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abstract

This dissertation provides novel robust and regularized algorithms from linear
system identi�cation for parameter estimation with applications in vehicle
tractive force prediction and mass estimation.

Energy e�cient look-ahead vehicle controllers and range prediction of
electric vehicles require accurate prediction of the vehicle tractive force. Yet,
precise vehicle mass estimates are fundamental in active safety assistance
systems.

The combination of two linear gray-box models (M3 andM4) with un-
known vehicle parameters and several (well known and novel) recursive
estimators gave a set of candidate models.

Given a large record of real world data from test runs on public roads,
recursive algorithms adjusted the unknown vehicle parameters under a broad
variation of statistical assumptions. Additionally, the set of candidate mod-
els comprised a white-box model with aV, bV, and cV parameters (abc) that
represented the state of art in vehicle tractive force prediction.

The best model estimator combination in terms of vehicle tractive force
prediction quality wasM4 with the novel recursive regularized M-estimator
(RRLM), depicted by cross validation. Moreover,M4-RRLM was signi�cantly
superior compared with the conventional abc white-box model. The best
model estimator combination for vehicle mass estimation wasM4 with the
novel Stenlund-Gustafsson IV M-Kalman �lter, which is an estimator for the
random-walk errors-in-variables model that has not been considered in related
literature for vehicle mass estimation.

Index Terms—system identi�cation, Kalman �lter, errors-in-variables (EIV),
total least squares (TLS), recursive estimation, robust estimation, outliers,
M-estimator, regularization, wind-up, vehicle dynamics, vehicle mass, rolling
resistance, cornering resistance.





zusammenfassung

Diese Arbeit bietet neuartige robuste und regularisierte Algorithmen aus der
linearen Systemidenti�kation für die Parameterschätzung mit Anwendungen
in der Fahrzeugradzugkraftprädiktion und Masseschätzung.

Energiee�ziente vorrausschauende Betriebsstrategieregler und Reichwei-
tenvorhersagemanager von Elektrofahrzeugen erfordern eine präzise Prädik-
tion der Fahrzeugradzugkraft. Eine präzise Schätzung der Fahrzeugmasse ist
hingegen essentiell für aktive Sicherheitssysteme.

Die Kombination zweier linearer gray-box Modelle (M3 undM4) mit un-
bekannten Fahrzeugparametern und mehreren (bekannten und neuartigen)
rekursiven Schätzern ergab eine Klasse von möglichen Modellen.

Die unbekannten Fahrzeuparameter wurden durch die rekursiven Schätzer
auf Grundlage eines großen Datensatzes von Realmessungen von Testfahrten
auf ö�entlichen Straßen unter großer Variation der getro�enen statischtischen
Annahmen justiert. Zusätzlich wurde zu der Klasse von möglichen Model-
len ein white-box Modell mit aV, bV , und cV Parametern (abc) hinzugefügt,
welches den bisherigen Stand in der Fahrzeugradzugkraftprädiktion darstellte.

Die Kombination ausM4 und dem neuartigen rekursiven regularisierten
M-Schätzer (RRLM) lieferte die Modellkombination mit der genauesten Fahr-
zeugradzugkraftprädiktion, welche durch Kreuzvalidierung bestimmt wurde.
Darüber hinaus war die Kombination ausM4-RRLM dem konventionellen abc
white-box Modell signi�kant überlegen. Die beste Modell Schätzerkombinati-
on zur Fahrzeugmassenschätzung lieferteM4 zusammen mit dem neuartigen
Stenlund-Gustafsson IV M-Kalman Filter, welches einen Schätzer des random-
walk errors-in-variables Modells darstellt, dass bisher nicht in der Literatur
zur Fahrzeugmassenschätzung berücksichtigt wurde.
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acronyms

abc white-box model with aV, bV, and
cV parameters

ARX auto regressive with eXogenous
input

BP backpropagation

CAN control area network
CGv vehicle center of gravity
CGW wheel center of gravity

EIV errors-in-variables
EKF extended Kalman �lter

FIR �nite impulse response

GTLS generalized TLS

IAE innovation-based adaptive
estimation

IC instantaneous center
IMME interacting multiple model

estimation
IR impulse response
IV instrumental variables
IVKF IV Kalman �lter
IVMKF IV M-Kalman �lter

KF Kalman �lter

LMS least median of squares
LS least squares
LTS least trimmed squares

MISO multi-input-single-output
MKF M-Kalman �lter
MME multiple model estimation

NCE noise covariance estimator

NN neural networks

OE output-error

PF polynomial-function
PKS polynomial Kalman smoother
PP pressure point
PSD predictive route data

RGTLS recursive GTLS
RIV recursive IV
RIVM recursive IV M-estimator
RIVMKF regularized IV M-Kalman �lter
RLM recursive M-estimator
RLS recursive least squares
RLSmf recursive least squares with

multiple forgetting
RMKF regularized M-Kalman �lter
RRIVM recursive regularized IV

M-estimator
RRLM recursive regularized M-estimator
RTIV recursive total instrumental

variables
RTLS recursive TLS
RW random-walk

SGF Savitzky Golay �lter
SGIVMKF Stenlund-Gustafsson IV

M-Kalman �lter
SGMKF Stenlund-Gustafsson M-Kalman

�lter
SISO single-input-single-output
STSP state-space

TLS total least squares

UKF unscented Kalman �lter

WLS weighted least squares





symbols

Vehicle dynamics
AB (m2) brake piston cross-sectional area
αW (rad) . . . . . . . . . . . . . . . . . . . . . slip angle
AV (m2) . . . . . vehicle cross-sectional area
aV (N) . . . . . . . . . . . . . . vehicle a parameter
βV (rad) . . . . . . . . . . vehicle side slip angle
bV (kg s−1) . . . . . . . . . . vehicle b parameter
cV (kg m−1) . . . . . . . . . vehicle c parameter
cw . . . . . . . . . . . . . . . . . . . . . . . . . .cx (ψa = 0)
cx . . . . . . . . . . longitudinal drag coe�cient
cxW (N) . . . . . wheel longitudinal sti�ness
cy . . . . . . . . . . . . . . . lateral drag coe�cient
cyW (N rad−1) . . wheel cornering sti�ness
δS (rad) . . . . . . . . . . . steering wheel angle
δW (rad) . . . . . . . . . . . . . . wheel steer angle
eR (m) . . . . distance between FzW und zW
F (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . force
fr . . . . . . . . coe�cient of rolling resistance
Fac (N) . . . . . . . . . . . . . . . acceleration force
Fcl (N) . . . . . . . . . . . . . . . . . . climbing force
Fc (N) . . . . . . . . . . . . . . . . . centrifugal force
FW (N) . . . . . . . . . . . . . . . . . . . . wheel force
FWc (N) . . . . . . . . . . . . cornering resistance
FWr (N) . . . . . . . . . . . . . . . rolling resistance
FWt (N) . . . . . . . . . . . . . . . toe-in resistance
Fxa (N) . . . . . . . longitudinal aerodynamic
resistance
FxV (N) . . . . . . . . . . . vehicle tractive force
FxW (N) . . . . . . . .wheel longitudinal force
Fya (N) . . . lateral aerodynamic resistance
FyW (N) . . . . . . . . . . . . . wheel lateral force
FzW (N) . . . . . . . . . . . . wheel vertical force
G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gear
д (m s−2) . . . . . . . . . gravitational constant
IB (kg m2) . . . . braking moment of inertia
IC (kg m2) . . . . . clutch moment of inertia
ID (kg m2) . di�erential moment of inertia
iD . . . . . . . . . . . . . . . . . . . . . di�erential ratio
IE (kg m2) . . . . . engine moment of inertia
IG (kg m2) . . . . gearbox moment of inertia
iG . . . . . . . . . . . . . . . . . . . . . . . . gearbox ratio

Ired (kg m2) . . . reduced moment of inertia
IW (kg m2) . . . . . wheel moment of inertia
IzV (kg m2) vehicle yaw moment of inertia
jW . wheel: 1-rear left, 2-rear right, 3-front
right, 4-front left, 12-front wheels, 34-rear
wheels
l (m) . . . . . . . . . . . . . . . . . . . . . . . wheel base
µW . . . . . . . . . . . . wheel friction coe�cient
µxW longitudinal wheel friction coe�cient
µyW . . . . . lateral wheel friction coe�cient
mV (kg) . . . . . . . . . . . . . . . . . . . vehicle mass
pa (Pa) . . . . . . . . . . . . . . . . . . . . . air pressure
pB (Pa) . . . . . . . . . . . . . . . . braking pressure
ϕr (rad) . . . . . . . . . . . . . . . . road bank angle
ϕV (rad) . . . . . . . . . . . . . . vehicle roll angle
ϕW (rad) . . . . . . . . . . . wheel camber angle
ψa (rad) . . . . . . . . . . . . . air approach angle
ψV (rad) . . . . . . . . . . . . . . vehicle yaw angle
ψw (rad) . . . . . . . . . . . . . . . . . . . . wind angle
r (m) . . . . . . . . . . . . . . . . . . . . . . path radius
Ra (J kg−1 K−1) . . . . . speci�c gas constant
rB (m) . . . . . . . . . . . . . . . . . . . braking radius
ρa (kg m−3) . . . . . . . . . . . . . . . . . air density
rr (m) . . . . . . . . . . . . road curvature radius
rW (m) . . . . . . . . . . . dynamic wheel radius
sW . . . . . . . . . . . . . . . . . . . . . . . . . . wheel slip
sxW . . . . . . . . . . . . . longitudinal wheel slip
syW . . . . . . . . . . . . . . . . . . . lateral wheel slip
θ (rad) . . . . . . . . . . . . . . . . . . gradient angle
θD (rad) . di�erential shaft rotation angle
θE (rad) . . . . . . . . . . . engine rotation angle
θG (rad) . . . . . . . . gear shaft rotation angle
θr (rad) . . . . . . . . . . . . . . . . . . . . . road angle
θV (rad) . . . . . . . . . . . . . vehicle pitch angle
θW (rad) . . . . . . . . . . . wheel rotation angle
Ta (K) . . . . . . . . . . . . . . . . . . air temperature
TB (N m) . . . . . . . . . . . . . . . . braking torque
TD (N m) . . . . . . . di�erential input torque
TE (N m) . . . . . . . . . . . . . . . . . engine torque
TG (N m) . . . . . . . . . . gearbox input torque
TR (N m) . . . . . . . . . . . . . . . . . . . . rim torque



va (m s−1) . . . . . . . . . air approach velocity
vV (m s−1) . . . . . . . . . . . . . . vehicle velocity,
vV =

√
ÛxV2 + ÛyV2 + ÛzV2

vW (m s−1) . . . . . . . . . . . . . . wheel velocity,
vW =

√
ÛxW2 + ÛyW2 + ÛzW2

vw (m s−1) . . . . . . . . . . . . . . . wind velocity
x0 (m) . . . . gravity-�xed longitudinal axis
XB . . . . . . . . . . . lumped braking parameter
xr (m) . . . . . . . . . . . . road longitudinal axis
xV (m) . . . . . . . . . vehicle longitudinal axis
XW . . . . . . . . . . . . . . . . . . cornering sti�ness
xW (m) . . . . . . . . . wheel longitudinal axis
y0 (m) . . . . . . . . . gravity-�xed lateral axis
yr (m) . . . . . . . . . . . . . . . . . road lateral axis
yV (m) . . . . . . . . . . . . . . vehicle lateral axis
yW (m) . . . . . . . . . . . . . . . wheel lateral axis
z0 (m) . . . . . . . . gravity-�xed vertical axis
zr (m) . . . . . . . . . . . . . . . . road vertical axis
zV (m) . . . . . . . . . . . . . vehicle vertical axis
zW (m) . . . . . . . . . . . . . . wheel vertical axis

System identi�cation
A . . . . . . . . . . . . . . . . . . . . . . measured input
A . . . . . . . . . . . . . . . . . . . . . . . . . state matrix
Â . . . . . . . . . . . . . . . . . . . . . . estimated input
AIC . . . . . . Akaike’s information criterion
A . . . . . . . . . . . . . . . . . . . . . . . . . . instruments
Ã . . . . . . . . . . . . . . . . . . . . . . . . . . input noise
Ă . . . . . . . . . . . . . . . . . estimated input noise
A . . . . . . . . . . . . . . . . . . . . . . . . . . . true input
B . . . . . . . . . . . . . . . . . . . . . measured output
B . . . . . . . . . . . . . . . . . . . . . . . . . input matrix
β . . . . . . . . . . . . . . . Myriad tuning constant
B̂ . . . . . . . . . . . . . . . . . . . . . estimated output
BIC . . . . . . Bayesian information criterion
B̃ . . . . . . . . . . . . . . . . . . . . . . . . . output noise
B̆ . . . . . . . . . . . . . . . . estimated output noise
B . . . . . . . . . . . . . . . . . . . . . . . . . . true output
C . . . . . . . . . . . . . . . . . . Cholesky factor of P̃
C . . . . . . . . . . . . . . . . . . . . . . . . output matrix
c . . . . . . . . . . . . . . . . . . . . . condition number
D . . . . . . . . . . . . . . . . . feed-through matrix
d . . . . . . . . . . . . . . . . . . . . number of outputs
δ . . . . . . . . . . . . . . . . Huber tuning constant
∆A . . . . . . . . . . . . . . . . . . . . input correction
∆AIC . . . . . . . . . . . . . . . . . . . . AIC di�erence
∆B . . . . . . . . . . . . . . . . . . . output correction
∆X . . . . . . . . . . . . . . . parameter correction

∆Z . . . . . . . . . . . . . . . augmented correction
η . . . . . . . . . . . . . . . . . . . . . . . . . . . . learn rate
I . . . . . . . . . . . . . . . . . . . . . . . . identity matrix
k . . . . . . . . . . . . number of prediction steps
κ . . . . . . . . . . . . . . regularization parameter
L . . . . . . . . . . . . . . . . . . . . . . . . cost function
L . . . . . . . . . . . . . . . . . . . . . correction vector
λ . . . . . . . . . . . . . . . . . . . . . . forgetting factor
M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . model
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . samples
MAD . . . . . . . . . median absolute deviation
MEDSE . . . . . . . . . . . median squared error
MSE . . . . . . . . . . . . . . . . mean squared error
n . . . . . . . . . . . . . . . . . . . . . number of inputs
NMSE . . . normalized mean squared error
NRMSE . . . normalized root mean squared
error
o . . . . . . . number of estimable parameters
P . . . . . . . . . . . . . . . . . . . . covariance matrix
p . . . . . . . . . . . . . . . . . . . . . . . . . . . probability
Pd . . . . . . . . . . . . . . . . . . . . . . . . . . . desired P
P̃ . . . . . . . . . . . . . . . noise covariance matrix
P̆ . . . . . estimated noise covariance matrix
ψ . . . . . . . . . . . . . . . . . . . . in�uence function
Q . . . . covariance of parameter correction
q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n + d
Q̂ . . . . . . . . . . . . . . . . . . . estimated quantile
Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . quantile
R . . . . . . . . . . . . . . . input covariance matrix
R . . . . . . . . . . . . . . . . . regularization matrix
R1 . . . . . . . . . . . covariance of output noise
ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . ρ-function
S . . . . . . . . . . . . . . . . . matrix of eigenvalues
SEVN . . . . . . . . squared error vector norm
σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . scale
σ̂ . . . . . . . . . . . . . . . . . . . . . . . estimated scale
t (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time
τ (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . delay
U . . . . . . . . . matrix of left-singular vectors
V . . . . . . . . . . . . . . . . matrix of eigenvectors
W . . . . . . . . . . . . . . . . . . . . . . . scaling matrix
wl . . . . . . . . . . . . . . . . . . . . . . . . . left window
wr . . . . . . . . . . . . . . . . . . . . . . . right window
Wl . . . . . . . . . . . . . . . . . . . left scaling matrix
Wr . . . . . . . . . . . . . . . . . right scaling matrix
WX . . . . . . . . . . . . parameter scaling matrix
X . . . . . . . . . . . . . . . . . . . . . . . . . . . parameter
X̂ . . . . . . . . . . . . . . . . . . estimated parameter



X̂c . . . . . constrained estimated parameter
Xmax . . . . . . . . . . . . . . . . . . . . . . upper bound
Xmin . . . . . . . . . . . . . . . . . . . . . . lower bound
X . . . . . . . . . . . . . . . . . . . . . . . true parameter
Z . . . . . . . . . . . . . . . . . . . . . . augmented data
Ẑ . . . . . . . . . . . . estimated augmented data
Z̆ . . . . . . . . . . . augmented estimated noise

Mathematical operators and symbols
chol(·) . . . . . . . . . . . Cholesky factorization
cov(·) . . . . . . . . . . . . . . covariance operator
diag(·) . . . . . . . . . . . . . . . diagonal elements
E . . . . . . . . . . . . . . . . . . expectation operator

Λ . . . . . . . . . . . . . . . . . . . . . . . . shift operator
µ(·) . . . . . . . . . . . . . . . . . . . . arithmetic mean
med(·) . . . . . . . . . . . . . . . . . . . . . . . . . median
N . . . . . . . . . . . . . . . . Gaussian distribution
‖ · ‖1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-norm
‖ · ‖2 . . . . . . . . . . . . . . . . . . . . Euclidean norm
‖ · ‖F . . . . . . . . . . . . . . . . . . . Frobenius norm
� . . . . . . . . . . . . . . . . element-wise product
R . . . . . . . . . . . . . . . . . . . . . rational numbers
sgn . . . . . . . . . . . . . . . . . . . . . . . . . . . . signum
svd(·) . . . . . . singular value decomposition
Z . . . . . . . . . . . . . . . . . . . . . . integer numbers
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1 Introduction

“publish or perish”

Wilson [192, p. 197] [see 60].

Outline: This chapter gives the aim, motivation, and research questions of this
dissertation and introduces energy e�cient vehicle look-ahead controllers as
primary application. One section gives the outline of this dissertation and hints
how to read it most e�ciently. The following two sections discuss methods
that ensure reproducible research and introduce speci�c typography to avoid
self-plagiarism.

1.1 Aim of this work and research questions

The main objective of this work is to induce models that give accurate predic-
tion of the vehicle tractive force. The vehicle tractive force is the force that
is required to operate a vehicle on desired speed. This force acts in vehicle
longitudinal direction and may be positive or negative. A positive vehicle
tractive force means that the engine propels the vehicle. Hence, the engine
torque is positive and the engine consumes fuel or state of charge. A negative
vehicle tractive force requires to slow down the vehicle with brakes or an
electric engine that operates as generator. A precise de�nition of the vehicle
tractive force is given in De�nition 1.1.

De�nition 1.1. The vehicle tractive force is the force that balances the force
equilibrium of internal resistances and external forces and resistances.

The main application of the introduced vehicle tractive force models is in
look-ahead vehicle controllers that reduce the propel energy of vehicles [131,
pp. 11–18], [12, pp. 47–49] and [59, 75, 90, 188, 189]. Basically all look-ahead
vehicle controllers require the precise acquisition and prediction of the vehicle
tractive force for a forthcoming horizon of the route.

Generally speaking, a look-ahead controller is a control scheme that uses
predictive (future) information and an optimization method to compute the
control action for the plant. One branch of look-ahead controllers is model
predictive control that is also known as receding horizon control and very
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successful in automotive and many other industry applications [130]. Another
branch is dynamic programming [17].

Another application of the introduced vehicle tractive force models is range
prediction for electric vehicles [43, 66] that relies on highly accurate vehicle
tractive force prediction. Moreover, the emerging �eld of autonomous driving
[197, Figure 12] requires inverse vehicle dynamics models for longitudinal
and lateral controllers.

Only information from existing standard built-in vehicle sensors will be
used, in order to determine a cost-e�ective and quickly applicable method.
Accordingly, the presented methods are applicable to most standard vehicles
without further ado.

The �rst research question is thus: how can we produce, while driving, highly
precise vehicle tractive force models with little computational e�ort and without
additional sensors?

We will see in Section 2.8 that we can derive vehicle tractive force models
with di�erent model structure (di�erent model complexity) and we can choose
from di�erent estimators which follow di�erent statistical assumptions.

Hence, we can ask a second research question: Which combination of model
structure and estimator gives the most accurate prediction of the vehicle tractive
force?

Given the variety of possible model structures and estimators a third re-
search question and hence, a second objective of this work arises: which model
estimator combination yields superior accurate vehicle mass estimates? This
question is important because the vehicle mass is one of the most signi�cant
parameters in active safety systems such as the anti-lock braking system or
electronic stability program.

1.2 Motivation

Vehicle longitudinal dynamics are based on an equilibrium between vehicle
propulsion, internal resistances, and external resistances and forces. The inter-
nal resistances are rather independent of surrounding conditions, compared
with the external resistances and forces. A su�ciently accurate characteriza-
tion of the internal resistances is given by results of test bed measurements
that give data to develop drive-train models. Hence, the focus of this work
will be the modeling of external resistances and forces by use of model-based
estimators.

Chapter 2 will group the various parts of the external resistances and forces
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1.3 How to read this dissertation

as climbing force, acceleration force, longitudinal aerodynamic resistance,
rolling resistance, cornering resistance, and lateral aerodynamic resistance.
The external resistances and forces depend on lumped parameters which
vary more or less quickly while driving and depend strongly on the current
environmental conditions.

The equilibrium between vehicle propulsion, internal resistances and ex-
ternal resistances and forces causes that a desired driving state can only be
achieved if enough propulsive power is available, resistances are decreased
or energy is reused to propel the vehicle. Concerning limited resources, a
focus of automotive engineering is energy e�cient driving, which can be
achieved by improving the components and subsystems of the vehicle (reduce
resistances, add components which recuperate and store energy) or by an
intelligent operation strategy of the vehicle (reuse energy). The development
of individual components like engine or gearbox is well advanced, whereas
the use of intelligent operation strategies, such as look-ahead control, o�ers
potential to achieve high driving performance on low propel energy.

1.3 How to read this dissertation

This outline will give an idea how to read this work and what to expect
from each chapter. Suggestions are given which parts of this work may be
preliminary skipped depending on the background of the reader. I highly
recommend to read the pdf version of this work, because each citation, sym-
bol and acronym has a hyperlink to its reference, de�nition or description,
respectively. Moreover, all �gures are shown as vector graphics. Hence, you
can zoom each �gure to study the details without loosing image quality.

Chapter 2—Vehicle force equilibrium contains fundamentals in vehicle dy-
namics. Although numerous books cover this topic in more detail, it is useful
to summarize internal and external resistances and forces that act on vehicles
to ensure a consistent nomenclature.

The introduced concepts are fundamental to follow Chapter 4 and Chapter 5.
Readers who are familiar with vehicle dynamics may skip Chapter 2 and refer
back for a de�nition of vehicle speci�c symbols if needed.

However, Section 2.8 may also be of interest for vehicle dynamics experts,
because Section 2.8 gives the link between vehicle dynamics and concepts
from system identi�cation which are covered in Chapter 3.

3
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Chapter 3—Models and estimators gives a broad survey of methods in linear
model structures and estimators. This chapter is fundamental to follow all
subsequent chapters (Chapter 4–Chapter 6) which are rather vehicle speci�c.
Moreover, Chapter 3 de�nes general concepts such as system, model, model
structure, and experimental condition. Additionally, this chapter classi�es nu-
merous model structures and estimators in Figure 3.1 which is a well arranged
tree diagram. Methods like model selection, model validation, cross-validation,
regularization, and robustness will be introduced in detail.

The main part of this chapter is a survey of various statistical models
and their estimators which will be shown in numerous batch and recursive
algorithms and explored by reproducible numerical experiments.

This chapter highlights connections and transitions between well known
algorithms and explores novel recursive estimators that are applied with
real world data in Chapter 5. Additional topics and a hands on guideline for
choosing the most appropriate estimator concludes this chapter.

This chapter may be of interest for a broad range of readers from engineer-
ing or more general for readers with interest in parameter estimation. The
connection between methods from this chapter and vehicle science follows
in Chapter 4 and Chapter 5. Sections that are marked with an asterisk com-
prise rather complex mathematical content or are of more theoretical interest.
These sections may be skipped from practitioners at �rst reading.

Chapter 4—Survey of related research reviews related research of vehicle
parameter estimation and discovers open topics addressed by this dissertation
in Chapter 5.

Chapter 5—Vehicle tractive force prediction and mass estimation applies
estimators of Chapter 3 on two gray-box models which are based on a force
equilibrium of Chapter 2. The prediction quality for the vehicle tractive force
of several recursive algorithms will be compared to the benchmark with a
given white-box model on a large set of vehicle real world data from test runs
on public roads. The second topic will be vehicle mass estimation which is
not the main focus of this dissertation but an important research �eld. The set
of gray-box candidate models and estimators will be compared with respect
to highly accurate estimates of the vehicle mass.

This chapter may be of interest for readers from vehicle science who deal
with look-ahead controllers or estimators for vehicle parameters. Additionally,
this chapter may give new insights for readers from system identi�cation
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1.4 Some thoughts about reproducible research

community due to the large amount of real world data and the experienced
pitfalls and hazards that arise with challenging real world data.

Chapter 6—Concluding remarks provides conclusions, lists the main con-
tributions, and gives an overview of open topics which might develop into
interesting research projects for the future.

Chapter A—Algorithms and Matlab provides a link to access the supplemen-
tary material of this dissertation and shows how to execute the algorithms
from Chapter 3 in Matlab®.

1.4 Some thoughts about reproducible research

Following the guidelines of [187] and the advice of my co-adviser Ivan Mar-
kovsky, I started to publish code as additional material of my papers. This
dissertation is a mixture of computer experiments that show and evaluate
various methods with arti�cial data (Chapter 3) and real world experiments
with vehicles on public roads (Chapter 5). These experiments require Matlab®
software and the implementation from the supplementary material of this
dissertation (see Chapter A). All required steps to rerun the experiments will
be explained.

However, some parts of an engineer’s research is simply not fully repro-
ducible. Particularly, real world data from test runs on public roads. The
environmental conditions of these test runs are not reproducible. Moreover,
the vehicles we used were disposed in the meanwhile. Accordingly, the results
of Chapter 5 are not fully reproducible.

1.5 Typography and matrix notation

Good typography ensures that the amount of information that the reader
catches is as big as possible. Hence, I gave my best to use typography wisely
and this section explains some speci�c typography of this dissertation.

The pencil-icon on the margin of a page indicates that further research .
should be conducted. Commonly, this outlook for open research topics is
given at the end of a dissertation but I think it is also helpful to depict open
topics directly when they appear because explanation can be given deeper in
main chapters than in Section 6.3 (Open problems).

The pedestrian-icon on page margins in Chapter 3 highlights new �ndings, A
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precisely novel estimators and algorithms.
Nowadays, rapid publication of research is vital for reputation and impact

in the scienti�c community. A modern way to deal with rapid publication is a
cumulative dissertation. However, a cumulative dissertation is quite in�exible
to rearrange material or put in new �ndings. That is why I decided to follow a
way in between (classic full written dissertation and cumulative dissertation)
and inserted parts of reused material.

Reused material: The reused material in Chapter 3 appears like this
paragraph. Thin rules show clearly where the reused material begins and
ends. The last sentence is a citation with the comment [This reused material
has been reformatted for uniformity. xx].

Reformatted means that there a slight modi�cations in the symbols to
ensure a consistent nomenclature.

Note that quotations are given in a common way with large margins on
both sides and smaller font.

This text is set as block-quotation and its appearance di�ers from own reused
material.

Moreover, you will �nd the mentioned computational experiments within
gray shaded boxes in Chapter 3.

Experiment
. . .

Finally, the matrix indexing within this work is as follows. The �rst index
of a matrix denotes rows, the second columns. For instance, Ai, j denotes an
entry at row i and column j of matrix A. The colon operator (:) denotes all
rows or columns, or a range. The notation A:, j means all rows of column j.
Conversely, Ai, : denotes all columns of row i . However, mostly the short hand
notation Ai is used instead of Ai, :. The colon operator in the index of A1:3, j
extracts a column vector of row one–three at column j of matrix A.

Summary: This chapter provided information about the research topic and its
application. Further, speci�c typography and matrix notation were introduced.
Depending on the background of the reader, the presented outline should be a
good guide where to start with reading. The next chapter will give fundamentals
in vehicle dynamics.
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2 Vehicle force equil ibrium

Outline: This chapter gives fundamentals in tire-road contact, external resistances
and forces that act on the vehicle, and the lossy torque transmission from engine
to rim in terms of a drive-train model. The last section converts force equilibrium
equations into a matrix form which is appropriate for several model structures.
This conversion is required to follow Chapter 4 and Chapter 5.

2.1 Coordinate systems

We need several coordinate systems to locate the vehicle in space. Conversely
to [114, p. 3] and [1], the inertial system x0, y0, z0 in Figure 2.1 is orientated in
a way that the area spanned between x0 and y0 is perpendicular to the vector
of gravity (д). Through the large earth radius, the orientation of the inertial
system changes only slightly during drive. Therefore, we can assume a quasi
stationary inertial system.

The road coordinate system is de�ned by xr, yr and zr. The inclination of
the road surface with respect to д is expressed by road bank angle (ϕr) and
the road angle (θr). A description of the rotational movement around zr is not
essential and therefore omitted.

Four wheels are rolling on the road surface. The wheel coordinate systems
have their origin in the respective wheel center of gravity (CGW), assuming
ideal symmetric mass distribution for each wheel and wheel vertical axis (zW)
being normal to the road surface. Beside the three translational wheel degrees
of freedom xW, yW and zW, we need the wheel camber angle (ϕW), wheel
rotation angle (θW), and the wheel steer angle (δW).

The body �xed vehicle coordinate system xV, yV and zV acts in the vehicle
center of gravity (CGv). The three angles are labeled with vehicle roll angle
(ϕV), vehicle pitch angle (θV), and vehicle yaw angle (ψV).

According to [1], CGv moves relative to the stationary system x0, y0, z0
with the vehicle velocity (vV). Depending on the driving situation, we have
to carry out certain coordinate transformations to obtain the vehicle velocity
components in xV, yV and zV. In the easiest case of driving straight ahead
without acceleration on a horizontal road surface we can adjust ϕr = θr = 0,
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CGv

xV

yV

zV

ϕV

θV

ψV

xr

θr
yr

ϕr

д

road surface
x0

y0

z0

CGW4
xW4

yW4

zW4

ϕW4

θW4

δW4

Figure 2.1: Vehicle with three translational (xV, yV, zV) and three rotational degrees of
freedom (ϕV, θV,ψV) which act in the body �xed vehicle center of gravity
(CGv). The directions x0, y0 of the inertial system create a surface which
is perpendicular to д. The road coordinate system (xr, yr, zr) is tilted with
respect to this perpendicular surface around the angles ϕr and θr. The
directions xW4, yW4 and zW4 create one of four wheel coordinate systems
which are numbered with index jW.

ϕV = θV = ψV = 0 and therefore the vehicle velocity components become
ÛxV = vV and ÛyV = 0.

2.2 Tire-road contact

Friction ensures the force transmission between tire and road surface based
on the relation

FW = µWFzW .

The tire in Figure 2.2 is turned-in around δW and moves with the velocity vW,
whereby vW is twisted around the slip angle (αW). This results in two force
and velocity components FxW , FyW , ÛxW, ÛyW, respectively, with the relations

vW =

√
Ûx2
W +

Ûy2
W,

8



2.3 Tire models

FW =
√
F 2
xW + F

2
yW ,

FxW = µxWFzW ,

FyW = µyWFzW ,

µW =
√
µ2
xW + µ

2
yW .

Note that the friction coe�cients (µxW , µyW ) depend on slip. Friction is parti-
tioned in static friction (sticking) and kinetic friction (sliding). The deformation
of the elastic tread blocks causes slip during sticking and a fraction of slip
during sliding (assuming that the wheel still rotates). If static friction turns
into kinetic friction, additional relative movements between the tread blocks
and the road surface occur. Hence, kinetic friction causes higher slip than
static friction.

