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Abstract

The distributed duplicate removal problem is concerned with the detection and subsequent
elimination of all duplicate elements in a given multiset that is distributed over several
computers connected by a network.

Sanders et al. [48] outline a communication efficient algorithm solving this problem. It
uses distributed compressed single shot Bloom filters to identify distinct elements using
minimal communication effort. The filter however produces false positive results. Thus,
all elements passing the filter are post processed using a traditional hash-based distributed
duplicate removal algorithm in order to distinguish real duplicates from false positives.

This thesis complements the theoretical analysis with an experimental evaluation. We
transform the high-level description of the algorithm into an efficient implementation than
runs on a shared-nothing system and exploits the shared memory parallelism capabilities
of its nodes for all computationally intensive operations.

The results of our analysis substantiate the benefits predicted by theory. Our implemen-
tation outperforms the best-suited traditional algorithm up to the point where the input
data contains 50% duplicates. When executed on datasets that contain less than 10%
duplicates, our implementation achieves a communication volume that is more than one
order of magnitude smaller than that of its competitor.

Zusammenfassung

Ziel der verteilten Duplikaterkennung ist die Identifikation von Elementen, welche mehrfach
in einer groflen, iiber mehrere Rechenknoten verteilten Datenmenge vorkommen.

Sanders et al. [48] prisentieren einen verteilten Algorithmus, welcher dieses Problem in
einer besonders kommunikationseffizienten Art und Weise 16st. In einer Vorverarbeitungs-
phase werden mit Hilfe eines verteilten, platz-effizienten Bloom Filters zunéchst moglichst
viele distinkte Elemente als solche identifiziert und somit die Gesamtmenge der noch zu
betrachtenden Elemente stark reduziert. Da hierbei jedoch auch falsch positive Ergebnisse
auftreten, miissen alle als potentiell nicht distinkt erkannten Elemente in einer zweiten
Phase noch einmal iiberpriift werden. Hierzu wird ein klassischer Hash-basierter Algorith-
mus zur verteilten Duplikaterkennung angewendet.

Die vorliegende Arbeit ergéinzt die theoretische Analyse durch eine praktische Evaluation.
Wir erarbeiten hierzu eine effiziente Implementierung fiir Shared-Nothing Systeme. Beson-
ders rechenintensive Schritte des Algorithmus werden zusétzlich durch Shared-Memory-
Programmierung innerhalb eines Knotens parallelisiert.

Die Ergebnisse unserer experimentellen Untersuchung untermauern die durch die Theorie
vorhergesagten Vorteile des Algorithmus. Unsere Implementierung ist signifikant schneller
als der am besten geeignete klassische Ansatz solange die Eingabedaten zu weniger als
50% aus Duplikaten bestehen. Wird der Algorithmus auf Datensitzen ausgefiihrt, die zu
weniger als 10% aus Duplikaten bestehen, so ist das gesamte Kommunikationsvolumen
zudem mehr als eine Groflenordnung kleiner als das des klassischen Konkurrenten.
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1. Introduction

The existence of duplicate records is a severe problem within databases. These duplicate
records may be caused by errors during data entry, inconsistent conventions for recording
information, unstandardized data formats, or missing foreign key constraints.

Duplicates have to be identified and remowved in order to achieve the data quality required
by Online Analytical Processing (OLAP) and data mining applications [66]. This issue
becomes even more severe, whenever different datasources have to be integrated to form
a data warehouse. The problem of data heterogeneity, i.e., different representations of the
same real-world objects across multiple heterogeneous databases, is therefore thoroughly
studied in research literature [11]. In this context, the identification and removal of dupli-
cate database entries is referred to as duplicate record detection, record linkage or record
matching [18].

The distributed duplicate removal problem, which is at the heart of this thesis, is concerned
with the detection and the subsequent elimination of all duplicate elements within a given
multiset that is distributed over p processing elements (PEs). In contrast to the previously
introduced record linkage / duplicate record detection problem, we do not deal with data
heterogeneity. Instead, we assume the contents of one database to be distributed over the
PEs. Thus, a duplicate in our case does not refer a different representation of an already
existing real world object, but rather to an equal representation, i.e. the exact same record
exists on more than one system - for example due to inconsistencies of the dataset or a
projection.

We are therefore concerned with duplicate removal as a fundamental operation in query
processing, as relational theory imposes the requirement that a relation must not contain
any duplicate records, i.e., it has to be a set in the mathematical sense. Consider, for
example, the projection operation 7., ., (R) on a relation R with columns ¢y, ¢y, ..., ¢p.
After R is reduced to the subset of columns co, ..., ¢,, it is necessary to apply a distinct
operator to remove any now duplicate tuples that differed only in the projected columns
co, C1-

Duplicate removal is a computationally expensive operation because it is necessary to
perform pairwise comparisons on the input dataset. However, it can be done efficiently (in
terms of memory consumption and execution time) using sort- or hash-based approaches,
as long as the whole dataset is stored on one single system. While today’s machines can
have several hundred GB up to a few TB of RAM and several TB of disk space, at some
point a single machine will not be able to handle the data anymore - solely due to hardware
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limitations. Under these circumstances, the only option is to scale-out, i.e., to use multiple
machines connected by a high-speed network. In this case however, the duplicate removal
problem becomes more challenging, since the traditional sort- or hash-based approaches
quickly become unfeasible due to the huge load they put on the network.

In this distributed setting, the total communication volume has a significant impact on the
overall execution time of an algorithm. Thus it is necessary to develop communication-
efficient algorithms that minimize the communication volume. Lint and Agerwala [33]
note that the complexity of communication depends on four major criteria: the number of
processors, the structure of the network connecting these processors, the initial distribution
of the input data as well as the algorithm used to solve the specific problem at hand. In
the next section, we will fix the first three of these factors by establishing our problem
setting.

1.1 Problem Setting

In this thesis, we consider the duplicate removal problem in the context of parallel, shared-
nothing, in-memory database systems.

A parallel database system can be defined as one single database system that is imple-
mented on top of a tightly coupled parallel computer. In contrast, a distributed database
system consists of several, locally autonomous database systems, which are loosely coupled
over a computer network [61].

Shared-nothing refers to the underlying machine architecture and is one of three basic
architectures of parallel database systems (see Figure 1.1). In a shared-nothing system,
both memory and disks are private to each processor, whereas a shared-memory system
shares memory modules and disks among the processors. Thus each processor has access
to every memory as well as to every disk location. A shared-disk system resides in the
middle of these two extremes: Processors have their own private memory and only share
the disks between each other. For a detailed discussion about the costs and benefits of
each of these approaches in the context of database systems we refer to [54, 16, 68].

| Interconnect - E E
E Interconnect

- - - shared memory Interconnect

e Q@

(a) Shared-Nothlng (b) Shared-Memory (c) Shared-Disk

Figure 1.1: Architectures of parallel database systems.

Finally we restrict our focus to in-memory databases [51, 19, 10]. As a consequence,
our implementation is concerned with main-memory data structures and corresponding
algorithms. This puts us in the context of in-memory databases such as SAP HANA.

1.2 Problem Statement

Our work builds upon previous research efforts concerned with the communication-efficient
detection of duplicates within a large, distributed multiset of data elements. In order to
minimize the total amount of data that has to be transferred over the network, Sanders
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et al. [48] outline a multi-pass filtering algorithm that uses distributed compressed single
shot Bloom filters (ASBF's) to identify most distinct elements with minimal communication
effort. Only elements that passed this filter cascade actually have to be transferred over
the network and processed in a second phase. The communication volume of the filter-
ing phase is minimized by performing batched insertions into the distributed filter data
structure. By reordering insertion operations via sorting, it is possible to compress each
batched insertion message using an information-theoretically optimal compression scheme.
A detailed theoretical analysis shows that the communication volume of the filtering phase
is sublinear in the input size.

It is the goal of this thesis to complement this theoretical analysis with an experimental
evaluation that analyzes the practical impact of communication efficiency in the context
of distributed duplicate removal. We therefore transform the high-level description of the
multi-pass dSBF-based duplicate removal algorithm into an actual implementation that
runs on a parallel, shared-nothing compute cluster. As each node of this system is a
shared-memory parallel computer itself, the implementation is expected to exploit these
shared-memory parallelism capabilities as well.

1.3 Contributions
Our key contributions can be summarized as follows:

Duplicate Removal using Distributed Single Shot Bloom Filters: We present an
implementation of the distributed duplicate removal algorithm [48]. It is capable of
both single- and multi-pass dSBF-filtering and consistently outperforms a traditional
hash-based repartitioning algorithm. The significant performance advantages sub-
stantiate the theoretical benefits of designing communication-efficient algorithms.
In summary, our experimental evaluation leads to the following observations:

e Both variants outperform the traditional hash-based algorithm up to the point
where the dataset contains 50% duplicates. For duplicate-free datasets, the total
running time of our algorithms is smaller than the time it takes the competitor
to communicate the input data.

e The communication volume of our algorithms is more than one order of magni-
tude smaller than that of the traditional algorithm for datasets containing less
than 10% duplicates.

e Our experiments were performed on a system with a high-performance inter-
connect. We therefore expect the gains of dSBF-based duplicate removal to be
even larger on systems that employ less sophisticated network hardware.

All-to-All Personalized Communication: Collective communication operations are
essential to both our algorithm as well as the traditional hash-based repartitioning
algorithm. We therefore evaluate the implementation of the all-to-all personalized
communication operation in OpenMPI and reveal several deficiencies along with their
impact on the overall performance of the algorithm. Motivated by our analysis, we
contribute an implementation of the 1-Factor algorithm [47] that can be used as a
drop-in replacement for the respective library algorithm. Our implementation con-
sistently outperforms the library counterpart for large message sizes. We further
present a variant of this algorithm that compresses each message in parallel using
Golomb compression. Furthermore, encoding, transmission, and decoding of each
message are interleaved in a pipelined fashion to overlap computation and commu-
nication as much as possible. This operation is a key component of the dSBF, as it
is used for batched insertions/queries on the filter.
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Parallel Radix Sort In order to improve the initial sorting phase of our algorithm, we
contribute a parallel radix sort implementation, which is based on the concepts of
Wassenberg and Sanders [64]. Our implementation consistently outperforms the
parallel sorting routine of the GNU C++ library for 32- as well as 64-bit integer
keys. We plan to integrate this sorting routine into the SAP HANA database.

1.4 Outline

Chapter 2 starts with a review of traditional local and distributed duplicate removal al-
gorithms. As the algorithm of Sanders et al. [48] builds upon a compressed, distributed
Bloom filter replacement, we briefly present the employed compression scheme by summa-
rizing the key results of Moffat and Turpin [37] and give a short introduction to Bloom
filters. Having discussed all relevant prerequisites, we proceed with the presentation of
the distributed single shot Bloom Filter and discuss its usage as a single- and multi-pass
preprocessing stage in the distributed duplicate removal algorithm.

Chapter 3 then transforms these high-level ideas into a parallel algorithm and discusses
the major design decisions regarding the actual implementation. We substantiate each
decision with a dedicated experimental evaluation.

Putting all pieces together, we evaluate our distributed duplicate removal implementation
in Chapter 4. In order to prove the practical impact of a communication-efficient im-
plementation, we implemented a classical hash-based duplicate removal algorithm. The
chapter therefore starts with relevant implementation details concerning this competitor
before continuing with the actual experimental evaluation.

We close this thesis in Chapter 5 with a summary of our efforts as well as a discussion of
current limitations. We also give several proposals for future work based on the insights
gained over the course of this thesis.



2. Preliminaries and Related Work

We start by giving an overview about traditional duplicate removal algorithms on single-
node and distributed systems. As the distributed duplicate removal algorithm of Sanders
et al. [48] uses compressed distributed Bloom filters to identify distinct elements in a
preprocessing phase, we introduce the employed compression method in Section 2.2 and
also give a brief introduction to Bloom filters in Section 2.3.

Having discussed these preliminaries, we then present the distributed compressed single
shot Bloom filter and explain how it is used in the distributed duplicate removal algorithm.

2.1 Traditional Duplicate Removal Algorithms

This section gives a brief overview over related work concerning sequential and parallel /dis-
tributed algorithms for duplicate detection and removal mainly motivated in the context
of database systems.

Sequential /Single-system Algorithms

Traditionally, duplicate removal is a two-step process: First, the input relation is sorted,
followed by a scan of the sorted data [1, 4]. Because sorting groups equal items together,
duplicates can be easily identified and eliminated during the scan pass by comparing
adjacent tuples. Huang and Langston [26] give a stable, in-place duplicate extraction
algorithm on sorted records that requires O(n) time and O(1) additional space.

The traditional approach can be improved by detecting and removing duplicates early as
part of the sorting operation [22]. Munro and Spira [39] devise an information-theoretic
lower bound on the number of comparisons that is required to sort a multiset with such an
early duplicate removal technique. A quicksort algorithm for equal keys is given by Wegner
[65]. Farzan et al. [20] adapt the cache-oblivious lazy funnelsort algorithm of Brodal and
Fagerberg [7] to perform early duplicate elimination. A hash-based approach that requires
linear time on the average and O(1) extra space is presented in [59].

