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Abstract

We investigate the performance of the individual 2-D elastic full-waveform inversion (FWT)
of Rayleigh and Love waves as well as the feasibility of a simultaneous joint FWI of both
wave types. The FWI of surface waves can provide a valuable contribution to near-surface
investigations, since they are mainly sensitive to the S-wave velocity and hold a high
signal-to-noise ratio. In synthetic reconstruction tests we compare the performance of the
individual wave type inversions and explore the benefits of a simultaneous joint inversion.
In these tests both individual wave type inversions perform similarly well, given that
the initial P-wave velocity model is accurate enough. In this case the joint FWI further
improves the result. For an inaccurate initial P-wave velocity model, we observe artifacts
in the results of the Rayleigh wave FWI and the joint FWI. Subsequently, we recorded
a near-surface field dataset to verify the results by a realistic example. In the field data
application the Love wave FWI is superior to the Rayleigh wave FWI, possibly due to
the initial P-wave velocity model. Also in this case the joint FWI further improves the
inversion result.






Zusammenfassung

In dieser Arbeit vergleichen wir die Eigenschaften der individuellen Wellenforminver-
sion von Rayleigh und Love Wellen. Des Weiteren untersuchen wir die Realisierbarkeit
einer simultanen Wellenforminversion beider Oberflachenwellen. Die Wellenforminver-
sion von Oberflaichenwellen leistet einen wichtigen Beitrag zur Erkundung des oberfla-
chennahen Untergrundes. Insbesondere deshalb, da Oberflichenwellen duf3erst sensitiv
zur S-Wellengeschwindigkeit sind und ein hohes Signal-Rausch-Verhaltnis aufweisen. In
synthetischen Experimenten vergleichen wir die Fahigkeiten der beiden individuellen
Wellenforminversionen den oberflichennahen Untergrund zu rekonstruieren und untersu-
chen, ob eine simultane Wellenforminversion beider Oberflichenwellen Vorteile bietet. In
diesen Experimenten erzielen beide individuellen Wellenforminversionen vergleichbare
Ergebnisse, vorausgesetzt, das Startmodell fiir die P-Wellengeschwindigkeit ist ausrei-
chend genau bekannt. Ist dies der Fall, so fithrt eine simultane Wellenforminversion beider
Oberflaichenwellen zu einer Verbesserung des Inversionsergebnisses. Ist jedoch nur ein
unzureichend genaues Modell fiir die P-Wellengeschwindigkeit bekannt, lassen sich Arte-
fakte im Resultat der individuellen Rayleigh Wellenforminversion, als auch im Resultat der
simultanen Wellenforminversion beider Wellentypen beobachten. Um diese Ergebnisse
mit einem realitatsnahen Beispiel zu verifizieren, fithrten wir Feldmessungen durch. Die
Anwendung der individuellen Wellenforminversion auf die aufgezeichneten Love Wellen
fihrte zu einem besseren Resultat, als die individuelle Wellenforminversion der aufge-
zeichneten Rayleigh Wellen. Dieses Resultat hangt womdoglich mit dem initialen Modell
tiir die P-Wellengeschwindigkeit zusammen. Verglichen mit den individuellen Wellenfor-
minversionen verbessert auch hier die gleichzeitige Inversion beider Oberflaichenwellen
das Ergebnis der Inversion.
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1. Introduction

The analysis of shallow-seismic surface waves provides a valuable contribution to near-
surface investigations. Their propagation is mainly influenced by the shear-wave velocity,
which is an important geotechnical parameter. The acquisition of shallow-seismic surface
waves is simple and cost-efficient, since they can be easily excited, for instance, by sledge-
hammer blows on the surface and recorded by conventional single component geophones.
Furthermore, they show a high signal-to-noise ratio in shallow-seismic field data recordings,
which makes them even more attractive to a broad spectrum of near-surface studies.

The conventional methods for the analysis of shallow-seismic surface waves are the in-
version of dispersion curves (e.g. McMechan and Yedlin, 1981; Park et al., 1999; Xia et al.,
1999) or Fourier-Bessel expansion coeflicients (Forbriger, 2003a,b). These approaches
are based on a transformation of the recorded wave fields into the velocity/slowness—
frequency/wavenumber domain, where 1-D inversion methods are applied to obtain
synthetic 1-D subsurface models. However, these approaches are limited to lateral homo-
geneous or smooth heterogeneous subsurfaces, where in the latter case averaged material
properties are obtained. Socco et al. (2010) present an overview of several techniques to
overcome the limitation to 1-D subsurface models, like the analysis of data subsets along
the profile, where local 1-D depth-dependent models are calculated and subsequently com-
bined to a 2-D subsurface model (Bohlen et al., 2004). Nevertheless, all of those methods
have a limited lateral resolution and are not applicable in highly heterogeneous media.
The full-waveform inversion (FWI) of seismic recordings, as proposed by Lailly (1983),
Tarantola (1984) and Mora (1987), can reveal 2-D as well as 3-D subsurface structures
without limitations regarding the subsurface heterogeneity. The FWI makes use of the
whole information content included in seismic waves, such as the amplitude and the phase,
which allows to achieve a resolution below the size of a wavelength. The main drawback of
the FWI compared to the conventional methods is the requirement of large computational
facilities, which are required for the numerical simulation of wave propagation. While
this requirement prevented its application in the past decades, today's high-performance
computing (HPC) systems provide enough computation power to make the FWI feasible.
In recent time, the FWI has been successfully applied to a wide range of scales, such as
in seismology (e.g. Bleibinhaus et al., 2007; Fichtner et al., 2009), in seismic exploration
(e.g. Operto et al., 2004; Brossier et al., 2009) or in near-surface investigations (e.g. Gélis
et al,, 2007; Romdhane et al., 2011). However, the application of the FWT to field data is still
challenging, in particular the application to shallow-seismic surface waves is ambitious,
since their propagation is highly nonlinear in complex earth media. So far, there are only
a few publications which present successful 2-D FWI field data applications using shallow-
seismic surface waves to reveal shear-wave velocity models. In most of the publications
Rayleigh waves were used (e.g. Tran et al., 2013; Groos, 2013; Schaefer, 2014), whereas
Love waves were only rarely used (Dokter et al., 2014; Pan et al., 2016). Nevertheless,
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Xia et al. (2012), who investigated the dispersion curve inversion of Rayleigh and Love
waves, observed three main advantages of the Love wave compared to the Rayleigh wave
inversion: (1) The inversion of Love wave data is more stable, since they are independent
of the P-wave velocity, (2) Love wave dispersion curves are simpler than those of Rayleigh
waves, for the same reason as (1), and (3) the dispersion curves of Love waves show a
higher signal-to-noise ratio than those of Rayleigh waves. Safani et al. (2005) made similar
observations and concluded that Love waves exhibit a higher sensitivity as well as inversion
stability and show an improved signal-to-noise ratio in dispersion spectra compared to
Rayleigh waves, respectively. However, to the best of our knowledge, there are no studies
which compare the performance of the Love wave FWI and the Rayleigh wave FWI or
which investigate a coupling of both inversions in order to perform a joint FWL

1.1. Main objectives

The main objectives of this thesis are to compare the performance of the individual
full-waveform inversion of Rayleigh and Love waves and to explore the benefits of a
simultaneous joint FWI of both types of surface waves. For this purpose, we extent
our existing 2-D P-SV FWI code by a SH FWI scheme. To perform a joint FWI of both
independent FWI schemes we propose a joint approach, which we implement into our
FWI code as well. In synthetic reconstruction experiments we investigate the performance
of both individual wave type inversions as well as of the joint inversion. We then use the
gained experience in these synthetic experiments in a field data application, where we
verify the synthetic results by a realistic example.

1.2. Thesis structure

This thesis is divided into four main chapters:

In the second chapter, we describe the theory used in this thesis. We introduce the
wave equations for an elastic and viscoelastic medium and present the finite-difference
method, which we use to solve the wave equations numerically. We then discuss the
inverse problem of the full-waveform inversion and derive the gradients for the P-SV
and the SH waves. Furthermore, we describe the multi-parameter quasi-Newton L-BFGS
method, which we use for the calculation of the model corrections. Finally, we propose
our joint approach that is required to perform a simultaneous joint inversion of the P-SV
and the SH waves.

To explore the performance of the individual and the joint 2-D elastic full-waveform
inversion of Rayleigh and Love waves, we perform synthetic reconstruction tests which we
present in the third chapter. For these reconstruction tests we assume a true subsurface
model which we then use to generate pseudo-observed seismograms. The knowledge of
the true model allows us to study the reconstruction ability of the FWI by comparing the
true model to the reconstructed models. In preparation of the field data application, we
choose a subsurface model which simulates the subsurface expected at the test site.

In the fourth chapter, we present the application of the individual and the joint 2-D
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elastic full-waveform inversion of Rayleigh and Love waves to a near-surface field dataset.
We show the recorded field dataset along with various preprocessing steps that we applied.
The configuration of the inversion is introduced as well. After the discussion of the
inversion results, we compare them to a ground-penetrating radar measurement to study
the reliability and quality of the FWI results.

In the fifth chapter, we draw final conclusions based on our results.






2. Methodology

In this chapter, we describe the theory used in this thesis. First, we introduce the wave
equations for an elastic as well as a viscoelastic medium. We then present a numerical
solution to the wave equations by a time-domain finite-difference (FD) method. This
method allows to obtain an explicit time-stepping FD-scheme which we use for the efficient
simulation of wave propagation through the subsurface. Furthermore, we discuss the
general inverse problem of the full-waveform inversion (FWI). We use the adjoint state
method to calculate the gradient of the objective function computational efficiently. We then
describe the multi-parameter quasi-Newton L-BFGS method which is used to calculate the
actual model correction. Afterwards, we introduce our approach to carry out a simultaneous
joint inversion of the P-SV and the SH waves and finally give a summary of the full-
waveform inversion process as a whole. In the following, we use the Einstein notation.

2.1. Wave Equation

The wave equation is the key to describe the propagation of seismic waves through an
arbitrary medium. In the following, we will shortly derive the wave equation, as shown
by Lay and Wallace (1995).

To start, we consider the equation of motion. The equation of motion is the most funda-
mental equation in seismology as it provides a relation of forces in a medium to measurable
displacements (Lay and Wallace, 1995). The equation of motion reads:

62ul~ _ 00,~j
otz Ox;

p- + fi, (2.1)
where p denotes the density, u the displacement, ¢ the time, o the stress tensor, f the
external body forces and x is the vector in space. The lower indices correspond to the
direction in space {i, j} = {x,y, z} (see figure 2.1).

To derive the 2-D equation of motion from equation 2.1, we assume a subsurface in which
all properties vary only in the x —z plane (see figure 2.1). In such a subsurface, all properties
in the y direction are constant and derivations in the y direction vanish. By considering
equation 2.1 and writing out all the summations explicitly the equation of motion splits
up into two separate partial differential equation systems. One system describes the P-SV
waves:

0%u, 0oy 00y,
P o2 Ox * 0z * fo

0%u, 00, 00y,
o2 dz 0x S (2.2b)

(2.2a)
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X » T
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Figure 2.1.: Used cartesian coordinate system. The x — z plane (grey area) represents the
used 2-D plane. The z direction refers to depth. In the y direction all properties
are assumed to be constant.

and the other system describes the SH waves:

®uy  Ooyy oy
P o2 Ox * 0z v

(2.3)

Both systems are independent of each other, which means the P-SV and the SH waves are
decoupled in a 2-D medium, hence, there is no conversion from one wave type into the
other. Both waves types propagate in the x — z plane, but they differ in their polarization.
The polarization direction of the P-SV waves lies within the x — z plane, whereas the SH
waves are polarized vertical to the x — z plane, namely in the y direction.

Since both partial differential equation systems hold more unknowns than equations, there
is no unique solution to them. Therefore, further information of how the medium will
react to applied forces are necessary. There are two kinds of such reactions: (1) A purely
elastic response and (2) a viscoelastic response.

2.1.1. Elastic medium

A purely elastic medium reacts spontaneous and linear to an applied force. The relation
between stress, o, and strain, €, of such a medium follows the linear Hook's law (Lay and
Wallace, 1995):

0ij = Cijkl - €kl, (2.4)

where the elastic moduli, Cyjx;, describes the properties of the medium. The strain tensor,
€x1, yields:

1 ({0u, Ou
= |—=+—]. 2.5
K 2(8x1+6xk) 25)

Considering an isotropic medium the elastic moduli, Cjji;, simplifies to:

Cijk1 = A+ 616kt + p1 - (8udjk + SikSji), (2.6)
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where the Kronecker delta, d;;,:

L i
5ij:{ BoreJ (2.7)
0 if i#j,

and the Lamé parameters y and A are used. The two Lamé parameters are sufficient to
describe the material properties of an isotropic and elastic medium. For such a medium
the stress-strain relationship simplifies to:

Ojj = A- €kk * 5ij +2- U E€ij. (2.8)

The relation between the Lamé parameters and the seismic P-wave velocity, vp, and S-wave
velocity, vs, is (Lay and Wallace, 1995):

,/“2” v _\/7 (2.9)

The equation of motion and the stress-strain relation contain all required information
to describe wave propagation in an isotropic elastic medium, which allows us to derive
the wave equation. In stress-velocity formulation, where the particle velocity, v = g’;, is
the wave field parameter, the wave equation is represented by a first-order hyperbolic
system. This first-order system allows for an efficient numerical solution by a time-domain
finite-difference method.

For simplicity, in the following we omit the temporal and spatial dependencies. For P-SV

waves the elastic stress-velocity wave equation is (Virieux, 1986):

O0vx 1 00y N 00y, (2.10a)
ot p \ dx = 0z '
Jv, 1 (0oy, 00,
=—- 2.10b
ot p ( ax | 9z ) ( )
00.x 00y avz 0v,
ot M ( ox 0z ) e (2.10c)
ao-zz 8'02 avx (9’()x
=M- 2.10d
ot ( 9z Bx) e ( )
0oy, 0y N ov, (2.10¢)
o 0z  Ox '

where M = (A + 2p) is the P-wave modulus. The elastic stress-velocity wave equation for
the SH waves reads (Virieux, 1984):

8vy 1 (Ooxy 0oy
= - 2.11
ot p(ax+az)’ (211a)
0oyy évy
2.11b
ot - H Ox’ ( )
doyy vy
6t =u- E (211C)
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2.1.2. Viscoelastic medium

In contrast to a purely elastic medium which does not attenuate the wave energy, wave
propagation in real earth media is always dispersive and attenuated by the transformation
of motion energy into head. A viscoelastic rheological model can account for these effects
and consequently allows for an accurate description of wave propagation.

The stress-strain relation for an isotopic viscoelastic medium reads:

Gij = (\PP -2 \PS) * €k - Opj + 2+ Ps €ij (2.12)

where Wp and ¥s describe the relaxation functions for P- and S-waves, respectively (Bohlen,
1998; Christensen, 2012). The asterisk denotes convolution in time.

A rheological model that can approximate the attenuation and dispersion properties of a
medium is the generalized standard linear solid (GSLS) (Emmerich and Korn, 1987; Blanch
et al., 1995). A GSLS consists of several Maxwell bodies (dashpot in series with a spring) in
parallel with a spring. Thereby a Maxwell body refers to a relaxation mechanism and by
extent represents the viscosity of the medium. With a combination of several relaxation
mechanisms a specific viscoelastic model with a certain attenuation versus frequency
relation can be obtained (Robertsson et al., 1994; Liu et al., 1976).

The relaxation functions for a GSLS with L relaxation mechanism are:

L TP
Tp(t) = M- 1+ ) (T—’ - 1)e-f/fal CH(), (2.13)
= ol
L 1 s
W(t) = p - [1 £y (T—l _ 1) e-f/fvl] CH(b), (2.14)
=1 ol

where M is the relaxed P-wave modulus, p is the relaxed S-wave modulus and H(t) is
the Heaviside step function (Bohlen, 1998; Liu et al., 1976; Carcione et al., 1988). The
parameters 7.'5 and TESI are the P- and S-wave strain retardation times for the /-th relaxation
mechanism, respectively, and z,; are the corresponding stress relaxation time.

Blanch et al. (1995) suggested the use of the 7-method to reduce the number of variables
that describe the GSLS and thus, reduce the calculation time and the memory requirements.
This method relies on the observation that one dimensionless variable, 7, can describe
the level of damping caused by a GSLS. Moreover, with this method it is possible to
approximate a frequency independent seismic quality factor, Q, in a limited frequency
range. The parameter 7, which is independent of L, is defined as:

r=td (2.15)

Tol
and replaces the L-dependent retardation times.
The attenuation versus frequency relation of a GSLS which consists of L relaxation mecha-
nisms can be described by the quality factor, Q:
L ot
1+ Zl:l 1+w2rlZlT
Qw, Tl T) =~ (2.16)

I=1 140272
ol
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where o denotes the angular frequency. In order to obtain a constant quality factor, Q, in
a limited frequency range, the 7 value and the L relaxation times, 7,;, can be determined
by a least-square inversion of equation 2.16 (Bohlen, 2002). While it is sufficient to use the
same relaxation times, 7, for P- and S-waves, the 7-values can be calculated separately to
use different values of Q for both wave types (Bohlen, 2002). Instead of relaxation times it
is quite often to use the relaxation frequencies, f; =

2.7 T5y "

The stress-strain relationship in equation 2.12 together with the equation of motion 2.1
contain the complete information of a viscoelastic medium and allows us to describe the
wave propagation. However, the convolution in equation 2.12 is unsuitable for the dis-
cretization by a time-domain finite-difference method. To overcome this issue, Robertsson
et al. (1994) and Carcione et al. (1988) proposed the usage of memory variables, r, in order
to avoid the convolution.