Following [114, p. 31] the lateral wheel slip (syW ) is de�ned as

syW = tanαW =
vW sinαW
vW cosαW

=
ÛyW
ÛxW
.

However, syW is only of minor importance in practice [114, p. 33]. Instead, αW
is directly considered to determine the wheel lateral force.

There are certain de�nitions for the longitudinal wheel slip (sxW ) . The
piecewise de�ned relation (2.1) ensures that sxW remains within the interval
of 0 ≤ sxW ≤ 1.

sxW =

{ ÛθWrW− ÛxW
ÛθWrW

ÛθWrW > ÛxW propellingslip
ÛxW− ÛθWrW
ÛxW

ÛxW > ÛθWrW brakeslip
(2.1)

ÛθW is the wheel speed and rW the dynamic wheel radius. The de�nition for sxW
by [122, p. 65] and [1] is given in (2.2). The longitudinal wheel slip becomes
sxW = −1 while braking with locked tires and can increase to in�nity while
propelling

sxW =
ÛθWrW − ÛxW
ÛxW

. (2.2)

In the following we use solely the slip de�nition of (2.2).

2.3 Tire models

Tire models provide mathematical functions which describe the forces and
torques in the tire road surface contact. Figure 2.3 shows typical character-

9
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Figure 2.2: Wheel longitudinal force (FxW ) and wheel lateral force (FyW ) in the tire road
surface contact. Kamm’s circle (max(µW)FzW ) saturates the wheel force
(FW). Accordingly, FW < max(µW)FzW . Note that xV is parallel shifted
from CGv into CGW.
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Figure 2.3: The wheel longitudinal force (FxW ) as function of longitudinal wheel slip
(sxW ) and the wheel lateral force (FyW ) as function of slip angle (αW)
generated by the magic tire formula in (2.4).
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2.4 Longitudinal vehicle forces

istics for the functions FxW = f (sxW ) and FyW = f (αW). Both curves can be
approximated with a tangent around the zero point. This approach gives
simple linear tire model

FxW ≈ cxWsxW , (2.3a)
FyW ≈ cyWαW, (2.3b)

in which the two parameters cxW and cyW are the wheel longitudinal sti�ness
and wheel cornering sti�ness, respectively. However model (2.3) is only valid
in a narrow domain of de�nition around sxW ≈ 0 and αW ≈ 0. The curves of
FxW and FyW show distinct in�exion points outside of the linear domain.

Equation (2.4) shows a non-linear tire model which is known as magic tire
formula [122, p. 165].

B = X3 sin
(
X2 arctan

(
X1A − X4 (X1A − arctan (X1A))

) )
(2.4)

The measured output (B) can be FxW or FyW . Analogously, the measured input
(A) is sxW or αW. The parameters (X 1 . . .X 4) are determined by experiments
and specify the form of the function. Another often applied non-linear tire
model was introduced by Burckhardt [26].

2.4 Longitudinal vehicle forces

The following forces act in vehicle longitudinal axis (xV) and apply in vehicle
center of gravity or in the pressure point (PP). The pressure point is a point
where all external aerodynamic forces can be combined in a single vector.

2.4.1 Climbing force

Figure 2.4 shows a vehicle climbing a hill. The climbing force (Fcl) in (2.5),
which acts in CGv, is determined by the vehicle mass (mV), д and the gradient
angle (θ ) [69, p. 155].

Fcl =mVд sinθ (2.5)

While climbing a hill, the vehicle saves potential energy which is mainly
transformed into kinetic energy (also partly transformed into electric and
thermal energy) while driving downhill.

11
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CGv

xV zV

xV

mVд

Fcl

mVд cos θ

θ

θ

Figure 2.4: Vehicle driving uphill. The forces that act in CGv are shown with magni�-
cation on the right.

2.4.2 Acceleration force

Newton’s �rst law states that the translational acceleration of a mass causes a
acceleration force (Fac) which acts contrary to the direction of acceleration.

Fac =mV ÛvV (2.6)

Commonly, (2.6) comprises the reduced mass of rotational parts with Fac =(
mV + Ired(G)/r 2

W
)
ÛvV. However, the drive-train model model in Section 2.7

will consider the rotational parts.

2.4.3 Longitudinal aerodynamic resistance

Figure 2.5 shows the longitudinal aerodynamic resistance (Fxa ) which acts in
the pressure point and originates through circulation and perfusion while
driving straight ahead. In this case, vV = ÛxV. The vehicle side slip angle (βV)
must be considered if the vehicle drives through corners. The dimensionless
longitudinal drag coe�cient (cx ) is determined with wind tunnel experiments
which give the function cx over the air approach angle (ψa) (cx = f (ψa)).
Furthermore, the value on the ordinate cx (ψa = 0) is often written as cw in
literature. The longitudinal aerodynamic resistance becomes

Fxa =
ρa
2 AV(ψa)v2

acx (ψa), (2.7)

with the air density (ρa), vehicle cross-sectional area (AV) and the air approach
velocity (va) [69, p. 154]. The air density and the air approach velocity are af-
fected by ambient conditions. If air is regarded as a dry ideal gas, the air density
can be computed with the speci�c gas constant (Ra) Ra = 287.058 J kg−1 K−1

12
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PPvV = ẋV

vw
va

ψaψw

CGvxV

yV

Fxa

Fya

cx

ψa

cw

Figure 2.5: Vektor superposition for the air approach velocity (va) for straight ahead
driving [see 69, p. 153]. The common shape of the function cx = f (ψa) is
shown on the right [see 69, p. 155]

by ρa = pa/(RaTa). The calculation of the exact air density is considerably
more complex and exempli�ed in [127]. This calculation needs knowledge
about the air pressure (pa), air temperature (Ta), molar masses of water, water
vapor, a compression factor, and a molar gas constant.

According to [69, p. 153], air approach velocity is given for straight driving
in (2.8b) by summing up the vectors ÛxV and wind velocity (vw) and considering
the wind angle (ψw). Note that even with solely side-wind (ψw = 90°), the air
approach velocity is larger than ÛxV.

®va =

(
cos(ψw)vw − ÛxV

sin(ψw)vw

)
(2.8a)

va =
√
ÛxV2 +v2

w + 2 ÛxVvw cos(ψw) (2.8b)

2.4.4 Rolling resistance

Haken [69, p. 150] explains that the rolling resistance (FWr) causes approxi-
mately 80 % of all resistances at the wheel while driving straight ahead on a
dry and paved road. However, this reported fraction of FWr depends strongly
on air approach velocity. The analogous model of the wheel in Figure 2.6
exempli�es the origin of FWr.

The wheel vertical force (FzW ) causes the compression of the tire in the
area of the road surface and an area of tread de�ection is developed as a
contact surface. Usually a parallel-connected spring damper model is used to
describe the compressible characteristics of the air inside the tire and damping
characteristics of the rubber [69, pp. 137–138]. During the de�ection at the
tire inlet, spring and damper act simultaneously. During the rebound at the

13



2 Vehicle force equilibrium

xW

zW

˙θW

FzW

−FzW

eR

FWr

FWr

Figure 2.6: Tire analogous model [compare 155, p. 165].

tire outlet the spring force is reduced by the damper. Thereby the surface
pressure at the tread is imbalanced. The resulting force FzW is shifted from zW
about the distance eR to the front. A torque appears which counteracts to the
rolling direction. The ratio of the two lever arms eR/rW is called coe�cient of
rolling resistance (fr) which is required to compute the rolling resistance

FWr =
eR
rW

FzW = frFzW . (2.9)

Note that (2.9) is a simpli�ed equation to compute the rolling resistance
because the rotational part of the wheel air resistance was assumed negligible.
The coe�cient of rolling resistance depends on the wheel vertical force, tire
temperature, internal tire pressure, vehicle velocity, and the road surface [69,
p. 139]. While driving on paved roads, the progressive in�uence of the velocity
on fr is approximated in [114, p. 9] with

fr(vV) = fr0 + fr1vV + fr4v
4
V. (2.10)

In the lower speed range vV<80 km h−1, fr(vV) is almost linear [74, p. 41]. In
conventional vehicles, the rolling resistance causes a purely dissipative heat
which causes higher tire pressure and this heat is partly transferred from the
tire into the environment.
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2.5 Lateral vehicle forces

2.4.5 Toe-in resistance

According to [69, p. 144] and [114, p. 14], the slackness within the steering is
compensated by a light slant (αW ≈ δW�1°) of the front wheels. By reason of
this, a wheel lateral force develops which has a component contrary to the
direction of movement. Accordingly, the toe-in resistance (FWt) is calculated
by

FWt(αW) = FyW (αW) sin(αW).

2.4.6 Suspension resistance

While driving over a ground wave, a force originates which is normal and
parallel to the road surface and transferred into the vehicle by springs and
dampers of the suspension [69, p. 149]. Dampers show smaller compression
than expansion rate and convert kinetic energy into thermal energy. Hence,
the damper causes that this normal force is smaller during rebound then
during compression. Hence, this normal force has a component contrary to
the direction of movement and this component is called suspension resistance.
In conventional vehicles, the suspension resistance causes dissipative heat
transfer from the damper into the environment. However, recently there are
approaches to gain energy out of the lifting movement of the chassis [84].

2.5 Lateral vehicle forces

The following forces act in vehicle lateral axis (yV) and apply in vehicle center
of gravity or in the pressure point. However, these forces may cause force
components in xV direction and hence in�uence the longitudinal vehicle forces
as well.

2.5.1 Cornering resistance

Emerging on stationary cornering the centrifugal force (Fc) in (2.11) applies
at the vehicle center of gravity and needs to be compensated by wheel lateral
force (FyW ) at the wheels.

Fc =mV
v2

V
r

(2.11)

Riekert and Schunck [137] introduced the single track model that is known as
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CGv

xV

yV

l12 l34

IC

r12 r34r

vV12

vV34

vV

FyW 12

FyW 34
Fc

αW34

αW12

δW12

βV

mVv2
V12l34

r12l mVv2
V34l12

r34l

Figure 2.7: Vehicle single track model [compare 155, p. 245], [114, p. 553] and [69, p. 147].
The symbols denote: centrifugal force (Fc), wheel lateral force (FyW ), slip
angle (αW), wheel steer angle (δW), path radius (r ), vehicle velocity (vV),
vehicle side slip angle (βV), and wheel base (l ).

good approximation of lateral vehicle dynamics and that is shown in Figure 2.7.
The single track model makes the following assumptions:

1. constant vehicle velocity, ÛvV = 0;
2. no motion in zV direction, zero vehicle roll angle and vehicle pitch

angle, and the vehicle center of gravity is assumed to lie within the road
surface;

3. wheels are summarized to one wheel per axis;
4. the wheel vertical force balancing does not change over time,

[155, pp. 243,244]. The single track model is su�ciently exact for lateral accel-
erations which are smaller than 4 m s−2 [155, p. 244]. Under the assumption
of small slip angles the linear tire model (2.3) is used [69, p. 146] to get the
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2.5 Lateral vehicle forces

relations

FyW 12 =f (αW12) ≈ XW12αW12 =
mVv

2
V12l34

r 12l cosαW12
, (2.12a)

FyW 34 =f (αW34) ≈ XW34αW34 =
mVv

2
V34l12

r 34l cosαW34
, (2.12b)

where l is the wheel base with l = l12 + l34 and XW12, XW34 are the front
and rear axle cornering sti�ness, respectively. The relation (2.12) causes force
components which act contrary to the direction of movement,

FWc12;34 = FyW 12;34 sinαW12;34 (2.13)

and these force components are summarized as cornering resistance (FWc).
Combining (2.12) and (2.13) yields

FWc =
mVv

2
V12l34

r 12l cosαW12
sin

(
mVv

2
V12l34

r 12l cosαW12X12

)
+ . . .

· · · +
mVv

2
V34l12

r 34l cosαW34
sin

(
mVv

2
V34l12

r 34l cosαW34X34

)
.

Since there are only small slip angles while cornering, the angular relationships
are simpli�ed to cosαW ≈ 1 and sinαW ≈ αW. Therefore the total cornering
resistance is approximated by

FWc ≈
m2

Vl
2
34v

4
V12

l2r 212X12
+
m2

Vl
2
12v

4
V34

l2r 234X34
, (2.14)

[69, p. 147]. In the case of large curve radii, same set of tires, and the assump-
tion that the vehicle center of gravity is in the middle of the vehicle, (2.14) can
be further simpli�ed into

FWc ≈
m2

Vv
4
V

r 24cyW
, (2.15)

[69, p. 147].

2.5.2 Lateral aerodynamic resistance

The lateral aerodynamic resistance (Fya ) acts in pressure point and is similar
to (2.7) given by

Fya =
ρa
2 AV(ψa)v2

acy (ψa),
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xW

zW

boundary

˙θW

TR − IW ¨θW

rW

FxW + FWrFxV

Figure 2.8: Forces in road surface and torque at a wheel that moves into xW direction
[compare 85, p. 37].

[69, p. 154]. Again, the lateral drag coe�cient (cy ) is a function of ψa, [114,
p. 62]. In contrast to longitudinal aerodynamic resistance, a torque raises
around the vehicle vertical axis (zV) from lateral aerodynamic resistance due
to the lever arm between pressure point and vehicle center of gravity which
is observable in Figure 2.5. This torque and the lateral aerodynamic resistance
itself have to be compensated by wheel lateral force. Hence, the driver has to
steer if Fya > 0 and accordingly, a resistance is introduced which is in principle
comparable with the cornering resistance from Section 2.5.1. Mitschke and
Wallentowitz [114, pp. 621–640] give a deeper introduction in vehicle side-
wind dynamics.

2.6 Force equilibrium at wheel

Let us balance all forces in circumferential direction at the wheel by the free
body diagram of the wheel in Figure 2.8. The force equilibrium becomes

FxV + FxW + FWr = 0, (2.16a)

FxV =
TR − IW ÜθW

rW
. (2.16b)

The vehicle tractive force (FxV ) in (2.16b) includes the rim torque (TR), the
wheel rotation angle (θW), the wheel moment of inertia (IW), and the dy-
namic wheel radius. The components of the rim torque will be explained in
Section 2.7.
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2.7 Drive-train

TE
TG TD

TB1

TR1

TB2

TR2

TG θ̇G

f
(T

G
,
˙ θ G
,
G
)

Figure 2.9: Drive-train of a two wheel drive vehicle with combustion engine and rear-
drive. The right side shows the qualitative shape of the loss-torque as
function of torque and rotational speed for one gear of the manual gearbox.

We will use (2.16) to derive two vehicle tractive force models in Section 5.4.2
and Section 5.4.3. Moreover, Section 1.1 said that the prediction of the vehicle
tractive force is the main objective of this work and (2.16b) gives the expression
of the vehicle tractive force.

2.7 Drive-train

The rim torque (TR) is located at the internal section in Figure 2.8. Typically,
it is expensive to measure TR directly. Accordingly, vehicle speci�c drive-
train models are used to determine TR out of the engine torque (TE) [see 91,
pp. 194–221].

A drive-train model describes the lossy torque transmission from the engine
to the rim. Losses arise through friction within the drive-train. Often the
friction losses of single components such as bearings, gearbox, or di�erential
are described with characteristic maps which originate from experiments. The
exact setup of the drive-train model depends heavily on the used components
(electric motor, hybrid, conventional combustion engine, two wheel drive,
four wheel drive, manual gearbox, automatic gearbox, . . . ). Therefore, it is
impossible to �nd an uniform model structure for every thinkable drive-train
and we will focus on one speci�c drive-train model.

Figure 2.9 shows the drive-train of a two wheel drive vehicle with com-
bustion engine and rear wheel drive. The engine torque is transformed in
the gearbox and di�erential. We need to subtract the frictional losses which
originate in this process at the gearbox output and di�erential output. While
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2 Vehicle force equilibrium

the clutch is engaged ( ÛθG ≈ ÛθE) the following relations give a drive-train model

TG = TE,

TD = TGiG(G) − f (TG, ÛθG,G),

ÛθD =
ÛθG

iG(G)
,

4∑
jW=1

TR, jW =
(
TDiD − f (TD, ÛθD)

)
− . . .

· · · − Ired(G)
ÜθW1 + ÜθW2

2 −
4∑

jW=1
TB, jW ,

Ired =
4∑

jW=1
IB, jW + i

2
DID + i

2
Di

2
G(G)(IG(G) + IC + IE). (2.17)

TG denotes the gearbox input torque, TD the di�erential input torque, TB
denotes the braking torque, iG the gearbox ratio, G the gear, ÛθG the derivative
of the gear shaft rotation angle (gear shaft speed), ÛθD the derivative of the
di�erential shaft rotation angle (di�erential shaft speed), iD the di�erential
ratio, IC the clutch moment of inertia and IE the engine moment of inertia.

Here, it is assumed that all losses of auxiliary users (alternator, air condi-
tioning compressor, . . . ) are already taken into account in TE. Moreover, (2.17)
is shown in a short form (not all required rotational inertias are explicitely
shown). The extended form of (2.17) considers all rotational inertias within
the drive-train and it refers to ÛθW.

The wheel individual braking torque (TB, jW ) is given by

TB, jW = pB, jWAB, jWrB, jWXB jW ,

[74, p. 171]. TB is dissipative in conventional vehicles with disc brakes but
may be zero while non-braking, TB ≥ 0.
XB includes the braking friction coe�cient between the brake pads and the

disk as well as the brake caliper e�ciency. The braking friction coe�cient is
subject to strong variation, depending on disk temperature and precondition-
ing of the brake [157, p. 32].

This work assumes, that TR is available through a validated drive-train
model for the used vehicle type. Thereby, all results can be transferred on
similar vehicle types without further ado.
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2.8 From equilibrium equations to models

2.8 From equilibrium equations to models

Raising an equilibrium equation such as (2.16) is probably the standard method
in engineering to deduce a model which approximates a mechanical system.
A typical equilibrium is the force equilibrium

j∑
i=1

Fi = 0. (2.18)

Now assume that we consider three forces in (2.18), hence j = 3 than (2.18)
becomes

F 1 + F 2 + F 3 = 0. (2.19)

Let us suppose that F 3 is measurable. The vehicle tractive force from (2.16b) is
for instance a measurable force if we use the drive-train model from Section 2.7.
Let us further suppose that F 1, F 2 are measurable up to unknown parameters
X 1, X 2. Then we can rewrite (2.19) into

A1,1X 1︸ ︷︷ ︸
F 1

+A1,2X 2︸ ︷︷ ︸
F 2

= B1︸︷︷︸
−F 3

, (2.20)

where A are the measured inputs, X are parameters and B is the measured
output. We can substitute for example the acceleration force of (2.6) for F 1
in (2.20) with A1,1 = ÛvV and X 1 = mV and the longitudinal aerodynamic
resistance (2.7) for F 2 in (2.20), while A1,2 becomes v2

V and X 2 =
ρa
2 AVcx ,

assumingψa = 0.
Equation (2.20) is linear in the parameters and because of that, (2.20) is

a linear multi-input-single-output (MISO) model which comprises only two
parameters. Hence, the model structure of (2.20) is rather simple. We are
free to choose a more �exible model structure if we increase the number
of considered forces in (2.18) (j > 3). Accordingly, we can create a set of
candidate models from the force equilibrium (2.18) with di�erent complexity.

Commonly, X 1 and X 2 are only approximately known. Therefore, we try
to estimate X̂1 and X̂2 with an overdetermined system of equations and A1,1,
A1,2, and B1, turn from scalars into the matrix form

At=1,1 At=1,2
At=2,1 At=2,2
...

...
At=m,1 At=m,2


[
X 1
X 2

]
≈


Bt=1
Bt=2
...

Bt=m


. (2.21)
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2 Vehicle force equilibrium

Now the rows of A and B contain measurements depending on the time (t ).
Note the ≈ symbol in (2.21). This symbol indicates that we expect some
uncertainty in the measurement A or B or in both of them. If we assume
uncertainty solely in B, (2.21) can be written as multi-input-single-output
output-error model with matrix notation as

B = AX̂ + ∆B,

whereas ∆B is the output correction (see Section 3.5). If we assume uncer-
tainty in A and B, the multi-input-single-output errors-in-variables model of
Section 3.6 holds

B = (A − ∆A)X̂ + ∆B

and additionally considers the input correction (∆A). Each assumption of
uncertainty requires an individual estimator to determine X̂ . Moreover, we
can transfer (2.21) into a state-space output-error model

X̂ t = AX̂ t−1 + ∆X t

Bt = At X̂ t + ∆Bt ,

where the state matrix (A) considers knowledge about the temporal evolution
of the parameters (see Section 3.7).

No matter what kind of model we use (multi-input-single-output, state-
space, output-error, errors-in-variables), we will treat each row in (2.21) as
independent measurement. Hence, we will not consider a speci�c structure in
A and B.

However, most mechanical systems enforce a structure in A and B. Re-
member that we substituted the acceleration force for F 1 with A1,1 = ÛvV and
X 1 =mV. Hence, the measured vehicle acceleration ( ÛvV) over time gives the
column vector A:,1. A plot of A:,1 would rather show a continuous function
than a random signal, because the inertia of the vehicle causes that each row
inA:,1 correlates with adjacent rows. Accordingly, it might be useful to expand
(2.21) in a way that A and X become

At=1,1 At=1,2 . . .
At=2,1 At=2,2 . . .
...

...
. . .

At=m,1 At=m,2 . . .



X 1
X 2
...

 ≈

Bt=1
Bt=2
...

Bt=m


. (2.22)
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The right block in the A-matrix of (2.22) could be �lled with time-delayed
measurements of some columns of A to consider the structure of A in the
model. Moreover, we could �ll this block with time-delayed measurements
of B or ∆B to model the dynamics of unaccounted forces or to include a
dynamical model of the output correction.

Models which combine a deterministic part (left block in the A-matrix of
(2.22)) and a part for the disturbance (right block in the A-matrix of (2.22)) are
called auto regressive with eXogenous input (ARX). Isermann and Münchhof
[86, p. 57] provide an overview for this model structure. In addition to this,
[96] compares various ARX models for the errors-in-variables problem. Ap-
parently, the number of parameters in (2.22) is larger than in (2.21). Hence,
the identi�cation as well as the prediction of ARX models becomes computa-
tional more expensive, which is the main reason why we will not continue to
consider ARX models.

On the other hand, this short introduction into ARX models might o�er .
future research topics in vehicle parameter estimation.

Summary: This chapter described major vehicle force components that are
required to form a force equilibrium which is fundamental to deduce vehicle
models. We will introduce various models and estimators in Chapter 3, where
statistical assumptions and relations between di�erent models are emphasized.
Further, the introduction in vehicle dynamics within this chapter is useful to
follow Chapter 4 (Survey of related research). In Chapter 5, we will use the force
equilibrium of (2.16) and perform the same steps from (2.18) to (2.21) to deduce
vehicle tractive force models.
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3 Models and estimators

“Models [. . . ] are only approximations to
unknown reality or truth; there are no true
models that perfectly re�ect full reality.”

Burnham and Anderson [28, p. 264].

Outline: This chapter begins with an overview of various models and estimators.
Than, we will introduce general concepts of model selection and model validation,
followed by important methods with regard to regularization and robustness.
Moreover, we will discuss linear gray-box models and their estimators in detail
and emphasize transitions from one estimator into another. Besides, we will
introduce novel recursive estimators which will generalize (include as special
case) and improve common estimators. Several reproducible experiments with
increasing complexity will indicate which estimator should be used for a speci�c
problem. Afterwards, a novel estimator for a polynomial-function black-box
model will provide an improved signal �lter which will be used in Chapter 5 to
smooth vehicle CAN signals. Finally, we will outline additional topics which
might motivate further research. We will conclude this chapter with a guide for
estimator selection. The deeper study of linear gray-box estimators within this
chapter is required to evaluate related research in Chapter 4 and to interpret the
results of the real world problem in Chapter 5.

3.1 Fundamentals

Söderström and Stoica [168, p. 9] introduced the four concepts system, model
structure, estimator and experimental condition which are useful to explain
our degree of freedom with respect to system identi�cation. The �rst concept
system is the vehicle within this work. Usually, unmodi�ed vehicles are desired.
Hence, the system is given. In contrast, models are approximations of systems
and we look often for models which describe the system response (output)
for known input signals. Herein, we will focus on the vehicle longitudinal
dynamics, precisely on models for the prediction of the vehicle tractive force.
These models will be detailed in Section 5.4. Models can have di�erent model
structures, and some model structures have tunable parameters which can be
adjusted through various estimators. An estimator is a mathematical procedure



3 Models and estimators

to determine unknown model parameters from measurements. The weather
belongs to the experimental condition, which is hard to control. Practically,
it is impossible to conduct two test rides under the same weather condition.
Hence, we should assume that the experimental condition is given. However,
we are free to choose an appropriate model structure and estimator.

Figure 3.1 gives an overview of various model structures and estimators.
Starting from the root modeling, the three branches white-box, gray-box and
black-box arise. We can di�erentiate these three categories by the amount of
knowledge that each category requires to create models [86, p. 6].

First, white-box requires that everything about the system is known exactly
to build a model. Therefore, we should be con�dent if we apply a white-
box model. Commonly, white-box models arise from di�erential equations.
Di�erential equations are based on physical laws, such as energy conservation
laws, conservation of mass (�uid mechanics), or force-torque equilibrium, as
discussed in Section 2.8. A simple example is the description of motion of a
spring mass damping system using a di�erential equation with the exactly
known system-determining parameters mass, spring sti�ness, and damping
constant.

Second, gray-box requires physical insight in the system but o�ers some
degree of freedom in choosing the system-determining parameters. To be
more speci�c, using a gray-box model means that we are uncertain in the
parameters. Mostly, gray-box models ground on physical laws and thus, on
di�erential equations. Although by nature usually non-linear, many technical
systems can be adequately approximated by linear models. From here, we can
choose between multi-input-single-output (MISO), random-walk (RW), and
state-space (STSP). If the approximation by linear models is no longer valid,
more challenging non-linear gray-box models are required with basically the
same subcategories random-walk and state-space.

Third, black-box means that we have no idea about the underlying physics
of the system. Black-box models may be linear or non-linear and typical
black-box models are impulse response (IR), polynomial-function (PF), neural
networks (NN), and lookup tables. Lookup tables are often gained by measure-
ments on test benches. The drive-train model of Section 2.7 for instance, is
partly a black-box model with lookup tables for each gear. A lookup table is
direct input-output mapping of data without the need to describe the data
by mathematical equations. On the other hand, every time a lookup table is
involved some kind of interpolation method is required for data which is not
directly stored in the lookup table.

The explanation up to here was about di�erent model structures. If we
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Figure 3.1: Model structures and estimators. shows explained methods, recursive
algorithms and batch algorithms. L2 depicts non-robust, Lρ robust
estimators. The acronyms mean: backpropagation (BP), errors-in-variables (EIV), extended
Kalman �lter (EKF), �nite impulse response (FIR), generalized total least squares (GTLS), im-
pulse response (IR), instrumental variables (IV), IV Kalman �lter (IVKF), IV M-Kalman �lter
(IVMKF), Kalman �lter (KF), least squares (LS), multi-input-single-output (MISO), M-Kalman
�lter (MKF), neural networks (NN), output-error (OE), polynomial-function (PF), polynomial
Kalman smoother (PKS), recursive GTLS (RGTLS), recursive IV (RIV), recursive IV M-estimator
(RIVM), recursive M-estimator (RLM), recursive least squares (RLS), regularized M-Kalman �l-
ter (RMKF), recursive regularized IV M-estimator (RRIVM), regularized IV M-Kalman �lter
(RIVMKF), recursive regularized M-estimator (RRLM), random-walk (RW), Savitzky Golay �l-
ter (SGF), Stenlund-Gustafsson IV M-Kalman �lter (SGIVMKF), Stenlund-Gustafsson M-Kalman
�lter (SGMKF), state-space (STSP), total least squares (TLS), unscented Kalman �lter (UKF),
weighted least squares (WLS).
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system

model

estimator

∑
−

measured output (B)measured inputs (A)

Figure 3.2: Block diagram of system, model (with a speci�c model structure), and
estimator. Given the measurements, the estimator adjusts the model param-
eters, which is indicated by the dashed arrow. Disturbances are not shown
[compare 45, pp. 3,8].

take a look further down of the gray-box or black-box branch in direction
of the leaves, we discover that each model structure has various estimators.
Herein, the estimator is nested under a model structure, considers statistical
assumptions within a cost function, and provides an algorithm to estimate
unknown parameters. Figure 3.2 visualizes the hierarchy of system, model with
model structure, and estimator (batch or recursive algorithms) as general block
diagram. Basically, the estimator adjusts parameters of a model with a given
model structure. The estimator selects the model parameters in such a way,
that the di�erence between measured output (B) of the system and the model
output gives the smallest possible value of the cost function. Hence, estimation
here means mathematical optimization. For instance, least squares (LS) is a
batch estimator for the gray-box linear multi-input-single-output output-error
model structure with L2 cost function. Besides, there are recursive estimators
which will be more important in the following for us.

There is a distinct di�erence between white-box on the one hand, and gray-
box and black-box on the other. White-box models have not been adjusted
by any kind of estimator, whereas gray-box and black-box models require
estimators.

As Figure 3.1 comprises such a great diversity of model structures and
estimators, it makes sense to introduce at �rst some methods to examine the
model quality, which allows us to compare di�erent models.

3.2 Model selection and model validation

Suppose we have a set of candidate models and want to compare these candi-
date models in terms of their model quality, then model selection gives the best
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model inside the examined set of candidate models [100, p. 509]. However,
the set of candidate models might not contain a useful model at all. Hence,
we need model validation to test if this best model is good enough for the
intended purpose, if it explains the measured output well, and if it is able to
describe the hidden true system [100, p. 509].

Before we introduce numerous model structures and estimators we need
to de�ne a goal. Our aim is to �nd a good model. The dictum on Page 25
already answers the question if we can �nd a perfect model. On the �rst look,
this dictum is discouraging. However, we know now that there is no optimal
model and we can focus on �nding a good model. So, what is good? Ljung
[100, p. 492] as well as Söderström and Stoica [168, pp. 423, 438] de�ned two
principles: �exibility and parsimony. Flexibility means “Is the model structure
large enough to cover the [. . . ] system” [168, p. 423]? Parsimony means “Do
not use extra parameters [. . . ] if they are not needed” [168, p. 438]. To sum
up, a good model is �exible enough (gives small bias) and parsimonious (gives
small variance).

The bias-variance dilemma [73, p. 114] is a important concept in model
selection. To explain the bias-variance dilemma, let us split a cost function
(L) into a sum of bias and variance [100, p. 492]

L = Lbias + Lvariance. (3.1)

One should choose the model inside the set of candidate models with the
smallest Lbias and Lvariance. However, in practice it turns out that small bias
and small variance are hard to achieve simultaneously.

Haykin [73, p. 114] explains the bias term as the inability of the model
to describe the physics of the system. Generally speaking, more complex
model structures cover the physics of the system better and reduce the bias.
However, complex model structures comprise usually plenty parameters and
introduce a lot of uncertainty for the estimator, because the information in
the training data may be not su�cient to identify these plenty parameters
accurately. Hence, model selection is always a trade-o� between bias (or
�exibility) and variance (parsimony).

3.2.1 Error-based performance indices

We need measurable values (performance indices) to compare the model quality
of di�erent model structures and estimators. If the true parameters (X ) are
known, we can compute the parameter error with the squared error vector
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norm (SEVN)

SEVNt =




X t − X̂ t




2

2
, (3.2)

to observe which combination of model structure and estimator yields the
best estimated parameters (X̂ ) [41, 53].

Common choices to measure the model quality, in terms of the goodness
of �t between estimated output (B̂) and measured output (B), are the mean
squared error (MSE), that gives an average over samples (m) in (3.3a) [100,
p. 500], the normalized mean squared error (NMSE) in (3.3b) [100, p. 500] and
the normalized root mean squared error (NRMSE) in (3.3c) [101, p. 8_15].