All of these contributions consider duplicate removal in main memory. Databases however
often reside in external memory (EM). Therefore several publications devise IO efficient
external memory algorithms. Bitton and DeWitt [4] improve on an external merge-sort
and subsequent scan approach by presenting and analyzing a modified external merge-sort
procedure that performs early duplicate elimination. Teuhola [58] develops a two-pass
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Figure 2.1: Traditional parallel duplicate removal algorithms with 4 nodes. Merge-
A11 was first used in Gamma [15]. Hierarchical-Merge was proposed by
Bitton et al. [5] to reduce the load on the root node.

external duplicate deletion algorithm based on hashing. The algorithm first generates
mutually duplicate-free subsets that fit into main memory and deletes the duplicates from
each of these subsets in the second pass. Helmer et al. [24] propose a new external hash-
based algorithm for duplicate elimination that outperforms several sort-based algorithms as
well as the hybrid-hashing approach of DeWitt et al. [17]. Larson [31] analyzes the benefits
of applying early duplicate elimination to six different EM algorithms, two of which are
based on repeatedly scanning the input, two on sorting as well as two on hashing.

Lehman and Carey [32] compare the performance of a sort-scan approach [5] to the hybrid-
hashing algorithm in the context of an in-memory database and identify the hashing algo-
rithm as the clear winner. More recently, Graefe [23] proposed an algorithm that combines
the ideas of traditional aggregation and duplicate removal algorithms based on sorting and
hashing into one, universally applicable algorithm.

This thesis focuses on distributed duplicate removal. We therefore do not consider datasets
that contain local, i.e., intra-node duplicates. However, in such cases one of the algorithms
presented in this section could be used in an additional preprocessing phase in order to
remove any local duplicates.

Parallel /Distributed-system Algorithms

In parallel query processing literature, duplicate removal algorithms are often adaptations
of parallel algorithms for aggregate processing [56] due to the algorithmic similarity of
both operations. Most of the following algorithms consist of two distinct steps [22]: local
duplicate removal and global duplicate removal. First each node eliminates duplicates on
its local partition of the relation. In the second step the partial results are then merged -
thereby removing the inter-node duplicates.

In the traditional Merge-All approach, which was first implemented in the Gamma
database machine [15], merging is done by a single node that is chosen as the coordi-
nator (see Figure 2.1a). This approach only works well if the number of duplicates is high,
otherwise the coordinator-node will become a bottleneck. In order to overcome this bot-
tleneck, Bitton et al. [5] introduce the Hierarchical-Merge algorithm. Instead of leaving
the final merging of the partial results up to the root node, merging is done pairwise in a
hierarchical binary-tree manner (see Figure 2.1b). However, if the number of duplicates is
sufficiently small compared to the input relation, the coordinating node again becomes a
bottleneck, since it has to merge almost the complete input relation.

Shatdal and Naughton [49, 50] propose two algorithms that aim to achieve better load
balancing and avoid the single-node bottleneck. The Two-Phase algorithm uses hash-
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global
duplicate
removal

hash
partitioning

global
duplicate
., . ‘. removal

hash
partitioning

local
duplicate
removal

node-local data node—local data

(a) Two-Phase (b) Repartitioning

Figure 2.2: Algorithms proposed by Shatdal and Naughton [49] to overcome the prob-
lems of the traditional approaches. The algorithms differ only in that
Repartitioning does not perform local duplicate removal.

partitioning [14] to further parallelize the global duplicate removal phase: After local du-
plicates are removed, the partial results are distributed across all participating nodes. All
nodes then perform the global duplicate removal step in parallel. While this approach
achieves better load balancing than Merge-All and Hierarchical-Merge by using all
available nodes, it may lead to duplication of work if there are only a few duplicates. In
this case, the first step fails to significantly reduce the input relation and therefore both
phases operate on almost the complete input. This problem is avoided by the Reparti-
tioning algorithm, which does not perform any kind of local preprocessing. Instead, the
input relation is directly hash-partitioned across all nodes, which then perform only the
global duplicate removal phase. Both algorithms are depicted in Figure 2.2.

Bitton et al. [5] describe a duplicate removal algorithm as part of a projection operation.
The method relies on a hardware broadcasting facility and is based on a shared disk cache
architecture. Given a page as the basic unit of transfer within this memory-hierarchy, the
algorithm operates in multiple rounds. Using p processors to eliminate duplicate tuples
in n = m X p pages will take m distinct rounds. First each processor p; receives one
page P;. The remaining n — p pages are then broadcasted one after another and used
by each processor to remove any duplicates from P;. After this step, the p pages are
duplicate-free with respect to the remaining n — p pages, but not with respect to each
other. Therefore the processors successively (starting from PE p — 1) broadcast their page
to all PEs with lower IDs, which then remove any remaining duplicates from their page.
The procedure is repeated until all duplicates are removed. See Figure 2.3 for an example
of the broadcasting process.

Su and Mikkilineni [55] propose a sorting algorithm that is also based on broadcasting and
also relies on a specific hardware architecture. After a local sorting phase, the algorithm
only broadcasts certain key values of each node that suffice to determine the global sort
order and to detect and eliminate any global duplicates.

In the previously mentioned literature, duplicate removal algorithms were only considered
as a by-product of either parallel sorting or projection and aggregation algorithms. Topkar
et al. [60] propose and analyze three algorithms for duplicate removal on hypercube net-

—— Broadcast step 1
@ @ @ @ 77777 Broadcast step 2

Broadcast step 3

Figure 2.3: Broadcasting phase of the algorithm described by Bitton et al. [5]
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Figure 2.4: Hypercube (a) algorithms of Topkar et al. [60] on a cube with p = 8 nodes:
(b) The Multiple message ring algorithm simulates a ring network. (c)
The Reduction algorithm embeds the Hiearchical-Merge approach of
Bitton et al. [5] into the hypercube. (c) The Bucket algorithm recursively
partitions the nodes according to the current most significant bit of the
node ID.

works (see Figure 2.4): The Multiple-Message-Ring algorithm simulates a ring network
and removes duplicates by passing the locally duplicate-free tuples around that ring. The
Reduction algorithm embeds the hierarchical-merge approach into the hypercube. Finally
the Bucket algorithm exploits the a priori knowledge of the range of data values and re-
cursively partitions the participating nodes into two groups based on most significant bit
(MSB) of the node ID. In each group, the nodes divide their input data into two buckets
depending on the range of the data values. One bucket is kept at each node, while the
other bucket is sent to the corresponding node in the other group, i.e., the node whose
node ID only differs in the MSB. The received bucket is then merged into the bucket
that was kept at each node. During the process all occurring duplicates are removed. By
distributing work more evenly among the nodes it thereby achieves better load balancing.
In their experimental analysis, the Bucket algorithm was insensitive to the uniqueness of
the input data and consistently outperformed both other algorithms.

All of the above mentioned algorithms (except Repartitioning) preprocess the input data
by removing locally duplicate tuples in the first phase. This reduces the communication
volume and the amount of work necessary in the global duplicate removal phase to a certain
extent. Especially in the case where the dataset contains only a few or even no duplicates,
all algorithms communicate almost the entire dataset. The distributed duplicate removal
algorithm of Sanders et al. [48] explicitly avoids unnecessary data transfers by identifying
distinct tuples in a preprocessing phase. Omitting the transfer of theses tuples significantly
reduces the communication volume.

Abdelguerfi et al. [2] compare the performance of the Two-Phase and Repartitioning
algorithm with an algorithm that uses a global preprocessing scheme. All three algorithms
are implemented on a unidirectional, ring-connected, message-passing parallel database
system and use the local duplicate removal algorithm of Teuhola and Wegner [59]. Instead
of determining local duplicates, their approach creates node-specific bit-array filters that
contain information about the tuples residing on all other nodes. This information is then
used to identify tuples that are globally distinct and therefore do not need to be processed
in the second phase.

The bit-array filtering works as follows: Before repartitioning the data for global duplicate
removal, every node constructs a bit-array and passes it around the ring. As the filters
travel around the ring, every PE hashes each of its local tuples and uses the hashes as an
index into the bit-array. For each hashed tuple, the corresponding filter-bit is set. Once
the filter arrives at its originating node, it is used to determine the global uniqueness of
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local tuples. This is done by hashing the local tuples and inspecting the corresponding bit
in the filter. A ”0” indicates that the tuple is globally unique. A ”1” indicates that there
is a duplicate, or a tuple that produced the same hash value, on another node somewhere
around the ring.

In their experiments, Repartitioning consistently outperformed both algorithms that use
a dedicated preprocessing scheme, which showed that neither the local nor the global pre-
processing scheme achieves a reduction in running time that is able to offset its additional
cost.

The bit-array filtering approach is conceptually similar to ideas of Sanders et al. [48] in
that it identifies distinct tuples in order to avoid unnecessary communication. The funda-
mental difference, however, is in the way this is achieved. In the approach of Abdelguerfi
et al. [2], each PE gathers information about the tuples residing at every other PE. Thus,
the bit-arrays that are passed around the ring contain a significant amount of redundant
information. By creating one filtering data structure that is distributed over the PEs, the
dSBF-based duplicate removal algorithm of Sanders et al. [48] eliminates these redundan-
cies. Additionally, all messages that are necessary to build the filter are compressed using
an information-theoretically optimal compression scheme.

2.2 Golomb Coding

The distributed duplicate removal algorithm of Sanders et al. [48] uses distributed com-
pressed single shot Bloom filters to identify distinct elements. This filter can be constructed
with minimal communication effort by performing batched insertion operations that can be
compressed optimally using Golomb coding [21]. This section therefore briefly summarizes
the relevant work of Moffat and Turpin [37].

As Golomb coding uses both unary coding and truncated binary coding, we start by defining
both coding schemes:

Definition 2.1 (Unary coding). Let > 1 be a non-negative integer. The unary code u(x)
of z is defined as u(x) = 12710, where 0 marks the end of the codeword. A unary-coded
codeword is decoded by counting the number of 1s up to the next 0.

Definition 2.2 (Truncated binary coding). Assume a set of integers in the range [1,n]
and let k = log, n be the number of bits of one integer. Truncated binary coding assigns
codewords of length | k| bits to the first 21 —n values in this range and the last 2n — 2/¥]
codewords of length [k] bits to the remaining 2n — 2% values.

Example 1 (Unary coding, Truncated binary coding). Assume we want to encode the
set S = {1,2,3,4,5}. According to Definition 2.1 the corresponding unary codes are
707,7107,71107,711107,711110”. Truncated binary coding assigns codewords of length
|logy 5] = 2 to the first 2M1°8251 — 5 = 3 values: 700”,701”,710”. The remaining 2 x 5 —
2[log251 — 2 values are then assigned the last 2 codewords consisting of [log, 5] = 3 bits:
71107,71117.

Algorithms 1 and 2 show the encoding and decoding procedures based on [37, p. 31].
Function write_int(z,b) writes integer x to the output stream using b bits. Function
read_int(b) interprets the next b bits as an integer. In case [k] bits were used for encoding,
function get_bit() is used to read the next bit from the input stream.

Based on these definitions, we can now define Golomb coding as follows:
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Algorithm 1 Truncated Binary Encode Algorithm 2 Truncated Binary Decode
procedure TRUNC_BINARY_ENC(z,n) procedure TRUNC_BINARY_DEC(n)
k < [logy n] k < [logy n]
d«2F—n d«2F—n
Z <= READ_INT(b — 1)
if x > d then if x4+ 1> d then
WRITE_INT(z — 1 + d, k) T < 2% x+ GET_BIT( )
else r—x—d
WRITE_INT(z — 1,k — 1) end if
end if return r + 1
end procedure end procedure

Definition 2.3 (Golomb coding). Depending on a tuning parameter b, a value z > 1 is
encoded in two parts. Let ¢ = L@J be the result of the division by the tuning parameter
and r = x — ¢ X b be the remainder. Then x is encoded by first issuing q + 1 using unary
coding, followed by 7, which is encoded using truncated binary coding. A Golomb codeword
Cgolomp () is therefore decoded in three steps: First we decode the unary encoded quotient
q = unary-decode() — 1. Next we decode the remainder r using algorithm 2. The decoded

value then can be calculated as x = ¢ x b+ r.

Conceptually, Golomb coding divides the range of the input sequence into equally sized
buckets of size b. The unary part of a codeword (the quotient ¢) then denotes the corre-
sponding bucket id, while the truncated binary part (the remainder r) denotes the specific
position within the bucket (see Figure 2.5).

In the next section we will use Golomb coding to compress a sorted sequence of n integer
values chosen uniformly at random from a range [1, nc]. Let S denote the set of differences
between consecutive values in S. Then S can be considered to be drawn from a geometric
distribution with p ~ % [44, 37, p. 38]. Compressing S using Golomb coding with b =
(log, 2)}1O yields a minimum-redundancy code, i.e., a code that (on average) requires a
minimum number of bits per input element [37, p.36 ff., p. 51]. In this case, the code size
is approximately n(log, % + 1.5) bits [37, p. 39 f].

(;l';T)J

position: r=x —q x b

bucket id: ¢ = |

qg—1 q qg+1
| |
{ ) 1

Figure 2.5: A Golomb code codeword conceptually consists of a selector part (q) that
selects the corresponding bucket of size b and a position part (r) that
specifies the position within the bucket.

2.3 Bloom Filter

In this section, we will focus on the traditional Bloom filter and a space-efficient alternative
proposed by Putze et al. [44]: the Golomb-Compressed Sequence (GCS). We conclude this
section with a review of some approaches to distributed Bloom filters. For a detailed
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overview about the Bloom filter related research, we refer to the comprehensive surveys of
Broder and Mitzenmacher [8] and Tarkoma et al. [57].

