
Bachelor’s Thesis

A Compact Cache-Efficient Function Store
with Constant Evaluation Time

Wei Zhou

Submission Date: 31 October 2013

Supervisors: Prof. Dr. rer. nat. Peter Sanders
Dip.-Inf. Robert Schulze

Dipl.-Inform., Ingo Müller, M.Sc.

Department of Informatics
Karlsruhe Institute of Technology

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen Stellen
als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technologie zur
Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, 31. Oktober 2013

Wei Zhou

Abstract
A new data structure to store a set of key-value mappings for finite static key sets
is presented. The data structure, which is called Cache-Efficient Function Stores
(CEFS), can be built in linear expected time and supports evaluation for a key within
worst-case constant time. Furthermore, (i) the building process can be parallelized
to achieve massive speed-up over known methods; (ii) an evaluation needs less than
two cache misses in average case for many applications, improving upon all known
methods. The data structure is also compact, needing only O pnq bits extra space to
be stored. The data structure is flexible in that there are many parameters that can
be configured in order to fit in specific applications. The time and space properties
for different parameters can be predicted to great precision in advance with formulae
developed in the thesis. It is also possible to automate the selection of parameters.
Experiments have shown the efficiency of the new data structure and confirmed the
theoretical analysis.

Acknowledgments

The author would like to thank Prof. Peter Sanders at the Karlsruhe Institute of Technology,
from whom the primary idea of the data structure originates, as well as Ingo Müller from the
Karlsruhe Institute of Technology and Robert Schulze from SAP AG for their kind guidance
and all the valuable discussions.

Contents

1 Introduction 1
1.1 The Problem . 1
1.2 Known Methods . 2
1.3 Contribution of the Thesis . 3
1.4 Outline of the Thesis . 3

2 The New Approach 4
2.1 The Cache-Efficient Function Stores (CEFS) . 4
2.2 Retrieving a Value from a CEFS . 5
2.3 Building a CEFS . 6

3 Implementation Details 8
3.1 Choosing Hash Functions . 8
3.2 Signature Encoding . 8

3.2.1 Bit-Vector Encoding . 9
3.2.2 Fixed-Length Encoding . 9
3.2.3 An Optimal Encoding Scheme . 9

3.3 Cache Awareness . 10
3.4 Choosing Parameters . 10
3.5 Parallelization . 11

4 Analysis 12
4.1 Falling Proportion . 12
4.2 Time Properties . 15

4.2.1 Building a CEFS . 16
4.2.2 Querying a Key . 17

4.3 Space Properties . 18
4.3.1 Number of Buckets . 18
4.3.2 Total Size . 18

5 Experimental Results 21
5.1 Benchmark Configuration . 21
5.2 Benchmark Results . 22

5.2.1 Space Overhead . 23
5.2.2 Construction . 23
5.2.3 Evaluation . 24

6 Conclusion 28
6.1 Summary . 28
6.2 Open Problems for Future Research . 28

References 30

Appendices 32

Appendix A An Optimal Signature Encoding Scheme 32
A.1 The Scheme . 32

i

A.2 The Algorithm . 33
A.2.1 Encoding . 33
A.2.2 Decoding . 33

List of Figures
1 Schematic Diagram of a CEFS . 5
2 Tendency of p Values as n Increases . 16
3 Comparison Between Poisson and Binomial Distribution 17
4 Pareto-optimal Parameters in Time-Space Trade-Off 20
5 Comparison – Space Overhead . 23
6 Comparison – Build Time . 24
7 Comparison – Cache behavior (INT) . 25
8 Comparison – Cache behavior (NGRAMS) . 26
9 Comparison – Evaluation Time . 27

List of Tables
1 Algorithms Used in the Comparison . 22
A.1 Sample encoding . 33

List of Algorithms
1 The Evaluation Algorithm . 6
2 The Building Algorithm . 7

ii

List of Notations

ra..bs The set of all integers in the closed interval ra, bs, i.e. tx P Z | a ď x ď bu.

Aris The i-th element of sequence A. A can also be any multiset, in which case
Aris means the i-th element in a fixed permutation of all elements in A.
i P r0..|A| ´ 1s.

Ara..bs An array or a sequence with indices from a to b or the sub-array of A
consisting of the elements Aras, Ara` 1s, . . . , Arbs, depending on the
context.

txu The biggest integer that is smaller than or equal to x.

rxs The smallest integer that is larger than or equal to x.

Pr rAs The probability that event A occurs.

Pr rA | Bs The probability that event A occurs under the condition that B occurs.

E rXs The expected value of the random variable X.

p
n
r
q The binomial coefficient, which is the number of ways to choose an

r-element subset from a set of n distinguishable elements.

Poispλq The Poisson distribution with parameter λ. The probability mass function is
PrpX “ kq “ λke´λ

k! .

Bpn, pq The binomial distribution with parameter n and p. The probability mass
function is PrpX “ kq “ pn

k
qpkp1´ pqn´k.

n! The factorial of n, defined as n! :“
śn

i“1 i.

t
n
r
u
2

The 2-associated Stirling numbers of the second kind, which count the ways
to partition a set of n labeled objects into r unlabeled boxes such that every
box contains at least two objects [1, 2, 3].

a | b “a divides b”, which means there exists an integer q ‰ 0 such that b “ aq.

#x Reads “the number of x”, which is the number of object x in the context.

List of Variables and Constants

n The number of key-value pairs.

S The set of keys. The i-th key is denoted as Sris, 0 ď i ď n´ 1.

V The set of values. Sris corresponds to Vris, 0 ď i ď n´ 1.

iii

a The bucket size, i.e. the number of slots for values in a bucket.

b The ratio of the number of elements to that of buckets. Given a fixed b, the
number of buckets is then defined as tn

b
u.

m The number of buckets (in a level), defined as m :“ tn
b

u.

k The number of signature bits.

d The upper bound of the signatures, defined as 2k. All signatures fall into
r0..d´ 1s.

r The number of value bits per element.

h The hash function (of a level) used to assign a bucket id to each key. The
range will be r0..m´ 1s.

g The signature function (of a level) with range r0..d´ 1s.

W The cache line size in bytes.

t The number of non-PHF levels in the data structure.

c The number of possible cache misses per query at the last level (PHF level).

Glossary

ADT Abstract data type.

BBST Balanced binary search tree. Well-known data structure used to
implement dynamic dictionaries.

CEFS Cache-Efficient Function Store. The main contribution of the
present thesis.

PHF Perfect hash function. They are hash functions that do not cause
any collisions..

BPZ Algorithm A family of perfect hash functions proposed in [4].

CHD Algorithm A family of perfect hash functions proposed in [5].

CHM Algorithm A family of perfect hash functions proposed in [6]. In the present
thesis the algorithm is used as a function store.

CMPH C Minimal Perfect Hashing Library. A library to generate and to
work with very efficient minimal perfect hash functions [7].

Intel PCM Intel® Performance Counter Monitor [8], a set of programs to
measure the CPU utilization of applications.

OpenMP Open Multi-Processing, an API supporting multi-platform
shared-memory parallel programming in C/C++ and Fortran.

iv

1 Introduction

1 Introduction

1.1 The Problem

Dictionaries are a kind of abstract data type (ADT) which handle key-value mappings. They
support the following operations:

• Inserting a new key-value mapping into the dictionary;
• Removing a mapping from the dictionary. A mapping is specified by its key. The

caller should be notified if no mapping for that key exists;
• Retrieving the value for a given key. The caller should be notified if no mapping

for that key exists.

Dictionaries count as one of the most-used data structures. For example, an address book is a
dictionary: the keys are names of the contacts, the value for a key consists of the phone number,
the e-mail address, etc. of the contact. The aforementioned operations correspond to adding or
removing a contact, or finding out the phone number or e-mail address of a contact. Balanced
binary search trees (BBSTs) and hash tables are among the most well-known and most used
implementations of dictionaries in the practice [9].

There exist many practical applications in which insertions and deletions never occur or are very
rare, i.e. the key-value pairs are all given in advance. Examples of such applications include
real dictionaries, which are usually revised at most once or twice a year. In such cases, the
only operation that needs to be efficiently supported is the retrieval of values. We call such an
ADT static dictionary. The original dictionaries supporting insertions and deletions are called
dynamic accordingly. In the static case there are simpler algorithms and data structures. For
example, the key-value pairs can be sorted by the key and stored in an array, allowing to answer
queries with binary search. In this case, BBSTs are not that attractive any more because they
are usually outperformed by binary searches due to large constant factors hidden in the big-oh
notation [9].

Yet in many applications, the ability to detect invalid queries can also be dropped, e.g. when
it is known in advance that the key being searched for is always in the data structure and we
just want to get its value. An example would be the real-world dictionaries mentioned above.
Dictionaries are made to be as extensive as possible. So it is to expect that every word we
look for will be found. Another example of such applications are indices for reverse look-ups in
database systems, that is, to find the row number of a given value in a table of unique values.
In such applications, the queried values are often known to exist in the table.

The last scenario is the central problem we would like to tackle in the present thesis. The data
structure in question can be formalized as the following definition.

Definition 1.1 (Function store). Given a set of n unique keys Sris from a universe U, each
having a corresponding r-bit value Vris, i P r0..n´ 1s, a function store is an abstract data type
which supports the operation of retrieving the corresponding value for a key from S. The return
value for a key not from S is unspecified1. In other words, a function store represents a static
dictionary without the ability to detect invalid queries.

A function store is also known as a static support lookup table in the literature [10]. The problem
of implementing a function store was known as the Retrieval Problem [11]. The name “function

1“Unspecified” means the function either reports that the key does not belong to the set or it returns any valid
value, though that value may not correspond to the key.

1

1.2 Known Methods

store” has been chosen because it sounds less technical without being ambiguous.

Note that the definition of function store implies that all keys and values are given beforehand,
and insertion and deletion need not be supported, just like with static dictionaries. The
connection between dictionaries, static dictionaries and function stores is the following:

Dictionaries No update of any kind−−−−−−−−−−−−−−−−−Ñ
All data are given beforehand

Static Dictionaries Only valid queries−−−−−−−−−−Ñ Function Stores.

