AT

Karlsruhe Institute of Technology

Diploma Thesis

Engineering Fast Parallel Matching
Algorithms

Marcel Birn

June 20, 2012

Supervisors: Dipl.-Math., Dipl.-Inform. Christian Schulz
Prof. Dr. rer. nat. Peter Sanders

Acknowledgement

I would like to thank my supervisors Cristian Schulz and Peter Sanders for their support
and the constructive discussion about problems that occurred during this work.

Furthermore I would like to thank Cory Niu and Michael Morante for proofreading
this thesis. In particular I would like thank my parents, whose support made it possible
for me to study computer science.

Ich erkldre hiermit, dass ich die vorliegende Arbeit selbstdndig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, June 20, 2012

Marcel Birn

Abstract

The computation of matchings has applications in the solving process of a large variety
of problems, e.g. as part of graph partitioners. We present and analyze three sequential
and two parallel approximation algorithms for the cardinality and weighted matching
problem. One of the sequential algorithms is based on an algorithm by Karp and Sipser to
compute maximal matchings [21]. Another one is based on the idea of locally heaviest
edges by Preis [30]. The third sequential algorithm is a new algorithm based on the
computation of maximum weighted matchings of trees spanning the input graph. We
show for two of these algorithms that the runtime for slight variations of them is expected
to be linear. However the experimental results suggest that this is also the case for the
unmodified versions. The comparison with other approximate matching algorithms show
that the computed matchings have a similar quality or even the same quality. On the
other hand two of our the algorithms are much faster.

For two of the sequential algorithms we show how to turn them into parallel matching
algorithms. We show that for a simple non optimal partitioning of the input graphs
speedups can be observed using up to 1024 processors. For certain kinds of input graphs
we see a good scaling behaviour.

Contents

Abstract

Contents

1. Introduction
1.1. Our Contribution

1.2. Outline

2. Terminology

2.1. Graphs

2.2. Matchings
2.3. Parallel Algorithms

3. Related Work
Greedy Weighted Matchings
Karp-Sipser

3.1.
3.2.
3.3.
3.4.
3.5.

Optimal Weighted Matchings of Trees

Global Paths Algorithm
Parallel Matching Algorithms

4. Sequential Algorithms
4.1. Local Max Algorithm

4.2.

4.3.

4.4.

4.1.1.
4.1.2.

Implementation Details . . .
Theoretical Analysis

4.1.3. Matchings and Independent Sets — Luby’s algorithm
Mixed Algorithm — Karp-Sipser and Local Max

4.2.1.

Implementation Details . . .

Local Tree Algorithm

4.3.1.
4.3.2.

Implementation Details . . .
Theoretical Analysis

Experimental Results.

4.4.1.
4.4.2.
4.4.3.
4.4.4.

Runtime and Quality Comparison

Edge Development
Time per Edge
Depth and Size of Local Trees

11
11

13
13
13
14

17
17
18
19
23
24

29
29
31
32
36
37
37
40
41
43
48
49
53
o7
61

Contents

5. Parallel Algorithms 63
5.1. Parallel Local Max Algorithm 63
5.1.1. Implementation Details 65

5.2. Parallel Local Tree 70
5.2.1. Parallel Local Tree Algorithm 70

5.2.2. Parallel Maximum Weighted Matching of a Forest 71

5.2.3. Computation of a Parallel Forest 72

5.2.4. Parallel Dynamic Programming 75

5.3. Experimental Results. L. 76
5.3.1. Weak Scaling 7

5.3.2. Strong Scaling 83

5.3.3. Comparison Local Max and Local Tree 94

6. Conclusions 101
6.1. Future Work 102

A. Zusammenfassung 103
B. LAM and Unique Edge Weights 105
C. Parallel Local Max Details 107
C.1. How to Break Ties e 107
C.2. How to Receive Messages o v o v i i i ittt 108

D. Detailed Parallel Local Tree 111
D.1. Detailed Computation of a Parallel Forest 111
D.1.1. Example: Computation of Border Components 115

D.1.2. Example: Decide on Global Root 116

D.2. Detailed Parallel Dynamic Programming 118
References 123

1. Introduction

In this work we discuss the sequential and parallel computation of matchings of graphs.
A matching M of a graph is a subset of the edges of the graph such that no two distinct
edges of M share a common end vertex.

Matchings are of interest in a huge variety of problems. In some of the earliest appli-
cations they can be used to directly describe the solution for a problem. For example
matchings can be used to solve a classification problem as described by Thorndike [34]
or by Lawler [22]. The problem is to assign N workers to N jobs. Each of those jobs
belongs to one of k job categories. Each of theses workers are qualified to some extent
for each of the different jobs. Lets measure this qualification by r(w,j). That is the
qualification of worker w for the job category j. The assignment of the workers to the
jobs should maximize the accumulated qualification. This situation can be represented
by a weighted bipartite graph. The workers represent one set of vertices while the jobs
represent the other set of vertices. Each worker vertex is connected with job vertices by
edges, and the weights of those edges correspond to the qualification of the worker for
the corresponding job. A maximum weighted matching of this graph defines an optimal
solution for the given problem. The maximum weighted matching assigns each worker
to a particular job and ensures that the accumulated qualification is maximized.

Another early application was given by Fujii et al. [16, 22]. They used matchings
to compute optimal schedules for processors. In this example we have two identical
processors and n jobs. Each of these jobs requires one time step to be computed and
there exists a precedence relation between them. Job j; must be executed before job
Jjj if ji > jj, and both jobs can be executed simultaneously if j; ~ j;. For an optimal
schedule we are looking for the maximal number of job pairs that can be executed at
the same time. An upper bound for the maximal number of pairs corresponds to the
maximum cardinality matching of the graph where the vertices represent the jobs and
two vertices are connected by an edge if their corresponding jobs are independent from
each other, i.e. they can be executed simultaneously. This graph does not have to be
bipartite. In [16] it is also shown that jobs of the resulting job pairs can be interchanged
in such a way that there is always one job pair that can be executed before the others,
with respect to the precedence relation.

Today the computation of matchings is quite often used to solve a subproblem of a
bigger problem. For example when computing solutions for a system of linear equations
Ax = b. In this case it is often required to select good candidates, so called pivot
elements, for the diagonal entries of the matrix. Iterative methods like Gauss-Seidel
converge faster if the diagonal entry is larger compared to other entries of its row or
column [11]. [11] show that it can be beneficial to choose those pivots by computing a
weighted matching of the bipartite graph representing the linear equation.The bipartite

1. Introduction

graph is constructed the following way: The rows represent one half of the vertex-set
and the other half is represented by the columns. A row-vertex and a column-vertex are
connected by an edge if the matrix entry of this row and column is nonzero. The edge
weight corresponds to the matrix entry.

Another recent example for the necessity for the computations of matchings is multi
level graph partitioning as used by [20]. Multi level graph partitioning is done by con-
tracting (coarsening) a graph recursively for several rounds until the graph size falls
below a certain threshold. This small graph is then used to compute an initial partition.
Starting with this initial partition new partitions are computed for each contracted graph
in reverse order by uncontracting the graphs [20]. The contraction is done by computing
a weighted matching M of the graph during each round and afterwards contracting the
edges of M. Edge ratings are used as the weights of the edges. The ratings specify for
each edge how suitable it is for a contraction. Contracting M means that each edge
e € M is contracted to a single vertex. In [20] newly formed multi-edges are treated as
a single edge but their edge weights are summed up. Furthermore the weight of each
new vertex is the sum of the weights of the two end vertices of the contracted edge. For
contracted graphs we also have to store the information that is necessary to uncontract
the graph.

Interestingly the maximum cardinality matching and maximum weighted matching
problems can be solved in polynomial time, where on the other hand the similar sounding
problem of finding maximum independent sets is NP-complete for planer graphs [6]. An
independent set [is a subset of the vertices of a graph, such that no two vertices of I
are adjacent. The first to show that maximum weighted matchings can be computed
in polynomial time was Edmonds [13]. For an O(n3) implementation see [22]. Gabow
improved this runtime later to O(n(m + nlogn)) [17].

However there are problems where we have huge graphs as inputs (e.g. graph par-
titioning) or where it is not even necessary to achieve optimal results. In such cases
we might be satisfied with approximation algorithms for the maximum cardinality and
maximum weighted matchings problems. Most importantly these algorithms achieve far
better runtimes and are much simpler to implement. Karp and Sipser present in [21] a
linear-time approximation algorithm for the maximum cardinality matching problem.

In case of the maximum weighted matching problem the simplest approximation al-
gorithm is probably a greedy algorithm. This algorithm continuously adds the heaviest
remaining edge to the matching and achieves a runtime of O(mlogn) [4]. Another
greedy algorithm, by Preis, which adds locally heaviest edges to the matching achieves
a runtime of O(m) [30]. Both greedy algorithms have an approximation factor of 1/2.
Other 1/2-approximation algorithms are PGA and GPA [10, 26]. They have runtimes of
O(m) and O(mlogn) respectively. There are also 2/3 — e approximation algorithms, e.g.
in [29] with a runtime of O(m log(1/¢)).

Recently there has also been some work on parallel matching algorithms [28, 19, 25, 7],
most of them are based on the greedy algorithm by Preis.

10

1.1. Our Contribution

1.1. Our Contribution

We present three sequential algorithms: Two approximation algorithms for the maximum
weighted matching problem. One of them is based on Preis’ idea of adding locally
heaviest edges to the matching. Another one computes maximum weighted matching
of sets of trees spanning the input graph. The third sequential algorithm is a variation
of the algorithm of Karp and Sipser to compute approximate maximum cardinality
matchings. We provide theoretical results for their expected runtimes and the quality
of the worst case solutions. Additionally, we performed experiments on a wide variety
of graphs to see how those algorithms perform in practice with regard to their runtime
and the quality of their solutions compared to each other and other algorithms.

We also present parallel versions of the two sequential algorithms for the weighted
matching problem and evaluate how well their implementations scale in practice.

1.2. Outline

Chapter 2 introduces the terminology that we are using in this thesis, Chapter 3 discusses
related work. The sequential algorithms are described in Chapter 4, as well as their
theoretical and experimental results. Chapter 5 talks about the two parallel algorithms
and their experimental results. Finally Chapter 6 concludes this work by summarizing
our main results and talks about possible future work.

11

2. Terminology

2.1. Graphs

An undirected graph G = (V, E) consists of a set V' of vertices and a set E of edges. An
edge e = {a,b} connects two vertices a and b of V. We use the variable n to specify the
size of V, that is the number of vertices of the graph and m = |E| is used to specify the
number of edges of the graph G. When talking about a graph G we implicitly say that
its vertex set is V and its edge set is F.

In general we allow multi-graphs. These are graphs which allow multiple edges between
two vertices and self-loops (both end vertices of an edge are the same).

And edge e € E' is incident to a vertex a € V if a is an end vertex of e. Two vertices a
and b are adjacent if both are connected by an edge. In a similar way we say that edges
e and €' are adjacent if they have a common end vertex. The number if incident edges
of a vertex v is called the degree d of v. A vertex is called a degree d vertex if its degree
is d.

A weighted graph G = (V, E, ¢, w) is a graph as specified before but with two additional
functions. The function ¢ : V — RT assigns costs to the vertices and w : E — R assigns
a weight to each edge.

A complete graph K, is a graph with n vertices and one edge between each pair of
vertices. A bipartite graph is a graph where the set V of vertices can be divided into
two sets of vertices V; and V5 such that V = V3 UV;, Vi NV5 = () and there are no edges
connecting two vertices of V7 or two vertices of Vs.

2.2. Matchings

A matching of a graph G is a subset M C E of the graph’s edges such that no two edges
of M share a common end vertex. We say that the edges of M are matched and a vertex
is matched if it is an end vertex of a matched edge otherwise it is unmatched. An edge
is unmatched if it is not an element of M.

A matching M is mazimal if there is no edge e € E'\ M such that M U {e} is still a
valid matching.

A mazimum cardinality matching M of a graph G is a matching with |M| > |M’| for
any other matching M’ of G. We say that M is a perfect matching if all vertices of the
graph are matched (2|M| = n). Obviously perfect matchings only exists for graphs with
an even number of vertices.

The cardinality of a maximal matching is at least half the size of a maximum cardi-
nality matching.

13

2. Terminology

The weight w : 2F — R of a matching M is the sum of the weights of each edge of
M:

eeM

A mazimal weighted matching is a weighted matching where no more edges can be
added. A mazimum weighted matching M is a matching with w(M) > w(M’) for any
other matching M’.

We also consider approximations of maximum cardinality matchings and maximum
weighted matchings. In those cases we try to achieve the optimal results, but do not
require it. However the results must be maximal.

2.3. Parallel Algorithms

Throughout this thesis we only consider parallel algorithms for distributed memory sys-
tems. That is we have a number of p processors and each of these processors has its own
local memory. No processor is directly able to access the local memory of another pro-
cessor, instead processors have to send messages to each other to exchange information.
The processors can communicate with each other using a network that connects them
[12, p. 574].

Bulk Synchronous Parallelism (BSP) can be considered as computation model for
parallel algorithms but also as an approach how to develop parallel algorithms [12,
p. 192]. When we talk about BSP in this work we only consider it as an approach
how to write parallel algorithms. A BSP-algorithm divides its execution into several
super steps. At the start of each super step the processors perform local computations
independent from each other. As soon as they are finished with their computations
they start a communication phase where they send messages to other processors and
also receive messages. At the end of each super step there is a synchronization barrier
to ensure that no processors continues to perform local computations before the other
processors have finished their computations and communications [12, p. 192].

In the case of parallel graph algorithms the input graph G = (V, E) is usually par-
titioned into several subgraphs G, = (V},, Ep), with one subgraph for each processor
p. The subgraphs G, combined represent the whole input graph G. In our case the
subgraphs are defined by assigning to each process a subset Vp’ of vertices of V, such
that those subsets are disjoint but the union of them is equal to V. The subgraph G),
is then defined by the set FE, of edges incident to a vertex of V;f and the vertex set
Vp = V, U{u € V]u end vertex of an edge € E,}. Obviously it is possible that for
an edge e = {u,v} € E, only one vertex is an element of V; and the other vertex is
not. We call such an edge a cross edge and vertices € V;,’ are called local vertices and
vertices € V}, \ V; are called ghost vertices. Edges that connect two local vertices are
called local edges.

Each cross edge e = {u, v} connects a processor with another processor, the two end
vertices are assigned to different processors. We write p(v) to identify the processor a
vertex v is assigned to.

14

2.3. Parallel Algorithms

Usually the main reason why someone is interested in parallel algorithms is to compute
the solution of a problem a lot faster. But in the case of distributed programs it also
allows us to use a lot more resources other than processing power, e.g. main memory.

To see how well a parallel algorithm performs/scales (i.e. how much faster it is), we
look at the speed up S = Ts/1,. That is the runtime Ty of the sequential algorithm
divided by the parallel runtime 7,. In case of p processors we would hope that the
parallel versions is p times faster than the sequential version. In [3] Amdahl made the
observation that the fraction a of a program that cannot be computed in parallel is
constant and showed how well a program performs for different sizes of a. This lets us
directly compute the parallel runtime 7}, of a algorithm on a system with p processors:

T

Ty=aTs+(1-a) —
p

This results in the following speedup for a parallel program:

Ty Ty 1
P OCTS+(1 Oé) p o+ P

This formula is also known as Amdahl’s Law [12, p. 53]. One can directly derive from it
that the speedup cannot exceed 1/a.

But Gustafson made in [18] the observation that in practice people are not interested
in getting their computations done faster, but instead use a larger number of processors
to solve the problem for a bigger input size in the same time. Therefore he suggested to
fix the runtime and not the problem size. Another observation was that the time spent
on the sequential part of the program does not increase with the problem size, instead
it remains constant. This lets us split the runtime 7}, of the parallel program (using p
processors) into a sequential part ¢s and a parallel part t,: T, = ts +t,. Using this
information we get for the sequential runtime of the program Ty = ¢, 4 p t,. Scaling
ts +t, to 1 gives us a speedup of

S:;—i:m:ts'i‘ptp:ts'f'p (1_ts):p_ts(p_1)
In this case t, represents the sequential fraction of the parallel runtime 7,. This formula
is also known as Gustafson’s Law [12, p. 819].

Those two laws suggest two different approaches to measure the performance of a
parallel algorithm. The first is known as strong scaling and based on Amdahl’s law [12,
p. 1127]. In this case we fix the problem size and increase the number of processors.
In the optimal case the speed up would increase linear with the number of processors
(doubling the number of processors should halve the runtime).

The other approach is known as weak scaling and is based on Gustafson’s law [12,
p. 1127]. This time we increase the problem size by the same fraction as we increase the
number of processors, hoping that the problem size for each processor remains constant.
In this case we should see a constant runtime of the algorithm, in case of optimal scaling.

15

3. Related Work

3.1. Greedy Weighted Matchings

One of the earliest and simplest approximation algorithms for the weighted matching
problem is the greedy algorithm shown in Algorithm 3.1.1. It simply adds the heaviest
remaining edge to the matching and removes this edge and adjacent edges until no
edges are left. An interesting property of this algorithm is that it guarantees an 1/2-

Algorithm 3.1.1 Compute an approximate weighted matching
greedy (G = (V, E)):

1: Mgreedy =0

2: while F # () do

3: e ={a,b} edge with highest weight in

4: Mgreedy = Mgreedy) {6}

5 remove all edges incident to a or b from F

approximation of the optimal result. For each edge e that is added to the matching we
miss at most two edges (both adjacent to e) of the optimal result. However the combined
weight of the missed edges is at most twice the weight of the edge e [4].

The obvious best runtime for the greedy algorithm is O(m logn), for non multi-graphs,
when using comparison based sorting to sort the edges by decreasing weight.

Preis showed that a variation of the greedy algorithm provides the same 1/2-approximation
factor as the greedy algorithm but with a linear runtime O(m) [30]. Preis’ algorithm

Algorithm 3.1.2 Compute an approximate weighted matching
LAM(G = (V, E)):

1: Myapy =10

2: while F # () do

3: e ={a,b} alocally heaviest edge of £

4: Miav = Mpamv U {e}

5. remove all edges incident to a or b from E

LAM is shown in Algorithm 3.1.2. The difference to the greedy algorithm is that instead
of choosing the heaviest remaining edge LAM chooses a locally heaviest edge. An edge is
a locally heaviest edge, if it is heavier than any of its remaining adjacent edges. The idea
to choose locally heaviest edges will be one of the main ideas of the following chapters.

The LAM-algorithm is a more general version of the greedy algorithm. Obviously LAM
simulates the greedy algorithm if it chooses the heaviest remaining edge each round. The

17

3. Related Work

heaviest remaining edge must be a locally heaviest edge. In case of unique edge weights
the LAM-algorithm computes for each possible run (the order in which edges are added
to the matching) the same matching (Theorem B.1), therefore it computes the same
matching as the greedy algorithm and the weight of the matching is at least half the
weight of an optimal matching.

Preis also showed this 1/2-approximation for arbitrary edge weights.

3.2. Karp-Sipser

Karp and Sipser propose in [21] a simple algorithm for the maximum cardinality match-
ing problem. Despite its simplicity Karp and Sipser show that the algorithm is expected
to give near optimal results for random graphs. The basic structure of this matching
algorithm is shown in Algorithm 3.2.1. We assume that the provided graph initially does
not contain any degree zero vertices. The algorithm is organized in rounds and in each
of these rounds the algorithm looks for degree one vertices. If there is such a vertex its
incident edge is added to the matching otherwise an edge is chosen at random and added
to the matching. Using a list to keep track of degree one vertices, it is easy to implement

Algorithm 3.2.1 Compute a matching using the Karp Sipser heuristic [21]
ks_matching(G = (V, E)):
1: M=0
2: while G not empty do
if G contains degree one vertex then
v one of the degree one vertices
e = {v,u} the edge incident to v
M = MU{e}
remove e and all adjacent edges from G, also remove all degree zero vertices
else
pick an edge e = {v,u} at random
10: M = MU{e}
11: remove e and all adjacent edges from G, also remove all degree zero vertices
12: return M

ks_matching in linear time. Whenever an edge e = {u, v} is added to the matching the
edge e and its adjacent edges are removed from the graph. For each removed adjacent
edge we have to check the degree of the remaining end vertex. If the degree is one we
add the vertex to the list of degree one vertices. The runtime for removing a matched
edge is O(deg(u) + deg(v)) this gives a total runtime of O(m).

Selecting a degree one vertex is called a degree 1 reduction by Magun in [24]. As
proven by Karp and Sipser a degree 1 reduction does not change the optimality of a
maximum cardinality matching [21]. In the same paper Karp and Sipser also showed
that for a degree two vertex u, with incident edges e and €', either e or €’ is an edge of
an maximum cardinality matching M. This observation is called a degree 2 reduction

18

3.3. Optimal Weighted Matchings of Trees

by Magun. Karp and Sipser also propose another algorithm which additionally uses a
degree 2 reduction if there is no degree one vertex.

Other variants of those two algorithms are studied in [24] and [8]. Those algorithms
are still based on degree 1 and degree 2 reductions but instead of choosing a random edge,
if there is no degree one or degree two vertex, another heuristic is used. For example
choosing a remaining vertex of minimal degree and an incident edge of this vertex.

3.3. Optimal Weighted Matchings of Trees

Solving the maximum cardinality matching problem for trees can be easily done in linear
time using the degree 1 reduction from the Karp and Sipser algorithm. There is always
a degree one vertex in a tree and hence we get a optimal solution for the maximum
cardinality problem.

Solving the maximum weighted matching problem for a tree can also be done in linear
time using a dynamic programming approach [32]. It is easier for this algorithm to treat
the trees as directed trees starting at a distinct root vertex r.

The optimal solution of a tree T can be computed by using the optimal solutions of
the subtrees of T'. For each subtree s of T there are two possible matching results. Either
the incoming edge to s is matched or it is not. The incoming edge of a subtree s is the
edge which connects s with its parent. Those two possible results can be represented by
the corresponding accumulated weights of the result of the subtree s. From now on we
may also talk about the vertex s, in this case we mean the root of the subtree s.

If the incoming edge of s is matched we cannot match any of the outgoing edges of s.
Thus the result for this case is the weight of the incoming edge plus the weights of all
subtrees of s for the case that the incoming edges of those subtrees are not matched.

If the incoming edge of s is not matched we can match one of the outgoing edges of
s. Thus the result for this case is the sum of the weights of all subtrees of s depending
whether the incoming edge is matched.

(1,0) (1,0) (1,0)
Figure 3.3.1.: Simple example for computing matchings in trees.
An example is shown in Figure 3.3.1. Each edge has a weight of 1. Next to each
vertex of the tree is a pair. The first entry specifies the weight at the vertex’s subtree

(including the incoming edge) for the case that the incoming edge is matched and the
second entry gives the weight for the case that the incoming edge is not matched. There

19

3. Related Work

is a special case for the root of the tree. Obviously this vertex does not have any incoming
edges, thus we say that the incoming edge has weight 0. In Figure 3.3.1 the optimal
accumulated weight is 2. To get the edges of the matching we walk through the tree
from top to bottom and add edges according to the weight-pair at each node and the
edges that already have been added.

Algorithm 3.3.1 shows the general structure how to compute an optimal matching for
a given tree. At first we fill a table O storing for each vertex/subtree which outgoing
edge will be matched if the incoming edge is not matched. The outgoing edges stored in
O are represented by the other end vertex of the edge, i.e. an entry O[v] represents the
edge {v, O[v]}. Initially each entry of O references a non existent vertex.

Algorithm 3.3.1 Compute maximum weighted matching of a tree

weighted_matching_of_tree(T):
. Initialize(O, T) // One entry for each node of T

1

2:

3: fill_subtree_table(T, O)

4:

5 M = @

6: add_matching_edges(root(T'), false, O, M)
7
8

: return M

Algorithm 3.3.2 describes the computation of the subtree table O. At first we initialize
another table S. This table stores for each vertex of T' a pair containing the two possible
accumulated weights of the corresponding subtree. The first entry represents the case
that the incoming edge is matched and the second entry the case that the incoming edge
is not matched. Afterwards we compute a breadth first traversal (BFS-traversal) of the
tree T'. This traversal is used to fill both tables O and S bottom up, by walking through
the BFS-traversal in reverse order. The algorithm distinguishes the cases that a vertex
is a leaf or an inner vertex.

In the case of inner vertices we have to be careful when computing outgoing edges.
Because if the incoming edge is not matched we can match one of the outgoing edges,
but we do not have to. Figure 3.3.2 shows an example were in one case (vertex v) no
outgoing edge is matched. This inner vertex will not be matched at all. In such a case
the corresponding entry of the table O references a non existent vertex, to indicate that
no outgoing edge will be matched.

To check if an outgoing edge will be matched, in the case that the incoming edge is
not matched, we have to verify that the accumulated weight increases. An outgoing edge
increases the accumulated weight by the difference ¢ of the two weights of its subtree:
matched incoming edge (w;) and incoming edge not matched (ws).

C= W] — w2

We want that c is at least 0, i.e. it does not matter whether we match the incoming edge
or not. Also an edge is only matched if its increment is larger than the best increment

20

3.3. Optimal Weighted Matchings of Trees

Algorithm 3.3.2 Fill subtree table of tree
fill_subtree_table(T', O):
1. initialize(S, T') // Results of subtrees of T
2: bfs_traversel = create_bfs_traversal(T)
3:
4: /| Traverse the tree bottom up
5: for n € reverse(bfs_traversel) do

6: w = incoming_weight(n)

T

8: if out_degree(n) == 0 then

9: Sin] = (w, 0)

10: else

11: w; =w /] Weight if the incoming edge is matched
12: for all o € outgoing_neighbors(n) do

13: w; = w; + S]o].second

14:

15: w, =0 // Weight if the incoming edge is not matched
16: b =0 // Best weight difference

17: for all o € outgoing neighbors(n) do

18: ¢ = Slo] first - S[o].second

19: if ¢ > b then

20: w, = w, + (S[o].first - b)

21: O[n] =0

22: b =c

23: else

24: w; = w, + Slo].second

25:

26: S[n] = (w;, w}) // Set the result for the current subtree

b observed so far. This check is done in line 19 of Algorithm 3.3.2. If an outgoing
edge is matched we have to compute the value of the new accumulated weight, i.e. we
have to subtract b and add the weight w;. Subtracting b from the accumulated weight
corresponds to the case that we do not match the corresponding edge of b.

