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Abstract

The function and efficiency of a catalyst is influenced by its design on several length scales.

Therefore the characterization of catalysts on all length scales is required to understand the

underlying processes and to improve the catalyst function. Additionally, by the combination

of several characterization techniques on the same system, complementary information can be

obtained. Since catalytic processes are dynamic processes, the characterization has to be per-

formed during the reaction processes under in situ conditions. For this purpose, dedicated cells

which allow in situ studies have to be developed. Besides different spectroscopic or scattering

techniques, imaging techniques may be used to study the catalysts. However, in situ stud-

ies are often complicated due to constraints on in situ cells. Hard X-rays are well suited for

catalyst characterization under in situ conditions and may be used for both spatially resolved

measurements and imaging studies. Hard X-ray microscopy, particularly X-ray ptychography,

is therefore a promising characterization tool in heterogeneous catalysis.

Catalyst characterization on the micrometer to the nanometer scale requires different approaches

covering different length scales. While the micrometer scale can be well covered by a variety of

spatially resolved measurements, the nanometer scale can only be probed indirectly by scatter-

ing or spectroscopic techniques, or directly by electron microscopy. However, while the latter

exhibits constraints for in situ measurements, hard X-ray microscopy is regarded as a promising

tool for bridging the gap between studies on the nanoscale under model conditions and stud-

ies on the micrometer scale under more realistic conditions. In this work, tools for evaluation

of the micrometer and the nanometer scale should be improved and developed. This includes

the testing and improvement of a gas phase microreactor suited for correlative characterization

techniques on the micrometer scale, as well as the development of a complementary X-ray mi-

croscopy and electron microscopy approach for the nanometer scale, based on special in situ

ptychography cells.

To study the micrometer scale of catalysts, several characterization techniques can be applied

in a spatially resolved manner. Among them are X-ray spectroscopy and X-ray diffraction

techniques, IR thermography or Raman spectroscopy. In this work, a silicon-based gas phase

microreactor, which allows the correlative application of these techniques, was developed and

optimized. Among other qualities, the microreactor enables rapid heating and cooling rates

due to its design, which makes it an ideal tool for studying transient reaction conditions. In

the context of this work, the reactor design, optimization and first applications are described.

The reactor design, originally composed of silicon and glass, was developed to minimize tem-

perature variations across the length of the catalytic bed. Additionally, a reactor completely

composed of silicon was built, which allows for high temperature application. It was proven
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that XAS spectra and XRD patterns free from distortions could be acquired with both microre-

actors, and that IR thermography and Raman spectroscopy could be performed. The reactor was

applied to study the ignition and extinction process of the catalytic partial oxidation of methane

over noble metal catalysts, which show pronounced gradients in oxidation state and tempera-

ture. Both the evolution of hot spots as well as the appearance of a gradient in oxidation state

could be observed in the microreactor, while the reaction process was monitored by on-line

mass spectrometry. These results were in line with those obtained previously in conventional

capillary reactors, which clearly showed the applicability of the gas phase microreactor for spa-

tially resolved in situ studies.

Next to this in situ study, the potential of the reactor for the application during transient reaction

conditions was shown on the example of the simulation of a realistic driving cycle. This re-

quires fast heating and cooling rates, which are extremely difficult to obtain using conventional

in situ cells. During the simulation of the driving cycle, the selective catalytic reduction of

nitrogen oxides over copper zeolites was followed by operando quick X-ray absorption spec-

troscopy. By probing the gas composition and the catalyst during the simulation of the driving

cycle, it could be shown that changes in the gas composition as well as in the coordination

geometry of the catalyst followed the fast heating and cooling profiles. These first measure-

ments revealed the unique possibilities of this gas phase microreactor for the application during

transient reaction conditions, which will open the door for future studies during transient con-

ditions.

To bridge the gap between in situ microscopy on the micrometer and the nanometer scale, hard

X-ray ptychography can be applied. In this work, dedicated in situ cells for hard X-ray ptycho-

graphy were evaluated, developed and applied on different catalysts. Furthermore, a hierarchi-

cal imaging approach was presented, based on a complementary study of the same catalysts by

electron microscopy and ptychography. In this work, both a cell developed at DTU and a cell

developed at KIT were introduced. The DTU-cell was intensively studied and its applicability

for in situ ptychography was demonstrated. Experiences gained from these measurements were

used to optimize the design of the KIT-cell, which is still in preliminary testing phase. In the

context of this work, for the first time, a unique spatial resolution of 20 nm was obtained for

in situ hard X-ray ptychography, which is by a factor of 5 to 10 better than the best resolution

reported for in situ ptychography so far. Additionally, in situ ptychography was combined with

infrared thermography, for simultaneous temperature mapping. Furthermore, the unique possi-

bility to perform complementary EM and X-ray microscopy on the same sample was exploited

in this work. This allows studying samples on different length scales, covering different pres-

sure ranges and sample thicknesses.

In this work, the thermal annealing of nanoporous gold based catalysts was studied under dif-

ferent atmospheres and pressures. It was found that the behavior under annealing conditions
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strongly depends on the gas atmosphere. Contrarily to a reported coarsening behavior, a ma-

terial loss or migration was observed at high temperatures under vacuum conditions, while a

coarsening behavior was found in oxygen atmosphere under reduced pressure or in O2/N2 at-

mosphere at ambient pressure. Strikingly, under O2/He atmosphere at ambient pressure, a ma-

terial loss or migration, similar to the one observed under vacuum conditions, was found. These

results highlight that in addition to coarsening caused by surface diffusion, other mechanisms

might be present. These can be related to similar discussions for the growth mechanisms of

nanoparticles, like Ostwald ripening or coalescence. Pure nanoporous gold and ceria stabilized

nanoporous gold catalysts were studied and both showed a similar annealing behavior. Ceria

however was shown to stabilize the sample as expected, which was demonstrated by the onset

of changes at higher temperatures.

As a second example, a core-shell catalyst for direct production of dimethyl ether was stud-

ied during redox treatment. In particular, the stability of the core-shell interface was studied

during reductive activation and subsequent reoxidation of the copper containing core material.

The complementary character of in situ ptychography and electron microscopy was exploited

by studying a thin section of the core-shell interface under model conditions by environmental

transmission electron microscopy and electron energy loss spectroscopy. A thicker section was

studied under realistic conditions during in situ ptychography and by complementary secondary

electron microscopy and energy dispersive X-ray spectroscopy. The complementary approach

revealed that the core-shell interface remains unchanged up to 250 °C, although changes on the

nanometer scale occur, caused by rearrangement of the copper containing particles during redox

treatment. At 350 °C, microscopic changes occurred, affecting both the core and the shell of the

particle, but the overall core-shell interface remained stable, which is crucial for the bifunctional

behavior of the catalyst.

In conclusion, the importance of correlative spatially resolved characterization techniques and

hierarchical imaging approaches is presented. The new gas phase microreactor is proven to be

applicable for in situ studies and the potential for application under transient reaction condi-

tions is highlighted. Furthermore, the potential of a hierarchical imaging approach is presented

by complementary electron microscopy and hard X-ray ptychography. First in situ ptychogra-

phy measurements with a unique resolution are presented, exploiting the benefits of the comple-

mentary nature of both microscopy techniques. Studying the thermal annealing of nanoporous

gold, the importance for in situ measurements under realistic conditions is underlined, while the

hierarchical approach is proven to be useful for hierarchically structured catalysts. The devel-

oped cells will help to perform more detailed studies on both spatially resolved characterization

on the micro scale, as well as on the nano scale in future. In addition, the knowledge obtained

throughout this work will help to further improve correlative characterization techniques.
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Kurzfassung

Die Funktion und Effizienz von Katalysatoren wird durch ihre Struktur auf verschiedenen Län-

genskalen beeinflusst. Daher wird eine Charakterisierung der Katalysatoren auf allen Längen-

skalen benötigt, um die der Katalyse zu Grunde liegenden Prozesse zu verstehen und zu op-

timieren. Auf Grund der Dynamik von Katalysatoren muss die Charakterisierung möglichst

unter Reaktionsbedingungen, d. h. in situ, erfolgen, was die Entwicklung spezieller in situ-

Zellen notwendig macht. Neben verschiedenen Streu- und Spektroskopiemethoden können

auch bildgebende Verfahren zur Untersuchung der Katalysatoren verwendet werden. Insbeson-

dere letztere sind jedoch nicht uneingeschränkt kompatibel mit in situ-Methoden, welches die

Entwicklung von in situ-Zellen erschwert. Harte Röntgenstrahlung ist jedoch gut für die in

situ-Charakterisierung von Katalysatoren geeignet und räumlich aufgelöste Messungen sowie

Röntgenmikroskopie mittels harter Röntgenstrahlung, insbesondere die sogenannte „Ptychogra-

phie“, stellen vielversprechende Methoden zur in situ-Charakterisierung dar.

Um unterschiedliche Längenskalen zu untersuchen, werden verschiedene Ansätze zur Studie

der Mikrometer- und Nanometerskala benötigt. Die Mikrometerskala kann beispielsweise gut

mittels vieler räumlich aufgelöster Methoden untersucht werden, während die Nanometerskala

nur indirekt, mittels spektroskopischer Verfahren, oder direkt, mittels Elektronenmikroskopie,

untersucht werden kann. Im Gegensatz zur Elektronenmikroskopie, die nur eingeschränkt zur

in situ-Charakterisierung verwendet werden kann, wird die Röntgenmikroskopie mittels har-

ter Röntgenstrahlung als zukunftsweisende Mikroskopiemethode angesehen, um die hochauf-

lösende Bildgebung unter Modellbedingungen mit den niedriger auflösenden Techniken unter

realistischeren Bedingungen zu verknüpfen.

Das Ziel dieser Arbeit war die Entwicklung und Verbesserung von in situ-Messmethoden, die

räumlich aufgelöste hierarchische Untersuchungen von katalytischen Reaktionen unter real-

istischen Bedingungen erlauben. Hierzu wurden einerseits spezielle in situ-Zellen für kom-

plementäre Röntgen- und Elektronenmikroskopie entwickelt und erfolgreich an Modellsyste-

men getestet. Andererseits wurde auch ein Gasphasenmikroreaktor, der für korrelative Charak-

teriserungsmethoden auf der Mikrometerskala geeignet ist, erprobt und weiter verbessert.

Zur Untersuchung von Katalysatoren auf Mikrometerskala können verschiedene räumlich auf-

gelöste Charakterisierungsmethoden verwendet werden, wie Röntgenspektroskopie und Diffrak-

tion, Infrarot Thermographie oder Raman Spektroskopie. In dieser Arbeit wird ein auf Silizium

basierender Gasphasenmikroreaktor vorgestellt, der die korrelative Verwendung der genannten

Techniken ermöglicht, sowie seine Anwendung und Verbesserung diskutiert. Da dieser Reak-

tor hohe Heiz- und Abkühlraten ermöglicht, ist er besonders zur Untersuchung von transienten

Zuständen geeignet .
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Im Zuge dieser Arbeit wurde die Geometrie des Heizers des ursprünglich aus Silizium und

Borosilikatglas bestehenden Reaktors optimiert, sodass entlang des Katalysatorbetts eine ho-

mogenere Temperaturverteilung erhalten wurde. Weiterhin wurde ein komplett aus Silizium

bestehender Reaktor entwickelt, der die Anwendung bei höheren Temperaturen erlaubt. Ver-

zerrungsfreie Röntgenabsorptionsspektren und Diffraktogramme wurden für beide Reaktoren

demonstriert. Weiterhin ermöglichen beide Reaktoren die Durchführung von Infrarot Thermo-

graphie, sowie Raman Spektroskopie an dem Silizum-Glas-Reaktor. Der Gasphasenmikroreak-

tor wurde neben den reinen Erprobung auch zur Untersuchung der Zündung und Beendigung

der katalytischen partiellen Oxidation von Methan mit Hilfe von Edelmetallkatalysatoren un-

tersucht. Während der Reaktion treten zudem charakteristische Temperatur- und Oxidationszu-

standsgradienten auf, die mit Hilfe des neuen Mikroreaktors nachgewiesen wurden. Auf Grund

der parallelen Gasanalytik mittels on-line Massenspektrometrie wurden die Ergebnisse eben-

falls mit der katalytischen Reaktion korreliert. Die so erhaltenen Ergebnisse sind vergleichbar

zu den literaturbekannten Ergebnissen an konventionellen Reaktoren, welches die Anwend-

barkeit des Mikroreaktors für räumlich aufgelöste Studien zeigt.

Des Weiteren wurde das Potential dieses Reaktors an Hand der Untersuchung von instationären

Zuständen während der Simulation eines Fahrtzyklus untersucht, welcher durch die Nachah-

mung schneller Geschwindigkeitswechsel hohe Heiz- und Abkühlraten benötigt und daher nicht

mit Hilfe konventioneller in situ-Zellen durchgeführt werden kann. An Hand von schneller

Röntgenabsorptionsspektroskopie wurde die selektive katalytische Reduktion von Stickoxiden

mittels Kupfer-Zeolith-Katalysatoren während eines solchen Zyklus analysiert. Die Zusam-

mensetzung des Abgases wurde dabei parallel zu der räumlichen Struktur des Kupferkatalysators

in Abhängigkeit der Temperatur ebenfalls gemessen. Durch die Veränderungen der Gaszusam-

mensetzung und die Änderungen in der Koordinationsgeometrie des Kupfers konnte gezeigt

werden, dass der Reaktor zur Untersuchung solcher transienter Reaktionsbedingungen geeignet

ist. Diese Ergebnisse untermauern daher das Potential dieses Reaktors für weitere Studien von

instationären Zuständen.

Um mikroskopische in situ-Methoden auf Mikrometer- und Nanometerskala miteinander zu

verbinden, eignet sich Röntgenptychographie mittels harter Röntgenstrahlung. Die Entwick-

lung, Anwendung und Bewertung von in situ-Zellen wird in dieser Arbeit beleuchtet, sowie ein

hierarchischer Ansatz zur Kombination von Elektronenmikroskopie und Röntgenmikroskopie

an der selben Probe vorgestellt.

In dieser Arbeit werden zwei Zellen präsentiert. Eine Zelle wurde in enger Kooperation mit

der Technischen Universität Dänemarks (DTU) entwickelt, dort hergestellt und schließlich im

Zuge dieser Arbeit intensiv verwendet. Die zweite Zelle wurde am KIT hergestellt und in Hin-

blick auf die beobachteten Herausforderungen bei der anderen Zelle optimiert. Diese Zelle

besitzt das Potential für zukünftige Anwendungen, konnte jedoch bisher nur im Rahmen erster
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Tests verwendet werden. Im Rahmen dieser Arbeit wurden mit Hilfe von in situ-Ptychographie

bisher einzigartige hohe räumliche Auflösungen von 20 nm bei 385 °C erhalten, die um den

Faktor 5 bis 10 besser sind, als bisher literaturbekannte Auflösungen. Weiterhin wurde zum

ersten Mal in situ-Ptychographie mit räumlich aufgelöster Infrarot Thermographie kombiniert.

Die in dieser Arbeit präsentierten in situ-Zellen ermöglichen ebenfalls einen komplementären

Charakterisierungsansatz von Elektronenmikrospie in Kombination mit Röntgenmikroskopie,

welcher im Zuge der Arbeit am Beispiel der Stabilitätsuntersuchung während der thermischen

Behandlung von nanoporösem Gold und von bifunktionalen Kern-Schale-Katalysatoren gezeigt

wurde.

Katalysatoren basierend auf nanoporösem Gold wurden unter verschiedenen Gasatmosphären

und unterschiedlichen Drücken während der thermischen Behandlung mittels komplementärer

Elektronenmikroskopie und Ptychographie untersucht. Dabei konnte eine starke Abhängigkeit

des Verhaltens von der Gasatmosphäre beobachtet werden. Im Gegensatz zu literaturbekannten

Vergröberungen konnte unter Vakuum bei hohen Temperaturen ebenfalls ein Materialverlust

oder eine Umlagerung beobachtet werden. Unter reiner Sauerstoffatmosphäre und reduziertem

Druck, sowie in synthetischer Luft bei Raumdruck, wurde jedoch eine Vergröberung beobach-

tet. Erstaunlicherweise konnte diese jedoch nicht unter 20 % Sauerstoff in Helium bei Raum-

druck beobachtet werden und stattdessen wurde ein ähnlicher Materialverlust oder Transport

wie unter Vakuum erhalten. Die Ergebnisse weisen daher auf zusätzliche Vergröberungsmecha-

nismen hin, die nicht mit der literaturbekannten Oberflächendiffusion beschrieben werden kön-

nen. Diese können jedoch auf die diskutierten Wachstumsmechanismen für Nanopartikelwachs-

tum, Koaleszenz und Ostwald Reifung, übertragen werden. Weiterhin zeigten beide unter-

suchten Katalysatoren, reines nanoporöses Gold und Ceroxid stabilisiertes nanoporöses Gold,

vergleichbares Verhalten, jedoch konnte eine gewisse thermische Stabilisierung durch Ceroxid

erreicht werden.

Als weiteres Katalysatorsystem wurde ein Kern-Schale-Katalysator, der zur direkten Produk-

tion von Dimethylether verwendet wird, untersucht. Das Kernmaterial katalysiert hierbei die

Reaktion von Synthesegas zu Methanol, welches anschließend mit Hilfe des Schalenmateri-

als zu Dimethylether umgesetzt wird. Für das bifunktionale Verhalten des hierarchisch aufge-

bauten Kern-Schale-Katalysators ist die Stabilität der Kern-Schale-Grenzfläche signifikant, so-

dass diese unter Redoxbedingungen untersucht wurde. Als Modellkonditionen wurde die zur

Aktivierung des Katalysators verwendete Reduktion der sich im Kern befindenden Kupfer-

partikel, sowie deren Reoxidation untersucht. Um die komplementären Methoden Elektro-

nenmikroskopie und in situ-Ptychographie bestmöglich auszunutzen, wurde ein Dünnschnitt

der Kern-Schale-Grenzfläche mittels in situ-Transmissionselektronenmikroskopie und Elek-

tronenenergieverlustspektroskopie untersucht. Weiterhin wurde eine dickere Schicht unter re-

alistischen Bedingungen mittels in situ-Ptychographie und komplementärer Röntgenfluores-
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zenzspektroskopie sowie ex situ-Rasterelektronenmikroskopie untersucht. Dieser kombinierte

Ansatz zeigte, dass die Grenzfläche bis zu Temperaturen von 250 ° unverändert bleibt, obwohl

die Kupfernanopartikel im Kern ihre Größe auf der 10 nm Skala verändern, wie durch Elek-

tronenmikroskopie nachgewiesen werden konnte. Bei weiterer Erwärmung auf 350 °C wurden

signifikante Veränderungen im Kern und in der Schale auf Mikrometerskala beobachtet, die

jedoch nicht die Struktur der Grenzfläche beeinflussten und somit auf eine hohe Stabilität des

Kern-Schale-Katalysators hindeuten.

Zusammenfassend wurde in dieser Arbeit die Bedeutung von komplementären, räumlich aufge-

lösten Charakterisierungsmethoden, sowie die Wichtigkeit von hierarchischen Untersuchungen

präsentiert. Die Ergebnisse zeigen, dass der neu entwickelte Gasphasenmikroreaktor die An-

wendung von korrelativen in situ-Studien erlaubt und ein hohes Potential für die Untersuchung

von instationären Zuständen besitzt. Zur Untersuchung der Nanometerskala wurde das Poten-

tial von hierarchischen Abbildungsverfahren mittels komplementärer Elektronenmikroskopie

und Röntgenptychographie diskutiert. Erste in situ-Röntgenptychographiemessungen mit einer

bisher einzigartigen Auflösung wurden präsentiert, sowie die Vorteile der komplementären

Herangehensweise beleuchtet. Die Ergebnisse der korrelativen Untersuchungen des Verhal-

tens von nanoporösem Gold bei Erhitzen unterstrichen die Bedeutung von in situ-Messungen

unter realistischen Bedingungen, während der hierarchische Charakterisierungsansatz von Elek-

tronenmikroskopie in Kombination mit Röntgenmikroskopie am Beispiel der Stabilitätsunter-

schung von Kern-Schale-Katalysatoren gezeigt wurde.

Die in dieser Arbeit entwickelten Zellen werden somit helfen in zukünftigen Messungen sowohl

räumlich aufgelöste Informationen auf Mikroskala als auch auf Nanoskala zu erhalten. Zu-

sätzlich kann das in dieser Arbeit erlangte Wissen zur weiteren Kombination komplementärer

Charakterisierungstechniken verwendet werden.
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1 Introduction

More then 90% of daily chemical products undergo at least one catalytic step during their pro-

duction [1], which demands optimization of the catalysts due to economical reasons. Further-

more, the development and improvement of catalysts is of interest for academic research, but

especially with respect to the application of renewable energy sources or efficient exhaust gas

aftertreatment systems, also for society.

For catalyst optimization, a multi-scale approach is of great importance, which can be realized

through multi-scale characterization [2], multi-scale modeling [3] and multi-scale design [4, 5]

of catalysts. Thereby, on each length scale different processes dominate and influence the over-

all efficiency of the catalyst. In the following section, the different length scales, which are

shown schematically in Fig. 1.1, will be shortly discussed.

Figure 1.1: Schematic representation of the multi-scale approach used for modeling, characterization
and design of catalysts. From the left to right the atomic, nano, meso, micro and macro scale are shown
together with typical processes and anchor points for optimization on the different length scales.

Especially for industrial large scale applications, solid heterogeneous catalysts are predomi-

nantly used. The so called “product design” addresses the question of how to fabricate a cat-

alyst with a certain microstructure, so that it can be used in industrial applications [6]. The

origin of the catalytic activity however is on the atomic scale, since the reaction happens on

the active sites on the surface as shown in Fig. 1.1. Due to the large dimensions in the meter

range, tons of catalysts are required and the catalyst itself is filled inside industrial plants as a

catalytically active material on heterogeneous support materials. These “catalyst bodies” have

a certain shape and geometry, e. g. extrudates. A pelletized catalyst and a reactor with a catalyst

3



1 Introduction

bed are schematically shown in Fig. 1.1 and represent the macro scale. On this length scale, a

chemical engineering approach is required, evaluating different carrier designs or pre-shapings

of catalyst bodies. These carriers are usually in the size range from mm to cm, which is referred

to as the “macro” scale. The carriers and catalyst bodies are designed in such a way that optimal

heat and mass flow is obtained, for which reactor modeling can be used to further optimize the

catalytic reaction [3]. For exhaust gas aftertreatment systems for example, honeycomb shaped

carriers allow optimal flow and heat transfer, as well as minimized pressure drops [2, 3].

Despite the importance of the catalyst design on the macro scale, the micro scale and even be-

low is equally important. Since the porosity of the material becomes relevant at this length scale

[7], heat and mass transport are also influenced by the catalyst design on the micro (< mm) and

meso (20 to 500 nm) scale. Therefore, also on these length scales, modeling approaches can

be used to optimize the catalyst [8]. The catalyst efficiency can e. g. be tuned by introducing

different pore sizes [5, 9] or developing hierarchically structured bifunctional catalysts [10, 11].

In particular, the development of bifunctional core-shell structured catalysts recently gained lots

of interest [12, 13]. Such a core-shell catalyst is therefore depicted schematically in Fig. 1.1 to

represent the micro scale. In such bifunctional core-shell catalysts, two catalysts with different

functionalities are combined. By this combination synergistic effects can be exploited due to

the hierarchic order of active sites. For example, a bifunctional catalyst for direct dimethyl ether

(DME) production can be applied by encapsulating a methanol forming core with an acidic shell

for direct methanol dehydration to DME. By this approach, not only the micro scale, i. e. the

overall design of the core-shell catalyst, influences the catalytic efficiency, but also the design

on the meso scale, e. g. if the interface between the core and the shell is well connected. This is

also depicted in Fig. 1.1.

Although, catalyst design from the meso to the macro scale mostly optimizes transport pro-

cesses, the interaction of catalysts with gas species is not influenced by this length scale, albeit

this is the most important process for catalytic reactions. Instead, the catalytic reaction itself

takes place on the atomic scale (sub- nm) on the surface of the catalyst, as shown schematically

in Fig. 1.1. By the strength of the interaction, which influences the adsorption and desorption

processes of gaseous reaction species, the kinetics of the reaction can be controlled. Therefore,

tuning the catalyst surface on the atomic scale can be used to optimize the catalytic efficiency

[2]. Furthermore, the nano scale of the catalysts (sub-nm to 20 nm) also has an effect on the

catalytic activity, since it also influences the surface of the catalyst which is exposed to the gas

atmosphere. A typical example showing the importance of the nano scale is that the size and

shape of the metal nanoparticles matters [14, 15]. For example, oxidation reactions catalyzed

by gold nanoparticles show a high dependence on particle size of gold nanoparticles, which on

one hand highlights the demand for size controlled preparation methods, but on the other hand

shows the need to prevent the particles from sintering [14, 16, 17]. Another example showing
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the importance of the nano scale is that under different gas atmospheres, restructuring of the

catalysts on the nano scale can be observed, which directly influences the surface of the active

materials [18].

From the previous examples it becomes clear that all length scales are important for catalyst

development and improvement. However, for optimization of the catalysts, independent from

the length scale on which the optimization should be performed, knowledge of the underly-

ing processes is required. To cover all length scales from the atomic scale to the macro scale

[2, 19–21], the combination of various characterization methods, as well as the application of

hierarchical approaches [2, 22–24] on the same system is required. Such a hierarchical approach

on the same system is depicted schematically in Fig. 1.2 for the one step production of DME

over a CuO/ZnO/Al2O3@ZSM–5 catalyst. It is shown that for the production of DME, the

macro scale has to be considered by optimizing different reactors [13, 25], but the reaction can

also be influenced by optimizing the micro scale by the development of bifunctional core-shell

catalysts, which are structured on both the micro and meso scale [26, 27]. Finally, the reaction

itself depends on both nano scale effects including particle size, and atomic scale effects. The

latter have a decisive influence on surface reaction rates and process activation energies and

depend e. g. on the oxidation state, number of active sites and the surface coordination of the

active species [28–30].

Figure 1.2: Schematic overview on the different length scales needed for optimization of heterogeneous
catalysts on the example of dimethyl ether production. The macro scale requiring optimization on re-
actor design, the micro scale implying development of core-shell catalysts, the meso scale showing the
structured catalyst and the nano scale depicting the active metal particles, are shown.

Since all mentioned processes – from heat transfer on the macro and micro scale, to rearrage-

ment on the nano scale and surface reactions on the atomic scale – occur under reaction con-

ditions, knowledge has to be gained in a controlled environment or under reaction conditions

[31–36]. For example, studying nobel metal based catalysts for the Catalytic Partial Oxida-

tion (CPO) of methane before and after the reaction shows oxidized metal species, whereas

under catalytic application reduced species are observed [37, 38]. Therefore, the conduction

of in situ studies, which means under controlled atmospheres, pressures and temperatures, is a

prerequisite for understanding the underlying processes of catalytic reactions. Preferably, even

so-called operando studies, i. e. studies performed under realistic process conditions with direct

analysis of the working catalyst by activity measurements, should be performed [31, 39].
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Last but not least, the dynamics of catalytic systems have to be considered as well, introducing

the importance of the time scale in addition to the length scale. For example, catalysts can show

dynamic restructuring processes [18], oscillating oxidation state changes [40] or sintering and

deactivation processes [15, 41]. This requires in situ studies not only on different length scales,

but also on different time scales, ranging from the sub-s regime during reaction processes, to

minutes or even months for deactivation processes [2].

1.1 In Situ Characterization of Heterogeneous Catalysts

In situ characterization of heterogeneous catalysts is a prerequisite for understanding catalytic

reaction processes, since the catalyst structure itself depends on the environment [18, 40]. In

addition, transport effects can only be studied during the catalytic process. Since heterogeneous

catalysts are usually in the solid state, basically all characterization techniques used for solid

materials, including spectroscopic, scattering or microscopic methods, can be used as charac-

terization methods. However, in situ measurements constrain some techniques, e. g. those re-

quiring ultra high vacuum conditions. Especially, operando techniques even need simultaneous

analysis of the gas and/or liquid phase, so that catalytic activity can be determined. Therefore,

in situ or operando measurements have to be performed inside special cells providing the reac-

tion environment [42] and facilitating on-line product analysis at the same time. Some useful

characterization techniques for probing catalysts at different length scales are summarized in

Fig. 1.3. Apart from probing the catalyst itself, measurements on the gas phase have to be car-

ried out, which are not implemented in Fig. 1.3.

To follow the catalytic process during gas phase reactions, Mass Spectrometry (MS), Infrared

(IR) spectroscopy or Gas Chromatography (GC) are often used to characterize the products

downstream from the catalyst bed. In parallel, the solid catalyst can be probed with radiation,

like Ultra Violet (UV) or visible (vis) light, electrons or X-rays. Due to the measurements in-

side special cells, the radiation has to penetrate through the cell material, which results in some

constraints. For visible light, measurements using glass cells are possible applying for example

Raman scattering [43, 44] or UV-vis spectroscopy [45, 46]. IR spectroscopy and thermography

can for example be performed using reactors made of sapphire [40] or using setups with special

windows e. g. reactors applied for Diffuse Reflectance Infrared Fourier Transform Spectroscopy

(DRIFTS) [47]. The small penetration depth of electrons however does not allow simple in

situ measurements and it is rather difficult to penetrate through reactors [48, 49]. Electron mi-

croscopy (EM) can therefore only be applied using very thin window materials, like 1.2 µm

thick silicon nitride membranes [50], or applying differential pumping systems implemented in

the microscopes [15, 18, 51].
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1.1 In Situ Characterization of Heterogeneous Catalysts

Figure 1.3: Some typical characterization techniques used to study heterogeneous catalysts at different
length scales. Green: Highly compatible with in situ studies, blue: limited for in situ studies. The atomic
scale can be well probed by spectroscopic techniques and Transmission Electron Microscopy (TEM),
while starting from the micro scale, spatially resolved techniques based on spectrsocopic or diffractive
measurements can be applied. The nano scale and meso scale are usually probed by TEM and Scanning
Electron Microscopy (SEM). These however suffer from the low penetration depth of electrons and the
high interaction with matter, therefore, the relatively new technique X-ray ptychography is a promising
method for in situ studies on this length scale. IR: Infrared (spectroscopy), Raman: Raman spectroscopy,
UV-vis: Ultraviolet and visible light spectroscopy, XRD: X-Ray Diffraction, XAS: X-ray Absorption
Spectroscopy.

