = (6ms, 4ms, 9ms) (σ3 is not any more considered) for σ0 to σ2 and

slack0 = min{6ms− 4ms, 7ms− (4ms+ 2ms)} = 1ms

slack1 = min{4ms− 2ms, 7ms− (2ms+ 2ms)} = 2ms

slack2 = min{9ms− (1ms+ 2ms)} = 6ms.

Therefore, task σ2 has priority πC0
σ2 = 2. Now, G contains {σ2, σ3}, Dσ2 = 9ms,

r2 = 3ms, and r3 = 2ms.

3. i = 1 (third iteration): The variables of the algorithm are defined as follows: D
′
σj =

(9ms, 7ms) (σ2 and σ3 are no longer considered) for σ0 to σ1 and

slack0 = min{9ms− (4ms+ 2ms+ 1ms), 9ms− (4ms+ 3ms)} = 2ms

slack1 = min{7ms− (2ms+ 2ms), 9ms− (2ms+ 3ms)} = 3ms.

Therefore, task σ1 has priority πC0
σ1 = 1. Now, G contains {σ1, σ2, σ3}, where Dσ1 =

7ms, r1 = 2ms, r2 = 5ms, and r3 = 4ms.

4. i = 0 (last iteration): The variables of the algorithm are defined as follows: D
′
σ0 =

10ms, slack0 = 1ms. Task σ0 has priority πC0
σ0 = 0 and the resulting priorities are

feasible for feasible for the REETIC problem.

Based upon the effective relative deadlines Dσk = (10ms, 7ms, 9ms, 7ms), the priorities
for the second core C1 can be defined. The relative offset Oσk defines arrival times of the

exceptional-case execution parts with Oσk = RTyp
σk = (2ms, 3ms, 6ms, 13ms). Note that

the relative deadlines for σ1 and σ3 are equal Dσ1 = Dσ3 , whereby the priority on the first
core πC0

σk
decide about the higher priority.

7.4.3. Priority Assignment for Sporadic Tasks

In contrast to frame-based tasks, this section assumes sporadic tasks σk ∈ S as described
in Section 3.2. The idea is to extend the approach of the previous section and use an im-
proved heuristic algorithm called Effective Deadline aware Priority Assignment (EDPA)∗.
The structure and concept of the algorithm are similar to EDPA, although this section
needs to handle different periods. Thus, the worst-case response time (WCRT) analysis
from the literature [54] needs to be adapted to our algorithm for the sporadic task model.
Note that the most variables from EDPA are redefined to determine the EDPA∗ algorithm.

The WCRT analysis has to consider all higher-priority tasks. Suppose a sporadic task
σj with a priority k, the WCRT RTyp

σj on core C0 has to be determined. In addition, let
G be a set of sporadic tasks that have a lower priority than σj . Note that G is defined
in such a manner, because algorithm EDPA∗ assigns the priorities from the lowest to the
highest.

According to the literature [17], on one core C0, the WCRT RTyp
σj is implicitly defined

by

RTyp
σj = WTyp

σj +
∑

σ`∈S\(G∪{σj})

⌈
RTyp
σj

Pσ`

⌉
WTyp
σ`

, (7.19)

where S \ (G∪{σj}) is the set of higher-priority tasks. This implicit definition of RTyp
σj on

core C0 is only valid in range 0 < RTyp
σj ≤ Dσj . If (7.19) cannot find a result, the WCRT

RTyp
σj must be larger than the relative deadline Dσj .

104

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

The effective relative deadline Dσj of a sporadic task σj is defined according to

Dσj = Dσj −RTyp
σj (7.20)

In algorithm EDPA∗, all priorities for the typical-case execution parts are assigned before
the priorities of the exceptional-case execution parts. The priorities of the exceptional-case
execution parts πC1

σj are assigned according to the DM scheduling policy [55] by using the

effective relative deadlines Dσj .

The priorities for the typical-case execution parts πC0
σj on core C0 need to consider the

impact of the lower priority task, because the priorities for core C1 are not known. Suppose
a task σ` ∈ G, which has a lower priority than σj . This task σ` can influence the WCRT of
the task, for which the priority needs to be decided. Thus, this impact can be represented
by the temporary WCRT r∗j,` of σj with respect to the lower priority tasks σ` ∈ G.

Note that r∗j,` is differently defined as rj,` in the previous section. In contrast to rj,`,

r∗j,` already includes the impact of assigning the priority πC0
σj = k to task σj . In case

Dσ` < D
′
σj , there is no impact to the temporary WCRT r∗j,`. If Dσ` ≥ D

′
σj , there exists a

variable temp with 0 < temp ≤ Dσ` such that

temp = WExc
σ`

+

⌈
temp

Pσj

⌉
WExc
σj +

∑
σk∈G with Dσk≤Dσ`

⌈
temp

Pσk

⌉
WExc
σk

, (7.21)

where the minimum temp < Dσj is the temporary WCRT r∗j,`. If (7.21) returns no result,
temp does not exist, for which r∗j,` is defined by infinity. Formally, r∗j,` is defined as

r∗j,` =

{
min{temp| (7.21) holds} if ∃temp ≤ Dσ` such that (7.21) holds,

∞ otherwise.
(7.22)

Based upon the temporary WCRT r∗j,`, the two slack types slackj,` and slackj,j can be
defined. The slackj,` represents the slack considering the lower priority tasks σ` ∈ G,

which can influence the task σj , if Dσ` ≥ D
′
σj , and is defined as

slackj,` = Dσ` − r
∗
j,`. (7.23)

Similarly, the slackj,j is defined as

slackj,j = D
′
σj − r

∗
j,j , (7.24)

where r∗j,j is the WCRT of σj with respect the the priority assignment of core C1.

Based upon this adaption, a heuristic algorithm can be used to determine the priority
assignment. Algorithm 12 shows the heuristic algorithm EDPA∗. This algorithm is
similar to Algorithm 11, although it is able to handle sporadic tasks. Considering the
above equations, the description of the algorithm is given in the previous section.