The obtained first-order wave equation in stress-velocity formulation for the P-SV waves
reads (Bohlen, 1998):

0vy, 1 [00y 00y,
= — 2.17
at  p ( dx 0z ) (2.172)
ov, 1 (00y, 00y
_1 ’ 2.17b
ot p( 0x 0z ) ( )
L
00y 0v, 0v, ov,
=M-(1+1P) ( ) —2-p-(1+7% + ) Ty (2.17¢)
ot ox 0z 0z ;
L
580';% =M-(1+1P) (85: +(961;c)_2_y_(1+1_s>567j +Zrzzl, (2.17d)
=1
0oy, s 0vy 0y, L
z ‘“'(1+T)'(az+ax)+;r“” (2.17¢)
OTsex, 1 0vy Ov, O0vy
A (a2 YA 2.17f
ot T(,l( f uf)(8x+az)+ T6x+r’ ( )
0 1
(;thl = M- P —2pu-7%) - (% + aazz) - 2;11'5% - rzzl) , (2.17g)
Oryz, 1 s ,0ux  0Ov,
- ___ 5. —_—= 2.17h
gt - o W7 G Yy (2.17h)

Thereby 77 denotes the 7 value for the P-waves and 7° corresponds to the S-waves. The
variables r;;, describe the memory variable for the [-th relaxation mechanism.
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The viscoelastic wave equation for the SH waves reads (Bohlen, 1998):

ov 1 (00yy, Oo,
ot - E( ot azy)’ (218
A0y (149 v, (2.18b)
=p- (147 ==+ ) Iy, :
ot ox 3
=pu-1+7°%) - — + Zrzy,, (2.18¢)
ot 9z 3
Ory 1 ov
L (l, PR rxyl)’ (2.18d)
or. 1 ov
aztyz _ - (;1 S 6_2y + rzyl) . (2.18¢)

The comparison of equation 2.18 to equation 2.17 shows that the wave equation for the SH
waves is much simpler than for the P-SV waves. A more complex wave equation will lead
to a higher complexity of the forward solver, which will result in an increased calculation
time and extended memory requirements. This reveals a crucial advantage of the SH wave
equation, as it can be solved faster and with less memory requirements than the P-SV
wave equation. The complexity of the SH wave equation is comparable to the acoustic
approximation (Kurzmann, 2012), however, the SH wave equation allows the description
of (visco-)elastic SH-wave propagation.

2.2. Forward modelling

The inversion of full seismic waveforms requires an accurate and computational efficient
forward solver for the numerical simulation of seismic waves through complex earth
models. A well-proven class of forward solvers for the elastic and viscoelastic wave
equations are finite-difference (FD) methods. The FD-methods approximate the spatial
and temporal derivatives in the wave equations by finite-difference operators. To calculate
these discrete operators, the wave equation is discretized in both space and time domain.

2.2.1. Discretization

The simplest way to discretize in the space domain is by discrete grid points on a rectangular
grid with equidistant spacing, Ah. For such a grid the relation between the continuous
coordinates x and z and their discrete equivalents is:

x=i-Ah and z=j-Ah, (2.19)

where a specific point (i, j) refers to a grid point. The discrete transformation of the time
vector reads:

t =n-At, (2.20)

where n refers to a specific time step.

10
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1 n
n+s3 (Y - -
2
O-ZZZ’ X (i) J}i+%7j (i+1,)) 1 (ij) (i+1,j)
,1J TL+§
n+y . > Ozyi,j . ._X’
Oaw; X
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vz sy UZT} 1 o_n+§
Z, .1 g i,J+ 5 xyY. .
ity irti+d nre Vit §.i+3d

(ij+1) I (ij+1)
! :

(a) P-SV FD-grid (b) SH FD-grid

Figure 2.2.: Staggered 2-D finite-difference grid for the P-SV (left) and the SH (right) elastic
wave equation. Black dots correspond to full grid points.

In this work, we follow the staggered-grid approach as proposed by Virieux (1984) and
Levander (1988). This approach has several advantages compared to a conventional grid
such as higher accuracy and a relaxed stability limit (Liu et al., 1976). On the staggered-grid
the model parameters (i, A and p) and the diagonal stress components, o, are discretized
on full grid points (i, j), whereas off-diagonal stress components and particle velocities are
discretized on half grid points. Moreover, the stress components are defined at half time
steps n + % whereas particle velocities are defined at full time steps n. Figure 2.2 shows
the staggered-grid for the elastic P-SV and SH waves.

As already indicated, the basic concept of the FD-method is the replacement of the temporal
and spatial derivatives in the wave equations by finite-difference operators. To illustrate
such a staggered-grid approximation to the spatial and temporal derivation a second-order
accurate operator is shown for both domains:

i+ IAx) — F(i— L
% (x)‘ _ fl+ 2A)C)Axf(l 5 AX) N O(sz), (2.21)
0 f(n+iAt) - f(n-1Ar)
50| = 2 m 2= +0(ar?). (2.22)

The FD-operators used in this work are second-order accurate in time and higher-order
accurate in space. Higher-order spatial approximations are achieved by a Taylor expansion
of equation 2.21. Higher-order temporal accuracy would be possible as well (eg. Bohlen
and Wittkamp (2016)), but is not considered in this thesis. Instead, the accuracy of the
temporal discretization is ensured by an appropriate temporal sampling.

The explicit time-stepping FD-scheme can be obtained by applying the staggered-grid
approximation to the derivatives in the wave equation and considering the orientation of
the staggered-grid as shown in figure 2.2. The work of Bohlen (1998) shows this procedure

11
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exemplarily, however, in his case the orientation of the staggered-grid is shifted by half a
grid point compared to the used grid in this work.

Due to the numerical discretization, the wave propagation suffers from numerical disper-
sion. Hence, the spatial sampling have to be selected small enough to held the numerical
dispersion insignificant. Additionally, to ensure numerical stability of the FD-method
a stability limit, the so-called Courant-Friedrich-Levy (CFL) condition (Courant et al.,
1928), has to be satisfied. The used forward solver which is based on the software SOFI2D
developed by Bohlen (2002) checks automatically for both stability and dispersion. A
detailed description of numerical dispersion as well as numerical stability is given by
Virieux (1986, 1984) and Levander (1988).

2.2.2. Initial and boundary conditions

Initial conditions
The initial conditions for all spatial locations, x, for the particle velocity are:

vi(x,t =0)=0, 0i(x,t=0)=0, Ti(x,t=0)=0, (2.23)
and for the stress:
oij(x,t =0) =0, &j(x,t=0)=0, &(x,t=0)=0. (2.24)
For a viscoelastic simulation the initial conditions for the memory variables, r;;, are:

rij(x,t = 0) =0, fl-j(x,t = 0) =0, i"ij(x,t = O) =0. (2.25)

Free surface boundary condition

To accurately simulate wave propagation at the earth's surface, a free surface condition
has to be considered. At the interface from earth to air all stresses have to vanish. To fulfill
this condition, we applied the mirroring technique from Levander (1988) on the top of
the model. This approach is limited to a planar surface, however, this is sufficient for our
research.

Perfectly matched layer boundary condition

To allow an efficient forward modelling, we truncated the used models as far as possible.
Nevertheless, in small and finite models seismic waves will reach the model boundaries
and will cause reflections at the locations of these artificial boundaries. Thus, it is impor-
tant to use a boundary layer, which will suppress such artificial reflections. An effective
method is the convolutional perfectly matched layers method (C-PMLs). The C-PMLs are
a coordinate transformation in the complex numbers that will stretch the coordinates at
the model boundary in such a way that the waves will never reach the actual boundary.
The used C-PML implementation is based on Komatitsch and Martin (2007) and is applied
at both lateral boundaries, as well as on the bottom of the model.
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2.3. Full-Waveform Inversion

2.3. Full-Waveform Inversion

The basic concept of the full-waveform inversion (FWI) is to find a model of the subsurface
that describes the observed seismic data in the most accurate way. A model is considered
as the best, if the misfit between the synthetic data and the observed data is minimized.
The FWI uses the full seismic waveforms, hence, the whole information content (e.g. wave
amplitude, phase) is taken into account to find an appropriate model. For that reason, it
can achieve a resolution below the size of a wavelength. In contrast, conventional seismic
tomography methods evaluate only parts of the waveform, like the first-arrival times.
However, wave propagation is highly nonlinear and hence the FWI is a nonlinear problem
as well. Thus, there is no direct solution to the inverse problem. There are two possible
options: (a) To use global grid-search methods or (b) to use local optimization methods.
In grid-search methods the misfit is determined for a certain number of random models. The
result of the inversion is the model, which holds the lowest misfit between synthetic and ob-
served data. However, for a high number of model parameters this method is computational
not affordable, even on current high-performance computing (HPC) systems.

Local optimization methods are computational more efficiently. These methods depend
on an initial model, which serves as a starting point for the iterative calculation of model
updates. The drawback of this method is the requirement of a priori information about
the subsurface and the limitation of the solution to the vicinity of the initial model. In the
case the initial model is not accurate enough the inversion could end in a local minimum
which is far away from the global minimum. However, due to the efficiency of the local
optimization methods, these methods are mainly used in the FWI and will be used in this
work as well.

2.3.1. Inverse Problem

To formulate the inversion problem of the FWI, we have to parameterize the model space,
m = (my, ..., mN)T. In seismics two parameterizations are common: A parameterization
in terms of density and seismic velocities, which yields m = (p, vs, Vp)T or in terms of
density and the Lamé parameters, which yields m = (p, p,1)7.

To obtain synthetic data, dsy,(m), based on a certain model, m, we can use the nonlinear
forward operator, f:

dyyn(m) = f(m). (2.26)

The data residuals, Ad = (Adj, ..., Ady)T, between the synthetic data, dsyn(m), and the
observed data, dgps, are defined as:

Ad = gy (m) — dops. (2.27)

To measure the fit of the synthetic data to the observed data, we use the least-squares
L,-norm of the data residuals:

1
E(m) = 5 AdT - Ad, (2.28)

13



2. Methodology

where E(m) is called misfit or objective function. Thereby, the objective function refers
to a summation of the data residuals over all time samples and all source-receiver pairs.
Moreover, this definition has a special physical meaning, since it describes the residual
energy which cannot be described by the current synthetic model. The aim of the inversion
process is to minimize the objective function iteratively and therewith find a model of the
subsurface that explains the observed data.

In the following, we assume only weak nonlinearity of equation 2.28 in order to use the
Born approximation. In local optimization methods a local minimum of the objective
function is searched in the vicinity of an initial model, my. Therefore, we add a model
perturbation, Am, to the initial model to obtain an updated model:

m = mgy + Am. (2.29)

We now consider the objective function for this updated model which we expand in a
Taylor series up to second-order accuracy:

JE(my) m 9*E(my)
m 2 Om?

To find a minimum of this objective function in the vicinity of the initial model, m, the
derivative with respect to m is required to vanish:

E(mgy + Am) = E(my) + Am( ) Am” + O(IIAm||3). (2.30)

OE(m) OE(my) 0°E(my)\ 1
= A —| = 2.31
om om O\ ome 0 (2.31)
Rearranging to the model correction, Am, gives the desired model update:
2E ~ OE
Am = — (ZE@@I) OEMm0) _ prot o pimy), (2.32)
om? om

where Vi, E(my) is the gradient of the objective function with respect to the N model
parameters my. The second-order derivative with respect to the model parameters contains
the curative information of the objective function and is called Hessian, H.
With equation 2.29 and 2.32 we obtain the model update for iteration K by:

mg, = mg + Amg = mg — HIZ—I - VmE(mg). (2.33)

This second-order accurate model update is called Newton-method, since it considers the
curative information of the objective function (Nocedal and Wright, 2006).

This means, in order to find a Newton-method model update the gradient and the Hessian
of the objective function have to be calculated. The gradient can be calculated efficiently
by the adjoint state method, which we will discuss in section 2.3.2. However, the Hessian,
H, is a dense N X N matrix, where second-order derivatives of the objective function have
to be calculated. The calculation of such second-order derivatives can be cumbersome
and computational too expensive for large-scale optimization problems like in the FWI,
even on large HPC systems. Therefore, we use a multi-parameter quasi-Newton L-BFGS
method, which we will describe in section 2.3.3.

Besides the methods which we have chosen for the calculation of the gradient and Hessian,
there are several other methods, like sensitivity kernels or full-Newton methods. A general
overview and comparison of different methods within the FWI framework is given by
Virieux and Operto (2009) .

14



2.3. Full-Waveform Inversion

2.3.2. Gradient calculation: Adjoint State Method

To find a model update it is necessary to calculate the gradient of the objective function.
The implementation of this calculation by an actual derivative of the objective function with
respect to every single model parameter would need as much forward calculations as model
parameters. To overcome this, Tarantola (1984) and Mora (1987) proposed the usage of the
adjoint state method within the geophysical community. This method requires only two
forward calculations in order to obtain the descent direction of the objective function.

In the following, we derive the gradient for the isotropic and elastic wave equation by the
adjoint state method. Subsequently, we will derive the explicit gradients for the P-SV and
the SH waves. The shown derivation follows Mora (1987) closely.

To start, we consider the influence of a small model perturbation, dm, to synthetic data:

dsyn(m) = f(m) = f(my + ém), (2.34)

where we again use the nonlinear forward operator, f. To simplify this expression we
approximate the forward operator by a Taylor series, which gives:

f(mgy + dm) = f(my) + f(

m + O(||6m|[?). (2.35)

Calculating the difference between the synthetic data of the perturbed model and the
synthetic data of the unperturbed background model, we get:

dd =f(mg + dm) — f(my), (2.36)

=f(my) + aj;(::())5m — f(my), (2.37)

_ [M] . Sm (2.38)
om

This is a linear relation between a perturbation, dd, in the data space and a perturbation,
dm, in the model space. Hereby, the linear operator, aJ;(::O), is called Frechét derivative.
According to Mora (1987), the linearized forward problem shown in equation 2.38 can be

written in continuous form as follows:

od(D)
d(D) = f dM ( 5m(M) (2.39)
where D denotes the data space and M the model space. This means, if the kernel, 591;11—((?\4)),

is known, all perturbations in the model space can be integrated to find the corresponding
perturbation in the data space.

We now consider the local derivative of the objective function in equation 2.31 and
reformulate it as follows:

OE(mo) _ [6dsyn(mo)]T .6d = [af(mO)]T - 5d.

om om om (240)
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2. Methodology

This expression has a similar mathematical form as equation 2.38, even though the Frechét
derivative is transposed. To be more general, the Frechét derivative is adjoint to the Frechét
derivative in equation 2.38. However, since we have not considered any covariance or
weighting, the adjoint becomes the transpose in this special case (Tarantola, 1984). For
the sake of generality, in the following we will refer to the adjoint. For more details we
recommend the work of Tarantola (2005). Nevertheless, equation 2.40 denotes a linear
relation between a perturbation in the data space and a perturbation in the model space.
Equation 2.40, which represents the gradient of the objective function, can be given in
continuous form by an adjoint expression to equation 2.39 as follows (Mora, 1987):

. _ OE(my) _ od(D) 1"
m(M) = ——= oo f dD[ 8m(M)] sd(D), (2.41)

where the asterisk denotes the adjoint. Note, the hat means that 6 and dm are not
identical. In fact, 1 refers to the gradient of the objective function, whereas dm can be
interpreted as the model correction Am when dd is interpreted as the data residuals Ad.
Since the Frechét operator represents a linear operator, its kernel is identical to its adjoint
kernel (Tarantola, 2005):

[ od(D) ] _ { od(D) ] (2.42)

om(M) om(M)

Thus, if the Frechét operator of the linearized forward operator in equation 2.39 can be
obtained, the corresponding adjoint equation 2.41 can be used to map from the data space to
the model space. This mapping is the key to transfer a data residual to a model correction.

In the next step, we have to transform the shown equations into the seismic inverse
problem. In seismics the data, d, is the discrete particle displacement, u;. The particle
displacement is measured by a receiver at the time, ¢, at the location, xg. The seismic
waves are excited by a source at the position, xs, at time zero (t = 0). We parameterize the
model by m = (p, p,A)T. According to Mora (1987), this parameterization is the simplest
one to derive the gradients of the seismic objective function. Other parameterizations can
be obtained by a transformation of the final gradients (see section 2.3.2.2). For simplicity,
in the following we assume a single source. The total gradients can be obtained by a
summation of the shot-wise gradients.

Adjusted to the seismic problem equation 2.39 yields:

Ou;i(x,, t
Sui (%, t) = f v 2D s, (2.43)
1 om(x)
and equation 2.41 yields:
0 ,t
h(x) = f a = 0wl t) s ). (2.44)
m(x
Receivers
The aim is to find an expression which is equivalent to the forward problem in equation
2.43 in order to identify the kernel, L’&;) Once we found an expression for this kernel,

we can derive the gradients by the corresponding adjoint equation 2.44.
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2.3. Full-Waveform Inversion

To find an explicit expression of the linearized forward problem in equation 2.43, we
reconsider the equation of motion and the elastic stress-strain relationship:

62ui (90',-]-
O _ %% 2.1
P o = o, fi (2.1)
oij = Cijkl - €kl (2.8)

We now introduce the following perturbations:

u; — u; + ou;, (2.45)
p—p+dp, (2.46)
Cijkt = Cijkr + 6Cijgi, (2.47)
0ij = 0yj + 80y, (2.48)
€] — €k + O€x. (2.49)

Inserting these perturbations into equations 2.1 and 2.8 gives:

2

5 5
(p+5p) - w(ui ; 5ul~) - a—xj(aij + 5a,~j) - f (2.50)

(0ij + 6035) = (Cijkr + Cijki) - (€x1 + exr) = 0. (2.51)

The expressions above can be simplified by defining new body and surface source terms:

02ui
Afi=-0p—, 2.52
fi==0p—3 (2.52)
ATI" = (Scijklekl. (253)

With these source terms, we obtain a wave equation, which describes a displacement
perturbation, du;, as a function of the introduced source terms:

0%6u; 060y;
— =Af 2.54
p atz 8xj ﬁ ( )
50',']' - Cijkl : 56k1 = AT,']'. (2-55)

The new sources Af; and AT;; are called secondary or adjoint sources. The new wave
equation defined by equations 2.50 and 2.51 has the same mathematical form as the
unperturbed wave equation (equations 2.1 and 2.8), thus, we can obtain a solution in terms
of Green's functions as follows (Aki and Richards, 2002):

oui(x,,t) =+ f dV - Gjj(xg, t;x,0) * Afj(x, t)
1%

aGij(XR7 3. & 0)
_ fv Qv LR ATy, ), (2.56)

where the asterisk denotes convolution in time.