A Bloom filter is a space-efficient, probabilistic data structure for approximate set mem-
bership queries. It was introduced by Burton H. Bloom [6] in the 1970’s and since then
has been used in a variety of application domains such as databases [38, 62, 3, 45, 46, 36],
peer-to-peer networks [9, 28, 12] or duplicate detection in data streams [35, 13, 30, 63] and
numerous variants and replacements have been proposed [42].

We start by defining the problem solved by Bloom filters and related data structures:

Problem 1 (Data Structure for approximate set membership queries). Let S =
{z1,29,....,zn} be a set of n elements from a universe U. Our goal is to represent S
in a space-efficient manner (i.e., using m bits) and allow set membership queries of the
form y € S?7. Furthermore we allow the data structure to report false positives, i.e., it
is allowed to make a one-sided error by reporting an element as part of the set although
it was not contained. However, we do not tolerate any false negatives. Thus, the data
structure should never report that an element is not part of the set although it actually
is. The answers to the set membership queries are therefore only approrimate rather than
eract. We denote the probability of reporting a false positive as the false positive rate
(FPR) f [44].

By storing all n elements of S we would achieve a false positive rate of f = 0 at the cost
of m = n[logU] bits. On the other hand, information theory gives us a lower bound of
m = nlog + bits that are necessary to represent all possible sets S of n elements from a
universe U such that the false positive rate is bounded by f [8, 41].

We now introduce Bloom filters as a step closer to this lower bound:

Definition 2.4 (Bloom Filter). A Bloom filter [6] representing S is an array of m bits.
All bits in this Bloom filter array are initially set to zero. An element x is inserted into the
filter by evaluating k independent hash functions h;(z), ..., hx(x). Each hash function maps
an element x € S to a random number in the range [0, m — 1] and sets the corresponding
bit to 1. After all elements are inserted, a membership query y € S7 for an element
y can be answered by evaluating the k hash functions and determining the state of the
corresponding filter bits. If any of the k bits is 0, then the element is guaranteed not to be
a member of the set. However, if all bits are set, then the element may be part of the set.
In some cases, the membership query will return true although the corresponding element
is not part of the set. These false positives occur because of hash collisions (see Figure 2.6
for an example). Kirsch and Mitzenmacher [29] show that it is not necessary to actually
evaluate k independent hash functions. Instead it suffices to evaluate just 2 hash functions
and use a linear combination of both to generate the remaining k£ — 2 hash values.

The FPR f of a Bloom filter can be controlled by adjusting the size m and thereby the
number of hash functions k: Given the number of elements n we choose

1 1
mzllog— and k:@1n2:log—
n

In2 f
in order to achieve the desired FPR of f [57]. Using a Bloom filter to represent a set S
of n elements from a universe U with a FPR of f thus only requires m = 5 1og% bits.

However, a Bloom filter still needs about ﬁ = 1.44 times as much space as the asymptotic
lower bound of nlog% bits [8, 41].

In order to achieve a near optimal space consumption, Putze et al. [44] propose a Bloom
filter replacement named Golomb-Compressed Sequence (GCS), which can be regarded as
a compressed version of a Bloom filter with £ = 1 hash functions. We refer to this Bloom
filter replacement as single shot Bloom filter:

11
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Figure 2.6: Bloom filter example. Assume S = {z1, 22}, k = 4 and m = 32 bits. After
inserting x1 and x5, the Bloom filter is queried with element y. Although
it is not part of the original set S the filter returns true, because all 4
corresponding bits are set to 1. Thus, y is reported as a false positive,
because of hash collisions.

Definition 2.5 (Single Shot Bloom Filter). Conceptually, a single shot Bloom filter (SBF),
like a traditional Bloom filter, is an array of m bits - initially all set to 0. Inserting an
element x into the filter corresponds to setting the bit at position h(x) to 1 using a hash
function h, while answering an approximate membership query y € S7 corresponds to
computing h(y) and determining whether or not the bit is set to 1. In order to achieve
the same FPR f as a traditional Bloom filter, we have to choose m = ? In other words,

the range of the hash function has to be {0, ...,nc} to achieve an FPR of f = % However,
instead of storing the plain bit array, the SBF compresses the sorted sequence of hash
values, i.e., the positions of the bits set to 1: Since the hashes were chosen uniformly
at random, the differences of successive hash values follow a geometric distribution with
p=f= % As we have already seen in section 2.2, Golomb coding can be used in this
case to create a minimum-redundancy code. Thus, the SBF has a size of approximately
n(log% + 1.5) bits.

While the previously mentioned literature used Bloom filters as a local data structure,
Koloniari et al. [30] propose two ways to create a distributed Bloom filter across several
nodes to eliminate duplicates in high-volume, distributed event streams. In their setting,
consumers are interested in events produced by a number of producers. In order to dis-
burden both the consumers and the event system from processing and communicating
duplicate events, a filtering component based on Bloom filters is used to eliminate dupli-
cates. Since one central Bloom filter constitutes a single point of failure and a potential
bottleneck, they propose two distributed approaches: horizontal and vertical Bloom filters.

A horizontal Bloom filter of size m that is distributed across p nodes consists of p distinct
traditional filters of size % (one at each node). Updates and queries first use an additional
hash function hy, to determine which of the p traditional filters is responsible for the element
and then use the corresponding k& hash functions with range {0, ..., %} to insert or probe
that specific filter. A wertical Bloom filter partitions its m bits into p non-overlapping
subsets that are distributed across the nodes. To update or query a wvertical filter, the
appropriate partitions that contain the corresponding k bits are located by applying the
k hash functions to the element in question.

Analyzing both approaches theoretically as well as experimentally, the authors conclude
that vertical Bloom filters achieve better load balancing, slightly better false positive rates
and better fault tolerance at the cost of higher communication volume due to the distri-
bution of the filter bits. In the worst case, k messages are necessary to update or query
a vertical Bloom filter because each of the k bits is contained in a different partition on
a different node. In contrast, one single message is always sufficient to perform the corre-
sponding operation on the distributed single shot Bloom filter, which will be introduced
in the following section.

12
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2.4 Communication Efficient Distributed Duplicate Removal

Having discussed all fundamentals, we now present the distributed compressed single shot
Bloom filter (dSBF) [48], a generalization of the previously discussed single shot Bloom
filter (SBF) [44]. Section 2.4.2 then introduces the dSBF-based distributed duplicate
removal algorithm that is implemented and evaluated over the course of this thesis.

2.4.1 Distributed Single Shot Bloom Filter (dSBF)

The basic idea is similar to the vertical Bloom filter (vBF) of Koloniari et al. [30]. However,
instead of partitioning the m bits of a traditional Bloom filter into p non-overlapping
subsets and assigning each partition to one PE, the dSBF partitions the bit array of a
single shot Bloom filter over the PEs.

Recall that a SBF uses just one hash function h to set or probe the corresponding filter
bit. As the filter is now distributed over p PEs, with PE i being responsible for the filter
bits i77...(i + 1)(“}) — 1, an insert or query of an element z is performed as follows: The
PE that stores x has to send the corresponding filter bit position h(z) mod m/p to the
respective PE that is responsible for this part of the dSBF (i.e., PE h(®)p/m). In case of an
insertion, the receiving PE sets the corresponding bit to 1. In case of a query, it probes
the corresponding bit and communicates the state of the bit back to the sender.

Thus, using the dSBF with a false positive probability f directly leads to a factor of
© (log1/r) less communication volume compared to the vBF of Koloniari et al. [30]: While
the vBF approach needs to send and receive up to k = log1/f messages in the worst case
in which each of the k bits is located on a different PE, one message always suffices in the
case of the dSBF.

Batched Insertions

The data structure also supports batched insertions and queries, in which case the com-
munication volume necessary to perform the operations can be reduced even further by
applying the compression technique of the SBF. Consider a PE 4 has to perform z; dSBF
operations. After sorting the hashes corresponding to the x; tuples that are either inserted
or queried, we can compute the differences of successive hashes and use Golomb coding to
create a minimum-redundancy code as discussed in Section 2.2. These compressed dSBF
messages are then sent to the PEs managing the respective dSBF partitions, where they
are decoded and processed. Thus, batched dSBF operations are optimally compressible.
Indeed, Sanders et al. [48] prove that n batched dSBF operations on a filter of size m = %
with a false positive probability of f can be executed with an expected communication
volume of

f

where Ny,qz is the maximal number of operations performed on any PE.

V = ns (log % + 0(1)) = Nmas (log Py 0(1)> bits

2.4.2 The dSBF-based Duplicate Removal Algorithm

The goal of the algorithm is to identify and remove all duplicate tuples from a relation
R using minimal communication effort. We assume the input relation R consisting of n
tuples to be distributed evenly over the p PEs of a shared-nothing system, i.e., each PE
has % tuples. Similar to the bit-filtering approach of Abdelguerfi et al. [2], the algorithm
is separated into a global filtering phase and a finalization phase, which only works on the
remaining tuples that could not be identified as distinct during the filtering phase:

13
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The Filtering Phase

In order to minimize the number of tuples that actually have to be compared to each
other and therefore have to be transferred over the network, the algorithm uses a dSBF
to identify distinct tuples with minimal communication effort:

Each PE inserts its % tuples into the dSBF using one batched insertion operation. As
the dSBF is not used for any successive queries, it is not necessary to materialize the
corresponding bit array on each node (i.e., to build the corresponding SBF). Instead, each
PE checks which hash values occur more than once (i.e., which dSBF positions would have
been set to 1 multiple times) and communicates this information back to the corresponding
source PEs. Thus, after having received all dSBF responses, each PE is able to filter out
all tuples that could be identified as distinct. The remaining tuples will be passed on to
the finalization phase.

Sanders et al. [48] prove that in case of a single filtering pass, the overall communication

volume V is minimized, if the dSBF is built using a false positive probability of f = L1

)
where u is the size of an input tuple in bits. This low FPR is necessary to signiﬁcantqu
reduce the number of tuples that have to be considered in the second phase. However, it is
also possible to use more than one dSBF-filtering pass before proceeding to the finalization
phase. In case of a two-pass filtering approach, it is shown that the first dSBF can be built
using a FPR of f| = ; Oglup. The second one, which is used to identify more distinct tuples
within the remaining elements of the first pass, then again uses an FPR of fy = %

The Finalization Phase

After the preprocessing phase, most distinct tuples have been identified as such and can
therefore be excluded from the finalization phase. However, it is still necessary to post
process the tuples that passed the filter (i.e., that could not be identified as distinct) in
order to tell the real duplicates apart from the false positive results reported by the dSBF.
This is done by applying the Repartitioning algorithm introduced in Section 2.1 to the
remaining tuples.

The detailed theoretical analysis of Sanders et al. [48] shows that single-pass filtering can
be performed using an overall communication volume, which is logarithmic in the size u of
the input tuples, while multi-pass filtering even achieves a communication volume, which
is double-logarithmic in the tuple size.

14



3. Engineering the dSBF-based Duplicate
Removal Algorithm

In their theoretical analysis, Sanders et al. [48] outline the high-level structure of the
dSBF-based distributed duplicate removal algorithm. Goal of this thesis is to comple-
ment this abstract, theoretical description with an actual implementation that runs on a
shared-nothing compute cluster and exploits the shared-memory capabilities of the multi-
processors contained in each cluster node for all computationally intensive operations.

We start by decomposing the algorithm into distinct computation and communication
phases. Sections 3.3 through 3.6 then detail selected steps of our implementation that
are considered crucial for the overall performance of the algorithm. We substantiate our
design decisions with dedicated experimental evaluations. Section 3.2 therefore introduces
the experimental setup that is used throughout this thesis.

3.1 The Algorithm: From Theory to Practice

We again assume the input relation consists of n tuples. These tuples and the m bits of
the dSBF are distributed evenly over the p PEs, i.e., % tuples and % bits per PE. Without
loss of generality, we further assume the dataset of each node to be duplicate-free, i.e., the
input relation only contains inter-node duplicates and no intra-node duplicates. In case of
intra-node duplicates, one of the algorithms described in Section 2.1 can be used to detect
and remove them, before our algorithm is executed.

Figure 3.1 presents the algorithm from the perspective of alternating computation and
communication rounds. For brevity, we outline the single-pass algorithm and detail the
differences of the multi-pass variant at the end of this section. We distinguish 9 distinct
phases:

1. Preprocessing: The first phase amounts to the preparation of the batched dSBF
insertion messages. Every tuple of the input relation has to be preprocessed in order
to determine the PE that is responsible for the corresponding part of the dSBF where
the tuple will be inserted. Thus every PE processes its input tuples and creates p
messages - one for each PE, containing information about which filter positions should
be set to 1. Further details on the preprocessing phase will be given in the paragraph
following this enumeration.
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Figure 3.1: Computation and communication rounds of the dSBF-based duplicate re-
moval algorithm.

Distribute dSBF insertion messages: Once the preprocessing is finished, all
batched insertion messages are distributed to their respective destinations.

. Collision detection: The dSBF is used to detect distinct tuples. In terms of the

filter, a tuple is distinct if the respective filter bit is set to 1 only once. Whenever a
bit is set to 1 multiple times, the corresponding input elements cannot be regarded as
distinct. Since we use the dSBF only to detect filter-bit collisions and do not perform
any subsequent membership queries, it is not necessary to actually materialize the SBF
at each PE. Instead, every PE analyzes the insertion messages it receives, discards all
insertion positions that only occur once and keeps track of all positions that occur
multiple times.