Regarding the time complexity of Algorithm12, it is dominated by the response time
analysis and the slack calculation. The calculation of (7.21) to determine the temporary
WCRT r∗j,` can be a complex function. Therefore, let O(γ) be the time complexity of
determining the temporary WCRT. As a result, the time complexity of Algorithm 12 is
O(|S|3γ), where |S| is the number of sporadic tasks.

Based upon the analysis to determine the priorities of all sporadic tasks σk ∈ S, Theo-
rem 8 concludes this result. Note that if the heuristic algorithm EDPA∗ returns a priority
assignment, this assignment is feasible. If the algorithm returns no feasible solution, there
might exist a feasible priority assignment.

105

7.5. Evaluations

Algorithm 12 EDPA∗

Input: sporadic task set S;
Output: priority ordering for S on C0 and C1;

1: G← ∅;
2: for k = |S| − 1, · · · , 0 stepped by 1 do
3: for each σj in S \G do

4: D
′
σj ← Dσj −R

Typ
σj ;

5: calculate slackj,j and slackj,` according to (7.24) and (7.23);

6: slackj ← min

slackj,j , min
σ`∈G with Dσ`≥D

′
σj

{slackj,`}

;

7: if there exists σj in S \G with slackj ≥ 0 then
8: choose task σj∗ ∈ S \G with the max slackj ;

9: set πC0
σj∗

to k; put σj∗ to G; set Dσj∗ to D
′
σj∗

;
10: else
11: return “no feasible solution is found”;
12: set πC1

σk
∀σk ∈ S with the DM policy with effective relative deadlines Dσk (in case of

the same effective relative deadline Dσk = Dσ` , assign σk with the higher priority
πC0
σk

< πC0
σ`

);
13: return the resulting priority orderings πC0

σk
, πC1

σk
;

Theorem 9. For sporadic real-time tasks, if Algorithm EDPA∗ gives a priority level as-
signment for each task in S, the resulting schedule can meet all of the timing constraints
for the REETIC problem.

Proof. This comes from Theorem 8. The sufficient condition for a feasible task set is
checked in each iteration. The non-negative slackj∗ ensures that the timing constraints
will be satisfied on both C0 and C1.

7.5. Evaluations

This section presents experiments to determine the performance of the proposed priority
assignment approaches. All experiments use our scheme to split the task into a typical-
and an exceptional-case execution part.

Experimental setup

In order to evaluate the proposed approach, a sporadic task generator defines randomized
task sets that are evaluated in different experiments. Based upon these randomized task
sets, different approaches calculate the priority assignment. With this priority assignment,
the feasibility of the task set is determined. The generator counts the number of feasible
solutions and calculates a feasibility rate for different task set utilizations. For each task
set utilization, 105 randomized task sets are evaluated.

In the following, this section describes the sporadic task set generator. Note that frame-
based tasks are generated as a special case of sporadic tasks. First, the generator defines
the utilization Uσ and the number of sporadic tasks |S|. The utilization Uσ determines
the utilization on each core as UC0 = UC1 = Uσ. As a default, there are |S| = 5 sporadic
tasks such that an exhaustive search is possible.

Second, the generator determines the period Pσk of each sporadic tasks σk. Note that
the frame-based tasks have equal periods Pσ0 = Pσ1 = . . . = Pσ|S|−1

= 10. For sporadic

106

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

40 50 60 70 80 90 100
0

20

40

60

80

100

Utilization Uσ / %

F
ea

si
b
le

so
lu

ti
on

s/
%

RM-RM
Johnson’s sequence
Best

Figure 7.6.: The evaluation results for a frame-based task set with identical deadlines.

tasks, the period Pσ0 = 10 of the first task σ0 is defined and the subsequent periods are
defined by a randomized variable with

Pσk+1
= Pσk · w w ∈ [1, 2, 3] ⊂ Z+, (7.25)

where w is randomized variable with a uniform distribution.

Third, the generator determines the typical- and exceptional-case execution times for
each sporadic task σk. Let xk, yk and zk be sets of random numbers with 0 < xk < 1,
0 < yk < 1, 0 < zk < 1 with a uniform distribution. The typical-case execution times are
defined as

WTyp
σk

=
Pσk · UC0 · xk∑

σj∈S xj
. (7.26)

and the exceptional-case execution times are defined as

WExc
σk

=
Pσk · UC1 · yk∑

σj∈S yj
. (7.27)

Fourth, for the constrained relative deadlines, the generator sets the deadlines according
to

Dσk = Pσk · zk. (7.28)

For the implicit deadlines, the relative deadlines equal their period Dσk = Pσk , ∀σk.

Note that the generator is able to generate task sets that are infeasible for any prior-
ity assignment. For thias reason, each experiments uses an approach called Best for a
comparison with all the other approaches. Best represents an exhaustive search for all
possible priority assignment to determine whether a feasible priority assignment exists.
The calculation of Best requires factorial run-time complexity O(|S|!).

Frame-based tasks with implicit relative deadlines

This experiment uses frame-based tasks with implicit relative deadlines Pσ0 = Pσ1 =
. . . = Pσ, Dσk = Pσk , ∀σk. The proposed approach is to set the priorities on the first
core C0 according to Johnson’s sequence and the priorities on the second core inverse
to Johnson’s sequence. This approach is named Johnsons’s sequence. As a comparison,
RM-RM represents the approach where both task parts are assigned with the same priority.

Figure 7.6 shows the results for different approaches. If the utilization is larger than

107

7.5. Evaluations

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Utilization Uσ / %

F
ea

si
b
le

so
lu

ti
on

s/
%

Johnson’s sequence
EDPA
Best

Figure 7.7.: The evaluation results for a frame-based task set with different deadlines.

