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ABSTRACT

The analysis of land–atmosphere feedbacks requires detailed representation of landprocesses in atmosphericmodels.

The focus here is on runoff–infiltration partitioning and resolvedoverlandflow. In the standard version ofWRF, runoff–

infiltration partitioning is described as a purely vertical process. In WRF-Hydro, runoff is enhanced with lateral water

flows. The study region is the Sissili catchment (12800km2) inWestAfrica, and the study period is fromMarch 2003 to

February 2004. TheWRF setup here includes an outer and inner domain at 10- and 2-km resolution covering theWest

Africa and Sissili regions, respectively. In this WRF-Hydro setup, the inner domain is coupled with a subgrid at 500-m

resolution to compute overland and river flow. Model results are compared with TRMM precipitation, model tree

ensemble (MTE)evapotranspiration,ClimateChange Initiative (CCI) soilmoisture,CRUtemperature, and streamflow

observation. The role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks is

addressed with a sensitivity analysis of WRF results to the runoff–infiltration partitioning parameter and a comparison

betweenWRFandWRF-Hydro results, respectively. In theouter domain, precipitation is sensitive to runoff–infiltration

partitioning at the scale of the Sissili area (;1003 100km2), but not of areaA (5003 2500km2). In the inner domain,

where precipitation patterns are mainly prescribed by lateral boundary conditions, sensitivity is small, but additionally

resolvedoverlandflowhere clearly increases infiltration andevapotranspiration at thebeginning of thewet seasonwhen

soils are still dry. The WRF-Hydro setup presented here shows potential for joint atmospheric and terrestrial water

balance studies and reproduces observed daily discharge with a Nash–Sutcliffe model efficiency coefficient of 0.43.

Corresponding author address: Joel Arnault, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology,

Kreutzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany.

E-mail: joel.arnault@kit.edu

Denotes Open Access content.

MAY 2016 ARNAULT ET AL . 1489

DOI: 10.1175/JHM-D-15-0089.1

� 2016 American Meteorological Society

mailto:joel.arnault@kit.edu


1. Introduction

The atmosphere is influenced by the land surface, but

the precise mechanisms by which land–atmosphere

feedbacks occur are not fully understood yet (e.g.,

Seneviratne et al. 2006; Adler et al. 2011; Santanello

et al. 2013; Koster et al. 2014). In particular, the role of

soil moisture and vegetation on air temperature and

precipitation is a subject of debate (e.g., Pielke 2001;

Koster et al. 2004, 2006; Guo et al. 2006; Dirmeyer 2011).

As recalled by Guo et al. (2006), strong soil moisture–

precipitation feedbacks require a robust coupling of

surface evapotranspiration (ET) to soil wetness (i.e., the

terrestrial segment), as well as a strong link between

precipitation and surface fluxes through convection (i.e.,

the atmospheric segment). Concerning the terrestrial

segment of soil moisture–precipitation feedbacks, soil

moisture has been found to be the main controlling

factor for ET in transition zones between wet and dry

areas, where soil moisture–limited ET regimes prevail

(Koster et al. 2004; Dirmeyer 2011), eventually resulting

in soil moisture–induced thermal circulations (e.g.,

Pielke 2001; Taylor et al. 2007, 2011a). This is particu-

larly the case for the West African region situated be-

tween the wet Guinean coast and the dry Saharan

desert, where rainfall strongly influences the spatial

distribution of soil moisture and surface fluxes (Taylor

et al. 2007, 2011a,b). Based on surface–atmosphere ex-

change measurements acquired during field experi-

ments of the African Monsoon Multidisciplinary

Analyses (AMMA; Redelsperger et al. 2006; Lebel et al.

2009; Peugeot et al. 2011), Schwendike et al. (2010) and

Lohou et al. (2014) found a larger response of ET to soil

moisture disturbances at the beginning of the monsoon

when soils are still dry (Kunstmann and Jung 2007;

Yamada et al. 2013). Concerning the atmospheric seg-

ment of soil moisture–precipitation feedbacks, the role

of soil moisture–induced thermal circulations on con-

vective development finally depends on the state of the

atmosphere, and in particular on the amount of con-

vective available potential energy (CAPE), convective

inhibition (CIN), and winds (e.g., Pielke 2001; Findell

and Eltahir 2003; Taylor et al. 2007, 2011a,b; van den

Hurk and van Meijgaard 2010; Gantner and Kalthoff

2010; Froidevaux et al. 2014). For example, in West

Africa, testing different soil moisture initializations in a

numerical simulation of mesoscale convective systems

(MCSs), Gantner and Kalthoff (2010) obtained a de-

crease of rainfall for a mature MCS when approaching

dry soils, although the convergent anomaly above such

dry soils also favored convection initiation. A compre-

hensive analysis of the life cycle of organized convection

in West Africa was given by Laing et al. (2008).

The potential influence of the land surface on the at-

mosphere raises the question of whether amore detailed

representation of land processes in numerical atmo-

spheric models, for example, vegetation dynamics and

terrestrial hydrology, would significantly affect model

results (e.g., Delire et al. 2011; Stéfanon et al. 2012;

Maxwell et al. 2007, 2011; Anyah et al. 2008; Jung et al.

2010; Koster et al. 2010; Shrestha et al. 2014; Larsen

et al. 2014). Maxwell et al. (2007) coupled the Advanced

Regional Prediction System (ARPS; Xue et al. 2000)

with ParFlow, a three-dimensional and variably satu-

rated groundwater flow model (PF.ARPS; Jones and

Woodward 2001), for an idealized case study of con-

vective initiation in a 600-km2 watershed in Oklahoma,

United States. Numerical experiments at 1-km hori-

zontal resolution with PF.ARPS and ARPS stand-alone

were conducted for a 36-h period. The PF.ARPS simu-

lation additionally used 390 soil layers with a spacing of

0.5m for resolving subsurface water flows in the full

aquifer depth. Maxwell et al. (2007) found significant

differences in the location of convective cells at the end

of the 36-h run between the two simulations, in associ-

ation with shallow water-table depths in the valley in the

PF.ARPS simulation and a strong sensitivity of surface

fluxes to soil moisture disturbances (i.e., soil moisture–

limited ET regime). The Regional Atmospheric Mod-

eling System (RAMS; Walko et al. 2000) was enhanced

with a groundwater reservoir, a dynamic water table–

river exchange, and river flow routing to the ocean

(RAMS-Hydro; Miguez-Macho et al. 2007). Anyah

et al. (2008) performed a 6-month RAMS-Hydro simu-

lation inMay–October 1997 for the wholeUnited States,

using horizontal resolutions of 50 and 12.5 km for the

atmospheric and hydrologic components of the model,

respectively. In comparison to a RAMS stand-alone

simulation, it was found that water table–induced wetter

soils in RAMS-Hydro increased ET in the western re-

gions of the United States, where soil moisture was a

strong limiting factor for ET (as in Maxwell et al. 2007),

but did not have much influence in the more humid

eastern regions of theUnited States, where soil moisture

was not limiting in general. The increase of ET in the

RAMS-Hydro simulation was further associated with

an increase of precipitation through local recycling.

Shrestha et al. (2014) coupled the Consortium for Small-

ScaleModeling (COSMO) system (Schättler et al. 2008)
and ParFlow within the Terrestrial Systems Modeling

Platform (TerrSysMP). A 1-week TerrSysMP simula-

tion in July 2012 was performed for the 2300km2 Rur

catchment in Germany, at horizontal resolutions of 1

and 0.5 km for the COSMO and ParFlow components of

the model, respectively. Also, 30 stretched layers down

to 30m below the surface were used for the terrestrial
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vertical grid.Model results were significantly sensitive to

soil moisture disturbances (i.e., soil moisture–limited

ET regime; Maxwell et al. 2007; Anyah et al. 2008).

Moreover, in comparison to COSMO stand-alone,

TerrSysMP-resolved surface fluxes were generally

closer to observations.

The Weather Research and Forecasting (WRF)

Model (Skamarock and Klemp 2008) was recently cou-

pled with the National Center for Atmospheric Re-

search (NCAR) Distributed Hydrologic Modeling

System (NDHMS) within the so-called WRF-Hydro

modeling system (Gochis and Chen 2003; Gochis et al.

2014). In the WRF standard version, coupled with the

Noah land surface model (LSM; Chen and Dudhia

2001), runoff–infiltration partitioning is computed in a

2-m soil column without taking into account lateral

water flow. In WRF-Hydro, the Noah LSM is enhanced

with overland and river flow routing via NDHMS, thus

accounting for horizontal processes involved in runoff–

infiltration partitioning. Also, subsurface routing in the

saturated zone of the 2-m soil column and a groundwater

bucket model for evaluating the contribution of base

flow to river discharge are possible, but not activated in

this study. Similarly to RAMS-Hydro (e.g., Anyah et al.

2008), WRF-Hydro does not solve the three-dimensional

subsurface water flows, which makes it more computa-

tionally suitable for investigating the role of a physically

enhanced description of terrestrial hydrology on land–

atmosphere feedbacks in a multimonth simulation, as

compared to TerrSysMP (Shrestha et al. 2014).

Modifying or improving the land surface representa-

tion (e.g., WRF-Hydro vs WRF) in a coupled land–

atmosphere simulation of the West African region is

expected to significantly affect the simulated West Af-

rican monsoon system (e.g., Steiner et al. 2009; Hagos

et al. 2014). Moufouma-Okia and Rowell (2009) found

that varying soil moisture initial condition in a regional

climate simulation for West Africa generates small

random intraseasonal and interannual spatial variations

in simulated precipitation. In their case, modifying lat-

eral boundary conditions had a larger impact in terms of

magnitude and spatial coherency. However, as claimed

by Agustí-Panareda et al. (2010), the full value of ad-

ditional land surface information may improve the ac-

curacy of a numerical simulation only if the basic

atmospheric processes involved in the West African

monsoon system are already adequately captured. The

West African monsoon, that is, the latitudinal dis-

placement of the tropical rain belt over West Africa, is

indeed the result of a complex scale interaction process

involving sea surface temperature fluctuations, land

surface characteristics, oceanic monsoon flow, Saharan

Heat Low (SHL), African Easterly Jet (AEJ), African

EasterlyWave (AEW), Tropical Easterly Jet (TEJ), and

MCSs [see the comprehensive review of Nicholson

(2013)].