Contrarily to electrons, X-rays have a higher penetration depth and show lower interaction

with the probed material. Therefore, they are suited very well for in situ measurements [19,

36, 52–54]. Especially hard X-rays (E>5 keV) allow an easy design of dedicated in situ cells

[2, 49], while soft X-rays usually require vacuum environments and thin window materials. The

development of synchrotron radiation sources facilitates X-ray based techniques by providing

a tunable energy range, which is required for X-ray absorption techniques. Additionally, also a

high photon flux allows faster measurements, e. g. for time resolved spectroscopy, diffraction or

imaging experiments. Within the application of synchrotron radiation based methods, especially

scattering methods and spectroscopy are well established, but also direct imaging techniques are

becoming more and more important. As already mentioned, complementary knowledge needs

to be obtained by a combination of various techniques, e. g. X-ray Absorption Spectroscopy

(XAS) and X-Ray Diffraction (XRD) [52, 55–57]. Thereby, XAS allows the local coordination

geometry and oxidation state of a catalyst to be studied, independently of the crystallographic

state (crystalline/amorphous). In contrast, XRD enables probing of the long range order of a

crystalline material, i. e. the crystallographic phase. In addition to the combination of different

spectroscopic or scattering techniques, the combination of imaging techniques with chemical

contrast by spectroscopy [21, 58, 59] is of special interest as it also offers spatial information

on the catalyst.
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1 Introduction

1.1.1 In situ Imaging of Heterogeneous Catalysts on the Micrometer Scale

The micro scale plays an important role for the product design of heterogeneous catalysts,

e. g. for optimization of heat, flow and mass transport properties [3]. For example, gradients

in concentration, temperature, or oxidation state of the catalyst can be observed in the working

state of the catalyst and their understanding can help to identify critical parameters for product

design [2, 19, 60]. Therefore, these gradients have to be studied in the gas phase [61, 62],

as well as on the solid phase [2]. To detect such gradients, spatially resolved characterization

techniques have to be used, e. g. spatially resolved MS [61, 63, 64] or laser-induced fluorescence

[65] enabling studying the gas phase, IR thermography [66–68] allowing studies of temperature

gradients or spectroscopic techniques allowing studying structural gradients within the catalyst.

Among the most common spectroscopic techniques are UV-vis and Raman spectroscopy [45,

46, 69, 70], IR spectromicroscopy [70, 71] or X-ray based techniques [2, 49, 53]. Since each of

them has its unique advantages and disadvantages, a combination of several of them, preferably

all applied simultaneously, is highly desirable to be able to correlate individual results [40, 72].

Therefore suitable reactors are required which can be used for several methods. Such reactors

do no only have to be suitable for the dedicated methods, but have to be compact enough to

be used at a beamline. For example, reactors fitting the requirements are microreactors, which

also show intrinsic advantages such as a high heat and mass transfer [57, 73]. The application

of microreactors is further discussed in section 3.

In the following section, the importance of such gradients will be highlighted for the example

of the CPO methane over noble metal catalysts, which can be applied to produce synthesis gas

(syngas, CO and H2) as described by Eq. 1.1 [74].

CH4 +
1
2

O2 CO + 2H2 ∆ f H◦298 = −36 kJ/mol (1.1)

Spatially resolved MS of Rh/γ-Al2O3 and Pd-Rh/γ-Al2O3 catalysts revealed gradients in gaseous

product evolution along the catalyst structure [63, 64]. An explanation for these gradients is a

consecutive reaction pathway, assuming a combustion of methane (Eq. 1.2) followed by reform-

ing processes (Eq. 1.3 and 1.4). This consecutive pathway could also explain the temperature

gradients observed along the catalyst bed. These gradients studied by IR thermography show a

higher temperature in the area of total combustion which is in line with the high exothermicity

of the reaction [72, 75, 76].
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CH4 + 2O2 CO2 + 2H2O ∆ f H◦298 = −803 kJ/mol (1.2)

CH4 + H2O CO + 3H2 ∆ f H◦298 = −206 kJ/mol (1.3)

CH4 + CO2 2CO + 2H2 ∆ f H◦298 = −247 kJ/mol (1.4)

This example of the CPO of methane shows that the study of gradients in reactors or catalyst

beds can be used to obtain knowledge on the reaction process. Apart from gradients in tem-

perature and concentration, also gradients on the catalyst structure itself, i. e. in oxidation state,

can be studied. For the CPO of methane, these are discussed in the following paragraph. How-

ever, to study gradients on the catalyst structure itself, dedicated techniques probing the catalyst

structure on the atomic scale have to be used. By a combination of such approaches different

length scales from the atomic scale to the reactor scale can be probed. The obtained knowledge

can then be correlated to draw further conclusions on the underlying processes, which at the

end helps to optimize the catalyst overall efficiency.

Synchrotron Radiation Based Techniques Due to the high penetration depth of X-rays,

X-ray based techniques are widely applied for in situ observation of catalysts, i. e. by X-Ray

Absorption Spectroscopy (XAS) [33], X-Ray Diffraction (XRD) [77, 78] or X-ray Fluorescence

(XRF) [21, 22], which provide complementary structural information and elemental distribu-

tion. These spectroscopic techniques can be used to study the atomic scale of the catalysts,

due to the interaction of the radiation with the catalyst material. However, spatially resolved

measurements allow furthermore probing the micro scale.

Gradients in oxidation state, for example, can be detected by spatially resolved XAS by probing

the area of interest with a focused X-ray beam [72, 79], which requires dedicated micro-probe

beamlines. Additionally, a resonant full-field imaging approach, in which the full catalyst bed

is probed at once [72, 80, 81], can be applied. In this case, a spatially sensitive detector, e. g. a

CCD camera, is used. The advantage of such an approach is that the whole area of interest can

be probed at the same time, which allows faster acquisition [82].

Referring back to the example of the CPO of methane, the complementarity of different tech-

niques could for example be used to study the ignition of the CPO of methane in more detail.

Here, the combination of spatially resolved XAS and IR thermography revealed that gradients

in temperature and oxidation state were visible along the catalytic bed even before a detectable

formation of syngas [83, 84]. In particular, before ignition of the reaction, a hotspot could be

observed at the end of the catalytic bed. Additionally, it was found that the end of the catalyst

bed was reduced, while the front was still oxidized when the hotspot was further shifted to the

beginning of the catalyst bed after ignition. The combination with on-line MS further allowed
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to conclude that the reduction started at the end of the catalytic bed when the reaction ignited,

i. e. when H2 was detected. Such complementary techniques allowed additional information of

the ignition process of the reaction to be obtained. In particular, it was suggested that the high

temperature reached by combustion of CH4 caused a self-reduction of the catalyst, which itself

led to the ignition of the CPO and to a formation of syngas [72].

Next to the CPO of methane, such gradients were also found in the Selective Catalytic Reduc-

tion (SCR) of NOx by NH3 via Cu-zeolites [85] or in the CO2 capture-reduction [86]. Even

oscillating behavior, i. e. time dependent occurrence of gradients, has been observed for the CO

oxidation using Pt catalysts [40]. However, it has to be noted that these studies only reveal 2D

information, although 3D catalysts and reactors are monitored. Therefore, it is important to

further develop the possibilities for 3D measurements, i. e. tomography.

Tomography Tomographic studies can be obtained by recording 2D projection images while

rotating the sample. For each rotation angle, such 2D images are acquired and further processed

into 3D “images”. By this approach, full 3D information on both the exterior and the interior

of the catalyst can be obtained non-destructively [87]. This allows the measurement of realistic

catalysts without further preparation. Ideally, this is then further combined with in situ studies

during catalytic processes.

Yet, catalytic in situ studies are rare and the image acquisition under in situ or operando condi-

tions is challenging, as a high stability and precision of the setup is required. Nevertheless, Price

et al. [88] recently demonstrated an in situ µ–XRD/XRF-Computed Tomogragphy (CT) study,

even in liquid phase. A single catalyst grain was studied during standard conditions for the hy-

drogenation of nitrobenzene. By this in situ study it could be shown that the active state of the

Mo-promoted Pt/C catalyst is the reduced Pt state and that it is homogeneously distributed on

the carbon support surface. Especially the latter finding could only be obtained non-invasively

by in situ X-ray studies, revealing the high importance of such in situ 3D approaches. However,

apart from in situ studies during catalytic reaction, the study of the formation of catalysts is

equally important for further catalyst development and Jacques et al. [78] studied the evolution

of the formation of Nickel impregnated γ-Al2O3 catalyst bodies by in situ XRD-CT. Despite

these examples, such in situ studies were hardly applied yet and quasi-in situ studies and ex

situ studies are more widely used [89–91].
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1.1.2 In situ Imaging of Heterogeneous Catalysts on the Nanometer Scale

Electron Microscopy For imaging approaches on the nano and atomic scale Transmission

Electron Microscopy (TEM) is usually applied, as it offers imaging of a sample with atomic

resolution. However, as already mentioned, the low penetration depth of electrons is critical

for in situ measurements. Currently, there are two approaches for in situ TEM imaging, both

summarized by the term “Environmental TEM” (ETEM) [48]. One approach applies closed

cells and can also be used for atmospheric pressures [50, 92], while the other one uses differen-

tially pumped microscopes [93–95], which restricts the studies to an environment with reduced

pressure.

The development of ETEM offered completely new insights into the dynamic behavior of ca-

talysts. For example, with ETEM a model methanol catalyst was studied under different gas

atmospheres on atomic scale and a rearrangement of Cu nanoparticles supported on ZnO was

observed. ETEM revealed that the Cu particles reversibly change their shape when varying the

gas atmospheres. In particular, a pronounced flattening of the nanoparticles could be observed

in a syngas environment, in comparison to the “rounder” shape in pure H2 or H2/H2O atmo-

sphere. This behavior on the nanoscale is depicted schematically in Fig. 1.1 and is supported by

earlier complementary in situ spectroscopic studies [30]. Additionally, by a study from Holse

et al. [29] the redox behavior of a similar model methanol catalyst was studied. The study was

combined with non-spatially resolved XPS analysis, revealing similar results for both studies.

Under reducing atmosphere, a shrinkage of the CuO particles was observed, which was caused

by the phase change to metallic Cu. Furthermore, it was shown that the Cu particles were partly

covered by ZnO nanocrystals, which is considered to be critical for catalytic activity, as also

Behrens et al. stated [28]. The Cu/ZnO system has also been used to show the applicability

of the closed cell approach which has the advantage of allowing measurements under ambient

pressure. It was shown, that Cu nanocrystals could be studied with a resolution of 0.18 nm

at 500 °C under ambient pressure in a H2 atmosphere [50]. These realistic conditions were

achieved by using micrometer sized flow channels and thin SiNx windows, which can also be

applied for liquid environments [96].

These examples show that ETEM offers a unique high resolution, enabling measurements on the

influence of molecules on the atomic scale [97]. Among other studies, it also allows studying

the oxidation of soot [98], the formation of carbon nanotubes [99] or sintering of nanoparticles

in different atmospheres. The latter can reveal information about the growth mechanisms of

nanoparticles, like particle migration and coalescence or Ostwald ripening via the formation of

mobile species or adatom movement [15, 41]. Such understanding of the underlying mecha-

nisms can then be further used to optimize the catalysts with respect to their thermal stability.

However, despite such strong benefits, a drawback of ETEM is the strong interaction of the
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electron beam with the gas molecules, leading to ionization of the gas molecules which can in-

fluence or damage the probed sample system [51, 100, 101]. Furthermore, due to the small field

of view, it is hard to obtain statistic information and as the electrons have to penetrate through

the sample, only very thin specimens can be probed.

X-ray Microscopy Complementary to TEM, X-ray microscopy offers spatially resolved in-

formation on the micro and meso scale while profiting from a higher penetration depth [2,

82, 102–104]. This enables studies under more realistic conditions (e. g. liquids or corrosive

gases) and potentially more easily sample preparation. Furthermore, tomographic studies can

be performed easier and a variety of different contrast mechanisms can be applied, e. g. X-ray

scattering or absorption. A short overview of the characteristics of both methods, transmission

electron microscopy and X-ray microscopy, is given in Tab. 1.1.

As for the micrometer scale one can distinguish between full-field and scanning techniques.

The former one is more suited for dynamic processes due to the faster acquisition. For hard

X-ray full-field microscopy, resolutions in the tens of nanometers have been reached [105].

For example, Kiss et al. [106] studied the oxidation of Ni powder in situ by resonant full-field

microscopy, obtaining a resolution of 55 nm. Especially in the soft X-ray regime, Scanning

Transmission X-ray Microscopy (STXM) has been used [32, 107, 108]. As the samples are

scanned under a focused beam, a variety of imaging contrasts can be applied [32]. Focusing

optics such as Kirkpatrick Baez mirrors [109, 110], Fresnel zone plates [111, 112], refractive

X-ray lenses [113–115] and waveguides [116] are used for such techniques and the resolution

depends on the size of the beam. For STXM applying soft X-rays (200 to 2000 eV), a spatial

resolution down to 15 nm was obtained [108, 117]. However, the shorter penetration depth of

soft X-rays can cause problems and complicates the in situ cell design as well as studies at

atmospheric pressure [24, 107]. Nevertheless, de Smit et al. [108] studied an iron-based Fis-

cher–Tropsch catalyst in situ during reduction and under reaction conditions. A similar cell to

the one applied in the closed cell ETEM approach was used to study the catalyst under ambi-

ent pressure at 250 and 350 °C. Under these conditions, a spatial resolution around 15 nm was

achieved and chemical contrast was further gained by varying the energy.

Nevertheless, hard X-rays are more feasible with respect to in situ measurements, and nowa-

days focusing possibilities for hard X-rays allow to focus the beam down to approximately 50

to 80 nm conveniently [118], while recently, a focused X-ray beam down to 8 nm was obtained

[119]. However, when conventional X-ray microscopes are used, the image is magnified by an

objective lens behind the object, which could suffer from abberations.
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Table 1.1: Characteristics for transmission electron microscopy and X-ray microscopy. SAED: Selected
Angle Energy Diffraction, HAADF: High Angle Annular Dark Field, EELS: Electron Energy Loss Spectroscopy,
EDX: Energy Dispersive X-ray spectroscopy, XRF: X-Ray Fluorescence, XRD: X-Ray Diffraction, XAS: X-ray
Absorption Spectroscopy, WAXS/SAXS: Wide/Small Angle X-ray Scattering, CDI: Coherent Diffraction Imaging.

Transmission Electron Microscopy X-ray microscopy
atomic resolution (less than 1 Å) resolution down to the nano scale (5 to 10 nm)
model samples realistic samples
thin specimens thicker specimens
combination with SAED, HAADF combination with XRF, XRD, XAS
combination with EELS, EDX combination with WAXS, SAXS, CDI
small gas volumes big gas volumes, high penetration depth

high energy resolution
easier tomographic measurements

Therefore, promising techniques for high-resolution imaging are based on the interaction of co-

herent radiation available by synchrotron radiation sources with the probed samples [82, 120].

This Coherent Diffraction Imaging (CDI) allows for “lensless” imaging without an objective

lens. It is based on recording far-field diffraction patterns and applying iterative reconstruction

algorithms to obtain real space reconstructions of the probed object [82, 121].

In contrast to the full-field method, scanning coherent X-ray diffraction imaging, which is also

called X-ray ptychography [122–125], uses a focused X-ray beam and the samples are scanned

through the coherent beam. By iterative reconstruction algorithms, real space images can be

obtained from the far-field diffraction patterns [126, 127]. Ptychography can also be com-

bined with resonant image acquisition, which offers the possibility to obtain chemical contrast

[58, 128, 129] in addition to high resolution imaging. So far, for hard X-ray ptychography reso-

lutions below 10 nm were recently demonstrated during ex situ application [130, 131], while for

soft X-ray ptychography, a resolution of 5 nm was achieved [129]. Regardless of the resolution,

however one of the constraints for ptychography results from the scanning and reconstruction

procedure. It requires the sample to remain stable and unchanged during image acquisition,

which complicates the application for in situ studies. Only recently, in situ measurements could

be performed [132–136], which will be further discussed in section 9.
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1.2 Motivation for Hierarchical Imaging and Aim of the

Thesis

As outlined in the previous sections, catalytic reactions can be tuned on all length scales from

the atomic to the reactor scale. Relevant processes like the kinetics of a reaction (atomic scale)

or transport processes (meso to macro scale) occur on all these length scales and each of them

influences the overall kinetics of a reaction. Therefore, it is important to study heterogeneous

catalysts on different length scales and with a variety of complementary techniques, ideally si-

multaneously.

On the one hand, the atomic and nano scale can be studied very well by TEM under model

conditions, while spectroscopic techniques like XAS can be used to probe this length scale

under realistic conditions. On the other hand, the micro and macro scale can be covered by

spatially resolved spectroscopic techniques under realistic conditions like XAS, IR or Raman

spectroscopy. However, also on these length scales, it is still challenging to combine different

characterization techniques on the same sample. Similarly, it is a challenge to probe the nano

and meso scale, since either model conditions like in SEM have to be applied, or, for studies

under realistic conditions, common techniques are missing. This is also depicted in Fig. 1.2.

Here, one promising technique is X-ray ptychography, which allows imaging on the meso scale

under realistic conditions. Therefore, in situ ptychography is regarded as a promising tool to

bridge imaging under model conditions on the nano scale with imaging under more realistic

conditions on the micro scale.

Especially, when hierarchically designed catalysts are used, the application of different tech-

niques is required to cover all length scales. Among others, such hierarchically designed catalyst

materials can be found in bifunctional catalysts [137–139], catalysts for fluidized bed reactors

[22, 140, 141], bifunctional core-shell catalysts for direct DME synthesis [13, 142], or bifunc-

tional encapsulated Fischer-Tropsch catalysts [4, 143]. In all these examples, the structure and

stability of the catalyst is critically related to the function. Therefore, the study of materials at

various length scales under in situ conditions, is expected to become more important in the near

future and dedicated techniques bridging different length scales have to be developed.
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Aim of the Thesis With this work, new strategies for hierarchically performed imaging of

catalysts and complementary characterization on the same sample will be evaluated. For this

purpose, two different approaches were examined:

• The application and optimization of a gas phase microreactor for complementary in situ

characterization techniques on the micrometer scale, which was tested on the example of

the CPO of methane and the selective catalytic reduction of NOx by NH3.

• The application and development of in situ cells for hard X-ray ptychography for in

situ imaging on the meso scale, which allow complementary electron microscopy on the

nano scale. Tests were performed on the annealing of nanoporous gold and during redox

treatment of a core-shell catalyst.

The first section of the work (part II) is dedicated to the improvement and application of a gas

phase microreactor, which allows the combination of several characterization techniques: XAS,

XRD, Raman spectroscopy, IR thermography and on-line gas analysis. Due to the intrinsic

advantages of microreactors, which will be further discussed in section 3, it allows fast heating

and cooling processes. This makes the microreactor e. g. a perfect tool for studying transient

conditions, like in the simulation of exhaust gas catalysts under realistic model driving cycle

conditions. Due to its design, the reactor can be used for 2D imaging approaches and will help

to understand processes on the micro and meso scale, e. g. heat and mass transport.

The second section of the work (part III) is dedicated to X-ray microscopy, in particular hard

X-ray ptychography and its application during in situ studies on the meso and nano scale. It

covers the application of a cell developed for complementary in situ ptychography and electron

microscopy. Furthermore, the recent design of an optimized in situ cell manufactured for in situ

ptychography is reported. By complementary in situ ptychography and electron microscopy,

the annealing of nanoporous gold (np-Au) under different gas atmospheres was studied (section

11). Furthermore, ETEM and in situ ptychography were applied for studying the stability of

bifunctional core-shell catalysts for direct synthesis of dimethyl ether (section 12). Both studies

take advantage of the complementary character of electron microscopy and ptychography and

highlight the importance of such combined methods to cover different length scales and pressure

regimes.
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The aim of this chapter is to give a brief overview on the characterization techniques employed

throughout this work. Technical details on the performed experiments are discussed in the

related sections of the thesis. At first, the principles of electron microscopy and X-ray radi-

ation based techniques are discussed. Subsequently, general characterization techniques are

described, such as mass spectrometry, IR thermography and Raman spectroscopy. For more

details on the topic the reader is referred to the references given throughout the individual para-

graphs.

2.1 Electron Microscopy (EM)

Electron microscopy uses electrons to probe the sample and is divided into transmission tech-

niques and scanning techniques. For both techniques, the electrons are emitted by an electron

gun, which is composed of a vacuum tube and the electron emitter itself. The electrons are com-

monly emitted by thermionic emission from a e. g. heated tungsten filament. By application of

a potential between the filament, used as a cathode, and another anode, the emitted electrons

are accelerated in the direction of the anode and can be focused and/or redirected by electro-

magnetic lenses. Besides thermionic emission electron guns, field emission guns are applied

as well. For these guns, the emitter exhibits a very small tip and is placed in a high electrical

field, which leads to a very focused emission of electrons [144]. Dependent on the technique,

the so formed electrons are either tightly focused and scanned over the sample, or widened up

to a large spot size with which the whole area is illuminated at once. In contrast to other micro-

scopic techniques, EM is of particular interest since it enables higher spatial resolutions than

any other microscopic technique, even down to the atomic level.

2.1.1 Scanning Electron Microscopy (SEM)

In Scanning Electron Microscopy (SEM), an electron beam with an energy of usually 5-20 kV

is focused and raster scanned across the sample. Usually, the detector is placed above the sam-

ple, so that either Secondary Electrons (SEs) or Backscattered Electrons (BSEs) are detected.

SEs are the electrons which were created by inelastic scattering events within the sample and

commonly exhibit energies up to 50 eV. Due to the low energy, only those released from the

top few nanometers of the sample can be detected. Therefore, SE contrast predominantly leads

to information about the topology of the sample [145]. In contrast, BSEs are the ones which
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were almost directly scattered back by the sample and thus still possess (almost) the initial ac-

celeration energy. As the backscattering coefficient is very sensitive to the atomic number of

the probed element, BSE contrast is useful to map the composition of the probed sample [146].

In the present work, SEM was used in SE contrast to pre-study the structure of the Au nanopar-

ticles and np-Au samples used for in situ ptychography and to obtain complementary SEM

images (c. f. section 10.2 and 11). For the CuO/ZnO/Al2O3-ZSM-5 catalyst, BSE contrast

is applied before and after in situ ptychography studies to obtain a stronger chemical contrast

between the core and the shell area (c. f. section 12).

Energy Dispersive X-ray Spectroscopy (EDX) Besides BSEs, also X-rays and so-called

Auger electrons can be used to study the composition of the probed material. They are generated

by inelastic scattering processes of the incident electrons with inner shell electrons of the probed

atoms. Measuring the energy of the emitted X-rays or the kinetic energy of the Auger electrons

enables identifying the location of the respective energy levels. Since these discretized levels

are characteristic for each atom, the results can be used to identify the probed material. Here,

EDX is used to track the Cu areas CuO/ZnO/Al2O3-ZSM-5 catalyst prior to and after in situ

ptychography.

2.1.2 Focused Ion Beam (FIB) Micromanipulation

For Focused Ion Beam (FIB) micromanipulation a dual beam FIB/SEM is used, which is

equipped with an electron beam and an ion beam (usually Ga). The focused ion beam can

be used, dependent on the chosen beam parameters, to ablate material or to generate SEs for SE

imaging purposes. In addition to the two beam emitters, the microscope is also equipped with

a micromanipulator, a small needle which is used to transfer specimens, and gas insertion sys-

tem, which enables insertion of e. g. volatile Pt species for position and size controlled material

deposition via reduction. For sample preparation, e. g. TEM lamella preparation, a FIB/SEM

can be used to cut the sample and to transfer it via the manipulator, e. g. onto a TEM grid. The

sample can be fixed on the manipulator by material deposition (of e. g. platinum) across the

interface (e. g. lamella/TEM-grid interface) [147]. Besides micromanipulation, FIB/SEM dual

beam microscopes can also be used for depth resolved imaging, by imaging and consecutive

surface ablation, which can be used for tomographic studies [148].

In this work, FIB was used to prepare samples, mostly for in situ ptychography or TEM studies.

The samples are cut and transferred onto special TEM heating chips (c. f. section 11.2.1.1 and

12.2.1).
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2.1.3 Transmission Electron Microscopy (TEM)

Instead of measuring the electrons which are sent back from the sample, in TEM the electrons

transmitted through the sample are detected. Though this technique requires delicate sample

preparation, due to the low penetration depth of electrons, it is intensively used since it offers

the highest spatial resolution, down to the atomic level. In this work, TEM is used to probe the

nano scale of np-Au based catalysts and core-shell catalysts.

In a transmission electron microscope, the sample is commonly probed with a widened high

energetic electron beam with a typical kinetic energy of 200 or 300 kV. Either the unscattered

(Bright Field (BF) mode) or scattered (Dark Field (DF) mode) electrons can be used for the

image construction. While during BF imaging, the thicker/denser material appears darker, in

DF imaging it is the other way around [144]. Furthermore, high resolution images can be

acquired by TEM as well, allowing sub-nm resolution and i. e. imaging of crystal planes or

atom columns [18, 149]. In addition, the electron beam can also be tightly focused and raster

scanned across the sample. In this mode, called scanning TEM (STEM), the contrast depends

strongly on the scattering coefficient of the probed material. Therefore, High Angle Annular

Dark Field (HAADF) detectors are used and materials of low atomic number appear darker,

while those with a high atomic number are brighter. Due to this strong contrast, it is often

applied for supported catalysts [149]. Some microscopes are furthermore equipped with special

detectors for spectroscopic measurements, like for EDX or Electron Energy Loss Spectroscopy

(EELS). In this work, TEM imaging is used as a complementary microscopy technique to X-ray

ptychography and applied in section III.

Electron Energy Loss Spectroscopy (EELS) Besides the amount of transmitted electrons,

also their kinetic energy which can be reduced due to inelastic scattering events can be mea-

sured. Since such an energy loss is characteristic for the electronic configuration of the probed

material, it can be used to study composition as well as the oxidation states [150]. In this work,

EELS is used to probe the oxidation state of Cu particles inside the CuO/ZnO/Al2O3-ZSM-5

catalyst qualitatively (c. f. section 12) and to study the composition of weak residues observed

after annealing of np-Au samples (c. f. section 11.3.2.3).

Environmental Transmission Electron Microscopy (ETEM) Electrons strongly interact

with matter and thus have a short penetration depth. Therefore, EM is usually performed under

vacuum conditions. However, to reach more realistic conditions, special environmental TEMs

(ETEMs) have been developed. In these microscopes, gases can be introduced close to the

sample. Due to the short penetration depth, however, these microscopes are still limited to low
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pressure (mbar regime, obtained by differential pumping within the electron column) condi-

tions. [94, 95]. Another approach for the introduction of gas environments is to use special

closed cells, which have thin windows and allow working under atmospheric pressure [50].

In the present work, ETEM in a differentially pumped microscope was used to study the redox

behaviour of a CuO/ZnO/Al2O3-ZSM-5 core-shell catalyst (c. f. section 11.2.3) and the anneal-

ing of np-Au in situ to obtain complementary information to in situ ptychography at atmospheric

pressure (c. f. section 11.3.2.2).

2.2 X-ray Based Techniques

2.2.1 Generation of X-rays – Synchrotron Radiation

For laboratory applications, X-rays are created by bombardment of metal targets with electrons,

which leads to an emission of “bremsstrahlung” and the characteristic X-ray lines of the target.

However, the corresponding brilliance, which describes the quality of the X-ray beam in terms

of intensity, degree of divergence, source area and spectral distribution, of such X-ray tubes is

low compared to X-rays produced by synchrotron radiation sources [151]. Synchrotron radia-

tion, especially that from modern third or fourth generation synchrotron radiation sources, ex-

hibits a high brilliance and high degree of coherent radiation. In synchrotron radiation sources,

electrons or positrons are circulated inside storage rings, in which bending magnets are used to

keep the electrons in a closed orbit while synchrotron radiation is emitted. The emitted intensity

can be further increased, which is important for imaging techniques, by insertion devices such

as undulators or wigglers, which are used to generate alternating magnetic fields resulting in an

oscillating electron path [151, 152].

2.2.2 X-ray Absorption Spectroscopy (XAS)

XAS can be used to probe the local environment of an atom, like the coordination state and

geometry, the neighboring atoms or the oxidation state of the probed atom. In the present

work, it is used to determine the oxidation state of Pt/γ-Al2O3 catalysts applied in the gas phase

microreactor (c. f. section 5.3 and 6.2).

In XAS, the absorption of the probed material in dependence of the energy of the incident X-ray

beam, is determined. Therefore, X-ray sources with a tunable energy, like synchrotron radiation

sources are required. Due to the photoelectric effect, parts of the incident intensity are absorbed

and the atoms are excited by the X-rays. This can be measured either directly by determining the
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X-ray intensity before and after the sample or indirectly by recording the fluorescence radiation

which is emitted during the relaxation process of the excited atoms. By application of Beer’s

law, it can further be related to the absorption coefficient. Once the incident energy is high

enough to excite an inner shell electron from the atom, a strong absorption is recorded in the

absorption spectrum. When the emitted electron interacts with neighboring atoms, it can be

back-scattered and interact with the probed atom, which results in oscillations of the absorption

spectrum, the so called “fine structure”. The region of the absorption spectrum around the

absorption edge is called “X-ray Absorption Near Edge Structure" (XANES) and mostly used

to determine the oxidation state or the symmetry of the coordination sphere of the absorber

atom. The “Extended X-ray Absorption Fine Structure” (EXAFS) however, is caused by the

single back-scattering events of the electron with the neighboring atoms and can be used to

determine the coordination number or the bond distances to neigboring atoms [153]. A fast

acquisition of XAFS measurements in the sub-s regime is useful for probing transient reaction

conditions. This so-called “QEXAFS” can be e. g. obtained by periodically oscillating double

crystal monochromators [154]. In this work, it was used to relate the fast temperature changes

during driving cycle simulation to changes in the catalyst (c. f. section 7.2).

2.2.3 X-ray Diffraction (XRD)

XRD is used to probe the long range order of materials and is therefore a technique primarily

used for studying crystalline materials. It can be used to determine the crystallographic phases

of a material, which was applied for Pt/γ-Al2O3 catalysts in this work (c. f. section 5.1 and 6.2).

XRD is based on the scattering of X-rays on the periodically ordered crystal planes of the probed

material. According to Bragg’s law, constructive interference is only obtained at certain scatter-

ing angles, while at all other angles the scattered radiation interferes destructively. Therefore,

at a fixed energy, reflexes can only be observed at certain scattering angles in the diffraction

pattern, which can be used to identify the crystallographic phase [1].

2.2.4 X-ray Microscopy

X-ray microscopy allows probing structures in the intermediate range between that probed by

electron microscopy or by optical microscopy. X-ray microscopes can be divided into full-field

microscopes or scanning microscopes.
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Full-Field Imaging Full-field imaging, also referred to as “radiography”, means that the ob-

ject is probed by a parallel beam which has the size of the field of view. In this work, radiogra-

phy was used to image the gas-phase microreactor (c. f. Fig. 4.3).