MSE = 1
m




B − B̂


2

2
(3.3a)

NMSE = 1 −




B − B̂


2

2

‖B‖22
(3.3b)

NRMSE = 1 −




B − B̂



2

‖B − µ(B)‖2
(3.3c)

The two latter ones vary from bad goodness of �t (−∞) to perfect goodness
of �t (1) and measure how much of the measured output is explained by the
model [100, p. 500].

3.2.2 Candidate models

How can we create a set of candidate models? First, we can de�ne several can-
didate models from experience. Gray-box models require a certain knowledge
of the underlying physics of the system. Hence, we can use this knowledge
and setup some candidate models with increasing number of accounted forces
for instance. In conclusion, the set of candidate gray-box models is commonly
small and contains usually one useful model. However, we do not have much
knowledge if we want to model a system with a black-box model. Hence, the
second method is to create the set of candidate models rather randomly (trial
and error).

There are more sophisticated methods to estimate a useful model structure
such as rank tests of covariance matrices and canonical correlation [100,
pp. 495–498]. The rank test of covariance matrices relies purely on data and
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yields parsimonious model structures without applying estimators. Canonical
correlation is an iterative test if an additional parameter contributes to explain
the measured output.

Additionally, residual analysis is a method to test if the selected model
structure is �exible enough. If the residual analysis shows high correlation
between output correction and past measured inputs in (3.4a), the model could
be improved by adding one or more past measured inputs. The correlation
between output correction and past output correction in (3.4b) should be small.
Otherwise the output correction depends on past data and the model structure
needs improvement [100, pp. 511–514].

R∆B,A;τ =
1
m

m∑
t=1

∆BtAt−τ (3.4a)

R∆B;τ =
1
m

m∑
t=1

∆Bt∆Bt−τ (3.4b)

3.2.3 Model selection with cross-validation

Let us start with a thought experiment to highlight the superior characteristics
of cross-validation in model selection. Suppose we have recorded noisy data
from a system which we want to model. This data is the training data. Now
we choose a suitable model structure and estimator. We identify a number of
models with increasing model complexity (increasing number of parameters)
from the training data and compute the goodness of �t for each model in
terms of the MSE on the training data. It would turn out that the model with
the highest model complexity (the most �exible model structure) yields the
smallest MSE. As long as we increase the model complexity, the MSE will
decrease further.

Now we are in a trap which is known as over�t. The models start to explain
the noise with increasing model complexity [100, p. 501]. We could even
achieve perfect �t with a very complex model. Over�tting is very dangerous.
So, let us study how cross-validation works to avoid over�tting.

The simplest kind of cross-validation splits the recorded data into training
data and validation data [100, p. 498]. Now we estimate the model parameters
purely with the training data and compare the goodness of �t with the MSE
for the validation data. Accordingly, we need to compute the estimated output
for the validation data for each model and call this output the k step ahead
prediction, where k is the number of prediction steps. As the validation data is
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unseen for each model, the MSE on the validation data shows the prediction
quality for each model. Hence, cross-validation delivers unbiased estimates of
the cost function in (3.1) E(L) [100, p. 501]. Note that model selection with
cross-validation is a pragmatic method. No assumptions about the system
or statistics are required and models obtained from di�erent estimators are
comparable. Coss-validation has one drawback. The training data is smaller
due to the split of the recorded data into training data and validation data.
However, sometimes this drawback can be overcome by applying the estimator
for a second time on all data (training data and validation data) with the
previously selected model structure.

3.2.4 Model selection with information criteria

Information criteria deliver the model quality without the need to portion
the recorded data into training data and validation data. Hence, information
criteria are the tools of choice if the recorded data from the system is expensive.
However, information criteria rely on assumptions about statistics and vary
with respect to the cost function of the estimator. Hence, it is not straight
forward to compare di�erent models which were gained by various estimators.
While the derivation of the most common information criteria namely the
Akaike’s information criterion (AIC) is given in [100, pp. 501–504], let us focus
more on practical aspects in applying the AIC.

AIC in (3.5a) provides a measurable value which accounts simultaneously
for model quality and model complexity [27, p. 61]. The �rst term in (3.5a)
measures model quality through the value of the cost function (L) and the
second term the model complexity through the number of estimable parame-
ters (o) which comprises the model parameters as well as parameters of the
assumed statistical distribution. Note that AIC is given in (3.5a) without spe-
ci�c statistical assumptions. Equation (3.5b) gives AIC with the cost function
for the least squares estimator [168, p. 442].

AIC = −2 logL + 2o (3.5a)

AIC =m log
(

1
m

m∑
i=1

(
Bi − B̂i

)2
)
+ 2o (3.5b)

Generally, the smaller the AIC, the better the model. It is not the goal to �nd a
model which memorizes the data, but to �nd a model that learns and captures
the hidden information in the data [28, p. 275]. The pure AIC values are not
directly applicable as they depend strong on the samples (m). According to
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Table 3.1: Recommendation to evaluate the respectively model quality with ∆AICi
[reproduced from 27, p. 70].

∆AICi support of model

0 to 2 substancial

4 to 7 considerably less

>10 essentially none

[27, p. 70], the AIC di�erence (∆AIC) is more meaningful to decide which
model describes the hidden information superiorly.

∆AICi = AICi −min(AIC)

The best model from the set of candidate models obtains a value of ∆AICi = 0.
Table 3.1 gives recommendations how the respective ∆AICi are evaluated.
Akaike’s information criterion can only compare the results of several models
on the same record [27, p. 334].

Another often applied information criteria is the Bayesian information
criterion (BIC) [27, p. 286] in (3.6a). The BIC gives the best model for prediction
and grounds opposed to AIC on Bayesian theory. In (3.6b), BIC is given with
the cost function for the least squares estimator.

BIC = −2 logL + o logm (3.6a)

BIC =m log
(

1
m

m∑
i=1

(
Bi − B̂i

)2
)
+ o logm (3.6b)

The di�erence between AIC and BIC is explained in [27, pp. 293–301]. Basically,
BIC compares the model quality purely with Bayesian theory and makes no
assumptions about the true system whereas AIC tries to �nd the model which
is close to the true system and makes assumptions about the system. The true
model is not required in the set of models in the derivation of BIC [27, p. 295],
whereas the derivation of AIC believes that a perfect model exists which is
equal to the true system. Which information criteria is to be preferred depends
strongly on the problem and there is no general rule if AIC or BIC is the better
choice.
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3.2.5 Model validation

Once we found the best model inside the set of candidate models via model
selection, model validation provides con�dence that this model works for the
intended purpose. Remember, it might be that the set of candidate models
does not include a useful model at all.

Ljung [100, p. 509] highlights that the ultimate model validation is the
successful application of the model. Basically, if the model works satisfactory
all theoretic concerns about statistics, the model structure, and so forth are
negligible. However, it is usually expensive and sometimes dangerous to
validate a model directly at the intended application.

Cross-validation from Section 3.2.3 is the superior method to validate a
model [100, p. 510]. Accordingly, model selection with cross-validation yields
the best and valid model from the set of candidate models in one step. More-
over, we established that gray-box models have parameters with physical
meaning. Hence, if the parameter values, parameter variance, and the input-
output sensitivity of the model con�rms with prior knowledge of the system,
convincing arguments are found that the model is reasonable [100, p. 509].

Before we begin to analyze the various model structures of Figure 3.1, we
need to introduce two additional and important methods: regularization, and
robustness.

3.3 Regularization

Let us suppose we want to solve the overdetermined linear problem

AX ≈ B (3.7)

whereA ∈ Rm×n is the measured input,X ∈ Rn×d are the unknown parameters
and B ∈ Rm×d is the measured output. Problem (3.7) is an inverse problem. In
practice, problem (3.7) is often ill-posed. Ill-posed means that the solution for
X is sensitive to small variations in A and B [105], [160, p. 1].

Golub and Van Loan [63, pp. 80–81] explain that the measure of sensitivity
can be evaluated by the condition number (c) of A. Let USV = svd(A) be
the singular value decomposition (svd(·)) of A, then the condition number
becomes c = S1,1/Sn,n , where S is the matrix of eigenvalues (S). The condition
number is within range 1 ≤ c ≤ ∞ and the best possible condition number is
one. If c � 1, problem (3.7) is ill-conditioned and the solution for X becomes
unstable and may become meaningless [95, p. 1].
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A problem is well-posed if Hadamard’s conditions Existence, Uniqueness
and Continuity hold [73, p. 343]. Following the discussion of [73, p. 343],
we can conclude that Hadamard’s conditions cannot be ensured if we apply
recursive estimators.

First, the existence criterion may be violated in that a distinct output may
not exist for every input. Second, there may be not as much information in the
training sample as we really need for a unique reconstruction of the input-output
mapping [. . . ]. Third, the unavoidable presence of noise [. . . ] adds uncertainty to
the reconstruction process [73, p. 343].

However, we will prefer recursive estimators instead of batch estimators,
because batch estimators cause much computational burden.

Practically speaking, problem (3.7) may become ill-conditioned or singular
due to poor excitation of the measured inputs that is known as wind-up
problem [68, 186]. One or more measured inputs show poor excitation if the
persistent excitation condition

ρ1I >

t+j∑
i=t

A>i Ai > ρ2I

(ρ1, ρ2 > 0) is not ful�lled [10, p. 136], [86, p. 250].
In short, poor excitation violates Hadamard’s existence criterion, because

the input-output mapping contains only few information.
Figure 3.3 provides an example where the true input (A) shows poor ex-

citation between 50 s to 65 s. If A is noisy, the observations might contain
pure noise and the solution for X becomes uncertain and unstable if exponen-
tial forgetting is applied, which is common in recursive estimators. Several
approaches have been introduced to avoid wind-up [30, 50, 124, 145, 146,
171]. Regularization is a mathematical method mainly introduced through
Tikhonov [173] to stabilize (smooth) the solution of ill-posed problems. The
basic idea of Tikhonov regularization, which is also known as ridge regression,
is to augment the cost function with a regularizer as shown in (3.8a).

min
X
L + κ‖RX ‖22 (3.8a)

min
X
‖B −AX ‖22 + κ‖RX ‖22 (3.8b)

Substituting L with the LS cost function in (3.8b) yields the basic regularized
LS cost function with the regularization parameter (κ) and the regularization
matrix (R) which is often set to the identity matrix (I ) [160, p. 7]. Other types
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Figure 3.3: The true input A shows a mixture of rich excitation (10 s to 50 s) and poor
excitation (50 s to 65 s). Exponential forgetting with the forgetting factor
(λ) gives high weight to data where A shows poor excitation. Standard
recursive estimators may su�er in this case under wind-up.

of R are extensively discussed in [95, pp. 12–21] and shortly introduced in
[160, p. 7].

If κ = 0, (3.8b) turns into the basic LS cost function. The left hand side in
(3.8a) can be replaced with other cost functions such as the total least squares
(TLS) cost function as shown in [95, p. 1], [160, p. 45], [105], [182, pp. 57–66],
and [103]. The larger κ, the smoother the solution for X becomes. However,
a too large κ reduces the in�uence of L in (3.8a). Hence, the choice of κ is
always a trade-o� between a cost function and the regularizer (smoothness of
X ). Often, we need to choose κ empirically. However, methods to adjust the
optimal κ such as L-curve or cross-validation are explained in [160, pp. 11–13],
[73, pp. 364–370], [34], [95, pp. 49–57], and [103].

Beside Tikhonov regularization other famous regularization methods are
Levenberg-Marquardt regularization and Lasso, detailed in [186] and [172],
respectively. Lasso favors sparse solutions through replacing the squared
Euclidean norm by the 1-norm in the regularizer of (3.8b). Hence, Lasso with
LS cost function becomes

min
X
‖B −AX ‖22 + κ‖RX ‖1.

3.4 Robust estimators

Most estimators are based on statistical assumptions of distributions. LS
is probably the most applied and studied estimator. Rousseeuw and Leroy
[142, p. 2] explain the outstanding popularity of LS until nowadays with
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two facts. First, LS has a closed-form solution which requires only simple
matrix algebra. Second, LS yields the arithmetic mean of one dimensional
data, which was around 1800 the most reliable location estimator. Notice that
Gauss introduced the Gaussian distribution after de�ning the LS cost function
so that LS is optimal for Gaussian distributed, zero mean output corrections
[142, p. 2]. The LS cost function is

min
X

m∑
i=1
(Bi −AiX )2 (3.9)

[82, p. 155]. Note that other references give (3.9) with
∑

1/2(·), but this
equation leads to the same solution.

The references given by [142, p. 3] and [98] show, that many real world
output corrections are non-Gaussian distributed. For instance, Clancey [38]
examined around 250 distributions of chemical analysis and only 10 % to 15 %
could be treated as Gaussian distributed. Zoubir et al. [200, p. 62] provide
references where impulsive noise (Gaussian like distributions with heavier
tails) was found in signal processing problems.

But what happens if the output corrections are non-Gaussian? Many refer-
ences show that LS fails to produce meaningful results if a single outlier is in
the training data. Rousseeuw and Leroy [142, pp. 4,5] provide two examples
of a straight line �t where a single outlier leads to corrupted parameters. A
similar example is given by [200, p. 65].

Outliers can occur in the measured inputs (A) or in the measured outputs
(B) [142, p. 5]. Applying the LS cost function, outliers in the measured inputs
cause larger output corrections than outliers in the measured outputs. Outliers
in the measured inputs are sometimes leverage points. In that case, they have
a large in�uence on the LS solution. Rousseeuw and Leroy [142, p. 6] de�ne
a leverage point as a single point Ai , that lies far away from the majority of
A. Hence, leverage points are not necessary outliers, but in any case they
determine the LS solution strongly.

Experiment 3.1
Call the function outliersLeveragePoints() with the string ’LS’ to compute the four LS
straight line �ts of Figure 3.4.

Figure 3.4 shows four straight line �ts of seven data points with Gaussian
output noise (B̃). Each line �t is the result of LS estimation of the slope
parameter, which has a true value of X = 3. Figure 3.4a does not contain
outliers in the data. Hence, the LS solution in Figure 3.4a is precise and near
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the true parameter. The accuracy of LS decreases signi�cantly in Figure 3.4b
with a single outlier in B2 (the second entry of B). The original position of
B2 from Figure 3.4a is shown with an asterisk for convenience. The leverage
point A4 (the fourth entry of A) in Figure 3.4c is an outlier and hence, the
LS solution becomes meaningless. However, a good leverage point does not
corrupt LS as shown in Figure 3.4d, where the seventh data point was moved
far away from the other six data points.

It was quite simple to �nd the leverage point in Figure 3.4c and Figure 3.4d.
However, Rousseeuw and Leroy [142, p. 7] explain that it is impossible to un-
cover leverage points (and thus possible outliers) through simple visualization
and inspection of the training data in higher dimensions. Outlier diagnostics
provides data-based methods (no model is required) to uncover and remove
outliers. Liang and Kvalheim [98] and Rousseeuw and Leroy [142, pp. 216–237]
provide an overview of classic outlier diagnostics methods with a discussion of
their common drawbacks (uncovered leverage points), whereas Knorr and Ng
[93] and Rousseeuw and Leroy [142, pp. 237–245] introduce more recent and
improved methods. The surveys [36] and [76] provide extensive introduction
into outlier diagnostics.

There is no general de�nition for outliers. Herein:

De�nition 3.1. An outlier is an observation that somehow deviates from the
assumptions, mainly assumptions about the distribution.

This de�nition matches well with the term robust. Huber and Ronchetti
de�ne robustness with: “robustness signi�es insensitivity to small deviations
from the assumptions” [82, p. 2]. Hence, robust estimators can deal with
deviations from the assumptions or in other words can deal with a certain
fraction of outliers.

The breakdown point is a concept to measure robustness. Rousseeuw and
Leroy [142, p. 10] explain the breakdown point as smallest fraction of outliers
that cause the estimator to produce solutions that are arbitrarily far from the
consistent solution. In accordance Huber and Ronchetti de�ne the breakdown
point as:

The breakdown point is the smallest fraction of bad observations that may
cause an estimator to take on arbitrarily large aberrant values [82, p. 8].

LS is non-robust and has a breakdown point of 0 %, whereas the highest
possible breakdown point is 50 % [142, pp. 15, 126].
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Figure 3.4: LS estimation ( ) of seven data points ( ) without outliers in Figure 3.4a,
an outlier in the second entry of the measured output B2 in Figure 3.4b,
an outlier in the measured input A4 in Figure 3.4c which is also a leverage
point and a good leverage point in Figure 3.4d. The asterisk ( ) shows the
original data A4,B2 of Figure 3.4a. Similar �gures can be found in [142,
pp. 4–6] and [200, p. 65].

3.4.1 High breakdown point methods

Huber and Ronchetti [82, p. 197] split robust estimators into robust methods
and high breakdown point methods. High breakdown point methods seek to
achieve the maximum breakdown point of 50 % but require often extensive
computation or show a poor convergence. The convergence rate of LS is high
withm−

1
2 , if ∆B is Gaussian [82, p. 196].

Rousseeuw [139] introduced least median of squares (LMS) as high break-
down point estimator which can deal with outliers in the measured inputs and
measured outputs. Therefore, LMS is robust in terms of bad leverage points
(outliers in the measured inputs). The key idea in LMS is to replace the sum
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in the LS cost function (3.9) with the highly robust median (med(·)). Hence,
the LMS cost function becomes:

min
X

med
i
(Bi −AiX )2. (3.10)

The solution of (3.10) is expensive in matters of computation. Subsamples
(tuples) of the training data are required as described in [142, pp. 197–204],
where the LMS algorithm is shown. Furthermore, the convergence rate is
poor withm−

1
3 [82, p. 196].

Rousseeuw and Leroy [142, p. 15] introduced least trimmed squares (LTS)
to overcome the problem with the poor convergence rate. LTS is as robust
as LMS and has the same high convergence rate as LS. Rousseeuw and Leroy
[142, p. 15] replaced the sum in the LS cost function with a trimmed sum:

min
X

j∑
i=1
(∆Bi )2, (3.11)

where ∆Bi = Bi−AiX̂ are the (�rst squared and than sorted) output corrections
and j is the last considered sample from all m samples. Note that the LTS cost
function (3.11) equals the LS cost function (3.9) if j = m. Hence, the largest
output corrections are not considered in (3.11), which makes LTS robust but
the additional sorting of the output corrections is even more pricy than the
computation of the median in LMS. Rousseeuw and Leroy [142, pp. 206–208]
outlined the root LTS algorithm with high computational complexity.

However, the favorite properties of LTS, namely high convergence rate, a
breakdown point of 50 % and robustness against outliers in measured inputs
and measured outputs motivated numerous researchers to reduce the required
computational burden [2, 14, 77, 144].

In spite of these enhancements, to best of my knowledge it has not been
shown how to apply LMS or LTS as recursive estimator. There is one major
reason why it is unlikely that LMS or LTS may be used recursively. LMS and
LTS require to split the training data into tuples. On the contrary, recursive
estimators must deal with an inde�nite growth of measurements (m → ∞).
How should we create all possible (or at least some) tuples if the training data
is consistently growing? This is the reason why Figure 3.1 does not show LMS
and LTS and why we focus on M-estimators from now on.
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3.4.2 M-estimators

Huber [81] introducedM-estimators in 1964 with the idea to change the squares
in the LS cost function with another function. Therefore, the M-estimator cost
function looks similar like the LS cost function and becomes

min
X

m∑
i=1

ρ(Bi −AiX ), (3.12)

where ρ is a symmetric function preferably with a unique minimum at zero.
LS is a special type of M-estimator. If ρ is set to ρ = (·)2 (or 1/2(·)2, see the
note on (3.9)), (3.12) turns into (3.9). Hence, the proper choice of the ρ-function
determines the robustness of M-estimators. Taking the derivative of (3.12)
with respect to X yields the set of equations

m∑
i=1

ψ

(
Bi −AiX

σ̂ (∆B)

)
Ai, j = 0, j = 1, . . . ,n, (3.13)

whereψ is the derivative of ρ with respect to ∆B (ψ = dρ/d∆B) and σ̂ is the
inserted estimated scale that standardizes the output corrections [82, p. 161].
The estimated scale is needed because M-estimators are not scale-invariant.
Accordingly, the estimated scale needs to be estimated simultaneously by a
robust estimator and the common choice is the median absolute deviation
(MAD) [141, 200]

σ̂MAD(∆B) = 1.483 med |∆B −med∆B |, (3.14)

where the factor 1.483 was introduced to achieve a consistent estimator of the
standard deviation for the Gaussian distribution.

The cost function (3.13) requires iterative procedures because ρ and ψ
are functions of the output corrections (∆B) and therefore of the desired
parameters (X ). Iteratively weighted least squares (WLS) is the method of
choice to solve (3.13) in practice, where the scaling matrix (W ) has to be
computed at each iteration with

W i,i =
ψ i

∆Bi/σ̂ (∆B)

until the estimated parameters remain su�ciently close together between the
last and the current iteration. Algorithms of M-estimators, which are solved
by iteratively WLS, are outlined in [82, p. 179], [98] and [21, p. 105].
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We will use σ̂ as shorthand notation for σ̂ (∆B) in the following. Huber and
Ronchetti [82, p. 174] suggest to use the following ρ-function and in�uence
function

ρ(∆B/σ̂ ) =
{ 1

2 (∆B/σ̂ )
2 for |∆B/σ̂ | < δ ,

δ
(
|∆B/σ̂ | − δ

2

)
for |∆B/σ̂ | ≥ δ ,

(3.15a)

ψ (∆B/σ̂ ) =
{
∆B/σ̂ for |∆B/σ̂ | < δ ,
δ sgn(∆B/σ̂ ) for |∆B/σ̂ | ≥ δ ,

(3.15b)

whereψ is saturated to δ if |∆B/σ̂ | ≥ δ . Contrary, ρ andψ become for LS

ρ(∆B/σ̂ ) = 1
2 (∆B/σ̂ )

2, (3.16a)

ψ (∆B/σ̂ ) = ∆B/σ̂ . (3.16b)

We can see from (3.16b) that the in�uence function of LS is unbounded. Thus,
LS is not robust if unusual large output corrections occur.

Brabanter et al. [21, pp. 100–110] propose to use the highly robust Myriad
function to deal with extreme outliers. However, the convergence rate is
lower than for the Huber functions (3.15). Myriad was designed as maximum
Likelihood scale estimator for the Cauchy distribution which is similar to the
Gaussian distribution, but has heavy tails. Therefore, Myriad is a good choice
in impulsive noise environments [see 64]. The Myriad ρ andψ functions are

ρ(∆B/σ̂ ) = ln(10)
2 β2

(
log

(
β2 + (∆B/σ̂ )2

)
− log

(
β2) ), (3.17a)

ψ (∆B/σ̂ ) = β2∆B/σ̂
β2 + (∆B/σ̂ )2

. (3.17b)

Rather than [21, p. 105], I added in equation (3.17a) additional scaling terms
to achieve a unique minimum at zero. Yet, these scaling terms are more
of theoretical interest, because the derivative of (3.17a) leads to the same
in�uence function (3.17b) as used in [21, p. 105]. Other ρ-functions are shown
in [82, p. 99], [21, p. 105] and [158].

Figure 3.5 visualizes the properties of LS, Huber, and Myriad. First, the
ρ-functions in Figure 3.5a show the transition from the LS cost function into
the Huber cost function. If the output correction is larger than δ , the quadratic
criterion turns into a linear, compare (3.16a) with (3.15a). Second, we can
observe Huber’s intention directly in Figure 3.5b, where the in�uence functions
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Figure 3.5: Various ρ-functions in Figure 3.5a, in�uence functions in Figure 3.5b and
the weight in Figure 3.5c.

are shown. LS has an unbounded in�uence function, whereas the Huber
in�uence function is limited if the output correction is larger than δ . Myriad
goes even further and gives gross output corrections decreasing in�uence.
Third, Figure 3.5c gives the weight which is needed to �ll the scaling matrix
of iteratively WLS to solve (3.13). LS gives the same weight to all output
corrections, Huber reduces the weight if |∆B | ≥ δ and Myriad shows a weight-
function which recalls the standard Cauchy distribution f (x ; 0, 1) = 1

π (1+x 2) .

There is one drawback of M-estimators compared with the LMS and LTS
high breakdown point estimators. M-estimators are not robust in terms of
bad leverage points. Actually, this fact motivated Rousseeuw to develop LMS
and LTS although generalized M-estimators were introduced to improve the
robustness of M-estimators [for further detail consult 139, pp. 12–14]. Cases
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where M-estimators fail because of one or more bad leverage points are shown
in [139, 200]. Accordingly, the breakdown point of M-estimators is 0 %.

Figure 3.6 is the robust counterpart of Figure 3.4. The same data was used.
The Huber tuning constant was δ = 1.345 and the Myriad tuning constant
β = 1. All robust estimators produce close results in Figure 3.6a and in
Figure 3.6b, where LS showed a corrupted result (Figure 3.4b). Figure 3.6c
shows the di�erence between a high breakdown point estimator (LMS) and a
robust estimator (M-estimator). Both M-estimators perform not better than LS
in Figure 3.4c. Yet, the Myriad M-estimator is slightly better than the Huber
M-estimator. However, if the leverage point moves slightly more to the right,
Myriad and Huber give close unsatisfactory results, whereas the performance
of LMS remains superior.

Experiment 3.2
Call the function outliersLeveragePoints() with the string ’robust’ to compute the four
robust straight line �ts of Figure 3.6. Modify the position of the bad leverage point in line
20 of outliersLeveragePoints() to bring the Myriad M-estimator to its breakdown.

On the other hand, we have seen in Figure 3.6b that M-estimators are highly
robust against outliers in the measured output. Furthermore, Huber and
Ronchetti remark:

It appears that M-estimates o�er enough �exibility and are by far the easiest
to cope with, simultaneously, with regard to computation, asymptotic theory, and
intuitive interpretation; moreover, the step from [. . . ] [(3.9) to (3.12)] is easily
explainable to nonstatisticians also [82, p. 164].

Let us add to this convincing comments the feature that M-estimators are
an ideal source to develop recursive estimators. That is due to the relation
between (iteratively) WLS and recursive least squares (RLS), where the latter
will be the �rst presented recursive estimator in Section 3.5.3. Moreover, M-
estimators are a vital part of other popular high breakdown point methods
such as the MM-estimator [195] which performs superior in some signal
processing applications as discussed in [200].

3.5 Linear multi-input-single-output output-error model
MISO OE

L2

LS

WLS

RLS

Lρ
RLM

RRLM

The �rst presented gray-box model is the linear multi-input-single-output
output-error model. The respective branch from Figure 3.1 is shown in the
margin for convenience. The model structure was already introduced in (3.7)
and is detailed here with output corrections

AX ≈ B, B = B + B̃, (3.18a)
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Figure 3.6: Robust estimation of the same data as in Figure 3.4. All estimators are
close in Figure 3.6a and Figure 3.6d. Figure 3.6b shows the bene�t of robust
estimators compared with Figure 3.4b where LS failed. The outlier and
leverage point in Figure 3.6c leads to a breakdown of the M-estimators.
LMS is superior.

B = AX̂ + ∆B, (3.18b)

where the output correction is ∆B = B − B̂ with ∆B ∈ Rm×d . The number
of outputs (d) is one, because we consider the single-output case (d = 1).
Model structure (3.18) considers perturbation only in B (output-error). Hence,
(3.18) is a constrained perturbation problem. No corrections are applied in A.
Therefore, the noise covariance matrix (P̃ ) is assumed with

P̃ = cov
( [
Ã B̃

] )
= σ 2 diag

( [
0 0 . . . 1

]>)
, (3.19)

where cov(·) is the covariance operator and diag(·) extracts diagonal elements
of a matrix or converts a vector into a diagonal matrix.
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3.5.1 Least squares

The well known LS closed-form solution for problem (3.18) becomes

X̂ =
(
A>A

)−1
A>B (3.20)

[37, p. 4]. The covariance of parameter estimation error E
(
(X − X̂ )(X − X̂ )>

)
(denoted as covariance matrix (P ) in the sequel) is commonly computed with
P = σ̂ 2(A>A)−1 and σ̂ 2 ≈ ∆B>∆B

m−n [168, pp. 65–66].

Proof. We can rewrite the LS cost function (3.9) in matrix notation

min
X
‖B −AX ‖22 (3.21)

and follow Söderström and Stoica [168, pp. 62–63] to present (3.21) in the
equivalent form

L = (B −AX )>(B −AX ),
=

(
B> − X>A>

)
(B −AX ),

= B>B − B>AX − X>A>B + X>A>AX .

The following intermediate step explains how to compute the derivative for
the rightmost term of the cost function.

d
dX X>A>AX =

d
dX ∗X

∗>A∗>A′X ′ +
d

dX ′X
∗>A∗>A′X ′,

= A∗>A′X ′ +
(
X ∗>A∗>A′

)>
,

= A∗>A′X ′ +A′>A∗X ∗,

= 2A>AX .

Accordingly, the complete derivative of the cost function becomes

dL
dX = 0 −

(
B>A

)> −A>B + 2A>AX ,

= −2A>B + 2A>AX .

Setting this derivative to zero, the solution for X becomes (3.20). �

LS is the maximum-likelihood estimator for (3.21) if the conditions which
were discussed in Section 3.4 and [86, p. 254], hold. Mainly, the output correc-
tions may not be correlated and have E(∆B) = 0.
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3.5.2 Weighted least squares

We have already discussed WLS in Section 3.4.2, where iteratively WLS was
used within M-estimators. The cost function of WLS o�ers more �exibility
than LS due to the introduced scaling matrix and becomes

min
X




√W (B −AX )


2

2
, (3.22)

whereW is a positive diagonal matrix of dimensionW ∈ Rm×m . The WLS
closed-form solution becomes

X̂ = (A>WA)−1A>WB (3.23)

[86, p. 279] and we can see that LS is a special case of WLS when the scaling
matrix is equal to the identity matrix (W = I ).

3.5.3 Recursive least squares

The RLS algorithm in Algorithm 3.1 is the recursive version of WLS with a
special form of scaling matrix. The diagonal elements of the scaling matrix
decrease exponentionally over time, which is also known as exponentionally
forgetting. Hence, the scaling matrix has the form

diag(W ) =
[
λt−1 . . . λ2 λ1 λ0]>

and the RLS cost function becomes

min
X

m∑
i=1

λm−i (Bi −AiX )2 (3.24)

[100, pp. 363, 364]. The forgetting factor (λ) (0 � λ ≤ 1) controls how much
weight is given to old data. If we adjust λ = 1, RLS solves the LS cost function
(3.9), where all data is considered with equal weight. Figure 3.3 showed already
how λ evolves over time if λ < 1. Ljung [100, pp. 363–365] gives the transition
from (3.22) into Algorithm 3.1 by using the matrix inversion lemma, whereas
Isermann and Münchhof [86, pp. 281–283] derive Algorithm 3.1 by iterative
inserting new data and updating the WLS solution in (3.23).

If RLS is just another algorithm which does the same as LS or WLS with
a special design of W , why do we discuss RLS and various more recursive
estimators in the following? The reasons why we should favor recursive
estimators are:
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3 Models and estimators

Algorithm 3.1: Recursive least squares (RLS)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt , λ
2 Lt =

(
P t−1A>t

) (
λ +AtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 P t = (I − LtAt )P t−1 1

λ
output: X̂ t , P t

1. the number of mathematical operations does not depend onm, hence
we can process in�nite large data sets;

2. the required storage is �xed and known from t = 0 s onwards;
3. we get a solution X̂ for each time-step t ;
4. recursive algorithms can follow and track time-varying systems;
5. and because of that, recursive algorithms are ideal for real-time applica-

tions, such as vehicle control.

Recursive estimators can be shown as individual equations or as algorithms.
Rather than individual equations, I favor to present recursive estimators as
algorithms because recursive methods require initialization of some values
and constants, a certain sequence of computations, and deliver results at each
time-step.

For instance, we can see in Algorithm 3.1 that RLS requires the initial values
X̂ t−1, P t−1 (both appear at the input line); a constant λ (no index t ) and provides
X̂ t , P t as result for each time-step.