In a 5-yr simulation at 50-km resolution with the In-

ternational Centre for Theoretical Physics (ICTP) Re-

gional Climate Model, version 3 (RegCM3; Pal et al.

2007), driven byERA-Interim (Dee et al. 2011), Browne

and Sylla (2012) showed that modeled West African

summer rainfall is sensitive to the size of the simulated

domain used for resolving atmospheric processes at

stake. Simulated rainfall characteristics closest to those

from the Tropical Rainfall Measuring Mission (TRMM;

Huffman et al. 2007) dataset were obtained for a domain

including a large portion of the Atlantic Ocean in the

south (108S) and regions upstream of the Sudanese

highlands to the east (358E), as it allowed the regional

atmospheric model to develop a sufficiently moist oce-

anic monsoon flow and to generate its own AEW dis-

turbances with respect to the driving data, respectively.

The ability of a numerical simulation to correctly rep-

resent atmospheric processes involved in the West Af-

rican monsoon system also depends on the choice of

model physics. For example, simulating the West Afri-

can monsoon in April–September 1999 with a WRF

domain at 24-km resolution and 27 different configura-

tions of physical parameterization, Klein et al. (2015)

obtained a spread in Sahelian precipitation in August as

large as that observed for a 30-yr period (1979–2010).

Simulating the West African monsoon for a 10-day pe-

riod at a resolution of 12 km, Marsham et al. (2013)

compared the impact of parameterized and explicit

convection on model results. In their case, explicit con-

vection gave the closest rainfall amount and diurnal

timing with respect to TRMM precipitation data. It also

gave more realistic monsoon dynamics as deduced by a

simulated meridional surface pressure gradient closer to

ground observation. The model configuration without

cumulus parameterization was therefore considered as

the most suitable for a future coupled application with

other components of the Earth system in West Africa,

such as hydrology in our case.

The West African region situated between the wet

Guinean coast and the dry Saharan desert can be divided

in a Sahelian subregion, northward of the 700-mm iso-

hyet, and a Sudanian subregion southward [following

Descroix et al. (2009)]. The location of this 700-mm

isohyet is at approximately 128–148N. As recalled by

Descroix et al. (2009), the main hydrological differ-

ence between the Sahelian and Sudanian ecoclimates is

the amount of rainfall: generally less than 700mm in the

Sahelian case and between 700 and 1300mm in the

Sudanian case. In the Sahelian region, hillslope runoff is

usually generated through Hortonian overland flow
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occurring during a rainfall event when infiltration ca-

pacity is reached (e.g., Dunne 1978; Casenave and

Valentin 1992; Peugeot et al. 1997; Esteves and Lapetite

2003). Furthermore, there is observational evidence that

infiltration potentially occurs at the bottom of Sahelian

river beds (Peugeot et al. 1997). In the Sudanian region,

soil infiltration capacity is generally higher because of

more vegetated areas, tillage, faunal activity, and less

soil crusting, so that in this case subsurface hydrological

processes play a larger role in surface runoff generation

(e.g., Casenave and Valentin 1992; Chevallier and

Planchon 1993). Accordingly, depths to groundwater in

this region are found to vary between 0 and 25m

(Bonsor and Mac Donald 2011).

Distributed hydrological models generally do not

describe the full complexity of surface runoff generation

processes, but they can be calibrated for the purpose of

discharge estimation in large-scale river basins, as was

shown by Wagner et al. (2006) and d’Orgeval and

Polcher (2008) for several West African river basins.

Forcing the Water Flow and Balance Simulation Model

(WaSiM; Schulla and Jasper 2007) with outputs from the

Fifth-generation Pennsylvania State University–NCAR

Mesoscale Model (MM5; Grell et al. 1994), Wagner

et al. (2006) and Jung et al. (2012) showed the potential

of coupled atmospheric–hydrological modeling in esti-

mating river discharges in the White Volta basin, a river

basin situated between southern Burkina Faso and

northern Ghana, in between the Sudanian and Sahelian

regions. The main problem in forcing such hydrological

models with atmospheric model data, however, remains

the limited accuracy of simulated precipitation (e.g.,

Smiatek et al. 2012).

The additional description of terrestrial lateral water

flows in coupled atmospheric–hydrological models po-

tentially affects simulation results in regions character-

ized by soil moisture–limited ET regimes (e.g., Maxwell

et al. 2007; Anyah et al. 2008; Shrestha et al. 2014).

However, such coupled models have never been applied

to the West African region, although numerous studies

have shown the impact of soil moisture on surface fluxes

and precipitation there (e.g., Kunstmann and Jung 2007;

Taylor et al. 2007, 2011a,b; Gantner and Kalthoff 2010;

Schwendike et al. 2010; Yamada et al. 2013; Lohou et al.

2014). Consequently, the present work aims at evaluat-

ing the performance of the WRF-Hydro coupled mod-

eling system for the West African environment in

reproducing hydrometeorological datasets. The primary

objective of this study is to assess the impact of runoff–

infiltration and overland flow on land–atmosphere

feedbacks in WRF and WRF-Hydro simulations. The

secondary objective is to evaluate the ability of WRF-

Hydro to model the full atmospheric–hydrological

regional water cycle and to reproduce finally observed

streamflow. Such a model skill would indeed be partic-

ularly relevant for West Africa, a region threatened by

droughts and characterized by a primarily rainfed agri-

culture (Nicholson 2000).

Our study focuses on the Sissili catchment (;12800km2,

10.28–128N, 18–2.58W; see Fig. 1), a subbasin of the White

Volta basin and a core research site of the West African

Science Service Center onClimate Change andAdapted

Land Use (WASCAL; Bliefernicht et al. 2013). The

period of investigation is from March 2003 to February

2004. This choice has been motivated by 1) the low an-

thropogenic influence in the Sissili catchment compared

to other West African river basins due to the absence of

dams and the presence of a nature reserve in its northern

part (the Nazinga Reserve), 2) the comprehensiveness

of investigating a hydrological year from one dry season

to the next one, and 3) the rare simultaneous availability

of daily discharge time series at the outlet of the Sissili

catchment (Wiasi gauge location displayed in Fig. 1c)

and further meteorological datasets in this region (see

section 2). It is noted here that the Sissili catchment is

situated in a part of the West African Sudanian region

where both overland flow and subsurface hydrological

processes are expected to contribute to surface runoff

generation [see Fig. 2 of Descroix et al. (2009)]. In the

following, the region surrounding the Sissili catchment is

referred to as theWest African Sudano-Sahelian region.

Section 2 presents the observational datasets used in

this study to describe the atmospheric–hydrological

conditions of the Sissili catchment and surrounding

Sudano-Sahelian region from March 2003 to February

2004. The WRF and WRF-Hydro setups are described

in section 3. The methodology to investigate the role of

runoff–infiltration partitioning and resolved overland

flow on modeled land–atmosphere feedbacks is detailed

in section 4. Results are provided in section 5. Conclu-

sions and perspectives of this work are given in section 6.

2. Observational datasets

Atmospheric–hydrological characteristics of the Sis-

sili catchment and surrounding Sudano-Sahelian region

for the 12-month period from March 2003 to February

2004 are investigated here with four global observa-

tional datasets of precipitation P, soil moisture volu-

metric content u, evapotranspiration, and near-surface

temperature T, and with Sissili streamflow observation

at Wiasi QWiasi (Wiasi gauge location displayed in

Fig. 1c).

The P dataset comes from TRMM (PTRMM; Huffman

et al. 2007), the u dataset from the Climate Change

Initiative (CCI) of the European Space Agency (ESA;
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FIG. 1. (a) Terrain elevation (m MSL) of WRF10. The height scale

is given by the colored bar to the right. The curved black lines delineate

the West African coast and the political boundaries. Burkina Faso and

Ghana are indicated by labels ‘‘B’’ and ‘‘G,’’ respectively. The thick

black rectangle shows the location of the nested domain displayed in (b),

and the black closed contour inside this rectangle delineates the area of

the Sissili catchment. The east–west elongated rectangle delineates area

A. (b) Terrain elevation (mMSL) ofWRF2. The height scale is given by

the colored bar to the right. The black closed contour inside this rect-

angle delineates the area of the Sissili catchment (labeled ‘‘Area S’’).

(c) Terrain elevation (m MSL) of H500 coupled with WRFH2. The

black lines show river channels with a Strahler stream order above 3.

The position of Wiasi gauge is also indicated.
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uCCI; Dorigo et al. 2014), the ET dataset from the model

tree ensemble (MTE; ETMTE; Jung et al. 2009, 2010), the

T dataset from the Climatic Research Unit (CRU;

TCRU;Harris et al. 2014), and theQWiasi dataset from the

Hydrological Services Department of the Ministry of

Water Resources, Works and Housing of Ghana. The

PTRMM and uCCI have a spatial resolution of 0.258 and
are provided 3-hourly and daily, respectively, whereas

ETMTE and TCRU have a spatial resolution of 0.58 and
are monthly products. The PTRMM is commonly used for

evaluating West African precipitation (e.g., Nicholson

et al. 2003; Browne and Sylla 2012; Marsham et al. 2013;

Klein et al. 2015). Comparing PTRMM with interpolated

gauge measurements in the Volta basin in West Africa,

Thiemig et al. (2012) found that PTRMM could be used to

accurately estimate yearly amounts and monthly varia-

tion of precipitation. On the daily scale, however,

PTRMM showed discrepancies with respect to the num-

ber of rainy days and the magnitude of heavy rainfall

events. Nevertheless, PTRMM was found to be one of the

most accurate satellite-based rainfall products for the

West African region (Thiemig et al. 2012). The ETMTE

has been chosen with respect to two other available ET

datasets from the Moderate Resolution Imaging Spec-

troradiometer (MODIS) Global Evapotranspiration

Project (MOD16;Mu et al. 2007, 2011), and fromGlobal

Land Surface Evaporation: The Amsterdam Method-

ology (GLEAM; Miralles et al. 2011). As highlighted by

Lorenz et al. (2014), each of these gridded products

performs differently for different river basins. The best

agreement between our WRF results and these ET data-

sets was found with ETMTE (not shown here).