Similar to an optical microscope, the image is magnified by an objective lens, which is usually a

Fresnel zone plate [24, 105]. The image is detected by a position sensitive detector and different

magnifications can be obtained, dependent on the distance between the objective lens and the

detector [151]. Differences in the absorption coefficient of the different probed materials create

the image contrast. Moreover, full-field microscopy can be combined with resonant imaging as

well, when the energy is tuned around an absorption edge [24].

Scanning Transmission X-ray Microscopy (STXM) In contrast to full-field techniques, for

STXM approaches, the X-ray beam is focused by focusing optics [109, 110, 116] like Fresnel

Zone Plates [111, 112] or refractive X-ray lenses [113–115], while the sample is raster scanned

through the focused beam. This technique benefits from a high spatial resolution, limited by

the spot size of the focused beam, and has the advantage that various contrasts, such as XRF,

XRD and XAS contrast can be applied [24]. Since the image is built up pixel-by-pixel, it

requires considerable longer acquisition times than full-field approaches. In this work, STXM

is only applied by using scanning coherent X-ray diffraction imaging, the so-called “X-ray

ptychography”.

Coherent X-ray Diffraction Imaging (CDI) and X-ray Ptychography CDI uses the par-

tially coherent nature of X-rays obtained by synchrotron radiation. A small sample is illumi-

nated with a large parallel beam and the far-field diffraction patterns are recorded. Since only

the intensity can be measured, the phase information cannot be recorded directly, which re-

quires dedicated “phase retrieval” algorithms to reconstruct the real-space image. Although the

obtained resolution for CDI is high, this technique requires prior knowledge on the probed sam-

ple due to the complex image reconstruction [120].

X-ray ptychography is a scanning technique and uses a focused, coherent beam, through which

the sample is rastered. Like for CDI, also here the far-field diffraction patterns are recorded.

The spot size of the beam may vary from tens of nanometers to the micrometer range and

a simultaneous recording of XRF contrast is possible, which can be used for complementary

XRF-STXM. By recording diffraction patterns of overlapping steps, image reconstruction is fa-

cilitated in comparison to the full-field CDI, by the so called “over sampling”. This makes hard

X-ray ptychography the ideal candidate for high-resolution X-ray imaging, also for samples

whose properties are relatively unknown.
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The iterative phase retrieval algorithm, which is used to retrieve the phase, constantly Fourier

transforms data from real space to reciprocal space and vice versa. For example, the estimated

amplitude is obtained from the measured intensity by extracting the square root of it. This

amplitude is then multiplied by a guessed phase factor and inversely Fourier transformed to

result in an estimated electron density in real space. Real space constraints like “being positive

and real” are then applied which are used to obtain a new electron density, which is subsequently

Fourier transformed into an updated amplitude function. This can then be further optimized and

the cycle can be continued until the errors are significantly reduced [151]. In this work, hard X-

ray ptychography is used to obtain complementary high-resolution images to EM. The potential

of hard X-ray in situ ptychography is highlighted in this work and discussed in section III.

2.3 General Characterization Techniques

2.3.1 Mass Spectrometry (MS)

The mass of a chemical compound is a very characteristic quantity which makes MS a useful

tool to identify the composition of an unknown substance. In this work, on-line MS is used to

monitor the composition of gaseous products in the reactor outlet (e. g. in section 6.2), which

could be used for determination of the catalytic activity. In contrast to conventional MS, also

spatially resolved MS could be performed, implying that the gas composition at different posi-

tions within the reactor is determined. This was not performed in this work, although it would

reveal additional information during the study of gradients in reactors.

In a mass spectrometer, the gaseous sample becomes initially ionized before it is routed into the

actual the mass analyzer. The latter consists of an electrical field in which the ions are deflected

differently, depending on their mass m and charge z, which leads to a separation of the ions

dependent on the m/z ratio [155]. Commonly, time-of-flight or quadrupole analyzers are used.

In quadrupole MS, which was used in this work, the ions are accelerated before they pass the

quadrupole. The electrodes opposite to each other are on the same potential, respectively, while

a high frequency alternating current is applied on the electrodes next to each other. By varying

the frequency, stable trajectories are obtained for different m/z ratios, which is used for mass

separation. Afterwards, the amount of unblocked ions is measured by a detector like a Faraday

cup or an electron multiplier [156].

23



2 Methods

2.3.2 Infrared (IR) Thermography

IR thermography is a useful tool to measure the temperature of an object since it is a contact-free

measurement technique, enables high-speed data acquisition and features high spatial resolu-

tions. In this work it is used to evaluate the temperature homogeneity of the gas phase micro-

reactor and the in situ ptychography cells (c. f. section 4.1.2 and 11.3.2.1), or to study thermal

gradients occurring during the CPO of methane (c. f. section 6.3).

As described by Planck’s law, every body generates electromagnetic radiation whose intensity

and spectral profile depends on its temperature. In IR thermography, this radiation, which com-

monly lies in the infrared regime of the electromagnetic spectrum (0.7 to 20 µm), is detected

and used to identify the temperature of the studied object [157]. For this mainly two charac-

teristics of the spectrum are monitored: the overall intensity, which increases with increasing

temperature (described by the Stefan-Boltzmann law); and the wavelength at which the highest

power is radiated (described by Wien’s displacement law). While the generated electromagen-

tic radiation is well described by Planck’s law, the emitted radiation which is actually detected,

is also influenced by the effectiveness of the object to emit radiation, commonly described by

the so-called emissivity ε [157]. It is dependent on the probed wavelength and temperature of

the material [158]. Therefore, prior to the actual measurement, the system must be calibrated

(either experimentally or by using literature values for ε) to achieve an accurate temperature

identification.

2.3.3 Raman spectroscopy

In Raman spectroscopy the characteristic vibrational bands of the probed sample are identified

by using inelastic scattering of light with the probed substance. In this process, the scatter-

ing causes a shift of the photon energy by the amount of the respective vibrational excitation

(e. g. a photon). Therefore, detection of this so-called Raman shift enables measuring the vi-

brational bands such that is is well suited to identify specific bonds within materials. For this,

a monochromatic, high-intensity laser is used to probe the sample and the wavelength of the

scattered light is measured [159].

In this work, it is used to distinguish between the Pt–Cl and the Pt–O bond in H2PtCl6 and PtO2,

respectively. Furthermore, Raman spectroscopy was also applied for imaging. For this, Raman

spectra were recorded in a spatially resolved manner and the characteristic Raman bands were

used as a contrast for construction of the image (c. f. section 5.2).
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3 Introduction –
Applications of Microreactors

The term “microreactor” denoted in former times tubular reactors with a diameter in the mil-

limeter range [160]. Nowadays, the term is used for reactors exhibiting at least one dimension

in the micrometer range which were build by microfabrication [161, 162]. The small dimen-

sions come with some disadvantages like plugging, a difficult loading of the catalyst or small

and fragile fittings, but offer numerous benefits [162–165]. Most advantages are based on the

high surface to volume ratio, which microreactors exhibit due to their small dimensions [163].

Along with a fast mass transfer and narrow residence time distributions [164], in particular a

fast heat transfer is regarded as very beneficial for microreactor applications in chemical pro-

cesses, e. g. in the simulation for driving cycles (c. f. section 7.1). Those benefits also imply a

precise and fast control of reaction parameters such as temperature, pressure and concentration,

but nontheless, the small dimensions also minimize danger from exothermic reactions or toxic

chemicals as only small amounts of reagents are used and the formation of hotspots is reduced

due to the efficient heat transfer [166]. This does not only reduce costs and safety require-

ments, but makes microreactors also attractive for high-throughput applications, for testing and

characterization of novel catalysts [167]. Last but not least, microreactors can also be used in

industrial processes by running several microreactors in parallel, which on the one hand mini-

mizes time and costs for up-scaling process development [160], and on the other hand reduces

safety precautions.

Recently, the application of microreactors in chemical processes increased with utilization in

catalysis [163, 168–171], biochemistry [172] or organic and polymer chemistry [173]. In het-

erogeneous catalysis, spectroscopic studies have been performed using microreactors [166,

174–178]. Additional benefit can be gained by the rapid heating and cooling possibilities. This

also allows testing during transient changes of reaction parameters like gas and temperature

or during modulation excitation spectroscopy experiments [179, 180]. Many studies were per-

formed on capillaries with diameters in the mm range [55, 56, 181, 182]. With respect to in situ

spectroscopy, additional benefit can be gained from the flat surfaces of the microreactor channel,

which leads to reduced reflection from the surfaces and therefore improved data quality [42].

Another advantage using microreactors for in situ spectroscopic studies is that complementary

techniques can be easily combined using the same reactor, e. g. IR spectroscopy [176] and ther-

mography [40, 72], Raman spectroscopy [170], UV vis spectroscopy [183], X-ray diffraction

[57], X-ray scattering [184, 185] and X-ray absorption spectroscopy [37, 175]. Moreover, spa-

tially resolved measurements can be performed on the micrometer scale [49]. However, the use

of microreactors requires considerations on sufficient detector sensitivity to follow the catalytic

reaction despite the small amount of catalyst, on pressure drops caused by plugging or on more
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difficult packing of the catalyst leading to bypassing of reactants.

Microreactors are often fabricated with lithographic methods and typically fabricated from sil-

icon (Si) [163, 186], due to its high thermal stability, heat conductivity, mechanical robustness

and chemical inertness. Processes for integrating additional functional structures like optical el-

ements [187, 188], heaters and temperature sensors [169, 189] are well known and established.

With respect to in situ spectroscopy, especially the mechanical robustness [190] enables fabri-

cation of very thin windows. Furthermore, the rather low atomic number of Si goes along with

moderate X-ray absorption. Although fabrication from Be or diamond would show even lower

absorption, these materials are potentially poisonous or expensive, respectively. Therefore, Si

is an ideal candidate for in situ cells used for X-ray studies. Such Si-based microreactors were

already used as analytical in situ cells [174, 183, 191–193], for applications in gas sensors [194]

or in CO oxidation [195].

In the following section, a silicon-based microreactor developed within a framework with the

University Dresden, Göttingen, Bochum and DESY (Helmholtz Virtual Institute) and a BMBF-

(Bundesministerium für Bildung und Forschung – engl. Federal Ministry of Education and

Research)-funded project for development of user infrastructure for X-ray microscopy, is pre-

sented. The microreactor reported herein was manufactured by the company GeSiM GmbH

(Großerkmannsdorf, Germany), and is based on the first generation developed and described

by G. Hofmann [196]. The reactor and the majority of the presented results in this part are

already published (Baier et al. [197] and Doronkin et al. [198]). Most of the work related to

the improved design, ex situ and in situ application for the CPO of methane was performed in

close collaboration with Dr. Amélie Rochet.
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4 Gas Phase Microreactor, Sample
Preparation and Spectroscopic
Techniques

In the following section, a silicon-based gas phase microreactor which allows the combination

of several techniques, such as XRD, XAS, IR thermography and Raman spectroscopy, is de-

scribed. This reactor is beneficial for the application in in situ studies (c. f. section 1.1) and

can be used to study the micro scale of catalysts as highlighted in section 1.1.1. Its design,

fabrication and improvement with respect to heating in comparison to an earlier design is de-

scribed. Additionally, the sample preparation and experimental techniques used for studies with

this microreactor are presented in sections 4.2 and 4.3.

4.1 Design of the Gas Phase Microreactor

The microreactor is formed by a layer by layer design based on silicon. A channel is etched into

the structure, in which the powder catalyst can be filled as a packed bed. Furthermore, a heater

and a temperature sensor are located on the microreactor, allowing the reactor to be heated. The

channel is located inside a silicon layer on which the heater and sensor are manufactured; an-

other layer of either Si (“Si-Si microreactor”, see section 4.1.2.1) or borosilicate glass (“Si-glass

microreactor”) is used to close the channel. The schematic representation of the microreactor

and its layered structure is shown in Fig. 4.1. Detailed information on the single elements is

given in section 4.1.1.

Figure 4.1: a) Schematic representation of a silicon-glass microreactor showing the U-shaped channel
geometry from the glass side. The gas inlet and outlet as well as the stopper are depicted. b) Schematic
representation of a section A-A as a side view. The channel dimensions, the thinned down area for the
X-ray window, as well as the heater (green) and temperature sensor (red) are visualized.
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The microreactor is used within a custom-built setup designed by GeSiM GmbH (Großerk-

mannsdorf, Germany) enabling electrical and gas connection, which is depicted in Fig. 4.2. For

experiments, the whole setup composed of three parts is used:

• the microreactor itself, composed of a channel in which the powder catalyst is filled as a

packed bed, a heater and a temperature sensor,

• the support for electrical connection used for heating and temperature sensing as well as

for the gas connection,

• an external temperature controller (Eurotherm 2216e controlled by a LabVIEW based

script) and gas feed system with mass flow controllers (Bronkhorst).

Figure 4.2: Photograph of the microreactor setup showing the microreactor positioned in the blue support
part which is used for electrical and gas connection. Reprinted from [197] with the permission of AIP
Publishing.

4.1.1 Fabrication and Details

The channel in the Si layer was formed by etching techniques and lithography on a 4” Si wafer

and a positive resist was used for a double side optical lithography followed by deep reactive-ion

etching (DRIE). Eventually, the channel was closed by anodic bonding using borosilicate glass

(Borofloat glass, Schott AG Jena) [199], or silicon fusion bonding [200] for the Si-glass and

Si-Si version (c. f. section 4.1.2.1) respectively. A channel of 500 µm × 250 µm (width × depth)

was etched inside the 400 µm silicon layer, like in the first generation. The dimensions and

positions of holes for the gas inlet (diameter 1.5 µm) and outlet (diameter 0.8 µm) were kept

the same as well. Prior to mounting the microreactor into the support, the catalyst has to be

filled into the channel through the inlet hole, which is also used to feed the reactants. For

easier filling of the powder catalyst, the channel dimensions are broader close to the inlet hole

(1500 µm × 250 µm, width × depth) and decrease gradually to reach 500 µm width after 10 mm.

When the reactor is mounted in the support, O-rings which are pressed between the reactor and
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the support, enable a tight connection between the reactor and the gas fed through the support.

As the reactor is especially designed to be suitable with XAS experiments, the Si material was

thinned down to a thickness of 40 µm, as depicted in Fig. 4.1, to improve the transmission of

X-rays through the reactor. This area is referred to as an “X-ray window” and can e. g. improve

the transmission. For example, around the Pt L3 edge at 11.56 keV by a factor of 1.7. To define

the end of the catalyst bed at the end of the X-ray window and to act as a trap for particles, a

so called “stopper” was built by pillars of Si with spacings of 35-40 µm. The stopper region is

represented in Fig. 4.3a by an optical micrograph showing the grain size of a sieve fraction of

100-200 µm catalyst grains with respect to the channel and stopper dimensions. Furthermore, a

radiograph recorded at 11.56 keV in bright field contrast is shown in Fig. 4.3b. Thicker areas are

stronger absorbing and appear darker (like the stopper inside the channel or the Pt sensor around

the channel), while thinner areas like the channel and X-ray window show higher transmission

and appear brighter. The spacing of the pillars from the stopper constrain the grain size used

for this microreactor, but to avoid pressure drops due to plugging with too small particles, sieve

fractions of 100-200 µm are recommended.

Figure 4.3: a) Scheme of the microreactor and optical micrograph of the stopper region in the channel
showing catalyst grains filled into the microreactor. b) Radiograph of the channel region recorded at
11.56 keV in bright field contrast. Stronger absorbing areas (Pt heater, Pt temperature sensor, stopper)
appear darker then thinner areas (channel and X-ray window).

4.1.2 Improved Heating Capabilities of the Microreactor

The microreactor is heated by an electrical current (Joule heating) through the Pt heating layer

(c. f. Fig. 4.4). Accurate temperature control is achieved by a proportional-integrative-derivative

(PID) controller which either uses an on-chip Pt sensing layer, or an externally glued Pt 100 el-

ement, as a resistive thermometer and adjusts the current flow accordingly. A 10 to 15 nm thick

titanium adhesion layer was used between the silicon layer and the approximately 400 µm thick

Pt heating layer, deposited by physical vapor deposition with a 4” magnetron. For improved

electrical contact with the support, a 250 nm thick gold layer was added on top of the Pt layer.
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The first generation of microreactors, described by G. Hofmann [196], had a simple heater de-

sign of a rectangular shaped (44 mm × 25 mm) layer around the X-ray window, which covered

almost the whole microreactor area. However, a very pronounced temperature gradient could

be observed (140 °C along the X-ray window [197]), which was also present along the catalytic

bed. This gradient was caused by the good thermal contact at the mounting point, where the

reactor temperature remained at almost room temperature. Since for controlled chemical reac-

tion parameters a uniform temperature along the catalyst bed is required, the heating geometry

was optimized for the second generation of microreactors. The difference between the first and

second heater design is visualized in Fig. 4.4, showing a more efficient heating towards the

beginning of the catalyst bed.

Figure 4.4: Top: Schematic representation of the two different heater designs of the first (1st) and second
(2nd) heater design with the heater area represented in green and the sensor shown in blue.

The temperature homogeneity could be improved by the second heater design, which is de-

picted in Fig. 4.5. Different line profiles along the reactor width and length (c. f. Fig. 4.5b

and c, respectively) are shown for different temperatures. Fig. 4.5a shows an IR thermogram

of the reactor for a sensor temperature of 410 °C with respect to the positions of the line pro-

files. Fig. 4.5b highlights the temperature uniformity within the 250 µm wide channel, while

Fig. 4.5c indicates that the gradient along the reactor length is still present, even within the

X-ray window. A gradient of 50 °C could be detected at a sensor temperature of 400 °C within

the complete X-ray window, which resulted in an improved temperature homogeneity by a fac-

tor of 2.8 compared to the first generation. Nevertheless, for the first 8 mm of the X-ray window,

the temperature is homogeneous. For a typical catalytic bed length of 4-5 mm, gradients due to

heating of the reactor can be neglected (compare ref. [197]).

To use the internal temperature sensor, calibration curves determining the resistance of the sen-

sor with respect to the temperature have to be acquired. However, it has been shown that the

temperature determined by the internal sensor differs a lot from the temperature determined

with an external thermocouple attached at the first 5 mm on the X-ray window. This is shown in

Fig. 4.6a and can be explained by the temperature gradient along the X-ray window. The tem-
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perature sensor with its dimensions of 33.5 mm × 80 µm × 200 nm (length × width × thickness)

is located around the whole X-ray window. This implies that the resistance measured on the

temperature sensor corresponds to an averaged temperature around the whole X-ray window.

Therefore to use the microreactors of the second generation, an external Pt 100 element was

used as a temperature sensor. For future experiments, a third generation of microreactors was

developed. The temperature sensor dimensions were adapted in such a way that the sensor was

only located around the first 5 mm of the X-ray window, sensing just around the catalytic bed

length so that the internal sensor could be used again.

Figure 4.5: a) IR thermogram of the second generation of microreactors with the improved heater design.
An external thermocouple was placed at the bottom of the microreactor. Several line profiles along the
reactor are depicted for different temperatures measured by the internal temperature sensor. The positions
for the profiles are marked in the IR thermogram. b) Line profiles along the reactor width showing the
homogeneous temperature profile along the reactor bed. c) Line profiles along the reactor length reveal
a gradient in this direction. Within the 15 mm long X-ray window, the gradient could be improved
compared to the first generation and the temperature is homogeneous for the first 8 mm.

Besides the difference between the temperature measurement with the internal sensor and with

an external thermocouple, it is also evident in Fig. 4.6a that the temperature measured by the

external sensor decreases with time. This effect only happens during the first high temperature

treatment of the reactors, after which the heating layer also looks different by visual inspection

and which is shown in Fig. 4.6b by optical micrographs of a fresh (not heated before) and a

used (after heating) reactor. The color change from dark to bright material after heating can

also be seen by differences in the SEM images from different areas, as depicted in Fig. 4.6c and

d. Fig. 4.6c shows an SEM image of the dark regions in SE contrast, whereas Fig. 4.6d shows

one of the bright regions. Apart from irregularities in the surface structure, which are visible in
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both images by darker areas, it becomes obvious that the surface seems rougher and particles

are located on the brighter heating area in Fig. 4.6d, compared to the relatively planar and

homogeneous surface depicted in Fig. 4.6c. The formation of particles and restructuring of the

heater layer was also shown by SEM images after heating treatment of a typical microreactor,

suggesting that the Pt heating layer ages and Pt particles sinter during use. To circumvent

irregularities during application of the microreactors, a “conditioning” of the reactors prior to

use and even prior to sensor calibration is required. Once the reactors were treated at the highest

temperature used, they remain stable and show reproducible behavior as presented in Fig. 4.6a.

Figure 4.6: a) The temperatures measured by the internal temperature sensor (black) and an external
thermocouple (red) are plotted vs. time showing a remarkable difference between the two sensors as
well as a temperature decrease of the externally measured temperature with time. The setpoint was set
to 300 °C for the heating. b) Optical micrographs of a fresh and a used microreactor revealing a color
change after heating the reactors, c) SEM image in SE contrast of a dark area of a heated microreactor
exhibiting a relatively homogeneous Pt surface, while d) shows a SEM image in SE contrast of a bright
area of a heated microreactor and gives evidence to an irregular surface with the formation of particles
on the surface.

4.1.2.1 High Temperature Application – Si-Si Microreactor

The second generation of microreactors was not only motivated by reaching an improved tem-

perature homogeneity of the reactor, but also by gaining improved temperature stability. Using

the Si-glass microreactor at T>500 °C, the borosilicate glass reaches the glass point at 525 °C

[201] and undergoes structural changes. This not only influences the stability of the reactor as

the reactor can start to leak, but it also influences spectroscopic data quality, as diffraction sig-

nals changing with time become visible. This is depicted in Fig. 4.7, where QEXAFS spectra

of a Pt/γ-Al2O3 sample heated at T>500 °C are shown at different times. Diffraction signals,

unstable over time, appear additionally to the XAS signal.
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Figure 4.7: Pt L3 XAS spectra of a Pt/γ-Al2O3 catalyst recorded at T>500 °C in a Si-glass microreactor.
The original spectrum before the evolution of diffraction signals is shown in black, whereas the spectra
influenced by the diffraction signals caused by restructuring of the Si-glass microreactor are depicted
multicolored. This demonstrates, that the temperature of this microreactor should be limited to 500 °C.

In order to use the microreactor for high temperature applications, a purely Si-based design

was implemented. Whereas this version has the benefit of use at higher temperatures than the

Si-glass version without undergoing structural transitions, it suffers from opaqueness for visi-

ble light. The catalytic bed length however can be visualized by probing the reactor with IR

radiation or with X-rays. Although the application of quartz glass would have prevented the

problems caused by opaqueness, it could not be used due to the different thermal expansion co-

efficients between Si (2.45·10−6 °C−1) and quartz (0.5·10−6 °C−1) [202]. Therefore, the reactor

was completely fabricated from Si, allowing use at temperatures higher than 500 °C.

This gas phase microreactor completely composed of Si was successfully applied for transient

studies during the simulation of a driving cycle, described in section 7.1, however, this reaction

did not require temperatures above 500 °C.
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4.2 Sample Preparation and Reaction Conditions

The presented microreactor was tested for the Catalytic Partial Oxidation (CPO) of methane

over Pt/γ-Al2O3 catalysts and for the Selective Catalytic Reduction (SCR) of nitrogen oxides

using Cu zeolite catalysts. Therefore, dedicated catalysts were prepared. Catalyst preparation

and reaction conditions are described in the following part.

4.2.1 Catalytic Partial Oxidation of Methane - Catalyst Preparation and
Reaction Conditions

The 4 wt.% Pt/γ-Al2O3 sample used in this work was prepared by Sabrina Conrad by incipi-

ent wetness impregnation of γ-Al2O3 with an aqueous solution of H2PtCl6 (hexachloroplatinic

acid). After drying at 70 °C, the sample was calcined for 2 h at 500 °C before it was reduced

for 5 h at 400 °C under 5 % H2/He [203]. TEM images revealed a Pt metal particle size around

1.5 nm resulting in a dispersion of 63% [47]. A sieve fraction of 100-200 µm powder catalyst

was loaded inside the reactor channel to result in a 4.5 mm long catalyst bed.

The CPO was carried out from Room Temperature (RT) up to 450 °C in steps of 5 °C in a pre-

mixed gas mixture of 6 %CH4/3 %O2/He with a total flow of 2.6 ml/min provided by mass flow

controllers (Bronkhorst). The mass spectrometer signals for H2, H2O, CO2, O2 and CH4 were

monitored. Additionally, for proof of concept measurements, a 20 wt. % Pt/γ-Al2O3, a 20 wt. %

Pt/γ-Al2O3 and an each 2.5 wt. % Pd,Rh/γ-Al2O3 sample were prepared similarly by incipient

wetness impregnation.

4.2.2 Selective Catalytic Reduction of NOx during Simulation of the New
European Driving Cycle – Catalyst Preparation and Reaction
Conditions

Catalyst Preparation A Cu-ZSM-5 zeolite sample was prepared by aqueous ion-exchange of

NH4-ZSM-5 zeolite (Si/Al ratio=11, Clariant) by Dr. Dmitry Doronkin. A 0.05 M Cu(II)acetate

(Merck) solution was stirred with 5 g of the zeolite at 20 °C for 24 h. After separation of the

solid by filtering, it was washed with 1 L of de-ionized water and dried at 80 °C over night. The

calcination was carried out at 500 °C for 4 h. From XAS, the estimated Cu concentration was

2.9 wt.% [198]. A sieve fraction of 100-200 µm powder catalyst was loaded inside the reactor

channel resulting in a 4-5 mm long catalyst bed.
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Reaction Conditions For driving cycle simulations, a gas feed containing 1000 ppm NO,

1000 ppm NH3, 5 % O2 and H2O in He (GHSV 1·106 h-1, 10 ml/min total flow) was provided

by mass flow controllers (Bronkhorst). The mass spectrometer signals for N2, NO, NO2, N2O

and NH3 were monitored. The temperature cycles were based on [204] and required heating

ramps up to 300 °C/min.

4.3 Experimental Techniques

The microreactor presented in this chapter was developed to allow complementary characteri-

zation techniques, especially X-ray based techniques, and other spectroscopic methods. In the

following, experimental details on the methods used for testing the applicability of the micro-

reactor, namely XRD, XAS, radiography, Raman spectroscopy, IR thermography and MS, are

given.

4.3.1 Temperature Measurements by IR Thermography

IR thermography was used to track the temperature along the microreactor: for evaluation of the

microreactor design and for tracking temperature gradients or hot spots occurring during chem-

ical reaction. The temperature was recorded from the Si-side of the reactor using an IR camera

(VarioCam® HD 1024×768 mobile, InfraTec) which recorded the emitted thermal (infrared,7.5-

13 µm optical wavelength) radiation from the sample. For evaluation of the temperature homo-

geneity, images were taken with a frequency of 1 Hz, whereas for the CPO, a frequency of 6 Hz

was applied. The software IRBIS® 3 plus was afterwards used for thermography evaluation.

4.3.2 Raman Spectroscopy

For ex situ evaluation as a proof of principle study, a set of differently pre-treated model catalysts

containing 20 wt.% Pt/γ-Al2O3 (prepared by Dr. Amélie Rochet by incipient wetness impregna-

tion, drying and calcination at 150 °C and 500 °C, respectively) and pure γ-Al2O3 were filled as

stacked parts into the Si-glass microreactor (c. f. section 4.1). An area of 4063.4 µm × 678.9 µm

was probed by Raman spectroscopy with an inVia Raman microscope (Renishaw) at 532 nm.

A step size of 9.7 µm and an exposure time of 10 s per sprectrum were used for one scan. To

distinguish the different parts and to match the Raman spectra with the white light image, a

direct classical least squares component analysis was used by Renishaw and overlaid with the

white light image.
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4.3.3 On-line Mass Spectrometry

An on-line MS (THERMOSTAR™ Pfeiffer) was directly connected to the gas outlet of the micro-

reactor and used for product composition analysis during the CPO of methane. During selective

catalytic reduction of NOx under transient conditions, a Hiden Analytical QGA mass spectrom-

eter provided by SLS was used, which was connected to the outlet of the microreactor by a

T-piece.

4.3.4 Measurements with Synchrotron Radiation

4.3.4.1 Catalytic Partial Oxidation of Methane

XRD The XRD measurements were performed at the SUL-X beamline at ANKA (Karslruhe,

Germany) at an energy of 16 keV with an acquisition time of 20 s. A CCD detector was placed

85 mm behind the sample and a focused X-ray beam with a size of 100 × 100 µm2 was used.

Data evaluation was performed using the FIT2D software [205] and a LaB6 sample for calibra-

tion. Parameters used as reaction conditions are given in section 4.2.1.

XAS XAS measurements with a focused beam were performed around the Pt L3 edge di-

rectly after the XRD scans. Using the microreactor with a 250 µm channel depth, only a small

edge jump was expected and XAS measurements were performed in fluorescence mode with

a 7 element Si(Li) fluorescence detector (Graham Scientific Instruments) up to 16 Å-1 and an

acquisition time of 13 min per spectrum. Parameters used as reaction conditions are given in

section 4.2.1.

To compare the quality of XAS data recorded with conventional reactors, e. g. capillary reactors

[56, 181], XAS of a 2.5 wt.% Pt-2.5 wt.% Pd/γ-Al2O3 sample (prepared by incipient wetness

impregnation of γ-Al2O3with an aqueous solution of Rh(NO3)3 and Pd(NO3)3, dried at 70 °C

and calcined for 2 h at 700 °C) was recorded in the microreactor and in a capillary reactor.

Measurements were performed at the SuperXAS beamline [154] at SLS, Switzerland, using

the micreoreactor or a quartz capillary reactor (outer diameter 1 mm, inner diameter 980 µm,

Hilgenberg). XAS spectra were recorded in fluorescence geometry for the microreactor and in

transmission geometry for the capillary reactor [206].

XAS data analysis was performed with the Athena graphical interface [207] and normalization

was performed using the flattening algorithm in the default energy range used by Athena. Lin-

ear combination fitting (LCF) was used from -40 – 120 eV around the Pt L3 edge and the initial

oxidized and the most reduced catalyst were used as standards.
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Radiography For radiography images, as depicted in Fig. 4.3, bright field contrast radio-

graphs were recorded at the TOPO-TOMO beamline at ANKA [208] using a PCO.4000 CCD

detector coupled to a YAG:Ce scintillator. Coupling to an optical system provided a magnifica-

tion of 3.5 x [208]. A field of view of 10 mm × 6.7 mm (height × width) with an effective size

of 2.5 µm was probed with a sample-detector distance of 1.9 cm and 2 s integration time.