Algorithm 3.3.3 describes the computation of matched edges. The first important
observation for this function is, that the second entry of the root-vertex entry of the
table S (computed by Algorithm 3.3.2) always specifies the mazimum of the two values.
The first entry of this pair is just the sum of all weights of subtrees such that the incoming
edge of them is not matched (the incoming edge of the root vertex has weight 0). But
the second entry is either equal to this value or larger in the case that the accumulated
weight is improved by matching one of the outgoing edges of the root. Thus we can
say when calling add_matching_edges for the root-vertex, that the incoming edge is not
matched and we do not need any further information from the table S, we just have

21

3. Related Work

1
04(6,5)
3

3,5)
2N
(4,0) (5,0)

Figure 3.3.2.: Unmatched internal vertex.

Algorithm 3.3.3 Add matched edges to the matching
add_matching_edges(root, added_incoming, O, M):

1: if added_incoming then
2: for all n € outgoing_neighbors(root) do
)

3: add_matching_edges(n, false, O, M

4: else

5. for all n € outgoing_neighbors(root) do
6: if n == O[root] then

7 M = M U {edge(root, n)}

8: add_matching_edges(n, true, O, M)
9: else

10: add_matching_edges(n, false, O, M)

to know which outgoing edge is matched if the incoming edge is not. Apart from this
Algorithm 3.3.3 is just a depth first walk through the tree.

The total runtime of Algorithm 3.3.1 is in ©(n), where n is the number of vertices of
tree T'. The runtime of Algorithm 3.3.1 is the sum of the runtimes of Algorithm 3.3.2
and Algorithm 3.3.3. Obviously a lower bound for the runtime is £2(n), each vertex is
visited at least once.

The main loop of Algorithm 3.3.2 visits each vertex once and for each vertex we do
some computations for the outgoing edges. But the time spent for each outgoing edge
has a constant upper bound of o. All the other computations done for the vertices
only require a constant amount of time. This gives an upper bound of ¢ + o out_deg(v)
for the time spent on each vertex v. Therefore the total runtime of the main loop of
Algorithm 3.3.2 is at most:

Z ¢+ o out_deg(v) = (Z c) + (o Z outdeg(v)>

veV veV veV
=cn+o(n—1)=0(n)

22

3.4. Global Paths Algorithm

A tree has exactly n — 1 edges. The computation of the BFS-traversal and the initializa-
tion of the table S can both be done in O(n). Thus the total runtime of Algorithm 3.3.2
is in O(n).

With a similar argumentation (each vertex is visited once and we look at each outgoing
edge once) we see that Algorithm 3.3.3 has a runtime of O(n).

3.4. Global Paths Algorithm

The global paths algorithm (GPA) is a matching algorithm presented by Maue and
Sanders in [26]. This is the main algorithm we use for comparison with the algorithms
presented in this thesis.

Algorithm 3.4.1 Compute a weighted matching
GPA(G = (V, E)):
s M=10
E' =10 // Collection of paths and cycles
for all edges e € E in decreasing order do
add edge e to E’ if e is applicable
for all paths and cycles P in E' do
M = M U max_weighted_matching(P)
return M

During the first phase of GPA, shown in line 3 of Algorithm 3.4.1, edges are added
to a set E' in decreasing order if they are applicable. That is similar to the greedy
algorithm. An edge is applicable, if the edge connects two different paths, of E’, at their
end vertices or if it connects the two end vertices of an odd length path — a cycle of even
length is created. Initially vertices are considered as paths of length zero. The resulting
set E’ consists of paths and cycles. This is similar to the PGA and PGA’ algorithms
from [9, 10] they both grow paths at first and then compute weighted matchings of those
paths. In the second phase of the GPA algorithm a maximum weighted matching is
computed for each path and cycle of E’. This can be done in linear time using dynamic
programming [26].

The resulting matching produced by a single round of GPA is not necessarily maximal
as is shown in Figure 3.4.3. A single round would miss the edge h. Maue and Sanders
propose to run the GPA algorithm for three rounds, experimental results have shown
that this usually produces maximal results [26]. Drake and Hougardy propose in [10] to
just add any remaining edges until the result is maximal, i.e. no edges are remaining.

Like the greedy algorithm the global paths algorithm has a guaranteed approximation
factor of 1/2, but performs a lot better in practice [26]. The runtime of GPA is O(mlogn)
for comparison based sorting. The first phase has runtime O(mlogn) and the second
phase can be computed in linear time [26].

23

3. Related Work

a,50 b, 10 ¢ 10

h, 1 d, 50

g, 50 f, 10 e, 10

Figure 3.4.3.: A single round of GPA does not return a maximal matching.

3.5. Parallel Matching Algorithms

There has been some work on parallelizing matching algorithms, although quite a lot of
the sequential matching algorithms are inherently sequential. For example in the greedy
algorithm from Algorithm 3.1.1 the order in which the edges are visited is predefined
and whether an edge is matched depends on the previously matched edges.

Patwary et al. describe in [28] a method how to parallelize the algorithm from Karp
and Sipser to find approximate maximum cardinality matchings. Instead of distributing
the vertices of a graph over the available processors they decided to distribute the edges.
We are not going into more detail of this algorithm since we are more interested in
weighted matchings than in cardinality matchings.

Hoepman suggests in [19] a parallel matching algorithm based on Preis’ idea to add
locally heaviest edges to the matching. Hoepman assumes that there is one processor for
each vertex v € V' of the graph G, of course in practice that is not a valid assumption.
Each vertex v is assigned to one processor and knows all its incident edges, to be able
to compute its heaviest incident edge e = {v,u}. The other end vertex u of e is called
the candidate of vertex v. If the vertex v is the candidate of the vertex u, then we
know that the edge e is a locally heaviest edge. Therefore to decide on locally heaviest
edges, vertices just have to send messages to their candidates. Those messages are called
request messages.

Algorithm 3.5.1 describes this approach, but the notation is the same as the one chosen
by [25]. The set R is used to store the vertices from which request messages have been
received. The set S specifies all the adjacent vertices that have not been matched. We
also call adjacent vertices neighbors. Initially S is set to the neighborhood N (v) of the
vertex v, that is the set of all adjacent vertices of v in the graph G. Each neighbor of
v that has been matched is removed from the set S. The function Hg(v) returns the
adjacent vertex u € S of v such that the edge {v,u} is the heaviest edge of all edges
from vertex v to a vertex in S. Therefore it is the candidate of v, of all the remaining
vertices. If there is no adjacent edge of v in S then Hg(v) returns null.

At first each processor computes a matching candidate ¢ = Hg(v) and sends the
message (req) to ¢, if ¢ # null. Sending or receiving a message from a vertex is short
for saying to send/receive a message to/from the processor responsible for this vertex.
Sending a message (req) from vertex v to a vertex u tells u that the vertex v wants to
match with u. If v = Hg(u) then u knows that the edge to v is a locally heaviest edge.

24

3.5. Parallel Matching Algorithms

Algorithm 3.5.1 Compute a matching in parallel — one processor for each vertex v [25]

hoepman_matching(v € V):
: R=10
2: § = N(U)
¢ = Hg(v)
if ¢ # null then
send message (req) to ¢
while S # () do
receive message m from some vertex u
if m = (drop) then
S =5\{u}
if uw = c then
¢ = Hg(v)
if ¢ # null then
send message (req) to ¢

_ = = =
Wy P9

14: else

15: R=RU{u}

16: if c € R then

17: for all w € S\ {c} do

18: send message (drop) to w
19: S=90

20: return c

Afterwards each processor starts to communicate with the other processes, until all
vertices are removed from the set S. It is possible that S gets empty but v is not
matched, in this case v is an unmatched vertex.

Within the while loop each vertex v at first receives a message from an arbitrary source,
actually those messages must come from neighboring vertices. Afterwards v checks the
kind of message it just received. If it is a (drop)-message it removes the sending vertex
from its set S, a (drop)-message indicates that the neighbor is matched. After removing
the neighbor from S a new candidate ¢ = Hg(v) is computed if S is not empty and a
(req)-message is send to the new candidate.

If the received message is of type (req) then the sending vertex u is added to the set
R. In the last step during one round of the while-loop we check if ¢ € R. If cis in R we
know that the edge to c is a locally heaviest edge. Hence we send (drop)-messages to all
of v’s neighbors but ¢, and set S to (). The matched partner is not necessarily the vertex
from which we just received a message. If the message received is a (drop)-message a new
candidate is computed and it is possible that we have already received a (reg)-message
from this vertex. If the final value of ¢ is null then there is no matched edge incident to
v and v is an unmatched vertex otherwise the edge {v, ¢} is part of the matching.

As shown in [19] the weight of the resulting matching is at least half the weight of
the optimal solution. One can prove this by showing that the temporal order in which
processors decide on locally heaviest edges is a valid order in which Preis’ LAM algorithm

25

3. Related Work

adds edges to the matching. The total number of sent messages is at most 2m, no more
then 2 messages are sent per edge. One message from each end vertex [19].

As previously mentioned Hoepman’s method is not suitable for real world applications
since there are usually a lot more vertices than processors available. But both Manne
et al. [25] and Catalyiirek et al. [7] have described parallel implementations based on
Hoepman’s algorithm.

Both algorithms have in common that they use pre-distributed graphs to make sure
that about the same number of vertices (~ n/p) is assigned to each processor while
minimizing the number of cross edges. The number of cross edges is an indicator for the
total number of communication operations. Each processor also stores ghost vertices to
handle cross edges.

The algorithm by Manne and Bisseling [25] is based on the following sequential algo-
rithm. The sequential algorithm at first computes for each vertex v the incident edge
with the highest weight, represented by the matching candidate ¢(v). If ¢(c(v)) = v then
edge {v,c(v)} is a locally heaviest edge and we add it to the matching M, also the two
vertices v and c(v) are added to a queue D. This queue is used to keep track of matched
vertices that have not been removed from the graph. Afterwards we loop through the
queue D. In each round we remove one vertex v from D and update the information
of each neighbor. The edges to the adjacent vertices x are removed and the matching
candidate of vertex x is recomputed if ¢(x) = v. If this results in a new found locally
heaviest edge (c(c(z)) = z) we add the edge {z,c(x)} to M and z and c(x) to D. The
loop, and hence the algorithm, terminates as soon as D becomes empty.

The parallel implementation at first runs on each processor the sequential algorithm
for the vertices assigned to this processor until no more locally heaviest edges can be
found. Then a communication phase starts which is similar to Hoepman’s algorithm,
this results in a BSP-style algorithm. If a boundary vertex v (i.e. a vertex adjacent
to a ghost vertex) has been matched in the sequential part, a message is sent to each
processor where v is a ghost vertex to inform those processors that v is matched. In
case that a vertex v wants to match with a ghost vertex w this request information is
sent to the processor p(u). If on processor p(u) u wants to match with v a new locally
heaviest edge is found and added to the matching. The vertices v and u are added to the
queue D. After the communication phase has finished the sequential phase starts again
if D is not empty. This implementation was tested using up to 32 processors and the
experiments showed that the algorithm scales well for this number of processors [25].

Manne and Bisseling also point out an interesting connection between computing
weighted matchings based on locally heaviest edges and a parallel implementation for
the maximal independent set problem by Luby [23]. We get back to the connection to
Luby’s algorithm later in this work.

The parallel algorithm by Catalyiirek et al. [7] uses two interleaved loops. The inner
loop iterates over internal vertices and the outer loop iterates over boundary vertices.
Similar to Manne’s algorithm the inner loop uses a queue to keep track of matched
vertices that have to be processed. The outer loop tries to match boundary vertices and
creates messages if necessary. Unlike the Hoepman algorithm three kinds of messages
are used: Request messages, succeed messages (a vertex has been matched) and failed

26

3.5. Parallel Matching Algorithms

messages (a vertex cannot be matched). If there are several messages from one processor
p; to a processor p; those message are bundled in a single big message, thus reducing
the total amount of messages.

Catalytirek et al. also claim that their implementation is asynchronous, although it is
not clear how this is done from the information provided in their paper. As they show
in their paper the algorithm scales well for thousands of processors (up to 16384) using
grid graphs and bipartite graphs as the input.

27

4. Sequential Algorithms

4.1. Local Max Algorithm

Now we introduce another variation of Preis’ algorithm to compute approximate max-
imum weighted matchings. We call it local max algorithm. Algorithm 4.1.1 shows the
basic outline of this variant. As usual, the algorithm gets a graph G = (V, F) as the in-
put, and returns a maximal matching of this graph. The weight of the returned matching
is at worst 1/2 the weight of an optimal result. The difference to Preis” LAM algorithm

Algorithm 4.1.1 Compute an approximate weighted matching
local.max(G = (V, E)):

1. M=10

2: while F # () do

3: L = get_locally_heaviest_edges(QG)
4. M=MUL
5
6

remove_matched_edges(G, L)
: return M

is, instead of selecting a single locally heaviest edge in each round, we select each edge
that is a locally heaviest at the start of the round. Those edges are then added to the
matching and afterwards removed from the graph as well as all adjacent edges. There
is one problem with this approach of adding edges, it only works if we assume that no
two adjacent edges have the same weight. Otherwise it could happen that two adjacent
edges are added to the matching. To solve this problem we use a mechanism to break ties
in the case that there are two adjacent edges with the same weight. Thus, the algorithm
implies a graph with unique edge weights. Techniques to break ties might be based on
the IDs of the edges or, if there are no edge IDs, one might use vertex IDs, if those exist.
In the case of edge IDs the edge with the higher ID wins. In the case of vertex IDs we
have two edges e = {u,v} and f = {w,x} with the same weight. To break the tie we
can use max{u,v} > max{w, x} or max{u,v} = max{w, z} and min{u,v} > min{w, z}
[25]. Those are just two options, it is not hard to think of other possibilities. From now
on we assume that we have a graph with unique edge weights.

There are several advantages to this approach. It is really easy to implement without
any complex data structures, if one is satisfied with a runtime of O(m') for a single
round. Here, m’ is the number of remaining edges at the start of each round. Such
an implementation is described in Section 4.1.1. Although in the worst case this yields
an algorithm with runtime O(m?). A worst case example is shown Figure 4.1.1. The
example shows a path of length m with increasing edge weights. During each round

29

4. Sequential Algorithms

1 2 3 m

Figure 4.1.1.: O(m?) runtime for local max algorithm.

Algorithm 4.1.1 would only select a single edge (the heaviest one) and thus require a
total of m/2 rounds, the matched edge and the one adjacent edge will be removed.
However the experimental results in Section 4.4 suggest that far more than half of the
remaining edges are removed during each round. Hence in practice the expected runtime
is in O(m). A slight variation of the algorithm also provides this expected value in theory.
Although this variation is not suitable for maximum weighted matchings. We get to this
in more detail in Section 4.1.2.

Another nice fact about Algorithm 4.1.1 is that it provides us with a simple BSP-style
parallelization approach. We will talk about the parallelization in Section 5.1.

Now lets have a look at a more interesting example than the one from Figure 4.1.1. In
the top picture of Figure 4.1.2 we see a graph with 11 vertices and 16 edges with weights
assigned to them. During the first round of Algorithm 4.1.1 the edges {1,2} and {4,6}

O*‘ - _1_2_ - _‘5 9..'\\ 12
15, 107 s 8 1g..+10
- : 16 -
12 e8
el 2 "

DOe
w
N

Figure 4.1.2.: Example for Algorithm 4.1.1. Top picture first round, bottom picture
second round.

are selected (lets assume that the tie breaking chooses {4, 6} instead of {6,10}). At the
end of the first round those edges and all adjacent edges will be removed. The resulting
graph is shown in the bottom picture of Figure 4.1.2. During the second round the edges
{0,5}, {7,8} and {9,10} are selected. Removing them and the adjacent edges results
in an empty graph. The algorithm matched the 5 edges {1,2}, {4,6}, {0,5}, {7,8} and
{9,10} with a total weight of 74 and one unmatched vertex is left.

30

4.1. Local Max Algorithm

4.1.1. Implementation Details

Our implementation of Algorithm 4.1.1 is shown in Algorithm 4.1.2. As we have already
mentioned, we do not need any complex data structures. It is sufficient to represent
the graph by an edge-array. Further we need two more arrays of size n to keep track
of matched vertices and the heaviest incident edge of a vertex. An edge is represented

Algorithm 4.1.2 Compute an approximate weighted matching

local_max_implementation(G = (V, E)):
1: M=0

2: C(n, dummy) // Initialize candidates
3: m(n, false) // Initialize matched vertices
4: while F # () do

5. for alle={v,u} € E do

6: if better_candidate(e, Clv]) then
7: Cv]=e

8: if better_candidate(e, C[u]) then
9: Clul =e

10:

11: for alle = {v,u} € E do

12: if e == C[v] and e == Clu| then
13: M=DMUe

14: m[v] = true

15: mlu] = true

16:

17: for all e = {v,u} € E do

18: if m[v] or m[u] then

19: E=FE\{e}

20: else

21: Clv] = dummy

22: Clu] = dummy

23:

24: return M

by its two end vertices u and v, the weight of the edge, and a unique ID. The ID is
only stored for a simpler way to break ties, especially when dealing with multi graphs.
The array C' is used to store the heaviest incident edge of each vertex, we call these
edges candidates. Initially, every entry is set to a dummy edge. The dummy edge has
the property that its weight is smaller than the weight of any other edge. The array
m stores for each vertex whether it is matched or not, this helps us to remove matched
edges and edges adjacent to a matched edge. Every entry is initialized to false.

In each round we iterate three times through the remaining edges. In the first iteration
(line 5) we set the mazimal incident edge of each remaining vertex with a degree # 0.
For each edge e = {u,v} we check if it is heavier than the heaviest candidate of u. If

31

4. Sequential Algorithms

that is the case, we update the candidate of u. The same check is done for the other
end vertex v. We use the function better_candidate to check if e is heavier than the
candidate. The function compares the edge weights and, in the case of a tie, it uses hash
values of the edge IDs to break the tie. The hash value of an edge ID is computed using
the 32Bit or 64Bit integer hash function proposed by Wang in [35]. By using a hash
function we hope to achieve a random permutation of the edge IDs and thus avoiding
a situation like the one shown in Figure 4.1.1 where we have increasing edge weights
along a path. In such a case we would only get a few locally heaviest edges each round,
therefore increasing the runtime.

During the second iteration (line 11) of the edges we identify locally heaviest edges.
An edge e = {u,v} is a locally heaviest edge if it is the heaviest incident edge of both
end vertices u and v. In this case the edge e is added to the matching M and the end
vertices u and v are set to be matched.

The last iteration is used to remove matched edges and edges adjacent to matched
edges. Those two cases correspond to the case that at least one of the end vertices is
matched. If an edge is not removed it is a candidate for a locally heaviest edge during
the next round. In this case we set the candidates of the end vertices to the dummy edge
again. Otherwise, we could have stored a candidate entry of an edge of heavier weight
that has been removed. Although in our case the word ‘remove’ is technically incorrect.
Instead of removing edges we deactivate them. This is done by using the first part of the
array to store active edges and the second part to store inactive edges. This separation
is indicated by a reference to the first inactive entry. Initially all entries are active and
the separation reference is set to m. Now whenever we ‘remove’ an edge we swap it with
the last active edge and decrement the separation reference by one, obviously this can
be done in O(1). Also in this case we cannot increment the array position in the for-loop
(line 17) because we just copied another edge to this position.

The iterations through the remaining edges are done by iterating from entry 0 up to
the separation reference.

4.1.2. Theoretical Analysis

Lemma 4.1. Algorithm 4.1.1 returns a mazimal matching M for a graph G = (V, E)
with unique edge weights.

Proof. At first we show that the returned set of edges M is a correct matching, that is,
no two edges of M have a common end vertex. Let there be two edges e, e/ € M such
that both edges share a common end vertex. Obviously both edges cannot be added
in the same round because only one of them can be a locally heaviest edge (they have
a common end vertex and edge weights are unique). But when we add one of the two
edges to M we remove the other one from the graph G because it is adjacent to the first
edge. Thus, there cannot be two adjacent edges in M.

Now we have to show that M is maximal. A matching is not maximal if there are two
vertices u, v € V such that both vertices are not incident to edges of M and there is an
edge e € F which has those two edge as its end vertices. There are only two cases in

32

4.1. Local Max Algorithm

which e is removed from G. The first case is that e was matched, which it was not, the
other case is that e is adjacent to a matched edge. But both u and v are not incident to
matched edges and thus e is not adjacent to a matched edge. Hence e was not removed
from the graph and the algorithm would not have terminated because E # ().

O

Lemma 4.2. The weight of the matching M computed by Algorithm 4.1.1 is at least
half the weight of the optimal result.

Proof. Algorithm 4.1.2 is a valid run of Preis’ algorithm, only locally heaviest edges are
added, the LAM algorithm could decide to do it in the same order. Thus the result
must be at least one half the weight of the optimal result, as it has been shown for Preis’
algorithm.

O

Lemma 4.3. The runtime of a single round of Algorithm 4.1.2 is linear in the number
of the remaining edges and independent from the number of vertices.

Proof. Let m be the number of remaining edges at the start of each round. We iterate
over each edge 3 times. For most operations it is easy to see that the time spent for
a single edge is constant. The problematic operations are the removal of an edge and
the check if one edge is heavier than another edge. This check consists of at most two
comparisons and the computation of two hash values. The hash functions from [35]
consist of a constant number of primitive operations (like a shift). Hence the total
runtime of the check is constant.

As described in Section 4.1.1 the removal of an edge can be done in constant time, as
well. This gives us a total runtime of O(m) for a single round of Algorithm 4.1.2.

The iteration over the remaining edges of the graph is independent from the number
of vertices of the graph, because all remaining edges are stored in one consecutive block.
Hence if there are any degree zero vertices those are never considered during a round.

O]

The following analysis for the expected runtime of Algorithm 4.1.1 is based on a slight
variation of the algorithm. For the analysis we assume an algorithm that assigns random
edge weights to all remaining edges at the start of each round. This addition does not
change the asymptotic runtime of a single round, we just have to iterate one more time
over the edges. However the result no longer gives us any approximation guarantees for
the maximum weighted matching problem, but the adjusted algorithm still computes
mazimal matchings.

Theorem 4.1. The expected number of removed edges of Algorithm 4.1.1 during one
round is at least half the number of remaining edges, if we assign random weights to each
remaining edge at the start of a round.

Proof. The probability p(e) of a single edge e = {u, v} to be a locally heaviest edge is

1
ple={uv}) = d(u) +d(v) — 1

33

4. Sequential Algorithms

The edge e must be the heaviest edge of the d(u)+ d(v) — 1 distinct incident edges of the
end vertices u and v, and it is equally likely for each of those edges to be the heaviest
one (because of the random weights). This gives us

s=> ple)
eckE

for the expected number of heaviest edges, and thus matched edges, during one round.

To get a lower bound for the expected number of removed edges, we count marks that
we assign to removed edges. An edge is removed if it is either a matched edge or incident
to a matched edge. For a matched edge e = {u,v} we count two marks and for each
edge incident to e we count one mark. This gives us a total of d(u) + d(v) marks that
are counted for each matched edge. This situation is shown in Figure 4.1.3. Therefore

L
| |

Figure 4.1.3.: Edge with adjacent edges and marks.

the expected number of counted marks of an edge e = {u, v} is

d(u) + d(v)
d(u) +d(v) — 1’

i.e. the probability that e is a locally heaviest edges times the number of marks counted
for e. Because of the linearity of expectations we get for the total expected number of
counted marks of all edges:

e={uv}ek

Obviously we counted for each matched edge two marks. The other removed edges are
incident to up to two matched edges, hence we counted up to two marks for those edges
and therefore we counted up to two marks for each matched edge. This gives us a lower
bound of m/2 for the expected number of removed edges during a single round.

O

Theorem 4.2. The expected runtime of the adjusted version of Algorithm 4.1.2, to
compute maximal matchings, is in O(m +n). The adjusted algorithm assigns random
weights to the remaining edges at the start of each round

Proof. For the analysis of the runtime of the main while-loop of Algorithm 4.1.2 we
distinguish between two events (similar to [27, Theorem 5.8]): The first event is that
the number of remaining edges R(m) is less than %m, we call this event a good round.

34

4.1. Local Max Algorithm

The other event is the case that at least %m of the edges remain, we call this event a
bad round.

We know that the expected number of removed edges during one round is at least
m/2 (Theorem 4.1), hence we get for the expected number of remaining edge:

E[R(m)] < % (4.1)
Therefore a round is good as long as the number of remaining edges does not deviate
more than 1.5 times from its expected value:
3 (41) 3
Markov’s inequality [27, (A.4)] gives us an upper bound for the probability that R(m)
deviates by factor of 3/2 from it is expected value E[R(m)], that is the probability that

a round is bad:
1 2

Obviously larger deviations are less likely. Hence the probability that a round is good is
at least v = 1/3.

The runtime of a single round is at most ¢m for some constant ¢ (Lemma 4.3). For
the estimation of the runtime 7'(m) of the main while-loop of Algorithm 4.1.2 we make
the conservative assumption that a good round only removes 1/4 of the remaining edges
and a bad round removes no edges at all:

prob(R(m) > 3/2 E[R(m)])

T(m) <~ T (3;”) (1) T(m) + em

& fyT(m)SfyT<3;n>+cm
o Tm)y <7 (27 4+ €
m) < 1 7m

Inserting 1/3 for 7 gives us an upper bound for the expected runtime 7'(m) of the main
while-loop:

3m (3 1
< _— < — = == —
T(m) < T< 1) +3cm < ZEO <4> 3em = 3cm =% 12cm = O(m)

Before the main while-loop we have a initialization phase, used to allocate memory to
store temporary values. The asymptotic runtime of this phase is in O(n). Hence we get
for the total expected runtime of O(m + n).