Uσ = UC0 = UC1 = 50%, RM-RM is unable to provide any feasible solution. At this
utilization, a single-core platform would be fully utilized. Typical- and exceptional-case
execution parts should have different priorities to improve the worst case, as shown in the
worst-case response time analysis from Section 7.3. Furthermore, this experiment confirms
that the proposed approach by exploiting Johnson’s sequence is equal to the Best, because
this approach is optimal for frame-based tasks with implicit relative deadlines.

Frame-based tasks with constraint relative deadlines

In this experiment, the generator determines sets of frame-based tasks with constraint
deadlines Pσ0 = Pσ1 = . . . = Pσ, Dσk ≤ Pσk , ∀σk. For this setting, the proposed approach
is algorithm EDPA. This algorithm is a heuristic to define the priority assignment based
upon the maximum slack to consider tasks with a short relative deadline. Another ap-
proach to assign the priorities is the approach called Johnsons’s sequence, as described in
the previous experiment.

The results are visualized in Figure 7.7. Due to constrained deadlines, the generator
determines only rare feasible settings with higher utilizations, owing to the high probability
that one task cannot satisfy its deadline. The proposed approach is not optimal, although
it performs significantly better than the Johnsons’s sequence approach. The gap between
the algorithm EDPA and the Best priority assignment is small.

Sporadic Tasks

This experiment evaluates sporadic tasks that can be used to model industrial applica-
tions. The proposed approach is to use the algorithm EDPA∗, which is an adaptation of
algorithm EDPA to the sporadic task model. As a comparison, two approach namely RM-
RM and RM-DM are used to evaluate the proposed approach. RM-RM assigns priorities
on each task part according to the Rate Monotonic (RM) scheduling policy. Thus, the
typical- and exceptional-case execution part have the same priority. RM-DM assign the
priorities of the typical-case execution parts with the Rate Monotonic (RM) scheduling
policy. The priorities for the exceptional-case execution parts of each task σk are calcu-
lated with a Deadline Monotonic (DM) scheduling policy by using the proposed calculated
effective relative deadlines Dσk .

As shown in Figure 7.8, the algorithm EDPA∗ is more effective than other approaches.
By applying the effective relative deadlines Dσk with RM-DM, the priority assignment on
core C1 is significantly improved. Another interesting issue is that for frame-based tasks
the utilization bound is Uσ = UC0 = UC1 = 50%, at which RM-RM becomes infeasible.

108

Chapter 7. Exploring the Typical Execution Time Scheduling Approach

40 50 60 70 80 90 100
0

20

40

60

80

100

Utilization Uσ / %

F
ea

si
b
le

so
lu

ti
on

s/
%

EDPA∗

RM-RM
RM-DM
Best

Figure 7.8.: The evaluation results for a periodic task set with implicit deadlines.

As shown in Figure 7.8, RM-RM is able to find feasible solution with Uσ > 50%, because
tasks with a larger period Pσk could sometimes handle a large WCRT Rσk .

109

Chapter 8. Conclusion

8. Conclusion

This chapter summarizes this thesis and provides an outlook about further research direc-
tions.

8.1. Summary

This thesis studies scheduling problems for multicore and manycore platforms by con-
sidering industrial applications, which are summarized in the following.

On multicore or manycore platforms, the inter-core communications are critical to effec-
tively schedule real-time tasks. Therefore, the proposed dependent task model is capable
of modeling the communications and their impact to the scheduling analysis. This model
comprises computational and communication tasks that have to be considered in the sched-
ule. In real applications, there exist precedence relations among the tasks, which result
in shorter end-to-end deadlines. These precedence relations are considered in the model
to improve the applicability for industrial applications. By contrast, the independent task
model would determine a more pessimistic worst-case execution time (WCET), because
inter-core communications can cause a large delay in the worst case.

The proposed approach to handle the dependent task model is to use a Time-Triggered
Constant Phase (TTCP) scheduler. This scheduling approach reserves a certain time
window in advance for each computational and communication task such that the task can
be executed or communicate exclusively. The reservation is designed without contention,
i.e. the time windows are timely isolated such that no contention for any computational
or communication task occurs. Based upon these a priori defined time windows, the
scheduling analysis can be simplified to an overlap test between time intervals of these
time windows. This thesis applies the TTCP scheduling approach to a multicore platform
with a bus communication architecture. The TTCP scheduling approach exploits the
periodicity of the reserved time windows such that these windows can be efficiently stored
and analyzed. A heuristic algorithm to determine these time windows is presented, which
can highly utilize the platform, while the feasibility of the schedule is proven to be correct.
Thus, the scheduling policy selection problem is solved by proposing the TTCP scheduling
approach. The scheduling analysis and the heuristic algorithm can be performed with
pseudo polynomial time complexity. Experiments show that a core can be utilized over
90% by using industrial characteristics.

With more cores, the demand for more communication bandwidth is expected because
tangled tasks are further distributed on different cores, which communicate more data
with each other. The most promising approach is a scalable hardware architecture with
a scalable communication fabric, which leads to a manycore platform with a NoC. The
idea is to parallelize the communication with moderate hardware costs. Each inter-core
communication which is modeled as a communication task is injected at a certain time in
the network fabric. Only by defining the injection time can the entire path be reserved
such that no communication task interferes with another one. This thesis provides the
scheduling analysis of these injection times to ensure a contention-free communication
schedule. In addition, different approaches are presented to determine injection times of

111

8.1. Summary

communication tasks and time windows for the computational task such that all real-
time constraints hold. The proposed iterative approach is able to find a feasible schedule
by considering all tasks and their inter-core communication, which can highly utilize a
manycore platform. In comparison to a single-core platform, this approach can find a
feasible schedule for higher utilized dependent task sets. For typical industrial task sets
with 1, 000 computational tasks and 3, 000 communication tasks, the proposed approach
can utilize a 3×3 NoC by around 60%. Experiments highlight that communications among
the tasks can be handled on a manycore platform by the TTCP scheduling approach,
which does not limit parallel executions. Only specific communication tasks that define a
precedence relation between tasks limit the parallelizability.