. Distribute filter responses: For every received batched insertion message, a cor-

responding response is sent back to the source PE. For each insertion position, the
response indicates if the respective position produced a collision.

Partitioning: Using the dSBF responses of phase 4, each PE is now able to filter those
tuples that did not produce a collision. As these tuples are now known to be distinct,
they do not need to be processed any further and can be discarded from all subse-
quent phases. Since the dSBF however is a probabilistic data structure that produces
false positive results, tuples that correspond to filter positions that occurred multiple
times cannot be assumed to be duplicates. In order to distinguish false positives from
real duplicates, the PEs now execute the Repartitioning algorithm on the remaining
tuples. The partitioning phase partitions these remaining tuples into p messages.

Distribute input tuples: Each remaining tuple is sent to the PE that detected the
corresponding dSBF collision in phase 3. The sole goal of the dSBF-based filtering is
to minimize the amount of data that has to be transferred in this phase.

. Duplicate detection: The duplicate detection phase of the Repartitioning algo-

rithm solves the problem of false positive filter results. By applying, for example, one
of the algorithms described in Section 2.1, this phase compares the received input tuples
and therefore distinguishes tuples that were reported to be duplicates because of false
positive filter results from those tuples that really occurred multiple times across the
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nodes. For each tuple occurring more than once, one PE may keep it. The remaining
PEs have to remove it from their part of the input relation.

8. Distribute duplicate removal requests: For every received input tuple, an indi-
cator is sent back to the corresponding source PE, signaling either to keep the corre-
sponding tuple or to remove it from the input relation.

9. Duplicate removal: Based on the received duplicate removal requests, each PE re-
moves the corresponding input tuples, which were identified as duplicates. Afterwards,
the input relation is free of any inter-node duplicates.

The algorithm executes distinct computation and communication phases. Communica-
tion phases thereby follow a regular pattern: In every communication round, each PE
exchanges a (potentially empty) message with every other PE that participates in the
duplicate removal process. This type of communication is known as all-to-all personalized
communication. As the performance of this operation is crucial for the overall performance
of the duplicate removal algorithm, Section 3.4 details our efforts in tuning this kind of
communication operation.

Among the computation rounds, the preprocessing and collision detection phases deserve
further attention. We therefore detail these phases from the perspective of one of the PEs,
as all nodes perform the exact same steps - only on a different part of the input dataset.

3.1.1 The Preprocessing Phase

The preprocessing phase itself can be divided into 5 different steps as shown in Figure 3.2.
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Figure 3.2: The preprocessing phase of the dSBF-based duplicate removal algorithm:
1.) Hashing, 2.) Sorting, 3.) Collision Extraction, 4.) Compression, 5.)
Distribution.

1. Hashing: A tuple is inserted into the dSBF by setting the corresponding filter bit to 1.
The position of this bit is determined by a hash function h. Thus it is necessary to hash
all input tuples. As this operation is independent for each tuple, it can be performed in
parallel using the shared-memory capabilities of the multiprocessors contained in each
node.
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2. Sorting: As described in Section 2.4.1, we do not actually materialize the SBF bit
array. Instead, the hash values are used to describe the bit positions that are set to 1.
In order to be able to compress the hashes using Golomb coding, it is necessary to sort
them. Sorting can also be done in parallel using black-box comparison-based sorting
routines like the parallel version of std: :sort provided by the GNU C++ library [52].
However, we want to exploit the fact that we deal with (random) integer values. We
therefore implement a parallel radix sort based on the concepts of Wassenberg and
Sanders [64]. Section 3.3 covers the related details.

3. Collision Extraction: Hashing the input tuples may result in local hash collisions.
As we want the communication volume to be minimal, we send every hash value only
once. Duplicate hash values are therefore extracted in a sequential scan operation and
only one instance of each hash is kept for distribution. However, it is not possible
to discard the duplicate hash values, since each of them was produced by applying a
hash function to a different tuple of the input relation. For each hash value that could
not be identified as distinct after the dSBF-filtering phase, it is therefore necessary to
distribute all input tuples that produced the same hash value in order to distinguish
false positives from real duplicates in the Repartitioning algorithm.

4. Compression: The key to the minimal communication volume implied by the dis-
tributed single shot Bloom filter is the possibility to compress the logical filter bit
array (i.e., the sorted sequence of hash values that indicate the positions of the one-bits
in the filter). In Section 3.5 we therefore detail our engineering efforts regarding this
phase.

5. Distribution: Finally, the compressed messages are distributed to the respective des-
tination PEs. In order to overlap compression and communication, we implemented a
pipelined communication algorithm, which will also be discussed in Section 3.5.

3.1.2 The Collision Detection Phase

As described in Section 2.4, the dSBF allows batched insertions to build up the distributed
data structure. Subsequent batched membership queries can then be used to probe the
filter. In the duplicate removal algorithm however, we do not need to query the filter.
Moreover, we do not even need to construct the corresponding SBF on each node, as
we are only interested in the filter positions that occur multiple times in the received
batched insertion messages. Figure 3.3 provides a conceptual overview of this process. A
description of the individual steps follows.

1. Decoding: The dSBF insertion messages arrive as Golomb compressed bit strings.
The first step therefore is to decompress the messages in order to retrieve the original
hash values. Section 3.5 discusses the relevant details.

2. Collision Detection: Each decompressed message contains a sorted sequence of hash
values corresponding to the dSBF bit positions that should be set to 1. By using
a parallel multiway-merging routine, it is therefore possible to detect colliding hash
values. In Section 3.6 we describe our approach to collision detection.

3. Distribution: Signaling back hash collisions can be done by sending one bit per
received hash value. A 1 indicates a hash collision, while a 0 indicates that the corre-
sponding hash value occurred only once.

The distribution of the filter responses concludes the dSBF-filtering phase as depicted in
Figure 3.1. In the single-pass variant of the distributed duplicate removal algorithm, the
Repartitioning algorithm is now used to resolve the false-positive filter results and to
determine the real duplicates.
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Figure 3.3: The collision detection phase of the dSBF-based duplicate removal algo-
rithm.

3.1.3 Multi-Pass Filtering

In the multi-pass variant, the dSBF-filtering phase is repeated using the remaining tuples
of the previous pass as input. As described in Section 2.4.2, it is necessary to choose the
size m of the dSBF optimally, in order to minimize the overall communication volume. The
size of the filter depends on the optimal false positive rate and the number of elements
that could not be identified as distinct. For filtering pass 4, the filter size therefore is
m; = % Thus in order to proceed with the next dSBF-filtering phase, it is necessary
to count the remaining tuples over all PE: n; = z;(l) n, and distribute this value to all
nodes. Together with the corresponding optimal false-positive rate f;, the next filtering

pass can than be started.

Once all filtering passes are finished, the multi-pass variant continues like its single-pass
counterpart by using the Repartitioning algorithm to process all remaining tuples that
could not be identified as distinct by any of the dSBF passes.

3.2 Experimental Setup

Our test environment is a distributed memory cluster system consisting of 400 dedicated
compute nodes. Each node consists of two Octa-Core Intel Xeon E5-2670 CPUs (Sandy
Bridge) clocked at 2.6 GHz and 64 GB of main memory and is running Suse Linux Enter-
prise (SLES) 11 SP2 with kernel version 3.0.42. Each core has a private 64 KB L1- and a
private 256 KB L2-cache in addition to a 20 MB L3-cache, which is shared by eight cores
on each socket. The nodes are connected by an InfiniBand 4x QDR interconnect with a
theoretical point-to-point bandwidth of 4 GB/s.

In order to communicate between the nodes we use the message passing [34] library
OpenMPI 1.6.4 compiled with --enable-mpi-thread-multiple to enable multithread-
ing support. All programs are compiled using GCC 4.7.2 with -03 -mtune=native -
march=native -std=c++11 -fopenmp. We use both OpenMP [40] and the Intel® Thread-
ing Building Blocks (Intel® TBB) library [27] in version 4.1 to exploit shared-memory
parallelism of the multiprocessors of each node.

3.3 Implementing a Parallel Radix Sort

The computationally most intensive step in the preprocessing phase of the dSBF-filtering
process is sorting the hash values. The sorting phase is necessary in order to be able to
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extract local hash collisions using a single pass over the hash values. Furthermore, it is a
prerequisite for Golomb compression. While it is possible to use a black-box comparison-
based sorting routine like the parallel version of std::sort provided by the GNU C++
library, we want to exploit the fact that we deal with (random) integer keys and even
know the range in which the hash values are distributed. Since the hash values denote
bit positions in the dSBF that are set to 1 and the dSBF logically consists of m bits, the
range is [0,m) and the hash values consist of k = [logm] bits.

Using these restrictions of the hash values, we are able to break the lower bound of
Q(nlogn) of comparison-based sorting algorithms by using a radix sort. Given n in-
put keys of k bits each, radix sort recursively sorts the data by examining d-bit digits and
partitions the keys according to these digits. Depending on the digit that is examined first,
one distinguishes between least significant digit (LSD) and most significant digit (MSD)
radix sort. LSD radix sort starts by examining the rightmost digit and partitioning the
input sequence into buckets based on that digit. This process is repeated % — 1 times for
the remaining digits. MSD radix sort proceeds analogously, starting from the leftmost
digit.

Wassenberg and Sanders [64] propose a parallel radix sort for 32-bit integer keys that
exploits several details of modern micro-architectures. Our implementation is a straight-
forward generalization of their algorithm that also works on 64-bit integer keys and uses
the knowledge of the maximum possible key value to determine the maximum number of
digits that have to be processed.

Algorithm 3 outlines our approach. Using the information of the maximum hash value,
we determine the number of digits that have to be analyzed. Choosing d = 8 allows us to
extract d-bit digits without masking by addressing an entire byte and partitions the input
into 256 buckets in each pass. Like in [64] we use one MSD-pass to partition the input
into a set of buckets (lines 3-6). This step is performed in parallel. Using a prefix sum, we
then calculate the output indices for the first item of each MSD bucket.

These MSD buckets are then sorted in parallel in LSD order. Each thread is responsible
for a range of MSD buckets produced in the first pass. Note that because the MSD pass
was performed in parallel, every thread has a complete set of MSD buckets and the input
is now partitioned over all of these buckets. In order to sort one MSD bucket, a thread
therefore has to accesses the corresponding buckets of all other threads during the first
LSD pass (see lines 15-18).

It then processes all keys by examining the remaining digits and partitioning the keys into
its bucket structure. The second to the last pass also computes the histogram for the last
digit. After calculating the bucket indices using a prefix sum, the input elements can then
be written directly to the correct output position in the last pass (lines 35-43).

Note that the algorithm uses |passes| x [threads| x 27 buckets. To make the number of
buckets independent of the number of passes, we only use 3 sets of buckets. The first set of
buckets is used to contain the elements of the MSD pass. The first LSD pass then partitions
its element into a new set of buckets. As each thread processes one MSD bucket at a time,
we cannot reuse the MSD buckets for the second LSD pass. We therefore use a third set
of buckets. All further passes then reuse these two sets of LSD buckets interchangeably.

While this reduces the number of buckets to 3 x |threads| x 2, managing these buckets
explicitly would still incur a certain overhead. Wassenberg and Sanders [64] therefore
propose to preallocate each bucket with a size of n (i.e., each bucket is big enough to
contain the entire input). This is efficient, because modern operating systems map physical
memory only on the first access of a memory page. While the algorithm therefore uses a
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significant amount of virtual memory address space, it only causes a constant size memory
overhead per bucket, which is limited by the page size.

Each pass of the algorithm reads each key once and writes it to one of the 2¢ buckets
depending on the current digit. In order to avoid cache pollution, Wassenberg and Sanders
[64] advocate to use non-temporal writes that write directly into memory by bypassing the
cache. As single memory accesses are expensive, Wassenberg and Sanders [64] make use of
software write-combining. Input elements are first written to temporary buffers of the size
of a cache line. Once such a buffer becomes full, a sequence of non-temporal writes is used
to copy the buffer to the corresponding destination in the memory. Our implementation
also adopts this approach.
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Algorithm 3 Parallel Radix Sort

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

procedure PARALLEL RADIX SORT
numDigits < [log(m — 1)]/digitSize
parallel foreach item do > MSD partitioning
d < FIRSTRELEVANTDIGIT(item)
bucketsmsqld] < buckets,,sq[d] U {item}
end parallel foreach
BARRIER
foreach i € [0,2%) do
bucketSizes[i] < > ip caq IPUCkEtS5a1]|
end for
outputIndices < PREFIXSUM (bucketSizes)
numDigits < numDigits — 1
parallel foreach bucket,,sq € buckets,,sq do
currentDigit < 0
foreach item € bucket,,;qVthreads do > first LSD pass
d « Dicrr(item,currentDigit)
bucketscurr Digit[d] <— bucketscurrDigit|[d] U {item}
end for
currentDigit <— currentDigit + 1
numDigit < numDigits — 1
for currentDigit < numDigits — 1 do > LSD passes exept for the last one
foreach bucket, copigit € bucketsyreypigit do
foreach item € bucket,reypigic do
d < Dicir(item,currentDigit)
bucketscyrrDigit[d] <= bucketscyrrDigit|[d] U {item}
// If this is the last loop iteration, we create the histogram
// otherwise these lines are not executed
d < FIRSTRELEVANTDIGIT(item)
histogram|[d] < histogram[d] + 1
end for
end for
currentDigit < currentDigit + 1
end for
bucketIndices <— PREFIXSUM(histogram)
foreach bucket, copigit € bucketsy,eypigit do > final LSD pass
foreach item € bucket, ey pigit do
d < Dicrr(item,currentDigit)
dl < FIRSTRELEVANTDIGIT(item)
i < outputIndices|[dl] + bucketIndices|d]
bucketIndices[d] < bucketIndices[d] + 1
output|i] < item
end for
end for
end parallel foreach
end procedure
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Experimental Evaluation

The performance of our radix sort implementation depends on the size of the keys. Using
32-bit integers and a digit size of d = 8 bits requires 4 passes through the input data, while
up to 8 passes can be necessary for 64-bit integers, depending on the size of the maximum
input key.