Assuming a graph without any degree 0 vertices, we get that n € O(m) and the total
expected runtime of the algorithm is in O(m).

O

35

4. Sequential Algorithms

4.1.3. Matchings and Independent Sets — Luby’s algorithm

As we have already mentioned Manne and Bisseling point out a relation between Preis’
algorithm to compute approximate maximum weighted matchings and an algorithm
by Luby to compute mazimum independent sets [25]. An independent set of a graph
G = (V,E) is a subset I of the vertices V', such that no two vertices of I are adjacent in
G.

At first we define the notion of a line graph which is necessary for the relation between
independent sets and matchings. In a line graph L(G) of a graph G each vertex of L(QG)
corresponds to an edge of E and two vertices of L(G) are adjacent to each other if their
corresponding edges in G are adjacent [25]. An example for such a transformation is
shown in Figure 4.1.4.

b dl::>b d

e e

Figure 4.1.4.: Transformation of a graph G (left) to a line graph L(G) (right).

Obviously an independent set of a line graph L(G) of a graph G directly corresponds
to a matching of the graph G.

Luby describes in [23] a round based algorithm for computing a maximal independent
set of a graph G = (V, E) that corresponds to Algorithm 4.1.1. Luby’s algorithm com-
putes a random permutation 7 of the vertex IDs at the start of each round and then a
set I’ of vertices such that each vertex of I’ is locally minimal, i.e.

I'={veV|Vwe adj(v) : m(v) < m(w)} .

This set is then added to the independent set and all vertices of I’ are removed from the
graph.

The only real difference is that Luby uses IDs instead of weights. We would like to
point out that in Algorithm 4.1.1 only the ordering of the weights matters and not the
absolute difference between two weights. Hence, one could assign IDs to the edges using
the ordering given by the weights, which would basically result in the same algorithm.
Luby uses his algorithm to describe a distributed algorithm for the maximal independent
set problem as we are going to describe a distributed version of Algorithm 4.1.1.

One could argue that, instead of solving the matching problem directly, we transform a
given graph to its corresponding line graph and then solve the independent set problem
using Luby’s algorithm. The problem is that the transformation might require a lot
longer than solving the actual problem. E.g. think of a star, i.e. a connected graph G
where each vertex has degree one except for a single vertex with higher degree, each
edge is incident to this vertex. Such a graph has m = n — 1 edges and its corresponding

36

4.2. Mixed Algorithm — Karp-Sipser and Local Max

line graph L(G) is a complete graph with m vertices. Each edge of G is adjacent to each
other edge of G. A complete graph K, consists of m(m — 1)/2 edges. Therefore, L(G)
is quadratic in the size of the number edges (and vertices) of G.

4.2. Mixed Algorithm — Karp-Sipser and Local Max

In this section we introduce another variation of the Karp-Sipser algorithm to compute
approximate maximum cardinality matchings. This algorithm is a mix of the degree 1
reduction of the Karp-Sipser algorithm and the round based approach from Section 4.1.
Algorithm 4.2.1 shows the basic structure of this variation. At first we perform a degree 1

Algorithm 4.2.1 Compute an approximate cardinality matching
mixed(G = (V, E)):

1. M=0

2: while G #) do

remove_matched_edge(G, e)
// Match locally heaviest edges
10 L = get_locally_heaviest_edges(G)
1: M=MUL
12: remove_matched_edges(G, L)
13: return M

3: // degree 1 reduction

4: while Jv € V : deg(v) =1 do

5: pick an arbitrary degree 1 vertex v
6: e = incident_edge(v)

7 M=MU {6}

8:

9:

reduction as long as there are degree one vertices. Afterwards, we add the locally heaviest
edge (e.g. based on edge IDs) to the matching. Theses two steps are repeated as long as
the graph is not empty.

Obviously the heuristic phase of the algorithm is problematic. Unlike the Karp-Sipser
algorithm the heuristic to match each locally heaviest edge does not try to minimize the
number of non-optimal decisions. The Karp-Sipser algorithm only makes a single non-
optimal decision and then tries to make optimal decisions if possible. But Algorithm 4.2.1
tries to minimize the number of rounds of the outer while-loop. Therefore the algorithm
might be suitable for a BSP-style approach to parallelize it. A slight variation would be
to match only a fraction of the locally heaviest edges. This might increase the number
of rounds, but on the other hand this variation would try to make fewer non-optimal
decisions.

4.2.1. Implementation Details

Unlike in the implementation of the local max algorithm, we are using a graph data
structure based on an adjacency array [27, Section 8.2]. Such a data structure consists

37

4. Sequential Algorithms

of two arrays. One array which stores the adjacent edges of a vertex in a block and
a second array which stores for each vertex the start position of the vertex’s adjacent
edges in the edge array. The edge block of vertex 0 starts at position 0, the block of
vertex 1 starts right after the block of vertex 0 and so on. To get the end of one edge
block, one just has to look for the start of the next block. We are using a dummy vertex
to make sure that this invariant also holds for the last vertex. A simple example for such
a graph representation is shown in Figure 4.2.5.

Vertices:

Edges: |1]2]0]2]0]1]

Figure 4.2.5.: Adjacency array example for a triangle graph.

We also must be able to delete edges. Obviously, a traditional adjacency array is not
suitable for such a situation. Therefore, we are using the same mechanism as for the
edge graph from Section 4.1. Instead of deleting edges, we simply have two parts for the
blocks of incident edges of a vertices. The first part manages active edges and the second
part is for inactive edges. When deleting/deactivating an edge, we just have to swap the
edge with the last active edge. Within the vertex array we store the start of each block
and the end of the block of active edges. This also makes it easy to compute the actual
degree of a vertex v and the active degree of v, i.e. the number of active incident edges
of v.

As before we would like to be able to iterate over just the active edges. But in
this structure we do not have any continuous block of active edges and iterating over
the vertices and their incident active edges would cause at least O(n) steps per round,
because we would iterate degree zero vertices, too. Instead, we are using a list to keep
track of active vertices, those are the vertices with a degree of at least one. We also use
another list of vertices to keep track of degree one vertices.

For the degree 1 reduction phase we just have to pick a vertex from the list of degree
one vertices, add its incident edge to the matching and remove it from the graph. The
most complex operation is the removal of an edge. We will get to that shortly.

During the second phase we can implement the operation to pick locally heaviest edges
in a similar way as we do it in Algorithm 4.1.2. We just have to iterate over active
vertices and their incident active edges. Again the most complicated operation is the
removal of an edge. It is not enough to just set it inactive in the graph structure (as
we have already described). Deleting an edge also changes the degree of vertices. They
might become degree one vertices in which case we have to add them to the list of degree
one vertices or, in the case that a vertex becomes a degree zero vertex, we have to remove
it from the corresponding list. So far we are only deleting matched edges, but this means
that we also have to delete their adjacent edges. The implementation of the removal of
an edge e = {u, v} from the graph G is shown in Algorithm 4.2.2. We use a list to store
all modified vertices, i.e. we have deleted an adjacent edge. This list is used to check for
new degree one or degree zero vertices.

38

4.2. Mixed Algorithm — Karp-Sipser and Local Max

Algorithm 4.2.2 Delete an edge
delete_edge(e = {u,v}, G = (V, E)):
1: modified_vertices = ()

2: modified_vertices = modified_vertices U u

3: modified_vertices = modified_vertices U v

4: G=G\{e}

5:

6: for all active incident edges €/ = {u,v'} of u do
7. modified_vertices = modified_vertices U v’

8 G=G\{¢}

9:

10: for all active incident edges €/ = {u/, v} of v do
11: modified_vertices = modified_vertices U u’

122 G=G\{¢}

13:

14: for all v € modified_vertices do

15: if active_degree(v) == 1 then

16: add v to list of degree one vertices

17: else if active_degree(v) == 0 and v in list of degree one vertices then
18: remove v from list of degree one vertices

At first we add the end vertices u and v of the edge e to the list of modified vertices,
and afterwards we remove e from the graph. In the next two for-loops we add the missing
end vertices of the adjacent edges of e to the list of modified vertices and also remove
those edges from the graph. Removing/deactivating an edge from the graph G can be
done in constant time as we have already explained. Hence the total time for those two
loops is in O(deg(u) + deg(v)) and the number of modified vertices is deg(u) + deg(v).
The degrees correspond to those at the start of the delete operation.

The last loop checks whether each modified verter v is a degree one vertex or a degree
zero vertex. In the case of a degree one vertex we add the node to the list of degree one
vertices. If the degree of v is zero (line 17), we check if v is in the list of degree one
vertices and remove it if necessary. This check and removal can be done in constant time
by using an extra array to store the position of each vertex within the list of degree one
vertices and a move operation that copies the last vertex of this list to the position of
the vertex that is removed. This is similar to our swap operation. Without this check it
would be possible that degree zero vertices remain in the list of degree one vertices. For
example during the heuristic phase we do not delete all edges at once, we delete them one
after another. Thus, it is possible that a vertex temporarily becomes a degree one vertex.
This gives us a total runtime of O(deg(u) 4+ deg(v)) for a single deletion operation. An
implementation without this check for degree zero vertices would require an extra degree
check during the degree 1 reduction phase and we would need a deletion operation for
all locally heaviest edges during the second phase. Only one thing is missing, we have
not removed degree zero vertices from the list of active vertices. This is done by a single

39

4. Sequential Algorithms

run through this list and checking for degree zero vertices.

Let Mj be the set of matched edges of the degree 1 reduction phase. The set M7 has
at most n/2 edges, i.e. each vertex is matched. As we have already shown the removal
of an edge e = {u, v} has a maximal runtime of ¢(d(u) + d(v)), with ¢ a constant. This
gives us an upper bound for the runtime of the degree 1 reduction phase of

Z c(deg(u) + deg(v)) < Z ¢ deg(v) =2em = O(m) .

e={u,v}eM; veV

Finding locally heaviest edges also has a runtime of O(m) and the runtime of deleting
locally heaviest edges is in O(m) with the same argument used for the degree 1 reduction
phase. Removing degree zero vertices from the list of active vertices is not more expensive
than finding locally heaviest edges and thus the runtime is in O(m) of this operation.
In total this gives us a runtime of a single round of Algorithm 4.2.1 of O(m), where m
is the number of remaining edges at the start of a round.

4.3. Local Tree Algorithm

In this section we introduce a new algorithm to compute approximate maximum weighted
matchings, it is based on the computation of maximum weighted matchings of trees
(Algorithm 3.3.1). The algorithm also has some similarities with the GPA algorithm
introduced in Section 3.4 and the local max algorithm from Section 4.1 (Algorithm 4.1.1).
Like the local max algorithm, it works in rounds. At the start of each round we compute
a subset L of the remaining edges. This time however, we select edges if they are the
heaviest edge at one of their end vertices (not necessarily at both vertices) and add them
to the set L. The set L defines a set of trees, see Lemma 4.4. Hence the name local tree
algorithm. We then compute a maximum weighted matching for each tree defined by L,
by dynamic programming, and add those matchings to the final matching computed by
the algorithm. We also remove each matched edge and the adjacent edges from the given
graph. The algorithm terminates as soon as there are no more edges left. Those steps
are similar to the GPA algorithm. In both cases we compute a set of simple subgraphs
at first and then compute optimal results for those subgraphs.

Algorithm 4.3.1 Compute an approximate weighted matching
local_tree_matching (G = (V, E)):
1. M=0
2: while F # () do
: L = heaviest_incident_edges(G)

3

4: F = forest(L)

5. M’ = maximum_weighted_matching_forest(F’)
6: M=MUM

7. remove_matched_edges(G, M’)

8 return M

40

4.3. Local Tree Algorithm

The just described local tree algorithm is shown in Algorithm 4.3.1. The procedure
heaviest_incident_edges computes for each vertex of the given graph the heaviest incident
edge and returns those edges. Computing a maximum weighted matching for a set of
trees corresponds to the computation of a maximum weighted matching of a forest.

Figure 4.3.6 shows an example of a run of the local tree algorithm. In this example
the local tree algorithm performs only a single round. The regular and dashed lines are

12 R
~J2
13\ 10 5 8 15—
14\ 16 ______ /
\ \~‘l§

Figure 4.3.6.: Example for local tree algorithm.

the edges of the computed trees. Dotted lines represent edges which are not the heaviest
incident edge at one of their end vertices. As one can see there are two trees in this
example. The regular lines specify the edges of the maximum weighted matchings of the
two trees. After adding those edges to the resulting matching and removing them from
the graph no more edges are left and the algorithm terminates after the first round.

4.3.1. Implementation Details

For the implementation of the local tree algorithm we chose to use the same graph data
structure as in Section 4.1, i.e. the graph is represented by a simple array containing all
the edges of the graph. As described before, edges can be set inactive by swapping it
with the last active edge.

Computing the heaviest incident edge of each vertex is done in a similar way as the
computation of locally heaviest edges in Algorithm 4.1.2. We use an array to store a
reference to the heaviest incident edge for each vertex. Initially, each entry is set to a
dummy edge, which is lighter than any edge of the graph. In the actual implementation,
the memory for this array is allocated once outside of the function heaviest_incident_edge,
not like it is shown in Algorithm 4.3.2.

The heaviest incident edges of vertices are identified by one iteration through the
remaining edges and a second iteration through those edges is used to add the heaviest
incident edges to the set L.

The forest defined by the set L of heaviest incident edges is represented by an adjacency
list. We chose this structure because it supports fast insertion and deletion of edges, and
thus allows us to create a forest of L in linear time in the size of L. The forest structure
F initially allocates memory for all n vertices. Where n is the number of vertices of
the graph G passed to the local tree algorithm. This does not influence the asymptotic
runtime of the algorithm. During the first round of the algorithm we need memory for
each vertex, because for each vertex v there is at least one edge in L which has v as an
end vertex.

41

4. Sequential Algorithms

Algorithm 4.3.2 Return the set of heaviest incident edges
heaviest_incident_edges(G = (V, E)):

1: L=10

2: C(n, dummy) // Initialize candidates

3: for all e = {v,u} € F do

4. if better_candidate(e, C[v]) then

5 Cv]=e

6: if better_candidate(e, C[u]) then
7 Clul =e

8:

9: for all e = {v,u} € F do

10: if e == C[v] or e == C[u] then
11: L=LUe

12:

13: return L

Now we can describe how we create the forest I’ defined by L. At first we add each
edge e = {u,v} of L to F, e is added to the adjacency lists of u and v. Obviously, the
insertion of edges can be done in time O(|L|). During the next step we actually build
the forest, i.e. we decide on a root vertex for each tree of F' and remove backward edges.

Algorithm 4.3.3 Build a forest
build_forest(F'):
1: roots =)
2: for all edge e = {v,u} of F' do
3 if v not visited then
4: roots = roots U v
5
6

build_tree(v, F')
: return roots

The build_forest method (Algorithm 4.3.3) iterates over each edge e of F' and checks
if the first end vertex v of e has been visited. We have found a new tree if v has not
been visited. In this case we add v to the list of roots and build the tree starting at
v. This is done by iterating over incident edges. In case of a forward edge, we make a
recursive call to build_tree, otherwise we remove the backward edge. We set all vertices,
visited during this recursive procedure, to the state visited. While building the forest
we visit each edge three times, once during the build_forest procedure and twice during
the build_tree method (backward and forward edges). This gives a asymptotic runtime
of O(]L|) to build the forest.

The next step is to compute a maximum weighted matching M of the forest F', as
shown in Algorithm 4.3.4. The computation of M is based on the computation of
maximum weighted matchings of trees, as described in Section 3.3. We will not go into

42

4.3. Local Tree Algorithm

Algorithm 4.3.4 Build a tree starting at a given vertex

maximum_weighted_matching_forest(F'):
roots = roots_of_forest(F)
M=10
for all » € roots do
M = M U weighted_matching_of_tree(r, F')
return M

detail on how to implement the algorithm to compute maximum weighted matchings
of trees, as we have already done this (Algorithm 3.3.1), but we will talk about the
modifications that have been necessary to compute the matching in case of a forest. The
first difference is that trees are no longer specified by a tree data structure, instead they
are specified by the root vertex and the forest F. The next and biggest difference is
the usage of the outgoing_edge-array, which specifies for each vertex of the tree which
outgoing edge is used for the matching, if the incoming edge is not matched, and the
subtree_result-array, which stores the two possible weights of matchings for each subtree.
In the case of the tree-matching algorithm those arrays have been allocated for a single
tree, but in our case those arrays are allocated once at the start of the algorithm and
have one entry for each vertex of the provided graph G. This does not influence the
asymptotic runtime of the local tree algorithm. The required time is in O(|L|), because
|L| > n/2. Apart from those two changes there are no differences compared to the
algorithm from Section 3.3. Using those arrays does not change the runtime of the tree
matching algorithm. This gives us a total runtime for the forest matching algorithm of:

sec 3.3

Z runtime(tree(r)) < Z ¢ size_of tree(r)
reroots reroots
=c Z size_of_tree(r) = O(size_of_forest)
reroots

In the last phase of the local tree algorithm we add the matched edges to the matching
and set their end vertices to the state matched. Afterwards, we iterate over all remaining
edges and remove them if they are incident to a matched vertex. This is the same
procedure as used in Section 4.1 to add matched edges to the resulting matching and
to remove edges incident to a matched vertex. The runtime of this is ©(m), where m is
the number of remaining edges.

4.3.2. Theoretical Analysis

Lemma 4.4. The set L of heaviest incident edges computed during a round of the local
tree algorithm, defines a set of trees (a forest).

Proof. Obviously any set of edges defines a set of connected graphs, each connected
graph consists of at least one edge. It now remains to show that each of those connected
graphs is a tree.

43

4. Sequential Algorithms

A tree is a connected graph without any cycles, thus a connected graph is not a tree
if it contains at least one cycle.

Now let us assume that L does not define a set of trees, thus there must be a subset C
of edges in L defining a cycle. This cycle C must have a unique lightest edge e (because
of the tie breaking), but this edge cannot be the heaviest incident edge of one of its
end vertices. Both end vertices of e are incident to other edges with a higher weight.

Therefore e cannot be contained in C and C' cannot build a cycle.
O

Lemma 4.5. The set of edges M computed by Algorithm 4.3.1 is a maximal matching.

Proof. Obviously edges from the matchings of the local trees cannot be adjacent to each
other, because they are not connected by edges. Edges which remain at the end of one
round are not adjacent to any matched edge. Hence the resulting matching must be
correct, because it is the union of matchings of local trees.

The matching M is maximal because only matched edges and edges adjacent to them

are removed by Algorithm 4.3.1 and the algorithm only terminates if no edges remain.
O]

Theorem 4.3. The solution computed by Algorithm 4.3.1 might be an arbitrarily bad
approzimation of the optimal result.

Proof. Consider the example from Figure 4.3.7. The first subfigure shows the input
graph with weights assigned to the edges. With the conditions that ¢ > 0 and a > ¢
we get Subfigure 4.3.7(b) as the temporary tree computed by the local tree algorithm.
This subfigure shows the maximum weighted matching of the tree (dashed edges are
unmatched). Hence, the weight computed by the local tree algorithm would be a + 3.5¢.
But the optimal result for small £ (¢ a lot smaller than a) is shown in Subfigure 4.3.7(c).
The weight of the optimal result is 3a — 2.5¢. For ¢ — 0 we get that the result computed
by the local tree algorithm is about a and the optimal result would be 3a. We can easily
extend the graph by more subgraphs of the form shown in Figure 4.3.8 at the vertex v.
Each such subgraph only adds the weight 2¢ to the weight computed by the local tree
algorithm but it adds the weight a — € to the optimal result.
Therefore, the approximation computed by the local tree algorithm might be arbitrar-
ily bad.
O

Lemma 4.6. FEach local tree has a unique heaviest edge e. Let one of the end vertices
of e be the root of the tree. All paths from the root to a leaf vertexr have decreasing edge
weights. In case of unique edge weights or tie breaking the weights are strictly decreasing
(using the tie breaking oder).

Proof. Let us assume there is a path from the root r to a leaf [without decreasing edge
weights. In this case there must be at least one edge g such that the subsequent edge
h is of higher weight. Further, let us assume that g is the first edge with this property.
Obviously, g cannot be the root edge e, because this edge is the heaviest edge of the

44

4.3. Local Tree Algorithm

1

a 3€
v

a. - ~a
_-" 1 S~
/ all ‘\CL h\
' \
' \
g 3

Figure 4.3.7.: Bad approximation computed by the local tree algorithm. Figure (a) shows
the graph, figure (b) shows the temporary tree computed by the algorithm
and the resulting matching and figure (c) shows the optimal solution for
small €.

Figure 4.3.8.: Subgraph of the graph shown in Figure 4.3.7(a).

tree. Hence g must have a predecessor edge f of greater weight. This situation is shown
in Figure 4.3.9.

Thus, we get w(f) > w(g) and w(h) > w(g) and therefore g cannot be the heaviest
incident edge of one of its end vertices u and v. Hence, an edge with the properties of g
cannot exist.

The proof also works when r is the other end vertex of e. Using tie breaking we

obviously get strictly decreasing edge weights.
O

45

4. Sequential Algorithms

r

g

Figure 4.3.9.: Example for decresing paths.

Lemma 4.7. The runtime of a single round of Algorithm 4.3.1 is ©(m) and m is the
number of remaining edges.

Proof. We have already shown in Section 4.3.1 that the computation of the heaviest
incident edges can be done in O(m) and the computations of the forest and the corre-
sponding maximum weighted matching can be done in O(|L|). Finally removing matched
edges can be done in O(m) as well. This results in a total asymptotic runtime of O(m)

(L] < m). Obviously a lower bound is £2(m), because we visit each edge at least once.
O

Lemma 4.8. The mazimum number of rounds of Algorithm 4.3.1 is min{dmag, |7/2]}
for graphs without loops, where dp,., is the mazimum degree of a vertex of the input
graph.

Proof. Each round we add at least one edge to the matching. As long as there are
remaining edges we compute a non empty forest, and the maximum weighted matching
of a non empty tree is not empty. Therefore, we match at least two vertices per round, an
all of their incident edges are removed. A single unmatched remaining vertex must have
degree 0 and hence there are no more remaining edges and the algorithm terminates.
This gives us an upper bound for the number of rounds of |7/2].

On the other hand, each edge of the forest computed during a round will be removed
at the end of the round, because it is either a matched edge or adjacent to a matched
edge. Otherwise, the resulting matching of the forest would not be optimal. For each
remaining vertex with a degree # 0 there is at least one incident edge which is part
of the forest, and hence at least one incident edge of each vertex is removed during a
round. Therefore, we have at most dyax rounds until each vertex has degree 0 and the
algorithms terminates.

O]

Lemma 4.9. An upper bound for the runtime of Algorithm 4.3.1 is O(n m) (for graphs
without degree 0 vertices).

Proof. According to Lemma 4.8 the maximum number of rounds is min{dmax, [?/2]} <n
and each round has a runtime of O(m). (Lemma 4.7) This gives us an upper bound of
O(n m) for the runtime of the local tree algorithm.

O

46

4.3. Local Tree Algorithm

For an example with a runtime of Q(nm), consider a complete graph with vertices
{1,...,n} and the following weight function:

max{u,v} Ju—v]=1
max{u,v} —e ,else (0 <e<1)

w(e =A{u,v}) = {

Figure 4.3.10 shows such a graph for 5 vertices.

e — B

5 4 3 2

Figure 4.3.10.: Example for local tree algorithm with runtime O(m??).

During the first round all the incident edges of the vertex n (vertex with the highest
ID) are the edges of the forest (which build a star). Obviously, the edge {n,n—1} will be
matched, because it is the heaviest edge of the resulting star. The resulting graph after
removing this edge and the adjacent edges has n—2 vertices and the same properties has
the initial graph. The lower (and upper) bound of a single round is linear in the number
of remaining edges. This gives us a lower bound for the runtime ¢ of Algorithm 4.3.1 for
this kind of graph of:

n/Q n/2 n/Q n/2

B P e R S C RV E) S o
i=1 =1

i=1 i=1

n(n n n2 n ne m
_c< Chrlntl) nx >_Q(n3) Y O nm)

Lemma 4.10. Algorithm 4.3.1 matches each vertex during a round that would be matched
by Algorithm 4.1.1, in the case of unique edge weights.

Proof. Obviously each locally heaviest edge e = {u,v} is an edge of a local tree and
it also must be the heaviest edge of this local tree, otherwise it would not be a locally
heaviest edge. Algorithm 4.1.1 only matches locally heaviest edges during a round and
therefore only vertices which are incident to a locally heaviest edge.

There are two possible cases if Algorithm 4.1.1 does not match each incident vertex
of locally heaviest edges.

The first case is that there is an unmatched locally heaviest edge e = {u, v} and both
end vertices of e are not matched, but in this case the result will not be optimal. The
other case is if there is an unmatched locally heaviest edge e = {u,v}, but only one of
its end vertices is matched. Without loss of generality let the matched vertex be the
end vertex u. Then there must be an edge f = {u,w} that is adjacent to e which is

47

4. Sequential Algorithms

matched. But e is heavier than f (e is the heaviest edge of the corresponding local tree)
and therefore the weighted matching computed for the local tree would not be optimal.
Thus either e is matched or it is adjacent to two matched edges and therefore both

end vertices of e are matched.
O

It can also be shown that the local tree algorithm matches the same vertices as the
local max algorithm during a round for non unique edge weights. But we have to adjust
our algorithm for that. At first the heaviest edges (according to the tie breaking) of each
local tree must be incident to the root of the local tree and if one of the end vertices of
a heaviest edge is a leaf then it must be the root of the local tree.

For the analysis of the expected runtime of Algorithm 4.3.1 we again assume that the
algorithm assigns random weights to the edges at the start of each round.

Theorem 4.4. The expected runtime of Algorithm 4.3.1 is in O(m + n), if we assign
random unique weights to the remaining edges at the start of each round.

Proof. Algorithm 4.3.1 removes during each round at least as many edges as Algo-
rithm 4.1.1 would remove, because it matches the same vertices (Lemma 4.10) and both
algorithms only remove edges incident to matched vertices. Hence the expected number
of removed edges of Algorithm 4.3.1 is at least m/2 (Theorem 4.1).