3.5.4 Recursive M-estimator

The end of Section 3.4.2 indicated already that M-estimators, WLS, and RLS
are connected and we have seen the need for robust estimators in Section 3.4.
The recursive M-estimator (RLM) was discovered more than once. Dai and
Sinha [40] is, to the best of my knowledge, the �rst reference that gives an
RLM algorithm without forgetting factor. They were followed by Zou, Chan,
and Ng [199], who proposed the same core algorithm but included a forgetting
factor in the RLM cost function

min
X

m∑
i=1

λm−iρ(Bi −AiX ). (3.25)
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3.5 Linear multi-input-single-output output-error model

Algorithm 3.2: Recursive M-estimator (RLM)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,W t,t , λ

2 Lt =
(
W t,tP t−1A>t

) (
λ +W t,tAtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 P t = (I − LtAt )P t−1 1

λ
output: X̂ t , P t

The derivation from (3.25) into Algorithm 3.2 was done by [199] through
the matrix inversion lemma. Algorithm 3.2 di�ers from Algorithm 3.1 in the
introduced time-dependent weightW t,t , that is a scalar, denoted by the double
indexing. As discussed in Section 3.4.2, RLM covers RLS as special case if the
weight is adjusted toW t,t = 1,∀t . It is straight forward to apply (3.15b), (3.17b)
or other in�uence functions to compute the weight withW t,t = ψ t/∆Bt .

However, we know from (3.13), that we need a simultaneous robust method A
for the estimated scale. Zou, Chan, and Ng [199] suggested

σ̂ 2
t = λσ̂

2
t−1 + (1 − λ)1.483

(
1 + 5

j − n

)
j

med
i=0

∆B2
t−i , (3.26)

which is a sliding-window version of the �rst equation in [142, p. 44]. However,
(3.26) requires to store j squared output corrections in a memory and to
compute the median of them. This procedure is not computational e�cient
because of the memory size j which is needed to compute the estimated scale.
Moreover, the median requires to sort all j entries. Consequently, one would
always have to balance between large-j , which is good for statistics and small-
j, which is computational cheaper. Hence, (3.26) leads into a dilemma. The
same problem arises if we would use the robust MAD from (3.14) to compute
the estimated scale.

Rousseeuw and Bassett [140] suggested to replace the median with the
repeated median for large data sets. The repeated median performs nested me-
dian operations with hierarchical ordered small bu�ers and is computational
more e�cient than the conventional median.

Although the repeated median is an improvement over the conventional
median, we should seek for a robust scale estimator which has compara-
ble computational load as the non-robust standard deviation (3.27a) and its
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recursive version (shown as variance in (3.27b))

σ̂ =

√√
1

m − n

m∑
i=1

∆B2
i , (3.27a)

σ̂ 2
t = λσ̂

2
t−1 + (1 − λ)∆B2

t , (3.27b)

[140, p. 40] and [199], respectively. More explanation for the recursive standard
deviation can be found in [35, 191].

Bylander and Rosen [29] presented an recursive median algorithm which
grounds on perceptron learning-algorithm [138]. The idea is to use some
estimated median from the previous time-step, compare it with incoming data,
and correct the estimate in direction of steepest descent with the learn rate
(η). Further, Bylander and Rosen [29] explain a slight modi�cation which
delivers estimated quantiles (Q̂) for any desired probability (p) (the median is
the quantile on 0.5 probability) and this modi�cation makes their algorithm
general. The estimated quantile of the squared output correction is gained by

Q̂t =


Q̂t−1 + 2ηp if ∆B2

t > Q̂t−1,

Q̂t−1 if ∆B2
t = Q̂t−1,

Q̂t−1 − 2η(1 − p) if ∆B2
t < Q̂t−1,

(3.28)

and delivers the recursive median, if we adjust the probability to p = 0.5.
The learn rate (η) ranges typically between 0.001 to 0.01 and determines the
convergence rate of the estimator.

An equivalent formulation without piece-wise de�nition is

Q̂t = Q̂t−1 + η |sgn(∆B2
t − Q̂t−1)|(sgn(∆B2

t − Q̂t−1) + 2p − 1). (3.29)

Replacing everything right of the scaling factor 1.483 in (3.26) with Q̂t of
(3.29) yields the desired robust estimated scale which is required to run RLM
as shown in Algorithm 3.3.

First, the normalized a priori output correction (∆Bt ) is computed with
estimates of X̂ from the previous time-step in Line 2. Second, Line 3 and Line 4
yield the weight based on the a priori output correction and the estimated
scale from the previous time step. Third, RLM gives X̂ and P for the current
time-step. Fourth, the a posteriori output correction in Line 7 is used to update
the robust estimated scale in Line 8–Line 9.
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Algorithm 3.3: RLM with robust estimated scale
1 for t ← 1 tom do

input: X̂ t−1, P t−1, σ̂ 2
t−1, Q̂t−1,At ,Bt , λ,η,p = 0.5

2 ∆Bt = (Bt −At X̂ t−1)

3 ψ t (∆Bt /σ̂t−1) =
{

(3.15b), or
(3.17b)

4 W t,t =
ψ t

∆Bt /σ̂t−1
5 function call

input: X̂ t−1, P t−1,At ,Bt ,W t,t , λ
6 RLM (Algorithm 3.2)

output: X̂ t , P t

7 ∆Bt = Bt −At X̂ t

8 Q̂t = Q̂t−1 + η |sgn(∆B2
t − Q̂t−1)|(sgn(∆B2

t − Q̂t−1) + 2p − 1)
9 σ̂ 2

t = λσ̂
2
t−1 + (1 − λ)1.483Q̂t

output: X̂ t , P t , σ̂
2
t , Q̂t

Algorithm 3.3 gives the same result as RLS if we use the in�uence function
of LS (3.16b) in Line 3. Further, we can simplify Algorithm 3.3 if a user-de�ned
�xed estimated scale is given. Then, Line 7–Line 9 can be omitted.

Note that Algorithm 3.3 grounds on the implicit assumption that one itera-
tion per time-step is su�cient. In other words, Algorithm 3.3 is a suboptimal
estimator for (3.25). However, Algorithm 3.3 can be modi�ed into an optimal
estimator through multiple iterations of Line 2–Line 9 for each t until X̂ t con-
verges. Remember that the cost function in (3.13) requires iterative procedures
(iteratively WLS), as discussed in Section 3.4.2.

3.5.5 Recursive regularized M-estimator

Remember the reasons for applying regularization which were discussed in
Section 3.3 and let us write once again the cost function (3.8b) for LS with
Tikhonov regularization as sum with exponential forgetting

min
X

m∑
i=1

(
λm−i (Bi −AiX )2

)
+ κ‖RX ‖22, (3.30)
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where R = I . Now let us replace the squares in (3.30) with the ρ-function to
derive the recursive regularized M-estimator cost function

min
X

m∑
i=1

(
λm−iρ(Bi −AiX )

)
+ κ‖RX ‖22. (3.31)

The regularizer (right hand side in (3.31)) adds a bias towards zero and prevents
X̂ becoming suspicious large. Hence, the estimation variance (or uncertainty)
is reduced during poor excitation [186].

Van Waterschoot, Rombouts, and Moonen [186] give the batch solution for
Tikhonov regularized LS (3.8b)

X̂ = (A>A + κI )−1A>B, (3.32)

where, compared with the LS solution (3.20), a scaled identity matrix is added
to the input covariance matrix (R) (R = A>A). Further, the recursions for the
input covariance matrix and estimated parameters become

Rt = λRt−1 +A
>
t At + (1 − λ)κI , (3.33a)

X̂ t = X̂ t−1 + R
−1
t

(
A>t (Bt −At X̂ t−1) − (1 − λ)κX̂ t−1

)
(3.33b)

[186]. However, the inversion of R in (3.33b) should be avoided by the matrix
inversion lemma similar to RLS and RLM in Algorithm 3.1 and Algorithm 3.2
respectively. Additionally, let us condense the term (1 − λ)κ into a scaled κ.

Gunnarsson [68] showed that the inversion of the input covariance matrix
P = R−1 of (3.33a) leads to a normalization of the covariance matrix P after
the P-update

P ′t = P t (I + κP t )−1, (3.34)

where P ′t is the regularized covariance matrix.
The combination of (3.33), (3.34), and Algorithm 3.2 leads to the recur-A

sive regularized M-estimator (RRLM) with the two regularization methods
Levenberg-Marquardt regularization and Tikhonov regularization in Algo-
rithm 3.4.

The Levenberg-Marquardt regularization (also shown in [186]) di�ers from
Tikhonov regularization in the computation of the parameter update. Leven-
berg-Marquardt regularization causes that the parameters remain at their
values during poor excitation, whereas Tikhonov regularization causes that
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Algorithm 3.4: Recursive regularized M-estimator (RRLM)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,W t,t , λ,κ

2 Lt =
(
W t,tP t−1A>t

) (
λ +W t,tAtP t−1A>t

)−1

3 P t = (I − LtAt )P t−1 1
λ

4 P t = P t (I + κP t )−1

5 switch type do

6 case Levenberg-Marquardt regularization do

7 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
8 case Tikhonov regularization do

9 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
− P tκX̂ t−1

output: X̂ t , P t

the parameters tend towards zero during poor excitation. RRLM turns into
RLM if κ = 0. Hence, RLM and RLS are included as special cases in RRLM
and we can substitute RLM (Algorithm 3.2) in Line 6 of Algorithm 3.3 with
RRLM to create a �exible recursive regularized robust estimator for the linear
multi-input-single-output output-error model.

3.5.6 Experiments

Let us conduct a sophisticated experiment to study the properties of RRLM
in conjunction with the robust estimated scale with di�erent settings of Al-
gorithm 3.4 inside Algorithm 3.3. Figure 3.7 shows the measured inputs and
measured output which were generated with

t =
[
1 2 3 . . . m

]>
, m = 10 000 s,

A:,1 = sin(2π t 0.006) sin(2π t 0.006/3.3),

A:,2 =


sin(2π t 0.012) sin(2π t 0.012/3.3) 1 s ≤ t < 1000 s
0 1000 s ≤ t < 6000 s
sin(2π (t − 5000)0.012)

sin(2π (t − 5000)0.012/3.3) 6000 s ≤ t ≤ 10 000 s

,

A:,3 = sin(2π t 0.014) sin(2π t 0.014/3.3),
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Figure 3.7: Measured inputs (A) and measured output (B) modeled as sine waves [al-
tered from 133]. A1, A2, and A3 are noise free, whereas B has additive
white Gaussian noise. A2 shows no excitation between 1000 s to 6000 s. All
signals contain outliers.

X 1:3, : =


[
1 2 3

]>
1 s ≤ t < 5000 s[

1.5 2 3
]>

5000 s < t ≤ 10 000 s
,

B = A�X

[altered from 133]. All measured inputs are noise free (A = A), whereas
B contains additive white Gaussian noise with zero mean and 0.1 variance.
Further, A and B contain 5 % outliers, that were built from uniform random
numbers ranging from −4 to 4. A2 shows no excitation (remains constant)
between 1000 s to 6000 s and � is the element-wise product which is also
known as Hadamard product. The step change in X 1 at t = 5000 s creates a
time-varying system.

Experiment 3.3
Call the function linearMISOoe() four times with the strings ’RLS’, ’RLM’, ’Levenberg-
Marquardt-RRLM’ and ’Tikhonov-RRLM’ to compute the four parameter estimates in
Figure 3.8. Algorithm 3.3 with Algorithm 3.4 in Line 6 (RRLM with robust estimated scale)
will be executed with λ = 0.995 for all cases. The regularization parameter is adjusted to
κ = 0 for ’RLS’ and ’RLM’, κ = 0.1 for ’Levenberg-Marquardt-RRLM’ and κ = 0.001 for
’Tikhonov-RRLM’. The in�uence function is (3.16b) for ’RLS’ and (3.15b) for all other cases.

Figure 3.8a shows RRLM in a setting that is identical to basic RLS. The
solution is heavily distorted through outliers in A and B. Hence, RLS is not
able to produce meaningful results for Experiment 3.3.
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Figure 3.8: Estimated parameters for four di�erent settings of RRLM. Nominal values
are shown with lines.

The result of the robust RLM estimator with Huber’s cost function is shown
in Figure 3.8b. The estimates are more stable than in Figure 3.8a. However,
X̂2 becomes uncertain for t = 5000 s to 6000 s. This uncertainty is known as
wind-up problem. A2 was set to zero for t = 1000 s to 6000 s, which leads to an
ill-posed problem. However, the estimator keeps an exponentially decreasing
amount of old information until t ≈ 5000 s, which explains the delay between
the beginning of zero excitation of A2 at t = 1000 s and the wind-up of X̂2 at
t ≥ 5000 s. Compare also with Figure 3.3.

Figure 3.8c and Figure 3.8d show the result of RRLM with two di�erent
regularizations. The di�erence between Levenberg-Marquardt regularization
in Figure 3.8c and Tikhonov regularization in Figure 3.8d is that Tikhonov
regularization forces X̂2 towards zero when A2 ≈ 0 between 1000 s to 6000 s,
whereas Levenberg-Marquardt regularization keeps X̂2 in this period constant.
Tikhonov regularization is in this case a kind of feature selection, because any
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Figure 3.9: Squared error vector norm for four di�erent settings of RRLM.

X̂2 would lead to A2X̂2 ≈ 0 if A2 ≈ 0. Hence, we could discard A2 and X̂2 for
t = 1000 s to 6000 s without loosing accuracy of the model.

The same conclusions can be derived from Figure 3.9 where the SEVN
is shown for all four settings of Experiment 3.3. However, the SEVN (3.2)
allows to compare various estimators without the need to show all parameters
explicitly. Hence, SEVN will be used as performance index for the parameter
error from this point onwards.

Figure 3.9a shows that the squared error vector norm of RLM is signi�cantly
lower than RLS. Furthermore, the wind-up around t = 5000 s is well visible.
The two di�erent regularization methods of RRLM in Figure 3.9b lead to a
more stable solution when A2 has no excitation. However, in terms of SEVN,
the Levenberg-Marquardt regularization is the far better choice in comparison
to Tikhonov regularization.

Finally, Figure 3.10 gives the estimated scale in Figure 3.10a as well as the
weight in Figure 3.10b for the RRLM estimator with Levenberg-Marquardt reg-
ularization. The robust estimated scale of Line 8–Line 9 in Algorithm 3.3 yields
su�cient accurate scale estimates with fast convergence, see Figure 3.10a.

To sum up, we can conclude that M-estimators in conjunction with an
appropriate regularization method lead to superior accurate parameter esti-
mates, although M-estimators are not robust against bad leverage points as
discussed at the end of Section 3.4.2. The results of Experiment 3.3 indicate
that M-estimators are su�cient robust for practical needs.
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Figure 3.10: Estimated scale in Figure 3.10a and weight in Figure 3.10b of the RRLM
estimator with the setting ’Levenberg-Marquardt-RRLM’.

3.6 Linear multi-input-single-output errors-in-variables model
MISO EIV

L2

TLS

GTLS

RGTLS

IV

RIV

Lρ

RIVM
RRIVM

Let us switch now to the next branch of Figure 3.1, as denoted by the �gure
on the margin. The linear multi-input-single-output errors-in-variables (EIV)
model

AX ≈ B, A = A + Ã, B = B + B̃, (3.35a)
B = (A − ∆A)X̂ + ∆B, (3.35b)

considers in contrast to (3.18) input noise (Ã) and output noise (B̃). In other
words, it is assumed that all signals have some uncertainty. Therefore, problem
(3.35) is an unconstrained perturbation problem, more general than (3.18),
and comprises the latter one as special case. Generally speaking, errors-in-
variables estimators are more complex than output-error estimators. This
drawback is compensated by the reduced parameter bias of errors-in-variables
estimators that has been observed in numerous studies if the constrained
perturbation assumption of (3.18) does not hold [37, 41, 49, 53, 94, 106, 116,
133, 134, 164, 166], [73, p. 116], [86, pp. 302–304], and [185, p. 5].

Reused material: Errors-in-variables estimators can be divided into
two classes. The �rst class requires knowledge of the noise covariance matrix.
The bias-compensating RLS algorithm by [44] adds a correction term which
is built from the noise variance and a correlation matrix and adjusts the
estimates. Furthermore, numerous recursive TLS (RTLS) algorithms based on
the minimization of the Rayleigh quotient were proposed by [7, 41, 54, 55,
99]. All of these methods try to solve the errors-in-variables problem [(3.35)]
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with a cost function that considers data corrections in all elements of the
augmented data (Z ).

In the second class, the bias in the estimated parameters is reduced by
properly chosen instruments (A). A recursive total instrumental variables
(RTIV) estimator was introduced by [54]. The main advantage of instrumental
variables (IV) methods is that no knowledge of the noise covariance matrix is
required [This reused material has been reformatted for uniformity. ©2014
IFAC. 133].

However, IV methods impose other assumptions. Essentially, the instru-
ments should be chosen in a way that they are uncorrelated with input noise
and output noise, but maximally correlated with the measured inputs. The
simplest way to yield proper instruments is to use time-delayed measured
inputs. Anyhow, we will discuss IV methods in detail in Section 3.6.4.

3.6.1 Total least squares (TLS)*

Reused material: Markovsky and Van Hu�el [106] pointed out that
TLS searches for optimal data corrections

[
∆A ∆B

]
:=

[
A B

]
−

[
Â B̂

]
(3.36), where ‖·‖F denotes the Frobenius norm.

min
X ∈Rq×d ,[Â B̂]∈Rm×q



[A B
]
−

[
Â B̂

]


F s.t.

[
Â B̂

] [
X
−I

]
= 0 (3.36)

The approximate solution of the overdetermined system of equations is ÂX̂ =
B̂. If the noise is independently identically distributed with zero mean and a

covariance matrix

P̃ = cov
( [
Ã B̃

] )
= σ 2I , (3.37)

equal to the identity matrix up to σ 2, TLS is the maximum-likelihood estimator
for (3.35) [106]. Note that σ 2 is an unknown scalar which does not a�ect the
TLS correction. [. . . ]

The solution of the basic TLS requires the svd(·) (3.38) of the augmented
data Z =

[
A B

]
, where Z ∈ Rm×q . The matrices U ∈ Rm×m and V ∈ Rq×q

are orthonormal unitary U >U = I , V>V = I and their columns are called the
left and right singular vectors, respectively. The non-negative diagonal matrix
S ∈ Rm×q contains the singular values of Z in decreasing order.

Z = USV>, U >ZV = S, S = diag(S1,1, . . . , Sq,q) (3.38)
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3.6 Linear multi-input-single-output errors-in-variables model

Algorithm 3.5 provides the required computations for the basic TLS solution.
First, compute the svd of Z (Algorithm 3.5 Line 3). After that, partition V (Al-
gorithm 3.5 Line 4), and �nally, compute the parameter estimate X̂ according
to Algorithm 3.5 Line 5 [185, p. 37]. Note that only V is needed from the svd
in Algorithm 3.5 Line 3 to compute the parameter estimate X̂ in Algorithm 3.5
Line 5. The solution is generic (does exist) if V 22 is non-singular. In our case
with d = 1, it is generic if V 22 , 0. Furthermore, the solution is unique if
Sn,n , Sq,q [106]. Extensions to the non-generic and non-unique case are
categorized in [185, p. 50].

In our opinion, the covariance information cov
(
X̂

)
of the estimate X̂ is

as important as the estimate itself. This estimation is a challenging task in
TLS and is discussed only insu�ciently in the TLS literature. Van Hu�el and
Vandewalle [185, p. 242] provide an approximate covariance formula which
we integrate in Algorithm 3.5 Line 7.

The augmented correction (∆Z ) is given with

∆Z =
[
∆A ∆B

]
= Sq,qU :,qV

>
:,q , (3.39)

[185, p. 35]. We found that[
∆A ∆B

]
≈

[
A B

] [
V 12
V 22

] [
V>12 V>22

]
(3.40)

is a more convenient form which has derived in accordance with [183, p. 435].
During our simulations, the error between the exact form (3.39) and the
approximate (3.40) was in the range of machine precision. Note that (3.40) has
the advantage that the costly matrixU is not required. Finally, the approximate
data is

[
Â B̂

]
=

[
A B

]
−

[
∆A ∆B

]
. [. . . ]

Figure 3.11 visualizes the di�erence between LS and TLS. While LS corrects
the data vertically and assumes that A is exactly known, TLS performs per-
pendicular data corrections. That is also the reason why TLS is sometimes
called orthogonal regression [This reused material has been reformatted for
uniformity. ©2013 IEEE. 135, pp. 269–270].

3.6.2 Generalized total least squares (GTLS)*

Reused material: So far, TLS seems to be the superior method, due
to the more realistic unconstrained perturbation model (3.35). However, TLS
requires quite restrictive conditions for maximum-likelihood characteristics.
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3 Models and estimators

Algorithm 3.5: Total least squares (TLS)
input: A, B

1 batch

2 Z =
[
A B

]
3 USV> = svd(Z )

4 V :=
[ n d

n V 11 V 12
d V 21 V 22

]
5 X̂ = −V 12V 22−1

6 σ̂ 2 ≈
Sq,q

m

7 cov(X̂ ) ≈
(
1 +




X̂


2

2

)
σ̂ 2(A>A −mσ̂ 2I )−1

output: X̂ , cov
(
X̂

)
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−10

0

10

A

B

a)

−10 0 10
A

b)

Figure 3.11: Data �tting with LS in Figure 3.11a and TLS in Figure 3.11b. shows the
data

[
A B

]
, shows approximations

[
Â B̂

]
, shows the estimated

model and shows the corrections
[
∆A ∆B

]
. [This reused material

has been reformatted for uniformity. ©2013 IEEE. 135].
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3.6 Linear multi-input-single-output errors-in-variables model

In practice, it is unlikely that all errors are uncorrelated and equally sized as
required by (3.37).

Generalizations of basic TLS can deal with column-wise or row-wise corre-
lated noise and unequally sized error covariance matrices [184]. Markovsky
et al. [107] introduced an element-wise weighted TLS method and accepted
the drawback of losing a closed-form solution.

Apart from svd-based TLS methods, Scha�rin and Wieser [153] introduced
an element-wise weighted TLS method based non-linear Lagrange functions
and Shen, Li, and Chen [159] solved this problem with a Newton-Gauss-based
scheme.

Schuermans et al. [156] provide the simplest kind of generalized total least
squares (GTLS) scheme through rescaling the data in a way that the noise
covariance matrix meets the form required by TLS (3.37). This data scaling is
performed from Line 2–Line 4 in Algorithm 3.6. The Cholesky factorization
(chol(·)) of the right scaling matrix (Wr) in Line 2 is used to transform the
data into a new space in Line 4. The basic TLS algorithm is used as nested
function in Algorithm 3.6 Line 6 to compute the parameter estimates X̂ ′ in
the transformed space. Finally, Algorithm 3.6 Line 7 converts X̂ ′ back in the
original space [This reused material has been reformatted for uniformity.
©2013 IEEE. 135, pp. 270–271].

The conversion of cov
(
X̂ ′

)
into cov

(
X̂

)
in Algorithm 3.6 Line 8 was derived

in [136] and is shown herein additionally to [156] and [135]. The cost function
which corresponds to the GTLS algorithm becomes

min
X ∈Rq×d ,Ẑ ∈Rm×q



√Wl(Z − Ẑ )Wr




F s.t. Ẑ
[
X
−I

]
= 0,

where Wl ∈ Rm×m is a diagonal left scaling matrix which allows row-wise
data weighting. Hence,Wl is the link to exponentially forgetting as discussed
in Section 3.5.3 (diag(Wl) = [λm−1, . . . , λ2, λ1, λ0]>).

Reused material: Algorithm 3.6 can treat three di�erent TLS prob-
lems:

1. If P̃ = I , Algorithm 3.6 works like Algorithm 3.5 in the TLS sense (errors
are equally sized and uncorrelated);

2. If P̃ = cov
( [
Ã B̃

] )
, Algorithm 3.6 acts as GTLS (errors are unequally

sized and correlated);
3. If P̃ is a diagonal matrix P̃ = I � cov

[
Ã B̃

]
, Algorithm 3.6 computes

the scaled TLS solution (errors are unequally sized and uncorrelated)
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3 Models and estimators

Algorithm 3.6: Generalized total least squares (GTLS)
input: A, B, P̃ ,Wl

1 batch

2 C = chol(P̃)

3 Wr = C−1 :=
[ n d

n Wr11 Wr12
d 0 Wr22

]
4

[
A′ B′

]
=
√
Wl

[
A B

]
Wr

5 function call

input: A′, B′
6 Algorithm 3.5

output: X̂ ′, cov(X̂ )
7 X̂ = (Wr11X̂ ′ −Wr12)Wr−1

22

8 cov
(
X̂

)
=
Wr>11 cov

(
X̂ ′

)
Wr11

Wr2
22

output: X̂ , cov
(
X̂ ′

)
[This reused material has been reformatted for uniformity. ©2013 IEEE. 135,
pp. 270–271].

3.6.3 Recursive GTLS

Reused material: Recursive versions of GTLS with data scaling were
shown in [94, 135]. These algorithms replace the batch svd(·) in Algorithm 3.5
Line 3 with e�cient svd update schemes [22, 23, 67]. A drawback of data
scaling is that we cannot assume one or more measured inputs as noise-free,
because a scaling with zero would neglect these measured inputs. However,
these algorithms provide a closed-form solution.

The majority of algorithms use power methods, such as inverse iteration
or Rayleigh quotient iteration. Davila [41] showed that the minimization of
the generalized Rayleigh quotient

min
V :,q

V>:,q
(
Z>Z

)
V :,q

V>:,q P̃V :,q
(3.41)

provides the eigenvector V :,q which corresponds to the smallest eigenvalue
Sq,q . And this eigenvector is involved in the GTLS solution.
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Lemma 3.2. The minimization of (3.41) results in asymptotically unbiased and
consistent GTLS solution X in case of additive, zero mean, Gaussian noise and
known noise covariance matrix up to a multiplier by the substitution of V :,q
with

[
X> −1

]> and the substitution of Z>Z with the expectation operator (E)
of the sample input covariance matrix for large enough t , where

Rt =
1
t

t∑
i

Z>i Z i .

Proof. See Proof of Theorem 1 in [41] for the substitution of Z>Z with E(Rt )
and Sec. B in [55] for the substitution of V :,q with

[
X> −1

]>. �

Accordingly, the eigenvectorV :,q can be replaced with
[
X> −1

]> in (3.41)
and the minimization simpli�es to the constrained generalized Rayleigh quo-
tient

min
X

[
X> −1

] (
Z>Z

) [
X> −1

]>[
X> −1

]
P̃

[
X> −1

]> (3.42)

[55]. Following [63, p. 465], we can solve (3.41) with generalized inverse itera-
tion as shown in Algorithm 3.7. The while loop in Algorithm 3.7 Line 2 does
not allow a closed-form solution, but generalized inverse iteration converges
in the most cases fast within a few iterations. Because of that, generalized
inverse iteration is suitable for recursive algorithms assuming that for each
time step one iteration is su�cient to follow the smallest eigenvector.

The herein proposed recursive GTLS (RGTLS) algorithm that is shown in
Algorithm 3.8, is based on the optimization procedure (3.42) and the recursive
update of the augmented data input covariance matrix. Apart from using
Z t instead of At , the update in Algorithm 3.8 Line 3 conforms with Algo-
rithm 3.1 Line 4. The constrained generalized inverse iteration is performed
in Algorithm 3.8 from Line 4–Line 5 and P̃ is replaced with an estimated noise
covariance matrix (P̆ ). P̆ can also be used as �xed user input in the form of
(3.19) for a RLS solution or (3.37) for a RTLS solution [This reused material
has been reformatted for uniformity. ©2014 IFAC. 133]

The following paragraphs outline a noise covariance estimator (NCE) that
was introduced in [133] and grounds on the polynomial Kalman smoother
(PKS) that will be discussed in Section 3.9.1.

Figure 3.12 gives the block diagram of RGTLS with NCE. The PKS are used
to compute the estimated input noise (Ă) and estimated output noise (B̆),
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Algorithm 3.7: Generalized inverse iteration
input: Z , P̃

1 V :,q;t =
[
1 1 . . . 1

]>
, V :,q;t−1 =

[
0 0 . . . 0

]>
2 while



V :,q;t−1 −V :,q;t




2 > threshold do

3 V :,q;t−1 = V :,q;t
4 V :,q;t = (Z>Z )−1(P̃V :,q;t )
5 V :,q;t = V :,q;t /



V :,q;t




2
6 X̂ = −V 1:n,q;t /V q,q;t

output: X̂

Algorithm 3.8: Recursive GTLS (RGTLS)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,Z t , P̆ t , λ

2 Lt =
(
P t−1Z>t

) (
λ + Z tP t−1Z>t

)−1

3 P t = (I − LtZ t )P t−1 1
λ

4 V :,q;t−1 = [X̂>t−1,−1]>
5 V ′:,q;t = P t (P̆ tV :,q;t−1)
6 X̂ t = −V ′1:n,q;t /V

′
q,q;t

output: X̂ t , P t

respectively. These estimates are used in the NCE to provide P̆ t as input for
RGTLS. Note that RGTLS uses raw data At and Bt . Hence, there is no delay in
the estimated parameters due to the PKS smoothing.

Reused material: In multi-input-single-output identi�cation, P̆ is a
square matrix with P̆ ∈ Rq×q . A simple noise covariance update formula with
forgetting is

Z̆ t =
[
Ă1;t . . . Ăn;t B̆t

]
, (3.43a)

P̆ t = λP̆ t−1 + (1 − λ)
(
Z̆>t Z̆ t

)
, (3.43b)

where (3.43b) is the multidimensional version of the noise variance estimator
in [199].

Figure 3.12 shows that we need q-independent PKS to compute Z̆ t in (3.43a).
The noisy measurement Bt in Algorithm 3.21 isA1;t for PKS1, . . . ,An;t for PKSn
and Bt for PKSq [This reused material has been reformatted for uniformity.
©2014 IFAC. 133].
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RGTLS

P̆t

X̂t

Figure 3.12: Block diagram of RGTLS with NCE. [This reused material has been refor-
matted for uniformity. ©2014 IFAC. 133].

Although RGTLS is a general estimator of the multi-input-single-output.
errors-in-variables model (3.35), two speci�c problems need more investigation
to apply RGTLS in practice. First, a robust version of RGTLS should be derived
which is similar to RLM. If we compare the RLM cost function (3.25) with the
generalized Rayleigh quotient (3.41) (which is in fact the RGTLS cost function)
this derivation could be straightforward.

It is more challenging to introduce adequate regularization in RGTLS. Sev-
eral resources discuss that “total least squares is a deregularizing procedure”
[106, p. 2288] and [62, p. 889]. As RGTLS grounds on TLS, RGTLS performs
deregularization as well, which is unsuitable during poor excitation. This
deregulaization can be observed if we compare the TLS solution

X̂ =
(
A>A − S2

q,qI
)−1

A>B (3.44)

(which is equal to the shown TLS solution X̂ = −V 12V 22
−1 in Algorithm 3.5

[185, p. 36]) with the regularized LS solution (3.32). The latter adds the term
κI to A>A whereas S2

q,qI is subtracted from A>A in (3.44).
Numerous studies indicate the signi�cance to derive regularized TLS-based

estimators [see the references 31–35 in 106] and [95, 103, 105, 160]. However,
all of these references deal with batch estimators. Regularized recursive TLS-
based estimators are rare. One reference in this matters is [99], where a
regularized RTLS estimator was used to train neural networks.
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3.6.4 Instrumental variables (IV)

Instrumental variables is a well understood and widely used method to solve
the linear multi-input-single-output errors-in-variables model (3.35) [164, 165],
[86, pp. 302–304], [168, pp. 260–264], [100, pp. 224–226] and [73, pp. 116-118].
As said in Section 3.6, instrumental variables belongs to the second class of
errors-in-variables estimators which does not require knowledge of the noise
covariance matrix. This simpli�cation and the strong connection to basic
LS (and hence to RLS, RLM and RRLM in Section 3.5.3–Section 3.5.5) are the
two main advantages of instrumental variables over the more sophisticated
TLS-based estimators which we discussed in Section 3.6.1–Section 3.6.3.