To facilitate comparison with model outputs (section

4), PTRMM, uCCI, ETMTE, and TCRU datasets are in-

terpolated on the WRF grid at 10-km resolution

(Fig. 1a) using the nearest-neighbor interpolation tech-

nique. The QWiasi is displayed as specific discharge

(volumetric discharge divided by the area of the Sissili

catchment) in order to provide an estimation of surface

runoff R in the Sissili catchment in the same units (i.e.,

mmday21) as the other observed hydrological fluxes

involved in the surface water budget.

Monthly time series of PTRMM, ETMTE, uCCI, and

TCRU, spatially averaged for the Sissili catchment area,

as well as monthly time series ofQWiasi, are displayed in

Fig. 2 (see thick lines). A wet period occurred in the

Sissili region fromMarch to October 2003, followed by a

dry period from November 2003 to February 2004

(Fig. 2b). TheQWiasi mainly followed the distribution of

PTRMM, with a single peak in September and near-zero

values at the beginning of the wet period and during the

dry months (Fig. 2a). This unimodal behavior is a typical

feature of river discharge usually observed in the region

(e.g., Wagner et al. 2006). There was almost no baseflow

contribution during the dry season, although this does

not exclude a contribution of subsurface hydrological

processes to the generation ofQWiasi during wet months

(e.g., Chevallier and Planchon 1993). For TCRU, two

distinct peaks occurred during the considered 12-month

period, one in April and another in October, at the be-

ginning and end of the wet period, respectively (Fig. 2e).

The comparatively lower TCRU between May and Sep-

tember was associated with comparatively higher uCCI
and ETMTE (cf. Figs. 2c–e), confirming a strong soil

moisture–temperature feedbacks in this West African

region during the wet period (e.g., Koster et al. 2006;

Taylor et al. 2007). According to these observations, the

amount of precipitation from March 2003 to February

2004 in the Sissili catchment was 1199mm, in association

with 737mm of ET and 72mm of discharge (see second

row of Table 1). This gives an annual runoff ratio of

6.1%.

It is stressed that global gridded products (PTRMM,

uCCI, ETMTE, and TCRU) are based on remote sensing

data and a limited number of ground observations, so

that discrepancies in the water balance can be expected

when looking at a relatively small area such as the Sissili

catchment (;100 3 100 km2). To mitigate this resolu-

tion issue, we spatially average these products for the

much larger area A defined as 98–138N, 108W–128E
(location displayed in Fig. 1a; see thick lines in Fig. 3).

A comparison between Fig. 2 and Fig. 3 shows that the

monthly variations of spatially averaged PTRMM,

ETMTE, uCCI, and TCRU in the Sissili catchment and area

A are similar. Even the annual amounts of precipitation

and ET are close (cf. second row of Tables 1 and 2). This

suggests that atmospheric–hydrological characteristics

of the Sissili catchment are typical for the surrounding

Sudano-Sahelian region defined as area A. However,

runoff ratios cannot be compared since no discharge

data are available for the whole area A. It is noted here

that surface runoff in area A is an area-averaged vari-

able that can, on the other hand, be deduced frommodel

outputs (see Fig. 3a, Table 2).

Given the temporal resolution of PTRMM, that is,

3-hourly, the Sissili catchment and area A are further

characterized with mean diurnal cycles and daily histo-

grams (see thick lines in Fig. 4). The mean diurnal cycles

are computed with 3-hourly PTRMM spatially averaged

in the considered area (Sissili catchment or area A) for

the period April–October 2003. The daily histograms

are computed with daily PTRMM averaged in 50 3
50km2 subareas within the considered area and for the

same time period. Mean diurnal cycles show a pre-

cipitation peak around 1800 UTC for both Sissili

catchment and areaA, which is a known feature ofWest
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FIG. 2. Monthly time series of the observed atmospheric–hydrological variables spatially averaged in the area of

the Sissili catchment (black solid lines with diamond): (a) QWiasi (mmday21), (b) PTRMM (mmday21), (c) ETMTE

(mmday21), (d) uCCI (m
3m23), and (e) TCRU (K). The computation of area-averaged monthly uCCI in (d) is in two

steps: 1) monthly averaged values of uCCI are deduced from the mean of daily area-averaged values of uCCI available

at each pixel of the dataset, and 2) when the number of pixels with available monthly uCCI in the area of the Sissili

catchment is greater than 20%, then an area-averagedmonthly uCCI is computed. The gray range in each panel comes

from the sevenWRF10 simulations’ results with k5 3, 6, 9, 12, 15, 18, and 21. The x axis gives the time inmonths from

March 2003 to February 2004, and the y axis gives the scale of the displayed quantity.
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African precipitation (e.g., Laing et al. 2008). The af-

ternoon peak in the case of area A is, however, less

pronounced, in association with the large meridional

span covered by area A, that is, 108W–128E (cf. Figs.

4a,c). Histograms of daily precipitation in the Sissili

catchment and area A are also similar. In particular,

between April and October 2003, 50 3 50km2 subareas

within these two regions received on average less than

1mm of daily precipitation 52%–53% of the time, 1–5

(5–20, 20–40)mm of daily precipitation 17%–19%

(21%–22%, 6%–7%) of the time, and more than 40mm

of daily precipitation about 1%of the time (see Figs. 4b,d).

In the following, we assess to which extent these

atmospheric–hydrological observations can be repro-

duced by standard WRF using a single-column land

surface model compared to WRF-Hydro.

3. Models

a. WRFModel: Description and setup forWest Africa

A two-domain WRF setup is considered in this study,

an outer domain at 10-km resolution encompassingmost

of the West African continent (Fig. 1a) and a nested

inner domain at 2-km resolution covering a 240 3
280 km2 area around the Sissili catchment (Fig. 1b),

using a one-way nesting technique. In the following, the

outer domain is referred to as WRF10 and the inner

domain as WRF2. WRF10 consists of a Mercator-

projected domain covering a sufficiently large area to

the south (58S) and to the east (208E), in order to resolve

the oceanic monsoon flow and AEW disturbances

(Browne and Sylla 2012). In bothWRF10 andWRF2 the

vertical grid consists of 35 vertical levels up to 20hPa

(;25km), with a vertical spacing stretched from 70 to

1000m at the lowest and highest levels, respectively. The

simulated period is 14 months from January 2003 to

February 2004, thereby including a 2-month spinup time

(see section 5a). The initial and lateral boundary con-

ditions of WRF10 are from the 0.758-resolution ERA-

Interim (Dee et al. 2011). The model equations in

WRF10 and WRF2 are integrated at a time step of 50

and 10 s, respectively, and outputs are saved at an hourly

interval.

It has to be noted that the recommendations of

Browne and Sylla (2012) are not strictly respected here,

asWRF10 does not extend as far south (i.e., 108S) and as

far east (i.e., 358E) as suggested. This smaller domain

size was chosen in order to reduce computing time while

keeping the 10-km resolution. Indeed, as shown in the

following analysis, this resolution appears to be suffi-

cient to simulate West African 3-hourly, daily, and

monthly rainfall characteristics comparable to those

derived from TRMM data without cumulus parame-

terization (as in Marsham et al. 2013). Test simulations

with the Kain–Fritsch cumulus scheme (Kain 2004; Ma

and Tan 2009) enabled in WRF10 have also been con-

sidered. The main difference was an increase of the

overestimation of weak precipitation events and annual

precipitation amounts in the study region by about 10%

(with respect to TRMMdata) when the cumulus scheme

was enabled (not shown). The configuration without

cumulus scheme in WRF10 was therefore retained in

this study.

WRF10 and WRF2 use the same parameterized

physics. Microphysics is parameterized with the five-

class liquid and ice hydrometeors scheme of Hong et al.

(2004). Radiative processes are represented with the

longwave and shortwave radiation schemes of Mlawer

et al. (1997) and Dudhia (1989), respectively. Turbulent

transport of heat, moisture, and momentum is parame-

terized in the whole atmospheric column with the

scheme of Hong et al. (2006). Surface exchange co-

efficients are computed according to Chen and Zhang

(2009) in order to take into account the effect of canopy

height on land–atmosphere exchanges. Surface heat and

TABLE 1. Annual characteristics of the observed atmospheric–hydrological variables in the area of the Sissili catchment for the 1-yr

period fromMarch 2003 to February 2004:QWiasi (Q and R) and PTRMM (P), runoff ratio betweenQWiasi and PTRMM, amount of ETMTE

(ET), mean of uCCI for the period of available data (u), and mean of TCRU (T). Rows denote the differences between each of the seven

WRF10 simulations’ results with k5 3, 6, 9, 12, 15, 18, and 21, and observations. Note that annual amounts of RWRF10 are compared with

the annual amount of QWiasi in the first column. Data from columns P, ET, u, and T are displayed in Fig. 6a.