4.3.4.2 Selective Catalytic Reduction of NOx during Rapid Heating and Cooling

XAS Measurements Operando XAS measurements around the Cu K edge were carried out

by Dr. Dmitry Doronkin, Dr. Federico Benzi and Dr. Thomas Sheppard at the SuperXAS

beamline [154] at SLS, Switzerland. QEXAFS measurements were performed using a Si(111)

channel cut monochromator operating at 10 Hz [154] while the spectra were collected in trans-

mission mode using special ionization chambers for quick data acquisition [209]. The beginning

of the catalyst bed was probed with a 100 × 100 µm2 focused X-ray beam. The recorded spectra

were averaged, nomalized and treated by LCF analysis using the JAQ 2 software (by O. Müller,

P. Becker and R. Frahm). The spectra at 50 °C and 350 °C under SCR conditions were used

as references for for LCF, which was performed by Dr. Dmitry Doronkin. Parameters used as

reaction conditions are given in section 4.2.2.
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5 Suitability of the Gas Phase
Microreactor for XRD, XAS and Raman
Spectroscopy

This chapter describes ex situ measurements to evaluate the applicability of the reactor for the

required measurement techniques. As the microreactor was especially developed for the use

XAS and XRD measurements, the distortion free acquisition of the reactor is presented, as well

as the applicability of the Si-glass reactor for Raman spectroscopy.

5.1 XRD Measurements

XRD is a useful method for determining the crystalline phases of a probed material [1]. For

heterogeneous catalysis, the long range order of catalysts can be probed and information on

the oxidation state as well as on preferred orientations can be gained additionally to the deter-

mination of the phase. To evaluate the application of the microreactor in XRD measurements,

reference samples, the empty reactor and a model catalyst were measured ex situ. XRD pat-

terns of reference samples, including the empty microreactor, are shown in Fig. 5.1. At first, a

LaB6 reference sample was measured inside a capillary (inner diameter 280 µm, outer diame-

ter 300 µm, Hilgenberg; pattern shown as a black dashed line) and inside the reactor (pattern in

red). The good agreement between both reactors with perfectly overlaying reflections highlights

the applicabilty of the microreactor for XRD measurements. The observed background signal

for the empty reactor channel (green pattern) is due to amorphous glass and silicon. Since it

is relatively weak and broad from 3 ° to 20 ° (2θ), it does not significantly influence the signal

quality. Moreover, the XRD pattern of the Pt heating layer is depicted in blue (Fig. 5.1), show-

ing well-defined reflections which are characteristic for metallic Pt. While probing this layer in

future experiments, the resulting pattern can be used for calibration instead of requiring other

references.

Fig. 5.2 shows XRD patterns of the a pure γ-Al2O3 catalyst support and a reduced 5 wt.%

Pt/γ-Al2O3 catalyst, which were acquired inside different microreactors. Additionally, the theo-

retically expected XRD pattern for bulk metallic Pt [210] is shown. Even though most of the

reflections expected for Pt overlap with those of the pure support, the Pt (013) reflection at

38 ° (2θ) is clearly observable. This observation indicates big Pt crystallites, although only a

Pt loading of 5 wt. % was used. However, also TEM revealed the appearance of big Pt parti-

cles. Nevertheless, the observation of the Pt (013) reflection at 38 ° (2θ) demonstrates that the

microreactor can be applied for XRD measurements for real catalyst samples.
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Figure 5.1: XRD patterns of the empty reactor recorded on the channel (green) and on the heater area
(blue). LaB6 XRD patterns recorded as a reference sample studied inside a reference capillary (black,
dashed) and inside the microreactor (red). Reprinted from [197] with the permission of AIP Publishing.

Figure 5.2: XRD patterns of a reduced 5 wt.% Pt/γ-Al2O3 catalyst (red) and a pure γ-Al2O3 catalyst
(black) inside the microreactor. The theoretically expected reflections for metallic platinum are depicted
in blue. Reprinted from [197] with the permission of AIP Publishing.
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5.2 Raman Spectroscopy

Using Raman spectroscopy, the vibrational bands of materials are probed on changing the polar-

ization of the material [159]. For heterogeneous catalysis, it is mostly used to probe the catalyst

composition. For example, when probing a solid catalyst with hard X-rays during a reaction

in which carbon can be formed on the catalyst, it can be helpful to probe the carbon, which

cannot be probed with hard X-rays directly. Especially in this reactor, the flat window design is

beneficial for Raman spectroscopy, since reflections due to bent surfaces are reduced [42].

Figure 5.3: Top: White light image with overlaid Raman spectroscopy results for a stack of
Pt/γ-Al2O3 samples which were calcined at different temperatures (150 °C depicted in yellow and 500 °C
depicted in red) and a pure γ-Al2O3 sample (grey). Bottom: Selected Raman spectra of the catalysts cal-
cined at 150 °C (black) and 500 °C (red). Reprinted from [197] with the permission of AIP Publishing.

As a proof of principle for Raman spectroscopy and microscopy within the Si-glass microre-

actors, a selected area of two 20 wt.% Pt/γ-Al2O3 samples, calcined at different temperatures,

and a pure γ-Al2O3 sample was imaged by recording Raman spectra at different points within

the area. The white light image was overlaid with the spectroscopic information in order to

track the differences resolved by spectroscopy inside the image. Fig. 5.3 presents the white

light image with the overlaid Raman spectroscopy results on top, as well as on the bottom se-

lected Raman signals for the catalyst samples treated at 150 °C and 500 °C, respectively. The
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results clearly show the differences between the pure support (grey) and the samples calcined

at different temperatures (yellow: 150 °C, red: 500 °C), which are also obvious in the bottom

part showing single Raman spectra. Bands at 319 cm-1 and 344 cm-1 were recorded for the cat-

alyst calcined at 150 °C, whereas the one calcined at 500 °C shows a distinct band at 338 cm-1

and a very broad band at 600 cm-1. The clear bands at 319 cm-1 and 344 cm-1 can be related

to the catalyst precursor material H2PtCl6 [211], which can be attributed to an incomplete de-

composition of the precursor at this low temperature. However, after calcination at 500 °C, the

broad band at 600 cm-1 can be assigned to PtO2 [212], which was formed after decomposition

of the precursor. The band 338 cm-1 was observed for highly dispersed Pt/γ-Al2O3 catalysts

previously [213, 214], which is expected for the produced Pt/γ-Al2O3 catalyst. Therefore, the

performed Raman imaging clearly showed the applicability of the Si-glass microreactor for

Raman spectroscopy and microscopy.

5.3 XAS Measurements

For comparison of the quality of the XAS data recorded in the new microreactor in compar-

ison to conventional in situ cells such as quartz-based capillary reactors, measurements have

been performed in both reactors. Ex situ measurements were acquired on a 2.5 wt.% Rh-

2.5 wt.% Pd/γ-Al2O3 sample at the SuperXAS beamline at SLS [154] at the Pd and Rh K edges

in transmission geometry for the sample inside the quartz capillary reactor and in fluorescence

mode for the sample inside the silicon-based microreactor. Fig. 5.4 shows a comparison of the

XANES spectra within the microreactor (black) and the capillary (red) of the Pd and the EXAFS

spectrum of the Rh K edge, additionally for the Rh K edge the k2-weighted χ(k) functions are

depicted.

The data obtained for both edges within both reactor types show a good agreement without

significant differences, which prompts to the conclusion that the microreactor can be used for

XAS measurements while introducing hardly any artifacts in the spectra.
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5.3 XAS Measurements

Figure 5.4: XAS spectra at the Rh and Pd K edges of a 2.5 wt.% Rh-2.5 wt.% Pd/γ-Al2O3 catalyst
within the microreactor (black) and a capillary reactor (red). For the Pd K edge, XANES spectra are
given, whereas for the Rh K edge, complete EXAFS spectra and the k2-weighted χ(k) functions are
shown. Reprinted from [197] with the permission of AIP Publishing.
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6 Application of the Gas Phase
Microreactor during the Catalytic
Partial Oxidation of Methane

The CPO of methane exhibits pronounced gradients on the micrometer scale [37, 38, 72, 81,

83, 84, 215, 216] as already introduced in section 1.1.1. Therefore, it was chosen as a test

reaction to evaluate the applicability of the gas phase microreactor for complementary spatially

resolved studies. The application of in situ XAS, XRD, IR thermography and on-line MS are

shown in this chapter. Gradients in oxidation state and temperature are correlated with catalytic

activity and similar results as obtained in conventional capillary reactors were gained, showing

the suitability of the gas phase microreactor for in situ studies.

6.1 Introduction to the Catalytic Partial Oxidation of

Methane

The CPO of methane using noble metal catalysts to produce synthesis gas recently attracted a lot

of attention [37, 83, 84, 217]. Methane is an important chemical feedstock and can be converted

by CPO to synthesis gas (H2 and CO), which can subsequently be transformed into alcohols or

liquid hydrocarbons resulting in gas-to-liquid-processes. Furthermore, it is widely applied for

solid oxide fuel cells. Improving on such processes usually demands a better understanding on

the structure of the active sites of the catalyst, as already highlighted in section 1. For the CPO

of methane during the ignition and extinction of the reaction, pronounced gradients in oxidation

state and temperature have been found along the catalyst bed for different noble metals [37, 38,

72, 81, 83, 84, 215, 216]. Those can be related to a total combustion of methane in the first

part of the catalyst bed and a subsequent reforming process [83, 217]. However, also a direct

partial oxidation was suggested for the formation of synthesis gas [38]. The strongly exothermic

total combustion with ∆rH= -803 kJ mol-1 [72], and the change to the less exothermic partial

oxidation with ∆rH= -36 kJ mol-1 [72] result in non-isothermal conditions which might lead to

special safety precautions in bigger reactors. Therefore the use of microreactors exhibiting a

pronounced heat transfer is favorable for this reaction. In the following in situ studies, a 4 wt.%

Pt/γ-Al2O3 catalyst was studied during CPO of methane to validate the use of the microreactor

for in situ studies.
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6.2 XAS and XRD during the CPO of Methane

The applicability of the microreactor for XAS spectra under ex situ conditions was already

shwon in section 5.3. In the following, XAS spectra were recorded during reaction conditions

of the CPO of methane. Representative XAS spectra of the catalyst during the first two cycles

of the CPO are presented in Fig. 6.1.

Figure 6.1: XAS spectra of the Pt L3 edge during the first two cycles of the CPO of methane over a
4 wt.% Pt/γ-Al2O3 catalyst for the measurements at the end of the catalytic bed. The spectrum during
heating up is represented in black, whereas the maximum temperature is shown in red and the cooling
process is given in blue, a) shows the XANES spectra, b) the corresponding k2-weighted χ(k) functions
and c) the Fourier transforms of a PtO2 reference and the initial catalyst at RT as well as at T=450 °C.

The XAS spectra during heating up (black), at maximum temperature (T=450 °C, red) and

during cooling down (blue) are presented in Fig. 6.1a, whereas the corresponding k2-weighted

χ(k) functions are shown in Fig. 6.1b. On the right in 6.1c, the Fourier transforms (FT) of a

PtO2, the initial catalyst at RT and the catalyst at 450 °C are shown. As evident from the FT,

the initial catalyst at RT exhibits a strong peak around 1.7 Å (without phase correction), which

is also present in the PtO2 reference and can be attributed to Pt–O. At higher R-values, no other

backscattering peaks could be observed, which can be ascribed to small PtO2 nanoparticles with

a high dispersion. This goes along with the absence of XRD signals (see below, Fig. 6.2) and the

small crystallite sizes gained from TEM analysis [47]. Under reaction conditions by applying a

higher temperature, a change in the whiteline intensity can be observed (black spectra vs. red

spectra in Fig. 6.2) with changes in the EXAFS functions (Fig.6.1b) as well. During cooling

down (blue spectra), the whiteline intensity increases again. This observation can be explained

by a change in oxidation state, reducing the oxide with increasing temperature and reoxidizing
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6.2 XAS and XRD during the CPO of Methane

metallic Pt with decreasing temperature. The reduction at high temperature can also be seen in

the FT (Fig. 6.1c), revealing the disappearance of the signal at 1.7 Å with evolution of a signal at

2.2 Å (not corrected for phase-shift) attributed to the formation of Pt particles and a Pt neighbor,

visible as first backscatterer in the Fourier transformed EXAFS spectrum.

Figure 6.2: XRD patterns of the 4 wt.% Pt/γ-Al2O3 catalyst in the initial state at RT (black) and at max-
imum temperature during CPO (450 °C, red). Hardly any changes could be detected. Additionally, the
XRD pattern of the catalyst support γ-Al2O3 (grey) is depicted together with the theoretically expected
reflections for metallic Pt (green) and PtO2.

Fig. 6.2 shows complementary XRD patterns of the catalyst in the initial state (black) and at the

maximum temperature (red), similarly to these depicted in section 5.1. Additionally to XRD

patterns of the catalyst at different temperatures, the γ-Al2O3 support inside the microreactor is

depicted (grey) as well as the theoretically expected patterns for metallic Pt (green) [210] and

PtO2 (orange) [218]. For all conditions, no other reflections than the pure γ-Al2O3 support

could be observed. If the particles had sintered, a Pt reflection at 38 ° (2θ) should have been

observed (compare Fig. 5.2) showing that no significant sintering of the nanoparticles occurred.

To correlate the catalytic activity and changes in oxidation state, the MS signals for the for-

mation of H2 and the consumption of O2 are depicted together with the fraction of Pt species

in Fig. 6.3. The fractions of Pt species were obtained by LCF of the XANES spectra for the

beginning (closer to the gas inlet) and the end of the catalyst bed (closer to the gas outlet), re-

spectively. Simultaneously to the detection of H2, which indicates the ignition of the CPO, a

reduction of the originally partly metallic and oxidic Pt catalyst species started at the end of the

catalyst bed. At the beginning of the catalyst bed, such a reduction could only be observed at

higher temperature. Then, the whole catalyst bed was completely reduced. When the temper-

ature was decreased, the start of the catalyst bed was reoxidized at higher temperature than its

end. These observations reveal that shortly after ignition and shortly before extinction, gradients

over the catalytic bed can be observed, if the reactor is probed in a spatially resolved way.
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Figure 6.3: Top: Fraction of Pt species at the end and the beginning of the catalyst bed showing the
reduced fraction in red, whereas the oxidic fraction is depicted in black. The fractions are obtained by
LCF of the XANES spectra which were collected in situ during the CPO of a 4 wt.% Pt/γ-Al2O3 catalyst.
Bottom: MS signals for H2 and O2, revealing the catalytic activity of the probed catalyst. The formation
of H2 can be correlated to the evolution of metallic Pt species at the end of the catalyst bed. Reprinted
from [197] with the permission of AIP Publishing.
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6.3 IR Thermography during the CPO of Methane

Recent studies showed that the gradient in oxidation state goes along with hotspot formation

in the catalyst bed [72, 83]. Studying temperature gradients caused by a reaction requires the

temperature obtained during heating to remain stable. This was proven in section 4.1.2, which

allows the gas phase microreactor to be used to study temperature gradients within the CPO of

methane.

To study the appearance of the hotspot within the microreactor, IR thermography was performed

to evaluate the temperature distribution along the catalyst bed. Representative IR thermograms

for the extinction and line profiles of the temperature along the catalytic bed for the ignition

are shown in Fig. 6.4. During ignition, first a hot spot was observed at the end of the catalytic

bed, which shifted to the beginning of the catalytic bed with increasing temperature. During

extinction, the process occurred vice versa showing a shift from the beginning of the catalytic

bed to the end of the catalytic bed. The hotspot detected within the microreactor, showed

only a temperature difference of 2-3 °C, which is much lower compared to the one detected in

conventional capillary reactors [72], although the general behavior of the hotspot movement was

comparable [216]. Most reasonably, this difference in temperature can be explained by a higher

thermal conductivity of the Si (150 W m K-1 [219]) compared to quartz glass (1.4 W m K-1

[220]), in addition to the high surface to volume ratio provided by the micoreactor leading to a

faster heat exchange.

Figure 6.4: Left: Temperature profiles along the catalytic bed during the ignition of the CPO of a 4 wt.%
Pt/γ-Al2O3 catalyst reavealing a hot spot moving from the end of the catalyst bed to the beginning with
increasing temperature. Right: IR thermograms during the extinction of the reaction revealing a hot spot
moving from the beginning of the catalyst bed to the end of the catalyst bed with decreasing temperature.
Reprinted from [197] with the permission of AIP Publishing.
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By correlation of the IR thermography data with MS and XAS data, it can be concluded that

the hotspot follows the reduction front, which is also shifted from the end of the catalyst bed

to the beginning when the temperature is increased after ignition. Therefore, it is assumed that

the high temperature caused by the strongly exothermic total combustion of methane leads to a

reduction of the catalyst. With increasing temperature, the hotspot shifts to the beginning of the

catalyst and induces a reduction as well, which explains the movement of the hotspot and the

reduction front during ignition and extinction of the CPO.

These results obtained during the CPO of methane show that the gas phase microreactor can be

used to study reactions under in situ conditions. It allows applying a variety of characterization

techniques like XAS, XRD, on-line MS and IR thermography and leads to similar results as

obtained in conventional in situ cells, like quartz-based capillary reactors.
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– Proof of Principle and Outlook

One of the key advantages of the presented gas phase microreactor are its fast heating and

cooling capabilities. These enable studying catalysts under transient conditions, i. e. during the

conduction of realistic driving cycles in exhaust gas aftertreatment. This chapter presents first

operando QEXAFS measurements during the conduction of the New European Driving Cycle

(NEDC). The already published measurements (c. f. ref. [198]) were performed on the selective

catalytic reduction of NOx over a Cu-ZSM-5 zeolite and serve as a proof of principle study for

the application of the microreactor for studying transient reaction conditions.

7.1 Introduction to the Selective Catalytic Reduction of NOx

and Driving Cycles for Exhaust Gas Aftertreatment

The fast heat transfer and local heating provided by microreactors was already mentioned in

section 3. It is especially promising for studying reactions in transient regimes, e. g. when

fast heating or cooling is required. Therefore, it offers knowledge on reaction mechanisms

during modulation excitation spectroscopy experiments [180]. Furthermore, it can be used to

study realistic applications, including simulation of realistic driving cycles for exhaust gas af-

tertreatment systems [221]. Besides environmental motivations to reduce the amount of harmful

exhaust emissions, the strict European legislation requires a continuous improvement of auto-

motive catalysts. Among others, the emission of nitrogen oxides (NOx) has to be reduced

which is achieved by selective catalytic reduction (SCR) catalysts to convert NOx to N2. For

this, ammonia (NH3) is usually added to the reaction mixture and copper- or iron-based zeolite

catalyst are applied. Although this approach is widely used, the exact mechanism is still under

discussion [222, 223]. Laboratory experiments are often simplified, which is why realistic test

conditions, so called “driving cycles” were developed for testing exhaust gas catalysts [221].

The New European Driving Cycle (NEDC) mimics a vehicle during driving by defining the

vehicle speed. By definition of the speed, the catalyst application parameters, such as temper-

ature, gas concentration or GHSV are characterized. However realistic driving behavior like

fast braking or acceleration, implies fast temperature changes, which can hardly be simulated

by conventional catalyst testing systems. By using specially developed bench test systems, the

driving cycles can be simulated, but currently, no test benches compatible with operando spec-

troscopy were reported so far. Here, the benefit of fast heat transfer provided by microreactors

can be used and the first application of the above described microreactors for application during
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the simulation of a NEDC is shown. Operando studies of a working catalyst were gained by

QEXAFS measurements, while the catalytic performance was determined. Measurements were

carried out by Dr. Dmitry Doronkin, Dr. Federico Benzi and Dr. Thomas Sheppard [198].

7.2 Conduction of the New European Driving Cycle (NEDC)

during operando NH3-SCR

In Fig. 7.1, Cu XANES spectra are presented during different conditions. On the left, a model

gas feed under steady conditions is used. Spectra were acquired under NO/He and NH3/He,

respectively to provide reference data for Cu+ (in NH3/He) and Cu2+ (in NO/He). On the

right, spectra acquired during SCR feed (c. f. section 4.2.2) are presented for temperatures of

50 °C and 350 °C respectively. Those spectra differ significantly from those shown on the left.

By monitoring the mass signals for the exhaust in parallel to the QEXAFS acquisition, it was

shown that the catalyst was inactive at 50 °C, whereas it was active at 350 °C. By the different

spectra recorded under model conditions and during realistic SCR feed, it becomes clear that

the spectra during SCR feed cannot easily be explained by a pure change in oxidation state. In

contrast, by comparison with XAS spectra recorded in a conventional capillary reactor [85], it

can be assumed that the changes recorded during SCR feed, can be explained by a change in

Cu coordination geometry instead. At low temperature, the Cu sites showed five ligands (black

spectrum), whereas the active catalyst at 350 °C (blue spectrum) exhibits a coordination sphere

with three ligands.

The pre-edge peak for NH3–Cu+ recorded under reducing atmosphere was only observed under

SCR conditions during the first heating cycle and vanished for the other heating/cooling pro-

cesses during simulation of the NEDC. This might be explained by mass transfer limitations due

to the use of a large sieve fraction and possible channeling effects [181]. Additionally, water

could be adsorbed on the zeolite and therefore compete with NH3 [224]. Moreover the water

could also be retained in the microreactor and compact the catalyst bed, since the channel outlet

was not heated and reached only a temperature of 40 °C.
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Figure 7.1: Left: XANES spectra of the Cu K edge of the catalyst under model gas feed (1000 ppm
NH3/He, blue; 1000 ppm NO/He, black) at 350 °C to determine the oxidation state. Right: XANES
spectra during SCR feed at 50 °C (black) and 350 °C (blue).

Figure 7.2: Top: Temperature profiles for simulation of the NEDC, black: simulated temperature profile
[204], red: reference NEDC cycle. Middle: Presentation of the catalytic performance of the studied
catalyst showing the MS signal for N2, bottom: results gained by LCF showing the change from five
to three fold Cu coordination spheres as a response of the temperature changes by simulation of the
NEDC. The results clearly show the correlation of the catalytic performance and the coordination sphere
variations as a result on the modulated temperature.
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To show the applicability of the microreactor under transient regimes during the NEDC, LCF

analysis was performed to unravel the changes in coordination sphere. The spectra shown in

Fig. 7.1 under SCR feed conditions were used as references. Fig. 7.2 shows the results ob-

tained by LCF (bottom), in parallel to the temperature profile applied for NEDC simulation

(top) and the catalytic performance gained by MS analysis (middle). When the catalyst was

heated, the N2 signal increased, while the number of ligaments in the Cu coordination sphere

decreased. The opposite behavior was detected during cooling and a comparison to other Cu-

zeolite samples showed reproducible behavior. This distinct correlation of the MS and XAS

signal to temperature changes applied by the simulated NEDC heating cycles clearly underlines

the applicability of the microreactor during transient studies.

In future, the measurements can be further improved by implementation of an additional heat-

ing (T>100 °C) of the support of the microreactor and the outgoing gas lines to degrade water

adsorption. Additionally, to optimize the catalyst packing, smaller sieve fractions of the cata-

lysts can be used. Nevertheless, the obtained results present the first operando QEXAFS study

during simulation of a NEDC and underline the applicability of the reactor for such studies. In

fact, in a more recent study, also a Pt/γ-Al2O3 diesel oxidation catalyst was successfully studied

for CO oxidation during the NEDC. The results show a strong variation of the oxidation state

as a function of the conditions.
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8 Conclusions and Outlook –
Gas Phase Microreactor

The design and application of a silicon-based gas phase microreactor applied in a modular setup

were presented. The modular setup constructed by GeSim allows changing the reactor. The

whole setup is now available for users at the P06 beamline of PETRA III. With respect to the

design, the benefits of the second generation, like higher temperature stability and homogene-

ity, were highlighted. The possibility for performing correlative characterization techniques

was demonstrated using spectroscopic and scattering techniques as well as on-line mass spec-

trometry for analyzing the gas composition.

In particular, the application of XAS and XRD revealed the artifact-free application of the re-

actor for both techniques. Furthermore, due to the modular setup, different microreactors based

on pure Si and a Si-glass composition can be used, enabling additionally the use of Raman spec-

troscopy for the Si-glass reactor. Additionally to the spectroscopic techniques, the application

of IR thermography was shown in parallel to on-line mass spectrometry. The reactor was used

to study structures of catalysts during two different reactions. As a first example, the ignition

and extinction of the CPO of methane was studied over a 4 wt.% Pt/γ-Al2O3 catalyst. Very

similar behavior to previous measurements in conventional reactors, was observed, i. e. hotspot

formation, gradients in oxidation state during CPO and changes of oxidation state during igni-

tion and extinction. On the other hand, the application of the reactor under transient conditions

was highlighted by showing first operando QEXAFS studies for the SCR of NOx during mea-

surements under the transient temperature regime of the New European Driving Cycle. This

requires high cooling/heating rates, which can only be addressed with such microreactors and

strong structural changes were observed by XAS.

Due to the unique heating and cooling capacities of this microreactor, further studies should be

performed during transient reaction conditions in future. These can either be studies to unravel

reaction mechanisms or application during modulation excitation spectroscopy. In addition, the

capabilities of the reactor can be used for further studying exhaust gas catalysts during driving

cycles to reduce air pollutants such as CO, NOx or hydrocarbons. Therefore, further studies

should include investigation of different SCR-catalysts or Diesel Oxidation Catalysts (DOC)

during NEDC cycles. By the application of the microreactor in these studies, in situ charac-

terization of the catalysts can be performed during realistic application, which has not been

possible so far.
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Furthermore, due to the modular setup, new microreactors can be developed, e. g. allowing for

further spectroscopic studies like grazing incidence X-ray scattering [185]. Thereby it is impor-

tant to note that only the chip has to be changed, while the support used for electrical and gas

connection can be kept.

The present reactor can be further improved by elongating the X-ray window so that it covers the

whole catalyst bed. Additionally, the temperature sensor should be shifted in position such that

it is no longer placed on top of the catalyst bed, but next to it. This will enable precise measure-

ments of the very end of the catalyst bed. Moreover, new materials for the microreactor could

be investigated, such as aluminium oxynitride or graphite modifications. Last but not least, the

small channel dimensions of the microreactor allow for the study of single grain effects, if a

dedicated sieve fraction of catalyst grains is used. In particular, the microreactor is attractive

for X-ray microscopy during the CPO of methane, either in full-field or scanning geometry.

For example, it should be studied how the gradient moves with respect to the intergranular or

intragranular structure of the catalyst, which will further help to understand the mechanism of

the CPO including the role of heat and mass transport which are e. g. important for multi-scale

modeling of the CPO.
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Complementary X-ray Microscopy and
Electron Microscopy
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9 Introduction – In Situ X-ray
Ptychography

Hard X-ray ptychography is regarded as a powerful microscopic tool for in situ catalyst inves-

tigations, as it allows high-resolution imaging of solids in gas or liquid phase (c. f. section

1.1.2). So far, spatial resolutions below 10 nm [130, 131] have been reported and the resolution

will even be improved by high brilliance synchtrotron radiation sources like PETRA IV [225],

MAX IV [226], SLS 2 [227] or Sirius [228]. By the use of hard X-rays the high penetration

depth allows measurements inside special reactors as the reactor material and the sample can

be penetrated by the radiation. Furthermore, the high penetration depth also facilitates non-

destructive measurements. Hence, sample preparation is facilitated compared to EM. Com-

plementary to EM, measurements can be conducted under realistic conditions requiring a gas

flow and ambient or elevated pressure, which can hardly be reached in EM. Therefore, hard

X-ray ptychography has the potential to bridge the gap between the atomic and the macro scale,

which are commonly investigated under model conditions by ETEM or by conventional scan-

ning X-ray microscopy techniques, respectively.

Until recently, technological challenges such as realization of small, light-weight in situ cells

and the accessibility of this novel technique, have hindered the application of ptychography dur-

ing in situ studies. Recently, in situ measurements have been carried out, e. g. studies on strain

inside batteries operando [135], on crystal growth [136], on the densification during compres-

sion [134], or on lithium zirconate particles under gas atmosphere and high temperatures [132].

To use in situ ptychography, dedicated in situ cells have to be developed, which have to be small

and light in weight, transparent for the radiation used and suitable for the desired application,

e. g. heating [132, 229] or compression [134]. For heterogeneous gas phase catalysis, this im-

plies compatibility with different gas atmospheres, ambient or elevated pressure (leak tight) and

elevated temperature conditions (heating).

In this part of the thesis the design of two in situ cells which can be used for ptychography and

complementary EM, and the application of one of the cells is presented. In the first part, the

geometry of a cell designed in collaboration with Ass. Prof. Christian D. Damsgaard and co-

workers (DTU) and built at DTU-CEN, is discussed. Subsequently, the proof of principle and

application for catalytic materials will be presented. Results have been or will be published in

parallel. As an outlook, a similar cell designed at KIT is presented, which offers different bene-

fits, like smaller gas volume and a more compact sample environment for future experiments.
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10 Design of an In Situ Cell for
Ptychography and Proof of Principle
Measurements

This chapter presents the design of an in situ cell which allows studying catalytic materials by

complementary in situ hard X-ray ptychography and electron microscopy. It was developed in

a joint collaboration between KIT and DTU and is based on commercial TEM heating chips.

Additionally to the design, the first proof of principle measurements, which show the applica-

bility of the cell for in situ hard X-ray ptychography and complementary electron microscopy,

are presented on model samples.

10.1 Design of an In Situ Cell for Ptychography and

Complementary Electron Microscopy

The developed cell is designed to enable measurements under a controlled gas atmosphere and

at elevated temperature. To allow not only in situ ptychography, but also EM, the cell is based

on a TEM heating chip (Protochips E-ChipTM, Morrisville, USA), which is usually used for in

situ heating inside the TEM [230, 231]. Joule heating by a current flow through a conductive,

ceramic membrane (thickness approximately 120 nm Si and C) is used to reach elevated tem-

peratures up to 1200 °C [232]. Electron transparent holes with an approximately 50 nm thick

silicon nitride (Si3N4) film guarantee electron transparent areas, which are required for the ap-

plication in TEM. The sample can be placed on these holes, which enables complementary TEM

imaging, but for in situ ptychography or complementary SEM imaging, the sample can also be

placed on the thicker parts (120 nm thick) of the ceramic membrane. An example of a chip is

presented in Fig. 10.1. Fig. 10.1a shows a photograph with increasingly magnified positions of

the sample area (from left to right: optical micrograph and SEM image), while Fig. 10.1b shows

an example of SEM images of 50 nm Au nanoparticles deposited on one of the electron trans-

parent holes (bright “ring” in the overview image of Fig. 10.1b) by drop-casting, i. e. placing a

droplet of nanoparticle dispersion on the chip and evaporating the liquid.
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Figure 10.1: a): From left to right: Photograph of a Protochips E-ChipTM showing the electrical contacts
and the sample area in the center, optical micrograph and SEM image of the sample area. In the SEM
image, the electron transparent holes, which are just covered by the approximately 50 nm thick Si3N4
film, appear black. b) SEM image of one of the electron transparent holes and an agglomeration of 50 nm
Au nanoparticles deposited on the membrane by drop-casting of an aqueous dispersion.