We therefore evaluate both cases and compare the performance of our implementation to
the parallel comparison-based version of std::sort provided by the GNU C++ library.
We use the mersenne twister random number generator of the Boost library to generate
uniformly distributed random integers as input. As an additional experiment to sorting
keys, we measure the running time for sorting 32- and 64-bit (key, value) pairs (i.e., a key
paired with a value of the same size as payload). All reported timing values are averages
over 25 iterations. Each experiment is performed on one dedicated node of the cluster
described in Section 3.2. Both algorithms are configured to use 16 threads.

Figure 3.4 shows the results for sorting 32-bit integer keys as well as 32-bit (key, value)
pairs. Our radix sort consistently outperforms the library algorithm. For plain 32-bit
keys our implementation is up to 4 times faster than the comparison-based parallel sorter.
For 32-bit (key, value) pairs it remains more than a factor of 2 faster. This behavior
is expected, as radix sort is memory-bound: Doubling the amount of partitioned data
approximately doubles the corresponding running time.

Figures 3.5 and 3.6 show the results for the same experiments, but using 64-bit keys and
64-bit (key, value) pairs. The number of passes of our radix sort implementation depends
on the maximum size of the keys. We therefore choose the range of the input keys such
that five to eight passes are necessary to sort the input and report the running time for
each configuration. For example radix (8 pass) denotes the running time of our radix
sort implementation for problem instances where all 8 digits have to be evaluated in order
to sort the input. As the comparison-based sorting routine is insensitive to the size of the
input keys, we only report its running time once.

Our implementation again outperforms the library algorithm. Its advantage however de-
creases by a constant factor for each additional pass over the input. Adding an equally
sized value as payload to the keys (see Figure 3.6) again approximately doubles the running
time per element.
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Figure 3.4: Running time comparison of parallel radix sort and parallel::sort for 32-bit
keys and 32-bit (key, value) pairs. Both implementations use 16 threads.
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Figure 3.5: Running time comparison of parallel radix sort and parallel::sort for 64-bit
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Figure 3.6: Running time comparison of parallel radix sort and parallel::sort for 64-

bit (key, value) pairs. Keys are generated such that five to eight passes
are necessary to sort the input using a digit size of d = 8 bits. Both
implementations use 16 threads. Further investigation is necessary to
explain the performance increase for sorting more than 750 x 220 pairs.
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3.4 Engineering All-to-All Communication

Fast and efficient all-to-all communication is crucial in both the traditional approaches
like Two-Phase and Repartitioning as well as in the dSBF-based duplicate removal al-
gorithm. While the former use one communication step to distribute the entire dataset
across all nodes, the latter includes several calls to this collective communication operation,
distributing Golomb-compressed hash values, bit arrays and input tuples.

In the terminology of the Message Passing Interface (MPI) [34] standard, this kind of op-
eration is referred to as all-to-all communication. Depending on the flexibility of the oper-
ation, one further distinguishes MPI_Alltoallv (variable-length messages of the same data
type) and MPI Alltoallw (variable-length messages of potentially different data types).
Both operations are crucial for the communication operations of the dSBF-based dupli-
cate removal algorithm.

In Subsection 3.4.1 we analyze the performance of the standard MPI_Alltoallv implemen-
tation of OpenMPI in order to determine a baseline of the general network throughput of
our high performance cluster described in Section 3.2. The results of this analysis clearly
indicate the need for a different All-to-Allv implementation. Subsection 3.4.2 therefore in-
troduces the 1-Factor algorithm [47], which is then experimentally evaluated in 3.4.3. The
throughput of this implementation will serve as a baseline, against which the effectiveness
of transferring Golomb-compressed hash values rather than plain hashes will be measured.

3.4.1 Analyzing the Library Algorithm

OpenMPI uses a pairwise message-exchange algorithm as default implementation of
MPI_Alltoallv. Before communicating with other nodes, each PE copies the message
destined for itself to the corresponding location within the receive buffer. Afterwards,
message-exchanges with the other participants are performed in several communication
rounds. In each of these rounds, messages are passed in a ring-like manner with an in-
creasing stride (see Figure 3.7 for an example). The pseudo code of this algorithm is shown
in Algorithm 4.

From a theoretical point of view, the algorithm is optimal for large messages in which
case the startup overhead of a communication operation Ty ¢ is negligible compared to
the time nTpy. it takes to exchange a message of size n. In each of the p — 1 rounds,
every PE directly sends the data destined for its sendTo-partner and directly receives the
data destined for itself from the recvFrom-partner. Thus the complexity of the library
algorithm is

p(Tstart + nTbyte)7

which is optimal for n — oco. However, the actual implementation of this default algorithm
exhibits three shortcomings:

1. Implementation Inefficiency: Taking a closer look at the pseudo code together
with the example reveals an inefficiency in the current implementation: Before enter-
ing the communication-loop, local data is copied from the send buffer to the receive
buffer to avoid unnecessary overhead. Therefore only p — 1 communication opera-
tions remain to be performed in the pairwise fashion. However, the loop condition
actually enforces p pairwise exchanges - the last one being an additional exchange
of node-local data. This exchange already happened before entering the loop and
therefore leads to one unnecessary memcpy-operation.

"http://www.open-mpi.org/hg/hgwebdir. cgi/ompi-svn-mirror/file/8eclaa94dba9/ompi/mca/coll/
tuned/coll_tuned_alltoallv.c
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Algorithm 4 Default All-to-Allv Algorithm in OpenMPI !

procedure OMPI_COLL_TUNED_ALLTOALLV_INTRA_PAIRWISE
// PEindex i€ 0, ...,p-1
receive Buf fer[i] < sendbuf fer][i]
for j :=1 to p do > Bug: should be j:=1top—1
sendT'o < (i + j) mod p
recvFrom < (i+p— j) mod p
SENDRECV (sendT o, recvFrom)
end for
end procedure

1 1 1 1 1 1
0oV 22 0 Sy g 2 0 2 0 2 0 T,
5 Qd?) 5 3 5 3 5 3 5 3 5 3

1 ™~y 4 4 1 Sy

step 0 step 1 step 2 step 3 step 4 step b

Figure 3.7: Communication pattern of OpenMPT’s pairwise All-to-Allv algorithm with
6 nodes. Note that this example reflects the message exchanges in a cor-
rect implementation without the inefficiency. The current implementation
performs another local exchange (step 0) at the end.

2. Missing Optimization: While other communication operations do not send mes-
sages if the corresponding message size is zero, ompi_coll_tuned_alltoallv_in-
tra_pairwise uses a Sendrecv implementation that does not perform this optimiza-

tion.2

3. Synchronization Overhead: Each round uses a blocking point-to-point operation
for pairwise message exchange. Thus PEs have to wait for each communication
operation to complete before they can initiate the next one. Rather than issuing
all operations at once and then only wait for completion once at the end of the
algorithm, the implementation has to wait for each of the p exchanges to complete.
It thereby introduces an additional synchronization overhead that scales linearly with
the number of nodes that participate in the collective communication operation.

All duplicate removal algorithms heavily rely on fast and efficient all-to-all personalized
communication operations. Having identified these shortcomings, it is therefore necessary
to evaluate the performance of OpenMPI’s pairwise algorithm in order to answer the
following questions:

e Given a fixed amount of data to distribute to all PEs. How does an increasing
number of nodes affect the throughput of the MPI_Alltoallv implementation?

e Given a fixed number of nodes. How does increasing the message sizes affect the
throughput?
e Do the identified deficiencies negatively affect the overall performance?
On a cluster that employs a high performance network one would expect to achieve a

nearly constant network throughput regardless of the number of nodes and the overall
transfer volume. To verify this assumption, we performed the following two experiments

’http://www.open-mpi.org/hg/hgwebdir.cgi/ompi-svn-mirror/file/8eclaa94dba9/ompi/mca/coll/
tuned/coll_tuned_util.c
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# Nodes (p) 2 4 8 16 | 32 64
Throughput (Gb/s) | 2.95 | 3.09 | 0.98 | 0.57 | 0.42 | 0.84

Table 3.1: Throughput of OpenMPI’s default All-to-Allv algorithm (averaged over 50
iterations). Each node sends 1 GB of data. With increasing number of
nodes the throughput decreases significantly.

Transfer Volume (Gb/Node) | 1 | 141 | 2 |282| 4 |565| 8
Throughput (Gb/s) 1.02 | 0.88 | 0.72 | 0.84 | 0.83 | 0.55 | 0.79

Table 3.2: Throughput of OpenMPI’s default All-to-Allv algorithm with 64 PEs
and increasing communication volume (averaged over 50 iterations). The
throughput is more than a factor of 3 apart from the possible network
bandwidth.

on our distributed memory cluster: In the first experiment each node is given a fixed input
size of 1 GB. For an increasing number of nodes, we measure the running time of the
MPI_Alltoallv operation used to distribute the data evenly among the participants. The
results are shown in table 3.1. While the throughput remains stable for 2 and 4 nodes, it
decreases significantly as more and more nodes participate in the operation.

Table 3.2 shows the result of our second experiment, in which we kept the number of PEs
constant (e.g., p = 64) and consistently increased the overall message transfer volume by
a factor of ~ v/2. The throughput remains almost constant.

However, given the fact that our cluster employs a high-speed InfiniBand interconnect
with a theoretical bandwidth of 4 GB/s, the pairwise algorithm shows poor performance.
Increasing the number of nodes results in a throughput that is way off the possible network
bandwidth. Although this throughput remains relatively stable given a fixed number of
PEs, the algorithm is still more than a factor of 3 away from peak performance for p = 64.

3.4.2 The 1-Factor Algorithm

In order to verify whether the resulting poor performance of the default MPI_Alltoallv
algorithm is due to the current implementation or due to a general problem of the clus-
ter configuration, we implemented an alternative algorithm for all-to-all communication:
The 1-Factor algorithm [47]. Like the pairwise algorithm, it breaks down one collective
communication operation into several rounds - each of which consists of distinct pairwise
message exchanges.

The algorithm models a complete all-to-all operation as a communication graph G =
(V,E) with V.= {0,...,p — 1} and E = {all pairwise message exchanges}. Since every
PE communicates with every other PE (including itself), G is a complete graph with a
self-loop on each vertex. Sanders and Traff [47] prove the existence of a 1-factorization of
this communication graph.

Each Edge e € E represents a pairwise message exchange that has to be performed in one
of the communication rounds. In order to schedule these message exchanges, the algorithm
exploits the existence of a 1-factorization. It performs p communication rounds - one for
each 1-factor of G. In each round the nodes perform a pairwise message exchange along
the edges of the current 1-factor.

Algorithm 5 shows the pseudo code for an odd number of PEs. In each round, one node
communicates with itself (self-loop) while the others perform pairwise exchanges (see Fig-
ure 3.8 for an example).
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Algorithm 5 1-Factor Algorithm (p odd)

procedure 1-FACTOR-ALLTOALLV
// PEindex i€ 0, ....,p-1
for j:=0top—1do
Exchange data with PE (j — i) mod p
end for
end procedure

Algorithm 6 1-Factor Algorithm (p even)

procedure 1-FACTOR-ALLTOALLV
// PEindexi€ 0, ...,p-1
for j:=0top—2do
idle < §j mod (p — 1)
if i=p-1 then
commPartner < idle
else if i = idle then
commPartner < p—1
else
commPartner < (j —i) mod (p — 1)
end if
Exchange data with PE commPartner
end for
Exchange data with PE ¢ > self-communication
end procedure

If the same algorithm was used for an even number of nodes as well, there would be
2 PEs communicating with themselves every second round although they could exchange
messages with each other. Therefore Algorithm 6 excludes the last node p—1 and performs
Algorithm 5 on the remaining odd number of PEs. As we have already seen, this results
in one node that is paired with itself. This node is now chosen to communicate with
the previously excluded PE p — 1. A final message exchange accounts for the remaining
self-loop 1-factor. Figure 3.9 shows the communication pattern of 6 nodes as an example.

Like the pairwise algorithm used in OpenMPI, the 1-Factor algorithm is also optimal if the
time it takes to exchange a message is large compared to the startup overhead (i.e., optimal
for large messages). However, it is somewhat simpler in terms of the communication
pattern: It only exchanges messages in a pairwise distinct fashion. In the library algorithm,
this is only the case in one of the p rounds.