The most natural criteria for a good function store are short evaluation times and small space
consumption. We therefore seek for an implementation of function store that is both fast and
compact in terms of space usage.

1.2 Known Methods

Because function stores are constrained dictionaries, all implementation of dictionaries are
automatically also function stores. However, since function stores give up much flexibility, we
expect better performance from tailored implementations.

BBSTs and binary searches both answer queries within O plognq comparisons, which is too
costly for large n and long keys. Naive hash tables use more than n buckets only to achieve
expected constant time queries with no worst-case guarantee [9]. They all have to store the keys
along with the values, which could take much space when the keys are long.

There are variants of hash tables that offer worst-case constant time queries. One of the most
popular ones is the Cuckoo Hashing proposed in [12] and its variants, d-ary Cuckoo Hashing [13]
and Blocked Cuckoo Hashing [14]. The key idea is to use an array of buckets, each having some
constant number of slots (“blocked”), and each key can be in any of d possible buckets (“d-ary”)
instead of just one, calculated by d hash functions. In that way every query can be answered
by checking at most d buckets, offering constant time guarantee. However, they also have to
store the keys with them, and in the worst case they have to inspect d possibly not very small
buckets.

Another family of competitive solutions are perfect hash functions (PHFs). A hash function
f is said to be perfect with respect to a key set S if f maps keys in S to distinct integers in
r0..m´ 1s for some m ě n. A perfect hash function is minimal if m “ n. Perfect hash functions
have been an active research area in the last two decades and many methods to generate them
efficiently have been developed. The current state-of-the-art known to the author are the CHD
Algorithm [5] and the BPZ Algorithm [4]. They can generate minimal perfect hash functions in
expected O pnq time, and only Θ pnq bits are needed to describe such a function. Each function
evaluation can be done in worst-case constant time. One of the best things about such perfect
hash functions is that they do not have to store keys themselves. For keys not from S, they
usually return an arbitrary integer.

Perfect hash functions offer a simple implementation of function stores: just generate a perfect
hash function and use the function values as the array index into an array of all values. Such an
implementation is fast enough for many applications, but not for all if the description of the
PHF does not fit into cache. The evaluation using the BPZ Algorithm induces three or four
possible cache misses depending on an internal parameter, because the algorithm inspects two or
three locations in a big array to calculate an index, and then extracts the value from the value
array at the calculated index. The CHD Algorithm also needs no less than two cache misses.

Yet another family of function stores exist. The basic idea is to assign k positions of anm-element

2

1.3 Contribution of the Thesis

array with r-bit elements to each key, and the value of the key is calculated as the bit-wise
exclusive-or of those k elements. Therefore no access to another value array is needed, saving
one cache miss per query. The idea has already been utilized in [6] two decades ago to construct
perfect hash functions, though it has not been explicitly mentioned that the same idea can be
exploited to implement function stores rather than just perfect hash functions. In the recent
years, the same idea has been utilized in various ways in e.g. [11, 10] for function stores. we call
this family of function stores the CHM Algorithm. They offer evaluation within k cache misses.
k “ 2 and k “ 3 are typical values.

The focus of all those known methods is space-efficiency. Their space usage is known to be
optimal or almost optimal (see e.g. [11]). The goal of the present thesis is to reduce the number
of possible cache misses for the evaluation without sacrificing the space-efficiency too much.

1.3 Contribution of the Thesis

The main contribution of the present thesis is a new family of function stores, the Cache-Efficient
Function Store (CEFSs), that offer very fast evaluations while being very compact in terms
of memory consumption. The aforementioned perfect hash functions serve as an important
component of the new function stores.

More precisely, the data structure can be built in expected O pnq time and supports worst-case
constant time evaluation. The expected number of cache misses per query can be reduced to
well under two under certain realistic conditions stated in Section 3.3. Besides the required
memory for storing all values, only O pnq bits extra space is needed. The keys themselves are
not stored.

The data structure is especially suitable for small values, e.g. machine-size words or smaller, in
which case the number of cache misses of under two can be reached. For large variable-length
values, the function store (with machine-size values) can be used as a perfect hash function,
which can in turn implement general function stores, just like for other perfect hash functions
described in Section 1.2. In this case, the CEFS is also competitive, because the number of cache
misses introduced by fetching the value cannot be avoided in general. The nearest competitor
with respect to evaluation times is the CHM Algorithm with k “ 2 which, however, has a high
space overhead.

The data structure is easily configurable. The performance for different parameter settings can
be precisely predicted so that choosing the best parameters suitable to the application is no
hard work. It is even possible to (at least semi-)automate the parameter selection.

1.4 Outline of the Thesis

Section 2 introduces the new method, which we call the Cache-Efficient Function Store (CEFSs).
Section 3 discusses some details in the implementation of CEFS. The building procedure and the
query operation will be explained in detail there. The mathematical analysis of CEFS follows in
Section 4.

The new data structure is benchmarked and compared to the known methods in Section 5.

Section 6 concludes the thesis and discusses some possible extensions.

3

2 The New Approach

2 The New Approach

In this section, the new family of function stores, namely the Cache-Efficient Function Stores
(CEFS), will be presented. The first subsection describes the structure of CEFS, and the
following ones explain how to retrieve values from a CEFS and how the structure itself is built.
Note that this section gives a high-level overview of the data structure and the algorithms. Some
implementation details are given in Section 3.

2.1 The Cache-Efficient Function Stores (CEFS)

A CEFS is a conceptually recursive data structure consisting of multiple levels. Figure 1 gives
an overview of the structure.

A CEFS contains t` 1 levels, with the last level being any perfect-hash-function-based function
store, which serves as a “fallback”. Each level except for the last one consists of an array of
m buckets. Every bucket can hold up to a values and contains the encoded signatures of the
keys whose values are stored in the bucket. As will see shortly, different levels normally have
different and decreasing m’s.

The rationale for the introduction of such buckets is that we hope to fit each bucket into a cache
line. As we will see in Section 4, the expected number of bucket accesses for each query can
be bounded well under two, therefore each query can be answered with expected less than two
cache misses.

Signatures are introduced to eliminate the need to store the keys themselves. They serve to
identify keys in each bucket. Since the keys are not stored as mentioned earlier, some sort of
information on the keys must be recorded somewhere or exploited somehow in order to select the
correct value when searching for a key. The encoded signature holds that piece of information.
Since there is e than one slot in the bucket, the encoding also contains information of which slot
each key belongs to. Details are given in Section 3.2.

Every level also holds two hash functions, which are chosen independently of the ones in other
levels. One, called h, is used to distribute the keys into buckets and the other (by assigning an
integer from r0..m´ 1s to every key), g, generates k-bit-long signatures for the keys.

The following parameters are needed to build a CEFS:

a: positive integer, the number of slots in every bucket.
b: positive number, used to determine the number of buckets m in a level. m is

defined by m :“
X

n
b

\

where n is the number of elements for the current level at
the beginning.

k: positive integer, the number of signature bits for each key. We also define d :“ 2k.
Thus d is the upper bound of all signatures and gpxq returns an integer in r0..d´1s.

More precisely, for a sequence of n keys Sr0..n´1s, the first level of CEFS has m :“
X

n
b

\

buckets2,
numbered 0 to m´ 1, each of which contains slots for up to a values, as well as the encoded
signatures of their corresponding keys. Hash function h maps every key to an integral bucket id
in r0..m´ 1s, g generates a k-bit signature for each key. If a key x is stored in this level, then
it must be in bucket number hpxq. It may happen, however, that some keys cannot be stored

2For the sake of conciseness we may leave out floor/ceiling/rounding operators on fractions as long as they do
not affect the asymptotic behavior of the data structure. The default behavior in this thesis is flooring.

4

2.2 Retrieving a Value from a CEFS

...

Level 1

...

Level 2

¨ ¨ ¨ ...

Level t

PHF-based
function store

PHF

m buckets

encoded
signatures v0 v1 ¨ ¨ ¨ va´1

a slots

A Bucket

Figure 1: Schematic diagram of a CEFS. It contains t` 1 levels, with the last
level being any perfect-hash-function-based function store. Each level
except for the last one consists of an array of m buckets. Each bucket
can hold up to a values and contains the encoded signatures of the keys
whose values are stored in the bucket. Note that different levels normally
have different and decreasing m’s.

in the first level due to signature collision or capacity limitation in their buckets. Those keys
therefore fall into the next level, which has the same shape but different number of buckets,
except for the last level which is a PHF-based function store.

To make a clear image of how a CEFS works, we first take a look at how queries are done. The
building procedure will be described thereafter.

2.2 Retrieving a Value from a CEFS

The evaluation of a key, i.e. retrieval of its value, is quite simple on a CEFS. Assume we want
to find the value for a key x P S. We search each level in order, with the following procedure.

In each (non-PHF) level, we first calculate hpxq, which is the bucket id of x if it was stored in
this level. Then we check whether its signature gpxq appears in the (encoded) signatures of that
bucket. If it does, we simply return the value stored in the corresponding slot in the bucket,
according to the positional information encoded in the signatures. Otherwise we conclude that
the key was not stored in this level. We proceed to the next one.

The value of the key will eventually be found if it was stored in the CEFS. For keys that were
not stored in the CEFS, the algorithm above would generally return an arbitrary value. Invalid
searches may only be detected in rare cases where the perfect hash function in the last level
supports that to some extent, and the signature for that key does not appear in any buckets it
may belong to in all non-PHF levels.

It is worth emphasizing that only one bucket is accessed in every non-PHF level. As we will see

5

2.3 Building a CEFS

in Section 3.3, the number of cache misses per query can be characterized by the number of
bucket accesses for many parameter combinations.

Algorithm 1 gives an overview of the evaluation process.

Algorithm 1: The Evaluation Algorithm
Input: CEFS f and key P U
Output: The corresponding value of key if key P S; otherwise unspecified.

1 begin
2 for i “ 1 to t do // For each level i...
3 bidÐ hipkeyq // The bucket id
4 sigÐ gipkeyq // The signature
5 if sig is in Bucket bid then
6 return the corresponding value in the bucket
7 end
8 end
9 if f has a PHF-level phffs then

10 valÐ the corresponding value of key in phffs // Can be arbitrary!
11 return val
12 else
13 return Not found!
14 end
15 end

2.3 Building a CEFS

We first choose parameters for the CEFS according to the memory constraints, timing goal, etc.
Section 3 contains more details on the choice of parameters.