The cell itself is constituted, as schematically presented in Fig. 10.2, by a steel body with X-ray

transparent windows and a gas in- and outlet, respectively. The heating chip is placed inside

the cell in between the windows. Mass flow controllers (Bronkhorst), controlled by a script

based on NI LabVIEW 2013, are used to control the gas flow into the cell. A Keithley 6220

DC power supply is connected to the electrical contacts of the Protochips E-ChipTM to facilitate

heating. Although the temperature is related to the heating power, temperature determination

is best to be performed by external IR thermography (c. f. section 2.3.2, section 11.3.2.1 and

section 11.3.1.4), as the heating power to temperature relation differs slightly from chip to chip

(approximately 50 °C). The Si3N4 membrane of the chip forms one window of the cell, whereas

the other window to close the cell, is based on a 25 µm thick Kapton® foil. O-rings are used

for leak tight connection between the cell body and the chip, which is placed on the bottom

part of the cell with the sample facing inside. The gas connection is implemented by a central

part, placed on top of the chip with an O-ring in between. The Kapton® foil is then added

with another steel part to close the cell. Finally, a piece with spring contact probes is used to

connect the electrodes of the chip with the power supply. Photographs of the cell are depicted

in Fig. 10.3.

64



10.2 Proof of Principle Measurements – Gold Colloids

Figure 10.2: Schematic representation of the cell with a presentation of the side (left) and the top (right)
view. The sample is placed on the TEM chip, which is used for heating. Additionally, it can be used
outside the cell for complementary TEM and SEM measurements. When it is placed inside the cell, the
sample can be kept under a desired gas flow.

Figure 10.3: Photography of the in situ cell. Complementary to the schematic representation in Fig. 10.2,
the bottom view is shown on the left, whereas the comparable side view is shown on the right.

10.2 Proof of Principle Measurements – Gold Colloids

To show the applicability of the newly developed cell, proof of principle measurements us-

ing model Au nanoparticles with a diameter of 50 nm, were carried out. First, ex situ SEM

measurements before and after heating the colloids on the chip in the cell were performed to

show the heating feasibility of the cell. Subsequently, thermal annealing of the nanoparticles

was studied in situ with ptychography to demonstrate the applicability of the cell for in situ

ptychography studies [229].
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10.2.1 Experimental

10.2.1.1 Sample Preparation and Electron Microscopy

An aqueous dispersion of citrate stabilized colloidal Au nanoparticles (Sigma Aldrich) with a

diameter of 50 nm was deposited on a Protochips E-ChipTM by drop-casting of 30 µl, i. e. plac-

ing a droplet of nanoparticle dispersion on the chip, followed by drying in air for 30 min. For ex

situ SEM analysis, a FEI Quanta 200 ESEM FEG located at DTU-CEN and operated at 20 keV

with SE contrast, was used. First heating tests were conducted by heating the Au colloids on

the Protochips E-ChipTM for 1 h at 275 °C in air by using a hot plate. Afterwards, the heating

capability of the cell was tested by heating a chip with nanoparticles at approximately 500 °C

inside the in situ ptychography cell in a flow of synthetic air.

10.2.1.2 In Situ Ptychography

In situ ptychography was carried out at the nanofocus endstation of the beamline ID 13 at the

European Synchrotron Radiation Facility (ESRF). During the experiment, the ring was operated

in 7/8+1 mode (868 bunches, scheduled ring current 200 mA). The sample was mounted inside

the cell, which was fixed on a kinematic mount. It was scanned through the focused beam, so

that the beam first hit the sample on the “bottom” of the cell penetrating the Si3N4 window first.

For beam focusing, nanofocusing lenses were used to provide an illumination with a FWHM

spot size around 150 nm and a focus depth of roughly 100 µm. Far-field diffraction patterns were

recorded at an energy of 14.9 keV monochromatized by a Si(111) channel cut monochromator.

A Maxipix detector (pixel size: 55 µm) with a sample – detector distance of 2 m (q-range up

to 0.27 nm-1) was used for detection of the diffraction patterns. A step width of 50 nm was

applied to scan an area of 2×2 µm and the signal at each single diffraction pattern was recorded

over 0.03 s. By this, a signal of approximately 104 photons was gained for the most intense

areas and one complete ptychogram was recorded within 10 – 15 min. For in situ annealing

treatment, the sample was treated in synthetic air (20 % O2/N2) with a flow of 1 ml/min. For

image reconstruction, an algorithm based on the (e)PIE algorithm presented by Maiden and

Rodenburg [126] was used, which was carried out by Maria Scholz (DESY).
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10.2.2 Results and Discussion

Feasibility of Heating Independent of the in situ ptychography, a series of ex situ studies was

performed to study the behavior of the used model particles under thermal annealing. SEM

images of the sample before and after heating are presented in Fig. 10.4. While Fig. 10.4a

depicts the heating experiment by the hot plate on big agglomerations of colloid particles on the

thick part (approximately 120 nm) of the membrane, Fig. 10.4b shows different agglomerations

of the colloid particles located inside the electron transparent “holes” (approximately 50 nm)

after heating with the in situ cell. Although only small agglomerations could be located, the

size increase of the nanoparticles after the heating experiment clearly showed that heating was

possible within the cell, which is crucial for the application for in situ ptychography.

Figure 10.4: Model ex situ SEM images (SE contrast) performed before and after annealing of 50 nm Au
nanoparticles. a) SEM images before (left) and after (right) thermal annealing using a hot plate at 275 °C
for 1 h. SEM images were recorded on the approximately 120 nm thick membrane showing a big ag-
glomeration of particles for both measurements. The size of the nanoparticles increased after annealing.
b) SEM images before (left) and after (right) thermal annealing inside the in situ ptychography cell at
approximately 500 °C for 1 h. SEM images were recorded on the thin approximately 50 nm thick mem-
brane showing only single nanoparticles on the position probed before the annealing, whereas another
position was probed after annealing showing the size increase of the nanoparticles.
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Feasibility of In Situ Ptychography To demonstrate the feasibility of in situ ptychography an

agglomeration of the model samples was studied during in situ ptychography. By ex situ SEM

before the treatment, an agglomeration of Au nanoparticles was identified and the same area

was studied during in situ ptychography. Fig. 10.5a presents the SEM image before the an-

nealing treatment, while Fig. 10.5b shows a phase contrast image derived by ptychographic

reconstruction of the same structure without a gas flow, while Fig. 10.5c was recorded during a

flow of 1 ml/min of synthetic air. The general shape of the structure is clearly visible. The reso-

lution of the recording can be estimated to be around 100 nm, as the general shape is visible, but

the single Au nanoparticles could not be resolved. Additionally, heating tests were performed

for different annealing temperatures and the heating power is given together with an estimated

temperature. An IR camera for temperature determination was not available during this exper-

iment, so that the temperatures could only be correlated to IR thermography data obtained for

different chips after the experiment. After the first annealing treatment at 180 mW (approxi-

mately 450 °C) for 45 min, a sintering of the structure could be observed, which is depicted in

Fig. 10.5d. A ptychogram recorded after further heating for 25 min at 260 mW (approx. 600 °C)

is depicted in Fig. 10.5e, revealing an even stronger sintering which resulted in a degradation of

the original structure.

10.2.3 Conclusions

The presented study on the sintering of Au nanoparticles proves the applicability of the devel-

oped cell for hard X-ray in situ ptychography studies. The similarity of the SEM and the phase

contrast images obtained by ptychography show that it is possible to track the same area by

both techniques which is required for correlative imaging approaches. Furthermore, the proof

of principle in situ ptychography measurements show that ptychography can be used to study

model samples with a resolution around 100 nm, mainly limited by not optimized ptychographic

data acquisition parameters. Improvements are required with respect to temperature measure-

ment and the resolution obtained by hard X-ray ptychography. These aspects will be discussed

together with the application of hard X-ray in situ ptychography in the next chapters.
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Figure 10.5: Proof of principle measurements on 50 nm colloidal Au particles deposited on a Si3N4
membrane. a) SEM image in SE contrast before the in situ ptychography measurement, b) phase contrast
image of the same area in the ptychographic measurement without gas flow, c) phase contrast image of
the same area in the ptychographic measurement with a flow of 1 ml/min of synthetic air, d) phase
contrast image at RT after the first annealing for 45 min at 180 mW (approx. 450 °C), e) phase contrast
image at RT after the second annealing for 25 min at 260 mW (approx. 600 °C). In d) a coarsening of the
structure becomes visible, which is followed by degradation due to the high temperature in e). Reprinted
from [229], reproduced with permission.
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A novel complementary approach of EM and in situ hard X-ray ptychography, based on the cell

described in chapter 10.1, was used to study the thermally induced coarsening of np-Au under

different atmospheres, pressures and after ceria deposition. In situ ptychography experiments

were carried out at two different hard X-ray microscopes. The first study revealed a spatial res-

olution about 40 nm while the second experiment offered an improved resolution about 20 nm.

In addition, the temperature was measured directly in the second case. The annealing of pure

nanoporous gold and ceria stabilized nanoporous gold in different atmospheres showed that the

atmosphere has a tremendous influence on the coarsening. The nanostructure of the samples was

stable at high temperatures (approximately 800 °C) in vacuum, whereas pronounced changes

and coarsening were observed at lower temperatures (approximately 300 °C) in O2/N2 and oxy-

gen atmosphere. A layer of ceria on the nanoporous gold led to an improvement of the stability,

but did not alleviate the influence of the gas atmosphere. Different behaviors were observed,

such as coarsening and even material loss. It is suggested that additional mechanisms beyond

surface diffusion need to be considered and studies aimed at more realistic conditions will be

critical to understand the sintering behavior of catalysts under realistic conditions.

11.1 Introduction – Nanoporous Gold

Starting from the observation of catalytic activity of gold nanoparticles in the 1980’s, gold was

regarded as a promising material for heterogeneous catalysis. The most popular reaction is the

CO oxidation using gold nanoparticles [16]. While originally mainly supported catalyst were

used, unsupported skeletal gold has received strong interest in recent years [233]. A prominent

example is nanoporous gold (np-Au), which exhibits a 3D sponge-like structure [234]. It can

be obtained by dealloying of AgAu in nitric acid and used for catalytic applications [235–238],

sensing [239, 240] or as a biomaterial interface [241]. Remaining small silver contents from the

dealloying process [242], as well as the existence of kinks and steps on the ligaments, which

are in the size range of tens of nanometers, support the catalytic activity [235]. The size of

the ligaments influences the density of surface defects and therefore the reactivity and plays

an important role for catalytic application [243]. The size can be controlled directly during

dealloying [244], or by post-treatment like annealing [245–247]. Thermal annealing usually

leads to a coarsening of the structures with an increased ligament and pore size [245, 248–

250] and various studies have been performed to determine the effect of the heating power,

e. g. during laser heating [246, 248], or the gas atmosphere [245, 251–253].
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Mechanisms for Annealing Up to now, the coarsening has mostly been studied by electron

microscopy of samples studied ex situ after treatment in various atmospheres [245, 246, 253–

255]. According to these studies, the observed coarsening is mainly explained by surface diffu-

sion [245, 249, 253, 256] and recrystallization in the solid state was suggested to dominate over

melting processes [257]. Complementary to surface diffusion based effects, especially for early

states of coarsening and the corrosion process, Kolluri and Demkowicz [258] discussed volume

diffusion by collapse of neighboring ligaments. For nanoporous palladium, Klein et al. [259] de-

scribed surface diffusion driven mechanisms at lower temperatures, but bulk diffusion at higher

temperatures. Stabilization of the structures to temperatures of several hundred degrees can be

reached by deposition of solid metal oxides, like TiO2 or CeO2, allowing the catalyst to be used

at even higher temperature processes like the water gas shift reaction [260]. However, a clear

understanding of the mechanism is missing due to the lack of in situ studies.

Annealing of Np-Au in Different Atmospheres Although gold is often considered as an in-

ert material, a stabilization could also be tracked back to surface adsorbates [251]. In literature,

there are different, sometimes contradictory studies about the influence of certain gas atmo-

spheres on the annealing behavior. Recently, Kuwano-Nakatami et al. [252] found a different

coarsening behavior of np-Au annealed in N2 or O2, than in Ar or vacuum. From varying ac-

tivation energies dependent on the atmospheres, it was concluded that different mechanisms

dominate. Lattice diffusion was suggested in vacuum or Ar atmosphere, while surface diffusion

was suggested for O2 or N2 atmospheres. Also Sun et al. [253] did not observe pronounced

coarsening behavior in vacuum, although the study was performed ex situ up to 600 °C in con-

trast to the one from Kuwano-Nakatami et al. [252], who studied the coarsening of np-Au in

vacuum up to 400 °C by ETEM. In contrast to Kuwano-Nakatami et al. [252], Chen et al. [245]

found a slight coarsening in Ar atmosphere at 400 °C and a pronounced coarsening at 600 °C.

Additionally, the latter also reported a stabilization of the np-Au up to 600 °C, when using CO

atmosphere and Biener et al. [251] reported on a stabilization by O3 treatment, compared to the

annealing in He atmosphere.

The influence of adsorbates, which interact with the gold surface, and the different observa-

tions of the coarsening behavior underline that further studies are required to understand the

coarsening mechanisms. Partly, this is related to the fact that only now techniques to study the

annealing under in situ conditions become available. Furthermore, complementary to the pre-

vious studies, measurements at higher temperatures have to be carried out. For in situ studies,

this implies the use of dedicated sample holders, e. g. TEM heating chips [261], and techniques

compatible with in situ application. Here, X-ray based techniques are especially promising

[48]. In particular, in situ ptychography enables high-resolution imaging under realistic condi-

tions. In the following, the annealing of np-Au and stabilized CeO2/np-Au samples in different
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gas atmospheres is presented. Measurements were performed during different in situ ptycho-

graphy beamtimes and by (E)TEM. First, heating in 20 % O2/N2 was performed. The results

are already published by Baier et al. [229]. Further studies were performed on the annealing

of np-Au and CeO2/np-Au samples in 20 % O2/He and vacuum to unravel the influence of the

annealing atmosphere and pressure [262].

11.2 Annealing 20 % O2/N2 – Proof of Principle

In chapter 10.2, the applicability of in situ ptychography was already shown using model sam-

ples. However, ptychographic data acquisition was not performed during heating so far. Here,

the first real catalysts, np-Au and CeO2/np-Au, were heated in 20 % O2/N2 and studied by in

situ ptychography during annealing. The results presented in this section have been published

(Baier et al., ref. [229]).

11.2.1 Experimental

11.2.1.1 Sample Preparation and Electron Microscopy

All sample preparation steps, except the first one which was performed by Junjie Shi (Uni-

versity of Bremen) at Universitiy of Bremen, were carried out at KIT. Initially 100 nm thick

np-Au films were obtained by dealloying of a AgAu alloy (American White Gold, 12 Karat,

Noris Blattgold) with concentrated nitric acid (Sigma Aldrich p.a. ≥ 65%). After washing the

sample carefully by floating on deionized water, the sample was transferred onto a copper TEM

grid (100 mesh). For the CeO2/np-Au sample, 10 µl of an ethanolic solution of cerium nitrate

solution (Ce(NO3)3, 1 mol/l) were used to impregnate the np-Au sample on the TEM grid. Af-

ter drying in air for 30 minutes, a calcination was performed at 250 °C for 2 h to form cerium

oxide (CeO2). Both as-prepared samples on the copper TEM grids were transferred to a FIB

microscope to further process the samples.

Independently from the above described preparation, Al frames of L × W × H × = 60 ×

60 × 13 µm3 were fabricated by FIB milling. Those were used to stabilize the np-Au and

CeO2/np-Au sample. The frames were fixed on the np-Au and CeO2/np-Au samples by plat-

inum deposition on the outside of the frames. Afterwards, the stabilized samples were milled

out and fixed by platinum deposition on different Protochips E-ChipsTM. FIB milling was per-

formed by Dr. Torsten Scherer at the KNMF (located at the INT at KIT) using a Zeiss Auriga

60 or a FEI Strata dual beam FIB system. Ex situ SEM imaging was performed using the above

mentioned FIB microscopes with a SE in-lens detector at 5 keV.
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11.2.1.2 In Situ Ptychography

In situ ptychography was performed according to the procedure described in section 10.2.1.2.

To improve the spatial resolution, a sample – detector distance of 2 m was used, covering a

q-range up to 0.53 nm-1. The reconstruction of the images was performed by Maria Scholz

(DESY).

11.2.2 Results and Discussion

11.2.2.1 Thermal Annealing of np-Au in 20 % O2/N2

For the np-Au sample, a crack, which was formed artificially by FIB milling, was studied at

different temperatures while a 3 ml/min flow of synthetic air was applied. The images obtained

by ex situ SEM and in situ ptychography are shown in Fig. 11.1. A SEM image of the studied

sample area, which was acquired under vacuum conditions prior to the thermal treatment, is

presented in Fig. 11.1a. Afterwards, the sample was transferred to the X-ray microscope and

studied by in situ ptychography. Again, like in section 10.2, the relation between the heating

power and the temperature was estimated from a series of independent measurements where the

temperature of a chip was monitored with IR thermography. The used heating powers and the

estimated temperatures are summarized in Tab. 11.1.

In Fig. 11.1b, a ptychographic image of the same area, presented in Fig. 11.1a as an SEM image,

is shown. The structure is clearly visible and matches accurately the one observed with SEM, as

highlighted in Fig. 11.1h, where the SEM image was inverted, colorized and overlaid with the

phase contrast image obtained by ptychography. As depicted in Fig. 11.1c, structures of 35 nm

(the crack marked by the red arrow) could be visualized even at a temperature of approximately

60 °C. This demonstrates that in these measurements, a considerably higher resolution in com-

parison to the previous proof of principle measurements with the 50 nm Au particles has been

obtained. This is most likely due to an improved experimental setup (see section 11.2.1.2 and

section 10.2). However, the resolution at this temperature seems to be less than at RT, which

could be related to slight thermal vibrations. A detailed calculation of the spatial resolution

reached is given in section 11.2.2.3.
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Table 11.1: Heating power and estimated temperature for the annealing treatment of np-Au with refer-
ence to the image panel.

heating power (mW) estimated temperature (°C) panel in Fig. 11.1
59 60 c)

130 250 d)
194 500 e)
270 > 600 f)
315 660 g)

After further heating to approx. 250 °C (Fig. 11.1d) obvious changes to the structure, marked by

a red arrow, can be seen in the crack width. Upon further annealing (Fig. 11.1e-f), the appear-

ance of areas with lower density and such with higher density can be observed, although the

overall contrast seems to decrease. The changes in density are in agreement with the expected

coarsening behavior for np-Au based samples [247, 254], as ligaments increase in size, while

additionally pores become bigger. When the sample was heated further, the framework was

destroyed (Fig. 11.1g) due to the melting of the Al frame used for stabilization. The melting of

the Al frame could be confirmed by SEM imaging after the annealing treatment and the sample

could not be retrieved again. From the performed experiment, it could be concluded that the

coarsening for the studied np-Au sample started with small changes on the length scale of 10 nm

at a temperature of approximately 250 °C, which is in agreement with previous studies [251]

and became more distinct at higher temperatures.

11.2.2.2 Thermal Annealing of CeO2/np-Au in 20 % O2/N2

In contrast to the pure np-Au sample where the measurements were performed close to an arti-

ficial crack from FIB milling, the measurements were performed close to a natural crack close

to the border of the sample. The inverse catalyst CeO2/np-Au showed similar results, which are

depicted in Fig. 11.2. However, due to lower annealing temperatures and smaller temperature

steps, fewer changes were observed for the CeO2/np-Au sample in contrast to the np-Au sam-

ple. For comparison, the temperature when clearly visible changes occurred in Fig. 11.1c, was

slightly higher than the highest temperature which was used for the study of CeO2/np-Au. For

annealing of CeO2/np-Au, the applied heating power is depicted together with the estimated

temperature and the panel of Fig. 11.2 in Tab. 11.2.
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Table 11.2: Heating power and estimated temperature for the annealing treatment of CeO2/np-Au with
reference to the image panel.

heating power (mW) estimated temperature (°C) panel in Fig. 11.1
24 30 c)
65 60 d)

107 <250 e)

The changes observed during annealing were mainly located at the top of the studied sample, as

marked by an arrow. A flattening of the structure could be found already at a heating power of

65 mW (approximately 60 °C), which is depicted in Fig. 11.2d. Upon further heating at 107 mW

(< 250 °C) first contrast changes, most probably caused by density changes within the sample,

indicated first coarsening. Ex situ SEM, which is given in Fig. 11.2f, also confirmed coarsening

after the annealing.

To conclude, it was shown that both the pure np-Au and the stabilized CeO2/np-Au showed a

coarsening under 20 % O2/N2 atmosphere and first changes occurred at temperatures around

250 °C. The presented results further demonstrate that in situ ptychography is a promising tool

to investigate the coarsening of np-Au based catalysts. So far, however, the obtained spatial

resolution and the imaging contrast are not sufficient yet to draw conclusions on the underlying

processes or on the precise temperature, when the coarsening started. The latter is partly due to

the fact that the samples were placed on different E-ChipsTM and the temperature could not be

determined under in situ conditions. For further studies, the measurements were improved by

preparing the two different samples on the same E-ChipTM and by using an IR thermography

camera under in situ conditions to determine the temperature.
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Figure 11.1: Np-Au on a Si3N4 membrane studied by SEM and ptychography. Ptychography measure-
ments were carried out at different annealing steps using a flow of 3 ml/min synthetic air (20 % O2/N2).
a) Ex situ SEM image under vacuum conditions using SE contrast before the thermal annealing, b) phase
contrast image of the same area applying ptychography at RT, c) phase contrast image during anneal-
ing at a power of 59 mW (approximately 60 °C), d) phase contrast image during annealing at a power
of 130 mW (approximately 250 °C), e) phase contrast image during annealing at a power of 194 mW
(approximately 500 °C), f) phase contrast image during annealing at a power of 270 mW (> 600 °C), g)
phase contrast image during annealing at a power of 315 mW (approximately 660 °C), h) inverted and
colorized SEM image (red) overlaid with the ptychography reconstruction b). Reprinted from [229],
reproduced with permission.
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Figure 11.2: CeO2/np-Au on a Si3N4 membrane studied by SEM and ptychography. Ptychography
measurements were carried out at different annealing steps using a flow of 3 ml/min synthetic air
(20 % O2/N2). a) Ex situ SEM image under vacuum conditions using SE contrast before the thermal
annealing, b) phase contrast image of the same area applying ptychography at RT, c) phase contrast
image during annealing at a power of 24 mW (approximately 30 °C), d) phase contrast image during an-
nealing at a power of 65 mW (approximately 60 °C), e) phase contrast image during annealing at a power
of 107 mW (< 250 °C) indicating the field of view by a rectangle, f) ex situ SEM image under vacuum
conditions using SE contrast after thermal treatment. Reprinted from [229], reproduced with permission.
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11.2.2.3 Technical Results Obtained during Annealing in 20 % O2/N2 and Determination
of the Spatial Resolution

The spatial resolution of ptychography measurements can be estimated by comparing the re-

constructed images to reference images. Additionally, algorithms closely related to the recon-

struction algorithm can be used for determination. In the following, this analysis, which was

carried out by Maria Scholz (DESY), is briefely described and the corresponding resolution of

the first in situ measurements of np-Au in 20 % O2/N2 is discussed together with parameters

influencing the spatial resolution of in situ ptychography.

Ptychography is based on the coherent scattering caused by the probed object. However, par-

asitic scattering, which does not result from the object itself, might be present and can thus

degrade image quality. Therefore, the (e)PIE algorithm [126] used for image reconstruction,

was further optimized by introduction of additional degrees of freedom for a background inten-

sity map. This accounts for parasitic scattering contributions in the diffraction patterns, which

might result from the microscope itself, but also from the experimental setup and the in situ cell.

The Kapton® foil itself, which is used as a window material for the in situ cell, did not show

significant scattering in the SAXS regime, which was used for the image acquisition.

The spatial resolution of the image can be either derived by evaluating the scattering signal

with respect to the q-range [263], or by a Fourier Ring Correlation (FRC) [264]. Both at-

tempts are shown to derive further information about the spatial resolution obtained by in situ

ptychography. The reconstructed image is based on numerous diffraction patterns, e. g. 1681

for the images presented in Fig. 10.5, Fig. 11.1 and Fig. 11.2, but single scattering signals are

very weak with respect to the direct beam. A model far-field diffraction pattern is depicted in

Fig. 11.3a, showing the diffraction pattern from one of the patterns used for the reconstruction

of Fig. 11.1b in linear scale. Fig. 11.3b depicts the diffraction patterns averaged over all 1681

diffraction patterns, and c) shows the azimuthal average count rate revealing that photons were

also scattered up to the edge of the detector. The weak scattering intensity in Fig. 11.3a shows

that considerations concerning the resolution based on the observed scattering intensity can-

not be performed on one single diffraction pattern. Instead, the averaged scattering intensity

depicted in Fig. 11.3b shows that strong scattering can be observed in the q-range signals cor-

responding to 20-30 nm spatial resolution, which is also highlighted in panel c.

Albeit, the high resolution proposed by the scattering intensity cannot be observed in the re-

constructions. Therefore, a FRC [264] was performed. The FRC algorithm requires an initial

division of the ptychographic data into two parts, such that either the odd or the even scan points

were used for two separate reconstructions. Afterwards, the Fourier components of both recon-

structed images are correlated and summed over each ring corresponding to a certain q-value.

The resulting FRC for the data is plotted in Fig. 11.4. Also plotted are the so-called 1-bit and
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1/2-bit threshold curves. According to Van Heel [264], the crossing of 1-bit or 1/2-bit threshold

curve can be used to obtain the spatial resolution. As marked in the figure, the observed cross-

ings correspond to a spatial resolution of 38 nm and 45 nm, respectively.

The lower spatial resolution determined by FRC, in comparison to that expected by the scat-

tering intensity, might be explained by incompletely coherent scattering, which would lead to a

non-fully consistent reconstruction with artifacts. Such parasitic scattering can, to some extend,

be accounted for by adding a background to the algorithm. However, the signal to noise ratio

seemed to be insufficient to further improve the resolution. Nevertheless, the images agreed well

with SEM images and a resolution of approximately ≤ 35 nm was expected from comparison

with those, which goes along with the resolution determined by FRC.

Figure 11.3: a) Far-field diffraction pattern from Fig. 11.1b in linear scale, b) diffraction patterns aver-
aged over all 1681 diffraction patterns, c) the azimuthal average count rate as a function of the momentum
transfer q. The black lines on the right and on the bottom in b) show areas between different parts of
the detector, where no X-rays could be detected, additionally, some “dead” pixels can be observed as
black spots. The white circles indicate q-values corresponding to 20 and 30 nm respectively, which is
also shown in c) by the appearance of most scattering intensity for this q-range.

Figure 11.4: FRC of the ptychogram from Fig. 11.1b), where the 1/2-bit and 1-bit thresholds point to a
spatial resolution of 38 and 45 nm, respectively. Reprinted from [229], reproduced with permission.
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11.2.3 Conclusion – First Application of the Cell during In Situ Hard
X-ray Ptychography

The good agreement of the SEM images and the phase contrast images obtained by in situ

ptychography is obvious for both studied samples np-Au and CeO2/np-Au. Although 3D ma-

terials were studied, for thin materials like the np-Au, the projected image results in sufficient

contrast to gain insight into the structure of the studied np-Au based samples. The spatial res-

olution of approximately 40 nm, which was obtained in this experiment, is already comparable

to resolutions obtained by full-field microscopy techniques [106] and better by the factor of

4, than the one reached in previously reported in situ ptychography studies [132]. In addition

to the higher resolution obtained here, the cell used in the present work shows benefits during

experimental use: it is completely gas tight (due to a closed cell approach with X-ray transpar-

ent windows) and the heated area is smaller, which is why no additional cooling is required.

Last but not least offers the small size and light weight that the whole cell can be positioned

on a piezo stage used for accurate sample positioning during ptychographic data acquisition,

which facilitates the experimental setup. Moreover, the cell offers the unique possibility to per-

form ex situ EM and in situ ptychography on the same sample, which will also be presented

in the following sections. This possibility enables complementary studies which combine the

benefits of both techniques, namely high resolution imaging under model conditions using EM

and the possibility for real in situ application using ptychography. A more detailed conclusion

on the annealing of the np-Au system under different atmospheres will be presented in section

11.3.3 and an evaluation of in situ ptychography as a tool for studying heterogeneous catalyst

in situ will be presented in section 14.

11.3 Annealing of np-Au under Different Atmospheres

In a next study, the annealing behavior of 100 nm thick np-Au was studied up to tempera-

tures of 800 °C by complementary in situ (E)TEM and in situ ptychography under different

atmospheres, pressures and with/without ceria coating. Furthermore, an improved in situ setup

allowing for the direct determination of the temperature and a spatial resolution around 20 nm

is presented. Finally, the same sample areas were studied by electron microscopy before and

after the treatment during in situ ptychography investigation.
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11.3.1 Experimental

11.3.1.1 Sample Preparation

Both samples, np-Au and CeO2/np-Au, were prepared in the very same way as described in

section 11.2.1.1. However, instead of a stabilizing Al frame, an Au frame was prepared by FIB.

This enables, in contrast to the previously used Al frames which degraded at approximately

660 °C, a treatment at higher temperatures. Furthermore, an additional difference due to the

various thermal expansion coefficients is avoided which minimizes problems due to different

expansions during the heating experiments.

Hexagonal shaped Au frames of approximately L ×W × H = 25 µm ×15 µm × 500 nm for pure

np-Au and quadratic Au frames L ×W × H = 13 µm ×13 µm × 500 nm for CeO2/np-Au were

used to stabilize the sample. The frames were fixed on the np-Au and CeO2/np-Au samples

by deposition of platinum on the outside of the frame. Afterwards, the sample was milled out

and fixed on a Protochips E-ChipTM by platinum deposition on the outside. In this way, both a

np-Au and a CeO2/np-Au sample were deposited on a single E-ChipTM. By this procedure, it

is ensured that both samples observe the same conditions during in situ treatment. FIB milling

was performed by Dr. Torsten Scherer at the KNMF (located at the INT at KIT) using a Zeiss

Auriga 60 or a FEI Strata dual beam FIB system. Ex situ SEM imaging was performed using

the above mentioned FIB microscopes with a SE in-lens detector at 5 keV.