The TTCP scheduling approach can only handle periodic tasks, although more general
sporadic tasks are usually present in the system. Sporadic tasks are more difficult to be
scheduled because their interference in the communication needs to be considered for the
worst case. The idea is to schedule periodic (time-triggered) and sporadic tasks sepa-
rately to exploit the high platform utilization of periodic task and support sporadic tasks.
Sporadic tasks are often represented by urgent requests that have to be handled with a
short response time. Upon first glance, this may seem contradictory because the arrival
times of sporadic tasks are a priori not known, although typically periodic and sporadic
tasks are present in the system. The simple approach is to reserve a periodic time slot
for a Time-Triggered Server (TTS). A TTS can handle and execute sporadic tasks in its
assigned periodic time slots, which fit to the TTCP scheduling policy. To increase the
responsiveness of sporadic tasks, the idea is to temporally shift time-triggered tasks by a
certain amount of time. After a sporadic task is executed, the time reserved for the TTS
can be used to reduce the delay of time-triggered tasks. This thesis provides the feasibility
analysis of the proposed slot-shifting approach and a heuristic algorithm to determine the
time reserved for the TTS. For typical industrial applications, the proposed approach can
reduce the worst-case response times by 25% for the sporadic tasks.

In contrast to the dependent task model, inter-core communications can be modeled as
part of the WCET [32] such that all tasks are modeled by independent sporadic tasks. In
the worst case, all inter-core communications interfere with each other because all sporadic
tasks may communicate at the same time. Thus, the WCET of each task can be increased
in the worst case, although the execution time in the best case remains the same [87]. In
addition, the WCET estimation introduces some uncertainty, which further increases the
gap between the best case and the worst case of a sporadic independent task. This thesis
proposes a scheme to exploit this gap by defining a typical-case execution time, which
could be based upon measurements. Each sporadic task is split into two parts, which
are scheduled on different cores, for the typical- and worst-case executions of a task. A
typical execution of a task can be defined as a percentile (e.g. 90%, 95%) of the execution’s
time measurements. In an exceptional case when a job of a task exceeds its typical-case
execution time, this job is migrated to another core. Thus, the other core is used as a
backup to guarantee a safe worst-case execution behavior. Such a backup core is rarely
activated to execute a task that saves energy rather than regularly activating two cores.
A motivational example shows that a fixed-priority scheduler should not assign the same
priority level to each part, because the worst-case response time would be too large. For
different properties of the sporadic task, this thesis proposes the scheduling analysis and
an efficient priority assignment algorithm. Experiments confirm the effectiveness of the
proposed priority assignment methods.

112

Chapter 8. Conclusion

8.2. Outlook

This section presents possible research directions for future investigations.

General support for the TTCP scheduling approach

The Time-Triggered Constant Phase (TTCP) approach is capable of highly utilizing a
manycore platform, although currently neither manycore platforms nor operation systems
with a TTCP scheduler exist. On the one hand, there exists a large design space for future
hardware architectures with multiple cores. For example, cores can be heterogeneous with
a special purpose or hardware accelerators. Another approach is to process the sequential
dominating parts on a few powerful cores (e.g. 4 cores) and the parallel dominating parts
on a grid of many cores (e.g. 64 cores). For hard real-time applications, architecture-
dependent and hardware-dependent features need to be explored or considered for the
proposed TTCP scheduling approach. Especially the NoC could provide hardware support
for the proposed TTCP scheduling approach, because the messages have to be send at a
pre-defined time, which could be achieved by a memory controller.

Nowadays, industrial applications are designed according to standards like AUTOSAR
[5] or OSEK [73], which also defines a scheduling policy. For an easy integration of the
TTCP scheduling approach into the industrial design processes, the TTCP scheduling
approach can be adapted to be compatible with such standards. Another issue is the
adaptation from existing scheduling policies to the TTCP. For example, suppose a software
project with legacy parts that want to use the TTCP scheduler but cannot start from
scratch. It has to be proven that a step-wise change to the TTCP scheduler is possible;
otherwise, this project is unable to adapt this approach. The problem is that scheduling
has a huge impact on the software.

Task model extensions

The dependent task model is closer to industrial applications than the independent
sporadic task model because tasks exchange data among each other. Additional feature
can be added to the dependent task model to allow more accurate system description. For
example, a memory model could be added, which describes the location of the program
code and temporary data. Thus, task migration can be described and analyzed in further
detail because the program code may need to transmitted among the cores. An often-
used approach is to define a function (service), which is often called to save memory for
storing the program code. An extended task model can investigate different strategies to
implement such functions. In the current model, such functions would be present on all
cores to be accessible by any task.

Another feature is the expression of read commands, which are also often used in indus-
trial applications. In the model, each task sends the data required by another task at its
end. In some cases, a task needs to request the data, called reading. In addition, a case
study with a real application can highlight another problem, namely which features have
to be added to improve the task model and develop the corresponding scheduling analysis.

Handling non-synchronized time domains by the TTCP approach

The assumption of time-synchronized cores is difficult to achieve, because the clock
signal jitters such that different clocks have to be synchronized. One possibility is to
add overhead parameters in the task model to consider clock synchronization. By adding
overhead for core synchronization, all cores could be run with the same time base. The
TTCP scheduling approach could be extended to further support a clock synchronization
overhead.

113

8.2. Outlook

Another possibility is to define different time domains (clocks), which mostly run in-
dependently. Thus, each time domain could be scheduled by a TTCP scheduler. The
problem is defining a proper way to exchange data among these time domains such that
the tasks are not disrupted by the incoming data from another time domain. These data
communications require other communication arbitration policies like Time Division Mul-
tiple Access (TDMA) or Fixed-Priority (FP), which need to be adapted and analyzed.

