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Abstract—This paper presents a direct, adaptive and
parameter-free current control scheme that is independent of
the motor type and doesn’t need any machine parameters. A
given setpoint can be reached accurately within one switching
cycle.

I. INTRODUCTION

In recent years many advanced current control strategies

for electrical machines have been investigated and published.

Most of them can be classified into linear, hysteresis, sliding

mode, fuzzy and predictive control. In [1] the field of pre-

dictive control is further broken down into hysteresis based,

trajectory based, dead beat and model predictive control.

Especially model predictive control (MPC) [2] offers great

possibilities since even complex physical side-effects that are

often neglected can be controlled. This is done by online

calculation of a detailed model, that includes for example

saturation effects [3] or even cross-coupling effects [4] of

permanent magnet synchronous machines. The drawbacks

of many predictive control schemes on the other hand are

versatile and often combined. One of them is the dependency

on machine parameters that may vary during operation, leading

to a suboptimal and sometimes fragile control setup. Another

is the use of complex mathematical machine models, which

increases the required computing time. If hysteresis controllers

are used, the varying switching frequency makes appropriate

filter design a complex task. Notably, MPC and the field of

sensorless control [5] has been investigated exhaustively, so

that meanwhile there are improvements and advanced control

strategies available, that have overcome the drawbacks for

some of those control schemes [6], [7].

In [8]–[10] the "Straightforward Current Control" (SCC)

scheme has been presented for the control of a DC machine

as well as for the control of magnetic isotropic 3-phase

synchronous machines (with Ld = Lq), that delivers excellent

control quality and high dynamics. At the same time it doesn’t

need any machine parameters, no machine model, no test

pulses, no offline calculations or cost functions and the compu-

tational effort is comparatively little. The system is identified

permanently in every pulse period by measuring the slopes

of the stator currents in each of the applied switching states,

making the SCC completely adaptive. It could be classified as

a model-free dead-beat control scheme. One main limitation

of this standard SCC control scheme is that it is only suited

for magnetic isotropic machines with Ld = Lq . When it is

applied to a magnetic anisotropic machine with Ld �= Lq , the

control quality significantly decreases with a growing magnetic

anisotropy.

A solution to solve this limitation was presented in [11]

with a new algorithm called "Extended Straightforward Cur-

rent Control" (ESCC). This algorithm additionally allows to

control the currents of synchronous machines with magnetic

anisotropic characteristics, such as interior permanent magnet

synchronous machines (IPMSM), as well as magnetic isotropic

machines without changes in the algorithm itself.

So far the ESCC was introduced as a current control

algorithm for synchronous machines only. This paper shows

that the same control algorithm is also suited to control the

currents of induction motors as well. Again, no changes in the

control algorithm are necessary. With this additional capability

this control scheme becomes an universal, parameter-free,

adaptive current control scheme for three phase machines.

To emphasize this universal usability and it’s direct control

character, the ESCC is renamed and further referred to as

"Direct Adaptive Current Control" (DACC).

After a short introduction to the working principle of this

control scheme, the theory for the different machine types is

developed. Then the algorithm presented in [11] is outlined to

show why it can handle all machine types without changes

and the need for setup-parameters. Concluding this paper,

simulation results are shown.

II. BASIC WORKING PRINCIPLE

The basic working principle of the DACC control scheme is

best explained with a one-phase RL-load as depicted in Figure

1. By operating the switch with the duty cycle a = TON/TP ,

the voltage uDC is applied to the RL-load. Given that the
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Figure 1. Basic working principle of the DACC, illustrated with a one-phase
RL-load

switching frequency is high enough, the current will rise and

fall linear in straight line segments. The current slopes for each

switching state of period k (di/dt)ON,k and (di/dt)OFF,k can

be assumed to be the same in period k+1 if the applied voltage,

the inductance and the resistance are approximately constant

for two consecutive periods. This usually is given due to the

relatively high switching frequency. Once the current slopes

of period k are known for every switching state, the necessary

duty cycle for a given current setpoint iE,k+1 that should be

reached at the end of the next period k+1 can be calculated

easily with a linear equation. The knowledge of the absolute

voltage, the inductance and the resistance is not needed. The

current slopes are detected in every period, which means that

this control strategy is completely adaptive.

For three phase applications the very same principle can be

applied as shown in [9]. The basis for the DACC [11] and

the preceding control schemes [8]–[10] is the fast detection

of the stator current slopes during each switching state Sn

with n ∈ {1..8} of the utilized voltage source inverter (VSI).