We have already seen that the runtime of a single round of Algorithm 4.3.1 is linear
in the number of remaining edges (Lemma 4.7), hence at most ¢m steps are required for
a single round (for a constant ¢). Using this information and the fact that the expected
number of removed edges is at least m /2 we can use the same proof used for Theorem 4.2
to show that the expected runtime of the main loop is in O(m).

There is also an initialization phase before the main loop which allocates memory for
a constant number of arrays. None of those arrays contain more elements than there are
vertices. Hence the total expected runtime is O(m + n).

O

4.4. Experimental Results

In this section we present the experimental results for the three algorithms discussed
in Chapter 4 and compare them with each other and with the Karp-Sipser algorithm
presented in Section 3.2 and the GPA algorithm from Section 3.4. We only compare
algorithms with each other if it is appropriate. The Karp-Sipser and the mixed algorithm
try to compute maximum cardinality matchings, hence it does not make much sense to
use them to compute maximum weighted matchings. In case of the expansionstar2 rating
(introduced later in this section) the results of the mixed algorithm are on average 13%
worse than the results of the local max algorithm. On the other hand, algorithms which
compute approximate maximum weighted matching can be easily adjusted to compute
cardinality matchings by assigning constant weights to the edges.

48

4.4. Experimental Results

All algorithms were compiled using version 4.4.3 of gcc and the optimization level was
set to -O3. We used our own implementations of all algorithms except for GPA. Espe-
cially the runtimes of Karp-Sipser and the mixed algorithm should be taken cautiously.
The implementations have the asymptotic runtimes as described before, but there is
probably still room for optimization.

To execute the algorithms we used a computer with four Quad-Core AMD Opteron
8350 Processors (2 GHz and 512 KB L2-Cache per core and 2 MB L3-Cache per proces-
sor) and 64GB of ram. The operating system was Ubuntu 10.04. We used Valgrind [2]
to simulate and count cache misses.

For the experiments we used the Random Geometrics Graphs, Delaunay Graphs and
Walshaw’s Graphs [33] from the 10th DIMACS Implementation Challenge [5]. We also
used coarsened versions of these graphs as described in the introduction and computed
by the KaFFPa graph partitioner from [31]. Level 0 graphs are the initial graphs before
any coarsening step, level 1 graphs after oner step and so on. The level 0 graphs all
have vertex and edge weights of 1. The coarsened graphs might have different vertex
and edges weights, as described in the introduction. This results in 556 different graphs.

We also used grid graphs and complete graphs (K,-graphs) for the computation. Grid
graphs represent non periodic grids of dimension d with a length of [vertices in each
direction. A K,-graph is a complete graph with n vertices (i.e. one edge between each
pair of vertices).

We executed each of the algorithms, except for GPA, ten times on all graph instances.
The GPA algorithm was only repeated four times.

In the experiments we used edge ratings for the weights of the edges. To compute
maximum cardinality matchings we used constant edge weights. For maximum weighted
matchings we used edge weights provided by the input graphs, the expansionstar2 rating
from [20] which is

w(e)?

- c(u) c(v)

expansion’ (e = {u,v})

and random edge weights from the interval [0, 1).

4.4.1. Runtime and Quality Comparison

In this section we compare the runtimes of different algorithms and the quality of the
resulting matchings using the graphs from the 10th DIMACS Implementation Challenge
[5] and their coarsened versions. We only consider cardinality matchings and weighted
matchings using the expansionstar2 rating. The results of the two other ratings show
the same behaviour.

We only compare two algorithms at a time. The results for one graph are simply
divided by each other and then a histogram of all results is shown. We decided to use
this kind of comparison because of the different structures of the used graphs. The
intervals of the histograms are all left inclusive and the dashed line shows the average
value.

49

4. Sequential Algorithms

Cardinality Matching

Figure 4.4.11 shows the comparison of Karp-Sipser and the local max algorithm com-
puting approximate cardinality matchings. In all cases, Karp-Sipser computed matching

150 200
L |
—
o
(00e)
=
\]
Frequency

Frequency
100
L

50

1

o - 1

1
I T T T T T T 1

r T T T T 1
1.0 11 12 13 14 15 1 2 3 4 5 6 7 8
card(Karp-Sipser) /card(local max) time(Karp-Sipser) /time(local max)

(a) (b)

Figure 4.4.11.: Comparison between Karp-Sipser and the local max algorithm. Results
are approximate maximum cardinality matchings. The left histogram
shows the cardinality comparison and the right one shows the runtime
comparison.

of at least the size of the matchings computed by the local max algorithm. On average,
the matchings computed by Karp-Sipser were about 8.5% larger. On the other hand,
the local max algorithm was, on average, 3.4 times faster than Karp-Sipser.

The comparison of Karp-Sipser and the local tree algorithm (Figure 4.4.12) shows a
similar behaviour. The matchings of Karp-Sipser are larger than the ones computed
by the local tree algorithm (in average 4.7%) and the local tree algorithm is faster than
Karp-Siper, although not by much. Local tree computes a larger matching for the
besstk29 graph level 0, bbesstk33 graph level 6 and the data graph level 4. All of these
graphs come from the Walshaw’s graph partitioning archive [33].

Again, the cardinality of the matchings computed by Karp-Sipser is in most cases
larger than the one computed by the mixed algorithm (Figure 4.4.13). But in this case
Karp-Sipser is faster. Those results are not that surprising, since the mixed algorithm
is a variation of the Karp-Sipser algorithm. They differ when non-optimal choices are
made. Karp-Sipser tries to make as few non-optimal choices as possible. On the other
hand, the mixed algorithm does not try to minimize the number of non-optimal choices.

Figure 4.4.14 shows the results of the comparison between the local tree and local max
algorithms. In most cases (540 of 556) the local tree algorithm computes larger matchings
than the local max algorithm, but the local maz algorithm is about 3.2 times faster.

50

4.4. Experimental Results

1.0474, S 11.1875
| Ll
o
< o
N —
B By
& &
22 2o
o o
2 2
& 2 & -
2
o o
r T T 1 r T T T 1
1.00 1.05 1.10 1.15 1 2 3 4)
card(Karp-Sipser) /card(local tree) time(Karp-Sipser) /time(local tree)

(a) (b)

Figure 4.4.12.: Comparison between Karp-Sipser and the local tree algorithm. Results
are approximate maximum cardinality matchings. The left histogram
shows the cardinality comparison and the right one shows the runtime

comparison.

- 10.7867
a4 I
- o_ |
(=}
=g
B O B
& g o
2 2
£ & o |
=)
)
o - o -
r T T T T T T 1 r T T T T T 1
0.98 1.02 1.06 1.10 0.6 1.0 1.4
card(Karp-Sipser) /card (mixed) time(Karp-Sipser) /time(mixed)

(a) (b)

Figure 4.4.13.: Comparison between Karp-Sipser and the mixed algorithm. Results are
approximate maximum cardinality matchings. The left histogram shows
the cardinality comparison and the right one shows the runtime compar-

ison.

o1

4. Sequential Algorithms

=
e 11.0352 =
| Ll
e
00 o |
— =)
B B
& &
2 8 2 21
: :
=
21 2
o o
r T T T 1 r T T T 1
1.0 11 1.2 13 14 2 4 6 8 10
card(local tree)/card(local max) time(local tree)/time(local max)

(a) (b)

Figure 4.4.14.: Comparison between the local tree and local max algorithms. Results
are approximate maximum cardinality matchings. The left histogram
shows the cardinality comparison and the right one shows the runtime
comparison.

Expansiostar2 Matchings

In the case of the expansionstar2 rating we only compare GPA, the local max algorithm
and the local tree algorithm.

Figure 4.4.15 shows the comparison between the local tree algorithm and the local max
algorithm. The result is pretty similar to the result of the comparison for cardinality
matchings. Local tree is still better than local max in most cases (518 of 556) but the
overall difference is not as large. The accumulated ratings of the local tree algorithm
are only about 0.9% better than the once from local max. An again local mazx is about
3.4 times faster than local tree.

More interesting is the comparison of the local tree algorithm and GPA. On average,
both algorithms produce matchings with almost the same accumulated rating. But still, in
383 of 556 cases the local tree algorithms produces matchings with a larger accumulated
rating. Also the local tree algorithm is about 4 times faster than GPA.

The comparison between GPA and local max is similar to the one between local tree
and local max. GPA computes matchings that are a little bit better but on the other
hand is a lot slower than local max (about a factor of 15).

52

4.4. Experimental Results

S - 11.0094 3.4144,
[\
=3
- o
o0
b =
Z K4 =
g - ==
& &
=N
3 =
o o
r T T T T 1 r T T T 1
0.96 1.00 1.04 2 4 6 8 10
rating(local tree)/rating(local max) time(local tree)/time(local max)
(a) (b)

Figure 4.4.15.: Comparison between the local tree and local max algorithms. Using
expansionstar2 rating. The left histogram shows the accumulated rating

comparison and the right one shows the runtime comparison.

S- 1.00015 10.2339
— [
S |
o |
N
5 52
s s
5 &1 g S i
£ g
=8 o
o o :
r T T 1 T T 1 r T T T T 1
0.94 0.98 1.02 1.06 0.1 02 03 04 05 0.6
rating(local tree)/rating(GPA) time(local tree)/time(GPA)

(a) (b)

Figure 4.4.16.: Comparison between the local tree algorithm and GPA. Using expansion-
star2 rating. The left histogram shows the accumulated rating compari-
son and the right one shows the runtime comparison.

4.4.2. Edge Development

We have shown in Section 4 that we expect to remove at least half of the remaining
edges during each round, for slight variations of the local max and local tree algorithm.
In this section we have a look how the number of remaining edges develops in practice.

93

4. Sequential Algorithms

This time expansionstar2 and random edge weights are used for the edge ratings. And
again only graphs from the 10th DIMACS Implementation Challenge and their coarsened
versions are considered.

We bundled the edge developments for graphs with the same number of rounds to
compute a matching. Because we think that the behaviour for graphs which require the
same number of rounds should be roughly the same otherwise the ranges of remaining
edges would be too large.

Figure 4.4.17 and Figure 4.4.18 show the edge developments for the local max algo-
rithm. Each figure shows the development for results with the same number of rounds.
The number of rounds observed for the local max algorithm ranged from 2 to 10, but
we only show results for 4, 5, 6, and 7 rounds, because they represent the majority of
the results. In case of random edge weights they represent 487 of 556 results and in case
of expansionstar2 rating 489 of 556. But the missing results show the same behaviour.

Each entry of the box plots represents the fraction of remaining edges at the end of
a round compared to the start of the round. The lower and upper ends of the boxes
represent the lower and upper quartiles for the results of a particular round. The thick
bar inside the box represents the median. The whiskers represent the lowest and highest
values which are within 1.5 times the interquartile range. And the most extreme outliers
are represented by circles.

Figure 4.4.17 shows the results when using the expansionstar2 rating. As one can see
for about 75% of the results each round at least 75% of the remaining edges are removed
from the graph, which is far more than the expected 50%. More interestingly, during
the first few rounds (2-3), the fraction of removed edges decreases slightly, but then
starts to increase quite fast. This indicates that, in practice, the number of rounds is
less than logarithmic in the number of edges. This observation is also the case for the
most extreme outliers. Which in some cases only remove about 20% of the remaining
edges during a single round, but then start to remove more and more edges during the
following rounds.

In case of 4 rounds the outliers with less than 50% removed edges are coarsened
versions (levels 5, 6 and 9) of the add20 Graph from Walshaw’s collection. In case of 5
rounds the outliers result from the add20 graph (level 5 and 7) and from the memplus
graph (level 6 and 7), also from Walshaw’s collection. That is also the case for the
remaining results. Whenever less than 50% of the edges are removed, those results come
from coarsened versions of the add20 or memplus graph.

Figure 4.4.18 shows the results when using random edge weights. As one can see the
results are pretty similar to the ones we have seen before. For the majority of the results
at least 75% of the remaining edges are removed during each round. Again we see a
slight decrease of removed edges during the first few rounds and then again an increase
for the remaining rounds. Although this time we do not see any cases where less than
50% of the edges are removed (also the case for the missing results). The most extreme
outlier has about 49% remaining edges.

For the local tree algorithm we only show one of the results in Figure 4.4.19. This
figure shows the worst case that we have observed for the local tree algorithm. The local
tree algorithm required at most 5 rounds, although for the majority of the graphs only 3

o4

4.4. Experimental Results

ISN) SO o
g o © g o
¢ ¢ 21 °
el el
) — E) 2 - o
o0 o0
g 8 g 8 g
ER e m s o el & &
= =
: = : - T ==
m = - T T T I m = - T T T T I
1 2 3 4 1 2 3 4 5
Round Round
(a) 4 Rounds (b) 5 Rounds
ISN ° ISN 5
g 84 o 3 2 8
% : o ° 5 =
9ol 5 8 ° < °7
o - ° § T o °))
80 ‘ o &b gf‘7 o o 8 g o
g o | 5 ﬁ T % g > + T $ ° o
= N == = o |
A = A==
g g ==
m < T T T T T I m < T T T T T T _\
1 2 3 4 5 6 1 2 3 4 5 6 7
Round Round
(c) 6 Rounds (d) 7 Rounds

Figure 4.4.17.: Edge Development of the local max algorithm, with expansionstar2 as
edge rating.

rounds. As one can see in Figure 4.4.19 usually more than 95% of the remaining edges
are removed during a single round and again this number increases. Although in this
example there are 3 cases where less than 85% of the edges are removed, this happened
for coarsened versions of the finan512 graph from Walshaw’s collection. In the missing
cases at least 90% of the edges where removed during each round, and again for the
majority of the results this number was larger than 95%.

Although the results indicate at most a logarithmic number of rounds in the number
of edges, the number does not solely depend on the number of edges. It most likely also
depends on the structure (e.g. average vertex degree) of the graph. This can be seen in
Figure 4.4.20. We compare 4 different kinds of graphs in this figure: Random geometric
graphs, Delaunay graphs, 2D grids and complete graphs.

95

4. Sequential Algorithms

<o
= j g
g R4 o
) - e °
0 ! -
$s{E2E3
o0 4 \
£ T
==
< o |
% 1
o A _
m T T T I
1 2 3 4
Round
(a) 4 Rounds
X o] o
g B g °
A 2 ‘ R
) %7 (e} e | T o
o0 | o
M ES=o N
\
s !
R= [
N ===
fas} —
T
g ™
A= —

1 2 3 4
Round

(¢) 6 Rounds

Figure 4.4.18.: Edge Development of the local max algorithm, with random edge weights.

Remaining edges in %
0 10 20 30 40

Remaining edges in %

20 30

10

(d) 7 Rounds

10 15 20
! !

5
!

Remaining edges in %

0
\

[e]

Figure 4.4.19.: Edge Development of the local tree algorithm, with expansionstar2 as

edge rating.

56

g
o
g
=T l
T I I I I
1.0 2.0 3.0
Round

4.4. Experimental Results

o | & kngraphs
— -© - rgg graphs
--A- Delaunay graphs
54 <~ 2dgrids
E S E; = =
=
3
~
S |
Ll
__e--——- o ----- o
0 — e ——== o —-—-—-—- 0" A, A, O — - S
o-"" SO P> S & A
o Ao Ao pT
\ \ \ \ \ \
2 5 10 20 50 100

Edges in million

Figure 4.4.20.: Number of rounds of the local max algorithm for different kinds of graphs.

4.4.3. Time per Edge

We showed that the expected runtime for slight variations of the local max and local
tree algorithm is linear in number of edges (Theorem 4.2, Theorem 4.3.2). The results
from the previous section, that the number of rounds is logarithmic, also indicate that
the runtime might be linear.

To verify the linear runtime we have a look at the time spent per edge. If we really
have a linear runtime, then the time per edge should be constant. Because the number
of rounds seems to not only depend on the number of edges, we have decided to look
at the runtime of graphs of the same kind. The considered graph types are: Random
geometric graphs, Delaunay graphs, complete graphs and 2D- and 5D-grids.

Figure 4.4.21 shows the results for random geometric graphs, for both the local max
and the local tree algorithm and for random edge weights and the expansionstar2 rating.
For both algorithms the runtime is about the same for both edge ratings. The local tree
algorithm shows a slight decrease in the time spent per edge, whereas the local max
algorithms shows a slight increase in the time spent per edge.

For Delaunay graphs the algorithms do not show different runtimes for different edge
ratings (Figure 4.4.22). Except for the first number of edges, for both algorithms the
time spent per edge increases. For the local max algorithm it only increases slightly.
But for the local tree algorithm the time increases quite a lot for 10000 to 500000 edges,
by a factor of about 2, and then the growth starts to slow down. It looks like this is
caused by cache misses. For the Delaunay graph nll (6127 edges) we have about 3.4

o7

4. Sequential Algorithms

Nej
S
—&— local max - expst2

o -© - local max - rand
g S --A- local tree - expst2
g -< - local tree - rand
o o= B - S —~&

~ o e - - S
é S T A é— =~ ‘;";-r@-—.:____@_______i
E
R=IS
o S
i
=

a

AR

5 —-—-g-—--g- - f-——g H====p
g———8—8
I I I I I I I I I
0.2 0.5 1 2 5 10 20 50 100

Edges in million

Figure 4.4.21.: Time spent per edge for random geometric graphs. Random edge weights
and expansionstar2 rating.

L2 cache misses per edge and this increases up to 13.1 cache misses per edge for the
Delaunay graph nl8 (786396 edges). The number of L2 cache misses per edge only
increases slightly for larger Delaunay graphs.

Accessing the edges, except for tree edges, is done by a simple iteration through an
array, thus this should not cause many cache misses and especially not an increase in the
number of cache misses per edge. But for consecutive accesses to the candidate array
and the matched vertex array it is likely that those accesses are not close to each other,
e.g. the two end vertices of an edge might have a large difference in their vertex IDs or
the IDs of end vertices of consecutive edges differ a lot. For a smaller number of vertices
this is not that problematic because larger portions of those arrays fit into the cache
and thus reducing the number of cache misses. A similar behaviour can be observed
for the local max algorithm. This also suggests that the increase in cache misses is
mainly caused by the access to the candidate and matched vertex array and not by the
computation of matchings for the local trees.

Figure 4.4.23 shows the results for the local max algorithm for complete graphs and
2D- and 5D-grids with random edge weights as the input. For complete graphs we see
a really good result with only a slight increase in the time spent per edge. The 5D-grid
shows overall a rise by a factor of 1.15, for the 2D-grids we see good runtime behaviour
except for the step from 32 million edges to 64 million edges. The number of L2 cache
misses per edge increases in this case from 5.9 to 6.4.

The results for the same graphs as the input for the local tree algorithm are shown

o8

4.4. Experimental Results

7 —&— local max - expst2
-& - local max - rand ”
--A- local tree - expst2 o -y
o2} o0 p) o :
< - NP S o
g < -< - local tree - rand Aﬂ_,_@—"—é'—@“ % A
2 e
2 = :
= 14 /
g . 7
o = 3, .
g S " ‘é""/é
= OB~
[}
Al

Edges in million

Figure 4.4.22.: Time spent per edge for Delaunay graphs. Random edge weights and
expansionstar2 rating.

in Figure 4.4.24. The runtimes per edge for the grid graphs increases slightly. In total
at most by a factor of 1.26. For the complete graphs we see a rise by a factor of 2.6,
although the number of edges increases at the same time by a factor of 128. This rise is
probably not cause by cache misses caused by accesses to the candidate array or matched
vertices array. If this would be the cause we should see a similar behaviour for the local
max algorithm.

99

4. Sequential Algorithms

2 —8— local max - 2d grid
S | —©- local max - 5d grid
3 --A- local max - kn graph
g
o
2 |
& o7
O
: T o
k= O— = = = g2 L ____—e----0""
g e--——O0----- o--—-—©o--""9¢
£ 5
H S
Pecmnmonn A I/ N A 1 N A A A
\ \ \ \ \ \ \ \
2 5 10 20 50 100 200 500

Figure 4.4.23.:

Edges in million

Time local max spent per edge for 2D-, 5D-grids and complete graphs.
Using random edge weights.

w‘ p—
Ll
—&— local tree - 2d grid

& 4 ~©- local tree - 5d grid
K --A- local tree - kn graph
- S
2
g o |
2 S
g ’e____———O"-""__O
=] -~ 7"
5 G---o0----- ©
=
= |

A
N .-
T N e
o A N Aneennne N A
\ \ \ \ \ \ \
2 5 10 20 50 100 200 500

Figure 4.4.24.:

60

Edges in million

Time local tree spent per edge for 2D-, 5D-grids and complete graphs.
Using random edge weights.

4.4. Experimental Results

4.4.4. Depth and Size of Local Trees

As we have mentioned before, we are going to describe parallel versions of the local max
and local tree algorithms. Although in case of the local tree algorithm this might be
problematic, since the described algorithm for computing maximum weighted matchings
of trees is inherently sequential. But that is only really problematic if a single tree is
located on several processes, in this case processes have to wait for other processes to
finish their local computations.

To see if that is going to be a problem in practice, we observed the size and depth
of local trees. The more interesting of those values is the depth of a tree. It gives an
upper bound of processes which might have to wait for each other. Only along paths
from leaves to the root vertex processes have to wait for each other (during the bottom
up and top down phases). Computations along such a path cannot be done in parallel.
The size of a tree gives an upper bound on the number of processes of a tree. So it is
more a measurement for the required communication. Computations on independent
subtrees can be done in parallel.

In this case we only considered the graphs from the 10th DIMACS Implementation
Challenge and their coarsened versions using random edge weights and the expansion-
star2 rating.

Q _
[ap]
o _
g4 N = 0 |
.S S
g 24 g]
= k=
0 |
& o g
g g o
=} =} —
g s g
= £ o
o - o -
{ x x x] I I N
2 4 6 8 10 2 4 6 8 10 14
Tree Size Tree Depth

(a) (b)

Figure 4.4.25.: Sizes and depths of local trees. Using random edge weights.

Figure 4.4.26 shows the results for random edge weights. In case of tree sizes the
figure only shows the frequencies of trees with a size of 10 or less. The missing sizes only
represent about 0.89% of all the trees. The average size of a tree is 3.7, the median is 3
and the upper quartile is 4. The five maximal observed tree sizes are 393,409,492, 549
and 604. Those trees appeared in coarsened versions of the memplus graph.

The maximal observed tree depth is 14, but trees with a depth of 10 or larger only

61

4. Sequential Algorithms

account for about 0.0014% of all trees. The average tree depth is 1.94, the median is 2
and the upper quartile is 3.

0
0 _ ™
(]
o |
= =
.S g
=] = 3
g =
£ = g8 &
> >
(&} 5 0|
e} —
5 =7 :
o S
A &
= B s
o - o -
{ T T T \ { T T T T \
2 4 6 8 10 2 4 6 8 10 12
Tree Size Tree Depth

(a) (b)
Figure 4.4.26.: Sizes and depths of local trees. Using expansionstar2 rating.

The results for the expansionstar2 rating are similar to what we have seen before
(Figure 4.4.26). Again, Figure 4.4.26 does not show all results for the tree sizes. About
0.49% of the results of the tree sizes are missing. The maximum observed depth is 13,
although the average depth is 1.87 and the median and upper quartile are both 2. Trees
with a depth of at least 10 account only for about 0.0009% of all observed tree depths.
For the sizes of the trees we have an average of 3.45 and a median and upper quartile
of 3 and 4, respectively. That is similar to what we have seen for random edge weights,
but the maximal tree sizes got bigger. The five largest tree sizes are 1533, 1752, 1771,
1880 and 2000, all observed for coarsened versions of the memplus graph.

Those results show that by far most local trees are fairly small and have really small
depth, in fact there is no tree with a depth larger than 14. This indicates that in practice
a parallel version could work well (Section 5.2).

62

5. Parallel Algorithms

In this section we discuss possible parallel versions of the local max and local tree
algorithms from Chapter 4 to compute approximate maximum weighted matchings. The
implementations are based on MPI (Message Passing Interface) [1].

Each process of the parallel environment gets a subgraph of the whole graph as its
input, such that the subgraphs combined correspond to the initial graph. In our case we
decided to use subgraphs that are defined by contiguous blocks of vertices, the sizes of
those blocks differ at most by one. Each subgraph consists of the edges incident to the
vertices of those blocks. Obviously each process might have edges that connect it with
another process and the number of edges assigned to the different processes might differ
significantly. The advantage of this approach is its simplicity.

Another approach would be to use a graph partitioner to compute those subgraphs,
such that the size of the subgraphs is about the same on each process and the number
of edges between different processes is minimized. Depending on the application this
method might be reasonable, as long as the graph partitioner is fast enough. But if
the parallel matching algorithm is supposed to be part of a graph partitioner (e.g. a
coarsening step) then it is problematic to use a partitioner at first. We have introduced
such an application in the introduction (Chapter 1).

5.1. Parallel Local Max Algorithm

As we have mentioned before Algorithm 4.1.1 can be easily parallelized using a BSP-style
approach. The basic idea of the parallel Algorithms is shown in Algorithm 5.1.1.

Like in the sequential case at first we compute the set of locally heaviest edges. In the
case of local edges (local(E)) it is easy to decide whether they are locally heaviest edges
or not. Each process knows all the incident edges of its local vertices. More problematic
are the cross edges (cross(F)). From now on we assume that the first mentioned end
verter of a cross edge is the local vertex and the other one the ghost vertex. To decide
whether a cross edge e = {u,v} is a locally heaviest edge we have to consider all the
incident edges of w and v. But the process p(u) of the local vertex u most likely does
not know all the incident edges of the ghost vertex v. The process p(u) can only decide
if e is a candidate for a locally heaviest edge. That is the case when e is the heaviest
incident edge of w.