114

Appendix A. SMT Problem Formulations

A. SMT Problem Formulations

A.1. SMT Problem Formulations for TTCP Schedule on a
Single-Core

Algorithm 13 Formulating computational phase assignment into an SMT problem

Input: computational task set T;
Output: SMT problem;

1: job number ← 0;
2: for i = 0, · · · , |T| − 1 stepped by 1 do
3: DEFINE t(job number);
4: ASSERT t(job number)≥ Φτi,min;
5: ASSERT t(job number)≤ Dτi ;
6: job number ← job number + 1;
7: for j = 1, · · · HPτi stepped by 1 do

8: DEFINE t(job number);
9: ASSERT t(job number) = t(job number-j)·j·Pτi ;

10: job number ← job number + 1;
11: for i = 0, · · · ,job number stepped by 1 do
12: for j = 0, · · · ,job number stepped by 1 (j 6= i) do
13: ASSERT (t(i) ≥ t(j) + Wτj) or (t(j) ≥ t(i) + Wτi);

115

A.2. SMT Problem Formulations for the Dependent System Model

A.2. SMT Problem Formulations for the Dependent System
Model

Algorithm 14 SMT formulating a TTCP scheduling problem of the dependent task model
including communication and computational tasks

Input: computational task set T, communication task set K;
Output: SMT problem;

1: for each τi ∈ T do
2: DEFINE t(i,0);
3: ASSERT t(i,0)≥ 0;
4: for each predecessor τp of τi do
5: if cτi = cτp then
6: ASSERT t(i,0)≥t(p,0);
7: else
8: for all κ` with κDST` = τi do
9: ASSERT t(i,0)≥c(`)+W κ` ;

10: ASSERT t(i,0)< Dτi −Wτi ;
11: for each job Jτi,k, k = 1, · · · HPτi stepped by 1 do

12: DEFINE t(i,k);
13: ASSERT t(i,k) = t(i,0)·k·Pτi ;

packet limits
14: for each κj ∈ K do
15: DEFINE c(j,0)
16: ASSERT c(j,0)≥t(SRCj ,0);
17: if κj precedence then
18: ASSERT c(j,0)≤t(DSTj ,0)−W κj ;
19: else
20: if PτSRCj

≥ PτDSTj
then

21: ASSERT c(j,0)≥t(DSTj ,0)+PτSRCj
−W κj ;

22: else
23: ASSERT (c(j,0)≤ t(DSTj ,0) −W κjand t(DSTj ,0) ≥ PτSRCj

)

or (c(j,0)≤ t(DSTj ,0)+PτSRCj
−W κj and t(DSTj ,0) < PτSRCj

);

24: ASSERT c(j,0)≥t(SRCj ,0);
25: for each l-th packet of κj , l = 1, · · · HPκj stepped by 1 do

26: DEFINE c(j,l);
27: ASSERT c(j,l) = c(j,0)·l·Pκj ;

time-overlap test
28: for i = 1, · · · , |t| stepped by 1 do
29: for k = 1, · · · , |t| stepped by 1 (k 6= i) do
30: ASSERT (t(i) ≥ t(k) + Wτk) or (t(k) ≥ t(i) + Wτi);
31: for j = 1, · · · , |c| stepped by 1 do
32: for l = 1, · · · , |c| stepped by 1 (l 6= j) do
33: ASSERT (c(j) ≥ c(l) + Wκl) or (c(l) ≥ c(j) + Wκj);

116

Bibliography

Bibliography

[1] T. L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules for
parallel processing systems. Commun. ACM, 17(12):685–690, Dec. 1974.

[2] Adapteva. Epiphany architecture reference. Technical report, 2015. [Online]
http://www.adapteva.com/.

[3] A. Albert. Comparison of event-triggered and time-triggered concepts with regard to
distributed control systems. In Embedded Worls, 2004.

[4] S. Anily, J. Bramel, and D. Simchi-levi. Worst-case analysis of heuristics for the bin
packing problem with general cost structures. Oper. Res., 42(2):287–298, Apr. 1994.

[5] AUTOSAR. Specification of operating system autosar release 4.2.1. Technical report,
2015. [Online] http://www.autosar.org/.

[6] S. Baruah, M. Bertogna, and G. Buttazzo. Multiprocessor Scheduling for Real-Time
Systems. Springer International Publishing, 2015.

[7] M. Bertogna, G. Buttazzo, and G. Yao. Improving feasibility of fixed priority tasks
using non-preemptive regions. In Real-Time Systems Symposium (RTSS), 2011 IEEE
32nd, pages 251–260, Nov 2011.

[8] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis of edf
on multiprocessor platforms. In Proceedings of the 17th Euromicro Conference on
Real-Time Systems, ECRTS ’05, pages 209–218, Washington, DC, USA, 2005. IEEE
Computer Society.

[9] R. Bettati and J. W.-S. Liu. End-to-end scheduling to meet deadlines in distributed
systems. In ICDCS, pages 452–459, 1992.

[10] A. Biewer, J. Gladigau, and C. Haubelt. A novel model for system-level decision
making with combined ASP and SMT solving. In DATE, 2014.

[11] A. Biewer, J. Gladigau, and C. Haubelt. Towards tight interaction of asp and smt solv-
ing for system-level decision making. In Architecture of Computing Systems (ARCS),
pages 1–7, Feb 2014.

[12] T. Bjerregaard and S. Mahadevan. A survey of research and practices of network-on-
chip. ACM Comput. Surv., 38(1):1, June 2006.

[13] K. Bletsas and B. Andersson. Preemption-light multiprocessor scheduling of sporadic
tasks with high utilisation bound. In Proceedings of the 2009 30th IEEE Real-Time
Systems Symposium, RTSS ’09, pages 447–456, Washington, DC, USA, 2009. IEEE
Computer Society.

[14] V. Bonifaci, H. Chan, A. Marchetti-Spaccamela, and N. Megow. Algorithms and com-
plexity for periodic real-time scheduling. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA,
January 17-19, 2010, pages 1350–1359, 2010.