Isermann and Münchhof [86, p. 302] explain the instrumental variables idea
as follows: The LS output correction

∆B = B −AX̂

is augmented with instruments (A), A ∈ Rm×n on both sides

A
>∆B = A>B − A>AX̂ ,

where A should be chosen such that A is uncorrelated with the input noise and
output correction [154, p. 73], E

(
A>Ã

)
= 0 and E

(
A>∆B

)
= 0 and maximally

correlated with A so that E
(
A>A

)
is positive de�nite. Hence,

0 = A>B − A>AX̂ ,

which leads to the instrumental variables closed-form solution

X̂ =
(
A
>A

)−1
A
>B, (3.45)

[86, p. 302], which is similar to the LS closed-form solution (3.20). Further, we
can observe that (3.45) comprises LS as special case if we adjust the instruments
to A := A.

The accuracy of instrumental variables (a well reduced parameter bias
compared with LS) depends strongly on proper chosen instruments and the
simplest way to choose the instruments is to use delayed measured inputs or
�ltered inputs [167]. In some cases instrumental variables estimators might
not lead to useful results or even diverge. Such cases were studied by numerical
experiments in [154, pp. 185–190]. Accordingly, the instruments should ful�ll
the following conditions.
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Figure 3.13: Auto-correlation plots of a sine wave in Figure 3.13a and white Gaussian
noise in Figure 3.13b.

First, if we use delayed measured inputs as instruments, instrumental vari-
ables requires that A comes from a monotonic signal source which shows an
auto-correlation plot, where the correlation coe�cient decreases slowly over
the time lag. Figure 3.13a shows a good suited auto-correlation of a sine wave.
Instrumental variables would fail in case of A generated by Gaussian noise
because E

(
A>A

)
would tend to zero which leads to the ill-posed problem.

Figure 3.13b shows the auto-correlation plot of white Gaussian noise. Note
the drastic drop of the correlation coe�cient for lags greater then zero in
Figure 3.13b.

Second, instrumental variables performs well if “the power spectrum of the
noise is much wider than the power spectrum of the input” [154, p. 73]. In
other words, the noise should contain approximately uniform power over all
frequencies, which is characteristic for white noise. Instrumental variables
perform not so well if the noise is auto-correlated which can be simulated
if we pass white noise through a Butterworth �lter. This second condition
can be relaxed with the extended instrumental variables or overdetermined
instrumental variables estimator, where the dimension of A is larger than the
dimension of A [57, 164], [100, p. 227] and [168, p. 262].

These two conditions depict the drawbacks of instrumental variables com-
pared with TLS-based estimators, where the latter do not su�er under these
restrictions.
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Algorithm 3.9: Recursive IV (RIV)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,At , λ
2 Lt =

(
P t−1A>t

) (
λ +AtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 P t = (I − LtAt )P t−1 1

λ
output: X̂ t , P t

Algorithm 3.10: Recursive IV M-estimator (RIVM)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,At ,W t,t , λ

2 Lt =
(
W t,tP t−1A>t

) (
λ +W t,tAtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 P t = (I − LtAt )P t−1 1

λ
output: X̂ t , P t

3.6.5 Recursive IV

The recursive IV (RIV) algorithm is shown in Algorithm 3.9 [100, p. 369] and
[168, p. 327]. The di�erence to RLS (Algorithm 3.1) is in Line 2, where the
instruments are involved in the computation of the correction vector (L).
As said, Algorithm 3.9 may be used to compute the RLS result if At := At .
Because RIV contains RLS as special case, it is trivial to perform the same
steps that led from RLS over RLM with robust estimated scale into RRLM
(Section 3.5.3–Section 3.5.5) also for RIV. Because of this, the recursive IV
M-estimator (RIVM) and the recursive regularized IV M-estimator (RRIVM)
are only given as pseudo-code with short explanation in Section 3.6.6 and
Section 3.6.7, respectively.

3.6.6 Recursive IV M-estimator

The RIVM algorithm is shown in Algorithm 3.10 (compare with Algorithm 3.2)A
and the RIVM algorithm with robust estimated scale in Algorithm 3.11 (com-
pare with Algorithm 3.3).
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Algorithm 3.11: RIVM with robust estimated scale
1 for t ← 1 tom do

input: X̂ t−1, P t−1, σ̂ 2
t−1, Q̂t−1,At ,Bt ,At , λ,η,p = 0.5

2 ∆Bt = (Bt −At X̂ t−1)

3 ψ t (∆Bt /σ̂t−1) =
{

(3.15b), or
(3.17b)

4 W t,t =
ψ t

∆Bt /σ̂t−1
5 function call

input: X̂ t−1, P t−1,At ,Bt ,At ,W t,t , λ
6 RIVM (Algorithm 3.10)

output: X̂ t , P t

7 ∆Bt = Bt −At X̂ t

8 Q̂t = Q̂t−1 + η |sgn(∆B2
t − Q̂t−1)|(sgn(∆B2

t − Q̂t−1) + 2p − 1)
9 σ̂ 2

t = λσ̂
2
t−1 + (1 − λ)1.483Q̂t

output: X̂ t , P t , σ̂
2
t , Q̂t

3.6.7 Recursive regularized IV M-estimator

RRIVM is shown in Algorithm 3.12 (compare with Algorithm 3.4). In accor- A
dance to Section 3.5.5, we can substitute RIVM (Algorithm 3.10) in Line 6 of
Algorithm 3.11 with RRIVM to create a �exible recursive regularized robust
estimator for the linear multi-input-single-output errors-in-variables model.

3.6.8 Experiments

Now we repeat the experiment of Section 3.5.6 with two di�erent settings of
RRIVM with robust estimated scale (Algorithm 3.12 inside Algorithm 3.11). All
data is generated in the same way as in Section 3.5.6 apart from the input noise
and the output noise. This time, also the measured inputs contain additive
Gaussian noise with zero mean and the output noise has lower variance in or-
der to meet an equivalent overall noise level compared with Section 3.5.6. The
noise covariance matrix becomes a diagonal matrix (independent distributed
noise) and P̃ was adjusted to

diag(P̃) =
[
0 0.005 0.01 0.02

]>
. (3.46)
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Algorithm 3.12: Recursive regularized IV M-estimator (RRIVM)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,At ,W t,t , λ,κ

2 Lt =
(
W t,tP t−1A>t

) (
λ +W t,tAtP t−1A>t

)−1

3 P t = (I − LtAt )P t−1 1
λ

4 P t = P t (I + κP t )−1

5 switch type do

6 case Levenberg-Marquardt regularization do

7 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
8 case Tikhonov regularization do

9 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
− P tκX̂ t−1

output: X̂ t , P t

Experiment 3.4
Call the function linearMISOeiv() two times with the strings ’Levenberg-Marquardt-RRLM’
and ’Levenberg-Marquardt-RRIVM’ to compute the two parameter estimates in Figure 3.14.
Algorithm 3.11 with Algorithm 3.12 in Line 6 (RRIVM with robust estimated scale) will
be executed with λ = 0.995 for all cases and the regularization parameter is adjusted to
κ = 0.1. The in�uence function is (3.15b). The instruments are At = At for ’Levenberg-
Marquardt-RRLM’ and At = At−2 for ’Levenberg-Marquardt-RRIVM’. That means that the
latter IV estimator used instruments with a delay of 2 s.

Figure 3.14a shows estimated parameters for RRLM with Levenberg-Marquardt
regularization and robust estimated scale. As we have seen from Figure 3.8, this
sophisticated experiment requires robust and regularized estimators. Hence,
we skip experiments with RIV and RIVM and move directly to RRIVM with
robust estimated scale as second estimator in Figure 3.14b.

The main observations from Figure 3.14 are. First, X̂ 2 diverges for 1000 s to
6000 s in Figure 3.14a. Apparently, the Levenberg-Marquardt regularization
performs worse if input noise is present. Further experiments with larger
regularization parameter (κ = 1) improved the results for X̂ 2. However, the
convergence rate of the other estimated parameter becomes slower in this
setting. This observation is quite astonishing if we compare Figure 3.14a with
Figure 3.8c, where the latter �gure showed superior accuracy of ’Levenberg-
Marquardt-RRLM’.

Second, we can observe biased estimates of X̂ 3, whereas X̂ 1 shows good
accuracy in Figure 3.14a. The biased estimates can be explained by the setting
of P̃ in (3.46). The �rst entry of diag(P̃) is zero and matches the statistical
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Figure 3.14: Estimated parameters for Levenberg-Marquardt-RRLM and Levenberg-
Marquardt-RRIVM in Figure 3.14a and Figure 3.14b, respectively. Nominal
values are shown with lines. Figure 3.14c gives the squared error vector
norm.

assumption of RRLM (noise free measured inputs), whereas the third entry of
diag(P̃) is above zero.

Third, Figure 3.14b and Figure 3.14c show that the delayed instruments
(At = At−2) in ’Levenberg-Marquardt-RRIVM’ cause superior accuracy com-
pared with ’Levenberg-Marquardt-RRLM’. The parameter-bias in X̂ 3 is remark-
ably reduced and the e�ciency of the Levenberg-Marquardt regularization
for X̂ 2 is now satisfactory.

To sum up, the introduction of instruments in RRIVM reduced the SEVN sig-
ni�cantly for the linear multi-input-single-output errors-in-variables model.

The need for robust and regularized estimators is also the explanation .
why RGTLS, which was the �rst discussed recursive estimator for the linear
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multi-input-single-output errors-in-variables model in Section 3.6.3, is not
shown in Figure 3.14. As said at the end of Section 3.6.3, RGTLS is currently
neither robust nor regularized and cannot produce meaningful estimates for
Experiment 3.4. However, if robustness and regularization is not an issue,
RGTLS with NCE showed superior accuracy (smallest SEVN) compared with
RLS and RTIV (the latter is a sophisticated recent recursive IV estimator by
[54]) [see the experiments in 133].

Experiment 3.5
Download the code of [133] (http://digbib.ubka.uni-karlsruhe.de/volltexte/1000038517) and
compare the squared error vector norm of RLS, RTIV and RGTLS with NCE in an experiment
where robustness and regularization are not required. Note that this simpler setup is mostly
to �nd in literature and Experiment 3.3 and Experiment 3.4 are more intricate.

Upon here, we have only considered the SEVN as performance index in all
presented experiments. However, the discussion in Section 3.2.1 provided
other performance indices which allow to measure the model’s goodness
of �t. We will now use cross-validation from Section 3.2.3 to compare the
k step ahead prediction quality between ’Levenberg-Marquardt-RRLM’ and
’Levenberg-Marquardt-RRIVM’.

For a fair comparison, it makes sense to split the data into training data
and validation data at t = 9000 s because at this time, both estimators are
converged. Compare Figure 3.14a and Figure 3.14b. Therefore k = 1000.
Further, it is useful to discard the outliers in A and B. Otherwise, it would
be hard to measure di�erences between both estimators, because outliers
in�uence strongly all presented performance indices. In brief, the performance
indices of Section 3.2.1 are not robust.

The MSE (3.3a) becomes 1.4724 for ’Levenberg-Marquardt-RRLM’ and
1.5761 for ’Levenberg-Marquardt-RRIVM’. This smaller MSE of ’Levenberg-
Marquardt-RRLM’ is due to the used cost function of LS-related recursive esti-
mators. RRLM grounds on (3.25) which is a double weighted non-normalized
version of MSE. All presented errors-in-variables estimators within Section 3.6
such as RRIVM exhibit cost functions which reduce the parameter-bias but
not the MSE.

In conclusion, we need to decide between small SEVN (small parameter-
bias) and small MSE (good prediction quality of the model) and apply one
estimator of Section 3.6 or Section 3.5, respectively. This conclusion can be also
found in errors-in-variables literature. For instance Van Hu�el and Vandewalle
[185, p. 5] mention that “[t]he errors-in-variables model is useful when the
primary goal is model parameter estimation rather than prediction”.
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3.7 Linear random-walk output-error model
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The next branch within the gray-box models of Figure 3.1 is a special kind
of multi-input-single-output model that is called random-walk model. The
random-walk model in [102] is designed to track parameters which vary on
di�erent rate and evolve in a stochastic manner. In other words, the state
transition, which is equivalent with the temporary evolution of the states or
the parameter, is not deterministic or unknown.

Starting with the well known state-space model 1

X t = AX t−1 + BAt−1 + ∆X t (3.47a)
Bt = CX t +DAt + ∆Bt , (3.47b)

and setting B = D = 0, C = At and A = I we get the random-walk
output-error model

X̂ t = X̂ t−1 + ∆X t (3.48a)
Bt = At X̂ t + ∆Bt , (3.48b)

where ∆X t is the parameter correction which is assumed as white Gaussian
sequel with a covariance matrix Qt ∈ Rn×n . The output correction (∆Bt ) is
assumed as white Gaussian noise with variance R1

t . The �rst power in R1

indicates the single dimension of R1 (multi-input-single-output model). Note
that Qt and R1

t can vary in time.
By setting a high value in Q1,1;t and lower values for all other diagonal

elements in Qt for instance, a high variation rate in X 1 is assumed, whereas
the other parameters vary slower. In practice, Qt expresses how much we
believe in the estimated parameters from the previous time step and R1

t how
much do we trust in the measured output.

3.7.1 Kalman �lter

The optimal �lter for solving (3.48) is the Kalman �lter (KF) which is shown
in Algorithm 3.13 in a form for parameter estimation [100, pp. 367–369], [168,

1The state-space model is usually written as

xt+1 = Axt + But +wt

yt = Cxt + Dut + et .

However, we will use the form of (3.47) to ensure a consistent nomenclature.
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3 Models and estimators

Algorithm 3.13: Kalman �lter (KF)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,R1
t ,Qt

2 Lt =
(
P t−1A>t

) (
R1
t +AtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 P t = (I − LtAt )P t−1 +Qt

output: X̂ t , P t

p. 325] and [45, pp. 608–612]. However, the Kalman �lter is more applied in
state estimation with the full linear state-space model (3.47).

The Kalman �lter is probably the most popular recursive estimator and
therefore the literature on Kalman �lter topics is vast. The following lemma
depicts an interesting connection between the Kalman �lter and recursive
least squares.

Lemma 3.3. The Kalman �lter is a generalization of RLS.

Proof. If we set

R1
t = λ (3.49a)

Qt = P t−1

(
1
λ
− 1

)
+ LtAtP t−1

(
1 − 1

λ

)
(3.49b)

in Algorithm 3.13, the Kalman �lter turns into RLS and Algorithm 3.13 and
Algorithm 3.1 become identical. �

Hence, the Kalman �lter covers RLS as special case. Moreover, it turns out
that the linear random-walk output-error model in (3.48) is a generalization
of the linear multi-input-single-output output-error model (3.18).

The connection between RLS and KF was extensively studied (cost functions,
correspondence tables) in [151], [150, pp. 763–767], and [45, p. 614]. This
similarity is important, because now �ndings and methods from the vast
KF literature can be applied for RLS and vice versa. Hence, all evolutions
of RLS which were shown from Section 3.5.3 to Section 3.5.5 for the linear
multi-input-single-output output-error model, as well as the evolutions of
RIV from Section 3.6.5 to Section 3.6.7 for the linear multi-input-single-output
errors-in-variables model, can be applied similarly to the linear random-walk
output-error model and the linear random-walk errors-in-variables model,
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Algorithm 3.14: M-Kalman �lter (MKF)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,W t,t ,R
1
t ,Qt

2 Lt =
(
W t,tP t−1A>t

) (
R1
t +W t,tAtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 P t = (I − LtAt )P t−1 +Qt

output: X̂ t , P t

respectively. For reasons of brevity, these similar evolutions are skipped and
only the most important algorithms are given in the following.

3.7.2 M-Kalman �lter

The M-Kalman �lter (MKF) in Algorithm 3.14 is the robust version of the
Kalman �lter and can be derived similarly to the statements in Section 3.5.4.
Also, MKF with robust estimated scale can be written analogously to Algo- A
rithm 3.3 if we alter the function call in Line 6 of Algorithm 3.3 from RLM into
MKF and provide the required function inputs R1

t and Qt instead of λ.
Durovic and Kovacevic [47] propose a robust Kalman �lter which is related

to MKF. However, Durovic and Kovacevic [47] provide no solution for the
robust update of P . Instead, the conventional P update formula of the Kalman
�lter is used with the assumption that the ρ-function is almost quadratic.
Hence, the robust KF in [47] is not as general as MKF in Algorithm 3.14,
where a robust P update is realized and any kind of ρ-function can be applied.
Moreover, the presented robust estimated scale in [47] requires a sliding
window, whereas MKF with robust estimated scale does not. Remember the
discussion of drawbacks for sliding windows in Section 3.5.4. Aravkin et al. [8]
introduced a robust non-linear Kalman smoother and provide more references
on linear and robust Kalman �lters which are based on M-estimators.

3.7.3 Regularized M-Kalman �lter

The regularized M-Kalman �lter (RMKF) with Levenberg-Marquardt regu- A
larization or Tikhonov regularization can be derived similarly to RRLM (Al-
gorithm 3.4 in Section 3.5.5) and is shown in Algorithm 3.15. The steps that
lead to RMKF with robust estimated scale are now trivial. Alter the function
call in Line 6 of Algorithm 3.3 from RLM into RMKF and provide the required
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Algorithm 3.15: Regularized M-Kalman �lter (RMKF)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,W t,t ,R
1
t ,Qt ,κ

2 Lt =
(
W t,tP t−1A>t

) (
R1
t +W t,tAtP t−1A>t

)−1

3 P t = (I − LtAt )P t−1 +Qt

4 P t = P t (I + κP t )−1

5 switch type do

6 case Levenberg-Marquardt regularization do

7 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
8 case Tikhonov regularization do

9 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
− P tκX̂ t−1

output: X̂ t , P t

function inputs R1
t and Qt instead of λ.

3.7.4 Stenlund-Gustafsson M-Kalman �lter

Another approach to deal with the wind-up problem (remember that regular-
ization is a method to avoid the wind-up problem that is due to poor excitation)
in Kalman �ltering was presented in [171] and extensively studied in [50, 51].

In contrast to regularization in Section 3.7.3, where the covariance matrix (P )
was normalized in Line 4 of Algorithm 3.15 with the regularization parameter
κ, Stenlund and Gustafsson [171] propose to use a desired P (Pd), Pd ∈ Rn×n
and to compute the actual Qt depending on the direction where excitation
comes. The basic idea is to regard the Kalman �lter as control unit, where the
goal is that the covariance matrix becomes equal with Pd, which is the desired
convergence point of P [171].

Stenlund and Gustafsson [171] provide experiments which show slightly
better performance of the Pd approach compared with the selective forgetting
method of [124]. Selective forgetting forces the eigenvalues of the covariance
matrix to lie within a given interval. More recent selective forgetting methods
were proposed by [30, 31].

Although the Pd approach of [171] results in a suboptimal Kalman �lter,
Pd is more intuitively to use than regularization or selective forgetting. The
regularized Kalman �lter requires a dimensionless (and therefore rather mean-
ingless) regularization parameter, whereas selective forgetting requires user
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Algorithm 3.16: Stenlund-Gustafsson M-Kalman �lter (SGMKF)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,W t,t ,R
1
t , Pd

2 Lt =
(
W t,tP t−1A>t

) (
R1
t +W t,tAtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 Qt =

W t,tPdA
>
t AtPd

R1
t +W t,tAtPdA

>
t

5 P t = (I − LtAt )P t−1 +Qt

output: X̂ t , P t

de�ned minimum and maximum eigenvalues of the covariance matrix.
On the other hand, Pd is the desired covariance matrix of ∆X and because

of this, better interpretable as regularization or selective forgetting.
According to [171], Qt is given by

Qt =
PdA

>
t AtPd

R1
t +AtPdA

>
t
,

and we can compute a robust version of Qt with A

Qt =
W t,tPdA

>
t AtPd

R1
t +W t,tAtPdA

>
t
.

Finally, the Stenlund-Gustafsson M-Kalman �lter (SGMKF) algorithm is given
in Algorithm 3.16. SGMKF with robust estimated scale can be derived by
modifying the function call in Line 6 of Algorithm 3.3 from RLM into SGMKF
and adjust the required function inputs accordingly.

3.8 Linear random-walk errors-in-variables model
RW EIV

L2

IVKF

Lρ IVMKF

RIVMKF

SGIVMKF

The last gray-box model of Figure 3.1 is the linear random-walk errors-in-
variables model which becomes

X̂ t = X̂ t−1 + ∆X t (3.50a)
Bt = (At − ∆At )X̂ t + ∆Bt , (3.50b)

and considers input corrections, whereas the random-walk output-error
model (3.48) does not consider input corrections.
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In accordance with Section 3.6, two classes of errors-in-variables estimators
are possible to solve the random-walk errors-in-variables model. First, TLS-
based estimators which require knowledge of the noise covariance matrix.
Second, instrumental variables Kalman �lters which do not require the noise
covariance matrix.

3.8.1 Total least squares and the random-walk model*

This section grounds on collaborative and unpublished work during my re-
search visit at the Department ELEC at Vrije Universiteit Brussel [108].

During the discussion it was found that the solution of the linear random-.
walk errors-in-variables model with TLS-based methods is challenging and
o�ers research possibilities. We decided to formulate the problem �rst with
the batch cost function

min
X ,Ẑ

(
Wl



Z − Ẑ


Wr
+



X − ΛX



WX

)
, (3.51a)

s.t. Ẑ t

[
X t
−1

]
= 0, t ∈

[
1 2 . . . m

]
. (3.51b)

The weighting matrices Wl ∈ Rm×m , Wr ∈ Rq×q consider the row-wise
weighting with an exponential forgetting factor and the column-wise weight-
ing of the noise covariance matrix. Hence, diag(Wl) =

[
. . . λ2 λ1 λ0]>

andWr = (cholP̃)−1. The weighting matrixWX considers the assumed vari-
ation in the parameters and is similar to Qt in Section 3.7. The Λ is a short
notation for a shift operator, so ΛX means a one step ahead version of X . If
X =

[
X 1;1 X 1;2 . . . X 1;t

]
, ΛX becomes

[
X 1;2 X 1;3 . . . X 1;t+1

]
. We

think that the recursive solution to (3.51) is a non-trivial. And so far, there is
no �nal solution available. Possible ways to solve this problem are:

1. Solution with alternating projections
The �rst idea is to solve the batch problem (3.51) with numerical op-
timization methods, such as alternating projections and then try to
derive a online version out of that. Alternating projections requires an
iterative procedure to converge to a solution. This iterative procedure
is a drawback for deriving recursive algorithms. The idea is that a small
number of recursive iterations is su�cient, because the optimal solution
is not so far away from the previous time step. Nevertheless, we would
need to de�ne some kind of abort threshold which is used to �nish the
iterations at each time step. In conclusion, a recursive algorithm based
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Algorithm 3.17: IV Kalman �lter (IVKF)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,At ,R1
t ,Qt

2 Lt =
(
P t−1A>t

) (
R1
t +AtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 P t = (I − LtAt )P t−1 +Qt

output: X̂ t , P t

on alternating projections requires an unknown number of iterations
for each time step, which is contrary to the de�nition of recursive or
online methods.

2. Solution with robust Kalman �lters
The idea here is to use robust Kalman �lters. The term robust means in
this context not robust in the presence of outliers in the data, but robust
in terms of model uncertainty. Sayed [149] considers the uncertain
state-space model

xt = (A + Ã)xt−1 + (B + B̃)ut−1 +wt ,

yt = (C + C̃)xt + et ,

that is closely related with (3.47). Following the same arguments as in
Section 3.7, we only need to consider the uncertainty in C. Due to the
recursive implementation and closely related concept, this solution is
superior compared with alternating projections. More references for
Kalman �lters which deal with model uncertainty are to �nd in [162,
p. 313].

3.8.2 IV Kalman �lter

Due to the connection between RLS and RIV on one hand (see Section 3.6.5) and A
RLS and KF on the other, the steps to convert the Kalman �lter (Algorithm 3.13)
into a IV Kalman �lter (IVKF) are simple and result in the the IVKF algorithm
which is shown in Algorithm 3.17.

3.8.3 IV M-Kalman �lter

Further, we need only small modi�cations to derive the robust IV M-Kalman A
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Algorithm 3.18: IV M-Kalman �lter (IVMKF)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,At ,W t,t ,R
1
t ,Qt

2 Lt =
(
W t,tP t−1A>t

) (
R1
t +W t,tAtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 P t = (I − LtAt )P t−1 +Qt

output: X̂ t , P t

Algorithm 3.19: Regularized IV M-Kalman �lter (RIVMKF)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,At ,W t,t ,R
1
t ,Qt ,κ

2 Lt =
(
W t,tP t−1A>t

) (
R1
t +W t,tAtP t−1A>t

)−1

3 P t = (I − LtAt )P t−1 +Qt

4 P t = P t (I + κP t )−1

5 switch type do

6 case Levenberg-Marquardt regularization do

7 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
8 case Tikhonov regularization do

9 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
− P tκX̂ t−1

output: X̂ t , P t

�lter (IVMKF) from MKF. Consequently, the IVMKF is presented in Algo-
rithm 3.18 without further explanation. Also the IVMKF with robust estimated
scale can be written analogously to Algorithm 3.11 if we alter the function call
in Line 6 of Algorithm 3.11 from RIVM into IVMKF and provide the required
function inputs R1

t and Qt instead of λ.

3.8.4 Regularized IV M-Kalman �lter

The regularized IV M-Kalman �lter (RIVMKF) is given in Algorithm 3.19A
and the RIVMKF with robust estimated scale can be written by modifying
the function call in Line 6 of Algorithm 3.11 from RIVM into RIVMKF and
providing the required function inputs R1

t and Qt instead of λ.
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Algorithm 3.20: Stenlund-Gustafsson IV M-Kalman �lter (SGIVMKF)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,At ,Bt ,At ,W t,t ,R
1
t , Pd

2 Lt =
(
W t,tP t−1A>t

) (
R1
t +W t,tAtP t−1A>t

)−1

3 X̂ t = X̂ t−1 + Lt
(
Bt −At X̂ t−1

)
4 Qt =

W t,tPdA
>
t AtPd

R1
t +W t,tAtPdA

>
t

5 P t = (I − LtAt )P t−1 +Qt

output: X̂ t , P t

3.8.5 Stenlund-Gustafsson IV M-Kalman �lter

Finally, the Stenlund-Gustafsson IV M-Kalman �lter (SGIVMKF) is presented A
in Algorithm 3.20 and gives the last algorithm for the linear random-walk
errors-in-variables problem. Please follow the steps which were described in
Section 3.8.4 to build a SGIVMKF with robust estimated scale.

3.8.6 Experiments

Let us conduct the following experiment for the linear random-walk errors-
in-variables model. This experiment grounds on Section 3.5.6 with the noise
covariance matrix (3.46). However, in order to study di�erent estimators for
the random-walk errors-in-variables model (3.50), we will alter X 3, which
was adjusted to 3 in all previous experiments. Now, X 3 depends on t and is
realized as random-walk with

X 3,t = X 3,t=1 +
t∑
i=1
N(µ,σ 2) with

t =
[
1 2 . . . m

]>
, m = 10 000 s

µ = 0, σ = 1 × 10−4, X 3,t=1 = 3.

Experiment 3.6
Call the function linearRWeiv() two times with the strings ’Levenberg-Marquardt-RRIVM’
and ’Levenberg-Marquardt-RIVMKF’ to compute the two parameter estimates in Fig-
ure 3.15. Algorithm 3.11 with Algorithm 3.12 in Line 6 (RRIVM with robust estimated
scale) will be executed with λ = 0.995 and κ = 0.1 for the �rst function call. The second
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Figure 3.15: Estimated parameters for Levenberg-Marquardt-RRIVM and Levenberg-
Marquardt-RIVMKF in Figure 3.15a and Figure 3.15b, respectively. Nominal
values are shown with lines. Figure 3.15c gives the Squared error vector
norm.

function call runs Algorithm 3.19 inside Line 6 of Algorithm 3.11 (RIVMKF with robust
estimated scale), where the covariance of parameter correction was set to diag(Q ) =[
1 × 10−6 1 × 10−8 1 × 10−5] . The covariance of output noise was adjusted for both

estimators to R1=0.02, which meets the last entry of P̃ in (3.46). The in�uence function
was (3.15b) and the instruments were At = At−2 for both function calls.

Although RRIVM produces accurate results for X̂ 1 and X̂ 2 in Figure 3.15a,
which was expected from the results of Figure 3.14b, this estimator tracks
X̂ 3 not precise. A delay between X 3 and X̂ 3 is clear to see in Figure 3.15a. A
smaller forgetting factor would reduce this delay. However, the other estimates
of X̂ 1 and X̂ 2 would show larger variation then.

There is a dilemma in recursive estimators with exponentially forgetting.

82



3.9 Linear polynomial-function output-error model

A large forgetting factor reduces the parameter variance but then the algo-
rithms loose tracking capability. One solution is to replace the time-invariant
forgetting factor with a time-varying forgetting factor. This time-varying
forgetting factor is then called variable forgetting and a vast of algorithms
(sometimes ad hoc methods) have been presented [5, 56, 97, 123, 163, 170].
Another solution is to add perturbation to the P update [87]. Also methods
which involve resetting of P are common.

However, all variable forgetting methods can be replaced by Kalman �lter-
based estimators if R1 becomes time-varying. However, even if R1 is time-
invariant, as it is within this experiment, RIVMKF shows better performance
in tracking of the random-walk like varying X 3 in Figure 3.15b than RRIVM in
Figure 3.15a. The superior accuracy of RIVMKF can also be seen in Figure 3.15c.
This result was expected if we remember Section 3.7.1, where it was said
that the Kalman �lter is the optimal estimator to solve the random-walk
output-error model, or the related random-walk errors-in-variables through
the instrumental variables method. Moreover, remember that the Kalman
�lter covers RLS as special case. Hence, Kalman �lter-based estimators o�er
the most �exibility and do not su�er under the λ-dilemma.

3.9 Linear polynomial-function output-error model

black-box

linear

PF, OE, L2

SGF PKS

Contrary to Section 3.5–Section 3.8, this section covers a black-box model that
we will use in Section 5.3 to smooth vehicle signals.

Reused material: Polynomial-functions have been shown suitable
for extracting signals from noisy time series [148]. They are able to preserve
the original signal level and have a well-de�ned and tunable delay.

The Savitzky Golay �lter (SGF) uses convolution arrays to obtain the
smoothed signal and the smoothed derivatives at one preselected point. Like
proposed in [148], we use a smoothing window with equal left window (wl)
and right window (wr) and model the signal with a time-varying polynomial-
function of order n − 1. SGF performs a weighted sum of the measured signal
within the smoothing window. Hence, SGF requires one bu�er of sizewl+1+wr
for the measured data within the smoothing window and at least one bu�er of
same size for the weights which were derived in [104]. Additional bu�ers with
speci�c weights are required as the number of desired derivatives increases.

83
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3.9.1 Polynomial Kalman smoother

We use a speci�c form of the Kalman �lter, which we call polynomial Kalman
smoother (PKS), to extract noise from noisy measurements. PKS is based on
the principles of SGF. The herein proposed PKS approach can be seen as the
recursive version of SGF with exponentially weighted data. Conversely to
SGF, PKS yields estimates of the polynomial-function parameters. Hence, we
can evaluate the polynomial-function as well as its derivatives at multiple
points. Due to the recursive approach, PKS outperforms SGF signi�cantly in
matters of memory.

The requirement for the polynomial-function approach is that the time
series is built from auto-correlated signals. The following procedure would
fail if the signal is a random process, because the time-varying polynomial-
function would not properly model the underlying signal from the measured
signal in this case.

[. . . ]
We use the state-space representation in (3.52) with the state matrix (A),

the polynomial parameters X and the output matrix (C) as polynomial control
input vector and perform a random-walk model [102] of the time-varying
polynomial-function, whereas B and D are zero.