For each such candidate e = {u,v} we send the message (reg(e)) to the process p(v)
of v, to tell p(v) that e is a candidate on process p(u) (line 6). After request messages
have been sent for each candidate, the processes receive all request messages that were
sent to them during the current round. For each incoming message (req(e = {v, u})) the

63

5. Parallel Algorithms

Algorithm 5.1.1 Compute an approximate weighted matching in parallel
parallel_local_ max(G, = (V, E)):

1: M=0

2: while F # () do

3: L ={e={u,v} €local(F) | e maximal at v and v}

4:

5. C={e={u,v} € cross(E) | e maximal at u and v ghost vertex}
6: for all e = {u,v} € C do

7 send message (req(e)) to process of ghost vertex v

8: while incoming message (reg(e = {v,u})) of current round exists do
9: if e maximal at v then

10: L =LU{e}

11:

122 M=MUL

13:

14: N = set of newly matched vertices adjacent to a ghost vertex

15: for all u € N do

16: send message (matched(u)) to each process of adjacent ghost vertices of u
17: while incoming message (matched(u)) of current round exists do

18: set u to matched

19:

20: remove_edges_incident_to_matched_vertices(Gp)

21: return M

algorithm checks if e is the heaviest incident edge of vertex v, if that is the case then
e is added to the set of locally heaviest edges. Obviously in this case another request
message was sent from process p(v) to process p(u). Figure 5.1.1 shows an example
where a cross edge is a candidate of one process but not the other one.

: w(e) =10 .
1 “ (rec??e)) v 1
p(w) § p(v)

Figure 5.1.1.: Communication example for a candidate edge.

In this example one message is sent from process p(u) to process p(v), because the
cross edge e is the heaviest incident edge of vertex u. But no message is sent from p(v)
to p(u), because e is not the heaviest incident edge of v.

After all locally heaviest edges have been identified they are added to the set of
matched edges. At this stage the sequential algorithm removes all edges incident to

64

5.1. Parallel Local Max Algorithm

matched vertices from the graph. However in case of the parallel version that is not
possible, because a process might not know that one of its ghost vertices is matched
on its originating process. Consider the example from Figure 5.1.1 again. In this case
the vertex v is matched on process p(v), but the incident cross edge e is not matched.
Therefore e would be removed from p(v)’s subgraph but not from p(u)’s subgraph. This
would cause the algorithm not to terminate on p(u), because the edge e will always be
considered as a candidate.

Before removing incident edges of matched vertices we send for each matched vertex u,
that is incident to a ghost vertex, the message (matched(u)) to each process of its adjacent
ghost vertices (line 15). Afterwards each process receives all messages (matched(u)) that
where sent to it and marks the vertices u as matched. Now each process is able to safely
remove edges incident to matched vertices.

Each round of the algorithm consists of two different BSP phases. At first locally
heaviest edges and candidate edges are computed and subsequently a communication
phase starts to decide whether a candidate edge is a locally heaviest edge. During the
second BSP phase we add the locally heaviest edges to the matching, then compute
all matched vertices incident to ghost vertices and send messages to the corresponding
partners. The difference to a real BSP program is that we do not enforce a step where
each process has to wait until all communication of the current phase has finished.

5.1.1. Implementation Details

We only talk in detail about the used graph data structure and the implementation of
methods involving communications. The implementations of the other methods are sim-
ilar to implementations that we have seen for the sequential algorithm (Algorithm 4.1.2).

Like in the sequential case, each subgraph is represented by a simple array storing
all edges of the graph. However we use two arrays, one is used to store local edges and
the other one used to store the cross edges. The arrays are divided into two parts.
The first part is used to store the active edges and the second part is used to store
inactive (deleted) edges. Deactivating an edge is done in the same way as it is done by
the sequential algorithm. In the case of cross edges we ensure during the construction
of the graph that the first vertex of the cross edge is always the local vertex and the
second vertex is the ghost vertex. This simplifies the decision which of the vertices is the
ghost vertex. Additionally we store information about the vertices. Instead of using the
vertex IDs provided by the input graph (called global IDs) each process maps those IDs
to the range [0,n,), where n), is the number of distinct vertices of the subgraph. Each
subgraph of a process is defined by a contiguous block [a, b) of vertex IDs. Each global
vertex ID i € [a,b) is mapped to the local vertex ID ¢ — a. And the IDs of the ghost
vertices are mapped to the remaining n, — (b — a) local IDs in the order in which they
appeared during the construction of the graph structure. The advantage of the mapping
approach is that we are now able to use simple arrays to store information about matched
vertices and the maximal incident edges, like we do in the sequential algorithm. Using
the array approach with global IDs is not appropriate because the range of the IDs of
ghost vertices might be a lot larger than the number of distinct vertices of the subgraph

65

5. Parallel Algorithms

of a process, therefore using much more memory than necessary. However we still need
(as we see later) a possibility to transform local IDs to global IDs and vice versa. The
transformation between the local IDs of local vertices and the corresponding global IDs
is done by either adding a to the local ID or subtracting a from the global ID. Also
the transformation of a local ID of a ghost vertex to the global ID is easy, one can just
use an array in the size of the number of ghost vertices. More problematic is the other
direction for ghost vertices. Because of the large possible range of global IDs of ghost
vertices it is not a good idea to use an array. Instead we decided to use a hash table
(boost::unordered _map) to transform global IDs of ghost vertices to their corresponding
local IDs.

Additionally we store for each ghost vertex the ID of the corresponding process, using
an array for O(1) look ups. We also need a way to know if we still require to communicate
with a partner process, i.e. there is at least one cross edge to this process. We call a
partner active if there are active cross edges to this partner. An active partner indicates
that there is possible communication with this partner. During the construction of the
graph we count for each process the number of cross edges to this process and whenever
a cross edge is delete we decrement this number by one. So if the number of cross edges
to a process is not 0, we know that this partner is still active. This does not affect the
constant runtime of deleting an edge.

Now we get to the actual implementation of Algorithm 5.1.1. Before the computa-
tion of the matching we initialize two arrays on each process to keep track of matched
vertices and the heaviest incident edge of a vertex. We have already seen this in the
sequential case. Each round of the computation of the matching consists of four steps
(see Algorithm 5.1.2).

Algorithm 5.1.2 Compute an approximate weighted matching in parallel

parallel_local_max_implementation(G, = (V, E)):

M=

C(n, dummy) // Initialize candidates

m(n, false) // Initialize matched vertices

while E # () do
set_candidates(Gy, C)
add_locally_heaviest_edges_to_matching(G,, m, C, M)
exchange_information_about_matched_vertices(G,,, m)
remove_edges(Gp, m, C)

return M

—_
@

At first we set the maximal incident edge (candidate) of each vertex. Setting the
candidates of local vertices is really simple and it is done the same way as in the sequential
case, but this time we chose to use vertex IDs to break possible ties. Tie breaking
based on vertex IDs makes it harder to distinguish multi-edges, therefore we decided
not to allow multi-graphs. For more information about tie breaking using vertex IDs see
Appendix C.1.

66

5.1. Parallel Local Max Algorithm

As mentioned before to decide if a cross edge is a locally heaviest edge we have to
know if it is the heaviest incident edge of both end vertices. This computation for the
local vertices of the cross edges can be done independent from the ghost vertices. The
computation of the candidate of ghost vertices is based on the observation that each
ghost vertex w is a local vertex on the process p(u). This process computed the locally
heaviest incident edge e = {u, v} of u. So if the edge e is a cross edge then process p(u)
can inform the process p(v) that e is the heaviest incident edge of its ghost vertex w.
This does not necessarily initialize all ghost vertices on all processes, e.g. the heaviest
incident edge might not be a cross edge or a vertex w is a ghost vertex on more than one
processes. But in those cases the heaviest incident edge is still set to the dummy edge
and thus will not affect the result. The implementation can be seen in Algorithm 5.1.3.

Algorithm 5.1.3 Set candidate edges of ghost vertices

set_candidates_of_ghost_vertices(G,, C):
1: for all remaining cross edges e = {v,u} of G}, do
2: if e == C[v] then
messages_for_proc[proc_of(u)].add({req(e)))

: for all active partners p do
send messages_for_proc|p| of type request to p

: for all active partners p do

incoming-msgs = receive messages of type request from p
1 for all (req(e = {u,v})) € incoming-msgs do

11: Cv]=e

© XN ST ew

e

At first we iterate over all remaining cross edges e = {v,u} and check if e is the
heaviest incident edge (candidate) of the local vertex v, if this is the case then we add
the message (reg(e)) to a list of messages which are sent to process p(u). This allows
us to send all messages from process p(v) to process p(u) within a single MPI-message
and thus reducing the number of MPI-messages. Obviously we only add messages to
a message list of an active partner. After we have finished adding messages to those
lists we can send them to the corresponding processes by just iterating over all active
partners. Each message is of type request to be able to distinguish them from other
kinds of messages. We not only send a message to an active partner with a non empty
list but also to those active partners with an empty list. This is necessary because the
partner process cannot know if it is going to receive an empty message. In the example
of Figure 5.1.2, the process p(u) does not send any messages to p(v), but p(v) cannot
know this from its own knowledge about the graph. Therefore we decided to allow empty
message.

To be able to set the maximal incident edges of the ghost vertices, each process receives
from each active partner a bundle of messages of type request and then iterates over the
single messages and sets the maximal incident edge of the ghost vertex. For the receive

67

5. Parallel Algorithms

Figure 5.1.2.: Process p(u) does not send a message to process p(v), because edge {u,v}
is not the maximal incident edge of wu.

operations we decided to use MPI’s probe mechanism and a blocking receive operation.
See Appendix C.2 why we decided to use this approach to receive messages.

As we mentioned before we distinguish between local and global vertex IDs. Because
processes cannot know the local vertex IDs of ghost vertices on other processes we use
the global vertex IDs for the communication. Before sending messages (reg(e = {u,v}))
we transform the local IDs of u and v to their global IDs, to identify those vertices.
When receiving the messages we transform the global IDs back to local IDs.

That was the first step of a single round. So far we have identified the heaviest incident
edge of each vertex. This allows us to add the locally heaviest edges to the matching
during the second step (add_locally_heaviest_edges_to_matching). Like in the sequential
algorithm we iterate over all remaining edges (local and cross edges) and if an edge
e = {v,u} is the heaviest incident edge of both end vertices u and v we know that it is
a locally heaviest edge and can add it to the matching. Additionally we mark those two
vertices as matched.

Before we are able to remove edges incident to matched vertices we have to make sure
that each process knows which of its ghost vertices is matched (Algorithm 5.1.4), that is
done during the third step of a round. At first we iterate over all cross edges e = {v,u}
and check if the local vertex v is matched. If that is the case we add the message
(matched(v)) to the list of messages for process p(u). The vertex v is a ghost vertex of
process p(u). The computed messages are then sent in bundles to each partner, again
we allow empty messages. It is possible that a bundle of messages contains a particular
vertex more often than once (if there is more than one cross edge incident to this vertex),
this does not affect the correctness but might increase the size of the messages. Using a
preprocessing step we could remove duplicates. But sending those extra messages does
not change the fact that not more than a constant amount of messages is sent for each
cross edge during one round. After receiving the messages about matched ghost vertices
we set each received vertex to be matched. Of course before sending the messages we
have to transform the local vertex IDs to global IDs and IDs of received vertices are
transformed into local IDs.

During the last step of a round (remove_edges) we remove the edges incident to
matched vertices. This is done using the same procedure as used in the sequential
algorithm. Again for each edge that is not incident to a matched vertex we reset the
candidate of its end vertices, to guarantee that during next round old candidates will
not influence the computation of new candidates.

Now lets have a look at the work of the parallel algorithm on a single process. The
only problematic operations which could change the linear work (in number of remaining
edges on this process) of a single round are those involving communication, those are

68

5.1. Parallel Local Max Algorithm

Algorithm 5.1.4 Exchange information about matched vertices

exchange_information_about_matched_vertices(Gp, m):
1: for all remaining cross edges e = {v,u} of G), do
2: if m[v] then
messages_for_proc[proc_of(u)].add({matched(v)))

. for all active partners p do
send messages_for_proc|p] of type matched to p

: for all active partners p do

incoming-msgs = receive messages of type matched from p
10: for all (matched(v)) € incoming-msgs do

11: m[v] = true

© XD TR

the additions to the sequential algorithms. In the two cases (Algorithm 5.1.3 and Algo-
rithm 5.1.4) when communication is involved we iterate at first once over the remaining
cross edges to add messages to the bundles. Adding a message to a bundle only requires
a constant amount of work (transforming of local vertex ID into a global vertex ID is
done in constant time). Assuming that the work required to send a message is linear
in the size of the message we get that the work required to send the messages of one
round is at most linear in the number of remaining cross edges. The size of all bundled
messages together cannot exceed the number of remaining cross edges. Also the empty
messages, that we might send, will not affect this because the number of active partners
cannot be larger than the number of remaining cross edges (assuming that it requires
constant work to send an empty message). This general evaluation can also be applied
when receiving messages, the total size or volume of incoming bundles cannot be larger
then the number of remaining cross edges. Also setting candidate edges of ghost vertices
or their state to matched only requires constant work. But before those operations we
have to transform the global ID of a ghost vertex to its local ID which is done using a
hash table. Hence we cannot guarantee constant work for this operation but, depending
on the used hash table implementation, we expect constant work. Therefore the total
work of a single round on one process is at best expected linear in the number of remain-
ing edges. This gives that the total work of all processes combined of a single round is
expected to be linear in the number of all remaining edges.

Obviously that is not necessarily the case for the runtime of a single round. For the
analysis of the runtime we would have to respect the time that is required to transmit
a message and more importantly the runtime is mainly affected by the largest partition
of the graph. Our implementation of the graph distribution does not guarantee evenly
sized subgraphs, therefore some processes might have to do more work than others.

Another interesting size is the volume of all messages combined. During a single
round we might send at most four messages per cross edge, two request messages and
two matched messages. But in the current implementation we send at least one matched

69

5. Parallel Algorithms

message over all rounds for each cross edge, because at least one of the end vertices
of each cross edge must be matched, otherwise the matching would not be maximal.
Hence the volume of all messages of one round is at most four times the number of
remaining edges of the complete graph. The observation from the experimental section
(Section 4.4) of the sequential algorithm that in each round at least half of the remaining
edges are removed, suggests that the volume of all messages combined is linear in the
number of edges of the input graph.

5.2. Parallel Local Tree

This section introduces the parallel version of Algorithm 4.3.1 (local tree algorithm).
At first we show the basic structure of this algorithm and then proceed to talk in more
detail about the parallel computation of maximum weighted matchings of trees.

5.2.1. Parallel Local Tree Algorithm

For the implementation of the parallel local tree algorithm we chose to use the same graph
data structure as we used for the parallel local max algorithm from section Section 5.1.
We also use for most parts functions that have been introduced in this section, except
for the computation of maximum weighted matchings of trees, the computation of them
is described in Sections 5.2.2 - 5.2.4.

Algorithm 5.2.1 shows the structure of the parallel local tree algorithm. At the start
of each round we have to compute the heaviest incident edge of each vertex. This
computation is the same as the computation of candidates for Algorithm 5.1.2. Each of
those candidates is the heaviest incident edge of the corresponding vertex and therefore
an edge of the forest of the current round. Adding those edges is done by the function
get_tree_edges which simply iterates over each remaining local edge and cross edge e =
{u,v} and checks if e is the candidate of u or v, if so the edge is either added to the
local_edges-list or the cross_edges-list. Using those two lists we can use the function
get_matching_of_parallel_forest (Algorithm 5.2.2), which is described in the next section,
to compute the mazimum weighted matching of the forest defined by those two lists. In
the actual implementation we set the matched vertices during the computation of the
forest algorithm. Finally before remowving edges incident to matched vertices we exchange
information about matched vertices like we did in Section 5.1 using Algorithm 5.1.4. This
is still necessary, e.g. consider the example from Figure 5.2.3. There are two processes,
the process pg has the local vertices r, s and ¢ and process p; has the local vertices
u, v and w. Obviously there are two local trees, one on each process. The process p;
matches the edge {v, w} and process py matches the edge {s,t}. Hence the ghost vertex
t of process p; is matched but without the exchange operation p; would not know about
this matched vertex and p; would not remove the edge {t,u} from its subgraph.

70

5.2. Parallel Local Tree

Algorithm 5.2.1 Compute an approximate weighted matching in parallel
parallel_local_tree_matching (G, = (V, E)):
1: M=0

2: candidate_of_vertex[n, dummy|

3: matched|n, false]

4: while E # () do

5. local_edges = (), cross_edges =)

6:

7. set_candidates(Gy, candidate_of-vertex)

8: get_tree_edges(G)p, candidate_of-vertex, local_edges, cross_edges)
9:

10: M’ = get_matching_of_parallel_forest(local_edges, cross_edges)
11: set_matched_vertices(M', matched)

122 M=MUM

13:

14: exchange_information_about_matched_vertices(G),matched)
15: remove_edges(G)p, matched,candidate_of-vertex)

16:

17: return M

Figure 5.2.3.: Exchanging information about matched vertices is required by the parallel
local tree algorithm.

5.2.2. Parallel Maximum Weighted Matching of a Forest

The computation of maximum weighted matchings of parallel forests is shown in Algo-
rithm 5.2.2. At first we have to compute the local trees defined by the sets of local edges
and cross edges (representing the tree edges). This time, unlike in the sequential case,
we distinguish between parallel trees, those are the trees whose vertices are located on
more than one processor, and purely local trees, those trees are only located on a single
processor. The trees are represented by their root vertices, parallel roots and local roots,
respectively. This computation is described in Section 5.2.3.

The computation of mazximum weighted matchings of purely local trees is done as
before and the computation of matchings of parallel trees is based on a parallel dynamic
programming approach. See Section 5.2.4 for more details.

The parallelism of the computation of a maximum weighted matching of a forest comes
from the fact that the matchings of the individual trees can be computed independent
from each other. Further it is also possible to do computations on subtrees of a local

71

5. Parallel Algorithms

Algorithm 5.2.2 Compute the matching of a parallel forest

get_matching_of_parallel_forest(local_edges, cross_edges):

1: local_roots = ()
. parallel_roots = ()
. forest = get_parallel_forest(local_edges, cross_edges, local_roots, parallel_roots)

: M = M U compute_matchings_of_local_trees(forest, local_roots)

2
3
4:
5. M = compute_matching_of_parallel_forest(forest, parallel_roots)
6
7: return M

tree independent from each other, if they are located on different branches of the local
tree.

5.2.3. Computation of a Parallel Forest

Before we are able to compute a maximum weighted matching of a tree we need a data
structure to represent this tree. Like in the sequential case we decided to use a simple
adjacency list for the representation of a tree. However in the parallel case the creation
of this graph is more complicated. We cannot simply choose an arbitrary vertex as
the root of a tree, because the decision may depend on the decision of other processes.
Therefore we have to choose a global root of the parallel tree, which defines the roots of
the subtrees of each process. For example consider the tree from Figure 5.2.4.

Figure 5.2.4.: Example for a parallel tree located on three processes.

This example shows a parallel tree which is located on three processes. On process 0
there is one subtree, two subtrees on process 1 and one or two subtrees on process 2
(depending whether we consider cross edges as part of the subtrees).

In this case vertex 1 is the root of the parallel tree, which defines the roots of the
other subtrees. For the moment lets only consider local vertices as the roots of subtrees.
Then we have on process 1 the vertices 2 and 8 as the roots of both subtrees and on
process 2 the vertices 4 and 6 are the roots of the two subtrees.

If for example process 1 would choose the vertex 7 as the root of one of its subtrees

72

5.2. Parallel Local Tree

and process 0 the vertex 1 as a root, then we would get a damaged tree (a tree with two
roots).

In the following we will describe a mechanism to decide on a global root of a parallel
tree, and additionally it also gives us the roots of all the subtrees. This method also
works for parallel forests.

Parallel trees consist of local edges and cross edges. The local edges and local vertices
of a parallel tree define several subtrees, which are connected with each other by cross
edges. We call these subtrees border components. Border components can be easily
computed by computing the connected components defined by the local edges. A border
component B, is a partner of a border component By, if they are connected by a cross
edge. Figure 5.2.5 shows the border components for the tree from Figure 5.2.4. As one
can see it is possible that a border component consists of a single local vertex. The
border component B is located on process 0, border components By and Bs are located
on process 1 and the last two border components B4 and Bs are located on process 2. For
more details on the structure and computation of border components see Appendix D.1.

Figure 5.2.5.: Border components of Figure 5.2.4

The basic idea for the computation of a global root vertex of a parallel tree is that
at first each border component chooses a local vertex which is a candidate for the root
vertex. The root vertex will be the candidate with the smallest ID. After the selection
of candidates each border component sends the ID of its candidate to all of its partners
and receives messages from them. If one partner sends an ID smaller then the one of
the candidate then the candidate is updated. In the case of an update each border
component also stores from which partner it received the ID of the new candidate. The
algorithm should stop when each border component received the smallest vertex ID. For
more details on the termination of this process and how messages are bundled to reduce
the number of MPI-messages see Appendix D.1.

After the computation of the global root it is easy for each process to choose the
correct root vertex for each subtree represented by a border component. If the subtree
contains the global root, then the global root is the root of the subtree. All other subtrees
choose the ghost vertex of the cross edge which connects the subtree with the partner
from where it received the ID of the global root.

73

5. Parallel Algorithms

Algorithm 5.2.3 summarizes all the necessary steps to compute a parallel forest from
the sets of local and cross edges. At first we compute the border components, then we
use the components to compute the global root of the local trees and finally use the
result of this process to build the parallel trees.

Algorithm 5.2.3 Compute a parallel forest from sets of edges

get_parallel_forest(local_edges, cross_edges, local_roots, parallel_roots):
1: bes=10)

get_border_components(local_edges, cross_edges, local_roots, bcs)

decide_on_root(bcs)

add local_edges and cross_edges to forest

parallel_roots = build_parallel_trees(forest, bcs)

return forest

Appendix D.1 goes into more detail of the several steps of Algorithm 5.2.3, it also
describes how to obtain the roots of purely local trees during the computation of the
border components.

A Simpler Method to Decide on Root Vertices

The previously described method to decide on a root vertex for parallel trees requires
up to [communication phases, where [is length of longest path within the tree defined
by the border components. But that is a lot more than necessary, at least in our case.
As we know from Lemma 4.6 each local tree computed by the local tree algorithm has
a unique edge e = {u,v} such that e is the heaviest edge of the tree and additionally
all paths originating from e to leafs of this tree have decreasing edge weights. We can
now define that the end vertex of e with the higher ID is the root of such a parallel
tree. And for each border component the heaviest edge must be a cross edge, unless
the component contains e. This heaviest cross edge is then the root of the tree of the
border component, because we know that the root must be in the direction of this cross
edge (the heavier edges of the tree are located in this direction). There is only one case
which forces us to have some communication. It is possible that the heaviest edge e of
the parallel tree is a cross edge, in this case the end vertex of e with the larger ID is the
root. To find out if a cross edge is a root, each border component computes the local
heaviest edge e’ and then sends for each cross edge f the message (not max, f), if f is
not the heaviest edge and (maz, f) if f is the heaviest edge. When a border component
receives a message (maz, f) and f is the local heaviest edge e then it knows that e is
the global heaviest edge. Algorithm 5.2.4 shows the outline of an algorithm based on
this idea. The main advantage of this algorithm is that it only requires a single round
of communication apart from the fact that it is much simpler.

The reason why we introduced the other procedure to decide on a root vertex is
because it is the more general version, it does not depend on Lemma 4.6 and therefore
might be suitable in other situations where the root of parallel tree must be computed.

74

5.2. Parallel Local Tree

Algorithm 5.2.4 Compute the root edge of parallel trees of a forest

decide_on_root_simple(bcs):
1: for all border components bc € bes do
2: be.root_edge = heaviest_edge_of(bc)

3:

4: for all border components bc € becs do
5. for all partner p € bc do

6: if p = be.root_edge then

7: send message (maz, p) to p

8: else

9: send message (not mazx, p) to p
10:

11: for all incoming messages (type, p) do
12: be = border_component_of(p)

13: if type = max and be.root_edge=p then
14: be.is_global_max = true

Also we used the more complex version during our experiments, because we were not
aware of the simpler algorithm at this time.

5.2.4. Parallel Dynamic Programming

Now that we computed all the trees of the forest we can start computing the maximum
weighted matchings of the trees. The matchings of purely local trees can be computed
using Algorithm 3.3.1 from Section 3.3. The computation of matchings of parallel trees
is based on the following idea. Each parallel tree consists of several subtrees, which
themselves define a tree, the border component tree. Consider the example from Fig-
ure 5.2.5, the border components are the vertices of the tree which are connected by the
cross edges. Like the sequential algorithm, the parallel version also consists of a bottom
up phase and a top down phase.

During the bottom up phase each subtree propagates the two possible optimal results
(the incoming edge is matched or not matched) to its parent. The result of a subtree
only depends on the results of its own subtrees. Therefore a subtree is able to compute
its result as soon as it receives the results of all of its subtrees that are located on another
process. So at first the leaves of the border component tree send their results to their
parents. Because those leaf-trees do not depend on other subtrees. Then the next batch
of subtrees, which no longer depend on other subtrees, compute their results and send
them to their parents. And so on, until the root subtree is able to compute its result.

The next step is the top down phase. This phase is used to add the edges to the
matching. During this phase the subtrees whose roots are not the global root of a
parallel tree depend on information from their parent. Those trees have to know if the
cross edge to their parent is matched. In Figure 5.2.5 the border component By depends
on the border component Bi. So the idea for the top down phase is for each border

75

5. Parallel Algorithms

component to wait for the result of their parent component and as soon as they received
the information whether their incoming edge is matched, they start to add edges to the
matching and send information to their child components.

Algorithm 5.2.2 summarizes the computation a maximum weighted matching of a
parallel forest.

Algorithm 5.2.5 Compute the maximum weighted matching of a parallel forest

compute_matching_of _parallel forest(forest, parallel_roots):
1. fill subtree_table_parallel(forest, parallel_roots)
2: M = get_matched_edges_of_parallel_forest(forest, parallel_roots)
3: return M

For more information how the sending and receiving of messages, for both phases, in
particular the bundling of messages into one MPI-message is handled see Appendix D.2.