117

Bibliography

[15] J. Boyar, L. Epstein, and A. Levin. Tight results for next fit and worst fit with
resource augmentation. Theoretical Computer Science, 411(26-28):2572 – 2580, 2010.

[16] I. Bronshtein, K. Semendyayev, G. Musiol, and H. Mühlig. Handbook of Mathematics.
Springer Berlin Heidelberg, 2007.

[17] G. Buttazzo. Hard Real-Time Computing Systems. Springer Verlag, 2011.

[18] D. Buttle. Real-time in the prime-time. Keynote on ECRTS, 2012.

[19] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: Auto-
matically generating inputs of death. In Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS ’06, pages 322–335, New York, NY,
USA, 2006. ACM.

[20] S. Chakraborty, S. Kunzli, and L. Thiele. A general framework for analysing system
properties in platform-based embedded system designs. In DATE’03, pages 190–195,
2003.

[21] V. Claesson and N. Suri. TTET: event-triggered channels on a time-triggered base.
In ICECCS’04, pages 39–46, 2004.

[22] S. S. Craciunas and R. S. Oliver. Smt-based task-and network-level static schedule
generation for time-triggered networked systems. In Proceedings of the 22nd Interna-
tional Conference on Real-Time Networks and Systems, page 45. ACM, 2014.

[23] D. Dasari, B. Nikoli’c, V. N’elis, and S. M. Petters. Noc contention analysis using
a branch-and-prune algorithm. ACM Trans. Embed. Comput. Syst., 13(3s):113:1–
113:26, Mar. 2014.

[24] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Computing Surveys, 43:44, Oct 2011.

[25] B. de Dinechin. Dataflow language compilation for a single chip massively parallel
processor. In Multi-/Many-core Computing Systems (MuCoCoS), 2013 IEEE 6th
International Workshop on, pages 1–1, Sept 2013.

[26] G. De Micheli and L. Benini. Networks on Chips: Technology and Tools. Elsevier
Science, 2006.

[27] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.

[28] S. Edgar and A. Burns. Statistical analysis of wcet for scheduling. In Real-Time
Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd IEEE, pages 215–224,
Dec 2001.

[29] C. Ferdinand. AbsInt Angewandte Informatik GmbH. aiT: worst-case execution time
analyzers. http://www.absint.com/ait, 2012.

[30] G. Fohler. Joint scheduling of distributed complex periodic and hard aperiodic tasks in
statically scheduled systems. In Real-Time Systems Symposium, 1995. Proceedings.,
16th IEEE, pages 152–161, Dec 1995.

[31] G. Fohler. Predictably flexible real-time scheduling. In Advances in Real-Time Sys-
tems (to Georg Färber on the occasion of his appointment as Professor Emeritus at TU
München after leading the Lehrstuhl für Realzeit-Computersysteme for 34 illustrious
years)., pages 207–221, 2012.

[32] M. Freier and J.-J. Chen. Prioritization for real-time embedded systems on dual-core
platforms by exploiting the typical- and worst-case execution times. In 8th IEEE
International Symposium on Industrial Embedded Systems, pages 21–29, June 2013.

118

Bibliography

[33] M. Freier and J.-J. Chen. Time triggered scheduling analysis for real-time applications
on multicore platforms. In RTSS workshop on REACTION, pages 48–53, 2014.

[34] M. Freier and J.-J. Chen. Time-triggered communication scheduling analysis for
real-time multicore systems. In 10th IEEE International Symposium on Industrial
Embedded Systems (SIES), June 2015.

[35] M. Freier and J.-J. Chen. Sporadic task handling in time-triggered systems. In Pro-
ceedings of the 19th International Workshop on Software and Compilers for Embedded
Systems, SCOPES ’16, pages 135–144, New York, NY, USA, 2016. ACM.

[36] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[37] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task
systems on multiprocessors. Real-Time Syst., 25(2-3):187–205, Sept. 2003.

[38] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip: Concepts,
architectures, and implementations. IEEE D & T, 2005.

[39] R. Graham, E. Lawler, J. Lenstra, and A. Kan. Optimization and approximation in
deterministic sequencing and scheduling: a survey. volume 5 of Annals of Discrete
Mathematics, pages 287 – 326. Elsevier, 1979.

[40] N. Holsti. Tidorum Ltd. Bound-T time and stack analyzer. http://www.bound-t.com,
2013.

[41] S. Hong, T. Chantem, and X. S. Hu. Meeting end-to-end deadlines through distributed
local deadline assignments. In RTSS, pages 183–192, 2011.

[42] ISO 11898: Road vehicles – Controller area network (CAN), 2015.

[43] D. Isovic and G. Fohler. Handling mixed sets of tasks in combined offline and online
scheduled real-time systems. Real-Time Systems, 43(3):296–325, 2009.

[44] S. Johnson. Optimal two- and three stage-production schedules with setup time
included. Naval Research Logistics Quarterly, 1:61 – 68, 1954.

[45] O. Kermia and Y. Sorel. A rapid heuristic for scheduling non-preemptive dependent
periodic tasks onto multiprocessor. In ISCA PDCS, 2007.

[46] A. E. Kiasari, A. Jantsch, and Z. Lu. Mathematical formalisms for performance
evaluation of networks-on-chip. ACM Comput. Surv., 45(3):38:1–38:41, July 2013.

[47] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions. Springer Science + Business Media

”
2011.

[48] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, 2003.

[49] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive benchmark for free.
In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

[50] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority preemptive
scheduling for multi-core processors. In Proceedings of the 2009 21st Euromicro Con-
ference on Real-Time Systems, ECRTS ’09, pages 239–248, Washington, DC, USA,
2009. IEEE Computer Society.

[51] W. Lawrenz and N. Obermöller. CAN: Controller Area Network: Grundlagen, Design,
Anwendungen, Testtechnik. Vde Verlag, 2011.

119

Bibliography

[52] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing
systems for the internet. Springer-Verlag, Berlin, Heidelberg, 2001.