In parallel to the FIB prepared samples, another set of np-Au samples was prepared by drop-

casting of an ethanolic dispersion of np-Au on a copper TEM grid with lacey carbon film as

well as on a Protochips E-ChipTM.

11.3.1.2 Electron Microscopy

Annealing studies were either performed via conventional heating in a TEM using a) a Gatan

652 Inconel heating holder (for the np-Au sample on the TEM grid) or b) by the Protochips

Aduro heating holder. Transmission electron microscopy measurements were performed on

three different microscopes.

• a Tecnai T20 G2 operating at 200 kV and in Bright Field (BF) mode (drop-casted pure

np-Au sample on a lacey carbon film coated copper grid)

• a FEI Titan 80-300 aberration corrected electron microscope operated at 300 kV acquiring

STEM by a Fischione model 3000 HAADF-STEM detector using the Protochips heating
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holder for annealing studies (FIB prepared CeO2/np-Au sample on a E-ChipTM); Elec-

tron Energy Loss Spectroscopy (EELS) analysis was performed at 200 °C to avoid any

contamination on the sample using a Gatan Tridiem imaging filter

• a FEI Titan E Cell 80-300 aberration corrected electron microscope operated at 300 kV

with a pressure of 3.2 mbar O2 acquiring images in STEM and BF mode using the Pro-

tochips heating holder (drop-casted pure np-Au sample on a E-ChipTM)

11.3.1.3 In Situ Ptychography

In situ X-ray ptychography measurements were carried out with the cell described in sec-

tion 10.1, which enabled measuring under controlled atmosphere and temperature. A flow of

3 ml/min of 20% O2/He was used to control the atmosphere. The samples were heated using

the Joule heating possibility of the E-ChipTM. Different temperature steps were used and the

sample was kept at each step for approximately 90 minutes during performing ptychographic ac-

quisitions. The temperature was directly measured by IR thermography (c. f. section 11.3.1.4).

Measurements were performed at the cSAXS beamline of the Swiss Light Source (SLS) and

image reconstruction was preformed by Dr. Ana Diaz (SLS, PSI).

The X-ray beam was defined using a coherently illuminated Fresnel zone plate made of Au

[265] with a diameter of 170 µm and an outer-most zone width of 60 nm, corresponding to a

focal length of 47.03 mm at the applied energy (5.72 keV). A flux of 2.7 × 108 photons/s was

estimated. The samples were placed at a distance of 350 µm downstream the focus, such that the

illumination on the sample had a diameter of about 1.3 µm. Ptychographic scans were recorded

by scanning the sample over a field of view of 2 × 2 µm2 in a grid of about 400 points which

followed a Fermat spiral [266] with an average step size of 100 nm. At each scanning position

diffraction patterns of 0.2 s exposure time were recorded with a Pilatus 2M detector with 172 µm

pixel size [267] placed at 7.255 m downstream the specimen. The total duration of a scan was

about 215 s, taking into account overhead time in between acquisitions. The scans were re-

peated at two detector positions in order to record intensities at missing regions of the detector

due to module gaps. Such pairs of scans were repeated at 4 different positions covering a total

field of view of 3.5 × 3.5 µm2 with an overlapping region of 0.5 µm in between. For each pair of

scans an estimated flux density of 8.6 × 109 photons/s µm2 was irradiated on the samples, from

which the surface dose deposited on the specimen could be described by Howells et al. [268].

For an assumed relative density of 30 % for the np-Au samples [269], an estimated dose of

3.8 × 108 Gy was applied on the specimen. The ptychographic image reconstructions were per-

formed using 1000 iterations of the difference map algorithm [122] followed by 100 iterations

of a maximum likelihood optimization used as a refinement step [270]. All 8 scans recorded
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for each sample and for each temperature step were fed simultaneously into a ptychographic re-

construction in which a single object was reconstructed while refining a different probe for each

scan. This idea has been introduced by Dierolf [123] and Guizar-Sicairos et al. [271] to avoid

that the illumination probe changes during a ptychographic scan while benefiting from the ro-

bustness of reconstructing the entire region of interest in the same ptychographic reconstruction.

All reconstructions were done using a region of the detector of 600 × 600 pixels containing the

diffraction patterns, which corresponded to a reconstructed pixel size in the images of 15.2 nm.

The resolution was estimated from a dataset on a CeO2/np-Au sample acquired at room tem-

perature. For this purpose two reconstructions of two pairs of scans acquired at two different

positions, reconstructing for each pair a common object with two different illumination probes,

were performed. Afterwards, the Fourier ring correlation of the two objects at the overlapping

area, which had a total extension of 0.5 × 2 µm2, was computed and compared with a thresh-

old corresponding to the 1-bit criterion [264], obtaining an estimated resolution of 20 nm. The

reconstructed images were post-processed to remove a ramp and an offset which are intrinsic

degrees of freedom in ptychographic reconstructions [272]. Because of the very small areas of

air, which are typically used as a reference for constant phase [272], methods developed previ-

ously could not be applied for the phase ramp removal. Instead an approach in which the ramp

was removed visually by checking different ramps in steps of 0.02, which corresponds to an

error between pixels at both extremes of the image of 0.02 × 2π = 0.12 rad, was applied. For

the phase offset correction, the largest area without sample in the images was used.

11.3.1.4 Infrared Thermography

IR thermography to determine the temperature during in situ ptychography was performed using

an ImageIR® 8300 camera from InfraTec equipped with a macro objective M=1.0 x with a field

of view of 9.6 × 7.7 mm and a pixel size of 15 µm. The spatial resolution was further improved

down to approximately 5 µm using intermediate rings in addition to the objective lens. The

obtained thermal emission data were calibrated to the Si3N4 membrane by setting the emissivity

ε to 0.9 [158]. The resulting temperature for the membrane can then be assumed to be identical

for the samples, as the samples were expected to be in good thermal contact to the membrane.
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11.3.2 Results and Discussion

11.3.2.1 Combination of In Situ X-ray Microscopy using Ptychography and IR
Thermography for Temperature Measurement

In order to demonstrate the improved capabilities of the in situ cell, results on both the tem-

perature measurement and in situ ptychography are reported. As the temperature of the sample

is very important during the measurements, IR thermography was used directly during anneal-

ing treatment to determine the temperature just prior to the acquisition of in situ ptychogra-

phy datasets. A typical IR thermography image with a spatial resolution better than 10 µm is

shown in Fig. 11.5, with the sample compartments being located in the middle. For determining

the temperature during in situ ptychographic measurements with Kapton® foil as window ma-

terial, the temperature measurement was calibrated by measuring empty chips beforehand. In

this way the influence of the temperature determination through the 25 µm thick Kapton® foil

could be estimated. Fig. 11.5a shows the measured temperature from the front with and without

a Kapton® foil, in contrast to the temperature measured from the back of the cell. A difference

of approximately 10 % between the measurement with and without foil could be detected as it is

visible in Fig. 11.5a. Hence, during in situ measurements on the sample used during ptychogra-

phy, the temperature estimated by the IR camera behind the Kapton® foil was corrected by an

extra 10% of the measured temperature. The thermogram in Fig. 11.5a, which corresponds to

the sample presented in Fig. 11.6 at 250 °C, shows that the sample seems to be at slightly higher

temperature. As the emissivity chosen for temperature determination was set to the emissivity

of the Si3N4 membrane, the higher temperature is probably due to the different emissivity of

the sample and the membrane.

Figure 11.5: a) IR thermography measurement with (through) and without Kapton® foil in comparison
to the temperature determined at the backside of the chip. b) IR thermography measurement of the E-
ChipTM in the in situ ptychography cell at 250 °C (arrow pointing to the Si3N4 membrane) through the
Kapton® foil.
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Fig. 11.6a – d shows some examples of ptychographic images in comparison to EM images.

The good agreement between SEM measurements under vacuum conditions before the anneal-

ing treatment, the in situ ptychography measurements at atmospheric pressure and elevated tem-

perature during annealing and the STEM measurements after the annealing treatment is clearly

visible. Fig. 11.6e shows a FRC plot, which was derived to determine the spatial resolution

[264]. The intersection with the 1-bit threshold is at 0.746 and with a pixel size of 15.2 nm, a

spatial resolution of 20 nm is obtained, which improved the previously obtained resolution by a

factor of 2 (c. f. section 11.2.3).

In this study, the temperature measurement was performed under the same conditions applied

during in situ ptychography which enables a precise knowledge of the temperature during the

image acquisition. By the use of IR thermography with a spatial resolution <10 µm, not only the

average temperature of the heated area can be determined, like it is usually done with a temper-

ature sensor [246, 252], but by imaging the heated area it can also be accounted for temperature

inhomogeneities, which can occur when catalysts are studied during reactions. In contrast to

indirect temperature determination of the application of pre-calibrated heating chips in vacuum

[261], the direct measurement of the temperature allows to determine the temperature in a gas

atmosphere as well, in which a calibration performed in vacuum would not be valid any more.

The good agreement of electron microscopy and the high spatial resolution derived by in situ

ptychography clearly underline the potential of in situ ptychography bridging the gap between

high resolution imaging under model conditions in electron microscopy and realistic conditions.

Figure 11.6: a) SEM image of the CeO2/np-Au sample at RT under vacuum conditions before the anneal-
ing treatment, b) ptychographic image of the same sample acquired at RT under atmospheric pressure
and c) at 415 °C, d) STEM image of the same sample under vacuum conditions at room temperature
acquired after the annealing treatment. e) FRC for the ptychogram shown in panel b) to estimate the
resolution of the ptychographic images at RT under atmospheric pressure.
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11.3.2.2 Annealing of np-Au under Different Atmospheres and Pressures

To study the annealing behavior of np-Au at elevated temperatures under vacuum conditions, in

situ heating was performed during TEM from RT up to 800 °C. A sample dispersed in ethanol

was prepared on a copper TEM grid by drop-casting and heated to the desired temperature in

100 °C intervals. Overview bright field TEM images of the sample at different temperatures

(RT to 800 °C) are presented in Fig. 11.7a – f. Due to the thickness of the sample, only the

corner region was electron transparent. However, at 300 °C a few changes, like a contraction of

material (marked by a red arrow in Fig. 11.7b), could be detected in the top region. Hardly any

differences could be observed until 600 °C (Fig. 11.7d). Only at 700 °C (Fig. 11.7e) first changes

became visible in the thick material, i. e. some material loss or migration. At 700 °C, the

material loss occurred only once, whereas it continued steadily after the temperature increase to

800 °C (Fig. 11.7e). Where the material was no longer visible, a weak residue was left behind

and thick areas were formed at the same time at different positions, indicating a coarsening

behavior of the sample. Similar observations were also made for areas which were not probed

with the electron beam during annealing, which excludes an influence of the electron beam on

the observed behavior. EDX and EELS analysis of an area with a similar material loss, studied

on a sample on a Si3N4 membrane, revealed the presence of Si, N and O, but excluded any trace

of Au.

Figure 11.7: BF-TEM images during annealing of a pure np-Au flake drop casted on a copper TEM grid
covered by lacey carbon film. Annealing studies were performed in vacuum. Only the corners of the
flake were thin enough to be nearly electron transparent. The annealing for the temperature steps 25,
300, 500, 600, 700, 800 °C is depicted from a) – f). At a temperature of 700 °C presented in panel e),
the first changes in the dark, thick area could be seen, which changed constantly at 800 °C as depicted in
panel f).
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In Fig. 11.8, a zoom into the top region of the area studied in Fig. 11.7 is presented in different

magnifications (top to bottom), which shows that only slight changes, like a contraction of

the ligaments, can be observed at temperatures of 200 and 300 °C (marked by red arrows in

Fig. 11.8b and c).

Figure 11.8: BF-TEM images of the top region in presented in Fig. 11.8 showing the porous structure at
the corner of the studied flake at different temperatures. TEM images are shown at a) RT, b) 200 °C and
c) 300 °C respectively with different magnifications (top to the bottom). Already at those relatively low
temperatures, slight changes of the sample occurred. At 100 °C no changes were observed with respect
to the measurement at RT.

In the next step, in situ annealing was carried out in the ETEM on a np-Au sample prepared

by drop casting of dispersed flakes on a Protochips E-ChipTM in an atmosphere of 3.2 mbar of

O2. This allowed studying the influence of an oxygen containing atmosphere. Selected images

are presented in Fig 11.9. By drop-casting, the flakes could not be placed on the thin Si3N4

windows of the E-ChipTM but were located on thicker parts of the SiC membrane (approxi-

mately 100-200 nm) which results in a higher background signal for the TEM images than if

they were on the approximately 50 nm thick Si3N4 membrane. Some flakes deposited on the

thicker part of the heated membrane were studied during annealing, but in comparison to the

flake studied in vacuum they were smaller and showed bigger pores and ligaments. Similar to

previous measurements in vacuum, the sample was heated in 100 °C intervals and no changes

could be observed up to 200 °C. Between 200 °C and 300 °C changes could be detected in the

sample, which can be both seen in the overview image Fig. 11.9a in HAADF-STEM contrast,

as well as in the image showing the top right flake in higher magnification, which is depicted in

BF-TEM contrast Fig. 11.9b. Both the overview and the magnified image show that the flakes
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starts to coarsen when they were heated to 300 °C, which goes along with a collapse of some

ligaments (indicated by the red arrows) and an increase in thickness. The latter becomes espe-

cially visible in the HAADF-STEM images, as the transparency of the material got less and the

contrast changed (thicker areas got darker) which can be explained by a sintering behavior. In

contrast to measurements in vacuum, no material loss was observed (also at higher temperatures

up to 900 °C, not shown here), but the sample showed a coarsening behavior as also reported

under air in literature [241, 245–247, 254, 255, 273].

Figure 11.9: ETEM study of the in situ annealing of np-Au drop-casted on a E-ChipTM. Annealing treat-
ment was performed at different temperatures in an atmosphere of 3.2 mbar of O2. a) Shows overview
images on the studied flakes by HAADF-STEM images, whereas b) depicts a zoom into the top right
flake by BF-TEM images.

Additionally to the measurements performed under model conditions in the TEM, complemen-

tary measurements were performed during in situ ptychography to unravel the influence of

pressure and oxygen at ambient pressure. The sample was prepared by FIB micromanipulation

and placed on a E-ChipTM which was heated in the in situ ptychography cell at atmospheric

pressure with a flow of 3 ml/min of 20% O2/He; the temperature was controlled by IR ther-

mography (see Fig. 11.5). The phase contrast images from the ptychographic measurements

at a constant energy of 5.72 keV are presented in Fig. 11.10 and changes with respect to the

previous image at lower temperature are marked with red arrows. Despite attempting to moni-

tor the same area of interest during the annealing treatment, a slight shift in sample position is

visible, due to a sample drift with increasing temperature and only manual position correction.

At a temperature of approximately 300 °C, depicted in Fig. 11.10c, the first changes (indicated

by red arrows) could be observed, which showed slight material loss or movement, similar to
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this observed during heating in vacuum. With increasing temperature the loss increased, but a

coarsening behavior similar to the one observed in oxygen during ETEM could not be found.

This is also shown by quantitative comparison of the ligament diameter before and after the an-

nealing treatment, which is depicted in Fig. 11.11. Here, the ligament diameter was determined

by manually determining the diameter between connecting knots in the ligaments [250]. Before

the annealing, evaluation was performed on the SEM images, whereas after annealing, TEM

images were used for evaluation. Ptychography images could not be used because a pixel size

of 15 nm was used during reconstruction of the images. The size distribution shows that similar

diameters before (black bars) and after (red bars) the annealing were determined, revealing that

no coarsening occurred. To be able to compare the very local studies performed by electron

microscopy with those performed during in situ ptychography, a smaller field of view from the

ptychographic reconstructions is presented in Fig. 11.12 as well.

Figure 11.10: Phase contrast images of np-Au at different temperatures performed in the in situ cell for
X-ray ptychography at the cSAXS beamline at SLS using a constant energy of 5.72 keV and a flow of
3 ml/min 20% O2/He. a) – f) show the images recorded at 25, 275, 300, 330, 355, 385 °C respectively.
Red arrows indicate changes with respect to the previous image at lower temperature, while blue circles
show the same position inside the images.
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Figure 11.11: Ligament diameter distribution of np-Au before and after the annealing treatment per-
formed during in situ ptychography. The mode ligament diameter is around 75 nm before (black bars)
and after (blue bars) annealing, showing that no coarsening occurred.

Figure 11.12: Magnified parts of the bottom left part of the phase contrast images presented in Fig. 11.10.
a) – d) show the images recorded at 275, 300, 330, 355 °C respectively.

To get quantitative information on the material loss, the normalized grayscale values corre-

sponding to the phase shift of X-rays after propagation through the sample have been calculated

between 275 – 355 °C, which is plotted in Fig. 11.13. Since the phase shift depends on the

thickness of the material, the change in grayscale values can be related to changes in the ma-

terial’s thickness. In Fig. 11.13a, the area where the material loss was studied is marked by a

red box. It becomes obvious that the area in the center of the red box becomes slightly brighter

with increasing temperature which goes along with a higher grayscale value. For quantitative

information, the grayscale value measured in a 200 × 200 nm big box located in the center of

the red box, was divided by the grayscale value obtained from the non-changing area marked

by the blue box. Fig. 11.13b shows that the mean grayscale value, which presents the average

grayscale value measured in the center of the red box, increased. However, this is only true

assuming that no changes in the area used for calibration occur. This could only be determined

approximately because no absolute calibration could be performed due to the application of the

manual phase correction. Therefore, the consideration of the grayscale values should only be

taken as an additional information.

91



11 Thermal Annealing of Nanoporous Gold

Figure 11.13: a) Selected phase contrast images derived from magnified parts of the bottom left part of
the phase contrast images presented in Fig. 11.10 for 275, 300, 330, 355 °C respectively. The area where
the loss starts to be visible is marked by a red box, while the visibly non-changing area is marked by a
blue box. b) Plot of the relative mean grayscale values with respect to temperature. The grayscale values
were normalized by correcting the grayscale values measured in the center of the red box by the ones
measured in the blue box.

The results presented for the annealing of np-Au in different atmospheres show that during

annealing of np-Au in vacuum and in 20% O2/He a material loss or migration was observed,

in contrast to measurements in 20% O2/N2 (compare section 11.2 and [229]) or pure O2 in

the mbar regime. Taking the high X-ray dose for the measurements performed in 20% O2/He

into account, the differences might be explained by beam damage. However, the loss was also

observed in areas which were not probed by the X-ray beam, as determined by TEM after

the ptychography treatment (c. f. section 11.3.2.3). In contrast to previous studies in literature

[252, 253] it could be shown that np-Au samples started to change in vacuum when temperatures

above 700 °C were applied. At these high temperatures, a material loss as well as sintering were

observed. Interestingly, the loss observed during in situ ptychography in 20% O2/He at ambient

pressure started at much lower temperatures than under vacuum conditions, but at a comparable

temperature to the onset of coarsening during ETEM analysis in oxygen atmosphere. These new

findings indicate that the atmosphere strongly influences the coarsening behavior and the under-

lying mechanisms. Furthermore, it shows that measurements at ambient pressure are possible

when techniques like in situ ptychography are applied, which are necessary to study realistic

processes.
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11.3.2.3 Stabilization of np-Au by Supported CeO2 – Annealing of CeO2/np-Au under
Different Atmospheres and Pressures

Next, the influence of deposition of a CeO2 layer on the np-Au surface was studied. Often such

an additional layer has a stabilization effect [260, 274]. For this purpose, a sample was studied

under vacuum conditions during in situ annealing in TEM and at atmospheric pressure during

in situ ptychography in 20% O2/He to compare the behavior under model conditions inside the

TEM with realistic conditions. Both samples were prepared by FIB micromanipulation like the

np-Au samples used for ptychography in section 11.3.2.2. Furthermore, the CeO2/np-Au sam-

ple studied during in situ ptychography was placed next to the np-Au so that differences in

temperature or atmosphere between the CeO2-stabilized and the unstabilized np-Au can be ex-

cluded. The phase contrast images from CeO2/np-Au during the ptychographic measurements

at the same temperatures like np-Au applying a constant energy of 5.72 keV are presented in

Fig. 11.14 and changes with respect to the previous image at lower temperature are marked with

red arrows, while blue circles indicate the same position in the images.

Figure 11.14: Phase contrast images of the CeO2/np-Au sample at different temperatures performed in
the in situ cell at the cSAXS beamline at SLS using a constant energy of 5.72 keV and a flow of 3 ml/min
20% O2/He. a) – f) show the images recorded at 25, 275, 300, 330, 355, 385 °C respectively. The blue
circles indicate the same position in the images, while red arrows highlight changes compared to the
previous image.
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Besides the marked changes, Fig. 11.14 shows that the sample seemed to move so that apart

from a different field of view, the crack in the center had a slightly different shape at higher

temperature than at the original RT measurement, which can be seen as well in the image at

275 °C. In fact, this movement already occurred at a temperature around 50 °C (not shown here)

and might be explained by a loss of stress, induced by translation due to enhanced temperature.

A magnified part of the top right area from 300 – 385 °C is depicted in Fig. 11.15.

Figure 11.15: Magnified parts of the top right part of the phase contrast images presented in Fig. 11.10.
a) – d) show the images recorded at 300, 330, 355, 385 °C respectively.

Figure 11.16: STEM-HAADF images of the CeO2/np-Au sample showing the area of the EELS mea-
surement (red box) and the EELS spectrum performed after annealing during in situ ptychography. a)
STEM-HAADF image with normal contrast to show the position for the EELS measurement with respect
to the remaining np-Au (bright material), b) STEM-HAADF image with increased contrast to visualize
the remaining residue, c) EELS spectrum of the selected area marked by the red box in a) and b), reveal-
ing the presence of Si, Ce, C, N, and O.

Comparably to the unmodified pure np-Au sample a material loss or migration could be de-

tected. Once the gold ligaments severed, a weak residue was observed. This residue can be

attributed to CeO2 containing material for the stabilized sample, as it becomes visible by the

EELS analysis shown in Fig. 11.16, which was performed on an area where a material loss and a

remaining residue was observed. EELS analysis revealed the presence of Si, Ce, slight amounts

of C, N and O. Whereas the small amounts of C can be explained by impurities caused by the

FIB process, the presence of Si and N can be related to the Si3N4 membrane, on which the sam-

ple is deposited. Finally, Ce and O can be explained by the CeO2 particles used for stabilization.
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A coarsening could not be found, as indicated by the distribution of the ligament diameter be-

fore and after the annealing depicted in Fig. 11.17 and the magnified part of the phase contrast

images shown in Fig. 11.15. By comparing the onset temperature at which the loss appeared,

it becomes obvious that changes occur first on the pure np-Au sample around 300 °C (compare

Fig. 11.10) whereas the first changes for the CeO2/np-Au sample started around 355 °C. This

indicates a stabilization due to CeO2 by about 50 °C. Furthermore, it shows that the observed

effect of material loss or migration is independent of the stabilizing oxide, but the process starts

at a slightly higher temperature.

Figure 11.17: Ligament diameter distribution of CeO2/np-Au before and after the annealing treatment
performed during in situ ptychography. The mode ligament diameter is around 65 nm before (black
bars) and after (blue bars) annealing, showing that no coarsening occurred. In contrast to the pure
np-Au sample, the size distribution is narrower, as visible by comparison with Fig. 11.11.

To study the annealing behavior of the stabilized sample under vacuum conditions, in situ heat-

ing was performed during TEM in a conventional microscope (vacuum conditions around the

sample). Model STEM images for the annealing of CeO2/np-Au on a Protochips E-ChipTM at

840 °C are given in Fig. 11.18. Note that the bright area on the bottom left corner of the

Fig. 11.18a – d has not been there before annealing treatment, but might result from rede-

position as the electron beam was kept in the lower left corner. Comparably to the previous

experiment of the unstabilized sample in vacuum, a material loss or migration could be ob-

served. At lower temperatures, no changes could be seen. Evaluating the onset of changes

(e. g. material loss) in the unstabilized material compared to the stabilized np-Au gives an indi-

cation for the stabilizing effect of the CeO2 in vacuum. For the pure np-Au sample, the onset

started at 700 °C (see Fig. 11.7), but continued steadily at 800 °C. In contrast, the onset started

at 840 °C for the CeO2/np-Au sample annealed in vacuum and continued at this temperature

(see Fig. 11.14). The stabilization effect in vacuum is therefore comparable to the stabilizing

effect in O2/He under atmospheric pressure, where the onset of material loss or migration was

shifted to about 50 °C higher temperatures.
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Figure 11.18: STEM images on low resolution (top, 10000x magnified) and higher resolution (bottom,
57000 x magnified) at 840 °C in vacuum. a) Represents the sample after being heated at 840 °C for
11 minutes, b) and c) after 12 minutes, and d) after 33 minutes. e) –h) were recorded within one minute
directly after reaching 840 °C, indicating that material loss started immediately. Red arrows indicate
exemplary areas where changes occurred in comparison to the image before. Additionally, in d) blue
boxes indicate the area for the zoomed-in regions from Fig. 11.19.

Apart from the material loss or migration on larger length scale, some changes happened on a

smaller length scale as well. Examples for such changes are given in Fig. 11.19 and seem to

result from contractions of the gold ligaments which are similar to the expected coarsening due

to ligament pinch-off [256, 275] (Fig. 11.19a) or sintering (Fig. 11.19b) of the np-Au samples.

The positions of the studied areas are marked with blue boxes in Fig. 11.18d. Interestingly, the

material loss started at one area and continued outgoing from this area, as it becomes visible by

comparing Fig. 11.18a – d and e – f. Fig. 11.18e indicates that not only very small ligaments

pinch off, but also some neighboring ligaments severe, whereas others stay stable and break

off later (Fig. 11.18h). Additionally, Fig. 11.18f – h show at the top of the area where the loss

occurs, that parts of the ligament can pinch off, while small single, isolated particles remain,

like it is visible in Fig. 11.18g and h, which would be expected to be unstable at elevated

temperatures.
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Figure 11.19: Zoom into regions (indicated by blue boxes in Fig. 11.18d) in the STEM images on the top
row of Fig. 11.18. The images are acquired at different times after the first changes, which is symbolized
by a black arrow. While the first images of a) and b) represent the structure derived after 11 minutes at
840 °C, the change to the second image occurred after 33 minutes for a) and after 25 minutes for b).

In Fig. 11.20 a and b, two comparisons of SEM images of the CeO2/np-Au sample used for

in situ ptychography, before the annealing (left images) and after annealing (right images) are

shown. The depicted area shows a position, which was not imaged by ptychography, indicat-

ing that potential interaction of the sample by the X-ray beam did not significantly influence the

behavior resulting in a material loss. Comparing Fig. 11.20a and b reveals that at the marked po-

sition (red arrows) next to a cut prepared by Ga ion milling, a part of the gold ligaments pinched

off, while some areas of the sample stayed the same like they were before. However, some areas

also changed their structure and the original ligaments cannot be recognized anymore, which

might be explained by slight coarsening or restructuring. Additionally to the obvious material

loss or migration on the bottom right corner of Fig. 11.20b, the remaining ligaments seem to

be of the same size (c. f. Fig. 11.17), as far as conclusions can be drawn on the comparison

of SEM and STEM images. In contrast, it seems as if the sample showed a contraction, like

it was observed in Fig. 11.8 as well, corresponding to images shown by Kuwano-Natakami

et al. [252]. Those contractions suggest that the gold tends to be mobile at annealing tempera-

ture, but the ligament seems to be hindered from usual coarsening, which seems to be the case

for the annealing treatment in vacuum and in O2/He.
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Figure 11.20: a) SEM image of the FIB prepared CeO2/np-Au sample before the annealing with red
arrows as markers for comparison, b) STEM-HAADF image of the prepared CeO2/np-Au sample after
the annealing at the same area from a), c) STEM-HAADF image of the prepared CeO2/np-Au sample
after the annealing at another area showing the contraction of the gold ligaments.

Coarsening is usually described as surface atom diffusion at temperatures below the melting

point [241, 245, 247, 254, 256] and recent studies report on facilitated coarsening due to oxy-

gen adsorption at temperatures >200 °C [245] compared to gases like Ar or CO. According to

Peale and Cooper [276], the presence of adsorbed gas molecules promotes the generation of

gold adatoms and edge vacancies, which facilitates surface diffusion under gas atmospheres

compared to vacuum conditions. The lower activation barrier for surface diffusion than for

volume diffusion can therefore facilitate coarsening and might explain the observed differences

between the studied atmospheres (see the results obtained for np-Au in vacuum, oxygen and

O2/He, reported before). It shows that different mechanisms might be dominant for different

atmospheres and can also be linked to the discussion about the underlying mechanisms for sin-

tering of nanomaterials in general. For the sintering of nanoparticles different mechanisms like

particle migration and coalescence, implying mobility of the material, as well as Ostwald ripen-

ing, implying mobile species or adatom migration, are discussed [15]. Those mechanisms could

be transferred to the coarsening of nanoporous materials as well.

Coarsening was found to be prevented or delayed by surface contaminations [277] and Olson

et al. [278] found an increased apparent activation energy for the surface diffusion for con-

taminated surfaces. If the surface atom diffusion pathway was blocked, the sample could be

stabilized, like it was also seen by adsorption of CO molecules [245] or by formation of Au–O

bonds [251]. Therefore, the observed stabilization of the material in the presented study might

be caused by a hindered formation of adatoms or vacancies at step edges of the surface, either
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due to vacuum or due to interaction with the surrounding gas molecules. However, changes in

the material can be observed also in vacuum (compare Fig. 11.7), which points to the existence

of additional mechanisms, e. g. comparable to Ostwald ripening, which implies migration of

adatoms or mobile species [15].

Reaching a high temperature some loss or rearrangement of the gold ligaments was observed.

Various reasons may be considered for this such as a) surface tension driven viscous flow above

the melting point [248], b) sublimation of the material or c) mechanical loss, e. g. by stress. For

TEM measurements high temperatures of Treached,T EM = 800 °C were reached, which could

possibly lead to sublimation as the vapor pressure is reached around 800 °C for 10−8 mbar [279].

However, for in situ ptychography, temperatures far away from the melting point, even for

nanoparticulated materials [280], were reached (Treached = 375 °C vs. Tmelting,bulk = 1064 °C).

From mechanical tests it is known that np-Au undergoes a ductile brittle transition due to mi-

crostructural changes [281] and that stress enhancement is observed at defects [282]. Addi-

tionally, according to Kahng et al. [283], in a narrow ligament-strength distribution a rupture

of the weakest ligament can initiate a catastrophic failure of the material. Nevertheless, rup-

tures usually occur at defect sites which decrease during annealing as a result of the coarsening

[282]. Therefore, at this stage the reasons for the material loss cannot be explained by the ob-

tained results, but the different behavior observed in the various atmospheres show that different

mechanisms might be involved during annealing of np-Au.