5.3. Experimental Results

In this section we present the experimental results of our parallel algorithms. Most of
the experiments where performed on the InstitutsCluster (IC1) of the Steinbuch Centre
for Computing [14]. This systems consists of 200 computing nodes. Each node is made
up by two Quad-Core Intel Xeon X5355 processors (2.667 GHz) and 16 GB of RAM. The
nodes are connected by an InfiniBand 4x DDR network. Suse Linux Enterprise (SLES)
11 SP 1 is used as the operating system on each node. The programs were compiled using
Open MPI 1.5.5 and the Intel C++ Compiler 12.1.3 with optimization -O3. The other
system that we used for the experiments is the KIT-Hochleistungsrechner HP XC3000
(he3) of the Steinbuch Centre for Computing [15]. This system’s nodes are made up by
two Quad-Core Intel Xeon E5540 processors (2.53 GHz) and 24 GB of RAM. The he3
uses HP XC Linux for "High Performance Computing” as its operating system. The
programs where compiled using the same compiler, MPI-version and compile options
from the IC1.

We used up to 1024 processes for our experiments, where each process is assigned to
a single core. Therefore the number of processes also corresponds to the number of used
cores.

For our parallel experiments we again used graphs from the 10th DIMACS Implemen-
tation Challenge [5], but this time we only considered graphs with at least 20 million
edges. We used random geometrics graphs (rggn 2 22, rgg n 2 23, rgg n 2 24), De-
launay graphs (delaunay n23, delaunay n24, delaunay n25), street graphs (europe.osm,
road_us) and web graphs (uk-2002, uk-2007). Additionally we also used 2D-grids, 5D-
grids and complete graphs.

All experiments on graphs with less than 400 million edges where performed on IC1.
This includes all random geometric graphs, Delaunay graphs, the uk-2002 graph and
several complete and grid graphs. Experiments on those graphs were repeated 10 times
and we used up to 512 processes, although usually not more than 256.

76

5.3. Experimental Results

The hc3 was only used for the largest graphs. Experiments on these graphs were
performed using up to 1024 processes. However we performed these experiments only
once. For all presented experiments we mention explicitly if they were performed on the
he3, all the other presented experiments were performed on the IC1.

5.3.1. Weak Scaling

At first we show the weak scaling results of the parallel algorithms. From the DIMACS-
graphs we only considered the random geometric and Delaunay graphs. The other graphs
are not really suitable because there are either too few of the same kind or the sizes differ
in a way that is not really suitable for weak scaling.

Parallel Local Max Algorithm

Figure 5.3.6 and Figure 5.3.7 show the results of parallel local max algorithm (Algo-
rithm 5.1.1) for 2D-grids. In the case of perfect weak scaling we would expect that the
runtime remains constant when increasing both the number of processes and the size of
the graph. As one can see that is not the case in the left picture of Figure 5.3.6, at least
not from the jump from 8 to 16 processes. In this case the runtime increases by a factor
of 1.87. On the other hand the right picture shows for larger numbers of processes an
optimal result. The jump in the left picture was probably caused by the difference in
the number of processes which were assigned to a single node. For 8 processes we used
two nodes of the IC1 and hence only four cores of the 8 available cores were used on
each node. In case of 16 processes we again used two nodes and therefore all available 16
cores were used. Throughout the experiments when all cores of the nodes were used we
usually saw a worse scaling than for smaller numbers of processes on the IC1. Especially
for the grid graphs and random geometric graphs the drop of the scaling factor is quite
huge. So it is quite likely that the memory bandwidth, on the IC1, became a bottleneck
when all cores of a node were used. For smaller numbers of processes there is not a
perfect weak scaling for 2D-grids, but it is not too bad. The runtime for the step from
1 to 8 processes increases only by a factor of 1.49.

Figure 5.3.7 shows results for larger 2D-grids. In those cases we see almost optimal
weak scaling for 16 up to 1024 processes.

The results for the 5D-grids (Figure 5.3.8) are really similar to those of the smaller
2D-grids. In both cases the grids have similar numbers of edges. We see a big rise in
the runtime from 8 to 16 processes (factor 2.39) but we see good weak scaling results
for larger numbers of processes (right picture). Again in the case of 8 processes only 4
cores of a single node were used whereas for 16 processes all 8 cores of a single node were
used. For a smaller number of processes the weak scaling is not as good as the one for
2D-grids but it is not as bad as the step from 8 to 16 processes. The runtime for the
step from 1 to 8 processes increases by a factor of 1.88.

For complete graphs (Figure 5.3.9) the results are not that good. Especially for smaller
numbers of processes. One factor for the bad scaling is probably the huge number of
cross edges for complete graphs. For 2, 4, 8, 16 and 32 processes we have that about

7

5. Parallel Algorithms

2
w5 n
o T »
g = g o
R= =R
X 2 .
" - 0
=S =
: I
oo = 8
< 25 49.99 99.98 199.98 = 25 49.99 99.98 199.98
4 8 16 32 32 64 128 256
Edges in million and processes Edges in million and processes

Figure 5.3.6.: Weak scaling results of the parallel local max algorithm on 2D-grids with
random edge weights.

ERp N e

= =

g S

g 7 8 o

§= =

o)

g g «

2 2 o

= =

= =

~ | Moo

500.01 1000.07 2000.09 4000.03 < 500.01 1000.07 2000.09 4000.03

16 32 64 128 128 256 512 1024
Edges in million and processes Edges in million and processes

Figure 5.3.7.: Weak scaling results of the parallel local max algorithm on 2D-grids with
random edge weights. (performed on hc3)

50%, 75%, 87.5%, 94% and 97% all edges are cross edges. The jump in the left picture
from 4 to 8 processes is probably also caused by the fact that in case of 8 processes all
8 cores of one node were used. The right pictures shows good weak scaling behaviour
for 128 to 512 processes but the there is a jump by a factor of 1.45 from 512 to 1024
processes. In both cases all cores of the used nodes were used, therefore the memory
bandwidth cannot be an explanation for this jump. So maybe the bandwidth of the
network became a bottle neck (we also see this jump when using the parallel local tree
algorithm). Complete graphs need a lot more communication than grid graphs, because
there are a lot more cross edges and there is communication involved between each pair
of processes.

The weak scaling results for random geometric graphs are not optimal, but not too
bad. The biggest jump is observed for the step from 4 to 8 processes, the runtime
increases by a factor of 1.69. This is again the case where all cores of the node were

78

5.3. Experimental Results

n S _ n <t
"g [2p] -g S
3 7 S o
% 2 - & S
R= i E
£ o] g °
s~ = =
= - <
Ao Ao
< 24.6 46.88 99.02 189.75 < 24.6 46.88 99.02 189.75
4 8 16 32 32 64 128 256
Edges in million and processes Edges in million and processes

Figure 5.3.8.: Weak scaling results of the parallel local max algorithm on 5D-grids with
random edge weights.

w0 n
g =y g 1
8 8 <t —
% © - 2
R= = E—
o Q
£ R
+ | +
I £ 7]
o - o -
25 49.99 99.99 199.99 499.99 1000.01 2000 3999.98
1 2 4 8 128 256 512 1024
Edges in million and processes Edges in million and processes

Figure 5.3.9.: Weak scaling results of the parallel local max algorithm on complete graphs
with random edge weights. (right experiment was performed on hc3)

used. From one to 4 processes it increases by factor of 1.41. For larger numbers of
processes the results are better. The runtime increases by a factor of 1.32 from 64 to
256 processes.

For Delaunay graphs we see pretty bad weak scaling especially for smaller number
of processes. Similar to the complete graphs there are a lot of cross edges using our
approach to partition the graphs. For 2, 4, 8 and 16 processes we have that about
25%, 37%, 39% and 40% of all edges are cross edges. In case of the random geometric
graphs we only have that 0.03%, 0.06%, 0.1% and 0.2% are cross edges. Not using the
trivial partitioning we can reduce the number of cross edges significantly. In case of the
delaunay n15 graph and using KaFFPa [31] we get that only about 0.3%, 0.7%, 1.1%
and 1.9% are cross edges for 2, 4, 8 and 16 processes, respectively. So it is possible that
a better partitioning results in a better scaling behaviour for Delaunay graphs.

79

5. Parallel Algorithms

CERE 5 &

= s 3

3 7 8

g *® &% n

= T .

o B o 27

E < g °

= g = g
S 30.36 63.5 132.56 = 30.36 63.5 132.56

4 8 16 64 128 256

Edges in million and processes Edges in million and processes

Figure 5.3.10.: Weak scaling results of the parallel local max algorithm on random geo-
metric graphs (rggn_2_22, rgg n_2 23 and rggn_2_24) with random edge

weights.

g] g % _

5 =4 g <

o g <

175} o0 — 177} =)

g g

T © o

£ < E 2

= Z o

5 o 5 <

~ o - & o

25.17 50.33 100.66 < 2517 50.33 100.66
1 2 4 64 128 256
Edges in million and processes Edges in million and processes

Figure 5.3.11.: Weak scaling results of the parallel local max algorithm on Delaunay
graphs (delaunay n23, delaunay n24 and delaunay n25) with random
edge weights.

Parallel Local Tree Algorithm

The weak scaling results (Figure 5.3.12 — Figure 5.3.17) of the parallel local tree algorithm
on the same graph-instances do not show a significant different behaviour than the results
of the parallel local max algorithm. We see fairly good weak scaling for grid-graphs and
random geometric graphs. For these graphs large runtime jumps are observed whenever
all cores of a single node were used.

For the Delaunay and complete graphs we again see pretty bad scaling, especially for
smaller numbers of processes.

80

g 7
= e
Q
<
g
-
]
E o
E
~
o
25 49.99 99.98 199.98
4 8 16 32

Edges in million and processes

Runtime in seconds

0.0 02 04 06 038

L

|

1

1

1

5.3. Experimental Results

25 49.99 99.98 199.98
32 64 128 256

Edges in million and processes

Figure 5.3.12.: Weak scaling results of the parallel local tree algorithm on 2D-grids with

random edge weights.

2]
=

0
SH
o)
n
£ S
)
=
= s
=}
=}
~

500.01 1000.07 2000.09 4000.03
16 32 64 128

Edges in million and processes

Runtime in seconds

0.0 0.5 1.0 1.5 2.0

|

1

1

1

L

500.01 1000.07 2000.09 4000.03
128 256 512 1024

Edges in million and processes

Figure 5.3.13.: Weak scaling results of the parallel local tree algorithm on 2D-grids with
random edge weights. (performed on hc3)

Ik

=)

g ©

?

g ©7

E

2 o

=)

m -
246 46.88 99.02 189.75
4 8 16 32

Edges in million and processes

Runtime in seconds

1.2

0.8

24.6 46.88 99.02 189.75
32 64 128 256

Edges in million and processes

Figure 5.3.14.: Weak scaling results of the parallel local tree algorithm on 5D-grids with

random edge weights.

81

5. Parallel Algorithms

|92} 12} —_

TP E

8 < 8 2 7

% %

g R=]

© o <

£~ e

E — — *a |

= S

Ao I
25 49.99 99.99 199.99 S 499.99 1000.01 2000 3999.98

1 2 4 8 128 256 512 1024

Edges in million and processes Edges in million and processes

Figure 5.3.15.: Weak scaling results of the parallel local tree algorithm on complete
graphs with random edge weights. (right experiment performed on hc3)

w0 n
E = 8
2 s ©
S o | — g
a8 - g o
@ o
g =2 g <
=R e
: :
oo = 8
S 30.36 63.5 132.56 < 30.36 63.5 132.56
8 16 32 64 128 256
Edges in million and processes Edges in million and processes

Figure 5.3.16.: Weak scaling results of the parallel local tree algorithm on random geo-
metric graphs (rggn_ 222, rgg n 2 23 and rgg n_2_24) with random edge
weights.

|

50

1

2.0

1

1

Runtime in seconds
0 10 20 30 40
|
Runtime in seconds
1.0

L

25.17 50.33 100.66 25.17 50.33 100.66
1 2 4 64 128 256

Edges in million and processes Edges in million and processes

Figure 5.3.17.: Weak scaling results of the parallel local tree algorithm on Delaunay
graphs (delaunay n23, delaunay n24 and delaunay.n25) with random
edge weights.

82

5.3. Experimental Results

5.3.2. Strong Scaling

We present strong scaling results for the two parallel algorithms in this section. In case
of strong scaling one would hope to decrease the runtime of a parallel algorithm, on one
particular graph, by the same factor by which we increase the number of processors.
In our case we always double the number of processors. For good strong scaling the
quotient between the runtimes using p/2 and p processors should be 2.

At first we present the strong scaling results for the parallel local max algorithm and
afterwards the results for the parallel local tree algorithm.

Parallel Local Max Algorithm

Figure 5.3.18 shows the results for 2D-grids with about 50 million and 200 million edges.
For 2 up to 8 processes the scaling is not optimal but it is still quite good. There is almost
no speedup for the step from 8 to 16 processes. However starting with 16 processes all
cores of the computing nodes were used, so the bad scaling for this step is probably
caused by the memory bandwidth. For 32 to 256 processes we see perfect scaling.

runtime(%) /runtime(p)
runtime(£) /runtime(p)

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Number of processes p Number of processes p

Figure 5.3.18.: Scaling results of the parallel local max algorithm on 2D-grids with ran-
dom edge weights. Left: 2D-grid with 49990000 edges. Right: 2D-grid
with 199 980 000 edges.

Figure 5.3.19 shows again results for 2D-grids, but this time for larger grids. For a
2D-grid with about 0.5 billion edges we good scaling for 32 up to 512 processes and no
speed up from 512 to 1024 processes. We also performed experiments on 2D-grids with
about 1 billion and 2 billion edges. In those two cases we observed the same behaviour.
However as one can see in the right picture of Figure 5.3.19 we constantly see good scaling
for a 2D-grid with about 4 billion edges. Hence the other graphs might have been too
small for this amount of processes (Gustafson’s law).

The strong scaling results for 5D-grids (Figure 5.3.20) are similar to the results from
the smaller 2D-grids. For small numbers of processes (up to 8) the algorithms scales
reasonably well. For those numbers not all available cores of the nodes were used. Start-
ing with 16 processes all cores of the nodes were used and again we do not see any

83

5. Parallel Algorithms

runtime (%) /runtime(p)
runtime(%) /runtime(p)

\ T T T T T
32 64 128 256 512 1024 32 64 128 256 512 1024

Number of processes p Number of processes p

Figure 5.3.19.: Scaling results of the parallel local max algorithm on 2D-grids with ran-
dom edge weights. Left: 2D-grid with 500 007 064 edges. Right: 2D-grid
with 4000025 124 edges. (performed on hc3)

speedup for this step. For larger number of processes (up to 256) the algorithm scales
well especially for the bigger graph.

runtime(%) /runtime(p)

runtime(£) /runtime(p)

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Number of processes p Number of processes p

Figure 5.3.20.: Scaling results of the parallel local max algorithm on 5D-grids with ran-
dom edge weights. Left: 5D-grid with 46 875000 edges. Right: 5D-grid
with 189 747 360 edges.

For a complete graph with about 12.5 million edges (Figure 5.3.21) the parallel local
max algorithm scales pretty bad, actually in many cases we see a longer runtime. For a
larger complete graph with about 200 million edges the scaling behavior is a lot better
but still the scaling is not at all optimal. We only see a good scaling behaviour for 16
to 64 processes. The behavior for smaller numbers of processes is probably because here
we see a large increase of cross edges. In case of 16 processes about 94% of all edges
are cross edges, so this number cannot increase a lot more for more processes. Also the
drop at 8 processes is probably because from there on all cores of the nodes were used.

84

5.3. Experimental Results

runtime(%) /runtime(p)
runtime(%) /runtime(p)

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Number of processes p Number of processes p

Figure 5.3.21.: Scaling results of the parallel local max algorithm on complete graphs
with random edge weights. Left: complete graph with 12497500 edges.
Right: complete graph with 199 990 000 edges.

For a complete graph with about 500 million edges (Figure 5.3.22) the algorithms
scales well for up to 256 processes and in the case of a complete graph with about 4
billion edges we see good scaling for up to 512 processes.

runtime(£) /runtime(p)
runtime(£) /runtime(p)

32 64 128 256 512 1024 32 64 128 256 512 1024

Number of processes p Number of processes p

Figure 5.3.22.: Scaling results of the parallel local max algorithm on complete graphs
with random edge weights. Left: complete graph with 499991 253 edges.
Right: complete graph with 3999980403 edges. (performed on hc3)

Figure 5.3.23 shows the strong scaling results of the parallel local max algorithm
for random geometric graphs of the 10th DIMACS Implementation Challenge. There
is only a small speedup for the step when all cores of the nodes were used (8 to 16
processes). Especially for larger numbers of processes the scaling is really good, except
for 256 processes in the left picture.

For the Delaunay graphs Figure 5.3.24 the speedup increases from no speedup to a
speedup of about 1.8 (64 processes) constantly and then starts to fall. The parallel local

85

5. Parallel Algorithms

runtime (%) /runtime(p)

runtime(%) /runtime(p)

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Number of processes p Number of processes p

Figure 5.3.23.: Scaling results of the parallel local max algorithm on random geometric
graphs with random edge weights. Left: rggmn_ 223 (63501393 edges).
Right: rgg n 2 24 (132557200 edges).

max algorithm scales a lot worse for Delaunay graphs than for random geometric graphs,
but still we see a speedup. This difference is probably due to the fact that our vertex
block based partitioning method produces more imbalanced partitions for the Delaunay
graphs than for the random geometric graphs and as we have seen in the weak scaling
section (Section 5.3.1) the number of cross edges is a lot larger for Delaunay graphs than
for random geometric graphs. If we look at the partitions for 16 processes of the rgg-n24
and delaunay-n25 graphs, we see that the smallest number of edges of a partition of the
random geometric graph is 8 283660 and the largest is 8 323 166. They just differ by
a factor of 1.005. On the other hand the smallest partition of the Delaunay graph has
7864 580 edges while the largest partition has 12190622 edges. That is a difference by
a factor of 1.55.

runtime(£) /runtime(p)
runtime(£) /runtime(p)

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Number of processes p Number of processes p

Figure 5.3.24.: Scaling results of the parallel local max algorithm on Delaunay graphs
with random edge weights. Left: delaunay n24 (50331601 edges). Right:
delaunay n25 (100 663 248 edges).

86

5.3. Experimental Results

Figure 5.3.25 shows results for street graphs. The bad scaling for 8 processes is prob-
ably again because starting with 8 processes all of the available cores were used. The
Europe-graph shows good scaling for 16 to 64 processes and the USA-graph for 64 to
256 processes. From what we have seen so far one would expect that the USA-graph is
the larger one (scales better for more processes), but in fact the Europe-graph is almost
twice as big. However the partitions of the USA graph are a lot more imbalanced than
the partitions of the Europe-graph. In the case of 16 processes the USA graph has an
imbalance factor of 1.52 (the quotient between the largest and the smallest partition)
while the Europe-graph only has an imbalance factor of 1.18.

2
!

1.5

runtime (%) /runtime(p)
1
|

runtime(%) /runtime(p)

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Number of processes p Number of processes p

Figure 5.3.25.: Scaling results of the parallel local max algorithm on street graphs with
random edge weights. Left: europe.osm (54054660 edges). Right:
road_usa (28 854 312 edges).

For the web-graphs from Figure 5.3.26 the parallel local max algorithm does not show
good scaling. It starts with quite a good scaling but then the speedups decrease, but
the speedup is always larger than 1. Compared to the results of the parallel local tree
algorithm that is really good.

Parallel Local Tree Algorithm

The strong scaling results for the parallel local tree algorithm are in general similar to
the results that we have seen for the parallel local max algorithm. In case of the random
geometric graphs and Delaunay graphs (Figure 5.3.32 and Figure 5.3.33) all available
cores of the nodes were used starting with 32 processes, this probably explains the drop
in the speedup at 32 processes.

The case were we see a significant difference compared to the results from the parallel
local max algorithm is for web graphs (Figure 5.3.35). For the uk-2002 graph there is still
a speedup larger than 1 but not as good as the speed up achieved by the parallel local
max algorithm for the same graph. The results for the uk-2007 graph are even worse.
For 128 to 1024 the runtime actually increases. The algorithm is for 1024 processes 1.47
times slower than for 16 processes.

87

5. Parallel Algorithms

runtime() /runtime(p)

Number of processes p

runtime(£) /runtime(p)

32 64 128 256 512 1024

Number of processes p

Figure 5.3.26.: Scaling results of the parallel local max algorithm on web graphs uk-2002
and uk-2007 (261 787 258 edge and 3 301 876 564 edges) with random edge
weights. (right experiment performed on hc3)

runtime(%) /runtime(p)

2 4 8 16 32 64 128 256

Number of processes p

runtime(%) /runtime(p)

4 8§ 16 32 64 128 256

Number of processes p

Figure 5.3.27.: Scaling results of the parallel local tree algorithm on 2D-grids with ran-
dom edge weights. Left: 2D-grid with 49990 000 edges. Right: 2D-grid

with 199980000 edges.

88

runtime(£) /runtime(p)

32 64 128 256 512 1024

Number of processes p

runtime(£) /runtime(p)

5.3. Experimental Results

32 64 128 256 512 1024

Number of processes p

Figure 5.3.28.: Scaling results of the parallel local tree algorithm on 2D-grids with ran-
dom edge weights. Left: 2D-grid with 500 007 064 edges. Right: 2D-grid
with 4000025 124 edges. (performed on hc3)

runtime(%) /runtime(p)

2 4 8 16 32 64 128 256

Number of processes p

runtime(%) /runtime(p)

2 4 8 16 32 64 128 256

Number of processes p

Figure 5.3.29.: Scaling results of the parallel local tree algorithm on 5D-grids with ran-
dom edge weights. Left: 5D-grid with 46 875000 edges. Right: 5D-grid

with 189747 360 edges.

89

5. Parallel Algorithms

runtime() /runtime(p)
1

2 4 8 16 32 64 128 256

Number of processes p

runtime(£) /runtime(p)

2 4 8 16 32 64 128 256

Number of processes p

Figure 5.3.30.: Scaling results of the parallel local tree algorithm on complete graphs
with random edge weights. Left: complete graph with 12497500 edges.
Right: complete graph with 199 990 000 edges.

runtime(%) /runtime(p)

\ \ \ \ \ \
32 64 128 256 512 1024

Number of processes p

runtime(%) /runtime(p)

32 64 128 256 512 1024

Number of processes p

Figure 5.3.31.: Scaling results of the parallel local tree algorithm on complete graphs
with random edge weights. Left: complete graph with 499 991 253 edges.
Right: complete graph with 1999996 635 edges. (performed on hc3)

90

runtime(£) /runtime(p)

2 4 8 16 32 64 128 256

Number of processes p

runtime(£) /runtime(p)

5.3. Experimental Results

2 4 8 16 32 64 128 256

Number of processes p

Figure 5.3.32.: Scaling results of the parallel local tree algorithm on random geometric
graphs with random edge weights. Left: rggn_ 223 (63501393 edges).
Right: rgg n 2 24 (132557200 edges).

runtime(%) /runtime(p)

2 4 8 16 32 64 128 256

Number of processes p

runtime(%) /runtime(p)

2 4 8 16 32 64 128 256

Number of processes p

Figure 5.3.33.: Scaling results of the parallel local tree algorithm on Delaunay graphs
with random edge weights. Left: delaunay n24 (50331601 edges). Right:
delaunay n25 (100 663 248 edges).

91

5. Parallel Algorithms

runtime() /runtime(p)

runtime(£) /runtime(p)

2 4 8 16 32 64 128 256

Number of processes p

2 4 8 16 32 64 128 256

Number of processes p

Figure 5.3.34.: Scaling results of the parallel local tree algorithm on street graphs with
Left: europe.osm (54054660 edges). Right:
road_usa (28854 312 edges).

random edge weights.

runtime(%) /runtime(p)

2 8 32 128 512

Number of processes p

runtime(%) /runtime(p)

32 64 128 256 512 1024

Number of processes p

Figure 5.3.35.: Scaling results of the parallel local max algorithm on web graphs uk-2002
and uk-2007 (261 787 258 edge and 3 301 876 564 edges) with random edge
weights. (right experiment performed on hc3)

92

5.3. Experimental Results

Total Speedups

Tables 5.1 and 5.2 show the total speedups achieved by the parallel local max and parallel
local tree algorithms for the experiments performed on the IC1. The speedups are
computed using the runtimes of the sequential algorithms from Chapter 4. The second
column of the tables shows the ratio between the sequential algorithms and the parallel
algorithms using one process. As one can see the sequential algorithms are usually about
10%-20% faster than the parallel algorithms using one process.

The parallel local max algorithm achieves in all cases but one a speedup for 256
processes. The case where it does not achieve a speedup is for a complete graph with
about 12 million edges, but this graph is a lot smaller than the other graphs. The largest
speedups are achieved for 2D-grids and random geometric graphs. In case of 2d-grids we
used an optimal partitioning, this results in far less cross edges. The number of cross
edges for 2D-grids is only about 0.15%-0.3% of the total number of edges in case of 256
processes. In case of random geometric graphs we have that 2% and 1.5% of the edges
are cross edges for 256 processes. On the other hand there are about 29% and 25% cross
edges for the 5d-grids, about 40% cross edges for the Delaunay graphs and more than
99% of the edges of the complete graphs are cross edges. Those numbers are all for the
partitions for 256 processes. This suggests that a better partitioning should result in
better speedups. However in case of the europe.osm graph and uk_2002 graph we see
speedups that are worse than the speedups of the 5D-grids, but the numbers of cross
edges of those two graphs are 11% and 5%, respectively. Therefore the percentage of
cross edges cannot be the only factor influencing the speedups.

Graph Speedup 1 Process | Speedup 256 Processes
2D-grid, ~50mio edges 0.89 87.0
2D-grid, ~200mio edges 0.89 83.3
5D-grid, ~47mio edges 0.82 28.1
5D-grid, ~190mio edges 0.81 324
K, ~12mio edges 0.97 0.9
K, ~200mio edges 0.96 6.1
rgg n 2 23 0.83 68.7
rggn 2 24 0.83 98.2
delaunay_n24 0.87 7.6
delaunay_n25 0.88 10.0
europe.osm 0.86 14.9
road_usa 0.87 19.9
uk_2002 0.92 24.3

Table 5.1.: Speedups for parallel local max algorithm.