This can be done by measuring the stator currents during each

switching state in every period very fast with oversampling of

the A/D-converter. The calculation of the current slopes then

is done with a least-squares-estimator-algorithm to eliminate

noise at the end of the same period (index k) in an FPGA (see

Figure2). Due to the fast calculation possibilities in the FPGA,
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Figure 2. Timing, modulation and measurement principle of the DACC.
Although all three stator phase currents are measured, in this diagram only
iS1 is outlined to improve clarity.

the results can be utilized directly for the calculation of the

duty-cycles of the next pulse period k+1, which minimizes

control dead-time significantly. The switching frequency is

assumed to be high enough so that the current slopes can be

considered as being linear during the switching states.

The so gained current slopes
(

diS
dt

)
a,n,k

and
(

diS
dt

)
f,k

are

used to define the so called "current gradient vectors" Δia,n,k
and Δif,k [9]:

Δia,n,k =

[(
d

dt
iS

)
a,n,k

−
(

d

dt
iS

)
f,k

]
· Tp (1)

Δif,k =

(
d

dt
iS

)
f,k

· Tp (2)

The index a stands for an active switching state, where the

machine is connected to the dc link voltage. Which one of

the six possible switching states is applied is denoted with

the index n. The index f indicates the freewheeling switch-

ing states respectively. The current gradient vectors Δia,n,k
describe the current variation that would occur, if only the

voltage corresponding to the active switching state with the

index n would be applied to the machine for the whole period

(Tp) with the index k. Similarly Δif,k depicts the current

variation that would occur, if only a freewheeling switching

state would be applied to the machine for the whole pulse

period k. In three phase systems they can be represented as

current space vectors in the stator-oriented complex αβ-plane

[10] (see Figure 4).

This information about the current variation depending on

the switching states can be used to calculate the necessary

duty cycles for the next period to reach a desired setpoint

value directly.

The green vector diagram in Figure 4 depicts the essential

of the DACC algorithm: The last value of the stator current

at the end of the preceding period is represented by the red

current space vector ie,k. The inner voltage of the machine

is effective anyway, so its influence to the current variation

Δif,k can be added to ie,k directly. The resulting vector if,k+1

now represents the origin of the hexagons spanned by the

current gradient vectors for the active switching states ia,n,k.

Since the control algorithm in the FPGA is started shortly

before the end of the current period k, the necessary value ie,k
for this equation can not be measured, but can be calculated

by extrapolation of the just measured current slopes and the

knowledge of the applied duty cycles in period k. With if,k+1

as starting point, the necessary duty cycles to reach a given

current setpoint value ie,k+1 at the end of period k+1 can be

obtained by the projection of the vector ia,k+1 to the adjacent

switching state vectors Sn.

ia,k+1 = ie,k+1 − if,k+1 = ie,k+1 − ie,k −Δif,k (3)

This is done by using the same computation formulas as with

the well known space vector modulation. It is not necessary to

know the voltage that is applied to the machine or its induc-

tance and resistance. The only assumption that has to be valid



is, that the current gradient vectors are approximately constant

for two consecutive periods, so that Δia,n,k ≈ Δia,n,k+1 and

Δif,k ≈ Δif,k+1 is given.

The DACC algorithm evaluates the measured current gra-

dient vectors and hence is based on the knowledge of the

functional dependencies of them. In the following section, the

current gradient vectors for the different machine types shown

in Figure 4 are derived and compared.

III. CURRENT GRADIENT VECTORS FOR DIFFERENT

TYPES OF THREE PHASE MACHINES

The derivation of the current gradient vectors for syn-

chronous machines has been presented in [11]. It will be

outlined here again to be able to compare it directly with the

derivation and the results of the current gradient vectors for

the induction machines.

A. Synchronous machines

Starting point are the system equations of the synchronous

machine, transformed into the stator-oriented αβ-reference

frame [12]:

uS = RSiS + LA

d

dt
iS

+
d

dt
LB · iS + LB · d

dt
iS +

d

dt
ΨPMS

(4)

with

LA =

(
3
2LA 0
0 3

2LA

)
(5)

LB =
3

2
LB ·

(
cos(2γ(t)) sin(2γ(t))
sin(2γ(t)) − cos(2γ(t))

)
(6)

LA =
1

3
(Ld + Lq) LB =

1

3
(Ld − Lq) (7)

1) Magnetic anisotropic synchronous machines: Equation

(4) can be rewritten as a space vector, consisting of the two

components uS,α and uS,β :

uS =

(
uS,α

uS,β

)
= RS

(
iS,α
iS,β

)
+ LA

(
d
dt iS,α
d
dt iS,β

)

+
d

dt
LB

(
iS,α
iS,β

)
+ LB

(
d
dt iS,α
d
dt iS,β

)
+

d

dt
ΨPMS

(8)

The equations of uS,α and uS,β are solved for the deriva-

tives of the current vector components d
dt iS,α and d

dt iS,β .

With those, the current gradient vector for the freewheeling

switching states Δif can be calculated (see also (2)).