) ) A ) R
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\ I /,>>§ - N 2\3 \ /)3 . \\ﬁ??) : N /5’3 .
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Figure 3.8: Complete Graph with 5 vertices and self-loops. The communication pat-
tern used by the 1-Factor algorithm in each step is highlighted in red.
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Figure 3.9: Complete Graph with 6 vertices and self-loops. The communication pat-
tern used by the 1-Factor algorithm in each step is highlighted in red.

3.4.3 Experimental Evaluation

While most of the algorithm’s peudocode can be directly translated into an implementa-
tion, there is one subtle detail that needs particular attention: The message exchange itself.
In order to realize this pairwise communication, it is possible to use either blocking (e.g.
MPI_Sendrecv) or non-blocking (e.g. MPI_Isend, MPI Irecv) point-to-point communica-
tion primitives. Using blocking operations would potentially lead to the same inefficiencies
as in the pairwise algorithm, whereas using non-blocking operations would allow to over-
lap the different communication rounds as much as possible. Rather than having to wait
for each pairwise exchange to complete before another exchange can be started, a non-
blocking implementation would put all outbound messages on the network and collectively
wait once for all message transfers to complete.

To verify the hypotheses that the current implementation of the pairwise algorithm is
deficient and that the 1-Factor algorithm can benefit from using non-blocking operations,
we implemented both variants and measured their performance on the same experiments
as described in Section 3.4.1. The results are shown in Figures 3.10a and 3.10b.

The results of our experiments clearly indicate the superiority of the non-blocking 1-Factor
algorithm. In both experiments it met the expectations and outperformed the blocking
variant as well as the pairwise algorithm. Increasing the number of PEs while holding the
input size constant resulted only in a modest decrease in throughput. When increasing
the input size for a fixed number of nodes, the throughput remained almost constant.

In Figure 3.10a the curves of the library algorithm and the blocking 1-Factor implemen-
tation progress in exactly the same manner. This is not surprising as there are only two
minor differences between these two implementations. First, the blocking 1-Factor imple-
mentation does not copy local data twice, as it is done in the pairwise algorithm because of
the inefficient implementation. Second, the communication patterns slightly differ: While
in the blocking variant each node sends to and receives from exactly the same node, the
library algorithm uses different communication partners for send and receive operations.

Key disadvantage of both approaches is the usage of blocking point-to-point operations.
While the non-blocking implementation is able to overlap the p communication rounds and
only has to wait once at the end for all operations to finish, both algorithms require each
communication operation to be completed before the next operation can be started. Thus,
the increase in performance and stability of the fastest implementation can be attributed to
the usage of non-blocking communication operations. As can be seen in Figure 3.10b, the
non-blocking 1-Factor algorithm remains more than a factor of 1.7 faster than OpenMPT’s
default implementation and more than a factor of 1.5 faster than its blocking counterpart.
Since communication performance is crucial in all duplicate removal algorithms, we adopt
the non-blocking 1-Factor algorithm as a drop-in replacement for OpenMPI’s default All-
to-Allv algorithm in all further experiments.
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Figure 3.10: Throughput comparison of MPI_Alltoallv and both 1-Factor implemen-
tations (averaged over 50 iterations).

3.5 Integrating Golomb Compression

The distributed single shot Bloom filter introduced in Section 2.4.1 is built by distributing
Golomb-compressed hashes across all nodes (batched insertion). Given the high perfor-
mance networks of today’s compute clusters and the results of the previous section, the
question is whether the application of Golomb compression is actually able to reduce the
overall communication time.

We therefore integrate the Golomb coder implementation of Putze et al. [44] into the
1-Factor all-to-all implementation and analyze the performance of this approach in Sec-
tion 3.5.1. The results of this analysis show the need for parallelizing encoding and de-
coding in order to be competitive with uncompressed communication. Thus Section 3.5.2
devises three different parallelization approaches, which are then evaluated experimentally
in Section 3.5.3.

3.5.1 Sequential Compression

The dSBF-based duplicate removal algorithm compresses a sorted sequence of hash values
using Golomb coding before distributing them to the respective PEs that manage the
corresponding part of the filter. This significantly reduces the amount of data that has to
be sent over the network. However, it also introduces additional overhead since the hashes
have to be encoded before and decoded after the send operation.

Encoding is done sequentially for each message (see Figure 3.11). For each PE i the
corresponding hashes are encoded contiguously into the send buffer. Additionally we store
some meta data for each Golomb code, which will be used for decoding by the receiving
node. The meta data contains the Golomb tuning parameter b, the hash-offset that is
needed due to difference encoding as well as the number of encoded hashes. In order to
avoid an additional communication step to distribute this information, we store meta data
and Golomb codes in consecutive memory locations. This allows us to distribute both
using just one collective communication operation. The receiving node then uses the meta
data information located at the beginning of each message to decode it sequentially.

Figure 3.12 shows the performance of sequential Golomb compression compared to directly
sending the uncompressed hashes. Both algorithms use the 1-Factor All-to-Allv drop-in
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Figure 3.12: Running time comparison:

of p = 64 nodes.

sending uncompressed and Golomb-

compressed data using our 1-Factor implementation. Golomb compres-
sion reduces message transfer times. However, encoding and decoding
also introduce a significant overhead.

replacement. The results clearly show that compression greatly reduces the communication
time. Encoding and decoding however strongly dominate the overall running time. In the
next Section we therefore devise several approaches to parallelize compression.
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Figure 3.13: Send buffer layout for naive parallelization approach assuming 4 PEs.

3.5.2 Parallelization Approaches

In order to speed up encoding and decoding it is necessary to parallelize both steps. In
this subsection we assume a system with p nodes and ¢ threads per node and present three
parallelization approaches that build upon one another. All implementations avoid the
overhead of encoding and decoding the bucket each PE sends to itself. Instead, these hash
values are directly copied into the corresponding memory location of the receive buffer.

Naive

Given t threads, it is possible to encode up to t messages in parallel. However, the sizes
of each of the t resulting Golomb codes are not known until completion of the encoding
process. Thus it is not possible to encode directly into contiguous memory locations of the
send buffer in parallel. We therefore conceptually divide the send buffer into p buckets -
one for each destination PE.

We again exploit virtual memory to account for the unknown Golomb code size of each
bucket. Memory is allocated such that each bucket is big enough to contain the Golomb
code of the entire input sequence. Thus it is ensured that each bucket is big enough to
store meta and compressed data without overflowing into the neighboring bucket. Each of
the t threads is therefore able to encode its corresponding hashes into the correct position
of the send buffer without any synchronization with the other threads.

Figure 3.13 shows an example of a send buffer, which is conceptually divided into 4 buckets.
Each bucket can further be subdivided into three different memory areas. At the beginning
of each bucket the meta data is stored, followed by the actual Golomb code. Since we
estimated the code sizes conservatively, each code is smaller than the bucket size - leaving
some unused space at the end of each bucket.

This layout causes some fragmentation of the send buffer. Unlike in the sequential case, the
compressed data does not reside in consecutive memory locations. It is therefore necessary
to adjust the send displacements of the All-to-Allv operation accordingly to account for
these offsets.

Decoding is done analogously to encoding. Using the meta data information at the begin-
ning of each message, t threads concurrently decode their respective message content into
the receive data structure.

Maximum Parallelism

If the number p of nodes is greater than the number ¢ of threads per node, the naive
approach efficiently exploits parallelism. If, however, the number of nodes participating in
the collective operation is less than t, it is not able to use all threads for encoding as well
as decoding and therefore wastes potential for parallelization.
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Figure 3.14: Send buffer layout for maximum parallelism approach. Each bucket is
conceptually divided into ¢ sub-buckets, which will be encoded and de-
coded in parallel.

To be able to always use the maximum number of threads (regardless of the number of
nodes), we conceptually partition the send buffer layout of the naive approach even further
(see Figure 3.14). Each bucket is itself sub-divided into ¢ sub-buckets that are big enough
to contain the Golomb code of the entire input sequence.

Thus, it is possible to encode a bucket by encoding all sub-buckets in parallel, thereby
always using all available threads. This approach however leads to further fragmentation
of the send buffer. While the naive approach has to account for p potentially unused
memory locations, this approach needs to consider p - t gaps in the send buffer.

Due to this fragmentation it is not possible to use a standard All-to-Allv operation to
send only those memory areas that contain actual data, because it does not allow for
this kind of complex memory layout. We could just send the entire buffer (including the
unused space), but devise a more elaborate approach to save the overhead caused by the
fragmentation.

As described in the beginning of this section, the most general form of the all-to-all com-
munication operation additionally allows the specification of a data type per bucket. We
know the bucket sizes as well as the sub-bucket sizes before starting the encoding process.
Furthermore, we know the actual sizes of the resulting Golomb codes once the encoding
process is finished. It is therefore possible to create bucket-specific MPI data types that
account for the individual sub-bucket structures of each bucket. Thus, we are again able
to distribute all batched insertion messages using one collective communication operation
and without having to transmit the data that resides in the unused memory locations.

Pipelined Compression

Both the naive and the maximum parallelism approach treat the actual message exchange
as a black box communication operation. This leads to an inherent sequentialization of the
encoding-transfer-decoding process: The communication operation is only initiated once
every bucket as been compressed and parallel decoding starts only after the collective
communication operation is finished.

In order to prevent this implicit sequentialization, the pipelining approach exploits the
fact that the all-to-all operation is implemented as p pairwise message exchanges. Instead
of building encoding and decoding around the communication operation, it integrates
compression directly into the 1-Factor algorithm described in Section 3.4.2: Messages are
put into the compression pipeline (see Figure 3.15) in the order determined by the 1-Factor
schedule.
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Figure 3.15: Three-stage compression pipeline. Encoding and decoding is done in par-
allel using ¢ threads as described in the maximum parallelism approach.

As soon as a message is compressed, the corresponding message exchange with the desti-
nation PE is initiated and the next bucket is fed into the encoding stage. Likewise parallel
decoding of a bucket is started as soon as a bucket leaves the transfer-stage (because it’s
pairwise communication operation is finished). By using this three-stage pipeline, this ap-
proach overlaps communication and computation as much as possible in order to further
reduce the overall running time.

Figure 3.16 summarizes the different parallelization approaches and illustrates the im-
plications on the total running time and the ability to efficiently exploit shared-memory
parallelism.
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time

(a) Sequential compression: Buckets are encoded and decoded sequentially.

time

(b) Naive parallelization: Buckets are encoded and decoded in parallel. If p > t this
approach efficiently exploits shared-memory parallelism.

time

(¢) Maximum parallelism: Assuming a cluster configuration with ¢ = 4 threads per node,
the naive approach would not be able to utilize all threads. By sub-dividing each bucket
into sub-buckets, the maximum parallelism approach is able to always use all available

system resources for encoding and decoding, even if p < t.

time

(d) Pipelined compression: Encoding, transfer and decoding of each bucket is interleaved
in a pipelined fashion to overlap computation and communication as much as possible.
This approach explicitly uses p pairwise message exchanges rather than one single collec-

tive communication operation.

Figure 3.16: Chronology of the different approaches to integrate compression into the
all-to-all communication operation assuming a system configuration with

p = 3 nodes and t = 4 threads per node.
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3.5.3 Experimental Evaluation

We implemented all three approaches using Intel® Threading Building Blocks (Intel®
TBB) 4.1 as well as OpenMP 3.1 for shared-memory parallelization. Since the TBB-based
implementations consistently performed better, this section does not present any OpenMP-
based results. In order to provide comparability to the results of the previous sections,
we again use the benchmarks described in Section 3.4.1 to evaluate the performance of
the three approaches experimentally. In the following, we refer to the implementation of
the naive parallelization approach as naive, of the maximum parallelization approach as
max-par, and of the pipeline approach as pipe.

Figure 3.17 shows the results (averaged over 50 iterations) for a fixed input size of 1024 MB
per node and an increasing number of nodes. As predicted in the previous subsection,
naive is not able to exploit potential parallelism as long as p < t = 16. However, as soon
as the number of nodes participating in the communication operation is greater than the
number of threads per node, naive shows better overall performance than max-par.

While the encoding- and decoding-performance of both approaches is comparable, the
actual communication time of max-par is consistently higher than that of naive. This
difference can be explained with the increased complexity of the send buffer’s memory lay-
out: In naive it is sufficient to use an All-to-Allv operation and standard MPI data types,
because memory fragmentation can be addressed by adapting the send displacements. The
max-par algorithm however needs to create a specific MPI data type for each bucket in
order to be able to distribute the Golomb codes using one All-to-Allw operation.

The performance of the pipelined approach is not as good as anticipated theoretically. This
can be explained by some implementation details: In order to achieve true overlapping of
communication and computation, it is not sufficient to rely on non-blocking communica-
tion operations like MPI_Isend and MPI_Irecv. A first implementation of pipe that solely
used p non-blocking communication operations did not perform any better than max-par.
The reason for this is that according to the MPI standard [34], the usage of a non-blocking
communication operation does not necessarily imply asynchronous execution of compu-
tation and communication. Thus MPI libraries do not have to account for asynchronous
progress in order to be standard-compliant. The current version 1.6.4 of OpenMPI, for
example, does not support this feature (called “progress threads”)?. Instead, the actual
communication is performed in the subsequent MPI_Test or MPI_Wait calls [25, 67].

In order to be able to explicitly overlap encoding and decoding with the distribution of
Golomb codes, we use a manual progression technique [25]: A special progression task is
spawned at the beginning of the encoding process. On execution, it issues the MPI_Irecv
calls in 1-Factor order and then repeatedly calls MPI_Waitsome to drive message pro-
gression and to check for completion. As soon as one or more transfers completed, the
corresponding messages are decoded in parallel.