This solution of the perturbed wave equation has the same shape as the linearized forward
problem in equation 2.43. Consequently, we can use this equation to identify the desired
kernel and thus, we can obtain the adjoint expression shown in equation 2.44.
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2. Methodology

To find a more explicit expression we perform further simplifications. By considering an
isotropic medium and by substitution of the corresponding stress-strain relationship 2.8,
we can write the adjoint source term, AT}, as:

0 ou; 0
ATj = bij - €xk - 6A + (€ij + €ji) - Sp = &y - auk OA + (8:; GZ]) Sp. (2.57)
j i

Substitution of both adjoint sources into equation 2.56 results in:

0Gi' , t, ) 0 8 j s t
5ui(xr, t) - _ f dv - J(XR X ) x UJ(X ) . 5p
\4

ot ot

B f qv . GGU(XR, t;x,0) . Oum(x,1)
v Ox; 0xm

~ f v . 0Gij(xg, t;X,0) . Ouj(x,t) N Oui(x,t)
v oxy. Oxy. Ox;

-OA

mn (2.58)

This equation allows us to identify the desired kernels for each parameter class by com-
parison to the forward problem shown in equation 2.43. We obtain the following adjoint
expressions by inserting the kernels into equation 2.44:

0G;i (xR, t;x,0)  Odui(x,t)
—_ f dt; J o » J@t - Sui(xg, 1), (2.59a)
0Gij(xg, t;%,0)  [(Ouj(x,t)  Our(x,t)
- | dt ! / - Sui(xp,t),  (2.59b
B *( T+ D) sulze . @59
A _ aGij(XR’ X, 0) aum(x, t)
SA(x) = — f dtz x L - Su;(Xp, ). (2.59¢)

We can further simplify these adjoint expressions by the use of the following convolution
and integration theorems:

@@ =g01-ho = [ at- g -too « ), (2.60)
‘fwfewa4hjkrﬂwmm (2:61)

and by considering the reciprocity property of the Green's function:
Gij(xr, 1;%, 0) = Gjj(x, 1;Xg, 0). (2.62)

The simplified adjoint expressions read:

0 t)
f dt Z u](X . z]( —t; XR, 0) * CSui(XR, t), (263&)
3“1 x1) Odu(xt)) 8
po = f Z ( Oxy ox; ' Oxx Gij(x, —t; Xg, 0) * Su;(Xg,t), (2.63b)
f Z 6Um(X t) a lJ(X —1; Xg, 0) % 5ui(XR, t). (2.630)
0xm, X;
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2.3. Full-Waveform Inversion

We now introduce the backward propagated residual wave field:

Wi(x, t) = Z Gij (X, —t: Xg, 0) * Su;(Xg, 1), (2.64)
R

which has the same shape as the Green's function solution in equation 2.56, besides the
negative sign in front of the time, t. This negative sign refers to a backward propagation in
time. The source term of equation 2.64 corresponds to the data residuals at the receivers.
This means that the residual wave field, ¥, can be obtained by temporal backward propa-
gation of the data residuals from the receiver locations.

Substitution of the residual wave field into the adjoint expressions gives the final gradients
for the parameter classes p, p and A:

op(x) = 8:;2;) =— f dt - auj;):’ ) . 8‘{11'(;;(’ t), (2.65a)
Of(x) = aflf(mx())) = - f dt - (aug):; 2 + aug(:" t)) . 5‘1’3(;: t), (2.65b)
J
5A(x) = a{ig? f dt - 6”’” (x.1) w;: ) (2.65¢)
]

These adjoint expressions depend on the forward propagated incident wave field, u, and
the backward propagated residual wave field, ¥. Both can be obtained by the nonlinear
forward solver, f, due to the reciprocity of the Green's function. Therefore, only two
forward simulations are required to get the adjoint expressions and therewith the gradients
in equation 2.65. Thereby, the gradients can be interpreted as a zero-lag cross-correlation
between the incident and residual wave field.

We now recapitulate the properties of the assumed 2-D subsurface, to derive the gradients
for the P-SV and the SH waves, respectively. In this subsurface all properties in the y
direction are constant and derivations in the y direction vanish. Moreover, we reconsider
the independency of the wave equations for the P-SV and the SH waves. For simplicity, in
the following we omit the temporal and spatial dependencies. The gradients for the SH

waves are:
ou, 0¥,
ASH _ Oy
op = fdt 3 at (2.66a)
ou ou, 0V,
SH ) y Y
2.
o fdt (ax o . 5 az)’ (2.66b)

and for the P-SV waves:

v v
5/3P_sz—fdt' aux.a x.|_8uz.(9 Z), (267&)

ot Ot ot ot
[ x z \Px ‘IIZ X \Px z \PZ
5pP'SV:—fdt- (8u +8u).(8 +(9 )+2(6u 0 +8u6 )], (2.67b)

0z ox 0z ox 0x Ox 0z 0z

A ou ou oY oY,

S)LP'SV:—fdt- x 2 | == 1. 2.67
ox " 0z ox M 0z ( °)
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2. Methodology

2.3.2.1. Stress-velocity formulation

Since we solve the forward problem by a stress-velocity finite-difference scheme, it is more
practical to express the gradients in terms of velocity and stress instead of displacement. We
therefore use the first-order stress-velocity wave equations to eliminate the displacement
as suggested by Shipp and Singh (2002).

We obtain the following stress-velocity gradients for the SH waves:

spot = - f dt - vy - vy, (2.68a)

B

x 0 +c7 - 0,
st = f dt -~ il y), (2.68b)
pop

and for the P-SV waves:

spsY = - f dt - | }j of +of 0P, (2.69a)
B
5[1P SV _ fdt ' xz) n 1 ((O' +O— )(O' +6 " (O'Aljx_o-fz (O—)]cax JZ]'BZ )
4 (A + p)? pp ’
(2.69b)
Ap. (X +0f) (o8 +aB)
SAPSY = - f dt - 301 ) . (2.69¢)

Thereby the upper indices correspond to the forward (F) propagated incident wave field
or to the backward (B) propagated residual wave field, respectively.

2.3.2.2. Parameterization

For the derivation of the gradients we have chosen a model parameterization in terms
of the Lamé parameters and density, as proposed by Mora (1987). As a consequence,
we also derived the gradients for the Lamé parameters and the density. However, other
parameterizations can be resolved with less ambiguities between the individual parameter
classes. Especially a parameterization by seismic velocities and density shows less ambi-
guities (Kohn et al., 2012; Tarantola, 1986). Hence, we will parameterize the actual FWI
experiments by seismic velocities and density m = (p, vs, vp)’.

The relation between both parameterizations is (Lay and Wallace, 1995):

A+2-
,/ i vs—\[ o =p: (2.70)

A=p - (vh—2-05), pu=p v p=p. (2.71)

and vice versa:
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2.3. Full-Waveform Inversion

We derive the gradients for the seismic velocities and the density by using the chain rule
of derivatives (Butzer, 2015). We obtain for vp:

OF _OE 61 OE op  OE dp

- . 4 = — 2.72
dop 91 Oup  On Oup  Op Oup @72)
_y oF (2.73)
BREERC Y, '
for vs:
OE OE A OE u OE dp
_ =, = = =, = 7 2.74
dus A dus  op dus  Op dos (2.74)
4 OF +2 OF (2.75)
- — . U ¢+ — . U+ — .
and finally for p”:
OE OE 8L OE du OE dp
- . . —. 2.76
op " 04 oy an 9y ap op (276)
OF OE OF
=(v§—2'U§)-5+U§'a—u+a—p- (2.77)

Due to the change of parameterization, also the density gradient has changed.

2.3.2.3. Preconditioning

The calculation of the gradients is based on the forward and backward propagated wave
fields where the gradients are obtained by a cross-correlation of both wave fields. However,
the absolute wave amplitude decays with the distance R from the source by 1/VR, due to
geometrical spreading. Hence, the gradients would have high amplitudes in the vicinity
of the sources and receivers and comparatively small amplitudes in the faraway area.
Consequently, the model corrections would be concentrated in the area of high gradient
amplitude. To compensate this effect and to allow a smooth convergence we apply a
preconditioning to the gradients. In this thesis, we use two kinds of preconditioner: (1) A
local preconditioner and (2) a global preconditioner.

The first is a local preconditioner which damps the high amplitudes in the vicinity of the
sources. In order to do so, we apply a small-scale circular taper to the shot-wise gradients
at the location of the source. This taper is designed to set the amplitude at the source
position to zero and to gradually increase the amplitude to one within a few grid points.
Since we calculate the final gradient as a sum over all shot-wise gradients, we obtain the
gradient information at the tapered source position from the sources with shifted source
position.

The second is a global preconditioner which accounts for the effect of geometrical spreading.
For this purpose, we calculate an approximation to the diagonal elements of the Hessian.
This approximation is based on the sum of the amplitudes, u;, of the forward modelled
incident wave field at each grid point. The influence of the receivers is included by a
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geometrical estimation of the receivers Green's functions. The approximation for a single
shot reads (Plessix and Mulder, 2004; Wehner et al., 2015):

max __ min __ -1
Ha_l(xs,x) = |e+ f dt|u; (x5, X, 1) (asinh (u) — asinh (u))] , (2.78)
z

z

where x™¥ and x™" correspond to the maximum and minimum horizontal receiver
position for the source location x;, respectively. To stabilize the inversion of the expression
above, a water level, €, is added. This water level will be chosen experimentally and
will damp the preconditioner in areas where less or no waves propagate. We calculate
this preconditioner shot-wise and apply it normalized to the shot-wise gradients. The

preconditioned gradient for all shots can be obtained by:

ROEDY H O %) St (x,, x). (2.79)

shots |H(;l (XS’ X) |

We introduce a normalization of the preconditioner to prevent a change of the absolute
gradient amplitude. Our practical experience revealed, that a manipulation of the gradient
amplitude can influence the stability of the quasi-Newton L-BFGS method negatively.
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2.3. Full-Waveform Inversion

2.3.3. Hessian calculation: L-BFGS

In equation 2.33 we derived a second-order accurate Newton-method model update. To
carry out such a model update the Hessian matrix, which contains the second-order deriva-
tives of the objective function, have to be calculated. However, the memory requirements
and especially the calculation of the second-order derivatives can be cumbersome and
computational too expensive for large-scale optimization problems like the FWI. Thus,
instead of a full-Newton method we use a quasi-Newton method. Quasi-Newton methods
do not calculate the Hessian matrix explicit, instead they use an approximation of the
Hessian, which will be updated at each iteration. This approximation is obtained by
measuring the changes in gradients and models, which can be used to construct a model
of the objective function. In some cases quasi-Newton methods can be even more efficient
than full-Newton methods, since they do not require complex calculations of second-order
derivatives (Nocedal and Wright, 2006).

In this work, we use a limited-memory version of the quasi-Newton Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method, which is known as L-BFGS. The memory saving property
of the L-BFGS method is achieved by deriving the curative informations from only the n
most recent iterations. Thus, only for this n iterations the gradient differences:

Yk = VmE(m)g41 — Vi E(m)g, (2.80)
and the model differences:
SK = Mg41 — Mg, (2.81)

have to be kept in memory. Nocedal and Wright (2006), who give a detailed description of
the underlying theory, suggest that relative small values of n (<20) are sufficient. Moreover,
instead of calculating the Hessian explicitly, the L-BFGS method calculates the inverse
Hessian implicit at every iteration. The introduction of the short cut:

1

T
YK'SK

PK = R (2.82)
allows to perform the L-BFGS method by a simple two-loop recursion, which is shown in

algorithm 1. This L-BFGS algorithm returns directly the product of the inverse Hessian
with the gradient, as follows:

Amg = —Hg' - Viu E(m)g. (2.83)

To initiate the two-loop recursion the algorithm requires an initial guess to the Hessian,
Hj, . Nocedal and Wright (2006) proposed a scaled identity matrix, which estimates the
size of the true Hessian:

T
SK 1° Yk-1

HO = —
Y1T<_1 Yk

K

L (2.84)

This approximation effects that the model update obtained by the L-BFGS method is
scaled in physical units, therefore, it can be directly used to update the model. This is
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Algorithm 1: L-BFGS two-loop recursion (Nocedal and Wright, 2006)
q < va(m)K;

fori=K-1,K-2,...K—-ndo

a; — pi- SiT "q;

qesq-aiy;

end

r < Ho, - q;

fori=K-n,K-n+1,..,.K—1do
Bpiyl 1
r—r+s;(a—p);

end

stop with result r = H! - Vi E(m)x;

a significant advantage of the L-BFGS method compared to classical conjugate gradient
methods, which need a manual scaling of the model correction. Nonetheless, a more
accurate approximation to the initial Hessian would further enhance the performance of
the L-BFGS algorithm (Brossier, 2011).

To ensure that the obtained model correction points downbhill the objective function, the
so-called curvature condition has to be satisfied:

sty >0, (2.85)

which implies that the inverse Hessian is positive definite.
With the model correction, Amg, we can calculate the model, mg,1:

mg,; = mg + ag - Amg, (2.86)

where the step length, ak, is added to the Newton-method update in equation 2.33. An
appropriately scaled step length is necessary since the quasi-Newton L-BFGS method
underlies the curvature stability condition. This condition can be satisfied by a step length
that fulfills the Wolfe conditions, which are shown in section 2.3.3.2. We describe the line
search which we use to choose such a step length in section 2.3.3.3.

Since the L-BFGS algorithm rebuilds the objective function from the gradient and model
differences, it is required to reset the algorithm every time the objective function is
exchanged. For instance, if the frequency content of the seismic data is changed.

2.3.3.1. Multi-parameter L-BFGS

In the FWI a multi-parameter inversion has to be performed, where parameter classes,
like density and the shear-wave velocity, with different physical units and different orders
of magnitude have to be updated. This would mean that each parameter class requires
an own L-BFGS algorithm. As a consequence, it would not be possible to approximate
non-diagonal elements of the Hessian, which could reduce trade-off effects between the
parameter classes. To overcome this limitation, Brossier (2011) suggests to perform only
one dimensionless L-BFGS algorithm by using normalized parameter classes. Thereby,
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2.3. Full-Waveform Inversion

each parameter class, m/ (where j = {p, vp, vs}), will be normalized by a representative
value, m/°. In this work, we use the arithmetic mean value for this normalization.
In the following, we denote the gradients of the objective function as d1h, whereas the
actual model correction is denoted as Am. The normalized parameters are labeled by an
over line. The normalized model reads:
o oom/
m=—. (2.87)
mjo
To normalize the gradient of each parameter class we use the chain rule of derivation:
—j  OE OE -
sm = — = — .. (2.88)
om’ O

However, a normalized L-BFGS method will result in a normalized model correction.
Therefore, the obtained model correction has to be denormalized:

Am/ = Amv - m’°. (2.89)

This approach has the advantage that it allows to reduce the trade-offs between different
parameter classes, because of the implicit estimation of non-diagonal elements of the
Hessian. The complete algorithm of the multi-parameter L-BFGS method is presented in
algorithm 2. This algorithm shows the procedure, which is required to calculate a model
correction at iteration K with a L-BFGS method that uses the last n model and gradient
differences. The shown algorithm works from the second iteration on, due to the fact that
it requires an initial set of differences. Therefore, it is necessary to carry out a classical
steppest descent update in the first iteration, where a parabolic line search can be used to
estimate a step length (Nocedal and Wright, 2006).

2.3.3.2. Wolfe conditions

In order to ensure that the model correction obtained by the quasi-Newton L-BFGS method
will point downbhill the objective function, the inverse Hessian has to be positive definite.
This can be ensured by a step length, , which satisfies the Wolfe conditions (Nocedal and
Wright, 2006). The first Wolfe condition is called sufficient decrease condition and reads:

E(m+a-Am) < E(m) +c¢; - a - VyE(m)T - Am, (2.90)

where ¢; € (0,1) is a constant. This condition requires that the new misfit lies below
the straight line defined by the right hand side of the equation above. The second Wolfe
condition is called curvature condition and reads:

VmE(m + - Am)" - Am > ¢, - ViuE(m)! - Am, (2.91)

where 0 < ¢; < ¢; < 1. This condition rules out to small reductions of the objective
function. In contrast, the first Wolfe condition accepts every reduction of the objective
function. Nocedal and Wright (2006) suggest to choose ¢; = 10™* and ¢; = 0.9 for the
quasi-Newton L-BFGS method.
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2. Methodology

Algorithm 2: Multi-parameter L-BFGS at iteration K (modified after Brossier (2011))

input gradients and models;
if K>n then
| Discard the vector pair (yx_,_1>Sk—n-1)
end
if K>1then
for j = {p,vp,vs} do

K-1

Store normalized model differences sx_; = m% -m’ ) /m’%;
Sty — oy ) /m/;

Store normalized gradient differences y;_; = (
end
end
Compute normalized model correction Am with algorithm 1;
for j = {p,vp,vs} do
‘ Denormalize model correction Am = Am - m’°;
end
Search appropriate step length ax with algorithm 3;
stop with final model correction ax - Am;

2.3.3.3. Linesearch

The step length search for the L-BFGS method is initiated with a step length of & = 1, due
to this step length fulfills the Wolfe conditions in most cases (Nocedal and Wright, 2006).
In case that the step length of the previous iteration fulfills the Wolfe conditions, this step
length will be retried. However, if it does not fulfill the Wolfe conditions, a line search
algorithm is called. In algorithm 3 we show such a line search, which is based on the
SEISCOPE OPTIMIZATION TOOLBOX. This algorithm is called until an appropriate step
length is found. Nevertheless, in order to save calculation time, the L-BFGS updated will
be skipped, if after a certain number of step length searches no step length could be found
that satisfies the Wolfe conditions. Than a steppest descent update will be carried out,
where the step length is estimated by a parabolic fit. In such a case the L-BFGS algorithm
has to be reseted, because its stability is not ensured. It is important to mention, that every
time the Wolfe conditions are checked the full gradient for the current test step length has
to be calculated at the cost of two forward runs per source position.