As the evaluation procedure indicates, we build a CEFS level by level. For each level, we
select (independently of other levels) two hash functions h and g for generating bucket ids and
signatures. All keys are divided into the m buckets according to the h values. For each bucket
we have to ensure that two requirements are met:

(i) No two elements in the bucket have the same signature. This makes sure that the
evaluation algorithm works.

(ii) The capacity of the bucket is not exceeded, i.e. no more than a elements are in
the bucket.

Therefore we do the following, in that order, for each bucket:

Collision Resolution. If two or more elements share the same signature, none of them
will be stored in the current level. We remove all of them from the bucket and
mark them for the next levels.

Capacity Compliance. If there are more than a elements remaining in the bucket,
choose any a of them for the current level, and mark the others for the next levels.

Note the above order is important to ensure the evaluation algorithm works correctly.

6

2.3 Building a CEFS

After these steps, we generate the signature encoding for the keys that are not marked in each
bucket and store the encoding in that bucket. Values of the keys that stay in the buckets are
also stored in the bucket, positioned according to the encoding.

If there are elements marked for the next level, we continue to build that level. Otherwise we
are done. If, however, we reach a certain depth or the number of remaining elements is under a
certain threshold, we build a PHF-based function store for those elements instead of building
the next level as normal.

The building algorithm is given as Algorithm 2. Note the sorting procedure involved in the
pseudo-code can be done in linear time since bucket ids are integers in r0..m´ 1s.

Algorithm 2: The Building Algorithm
Input: Sr0..n´ 1s, Vr0..n´ 1s and parameters pb, k, a, tq
Output: A CEFS f

1 begin
2 lvÐ 0 // The current number of levels
3 curSÐ S, curV Ð V, curNÐ n

4 while curN ą 0 do // There are unsettled elements
5 lvÐ lv` 1

6 if lv ą t or curN ă threshold then // Reached threshold for PHF-level
7 phffsÐ PHF-based function store for pcurS, curVq
8 Store phffs in f
9 return f

10 else // Building next CEFS level
11 Choose two random hash functions hlv and glv
12 Calculate the bucket id hlvpkeyq for all key P curS
13 Sort all keys according to hlvpkeyq // Distributing keys into buckets
14 foreach Bucket Ai, i P r0..m´ 1s do
15 Calculate the signatures glvpkeyq, key P Ai
16 if signature s occurs more than once then // Collision Resolution
17 foreach x P Ai with glvpxq “ s do
18 Mark x for the next level
19 end
20 end
21 if |Ai| ą a then // Capacity Compliance
22 Choose a keys and mark others for the next level
23 end
24 Store the signatures and values of the unmarked keys in this level.
25 end

26 curSÐ the marked keys
27 curNÐ |curS|

28 Set curV accordingly
29 end
30 end
31 end

7

3 Implementation Details

3 Implementation Details

In this section we discuss some details and options in implementing the CEFS.

3.1 Choosing Hash Functions

The CEFS uses hash functions internally. We assume in the theoretical analysis in Section 4 that
these are fully random. In practice, however, it appears to be enough to use a fast deterministic
heuristic hash function to achieve sufficiently good performance.

In the experiments, the author used a family of fast non-cryptographic hash functions proposed
by Jenkins [15], which we call the Jenkins Hash. It proves to be very suitable for CEFS in
that every hash function in the family needs only 4 bytes (which is the seed) to be represented
and the hash values are sufficiently well distributed [5, 16]. The former property makes the
“metadata” (consisting of information on every level, such as the number of buckets(m) in the
level, the hash functions for the level, pointer to the array of buckets of the level) as small as
possible, which in turn contributes to the cache-efficiency. The latter ensures that few or no
buckets are so full that too many elements fall into next levels.

With hash functions like the Jenkins Hash, we can simply choose some pseudo-random number
as the seed in each level in order to get a new hash function from the family that is pseudo-
independent of the ones in the former levels.

The full-randomness assumption can be justified with a “split-and-share” technique introduced
in [17], which can be applied to generate fully random hash functions on S with probability
1´ n´c for some c ą 0, at the cost of o pnq extra space.

Another problem concerning the hash functions is that we need two hash functions for each level
according to the description of the CEFS. But given the fact that many hash function return
sufficiently long values (e.g. 32, 64 or even 128 bits for the Jenkins Hash), it is unnecessary to
have two distinct hash functions for our purpose. We can just use a single hash function in
each level, using the higher and lower bits of the hash values for the signatures and bucket
ids, respectively. This way we make the metadata even smaller and save one hash function
evaluation per level for each query while having to pay little penalty in the quality of the
generated signatures and bucket ids .

3.2 Signature Encoding

For the sake of comprehensibility the details about the signature encoding were left out from
the description of CEFS. The signature encoding is in essence an abstract data type supporting
the following operations:

E “ buildpsigsq which builds the encoding E for a list sigs of at most a signatures.
The caller has to ensure a signature is not present twice.

pos “ findpE, sigq which tries to find the array index for signature sig in the encoded
signatures E. If sig does not appear in E, the caller should be notified (e.g. through
some sentinel return value like ´1).

8

3.2 Signature Encoding

Two simple and practical encoding schemes are presented in this section. Brief introduction to
an optimal scheme (assuming every bucket is independently considered) is also given. Details
are given in Appendix A.

3.2.1 Bit-Vector Encoding

In a bit-vector encoding, the list of (signature, value) pairs is assumed to be sorted by signature.
The (at most) a signatures in the bucket are represented by a bit vector of length d :“ 2k with
at most a 1’s in it. Values are stored in the first slots of the buckets. The two operations are
implemented as following:

buildpsigsq returns a bit vector Er0..d´ 1s of length d “ 2k. Erss “ 1 iff a signature s
is present, otherwise Erss “ 0.

findpE, sigq returns the number of ones in Er0..sig ´ 1s if Ersigs “ 1, otherwise it
returns ´1. Note this is correct only when the (signature, value) pairs was sorted
by the time of creation of E.

The total memory requirement of the encoding for a bucket is d “ 2k bits, independent of a. For
small d, e.g. d “ 64 (k “ 6), all signatures of a bucket can be encoded in a 64-bit integer. This
allows compact signature representation and fast find-operations by utilizing popcnt-instructions
(which counts the number of ones in a binary number) provided by many CPUs [18, 19].

3.2.2 Fixed-Length Encoding

Another equally simple encoding scheme is the fixed-length encoding. Each signature in the
bucket is represented by exactly k bits, and they are concatenated to form the encoded signatures
with a ¨ k bits. Note that a bucket can also hold less than a elements, which means we have to
be able to identify whether a slot contains a value for some key or is just garbage. We have at
least three ways to handle non-full buckets:

(i) Store the actual number of elements in the bucket. This needs about log2 a bits.
(ii) Assign some bucket-local sentinel signature for all the unoccupied value slots. This

sentinel signature is generated before the collision resolution, so that the sentinel
will not be taken as the signature of any actual element that could potentially be
stored in the bucket. The problem here is that it is not always possible to find
such a sentinel for each bucket due to overfull buckets.

(iii) We can also reserve a signature value, e.g. 0, as a global sentinel for the whole
CEFS, so that every valid signature is from r1..d´ 1s instead of r0..d´ 1s. This
does not impose much penalty in practice, but needs some minor modifications in
the analysis.

The building procedure is straightforward (except for finding a sentinel if the second approach
is used). Queries can be done by running through all signatures in the bucket and see whether
the signature being searched for is present and, if it is, in which position.

3.2.3 An Optimal Encoding Scheme

Assuming every bucket is independently processed, i.e. the list of all signatures in the level is
not considered as a whole (in which case the probabilistic distribution of possible signature lists

9

3.3 Cache Awareness

must be taken into account), it is possible to construct an “optimal” encoding scheme in the
sense that every possible signature list has a unique encoding, and every encoding represents a
signature list. That is to say, there exists a bijection between possible encodings and lists of
signatures. A possible such bijection is given in Appendix A.

The problem is that the decoding procedure takes much more, though constant, time than other
two encoding schemes. It is therefore not preferred for query-intensive applications.

3.3 Cache Awareness

Each evaluation in a CEFS accesses some buckets. The number of bucket accesses is bounded
to a constant, i.e. the depth of the whole data structure. It is shown in Section 4.2 that the
expected number of bucket accesses is even well under two for many parameter settings.

Under certain realistic assumptions, the phrase “cache misses” can be used as a synonym of
“bucket accesses”:

Assumption 1. Every bucket is small enough to be held in one cache line. Since each bucket
holds a values, values should not be too large. For large values, CEFS can be used as a perfect
hash function: it maps each key to the index of its value in the array of all values. In this case one
or multiple additional cache misses will be induced only to fetch the value from memory, which
is by intuition unavoidable. This assumption is true for many parameter combinations, CPU
architectures and scenarios, e.g. using bit-vector signature encoding explained in Section 3.2,
pa, k, rq “ p4, 4, 32q yields buckets of size 2k ` a ¨ r “ 24 ` 4 ˚ 32 “ 144 bit “ 18 byte which is
much smaller than a currently typical cache line size of 64 bytes [18, 20].

Assumption 2. Buckets are properly (cache-)aligned. This can be achieved easily in many
relatively low-level languages like C/C++ (see e.g. [21]). Note this could result in waste of
memory. Parameters should be chosen so that the cache line size is equal to or slightly bigger
than a multiple of the size of a bucket to make full use of each cache line.

Assumption 3. Metadata of the levels do not contribute to the number of cache misses.
Metadata are small for each level. 16 bytes is a typical size: 8 bytes for the pointer to the bucket
array; 4 bytes for the hash function of the level and 4 bytes for m for calculating bucket ids.
Since the number of levels is bounded to a small constant (e.g. 8), metadata of the whole data
structure are also of constant size and thus do not impose much penalty on the number of cache
misses. The same assumption is also made when inspecting the cache behavior of previously
known methods, therefore this does not damage the fairness of the comparison.

3.4 Choosing Parameters

There are at least three parameters to set in order to build a CEFS as stated in Section 2.3:

a: the capacity of each bucket.
b: used to determine the number of buckets m in a level (m :“

X

n
b

\

).
k: the number of signature bits.