Q and R (mm) P (mm) Runoff ratio (%) ET (mm) u (m3m23) T (K)

Obs 73mm 1199 6.1 737 0.203 301.27

WRF10, k 5 3 1261 1165 24.5 255 10.014 10.43

WRF10, k 5 6 1111 164 14.6 243 10.013 10.48

WRF10, k 5 9 161 137 10.9 255 10.010 10.46

WRF10, k 5 12 144 153 9.4 285 10.006 10.41

WRF10, k 5 15 130 1126 7.8 240 10.015 10.36

WRF10, k 5 18 22 27 6.0 253 10.013 10.35

WRF10, k 5 21 214 238 5.2 262 10.010 10.42
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moisture fluxes are calculated, with the one-dimensional

NoahLSMpredicting soil temperature and soil moisture

in a 2-m-depth, four-layer column and taking into ac-

count vegetation effects (Chen and Dudhia 2001). Land

surface parameters used in the Noah LSM, such as sto-

matal resistance, roughness length, and canopy height,

are assigned for each category of the land-usemap. Land

use is deduced from theMODIS land-cover map (Friedl

et al. 2002) using the dominant-category criteria for the

interpolation to the WRF domain’s resolution. Albedo,

green vegetation fraction, and leaf area index (LAI),

three other important parameters in the Noah LSM, are

FIG. 3. As in Fig. 2, but for area A shown in Fig. 1a. Also, no discharge observation is displayed in (a) because these

data are not available for area A.
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taken from satellite-derived climatology (Csiszar and

Gutman 1999; Gutman and Ignatov 1998; Kumar

et al. 2014).

b. The bare soil evaporation parameter fx in Noah
LSM

The single-column Noah LSM computes the moisture

flux from the nonvegetated fraction of a model grid box,

that is, bare soil evaporation Edir (m s21), as

E
dir
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where sf is the green vegetation fraction; u1 (m
3m23) is

the volumetric soil water content in the first Noah soil
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(m3m23) are the minimal and saturated values, re-

spectively; Ep (ms21) is the potential evaporation; and fx

is the bare soil evaporation parameter (Ek et al. 2003).

This parameter affects the declining rate of soil moisture,

bare soil evaporation, and its default value is set to 2.

c. The runoff–infiltration partitioning parameter k
in Noah LSM
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surface water depth h (m) as the rate of infiltration ex-
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where Pd (m) is the precipitation not intercepted by the

canopy; DZi (m) is the depth of soil layer i; ui is the

volumetric water contents (soil moisture) in soil layer i;

us is the saturated soil moisture (porosity), which de-

pends on soil texture; Ks (m s21) is the saturated hy-

draulic conductivity, which also depends on soil texture;

Kref 5 2 3 1026m s21 depicts the saturated hydraulic

conductivity of the silty–clay–loam soil texture chosen

as a reference; dt (s) is the model time step; and k is the

runoff–infiltration partitioning parameter [k stands for

kdtref in Chen and Dudhia (2001)]. Indeed, in Eq. (2) k

regulates the rate of surface infiltration at each time

step, taking into account the volume of rainfall water at

the surface and the potential volume of water that can

still be contained in the 2-m soil layer until saturation, so

that surface runoff (infiltration) can be decreased (in-

creased) by increasing k (Schaake et al. 1996). Time

integrating Eq. (2) gives a measure of modeled surface

runoff, that is,RWRF10 andRWRF2 for the outer and inner

domain, respectively, which is saved in the outputs.

In the case of a river basin where surface infiltration

excess is mainly responsible for surface runoff gener-

ation, spatially averaged RWRF10 and RWRF2 in the

river basin provide an estimation of river specific dis-

charge, which can then be calibrated by tuning k.

Based on field experiments (Wood et al. 1998), the

default value of k has been set to 3, although Chen and

Dudhia (2001) recognized that this parameter should

be calibrated again for basins with different pre-

cipitation climatology.

d. Description of the hydrological module for the
WRF-Hydro setup

The WRF-Hydro setup considered here is based on

theWRF setup described in section 3a. Additionally, the

inner domain (Fig. 1b) is coupled with a routing subgrid

TABLE 2. As in Table 1, but for area A. Note that the first column indicates the annual amount of RWRF10 since there is no discharge

observation for area A. Data from columns P, ET, u, and T are displayed in Fig. 6b.

R (mm) P (mm) Runoff ratio (%) ET (mm) u (m3m23) T (K)

Obs — 1137 — 728 0.173 300.57

WRF10, k 5 3 332 1101 26.8 278 10.015 10.53

WRF10, k 5 6 229 195 18.6 267 10.018 10.51

WRF10, k 5 9 175 184 14.3 264 10.017 10.53

WRF10, k 5 12 149 1108 12.0 262 10.019 10.47

WRF10, k 5 15 123 189 10.1 256 10.020 10.48

WRF10, k 5 18 109 195 8.8 250 10.021 10.47

WRF10, k 5 21 94 182 7.7 255 10.020 10.48
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at 500-m resolution (Fig. 1c) for the computation of

overland and streamflow routing. In the following, the

inner domain of the WRF-Hydro setup is referred to as

WRFH2 and the routing grid as H500.

The H500 is obtained with the WRF-Hydro pre-

processing tool, taking as input data the digital elevation

data (DEM) from the Hydrological Data and Maps

Based on Shuttle Elevation Derivatives at Multiple

Scales (HydroSHEDS) database (Lehner et al. 2008). It

provides elevation, surface flow direction, and the river

network displayed in Fig. 1c, obtained by setting the

minimal number of pixels to define a stream to four in

the preprocessing tool. This means that the minimal

resolved catchment area in H500 is 1 km2 (i.e., 4 3
500m3 500m). This minimal number leads to a density

of stream grid cells of about 26% for the whole routing

grid. It is noted here that the choice of this minimal

number is arbitrary. Test simulations using higher

minimal numbers, that is, less dense river network, gave

lower discharge (not shown).

Overland flow routing is computed on H500 at the

WRFH2 time resolution in two steps. First, the rate of

infiltration excess h determined by the one-dimensional

Noah land surface model in WRFH2 [see Eq. (2)],

considered here as the rate of surface flow depth, is

disaggregated on H500 using linear subgrid weighting

factors. Second, overland flow, occurring when h

exceeds a specified retention depth, is solved on H500

with a diffusive wave formulation adapted from Julien

et al. (1995) and Ogden (1997), using Manning’s surface

roughness coefficients from Vieux (2001).

Streamflow routing is computed on the river network

of H500 (Fig. 1c) also at the WRFH2 time resolution,

but with an additional variable time-stepping technique

in order to satisfy Courant constraints. This computation

is done in two steps. First, the discharge of overland flow

FIG. 4. (a) Mean diurnal cycle of the Sissili catchment–averaged precipitation (mmh21) derived from TRMM

data (black solid line with diamonds) and from the WRF10 simulations with k 5 3, 6, 9, 12, 15, 18, and 21 (gray

range) for the period April–October 2003. The x axis gives the time of the day (h UTC), and the y axis gives the

precipitation scale (mmh21). (b) The histogram of daily precipitation (mmday21) averaged in 50 3 50 km2 sub-

areas within in the area of the Sissili catchment. The x axis gives precipitation bins (mmday21), and the y axis gives

the amount of days (%). (c),(d) As in (a),(b), but for area A.
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into a stream, the so-called lateral flow qlat (m
3 s21), is

computed as

q
lat
5

›h

›t
3 a

cgrid
, (3)

where t (s) is the time coordinate and acgrid (m2) is the

area of a channel grid cell in H500. Second, the water

volume within the river network is routed on a pixel-by-

pixel basis using a diffusive wave formulation allowing

for backwater effects. Channel parameters, including

the initial river head, bottomwidth, and side slope of the

river channel, as well as Manning’s channel roughness

coefficient, are prescribed as functions of Strahler

stream order (Strahler 1957). Default values are pro-

vided in Table 3 [further details can be found in Gochis

et al. (2014)].

For each model time step, after the computation of

overland and streamflow routing on H500, the re-

maining surface flow depth h is aggregated to WRFH2

using the same linear subgrid weighting factors used

for the disaggregation. Aggregated surface flow depth

is then added to precipitation not intercepted by the

canopy [term Pd in Eq. (2)] for computation of soil

moisture infiltration at the next model time step, thus

including feedbacks of surface lateral water flows in

WRFH2. It is noted here that qlat [Eq. (3)] gives the

rate of surface water inH500 that does not infiltrate in

the ground but reaches the river network instead, so

that this quantity is directly related to the surface

runoff predicted by WRF-Hydro (i.e., RWRFH2). The

aggregation and temporal integration of qlat on

WRFH2 have been implemented in the code and

added to the model outputs, in order to provide a

measure of RWRFH2 comparable to the surface runoff

predicted in the WRF inner domain stand-alone, that

is, RWRF2.

4. Methodology of feedback analysis

It is recalled that land–atmosphere feedbacks refer to

the two-way interaction between terrestrial and atmo-

spheric variables, such as soil moisture, surface runoff,

evapotranspiration, surface temperature, and precipi-

tation (e.g., Seneviratne et al. 2010; Koster et al. 2014).

WRF andWRF-Hydro are physically based models that

resolve the processes governing these variables, at least

partially. A method to evaluate the role of a particular

process on land–atmosphere feedbacks is to compare

two WRF/WRF-Hydro simulations in which the de-

scription of this process is modified. The relevance of the

result from such a sensitivity analysis can then be as-

sessed against 1) observation and 2) model uncertainty

obtained from an ensemble analysis (e.g., Hagos

et al. 2014).

The focus here is on runoff–infiltration partitioning

and overland flow, two processes taken into account in

the Noah LSM ofWRF [Eq. (2)] and in the hydrological

extension of WRF-Hydro [Eq. (3)], respectively. Model

results for the outer, inner, and hydrologically enhanced

inner domain, that is, WRF10, WRF2, and WRFH2,

respectively, are evaluated with observational datasets

presented in section 2. Recognizing that soil moisture

initial conditionmay affect the role of runoff–infiltration

partitioning on soil moisture and potential land–

atmosphere feedbacks, the significance of spinup for

land surface conditions is investigated in section 5a for

WRF10. The role of runoff–infiltration partitioning on

land–atmosphere feedbacks is assessed in section 5b

with a sensitivity analysis of WRF10 results to the

runoff–infiltration partitioning parameter k [Eq. (2)].