2.3.4. Multi-stage approach

To make the full-waveform inversion more robust against local minima and to allow for a
smooth convergence we use a multi-stage approach. The multi-stage approach divides the
inversion process in different stages that are performed successively. A specific stage can
refer, for instance, to a certain amount of data or to a specific parameter class that will be
updated.

The amount of data that is fitted by the FWI can be controlled, for example, by a band-
pass frequency filter or an offset based spatial filter. Thereby, the frequency filtering
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2.3. Full-Waveform Inversion

Algorithm 3: Line search (SEISCOPE OPTIMIZATION TOOLBOX Manual)

Initialize oy, and amax to 0 and «a to 1;
while a do not satisfy the Wolfe conditions do
if the first condition is not satisfied then
Omax = &;

o = 0.5 (Omin + Amax);

continue;

end

if the second condition is not satisfied then
Omin = &;

if agy =0thena =10 - a;

if apae # 0 then @ = 0.5 - (Amin + Fmax);
continue;

end

end
stop with step length « that satisfy the Wolfe conditions;

is of particular importance to allow for a smooth convergence. Since the wave lengths
correlate to frequencies contained in the dataset, it is possible to use a frequency filter to
control the wave lengths that are considered in the inversion. Moreover, the frequency
content highly influences the shape of the objective function. In figure 2.3 we show an
objective function for five different frequency ranges. From the top to the bottom the
frequency content contained in the dataset is lowered. With decreasing frequency content
the objective function becomes smoother and the number of local minima decreases
significantly. Hence, it will become less likely that the FWI end in a local minimum far
away from the global minimum.

To avoid trade-offs and cross-talk between different parameter classes, we also apply the
multi-stage approach to the multi-parameter inversion itself. Cross-talk and trade-offs
describe the effect that an anomaly which is present in only one parameter class, will be
foot-printed into other parameter classes during the inversion. This is possible, due to the
ambiguity of the inverse problem, where trade-offs between parameters can explain the
dataset equally accurately. A well proven concept to reduce such effects is to successively
start the update of each individual parameter class. To the beginning of the inversion
only the parameter class is updated, which the waves have the highest sensitivity to, for
instance, the S-wave velocity in the case of surface waves. After some progress in terms
of misfit reduction, the second most sensitive parameter is updated as well and finally a
full multi-parameter inversion can be used. This allows on the on hand to avoid cross-talk
and on the other hand can speed-up the convergence. Kéhn et al. (2012) give a detailed
analysis of cross-talk effects and strategies to reduce them.

We realize the multi-stage approach within the FWI algorithm by an automatic workflow
implementation. The workflow defines the different inversion stages which divide the
inversion process. Each workflow stage is applied to the inversion until an automatic
abort criterion (AC) for this individual stage is reached. As criterion we use the reduction
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of the objective function from the second last to the current iteration. The abort criterion
for iteration K can be formulated by an inequality as follows:

(2.92)

Ex—s—E
ACk(in %) > (M)

Ex_»

where the workflow stage will be switched in the case the inequality is fulfilled. By this
criterion we can ensure that the inversion makes enough progress in terms of misfit
reduction within a workflow stage, otherwise the algorithm switches to the next inversion
stage. Thereby it can be more efficient to switch to a new workflow stage early, than to
invest a lot of iterations to find the exact location of the local minimum within the current
workflow stage. This is comparable to the reason that inaccurate line searches can be more
efficient than accurate ones, since it is faster to go in a new direction than searching for
the exact minimum along a given direction (Nocedal and Wright, 2006).

— —— —— —

Figure 2.3.: Objective function for different scale lengths. The scale length increases from
the top to the bottom. Source: Bunks et al. (1995).
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2.4. Simultaneous Joint Inversion

In two dimensions the propagation of the P-SV and the SH waves is described by two
independent wave equations, thus, the forward as well as the inverse problem of both
wave types is decoupled. As a consequence, a manual coupling has to be applied to both
individual inversions, which we refer to as joint approach, in order to carry out a joint
inversion of both wave types. We call the joint inversion a simultaneous joint inversion,
since we will invert the information content of both wave types at the same time in a
single inversion. The aim of the joint inversion is to improve the final inversion result and
to decrease the vulnerability to local minima and to ambiguities by making use of more
information. The joint inversion allows to consider the full information content exploited
in a 2-D seismic measurement, since the full 2-D three-component seismic dataset can be
inverted simultaneously. This allows a significant increase of the wave coverage in the
subsurface, hence, the joint dataset contains redundant information on the subsurface,
which will improve the reliability of the inversion result. The first step to couple both
individual wave type inversions is to bound both to one single parameter model, because
the joint inversion should reveal a single parameter model that accounts for both datasets.
Second, we have to merge both individual objective functions, in order to measure the
total fit of the synthetic data to the observed data. Moreover, to combine the model update
of both individual inversions, we have to apply a joint approach to the gradients of both
inversions, since the P-SV as well as the SH inversion are sensitive to the S-wave velocity
and to the density. The SH waves are not sensitive the P-wave velocity, we therefore do
not apply a joint approach to the update of the P-wave velocity.

In the following, we introduce the joint approach to combine the objective functions and
the gradients of both individual wave type inversions.

2.4.1. Joint objective function

To obtain a single measure of the fit between the synthetic and the observed data for
the P-SV as well as for the SH waves, we have to combine both individual objective
functions. The objective function introduced in equation 2.28 describes the residual energy
that cannot be explained by the current synthetic model. However, this definition is not
practical for the combination of both inversions, since both could contain a different
amount of energy, which does not necessarily correspondent to the information quantity
included or to the reliability of the specific dataset.

We therefore weight the residual energy with the energy of the observed data:

1 AdT-Ad
E,(m)=—-  ——.

= - 2.93
2 des ’ dObS ( )

This weighted objective function is defined as ratio between the residual energy and the
energy of the observed dataset. A ratio of one would indicate that the residual energy is
as big as the energy in the observed dataset.

In general, our joint approach is not restricted to this specific kind of weighting. A
normalization of each objective function with its initial value at the beginning of a new
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inversion stage is also possible. In our research the energy based weighting is used, since
it seems more intuitive to us.

Since both wave types should be weighted equally, we use a simple addition of both
weighted objective functions to calculate the joint objective function:

FONT(m) = E>V(m) + ESH(m). (2.94)

In the joint inversion this joint objective function is used for the steering through the
parameter space. Furthermore, the quasi-Newton L-BFGS method will approximate the
Hessian implicitly based on this objective function.

2.4.2. Joint gradients

Both individual wave type inversions are sensitive to the S-wave velocity as well as to
the density. Consequently, both return gradients for these two parameter classes, which
have to be combined for the sake of a joint inversion. This combination is not as simple as
the coupling of the objective functions, due to the lack of an intuitive normalization. The
amplitude of a gradient depends on the slope of the objective function, since a gradient is
the derivative of an objective function. This means in our case that both gradients would
only have a similar amplitude, if both objective functions hold a similar slope. However,
this is not necessarily fulfilled since both inversions have their own objective function.
We therefore propose a normalized addition of both gradients that is followed by a scaling
with the sum of the used normalization factors. We choose the maximum absolute gradient
amplitude as normalization factor, respectively. The joint gradient reads:

5eESV sgH

& +
max(|5g">V])  max(|6g

5§,JOINT = . (max (|5§P'SV|) + max (|5§SH|)) , (2.95)

SHl)

where §g = {5p or §vs}.

Since the SH waves are not sensitive to the P-wave velocity, we do not calculate a joint
gradient for this parameter. This joint gradient approach weights both gradients equally
and preserves their amplitude information. The latter is important to provide the amplitude
information to the L-BFGS algorithm, which relies on the evaluation of the gradient differ-
ences. In the case of a purely gradient-based inversion, like steppest descent, a normalized
addition is sufficient since mostly the gradient amplitude is not further evaluated.
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2.5. Summary

In this chapter, we presented the process of the full-waveform inversion as a whole. The
inversion is iterative, this means, model updates are calculated with respect to the previous
model. Therefore, it is sufficient to describe the procedure of one iteration, since the
same procedure is repeated in all iterations. In figure 2.4 we illustrate the tasks that the
algorithm carries out in the K-th iteration .

The first step in each iteration is to call the automatic workflow implementation. This
implementation controls the configuration of the inversion by applying the workflow. The
workflow divides the inversion into separate stages and allows for a multi-stage inversion.
A stage can refer, for example, to a certain frequency filter or to an offset based trace
filter. The workflow implementation uses an automatic abort criterion to switch to new
workflow stages, each time this criterion is fulfilled. The criterion is based on the evolution
of the objective function. The multi-stage strategy is essential to mitigate local minima of
the objective function.

After the workflow is applied, the inversion algorithm enters the main part. The main
part consists of two independent inversion engines (grey boxes). The first inversion
engine is the P-SV wave engine, which can invert the vertical, d,, and the horizontal inline
displacement component, d,. The other inversion engine is the SH wave engine, which can
invert the horizontal crossline displacement component, d,.. To invert the full-waveforms
each engine uses the classical adjoint state method. This method allows to calculate the
gradients of the objective function by two forward simulations. First, a forward modelling
is done based on the current synthetic model, where the calculated wave field is stored
in order to be used in the gradient calculation. After the forward modelling, the data
residuals and the data misfit are calculated. The data residuals are then back-propagated
from the receiver positions. During this back propagation the gradients can be calculated
as zero-lag cross-correlation between the stored forward propagated incident wave field
and the back-propagated residual wave field. Each engine returns a data misfit and a
gradient for each parameter class it is sensitive to.

After the gradients are obtained, the algorithm allows for preconditioning of the gradients
in order to speed-up the convergence and to avoid local minima.

In the case of an individual wave type inversion, the algorithm executes only one of both
engines and in the case of a simultaneous joint inversion it executes both engines in
parallel. The joint inversion allows a full multi-component and multi-parameter inversion.
However, in case of a joint inversion the gradients and the objective function of both
individual inversions have to be combined. For this combination the algorithm calls the
joint approach.

Afterwards, the quasi-Newton L-BFGS method is used to calculate the model correction. A
line search determines a step length that fulfills the Wolfe conditions, in order to ensure the
stability of the L-BFGS algorithm. Finally, the algorithm calculates the model at iteration
K + 1 by the step length and the model correction.

This process is repeated iteratively until the inversion converges to a solution. As conver-
gence criterion the reduction of the objective function is used. In the case the inversion
algorithm is not able to reduce the objective function in two following iterations more than
a given value, it is assumed that the inversion reached convergence to a local solution.
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Model (vp, vs, p) at iteration K
-

Inversion
Workflow stage n

Model (vp, vs, p) at iteration K+1

Figure 2.4.: Flow chart of the FWI algorithm to obtain a model correction for a single
iteration. The blue box corresponds to the inversion part, which is performed
for a certain workflow stage n.
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3. Synthetic FWI experiments

In this chapter, we perform synthetic reconstruction tests to explore the properties of
the individual and the joint 2-D elastic full-waveform inversion of Rayleigh and Love
waves. For these reconstruction tests we assume a true subsurface model which we then
use to generate pseudo-observed seismograms. The knowledge of this model allows us
to directly study the reconstruction ability of the FWI by comparing the true model to
the reconstructed models. In preparation of the field measurements (chapter 4), we use a
subsurface model that simulates the expected model at the test site. So far several Rayleigh
wave FWI studies have been carried out on the same test site which allow us to derive the
subsurface model. In this synthetic study, we perform an individual Love wave FWI, an
individual Rayleigh wave FWI and a simultaneous joint FWI of both wave types.

The structure of this chapter is as follows: First, we introduce the test setting, the assumed
true subsurface model and the initial model for the reconstruction tests. Second, we present
the inversion results of the three FWI studies: (a) Individual Love wave FWI, (b) individual
Rayleigh wave FWI and (c) simultaneous joint FWI. We then perform a direct comparison
of the inversion results. In a case study, we research the influence of the initial P-wave
velocity model. Finally, we summarize the main results of the synthetic experiments.

3.1. Setting

In this section, we introduce the subsurface model, the acquisition geometry and the FWI
workflow, which we will use in the synthetic reconstruction experiments. We choose
the test setting to be close to the field measurements, in order to obtain relevant infor-
mation which will be required in chapter 4, where we will present the application of our
methodology to a near-surface field dataset.

3.1.1. True and initial models

To study the reconstruction properties of the three FWI schemes, we need to assume a true
subsurface model. In preparation of the field measurements we choose the synthetic model
to be close to the subsurface model at the desired test site. The location of the test site is
on a glider airfield in Rheinstetten near Karlsruhe (Germany). We obtain the subsurface
model for this location from previous Rayleigh wave FWI studies (Groos, 2013; Groos et al.,
2014; Binnig, 2015). Their inversion results suggest a predominantly depth dependent 1-D
background model, which is superimposed by a shallow small-scale low-velocity trench.
For simplicity, we assume a purely elastic subsurface in our synthetic experiments.

In order to draw conclusions about the resolution in each individual parameter class as well
as to explore trade-off and cross-talk effects between them, we shift the horizontal location
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of the trench in each parameter class. In vs, we place the trench in the middle of the model
space. In vp, we shift the trench by 5m to the right and in p by 5m to the left, relative
to the vs trench respectively. We hold the horizontal displacement between the three
parameter class small to ensure a similar wave coverage for all three anomalies. We show
the assumed true subsurface model in figure 3.1 (left) and present depth profiles across the
three elastic parameters in figure 3.2. The model has a size of 60 m in the horizontal and
of 16 m in vertical direction. In a depth of 6.3 m, we assume a water table where all elastic
parameters contain a sharp contrast. Below the water table, all three elastic parameters
are homogeneous. Above the water table, the background model consists of a gradient
model for vs and of a homogeneous layer for vp and p. The gradient in vs is steep in the
uppermost part and becomes weaker in a depth of 1 m. The trench has a triangular shape
and a length of 10 m at the surface. The lower edge of the trench lies in a depth of 3.5 m.
The maximum anomaly of the trench with respect to the background model is 55% in vs,
28% in vp and 12% in p.

In figure 3.1 (right) we present the initial model for the inversion and in figure 3.2 the
corresponding depth profiles. The initial models of vs and p consist of linear gradient
models up to a depth of 9m. Below 9m the initial models of this two parameters are
identical to the true models. In contrast to the initial models of vs and p, we use a high
amount of a priori information for the initial vp model, where we use the true background
model as initial model. We thereby assume, that a simple two-layer vp model like in this
synthetic test could be obtained in a field measurement in a similar quality, for instance
by a P-wave travel time analysis.

3.1.2. Acquisition geometry

For the seismic acquisition we use 48 multi-component receivers. We distribute them along
the model surface with an equidistant spacing of 1 m. We place each receiver one grid point
below the free surface to ensure an accurate amplitude scaling (Groos, 2013). In case of the
P-SV simulations the receivers record the vertical, v,, velocity component and in case of the
SH simulations they record the horizontal crossline, v, velocity component. The orientation
of the components can be identified in figure 2.1, where the profile lies on the x-axis. We
distribute the sources along the surface as well, where we place them in the same depth as
the receivers. We set the equidistant spacing of the sources to 2 m. For the P-SV simulations
the source is a vertical force and for the SH simulations the source is a horizontal force in
the crossline direction. These source types correspond to vertical and horizontal hammer
blows in field measurements. As a source signal, s(¢), we choose a cubed sine:

s(t) = sin(fy - 7 - t)?, (3.1)

where fj is the dominant frequency. We set the dominant frequency to 30 Hz, which gener-
ates frequencies between 0 and 60 Hz. We show the used source signal in the time-domain
as well as in the frequency-domain in figure 3.3. In figure 3.1 we illustrate the positions of
the 24 sources by yellow stars and of the receivers by red points. The configuration of the
acquisition geometry of our synthetic experiments is identical to our field measurements.
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Figure 3.1.: True subsurface model for vs, vp and p used in the synthetic FWI experiments
(left). Initial model for the inversion (right). The yellow stars indicate the
source positions and the red points the receiver positions. Depth profiles for
the dotted and dashed lines are shown in figure 3.2.

S-Wave velocity P-Wave velocity Density
in m/s in m/s in Kg/m3
0 100 200 300 O 500 1000 1500 2000 1600 1800 2000
0 L L N L L L L L L
2 4
4 4
E 61
£
c 84
g
A 101
12 1
14 -
16

‘— Initial (X = 10 m)——True (Trench positions) —— True (X =10 m)‘

Figure 3.2.: Depth profiles of the elastic parameter vs, vp and p for the true model and for
the initial model, as indicated in figure 3.1. At depths, where graphs are not
visible, they are identical to the yellow graph.
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Figure 3.3.: Cubed sine with a main frequency of 30 Hz, which is used as source signal
in the synthetic FWI experiments. The upper figure correspondents to the
time-domain and the lower one to the frequency-domain.
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Figure 3.4.: Amplitude spectra of the pseudo-observed seismograms. The spectrum of the
P-SV waves is shown in red and of the SH waves in blue. The shown spectra
are the average of the spectra of the normalized traces.
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3.1.3. Pseudo-observed data

We generate the pseudo-observed dataset based on the assumed true subsurface model
and the shown acquisition geometry. For the simulation of these data we use the build-in
finite-difference forward solver of the used FWI software code (section 3.1.4). For the
finite-difference modelling, we discretize the model on an equidistant grid with a spacing
of 0.125 m. On the top of the model space we apply a free surface and at the bottom as
well as on the lateral boundaries we assume a C-PML boundary (section 2.2.2). We set the
temporal sampling to 2 - 10~ s and the total recording time to 0.8 s. A detailed description
of the parameters used for the forward-modelling can be found in appendix A in table A.1.
In figure 3.5 we show an exemplary shot-gather for the P-SV velocity component v, as
well as for the SH component v,. The corresponding source position for the shown shot-
gather lies at the profile coordinate of 6.5 m (figure 3.1). We normalized the seismograms
trace-wise and low-pass filtered them to 60 Hz, since no higher frequencies are used in
the reconstruction experiments. In addition, we applied a 4 Hz high-pass filter, in order to
simulate the response of geophones with an eigenfrequency of approximately 4.5 Hz. The
P-SV seismogram, v,, consists mainly of the Rayleigh surface wave. The Rayleigh wave
carries most of the seismic energy and is by far the most dominant signal in this recording.
P-wave onsets are visible, but they have smaller amplitude compared to the Rayleigh wave.
The SH seismogram, v,, shows no P-wave onset, which is obvious since only SH waves are
propagated in SH simulations. Nevertheless, the v, seismogram is dominated by surface
waves as well, which we identify as Love waves. At an offset of about 25 m the influence
of the low-velocity trench is visible in both recordings. At this offset, the wave fields are
scattered and seismic energy is reflected backwards. In figure 3.4 we present the amplitude
spectra of the frequency filtered seismograms. The spectra contain frequencies higher
than 60 Hz, due to the cut-off frequency of the fourth-order Butterworth low-pass filter is
not sharp. The frequency content of both recordings shows no significant difference.