By sacrificing one thread for this task, it is possible to overlap compression and computa-
tion to a certain degree as can be seen in Figure 3.17. For p > 16 pipe performs better
than both other parallel approaches and the uncompressed message transfer.

Figure 3.18 compares the throughput of our parallel Golomb compression implementations
with the throughput of sending uncompressed data. For a sufficiently large number of PEs
(p > 16), the pipelined compression algorithm outperforms its competitors. For p = 64
PEs, it achieves a throughput of more than 2.5 GB/s. Considering that the network of
our cluster provides a theoretical point-to-point bandwidth of 4 GB/s, we conclude that
for a reasonable amount of nodes, compression is still effective in reducing the overall

3http://www.open-mpi.org/community/lists/users/2012/06/19526.php
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Figure 3.17: Running time comparison: sending uncompressed and Golomb com-
pressed data. Compression is performed using the three parallelization
approaches. Employing parallel compression reduces the overall commu-
nication time even on a high-performance interconnect.
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Figure 3.18: Throughput of our parallel Golomb compression approaches compared
to sending uncompressed data using our 1-Factor implementation. For
a sufficiently large number of nodes, all compressed communication op-
erations outperform the uncompressed 1-Factor distribution.

3.6 Engineering Collision Detection

The dSBF-filtering algorithm as described in Section 3.1 consists of a local preprocessing
step that creates the batched insertion messages, a distribution step that communicates
these messages to their corresponding destinations and a collision detection step that
identifies dSBF positions that would be set to 1 multiple times if the filter was actually
materialized on each PE. Engineering a shared-memory parallel implementation of this
step is the subject of this section.

Each received and decompressed batched insertion message consists of a sorted sequence
of hash values. A parallel multiway-merging algorithm can be employed to identify hashes
that occur multiple times. The identified duplicate hash values have to be signaled back
to their corresponding source PEs. This can be done sending each source PE a dedicated
response bit-vector of size n, where n is the number of hash values contained in the batched
insertion message. A one-bit indicates that the hash occurred multiple times. A zero-bit
represents hash values that occurred only once during the merging phase.

Section 3.6.1 introduces an implementation that builds upon the parallel multiway-merging
algorithm [53] provided by the GNU C++ library. Section 3.6.2 then details an ad-
vanced parallel collision detection algorithm that reuses the key components of the parallel
multiway-merger and that is specifically tailored to our problem setting.

Since both algorithms are tightly coupled to our distributed duplicate removal algorithm,
we defer their experimental evaluation to Section 4.3.

3.6.1 Library-based Multiway-Merging

The pseudo code of our library-based multiway-merging collision detection approach is
shown in Algorithm 7. Assume p received batched insertion messages and ¢ threads that
should perform the merging operation in parallel. To be able to set the bits in the bit-
vector responses during the parallel merging operation, it is necessary to know the source
of each hash value along with the corresponding position in the batched insertion message.
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Algorithm 7 Multiway-merging collision detection

procedure DETECTHASHCOLLISIONS(received dSBF insertion messages)
parallel foreach hash € receivedMessage VPE do
mergeTuples <— mergeTuples U {Source PE, Index, Hash}
end parallel foreach
foreach i € [0,t) do
foreach message € receivedMessages do
threadLocal BitVector]i] <— threadLocal BitVector[i] U BitVector(|message|)
end for
end for
PARALLELMULTIWAY MERGE(mergeTuples, CollisionComparator)
parallel foreach i € [0,p) do

filter ResponseMessageli] < \/ threadLocal BitV ector][i]
thread.
end parallel foreach e

end procedure

Algorithm 8 Multiway-merging Comparator

procedure COLLISIONCOMPARATOR(M ergeTuple a, MergeTuple b)
if a.hash == b.hash then
threadLocal BitVector[threadl D][a.Source PE][a.Index] = 1
threadLocal BitV ector[threadl D][b.Source PE][b.Index] = 1
end if
return a.Hash < b.Hash
end procedure

Unfortunately, it is not possible to pass this information directly into the parallel multiway-
merging algorithm, as the only way to influence the merging process is the use of a custom
comparator function. Because the parallel multiway-merging algorithm operates on copies
of the input elements, it is not possible to infer either source PE or index from within the
comparator.

The first step of our algorithm is therefore to create an augmented input sequence in
parallel. Each hash value is augmented with the ID of the source PE and the index within
the corresponding message. Using these triples in the comparator shown in Algorithm 8,
it is possible to directly set the corresponding response bits in case two hash values are
equal. Note that we do not set the bits directly in the response bit-vectors, since current
bit-vector implementations like boost: :dynamic_bitset can not handle concurrent writes
to arbitrary bit positions. In order to avoid costly fine-grained synchronization operations,
each thread has its own copy of the response bit-vectors. The final response messages are
created after the merging operation by OR-ing the thread-specific bit-vectors for each
message.

3.6.2 Parallel Tournament Tree Collision Detection

Using the parallel multiway-merging algorithm as a black box operation leads to significant
administrative overhead, because it is necessary to augment the input sequences with meta
data and provide thread-specific result data structures in order to compensate for the
limitations of the library interface. In order to bypass these limitations, the tournament
tree collision detection algorithm reuses the key components of the multiway-merging
algorithm to create an implementation that is specifically tailored to our problem, i.e.,
detecting hash collisions and directly setting the corresponding response bits in parallel.
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Figure 3.19: Parallel Tournament Tree Collision Detection assuming p = 4 received
batched insertion messages and ¢ = 4 threads to perform the collision
detection in parallel. Each thread merges one partition and sets the
corresponding bits in the response bit-vector in case of a collision.

Our approach is depicted in Figure 3.19. We reuse the multisequence partitioning imple-
mentation [53] to partition the input sequences such that they can be merged in parallel
using ¢ threads. The actual collision detection on each of these partitions is then performed
as follows: Each thread manages a tournament tree data structure as a p-way merger. We
again reuse the corresponding highly-tuned library implementation [52]. As we are not
interested in the overall results of the merging process, i.e., the completely merged se-
quence of all received hash values, we do not materialize this output sequence. Instead,
each thread only keeps track of two hash values: The current minimum and the previous
minimum. Whenever these two hashes are equal, the thread sets the corresponding bits
in the response bit-vectors.

Bit-vector data structures use integer data types as the underlying storage format for their
bits. By carefully aligning the partition boundaries to the size of these data types, we can
limit parallel random access to the bit-vector such that each integer is only accessed by
one thread. This allows us to directly work on the response bit-vectors in parallel instead
of having to create thread-specific temporary data structures.

By explicitly managing the merging process rather than relying on a black-box operation,
we are able to use the information that is already inherent in the structure of the input
sequences, i.e., the source PE of each hash value and the current index within the respective
batched insertion message. Therefore, it is not necessary to store this information along
with each hash value.

The tournament tree-based collision detection algorithm thus completely eliminates the
additional administrative overhead of the approach that just reused the parallel multiway-
merging algorithm.
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4. Evaluation

It is the goal of this thesis to complement the theoretical analysis of Sanders et al. [48]
with an experimental evaluation that analyzes the practical performance of the single-pass
and two-pass dSBF-based duplicate removal algorithms. We therefore provide a detailed
comparison of the running times of both implementations and the competitor that is best
suited for our test setup, which will be introduced in Section 4.1.

The benefits of filtering distinct elements decrease as the total number of duplicates in-
creases. Thus, the algorithm is expected to excel in situations where the input dataset
is duplicate-free or only contains relatively few duplicates. By varying the number of
duplicates, we determine the tipping point up to which dSFB-based filtering using our
implementations is considered beneficial.

Finally, in order to evaluate the communication efficiency of our implementations, we
analyze the total amount of data that is transferred over the network during the duplicate
removal process.

4.1 Test Setup

We use the following test setup for all experiments presented in this section:

Our input relation consists of 227 records per node and hence scales linearly with the num-
ber of nodes. The records have a fixed size of 104 Byte. Thus, the dataset of each PE
resembles a database table of 13 GB in size. Since we are interested in the distributed
duplicate removal problem, we generate these input records such that no intra-node dupli-
cates exist, i.e., all duplicates are distributed over the nodes. We therefore omit an initial
duplicate removal phase that would otherwise be necessary.

In order to identify the tipping point up to which dSBF-filtering is beneficial, we control
the total number of duplicates using the duplication factor a.. Let n = 227 x p be the total
number of input records of all p PEs participating in the duplicate removal operation.
Then the input data is generated such that it contains an duplicates and (1 — «)n unique
records.

In the remainder of this chapter, we refer to the dSBF-based duplicate removal algorithm
that uses a single filtering pass as 1dSBF, while the algorithm that uses two filtering passes
is referred to as 2dSBF. The overall communication volume of both algorithms depends
on the optimal choice of the false positive rate f of the employed distributed single shot
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Figure 4.1: Communication time of the Repartitioning algorithm using our 1-Factor
implementation as well as the OpenMPTI’s default algorithm. The input
relation did not contain any duplicates, i.e., « = 0.

Bloom filter. We choose f according to the theoretical analysis of Sanders et al. [48],
i.e., f = Yun(2) for 1dSBF and f; = 1/in(2)in(up) +0.746 and fo = 1/uin(2) for 2dSBF, where
u denotes the size of an input record in bits and p is the number of PEs. In all our
experiments the records have a fixed size of 104 Byte, therefore u = 832 bits.

We test our implementations on the same distributed memory cluster system using the
same compiler and compile flags as described in Section 3.2. However, we had to refrain
from using our self-compiled version of OpenMPI 1.6.4 with multithreading support, since
it turned out to be instable when used in the cluster environment. We therefore use the
library provided by the cluster system for all following experiments. The system currently
provides OpenMPI version 1.6.3 compiled without multithreading support.

All reported timing values are averages of the elapsed wall-clock time of otherwise un-
loaded nodes. For each experiment, we average all timing values over all PEs and over 25
successive iterations.

4.2 Choosing the Competitor

As shown by our review of related work in Section 2.1, the hash-based Repartitioning
algorithm is deemed to be the best-suited algorithm for datasets that do not contain
any intra-node duplicates, because it avoids the (in this case unnecessary) local duplicate
removal phase and achieves good load balancing by distributing work evenly over the PEs.
We therefore choose this algorithm to serve as the competitor to our dSBF-based duplicate
removal algorithm and provide a tuned reference implementation. The implementation is
referred to as RePart throughout this chapter.

In the Repartitioning algorithm, each PE hashes its input records into p messages, dis-
tributes these messages to the p PEs participating in the distributed duplicate removal
operation, and executes a single-system duplicate removal algorithm on the received mes-
sages.

We parallelized the hash-partitioning of the input tuples using OpenMP. As our analysis
in Section 3.4 showed, the choice of an appropriate collective communication operation is
crucial - especially in the case where huge amounts of data are to be transferred over the
network. Because the input relation of our test setup is considerably larger than the data
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we transferred in the experiments presented in Section 3.4, we confirmed our observations
regarding the performance issues of OpenMPI’s default algorithm. The results are shown
in Figure 4.1 and validate the findings of our microbenchmarks. We therefore used the
1-Factor implementation to distribute input records in all experiments presented in this
chapter.

The final duplicate removal on the received input tuples can be performed by one of the
sequential /single-system algorithms described in Section 2.1. Our implementation uses the
traditional sort+scan approach. The sorting phase is parallelized using the parallel version
of std::sort provided by the GNU C++ library. A sequential scan then identifies any
duplicates. We also experimented with approaches based on hash tables. However, none
of these approaches was able to outperform the parallel sort and successive scan approach.

4.3 Implementation Choices

The dSBF-based duplicate removal algorithm executes the Repartitioning algorithm on
all tuples that passed the filtering phase. We therefore settle the implementation choices
regarding the communication of the input tuples and the final duplicate removal phase as
described in the previous section. The filtering phase, however, offers additional potential
for optimization as detailed in Sections 3.3 through 3.6.

The impact of each of our engineering efforts is depicted in Figure 4.2, which shows the
normalized running time of the 1dSBF algorithm executed on 64 PEs and a duplicate-free
dataset. Other configurations as well as the 2dSBF algorithm yield similar results and are
therefore omitted. For each implementation choice, the left bar shows the total running
time of the algorithm when all optimizations are switched on. The right bar shows the
running time for the same configuration except that the optimization in question is turned
off.

Using our parallel radix sort implementation reduces the running time of the sorting phase
by a factor of 1.6 compared to the comparison-based parallel multiway-merging algorithm.
This is consistent with the results in Section 3.3. The input of both algorithms consists
of (key,value) pairs, where the key corresponds to the hash value produced by hashing
the corresponding input tuple with index value. Based on our test setup and the optimal
false positive rate, 43 bits are necessary to cover the range of hash values (i.e., dSBF bit
positions). Thus, the parallel radix sort performs 6 passes over the data.

Transferring the batched insertion messages of the dSBF-filtering phase in Golomb-
compressed format results in a ~ 40% decrease in the corresponding communication time.
This confirms our assumption that compression is worthwhile even on systems that employ
high-performance interconnects. When compared to the gains of compression reported in
Section 3.5, this decrease in communication time seems to be less than expected. The
reasons for this behavior are twofold: As the OpenMPI library provided by our cluster
system does not offer multithreading support, we were not able to use our highly-tuned
pipelined compression algorithm. Instead, all experiments reported in this chapter use the
naive algorithm. Furthermore, the sizes of the batched insertion messages are on the lower
spectrum of the message sizes evaluated in Section 3.5. We therefore expect the benefits
of compression to further increase with increasing size of the input relation.