Furthermore, it could be shown by the combination of ETEM and in situ ptychography that pres-

sure differences between the mbar and 1 bar regime in the present study did not influence the

onset of the changes due to annealing. Similar temperature ranges were obtained for the anneal-

ing in O2 in the mbar regime and in O2/He or O2/N2 [229] at ambient pressure. However, when

the samples were annealed in vacuum, which leads to a different surface coverage, the onset of

changes differed at lot compared to the measurements in oxygen containing atmosphere. While

the temperature was measured locally by IR thermography during the in situ ptychography ex-

periments, the temperature was controlled by a thermocouple in the TEM heating holder (Gatan

Inconel® heating holder) or by external calibration (Protochips E-ChipTM) during the TEM ex-

periments. As the temperature ranges are similar for the stabilized and unstabilized sample in

vacuum or in oxygen containing atmosphere respectively, it can be assumed that problems in

temperature determination could be minimized. Furthermore, due to similar temperature ranges

for the differently prepared samples (FIB micromanipulation or drop-casting), influences due to

of FIB preparation and possible contamination caused due to Ga ion milling and Pt deposition

can also be neglected. Therefore, the behavior of the samples studied in different atmospheres

is related to the different atmospheres. The results show that studies on the coarsening behavior

of np-Au have to be performed under realistic conditions in order to draw conclusions on the

underlying mechanisms, as the coarsening behavior is different.
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11.3.3 Conclusions and Outlook – Annealing of np-Au under Different
Atmospheres

Combined (E)TEM and in situ X-ray ptychography were used to study the thermal annealing of

np-Au. This allows exploiting in the best way the complementary nature of the techniques with

more realistic reaction conditions in case of X-ray microscopy and higher spatial resolution by

(E)TEM. For the first time, the temperature applied during in situ ptychography was determined

directly under in situ conditions using IR thermography, enabling a precise control of the tem-

perature, which is particularly important when varying the gas atmosphere [229]. Strikingly, in

situ hard X-ray ptychography under real conditions showed a uniquely high spatial resolution

of about 20 nm which demonstrates its potential also for studying other functional nanoscale

materials in future during temperature treatment [132, 229].

The present study demonstrates that annealing of np-Au based samples was strongly dependent

on the gas atmosphere and the architecture of the nanoporous materials: Np-Au was found to

be stable up to 700-800 °C in vacuum, above, a material loss or migration occurred. In con-

trast, coarsening was observed in oxygen atmosphere around 200-300 °C in the mbar regime

and in O2/N2 atmosphere. Notably, a similar material loss to that observed in vacuum at ca.

800 °C was already found in O2/He around 300 °C. The results obtained in this study there-

fore indicate that the coarsening behavior is strongly dependent on the atmosphere and points

to additional coarsening mechanisms than only surface diffusion. This effect is similar to the

different growth mechanisms of nanoparticles, like particle migration, coalescence or Ostwald

ripening that also depend strongly on the support, contaminants/structural promoters and the

gas atmosphere. Finally, it could be shown that np-Au and CeO2/np-Au show a comparable

behavior in the different atmospheres, but a stabilization was reached by CeO2 indicated by the

onset of changes at higher temperatures.

Hence, the use of the complementary techniques X-ray ptychography and TEM was obligatory

to examine the annealing of np-Au under realistic conditions. In situ imaging with a high resolu-

tion under realistic conditions (ambient pressure) could be obtained by ptychography, whereas

TEM under model conditions in contrast enabled to get information on the scale below 20 nm.

Due to the results obtained in the performed experiments, future studies on the annealing of

np-Au based samples should be performed under in situ conditions under different atmospheres

and at ambient pressure to understand the underlying coarsening mechanisms. Furthermore,

as a 3D material is used, tomographic studies would be beneficial and could also reveal the

influence of the thickness of the probed material. In addition to X-ray based studies, which are

suited for the in situ examination under ambient pressure of thicker samples, complementary

EM studies should be carried out to retrieve information on the atomic scale.
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Specifically, the application of a cylindrically shaped np-Au sample would be of interest. This

would allow a study by in situ ptychography on the thicker base area and by TEM on the thin

top. In this case, sample preparation should be performed by careful FIB milling from a “bulk”

np-Au material. In particular, two identical samples containing an approximately 10 µm thick

base area, which decreases continuously to reach an approximately 100 nm thick top, could be

studied by complementary tomographic in situ ptychography and ETEM tomography on the

base and the top, respectively. In this way, the best combination of tomographic studies could

be performed, using model conditions during TEM on a thin sample under reduced pressure,

and realistic conditions with lower resolution studied by in situ ptychography.
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12 Redox Treatment of a
CuO/ZnO/Al2O3@ZSM–5 Catalyst

When using bifunctional core-shell catalysts detailed information on the structure and stability

of the core-shell interface is crucial for the catalytic application. Here, a study on the stabil-

ity of a CuO/ZnO/Al2O3@ZSM–5 core-shell material, which is attractive for direct synthesis

of dimethyl ether, is presented. The catalyst consists of a 80 – 100 µm CuO/ZnO/Al2O3 core

and a zeolite shell of about 5 µm thickness. The stability during reductive activation, as well

as during reoxidation was studied hierarchically by complementary ETEM, SEM and in situ

ptychography. The core-shell interface was found to be stable during reducing and oxidizing

treatment at 250 °C, although changes on the approximately 10 nm scale occurred due to reduc-

tion/reoxidation of the copper species in the core material, as observed by ETEM. At 350 °C,

the core material and parts of the shell showed a restructuring on the micrometer scale, as

indicated by in situ ptychography. However, the crucial core-shell interface required for full

bifunctionality remained stable.

12.1 Introduction to CuO/ZnO/Al2O3@ZSM–5

Core-shell materials have attracted a lot of attention in heterogeneous catalysis due to their

unique structure and catalytic behavior [5, 11, 284, 285]. These materials range from small par-

ticles on the nanometer scale [284, 285] to hierarchically-designed core-shell composites on the

micrometer [5, 11] and even millimeter scale [142]. Core-shell catalysts can be subdivided into

three groups, each showing specific functions of the core and shell materials, respectively.

• Bimetallic core-shell nanoparticles, in which the core-shell design improves the catalytic

activity by modifying the catalyst surface [11, 284]

• Core-shell catalysts containing a catalyst core and a porous, inert shell which encapsulates

the active core material and prevents sintering or coking [138, 286]

• Core-shell particles containing two catalytically active materials, allowing the perfor-

mance of two-step reactions in close vicinity and therefore the performance of single

stage processes [13, 26, 142, 287–289]

In the latter case, also physical mixtures [290–292] could be used. However, the bifunctional

core-shell design allows exploiting a synergistic effect due to hierarchical ordering of the active

sites in the core and the shell. I. e. products formed at the core are forced to diffuse through

the shell, which itself catalyzes the conversion into the final product. Since the intermediate
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product formed at the core is constantly being removed, the equilibrium of the first reaction can

be shifted to the product side [13, 27] and even the selectivity can be enhanced [142, 288, 289].

The bifunctional functionality has been used for a number of processes including the selective

formation of branched hydrocarbons in Fischer Tropsch processes [137], selective hydrogen

formation from decomposition of formic acid [139], selective oxidation [138], hydrogen per-

oxide synthesis [286] or for direct production of dimethyl ether (DME) [12, 13, 26, 27, 287–

289, 293, 294]. DME is a high value platform chemical which can be further processed into a

wide range of products, but it is especially regarded as a promising clean fuel, due to its low

soot, CO and NOx emissions as well as its safe storage possibilities [25]. DME can be synthe-

sized from various feedstocks like natural gas, coal or crude oil via the production of synthesis

gas, but the production of synthesis gas via gasification of biomass as a renewable energy source

is especially attractive [295]. From synthesis gas, DME can be formed indirectly via methanol

synthesis followed by dehydration [25], or “directly” in single stage approach [291].

CO + 2H2 CH3OH ∆ f H◦298 = −90.4 kJ/mol (12.1)

CO2 + 3H2 CH3OH + H2O ∆ f H◦298 = −49.4 kJ/mol (12.2)

2CH3OH CH3OH + H2O ∆ f H◦298 = −23.0 kJ/mol (12.3)

Bifunctional catalysts are particularly used for the one stage process, implying the functionality

to form methanol (c. f. Eq. 12.1 and 12.2) by one catalyst and to dehydrate it subsequently

(c. f. Eq. 12.3) by another one [290, 292, 296, 297]. Such core-shell catalyst usually contain a

methanol synthesis CuO/ZnO/Al2O3 catalyst as a core, and a dehydrating acidic shell such as a

zeolite, e. g. ZSM-5 [12, 142] or silicoaluminophosphates [287]. Due to the strong dependence

of activity and selectivity on the catalyst structure, it is important that the core-shell interface

remains stable, even under reaction conditions, or reducing conditions required for catalyst acti-

vation. To assess the stability of the catalyst, a hierarchical in situ imaging approach is required

on all length scales to uncover the specific functional catalytic properties: from the atomic scale

(1 Å to 5 nm), to the interfaces on a meso scale (20-500 nm), and the full structure of the par-

ticles on the micrometer scale [2, 19, 23, 24, 298]. Several techniques have been developed

during the past years. On the one hand X-ray microscopy with XAS, XRD and XRF contrast

has been found to give information on the micro and submicrometer scale [299], even under

tomographic in situ [88] and quasi in situ conditions [196, 300]. On the other hand electron

microscopy and electron tomography have been developed for gaining insight on the atomic

level. In situ studies become possible either by using differentially pumped microscopes [15]

or closed cells [50], but are still constrained. Although the spatial resolution with hard X-rays

is limited, they offer a higher penetration depth and allow imaging under more realistic reaction
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conditions [32, 82, 103, 108]. Due to the complementarity of these techniques [51, 104, 301], a

combination of both electron and X-ray microscopy appears to be beneficial. In particular, de-

velopments in hard X-ray ptychography [118, 130, 131] have improved the resolution of X-ray

microscopy and made it attractive for in situ studies.

Here the potential to investigate the stability and the structure of a core-shell catalyst for direct

synthesis of DME is shown by applying complementary in situ ptychography and ETEM. The

core consists of a CuO/ZnO/Al2O3 methanol catalyst encapsulated within a shell of ZSM-5. It

is known that the CuO/ZnO system is dynamic under reaction conditions and upon reduction

[29, 30, 302], which may influence the stability of the core-shell catalyst. The complementary

nature of both methods was exploited for studying the catalyst stability under model condi-

tions in the ETEM, while the sample was examined under more realistic conditions at ambient

pressure and on a thicker sample using in situ ptychography.

12.2 Experimental

12.2.1 Sample Preparation

Preparation of the catalyst The sample preparation was performed by Michael Klumpp

(University of Erlangen-Nürnberg), following the procedure described in ref. [13]. First, a

commercial CuO/ZnO/Al2O3 methanol catalyst was ground and sieved to a size of 80-100 µm.

The shell was synthesized via the 2-step hydrothermal synthesis approach of in situ silicate-1

seeding followed by secondary growth of a H-ZSM-5 zeolite shell. The as-prepared sample was

subsequently calcined and CuO/ZnO/Al2O3@ZSM–5 core-shell particles with a shell thickness

of approximately 5 µm were obtained and further processed.

Preparation for SEM, ETEM and In Situ Ptychography The calcined core-shell catalyst

grains were embedded between two silicon wafers using M-bond 610 (Agar Scientific) as a

resin. After drying at 100 °C for 24 hours, the sample was polished to obtain a thin section.

This section was fixed between two aperture TEM grids made of molybdenum and thinned

down further by using argon milling. An approximately 100 nm thick sample was directly

used for ETEM imaging. For in situ ptychography, an approximately 300–400 nm thick sample

(prepared as described above) was transferred into a FIB microscope to be further processed.
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FIB micromanipulation was used to cut a piece of 10 × 17 µm2 , containing the core-shell

interface. This piece was then transferred to a Protochips E-ChipTM [261] and fixed by platinum

deposition. For FIB micromanipulation, a FEI Helios EBS3 dual beam microscope located at

DTU at the CEN was used, operated by Dr. Zoltan I. Balogh (DTU).

12.2.2 Techniques

12.2.2.1 Electron Microscopy

SEM images were collected on a) polished cross-sections of the embedded catalyst grains (M-

bond 610) and b) the as-prepared in situ ptychography samples. Images were obtained using

BSE contrast with the FEI Helios EBS3 dual beam microscope located at DTU-CEN and op-

erated at 5 kV. EDX mapping was performed at 5 kV using an EDAX SD Apollo 10 Pegasus

System with a resolution of 131 eV. After the in situ ptychography, BSE-SEM images were

recorded using a Zeiss Auriga 60 dual beam FIB system at the KNMF, located at the INT, KIT.

EDX mapping was performed at 5 kV using an EDAX Octane Super System with a resolution

of 129 eV.

TEM was performed for comparison between phase contrast images obtained by in situ ptycho-

graphy, using a Tecnai T20 G2 operating at 200 kV in Bright Field (BF) mode. For in situ studies

under redox conditions, environmental TEM was performed using a FEI Titan E-Cell 80-300

ST TEM aberration corrected electron microscope operated at 300 kV. STEM images were ac-

quired by a Fischione model 3000 HAADF-STEM detector. EELS analysis was performed

using a Gatan Tridiem imaging filter. For reduction, H2 at a pressure of 1.1 mbar was applied

and the sample was heated up to 250 °C using a heating rate of 10 °C/min. For reoxidation,

the sample was kept at 250 °C, evacuated and O2 was inserted until a pressure of 3.2 mbar was

reached. TEM measurements were performed at DTU-CEN.

12.2.2.2 In Situ Ptychography

In situ ptychography was performed starting with the core-shell interface region of the cal-

cined catalyst mounted on a Protochips E-ChipTM [261]. For in situ X-ray ptychography, the

dedicated in situ cell (see section 10.1) was used which enables heating and a controlled gas

atmosphere. A flow of 3 ml/min of 4 % H2/He was used for reduction, whereas 3 ml/min of

20 % O2/N2 was used for reoxidation. The samples were heated using the resistive heating

possibility of the E-ChipTM. For the different temperature steps, the temperature was deter-

mined by IR thermography and heating rates of approximately 10 °C/min were applied. Before
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the gas atmosphere was changed, the temperature was decreased first to avoid sudden temper-

ature changes due to different thermal conductivity of the gases. However, short temperature

spikes could not be ruled out completely. In situ ptychography measurements were performed

at the P06 nanoprobe endstation of the high brillance synchrotron radiation source PETRA III

at DESY, Hamburg, using a photon energy around the Cu K edge: 8.920 keV, 8.980 keV and

9.032 keV. The beam was focused using a coherently illuminated double-sided Fresnel zone

plate [130] made of iridium with a diameter of 150 µm and an outer-most zone width of 25 nm,

corresponding to a focal length of about 27 mm at this energy. The samples were placed at a

distance of about 60 µm downstream from the focus, such that the illumination on the sample

had a diameter of about 260 nm. Ptychographic scans were recorded by scanning the sample

over a field of view of 5 × 5 µm2 in a grid of 60 × 60 steps with a step size of 80 nm. At

each scanning position diffraction patterns of 0.5 s exposure time were recorded with a EIGER

X 4M detector with 75 µm pixels size placed at 2.1 m downstream the specimen. Including

motor movements, the total duration of one scan was about 45 minutes. The algorithm used for

reconstruction is based on the (e)PIE algorithm presented by Maiden and Rodenburg [126] and

the reconstruction and determination of the spatial resolution was performed by Juliane Rein-

hardt (DESY). Cropping the diffraction patterns to 256 × 256 pixels led to a pixel size in the

reconstructed images of approximately 15 nm. To estimate the spatial resolution, a Fourier Ring

Correlation (FRC) analysis [264] was performed. As a common procedure, the ptychographic

dataset was split up into two with each set containing every second scan point. Afterwards, the

ptychographic reconstruction was performed for each of these half datasets. Before correlating

the phase reconstruction, a Kaiser-Bessel window function with a window size equal to 1 was

applied to the images in order to reduce artifacts caused by errorneous high frequencies result-

ing from the edges of the limited field of view of the reconstructions. The FRC results in an

upper limit for the spatial resolution of about 28 nm (c. f. Fig. 12.9).

12.3 Results and Discussion

12.3.1 Electron Microscopy

The core-shell particles were first studied in the as-prepared state by ex situ electron microscopy.

A cross section SEM image in BSE-contrast is shown in Fig. 12.1a, with two magnified parts

of the image in panel b and c. In Fig. 12.1a, the general core-shell structure is clearly visible,

revealing a shell with approximately 5 µm thickness, with a core diameter of around 70 µm.

Apart from the evident core-shell structure, the shell around the particle varies in appearance or

integrity, from a continuous well connected structure (blue box in Fig. 12.1a and magnified in
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c), to a more fractured appearance (violet box in Fig. 12.1a, magnified in b). The latter areas

are expected to be problematic in maintaining bifunctionality, as methanol could escape from

the core without being dehydrated to DME. The well connected core-shell interface is therefore

a desirable feature. Due to the application of BSE contrast, which is especially sensitive to

changes in the atomic number (Z) of a material, the inhomogeneous nature of the core can be

observed, revealing irregularly distributed high Z-material as well as large pores (up to 5 µm).

Fig. 12.2 shows STEM-HAADF images the core-shell interface of a well intergrown part. In

particular panel b shows that the shell is intergrown with the core material, revealing a complete

coverage of needle shaped core material by the zeolite shell.

Figure 12.1: SEM images of a cross section recorded at 5 kV in BSE contrast revealing the core-shell
structure of the as-prepared catalyst material. a) overview image, b) zoom into the violet marked area
in panel a) revealing a non-connected part of the shell, c) zoom into the blue marked area in panel a)
revealing the stable connection of the core and the shell.

Figure 12.2: STEM-HAADF images of the core-shell interface of a thin section of the catalyst grain,
revealing the stable connection of the core and the shell on the a) micrometer and b) and c) nanometer
length scale; b) shows the area of the violet box and c) the area inside the blue box presented in panel a).
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To study the stability of the core-shell interface during activation under model gas conditions,

an approximately 100 nm thick core-shell interface, as depicted in Fig. 12.2, was studied during

reduction (H2, 1.1 mbar) and during reoxidation (O2, 3.2 mbar) with ETEM. Redox treatments

were conducted at 250 °C. Fig. 12.3 shows three STEM-HAADF images from the core shell

interface (top) and corresponding EELS spectra on the core area (bottom). In the top row the

interface between the bright core on the right and the darker shell on the left of the images is vis-

ible. Fig. 12.3b shows a darker area in the center of the image compared to the as-prepared and

reoxidized sample depicted Fig. 12.3a or c, respectively. This observation is in agreement with

the expected shrinkage of CuO particles on reduction to metallic Cu [29]. Upon reoxidation the

particle size apparently increased again, revealing a brighter center of the image, although the

Cu containing phases appear less defined. Notably, the core-shell interface remained unchanged

during redox treatment. In addition to the imaging during redox treatment, EELS analysis was

performed to determine the oxidation state of the sample in a qualitative manner, due to lim-

itations in sample thickness. The decrease in the characteristic Cu L2,3 edges for CuO from

Fig. 12.3a to b indicates successful reduction of the sample by treatment in H2. Reoxidation

was indicated by an expected increase in the white line intensity (Fig. 12.3c).

Figure 12.3: a) STEM images and EELS spectra: a) as-prepared catalyst studied at RT in H2 by ETEM,
b) catalyst under reducing conditions at 250 °C in 1.1 mbar of H2, c) catalyst under oxidizing conditions
at 250 °C in 3.2 mbar of O2.
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Fig. 12.4 shows the core-shell interface region during the same treatment at higher spatial res-

olution. Changes with respect to the image under previous conditions are highlighted by red

arrows. In accordance with the behavior observed in Fig. 12.3, the Cu containing core particles

became more separated and defined with longer interparticle distances on the nanometer scale

during reduction, possibly due to the volume decrease of Cu particles formed from CuO. After

reoxidation, the area occupied by Cu containing material increased again, the interparticle pores

between the particles decreased and the particles became less defined. This indicates restruc-

turing by oxidation and associated volume increase of the 5 to 20 nm particles. Despite these

apparent changes in the core structure, the core-shell interface on the 500 nm to 1 µm length

scale once more remained stable and the shell area did not show significant differences on this

length scale. This might be explained by the thermal stability of the zeolite and the inertness

to redox conditions. In addition, the porosity of the core material may allow changes in the

core region on the 10 nm length scale without affecting the shell. However, it should be noted,

that real core@shell particles with a spherical shape may behave differently than the slice of the

core-shell interface studied here, which resulted from the sample preparation procedure. There-

fore, further studies using the whole 3D particle non-invasively should be performed, which is

not feasible by in situ electron microscopy.

Figure 12.4: STEM images: a) as-prepared catalyst studied at RT in H2 by ETEM, b) catalyst under
reducing conditions at 250 °C in 1.1 mbar of H2 , c) catalyst under oxidizing conditions at 250 °C in
3.2 mbar of O2.
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12.3.2 In Situ Ptychography

To extend the hierarchical approach of catalyst characterization and to follow reductive activa-

tion, a core-shell interface was additionally studied during the corresponding redox treatments

under ambient pressure using in situ ptychography. Thanks to the higher penetration depth of

hard X-rays, a thicker sample (approximately 300 to 400 nm) could be used. Before and after

the treatment, BSE-SEM images were acquired to provide correlative information. Phase con-

trast images obtained during in situ ptychography at different temperatures, along with inverted

BSE-SEM images under vacuum conditions before and after in situ treatment are depicted in

Fig. 12.5. Changes with respect to the previous image are highlighted by black arrows, while

blue arrows are used to mark the same positions in the sample. The sample itself was placed

on a E-ChipTM, which contains electron transparent “holes” only covered by an approximately

50 nm thick Si3N4 membrane. The studied interface was placed on top of one of these holes,

which can be seen in the ptychographic images by the round scheme above the blue arrow, in-

dicating the border of the hole.

According to the series of phase contrast images gained by ptychography the catalyst remained

unchanged up to 250 °C in both reducing and oxidizing atmosphere. Although previous TEM

analysis showed small changes in the core material, they cannot be resolved by in situ ptycho-

graphy at the current resolution limit, but support the ETEM results on the 100 nm thick sample.

However, when the temperature was increased to 350 °C, in situ ptychography revealed visible

changes in the core material, as highlighted by black arrows. Upon moving from reducing to

oxidizing atmosphere at 350 °C, further changes seem to occur, including visible darkening of

certain areas and a possible migration of material (blue arrow). Some reconstruction artifacts

were also observed at the right edge of the frame, which produce an “out of focus appearance”.

It should be noted that the image quality is somewhat limited compared to electron microscopy,

although images were recorded at 350 °C and at ambient pressure. However, this should be bal-

anced against the possibility to obtain images at more realistic environmental conditions than it

is possible in conventional ETEM and particularly on a sample which is thicker and therefore

more closely resembles a volume of the actual catalyst.

Complementary SEM and SEM-EDX analysis revealed changes within the core and the shell

material, as indicated in Fig. 12.6 and Fig. 12.7. Fig. 12.6a and b show the BSE-SEM images

before and after in situ ptychography. Blue horizontal lines, as well as light blue and red arrows,

indicate the same sample positions before and after treatment. Fig. 12.7 shows the BSE-SEM

image after the treatment and the EDX maps for Cu, Al, Si and Pt.
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By comparison of Fig. 12.6a and b with Fig. 12.7b, it can be seen that the Cu containing ma-

terial of the core could be localized at a different position after the treatment. Furthermore, the

bright “dots” distributed all over the BSE-SEM image after the treatment could be related to

platinum, as shown in Fig. 12.7d. In fact, the platinum used for fixation of the sample on the

Protochips E-ChipTM, was unstable during the reaction treatment and was therefore deposited

in the neighboring area.

Figure 12.5: Top: Phase contrast images obtained by in situ ptychography under different gas atmo-
spheres and at different temperatures. Black arrows indicate changes, while blue arrows mark the same
position on the sample. Bottom: Inverted BSE-SEM images showing material with a high atomic num-
ber as darker areas. The BSE-SEM images were recorded ex situ before and after the in situ ptychogra-
phy treatment of the sample.

Figure 12.6: BSE-SEM image a) before and b) after the in situ ptychography treatment with arrows
pointing to the same positions and lines for orientation.
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Figure 12.7: a) BSE-SEM image of the sample after the in situ treatment and EDX maps for b) Cu, c)
Al, d) Si and e) Pt.

By SEM-EDX analysis (Fig. 12.7), it was confirmed that the dark areas indicated by green

arrows in Fig. 12.5 contained Cu. As expected from STEM studies, this material should be re-

duced during H2 treatment and subsequently reoxidized under O2, but as indicated in Fig. 12.4,

the changes were only visible on a small length scale. However, here under ambient pressure

using a thicker sample, a change on micrometer length scale was observed. This can be either

related to the pressure, the sample thickness, or the higher temperature applied in comparison to

the treatment in the ETEM. By comparing the phase contrast images in the top row of Fig. 12.5

showing the electron density along the transmitted sample volume with the inverted BSE-SEM

images depicted in the bottom row of Fig. 12.5 (or Figure 12.6), it is evident that the different

contrast mechanisms from BSE-SEM and ptychography reveal complementary information on

both the bulk material and the surface, respectively. With ptychography, changes unrelated to

Cu containing areas in the core were observed. The blue arrow points to an area with a high

electron density in the ptychographic images, while this area is not clearly visible in the BSE-

SEM images. Therefore, it cannot be related to a high Z-species, but might result from thicker

or more densely packed material. With the application of complementary EDX analysis, this

part of the sample could be attributed to Si (Fig. 12.7). In fact, the observed changes in this

material mean that during in situ treatment at 350 °C not only the Cu containing material is

affected but also other regions of the core-shell structure. In this case, parts of the Si containing

shell seemed to be changed. However, as depicted in Fig. 12.5 and Fig. 12.6, the overall core

shell interface itself remained stable, which is critical to maintaining catalyst bifunctionality.

The obtained results therefore suggest a behavior schematically shown in Fig. 12.8 which may

be further elaborated by future studies. At 250 °C changes mainly occur on the nanometer scale,

as observed by TEM and in agreement with earlier work in literature [29, 30, 302]. Accord-

ing to the ETEM and X-ray microscopy results this does not visibly influence the mesoscopic

structure and only increases the interparticle distances on the nm scale.
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Figure 12.8: Model of the hierarchically designed core shell particle showing a) the shrinkage of the
core assuming a simple model consisting of a CuO core and a zeolite shell; b) the observed behavior of
the catalyst on the macro, meso and nano scale.

Under these conditions the bifunctional catalyst remains fully intact on the µm scale. However,

at 350 °C changes which influenced the mesoscopic structure of the catalyst were also observed.

This might be related to more extensive volume changes caused by reduction/reoxidation or

even sintering of the Cu/ZnO particles. Although the overall core-shell interface still remained

unaffected on the µm scale, as illustrated in Fig. 12.8b. These first changes indicate that the tem-

perature applied might be critical to the catalyst macrostructure and that reductive activation of

the catalyst should be performed carefully at low temperatures. This information is crucial for

hybrid catalysts as it will influence the surface reactions that take place on the Cu nanoparti-

cles in the core and the heat/mass transport effects which play a role on the micrometer scale,

i. e. diffusion and reaction in the acidic zeolite [2, 8, 10].

The present study indicates the importance of studying hierarchically designed bifunctional

catalysts at different length scales in situ and the potential value of complementary electron mi-

croscopy and hard X-ray ptychography. Although the complementarity of X-ray and electron

microscopy has often been discussed [2, 24, 32, 51, 102, 298], the methods were only rarely

applied to study the same catalytic system [23] or even the same catalyst samples [229, 301].

In particular, complementary in situ studies on the same catalytic systems are missing, since

this requires the design of special in situ cells and careful sample preparation. Nevertheless, in

situ or quasi in situ studies are important to draw more solid conclusions, as the statistics would

be limited in multi-scale approaches based on ex situ studies [196]. While ETEM can give in-

formation on the structural changes on the nanoscale, SEM and X-ray microscopy can probe

larger areas. SEM is more surface sensitive and in combination with backscattering contrast
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strongly sensitive to the atomic number. Ptychography on the other hand offers information on

the electron density along the transmitted beam path through the sample, similar to TEM.

To estimate the spatial resolution, a Fourier Ring Correlation (FRC) analysis was performed

[264], which is depicted in Fig. 12.9. The intersection of the FRC with the 1/2-bit threshold

curve indicates a spatial resolution of 28 nm. For such thick samples, the resolution obtained

by ptychography is similar to the one obtained by TEM, but is seems as if a higher contrast can

be achieved by ptychography (c. f. Fig. 12.10). Hard X-ray ptychography furthermore allows

combination with resonant measurements to provide chemical contrast [58, 128].

Figure 12.9: FRC plot to estimate the spatial resolution derived by in situ ptychography at RT while
probing with a photon energy of 9032 eV.

Fig. 12.10 shows a BF-TEM image and phase contrast images obtained by in situ ptychogra-

phy at different energies. The core-shell interface of a different sample was studied, but the

samples were prepared identically and obtained from the same thin section of the catalyst grain.

The phase contrast images are shown for different energies below, on and above the Cu K-edge,

to relate to a Cu sensitivity. However, by visual evaluation, no differences, apart from a recon-

struction artifact (shown by the blue box) at 25 °C at 9032 eV, could be detected.

Alternatively to the combination of in situ ptychography with resonant measurements, as de-

picted in Fig. 12.4, TEM analysis offers information with high resolution, which can also be

combined with spectroscopy (EDX or EELS) and diffraction (Selected Angle Electron Diffrac-

tion, SAED). Nevertheless, for 3D samples studied by 2D transmission imaging, it has to be

taken into account that only projections of the electron density are obtained, which requires the

need for non-invasive tomographic studies to obtain 3D information [91, 124, 299, 303].
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Figure 12.10: Comparison of a TEM image of the core-shell interface of the studied catalyst studied at
RT under vacuum conditions before the in situ treatment with the phase contrast images recorded at 25 °C
in He and 250 °C in H2 atmosphere. The phase contrast images are depicted at 25 °C in the top row and
at 250 °C in the bottom row, using a photon energy of 8920 eV before the Cu K-edge, 8980 eV around
the edge and 9032 eV above the edge. An area showing a reconstruction artifact in the measurement at
25 °C in He at 9032 eV is shown by a blue box.