X t = AX t−1 + BAt (3.52a)
Bt = CX t +DAt (3.52b)

For a �xed unit shift of the polynomial-function, the state matrixA ∈ Zn×n be-
comes a time-invariant upper triangular square matrix and contains binomial
coe�cients

(n
k

)
Ai, j =

{(j−1
j−i

) ∀j ≥ i

0 ∀j < i,

see [198] for general shifts. For instance, A yields for a polynomial-function
with four parameters (third order) to

A =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 .
If PKS is used as smoother with wl = wr, C is given with

C =
[
(wl + 1 +wr)0 (wl + 1 +wr)1 . . . (wl + 1 +wr)n−1] .
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3.9 Linear polynomial-function output-error model

Algorithm 3.21: Polynomial Kalman smoother (PKS)
1 for t ← 1 tom do

input: X̂ t−1, P t−1,Bt ,A,C, λ
2 X̂ ′t−1 = AX̂ t−1
3 P ′t−1 = AP t−1A>

4 Lt =
(
P ′t−1C

>
) (
λ + CP ′t−1C

>
)−1

5 P t =
1
λ

(
P ′t−1 − LtCP

′
t−1

)
6 X̂ t = X̂ ′t−1 + Lt

(
Bt − CX̂ ′t−1

)
output: X̂ t , P t

The PKS algorithm is shown in Algorithm 3.21, with the noisy measurement
Bt , and the forgetting factor (λ). The smoothed signal at the center of the
window (wl + 1) is gained by

B̂t−wr =
[
(wl + 1)0 (wl + 1)1 . . . (wl + 1)n−1] X̂ t

[This reused material has been reformatted for uniformity. ©2014 IFAC. 133].

3.9.2 Experiments

Let us compare PKS with an moving average �nite impulse response (FIR) �lter
in the following signal smoothing experiment. We reuse B from Section 3.5.6
but omit the outliers in B, because PKS is a non-robust estimator.

However, the derivation of robust PKS is similar to MKF in Section 3.7.2 .
and will be studied in future work. Another interesting topic would be a study
about an errors-in-variables PKS (and it’s robust sibling) which is similar to
IVKF in Section 3.8.2.

Experiment 3.7
Call the function linearPFoe() to compute the estimated output and MSE in Figure 3.16.
Algorithm 3.21 will be executed with λ = 0.9, wl = wr = 20 and a polynomial-function of
fourth order (�ve parameters). FIR is realized with equally weighted 41 taps (wl +wr + 1)
and computes the moving average of the measured output. The estimated output of PKS
and FIR is delayed with wr to bring the measured output and estimated output in phase.

Figure 3.16a presents a widely known result for moving average smoothed
signals (herein we used a FIR �lter with equal tap weights). FIR lacks under
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Figure 3.16: Figure 3.16a presents the estimated output of PKS and FIR (that was ad-
justed as moving average �lter) with equal left window and right window.
Note that the estimated output is delayed with wr to bring B and B̂ in
phase. Figure 3.16b gives the MSE of both estimators.

frequency dependent amplitude and phase response. The FIR smoothed es-
timated output masks the high frequent information of the underlying true
output and it is di�cult to compensate the time-varying phase shift. Although
these drawbacks are widely reported in literature, moving average signal
�ltering is still popular.

PKS outperforms FIR largely. That is explainable due to the better �exibility
of a polynomial-function with fourth order compared with moving average,
which is indeed a polynomial-function of order zero. More precisely, PKS cov-
ers moving average �lters by adjusting the order of the polynomial-function
to zero.

Figure 3.16b shows the MSE for PKS and FIR for the same time-period. The
MSE of PKS is generally lower and throughout more constant than the MSE
of FIR. In conclusion, PKS outperforms FIR (in a moving average setting) by
far in this signal smoothing experiment.

For the purpose of brevity, this section presented only an excerpt of possible.
PKS settings. Further research is required to compare PKS with other state of
the art signal �lters, because the presented moving average FIR is the simplest
kind of signal �lter and provides rather a weak benchmark.
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3.10 Additional topics

3.10 Additional topics

This section covers the topics parameter constraints and model uncertainty.
Both topics can be applied to all presented estimators (Section 3.5–Section 3.9).
However, involving parameter constraints (Section 3.10.1) may be a challenge
for black-box models, such as the presented polynomial-function output-
error model in Section 3.9, because it is commonly hard to adjust parameter
constraints when the parameters do not carry a physical meaning.

3.10.1 Constrained estimators

Remember that gray-box models di�er from black-box models by the amount
of prior knowledge, as explained in the introduction of this chapter (Page 26).
As gray-box models ground mostly on physical laws, we will have mostly a
rough idea about the range of several parameters or can derive at least trivial
inequality constraints, for instance X̂ i ≥ 0.

Hence, we should consider constrained estimators, where the simplest one
is parameter projection [65, pp. 91–94] and [126, pp. 52, 109, 112]. Parameter
projection reduces into a simple parameter saturator if we impose individual
lower bounds (Xmin) and upper bounds (Xmax) for each parameter [3, 174].
The general parameter saturator becomes

X̂c,i =


Xmin,i X̂ i < Xmin,i
X̂ i Xmin,i ≤ X̂ i ≤ Xmax,i ∀i
Xmax,i X̂ i > Xmax,i

and may be used as subsequent step in conjunction with each estimator of
Section 3.5–Section 3.9. Moreover [33, 174] and the references in the latter
provide numerous examples in which imposed equality constraints improve
the accuracy dramatically.

However, I like to invite the reader to study [162, pp. 212–223] and [161],
who give an exceptional survey of constrained Kalman �lters (inequality and
equality constraints), and [7, 152] for constrained TLS estimators. A deeper
discussion of parameter constraints, or constrained estimators in general,
would exceed the scope of this dissertation.

3.10.2 Model uncertainty

Model uncertainty was brie�y mentioned in Section 3.8.1 when robust Kalman
�lters were proposed as possible solution for the random-walk errors-in-
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3 Models and estimators

variables model. Within this section, we will discuss another kind of model
uncertainty. Speci�cally, we will discuss solutions for the case that we are
uncertain how to adjust (or tune) λ or R1 and Q .

Remember that λ was introduced for RLS in Section 3.5.3, whereas R1 and
Q were introduced for the Kalman �lter in Section 3.7. Let us further focus on
the Kalman �lter (and hence on R1 and Q) because we know from (3.49) that
the Kalman �lter covers RLS as special case.

Upon here, it was implicitly assumed that prior knowledge about R1 andQ is
available. However, this prior knowledge is almost never available in practice.
The common way is to interpret R1 and Q as tunable values. Given enough
experimental data, we adjust R1 and Q empirically until some performance
index of Section 3.2.1 is satisfactory. Further, we conduct model validation
(preferably done by cross-validation, see Section 3.2.5) to become con�dent
enough that the examined model will work for it’s intended purpose. We will
exactly follow this empirical approach in Chapter 5.

However, empirically tuned R1 and Q have several drawbacks. First, this
empirical approach requires expert knowledge. Second, this approach is time
consuming, because we have to process large data, examine and interpret the
results, and adjust R1 and Q for the next loop. Third, the implicit assumption
R1 and Q being time-invariant may not hold.

Imagine that the accuracy of sensors may vary due to changing environ-
mental conditions, such as vibration, temperature, luminance or simple the
age of the sensor. Hence, R1 and Q become time-varying, which was already
indicated by the index t (R1

t and Qt ) in Section 3.7.
In conclusion, when we tune R1 and Q empirically over large experimental

data, we will gain after several iterations reliable results for R1 and Q , but
these results will be an average for the given experimental data. Therefore,
we will end up in a dilemma. As R1 and Q depend on the experimental data,
we seek for large data. However, gathering and processing of experimental
data is time consuming and therefore costly.

Hence, let us brie�y outline three alternative approaches to determine.
time-varying R1

t and Qt that appear attractive for further research.
First, Mehra [113] pioneered innovation-based adaptive estimation (IAE),

given the fact that the Kalman �lter innovations (B̂) become a sequel of white
noise if R1 and Q are set to their optimal values. Mehra [113] and most of
the subsequent methods [4, 9, 16, 32, 115, 117, 120, 121, 132, 178, 194] require
large sliding windows for accurate covariance estimation. The number of
references show that IAE is a broad �eld. Hence, let me recommend to consult
the surveys in the introductions of [115, 121, 178] and the more educationally
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written sources [162, pp. 298–301] and [25] for an introduction in IAE.
Second, multiple model estimation (MME) comprises methods were indi-

vidual tuned Kalman �lters (each Kalman �lter has a di�erent setting for R1

and Q) operate in parallel. Given the Bayesian probability for each Kalman
�lter (hence, for each model), MME delivers a probability weighted average
over all models which is more accurate as each individual model. Static MME
[162, pp. 301–305] and [15, pp. 441–443] converges to unity if the optimal
model is in the set of candidate models. Otherwise, static MME converges
to the model which is nearest to the optimal model. In case of time-varying
systems, static MME would converge to a certain model and remain even if the
system changes. Hence, dynamic MME methods and particularly interacting
multiple model estimation (IMME) was invented [18] and [15, pp. 453–459].
IMME shows in many applications with model uncertainty convincing results
[88, 169, 176, 177]. However, the bank of parallel Kalman �lters causes more
computational burden than IAE.

Third, Karasalo and Hu [89] propose an optimization approach forQt which
does not require knowledge about the system dynamics. In other words, even
A may be unknown. Moreover, [89] provide an excellent survey for IAE and
MME methods in the introduction.

3.11 Which estimator should I use?

Throughout this chapter we studied numerous linear gray-box estimators
(Section 3.5–Section 3.8) and one linear black-box estimator (Section 3.9). Let
us de�ne some general rules to answer the question of this section for linear
gray-box estimators.

Choosing the right estimator depends upon our aim (what should the
model do) and upon how certain we are in our assumptions about the system.
In general, it is easier to de�ne aims than assumptions and the following
questions should help to �nd a proper estimator.

Question: Do I require highly accurate estimated parameters or do I need a good
prediction quality from my model?
Errors-in-variables estimators are designed to reduce the parameter bias,
whereas the purpose of output-error estimators is the minimization of
the output-error. Further, random-walk errors-in-variables estimators
reduce the parameter-bias further if the parameters vary on di�erent
rate, see Figure 3.15b. Indeed, random-walk errors-in-variables estima-
tors are more general and include multi-input-single-output output-
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3 Models and estimators

error and random-walk output-error estimators as special case. Output-
error estimators su�er from biased parameters if certain assumptions
(noise free measured inputs . . . ) do not hold, see Figure 3.14a. Hence,
let us prefer random-walk errors-in-variables estimators for highly
accurate estimated parameters.
For the purpose of a good prediction quality, multi-input-single-output
output-error estimators work superior, see the discussion about the
MSE at the end of Section 3.6.8.

Question: Show the measured inputs poor excitation at any time?
We know from Section 3.3 that poor excitation causes the wind-up prob-
lem, which results in unstable solutions for the estimated parameters,
see Figure 3.8b. Further, as Hadamard’s conditions cannot be ensured
for recursive estimators, regularized estimators are worth to consider.

Question: Do I expect outliers?
Remember that we de�ned in Section 3.4 outliers as observations which
somehow deviate from our assumptions. If we are con�dent that the data
is never corrupted by outliers, we may choose non-robust estimators.
However, if we fail with this assumption, the consequences might be
drastic, see Figure 3.4 and Figure 3.8a.
Hence, we should favor robust estimators although they cause larger
computational burden and show slower convergence rate compared
with non-robust estimators.

Figure 3.17 gives a decision tree to organize the presented recursive es-
timators of this chapter. First, decide between highly accurate estimated
parameters (Figure 3.17a) or a good prediction quality (Figure 3.17b). Second,
consider or neglect poor excitation. Third, think about outliers. The result is
a group of recursive estimators which are appropriate for the intended appli-
cation. Note that no-branches in Figure 3.17 give simple estimators, whereas
yes-branches yield sophisticated methods.

Summary: This chapter provided a broad survey of linear gray-box models and
their estimators. The presented connections and transitions between various
models and estimators allowed us to derive more general estimators which include
known basic estimators such as RLS as special case. Beside this, several margin
notes marked open research topics for linear estimators.

Further, Section 3.9 introduced PKS, which is a novel estimator for polynomial-
function black-box model. PKS outperformed FIR in a signal �ltering experiment.
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a) Highly accurate estimated
parameters.
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b) Good prediction quality.

Figure 3.17: Decision tree for choosing the right estimator. Figure 3.17a lists estimators
for highly accurate estimated parameters, whereas Figure 3.17b shows the
respective estimators for good model prediction. *Regularized non-robust
estimators are not explicitly presented herein. However, these methods can be
derived from regularized and robust estimators.

Therefore, PKS will serve as signal �lter for CAN signals in Section 5.3.
This survey prepared Chapter 4 which discusses related research and shows

open research topics in vehicle parameter estimation. We emphasized recursive
robust and regularized estimators which showed in several reproducible examples
with increasing complexity superior performance compared with basic estimators.

The guidelines for estimator selection will support us in Chapter 5, where we
solve real world problems in vehicle parameter estimation.
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Outline: The following state of research focuses on model-based estimators
of vehicle parameters. We will discuss open problems and classify the state of
research according to the model structure and estimator categories of Chapter 3.

4.1 Related research

In the last ten years a variety of methods to identify vehicle parameters
have been introduced. These methods can be classi�ed in recursive and
batch. Thereby, recursive methods are characterized by a low calculation
e�ort and are examined in the following. Former approaches mostly focus
on few or even single parameter, whereby especially the vehicle mass is
subject of extensive research work. Table 4.1 lists works, which deal with the
identi�cation of vehicle mass, coe�cient of rolling resistance, longitudinal
drag coe�cient, and the road angle. The majority of the work uses the RLS
procedure in combination with linear models of longitudinal vehicle dynamics.
Two references use non-linear vehicle dynamics models, which require non-
linear estimators such as the extended Kalman �lter (EKF) and the unscented
Kalman �lter (UKF).

Vahidi, Stefanopoulou, and Peng [180] (and [181] for the journal version of
[180]) used recursive least squares with multiple forgetting (RLSmf), which is a
speci�c kind of RLS, to determine vehicle mass and road angle of a heavy duty
vehicle. The rolling resistance and longitudinal aerodynamic resistance were
additionally simulated and the longitudinal drag coe�cient and coe�cient of
rolling resistance adjusted to achieve a satisfactory goodness of �t between
measurement and model. Thereby, the number of unknown parameters was
reduced, but this approach is arbitrarily, because the longitudinal drag coe�-
cient and coe�cient of rolling resistance are only roughly known in practice
and subject to variation due to environmental changes. The longitudinal
vehicle dynamics model proposed by [180, 181] was

ÛvV =

(
TE − IE ÜθE
rW/(iGiD)

− TB
rW
− ρa

2 AVcxv
2
V

)
1
mV
−

sin
(
θr + arctan fr0

)
cos

(
arctan fr0

) д. (4.1)
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Table 4.1: Current state of research for model-based identi�cation of external resis-
tances and forces on vehicles. The speci�c resistances and forces are the
climbing force (Fcl), acceleration force (Fac), longitudinal aerodynamic resis-
tance (Fxa ), and the rolling resistance (FWr).

Reference Model & esti-

mator

Force Parameter

Fcl Fac Fxa FWr

[180, 181] (4.1) RLSmf 3 3 7 7 mV, θr
[112] (4.1) RLS 3 3 7 7 mV, θr
[193] (4.1) EKF 3 3 7 7 mV, θr
[52] (4.2) RLS 7 3 7 7 mV
[13] (4.3) RLS 3 3 (3) 3 mV, θr, (cx )

1
, FWr

[196] (4.5) RLSmf (3)
2 3 3 3 mV, (Fxa + FWr)

[71, 83] (4.6) RLS, KF,

ad-hoc MME
3

3 3 3 3 mV, (cx )
1 ,4

, (Fcl + FWr)4

[70] (4.7) RLS 7 3 3 3 mV
[78, 79] (4.8) EKF,UKF 7 3 3 3 m∗V

5
, IzV

Note that (4.1) does neither consider reduced moment of inertia nor friction
losses inside the drive-train. However, Vahidi, Stefanopoulou, and Peng [181]
stated that TE can be multiplied with an appropriate coe�cient of e�ciency
to account for drive-train losses. According to [193], the derivation of (4.1) is
based on the addition theorem

sin (x ± y) = sinx cosy ± cosx siny,
sin (x + y)

cosy = sinx + cosx tany.

The last term in (4.1) is equivalent toд(fr0 cosθr+sinθr) and allows to separate
the road angle. The two unknown lumped parameters are sin (θr + arctan fr0)
and 1/mV. The derived RLSmf in [180, 181] is an attempt to solve the linear
random-walk output-error model (3.48). However, the relation between RLS
and the Kalman �lter (which was derived for state estimation but can also be

1cx is hidden in a lumped Parameter ρa
2 AVcx .

2However, the test were performed on a �at road.
3Not comparable with static MME or dynamic MME (IMME) of see Section 3.10.2.
4No results presented.
5m∗V denotes the vehicle sprung mass.
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used for parameter estimation) was not used in the development of RLSmf, and
RLSmf relies on the restrictive assumption that there is no correlation between
the individual parameters. The derivation of RLSmf in [180, 181] shows that
this estimator solves indeed two separate and independent single-input-single-
output (SISO) models with parallel and independent RLS estimators. Basically,
the result of the �rst estimator from the previous time step is substituted into
the cost function of the second estimator. Hence, RLSmf is a kind of decoupled
estimator. However, the experiments in [135] have shown that RLSmf diverges
if the individual parameters show correlation. Vahidi, Stefanopoulou, and
Peng [180] emphasize several times that rich excitation is important to obtain
precise estimates. Speci�cally, Vahidi, Stefanopoulou, and Peng [180] state
that:

For successful identi�cation we made sure that the dynamics is su�ciently
rich, many times by asking the driver to pulse the commands like throttle and
braking.

The same comment gives [181, p. 35].
McIntyre et al. [112] present a two step approach to identify the vehicle mass

and road angle of heavy duty vehicle with a vehicle mass of about 20 t with
model (4.1). First, the vehicle mass and the road angle were estimated with a
RLS procedure. Thereby, the road angle was assumed to be constant. Second,
the road angle was estimated more accurately with a non-linear estimator.
Depending on the setup, the error of the vehicle mass is smaller than ±5 %.
Similar to [180, 181], McIntyre et al. [112] mention that rich excitation is
required for accurate estimates:

Persistent excitation is required for the accurate estimation of parameters,
which was enforced by choosing a su�ciently varying fueling pro�le.

Winstead and Kolmanovsky [193] identify the same parameters simultane-
ously with an EKF for a passenger car. Here a speed cruise controller (model
predictive control), which optimizes the velocity trajectory of the vehicle
in order to ensure su�cient rich excitation, reduces the variance of the pa-
rameter estimations. Additionally, a low divergence between the actual and
the nominal velocity was assured. Here (4.1) was modi�ed by a power-train
e�ciency factor and a friction term, which was not speci�ed any further.

Fathy, Kang, and Stein [52] focused on the vehicle mass. High-frequency
parts of longitudinal vehicle dynamics were allocated to the acceleration
force. This allocation allows an estimation of the vehicle mass without the

95



4 Survey of related research

knowledge of the remaining low-frequency parts of the external forces by

mV ÛvV =
TR −TB
rW

. (4.2)

RLS was the applied vehicle mass estimator. A band-pass �lter separated the
high- and the low-frequency parts and eliminated high-frequent noise. A
fuzzy logic determined driving conditions which were primarily longitudinal
dynamic. The convergence of the proposed method requires rich excitation
[52, p. 1847].

Bae, Ryu, and Gerdes [13] measured the road angle with a global position-
ing system. Estimates for the vehicle mass, the rolling resistance, and the
longitudinal drag coe�cient of a passenger car were determined by

TR
rW
=mV( ÛvV + д sinθr) +

ρa
2 AVv

2
Vcx + FWr (4.3)

with RLS. Note that the longitudinal drag coe�cient was lumped with the air
density and the vehicle cross-sectional area and is therefore hidden. The vehi-
cle mass converges with an accuracy of ±2 %. However, the lumped parameter,
which covers the longitudinal drag coe�cient, shows a large divergence of
the expected value. The driven velocity pro�le [13, Fig.7] shows a serrated
course which assured rich longitudinal dynamics (rich excitation) within the
measurement. Bae, Ryu, and Gerdes [13] justi�ed the velocity pro�le with:

A mix of acceleration of the vehicle followed by deceleration (letting the
accelerator pedal up without engaging foot brake pedal) was repeated to simulate
real world situations and generate excitation for judging the stability of the
estimate.

However, I am afraid I have to disagree that the presented velocity pro�le
represents many real world situations. Although the discussion of various
driving styles, their classi�cation, and driver comfort is beyond this disser-
tation, continuous acceleration and deceleration is a sportive driving style
which may not be ensured at all times.

Yu et al. [196] presented a vehicle mass estimator with an accuracy of ±2.8 %
for an experimental electric vehicle. The used vehicle longitudinal dynamics
model was

mV ÛvV =
4∑

jW=1

(
TR, jW − IW, jW

ÜθW, jW

rW

)
− . . .
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· · · − fr0mVд cosθr −mVд sinθr −
1

1.63cxAVv
2
V,

which was further simpli�ed with the relation

ÜxVCAN = ÛvV + д sinθr, (4.4)

into

4∑
jW=1

(
TR, jW − IW, jW

ÜθW, jW

rW

)
=mV ÜxVCAN + . . .

· · · + fr0mVд cosθr +
1

1.63cxAVv
2
V. (4.5)

Here, ÜxVCAN is the vehicle acceleration which is measured by a sensor. This
signal is corrupted by the road angle and gravitational constant. The last
two terms in (4.5) (in the second line) were treated as lumped parameter and
RLSmf was used as estimator.

Huh et al. [83] presented a vehicle mass estimator which consists of three in-
dependent models for vehicle longitudinal, lateral, and vertical dynamics. RLS
was used for the vehicle longitudinal and vertical model, whereas the Kalman
�lter gave estimates for the vehicle lateral model. The vehicle longitudinal
dynamics model was

TR
rW
= ÛvVmV +

ρa
2 AVv

2
Vcx + д

(
fr0mV cosθr +mV sinθr

)
, (4.6)

in which the last two terms were treated as lumped parameter, as well as
ρa
2 AVcx . Note that model (4.6) is similar to model (4.5). Given thresholds for
vV, ÛvV, ÛψV, and ÜzV a Boolean logic classi�es the current driving style into longi-
tudinal, lateral, or vertical. Given the classi�ed driving style, an additional RLS
estimator updated the uni�ed estimate for the vehicle mass with the current
result from the respective model. Hence, the method in [83] is some kind of
multiple model estimation (MME), that grounds on a simple classi�er and uni-
�es the result of each model with RLS. However, [83] is an ad hoc method and
the result for the uni�ed vehicle mass estimate should strongly depend on the
classi�er thresholds. Hence, [83] is not comparable with more sophisticated
static MME or dynamic MME (IMME), see Section 3.10.2. Moreover, it is likely
that the used ad hoc classi�er is obsolete by using a MME method. All results
were gained from simulations.

97



4 Survey of related research

The methods and models in [71] are similar to [83]. However Han et al.
[71] omited the vehicle vertical dynamics model of [83], used (4.4) instead of
ÛvV as measured input, and provide results from real world data. Due to the

high similarity, [83] and [71] are merged in Table 4.1.
Halfmann and Holzmann [70, pp. 63–75] presented a RLS vehicle mass

estimator which is also based on a longitudinal dynamics model

ÛvV =
1
mV

(
F − ρa

2 AVv
2
Vcx

)
, (4.7a)

F = FWr +
TR − IW ÜθW

rW
. (4.7b)

Note that (4.7) requires knowledge or measurements of all quantities apart
from the vehicle mass. Highway trips between 70 km h−1 to 120 km h−1 were
seen as favorable experimental condition and selected by a logic. The road
angle was not considered. However, a road angle observer is presented later
on in [70, pp. 182–189]. Similar to [13], the driven velocity pro�le [70, Figure
4.6] shows rich excitation.

Upon here, the overview of related research focused on longitudinal vehicle
dynamics based parameter estimation. The introduction in [42] provides an
excellent survey of vehicle mass estimation references which are based on
lateral dynamics, drive-train dynamics, and suspension dynamics. Moreover,
Mayer [109] presented sophisticated methods to measure certain vehicle
parameters with additionally sensors.

Now we will discuss two references which are based on lateral dynam-
ics. A non-linear double lane vehicle dynamics model with roll dynamics
was used in [78, 79] to estimate the vehicle sprung mass and vehicle yaw
moment of inertia (IxV ). The climbing force was not considered and as-
sumed to be negligible. The non-linear state-space model comprises the
�ve states

[
ÛxV ÛyV ÛψV ϕV ÛϕV

]>, which gives a four degree of freedom
vehicle model. The parameter vector is

X =
[
m∗V IzV

]> (4.8a)

X =
[
m∗V l12

]> (4.8b)

in [78] and [79], respectively, where m∗V denotes the vehicle sprung mass.
Note that the vehicle yaw moment of inertia in [79] is computed with the
estimated sprung mass and the distance between front axle and vehicle center
of gravity position l12. Hong et al. [78] compared the performance of EKF
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and UKF through simulations and assumed that the vehicle states are given.
The performance of UKF in terms of vehicle parameter estimation is superior
compared with EKF. Hong et al. [79] considered the dual estimation problem
through dual unscented Kalman �ltering (dual UKF). The dual estimation
problem occurs when states and parameters are coupled, which means that
some states are required for parameter estimation which a�ects however
the state estimation. The vehicle sprung mass estimation results from test
drives on a track with two chattered ramps, which was explained by noise
and unmodeled dynamics [79]. Therefore, Hong et al. [79] applied posteriori
signal processing for the parameter estimates. This signal processing stabilized
and smoothed the vehicle sprung mass and vehicle yaw moment of inertia
estimates, which were highly precise.

Finally, let me brie�y mention two own references which �t in this survey
of related research. Rhode and Gauterin [134] proposed a RTLS estimator
which is based on a recursive singular value decomposition update scheme
and presented vehicle mass estimates. Rhode and Gauterin [135] generalized
this RTLS estimator into RGTLS through data scaling and showed estimates
for fr0, fr1, and AVcx in addition to the vehicle mass.

4.2 Conclusions

Most discussed references focus on vehicle mass estimation and many refer- .
ences rely on speci�c assumptions of the driving style. The vehicle tractive
force is not accurate enough modeled in some references (some important
force components of the vehicle tractive force were neglected) and up to now,
an integral approach for the prediction of the vehicle tractive force is missing.
Further, the current research lacks missing model validation and model selec-
tion methods or any measure for the model’s goodness of �t. Furthermore,
most methods require a high rate of longitudinal dynamics (rich excitation)
to gain exact estimation results. Regularization or other methods to avoid
wind-up during poor excitation were not considered.

The majority of references use the linear multi-input-single-output output-
error model of Section 3.5 together with the RLS estimator. RLSmf on the other
hand, is an attempt to solve the linear random-walk output-error model of
Section 3.7 with the aim to account for time-varying parameters with di�erent
variation rate. However, RLSmf su�ers under restrictive assumptions and the
convergence of RLSmf is neither studied nor ensured. Hence, I propose to
treat RLSmf as ad hoc estimator which works well in speci�c applications
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and instead let us prefer the better studied Kalman �lter as estimator for the
random-walk output-error model.

Generally, the concept of robustness and methods to avoid biased parame-
ters were not discussed although all references seek for highly precise param-
eter estimates. To the best of my knowledge, [134, 135] are the only references
in vehicle parameter estimation which consider the multi-input-single-output
errors-in-variables model. There is no reference for the the random-walk
errors-in-variables model.

To sum up, the current state of research o�ers many open research topics
and this dissertation attempts to address some of these open topics for vehicle
parameter estimation and state prediction in Chapter 5.

Summary: The survey of related research in vehicle parameter estimation within
this chapter highlighted open research topics and missing estimators which will
be addressed in Chapter 5.
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and mass estimation

“Essentially, all models are wrong, but
some are useful.”

Box and Draper [20, p. 424].

Outline: This chapter applies estimators from Chapter 3 to estimate parameters
of gray-box models which ground on vehicle dynamics of Chapter 2. The primary
goal is a precise prediction of the vehicle tractive force for look-ahead controllers,
which are required in energy e�cient driving or autonomous driving. The vehicle
tractive force prediction quality of two gray-box models, each in combination with
several estimators, is compared to the benchmark with a given white-box model
on a large set of real world vehicle data. Additionally, vehicle mass estimation
results will link this dissertation more closely to related research of Chapter 4.

5.1 Experimental conditions

The experiments were conducted with two grand touring sport cars from
Porsche company. First, a Porsche Panamera two wheel rear drive vehicle
with a 228 kW (310 horse power) 3.6 L V6 engine, 7-speed dual-clutch gearbox,
and carbon dioxide emission of 196 g km−1 [129]. Second, a Porsche Panamera
Turbo S four wheel drive vehicle with a 419 kW (560 horse power) 4.8 L V8 en-
gine, 7-speed dual-clutch gearbox, and carbon dioxide emission of 239 g km−1

[128].
Each vehicle was equipped with the rapid prototyping real-time hardware

dSpace MicroAutoBox II, which o�ers a 900 MHz IBM PowerPC, 16 MB storage,
and Matlab Simulink integration [46]. All required CAN signals were recorded
at 100 Hz with dSpace control desk software on a laptop.

The MicroAutoBox II was the only modi�cation from series Panameras.
Hence, only the original equipped sensors were available throughout the
test runs. The most important sensors are the four wheel speed

( ÛθWCAN
)

sensors from the anti-lock braking system, the vehicle longitudinal ( ÜxVCAN),
lateral acceleration

(
ÜyVCAN

)
and yaw rate ( ÛψVCAN) sensors from the electronic
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stability program, the steering wheel angle (δSCAN) sensor and the four braking
pressure

(
pBCAN

)
sensors from the anti-lock braking system. The precise

sensor type cannot be given herein. However, [19] contains information about
similar vehicle speci�c sensors.

The data set contains records of 85 test runs from the period November
2012 to April 2014. All test runs were conducted in Southern Germany on
public roads, which were mostly hilly countryside roads with a few motorway
sections. The overall distance is 1403 km. The shortest test run is fewer than
1 km and the longest 110 km on a motorway. The overall test time is 78 516 s
(≈22 h). The shortest four test runs contain not enough data to split the data
into training data and validation data for model validation. Hence, the active
number of test runs reduces to 81.

During the cold weather period, 22 test runs were conducted with winter
tires. We used the Panamera two wheel drive V6 vehicle for the majority of
test runs (54 out of 81). The distribution of test runs per month is: 47 in June,
13 in March, 12 in November, 7 in April, and 2 in May. The weather conditions
vary accordingly from cold, windy and wet to dry, warm weather. However,
the environmental conditions were not recorded. Also the driving style varies
broadly due to di�erent drivers on di�erent road types: city, countryside, and
motorway. Also, the number of passengers varies (vehicle mass) as well as
the use of air conditioning, window lifters, and sunroof (air drag).

The classi�cation of all environmental conditions and driving styles is far.
beyond the scope of this dissertation. Hence, although the data contains a
broad dispersion of experimental conditions, it is not proven that the data
covers all use cases that may arise in practice. Herein, the principle was to
collect as much data as was available for estimation and model validation.
If we want to alter the experimental condition in a more systematic way,
hardware in the loop could be a method of choice [61].

One big drawback of hardware in the loop compared with real world data is
that hardware in the loop gives model-based validation data, because hardware
in the loop is a model itself, but not the real world system. Even if we take
an entire vehicle on a test bench, the environmental conditions needs to
be modeled. Hence, outliers may not arise because they are not modeled.
Anyhow, also hardware in the loop does not answer the question: how much
testing is enough testing?, which is an own research topic and also not within
the scope of this dissertation.