For this purpose, the model setup of section 3a, in-

cluding WRF10 only, is run seven times with values of

k5 3, 6, 9, 12, 15, 18, and 21. Scale effects are considered

by analyzing feedbacks in the Sissili catchment and in

the surrounding West African Sudano-Sahelian region,

that is, area A (Fig. 1a). In section 5c, the significance of

the role of runoff–infiltration partitioning on modeled

land–atmosphere feedbacks deduced from the sensitiv-

ity analysis of WRF10 results to k is assessed against an

ensemble of seven additional WRF10 simulations in

which the soil moisture initial condition is varied. The

ensemble of soil moisture initial conditions is constructed

with the seven soil moisture fields at 0000UTC 1 January

2004 derived from the WRF10 simulations with varied

values of k. It is assumedhere that simulated soilmoisture

conditions at 0000 UTC 1 January 2004, after a 1-yr

simulation run, are plausible conditions for a model ini-

tialization at 0000 UTC 1 January 2003.

A sensitivity analysis of WRF2 results to k is provided

in section 5d. The model setup of section 3a, with both

TABLE 3. Channel parameters as a function of Strahler stream

order. The channel bottom width bw, side slope tana, initial river

head hinit, and default Manning’s channel roughness coefficients

n are from the ‘‘Noah test case’’ for WRF-Hydro (available on-

line at http://www.ral.ucar.edu/projects/wrf_hydro). The calibrated

Manning’s coefficients used in this work are indicated in the

last column.

Strahler

stream order bw (m) tana hinit (m) n default n calibrated

1 1.5 3.0 0.02 0.55 0.75

2 3.0 1.0 0.02 0.35 0.70

3 5.0 0.5 0.02 0.15 0.65

4 10.0 0.18 0.03 0.10 0.60

5 20.0 0.05 0.03 0.07 0.55

6 40.0 0.05 0.03 0.05 0.30

7 60.0 0.05 0.03 0.04 0.20
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WRF10 andWRF2, is runwith the default value of k and

with the value of k that gives the WRF10 results closest

to observations. It is noted that the WRF code has been

upgraded in order to specify k separately for the outer

and inner domain, so that the sensitivity ofWRF2 results

to k is tested separately. This allows investigating the

role of runoff–infiltration partitioning on land–atmosphere

feedbacks in the Sissili catchment at a higher resolution

and in the theoretical case of fixed large-scale conditions

(one-way nesting).

In WRF-Hydro, the description of runoff–infiltration

partitioning [Eq. (2)] is enhancedwith resolved overland

flow [Eq. (3)]. It is therefore expected that WRF-Hydro

and WRF have different sensitivity to k. Calibration

issues withWRF-Hydro are addressed in section 5e. The

dependency of land–atmosphere feedbacks to resolved

overland flow is finally investigated by comparingWRF2

and WRFH2 calibrated results (section 5f).

5. Results

a. Significance of spinup for land surface conditions

Figure 5a shows the daily averaged uCCI and soil

moisture in the four soil layers of theWRF10 simulation

with k 5 3 (ui-WRF10; i 5 1, 4) for the area A. Note that

uCCI is compared here with u1-WRF10, the volumetric soil

water content in the first Noah soil layer between 0 and

10 cm [the validity of such a comparison was suggested

by Albergel et al. (2008), Brocca et al. (2011), and

Dorigo et al. (2014)]. Daily area A–averaged bare soil

evaporation and plant transpiration from the WRF10

simulation are also displayed in Fig. 5b. The u1-WRF10

and bare soil evaporation are relatively high at the be-

ginning of the simulation but display a sharp decrease

during the first simulated month. This suggests that

there is an excess of u1-WRF10 in areaA at the initial time

of the simulation, which is drained out through bare soil

evaporation during the first simulated month. Then, the

amounts of u1-WRF10 and bare soil evaporation at the end

of February 2003 are close to those reached at the end of

February 2004. Also, u1-WRF10 and uCCI are close in

February 2003 and 2004. Therefore, in this particular

case, a 2-month spinup period appears to be sufficient

for soil moisture in the first soil layer.

Plant transpiration, on the other hand, shows a

much weaker dependency on the relatively high initial

u1-WRF10 (see Fig. 5b). It is also noticeable that u in deeper

layers, between 10 and 200 cm depth, is significantly

higher at the end of the simulation as compared to

12 months earlier (about 10% more between 10 and

100cm, and 17% more between 100 and 200cm; Fig. 5a),

so that a 2-month period may not be fully sufficient for

modeled u in deeper layers to spin up. A multiyear

simulated time period for deep u spinup time (e.g.,

Santanello et al. 2013) would certainly affect plant

transpiration, infiltration capacity, runoff–infiltration

partitioning, and ultimately land–atmosphere feedbacks.

b. Sensitivity of outer domain results to runoff–
infiltration partitioning

To test the effect of runoff–infiltration partitioning on

WRF10 results, seven simulations are conducted for the

WRF outer domain with values of k5 3, 6, 9, 12, 15, 18,

and 21 [see Eq. (2)]. As expected, k has a large impact on

modeled monthly surface runoff (RWRF10) in the area of

FIG. 5. (a) Area A–averaged daily soil moisture from CCI (uCCI) and from the four Noah LSM soil layers of the

WRF10 simulation with k5 3 (ui-WRF10; i5 1, 4). The x axis gives the time from 1 Jan 2003 to 28 Feb 2004, and the y

axis gives the u scale (m3m23). (b) As in (a), but for the area A–averaged daily bare soil evaporation and plant

transpiration (mmday21) from the same WRF10 simulation.
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the Sissili catchment (see Fig. 2a). In consequence, k also

has an impact on other simulated monthly atmospheric–

hydrological characteristics of the Sissili catchment, that

is, PWRF10, ETWRF10, u1-WRF10, and TWRF10 (see gray

range in Figs. 2b–e, respectively). Annual differences

between model results and observations for the 1-yr

period from March 2003 to February 2004 are provided

in Table 1 and Fig. 6. Modeled annual surface runoff in

the Sissili catchment, that is, RWRF10, is compared with

observed annual discharge at the outlet Wiasi, that is,

QWiasi, which is justified by the fact that these annual

quantities are computed between a dry season and the

next one, that is, a hydrological year. Variations in k lead

to variations in the range of 275 and 203mm for the

annual amount of RWRF10 and PWRF10, respectively,

which corresponds to 377% and 17% of the annual

amounts of observed RWiasi and PTRMM, respectively

(Table 1). On the one hand, the difference between

annual amounts of RWRF10 and QWiasi decreases with

increasing k; on the other hand, such a linear behavior

with respect to k does not exist for the difference of

annual amounts between PWRF10 and PTRMM and

ETWRF10 and ETMTE, nor does it exist for the difference

of annual mean between uWRF10 and uCCI and TWRF10

and TCRU (see lines with squares in Fig. 6).

There is a larger variability of monthly u1-WRF10 and

ETWRF10 with respect to k from April to July (see

Figs. 2c,d), confirming a larger response of surface fluxes

to soil moisture disturbances at the beginning of the

monsoon (Kunstmann and Jung 2007; Schwendike et al.

2010; Yamada et al. 2013; Lohou et al. 2014). In August,

for all k, ETWRF10 and TWRF10 are lower than ETMTE

and TCRU, respectively, whereas u1-WRF10 is higher than

u1-CCI. These results are obtained for the default value of

FIG. 6. (a) Difference between the annual amount of PWRF10 and PTRMM for the period from March 2003 to

February 2004 in the area of the Sissili catchment (black line with squares) and in area A (dashed line with tri-

angles), as a function of k. The x axis gives the value of the k parameter and the y axis gives theP (mm). (b)As in (a),

but for the difference between the annualmean of u1-WRF and uCCI. The x axis gives the value of the k parameter and

the y axis gives the u (m3m23). (c) As in (a), but for the difference between the annual mean of ETWRF and ETMTE.

The x axis gives the value of the k parameter and the y axis gives the ET (mm). (d) As in (a), but for the difference

between the annual mean of TWRF and TCRU. The x axis gives the value of the k parameter and the y axis gives the

T (K).
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2 for the bare soil evaporation parameter [see section 3c,

Eq. (1)]. A test simulation with fx5 1 (not shown here)

confirmed that decreasing fx increases (decreases) bare

soil evaporation and ETWRF10 (u1-WRF10 and TWRF10).

Since TWRF10 in August is already lower than TCRU, the

beneficial impact of decreasing fx for ETWRF10 and

u1-WRF10 in August is therefore mitigated. This apparent

inconsistency between model and observations could be

due to the fact that other model parameters impacting

TWRF10, such as surface albedo, are not properly pre-

scribed. Also, ETWRF10 is systematically lower than

ETMTE at the beginning of the wet season (March) and

during dry months (December–February). The relatively

higherETMTE during these drymonths could be related to

the presence of deep-rooted vegetation in the West Af-

rican Sudano-Sahelian region (e.g., Schenk and Jackson

2005), since this is not taken into account in the 2-m-depth

soil thickness of Noah LSM. However, the present work

does not aim at improving the description ofETWRF10, but

at quantifying the impact of runoff–infiltration calibration

on ETWRF10 and other variables characterizing modeled

land–atmosphere feedbacks. All evapotranspiration pa-

rameters in the Noah LSM, including fx, are therefore

kept to their default value in the present study.

It is, however, difficult to judge which value of k gives

the most accurate WRF10 results in the Sissili catch-

ment, since k 5 18, 18, 15, 12, and 18 give the smallest

annual difference among RWRF10, PWRF10, ETWRF10,

uWRF10, and TWRF10 and respective observations. This

highlights the difficulty of capturing the complicated soil

moisture–precipitation feedback mechanisms occurring

in the Sissili catchment (e.g., Kunstmann and Jung 2007;

Gantner andKalthoff 2010). It is remarkable that k5 18

provides the closest annual amount of precipitation and

surface runoff with respect to observation (see Table 1),

with an annual runoff ratio of 6%. It is therefore sug-

gested that physically realistic values of k can be much

higher than the maximum value of 10 assumed by

Santanello et al. (2013), depending on the study region.