The combination of these approaches, i. e. in situ hard X-ray ptychography and ETEM analysis,

allows complementary information to be obtained on hierarchically designed structures, which

should further be combined with in situ tomographic imaging [88] for a holistic understanding

of the overall structure. The multi-scale in situ imaging approach pioneered here for assessing

the stability of structure-dependent materials such as hierarchically designed core-shell catalysts

should be furthered, as it will also be excellently suited for investigating related questions: for

example the stability of nanoparticles in fluidized bed reactors [22, 140, 148], the structure

and homogeneity of shell impregnated catalysts [304], structural and compositional changes in

bifunctional Fischer-Tropsch catalysts [143] and other core-shell catalysts [305, 306]. In all

these examples, the structure and stability of the catalyst is critically related to the function and

a hierarchical in situ characterization at various length scales and under steadily more realistic

conditions is expected to become more important in the near future.
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12.4 Conclusion

In the present work, the complementary use of in situ hard X-ray ptychography and electron

microscopy was evaluated to study the stability of a core-shell catalyst in a hierarchical manner

at different length scales. Both activation in hydrogen atmosphere and reoxidation under syn-

thetic air were selected as model conditions for this first case study. ETEM for a thin section

of the catalyst under reduced pressure revealed a stable core-shell interface at 250 °C, although

reduction of the Cu containing core material led to a shrinkage of the particles on the nanome-

ter scale. Complementary in situ ptychography allowed studying the system not only under

model conditions, but also at atmospheric pressure and on a thicker sample. Whereas at 250 °C

the core-shell interface was found to be stable, further heating to 350 °C indicated microscopic

changes on the micrometer scale. According to complementary SEM-EDX analysis, not only

the Cu containing core material was affected by the treatment, but also parts of the shell material

were rearranged. Despite strong changes in the core material, the overall core-shell interface

of the catalyst remained stable, which is critical to maintain the bifunctional operation of such

catalysts.

The results obtained in this study support that complementary information from electron mi-

croscopy and X-ray microscopy can be used to study working catalytic systems, covering dif-

ferent length scales and different pressure regimes. In situ ptychography with better than 30 nm

spatial resolution can now start to bridge the gap between high-resolution TEM under ideal-

ized conditions and hard X-ray imaging techniques under more realistic conditions, although

simpler sample preparation and improved in situ cells are still areas which require further devel-

opment. In future, such studies should be performed non-destructively on sections and complete

core-shell particles by tomography to fully support the so-called product design of catalysts in

chemical engineering.
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13 Design of an Improved In Situ Cell for
Ptychography

The results presented in the previous chapters were obtained with the in situ cell developed by

Ass. Prof. Dr. Christian Damsgaard in collaboration with KIT and DTU. However, this cell

design is not perfectly suited for studying catalytic reactions. In particular, the gas volume of

approximately 500 mm3 is considerably too big to carry out sensitive measurements on sample

amounts in the nanogram range. In addition, its bulky layout compared to a thin TEM heating

chip does not allow for parallel recording of fluorescence radiation. Therefore, a more compact

cell suitable for following the conversion of reactants during catalytic reactions and for sufficient

XRF contrast was developed at KIT with a considerable smaller gas volume of approximately

1 mm3. Furthermore, the small dimensions of the cell also show the potential to obtain 3D

images by tilting the sample. Within this work however, only preliminary tests have been carried

out on this cell.

13.1 Design of the Cell

A schematic drawing and a photograph of the cell are given in Fig. 13.1. Similar to the cell

presented in section 10.1, the new cell is composed of a cell body with a TEM compatible

heating chip (green label) and features both integrated gas (red label) and electrical (purple

label) connections. The electrical contact is obtained by placing a circuit board on top of

the chip. The latter is built of a 25 µm thick Kapton® foil with electrical contacts made of

12 µm thick Cu, covered by 4 µm Ni and 0.5 µm Au. Additionally, balls made of Au (diame-

ter × height = 50 µm × 15 µm) are placed in the center of the contacts. For insulation, another

Kapton® foil is added on top, which is used as a X-ray window. A second Kapton® foil is glued

on the bottom of the plate for sealing of the cell. Mechanical stability is achieved by embedding

the shown stack between a bottom and a top plate of 1.9 mm and 1.0 mm thickness respectively.

The cell can be conveniently mounted on X-ray microscopy stages with a pin (diameter = 3 mm)

at the top plate. X-rays can reach the sample within the cell body through holes in the bottom

(center) and top (slit) plate since the sealing Kapton® foils are highly transparent towards hard

X-rays. As labeled in Fig. 13.1b, the slit in the top plate is also intended to enable the detection

of fluorescence radiation.
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Figure 13.1: a) Schematic drawing (explosion) of the new cell, b) photograph of the mounted cell without
connecting the circuit board to the power supply.

Before a series of measurements, the cell has to be prepared in the following way: the sample

is placed on the backside of the heating chips, i. e. on the backside of the electrical contacts.

Subsequently, the chip is put on top of an O-ring with the backside facing the bottom of the cell

and the circuit board is placed on top of it, together with the other Kapton® foil and the top

plate for closing. A detailed design of the bottom plate, fabricated by 3D printing (Layerwise,

Leuven) of stainless steel, is presented in Fig. 13.2. Besides the X-ray window in the center, in

particular the embedded gas channels can be seen. The achieved gas volume above the sample

is approximately 1 mm3. The size of the gas channels (ID = 250 µm) was chosen as small as

possible within limitations of the fabrication process. Both inlet and outlet channel are split, as

depicted in Fig. 13.2a, into two symmetric channels which are both bent, as shown in Fig. 13.2b.

In this way the gas flow is directed onto the sample.

Figure 13.2: Schematic drawings of the bottom plate highlighting the channel geometry. a) View diago-
nally from above facing the bottom of the cell and b) cut away along line A-A.
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The main two advantages of this new cell design are the smaller gas volume and the smaller

overall size. The latter enables easier positioning of the cell within the X-ray microscopes

since the smaller size enables using optical microscopes providing a higher magnification. A

novelty compared to the DTU cell is the fluorescence radiation window which will not only

allow to acquire fluorescence maps and ptychographic data simultaneously, but will also further

simplify the sample alignment. Furthermore, the cell has the potential to be tilted to perform

tomographic studies.

13.2 Preliminary Tests

In this work, the principle applicability of the presented cell is demonstrated by evaluating its

heating capability. The temperature within the cell is again controlled by resistive heating. In

contrast to the Protochips E-ChipsTM described in section 10.1, the new chips based on heat-

ing chips from DENSsolutions (Delft, Netherlands) apply 4 probe heating [307], not 2 probe

heating (c. f. the four contact pads in Fig. 13.3a). An optical micrograph of a DENSsolutions

compatible heating chip is presented in Fig. 13.3a. The central spiral shaped heater (red box)

is designed to enable uniform heating within the covered area [92, 308]. The four contact pads

enable a precise measurement of the resistance of the heater geometry (4-point measurement),

in parallel to resistive heating. Thus, potentially a direct evaluation of the temperature via the

thermoresistive effect can be obtained. The heating inside the cell was evaluated by applying

different heating powers via a Keithley 6220 DC power supply connected to the circuit board

and a simultaneous temperature measurement with IR thermography. An exemplary thermo-

gram, recorded at a heating power of 51.5 mW, is depicted in Fig. 13.3b. It can be clearly

seen that above the heater geometry (depicted circle) and thus the sample area, a uniform tem-

perature distribution (average temperature of 236 °C) is achieved. In Fig. 13.3c, the obtained

average temperatures within this area are plotted versus the applied heating powers. Clearly, a

linear relationship is observed. In the future, convenient control of the temperature within the

cell is therefore possible without additional IR thermography by using the obtained relation-

ship between temperature and heating power. This is also better suited for the application as a

standard in situ cell at synchrotron radiation sources.
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Figure 13.3: a) Optical micrograph of the DENSsolutions based TEM heating chips [92, 308], b) IR
thermogram of the heated area of the cell recorded during application of a heating power of 51.5 mW, c)
IR thermography based calibration of the temperature dependent on the heating power.

For further evaluation of the cell, the tightness has to be examined by measuring different gas

flows either through bypass or through the cell. Yet, the connection of the capillaries to the

gas inlet and outlet, which is realized by glueing the capillaries on the outside, has not been

optimized so far. Eventually, X-ray microscopy studies have to be carried out to finally evaluate

the capability of the cell, in particular its stability and the influence of the new Kapton® window

on the image quality. However, due to the similarity to the cell built at DTU in a collaboration,

major problems with respect to the application in microscopy are not expected.

It is expected that the considerable reduction of the gas volume will enable probing the catalytic

conversion within the presented cell. In the future, the gas volume could potentially be further

reduced by developing a closed chip similar to those used for closed cell TEM approaches

[50] or STXM [108]. This would be advantageous for determinations of catalytic activity,

but sample preparation by FIB micromanipulation would be significantly more difficult with a

closed chip.
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In the previous chapters, different aspects required to further improve in situ microscopy tech-

niques on the length scale of 20 – 500 nm were highlighted by the demonstration of the ap-

plication of in situ hard X-ray ptychography. This technique is especially promising to study

the meso scale of catalysts under realistic conditions, allowing information about transport pro-

cesses and hierarchically structured catalysts. In the following section, the different aspects

highlighted in the context of this work are summarized and considerations for future improve-

ments are discussed.

14.1 Technical Achievements

Development of In Situ Cells The results presented above show the applicability of hard

X-ray ptychography for studying heterogeneous catalysts under in situ conditions. Two dif-

ferent cells based on TEM heating chips were presented, which differ mostly by their size.

Both cells were successfully electrically connected to TEM heating chips. These chips, made

for electron microscopy at controllable temperature, enable resistive heating inside the in situ

ptychography cell and allow for complementary electron microscopy measurements. The in

situ setup was developed in the framework of a BMBF-funded project for development of user

infrastructure for the X-ray microscopy beamline P06 at PETRA III. Hence, it will be available

for future users in Hamburg.

The big cell built in a joint collaboration between KIT and DTU was extensively studied during

in situ thermal annealing of Au nanoparticles, np-Au and CuO/ZnO/Al2O3@ZSM–5, while the

smaller one developed at KIT has only been used for preliminary tests so far. However, the

small one promises to be applicable for on-line detection of reactants and to follow the catalytic

conversion. These possibilities have to be confirmed in future tests and first in situ ptychogra-

phy measurements have to be performed. Furthermore, this small cell has the potential to be

used for tomographic investigations by tilting the cell under different tilting angles instead of

rotating it for 3D image acquisition.
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For future studies, the focus should be put on the development of cells with an even smaller gas

volume. These can be realized by closed cell approaches similar to ETEM and will facilitate

on-line detection of reactants as well as widen the maximal tilting angle for 3D imaging. In

addition, cells allowing for 3D image acquisition by rotation should be developed, such that

tomographic in situ ptychography studies will become available. These will enable non-invasive

studies of the 3D structure of catalysts on the meso scale under in situ conditions, which is

highly desirable for bridging TEM tomography under model conditions with X-ray tomography

on the micrometer scale under more realistic conditions.

Combination with IR Thermography Aside from the developments of the two cells, it was

shown that IR thermography can be applied to both cells. It can be used for temperature de-

termination in a gas environment through a Kapton® foil and it works without preliminary

calibration of the chip. Furthermore, it allows for spatially resolved temperature measurements

under reaction conditions, which is crucial when exothermic reactions are studied [40, 72].

Spatial Resolution during In Situ Ptychography With the first in situ cell a spatial resolu-

tion up to 20 nm could be achieved during in situ ptychography measurements on 100 nm thick

np-Au. This resolution was significantly better than the highest one reported for in situ ptycho-

graphy in literature [132]. Moreover, a similar resolution like the one obtained by TEM could

be achieved for a 300-400 nm thick CuO/ZnO/Al2O3@ZSM–5 section, but with a higher and

different contrast. Due to the application of a lensless technique based on the interaction with

the coherent beam, even higher spatial resolutions should be possible in future. To achieve this,

the signal-to-noise ratio has to be improved, i. e. by reduction of parasitic scattering from the

environment, but also by a more stable sample environment un-affected by vibrations, which

can be obtained e. g. by active damping solutions. Therefore, apart from the increase of bril-

liance in fourth generation synchrotron radiation sources, like MAX IV [226] or the planned

PETRA IV [225], an improvement on the X-ray microscopes themselves and on the cells used

for in situ studies can lead to higher spatial resolution.

Resonant Ptychography Hard X-ray ptychography offers the possibility to be combined with

fluorescence contrast by STXM, and with XAS by resonant ptychography. However, the latter

remains challenging. In this work, no further information could be obtained from visible com-

parisons of phase contrast images obtained at different energies. Nevertheless, literature studies

[58, 128, 129] show that chemical contrast can be achieved. In future attempts, resonant in situ

ptychography should therefore be used on real catalyst samples.
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Complementary Hard X-ray Ptychography and Electron Microscopy The complemen-

tary use of hard X-ray ptychography and EM was presented in this work by highlighting the

good agreement of samples studied with both techniques by performing EM images before and

after in situ ptychography. Furthermore, the different contrast mechanisms were discussed. For

future studies, this complementary character should be exploited even more, i. e. by improve-

ment of the transfer of the sample from one microscope to the other under inert conditions.

14.2 Catalytic Systems

The application of in situ hard X-ray ptychography was demonstrated on different catalytic sys-

tems, for which a spatial resolution of 10 nm to 1 µm is relevant. The annealing of np-Au based

catalysts, in particular of np-Au and CeO2/np-Au, was studied in different atmospheres and

pressures. Therefore the complementary approaches of in situ ptychography and EM were

used. It could be shown that the coarsening of np-Au strongly depends on the atmosphere and

annealing conditions, whereas the pressure did not seem to affect the behavior. The studies

highlighted that in situ microscopic studies under realistic conditions are crucial to draw con-

clusions on the growth mechanisms of np-Au based catalysts.

Furthermore, a bifunctional CuO/ZnO/Al2O3@ZSM–5 catalyst was examined to study the

stability of the core-shell interface during redox treatment. The complementary approach of

electron microscopy and in situ ptychography showed that the catalyst structure remained un-

changed at 250 °C, although changes on the nano scale occurred in the core, as observed by

ETEM. At higher temperature changes even on the micro scale could be detected, while the

overall stability of the core-shell catalyst remained, which is crucial for catalytic applications.

By the combination of both methods, different pressure ranges could be covered and in situ

ptychography offered the study during more realistic conditions, although the resolution was

lower. Therefore, this work revealed the necessity for the application of complementary tech-

niques. It furthermore showed the potential for such hierarchically performed studies of hetero-

geneous catalysts under real conditions, which will also be interesting for other heterogeneous

catalysts [22, 140, 143, 148, 304–306].

Nevertheless, the samples studied in the this work were 3D samples, which were studied in

transmission geometry resulting in a projected image. Therefore, the images show the electron

density of the sample along the complete path probed by the X-ray beam. For a more reliable

reconstruction of thick 3D materials, structure determination can only be performed reliably by

tomographic data acquisition [303, 309, 310]. For in situ ptychography, however, this is not go-

ing to be possible until the necessary infrastructure for such experiments has been further devel-

oped. Despite these drawbacks, for thin samples like they were used in the study of np-Au based
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catalysts, the projected image results in sufficient contrast and gives insight into the structure

of the studied np-Au based samples. Also for the thicker CuO/ZnO/Al2O3@ZSM–5 samples,

sufficient contrast and a similar resolution to TEM could be obtained by in situ ptychography.

However, one of the advantages of hard X-ray ptychography in contrast to TEM is the high pen-

etration depth of X-rays, which will be a benefit for future 3D experiments and allows probing

of more realistic samples.

To conclude, the application of in situ hard X-ray ptychography demonstrates the potential of

this technique for applications in catalysis and material science. Furthermore, it shows that

such in situ cells are attractive tools for a hard X-ray microscopy beamline, since these cells

can be now applied by other users from different scientific fields. These can include catalysis,

energy storage materials or other functional solid materials, where hierarchically designed sam-

ples play an important role. Characterization on these materials will therefore allow studying

the structure and stability and the obtained knowledge can be used for optimization processes,

e. g. by modeling and experimental improvement of the materials.
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In this work both complementary characterization techniques and hierarchical imaging ap-

proaches were further developed and applied to in situ characterization of heterogeneous ca-

talysts. For this purpose, novel reactors specifically designed and optimized for complementary

approaches were developed and tested. The presented experimental results obtained with these

reactors already demonstrate the benefits of these complementary in situ techniques compared

to standard ex situ methods, to develop an actual understanding of chemical reactions within

a reactor. The results pave the way to a better understanding of heterogenous catalysts under

realistic conditions and will help to establish these techniques within the synchrotron radiation

community such that in the future also other experimentalists can use them conveniently. In fact,

the presented reactors were developed in the framework of projects dedicated to the implemen-

tation of a user interface at the P06 beamline at PETRA III. Hence, the reactors will be available

for other users in future. The work was divided into two different topics and size ranges: a) The

structure of catalysts in a reactor was studied with complementary characterization techniques

on the micrometer scale. For this purpose, a special silicon-based gas phase microreactor was

used and further optimized. b) For the investigation on the nano and meso scale, special cells

suitable for complementary hard X-ray in situ microscopy, especially ptychography, and elec-

tron microscopy, were developed and evaluated. Both approaches were treated independently

from each other. However, the importance of correlating these techniques was highlighted.

Gas Phase Microreactor The design and application of a silicon-based gas phase micro-

reactor, especially the improvements obtained by the introduction of a second generation of

this reactor, were presented. In particular, a second generation of microreactors was developed

to overcome the poor temperature homogeneity along the catalytic bed and the high tempera-

ture instability (evolution of diffraction signals above 500 °C) of the first generation. For this

purpose, in this second generation the heater geometry was better adjusted to the geometry of

the cell. The improved temperature homogeneity within the catalyst bed of 8 mm length was

verified within a series of IR thermography measurements. Besides the original microreactor

composition where the silicon reactor was sealed with borosilicate glass, an additional reactor

completely composed of silicon was developed to solve the high temperature instability which

originated from the borosilicate glass.

The applicability of the developed cells for correlative in situ characterization was demonstrated

within several experiments using various characterization techniques. In particular, the appli-

cation of XAS and XRD revealed the distortion free application of the reactor for both tech-

niques, which was studied in comparison to conventional capillary reactors. For XAS, it was

tested on a 2.5 wt.% Rh-2.5 wt.% Pd/γ-Al2O3 sample, while for XRD, a LaB6 sample and a
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5 wt. % Pt/γ-Al2O3 catalyst were studied. Additionally, Raman spectroscopy and Raman spec-

tromicroscopy on H2PtCl6 and PtO2 were performed to show the compatibility of the Si-glass

microreactor with Raman spectroscopy. Furthermore, the cells are also compatible with IR ther-

mography which enables spatially resolved monitoring of the temperature within the cell. In

this way, temperature gradients during the CPO of methane could be analyzed. Finally, on-line

gas analysis by mass spectrometry at the outlet of the reactor allowed correlation of the spec-

troscopic results with the catalytic reaction process.

The reactor was used to study the ignition and extinction of the CPO of methane, using a

4 wt.% Pt/γ-Al2O3 catalyst. Similar results to those presented in literature in conventional reac-

tors were obtained. In particular, a gradient in oxidation state and temperature could be observed

during ignition and extinction, which moved along the catalytic bed with changing temperature,

as observed in conventional reactors. Additionally, the microreactor has a strong potential for

application during transient reaction conditions as shown during the SCR of NOx by NH3 over

Cu-zeolites. The fast heating and cooling capabilities, which microreactors exhibit intrinsically

due to their low heat capacity, were exploited for the first operando QEXAFS study during the

transient temperature conditions of a New European Driving Cycle. The latter requires high

heating and cooling rates (300 °C/min) and is therefore limited to special engine test benches,

which do not allow simultaneous in situ spectroscopic characterization. The required heating

and cooling rates could be provided by the reactor. Both the N2 partial pressure as well as the

coordination number of Cu followed the temperature ramps. These results highlight the unique

possibilities of such microreactors for the application during transient reaction conditions.

In future, the reactor will help, due to its unique capabilities for studying transient effects, to

gain a deeper understanding of other catalytic reactions, such as the CO or hydrocarbon oxida-

tion during driving cycles. With its unique heating and cooling capabilities, it especially has a

strong potential for application in exhaust gas catalysis, supporting the development of better

catalysts to reduce air pollution. Further improvement of the reactor will help to increase the

image quality, which will be necessary for future applications in X-ray microscopy. In partic-

ular, for future generations of the reactor, the X-ray window which is used to obtain a higher

transmission of X-rays, should cover the whole catalytic bed and the temperature sensor should

be shifted in position, such that it is placed directly next to the catalyst bed, instead of on top of

it. Both actions will facilitate spatially resolved measurements on the very end of the catalytic

bed. Moreover, different materials like aluminium oxynitride or pyrolytic graphite could be

considered as reactor materials. Furthermore, due to the modular design of the setup, other mi-

croreactors optimized for different spectroscopic or scattering techniques, can be developed and

used inside the present setup. The latter aspect is especially beneficial, since the present setup

is user-friendly and, due to its small size, facilitates measurements at various beamlines.
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Combination of Electron Microscopy and X-ray Microscopy The second topic studied in

this work is the complementary application of X-ray microscopy, especially ptychography, and

electron microscopy. In this work, two cells available for in situ ptychography are presented.

They build a good basis for a future in situ platform for users at the P06 hard X-ray microscopy

beamline at PETRA III. One cell was fabricated at DTU and intensively studied in the context

of this work; the other cell was developed at KIT and only preliminary tests were performed

so far. The cell built at DTU exhibits a bigger gas volume, such that it is not possible to fol-

low catalytic conversion during the treatment. Additionally, the relatively big dimensions did

not allow recording X-ray fluorescence data in parallel to ptychographic data acquisition. Both

drawbacks were addressed in the new cell designed at KIT. Both cells presented based on simi-

lar ones in electron microscopy. They are significantly smaller, lighter and gas tight, in contrast

to previously used cells in literature, which facilitates experimental application and also enables

working with hazardous gases.

A benchmark of the quality of ptychographic imaging is the obtained spatial resolution. Al-

ready in the first proof of principle measurements performed on 50 nm gold nanoparticles,

a spatial resolution below 100 nm could be achieved. In later experiments using an opti-

mized measurement setup, the resolution could be further improved to approximately 40 nm

on nanoporous gold, outmatching the previously best spatial resolution for in situ ptychogra-

phy of 100 to 200 nm reported in literature so far. Nevertheless, in a later experiment even

20 nm resolution was obtained on nanoporous gold-based catalysts. For a 300-400 nm thick

CuO/ZnO/Al2O3@ZSM–5 section, a comparable resolution, but at the same time a higher con-

trast compared to TEM measurements, was achieved. In future, the resolution can even be

further enhanced by improving the signal-to-noise ratio, e. g. by reduction of parasitic scatter-

ing from the environment, an active damping mechanism inside the microscope improving the

mechanical stability of the sample environment and reducing vibrations, and by an increase of

brilliance of the synchrotron radiation sources and therefore an increase of the coherent beam

fraction. The latter aspect is considered in new fourth generation synchrotron radiation facili-

ties, e. g. PETRA IV, MAX IV, SLS 2, or Sirius.

Within this work it was also demonstrated that the cell enables spatially resolved temperature

monitoring, carried out by IR thermography directly under in situ conditions. On one hand this

enables a precise control of the temperature, which is particularly important when the samples

are studied inside certain gas atmospheres, but on the other hand it also offers to monitor temper-

ature variations across the studied catalyst, which can be encountered in exothermic reactions.

The acquisition of ptychographic measurements around an absorption edge during in situ treat-

ment was also tested in this work, but by visible comparison no differences were observed.

Although, the combination of XAS and ptychography is of great importance and previous stud-

ies in literature showed the potential for ptychography with chemical contrast. Therefore, the
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combination of both methods should be furthered, which mainly requires an optimization of

the algorithms. The unique possibility to perform complementary EM and X-ray microscopy

on the same sample is obtained since both cells are based on TEM heating chips. Both chips

can be used inside the TEM before and after in situ ptychography, allowing studying the same

sample under different pressure regimes. Furthermore, by combination of SEM with secondary

electron contrast and in situ ptychography also thicker samples can be studied allowing comple-

mentary contrast mechanisms, by either probing more the bulk material or the surface. The good

agreement of in situ ptychography with the EM of the sample studied before and after in situ

ptychography treatment was also shown in the context of this work. Therefore, the possibility

for the application of complementary techniques and the potential for hierarchically performed

studies of heterogeneous catalysts was presented. Since this will also be interesting for other

heterogeneous catalysts, such as for hierarchically designed core-shell catalysts, further stud-

ies on hierarchically designed catalysts, which requires correlative characterization on different

length scales, should be performed in future.

Both, complementary (E)TEM and in situ hard X-ray ptychography were used to study the

thermal annealing of nanoporous-Au and CeO2/nanoporous-Au in different gas atmospheres.

Measurements were performed in vacuum inside the TEM, under O2 atmosphere of reduced

pressure in the ETEM and under O2/He and O2/N2 by in situ ptychography. The study demon-

strated that annealing of nanoporous-Au based samples is strongly dependent on the gas atmo-

sphere. In vacuum, nanoporous-Au was stable up to 700-800 °C, but showed a material loss

or migration afterwards. Contrarily, around 200-300 °C a coarsening was observed in an O2

atmosphere in the mbar regime and in O2/N2 atmosphere at ambient pressure. However, around

300 °C in O2/He a similar material loss to the one observed in vacuum at approximately 800 °C

was observed. Due to the strong dependency on the gas atmosphere and the observed material

loss or migration, the results point out that besides surface diffusion also other mechanisms

must contribute to coarsening. This is similar to discussions on the growth mechanisms of

nanoparticles, i. e. particle migration, coalescence or Ostwald ripening. They also depend on

the support or the gas atmosphere. Finally, nanoporous-Au and CeO2/nanoporous-Au showed a

comparable behavior in the different atmospheres, but CeO2/np-Au was stabilized, as indicated

by the onset of changes at higher temperatures.

To understand the underlying coarsening mechanisms, further studies on the annealing of such

nanoporous-Au based catalysts should be conducted in future, especially under in situ con-

ditions and different gas atmospheres. Thereby, microscopic studies on the atomic structure

should be conducted by ETEM under model conditions, while similarly prepared samples

should be studied under ambient pressure by in situ ptychography. Complementarily, also spec-

troscopic and scattering techniques could be used to investigate the atomic scale under realistic

conditions. Additionally, the 3D nanoporous-Au was only probed during annealing in 2D ge-
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ometry, which requests extension to tomographic studies. These should ideally be combined

with probing a “bulk” sample by X-ray tomography and a thin material by electron tomography

to get further knowledge on the behavior according to the size of the network.

In addition to the thin nanoporous-Au based catalysts, in situ ptychography was applied to study

a thicker sample of a bifunctional CuO/ZnO/Al2O3@ZSM–5 core-shell catalyst. Complemen-

tary knowledge was obtained by ETEM studies. By this combination, the core-shell interface of

the catalyst could be studied in a hierarchical manner at different length scales. The studies were

performed during activation in hydrogen atmosphere and reoxidation under synthetic air, which

were applied as model conditions. For a thin sample under reduced pressure in the ETEM, a

stable core-shell interface was obtained at 250 °C, although a shrinkage of the Cu containing

particles in the core material was caused by reduction. This took place only on the nanome-

ter scale by increased interparticle distances. By in situ ptychography, the system could not

only be studied under model conditions, but also under atmospheric pressure and on a thicker

sample. In agreement with the results obtained by ETEM at 250 °C the core-shell material was

found to be stable, a temperature increase to 350 °C however led to microscopic changes on the

µm scale. These did not only affect the Cu containing core material but also parts of the shell, as

indicated by SEM-EDX analysis. Albeit the overall core-shell interface remained stable, which

is required to maintain the bifunctional operation of the catalyst. However, all studies were per-

formed on thin slices cut from the whole 3D particle, which may have influenced the behavior.

Therefore, further studies on full 3D particles should be carried out by tomography. Due to the

dimensions of the particle, this is only possible by X-ray tomography.

To conclude, in situ ptychography with spatial resolutions down to 20 to 30 nm paves the way

to bridge the gap between high-resolution TEM under idealized conditions and hard X-ray

imaging techniques under more realistic conditions and on more realistic samples. Apart from

the presented example of the CuO/ZnO/Al2O3@ZSM–5 catalyst, such a multi-scale imaging

approach will also be interesting for other catalyst systems. For example, it can be used to in-

vestigate the structure and connectivity of shell impregnated catalysts, the stability of particles

in fluidized bed reactors or to study compositional or structural changes of bifunctional catalysts

under reaction conditions, like in the Fischer-Tropsch reaction.

Further improvements of the in situ cells are required in order to make high-resolution tomo-

graphic imaging possible and to reduce requirements on the sample preparation. Additionally,

since both in situ cells are available for users at the P06 beamline of PETRA III, it is beneficial if

further characterization tools become available on-site. Therefore, the development and access

to the Nanolab at DESY will be advantageous. Moreover, the installation of a TEM and a glove

box would be important with respect to transferring the sample studied by in situ ptychography

to the TEM under inert conditions. For future experiments the improvement in brilliance of

synchrotron radiation sources and active damping mechanisms on the microscopes could po-
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tentially allow studying samples with a spatial resolution about 1 to 2 nm. This even has the

potential for studying supported metal nanoparticles and bridge to the catalytic application in

fixed-bed reactors, which would open the door for studies of typical catalysts used in exhaust

gas aftertreatment systems.

General Conclusions and Outlook The presented techniques and in situ cells were devel-

oped and optimized independently from each other, but they can be used in a complementary

manner. For example, first the microscale can be studied by spatially resolved measurements in

the gas phase microreactor, which enables a combination of several characterization techniques.

Questions which arise on the catalyst particles themselves, e. g. their stability or rearrangement,

can then be studied by in situ ptychography and ETEM. By this approach, the full length scales

from the nano scale to the micro scale (c. f. Fig. 1.1) can be covered, which paves the way to-

wards a better understanding of catalytic reactions and ultimately to the systematic development

of new and better catalysts.
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EXAFS Extended X-ray Absorption Fine Structure
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FT Fourier Transform
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IR Infrared

INT Institute for Nanotechnology
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SAXS Small Angle X-ray Scattering
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SE Secondary Electrons

SEM Scanning Electron Microscopy

SLS Swiss Light Source (synchrotron radiation source in Villigen, operated by PSI)

STEM Scanning Transmission Electron Microscopy

TEM Transmission Electron Microscopy

UV-vis Ultraviolet and visible light

WAXS Wide Angle X-ray Scattering

wt.% Weight percent

XANES X-ray Absorption Near-Edge Structure

XAS X-ray Absorption Spectroscopy

XRD X-Ray Diffraction
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