The speedups achieved by the parallel local tree algorithm using 256 processes are in
general better than the speedups achieved by the parallel local max algorithm, except
for the uk_2002 graph. In case of the complete graphs the sequential algorithm required
more time than the parallel version using only one process. This suggests that the

93

5. Parallel Algorithms

implementation of the sequential local tree algorithm is probably not optimal. In the
case of complete graphs we used the runtime of the parallel algorithm to compute the
speedup for 256 processes.

Graph Speedup 1 Process | Speedup 256 Processes
2D-grid, ~50mio edges 0.87 125.4
2D-grid, ~100mio edges 0.87 122.4
5D-grid, ~47mio edges 0.84 48.7
5D-grid, ~190mio edges 0.86 45.2
K, ~12mio edges 1.16 1.3
K, ~200mio edges 1.03 11.5
rggn_2_23 0.85 98.9
rggn_ 2 24 0.84 111.2
delaunay_n24 0.86 14.0
delaunay_n25 0.84 16.5
europe.osm 0.85 36.5
road_usa 0.86 21.6
uk_2002 0.90 3.8

Table 5.2.: Speedups for parallel local tree algorithm.

5.3.3. Comparison Local Max and Local Tree

In this section we compare our two parallel algorithms directly, how they perform on
different kinds of graphs with different amounts of processes. On the same kind of graphs
they perform really similar, therefore we only chose one or two representative graphs for
each kind.

Each figure shows the runtime of the two algorithms for different amounts of processes.
We use a logarithmic scale for the y-axe to make it easier to distinguish the two curves.
Additionally the figures also show the division of the runtime of the parallel local tree
algorithm by the runtime of the parallel local max algorithm (dotted line).

The parallel local max algorithm performs in almost all cases (Figure 5.3.36 — Fig-
ure 5.3.44) better than the parallel local tree algorithm, except for complete graphs
(Figure 5.3.39 and Figure 5.3.40), where the parallel local tree algorithm performs bet-
ter. Also in most cases both algorithms scale pretty well to some extent, but they do
not show an optimal performance (we have seen this in the previous section). There is
one exception to this observation, in the case of the web graph uk-2007 (Figure 5.3.44)
the parallel local tree algorithm performs really bad, there is actually no acceleration at
all and the runtime gets larger for more processes.

There are two more observations regarding the factor f that the parallel local tree
algorithm is slower than the parallel local max algorithm (except for the web graphs).
The first observation is that this factor tends to get smaller with larger numbers of
processes. And the other observations is that it also gets smaller with a larger average
vertez degree (see Table 5.3). An explanation of this behaviour is that in a graph with a

94

5.3. Experimental Results

larger average vertex degree we have proportionally less vertices than edges. The input
size for the forest matching algorithm is less than the number of vertices and therefore
the time spent on the forest matching algorithm might tend to be proportionally smaller
than the time spent on computing candidates and removing edges for graphs with larger
average vertex degrees. Those two operations depend on the number of edges and are
the parts that both parallel algorithms have in common.

Graph Average vertex degree | Range of factor f | Figure

europe.osm ~ 2.1 6.12 — 3.44 Figure 5.3.43
2D Graph ~4 6.09 — 3.86 Figure 5.3.36
Delaunay ~ 6 4.53 — 2.96 Figure 5.3.42
5D Graph ~ 9.7 4.27 — 2.98 Figure 5.3.38
Random geometric graph ~ 15.8 2.81 —2.14 Figure 5.3.41
Complete Graph 19999 0.55 —-1.1 Figure 5.3.39

Table 5.3.: Average vertex degrees and runtime difference of the parallel local tree and
parallel local max algorithms.

Those two observations suggest that the parallel local tree algorithm might be more
suitable for graphs with larger average vertex degrees and for larger numbers of processes.
Also as we previously mentioned the implementation of this algorithm is not optimal,
there is an easier way to select a root of a parallel tree.

7 =
o - ® g
>N~
g _ T
: I
%Lof =
o g
PR -3
£ N 5
£ .5t
S T — 0
= £
= g
= Y

Number of of processes p

Figure 5.3.36.: Comparison of parallel local max and parallel local tree on 2D-grid with
99983 940 edges.

95

5. Parallel Algorithms

= ~
S <f
—
: ?
o g
- !
R £
g « - < =]
g
g . ™~
=)
E -
'é' Nad
[}
= g
— Ne)
— . :"3
] el =
=
Yo —
=T B
I I I I I I I o

16 32 64 128 256 512 1024

Number of of processes p

Figure 5.3.37.: Comparison of parallel local max and parallel local tree on 2D-grid with
4000025124 edges. (performed on hc3)

— 0 —~
"
= :
5-; | o T
: S
3 o =
©n —] =
o
= s T =
5] 48]
£ :
= n £
: -2
2 | &
- E

" —] = o™
=) -

Number of of processes p

Figure 5.3.38.: Comparison of parallel local max and parallel local tree on 5D-grid with
189747 360 edges.

96

5.3. Experimental Results

I B
~ 3

S |
;- El
”g L. o)
S . - 2
— +
3 3
o = - {
.- —
[} Q
5 2
£ 9 - X 2
= = o)
= k=
— L < 7
o =]
[

\ \ \ \ \ \ \ \ \
1 2 4 8 16 32 64 128 256

Number of of processes p

Figure 5.3.39.: Comparison of parallel local max and parallel local tree on complete graph
with 199990 000 edges.

S
N LD
A ST A max — M
- 2 RN : e <
=
wn
E T
= R =
) 100 R=
S | n £
2 = §
o =
g o | &
- — 0 =
: 3
j o —) g
=
=
—
o

16 32 64 128 256 512 1024

Number of of processes p

Figure 5.3.40.: Comparison of parallel local max and parallel local tree on complete graph
with 3999980403 edges. (performed on hc3)

97

5. Parallel Algorithms

Figure 5.3.41.:

runtime in seconds

runtime in seconds

s | <
I
N L 2
o
o -
a - ™
N 0
0 o~
S
_| -~
‘_‘7
S

1 2 4 8 16 32 64 128 256

Number of of processes p

Comparison of parallel local max and parallel local tree on
metric graph (rggn 2 24, 132557200 edges).

o | -
0
o _| - ©
a
o _|
— —
o -

- <
~ -
_ - .

\ \ \ \ \ \ \ \ \
1 2 4 8 16 32 64 128 256

Number of of processes p

runtime(tree) /runtime(max)

random geo-

runtime(tree) /runtime(max)

Figure 5.3.42.: Comparison of parallel local max and parallel local tree on delaunay graph

98

(delaunay_25, 100 663 248 edges).

5.3. Experimental Results

™

o

Y- M)

z
wn
E] - = T
g g
S o R
| — +
] i o
n =]
s - * F
g 10— ~
=)
5 2
= N - ©° =
g [
z =
~ — — o
-
0 -
= =

1 2 4 8 16 32 64 128 256

Number of of processes p

Figure 5.3.43.: Comparison of parallel local max and parallel local tree on street graph
(europe.osm, 54 054 660 edges).

100
|
20

10 15

runtime in seconds
/

10 20
|
/
/
runtime(tree) /runtime(max)

16 32 64 128 256 512 1024

Number of of processes p

Figure 5.3.44.: Comparison of parallel local max and parallel local tree on web graph
(uk-2007, 3301 876 564 edges). (performed on hc3)

99

6. Conclusions

We presented three sequential matching algorithms. One that is based on the Karp-
Sipser matching algorithm [21] but uses a different heuristic to select matched edges if
there are no degree one vertices (the mized algorithm). Another matching algorithm to
compute approximate weighted matchings that is based on Preis’ idea to match locally
heaviest edges [30] (local mazx algorithm). The third algorithm computes for each vertex
its heaviest incident edge and then computes maximum weighted matchings of the trees
defined by these edges (local tree algorithm). All three algorithms have in common that
they are round based which provides an intuitive way to parallelize them. We also
introduced parallel version of the local max algorithm and the local tree algorithm.

We compared the three algorithms in experiments with GPA [26] and our own im-
plementation of the Karp-Sipser algorithm with regard to the solution quality and the
runtime. All three algorithms were on average within 8.5% of the solution of the Karp-
Sipser algorithm for the cardinality problem. Karp-Sipser was on average 8.5% better
than the local max algorithm, 4.7% than the local tree algorithm and about 2.5% better
than the mixed algorithm.

In case of the GPA algorithm, which has been shown to compute matchings of good
quality for the weighted matching problem [26], the differences in the solution quality
are much smaller. GPA is in average about 1% better than the local max algorithm
using the expansionstar2 rating. And for the same rating there is in average almost no
difference between the local tree algorithm and GPA. The local tree algorithm, unlike
GPA and the local max algorithm, does not provided any worst case guarantees for the
quality of the solution. GPA and the local max algorithm are both 1/2-approximation
algorithms. Despite providing results with almost the quality of GPA or even the same
quality, both algorithm were a lot faster than GPA. The local tree algorithm in average
by a factor of 4 and the local max algorithm even by a factor of 15.

We also confirmed empirically the assumption that the local max algorithm and local
tree algorithm require at most a logarithmic number of rounds. And we have shown
that the runtime for slight variations of those two algorithms is expected to be linear for
random edge weights.

For the parallel versions of the local tree algorithm and local max algorithm we per-
formed extensive experiments to see how well they scale in practice. For those experi-
ments we did not use any advanced graph partitioning technique, we just partitioned the
graphs by assigning blocks of vertices to the processors. This resulted in optimal par-
titions for 2D-grids (by defining appropriate vertex IDs) and complete graphs. In case
of nicely structured graphs (grids, random geometric graphs) we achieve good scaling
qualities (strong and weak) for up to 1024 processors. The parallel algorithms performed
reasonably well for complete graphs, which have a huge amount of cross edges, and for

101

6. Conclusions

Delaunay graphs, whose partition sizes differ quite a lot. For web graphs only the local
max algorithm showed that speedups were achieved, the parallel local tree algorithm
performed really bad on them.

6.1. Future Work

There are still several open questions regarding the real expected runtime of the algo-
rithms. We have only shown an expected linear runtime for a variation of the algorithms
where we assign new random edge weights at the start of each round to the remaining
edges. It is still open if that is also the case without this modification of the algorithm.
Our experimental results strongly suggest this assumption. In the experiments usually
far more than half of the remaining edges were removed during a round.

An important property for the parallel local tree algorithm is that none of the local
trees get too large and more importantly not too deep. So far we have checked this
property empirically, but it still remains to show that this property holds in theory (for
random edge weights).

We only used a simple approach to partition the input graphs for the parallel algo-
rithms. So there is potential that the parallel algorithms perform better when using
advanced graph partitioners, especially in the case of the Delaunay and web graphs.

For the parallel local tree algorithm it still remains to implement the easier method to
compute a root of a parallel tree. This adjustment should result in shorter runtimes but
we do not expect a different behaviour, e.g. better scaling results for the web graphs.
Because the parallel dynamic programming part to compute matchings of parallel trees
is not that different from the current approach to compute the root of a parallel tree.

102

A. Zusammenfassung

Die Berechnung von Matchings von Graphen tritt in der Informatik héufig als Teilprob-
lem eines grofleren Problems auf. Zum Beispiel bei der Berechnung von Graphpartiti-
onen.

Ein Matching M eines Graphen G = (V, E) ist eine Teilmenge der Kantenmenge E des
Graphen, so dass keine zwei Kanten aus M einen gemeinsamen Endknoten haben. Bei
Kardinalitatsmatchings versucht man die Anzahl an Kanten in M zu maximieren und
im Fall von gewichteten Matchings versucht man das Gesamtgewicht zu maximieren.

Bereits in der 1960er Jahren hat Edmonds gezeigt, dass das Berechnen von opti-
malen Kardinalitdtsmatchings bzw. optimalen gewichteten Matchings in polynomieller
Zeit moglich ist [13]. Die besten Algorithmen zur Bestimmung von optimalen Matchings
haben eine Laufzeit von O(n(m + nlogn)) [17]. In der Praxis sind diese Algorithmen
hdufig aber trotzdem zu langsam und optimale Ergebnisse nicht unbedingt notwendig.
Deshalb gibt es inzwischen ein starkes Interesse an approximativen Algorithmen mit
deutlich kiirzeren Laufzeiten. Zum Beispiel der Karp-Sipser Algorithmus zur Lésung
des Kardinalitdtsproblems mit einer linearen Laufzeit [21] oder der LAM Algorithmus
von Preis [30] und GPA Algorithmus von Maue und Sanders [26] fiir das gewichtete
Problem. Beide Algorithmen erreichen eine 1/2-Approximation. LAM hat eine lineare
Laufzeit und GPA eine Laufzeit von O(mlogn).

Diese Arbeit behandelt Variationen von bereits existierenden sequentiellen Matching-
Algorithmen sowie einen neuen sequentiellen Matching Algorithmus. Der Mized Algo-
rithmus ist eine Variante des Algorithmus von Karp und Sipser, benutzt aber eine andere
Heuristik bei nicht optimalen Entscheidungen. Der Local Max Algorithmus basiert auf
der Idee vom LAM Algorithmus lokal schwerste Kanten auszuwéahlen. Der Local Tree
Algorithmus ist ein neuer Matching Algorithmus fiir das gewichtete Problem bei dem
zuerst die schwersten inzidenten Kanten von Knoten ausgewéhlt werden und dann op-
timale gewichtete Matchings berechnet werden fiir die Baume die durch diese Kanten
definiert werden. Fiir den Local Max Algorithmus und den Local Tree Algorithmus
werden auch parallele Versionen vorgestellt.

Die sequentiellen Algorithmen werden sowohl theoretisch als auch experimentell un-
tersucht. So wird gezeigt, dass die erwartete Laufzeit eines leicht veranderten Local Max
Algorithmus sowie Local Tree Algorithmus, fiir zuféllige Kantengewichte, linear ist. Die
Verénderung besteht darin am Anfang einer jeden Runde der Algorithmen neue zuféllige
Kantengewichte flir die verbleibenden Kanten zu berechnen.

In Experimenten werden die drei Algorithmen mit dem Algorithmus von Karp und
Sipser sowie dem GPA Algorithmus verglichen. Die Experimente zeigen, dass alle
drei Algorithmen, fiir eine grofle Auswahl an unterschiedlichen Graphen, durchschnitt-
lich innerhalb von 8.5% vom Ergebnis vom Karp-Sipser Algorithmus sind fiir Kardi-

103

A. Zusammenfassung

nalidtsmatchings. Dabei sind die Ergebnisse vom Mixed Algorithmus besser als vom
Local Tree Algorithmus und der Local Tree Algorithmus produziert bessere Ergebnisse
als der Local Max Algorithmus.

Im Fall von gewichteten Matchings werden Ergebnisse fiir das expansionstar2 Rating
aus [20] présentiert. In diesem Fall werden der Local Max und der Local Tree Algo-
rithmus mit dem GPA Algorithmus verglichen fiir den bereits gezeigt wurde, dass er
in der Praxis gewichtete Matchings mit einer guten Qualitdt berechnet [26]. Hier sind
Ergebnisse deutlich enger beieinander. Der Local Max Algorithmus ist durchschnittlich
nur 1% schlechter als GPA und im Vergleich von GPA und dem Local Tree Algorithmus
siecht man durchschnittlich keine Qualitatsunterschiede.

Fiir die sequentiellen Algorithmen Local Max und Local Tree wird aulerdem noch die
lineare Laufzeit experimentell iberpriift und wie grofl die erwartete Anzahl an Runden
ist.

Bei den parallelen Algorithmen wird experimentell deren Skalierungsverhalten iiber-
prift. Dabei zeigt sich, dass in den meisten Féallen ab einer grofleren Anzahl von
Prozessoren eine gute ”schwache Skalierung” beobachtet werden kann. Im Fall ”starker
Skalierung” sind die Ergebnisse fiir schon strukturierte Graphen gut (Gitter-Graphen,
zuféllige geometrische Graphen). Aber auch fiir andere Graphtypen zeigt sich eine
Beschleunigung der Laufzeit wenn mehr Prozessoren verwendet werden. Fiir die pa-
rallelen Experimente wurden bis zu 1024 Prozessoren verwendet und die Graphgrofien
variieren von 20 Millionen Kanten bis zu 4 Milliarden Kanten.

104

B. LAM and Unique Edge Weights

There is an interesting property of the LAM-algorithm when using unique edge weights.

Theorem B.1. For a graph G with unique edge weights Algorithm 3.1.2 returns the same
set of matched edges every time it is run on G. That is the resulting set is independent
from the order in which we add locally heaviest edges to the matching.

Before proving Theorem B.1 we introduce alternating sequences and an observation
about those sequences and matchings.

Definition B.1. An alternating sequence s = (s1,..., ;) of a matching M is a sequence
of edges such that each sj € M (j =1,...,i) and two consecutive edges sj and sj1 are
connected by another edge of the graph G.

A decreasing alternating sequence s = (s1, ..., ;) is an alternating sequence such that

w(sj) > w(sj+1) and for the connecting edge e of two consecutive edges sj and sj;1 we
have w(sj) > w(e) > w(sjt1).

Figure B.0.1 shows an example for a decreasing alternating sequence. The matching
produced by Algorithm 3.1.2 is M = {s1, s2, s3} and the decreasing alternating sequence
of edge s3 is s = (s, s2, $3).

51,20 €15 f, 10 83, 5

Figure B.0.1.: Decreasing alternating sequence example.

Lemma B.1. For each edge e of a matching M of a graph G obtained by Algorithm 3.1.2
there is a decreasing alternating sequence s = (si,...,s;), such that s1 is a locally
heaviest edge in G and s; = e.

Proof. Let the edge e be an edge of the matching M. If e is a locally heaviest edge in G
then we have found such a sequence s = (e).

If e is not a locally heaviest edge in G then there must be an unmatched adjacent edge
f of e with w(f) > w(e). Because we are running Algorithm 3.1.2 and f is unmatched
there must be another edge €’ that is adjacent to f (and not to e) which is matched and
which is heavier than f (w(e’) > w(f)).

105

B. LAM and Unique Edge Weights

Now there are two possibilities either €’ is a locally heaviest edge in GG, then we have
found the sequence, if it is not we repeat the same procedure to find another edge which
is heavier and connected to ¢’ by an unmatched edge which is heavier than ¢’.

This construction must end at a certain point since there is only a finite amount of
edges in G and the newly constructed edges of the sequence are heavier than the old
ones.

O
Now we are able to proof Theorem B.1:

Proof. Let M and M’ be two different matchings produced by two runs of Algorithm 3.1.2
on graph G. Obviously one matching cannot be a subset of the other matching, otherwise
one of them would not be maximal.

Since both matchings are different and not a subset of the other one, there must be
an edge e € M and e € M’'. According to Lemma B.1 there is a decreasing alternating
sequence s = (81,...,8; = e) in M for edge e. Obviously s is not contained in M’
because e = s; ¢ M’'. Let s; (1 < j < i) be the first edge of sequence s such that
s; € M'. The edge s must be in M’ since it is a locally heaviest edge in G.

Because s; ¢ M’ there must be an edge ¢/ € M’ adjacent to s; with w(e) > w(s;).
Again using Lemma B.1 there is a decreasing alternating sequence s’ = (s},...,s) =€)
for edge €’ in M’. The sequence s’ cannot be contained in M otherwise e would not be an
edge of M. Thus there is an edge s, (1 <m < k) of ' with w(s],) > w(s;) and s}, & M.
This let us construct another decreasing alternating sequence in M which is not in M’
analog to the construction from before. Repeating this construction of sequences which
are in one of the matchings but not in the other finally leads to a decreasing alternating
sequence of size one. That is because the newly created sequences end on edges with
higher weight then the last edges of sequences created before them and we only have a
finite amount of edges!

But since this final sequence consists of a single edge, this edge must be a locally
heaviest edge in G and thus must be contained in both matchings M and M’. This
contradicts the assumption that the sequence is not contained in both matchings! Hence
the first assumption that M # M’ must be wrong.

O

106

C. Parallel Local Max Details

C.1. How to Break Ties

In the sequential local max algorithm (Algorithm 4.1.2) we used edge IDs to break ties,
because in this case computing edge IDs is really simple, they are just given by the
order in which we add edges to the graphs. For the parallel version of the local max
algorithm (Algorithm 5.1.1) using edge IDs to break ties is more complicated, because
we add edges to graphs on different processes. Hence the edge IDs would not be unique
anymore and in the case of cross edges there might be different IDs assigned to a single
edge, because it is located on more than one process. Also the format used to store
graphs by the 10th DIMACS Implementation Challenge [5] does not define edge IDs in
any natural way (it is an adjacency list like structure). Therefore we decided to use the
global vertex IDs to break ties in the parallel case. In case of a tie between the edges
e ={u,v} and f = {w,x} we say the edge e is heavier iff:

max(u,v) > max(w,z) V (max(u,v) = max(w, z) A min(u,v) > min(w, x))

In the case of multi edges it would not be clear which edge to choose, thus we decided
not to allow multi graphs, to keep everything simple. Also we are not able to use the
local IDs of vertices to break ties, this would result in similar problems as we have seen
with edge IDs which are defined by the order in which they are added to the subgraphs.
Figure C.1.1 shows an example of one of the problems that might occur when using local
IDs instead of global IDs.

po: 1/3/2 p1: 2/1/3

p2: 3/2/1

Figure C.1.1.: Problem when using local vertex IDs to choose heaviest incident edge.
First entry of the triple is the vertex ID of process pg, second of p; and
third of po.

Each of the three vertices is located on a different process (po, p1 or p2) and the triples
next to each vertex specify the local IDs from the perspective of the different processes.
Assuming that each edge has the same weight, then the heaviest incident edge of vertex

107

C. Parallel Local Max Details

a is {a, c} (from process py’s perspective), of vertex b it is the edge {b,a} and of vertex ¢
it is the edge {c, b}. In this example no edge would be chosen as a locally heaviest edge
and therefore the algorithm would not terminate.

C.2. How to Receive Messages

We tested two variations how to receive messages within Algorithm 5.1.1 using MPI.
MPI allows us to receive messages in several ways, e.g. there are blocking and non
blocking receive operations. There are also options (e.g. MPI_Probe) to check if there is
an incoming message of a specific type or from a specific process.

The first variant was to probe (MPI_Probe) for messages of a specific type from an
active partner. This option not only returns if there is such a message but it also returns
the size of the incoming message. Knowing the size of a message allows us to allocate
the correct amount of memory necessary to receive the message. After the allocation of
the memory we use a blocking receive operation to receive the messages.

The other option that we tested was to use a non blocking receive operation (MPI _Irecv),
for all possible incoming messages, i.e. one receive operation for each active partner. The
problem with this implementation is that we need to provide a receive buffer that is large
enough to store the incoming message form a partner. As described in Section 5.1.1 a
process does not know if the messages from partners actually contain any data, and even
if an incoming message contains data, the process cannot know the size of this message.
But each process knows the maximum possible size of an incoming message of a partner
p, that is the number of ghost vertices to this partner. Therefore we decided to set the
size of the receive buffers to this number. Each non blocking receive operation returns
a status object which allows us to check if a receive operation has finished. There are
actually operations to check if one particular receive is done, or only some of a set of
receive operations or even if all receive operations have finished. We decided to use the
”some” version, so we are able to set the candidates of ghost vertices as soon as possible
but also to minimize the test for finished receive operations.

Using non blocking receive operations we hoped to get a better parallelism while
receiving messages. But our experiments showed that runtime differences where minimal
(see Table C.1). Therefore we decided to use the probe version, which uses less memory.

108

C.2. How to Receive Messages

Graph Processes | Irecv Probe
Delaunay n25 8 6.83608 | 6.37075
Delaunay n25 16 4.47492 | 4.3211
Rgg n24 8 1.73904 | 1.68922
Rgg n24 16 0.908357 | 0.856891
UK 2002 8 2.81231 | 2.71366
UK 2002 16 1.69961 | 1.65273
k8000 8 0.849289 | 0.842611
kso00 16 0.469272 | 0.452277
2D-grid, n = 8000% | 8 1.32723 | 1.33043
2D-grid, n = 80002 | 16 0.655326 | 0.663498

Table C.1.: Comparison of receiving messages using non blocking receive and probe-
version. Runtime in seconds.

109

D. Detailed Parallel Local Tree

D.1. Detailed Computation of a Parallel Forest

We describe in this section how to compute parallel trees from a set of edges in more
detail. In particular we describe the general approach how to decide on a global root
vertex for a parallel tree and how to create the trees of a forest based on those roots.

The decision process on computing roots of parallel trees is based on border compo-
nents as outlined in Section 5.2.3. So the first step is to compute the border components.
Border components are represented by the following structure. A border component con-
sists of a list of partners. A partner represents a cross edge to a border component on
another process. Each partner object stores the process ID of the other process and
the IDs of the local vertex and ghost vertex of the represented cross edge. A border
component also stores the ID of a root candidate and the IDs of the local vertex and
ghost vertex of the cross edge that points in the direction of the root candidate, we call
this edge the root edge of the border component. Algorithm D.1.1 outlines the procedure
how to compute the border components, it also returns the roots of purely local trees.
Border components are defined by connected components of the set of local trees. We
use a union-find structure, to compute the connected components. Initially each local
vertex is the representative of its own component. Two components are combined if
they are connected by an edge. This is done by the first for-loop (line 1). Each of the
computed connected components is represented by one of its vertices (uf.find(...)).

Some of those connected components might be incident to a cross edge which connects
this component with a component on another process. Those are the border components.
The second for-loop (line 4) computes the border components. For each cross edge
e = {v,u} we get the representative of the connected component of the local vertex v
(as before the first mentioned vertex of a cross edges is the local vertex and the second
one the ghost vertex). We set this representative to be visited, we use this information
in another step to easily identify border components. But more important we use the
representative to get the border component object bc of this connected component.
Afterwards we add a partner, representing the cross edge e, to the border component be
and also add bc to the list of all border components (bcs) of the current process, if we
have not done this before. After iterating all cross edges we have added to each border
component all necessary partners.