3.1.4. FWI setup

For the synthetic reconstruction tests we use the FWI software code IFOS (Inversion of
Full Observed Seismograms), which is based on the FWI code of Kohn (2011). IFOS is
maintained by the Geophysical Institute of the Karlsruhe Institute of Technology and is
available freely under the GNU license on opentoast.de. This software code provides
a time-domain finite-difference method for the forward modelling during the inversion,
which we configure identical as for the simulation of the pseudo-observed dataset (see
table A.1). For the gradient calculation the FWI software uses the classical adjoint state
method. To obtain the actual model update we use a normalized multi-parameter L-BFGS
method. Thereby the model and gradient differences of the last 20 iterations are used to
estimate the curative information of the objective function. We assume the source wavelet
to be a priori known, hence, we use the same wavelet in the inversion as for the generation
of the pseudo-observed seismograms.

As objective function we use the weighted L,-error (equation 2.93) between the normalized
synthetic seismograms and the normalized pseudo-observed seismograms. We apply the
normalization trace-wise, in oder to be consistent with the field data inversions and also to
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Figure 3.5.: Trace-wise normalized shot-gather of the pseudo-observed seismic data. The
corresponding source is located at the profile coordinate of 6.5 m. The seismo-
grams are band-pass filtered between 4 and 60 Hz, representing the frequency
range used in the FWI.
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be able to account for uncertainties and differences in the coupling of individual geophones
to the ground (Maurer et al., 2012). In the P-SV case, we calculate the objective function
for the vertical displacement component and in the SH case for the horizontal crossline
displacement component. We obtain the displacement seismograms from the recorded
velocity seismograms by numerical integration.

To precondition the shot-wise gradients we apply circular source tapers, which decay
within 5 grid points from a value of one to zero at the actual source position, where zero
refers to absolute damping. Moreover, we use the approximation of the diagonal elements
of the Hessian (equation 2.78) as a preconditioner for the gradient. We set the water level,
€, empirically to 5 - 1072 for the SH waves and to 5 - 1072 for the P-SV waves. We apply this
approximation empirically iteration-wise to the SH gradients and shot-wise to the P-SV
gradients. In addition, the gradients become smoothed with a 2-D median filter, which
has a size of 50 cm (4 grid points). To ensure stability of the forward solver as well as to
obtain a physical meaningful elastic parameter model, we force a minimum vp/vs ratio of
1.2 during the inversion by increasing the P-wave velocity, if necessary.

We control the multi-stage inversion process by an automatic workflow implementation.
We use this workflow implementation to increase the frequency content of the dataset
gradually from 4 to 60 Hz, by increasing the corner frequency, LC, of a fourth-order
Butterworth low-pass filter. Moreover, we apply a successive update strategy to the multi-
parameter inversion by the workflow implementation. In the first iterations we only
allow updates of vs, until the automatic abort criterion, AC, (equation 2.92) is reached.
Afterwards, in case of the individual P-SV as well as of the joint inversion we update vs and
vp simultaneously, again until the automatic abort criterion is reached and finally we use
a full multi-parameter inversion. We decide to use this successive update of the parameter
classes to account for the different sensitivities of the surface waves to the individual
elastic parameters. Their propagation is mainly influenced by the S-wave velocity. We
divide the workflow in eight separate stages, which we describe in table 3.1. We force the
algorithm to carry out at least three iterations at the beginning of each workflow stage.
However, in the case that the step length estimation fails, the algorithm directly switches
to the next stage.

Table 3.1.: Workflow used in the synthetic FWI experiments. Each stage is applied to the
inversion until the automatic abort criterion AC is reached. The update columns
indicate which of the specific elastic parameter is updated (yes=1) or not (no=0).
LP represents the corner frequency of the low-pass frequency filter.

Stage | Update |LPinHz ACin%
s vp P
1 1 0 0 10 20
2 1 1 0 10 10
3 1 1 1 10 1
4 1 1 1 20 1
5 1 1 1 30 1
6 1 1 1 40 1
7 1 1 1 50 1
8 1 1 1 60 0.5
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3.2. Results

In the following, we discuss the result of each reconstruction experiment individually.
Afterwards, we make a direct comparison. We present the result for the individual Love
wave FWI in figure 3.7, for the individual Rayleigh wave FWI in figure 3.8 and for the
simultaneous joint FWI in figure 3.9. We use the same form of presentation for all three
figures. In figure 3.10 we show a direct comparison of the final reconstructed models,
where we focus on an area around the trench. Finally, we present horizontal and vertical
profiles across the true and final models in figure 3.11.

3.2.1. Individual Love wave FWI

The individual Love wave FWI reconstructed the vs model successfully by recovering the
low-velocity trench sharply and in full extension. At the depth of 6.3 m, the water table
is smoothly visible. The SH waves are not sensitive to the P-wave velocity, thus, the vp
model is not updated. The reconstruction of the p model is surprisingly well, especially
if we consider that we use trace-wise normalized seismograms to calculate the objective
function and the fact that the impact of density is mainly to the absolute wave amplitude
as a function of offset. Nonetheless, the Love wave FWI reconstructed the trench in the p
model satisfactorily in both its size and value, but the contour of the trench is less sharp
compared to the vs model. The water table is not sharply restored in the p model. As a
result of a cross-talk by vg, the reconstructed p model shows a footprint of the vg anomaly.
Especially the outline of the vs anomaly is clearly visible within the p model, since the
density values are decreased there (see figure 3.11). The anomaly in the p model is not
visible in the reconstructed vs model, which indicates that the individual Love wave FWI
could restore the vs model with less ambiguity than the p model, due to a higher sensitivity
of the Love wave to vs than to p.

The fit of the final synthetic seismograms (red) to the the observed seismograms (black) is
very well at all offsets and times. A remaining residual between the synthetic and observed
seismograms is only hardly visible. The decrease in the objective function is smooth and
in total the inversion reduced the misfit by four orders of magnitude, as shown in figure
3.6. At each new workflow stage the algorithm increases the frequency content and the
objective function increases as well, due to the fact that more information is considered
for the residual calculation.

To sum up, the individual Love wave FWI reconstructed the vs and p model successfully.
However, the p model suffers from a footprint of the trench located in the vs model.

3.2.2. Individual Rayleigh wave FWI

The individual Rayleigh wave FWI revealed the trench in the vs model accurately, where
both its velocity value and shape are correct. In a depth of 6.3 m, the inversion imaged
the water table sharply. Thereby it is likely that the Rayleigh wave FWI benefits from the
sharp water table included in the initial vp model (see figure 3.2). Nevertheless, the vg
model suffers from small-scale artifacts that are present inside the trench and especially
to the right side of it. The reconstruction of the trench in the vp model is satisfactorily.
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The contour is not clearly visible and vertically orientated artifacts are observed inside the
trench. These artifacts could be caused due to wrong P-wave velocities in combination
with receiver related artifacts, since they occur directly underneath the receiver positions
at areas with wrong P-wave velocities and not where the initial model contains the true
velocity. We observed similar artifacts in the case study on the influence of an inaccurate
initial vp model, which we will present in section 3.3. The artifacts within the vp trench
correspond to the artifacts in the vs model, where the vs model suffers from a cross-talk
by vp. This cross-talk is especially visible in figure 3.11. The vp model itself suffers from a
slight footprint of the vs trench. In general, we expect the resolution in the vp model to be
lower compared to the vs model, due to the longer wavelengths of the P-waves than of the
S-waves. The reconstructed p model matches the true model satisfactorily. The inversion
recovered the shape of the trench in the p model sufficiently, but reproduced the density
value slightly higher than its actual value. Moreover, small-scale artifacts are present in
the p model at the position of the v and vp trench, most likely caused by a cross-talk.
The water table is visible as a sharp contrast, where the Rayleigh wave FWI could again
benefit from the initial vp model.

The fit of the synthetic seismograms to the pseudo-observed seismograms is very well,
since the residuals are nearly vanished. In figure 3.6 we show the evolution of the objective
function. The inversion decreased the misfit smoothly in each frequency stage and reduced
the objective function in total by four orders of magnitude.

To sum up, the individual Rayleigh wave FWI reconstructed the trench in the vs and the
p model successfully. However, the inversion did not recover the trench in the vp model
accurately enough. The p model as well as the vp model suffer from a cross-talk by wvs,
while the vs model shows a cross-talk by vp.

3.2.3. Simultaneous joint FWI

The simultaneous joint FWI reconstructed the trench in the vg model very well in terms
of shape and velocity values. The inversion imaged the water level sharply, where it could
benefit from the sharp contrast included in the initial vp model. There are no cross-talk
effects of the vp or the p model visible in the vs model. The reconstruction of the trench
in the vp model is acceptable, although the outline of the trench is not as sharp as in
the case of the vs model. The final vp model as well as the p model suffer from a light
footprint of the vg trench. Besides this cross-talk effect, the inversion recovered the p
model successfully in its shape and value. The reconstructed trench is sharp and the
density values matches the true value. The water table is sharply visible in the p model,
where a positive influence from the initial vp model is most likely.

The joint FWI fitted the P-SV seismograms as well as the SH seismograms to the pseudo-
observed seismograms without significant residuals. The joint objective function could be
reduced by four orders of magnitude, as shown in figure 3.6. Compared to the individual
wave type inversions the joint FWI was able to reduce the individual objective functions of
the Love and the Rayleigh wave inversion even further. More precisely, in the last iteration
the absolute misfit value of the P-SV and the SH waves is lower in the case of the joint FWI
than in the case of the individual wave type inversions. However, since we calculated the
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3. Synthetic FWI experiments

joint objective function as a sum of both individual misfits, the total joint objective function
shown in figure 3.6 is higher than both individual ones, since it is the sum of both.

To summarize, the simultaneous joint FWI of Rayleigh and Love wave reconstructed
successfully the trench in all three elastic parameters. The joint FWI reduced the individual
objective functions even further than the individual wave type inversion. The vp model as
well as the p model suffer from a light footprint of the vs trench.

100} —Love FWI | |
— Rayleigh FWI 1
Joint FWI ]
_ 10 E
(@)
v
8107 3
©
2
S 43
‘D 10 3
=
10™ E
10-5 | | | | | | | |
0 50 100 150 200 250 300 350 400

# lteration

Figure 3.6.: Evolution of the Ly-error during the synthetic Love wave FWI, Rayleigh wave
FWI and simultaneous joint FWI over the iterations. The Lj-error is weighted
with the energy of the observed data. The sharp misfit jumps correspond to an
increase of the low-pass corner frequency LP (see workflow table 3.1).
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3. Synthetic FWI experiments

3.2.4. Comparison

After the individual interpretation of the inversion results we compare them now directly.
Figure 3.10 shows the final models column-wise side by side. We thereby focus on a
sub volume of the full model representing the area around the trench. Moreover, figure
3.11 shows the horizontal and vertical profiles, whose positions are indicated by figure 3.10.

S-wave velocity vs:

Both the individual wave type inversions as well as the simultaneous joint inversion
reconstructed the trench in the vs model accurately in its shape and value. However, the
individual Rayleigh wave FWI suffers from small-scale artifacts inside the trench and
especially to the right of the trench, where a cross-talk by vp caused the latter artifacts.
This cross-talk is not present in the result of the joint FWI. The individual Love wave
FWI does not show any artifacts in the vs model as well. Moreover, all three inversions
recovered the water table. The individual Rayleigh wave FWI and the joint FWI could
benefit from the sharp water table that is included in the initial vp model.

P-wave velocity vp:

The individual Rayleigh wave FWI and the joint FWI reconstructed the trench in the vp
model with lower resolution compared to the other parameter classes, even though we
used the true background model as the initial model. The individual Rayleigh wave FWI
reconstructed the contour of the trench blurred and suffers from strong artifacts inside the
trench. The joint FWI recovered the trench without artifacts in a smoothed kind. However,
since we did not apply a joint approach to vp, the improvement of the vp model in the case
of the joint FWI is most likely a result of the joint regularization of vs and p. Nevertheless,
both the individual Rayleigh and the joint FWI suffer from a footprint of the vs trench.
The individual Love wave FWI is not sensitive to P-wave velocities and therefore in this
case we did not update the vp model in this case.

Density p:

The reconstructed p model of all three inversions suffers from a footprint of the vg trench.
Nevertheless, all of them reconstructed the trench in an acceptable level. This is surprising,
since we used trace-wise normalized seismograms for the calculation of the objective
function and the fact that the influence of density is mainly to the absolute wave amplitude
as a function of offset. The contour of the trench in the joint FWI result is sharper than for
both individual wave type inversions. Additionally, the result of the joint FWI matches the
true density value best and shows significant less cross-talk by vs and vp as the results of
the other two inversions. The final p model of the individual Love wave FWI suffers from a
strong footprint of the vs trench and the individual Rayleigh wave FWI shows small-scale
artifacts in the p model at the positions of the trench in vg and vp. All inversions recovered
the water level successful. The individual Rayleigh wave FWI and the joint FWI could
benefit thereby from the initial vp model.
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models at the location of the trench positions (right), as indicated in figure
3.10. The elastic parameters vs, vp and p are shown row-wise from top to
bottom, respectively.



3.3. Case study: Influence of the initial P-wave velocity

3.3. Case study: Influence of the initial P-wave velocity

In this case study, we investigate the influence of the initial P-wave velocity model. In the
synthetic experiments presented above we use the true vp background model as initial
model, because we assumed that a P-wave travel time analysis could provide an initial
model of similar quality. In this test we do not follow this assumption and instead we use
a simple gradient model as initial vp model.

Problem and previous work:

In a previous study, we found that the initial vp model highly influences the individual
Rayleigh wave FWI and the simultaneous joint FWI (partly published in Wittkamp and
Bohlen (2016)). In that study a similar configuration as in this work was used. However,
only frequencies up to 20 Hz were considered and a different acquisition geometry was
used. That study revealed that an unsuitable initial vp model could lead to strong vertically
orientated artifacts underneath the source positions in both the vs model and the p model.
Similar artifacts were also observed by Groos (2013). The individual Love wave FWI
did not suffer from such artifacts, since it is not affected by vp. The artifacts were most
likely caused by the high amplitudes and the focused radiation pattern of the Rayleigh
waves (Kahler and Meissner, 1983). Wrong P-wave velocities in the vicinity of the sources
enhanced the artifacts in the gradients of vs and p even more. The usage of the true vp as
initial model mitigated these artifacts significantly. We observed the influence of the initial
vp model to the overall convergence behavior to be quite severe. Moreover, we found
that the vp model highly influences the propagation of the Rayleigh waves, however, the
ability to reconstruct the vp model itself by Rayleigh waves is low. Nevertheless, as the
full-waveforms contain the P-wave onsets and the fact the the P-wave is mainly influenced
by the vp model, the FWI theoretically could reconstruct the vp model. However, the
Rayleigh wave has a significant higher amplitude as the P-wave onsets, thus, the Rayleigh
wave is dominating the objective function and the reconstruction of the vp model depends
mainly on the Rayleigh wave. To overcome this issue, we would have to consider the
P-wave onsets separately which however is beyond the scope of this work.

Test setting;:

In this case study we use a gradient model as initial vp model. The acquisition geometry,
the FWI setting, the true model and the initial model for the other two elastic parameters
is identical to the synthetic experiments presented above. This allows us to access the
influence of an inaccurate initial vp model to the reconstruction ability of the individual
Rayleigh wave FWI and the joint FWI based on the actual test setting. Since we use the
same acquisition geometry in the field data application, this case study could help to
interpret the reliability and potential artifacts in the field data FWIL.

In figure 3.12 we show the used inaccurate initial vp model. This initial model matches
the true model at the surface and again at a depth of 9 m and from there on the true and
initial model are identical. Between the surface and a depth of 9 m we used a constant
gradient of 155 _-. We present the result of this case study in figure 3.13, where we focus
on an area around the trench positions.
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Results:

The inaccurate initial vp model does not influence the individual Love wave FWI, as
the P-wave velocity does not affect SH waves at all.

In contrast, the result of the individual Rayleigh wave FWI exhibits a significant in-
fluence. The reconstructed vs model suffers from circular low-velocity artifacts around
the receiver positions. These artifacts are likely to be transferable to the source artifacts
observed in our previous study, since the receivers will act as sources when the residuals
are back propagated from the receiver positions. Taking into account this result as well as
our previous work, we conclude that the presence of source or receiver artifacts depends
on the acquisition geometry, e.g. the spacing between sources or receivers. Nevertheless,
the shape of the trench is visible in the reconstructed vs model, but the velocity inside
the trench is rough. The vp model does not fit the true model and shows strong artifacts
at the position of the trench. These artifacts are also foot-printed to the vs model. The
updated p model contains systematically too high density values and therefore we cannot
evaluate this model.

The result for the simultaneous joint FWI is similar to the individual Rayleigh wave
FWI, especially for the vp and the p model. However, the joint FWI recovered the vs model
slightly better, since the receiver artifacts are less prominent and the velocity values within
the trench are smoother.

Summary:

In this synthetic sub-experiment we revealed a significant influence of an inaccurate initial
vp model to the reconstruction ability of the individual Rayleigh wave FWI. As in our previ-
ous study we found that the vp model highly influences the propagation of Rayleigh waves,
however, the Rayleigh wave FWI could not reconstruct the vp model from an inaccurate
starting point. With such an inaccurate initial vp model only a rough reconstruction of the
vs model is possible, while the reconstructed p model does not allow for evaluation. We also
observed artifacts in the vs model caused by the incorrect vp model. Furthermore, we found
that the simultaneous joint FWI is not able to improve the inversion result significantly,
despite its combination with the Love wave FWI, which is not influenced by vp.
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Figure 3.12.: Inaccurate initial vp model used in the case study.