Figure 5.1 gives four characteristic vehicle states of one test run. Three
challenges arise when working with real world data. First, apart from the gear
in Figure 5.1, all presented vehicle states are not directly measurable through
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Figure 5.1: Characteristic vehicle states of one test run. Figure 5.1a gives the gear (G)
and the vehicle tractive force (FxV ) on the left and right ordinate, respec-
tively. The vehicle tractive force (2.16b) is a non-measurable vehicle state
which requires the rim torque (Section 5.2.1) from a drive-train model (Sec-
tion 2.7). The vehicle tractive force is not accessible during certain driving
situations (for instance G = 0), which is indicated by disruptions. Fig-
ure 5.1b shows the vehicle velocity (vV), which is a non-measurable vehicle
state discussed in Section 5.2.2, and the vehicle longitudinal acceleration
( ÜxV) which shows poor excitation for t = 600 s to 640 s.
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vehicle sensors. We will address this problem in Section 5.2. Second, real
world data may be corrupted with missing data and probably outliers. The
vehicle tractive force in Figure 5.1a shows missing data in several operational
conditions. Third, some vehicle states show poor excitation which might end
up in estimator wind-up, which then requires regularized or wind-up stable
estimators (see Section 3.3). The vehicle tractive force in Figure 5.1a as well as
the vehicle longitudinal acceleration in Figure 5.1b shows poor excitation for
t = 600 s to 640 s. Hence, Figure 5.1 supports the conclusions in Section 4.2
which were made for Chapter 4 (Survey of related research). Precisely missing
robust and regularized or wind-up stable estimators.

5.2 Estimation of non-measured vehicle states

We discussed in Section 5.1 that the vehicles were purely equipped with origi-
nal sensors which did not cover the full range of required vehicle states. Hence,
we will introduce observers and estimators which yield non-measurable vehi-
cle states from available sensor measurements.

5.2.1 Rim torque

The drive-train model of Section 2.7 is a mixed white-box and black-box model
and gives the rim torque as function of the engine torque, gear, gear shaft
speed, and reduced moment of inertia. All required inputs were supplied by
control area network (CAN) data. However, only some of these inputs were
measured through sensors. The engine torque comes from an engine model
which uses lookup tables and sensor information (throttle position) [compare
155, pp. 217–219], whereas the reduced moment of inertia comes as function
of the gear from a vehicle speci�c lookup table.

Note that drive-train model has a rather simple model structure and is
designed for steady state to low dynamics. High frequent drive-train dynamics
would require to consider sti�ness and damping for all shafts, mountings, and
couplings [155, pp. 205–224]. Furthermore, transients such as time-varying
oil temperature were neglected. Hence, it is likely that the drive-train model
gives a biased rim torque until all parts of the drive-train operate at steady
state temperature.
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5.2.2 Vehicle velocity

The vehicle velocity is a major vehicle state which determines several subse-
quent vehicle states such as the wheel slip (and thereby the tire-road contact
Section 2.2), and the longitudinal aerodynamic resistance of Section 2.4.3. An
example for a direct vehicle velocity sensor is the Correvit sensor from Kistler
[92]. However, such additional sensors are expensive and only used for model
validation [85, p. 144].

The simplest estimator for the vehicle velocity becomes

vV =
rW
2

( ÛθW3 + ÛθW4
)
, (5.1)

which is basically an average of the non-driven front wheel speeds. However,
wheel slip and cornering (slip angle) is not considered in (5.1), which leads to
biased estimates for the vehicle velocity.

Accordingly, more sophisticated vehicle velocity estimators were invented.
Kiencke and Nielsen [91, pp. 351–363] give equations to correct the wheel
speed data from cornering bias ([91, Figure 9.2]) and present two vehicle veloc-
ity estimators. First, a Kalman �lter uses all four wheel speeds of the vehicle( ÛθW1, ...,4

)
and the longitudinal acceleration sensor ( ÜxVCAN). The covariance

of output noise is treated as tunable time-varying parameter which depends
on the current driving style. Actually, this method is a simple and promising
sensor fusion approach. Second, a Fuzzy Logic is presented, which might
require more tuning but reduces the computational burden. Another rich
source of Fuzzy Logic vehicle velocity estimation is [157, pp. 73–86] ([as book
version 85, pp. 155–159]).

We used the existing CAN signal from the electronic stability program for
the vehicle velocity. However, the precise de�nition of this CAN signal cannot
be discussed herein.

5.2.3 Path angle

The gradient angle determines the climbing force (2.5). It is common to assume
that gradient angle and road angle are equal, θ = θr, which is true for straight
driving. However, we can easily design a counterexample. Imagine a zigzag
driving style which results in a longer path on lower gradient angle, θ < θr.
On the other hand, zigzag driving is quite limited due to the lane width. Hence,
θ = θr is a feasible assumption in practice.

Accordingly, road angle estimators were subject to extensive research [147],
[91, pp. 402–408], [70, pp. 182–189], [175, pp. 130–132] and [157, p. 56]. Addi-
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tionally, mixed road angle and vehicle mass estimators are given by [112, 180,
181, 193].

Let us look on a simple model for the gradient angle. The relation (4.4)
leads to

θ = arcsin ÜxVCAN − ÛvV
д

, (5.2)

which gives a gray-box model for the gradient angle. The term ÜxVCAN depicts
the longitudinal acceleration sensor measurement from the body �xed accel-
eration sensor (compare Figure 2.1 for the de�nition of vehicle longitudinal
axis), whereas ÛvV is the derivative of the vehicle velocity from Section 5.2.2.

Trabelsi [175, p. 131] and Kiencke and Nielsen [91, p. 403] used (5.2) and
�ltered data to determine the road angle over time. Kiencke and Nielsen [91,
p. 404] report an error of <5 % and Trabelsi [175, p. 132] an error <2 %. Semmler
[157, p. 56] used (5.2) with a not further explained �lter and highlighted in
[157, Figure 5.6] delay between estimated road angle and validation data.

As the reported results in Trabelsi [175, p. 132], Kiencke and Nielsen [91,
p. 404] and [157, Figure 5.6] of (5.2) are promising, let us apply the PKS from
Section 3.9.1 with

Bt = arcsin
ÜxVCAN,t − ÛvV,t

д

B̂t ≈ θ ,t ,

to estimate the gradient angle recursively. Accordingly, the estimated output
of PKS gives the gradient angle estimate of the noisy time series from model
(5.2). Figure 5.2 compares the gradient angle estimate (given as path grade in
%) of PKS with road angle validation data from predictive route data (PSD)
[11, 119].

Predictive route data is part of advanced vehicle navigation systems and
gives predictive road information, about: road grade, road curvature, road
class, lane-width, and road surface. This information depends on the current
vehicle position, planned route, and the most probable path at intersections.

PKS and PSD show good correlation. However, PKS does not precisely fol-
low the validation data in Figure 5.2a between t = 800 s to 1000 s. On the other
hand, PSD contains outliers in Figure 5.2b for t = 920 s, 1060 s, and 1250 s.
Hence, the slight imprecision of PKS in Figure 5.2a is rather maintainable
compared with the outliers which PSD gives.

Note that (5.2) does not cover bias in the acceleration sensor measurement.
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Figure 5.2: Path grade estimation with PKS for two independent test runs. The road
grade validation data comes from predictive route data (PSD) [11, 119].

due to cornering (vehicle side slip angle), vehicle pitch angle, vehicle roll
angle and road bank angle. Hence, the deviation between PKS and PSD in
Figure 5.2a between t = 800 s to 1000 s might be caused from speci�c driving
situations which are not modeled by (5.2).

Isermann [85, p. 156] provides the required transformations to correct
cornering, pitch, and roll bias from the longitudinal and lateral acceleration
sensors.

ÜxV ′ = ÜxVCAN + д sinθV cosϕV
ÜyV ′ = ÜyVCAN − д sinϕV cosθV

ÛvV = ÜxV ′ cos βV + ÜyV ′ sin βV − д sinθ
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However, the road bank angle is not considered and this topic might o�er
enough research questions for future work.

Add to this, inaccuracies in the vehicle velocity CAN signal could be the
reason for the deviation between PKS and PSD.

5.2.4 Path radius

The path radius is required to describe lateral vehicle dynamics. Speci�cally,
the computation of the cornering resistance in Section 2.5.1 needs the path
radius. Moreover, lane keeping and illumination driver assistance systems
need road geometry information. Accordingly, vision-based road curvature
estimators were proposed in [39, 72, 190].

We had no access to vision signals. Hence, let us use the single track model
of Figure 2.7 and write the Ackermann steer angle [155, p. 245] and [1]

tanδW12 =
l12 + l34√
r 2 − l2

34

,

which can be rewritten to determine the path radius

r =

√(
l12 + l34
tanδW12

)2
+ l2

34. (5.3)

The wheel steer angle δW12 of the front wheels was not directly measured and
therefore replaced with the steering wheel angle and a lookup table which
gives the function δW12 = f (δS) and considers the non-linear steering ratio.

Figure 2.7 shows that (5.3) is a purely geometric de�nition and valid if and
only if:

1. αW12 = αW34 = 0, which means that the instantaneous center (IC) in
Figure 2.7 moves to the right until IC is perpendicular beneath the rear
wheel center of gravity;

2. the position of CGv is known and therefore the distance between CGv
and the rear tires l34 is known.

Note that the two restrictions above are additionally needed to the assump-
tions for the single track model which we made in Section 2.5.1. Especially
the requirement αW12 = αW34 = 0 is extremely restrictive and almost never
ful�lled in practice. We can see from Figure 2.3b and (2.3b) that FyW needs to
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be small to achieve cornering with αW12 = αW34 ≈ 0, which is just the case
during parking on small vehicle velocity.

Now the question should arise why is (5.3) worth to consider as path radius
model although we know about the drastic restrictions? Why do we avoid to
introduce more sophisticated path radius models which consider slip angles
and tire models?

The motivation to use a rather simple path radius model is that contrary to
Section 5.2.3, where the assumption θ = θr was reasonable, it is unlikely that
the path radius and road curvature radius coincidence. The reasons are that
PSD usually does not cover:

1. the road curvature radius for each lane, hence the di�erent path radius
for each driving direction is not resolved;

2. disturbances through driver or tra�c such as lane changes, passing and
cutting of curves.

The �rst reason is a minor problem which could be resolved through road
categories. The second reason is more serious and should emphasize that
the prediction of lateral vehicle dynamics might introduce uncertainty in the
prediction of the vehicle tractive force. Hence, it is more likely that the road
curvature radius from PSD is only a rough approximation of the path radius
and the simple path radius model in (5.3) is satisfactory.

Similar to Section 5.2.3, we apply the PKS from Section 3.9.1 with

Bt =

√(
l12 + l34

tanδW12,t

)2
+ l2

34

B̂t ≈ r ,t .

Figure 5.3 shows the PKS estimate as path curvature (r−1) and the PSD
validation data for two independent test runs. Small curvature means straight
driving, whereas large curvature indicates cornering. The correlation between
PKS estimate and PSD validation data is worse than in Figure 5.2. However,
if we keep in mind the discussion from above that predictive road curvature
radius (rr) data might only give a rough approximation for the actual path
radius (and vice versa), PKS with (5.3) gives a good result. The general level
of path radius variation is for PKS higher than for PSD. When PSD indicates
straight driving (r−1

r ≈ 0), PKS shows still some variation, which indicates
that the driver performs also small steering wheel angle corrections to keep
the lane during straight driving.
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Figure 5.3: Path curvature estimation with PKS for two independent test runs. The
road curvature validation data comes from predictive route data (PSD) [11,
119].

In speci�c, PKS follows PSD with good accuracy for t = 100 s to 140 s
in Figure 5.3a, which is a rather straight driving with minor curves. For
t = 140 s to 160 s PKS and PSD show a longer constant curve with a sharp end-
ing around t = 160 s. The approximately constant o�set between PKS and PSD
for t = 140 s to 155 s indicates the missing tire model in (5.3). During cornering,
αW12 > 0, which is not modeled in (5.3). Hence, the estimated path curvature
is larger than the true (but herein unknown) path curvature. Another explana-
tion for the constant o�set between PKS and PSD is the discrepancy between
center-line road curvature and current lane road curvature. PKS and PSD
show good correlation during cornering for t = 225 s, 310 s, 405 s, and 540 s
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in Figure 5.3a. However, PKS indicates a sharp curve at t = 510 s which is not
visible in PSD. A disturbance through a lane change or passing might be the
reason for this discrepancy between PKS and PSD.

Figure 5.3b shows all e�ects that we discussed for Figure 5.3a. Additionally,
for t ≈ 490 s PSD shows a sharp curve which is smoother estimated in the
PKS result. A reasonable explanation is that the driver cut this sharp corner.

To sum up, PKS and (5.3) give a reasonable approximation for the path
radius with some uncertainty which we could also expect if we would use
PSD road curvature radius data instead. However, the result interpretation .
suggests, that the dilemma between highly accurate path radius estimation
on the one hand and uncertain road curvature radius predictive route data
and disturbances caused by tra�c and the driver on the other hand, requires
more research.

5.3 Signal preprocessing

Halfmann and Holzmann [70, pp. 70–71] outline two principle methods for sig-
nal preprocessing in vehicle parameter estimation. The �rst is signal �ltering.
Most CAN signals are subject to noise. Especially the longitudinal acceler-
ation sensor shows rich discretization error and noise in our data records.
Halfmann and Holzmann [70, p. 70] list several signal �lters (state �lters, the
Savitzky Golay �lter, and adaptive �lters) and give references where these
�lters were applied to vehicle mass estimation. The dilemma between low
cuto� frequency and delay for low pass �lters is emphasized. Most references
of Table 4.1 use low pass �lters.

Vahidi, Stefanopoulou, and Peng [181] used a second order butterworth
�lter with 25 Hz cut-o� frequency to �lter data which was recorded on 50 Hz.
Bae, Ryu, and Gerdes [13] used a second order butterworth �lter with lower
cut-o� frequency of 0.5 Hz on data which was read on 100 Hz. We used in
[134, 135] a third order butterworth �lter with 1 Hz cut-o� frequency.

Figure 3.16 and the explanation in Section 3.9.1 lead us to use the PKS
instead of low-pass �lters herein because the delay of PKS is well de�ned
and not frequency dependent. Moreover, we need derivatives from several
CAN signals. The �rst derivative of the vehicle velocity is required in (5.2)
and the polynomial-function approach gives smoother derivatives than the
conventional used discrete derivative of low-pass �ltered signals. Therefore,
all CAN signals pass a bank of independent PKS with the same con�guration.
The delay of each smoothed CAN signal is exactly known and equal, which is
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5 Vehicle tractive force prediction and mass estimation

adventitious compared with low-pass �lters, where the delays of the �ltered
CAN signals depend on the frequency of each individual CAN signal.

The second signal preprocessing method which is given in [70, p. 71] is
more trivial. Depending on the model structure, adverse driving styles which
are not covered by the model should be neglected. Hence, a certain amount of
data from the record is not used for parameter estimation. Neglecting adverse
driving styles is to exclude outliers by a simple kind of outlier diagnostics.
Trivial Boolean logic [134, 135] and [70, p. 72] or more advanced Fuzzy Logic
[52] yield a trigger signal which activates the respective estimator. The trigger
signal herein becomes true for the Boolean conditions:

1. no braking plus an additional half second after releasing the brakes;
2. the vehicle moves forward (vV > 5.5 m s−1);
3. negligible slip inside the drive-train ( ÛθG ≈ ÛθE);
4. the absolute engine torque is above 10 N m (|TE | > 10 N m);
5. the drive-train model from Section 5.2.1 provides a rim torque signal.

The �rst condition excludes braking which is not modeled due to the ex-
pected strong variation of the braking friction coe�cient while operation [157,
p. 32] (see also the detailed explanation at the end of Section 2.7). The second
condition ensures that the vehicle is in operation and the drive-train model
operates well above quasi static friction. The third condition excludes shifting,
which is not precisely modeled by the drive-train model. The fourth condition
ensures fully engaged tooth �anks in the gearbox and di�erential, and the
�fth condition is trivial.

5.4 Vehicle tractive force models

As said in Section 1.1, the main focus of this work is to provide models which
give a highly accurate prediction of the vehicle tractive force for look-ahead
vehicle controllers. Hence, the model structure depends highly on available
predictive data. A sole �ltering problem such as vehicle side slip angle or
vehicle center of gravity estimation allows more sophisticated model structures
[79, 118] than a prediction problem, where we are restricted in the number
of predictive data. For instance, the vehicle yaw rate ÛψV plays a major role
in vehicle side slip angle estimation. However, there is no predictive vehicle
side slip angle data available for our problem. Hence, the following models
have a rather simple model structure. We will not introduce sophisticated
double lane non-linear vehicle dynamics models if we cannot feed them with
predictive data in practice.
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5.4 Vehicle tractive force models

Moreover, we know from Section 2.4 that the predominant longitudinal
forces and resistances which determine the vehicle tractive force depend on the
vehicle velocity, its derivative, and second and fouth power. The acceleration
force in (2.6) requires ÛvV, the longitudinal aerodynamic resistance in (2.7) v2

V
(if we assume that va ≈ vV), and the coe�cient of rolling resistance which
determines the rolling resistance in (2.9) requires vV and v4

V. Add to this, the
gradient angle needs to be known to model the climbing force in (2.5). Finally,
we will consider the cornering resistance in (2.15) which is caused by lateral
vehicle dynamics and requires the path radius and v4

V as measured input.
Hence, it makes intuitively sense to consider vehicle tractive force models

which comprise:
1. the vehicle velocity from Section 5.2.2 as well as its derivative, second

and fourth power,
2. the gradient angle from Section 5.2.3 and
3. the path radius from Section 5.2.4

in the measured inputs. The same signals serve later in Section 5.8 as validation
data.

Why will we not use the road angle and road curvature radius from PSD as
measured inputs, although it is apparent that we would require this predictive
route data in vehicle look-ahead controllers? There are two reasons: First,
only the most recent test runs from April 2014 contain PSD and we have seen
in Figure 5.2 that the gradient angle gives a good approximation for the road
angle from PSD and vice versa. On a lower extend, the same holds for the path
radius and road curvature radius in Figure 5.3. Second, I cannot provide more
detailed information about PSD. Hence, replacing the road angle and road
curvature radius from PSD with clearly explained estimates of the gradient
angle and the path radius makes this work more reproducible (see Section 5.2.3
and Section 5.2.4).

Now let us introduce a white-box model which represents the state of art
in vehicle look-ahead controllers for the computation of the vehicle tractive
force and two gray-box models which will be used with various recursive
estimators of Chapter 3.

5.4.1 The abc longitudinal dynamics white-box model

White-box models with aV, bV, and cV parameters (abc) are given in [24, 80,
110, 125] and the following model is similar and will serve as benchmark for
the two subsequent gray-box models. The relation
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4∑
jW=1

TR, jW − IW, jW
ÜθW, jW

rW
=
TR − IW ÜθW

rW
= FxV = . . .

· · · = aV cosθ + bV cosθvV + cVv
2
V + (д sinθ + ÛvV)mV, (5.4)

considers vehicle longitudinal dynamics only and gives the abc white-box
model which we will callM0 in the following. The subscript 0 denotes that
all parameters of model M0 are assumed time-invariant. The aV, bV, cV
parameters come from vehicle coastdown experiments which were made by
Porsche company.

The �rst line in (5.4) shows the transition from wheel individual forces into
the single wheel model which is shown in Figure 2.8. The second line of (5.4)
consists of four terms, whereas the �rst three terms involve the aV, bV, cV
parameters.

The �rst two terms in the second line of (5.4) give the rolling resistance of
Section 2.4.4. The parameter aV is a lumped parameter formVдfr0, whereas
bV = mVдfr1. The relation between (5.4) and (2.9) is visible with FzW =

mVд cosθ . Note that fr4 of (2.10) is neglected because we had no vehicle spe-
ci�c data for fr4 and fr4 is usually small, or in other words, often insigni�cant
for the rolling resistance.

The third term in the second line of (5.4) is the longitudinal aerodynamic
resistance which was introduced in Section 2.4.3. Here, cV is a lumped pa-
rameter for ρa

2 AVcx and the connection to (2.7) is easily visible by assuming
ψa = 0.

The last term in the second line of (5.4) is a shorthand notation of the
climbing force (2.5) and acceleration force (2.6).

5.4.2 Longitudinal dynamics gray-box model

The �rst gray-box model in (5.5) is given in matrix notation and is calledM3
in the following to indicate that any estimator must estimate three parame-
ters.M3 is a purely longitudinal vehicle dynamics model and the relation to
Section 2.4 is good visible if we compute the product AX of (5.5). The result is
a sum of the rolling resistance (2.9), climbing force (2.5), acceleration force
(2.6), and longitudinal aerodynamic resistance (2.7).

A =
[
д cosθ д sinθ + ÛvV v2

V
]

(5.5a)

X =
[
mV fr0 mV

ρa
2 AVcx

]> (5.5b)
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5.5 Parametrization of recursive estimators

B = FxV =

4∑
jW=1

TR, jW − IW, jW
ÜθW, jW

rW
=
TR − IW ÜθW

rW
(5.5c)

We can applyM3 as multi-input-single-output output-error model of the
form AX ≈ B (3.18) or as random-walk output-error model (3.48). Moreover,
the multi-input-single-output errors-in-variables model (3.35) as well as the
random-walk errors-in-variables model (3.50) give possible statistical assump-
tions to solve the unknown parameters ofM3. All of these statistical models
may be applied with regularized (or wind-up stable) and robust estimators.

5.4.3 Longitudinal and lateral dynamics gray-box model

The second gray-box model considers besides the vehicle longitudinal dynam-
ics also lateral dynamics. M4 is shown in (5.6) and contains the additional
fourth parameterm2

V/cyW and a fourth measured input v4
V/4r 2 compared with

M3 in (5.5). The product A4X 4 of (5.6) gives the simple relation for the cor-
nering resistance (2.15).

A =
[
д cosθ д sinθ + ÛvV v2

V
v4

V
4r 2

]
(5.6a)

X =
[
mV fr0 mV

ρa
2 AVcx

m2
V

cyW

]>
(5.6b)

B = FxV =

4∑
jW=1

TR, jW − IW, jW
ÜθW, jW

rW
=
TR − IW ÜθW

rW
(5.6c)

M4 is an extension ofM3 and hence also suitable for the broad variety of
estimators which were introduced in Chapter 3.

5.5 Parametrization of recursive estimators

This section shows the speci�c settings of several recursive estimators which
solve the estimated parameters ofM3 andM4. All recursive estimators were
initialized with vehicle speci�c data for X̂ t−1 and the covariance matrix was
initialized with P t−1 = 100I .

5.5.1 Recursive least squares

The RLS algorithm in Algorithm 3.1 requires only λ as user de�ned setup. The
forgetting factor (λ) was set to 0.999 forM3 andM4.
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5 Vehicle tractive force prediction and mass estimation

5.5.2 Recursive regularized M-estimator

The settings of RRLM with robust estimated scale (Algorithm 3.4 in Line 6 of
Algorithm 3.3) were: λ = 0.999, type–Levenberg-Marquardt regularization,
in�uence function (ψ )–(3.15b), κ = 1 × 10−5, σ̂ t−1 = 25, Q̂t−1 = 350, forgetting
factor for σ̂ computation λ = 0.995, η = 0.01. These settings were similar for
M3 andM4.

5.5.3 Stenlund-Gustafsson M-Kalman �lter

The settings of SGMKF with robust estimated scale (Algorithm 3.16 in Line 6
of Algorithm 3.3) were: in�uence function (ψ )–(3.15b), σ̂ t−1 = 25, Q̂t−1 = 350,
forgetting factor for σ̂ computation λ = 0.995, η = 0.01 and R1 = 0.8 for
M3 andM4. However, Pd requires to distinct betweenM3 andM4. Pd was
adjusted to

diag(Pd) =
[
5 × 10−5 1 × 10−6 1 × 10−8]>

forM3 and to

diag(Pd) =
[
5 × 10−5 1 × 10−6 1 × 10−8 1 × 10−6]>

forM4, respectively. All o�-diagonal entries of Pd were zero.

5.5.4 Recursive GTLS

The RGTLS estimator (Algorithm 3.8) was applied with λ = 0.999 and P̆ t = I .
Hence, RGTLS worked like an RTLS estimator.

5.5.5 Stenlund-Gustafsson IV M-Kalman �lter

The parametrization of SGIVMKF with robust estimated scale (Algorithm 3.20
in Line 6 of Algorithm 3.11) was the same as Section 5.5.3 shows and the
instruments were given by At = At−4.

5.6 Vehicle tractive force estimation

It makes sense to start the presentation and discussion of results with one
recorded test run before we will explore the results for the prediction of the
vehicle tractive force of all 81 test runs in Section 5.8. Moreover, we will
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Figure 5.4: Estimated parameters for one test runM3 and various estimators.

focus within this section onM3, because the variety of models and estimators
might confuse the reader. In sum, Section 5.8 will present results of 11 model-
estimator combinations. Ten combinations arise fromM3 andM4, which are
estimated with RLS, RRLM, SGMKF, RGTLS and SGIVMKF, respectively. The
eleventh model isM0, which does not require an estimator. Multiplied with
the 81 test runs, the overall number of result sets is 891.

Note that all results within this section ground on training data only. Model
selection and model validation results in terms of performance indices that
were discussed in Section 3.2 will be given by Section 5.8.

We will study now the properties of the four estimators: RLS, RRLM, SGMKF
and RGTLS in terms of time-series plots for the estimated parameters in
Figure 5.4. Remember Figure 3.1 for the correct classi�cation of estimators and
model structures. RLS is the recursive estimator for the multi-input-single-
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5 Vehicle tractive force prediction and mass estimation

output output-error model (3.18) for instance.
The most notably observation in Figure 5.4 is the sudden change in all

estimated parameters at t = 400 s for the RLS and RGTLS estimator. It is
likely that there is an outlier in the data at t = 400 s. All estimated parameters
have a physical meaning (and unit). Thereby, we know from experience that
such drastic step changes in the parameters are unlikely or even impossible
in practice. Moreover, negative values of X̂ 3 in Figure 5.4c disagrees with the
de�nition of the longitudinal aerodynamic resistance (2.7). The only practical
explanation for X̂ 3 being smaller than zero would be a strong wind gust from
rear, because we assumed forM3 thatψa = 0. However, such a strong wind
gust is unlikely. Note that RLS and RGTLS converge after this step change
at t = 400 s in the region of the robust and regularized or wind-up stable
estimators RRLM and SGMKF. Hence, we can conclude that the recorded real
world data requires robust estimators.

The results of RRLM and SGMKF are close. However, SGMKF shows a more
stable solution for X̂ 2 in Figure 5.4b, which presents the vehicle mass estimate.
This better performance of SGMKF can be explained with the two di�erent
statistical models of RRLM and SGMKF. It was already said in Section 3.7 that
the random-walk output-error model allows to consider an individual assumed
variation rate for each parameter by adjusting Q or Pd, respectively. See also
Figure 3.15 and Experiment 3.6 to get a similar observation for the errors-in-
variables problem. However, we will stop here with the interpretation of
parameter estimates and conclude that the estimated parameters of RRLM
and SGMKF are in a reasonable range, with a small advantage for SGMKF.
One reason to stop the evaluation of the parameter estimates is missing
validation data for X̂ 1 and X̂ 3. Remember that no additional sensors were used
in this work. However, as X 1 was de�ned asmV fr0 in (5.5), we can compute
a rough estimate of fr0 for the SGMKF estimator from the converged results
of Figure 5.4a and Figure 5.4b through 21/2250, which gives fr0 = 0.0093.
This result is reasonable for modern tires which are optimized for reduced
coe�cient of rolling resistance, where fr ≈ 1 % [179, Figure 3.4/2]. We will
discuss vehicle mass estimation results in the forthcoming Section 5.9 in more
detail.

The �nal part of this section is a result discussion of output corrections for
RLS, RRLM, SGMKF and RGTLS with Figure 5.5, Figure 5.6, and Figure 5.7. All
Figures show the same data, but in a di�erent representation. Figure 5.5 gives
the output corrections as time-series plots for all four estimators. The likely
outlier at t = 400 s is well visible through the sudden large output correction
in Figure 5.5a–Figure 5.5d. Additionally, a second possible outlier is discovered
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Figure 5.5: Output corrections for one test run and various estimators.

through Figure 5.5 at t = 750 s. Note that the output corrections of RGTLS
in Figure 5.5d at t = 400 s and 750 s are the smallest of all four estimators,
followed by RLS in Figure 5.5a. The output corrections of RRLM and SGMKF
at t = 400 s and 750 s in Figure 5.5b and Figure 5.5c, respectively, are close and
both estimators show larger output corrections compared with RGTLS and
RLS. In conclusion, robust estimators such as RRLM and SGMKF show larger
output corrections when outliers are present than non-robust estimators such
as RLS and RGTLS.

The reason for the larger output correction of robust methods is to �nd
in the cost functions. If we compare the cost function of RLS (3.24) with the
cost function of RLM in (3.25) (let us skip the regularization for a moment,
then RRLM becomes RLM) and focus on the part where the output correc-
tion (written as Bi − AiX ) is involved, we can see that the non-robust RLS
estimator gives the smallest possible output correction in the least-squared
sense. This observation is important to decide for an appropriate performance
index in Section 5.8. The estimator with the smallest output correction is not
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Figure 5.6: Histograms of the output correction for one test run and various estimators.

the best estimator for our application, or as we can see from Figure 5.4, the
estimator with the smallest output correction (recursive GTLS) is even the
worst estimator.

Figure 5.5 indicates a second observation. The non-robust estimators RLS
and RGTLS show a larger dispersion of the output correction than the robust
estimators RRLM and SGMKF. Compare the trend of the output corrections for
RLS in Figure 5.5a for t = 400 s to 750 s with RRLM in Figure 5.5b for the same
period. RLS is quite long disrupted and requires a lot of new data until the
output corrections disperse once again symmetrically around zero, whereas
RRLM does not show a distinctive disruption. However, this observation is
better visible in Figure 5.6.

Figure 5.6 presents the output corrections of all four estimators as histogram.
All histograms show heavy-tailed distributions, that indicate small fractions of
large output corrections, which are quite likely outliers. The output correction
dispersion of robust estimators (RRLM in Figure 5.6b and SGMKF in Figure 5.6c)
is smaller than the output correction dispersion of the non-robust estimators
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Figure 5.7: Scatter plots for one test run and various estimators. Outliers are well
visible and sophisticated outlier diagnostics ([143]) could be used to identify
adverse driving styles.

(RLS in Figure 5.6a and RGTLS in Figure 5.6d). Although on small frequency,
there are some output corrections in the range of 2000 N visible in Figure 5.6.
These drastic outliers are responsible for the breakdown of RLS and RGTLS.
The M-estimators RRLM and SGMKF are superior robust in this case because
the outliers occur in the output corrections. It appears that there are no
bad leverage points present in the data, remember the explanation about
breakdown point, leverage point, and M-estimators in Section 3.4.2.

Figure 5.7 presents scatter plots of the estimated output over the measured
output for all four estimators. The diagonal thin line is the ideal relation
between estimated output and measured output. We can see both observations
from above. First the small distribution for the majority of scatter points
of the robust estimators RRLM and SGMKF in Figure 5.7b and Figure 5.7c,
respectively. The second observation, which was the larger output corrections
of RRLM and SGMKF compared with RLS and RGTLS, is visible if we take into
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account that the output correction is the vertical distance between estimated
output and measured output. Hence, the far outlying points in Figure 5.7b and
Figure 5.7c represent the large output correction of the robust estimators.

We can use Figure 5.7 to classify the scatter points into two groups: majority
and minority. A way to sketch a borderline between these groups could be
an ellipse with a major axis which is collinear with the diagonal thin line
in Figure 5.7. The perpendicular minor axis of the ellipse would give the
dispersion of the estimators. We would probably pick RRLM or SGMKF once
again from this procedure in Figure 5.7, because the length of the minor axis of
the described ellipse is smaller compared with the non-robust estimators RLS
and RGTLS. Hence, Figure 5.7 is probably the best way to discover outliers
within Figure 5.5–Figure 5.7 through a plot. However, we will not analyze any
further speci�c situations (experimental conditions) where outliers probably
occurred. The robust estimators give superior results and it is not ensured
that even if we solved one speci�c issue, for instance if we adjust the values
of the Boolean logic in Section 5.3, that this treatment would work for all test
runs. Hence, we have to accept that there are outliers in the recorded data
and apply preferably robust estimators.