Tournament tree-based collision detection turns out to be the most successful optimiza-
tion, reducing the running time of the collision detection phase by a factor of more than 4
when compared to the library-based multiway-merging collision detection algorithm. This
significant decrease can be attributed to the complete elimination of administrative over-
head that was necessary when reusing the parallel multiway-merging routine, even though
these administrative tasks were performed in parallel.
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Figure 4.2: Impact of our engineering efforts on the total running time of the 1dSBF
algorithm, executed on 64 PEs and a dataset that does not contain any
duplicates. For each implementation choice, the left bar shows the total
running time with all optimizations turned on. The right bar shows the
same configuration except that the optimization in question is turned off.

Based on this analysis, all following experiments use the parallel radix sort implementation
in the sorting phase, Golomb compressed communication to distribute the batched dSBF
insertion messages, and the tournament tree-based collision detection algorithm.

4.4 Experimental Results

The total running times of our dSBF-based filtering algorithms and the Repartitioning
algorithm are shown in Figures 4.3a and 4.3b. The results confirm the practicability of the
dSBF-based duplicate removal algorithms, as both 1dSBF and 2dSBF outperform RePart.
For an increasing number of nodes, the running time of our algorithms remains constant,
while the running time of our competitor slightly increases. As can be seen in Figure 4.3b
our algorithms are faster than the traditional hash-based algorithm up to the point where
the dataset consists of 50% duplicate records. Thus, dSBF-based duplicate removal is
beneficial even in cases where the input dataset contains a significant amount of duplicates.
The two-pass filtering algorithm is slightly slower than its single-pass counterpart except
for datasets with more than 10% duplicates.

In order to verify that the performance benefits of our dSBF-based duplicate removal
algorithms can be attributed to their communication efficiency and to provide further
insights into the differences of 1dSBF and 2dSBF, we analyze the different phases of all our
implementations in more detail.

As can be seen in Figure 4.4, the total running time of both dSBF-based algorithms
is significantly smaller than the time it takes RePart to communicate the duplicate-free
input dataset. This performance advantage is independent of any potential optimizations
applied to the computation phases of the Repartitioning algorithm and confirms that
communication efficiency is crucial for the overall performance of distributed duplicate
removal algorithms.
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Figure 4.3: Total running time of the repartitioning algorithm and the dSBF-based fil-

tering algorithms. Our dSBF-based implementations outperform RePart
for datasets with less then 50% duplicates.
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Figure 4.4: Breakdown of the running time of the different phases for a duplicate-free

dataset. The total running times of 1dSBF and 2dSBF are significantly
smaller than the time it takes RePart to communicate the input data.
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Figure 4.5: Breakdown of the running time of the different phases for a dataset with an
increasing number of duplicates and p = 64 nodes. Both implementations
offer potential for optimization in order to change the tipping point in
favor of our dSBF-based algorithms for a = 0.5.

The dSBF-based algorithms fall back to the Repartitioning algorithm on all records that
could not be identified as distinct. As can be seen in Figure 4.5, this post-processing phase
(. partitioning, B distribute tuples, H duplicate detection) starts to dominate the overall
running time for datasets that contain more than 10% duplicates.

A detailed look at Figures 4.4 and 4.5 reveals potential for further optimizations of our
implementations. While the running time of the partitioning phase of 1dSBF and 2dSBF re-
mains unnoticeable for duplicate-free datasets, it significantly increases with an increasing
number of duplicates. Both dSBF-variants post process the tuples that pass the filtering
phase. Thus, one would expect a modest increase in the running times of the phases cor-
responding to the Repartitioning algorithm. While this is true for the distribution of
the input tuples and the final duplicate detection phase, the partitioning phase exhibits
unexpectedly longer running times - even longer that the corresponding phase of RePart.
This is surprising, as 1dSBF and 2dSBF partition only those elements that passed the fil-
tering phase, while RePart always partitions the entire input dataset. Furthermore, the
running time of 2dSBF currently is negatively influenced by a preparation phase for the
second filtering pass.

Both of these shortcomings can be traced back to a particular implementation detail: The
partitioning phase, as well as the 2nd pass preparation phase, operates on the bit-vector
responses of the dSBF. Each 1-bit in the responses indicates that the hash value in the
respective batched insertion message produced a hash collision. 1dSBF therefore hash-
partitions the input tuples corresponding to these hash values (. partitioning). 2dSBF
uses these tuples as input for the second filtering pass (. prepare 2nd filtering pass).
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To find all 1-bits in the dSBF responses it is therefore necessary to iterate over the bits
of the bit-vectors. In our current implementation, we use the boost: :dynamic_bitset!
implementation to represent these bit-vectors, which proved superior to alternative bit-
vector implementations [43]. While iterating over these bitsets is cheap in case the bit-
vector response is sparse (i.e., the dSBF reported only a few hash collisions), this operation
becomes a bottleneck as the number of 1-bits in the dSBF responses increases. This,
however, is exactly the case for an increasing number of duplicates and additionally slows
down the 2dSBF implementation, because the two-pass algorithm chooses a high false
positive rate f for the first filtering pass, which leads to an increasing number of hash
collisions that are reported back by the distributed single shot Bloom filter.

We therefore believe that by optimizing our implementation further, we can eliminate
these bottlenecks and thus further reduce the running times of our dSBF-based duplicate
removal algorithms on datasets that contain up to 50% duplicates. The optimizations
might even change the tipping point, at which RePart is more beneficial than either 1dSBF
or 2dSBF, in favor of our dSBF-based duplicate removal algorithms.

In our current implementation, 2dSBF is slightly faster for datasets that contain more
than 10% duplicates. Note, however, that this is only the case because of the previ-
ously described shortcomings of our implementations. If these overheads were eliminated
completely, the two-pass variant would always be slightly slower than its single-pass coun-
terpart. This result stands in contrast with the theoretical analysis of Sanders et al. [48]
that assumes the two-pass pass algorithm to be faster, because it minimizes the overall
communication volume even further than 1dSBF. This reduction in communication volume
comes at the cost of a second dSBF-preprocessing phase, in which all remaining input
records that passed the first filter have to be hashed, sorted, and compressed again. The
slight decrease in communication time, however, is not able to offset the additional com-
putation costs that come with a second filtering pass - at least on systems that employ a
high performance interconnect like our compute cluster.
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Figure 4.6: Analysis of the overall communication volume. The total communica-
tion volume of the dSBF-based duplicate removal algorithms is more than
one order of magnitude smaller than that of RePart for a duplicate-free
dataset. The benefits of two-pass filtering become negligible as the number
of duplicate records approaches 10%.

1http: //www.boost.org/doc/libs/1_52_0/1ibs/dynamic_bitset/dynamic_bitset.html
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The overall communication volume of our dSBF-based algorithms and that of the Reparti-
tioning algorithm is shown in Figure 4.6. For duplicate free datasets, the communication
volume of 1dSBF and 2dSBF is up to two orders of magnitude smaller than that of RePart.
As can be seen in Table 4.1, the dSBF-filtering phase is able to identify almost all elements
as distinct and thus only few input elements (i.e., the false positives) have to be distributed
in the post-processing phase.

With an increasing number of duplicates it is inevitable that the communication volume
increases, because all duplicates have to be transferred at least once. With increasing «,
the communication volume caused by the filtering phase therefore gets dominated by the
communication volume caused by the distribution of the input tuples. Nevertheless, the
filtering phase still reduces the overall communication volume significantly.

As can be seen in Table 4.2 the second filtering pass becomes more expensive, as the total
number of duplicates increases. In case of 50% duplicates, the communication volume
caused by the dSBF-preprocessing phase is even larger than that of 1dSBF. The second
filtering pass operates on all tuples that could not be identified as distinct in the first pass.
Thus, with an increasing number of duplicates, more and more tuples pass the first filter
and therefore increase the communication volume of the second filtering pass. In case the
dataset is known to contain a significant number of duplicates, 1dSBF therefore can be
considered a better choice than 2dSBF.

P | Algorithm | dSBF-filtering [GB] | Tuple distribution [GB] | Total [GB]
RePart 0 208 208
16 1dSBF 3.68 0.34 4.02
2dSBF 2.18 | 0.46 0.04 2.68
RePart 0 312 312
24 1dSBF 5.8 0.52 6.37
2dSBF 3.42 | 0.72 0.07 4.21
RePart 0 416 416
32 1dSBF 8.08 0.7 8.78
2dSBF 4.98 | 1.04 0.09 6.12
RePart 0 598 2998
46 1dSBF 12.08 1.02 13.1
2dSBF 7.74 | 1.39 0.12 9.25
RePart 0 832 832
64 1dSBF 17.38 1.42 18.8
2dSBF 11.3 ] 2.01 0.16 13.47

Table 4.1: Communication volume of our dSBF-based duplicate removal algorithms
and the repartitioning algorithm. dSBF-filtering contains the data of the
batched insertion messages and the corresponding collision indicator re-
sponses. For 1dSBF and 2dSBF tuple distribution also contains the data of
the removal requests. For 2dSBF the first number corresponds to the first
filtering pass and the second number to the second filtering pass.
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o ‘ Algorithm ‘ dSBF-filtering [GB] ‘ Tuple distribution [GB] ‘ Total [GB] ‘
x+ | RePart | 0 \ 832 | 832 |
0.0 1dSBF 17.38 1.42 18.8
’ 2dSBF 11.3 ] 2.01 0.16 13.47
0.001 1dSBF 17.38 2.25 19.64
2dSBF 11.3 | 2.03 1 14.33
0.01 1dSBF 17.38 9.73 27.12
2dSBF 11.3 | 2.16 8.49 21.95
01 1dSBF 17.38 84.52 101.9
’ 2dSBF 11.3 | 3.47 83.41 98.18
0.25 1dSBF 17.38 209.19 226.57
2dSBF 11.3 | 5.68 208.32 225.29
05 1dSBF 17.38 417.04 434.42
’ 2dSBF 11.3 | 9.46 416.53 437.29

Table 4.2: Communication volume of 1dSBF, 2dSBF, and RePart for an increasing du-
plication factor a. dSBF-filtering consists of the batched insertion messages
and the corresponding collision indicator responses. For 1dSBF and 2dSBF
tuple distribution also contains the data of the removal requests. For 2dSBF
the first number corresponds to the first filtering pass and the second num-
ber to the second filtering pass. While the dSBF-filtering communication
volume remains stable for 1dSBF, it consistently increases for 2dSBF, be-
cause more and more elements pass the first filter and therefore also have

to be considered in the second filtering pass.
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5. Conclusion

This thesis presented an implementation of the distributed duplicate removal algorithm
outlined in the theoretical analysis of Sanders et al. [48] and complemented this theoretical
analysis with an experimental evaluation. Our implementation is capable of both single-
pass and multi-pass filtering using the distributed single shot Bloom filter.

We demonstrated the practical performance impact of the communication efficiency
achieved by our algorithms by comparing both variants to a tuned implementation of
the best-suited traditional algorithm [49] in terms of overall running time and communi-
cation volume. Our implementations outperform the traditional algorithm up to the point
where the dataset consists of 50% duplicates. For duplicate-free datasets and those that
contain less than 10% duplicates, the communication volume of our implementations is
more than one order of magnitude smaller than that of the competitor, which always dis-
tributes the entire dataset. As the dSBF-based algorithms cannot avoid to transmit each
duplicate record at least once, the communication volume increases with the total number
of duplicates. Nevertheless, the distributed single shot Bloom filter still minimizes the
amount of data that actually has to be transferred, because it is able to indentify almost
all distinct elements.

Our experiments were performed on a distributed memory cluster system that employed
a high-performance interconnect. As the experimental results clearly demonstrate the
benefits of communication efficient duplicate removal on such a system, we expect the
gains of our dSBF-based filtering approach to become even larger on systems with less
sophisticated network infrastructures.

Two side results of our engineering efforts are of independent interest. Motivated by
the analysis of the default all-to-all communication algorithm provided by the OpenMPI
message-passing library, we presented an implementation of the 1-Factor algorithm [47]
that can be used as a drop-in replacement. It outperforms its library counterpart especially
for a large number of nodes and large message sizes. Furthermore, we implemented a
parallel radix sort based on the concepts of Wassenberg and Sanders [64] to exploit the
fact that we deal with (random) integer keys in the dSBF-preprocessing phase.

Our current implementation still offers potential for further optimizations. The distributed
single shot Bloom filter uses bit-vectors as responses to batched insertion messages. Using
boost: :dynamic_bitset as implementation for these bit-vectors turned out to introduce
a bottleneck when processing datasets with an increasing amount of duplicates and fur-
thermore negatively affected the performance of the two-pass variant. By eliminating this
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bottleneck, we expect to be able to change the tipping point, at which the dSBF-based
duplicate removal algorithm is slower than the traditional algorithm, in favor of our im-
plementation.

Finally, Sanders et al. [48] propose additional tuning measures that have not been consid-
ered in the course of this thesis. This includes the usage of a parallel bucket sort to sort the
hash values in the preprocessing phase and the usage of a hash-based collision detection
algorithm to avoid the factor log p work overhead that comes with our approaches based
on multiway-merging.
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