We only marked the representatives of border components as visited, all the other
connected components do not have any incident cross edges. Therefore all unvisited
representatives represent purely local trees and we can use them as the roots of those
trees (last for-loop of Algorithm D.1.1).

We have already outlined the basic idea for the decision process of the global root of

111

D. Detailed Parallel Local Tree

Algorithm D.1.1 Compute border components of a parallel forest

get_border_components(local_edges, cross_edges, local_roots, bcs):

1. for all e = {v,u} € local_edges do
2: uf.union(v, u)

3:

4: for all e = {v,u} € cross_edges do
5. rep = uf.find(v)

6: set rep to visited

7. bc = border_component(rep)

8: be.add(Partner(proc_of (u), v, u))
9: if bc & bes then

10: bes.add(be)

11:

12: for all e = {v, u} € local_edges do
13: rep = uf.find(v)

14: if not visited rep then

15: local_roots.add(rep)

16: set rep to visited

a parallel tree in Section 5.2.3. We omitted to specify which vertex is chosen by each
border component to be its candidate, we decided to use the vertex with the smallest
ID of all the end vertices of cross edges of the border component. We also omitted how
to determine when the decision process terminates.

Because no border component is able to know the size of the parallel tree, they cannot
just stop after the candidate has not changed for a certain amount of rounds. Consider
the border component Bs of Figure D.1.1, after Bs sent its candidate ID to Bj it is not
possible that By informs By in another round about a new candidate that By does not
know. All candidate changes of Bs, in following rounds, happen because B; informed
By about this candidate. We say that Bs is an outer component of By. More generally
speaking a border component B, is an outer component of a border component B, if B,
receives no messages from another border component.

We said that after By sent its candidate to By it will not send any new candidates to
B, but this message is actually not necessary because By only has one cross edge and
By knows this cross edge, therefore it knows the candidate of By. This is the case for all
initial outer components, those are the leaves of the border component tree. Therefore
all initial outer components can send the message (no more messages) to their partners
and do not have to inform them about their candidate.

Also a component B, which is initially not an outer component of another component
By, can send the message (no more messages) to By, as soon as it knows that it is an
outer component of By. The component B, informed B in an earlier round about any
candidate that it did not receive from Bj.

As soon as a border component receives the message (no more messages) from all of
its partners it knows the ID of the root vertex and also from which direction it received

112

D.1. Detailed Computation of a Parallel Forest

Figure D.1.1.: Border components of Figure 5.2.4

the message about this vertex for the first time. This border component is done with the
computation of the root after sending (no more messages) to all the remaining partners.

The whole process on deciding on a root vertex for each parallel tree of a forest is shown
in Algorithm D.1.2. We assume that the initial candidate of each border component has
already been computed. The first for-loop computes the messages that each border
component sends to the neighboring border components. Again we add each message
to a send buffer of each target process, to reduce the number of MPI-messages. The
second for loop then sends those bundled messages to the targets. The last for-loop
is used to receive messages from partners and updates the states of border components
depending on the received messages. The algorithm returns as soon as there are no more
components which still need to send or receive messages.

As one can see each partner-object now has two more states. The first one (is active
target) is used to decided whether we still need to send messages to this partner compo-
nent and the second one (is active source) is used to decide if we still receive messages
from this partner component. The first state also tells us if we have already sent the
message (no more messages) to the partner and both states also help us to decide if the
algorithm is allowed to terminate. The algorithm is allowed to terminate if the process
no longer receives any messages or sends any messages to another component.

There is one check to see if a border component bc still receives messages from a
partner other than a partner p (line 3). This is the check if bc is an outer component of
the border component of p. One way to implement this check is by adding a counter to
the partner-object. This counter is initially set to the number of other partners of the
corresponding component. Whenever we receive the message (no more messages) at one
partner we reduce the counter of all other partners by 1. Then if the counter is 0, we
know we do not receive any new messages from other partners.

The active target and source processes can be computed during the first for-loop, by
checking the states of the individual partners of the border components.

After the termination of Algorithm D.1.2 each border component knows the global root
and the root edge specifies the direction from where a border component was informed
about global root for the first time, therefore it is the edge with the shortest distance to

113

D. Detailed Parallel Local Tree

Algorithm D.1.2 Compute the root vertices of parallel trees of a forest

decide_on_root(bcs):

1: for all border components bc € bes do
2: for all partners p € bc do
if bc does not receive messages from partners other than p then
if p is active target then
set p to inactive target
msgs_for_proc|proc_of (p)].add({no more messages, p))
else
msgs_for_proc[proc_of (p)].add({candidate_of(bc), p))

10: for all active target processes proc do

11: send msgs_for_proc|[proc] to process proc

12:

13: for all active source processes proc do

14: incoming-msgs = receive messages from proc
15: for all m € incoming_msgs do

16: if m of type (no more messages, p) then
17: set p to inactive source

18: else if m of tpye (¢, p) then

19: be = border_component_of(p)

20: if ¢ < candidate_of(bc) then

21: candidate_of(bc) = ¢

22: root_edge_of(bc) = p

23:

24: if active targets and sources still exist then
25: decide_on_root(bcs)

the root and hence the root of the local tree. Each root edge e = {u, v} is obviously a
cross edge, but only for one border component the local vertex u of e is the root of the
parallel tree. For this border component the local vertex w is the root of the local tree
and for all other components the ghost vertex v of the root edge is the root of the local
tree.

Like in the sequential case we added all the provided local and cross edges to a graph,
the forest, and the trees are built using a breadth first search starting at the root vertices.
In the case of local trees that is the same as in the sequential case, we just iterate over
all local roots (computed by Algorithm D.1.1) and call the function build_tree from the
sequential section.

Building the subtrees of parallel trees is done based on the selection of the roots that
we have just described, Algorithm D.1.3 shows this procedure. To build the subtrees
we can use a slightly different version of the function build_tree from Section 4.3. We
allow to specify the parent of a vertex (the last argument to the function). Otherwise

114

D.1. Detailed Computation of a Parallel Forest

we might walk in the wrong direction.

Algorithm D.1.3 Build the parallel trees of a forest
build_parallel_trees(forest, bcs):

1: roots =)
2: for all border components bc € bes do
3: e ={u,v} = root_edge_of(bc)

4: if u = candidate_of(bc) then
5: roots = roots U u

6: build_tree(forest, u, u)

7. else

8: r00ts = 1r00ts U v

9: build_tree(forest, u, v)

10: return roots

We need to be able to specify the parent of a vertex, otherwise it would be possible
to create damaged trees. Consider the example from Figure D.1.2. The first picture
shows the whole parallel tree, the second one only the tree from process Os perspective
and the last picture the tree from process 1s perspective. On process 0 there are ac-
tually two border components, one for the vertex 0 and one for vertex 1. Those two
components are connected by the cross edges {1,2} and {0,2}. The global root of this
tree is the vertex 0, but if we are not able to specify a parent vertex the function call
build_tree(forest, 1) would create a tree on process 0 whose root is vertex 1 and not
vertex 0. Which might be really problematic for larger trees. So instead we make a
function call build_tree(forest, 1, 2) which tells the function that the parent of vertex
1 is vertex 2. An edge from vertex 1 to 2 would be deleted from the adjacency list of
vertex 1 and not followed.

0

I

I

I

I N N

! A A

Po : b1 /)2 /}\x
1 : 3 1.'/ 11/ 3

Figure D.1.2.: Subtrees connected by cross edges.

D.1.1. Example: Computation of Border Components

The computation of border components is based on connected components defined by
the local edges. Figure D.1.3 shows the computation of the connected components using
a union-find structure for the example tree from Figure D.1.1.

115

D. Detailed Parallel Local Tree

L0 ¢ @
| 8|46]9 1w0]11]

|
[e I s ey

(oftlsff2]s]7[sf[4fcf[ofrw]n]

Figure D.1.3.: Computing connected components of the local edges from Figure 5.2.4
using union-find.

Initially each vertex points to itself, indicating that each vertex is in its own connected
component. After combining all connected components, which are connected by a local
edge, we get the result shown in the bottom picture of Figure D.1.3. There are five
vertices left which point to themselves. Those are the representatives of the five border
components which we have seen in Figure 5.2.5. Now all that is missing is to add the
partners to each border component and to compute candidates of the border components.
The triples (partners) (1,0,2), (2,5,4) and (2,5,6) are added to the border component
B represented by 0. The first entry of each triple is the process ID of the partner
process and the second and third entries are the local vertex and the ghost vertex of the
represented cross edge. For the remaining border components we get Bs = {(0,2,0)},
Bs = {(2,8,4)}, By = {(0,6,5)} and Bs = {(0,4,5),(1,4,8)}. The candidates of the
border components are: Vertex 0 for B; and Bs, vertex 4 for B3 and By and vertex 5
for Bs.

D.1.2. Example: Decide on Global Root

The example from the previous sections results in the following situation:
e The candidate of By is 0 at the edge (0,2

e The candidate of By is 0 at the edge (2,0

(0,2)
(2,0)
The candidate of Bs is 4 at the edge (8,4)
The candidate of By is 5 at the edge (6,5)

(4,5)

e The candidate of Bs is 4 at the edge (4,5

During the first round of deciding on a root process the following messages are sent:

Bj sends the message (0) to Bo, By and Bs

By sends (no more messages) to B

Bs sends (no more messages) to Bs

By sends (no more messages) to B

116

D.1. Detailed Computation of a Parallel Forest

e B; sends (4) to By and B3
And we have the following receive operations:

e Bj receives (no more message) from Bs and By, therefore it becomes an outer
component of Bs. It also receives (4) from Bs which does not cause a candidate
update.

e B, receives (0) from B; = no candidate update
e Bj receives (4) from Bs = no candidate update
e By receives (0) from B; = no candidate update

e Bs receives (0) from By = new candidate is 0 at edge (4, 5), also receives (no more
messages) from Bs, therefore it becomes an outer component of By

Now we are done with the first round and we get the following situation for the second
round:

e Bj sends (0) to By and By and (no more messages) to Bs
e Bj sends (0) to Bs and (no more messages) to By
This results in the following receive operations:

e B receives (no more messages) from Bs = becomes an outer component of By
and By

e B, receives (0) from B; = no candidate update
e Bj3 receives (0) from Bs = new candidate is 0 at edge (8,4)
e By receives (0) from B; = no candidate update
e B; receives (no more messages) from By = becomes an outer component of Bj
During the last round the components send the following messages:
e Bj sends (no more messages) to By and By
e B; sends (no more messages) to Bs
And the following messages are received:
e By receives (no more messages) from By
e Bj receives (no more messages) from By
e By receives (no more messages) from B

Now each border component knows that the vertex 0 is the root and it also knows
which partner (cross edge) sent the information about the root vertex for the first time.
This cross edge is the root of the local tree of this border component.

117

D. Detailed Parallel Local Tree

D.2. Detailed Parallel Dynamic Programming

In this section we describe the implementation of the dynamic programming part of the
computation of maximum weighted matching of parallel forest in more detail.

Algorithm D.2.1 shows the implementation of the bottom up part of computing max-
imum weighted matchings of parallel trees. At first we compute for each subtree (each
root) the number of dependencies, that is the number of subtrees this subtree depends on
(the number of leaves which are ghost vertices). We do not provide the implementation
of this function, but it can be done using a breadth first search through the subtree.
After this computation we have an initial iteration over all roots and check if the cor-
responding subtree has no dependencies. In such a case we compute the result of this
subtree and add it to the list of messages of the parent. The computation of the results is
done by using the function fill_subtree_table_of root which corresponds to the fill subtree
table function from the sequential algorithm, but it stops as soon as it reaches a ghost
vertex and also returns a bundle of messages. This functions fills for each vertex the
array outgoing_edge, which states for a vertex which of the outgoing edges is matched if
the incoming edge is not matched. The returned bundle of messages contains one mes-
sage for each child ¢ of the root r of the subtree. The messages have the form (result, c).
The result is a tuple containing the two possible weights of the subtree starting at the
child ¢. The first weight is for the cases that the edge {¢, 7} is matched and the second
weight is for the case the edge is not matched. Afterwards we send all new messages
to the corresponding processes and then start to receive incoming messages. Unlike for
the parallel local max algorithm we will not send empty messages. Because we do not
expect messages from particular sources, we just receive any incoming messages and we
know the total number of incoming messages (that is the number of cross edges from
child subtrees), therefore we know when we can stop waiting for messages.

Algorithm D.2.1 Compute the results of the subtrees
fill_subtree_table_parallel(forest, roots_of-parallel_trees):

1. set_number_of_dependencies(forest, roots_of-parallel_trees)
2: for all roots r € roots_of-parallel_trees do

3: if number_of-dependencies[r] == 0 then

msg = fill_subtree_table_of_root(r)

msgs_of_proc(proc_of(r)).add(msg)

4
5
6:
7: send_messages(msgs_of_proc)

8:

9: while not all roots handled do

10: msgs-of-proc = receive_msgs_and_fill_subtree_table(forest)
11: send_messages(msgs_of_proc)

The function receive_msgs_and_fill subtree_table (Algorithm D.2.2) waits for at least
one incoming message, that is the minimum number of messages required before the
process can do any new computations. As soon as it receives a bundle of messages

118

D.2. Detailed Paralle] Dynamic Programming

of the form (result, v) it sets the result of the ghost vertex v, reduces the number of
dependencies of the corresponding subtree, identified by the root r, by one and if the
subtree no longer has any dependencies the result for this subtree is computed. In this
case we add a message for the parent subtree to the list of messages for the process of
the parent. Obviously we only add the message if r is not the root of the parallel tree,
otherwise there would not be a parent. We receive incoming messages as long as there
are any, to compute a maximal number of new message and thus reducing the total
number of MPI-messages.

Algorithm D.2.2 Receive incoming messages and compute results of subtrees

receive_msgs_and_fill_subtree_table(forest):

1: repeat

2: msgs = receive_incoming_message!()

3:

4: for all messages (result, v) € msgs do

5: r = root_of[v]

6: number_of-dependencies[r] -= 1

7 subtree_result[v] = result

8: if number_of-dependencies[r|==0 then
9: msg = fill_subtree_table_of root(r)

10: if r is not the root of the parallel tree then
11: msgs_of_proc(proc_of(r)).add(msg)
12: until no incoming message

13:
14: return msgs_of_proc

Filling the array outgoing_edge stops as soon as there are no more subtrees which have
any dependencies. One simple way to implement this check, is by using a simple counter.

Algorithm D.2.3 shows the implementation top down phase, this phase adds matched
edges to the matching. Initially we compute for each root subtree the matched edges and
messages to their child subtrees. Additionally we also compute for each process the total
number of messages that this process will receive (number of cross edges to parents).

The function add_matched_edges_and_msgs_for_children (Algorithm D.2.4) adds the
edges of a maximum weighted matching of the tree starting at the given root r to the
resulting matching M. The additional information that this function requires is if the
incoming edge of r is matched or not, we have seen this in the sequential tree matching
algorithm. But there is one essential difference to the sequential algorithm, as soon as
the algorithm reaches a ghost vertex v it stops and computes a message of the form
(v, matched_incoming) and adds this message to the message bundle of the process p(v)
of ghost vertex v. All this message does is to tell process p(v) if the incoming edge of
the vertex v is matched, that is all that is required to compute the matched edges of
the subtree starting at v on p(v). The array outgoing_edge states which of the outgoing
edges of a vertex is matched if the incoming edge is not. For more information about
this see Section 3.3.

119

D.

Detailed Parallel Local Tree

Algorithm D.2.3 Get the matched edges of the parallel forest

ge

—_

e e
Ll O

t_matched_edges_of_parallel_forest(forest, roots_of_parallel_trees):
s M=10
n =0 // number of incoming messages
for all roots r € roots_of-parallel_trees do
if r is root of parallel tree then
// r cannot be a ghost vertex
add_matched_edges_and_msgs_for_children(forest, r, false, M, msgs_of_proc)
else
n += out_degree(r)

send_messages(msgs_of-proc)
: while n > 0 do

receive_msgs_and_add_matched_edges(forest, n, M, msgs_of_proc)
send_messages(msgs_of-proc)

[
@«

: return M

Algorithm D.2.4 Add the matched edges of a subtree to the matching and compute

th

€ necessary messages

add_matched_edges_and_msgs_for_children(forest, r, matched_incoming, M, msgs_of-proc):

1:

if r is ghost vertex then

2: msgs_of-proc[proc_of (r)].add({r, matched_incoming))

3: else

4: if matched_incoming then

5: for all outgoing_neighbors(r, forest) n do

6: add_matched_edges_and_msgs_for_children(forest n, false, M)
7. else

8: for all outgoing_neighbors(root, T') n do

9: if n == outgoing_edge[r] then

10: M=MU{rn}

11: add_matched_edges_and_msgs_for_children(T', n, true, M)
12: else

13: add_matched_edges_and_msgs_for_children(T', n, false, M)

After the initial computation of matched edges of the root subtrees Algorithm D.2.3

we send the computed messages to their targets and then start to receive messages
until all required messages have been received. The receive procedure is shown in Algo-
rithm D.2.5. Again we receive at least one message, that is the minimum number that

is

required before a process can continue with computations, using a blocking receive.

For each received message (v, i) we reduce the number of remaining incoming messages

120

D.2. Detailed Paralle] Dynamic Programming

and start adding matching edges using the information ¢ whether the incoming edge of
v is matched.

Algorithm D.2.5 Receive messages from parents and compute matched edges

receive_msgs_and_add_matched_edges(forest, n, M, msgs_of_proc):
1: repeat
2: msgs = receive_incoming_message!()
3: n-= size_of msgs // reduce number of incoming messages
4: for all messages (v, i) € msgs do
5: // v is not a ghost vertex!
6 add_matched_edges_and_msgs_for_children(forest, v, i, M, msgs_of_proc)
7: until no incoming message

Like in Section 5.1 whenever we send information about a vertex we have to transform
the local ID to the corresponding global ID and vice versa when receiving messages. Also
whenever we have to wait for an incoming message we use this time to compute maximum
weighted matchings of purely local trees. After we have computed the matchings of all
parallel trees we compute the matchings of the remaining unprocessed local trees.

121

Bibliography

[1]
[2]
[3]

[12]

Message Passing Interface. http://www.mcs.anl.gov/research/projects/mpi/.
Valgrind. http://valgrind.org.

Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring), pages 483-485, New York, NY, USA,
1967. ACM.

David Avis. A survey of heuristics for the weighted matching problem. Networks,
13:475-493, 1983.

David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. 10th
DIMACS Implementation Challange. http://www.cc.gatech.edu/dimacs10/.

Brenda S. Baker. Approximation Algorithms for NP-Complete Problems on Planar
Graphs. Journal of the ACM, 41(1):153-180, 1994.

Umit Catalyurek, Florin Dobrian, Assefaw Gebremedhin, Mahantesh Halap-
panavar, Alex Pothen, and Pacific Northwest. Distributed-Memory Parallel Al-
gorithms for Matching and Coloring. In Workshop on Parallel Computing and
Optimization PCO, pages 1-12, 2011.

Martin Dietzfelbinger, Hendrik Peilke, and Michael Rink. A More Reliable Greedy
Heuristic for Maximum Matchings in Sparse Random Graphs. arXiv:1203.4117v1,
pages 1-17, March 2012.

Doratha E. Drake and Stefan Hougardy. A Simple Approximation Algorithm for
the Weighted Matching Problem. Information Processing Letters, 85:211-213, 2003.

Doratha E. Drake and Stefan Hougardy. Linear Time Local Improvements for
Weighted Matchings in Graphs. In In: Proceedings of the 2nd International Work-
shop on Experimental and Efficient Algorithms (WEA-03). Volume 2647 of LNCS.,
pages 107-119. Springer-Verlag, 2003.

I.S. Duff and J Koster. On algorithms for permuting large entries to the diagonal of
a sparse matrix. SIAM Journal on Matriz Analysis and Applications, 22(4):973-996,
2001.

David Padua (Ed.). Encyclopedia of Parallel Computing, 2011.

123

http://www.mcs.anl.gov/research/projects/mpi/
http://valgrind.org
http://www.cc.gatech.edu/dimacs10/

Bibliography

[13]

[14]

[15]

[16]

[17]

22]

23]

[24]

[25]

124

Jack Edmonds. Maximum Matching and a Polyhedron With 0,1-Vertices. Physics,
69(June):125-130, 1965.

Steinbuch Centre for Computing. InstitutsCluster (IC1). http://www.scc.kit.
edu/dienste/4945.php, April 2012.

Steinbuch Centre for Computing. KIT-Hochleistungsrechner HP XC3000. http:
//www.scc.kit.edu/dienste/hc3.php, 2012.

M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two equivalent
processors. SIAM Journal on Applied Mathematics, 17(4):784-789, 1969.

Harold N. Gabow. Data Structures for Weighted Matching and Nearest Common
Ancestors with Linking. Proceedings of the first annual ACM-SIAM Symposium on
Discrete Algorithms, pages 434—443, 1990.

John L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM,
31(5):532-533, May 1988.

Jaap-Henk Hoepman. Simple distributed weighted matchings. arXiv:cs/0410047v1,
pages 1-7, 2004.

Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a scalable
high quality graph partitioner. In 2010 IEEE International Symposium on Parallel
€ Distributed Processing (IPDPS), pages 1-12. IEEE, 2010.

Richard M. Karp and M. Sipser. Maximum Matchings in Sparse Random Graphs.
In Proceedings of the 22nd IEEE Annual Symposium on Foundations of Computer
Science, pages 364-375. IEEE, October 1981.

Eugene L. Lawler. Combinatorial Optimization : Networks and Matroids. Holt,
Rinehart and Winston, 1976.

Michael Luby. A simple parallel algorithm for the maximal independent set prob-
lem. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing,
volume 15 of STOC ’85, pages 1-10. ACM, 1985.

Jakob Magun. Greeding matching algorithms, an experimental study. Journal of
Ezperimental Algorithmics (JEA), 3, September 1998.

Fredrik Manne and Rob Bisseling. A Parallel Approximation Algorithm for the
Weighted Maximum Matching Problem. In Parallel Processing and Applied Mathe-
matics, volume 4967 of Lecture Notes in Computer Science, pages 708-717. Springer
Berlin / Heidelberg, 2008.

Jens Maue and Peter Sanders. Engineering algorithms for approximate weighted
matching. In Proceedings of the 6th International Conference on Ezxperimental Al-
gorithms, pages 242—-255. Springer-Verlag, 2007.

http://www.scc.kit.edu/dienste/4945.php
http://www.scc.kit.edu/dienste/4945.php
http://www.scc.kit.edu/dienste/hc3.php
http://www.scc.kit.edu/dienste/hc3.php

[27]

[28]

31]

Bibliography

Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures : The Basic
Toolbox. Springer, Berlin, 2008.

Md. Mostofa Ali Patwary, Rob H. Bisseling, and Fredrik Manne. Parallel greedy
graph matching using an edge partitioning approach. In Proceedings of the 4th
International Workshop on High-level Parallel Programming and Aplications, HLPP
10, pages 4554, New York, New York, USA, 2010. ACM Press.

Seth Pettie and Peter Sanders. A simpler linear time 2/3—¢ approximation for max-
imum weight matching. Information Processing Letters, 91(6):271-276, September
2004.

Robert Preis. Linear Time %—Approximation Algorithm for Maximum Weighted
Matching in General Graphs. In Proceedings of the 16th Annual Conference on The-
oretical Aspects of Computer Science, STACS’99, pages 259-269. Springer-Verlag,
1999.

Peter Sanders and Christian Schulz. Engineering Multilevel Graph Partitioning
Algorithms. In Camil Demetrescu and Magnis Halldérsson, editors, Algorithms
— ESA 2011, volume 6942 of Lecture Notes in Computer Science, pages 469—480.
Springer Berlin / Heidelberg, 2011.

Maximilian Schuler. Engineering Edge Ratings and Matching Algorithms for Multi-
level Graph Partitioning Algorithms. Bachelor’s thesis, Karlsruhe Institute of Tech-
nology, 2011.

A. J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and
Multilevel Optimisation Approach to Graph-Partitioning. Journal of Global Opti-
mization, 29(2):225-241, June 2004.

Robert L. Thorndike. The problem of classification of personnel. Psychometrika,
15(3):215-235, 1950.

Thomas Wang. Integer Hash Function. http://www.concentric.net/~ttwang/
tech/inthash.htm, March 2007.

125

http://www.concentric.net/~ttwang/tech/inthash.htm
http://www.concentric.net/~ttwang/tech/inthash.htm

	Abstract
	Contents
	Introduction
	Our Contribution
	Outline

	Terminology
	Graphs
	Matchings
	Parallel Algorithms

	Related Work
	Greedy Weighted Matchings
	Karp-Sipser
	Optimal Weighted Matchings of Trees
	Global Paths Algorithm
	Parallel Matching Algorithms

	Sequential Algorithms
	Local Max Algorithm
	Implementation Details
	Theoretical Analysis
	Matchings and Independent Sets – Luby's algorithm

	Mixed Algorithm – Karp-Sipser and Local Max
	Implementation Details

	Local Tree Algorithm
	Implementation Details
	Theoretical Analysis

	Experimental Results
	Runtime and Quality Comparison
	Edge Development
	Time per Edge
	Depth and Size of Local Trees

	Parallel Algorithms
	Parallel Local Max Algorithm
	Implementation Details

	Parallel Local Tree
	Parallel Local Tree Algorithm
	Parallel Maximum Weighted Matching of a Forest
	Computation of a Parallel Forest
	Parallel Dynamic Programming

	Experimental Results
	Weak Scaling
	Strong Scaling
	Comparison Local Max and Local Tree

	Conclusions
	Future Work

	Zusammenfassung
	LAM and Unique Edge Weights
	Parallel Local Max Details
	How to Break Ties
	How to Receive Messages

	Detailed Parallel Local Tree
	Detailed Computation of a Parallel Forest
	Example: Computation of Border Components
	Example: Decide on Global Root

	Detailed Parallel Dynamic Programming

	References