The discussion upon here did not emphasize the contribution of regular-
ization or wind-up avoidance to ensure stable results of RRLM and SGMKF,
respectively. However, the key to reliable and stable estimates from this
recorded data is a combination of robustness and regularized or wind-up
stable estimators. Remember the third challenge, poor excitation, which was
mentioned in Section 5.1 and observed from Figure 5.1.

We would need to vary the regularization parameter between zero (no
regularization) and some upper limit in numerous subsequent simulations
on the same data to measure the contribution of regularization which lead
to the stable RRLM estimates. This procedure would give us an optimal
regularization parameter and is known under the term L-curve, which is
well explained in [160, Figure 1.1] and [95, pp. 52–57] (see also Section 3.3).
The L-curve is a batch method and because of this not ideal for our needs.
However, Van Waterschoot, Rombouts, and Moonen [186] provide recursive
methods that give an optimal regularization parameter in a acoustic signal
enhancement application.

I do not claim that the settings for RRLM made in Section 5.5.2 are optimal
in a mathematical sense. The same holds for the other estimators and this
discussion refers us back to Section 3.10.2 where we talked about IAE and
MME, which are basically methods to tune estimators automatically.

Therefore, let us add the question: how to chose an optimal regularization.
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parameter recursively for vehicle tractive force estimation to the list of open
research questions within this dissertation.

However, another way is possible to get a rough impression how much
regularization we need for this application. Let us compare the vehicle mass
estimates of RLS and RGTLS in Figure 5.4b. Although neither RLS nor RGTLS
involve regularization, we can use these estimators to compare what happens
if we add deregularization to an estimator. Remember that RGTLS is a TLS-
based estimator and TLS lacks under deregularization. This was discussed in
the open topics of Section 3.6.3. If we look closer what happens after the �rst
likely outlier within the period t = 400 s to 750 s in Figure 5.4b, we can observe
that the RLS estimate converges towards the reliable vehicle mass estimates of
RRLM and SGMKF, whereas RGTLS does not. Moreover, the RGTLS estimate
shows a sine wave like curve. In short, the deregularized RGTLS estimator
becomes uncertain. If we compare this observation with the period after the
second likely outlier for t > 750 s, we can see that RLS and RGTLS converge
to the RRLM and SGMKF estimate. These two di�erent manners of RGTLS,
after the �rst likely outlier not converging and after the second likely outlier
converging, indicates that there is no su�cient rich excitation in the period
t = 400 s to 750 s in order to feed RGTLS with enough useful new information.
Hence, carefully applied regularization helps to ensure stable estimates during
periods of poor excitation. See also Figure 3.8 and Experiment 3.3 where RLM
and RRLM were compared.

5.7 Robust performance index

Remember that the discussion of results within Section 5.6 was only made for
one test run and one model. It is impossible (or would require several hundred
pages) to proceed the interpretation of results in the same way (�gures for
the estimated parameters and output corrections) for all 891 tuples of test
runs, models, and estimators. Hence, we seek for a reliable scalar measure
that gives a ranking for all model estimator combinations for each test run.
Such performance indices were shown in Section 3.2.1 and the mean squared
error in (3.3a) is probably the most prominent performance index from the
list in (3.3). However, MSE itself is not robust.

What does MSE mean? The mean squared error involves the arithmetic
mean (µ(·)), which is a non-robust location estimator. We could replace µ(·)
with an M-estimator [81], but the median (med(·)) is even more robust and
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simple to compute. Hence, we will use the median squared error (MEDSE)

MEDSE = med
i

((
Bi − B̂i

)2
)

(5.7)

as robust performance index in Section 5.8. We can easily justify this deci-
sion if we take a short look on Figure 5.5 and imagine that we would plot
the squared output correction instead of the shown output correction. The
arithmetic mean would fail as location estimator in this case, because the
large output corrections would be even larger compared with the majority
of output corrections because of the squares. The median instead gives us a
robust estimate of the location. Zoubir et al. [200, Figure 1] give an excellent
example in which the arithmetic mean, trimmed arithmetic mean, and median
are compared in a location estimation problem in the presence of outliers. The
breakdown point of the arithmetic mean is 0 %, whereas the breakdown point
of the median is 50 %. Moreover, [200, Figure 1] shows that the arithmetic
mean gives a location estimate which is aligned towards the outlier away
from the majority of data. As RRLM and SGMKF produce the largest output
corrections, the MSE for these estimators would be bigger then the MSE for
RLS and RGTLS. Hence, a MSE-based performance index might lead us to
wrong conclusions.

5.8 Vehicle tractive force prediction

This section answers the question which model and estimator combination
gives the most accurate prediction of the vehicle tractive force. We will begin
withM3 on one recorded test run and then switch to the full range of models
and estimators applied on all 81 test runs.

Cross-validation is the most powerful model selection method and gives
in parallel a result for model validation, see Section 3.2. In order to apply
cross-validation, each test run was divided into training data and validation
data, where the validation data is a block of samples at the end of each record.
The size of validation data varies in the number of prediction steps with
k = 300, 900, 1200, 1500, and 1800, and only samples with a true trigger signal
were used. Remember the Boolean logic which provides a trigger signal to
exclude adverse driving styles. The recursive estimators work on 10 Hz. Hence,
the validation data resembles a minimum prediction time of 30 s, 90 s, 120 s,
150 s, and 180 s. However, a trigger signal with 300 true samples may require
more than 30 s of data if the trigger signal shows some false samples.
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Figure 5.8: Model selection in terms of the vehicle tractive force prediction, measured
by the MEDSE performance index for one test run and two models.M0 is
a white-box model whereasM3 is a gray-box model which was identi�ed
with four recursive estimators. The number of prediction steps in the
validation data is k = 300, 900, 1200, 1500, and 1800, which is denoted by
the subscripts at MEDSE, respectively. This subscript corresponds to a
prediction time of at least 30 s, 90 s, 120 s, 150 s, and 180 s.
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5 Vehicle tractive force prediction and mass estimation

Figure 5.8 gives the prediction MEDSE (5.7) of the vehicle tractive force for
one test run of the white-box modelM0 and the gray-box modelM3 with
the estimators RLS, RRLM, SGMKF and RGTLS.

Figure 5.8a shows the result for the smallest validation data with k = 300.
Here,M0 is the best, followed byM3-RGTLS,M3-RLS,M3-SGMKF, andM3-
RRLM. This superior performance ofM0 will be a rare case in the following.

Figure 5.8b–Figure 5.8e show that there is always a better gray-box model
in the set of candidate models available thanM0. Moreover, the prediction
quality ofM3-RGTLS andM3-RLS is unstable.M3-RGTLS andM3-RLS work
well in Figure 5.8b and Figure 5.8c, su�er in Figure 5.8d, and fail drastically in
Figure 5.8e compared withM3-RRLM andM3-SGMKF.M3-RRLM gives the
best overall accuracy, followed byM3-SGMKF, which is inferior in Figure 5.8e.
Yet, it has the largest prediction horizon and gives thereby the most challenging
validation data.

Apart from Figure 5.8a,M0 is clearly the worst choice compared withM3-
RRLM andM3-SGMKF. The inferior prediction quality ofM0 is an important
observation for vehicle look-ahead controllers which seek for energy e�cient
driving, because all of the references that were given in Section 1.1 use models
that are similar to M0. It is likely that the mentioned vehicle look-ahead
controllers are in�uenced in their actions by the prediction quality of vehicle
tractive force models. Therefore, the application of vehicle look-ahead con-.
trollers in conjunction with adaptive gray-box models from this dissertation
might o�er much research potential.

On the other hand, Figure 5.8 is just a snapshot of a single test run. So, we
can ask: isM0 just by accident inferior in Figure 5.8b–Figure 5.8e?

First we need a compact representation of the performance index (prediction
MEDSE of the vehicle tractive force) which allows to select a model over all
test runs. A boxplot is the ideal plot for this purpose. A boxplot contains
information about the location and dispersion of data. Moreover, boxplots
allow to decide if the location between two classes of data di�er signi�cantly.
A boxplot shows the median, which is the 0.5 quantile, as central line inside a
box. The lower and upper edge of the box depict the 0.25 and 0.75 quantile,
respectively. Two antennas arise below and above the box and the end of each
antenna is marked with a whisker. The lower and upper whisker are computed
by Q0.25 − 1.5(Q0.75 − Q0.25) and Q0.75 + 1.5(Q0.75 − Q0.25), respectively [58].
Data outside of the whiskers denote outliers. Two medians di�er signi�cantly
at 5 % signi�cance level if their signi�cance intervals do not overlap. McGill,
Tukey, and Larsen [111] give the lower and upper signi�cance level of the
median withQ0.50−1.57(Q0.75−Q0.25)/

√
m andQ0.50+1.57(Q0.75−Q0.25)/

√
m,
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5.8 Vehicle tractive force prediction

respectively.
The idea is now to show the performance index for each test run as single

dimension boxplot for the white-box modelM0 and each combination of gray-
box models,M3,M4 with estimators RLS, RRLM, SGMKF, RGTLS, SGIVMKF.
Note that SGIVMKF appears within this chapter for the �rst time. SGIVMKF
was simply not needed for the result interpretation upon here.

Figure 5.9 shows the prediction quality as MEDSE of the vehicle tractive
force as boxplot of all models and estimators for 60 test runs. The number
of usable data records is reduced from 81 to 60 because k = 900 requires
rather long test runs. Twenty one test runs were simply too short to split
the data appropriately into training data and validation data. Note that the
ordinate of Figure 5.9 is logarithmic, which is uncommon for boxplots. Hence,
the signi�cance levels ofM0 and to a lower extend ofM3 andM4 appear
asymmetric but in fact they are symmetric. The reason to use a logarithmic
ordinate is to put all models into one diagram and to resolve the lower values
more precisely.

The most striking observation is that the median ofM0 ranges signi�cantly
above all gray-box models. Hence, the prediction quality ofM0 is signi�cantly
inferior to any gray-box model. We can state this signi�cant di�erence by
comparing the lower signi�cance level of M0 (the line below the central
median line) with all other upper signi�cance levels, because there is no
overlap in the signi�cance levels.

However, there are some boxes which overlap with M0 as well as all
antennas, whiskers and outliers. In other words, there are rare test runs
whereM0 was as good as any of the gray-box models or probably better.

Why givesM0 sometimes satisfactory results? If we go back to (5.4) and
its explanation, we see that the parameters (aV, bV, cV, mV) ofM0 come from
coastdown measurements. Accordingly,M0 gives a good prediction quality
if the experimental condition in the test runs meets roughly the experimen-
tal condition from the coastdown experiment. If the number of passengers,
air temperature, air pressure, tire-pressure, tire-temperature, gear-box oil-
temperature, and many more experimental conditions correspond to the con-
ditions during the coastdown test,M0 performs well and gray-box models
are not needed.

On the other hand, Figure 5.9 tells that the experimental conditions that
lead toM0 during the coastdown experiment and during the performed test
runs di�er a lot.M0 assumes that the parameters are time-invariant, which
is a typical characteristic of white-box models. However, the consideration of
time-varying parameters inM3 andM4 is clearly superior for the majority

127
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Figure 5.9: Boxplot of the prediction quality in terms of the vehicle tractive force
measured with MEDSE. The number of prediction steps is k = 900 and the
number of usable test runs ism = 60.
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5.8 Vehicle tractive force prediction

of test runs. Moreover, Figure 5.9 shows even on logarithmic scale that the
innerquartile range (the height of the box) ofM0 is larger than the innerquar-
tile range of any gray-box model. Consider that the innerquartile range ofM3
andM4 appears magni�ed due to the logarithmic ordinate compared with
M0. Accordingly, the innerquartile range gives an additional argument for
the conclusion thatM3 andM4 in combination with any of the presented
estimators give a clearly improved prediction quality.

A deeper look at Figure 5.9 shows that there is a second important but not
signi�cant di�erence in the medians to �nd. The lower signi�cance level of
M3-RLS overlaps only in a small extend with the upper signi�cance level of
M4-RRLM. In other wordsM4-RRLM gives a better but not signi�cantly better
prediction quality in terms of the median thanM3-RLS. Moreover,M4-RRLM
shows the lowest median of all models and is the best choice from a model
selection and a model validation point of view. Additionally, the innerquartile
range ofM4-RRLM is the smallest in Figure 5.9, which is another indicator
thatM4-RRLM is the best choice for a high prediction quality of the vehicle
tractive force.

If we compare the results ofM3 and the respective estimators the ranking
from worst to best in terms of the median becomes: M3-RLS,M3-RGTLS,
M3-SGMKF,M3-SGIVMKF, andM3-RRLM. Accordingly, the non-robust and
non-regularized estimators are the worst, followed by two robust Kalman
�lters (with regard to which the instrumental variables Kalman �lter shows
the better result) and the robust and regularized RRLM estimator. Although
the medians do not di�er signi�cantly, RRLM is the best choice forM3.

The ranking of estimators from worst to best forM4 di�er to the ranking
for M3 and becomes: M4-RGTLS, M4-SGIVMKF together with M4-RLS,
M4-SGMKF, andM4-RRLM. Hence, the ranking inM4 can not be split into
non-robust and robust estimators, becauseM4-SGIVMKF is slightly worse
thanM4-RLS. On the other hand, the main result fromM3 holds also forM4,
namely thatM4-RRLM is the best estimator insideM4.

To sum up,M4-RRLM gives better prediction quality thanM3-RLS andM4-
RRLM, and is signi�cantly better thanM0. Moreover,M4-RRLM gives the
lowest median and the smallest innerquartile range. Therefore,M4-RRLM is
the superior model estimator combination for vehicle tractive force prediction.
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5 Vehicle tractive force prediction and mass estimation

5.9 Vehicle mass estimation

Table 4.1 shows that highly precise vehicle mass estimation is a topic of great
importance in research. Although vehicle mass estimation is not the primary
goal of this work, we will compare the results ofM3 andM4 in conjunction
with RLS, RRLM, SGMKF, RGTLS, and SGIVMKF in terms of the performance
index NMSE which is given in (3.3b). It is save to use the non-robust perfor-
mance index NMSE here, because the validation data is simply a scalar which
comes from balancing the vehicle and passengers prior driving. Hence, the
validation data is free of outliers. I balanced each vehicle once and added the
weight of passengers, luggage, and fuel in 44 test runs. Hence, the number
of test runs with vehicle mass validation data is 44. Note that a small but
negligible error arises due to fuel consumption that is not considered if we
balance the vehicle only once at the beginning of each test run.

Furthermore, there is no need to use cross-validation, which requires to
split the data into training data and validation data, to measure the accuracy
of vehicle mass estimates. However, it makes intuitive sense to measure the
accuracy of vehicle mass estimates not directly from start of each test run.
It is useful to consider a certain period which is required by each recursive
estimator to converge. Remember that each estimator must be initialized
and it takes some iterations until the e�ect of initialization diminishes. One
way could be to de�ne a minimum number of iterations which have to be
performed by each estimator before its estimates can be used. However, during
poor excitation the number of iterations does not say something about the
amount of information. Actually, the correlation between number of iterations
and amount of information depends much on data. Therefore, another criteria
is required to decide if an estimator gives converged estimates or not.

Herein, an upper bound of the covariance matrix was de�ned. Remember
that the covariance matrix was initialized with P t−1 = 100I in Section 5.5.
The convergence test is simply done by Boolean logic with P t < Pmax. The
convergence of SGMKF was checked and if this test was true, the results of
all estimators were assumed to be converged. The choice of SGMKF is of
course arbitrary, but makes sense, because it is a robust estimator which has a
lower convergence rate than the two non-robust estimators RLS and RGTLS,
compare Section 3.4.1. Actually, RGTLS in Algorithm 3.8 does not provide
information about the parameter uncertainty. This problem was only recently
solved in [136]. Hence, it was not possible to use RGTLS as indicator for
convergence.

Figure 5.10 gives the vehicle mass NMSE for all gray-box models, where
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Figure 5.10: Normalized mean squared error of vehicle mass estimates for various
models and estimators. The number of usable test runs wasm = 44.
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5 Vehicle tractive force prediction and mass estimation

the best possible NMSE is one. Hence, the best gray-box model is the model
with the box which is closest to one. RGTLS provides poor results in both
models (M3 andM4), andM3-RGTLS is signi�cantly poorer than any other
estimator. However, the signi�cance intervals ofM3-RLS,M4-RLS, andM4-
RGTLS overlap, which means thatM4-RGTLS is not signi�cantly poorer than
RLS. As said, RGTLS su�ers from missing robustness and regularization when
applied to the recorded data. However, RGTLS performs well if the data does
not contain challenges like outliers and poor excitation as reported in [133,
136] and reported from a related vehicle mass application where RGTLS was
recently applied [6].

If we skip RGTLS and focus on the median, the ranking from worst to
best becomes:M4-RLS,M3-RLS,M3-RRLM,M4-RRLM,M3-SGMKF,M4-
SGMKF,M3-SGIVMKF, andM4-SGIVMKF. Note that all signi�cance intervals
overlap. Hence, there is no signi�cant best model estimator combination.

The best choice is M4-SGIVMKF. This gray-box model gives the high-
est vehicle mass NMSE and a small innerquartile range. However, the sil-
blingM3-SGIVMKF shows a smaller innerquartile range. The inclusion of
prior knowledge about time-varying parameters on di�erent rate through
the random-walk model and the use of instruments improve the accuracy in
vehicle mass estimation.
M4 gives in vehicle tractive force prediction (Section 5.8) and in vehicle

mass estimation better results thanM3. However, the estimator of choice
di�ers in prediction or estimation. Section 5.8 dealt with a prediction prob-
lem andM4-RRLM was the best model estimator combination. This section
however deals with a parameter estimation problem and the random-walk
errors-in-variables model, which is solved by SGIVMKF, outperforms the multi-
input-single-output output-error model, which is solved by RRLM. This result
matches nicely with the recommendation of the �rst question in the hands on
guideline for choosing the most appropriate estimator in Section 3.11, where
it was recommended to favor the random-walk errors-in-variables model in
parameter estimation. In conclusion, M4-SGIVMKF is the best choice for
vehicle mass estimation.

NMSE can be converted into a relative error with
√

1 − NMSE. Hence, the
relative vehicle mass error of M4-SGIVMKF becomes 7.75 %, with NMSE
roughly 0.994, which is the median ofM4-SGIVMKF. This result is rather
poor for vehicle mass estimators compared with related work in Table 4.1 and
own work [134, 135] which shows vehicle mass estimators which converge
within an relative error of ±1 %.

However, consider that the recorded data is more challenging due to poor
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5.9 Vehicle mass estimation

excitation and outliers. Moreover, the results herein in terms of highly accurate
vehicle mass estimates may be easily improved by adjusting the values of the
Boolean logic in Section 5.3. One action could be to improve the signal to
noise ratio by enhancing the minimum engine torque. In addition to this, the
drive-train model is of rather simple model structure. For instance, the wheel
moments of inertia were not adjusted between summer and winter tires and
a biased wheel moment of inertia causes the rim torque to be biased, which
explains the bias in the vehicle mass estimates. However, the major reason
for the rather poor vehicle mass estimates is that the drive-train model shares
the same model structure for the two wheel drive and the four wheel drive
vehicle. Hence, some internal losses in the four wheel drive vehicle were not
su�ciently modeled. Hence, the rim torque must be biased in the records of
the four wheel vehicle.

The intention of Figure 5.10 is to provide a comparison of various estimators .
for vehicle mass estimation. The random-walk errors-in-variables model,
which is represented by SGIVMKF, has not been used in literature before, but
o�ers potential to improve the accuracy of related vehicle mass estimators.

Summary: This chapter studied the prediction quality of a white-box model,
two gray-box models, and various estimators from Chapter 3 with respect to
accurate prediction of the vehicle tractive force. The model selection grounds
on numerous test runs which were conducted on public roads under varying
environmental conditions. The best combination of model and estimator isM4-
RRLM, which is a linear gray-box model which considers vehicle longitudinal and
lateral dynamics. The RRLM estimator is a recursive regularized estimator for
the linear multi-input-single-output output-error model. Vehicle mass estimation
results were discussed to a smaller extend. The best model which gives the
most accurate vehicle mass estimates isM4-SGIVMKF. The SGIVMKF estimator
denotes a robust and wind-up stable Kalman �lter with instruments and solves
the linear random-walk errors-in-variables model.
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6 Concluding remarks

“All of science is nothing more than the
re�nement of everyday thinking.”

Einstein [48, p. 313].

Outline: This chapter gives a summary of conclusions which were made through-
out this dissertation and depicts the main contributions of this work. However,
the emphasis of this chapter is a summary of open problems which are worth to
consider for further research.

6.1 Conclusions

The conclusions started in Chapter 4, which gives a literature review of related
research.

To the best of my knowledge, there is no direct related research which has
been conducted with the aim to built models which give a precise prediction
of the vehicle tractive force. The literature search discovered mostly vehicle
parameter estimators with a strong focus on vehicle mass estimation.

Recursive least squares (RLS) was the prior estimator, followed by Kalman
�lters. The predominant model structure was a linear vehicle longitudinal
dynamics gray-box model. There are attempts considering parameters which
vary on di�erent rate, such as recursive least squares with multiple forgetting
(RLSmf). However, the connection between RLS and the Kalman �lter has not
been reported or used in related literature.

The need of rich excitation was several times emphasized in related research.
However, rich excitation cannot be ensured in real world applications because
rich excitation contradicts important aims like high driving comfort and high
energy e�ciency of vehicles. Poor excitation is typically treated by exclusion
of data. However, the connection between poor excitation, ill-posed problems,
and wind-up has not been reported in the related literature. Moreover, methods
which stabilize recursive estimators such as regularization or wind-up stable
�lters have not been considered. Hence, the scope of estimators, which were
used in vehicle parameter estimation, was limited. This was the motivation to
write the detailed survey of models and estimators in Chapter 3.



6 Concluding remarks

The predominant conclusion of Chapter 5 was that all presented gray-box
models gave signi�cant better prediction quality for the vehicle tractive force
than the white-box model with aV, bV, and cV parameters (abc), which is state
of the art in vehicle look-ahead controllers seeking energy e�cient driving
(see the references in Section 1.1).

The model o�ering the best prediction of the vehicle tractive force from
the set of candidate models is modelM4 in conjunction with the recursive
regularized M-estimator (RRLM).M4-RRLM stands for a vehicle longitudinal
and lateral dynamics gray-box model with a robust, regularized, recursive
estimator, which solves the multi-input-single-output output-error model.

Assuming that the strategy of look-ahead controllers depends on the predic-
tion quality of the vehicle model, the actions of these controllers should alter if
M4-RRLM is used in conjunction with the controller. The performance of con-
trollers might improve due to the improved prediction quality ofM4-RRLM,
compared with the conventional abc white-box model.

Generally, robust and regularized or wind-up stable estimators worked
superior compared to standard estimators within Chapter 5. The used real
world data is challenging due to outliers and periods of poor excitation. The
multi-input-single-output output-error model is superior in prediction of the
vehicle tractive force, whereas the random-walk errors-in-variables model
convinces in vehicle mass estimation. The best model estimator combination
for vehicle mass estimation was M4 with the Stenlund-Gustafsson IV M-
Kalman �lter (SGIVMKF). Conversely to the results herein, all cited related
work used output-error models for parameter estimation. There is no model
selection reported in vehicle parameter estimation literature elsewhere, which
might give a reason why the random-walk errors-in-variables model has not
been considered.

6.2 Contributions

Another heading for this section could be why was it worth to write this
dissertation or why should you read it?

This dissertation applies major concepts from system identi�cation such as
model selection and model validation on a vehicle state prediction problem.
The common way in vehicle science is to de�ne some model, apply a favorite
estimator, and measure the model quality in terms of the parameter error.
Research with variation in the model structure and estimator is rare.

The main contribution is to �nd in Chapter 3 which attempts to provide a
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well organized survey of linear model structures and estimators. This survey
begins with well applied standard estimators and shows connections to more
sophisticated ones. Two concepts are emphasized.

The �rst is robustness. Robust estimators are from my point of view prefer-
able, if they are easy to understand and not more challenging with respect to
implementation and computational e�ort compared with non-robust estima-
tors. The M-estimator gives an ideal concept to alter non-robust methods into
robust ones. Actually, the modi�cations which lead from RLS into recursive
M-estimator (RLM) are small. However, this small modi�cation makes a huge
di�erence if there are outliers in the data. The phrase: if there are outliers in the
data? is misleading. Nowadays complex systems require more the question
are we con�dent enough to assume that there are no outliers? The drawback of
loosing optimality in RLM compared with RLS (see end of Section 3.5.4) was
from my professional experience always minor compared with the advantages
the robust estimator o�ers.

The second concept which characterizes this dissertation is regularization.
The record of real world data indicates that rich excitation was not ensured at
all times. Hence, regularized or wind-up stable estimators played an important
role within this work. Similar to robustness, the required modi�cations in the
estimators, to include regularization or wind-up stability, are maintainable.

The next contribution of this work has to do with reproducibility which was
discussed in Section 1.4. Common practice in engineering is to present nice
results and to show that it works �ne. This dissertation makes no di�erence
in this matters. It is quite impossible to describe engineer’s work to such an
extend that full reproducibility is ensured and Chapter 5 is an example for
this issue. However, this issue gave motivation to make at least some key
contributions reusable. Accordingly, all discussed estimators are presented
as algorithms and available as Matlab code in the additional material of this
work (Chapter A). The simulation experiments in Chapter 3 might motivate
practitioners to apply some of the presented algorithms on own problems.

A contribution for vehicle look-ahead control applications is the result from
model selection in Chapter 5, which gives arguments to use gray-box models
instead of white-box models for vehicle tractive force prediction.

6.3 Open problems

The list of open problems which were marked with the . symbol on page
margins is quite long. First, we will focus on topics which are of general inter-
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est in system identi�cation and may motivate further research. Accordingly,
the following paragraphs result from the discussion in Chapter 3.

First, recursive GTLS (RGTLS) needs robustness and regularization to pro-
duce meaningful estimates when the data contains outliers and periods of
poor excitation. As regularization is a topic of interest in total least squares
(TLS) research, a recursive regularized estimator might o�er a fruitful research
topic.

Second, a TLS-based solution of the random-walk errors-in-variables model
would give a powerful errors-in-variables estimator, which comprises RGTLS
as special case. Connections to robust Kalman �lters are quite likely. Hence, a
TLS-based solution of the random-walk errors-in-variables model would �t
nicely into related research and might improve the performance of Kalman
�lters or generalize them.

Third, a throughout study of the presented polynomial Kalman smoother
(PKS) with more applications would o�er rich content for research. Extensions
of PKS such as robust and regularized versions or an errors-in-variables PKS
are desirable.

The second category of open topics are more vehicle speci�c and arise from
the discussion in Chapter 5.

First, the test runs were made arbitrarily and data was recorded as it came.
Hence, it cannot be stated that all relevant driving styles are covered within
the data record. All ends up in the question how much testing is enough testing,
which needs further investigation.

Second, more research is needed to check if more sophisticated models
of the gradient angle and path radius give better accuracy or in�uence the
accuracy of the vehicle tractive force gray-box model noticeably.

Third, a study of interacting multiple model estimation (IMME) with appli-
cations in vehicle tractive force prediction might o�er additional accuracy in
the prediction of the vehicle tractive force.

Fourth, in accordance with the prior open topic arises the question: how
to choose an optimal regularization parameter in a recursive fashion for vehicle
tractive force estimation. This point might also �t in the �rst list of general
system identi�cation topics if we shrink the question into: optimal recursive
regularization parameter.

Fifth, an application where a vehicle look-ahead controller is used in par-
allel with a gray-box model might give enhanced energy e�cient driving
strategies.
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6.3 Open problems

Summary: This chapter summarized the main conclusions of this work and
explained the main contributions. A lists of open topics in system identi�cation,
and open topics in related vehicle parameter estimation and control applications
close this chapter and this dissertation. Let me add as �nal remark that I am open
for collaborative research, so please let me know.
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A Algorithms and Matlab

Outline: This chapter gives a list of algorithms from Chapter 3 and connects these
algorithms with the implementation in Matlab® that is available as supplementary
material of this dissertation.

Please download the supplementary material from the public git repository
https://bitbucket.org/Stephan_Rhode/dissertation_code. I am grateful for com-
ments, spotted bugs and suggested enhancements. Please feel free to create
issues directly on the bitbucket repository page.

Most algorithms of Chapter 3 are included in a single function which is called
fcn_LKFParaEst.m. This function requires several inputs to compute
parameter estimates. The following overview shows how to call this function,
whereas we focus on the input structure that is called type and the instruments
(called Aiv inside the function), because all other input arguments of the
function are self-explanatory.

Algorithm 3.1 (RLS)

The function fcn_LKFParaEst.m resambles Algorithm 3.1 (RLS) by set-
ting type.: FilterType-’RLS’, CostFcn-’L2’, robScale-’O�’, R-λ, and Aiv-A.

Algorithm 3.2 (RLM)

Adjust the function inputs to type.: FilterType-’RLS’, CostFcn-’Huber’, robScale
-’O�’, R-λ, and Aiv-A to resamble Algorithm 3.2 (RLM). Note that RLM can
also be used with other in�uence functions that were not shown within this
work. The available options for CostFcn are: ’L1’, ’L2’ (non-robust), ’L1-L2’,
’Huber’, ’Cauchy’, ’alphaDetector’, ’Hampel’, ’Tukey’ and ’Myriad’.

Algorithm 3.3 (RLM with robust estimated scale)

See the previous setup for Algorithm 3.2 (RLM) and change type.robScale from
’O�’ into ’On’.

https://bitbucket.org/Stephan_Rhode/dissertation_code
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Algorithm 3.4 (RRLM)

Adjust the function inputs to type.: FilterType-’LevenbergMarquardtRLS’ or
FilterType-’TikhonovRLS’, CostFcn-’Huber’, robScale-’O�’, R-λ, and Aiv-A to
resamble Algorithm 3.4 (RRLM). Note that RRLM can also be used with other
in�uence functions.

Algorithm 3.9 (RIV)

The function fcn_LKFParaEst.m resambles Algorithm 3.9 (RIV) by set-
ting type.: FilterType-’RLS’, CostFcn-’L2’, robScale-’O�’, R-λ, and Aiv-A.

Algorithm 3.10 (RIVM)

Adjust the function inputs to type.: FilterType-’RLS’, CostFcn-’Huber’, robScale
-’O�’, R-λ, and Aiv-A to resamble Algorithm 3.10 (RIVM). Also, numerous
other in�uence functions can be used.

Algorithm 3.11 (RIVM with robust estimated scale)

See the previous setup for Algorithm 3.10 (RIVM) and switch type.robScale
from ’O�’ into ’On’.

Algorithm 3.12 (RRIVM)

Adjust the function inputs to type.: FilterType-’LevenbergMarquardtRLS’ or
FilterType-’TikhonovRLS’, CostFcn-’Huber’, robScale-’O�’, R-λ, and Aiv-A to
resamble Algorithm 3.12 (RRIVM). Remember the available other in�uence
functions.

Algorithm 3.13 (KF) – Algorithm 3.20 (SGIVMKF)

I assume that the reader is now familiar how to call the function to compute
parameter estimates with a desired estimator (algorithm). The same concept
holds for the Kalman �lters, which were shown in Algorithm 3.13 (KF) –
Algorithm 3.20 (SGIVMKF). However, the function call requires here type.Q-Q
or Pd as additional input.
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Summary: This chapter explained how to use a Matlab function from the supple-
mentary material. The required input arguments for fcn_LKFParaEst.m
are explained according to a variety of di�erent estimators.
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