The effect of runoff–infiltration partitioning onWRF10

results at the scale of the West African Sudano-Sahelian

region, that is, areaA, is investigated in Figs. 3 and 6 and

Table 2. It is noticeable that at this scale, the diminution

of surface runoff, that is, increase of k, results in an

overall slight increase of uWRF10 and ETWRF10 (see

dashed lines with triangles in Figs. 6b,c). There is also an

overall slight decrease of TWRF10 between k5 3 and 21,

although this decrease is clearly nonlinear with respect

to k (see dashed line with triangle in Fig. 6d). Variations

in PWRF10 are also nonlinear (see dashed line with tri-

angles in Fig. 6a). The impact of k on PWRF10, ETWRF10,

uWRF10, and TWRF10 for area A is, however, rather small

in comparison to differences with observations. The

lower impact of k on precipitation at the scale of areaA,

as compared to that at the scale of the Sissili catchment

(see Fig. 6a), would facilitate the calibration of this pa-

rameter at this scale, although discharge data are not

available for the whole area A. Moreover, for such a

large area, there is certainly a need to spatially distribute

k in order to account for the full variability in soil and

surface properties. Nevertheless, an annual runoff ratio

of 8.8% in areaA is obtained for the WRF10 simulation

using k5 18, which is of the same order of magnitude as

that obtained for the Sissili catchment (6%).

The mean diurnal cycles and daily histograms of

PTRMM and PWRF10 displayed in Fig. 4 show a large

(small) variability of 3-hourly and daily PWRF10 with

respect to k at the scale of the Sissili catchment (areaA).

Themean diurnal cycle in the Sissili catchment closest to

that from TRMM, with respect to RMSE, is obtained

with k 5 9 (Table 4). For the daily histogram of Fig. 4b,

however, there is no k tested value that systematically

provides the closest percentage of days for a given pre-

cipitation bin as that derived from TRMM (not shown).

The correlation coefficient between area A–averaged

(Sissili catchment averaged) daily time series of PWRF10

andPTRMM varies between 0.64 and 0.70 (0.16 and 0.31),

depending on the k tested value (see second line of

Table 5). This means that WRF10 performs better in

simulating accurate daily precipitation at the scale of

area A than at the scale of the Sissili catchment. More-

over, daily time series of area A–averaged PWRF10 are

much more correlated between themselves in compari-

son to daily time series of Sissili catchment–averaged

PWRF10 (Table 5).

The impact of k on model results is further quantified

in Figs. 7 and 8 with time series of so-called spatial

correlations of precipitation. Spatial correlation is de-

fined here as the correlation, between two precipitation

datasets, of all subarea-averaged precipitation elements

within a given area. Figure 7 displays the monthly evo-

lution of spatial correlation of 100 3 100km2 averaged

monthly precipitation elements in area A between

PTRMM and PWRF10. It shows a large variability of

TABLE 4. RMSE (mmh21) between the WRF10- and TRMM-

derived precipitation diurnal cycles displayed in Figs. 4a and 4d for

the Sissili catchment and area A.

Sissili catchment Area A

WRF10, k 5 3 0.21 0.16

WRF10, k 5 6 0.29 0.16

WRF10, k 5 9 0.17 0.15

WRF10, k 5 12 0.30 0.16

WRF10, k 5 15 0.29 0.15

WRF10, k 5 18 0.24 0.16

WRF10, k 5 21 0.23 0.15
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simulated monthly precipitation with respect to k in

subareas of a size comparable to that of the Sissili

catchment (;12 800km2), although no model configu-

ration is providing monthly precipitation systematically

closer to TRMM. Figure 8 displays the distribution of

mean spatial correlations of 100 3 100km2 averaged

daily precipitation elements in area A, as a function of

mean precipitation. These spatial correlations are found

between 0.1 and 0.7, which further confirms that k has a

significant impact on simulated daily precipitation at the

100-km-scale characteristic of the Sissili catchment.

To summarize, modifying the runoff–infiltration par-

titioning parameter k for the whole outer domain, in

order to get modeled annual surface runoff in the Sissili

catchment as close as possible to observed annual dis-

charge, does modify significantly the hourly, daily,

monthly, and yearly atmospheric–hydrological charac-

teristics of the Sissili catchment (;100 3 100 km2) and

leads to annual precipitation closer to TRMM obser-

vation. Also, at the scale of the West African Sudano-

Sahelian region (i.e., area A, ;5003 2500km2), k has a

similar impact on surface runoff, but a much reduced

influence on other atmospheric–hydrological variables,

that is, soil moisture, evapotranspiration, near-surface

temperature, and precipitation.

c. Sensitivity of outer domain results to soil moisture
initial condition

The significance of the role of runoff–infiltration

partitioning on land–atmosphere feedbacks deduced

from a sensitivity analysis to k (section 5b) is assessed

here against a sensitivity analysis to soil moisture ini-

tial condition. A set of seven soil moisture fields at

0000 UTC 1 January 2004 is derived from the previously

discussed WRF10 simulations with values of k 5 3, 6, 9,

12, 15, 18, and 21. These fields are all different from each

other, in association with the previously described model

result variability to k. In particular, the spatial RMSE at

pixel scale (103 10km2 subareas) in areaA between each

pair is in the range of 5%–7%. These soil moisture fields

are used to initialize seven additional WRF10 simulations

at 0000 UTC 1 January 2003 with k fixed to 18.

Results of this sensitivity analysis are displayed in

Figs. 9 and 10 for the area of the Sissili catchment and

TABLE 5. Correlation coefficients between each pair of TRMM- and WRF10-derived daily precipitation time series for the period

April–November 2003 for the Sissili catchment (italics) and area A (boldface).

PWRF10, k 5 3 PWRF10, k 5 6 PWRF10, k 5 9 PWRF10, k 5 12 PWRF10, k 5 15 PWRF10, k 5 18 PWRF10, k 5 21

PTRMM 0.26 0.25 0.28 0.25 0.31 0.16 0.28

0.68 0.66 0.68 0.70 0.68 0.64 0.66

PWRF10, k 5 3 0.36 0.40 0.37 0.49 0.47 0.48

0.84 0.86 0.88 0.86 0.87 0.88
PWRF10, k 5 6 0.45 0.28 0.45 0.37 0.43

0.88 0.82 0.85 0.80 0.84

PWRF10, k 5 9 0.27 0.54 0.48 0.41

0.86 0.86 0.84 0.86
PWRF10, k 5 12 0.49 0.41 0.48

0.88 0.86 0.88

PWRF10, k 5 15 0.56 0.48

0.86 0.87
PWRF10, k 5 18 0.56

0.89

FIG. 7. Spatial correlation between 100 3 100 km2 subareas of

TRMM monthly precipitation in area A and those from the

WRF10 simulations using k 5 3, 6, 9, 12, 15, 18, and 21. The x axis

gives the time in months fromApril to October 2003, and the y axis

gives the spatial correlation scale.
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area A, respectively. It shows that soil moisture initial-

ization has a significant (much reduced) impact on

monthly precipitation, soil moisture, evapotranspira-

tion, and temperature in the Sissili catchment (area A).

A similar impact is found for the mean daily cycle and

daily histogram of precipitation (not shown). It is re-

markable that this model sensitivity to soil moisture

initial condition is comparable with that to k (cf.

Figs. 2b–e and Figs. 9b–e, Figs. 3b–e and Figs. 10b–e),

except for surface runoff (cf. Fig. 2a and Fig. 9a, Fig. 3a

and Fig. 10a). Indeed the sensitivity of surface runoff to

k is related to precipitation variability and runoff–

infiltration partitioning calibration. The sensitivity of

surface runoff to soil moisture initial condition is related

to precipitation variability only, leading to much smaller

surface runoff variability in this case. Model results

variability introduced by soil moisture initial condition

is further assessed with the distribution of mean spatial

correlations of 1003 100km2 averaged daily precipitation

elements in area A, as a function of mean precipitation

(Fig. 11). These spatial correlations are comparable with

those obtained in the sensitivity analysis to k, except for

high precipitation events where the impact of k is clearly

larger (i.e., lower spatial correlations; cf. Figs. 8 and 11 for

precipitation bins above 16mmday21).

It is concluded that the role of runoff–infiltration

partitioning on West African precipitation is at least as

important as that of soil moisture initial condition, which

is in accordance with the findings of Moufouma-Okia

and Rowell (2009). On the other hand, the previous

result that k5 18 gives themost accurate annual amount

of precipitation (Table 1) is mitigated since this also

depends on soil moisture initialization.

d. Sensitivity of inner domain results to runoff–
infiltration partitioning

In the case of WRF10 with default soil moisture ini-

tialization, it was shown that k 5 18 gives the most ac-

curate annual amount of surface runoff and precipitation

in the Sissili catchment (section 5b, Table 1). It is pro-

posed here to test this calibrated value of k for the one-

way nested 2-km inner domain WRF2 on the basis of

three WRF simulations using the setup described in sec-

tion 3a and k 5 3 and 3, 3 and 18, and 18 and 18, for

WRF10 andWRF2, k being specified separately for each

domain. It is noted that WRF2 with k 5 3 and 3 and

WRF2 with k5 3 and 18 have identical lateral boundary

conditions, so that differences between them are only due

to WRF2-resolved land–atmosphere feedbacks in re-

sponse to modified runoff–infiltration partitioning.