Δif =

(
d
dt iS,α
d
dt iS,β

)∣∣∣∣
uSα=uSβ=0

· Tp =

(
Δif,α
Δif,β

)
(9)

The current gradient vectors of the six active switching states

are (see also (1))

Δia,n =

(
d
dt iS,α
d
dt iS,β

)
· Tp −Δif =

(
Δia,n,α
Δia,n,β

)
(10)
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Figure 3. Geometrical locus of Δia,n for machines with Ld �= Lq after a
3/8 electrical period and the vectors mn,k , rn,k and Δia,n,k for the current
pulse period k.

Solving and rearranging this equation leads to the following

mathematical representation:

Δia,n =
2

3(L2
A − L2

B)
· uS · Tp

(
LAe

jϕn − LBe
j(2γ(t)−ϕn)

)
=

2uSTp

3(L2
A − L2

B)
LAe

jϕn

︸ ︷︷ ︸
mn

− 2uSTp

3(L2
A − L2

B)
LBe

j(2γ(t)−ϕn)

︸ ︷︷ ︸
rn

= mn − rn
(11)

with

mn,k =
2uSTp

3(L2
A − L2

B)
· LA · ejϕn (12)

rn,k =
2uSTp

3(L2
A − L2

B)
· LB · ej[2γk−ϕn] (13)

uS = |uS | =
2

3
UDC (14)

ϕn = (n− 1) · 60◦ n ∈ {1..6} (15)

The six current gradient vectors for the current variation

during the active switching states can each be represented by

two vectors (Fig.3). The constant, time-invariant vectors mn

point with the angle ϕn in the direction of the corresponding

switching state vectors Sn. The time-variant vectors rn all

have the same constant length and rotate with the doubled

angular frequency of the rotor position angle 2γ(t) around the

tip of mn, each with an individual angular offset of −ϕn.

Because this angular offset sums up to 180◦ when looking

at two opposite switching states Sn and Sn±3 , the current

gradient vectors of opposite switching states show a symmetry

with respect to the tip of if,k+1 (see Fig.4(b) and Fig.3). In

Figure 3, the geometrical locus of the six Δia,n during a three
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Figure 4. Characteristic values Δia,n,k and Δif,k (black vectors), switching state vectors Sn (blue), area of possible current variation in one pulse period
k and the vector diagram of the stator current variation during pulse period k+1 for synchronous machines with Ld = Lq and Ld �= Lq

eighth electrical period is displayed. The length of rn and with

that the diameter of the black dotted circles directly depends

on the difference between Ld and Lq (see also (7)(11)(13))

2) Magnetic isotropic synchronous machines: With Ld =
Lq , the terms with (LB) are zero, which simplifies equation

(4) significantly and leads to the results that are used in the

basic SCC scheme as presented in [9], [10], [13]:

All six active current gradient vectors Δia,n,k have the

same length and the argument is the same as the one of the

corresponding switching state vector Sn (see Figure 4(a)). So

for magnetic isotropic synchronous machines the measurement

of only one active switching state is sufficient to know all six

active current gradient vectors.

Δia,n,k
∣∣
Ld=Lq

= ΔIa,k =
2

3
· UDC,kTp

Lk
· Sn (16)

Sn = ejϕn (17)

ϕn = (n− 1) · π
3

n ∈ {1..6} (18)

This spans an equilateral hexagon of the possible current

variation, that can be reached within one pulse period, similar

to the hexagon known from conventional space vector modu-

lation (see Fig.4(a)). Since the inner voltage of the machine is

effective anyway during the whole pulse period, the origin of

this hexagon is at the tip of the vector if,k+1, which designates

the point where the current space vector would be, if no active

switching state would be applied during period k+1.

B. Induction machines

The main contribution of this paper is this derivation of the

current gradient vectors for induction machines and to show

that the DACC algorithm is applicable as an universal control

algorithm for both synchronous and induction machines. To

get the functional dependency of the current gradient vectors

for induction machines, again the system equations now of the

induction machine, transformed into the stator-oriented αβ-

reference frame [12] is the basis to start with:

uS = RS · iS + Ψ̇S

ΨS = (LSh + LSσ) · iS + LSh · i′R
uS = RS · iS +

d

dt
[(LSh + LSσ) · iS ] +

d

dt
[LSh · i′R]

(19)

With the assumption that the inductances are time-invariant

for two consecutive periods, this can be written as:

uS = RS · iS + (LSh + LSσ) · d

dt
iS + LSh · d

dt
i′R (20)

Solving for the current slopes gives the desired relation:

d

dt
iS =

1

(LSh + LSσ)

(
uS −RSiS − LSh

d

dt
i′R

)
(21)

With that the current gradient vector Δif,k for the freewheel-

ing switching states can directly be calculated (uS = 0)

Δif,k =
d

dt
iS

∣∣∣∣
uS=0

=
1

(LSh + LSσ)

(
−RSiS − LSh

d

dt
i′R

)
(22)

The current gradient vectors of the six active switching states

are (see also (1))

Δia,k =
d

dt
iS −Δif,k

=
1

(LSh + LSσ)

(
uS −RSiS − LSh

d

dt
i′R

+RSiS + LSh
d

dt
i′R

)
=

1

(LSh + LSσ)
· uS

(23)

LSh and LSσ are scalar and can be assumed to be time-

invariant for about two periods. Further there is no dependency
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on an angle like e.g. with anisotropic synchronous machines.