[53] I. Lee, J. Y.-T. Leung, and S. H. Son. Handbook of Real-Time and Embedded Systems.
Chapman & Hall/CRC, 1st edition, 2007.

[54] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In IEEE Real-Time Systems Symposium,
pages 166–171, 1989.

[55] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Perform. Eval., 2(4):237–250, 1982.

[56] W. Levine. The Control Handbook. Electrical Engineering Handbook. Taylor & Fran-
cis, 1996.

[57] K. Li and S.-C. Zhang. Heuristics for uniform parallel machine scheduling problem
with minimizing makespan. In Automation and Logistics, 2008. ICAL 2008. IEEE
International Conference on, pages 273–278, Sept 2008.

[58] X. Li, Y. Liang, T. Mitra, and A. Roychoudury. Chronos: A timing analyzer
for embedded software. Science of Computer Programming, 69(1-3):56–67, 2007.
http://www.comp.nus.edu.sg/˜rpembed/chronos.

[59] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[60] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A statistical response-time analysis of
real-time embedded systems. In Real-Time Systems Symposium (RTSS), 2012 IEEE
33rd, pages 351–362, Dec 2012.

[61] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty. Modular scheduling
of distributed heterogeneous time-triggered automotive systems. In ASP-DAC’12,
pages 665–670, 2012.

[62] H. Mackamul. Amalthea - an open tool platform for embedded multicore systems.
Talk on EclipseCon Europe 2013, 2013.

[63] M. Marouf, L. George, and Y. Sorel. Schedulability analysis for a combination of non-
preemptive strict periodic tasks and preemptive sporadic tasks. In ETFA’12, pages
1–8, Sept 2012.

[64] M. Marouf and Y. Sorel. Schedulability conditions for non-preemptive hard real-time
tasks with strict period. In RTNS’10, 2010.

[65] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G. Buttazzo.
Memory-processor co-scheduling in fixed priority systems. In 23rd International Con-
ference on Real-Time Networks and Systems (RTNS), 2015.

[66] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The nostrum backbone-a
communication protocol stack for networks on chip. In VLSI Design, 2004. Proceed-
ings. 17th International Conference on, pages 693–696, 2004.

[67] I. Miro Panades, A. Greiner, and A. Sheibanyrad. A low cost network-on-chip with
guaranteed service well suited to the gals approach. In NanoNet, 2006.

[68] A. K. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1983.

120

Bibliography

[69] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. Hermes: an infrastructure for
low area overhead packet-switching networks on chip. Integration, the VLSI Journal,
2004.

[70] P. Munk, M. Freier, J. Richling, and J.-J. Chen. Dynamic guaranteed service com-
munication on best-effort networks-on-chip. In PDP’15, 2015.

[71] P. Munk, B. Saballus, J. Richling, and H.-U. Heiss. Position paper: Real-time task mi-
gration on many-core processors. In Architecture of Computing Systems. Proceedings,
ARCS 2015 - The 28th International Conference on, pages 1–4, March 2015.

[72] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion. Multi-source and multicore
automotive ecus - os protection mechanisms and scheduling. In Industrial Electronics
(ISIE), 2010 IEEE International Symposium on, pages 3734–3741, July 2010.

[73] OSEK group. Osek/vdx operating system. Technical report, 2005. [Online]
http://www.osek-vdx.org/.

[74] C. Paukovits and H. Kopetz. Concepts of switching in the time-triggered network-
on-chip. In RTCSA, 2008.

[75] M. Pinedo. Scheduling : Theory, Algorithms, and Systems. Springer New York, third
edition edition, 2008.

[76] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the flexray
communication protocol. In ECRTS’06, 2006.

[77] C. N. Potts and V. A. Strusevich. Fifty years of scheduling: a survey of milestones.
JORS, 60(S1), 2009.

[78] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delay bounds for best-effort
communication in wormhole networks on chip. In Networks-on-Chip, 2009. NoCS
2009. 3rd ACM/IEEE International Symposium on, pages 44–53, May 2009.

[79] S. Quinton, M. Hanke, and R. Ernst. Formal analysis of sporadic overload in real-time
systems. In DATE, pages 515–520, 2012.

[80] Rapita System Ltd. RapiTime Explained. http://www.rapitasystems.com, 2015.

[81] K. Reif. Gasoline Engine Management: Systems and Components. Bosch Professional
Automotive Information. Springer Fachmedien Wiesbaden, 2014.

[82] F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Stähle, S. Chakraborty,
and A. Knoll. Schedule integration framework for time-triggered automotive archi-
tectures. In Proceedings of the 51st Annual Design Automation Conference, DAC ’14,
pages 20:1–20:6, New York, NY, USA, 2014. ACM.

[83] K. Schild and J. Würtz. Scheduling of time-triggered real-time systems. Constraints,
2000.

[84] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo. Worst-case
response time analysis of resource access models in multi-core systems. In DAC ’10,
pages 332–337, NY, USA, 2010. ACM.

[85] P. Senthilkumar and S. Narayanan. Literature review of single machine schedul-
ing problem with uniform parallel machines. Intelligent Information Management,
2(8):457–474, 2010.

[86] L. Sha. Real-time virtual machines for avionics software porting and development.
In J. Chen and S. Hong, editors, RTCSA, volume 2968 of Lecture Notes in Computer
Science, pages 123–135. Springer, 2003.

121

Bibliography

[87] H. Shah, A. Raabe, and A. Knoll. Challenges of wcet analysis in cots multi-core due
to different levels of abstraction. In Workshop on High-performance and Real-time
Embedded Systems (HiRES 2013), 2013.

[88] D. Shang, E. Eyisi, Z. Zhang, X. Koutsoukos, J. Porter, G. Karsai, and J. Sztipanovits.
A case study on the model-based design and integration of automotive cyber-physical
systems. In Control Automation (MED), 2013 21st Mediterranean Conference on,
pages 483–492, June 2013.