These parameters determine the shape and thus the performance of a CEFS. Choosing them
wisely is crucial to fast CEFSs.

With the deduced results in Section 4, it is even possible to predict the final space consumption
quite precisely. Given the fact that the parameter space is not too large (except that b does not

10

3.5 Parallelization

have to be integral which is not that important since we can always choose the nearest integer),
we could just run through all combinations, filtering out the unacceptable ones due to cache,
time or space constraints and select the best one for our application according to certain metrics
or goals. This allows us to easily select the best parameters fitting a certain application and/or
performance goal, e.g. it is possible to select the setting “requiring the least number of cache
misses per query while constraining the space overhead to under 2 bytes”.

From this point of view, the CEFS is actually a quite flexible and “adaptive” data structure in
that the best parameters can actually be chosen automatically.

3.5 Parallelization

The evaluation algorithm does not need to be parallelized, because the number of levels is
usually a small constant (e.g. 8).

On the other hand, it is foreseeable that the CPU-intensive building procedure may take some
time for exceedingly large sets, even though the algorithm is already very fast. Thus it makes
sense to parallelize the building procedure to achieve better CPU utilization and performance.

Fortunately the bottlenecks of the building algorithm can be parallelized:

Distributing Keys into Buckets. One way to implement this is to simply sort the
keys by their bucket id. In this way all elements in the same bucket will be
together. Parallel sorting is a well researched area, many algorithms exist, and
some compilers even offer a very simple switch to parallel algorithms, see e.g. [22].

Collision Resolution and Capacity Compliance. This is actually done for each bucket
independently of other buckets and thus naturally parallelizable.

Having parallelized the bottlenecks, the building algorithm runs very fast, faster than any known
methods by magnitudes, see experimental results in Section 5.

11

4 Analysis

4 Analysis

We have already seen the conceptual simplicity of the CEFS. It is natural to ask about its
performance. In this section we analyze the data structure carefully and thereby show the
performance guarantee offered by such a conceptually simple data structure.

We make the following assumptions for the analysis to work:

(i) The underlying hash functions distribute all keys uniformly at random. As such,
each key can be assigned to any of the m buckets with probability 1

m
and each

key can get any of the 2k signatures with probability 1
2k
.

(ii) n is sufficiently large, at least n ą a. This is merely a simplifying assumption
unless noted otherwise.

4.1 Falling Proportion

In order to analyze the performance of the whole data structure, it is helpful to be able to
calculate the expected number of elements that do not fit in the current level (thus falling into
next levels due to collision with other elements or saturation of the assigned bucket). We define
the expected proportion of these elements to be ppn,m, a, dq and call it the falling proportion.

Let Nipn,m, a, dq
3 be the number of elements assigned to Bucket i, and nipn,m, a, dq be

the number of those staying there in the end. The falling proportion being sought for is
then n´Er

řm´1
i“0 nis
n

“ 1 ´
Er

řm´1
i“0 nis
n

. Because of the linearity of expectation and the uniform
randomness of the hash functions, this can be further reduced:

ppn,m, a, dq “ 1´
E
”

řm´1

i“0 ni

ı

n
“ 1´

řm´1

i“0 E rnis
n

“ 1´
m ¨ E rnts

n
“ 1´

E rnts
b

where t can be any fixed integer in r0..m´ 1s in the last expression. Expanding E rnts yields

E rnts “
n
ÿ

s“1

s ¨ Pr rnt “ ss (Definition of expectation)

“

n
ÿ

s“1

s

n
ÿ

r“1

Pr rNt “ rs ¨ Pr rnt “ s | Nt “ rs (Law of Total Probability)

“

n
ÿ

r“1

n
ÿ

s“1

s ¨ Pr rNt “ rs ¨ Pr rnt “ s | Nt “ rs (Swapping sums)

The last expression is a more natural way of thinking: we first distribute r keys into the bucket
in question (with probability Pr rNt “ rs), and then calculate the probability that exactly s of
them stay there (Pr rnt “ s | Nt “ rs). It remains to calculate the two probabilities involved in
the expression.

3Parameters are left out when it is clear from the context what values they take. Furthermore, in a function,
constants and variables which are merely simple combinations of the parameters could be used. For example,
b could appear in a function which takes parameters n and m.

12

4.1 Falling Proportion

4.1.1 Pr rNt “ rs

Given n elements, each assigned to one of m buckets uniformly at random, we are to calculate
the probability that a specific bucket t has exactly r elements in it.

This problem is quite easy because Nt „ Bpn, 1
m
q, since every element can either be in Bucket t

(with probability 1
m
) or not be there (with probability 1´ 1

m
). This results in p1pn,m, rq

p1pn,m, rq :“ Pr rNt “ rs :“
ˆ

n

r

˙ˆ

1

m

˙rˆ

1´
1

m

˙n´r

4.1.2 Pr rnt “ s | Nt “ rs

After distributing elements into buckets, we take care of collisions and the capacity concerns as
described in Section 2.3.

The problem here can be formulated as following: Given r elements in a bucket (of size a) and
d possible signatures, we would like to find the probability that exactly s (s ď a) of them stay
there in the end after considering collisions and the capacity of the bucket.

The problem is naturally divided into two parts according to whether the capacity of the bucket
is exceeded after resolving collisions (by assigning all colliding elements into next levels), where
exceeding the capacity results in nt “ a. Therefore we distinguish the cases s ă a and s “ a.

4.1.2.1 s ă a. We first tackle the case s ă a where no second step is performed. The
probability needed is simply the number of ways to assign signatures to elements so that exactly
s occupy their signatures exclusively divided by the number of all possible assignments. Since
the latter is obviously dr, the only problem is to calculate the former.

We divide the d signatures into three (possibly empty) parts:

(i) s signatures which are assigned to exactly one element
(ii) u unoccupied signatures
(iii) d´ s´ u signatures which are all assigned to two or more elements.

The calculation can therefore be naturally divided into three stages.

For the first stage, there are clearly pd
s
q possible choices of those s signatures. For every possible

selection of signatures, we assign them to a subset of s elements. For every choice of s signatures
and s elements, there are s! possible concrete assignment. The multiplication principle of
combinatorics results in a total of pd

s
qp
r
s
qs! possibilities for the first stage.

The second stage is easy, just choose u from the remaining d´ s signatures. The possibilities
are counted by pd´s

u
q.

The last stage is a bit trickier: we would like to assign the remaining d´ s´ u signatures to
r ´ s elements such that every signature is used no less than twice. One could make use of
the so-called 2-associated Stirling numbers of the second kind where tn

k
u
2
counts the ways to

partition a set of n labeled objects into k unlabeled boxes such that every box contains at least
two objects. There is (to the best of the author’s knowledge) unfortunately no known closed
formula to calculate tn

k
u
2
(although an explicit formula does exist, see e.g. [2, 3]), but they

13

4.1 Falling Proportion

satisfy the following recurrence relationship [1, 2, 3]:

"

n

k

*

2

“

$

’

&

’

%

0 if n ă 2k or n ă 0 or k ă 0
1 if n “ k “ 0
ktn´1

k
u
2
` pn´ 1qtn´2

k´1
u
2

else

With help of those numbers, regarding the signatures as the boxes and the elements as the
objects, there are t r´s

d´s´u
u
2
possibilities. Note that the 2-associated Stirling numbers distribute

objects into unlabeled boxes, which means we need to multiply the result by pd ´ s ´ uq! to
take every permutation of the signatures into account. The total count for this stage is then
t
r´s

d´s´u
u
2
pd´ s´ uq!.

Relating all three stages with the multiplication principle and summing up the result for every
u, the final result for the case s ă a is calculated by the function fpd, r, sq:

fpd, r, sq :“

d´s
ř

u“0

Stage 1
hkkkkkikkkkkj

ˆ

d

s

˙ˆ

r

s

˙

s! ¨

Stage 2
hkkkikkkj

ˆ

d´ s

u

˙

¨

Stage 3
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

"

r´ s

d´ s´ u

*

2

pd´ s´ uq!

dr

4.1.2.2 s “ a. The formula above only grasps a portion of the truth for the case s “ a, since
s “ a could also possibly be resulted from exceeding the capacity after collision resolution. This
case is complementary to the one above, which means the probability for s “ a is gpd, r, sq:

gpd, r, sq :“

Capacity reached
hkkkikkkj

fpd, r, aq`

Capacity exceeded
hkkkkkkkkkkkikkkkkkkkkkkj

˜

1´

a
ÿ

i“0

fpd, r, iq
¸

Combining both cases s ă a and s “ a gives the needed probability for the specific Bucket t
p2pd, r, sq:

p2pd, r, sq :“ Pr rnt “ s | Nt “ rs “
#

fpd, r, sq if s ă a
gpd, r, sq if s “ a

And finally the expected value being sought for:

E rnts “
n
ÿ

r“1

n
ÿ

s“1

s ¨ Pr rNt “ rs ¨ Pr rnt “ s | Nt “ rs

“

n
ÿ

r“1

n
ÿ

s“1

s ¨ p1pn,m, rq ¨ p2pd, r, sq

“

n
ÿ

r“1

p1pn,m, rq
n
ÿ

s“1

s ¨ p2pd, r, sq

“

n
ÿ

r“1

ˆ

n

r

˙ˆ

1

m

˙rˆ

1´
1

m

˙n´r

looooooooooooooomooooooooooooooon

p1pn,m,rq

¨

˜

a
ÿ

s“1

s ¨ fpd, r, sq ` a
˜

1´

a
ÿ

i“0

fpd, r, iq
¸¸

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

řn
s“1 s¨p2pd,r,sq

(4.1)

With E rnts at hand, the expected number of elements falling into the next levels (and thus
also that of those staying in the current level) and its proportion ppn,m, a, dq can be easily
calculated.

14

4.2 Time Properties

At this point, i.e. without having a closed formula for E rnts or for the falling proportion
ppn,m, a, dq, we would like to make the following conjecture, which would greatly simplify
further analysis of the performance:

Conjecture 4.1. For fixed parameters pa, d, bq satisfying b | n, the falling proportion ppn, n
b
, a, dq

converges against a real number 0 ă p ă 1 as nÑ8.