50



3.3. Case study: Influence of the initial P-wave velocity

‘AToA1}0adsa1 ‘w0330q 03 doj WOIJ 3STM-MOI UMOYS 1k d pue da ‘So 1ojourered donseld sy, ‘[Ppow do [enur
9JBINOJRUI UB I10J (UWN[0d Y1Inoj) [ Jurofl snosuejnuirs pue (Uwnjod piryl) [M. 2Aem YSIo[Aey [enpIaIpul {(Uuwnjod
PUu0233S) T\ QABM SA0T [ENPIATPUI JO STOPOTU PIJINIISUOIAT 3} YIIM (UUIN[OD JSITJ) [9POUT 20BJINSqNS N1} 31} Jo uostreduro) '¢1°¢ aIsry

ot
° 8
9 5 ¢
=
v 3
2
0
ot
005+ 000} 00s 8 m
s/w kel
9 5d "
=
v 3
2
0
L N N N 1 N N N 1 N N N 1 N N N 1 L N N N 1 N N N 1 N N N 1 N N N 1
[ |
.‘ 0se 002 (o]} 00} 0S 8 %
s/w kel
9 5 m\—
=
v 3
2
0
o Ge og Se 02 O Ge og Ge 02 oY Ge o Se 02 O Ge og Ge 0g
w ul [eluOZIIOH W ul [eluUO0ZIIOH W ul [elUOZIIOH W ul [eluO0ZIIOH

IM4 lop IMm4 ybiojhey IM4 @A0T] aniy

51



3. Synthetic FWI experiments

3.4. Summary

We performed synthetic reconstruction experiments to explore the properties of individual
and joint 2-D elastic full-waveform inversion of Rayleigh and Love waves. In these recon-
struction tests we knew the true subsurface model, thus, we could study the reconstruction
ability of the FWI by comparing the true model and the reconstructed models.

For these reconstruction tests, we assumed a predominantly depth dependent subsurface
model that is superimposed by a shallow small-scale low-velocity trench. We thereby
shifted the horizontal location of the trench in each parameter class to investigate cross-
talk effects. For the initial model of vs and p we used only a small a priori information,
whereas we used the true background model as initial model for vp.

In our synthetic experiment the individual Love wave FWI converged smoothly and
reconstructed the subsurface models of v and p successfully, although the reconstructed
p model suffered from a footprint of the vs trench. The individual Rayleigh wave FWI
recovered the vsg model and the p model successfully as well. The vp model was rebuild
roughly and suffered from artifacts inside the trench. The p model as well as the vp model
suffered from a cross-talk by vs. The vs model showed a cross-talk by vp. The simultaneous
joint FWI reconstructed the trench in all three elastic parameters very well. The result
of the joint FWI showed lesser trade-off effects compared to the results of the individual
wave type inversions. The joint FWI decreased the objective functions of both wave types
more than the individual wave type inversions. Altogether, the simultaneous joint FWI
further improved the reconstruction of the subsurface.

To explore the influence of the initial vp model, we carried out an additional case study. We
found that the vp model highly influences the propagation of the Rayleigh wave, however,
the reconstruction ability of the Rayleigh wave FWI for the vp model itself is low. Moreover,
we observed that wrong P-wave velocities in the initial model lead to artifacts in the vp
model which are foot-printed to the vs model. The simultaneous joint FWI did not provide
a significant improvement in this case.

To sum up, we could successfully reconstruct the vs model with all three inversions. In
the case the initial vp model is accurate, both individual wave type inversion performed
similarly well and the joint FWI further improved the inversion result. In the absence of
an accurate initial vp model, the reconstructed vs model of the individual Rayleigh wave
FWI and the joint FWT is less accurate than in the case of an accurate initial vp model. The
Love wave FWI performed identical as in the case of an accurate initial vp model, since
Love waves are not influenced by the vp model.
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4. Field data application

In this chapter, we present the application of individual and joint 2-D elastic full-waveform
inversion of Rayleigh and Love waves to a near-surface field dataset. We recorded a field
dataset on a glider airfield in Rheinstetten near Karlsruhe (Germany). Previous Rayleigh
wave FWI studies took place on the same test site and proved the suitability of it for 2-D
FWI. They propose a predominantly depth dependent subsurface that is superimposed by
a shallow small-scale low-velocity trench. This trench is known as "Ettlinger Linie". It was
originally excavated to serve as a line of defense and was refilled several decades ago. We
assumed such a 2-D subsurface model in the synthetic experiments (chapter 3), where we
verified the theoretical applicability of both the individual wave type inversions as well
as the simultaneous joint FWI. In this experiment, we investigate the applicability of all
three inversions to the recorded near-surface field dataset and evaluate their performance.
This chapter is organized as follows: First, we introduce the test site, the test setting and
the necessary preparatory work for FWI. Second, we present the inversion results of the
three FWI studies: (a) Individual Love wave FWI, (b) individual Rayleigh wave FWI and
(c) simultaneous joint FWI. We then perform a direct comparison of the inversion results.
To draw conclusions on the quality of the obtained results, we compare them with the
results from ground-penetrating radar measurements, which were acquired in the same
area. Finally, we summarize the main results of the field data application.

4.1. Setting

In this section, we introduce the test site and the acquisition geometry. We then present the
preparatory steps applied to the field dataset. Additionally, we describe the procedure to
estimate an initial subsurface model and describe the chosen configuration of the inversion.

4.1.1. Test site

The location of the test site is on a glider airfield in Rheinstetten near Karlsruhe (Germany).
Figure 4.1 shows an overall map of the area. This test site exhibits a planar surface and
does not suffer from humanistic noise in the direct surrounding. The geological map by
Hiittner et al. (1968) states that the subsurface consists of layered fluviatile sediments of
the late Pleistocene. Several shallow-seismic studies were carried out on this area, which
provide further information on the subsurface. Groos (2013) and Schaefer (2014) performed
a dispersion curve inversion and a FWI of Rayleigh waves on the north-west part of the
airfield and propose a predominantly depth dependent 1-D subsurface. Liittschwager (2014)
investigated the north-east corner of the runway and discovered a shallow small-scale
low-velocity anomaly (trench) that proceeds straight from the north-west to the south-east.
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Figure 4.1.: Overview map of the test site on the glider airfield in Rheinstetten. The red line
corresponds to the interpolated course of the "Ettlinger Linie" and the white
line denotes the acquisition profile. Marker one (N 48°58'52.59”, E 8°2046.73")
indicates the first receiver and marker two (N 48°58’52.12”, E 8°20'44.57") the
last receiver. The marker positions are accurate to several meters.

Source: Google Earth (AeroWest, GeoBasis-DE/BKG).

Binnig (2015) confirmed this hypothesis by a 2-D Rayleigh wave FWI. His results suggest
that this low-velocity trench locally superimposes the 1-D subsurface proposed by the
previous studies. According to historic recordings this trench can be identified as the
"Ettlinger Linie". It was originally excavated to serve as a line of defense and was refilled
several decades ago (Lang, 1907). Outside the borders of the airfield the "Ettlinger Linie" is
still uncovered and traceable, which allows to easily interpolate the course of the refilled
trench within the airfield.

Such a subsurface structure suites well for 2-D FWI experiments. The low-velocity trench
proceeds straight for about 70 m and superimposes the lateral homogeneous background
subsurface locally. Hence, the assumption of a 2-D subsurface is valid in the case that
the acquisition profile crosses the trench vertically, which is important since the 2-D FWI
cannot account for signals, such as reflections, caused by anomalies located off the 2-D
profile. Figure 4.1 shows an overview of the interpolated course of the trench (red) and
the acquisition profile (white).
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4.1.2. Acquisition geometry

To image the cross-section of the "Ettlinger Linie" with the 2-D FWI, we placed the
acquisition profile to cross the interpolated course of the trench vertically, as illustrated in
figure 4.1. We shifted the profile to contain the trench in its center, in order to obtain a
high wave coverage within the low-velocity trench. The orientation of the profile is from
north-east (marker one) to south-west (marker two).

For the seismic recording we used 48 three-component geophones with 4.5 Hz eigen-
frequency of the type Geospace Technologies GSC-11D. We set the geophone spacing
equidistantly to 1 m and adjusted the local orientation of the geophones to the profile, in
order to ensure an accurate recording of the horizontal component. The total length of the
receiver line was 47 m. In figure 4.1 marker one (N 48°58'52.59”, E 8°20746.73") indicates
the first receiver position and marker two (N 48°58’52.12", E 8°20'44.57”) indicates the last
receiver position. For the P-SV dataset we recorded the vertical particle velocity and for
the SH dataset we recorded the horizontal crossline component.

We set the spacing between the 24 sources to 2m, where the first source was located
between the first and the second receiver. All source positions were located within the
receiver line. The source-receiver offset ranges from 0.5 m to 46.5 m. We used vertical
hammer blows on a steel plate to excite the P-SV dataset and horizontal hammer blows in
the crossline direction on a steel source rack to excite the SH dataset.

The distribution of the sources and receivers is illustrated in figure 4.2. Figure 4.7 (top
left) shows the acquisition geometry as a whole. In the synthetic experiments we used an
identical acquisition geometry.
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Figure 4.2.: Sketch of the acquisition geometry of the field data recording. The sketch
is not to scale. Yellow stars indicate the source positions and red triangles
indicate the receiver positions. The profile coordinates represent the whole
model space. Marker one and two correspond to figure 4.1.
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4.1.3. Observed data

The total recording time is 1.5s and the temporal sampling is 2.5 - 10~*s. During the
measurement we stacked the data with a fold of five to enhance the signal-to-noise ratio.
However, the raw field dataset is not appropriate for a direct application of the 2-D FWI,
thus, we perform a few preparatory steps. First of all, we shorten the data to 0.5 s, due to the
absence of any significant energy at later recording times. We then up sample the data by
a spline interpolation to a sampling of 1.4 - 107> s, in order to satisfy the stability criterion
of the finite-difference forward solver. To suppress signals before the actual wave onset,
we apply a muting at the beginning of each trace. For the sake of avoiding non-causal
effects in the inverted source time function (see section 4.1.5), we delay the whole dataset
by 0.02 s, which results in a total time length of 0.52 s. Furthermore, we perform a 3-D to
2-D transformation, which is necessary, due to the fact that the recorded wave fields are
excited by hammer blows that act like point-sources. However, the 2-D forward solver
assumes line-sources. We transform the field data to an equivalent 2-D line-source by a
trace-wise convolution with V=1 followed by a multiplication with r - V2 - V=1, where ¢
denotes the travel time and r the offset. This transformation is introduced as direct-wave
transformation by Forbriger et al. (2014).

Exemplarily shot gathers of the preprocessed dataset are shown in figure 4.3 (first source)
and 4.4 (last source). We normalized the seismograms trace-wise and applied a band-pass
filter between 4 Hz and 130 Hz, which corresponds to the same way as we use them in
the FWL. In figure 4.5 we show the mean amplitude-frequency spectra of the field data
recordings. The main frequency content is located between 10 Hz and 100 Hz. There is no
significant difference in the frequency content of both wave types.

The P-SV seismograms, v,, are dominated by the Rayleigh wave. The Rayleigh wave is visible
in the fundamental mode as well as in several higher modes. The direct and the refracted
P-wave can be identified as well. The P-waves have much smaller amplitude compared to
the Rayleigh wave. The change of the phase-velocities along the offset indicates the presence
of a 2-D structure. In figure 4.12(a) we show the phase-slowness-frequency spectrum for the
first shot, where we normalized the spectrum to the maximum amplitude of each frequency.
The dispersion curve of the fundamental Rayleigh mode is dominant for frequencies up to
approximately 40 Hz, where it reaches a phase-slowness of approximately 7 s/km. Above
25 Hz several higher modes coincide with the fundamental mode. The phase-slowness of
the higher modes varies between approximately 1.8 to 5 km/s. The dispersion curves of the
higher modes are not sharp enough to identify single modes.

The SH seismograms, v, are dominated by the Love wave, which is present in the funda-
mental mode. Compared to the Love wave the direct as well as the refracted S-wave have
smaller amplitude and are only slightly visible. Figure 4.12(b) shows the phase-slowness-
frequency spectrum for the first shot. The fundamental Love mode dominates the spectrum
up to approximately 90 Hz, where it reaches a phase-slowness of about 7.5 s/km. A higher
mode is present between approximately 30 to 45 Hz, whose phase-slowness vary between
3 to 4 s/km. The variation of the phase-slowness indicates again a 2-D structure within
the survey area.

After the preprocessing steps that we carried out the P-SV as well as the SH field dataset
allow for the full-waveform inversion.
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Figure 4.3.: Trace-wise normalized shot-gathers of the preprocessed field dataset for the
first source located at the profile coordinate of 10.5 m. The seismograms are
band-pass filtered between 4 and 130 Hz, representing the frequency range
used in the FWI. Traces near the source were overdriven and thus muted.
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Figure 4.4.: Trace-wise normalized shot-gathers of the preprocessed field dataset for the
last source located at the profile coordinate of 56.5m. The seismograms are
band-pass filtered between 4 and 130 Hz, representing the frequency range
used in the FWIL Traces near the source were overdriven and thus muted.
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Figure 4.5.: Amplitude-frequency spectra of the field dataset. The spectrum of the P-SV
waves is shown in red and of the SH waves in blue. The shown spectra are the
average of the spectra of the normalized traces.

4.1.4. Initial model

Since we use a local optimization method for the full-waveform inversion, we have to
assume an initial model for the parameters vs, vp and p. This model has to predict the
main wave phases well enough to allow local convergence of the inversion. Moreover, we
have to derive an initial model for the quality factors Qs and Qp, in order to describe the
attenuation properties of the subsurface. The attenuation properties will not be updated
during the inversion, instead we will use it as passive model parameters. In the following
we assume the initial models to vary only with depth, since we expect the background
model to be predominantly depth dependent.

First, we perform a P-wave travel time analysis to obtain an initial model for vp. We therefore
pick and evaluate the onsets of the direct and the refracted P-wave. The obtained model
consists of two layers, where the interface lies in a depth of 6.1 m. For the upper layer we
calculate a P-wave velocity of 335 m/s and for the lower half space we calculate a velocity of
2284 m/s. We assume that the sharp contrast in a depth of 6.1 m correspondents to the water
table, as opposed to Groos (2013), who observed the water table in a depth of 6.8 m. This is in
good agreement with our result, since it was raining the days before the field measurement
took place, which could lead to a higher ground water table.

To obtain an initial model for p from the vp model we use the empirical Gardner's relation:

p=0.31-0p%, (4.1)

which assumes that vp is given in units of m/s for a resulting p value in units of g/cm?
(Gardner et al., 1974). The obtained p model has a density of 1.325 g/cm? in the upper layer
and 2.142 g/cm® in the lower half space.

59



4. Field data application

We obtain a first initial vs model from the work of Groos (2013), who used a gradient
model which starts at 100 m/s at the surface and ends at 369 m/s in a depth of 9 m followed
by a homogenous half space. However, neither the Love wave nor the Rayleigh wave
FWI allow for convergence with this model. To overcome this issue we perform a local
grid-search by vary the S-wave velocity at the surface and in a depth of 9 m. Finally, we
were able to predict all main phases of the Rayleigh and Love waves for a S-wave velocity
of 140 m/s at the surface and 340 m/s in a depth of 9m.

Furthermore, we estimate an attenuation model. This is an important step, since inelastic
damping has a significant influence to shallow-seismic recordings (Groos et al., 2014). We
use two assumptions to obtain the Q-values from the field dataset: (1) We assume that
the Q-values for P-waves and S-waves are identical and (2) that a constant Q-value is
sufficient for the whole model space. Then, we can approximate a Q-value by calculating
and comparing the misfit between synthetic and observed data for different Q-values. We
calculate the misfit based on the presented initial model of vs, vp and p in the frequency
range between 4 Hz and 100 Hz, which contains the main frequency content. The result
of the local grid-search is shown in figure 4.6 for Q-values ranging from 5 to 35. For the
P-SV dataset we obtain a minimum misfit for Q = 15, whereas the SH dataset reveals a
minimum misfit for Q = 10. For the simultaneous joint FWI of both wave types we use
the same parameter model, thus, we choose only one Q-value for the P-SV and the SH
waves. Groos et al. (2014) suggested to use rather a higher Q-value than a smaller one,
since the source time inversion (see section 4.1.5) can partly compensate a to high Q-value.
Taking this consideration, we set the Q-value to 15. We construct the attenuation model
by a GSLS with three relaxation mechanisms. The calculated relaxation frequencies are
f1 =0.2978Hz, f; = 6.7325Hz and f; = 84.6014 Hz and the r-value is 0.1576, where we
use a reference frequency of 40 Hz.

The final initial model for the three elastic parameter classes vs, vp and p is presented in
figure 4.7. This initial model allows to predict all main phases included in the P-SV and
SH field dataset (left column of figures 4.9 and 4.10). Thus, the main requirement for the
application of a local optimization method in the FWI is fulfilled. Based on this initial
model we calculated phase-slowness-frequency spectra for the P-SV and SH waves, which
is shown are figure 4.12 (second column). The fundamental modes of the surface waves
dominate the spectra of both wave types, while higher modes are not present.

4.1.5. FWI setup

For the field data application we again use the FWI software IFOS. This software package
uses a finite-difference method for the forward modelling and the adjoint state method
for the calculation of the gradients. We use the quasi-Newton L-BFGS method and subse-
quently a conjugate gradient method to calculate the actual model update.

4.1.5.1. Objective function

As objective function we use the weighted Ly-error (equation 2.93) between the normalized
synthetic and normalized observed seismograms. We apply the normalization trace-wise to
the seismograms, in order to mitigate uncertainties and differences in the ground coupling
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Figure 4.6.: Q-value estimation for the field dataset. The misfit between the synthetic data
and the observed data is calculated in the frequency range of 4-100 Hz, which
contains the main frequency content (see figure 4.5).

of individual geophones (Maurer et al., 2012). In the case of the P-SV FWI we calculate
the objective function for the vertical displacement component and in the case of the SH
FWTI for the horizontal crossline displacement component. We obtain the displacement
seismograms from the recorded velocity seismograms by numerical integration.