[89] P. B. Sousa. The carousel-edf scheduling algorithm for multiprocessor systems. In
RTCSA, 2013.

[90] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph real-time task model. In
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2011 17th
IEEE, pages 71–80, April 2011.

[91] H. Sutter. The free lunch is over: a fundamental turn toward concurrency in software.
Dr. Dobb’s Journal, 30(3):202–210, 2005.

[92] The European Parliament and the Council of the European Union. Regulation (ec)
no 715/2007 of the european parliament and of the council. Technical report, 2007.
[Online] http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007R0715.

[93] M. van den Heuvel, R. Bril, X. Zhang, S. Md Jakaria Abdullah, and D. Isovic. Limited
preemptive scheduling of mixed time-triggered and event-triggered tasks. In Emerging
Technologies Factory Automation (ETFA), 2013 IEEE 18th Conference on, pages 1–9,
Sept 2013.

[94] E. Wandeler and L. Thiele. Optimal tdma time slot and cycle length allocation
for hard real-time systems. In Design Automation, 2006. Asia and South Pacific
Conference on, pages 6 pp.–, Jan 2006.

[95] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenström. The worst-case execution-time problem-overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

[96] S. Wilhelm. Symbolic Representations in WCET Analysis. PhD thesis, Saarland
University, 2012.

[97] H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational arithmetic. In
E. M. Clarke and A. Voronkov, editors, LPAR (Dakar), volume 6355 of Lecture Notes
in Computer Science, pages 481–500. Springer, 2010.

122

Declaration

I declare that I have developed and written the enclosed thesis completely by myself,
and have not used sources or means without declaration in the text.

Ludwigsburg, 1st of September 2016

. .
(Matthias Freier)

123

List of Publications

List of Publications

These are the publications of the author, which relate to this thesis.

1. Matthias Freier and Jian-Jia Chen. Prioritization for Real-Time Embedded Systems
on Dual-Core Platforms by Exploiting the Typical- and Worst-Case Execution Times.
In IEEE Symposium on Industrial Embedded Systems (SIES), Porto, Portugal, pages
21–29, June 2013.

2. Matthias Freier and Jian-Jia Chen. Time triggered scheduling analysis for real-time
applications on multicore platforms. In RTSS workshop on REACTION, pages 48–
53, 2014.

3. Peter Munk, Matthias Freier, Jan Richling and Jian-Jia Chen. Dynamic Guaranteed
Service Communication on Best-Effort Networks-on-Chip. In 23rd Euromicro Inter-
national Conference on Parallel, Distributed And Network-based Processing (PDP),
pages 353–360, March 2015.

4. Matthias Freier and Jian-Jia Chen. Time-triggered communication scheduling anal-
ysis for real-time multicore systems. In 10th IEEE International Symposium on
Industrial EmbeddedSystems (SIES), 2015.

5. Matthias Freier and Jian-Jia Chen. Sporadic Task Handling in Time-Triggered Sys-
tems. In Proceedings of the 19th International Workshop on Software and Compilers
for Embedded Systems (SCOPES), pages 135–144, 2016.

124

	Front Page
	Contents
	Abstract
	Zusammenfassung
	Acknowledgement
	Symbols and Abbreviations
	1 Introduction
	1.1 Complex Industrial Applications with an Example of Engine Control Software
	1.2 Real-Time Multicore / Manycore platforms
	1.3 Real-Time Scheduling
	1.4 Focus of this Thesis
	1.5 Contributions and Thesis Overview

	2 Background
	2.1 Traditional Scheduling Concepts for Single-Core Platforms
	2.2 Overview of Multicore-Related Scheduling Concepts
	2.3 Network-on-Chip (NoC) Design Space

	3 System Models
	3.1 Multicore and Manycore Platform Models
	3.2 Independent Sporadic Task Model
	3.3 Dependent Periodic Task Model

	4 Time-Triggered Constant Phase Scheduling Analysis with a Bus Architecture
	4.1 Introduction
	4.2 Time-Triggered Constant Phase (TTCP) Approach
	4.3 Computational Analysis for the TTCP Scheduled Tasks
	4.4 Communication Analysis for Given Phases
	4.5 Phase Assignment Methods
	4.6 Evaluations
	4.6.1 Experimental Setup
	4.6.2 Experimental Results

	5 Time-Triggered Computation and Communication Analysis by using a NoC
	5.1 Introduction
	5.2 Scheduling Analysis on a Manycore Platform with a NoC
	5.3 Approaches for the Computational and Communication Phase Assignment
	5.4 Evaluations
	5.4.1 Experimental Setup
	5.4.2 Experimental Results

	6 Integration of Sporadic Tasks into Pure Time-Triggered Systems
	6.1 Introduction
	6.2 Time-Triggered Server (TTS) and Slot-Shifting Approach
	6.3 Scheduling Analysis of Time-Triggered Tasks by Using Slot-Shifting
	6.4 Scheduling Analysis of Sporadic Tasks by Using Slot-Shifting
	6.5 TTS Aware Phase Assignment
	6.6 Evaluations
	6.6.1 Experimental Setup
	6.6.2 Experimental Results

	7 Exploring the Typical Execution Time Scheduling Approach
	7.1 Introduction
	7.2 Scheme for Exploiting the Typical- and Worst-Case Execution Time
	7.3 Priority Assignment Problem
	7.4 Approaches for Different Task Models
	7.4.1 Priority Assignment for Frame-Based Tasks
	7.4.2 Priority Assignment for Frame-Based Tasks with Constraint Deadlines
	7.4.3 Priority Assignment for Sporadic Tasks

	7.5 Evaluations

	8 Conclusion
	8.1 Summary
	8.2 Outlook

	A SMT Problem Formulations
	A.1 SMT Problem Formulations for TTCP Schedule on a Single-Core
	A.2 SMT Problem Formulations for the Dependent System Model

	Bibliography
	List of Publications