This conjecture is supported by various evidences in the practice. For example, Figure 2
gives an overview of how the p values converge as n increases for two sets of fixed pb, k, aq
parameters. Furthermore, comparing the measured proportion4 of elements falling into next
levels with n “ 10 000 000 to the computed values with n “ 500 for all combinations of
pb, k, aq P r2..16s ˆ r2..6s ˆ r2..16s, no difference larger than 0.017 has been observed. To gain
even more confidence, we could show the following theorem and find more evidence in its proof:

Theorem 4.2. For fixed parameters pa, d, bq satisfying b | n, the falling proportion ppn, n
b
, a, dq

converges against a real number p P r0, 1s as nÑ8.

Proof. Since p1pn,m, rq is actually the probability mass function of the binomial distribution
Bpn, 1

m
q and n ¨ 1

m
“ b is a constant, it is well known that Bpn, 1

m
q can be approximated using

the Poisson distribution Poispbq when n becomes large (see e.g. [23]), and thus

p1pn,m, rq nÑ8−−−Ñ br

r! ¨ e
´b.

Note the last expression is merely a function in r instead of in n and r.

Consider the sum Spnq achieved by replacing the p1pn,m, rq part with br

r! ¨ e
´b in the last sum

in Equation 4.1. Spnq is then the partial sum of a series with positive items and thus increasing.
Furthermore, Spnq is bounded by a, because the second part of the sum is by definition bounded
by a and the first part is a probability mass function (which sums to 1 as nÑ8). Thus Spnq
converges.

Since each term in Spnq is the limit of the corresponding term in E rnts, their quotient converges
against 1. Thus both series share the convergence according to a form of the Comparison Test
(see e.g. [24]). Therefore E rnts converges, so does ppn, n

b
, a, dq. The latter as a proportion is

naturally bounded in the interval r0, 1s.

However, the proof did not show that the limit p is not exactly 1. But it brings some confidence
that the limit is near that of Spnq. Because Spnq is increasing, the falling proportion will be
decreasing as n increases if we use the Poisson distribution instead of binomial distribution,
which means we can achieve an upper bound on the falling proportion, which is also useful in
practice. Figure 3 shows how the p values would look using Spnq comparing to using E rnts for
calculating the falling proportion.

Using 0 ă p ă 1 as a fixed parameter, many properties of the data structure can be deduced.
These are summarized in the following sub-sections.

4.2 Time Properties

Fast queries are the most important design goal of this data structure. The resulting data
structure is indeed fast: it allows worst-case constant time queries with minimal number of
cache misses when backed up with the optimizations described in Section 3.

4Up to the first three levels to eliminate the effect of “small” levels on the statistics.

15

4.2 Time Properties

0.28
0.282
0.284
0.286
0.288
0.29
0.292
0.294
0.296
0.298
0.3

0 100 200 300 400 500 600 700 800 900 1000

pp
n
,t
n b

u,
a
,2
k
q

n

Tendency of p Values as n Increases

pb “ 4, k “ 4, a “ 4q
pb “ 10, k “ 5, a “ 10q

Figure 2: The p values for n P r50..1000s, m “
X

n
b

\

with fixed parameters
pb, k, aq “ p4, 4, 4q and pb, k, aq “ p10, 5, 10q. There are multiple lines
for each configuration because the same number of buckets are used for
n P rtb..tb ` b ´ 1s, t “ 0, 1, . . ., with increasing p values. Therefore
those are in fact many increasing runs of length b. The p values converge
against about 0.294 and 0.286 respectively quite quickly as n increases.

4.2.1 Building a CEFS

The asymptotic time complexity of the building procedure is analyzed in this section. We show
a CEFS can be built in expected O pnq time.

The building procedure in each level involves distributing keys into buckets and processing each
bucket independently. Other parts of the building algorithm are obviously implementable in
linear time.

The distribution can be done by simply sorting the keys by their bucket ids. Since each bucket
id is within r0..m ´ 1s, the sorting can be done in linear time with a non-comparison-based
sorting algorithm like Counting Sort. Keys in every bucket can also be sorted by their signatures
by the way, forming a Radix Sort, in order to simplify the collision resolution and capacity
compliance procedure.

For each bucket, the collision resolution and capacity compliance can be done in time proportional
to the number of elements in that bucket just by running through all elements in the bucket
once, keeping record of the last seen signature.

Since we have a constant number of non-PHF levels, the total time spent here is O pnq in the
worst case. For the last PHF level, the expected construction time is linear when the BPZ
Algorithm or the CHD Algorithm is used.

Therefore the overall time complexity of building a CEFS is expected O pnq.

16

4.2 Time Properties

0.28
0.282
0.284
0.286
0.288
0.29
0.292
0.294
0.296
0.298
0.3

0 50 100 150 200 250

pp
n
,
n b
,a
,2
k
q

m

Comparison Between Poisson and Binomial Distribution

Poisson-pb “ 4, k “ 4, a “ 4q
Binomial-pb “ 4, k “ 4, a “ 4q
Poisson-pb “ 10, k “ 5, a “ 10q

Binomial-pb “ 10, k “ 5, a “ 10q

Figure 3: The p values for m P r10..250s, n “ mb with fixed parameters
pb, k, aq “ p4, 4, 4q and pb, k, aq “ p10, 5, 10q. We see that the p values
calculated using binomial distribution is less than using Poisson distri-
bution, but they go together very quickly. The graph for the Poisson
distribution even appears like a constant.

4.2.2 Querying a Key

Thanks to the perfect hash function in the last level, the query time is bounded to O p1q. So we
concentrate on a precise average-case analysis.

The expected depth of a query characterizes the expected number of bucket accesses and thus
the number of cache misses, as justified in Section 3.3. This can be calculated with the definition
of expected values:

E r#cache_missess “ E rdepthpkeyqs “
8
ÿ

i“1

i ¨ pi´1 ¨ p1´ pq “
1

1´ p

where the last step results from some standard manipulations of series (see e.g. [24]), recalling
that p is assumed to be within the open interval p0, 1q. Similar manipulations are also utilized
later in this section.

The expression above, however, assumes that the data structure is used for every level and this is
indeed beneficial over known methods5 in theory if p ă 1

2
, in which case E r#cache_missess ă 2.

If we utilize other function stores as fallback for Level t` 1, providing access with no more than
c cache misses, the number of cache misses for a query would not exceed t ` c in the worst
case. This setting guarantees constant worst-case query time both in theory and practice with

5Assuming two cache misses per query is achieved.

17

4.3 Space Properties

expectation (“cache misses – bounded”):

E r#cache_missesbs “

t
ÿ

i“1

i ¨ pi´1 ¨ p1´ pq ` pt ¨ pt` cq

“
1´ p1´ cp1´ pqqpt

1´ p

4.3 Space Properties

This subsection shows that the data structure is compact as well as fast.

It is in fact quite easy to see that the data structure takes O pnq space in the worst case if backed
up with perfect hash functions: we have constant number of levels, each needing O pnq space.

Besides the asymptotic complexity, we can even calculate the actual space usage on average in
great precision.

4.3.1 Number of Buckets

Since every bucket has a constant size, knowing the number of buckets in total is helpful to
estimate the space consumption of the whole data structure.

Assume n keys are given as input for a specific level6. There are m “ n
b
buckets in this level.

Noting that the number of input keys on the i-th level is npi´1, summing over all levels results
in:

E r#bucketss “
8
ÿ

i“1

npi´1

b
“

n

p1´ pqb

Note that this sum goes over all i. This holds under the assumption that all levels are non-PHF
ones. If we bound the number of non-PHF levels to no more than t, the expected number of
buckets is then

E r#bucketsbs “
t
ÿ

i“1

npi´1

b
“

n

p1´ pqb
p1´ ptq

4.3.2 Total Size

Assume each stored value has r bits and a signature encoding scheme using sig_sizepa, kq bits
for a bucket of size a is used. Knowing that there are #buckets buckets in total and each bucket
uses psig_sizepa, kq ` a ¨ rq bits, the total size of the whole data structure can be obtained:

E rtot_sizes “ E r#bucketss ¨ psig_sizepa, kq ` a ¨ rq

“
n

p1´ pqb
¨ psig_sizepa, kq ` a ¨ rq ` O p1q bit

For the two simplest signature encoding schemes bit-vector encoding and fixed-length encoding
described in detail in Section 3.2, the function sig_sizepa, kq for a bucket is simply 2k and a ¨ k
respectively. An optimal encoding scheme (see Appendix A) would take log2

řa

i“0 p
2k

i
q bits per

bucket.
6There may be fewer on this level in the end of the construction.

18

4.3 Space Properties

This formula for total size, however, is not of much practical value, because buckets should
always be aligned and padded to cache line, since we want to characterize cache misses with
bucket accesses. A formula that takes this into account is the following (tot_sizea for “total
size – aligned”):

E rtot_sizeas “ E r#bucketss ¨W ¨
1

t W
sig_sizepa,kq`a¨ru

“
n ¨W

p1´ pqb
¨

1

t W
sig_sizepa,kq`a¨ru

` O p1q bit

where W is the cache line size in bits. This formula holds because t W
sig_sizepa,kq`a¨ru is the

maximum number of buckets that fit into a cache line. That many buckets can therefore be
stored together and aligned to cache line boundary, taking W bits in total. For the common
special case that only one bucket can fit into a cache line, the formula reduces to

E rtot_size1s “ E r#bucketss ¨W “
n ¨W

p1´ pqb
` O p1q bit

Again, those formulae hold for unbounded CEFS. The corresponding bounded versions with
parameter t (t non-PHF levels) are then:

E rtot_sizebs “ E r#bucketsbs ¨ psig_sizepa, kq ` a ¨ rq ` phffs_sizepnpt, rq

“
np1´ ptq

p1´ pqb
¨ psig_sizepa, kq ` a ¨ rq ` phffs_sizepnpt, rq ` O p1q bit

E rtot_sizeabs “ E r#bucketsbs ¨W ¨
1

t W
sig_sizepa,kq`a¨ru

` phffs_sizepnpt, rq

“
np1´ ptq ¨W

p1´ pqb
¨

1

t W
sig_sizepa,kq`a¨ru

` phffs_sizepnpt, rq ` O p1q bit

E rtot_size1bs “ E r#bucketsbs ¨W ` phffs_sizepnpt, rq

“
np1´ ptq ¨W

p1´ pqb
` phffs_sizepnpt, rq ` O p1q bit

The function phffs_sizepn, rq gives the size of a PHF-based function store for n elements, each
having a value of r bits. For a typical implementation of the BPZ Algorithm, phffs_sizepn, rq “
p2` rq1.23n.