Compared to WRF10, WRF2 simulates significantly

more surface runoff (cf. second column in Tables 1 and

6). In particular, the difference between annual amounts

ofRWRF10 andQWiasi is of 261 (22) mm using k5 3 (k5
18). This is increased to 334 (61 and 35) mm for RWRF2

using k5 3 and 3 (k5 3 and 18, and k5 18 and 18). This

is related to the fact that WRF2 simulates significantly

more precipitation as compared to WRF10 (cf. third

column of Tables 1 and 6). Indeed, the difference be-

tween annual amounts of PWRF10 and PTRMM is of 165

(27) mm using k 5 3 (k 5 18). This is increased to 281

and 261 (159) mm for PWRF2 using k5 3 and 3 and k5 3

and 18 (k 5 18 and 18). Accordingly, the annual runoff

ratio of 6.0% obtained for WRF10 using k 5 18 is in-

creased to 9.2% (8.0%) for WRF2 using k 5 3 and 18

(k 5 18 and 18).

Similarly to what was deduced fromWRF10 results in

area A, the diminution of surface runoff between the

WRF2 simulations with k 5 3 and 3 and k 5 3 and 18 is

associated with a slight increase of uWRF2 and ETWRF2

and a slight decrease of TWRF2 (see blue solid line with

triangles in Figs. 12c–e and corresponding annual values

in Table 6). This is the well-defined terrestrial segment

of soil moisture–precipitation feedbacks defined by Guo

et al. (2006). Also, as for area A–averaged WRF10 re-

sults, the impact of k on Sissili catchment–averagedWRF2

results, in the case of identical lateral boundary con-

ditions, that is, k 5 3 and 3 and k 5 3 and 18, is rather

FIG. 8. As in Fig. 7, but for the spatial correlation between daily

precipitation from theWRF10 simulation using k5 3 and that from

the six other WRF10 simulations using k 5 6, 9, 12, 15, 18, and 21.

Also, spatial correlations shown here are averaged for the selected

bins of mean daily precipitation in areaA and plotted as a function

of these bins (see x axis).
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small in comparison to differences with observations.

These ‘‘well-defined terrestrial segment effects’’ are less

clear in the case with k 5 18 and 18 because of the ad-

ditional effect of a different precipitation distribution on

surface fluxes in relation to different lateral boundary

conditions (see green dashed line with squares in

Figs. 12c–e, and corresponding annual values in Table 6).

The impact of k on WRF2 results, with identical and

different lateral boundary conditions, is further quanti-

fied in Fig. 13 with mean spatial correlations of daily

FIG. 9. As in Fig. 2, but for the seven WRF10 simulations’ results with k 5 18 using for soil moisture initial

conditions the soil moisture at 0000 UTC 1 Jan 2004 from the sevenWRF10 simulations with k5 3, 6, 9, 12, 15, 18,

and 21.
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precipitation between the WRF2 simulations. These

mean spatial correlations are computed for 2 3 2 km2

subareas (grid point) in the area of the Sissili catchment

and are displayed as a function of mean precipitation. In

the case of unchanged lateral conditions (i.e., k5 3 and 3

and k 5 3 and 18), k has some impact on the spatial

distribution of simulated daily precipitation, with mean

spatial correlations between 0.4 and 0.9 (see blue tri-

angles in Fig. 13). In the case of different lateral

boundary conditions (i.e., k 5 3 and 18 and k 5 18 and

18) daily spatial patterns at the 2-km scale are much

more different, withmean spatial correlations between20.2

FIG. 10. As in Fig. 3, but for the sevenWRF10 simulations’ results with k5 18 using for soil moisture initial conditions

the soil moisture at 0000 UTC 1 Jan 2004 from the seven WRF10 simulations with k 5 3, 6, 9, 12, 15, 18, and 21.
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and10.2 (see green squares in Fig. 13). Correlations of av-

eraged daily and hourly precipitation time series in the Sissili

catchment are accordingly very high between k 5 3 and 3

and k5 3 and 18 cases, andmuch lower between k5 3 and

18 and k5 18 and 18 cases (see Table 7).

The above results show that there is an intrinsic spatial

variability of precipitation with respect to k in the area

of the Sissili catchment at 2-km resolution, which is,

however, not large enough to annihilate the impact of

the atmospheric forcing from the surroundings. Indeed,

precipitation in West Africa is generally produced by

MCSs, which on average span a distance of about

1000km and last about 25 h (Laing et al. 2008). There-

fore, precipitation patterns simulated in WRF2 (i.e.,

280 3 240 km2) are largely prescribed by the lateral

boundary conditions. The impact of k on WRF2 results

in the Sissili catchment, without changing k in WRF10,

would certainly have been similar to that obtained in

WRF10 for a simulated area large enough to resolve

MCSs’ life cycles. The impact of k on WRF2 results in

the case of two-way nesting would eventually be larger

as well. On the other hand, a two-way nesting would

create discontinuities in the soil moisture field of

WRF10 because of precipitation overestimation in

WRF2, resulting in artificial soil moisture–precipitation

feedbacks in WRF10. Such a physical inconsistency is

avoided with the one-way nesting option. In the fol-

lowing, the configuration of WRF2 with k5 18 and 18 is

retained for the comparison with WRF-Hydro results

since it provides the smallest precipitation and runoff

annual biases, that is, 159 and 35mm, respectively.

e. Calibration of the hydrologically enhanced inner
domain (WRF-Hydro)

As in WRF, the runoff–infiltration partitioning in

WRF-Hydro also has to be calibrated with k [Eq. (2)].

Here we choose to calibrate k for theWRF-Hydro inner

domain (i.e.,WRFH2) using k5 18 for the outer domain

WRF10, in order to have the same lateral boundary

conditions for WRFH2 andWRF2, k5 18 and 18. Since

it was shown previously that k does not have a large

impact on the annual amount of PWRF2 when lateral

boundary conditions are fixed, in relation with the rel-

atively small size of WRF2 domain, the annual amount

of RWRFH2 with k 5 18 (‘‘calibrated value’’) should be

comparable to that of RWRF2 with k 5 18 and 18.

The sensitivity of WRFH2 results to k has been tested

for several values between 3 and 1.4. The annual amount

of RWRFH2 was much lower than that of RWRF2 when

using the default value k 5 3 (not shown), and among

the tested values k 5 1.4 gave an annual amount of

RWRFH2 closest to that of RWRF2 (results for k 5 1.4 are

shown in Tables 6 and 7 and Figs. 12–14). TheManning’s

channel roughness coefficients, which do not affect

RWRFH2, have also been adjusted in order to improve

the shape of the simulated daily discharge (QWRFH2) with

respect to observation (Fig. 14b; see last column of

Table 3). As compared to default values, these

FIG. 11. As in Fig. 8, but for the seven WRF10 simulations’ re-

sults with k 5 18 using for soil moisture initial conditions the soil

moisture at 0000 UTC 1 Jan 2004 from the seven WRF10 simula-

tions with k 5 3, 6, 9, 12, 15, 18, and 21.

TABLE 6. As in Table 1, but for the WRF2 simulations using k5 3 and 3, 3 and 18, and 18 and 18, and from the WRFH2 simulation using

k 5 18 and 1.4.

Q and R (mm) P (mm) Runoff ratio (%) ET (mm) u1 (m
3m23) T (K)

Obs 73 1199 6.1 737 0.204 301.26

WRF2, k 5 3 and 3 1334 1281 27.5 234 10.019 10.35

WRF2, k 5 3 and 18 161 1261 9.2 28 10.026 10.31

WRF2, k 5 18 and 18 135 1159 8.0 221 10.023 10.25

WRFH2, k 5 18 and 1.4 119 1172 6.5 214 10.023 10.24
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FIG. 12. As in Fig. 2, but for differences between results from the WRF2 simulations using k 5 3 and 3, 3

and 18, and 18 and 18 and from the WRFH2 simulation using k 5 18 and 1.4 (see legend at the bottom of

the figure).
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coefficients have been increased for the purpose of

reproducing the slow discharge decrease from mid-

October.

It has to be noticed that in this coupled atmospheric–

hydrological model experiment these coefficients can-

not be finely tuned to exactly fit modeled discharge to

observations, since the bias in modeled discharge is also

due to biases in modeled precipitation (see Table 6). In

particular, the discharge overestimation (underestima-

tion) in June–August (September) is associated with an

overestimation (underestimation) of precipitation with

respect to TRMM, as shown in Figs. 14a and 14b. Note

that in Fig. 14a daily precipitation time series have been

smoothed with a 14-dayGaussian low-pass filter in order

to facilitate the comparison of precipitation amounts

with discharge amounts. The task of simulating accurate

daily discharge with such a coupled atmospheric–

hydrological approach is for this reason particularly

challenging. Nevertheless, in our ‘‘calibrated’’ WRF-

Hydro configuration a Nash–Sutcliffe model efficiency

coefficient (NSE; Nash and Sutcliffe 1970) of 0.43 is

achieved for the daily Wiasi discharge. A comparable

WRF-Hydro performance was reported by Yucel et al.

(2015) in the context of flood forecasting for selected

short time episodes. Hydrological modeling studies

usually involve numerical models that predict river

streamflow using observed or modeled precipitation as

input data (e.g., Schuol and Abbaspour 2006; Wagner

et al. 2006; d’Orgeval and Polcher 2008). In these cases,

observed streamflow in West African river basins are

usually reproduced with an NSE between 0.2 and 0.7.

Our WRF-Hydro setup not only provides a streamflow

prediction with a similar accuracy, but it also gives the

possibility to investigate hydrological feedbacks on

precipitation.