4.1.5.2. Forward modelling

For the synthetic wave propagation we use an explicit time-domain finite-difference
scheme, where we set the time step interval to At = 1.4 - 107> s and the grid spacing
to Ah = 0.125m. The temporal derivations are calculated with second-order accuracy
and the spatial derivations with a sixth-order FD-stencil. The model space has a size of
560 grid points in the horizontal direction and 160 grid points in the vertical direction,
resulting in the actual dimensions of 70 m x 20 m. The location of the first receiver is
at 10 m (figure 4.2) and of the last receiver at 57 m, which provides enough space to the
lateral boundary during modelling. Receivers or sources located to close to the lateral
boundary could cause strong artifacts in the gradients. We implement the P-SV source as
a vertical force and the SH source as a horizontal crossline force. The boundary conditions
are satisfied by a C-PML boundary with a size of 10 grid points at the bottom as well as
at the lateral boundaries. Moreover, we apply a free-surface on the top of the model to
accurately simulate surface waves. The total propagation time of 0.52 s is identical to the
time length of the observed seismograms. A detailed description of the parameters that
are used in the FD-simulations is given in appendix A, table A.2.
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Figure 4.7.: Initial model for vs, vp and p used in the field data application (left). Depth
profiles for the three elastic parameters (right). The yellow stars indicate the
source positions and the red points the receiver positions.
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4.1.5.3. Source wavelet estimation

In our field data measurements the actual excited source wavelets were not directly
recorded, therefore they represent additional unknowns of the inverse problem (Pratt,
1999). To mitigate the effect of an unknown source wavelet, we perform a separate source
time function inversion. For the estimation of a source wavelet the linear relation between
the source wavelet and the seismograms can be used. This relation allows to calculate
a wavelet correction filter by a stabilized deconvolution of the observed seismograms
with the synthetic seismograms (Virieux and Operto, 2009; Groos et al., 2014). With such
a correction filter an improved source wavelet can be obtained by a convolution of the
synthetic wavelet with the estimated wavelet correction filter. For the stability of the
deconvolution it is crucial to provide broader frequencies in the synthetic seismograms
than in the case of the observed seismograms. However, the improved wavelet does not
necessarily represent the actual source wavelet excited in the field measurement, instead it
is the wavelet that minimizes the residuals between synthetic and observed seismograms.
Therefore, the estimated wavelet might suffer from a trade-off as it could account for
residuals caused by an inaccurate parameter model. This trade-off can be mitigated during
the inversion, due to the iterative character of the inversion.

In the field data inversions we calculate the wavelet correction filter individually for each
source and recalculate it in the case that a change in the inversion configuration occurs.
As initial guess we use a cubed sine wavelet with a dominant frequency of 100 Hz. The
frequency content of this initial wavelet covers the whole frequency band of the observed
dataset and allows for a stable source wavelet estimation. For the source wavelet estimation
we only consider traces with a source-receiver offset between 5m and 10 m. The traces
near the source could suffer from source artifacts like overdriven geophones, whereas
traces far from the source could be influenced by heterogeneities in the subsurface. In
figure 4.13 (first column) we show the corrected source wavelets for the initial parameter
model at the first frequency stage (4 to 10 Hz). The estimated wavelets are homogeneous
along the whole profile and do not show any artifacts.

4.1.5.4. Preconditioning

To precondition the shot-wise gradients we apply circular source tapers, which decay
within 5 grid points around the source position. Additionally, we use the approximation to
the diagonal elements of the Hessian (equation 2.78) as preconditioner for the gradients,
where we use an identical configuration as in the synthetic experiments. In order to
smooth the inversion result, we apply a 2-D median filter to the gradients, where the filter
has a size of 1 m (8 grid points). To obtain a physical meaningful elastic parameter model
and to ensure stability of the forward solver, we force a minimum wvp/vs ratio of 1.2 by
increasing the P-wave velocity, if necessary. For the calculation of the actual model update
we use a normalized multi-parameter L-BFGS method, where the model and gradient
differences of the last 20 iterations are evaluated. However, for frequencies above 50 Hz
the L-BFGS method did not converge, since no step length could be found that fulfills the
Wolfe conditions (section 2.3.3.2). One reason could be that the estimated initial size of
the Hessian (scaled identity matrix, equation 2.84) is not accurate enough to allow further
convergence. This problem might be solved by providing an external first guess of the
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size of the Hessian to the L-BFGS algorithm, for example by the second-order adjoint
method (Fichtner and Trampert, 2011). To overcome this issue in the field data inversions,
we switch the optimization method to a conjugate gradient method for frequency stages
above 50 Hz. In this case we use an inaccurate step length search in combination with a
parabolic fitting to estimate an appropriate step length (Nocedal and Wright, 2006). This
approach provides stable updates also for frequencies above 50 Hz.

4.1.5.5. Workflow configuration

We use the workflow implementation to increase the frequency content of the dataset
gradually from 4 to 130 Hz by lifting up the corner frequency, LC, of a low-pass filter
in steps of 5Hz. In addition, we again apply a successive update strategy to the multi-
parameter inversion. In the first iterations we only allow updates of vs and vp (for Love
FWTI only vg), until the automatic abort criterion is reached and finally we use a full
multi-parameter inversion. In total, the workflow is divided in 26 separate stages, which
we present in table 4.1.

At the beginning of each new workflow stage we force the algorithm to perform at least
three iterations, since both the L-BFGS method as well as the conjugate gradient method
rely on the previous iterations. However, in the case of the L-BFGS method we allow the
algorithm to switch directly to the next workflow stage in the case that within these three
iterations no step length could be found that fulfills the Wolfe conditions. This is required
to ensure stability of the quasi-Newton algorithm. In the case of the conjugate gradient
method we perform an update with a small step length in the case that within these three
iterations no step length could be found that reduces the objective function. We do not
check the Wolfe conditions in the case of the conjugate gradient updates, since these are
not a stability criterion for this method.

Table 4.1.: Workflow used in the field data FWI. Each stage is applied to the inversion
until the automatic abort criterion AC (equation 2.92) is reached. The update
column indicates which of the specific elastic parameter is updated (yes=1)
or not (no=0). The parameter LP represents the corner frequency of the low-
pass frequency filter. The method column indicates wether the L-BFGS or the
conjugate gradient method is used for optimization.

Stage Update LPin Hz ACin % Method
Us vp p

1 1 1 0 10 10 L-BFGS

2 1 1 1 10 1 L-BFGS

3-9 1 1 1 |Increment of 5 1 L-BFGS

10 1 1 1 50 1 L-BFGS
11 1 1 1 55 1 CG
12-25 | 1 1 1 | Increment of 5 1 CG
26 1 1 1 130 0.5 CG
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4.2. Results

In the following, we discuss the result of each field data inversion individually. Afterwards,
we make a direct comparison. We present the result for the individual Love wave FWI in
figure 4.9, for the individual Rayleigh wave FWI in figure 4.10 and for the simultaneous
joint FWI in figure 4.11. We used the same form of presentation in all three figures. In
figure 4.14 we show a direct comparison of the final models, where we focus on an area
around the trench. Finally, we present horizontal and vertical profiles across the initial
and final models in figure 4.15 and 4.16.

4.2.1. Individual Love wave FWI

The final vs model is still predominantly depth dependent, but contains 2-D lateral varia-
tions. At the expected position of the refilled trench the inversion revealed a low-velocity
anomaly. The anomaly of the trench has a smooth triangular shape and exhibits a length
of 8 m at the surface and a depth of about 2.6 m. To the left of the trench the vs model con-
tains a second low-velocity anomaly, which is elongated and only present in the shallow
part. This anomaly could be related to an increased saturation of the shallow soil, which
coincides with the observed soil conditions in this area during the measurements. The SH
waves are not sensitive to the P-wave velocity, thus, the vp model is not updated. The 2-D
variations observed in the vs model are not visible in the p model. The inversion increased
the density values in both layers and added strong small-scale variations.

The inversion improved the fit of the synthetic seismograms, however, a residual is still
present. The fit of the near offset traces is better than of the far offset traces. The waves
that arrive at the receivers in the far offset travelled farther and deeper, hence, more
subsurface heterogeneities influence those recordings than the recordings at near offset
receivers. The inversion decreased the misfit relative to the initial misfit up to the 30 Hz
frequency stage, as shown in figure 4.8. For higher frequency stages the inversion could
not again decrease the misfit below the misfit level of the previous frequency stage, most
likely due to an increase of the noise level at higher frequencies. However, the inversion
decreased the misfit within each frequency stage. In figure 4.13(b) (second column) we
show the estimated source wavelets for the final model at 130 Hz. The wavelets are quite
similar for all source positions, but the source wavelets for the higher source numbers
show a ringing effect. This effect could be related to the saturated soil at the end of the
profile, which allowed the steel source rack to oscillate slightly. In figure 4.12(b) (third
column) the phase-slowness-frequency spectrum of the final synthetic seismograms is
shown besides the spectrum of the field dataset. Although we did not perform a dispersion
curve fitting, the visual comparison of the synthetic to the observed spectrum is improved.
The FWI increased the phase-slowness of the fundamental mode and added the higher
mode to the spectrum.

To sum up, we successfully applied the individual Love wave FWI to the near-surface field
dataset. The updated vs model contains a low-velocity anomaly at the expected position
of the trench. This velocity anomaly allowed us to derive the size and shape of the refilled
trench. The final p model provides no further information on the size of the trench.
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4.2.2. Individual Rayleigh wave FWI

The individual Rayleigh wave FWI revealed several 2-D structures in the vs model, which
superimpose the mainly lateral homogeneous background model. In the middle of the
profile the vs model contains a square shaped low-velocity anomaly, which corresponds
to the refilled trench. The lower edge of this anomaly lies in a depth of approximately
2.2m. However, the contours of the anomaly are blurred, especially at the surface, where
we cannot estimation the horizontal length of the anomaly. To the left of the trench the
vs model contains an elongated shallow second low-velocity anomaly, which could be
related to the increased saturation of the shallow soil in this area. In general, the vs model
suffers from slight vertically orientated artifacts underneath some source positions, in
particular at the positions of the low-velocity anomalies. We observed similar artifacts
in the synthetic example at positions with inaccurate P-wave velocities (see section 3.3).
However, we expect potential artifacts to be less dominant in the case of the field data
application than in the case of the synthetic example, since we set the size of the median
smoothing filter to 1 m for the field data FWI, which is twice as big as in the synthetic
example. The overall variations in the final vp model are small compared to the vs model.
At the position of the trench as well as at the position of the second anomaly in the vg
model we observe slightly reduced P-wave velocities. As demonstrated in the synthetic
example, the vp model could suffer from a cross-talk by vs, hence, the light anomalies
in the vp model might be a result of cross-talk. Moreover, in the synthetic example we
have shown that the resolution in the vp model is lower compared to the resolution in
the vs model, due to the longer wavelengths of the P-waves than of the S-waves. The
final p model does not contain any of the anomalies that are present in the vs model. The
inversion increased the density values in the first and second layer and added smooth
small-scale vertically orientated artifacts.

The final seismogram fit is not as accurate as in the case of the individual Love wave FWI,
however, the P-SV wave field is more complex than the SH wave field. The inversion fitted
the fundamental Rayleigh mode quite well at all offsets. Generally, the fit of the phases is
better than of the amplitudes. The evolution of the objective function is shown in figure
4.8. The inversion reduced the misfit relative to the initial misfit up to the frequency stage
of 30 Hz. From 30 Hz on the inversion only reduced the misfit within each frequency stage,
but could not reduced the misfit to the level of the previous frequency stage. The source
time inversion revealed similar wavelets for all source positions, as indicated in figure
4.13(a) (second column). In figure 4.12(a) (third column) we present a phase-slowness-
frequency spectrum for the final synthetic data as well as for the observed data. The
synthetic model describes accurately the dispersion properties of the fundamental mode
and the higher modes.

To sum up, we were able to improve the data fit of the P-SV dataset by an individual
Rayleigh wave FWI. The final vs model shows a low-velocity anomaly at the position of
the refilled trench. No significant anomaly of the trench is present in the vp model or the
p model.
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4.2.3. Simultaneous joint FWI

The final vs model of the simultaneous joint FWI contains a low-velocity anomaly at the
expected position of the refilled trench. The anomaly has an identical size as in the case of
the individual Love wave FWI. The shape of the anomaly is triangular and the contour is
sharp. The anomaly of the trench holds higher velocities in the shallow part than in the
lower part. Moreover, the final vs model contains an elongated shallow second low-velocity
anomaly to the left of the trench, which could be related to an increased saturation of
the shallow soil within this area. Altogether, the vs model is still predominantly depth
dependent. The variations of the vp model are light compared to the initial model. At the
positions of the vs anomalies the vp model shows slightly lower values, which could be
a result of a cross-talk. We expect the resolution in the vp model to be low, as explored
in the synthetic experiments. The p model contains higher values than the initial model,
especially in the upper layer. Neither of the two vs anomalies can be observed in the
density model. However, the p model suffers from vertically orientated small-scale lateral
heterogeneities.

The fit of the synthetic seismograms to the observed seismograms is not as accurate as in
the case of the individual wave type inversions, as opposed to the synthetic experiments,
where the joint FWI decreased the misfit of both wave types even further. One reason
could be slight anisotropic effects that would influence the propagation of both wave types
differently, due to the contrasting polarization of the SH and the P-SV waves. Another
reason could be a limited accuracy of the initial vp model. Nonetheless, the fit of the SH
data is better than the fit of the P-SV dataset. Figure 4.8 illustrates the evolution of the
joint objective function. The joint FWI reached the lowest misfit for the 20 Hz frequency
stage. From 20 Hz on the joint FWI decreased the misfit only within each frequency stage
and could not decrease it below the misfit of the previous frequency stages. In figure 4.13
(top and bottom, third column) we present the improved source wavelets for the final
frequency stage of 130 Hz. For both wave types the source wavelet estimation revealed
homogeneous wavelets across the whole profile, despite a slight ringing effect for the
sources with higher source numbers. The fit of the synthetic phase-slowness-frequency
spectra to the field data spectra is similar well as in the individual wave type inversions,
as shown in figure 4.12 (top and bottom, fourth column).

To sum up, we successfully applied a simultaneous joint FWI of Love and Rayleigh waves
to a near-surface field dataset. We were able to reduce the objective functions of both
wave types simultaneously and to obtain a single parameter model that accounts for both
datasets. The joint inversion revealed a sharp anomaly of the trench in the vs model.
However, no clear anomaly of the trench is visible in the vp model or the p model.
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4. Field data application
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Figure 4.8.: Evolution of the Ly-error during the field data Love wave FWI, Rayleigh wave
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FWI and joint FWI over the iterations. The Ly-error is weighted with the
energy of the observed data. The sharp misfit jumps correspond to an increase
of the low-pass corner frequency LP (see workflow table 4.1).
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Figure 4.13.: The estimated source time functions for the P-SV sources and the SH sources
for the initial model at 10 Hz (first column), for the final model at 130 Hz in
the case of the individual wave type inversions (second column) and for the
final model at 130 Hz in the case of the simultaneous joint FWI (third column).
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4. Field data application

4.2.4. Comparison

After the individual interpretation of the inversion results we compare them now directly.
Figure 4.14 shows the final models column-wise side by side. We thereby focus on a
sub-volume of the full model representing the area around the trench. Moreover, figures
4.15 and 4.16 show the horizontal and vertical profiles, whose positions are indicated by
figure 4.14.

S-wave velocity vs:

All three updated vs models are still mainly depth dependent. However, all inversions
revealed a low-velocity anomaly at the expected position of the refilled trench (Ettlinger
Linie). The individual Love wave FWI and the simultaneous joint FWI revealed an anomaly
of similar shape and size. The anomaly has a triangular shape with a length of approxi-
mately 8 m at the surface and a depth of about 2.6 m. Nevertheless, the anomaly holds a
sharper contour in the case of the joint FWI than in the case of the individual Love wave
FWI. The anomaly revealed by the individual Rayleigh wave inversion holds a square
shape, where the lower edge lies in depth of about 2.2 m. In this case the horizontal length
of the trench is not clearly imaged. All results contain a second low-velocity anomaly
to the left of the trench. This anomaly is horizontally elongated and only present in the
shallow part. It is likely that this anomaly is caused by an increased water saturation of
the shallow soil within this area, which coincides with the observed soil conditions during
the field measurements.

P-wave velocity vp:

The overall change of the vp model is small for both the individual Rayleigh wave FWI as
well as the joint FWI. Both models show slightly lower P-waves velocities at the positions
of the anomalies in the vs models. Neither of the two inversions changed the velocity of the
lower layer. In general, both vp models are quite similar. However, the slight low-velocity
anomaly in the vp models at the position of the trench could be a result of a cross-talk
by vs, as observed in the synthetic experiments. The SH waves are not sensitive to the
P-wave velocity and we therefore do not apply a joint approach to the updates of vp.

Density p:

All three updated p models hold higher values than the initial model. In addition, all of
them show numerous small-scale variations, which are significantly stronger than in the
other two parameter classes. In direct comparison of the three p models, the model of
the individual Rayleigh wave FWI exhibits the smoothest appearance. The result of the
Love wave FWI as well as of the joint FWI exhibit stronger small-scale variations and
show several punctual low-density anomalies in the vicinity of the trench. As found in
the synthetic experiments, the p model is highly sensitive to cross-talk from the vs model
and partly from the vp model. Moreover, since we normalized the seismograms trace-wise
during the calculation of the objective function, we expect the resolution in the p model to
be generally low. In particular as the influence of density is mainly to the absolute wave
amplitude as a function of offset. All in all, the updated p models do not provide further
information on the shape of the trench.
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4. Field data application

Horizontal cut at 1 m depth
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Figure 4.15.: Horizontal profiles at 1 m depth (left) and vertical profiles at the profile
coordinate of 35 m (right) across the final models, as indicated by dashed lines
in figure 4.14. The elastic parameters vs, vp and p are shown row-wise from
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Horizontal cut at 2 m depth
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Figure 4.16.: Horizontal profiles at 2m depth (left) and vertical profiles at the profile
coordinate of 45 m (right) across the final models, as indicated by dotted lines
in figure 4.14. The elastic parameters vs, vp and p are shown row-wise from

top to bottom, respectively.
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4. Field data application

4.3. Comparison with ground-penetrating radar

Due to the fact that the true subsurface is unknown in the field data inversions, we cannot
draw conclusions on the quality or the reliability of the inversion results. One way to
overcome this limitation would be to do test drillings and perform laboratory analysis of
soil samples. However, this is costly and mostly neither preferred nor allowed. Another
way to overcome this limitation is to verify the inversion results by other measurement
techniques. We therefore compare the seismic FWI results obtained in this work with the
result of a ground-penetrating radar (GPR) measurement.