Finally, Figure 4 shows all Pareto-optimal parameter settings with respect to the expected
number of cache misses per query and the space overhead for some typical settings of pt, c, r,Wq.
As shown in the graphic, many parameter settings can offer excellent performance while taking
only a small space overhead.

19

4.3 Space Properties

0
1
2
3
4
5
6
7
8
9
10

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Sp
ac
e
O
ve
rh
ea
d
(b
yt
es
/e
le
m
en
t)

E r#cache_missesbs

Pareto-optimal Parameters in Time-Space Trade-Off

t “ 8, c “ 4, r “ 1B,W “ 64B
t “ 8, c “ 4, r “ 4B,W “ 64B
t “ 8, c “ 4, r “ 8B,W “ 64B
t “ 8, c “ 4, r “ 1B,W “ 32B
t “ 8, c “ 4, r “ 4B,W “ 32B
t “ 8, c “ 4, r “ 8B,W “ 32B

Figure 4: The Pareto-optimal parameter settings with respect to the expected
number of cache misses per query and the space overhead. Note the
values themselves do not count as overhead. t is the maximum number of
non-PHF levels, the last PHF-level answers queries within c cache misses.
W is the cache line size. As shown in the graphic, many parameter
settings can offer excellent performance while taking only a small space
overhead.

20

5 Experimental Results

5 Experimental Results

From the theoretic point of view, our design goal has been reached: we have a new implementation
of function stores that offers excellent balance in the time-space trade-off. However, the theory
has yet to be confirmed by experiments. In this section, we present experimental results that
demonstrate the time-space balance achieved by CEFS.

Experiments are conducted on an HP Z600 workstation with the following specifications:

OS: Ubuntu 12.04.3 LTS 64 bit.
CPU: 2x Intel® Xeon® Processor X5550 @ 2.66 GHz. Each socket has 4 cores and 8

threads with Hyper-Threading.
Cache Line Size: 64 bytes.
Cache Alignment: 64-byte boundary.
Cache Size: L2 = 256 KB/core; L3 = 8 MB/socket.
RAM: 24 GB.

All source codes are in C++ and are compiled using GNU C++ 4.8.1 with following relevant
flags and options:

-D_GLIBCXX_PARALLEL -O3 -m64 -msse4.2 -fopenmp -std=c++11 -march=native

The sorting in the building procedure has been parallelized with -D_GLIBCXX_PARALLEL, a
compiler flag offered by GCC that enables parallelism for many algorithms in the STL [22].
Note the parallel sorting is comparison-based, thus is no linear-time algorithm. It has been
chosen because of the simplicity to integrate into the test and it beats the (sequential) Counting
Sort by far. Other easily parallelizable parts are parallelized with OpenMP.

The number of cache misses is measured with Intel® Performance Counter Monitor (Intel PCM).
Cache misses on every core are summed up. This does not impose much inaccuracy since the
system is not performing other intensive tasks at the time of the benchmarking. On the contrary,
this offers the ability to measure cache misses for multithreaded programs.

5.1 Benchmark Configuration

The CEFS is benchmarked against other competitive implementations of function stores. These
include the following:

BPZ: an implementation of the BPZ Algorithm by the author.
CHM-2: an implementation of the CHM Algorithm by the author.
CHM-3: an implementation of the CHM Algorithm by the author.
CMPH-BPZ: an implementation of the BPZ Algorithm from the C Minimal Perfect

Hashing Library (CMPH) [7], which is maintained by some of the inventors of
these perfect hash functions.

CMPH-CHD-α: an implementation of the CHD Algorithm from the CMPH. α is the
load factor of the resulting PHF, affecting only the build time and space overhead.

Algorithm E r#cache_missess Space Overhead (byte)
CEFS-p13, 8, 32q 1.053 4.182 (r “ 8 bit)
CEFS-p31, 8, 32q 1.152 1.378 (r “ 8 bit)
CEFS-p58, 7, 48q 1.585 0.748 (r “ 8 bit)

21

5.2 Benchmark Results

CEFS-p7, 7, 12q 1.061 5.699 (r “ 32 bit)
CEFS-p13, 7, 12q 1.237 2.088 (r “ 32 bit)
CEFS-p19, 6, 14q 1.502 1.058 (r “ 32 bit)
CEFS-p4, 7, 6q 1.076 9.219 (r “ 64 bit)
CEFS-p7, 6, 7q 1.244 3.369 (r “ 64 bit)
CEFS-p10, 6, 7q 1.526 1.761 (r “ 64 bit)
BPZ 4 p0.23rn` 2.46nq{8

CHM-2 2 p1.09rnq{8

CHM-3 3 p0.23rnq{8

CMPH-BPZ 4 p0.23rn` 2.46nq8

CMPH-CHD-0.5 2 prn` 0.67nq{8

CMPH-CHD-0.99 2 p0.01rn` 2.08nq{8

Table 1: Algorithms used in the comparison and their properties.

Since in this thesis we are more interested in fast queries in the present thesis, the PHF-based
function stores are not implemented with minimal perfect hash functions, otherwise more cache
misses will be introduced due to accesses in additional rank tables.

Three different Pareto-optimal parameter settings are chosen for CEFS for every different value
size (1, 4 or 8 bytes). For every fixed r, the parameters are chosen in such a way that the
expected numbers of cache misses per query lie near 1.05, 1.20 and 1.50. We therefore have
3 ˆ 3 “ 9 CEFS instances. All instances have t “ 8 non-PHF levels at maximum and a last
PHF level implemented with the BPZ Algorithm, which can answer queries within c “ 4 cache
misses. The properties of the used algorithms are summarized in Table 1.

The following two datasets are used in the comparison:

INT. n “ 100 000 000 unique 32-bit integers are generated and used as the keys.
Values are random integers of size 1, 4 and 8 bytes.

NGRAMS. These are occurrence statistics on the n-grams (i.e. n consecutive words)
from Google Books[25], offered by Google. Specifically, 3-grams that start with
“na” is used. All entries for the same 3-gram (by years) are combined into a single
entry, the count itself serves as the corresponding value, taking the lower bits
for smaller values. The combined dataset is randomly permuted. It contains
n “ 21 381 162 items. The minimum, maximum and average lengths of the keys
are 6, 145 and 23.814, respectively.

The benchmarking procedure is simple: we generate or read the test dataset, construct the
various function stores, and query each key once sequentially7.

All measurements are calculated by taking the average over ten runs, excluding the minimum
and the maximum.

5.2 Benchmark Results

The results of the benchmark are presented in this sub-section. They are naturally divided into
three parts: the space overhead, the construction algorithm, and the evaluation procedure.

7Note that the keys are either random or are permuted randomly in advance.

22

5.2 Benchmark Results

5.2.1 Space Overhead

Figure 5 shows the space overhead of the data structures. The memory taken by the values
themselves is excluded.

0
1
2
3
4
5
6
7
8
9
10

CEFS-p13,8, 32q

CEFS-p31,8, 32q

CEFS-p58,7, 48q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p7,7, 12q

CEFS-p13,7, 12q

CEFS-p19,6, 14q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p4,7, 6q

CEFS-p7,6, 7q

CEFS-p10,6, 7q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

Sp
ac
e
O
ve
rh
ea
d
(B

yt
es

pe
r
El
em

en
t) Comparison of the Space Overhead

8-byte values4-byte values1-byte values

Figure 5: Comparison of the space overhead per element. Values themselves
don’t count as overhead.

We first note that the space usage of PHF-based function (function stores based on the BPZ
and CHD Algorithm) stores are linearly increasing as the number of value bits r increases. For
example, the CMPH-CHD-0.5 algorithm has 1 byte overhead for 1-byte values, and 4 bytes for
4-byte values. Generally, that is because PHF-based function stores have an extra value array
with a portion of wasted slots. The space usage of those PHFs themselves is independent of r,
and the number of wasted slots depends linearly on r. This observation is valid for all those
PHF-based function stores, including the apparent exception of CMPH-CHD-0.99: it wastes
only 1% of the slots. Therefore the slope of the linear dependence is low, but still linear.

Such a linear dependence is not apparent for CEFS because different parameters are chosen for
different r. But since the parameters are chosen in such a way that the expected number of
cache misses are at about the same level for different r, a similar tendency of space overhead as
r increases can still be observed.

As we can see, CEFS is not always as memory-efficient as other approaches, but there are
parameters with which the CEFS can compete with them in space usage while retaining fast
evaluations. This is also true for larger values.

5.2.2 Construction

The building times of various data structures are presented in Figure 6. The two bars for each
algorithm represent the results for the INT and NGRAMS data sets, respectively. The times

23

5.2 Benchmark Results

are divided by n in order to make the test results also for different datasets comparable.

0
500
1000
1500
2000
2500
3000
3500
4000
4500

CEFS-p13,8, 32q

CEFS-p31,8, 32q

CEFS-p58,7, 48q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p7,7, 12q

CEFS-p13,7, 12q

CEFS-p19,6, 14q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p4,7, 6q

CEFS-p7,6, 7q

CEFS-p10,6, 7q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

Bu
ild

T
im

e
n

(n
s)

Comparison of the Build Times

8-byte values4-byte values1-byte values

Figure 6: Comparison of building times. The left bar and right bar are running
times for INT and NGRAMS, respectively.

One of the attractive features of the CEFS is that the building procedure can be massively
parallelized, thus it can be built very efficiently. This feature is demonstrated in the figure.
Note how the efficiency of the building procedure of CEFS surpasses all other competitors by at
least a magnitude. The other algorithms don’t seem easily parallelizable. Even the sequential
implementation has been observed to run three times faster than the fastest (CMPH-CHD-0.5)
of the other algorithms.