It is finally noted that two very different calibrated

values of k between two WRF and WRF-Hydro simu-

lation give comparable monthly and daily surface runoff

(see Figs. 12a, 15). This is certainly related to the dif-

ferent description of runoff–infiltration partitioning

between WRF and WRF-Hydro. Indeed, in WRF-

Hydro the infiltration excess of Eq. (2) is ponded so

that it can partially infiltrate at the next time step if not

discharged in a stream grid cell. On the other hand, in

WRF the surface water is not ponded but goes directly

to surface runoff. Our result suggests that increasing

WRF-resolved surface infiltration (increase of k) leads

to a simulated annual, monthly, and daily surface runoff

relatively close to that from WRF-Hydro. In the fol-

lowing section we compare the effect of these two dif-

ferent physical descriptions of runoff–infiltration

partitioning on modeled land–atmosphere feedbacks,

FIG. 13. As in Fig. 7, but for spatial correlations between 2 3
2 km2 subareas (gridpoint resolution) of daily precipitation from

the WRF2 and WRFH2 simulations in the area of the Sissili

catchment (see legend at the bottom of the figure). Spatial corre-

lations shown here are averaged for the selected bins of mean daily

precipitation in the area of the Sissili catchment and plotted as

a function of these bins (see x axis). Spatial correlations between

PWRF2 with k 5 3 and 3 and PWRF2 with k 5 3 and 18 (blue tri-

angles) are in the same range as those between PWRF2 with k5 18

and 18 and PWRFH2 with k 5 18 and 1.4 (red circles) and much

higher than those betweenPWRF2with k5 3 and 18 andPWRF2with

k 5 18 and 18 (green squares).

TABLE 7. Correlation coefficients between each pair of TRMM-, WRF2-, and WRFH2-derived precipitation time series for the Sissili

catchment for the periodApril–November 2003, at daily (italics) and hourly (boldface) resolution. Note that TRMM is a 3-hourly product,

so there is no hourly correlation.

PWRF2, k 5 3 and 3 PWRF2, k 5 3 and 18 PWRF2, k 5 18 and 18 PWRFH2, k 5 18 and 1.4

PTRMM 0.19 0.19 0.23 0.23

PWRF2, k 5 3 and 3 0.99 0.51 0.51

0.99 0.19 0.19
PWRF2, k 5 3 and 18 0.51 0.51

0.20 0.19

PWRF2, k 5 18 and 18 0.99

0.99

1510 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



that is, changes in atmospheric variables like precipita-

tion when overland flow is enabled.

f. Sensitivity of inner domain results to enabled
overland flow

WRF2 results using k5 18 and 18 are compared here

with WRFH2 results using k 5 18 and 1.4. The same

daily peaks are present in RWRFH2 and RWRF2 (no side

values in the scatterplot of Fig. 15), indicating that

similar precipitation events at the scale of the Sissili

catchment are simulated in WRFH2 and WRF2. This is

confirmed by high correlation coefficients of daily and

hourly precipitation time series (Table 7) and relatively

high spatial correlations of 2 3 2 km2 subareas of daily

precipitation (see red circles in Fig. 13).

The fact thatRWRFH2 is generally lower thanRWRF2 at

the beginning of the wet season (until July; see Fig. 12a)

is coherent with drier soils/higher infiltration capacity at

this time of the year (e.g., Fig. 5a). Indeed, surface

routing in WRF-Hydro allows precipitation to infiltrate

in a larger area than in WRF, which results in more in-

filtration when soils are dry. Accordingly, uWRFH2 and

ETWRFH2 are slightly higher than uWRF2 and ETWRF2

until August (cf. green dashed lines with squares and red

dashed lines with circles in Figs. 12c,d). However, this

effect is very small and the impact on temperature is

hardly visible in Fig. 12e. Values of PWRFH2 and PWRF2

are also generally close, except in July, when WRFH2

slightly increases the monthly difference with TRMM

(Fig. 12b) and the annual amount as well (Table 6).

Altogether, the different treatment of runoff–infiltration

partitioning between WRF2 with k 5 18 and 18 and

WRFH2 with k 5 18 and 1.4 leads to precipitation

results’ differences, that is, increase of annual pre-

cipitation by 13mm and spatial correlations between

0.52 and 0.71, comparable to the differences obtained

between WRF2 with k 5 3 and 3 and WRF2 with k 5 3

and 18, that is, decrease of annual precipitation by

20mm and spatial correlations between 0.44 and 0.87

(see Tables 6 and 7, Figs. 12 and 13). It is therefore

concluded here that the additional description of over-

land flow in WRF-Hydro has a clear impact on simu-

lated precipitation, via overland flow–induced changes

FIG. 14. (a) Daily time series of 14-day Gaussian low-pass-filtered daily precipitation averaged in the area of the

Sissili catchment, fromTRMM(gray dash–dotted line) and from theWRFH2 simulation using k5 18 and 1.4 and the

calibrated Manning coefficients of Table 3 (blue dashed line). (b) As in (a), but for daily discharge at Wiasi from

the gauge observation and the WRH2 simulation. The NSE is indicated.

FIG. 15. Scatterplot between Sissili catchment–averaged daily

surface runoff (mmday21) from the WRF2 simulation with k5 18

and 18 (RWRF2; x axis) and that from theWRFH2 simulation using

k 5 18 and 1.4 and the calibrated Manning coefficients of Table 3

(RWRFH2; y axis).
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in runoff–infiltration partitioning and land–atmosphere

feedback mechanisms, especially at the beginning of the

wet season when soils are still dry (soil moisture–limited

ET regime). As for WRF2, this impact would probably

be significant at the scale of the Sissili catchment in the

case of a simulated area large enough to resolve the

interaction between land surface and MCSs through

their entire life cycle.

6. Summary and perspectives

The first application of a fully coupled atmospheric–

hydrological modeling system, that is, WRF-Hydro, for

West Africa was presented. The fully coupled modeling

system allowed for modeling of the complete regional

water cycle, from the top of the atmosphere, via the

boundary layer, to the land surface, the unsaturated

zone, and the flow in the river beds. Only atmospheric

inflow and outflow at the coarsest model domain were

prescribed; no additional hydrometeorological driving

information is needed in this approach. Our focus here

was on the role of runoff–infiltration partitioning and

resolved overland flow on land–atmosphere feedbacks,

particularly precipitation.

A two-domain WRF setup using a one-way nesting

technique was applied, with an outer domain at 10-km

resolution encompassing the West African continent

and an inner domain centered on the Sissili catchment.

In our WRF-Hydro setup, the computation of runoff–

infiltration partitioning in the inner domain was en-

hanced with overland flow and streamflow routing on a

subgrid at 500-m resolution (Fig. 1).

The role of runoff–infiltration partitioning on land–

atmosphere feedbacks was deduced from a sensitivity of

WRF outer domain results to the runoff–infiltration

partitioning parameter k. The range of annual pre-

cipitation variation to this parameter was about one-

sixth of the annual amount. Setting it to 18 resulted in

simulated annual runoff and annual precipitation in the

Sissili catchment closest to observations. However, this

result was mitigated by the fact that a comparable an-

nual precipitation spread was obtained for a fixed value

of the runoff–infiltration partitioning parameter but varied

soil moisture initial condition. Runoff–infiltration par-

titioning calibration also had an effect on other observed

atmospheric–hydrological characteristics of the Sissili

catchment, that is, 3-hourly, daily, and monthly pre-

cipitation; monthly evapotranspiration; monthly soil

moisture; and monthly temperature. This impact was

much reduced for the entire West African Sudano-

Sahelian region (area A, see Fig. 1a).

A similar sensitivity analysis was conducted for the

WRF inner domain, modifying the runoff–infiltration

partitioning parameter separately in the outer and inner

domain. Keeping this parameter constant in the outer

domain, the impact of varying it only in the inner do-

main was not as significant as for the outer domain for

the area of the Sissili catchment, in relation with the fact

that precipitation patterns simulated in the one-way

nested inner domain weremainly prescribed by identical

lateral boundary conditions from the outer domain. It

was concluded that the impact of runoff–infiltration

partitioning calibration on inner domain’s precipita-

tion results would have been similar to that obtained in

the outer domain for a larger simulated area.

Setting the runoff–infiltration partitioning parameter

to 18 for both outer and inner domains resulted in outer

and inner domains’ annual runoff and annual precipita-

tion in the Sissili catchment closest to observations, al-

though annual precipitation in the inner domain was

generally 10%–15%higher than that in the outer domain.

Setting this parameter to 1.4 for the WRF-Hydro inner

domain gave comparable annual amounts of surface

runoff and precipitation. Indeed, in WRF-Hydro the in-

filtration excess is ponded and routed on the subgrid at

500-m resolution so that it can partially infiltrate at the

next time step if not discharged in a stream grid cell of the

subgrid. Since surface water is not ponded in WRF,

WRF-resolved surface infiltration has to be increased

(increase of k) in order to obtain a runoff–infiltration

partitioning closer to that in WRF-Hydro.

Analysis of hydrological feedbacks revealed that

WRF-Hydro predicted more infiltration and less runoff

at the beginning of the wet season, when soils were still

dry, although the impact on evapotranspiration, tem-

perature, and precipitation was small. The impact of

overland routing on precipitation, via overland flow–

induced changes in runoff–infiltration partitioning and

land–atmosphere feedback mechanisms, is assumed to

be much larger for simulated areas large enough to re-

solve MCSs’ life cycles. The WRF-Hydro simulation fi-

nally allowed for reproduction of daily streamflow in the

river bed with a reasonable performance (NSE of 0.43).
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uea.ac.uk/cru/data/hrg/, and MTE data at https://

climatedataguide.ucar.edu/climate-data/fluxnet-mte-multi-

tree-ensemble.) Discharge data were provided by the
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Hydrological Service Department of the Ministry of

Water Resources, Works and Housing of Ghana. Tech-

nical information about HydroSHEDS data is available

online at http://hydrosheds.cr.usgs.gov. The WRF-Hydro

preprocessing tool is available online at https://www.ral.

ucar.edu/sites/default/files/public/projects/wrf_hydro/v3_0/

Standalone_Tool_v2_2.zip. WRF and WRF-Hydro simu-

lationswere run at theGermanClimateComputingCenter.

Test simulations were run at the Leibniz-Rechenzentrum.
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