GPR measurement and result:

The GPR measurement took place at a later date than the seismic measurements and was
carried out in the framework of a master's thesis by Wegscheider (2017). They used the
same profile as we did (see map in figure 4.1), however, since they had to relocated the
profile by GNSS coordinates the accuracy is limited to 3 — 4 m. For the zero-offset GPR
measurement they used a radar of the manufacture IDS GeoRadar with a 200 MHz antenna.
They time-migrated the dataset by a constant-velocity Kirchhoff migration, where they
chose the migration velocity to 0.1 m/ns. We were provided with the final migrated image
shown in figure 4.17, where the trench is visible by boundary reflections which reveal a
triangular form. Inside the trench few reflections are visible, suggesting a homogeneous
filling of the trench. Besides the location of the trench a lot of small-scale reflectors are
present.

Comparability:

We used the final S-wave velocity models to compare the FWI results to the GPR image,
since in near-surface applications the FWI could resolve this parameter with higher res-
olution and lesser ambiguities compared to the other elastic parameters. We call this
comparison of both techniques qualitative, since we only link the location of velocity
anomalies to reflections in the GPR image. As a consequence of the limited accuracy
during the relocation of the seismic acquisition profile, the absolute horizontal position
of both results is not comparable. We therefore corrected the lateral position of the GPR
image manually. Due to the difficulties relating an accurate depth-migration of the GPR
result, we adjusted the depth axis of the GPR result manually in order to fit the FWI results.
We used a velocity factor of 0.086 m/ns to transfer the GPR result from the time-domain to
the depth-domain of the FWI results.

Qualitative comparison of GPR and FWI results:

The qualitative comparison of the GPR image to the three FWI velocity models is shown
in figure 4.18 as an overlay of both results.

The result of the individual Love wave FWI matches the GPR image quite well. The
velocity model reveals contrasts at positions where strong reflections at the boundaries of
the trench are visible. The extension of the low-velocity anomaly is mainly concentrated
to the enclosed part of the these boundary reflections. Structures within the trench are
not visible in the velocity model. The low-velocity anomaly to the left of the trench
correlates with near-surface reflectors, which could represent impermeable layers that
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Figure 4.17.: Time-migrated image of the GPR measurement. A linear time-dependent
weighting is applied to enhance the visibility of deep reflectors.
The GPR result is provided by courtesy of Wegscheider (2017).

lead to accumulated water at the surface.

The velocity model of the individual Rayleigh wave FWI satisfactorily matches the
migrated GPR image. The center part of the low-velocity anomaly lies within the enclosed
area of the boundary reflections of the trench. However, we could not match the horizontal
extension of the trench between both images. The lower part of the trench is not visible in
the velocity model. The second low-velocity anomaly to the left of the trench correlates
again with shallow reflections.

The simultaneous joint FWI revealed a low-velocity anomaly that fills the enclosed
part of the boundary reflections of the trench accurately. These boundary reflections are
visible as sharp contrast within the velocity model. The lower part of the trench matches
between both images. The shallow low-velocity anomaly that is present on the left side
correlates again with near-surface reflectors.

Summary:

This comparison of the FWI results with the GPR measurement shows that the results of
both techniques are in good agreement. Both methods revealed the shape of the trench to
be of a triangular form. The S-wave velocity model of the simultaneous joint FWI matches
the time-migrated GPR image best. The boundary reflections of the trench can be directly
mapped to sharp velocity contrasts. The result of the individual Love wave FWI matches
the migrated image similar well. However, the contour of the trench is not as sharp and
consistent to the migrated image as in the case of the joint FWI. The velocity model of the
individual Rayleigh wave FWI fits the GPR image the least. The boundary of the trench
cannot be matched between both results. The lower part of the trench that is indicated in
the GPR image is not visible within the velocity model.
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4. Field data application
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Figure 4.18.: Qualitative comparison of the GPR result with the field data FWI results.
Overlay of the final S-wave velocity models of individual Love wave FWI
(top), individual Rayleigh wave FWI (middle) and simultaneous joint FWI
(bottom) with the time-migrated image of the GPR measurement. No color-bar
is shown, because the transparency effect falsify the color representation.
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4.4. Summary

4.4, Summary

In this chapter, we presented the application of the individual and the joint 2-D elastic
full-waveform inversion of Rayleigh and Love waves to a near-surface field dataset.

The recording of the field dataset took place on a glider airfield in Rheinstetten near
Karlsruhe (Germany). Previous studies on this test site propose a predominantly depth
dependent 1-D subsurface that is locally superimposed by a low-velocity anomaly. This
anomaly corresponds to a refilled trench that was originally excavated to serve as a line of
defense known as "Ettlinger Linie". The recorded field dataset holds good quality for a
full-waveform inversion after preprocessing. The P-SV dataset is dominated by a Rayleigh
wave and the SH dataset is dominated by a Love wave, which are both surface waves.
Based on the recorded dataset we derived initial models for the elastic parameters vp, vs
and p as well as for the attenuation properties. The obtained initial model predicts all
main phases of the field dataset and all three inversions allowed for convergence based on
this model. The individual Love wave inversion revealed a low-velocity anomaly in the vsg
model that allows to derive the size of the triangular shaped trench, although the shape
of the trench is not visible in the p model. The final vs model of the individual Rayleigh
wave FWI contains a blurred square shaped low-velocity anomaly at the position of the
trench, while no significant anomaly of the trench is present in the p model and the vp
model. The simultaneous joint inversion of both wave types was successful as well, since
it decrease both objective functions simultaneously. At the position of the trench the joint
inversion revealed a sharp triangular shaped low-velocity anomaly in the vs model, where
the trench is not visible in the p and vp model. However, the joint inversion could not
decrease the objective function of both wave types below the level of the individual wave
type inversions.

We compared the S-wave velocity models to the result of a GPR measurement on the same
profile, in order to draw conclusions on the quality of the FWI results. Both methods
revealed a triangular shaped anomaly of the trench. The result of the simultaneous joint
FWI matches the GPR image well, since the velocity anomaly of the trench accurately
fills the enclosed part of the reflections at the boundary of the trench. These boundary
reflections are represented by sharp contrasts in the velocity model. The result of the
individual Love wave FWI fits the GPR result similar well as the result of the joint FWL
Nevertheless, the contours of the trench within the velocity model are not as sharp in the
case of the Love wave FWI than in the case of the joint FWI. The individual Rayleigh wave
FWI fits the GPR image the least, since we could not match the boundaries of the trench
between both images.

To sum up, we successfully applied all three inversions to the near-surface field dataset.
The expected trench was revealed as low-velocity anomaly in the vs models, which allowed
us to derive the shape and size of the trench. The individual Love wave FWI and the
simultaneous joint FWI produced similar results. Nevertheless, the shape of the trench was
sharper in the case of the joint FWI, in particular compared to the GPR image. The result
of the individual Rayleigh wave FWI was blurred and allowed only a rough comparison to
the GPR image.
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5. Conclusions and Outlook

In this thesis, we compared the performance of the individual 2-D elastic full-waveform
inversion (FWI) of Rayleigh and Love waves and explored the benefits of a simultaneous
joint FWI of both types of surface waves. We therefore extended our existing 2-D elastic
P-SV FWI code by a SH FWI scheme as well as by a joint approach, which is required
to perform the simultaneous joint FWI. First, we explored the performance of the three
inversions in synthetic reconstruction experiments and subsequently verified the results
by a field data application.

5.1. Conclusions

Methodical aspects:

The FWI of shallow-seismic surface waves allows to accurately reconstruct the shallow
subsurface by the evaluation of the whole information content included in seismic wave-
forms. The FWI can achieve a resolution below the size of a wavelength and, in contrast
to the inversion of dispersion curves, is not limited in terms of subsurface heterogene-
ity. The acquisition of shallow-seismic surface waves is simple and cost-efficient, since
conventional seismic field equipment is sufficient. For these reasons, the FWI provides a
valuable contribution to near-surface investigations.

This thesis focused on the application of the FWI to Love and Rayleigh waves, which are
both surface waves. The propagation of Love and Rayleigh waves is decoupled in a 2-D
medium and thus, the inverse problems are decoupled as well. From this it follows that
both wave types require a separate forward solver and that the gradients of both objective
functions have to be calculated separately. While the Love waves are influenced by the
S-wave velocity as well as by the density, the Rayleigh waves are additionally sensitive
to the P-wave velocity. However, both wave types are mainly influenced by the S-wave
velocity. The corresponding inversions can only reveal the material parameters which the
respective wave type is sensitive to.

A simultaneous joint FWI of Love and Rayleigh waves inverts the waveforms of both wave
types at the same time and results in a single subsurface model, which accounts for both
datasets. It is based on a joint approach, which combines both objective functions as well
as the gradients to joint equivalents. The joint FWI evaluates more data compared to the
individual wave type inversions and thus, has the potential to decrease the ambiguities of
the inversion result. We formulated the joint approach, without loss of generality, for a
joint FWI of SH and P-SV waves recorded in a 2-D isotropic medium, hence, the approach
is not limited to the special case of Love and Rayleigh waves, instead it can be used for a
joint FWI of arbitrary SH and P-SV waves.
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Synthetic reconstruction experiments:

In synthetic reconstruction experiments we investigated the performance of the individual
FWI of Love and Rayleigh waves as well as the feasibility of a simultaneous joint FWI of
both wave types. In these experiments we knew the true subsurface model, which allowed
us to directly study the reconstruction ability of the three inversions by comparing the
true model to the reconstructed models. We thereby chose the test setting to be close to
the field data application, in order to make both comparable.

In our synthetic experiment both the individual Love wave FWTI and the individual Rayleigh
wave FWI performed similarly well in terms of accuracy and resolution, given that the
initial P-wave velocity model is accurate. However, the individual Love wave FWI provided
also an accurate reconstruction of the S-wave velocity model in the absence of an accurate
initial P-wave velocity model, whereas the individual Rayleigh wave FWI allowed only for
a rough reconstruction of the S-wave velocity model in this case. This reveals a crucial
advantage of the individual Love wave FWI as it is independent of the P-wave velocity and
therefore comprises a smaller parameter space, which is less likely to suffer from cross-talk
effects. From this study, we also conclude that the propagation of Rayleigh waves is highly
influenced by the P-wave velocity, however, the reconstruction ability of the Rayleigh
wave FWI for the P-wave velocity itself is low.

Furthermore, we found that the simultaneous joint FWI improved the inversion result
in the case the initial P-wave velocity model is accurate, whereas it did not improve the
inversion result in the case the initial P-wave velocity model is inaccurate. We conclude
that the joint FWI can further improve the inversion result provided that both individual
inversions hold a similar convergence behavior. However, in the case that one of the
individual inversions suffers from a convergence issue, the joint inversion might not be
able to overcome this issue.

Therefore, an accurate initial P-wave velocity model is required to make the simultaneous
joint FWI of Love and Rayleigh waves feasible and to allow a smooth convergence of
the individual Rayleigh wave FWI. However, even in the case the initial P-wave velocity
model is inaccurate, a rough reconstruction of the S-wave velocity model is possible by
the individual Rayleigh wave FWI and the joint FWI, due to the fact that the surface waves
are mainly sensitive to the S-wave velocity. The individual Love FWTI is independent of the
P-wave velocity and provides also in this case an accurate reconstruction of the S-wave
velocity model.

Field data application:

In the field data application we investigated the performance and the applicability of all
three inversions in a realistic scenario. For this purpose, we recorded a near-surface field
dataset on a glider airfield in Rheinstetten near Karlsruhe (Germany).

In our field data application the individual Love wave FWI and the simultaneous joint FWI
obtained similar results, whereas the result of the individual Rayleigh wave FWI deviated
from the other two results. One reason could be that the initial P-wave velocity model
was not accurate enough, which was shown in the synthetic study to have a negative
influence on the convergence behavior of the Rayleigh wave FWI. Nevertheless, there
we have also found that an inaccurate initial P-wave velocity model influences the joint
FWI negatively. However, due to the fact that the inversion result of the joint FWI is
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quite similar to the result of the individual Love wave FWI, which is not influenced by the
P-wave velocity, we conclude that the field data joint FWI was not negatively influenced
by an inaccurate P-wave velocity model.

To draw conclusions on the quality of the FWI results, we compared the final S-wave
velocity models to a ground-penetrating radar (GPR) measurement, which took place on
the same profile. The results of the individual Love wave FWI and the simultaneous joint
FWI showed an accurate match to the GPR image. Nevertheless, compared to the individual
Love wave FWI result, the result of the joint FWI matched the GPR image more precisely,
in particular the velocity contrasts were sharper in the case of the joint FWI. The result of
the individual Rayleigh wave FWI matched the GPR image only roughly. Based on this
qualitative comparison we draw two conclusions. First, the individual Love wave FWI is
superior to the individual Rayleigh wave FWTI in this field data application, as indicated by
the comparison to the GPR image. Second, the joint FWI further improved the inversion
result, because its inversion result held sharper contrasts and matched the GPR image most
precisely compared to both individual wave type inversions, respectively.

Moreover, this comparison shows the potential of the FWI, as it allows to assign elastic
parameters to anomalies indicated in the migrated GPR image, which will help in the
interpretation of subsurface anomalies. An approach, where in a first step the GPR is used
to locate and map anomalies and subsequently the FWI is applied to obtain the elastic
parameters of these anomalies, can be an efficient way to investigate the near-surface.

Recommendations for near-surface investigations by the FWI of surface waves:
To conclude this thesis, we propose two recommendations for near-surface investigations
of the S-wave velocity distribution by the FWI of shallow-seismic surface waves.

In the absence of an accurate initial model for the P-wave velocity, we recommend the
individual Love wave FWI for three main reasons: (1) Its convergence behavior is smooth
and independent of the P-wave velocity, (2) it therefore holds a smaller parameter space,
which leads to less cross-talk effects and (3) the SH wave equation is less complex than
the P-SV wave equation, which allows a computationally efficient inversion.

In the case an accurate initial model for the P-wave velocity is available, we recommend the
individual Love wave FWI against the individual Rayleigh wave FWI for the same reasons.
However, in this case a simultaneous joint FWT of both wave types has several advantages
compared to both individual wave type inversions: (1) It decreases the ambiguities of the
inversion result, since more data is evaluated, (2) it reduces the cross-talk between the
elastic parameter classes and (3) it further improves the resolution and accuracy of the
inversion result.

5.2. Outlook

Today, the method of choice in shallow-seismic investigations of the S-wave velocity
distribution is the inversion of dispersion curves. It can be performed on conventional
personal computers, produces stable inversion results and requires only a few preparatory
steps. Nevertheless, this method is not suitable for heterogeneous subsurfaces and is
limited in terms of resolution. The FWTI has the potential to overcome these limitations and
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can produce high resolution multi-parameter images of the subsurface. However, the FWI
requires large computational facilities and a high amount of preparatory work, such as
the estimation of accurate initial models. At the present time there are only few field data
applications of the FWI using shallow-seismic surface waves, compared to the dispersion
curve inversion, which is applied on a daily basis in engineering offices. For this reason,
there is significantly less experience in the application of the FWI than of the dispersion
curve inversion. However, the mentioned restrictions of the FWI are only temporary, as
computer power increases, experience is gained and the amount of preparatory work is
decreased by further methodical developments.

No doubt, the FWI will become the method of choice in shallow-seismic investigations.
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A. Appendix

FD-modelling and inversion parameters

Table A.1.: Configuration of the finite-difference forward modelling and of the inversion
algorithm for the synthetic reconstruction tests.

Modelling parameter: |

Model size (NX - NZ) 460x128 Grid points
Grid spacing 0.125m

Total time length 0.8s
Temporal sampling 2-107s
Spatial accuracy 6. Order
Temporal accuracy 2. Order

PML boundary size 10 Grid points
PML reference frequency 30 Hz

PML reference velocity 1500 m/s

Free surface Imaging technique

Inversion parameter: ‘

Min. number of iterations per stage 3
Frequency filter 4. Order Butterworth
Frequency bandwith 4Hz - 60Hz
Frequency steps 10Hz
L-BFGS Historic steps 20

Circular source tapers 5 Grid points
Median gradient smoothing 4 Grid points
Hessian water level € (P-SV) 5-1072
Hessian water level € (SH) 5-1073
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A. FD-modelling and inversion parameters

Table A.2.: Configuration of the finite-difference forward modelling and of the inversion
algorithm for the field data application.

Modelling parameter: ‘

Model size (NX - NZ) 560x160 Grid points
Grid spacing 0.125m

Total time length 0.52s
Temporal sampling 1.4-107°s
Spatial accuracy 6. Order
Temporal accuracy 2. Order
r-value for Q-approximation 0.1576
Relaxation frequencies 0.2978 Hz, 6.7325Hz, 84.6014 Hz
Reference frequency 40Hz

PML boundary size 15 Grid points
PML reference frequency 50 Hz

PML reference velocity 1500 m/s

Free surface Imaging technique

Inversion parameter:

Min. number of iterations per stage 3
Frequency filter 4. Order Butterworth
Frequency bandwith 4Hz - 130 Hz
Frequency steps 5Hz

L-BFGS Historic steps 20

Circular source tapers 5 Grid points
Median gradient smoothing 8 Grid points
Hessian water level € (P-SV) 5-1072
Hessian water level € (SH) 5.1073
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