The building times for INT are slightly higher than for NGRAMS for the most algorithms,
but the differences between two datasets are not large for most of the times, with the notable
exception of CMPH-CHD-0.99 for unknown reasons. The differences for BPZ, CHM-2 and
CHM-3 are expected, because a super-linear-time but parallelizable sorting algorithm is used
instead of a cache-inefficient linear-time algorithm.

In this perspective, the CEFS shows definite advantage over all other algorithms.

5.2.3 Evaluation

The efficiency of CEFS’s evaluation algorithm is also confirmed in the experiments.

We first take a look at the measured cache behaviors of the algorithms for INT and NGRAMS
in Figure 7 and Figure 8, respectively. Every algorithm in those graphs has at least two bars in
the histogram, the counts of L2 and L3 cache misses respectively. CEFS instances have two
more bars which represent the bucket access count and the expected number of cache misses
(both per query).

24

5.2 Benchmark Results

0

1

2

3

4

5

6

CEFS-p13,8, 32q

CEFS-p31,8, 32q

CEFS-p58,7, 48q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p7,7, 12q

CEFS-p13,7, 12q

CEFS-p19,6, 14q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p4,7, 6q

CEFS-p7,6, 7q

CEFS-p10,6, 7q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

C
ac
he

M
iss

es
pe

r
Q
ue

ry
Comparison of the Cache Behaviours (INT, SEQ)

8-byte values4-byte values1-byte values

Figure 7: Comparison of the cache behaviors using the INT dataset. The first
two bars for each algorithm represent the counts of L2 and L3 cache
misses, respectively. CEFS instances have two more bars, the bucket
access count and the expected number of cache misses.

For non-PHF-based algorithms, i.e. CEFS and the CHM Algorithm, the difference between the
counts of L2 and L3 cache misses is negligible for both datasets. That is because the memory
accesses in those algorithms are always carried out in huge arrays, therefore each memory access
introduces a cache miss, and each L2 cache miss is also an L3 cache miss, since the L3 cache is
still too small to hold any non-negligible portion of the huge arrays.

It is worth noting how the measured cache misses, the measured bucket access count and the
calculated expected number of cache misses for CEFS instances coincide almost perfectly8 at
1.05, 1.20 and 1.5 as expected. This justifies our design rationale: each bucket access is indeed
one cache miss. It further confirms the theoretical analysis in Section 4 and indicates that
we can use the developed formulae to precisely predict the performance of the algorithm for
different parameters, which makes automated parameter selection possible.

The situation is different for the PHF-based function stores. The perfect hash functions
themselves are usually very compact, therefore many memory accesses in the internal array of
the PHF can be cache hits. Only the accesses into the value array are unavoidably cache misses
(this is also why the cache misses of CHM-2 and CHM-3 Algorithms lie exactly on the line 2
and 3). This phenomenon is more apparent in the diagram for NGRAMS, which has about 20
million keys. This implies that most PHFs discussed here use only no more than 4 MB, and thus
fit theoretically into the L3 cache. The INT dataset has 100 million entries, therefore the PHFs
do not fit completely in the cache, but still a portion thereof is in the L3 cache, explaining the
difference in the numbers of L2 and L3 cache misses. But even in this case, the CEFS is still in

8There are slightly more L2 cache misses than other quantities for the NGRAMS dataset, because the keys
themselves are longer and also cause cache misses.

25

5.2 Benchmark Results

0

1

2

3

4

5

6

CEFS-p13,8, 32q

CEFS-p31,8, 32q

CEFS-p58,7, 48q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p7,7, 12q

CEFS-p13,7, 12q

CEFS-p19,6, 14q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p4,7, 6q

CEFS-p7,6, 7q

CEFS-p10,6, 7q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

C
ac
he

M
iss

es
pe

r
Q
ue

ry
Comparison of the Cache Behaviours (NGRAMS, SEQ)

8-byte values4-byte values1-byte values

Figure 8: Comparison of the cache behaviors using the NGRAMS dataset. The
first two bars for each algorithm represent the counts of L2 and L3 cache
misses, respectively. CEFS instances have two more bars, the bucket
access count and the expected number of cache misses.

advantage, since a trivial lower bound on the number of cache misses is 1 and CEFS approaches
this lower bound. This advantage becomes larger and larger as the number of elements increases
and when the data structure is cold.

We now turn to the actually measured time for evaluations in Figure 9. The two bars for each
algorithm represent times for INT and NGRAMS, respectively. The tendency shown in the
three sub-graphics are almost the same as in Figure 7 and Figure 8. This corresponds to our
expectation that the running time for the evaluation is dominated by the cache misses. Note
that although the numbers of L3 cache misses of PHF-based function stores in Figure 8 are
small (the CMPH-CHD-0.5 Algorithm even has almost as few L3 cache misses as CEFS), the
differences in the number of L2 cache misses also make a huge difference in the running time.
Therefore we should concentrate more on L2 instead of L3 cache misses if they differ when
making choices. For CEFS, however, the L2 and L3 cache misses are identical. The advantage
of CEFS is better seen for larger values. The closest competitor is the CHM-2, which guarantees
two cache misses in the worst case at the cost of high space overhead and long construction
time.

The running times for NGRAMS are slightly longer in Figure 9 for most algorithms because the
keys are longer. The reason for the abnormality of CHM-3 Algorithm for the INT dataset and
8-byte values remains unclear.

The figures on the query times and cache behaviors are important because they demonstrate how
the theory accords with the experiments. The coincidence of number of cache misses, bucket
accesses and the actual running time indicates that the theoretical analysis models the behavior
correctly and the calculation is quite accurate. They have thereby shown that CEFS is very

26

5.2 Benchmark Results

0

100

200

300

400

500

600

CEFS-p13,8, 32q

CEFS-p31,8, 32q

CEFS-p58,7, 48q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p7,7, 12q

CEFS-p13,7, 12q

CEFS-p19,6, 14q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

CEFS-p4,7, 6q

CEFS-p7,6, 7q

CEFS-p10,6, 7q

BPZ
CHM

-2

CHM
-3

CM
PH-BPZ

CM
PH-CHD-0.5

CM
PH-CHD-0.99

Q
ue
ry

T
im

e
n

(n
s)

Comparison of the Query Times

8-byte values4-byte values1-byte values

Figure 9: Comparison of evaluation times. The left bar and right bar are
running times for INT and NGRAMS, respectively.

efficient in practice as well as in theory.

27

6 Conclusion

6 Conclusion

6.1 Summary

In the present thesis a conceptually very simple yet very efficient implementation of function
stores has been proposed, i.e. the Cache-Efficient Function Stores (CEFS).

The data structure can be built in O pnq expected time for n elements. The building procedure
runs faster than any known methods and improves upon known methods by at least a magnitude
if the building algorithm is parallelized.

The evaluation takes worst-case constant time. If parameters are properly chosen and a value
itself is not too large, the expected number of cache misses per query can be made to just slightly
above one with small space overhead. The space requirement apart from the memory required
for the values themselves is small. The time and space properties for different parameters can
be precisely predicted with the developed formulae in Section 4 beforehand.

Experimental results have also demonstrated the efficiency of the new data structure with
significant improvement with respect to construction time and evaluation time over other known
methods.

6.2 Open Problems for Future Research

The CEFS, however, also has drawbacks and unsolved problems associated with it. This last
section names some of them. The list could serve as a brief list of possible directions for future
research.

Problem 1. Drawbacks caused by not storing keys.

The keys are not stored along with values, which saves much space and many comparisons.
However, there are things that can (possibly) only be solved with keys. For example listing all
(key, value) pairs is not possible in a CEFS. Another problem is that we cannot always identify
keys that were not present at creation of the CEFS. These problems do not seem resolvable
without explicitly storing the keys.

Problem 2. Is it possible to make CEFS dynamic?

The data structure is by definition static. No insertion or deletion is allowed. This is no big
problem for applications where such updates are rare, but inapplicable if they are not. Note,
however, that changing the value of a present key is easy in CEFS as long as the last PHF-level
supports that.

Problem 3. Can the falling proportion ppn,m, a, dq be calculated or approximated with simpler
expressions?

The formulae in Section 4 are exact. This is important in theory because we can precisely
predict the performance of the data structure without having to actually build it. However, it is
not that useful in practice due to its tediousness and high computational complexity.

Problem 4. Can CEFS be sped up for a specific distribution of queries given beforehand?

28

6.2 Open Problems for Future Research

In the analysis of CEFS (Section 4), the running time of queries are made independent of the
keys themselves due to the random selection of hash functions. The CEFS would offer even
better performance if it can smartly distribute all keys into levels according to their access
probabilities, i.e. frequently used keys are placed more shallowly.

In fact, this problem can already be partially solved. At the capacity compliance stage in
Section 2.3, we actually have certain degree of freedom at choosing elements that shall fall into
next levels. Choosing less frequently accessed ones would result in better performance. The
problem here is to precisely model the benefit of this strategy.

Problem 5. Does it make sense to have different parameters for different levels?

In the CEFS, all levels share the same set of parameters. This has the advantage that parameters
do not have to be stored in every level and that the calculation of overall performance involves
(almost) only the same falling proportion. But having different parameters according to the
number of elements in each level might offer better performance.

Problem 6. Can the same idea be applied to other data structures?

An essential idea in the CEFS is to use short signatures to deterministically and correctly
identify keys. Such an idea might also be applicable to other data structures like Cuckoo
Hashing [12, 14, 13] so that no keys have to be stored along with the values.

29

References

References

[1] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel
Publishing Company, 1974. (Pages iii, 14).

[2] F. T. Howard, “Associated Stirling numbers,” Fibonacci Quart., 1980. (Pages iii, 13, 14).

[3] OEIS Foundation Inc., “The On-Line Encyclopedia of Integer Sequences,” A008299, 2011,
triangle of associated Stirling numbers of second kind. (Pages iii, 13, 14).

[4] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple and space-efficient minimal perfect hash
functions,” in Algorithms and Data Structures. Springer, 2007, pp. 139–150. (Pages iv, 2).

[5] D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger, “Hash, displace, and compress,” in
Algorithms-ESA 2009. Springer, 2009, pp. 682–693. (Pages iv, 2, 8).

[6] Z. J. Czech, G. Havas, and B. S. Majewski, “An optimal algorithm for generating minimal
perfect hash functions,” Information Processing Letters, vol. 43, no. 5, pp. 257–264, 1992.
(Pages iv, 3).

[7] D. de Castro Reis, D. Belazzougui, F. C. Botelho, and N. Ziviani, “CMPH – C Minimal
Perfect Hashing Library.” [Online]. Available: http://cmph.sourceforge.net (Pages iv, 21).

[8] Intel Corporation, “Intel® Performance Counter Monitor – a better way to measure cpu
utilization.” [Online]. Available: http://www.intel.com/software/pcm (Page iv).

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd ed. MIT Press, 2009. (Pages 1, 2).

[10] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter: an efficient data
structure for static support lookup tables,” in Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics,
2004, pp. 30–39. (Pages 1, 3).

[11] M. Dietzfelbinger and R. Pagh, “Succinct data structures for retrieval and approximate
membership,” in Automata, Languages and Programming. Springer, 2008, pp. 385–396.
(Pages 1, 3).

[12] R. Pagh and F. Rodler, “Cuckoo hashing,” in Algorithms – ESA 2001. Springer Berlin
Heidelberg, 2001, vol. 2161, pp. 121–133. (Pages 2, 29).

[13] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space efficient hash tables with worst
case constant access time,” in In STACS, 2003, pp. 271–282. (Pages 2, 29).

[14] M. Dietzfelbinger and C. Weidling, “Balanced allocation and dictionaries with tightly
packed constant size bins,” in Automata, Languages and Programming. Springer Berlin
Heidelberg, 2005, vol. 3580, pp. 166–178. (Pages 2, 29).

[15] B. Jenkins, “Algorithm alley: Hash functions,” Dr. Dobb’s Journal, 1997. (Page 8).

[16] F. C. Botelho and N. Ziviani, “External perfect hashing for very large key sets,” in
Proceedings of the sixteenth ACM conference on Conference on information and knowledge
management. ACM, 2007, pp. 653–662. (Page 8).

[17] M. Dietzfelbinger and M. Rink, “Applications of a splitting trick,” in Automata, Languages
and Programming. Springer, 2009, pp. 354–365. (Page 8).

30

http://oeis.org/A008299
http://cmph.sourceforge.net
http://www.intel.com/software/pcm

References

[18] Intel Corporation, Intel ®64 and IA-32 Architectures Software Developer’s Manual, 2013.
(Pages 9, 10).

[19] Advanced Micro Devices Inc., AMD64 Architecture Programmer’s Manual, 2013, vol. 3:
General-Purpose and System Instructions. (Page 9).

[20] Advanced Micro Devices Inc., AMD64 Architecture Programmer’s Manual, 2013, vol. 2:
System Programming. (Page 10).

[21] B. Stroustrup, The C++ Programming Language : [C++11], 4th ed. Addison-Wesley,
2013. (Page 10).

[22] Free Software Foundation, The GNU C++ Library Manual, 2013. (Pages 11, 21).

[23] M. H. DeGroot and M. J. Schervish, Probability and statistics, 3rd ed., ser. Pearson
education. Addison-Wesley, 2002. (Page 15).

[24] E. Zakon, B. Lucier, and T. Zakon, Mathematical Analysis, ser. The Zakon Series on
Mathematical Analysis. Trillia Group, 2004. (Pages 15, 17).

[25] Google, “Google books Ngram Viewer.” [Online]. Available: http://storage.googleapis.com/
books/ngrams/books/datasetsv2.html (Page 22).

[26] Creative Commons, “Attribution 3.0 Unported License.” [Online]. Available: http:
//creativecommons.org/licenses/by/3.0

31

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

A An Optimal Signature Encoding Scheme

Appendix A An Optimal Signature Encoding Scheme

A simple but relatively efficient method to encode and decode the signatures in a bucket is
presented. The encoding scheme is optimal in the sense that every possible signature sequence
has a unique encoding, and every possible code represents a signature sequence. That is to say,
there exists a bijection between possible codes and sequences of signatures. Only a small table
which fits in L1 cache is needed.

The following notations are needed in this section:

a: bucket capacity.
k: number of signature bits.
d: the upper bound of the signatures, defined as 2k. All signatures fall into r0..d´ 1s.
p: the signature sequence, sorted in ascending order. pris represents the i-th element.

Indices begin with 0.
pbin: The corresponding (length d) binary number to p, produced by treating elements

in p as the positions of ones. 0 in the sequence represents the most significant bit.
pbinris is the i-th bit of the number, counting from the most significant bit.

m: the length of the signature sequence. m ď a holds.
poppxq: the number of ones in binary number x.

A.1 The Scheme

All possible signature sequences with up to a elements are sorted according to the following
comparator (most significant first):

(i) The sequence with less elements is listed first.
(ii) Write the sequences in binary representations as described above. The sequence

producing the smaller number is listed first.

The code for a signature sequence is just its index in the sorted list of all possible sequences. A
sample of the encoding for a “ k “ 4 is presented in Table A.1.

Code Sequence Binary Number
0 [] 0000000000000000
1 [15] 0000000000000001
2 [14] 0000000000000010
...

15 [1] 0100000000000000
16 [0] 1000000000000000
17 [14, 15] 0000000000000011
18 [13, 15] 0000000000000101
19 [13, 14] 0000000000000110
20 [12, 15] 0000000000001001
...

135 [0, 2] 1010000000000000
136 [0, 1] 1100000000000000
137 [13, 14, 15] 0000000000000111
138 [12, 14, 15] 0000000000001011

32

A.2 The Algorithm

...
695 [0, 1, 3] 1101000000000000
696 [0, 1, 2] 1110000000000000
697 [12, 13, 14, 15] 0000000000001111
698 [11, 13, 14, 15] 0000000000010111

...
2515 [0, 1, 2, 4] 1110100000000000
2516 [0, 1, 2, 3] 1111000000000000

Table A.1: Sample encoding

A.2 The Algorithm

A.2.1 Encoding

The number of sequences with less elements than p is simply
řm´1

i“0 p
d
i
q, so we focus on getting

the index of sequence p among all sequences with exactly m elements. That is to count the
number of binary numbers with m ones that are smaller than pbin.

Consider a number qbin ă pbin. There must be a position 0 ď pos ă d, so that pbin and qbin
are identical for the bits before pos and are different at position pos, where pbinrposs “ 1,
qbinrposs “ 0. Therefore every such qbin can be generated by the following method: set
pbinrposs to 0, and then distribute pm´ popppbinr0..pos´ 1sqq ones9 freely in positions pos` 1
to d´ 1. It is also obvious that every generated number is smaller than pbin.

For every possible pos (with pbinrposs “ 1), which is by definition an element in p (we call it
pris), we count the number of binary numbers having m ones that are the same with pbin until
position pos (counting from most significant bit). According to the above method, there are
exactly p d´1´ppos`1q`1

m´popppbinr0..pos´1sqq “ p
d´1´pris
m´i

q of such numbers. Summing up those counts gives the
number of sequences with m elements before p in the list.

The final code of p is then given by

codeppq “

m´1
ÿ

i“0

ˆ

d

i

˙

`

m´1
ÿ

i“0

ˆ

d´ 1´ pris

m´ i

˙

A direct implementation could use 2m look-ups into a d-by-a table storing the binomial
coefficients. This can be reduced to m look-ups by exploiting the fact pd

i
q “ p

d
i´1
q ¨ d´i`1

i
for

i ą 0. So those m look-ups on the left side can be eliminated. This result in an implementation
with O pmq integer arithmetics and m table look-ups. Whether this is an improvement remains
unclear though, because the table is so small that it fits well in L1 cache (a multiplication and a
division vs. a table look-up). The look-ups on the right side seem hard to eliminate without
taking O pdq time.

A.2.2 Decoding

Given a code c, we first determine the length (“: m) of the encoded signature sequence (“: p).
This is done by simply finding the first m such that

řm

i“0 p
d
i
q ą c. We then determine the bits

9Because qbin has m ones in total, and it has already used popppbinr0..pos´ 1sq.

33

A.2 The Algorithm

in pbin one by one, from the most significant bit.

To determine bit i, we first make a hypothesis that this bit was 0. We know from above that
there are p d´1´i

m´settled
q satisfying given conditions, where settled is the number of ones we have

used in positions 0..i´ 1. If this count is larger than c, we know the hypothesis was correct,
this bit was indeed 0. Otherwise, that bit was 1. We then note this down, subtract this count
from c, and go to the next bit.

This decoding algorithm takes O pdq time in total and a ` d look-ups for the both stages
(determining m and then determining every bit). Unlike the encoding algorithm, the look-ups
here can be completely eliminated using similar facts as above, because the transition from one
binomial coefficient is always to an adjacent binomial coefficient in the sense that either the top
or the bottom number is incremented or decremented by 1. Again, it is unclear whether this is
an improvement.

34

	1 Introduction
	1.1 The Problem
	1.2 Known Methods
	1.3 Contribution of the Thesis
	1.4 Outline of the Thesis

	2 The New Approach
	2.1 The Cache-Efficient Function Stores (CEFS)
	2.2 Retrieving a Value from a CEFS
	2.3 Building a CEFS

	3 Implementation Details
	3.1 Choosing Hash Functions
	3.2 Signature Encoding
	3.2.1 Bit-Vector Encoding
	3.2.2 Fixed-Length Encoding
	3.2.3 An Optimal Encoding Scheme

	3.3 Cache Awareness
	3.4 Choosing Parameters
	3.5 Parallelization

	4 Analysis
	4.1 Falling Proportion
	4.2 Time Properties
	4.2.1 Building a CEFS
	4.2.2 Querying a Key

	4.3 Space Properties
	4.3.1 Number of Buckets
	4.3.2 Total Size

	5 Experimental Results
	5.1 Benchmark Configuration
	5.2 Benchmark Results
	5.2.1 Space Overhead
	5.2.2 Construction
	5.2.3 Evaluation

	6 Conclusion
	6.1 Summary
	6.2 Open Problems for Future Research

	References
	Appendices
	Appendix A An Optimal Signature Encoding Scheme
	A.1 The Scheme
	A.2 The Algorithm
	A.2.1 Encoding
	A.2.2 Decoding