This means that the direction of the Δia,k for induction

machines only depends on the applied voltage, which is the

space vector of one of the six possible active switching states.

So for induction machines, all six active current gradient

vectors Δia,n,k have the same length and the argument is the

same as the one of the corresponding switching state vector

Sn. This behavior is similar to magnetic isotropic synchronous

machines and the current gradient vectors for induction motors

also span an equilateral hexagon (see Fig. 4(a)).

C. Conclusion

The current gradient vectors of induction motors and mag-

netic isotropic synchronous machines can be seen as spe-

cial cases of the current gradient vectors of the magnetic

anisotropic synchronous machine with the vectors rn,k beeing

zero. So if the DACC is able to handle the current gradient

vectors of magnetic anisotropic synchronous machines it is

also capable to control magnetic isotropic synchronous ma-

chines and induction machines. And this without the need of

telling the control algorithm the type of machine in advance.

In the following section, the algorithm of the DACC that was

presented in [11] is outlined, to show that it is applicable

as an universal current control algorithm for induction and

synchronous machines as well.

IV. DIRECT ADAPTIVE CURRENT CONTROL AS

UNIVERSAL CURRENT CONTROL ALGORITHM

With the analysis of the stator current response to the

switching states the DACC scheme can be implemented to

realize the vector addition (3) mentioned in II and illustrated

in Figure 4.

A. Implementation

1) Least-Squares-Estimator & Interpolation Algorithm: An

illustration of the implementation of the DACC is displayed

in Figure 5. The currents are measured with a high sampling

rate and oversampling during pulse period k, and are input

n-2S

n-1SnS
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n+2S n+3S
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Figure 6. Vector diagram of the algorithm to calculate all six active current
gradient vectors.

Red: measured / interpolated
Green: measured values rotated by 180◦
Blue: calculated as described in [11]

to the least-squares-estimator algorithm. Here the two current

gradient vectors of the switching states that have been applied

during period k are calculated. This is Δia,n,k for the active

switching state vector to the right of ia,k (index n), Δia,n+1,k

for the one to the left of ia,k (index n+1) and for the two

freewheeling states Δif,1,k and Δif,2,k (see also Fig.2 and

Fig.4(b)). In addition to that, the value of the stator current

vector at the end of the current pulse period ie,k is calculated

by linear extrapolation from the measured current gradient

vectors and the knowledge of the applied duty cycles. The

current gradient vector Δif,k can optionally be calculated as

the mean value of the two measured values Δif,1,k and Δif,2,k
to improve accuracy.

In case that the duty cycles are too short to get enough

samples in a certain switching state for good accuracy, those

current gradient vectors can be calculated by linear inter-

polation between the values of the adjacent current slopes

and the knowledge of the applied duty cycles. This is done

directly after the least squares estimator algorithm, so that the



current gradient vectors of both applied active switching states

and the freewheeling switching states are known from either

measurement or interpolation in every pulse period.

2) Calculation of all six active current gradient vectors:
The knowledge of all six current gradient vectors for the

active switching states is mandatory for magnetic anisotropic

machines, because they permanently vary in length and angle

and the plane that is spanned by them is no regular hexagon

(see Fig.4(b)). Since only two of the possible six active

switching states are applied during one pulse period, only the

two current gradient vectors Δia,n,k and Δia,n+1,k can really

be measured, respectively interpolated. In Figure 6 they are

displayed as the two red vectors, adjacent to ia,k+1. The others

are calculated, using (11) and the symmetric dependencies

coming from this [11]. Opposite current gradient vectors

Δia,n±3,k and Δia,(n+1)±3,k are derived by simply rotating

the corresponding measured current gradient vector by 180◦.

The two remaining current gradient vectors Δia,n−1,k and

Δia,(n+1)+1,k (blue vectors in Fig.6) can be obtained by

solving equation (11). Therefore the two vectors mn,k and

rn,k are necessarily required (see (12)-(15)).

The vectors mn are constant and the angles ϕn are known

from their corresponding switching state Sn. The vectors rn,k
all have the same length and rotate around the tip of the

corresponding vector mn,k, describing circles (3). The length

of mn can be obtained by making use of the geometric

dependencies of the active current gradient vectors:

The arguments of the six rn,k of one pulse period k differ

in the angular offset, caused by ϕn. The angle between the

vectors rn,k and rn+1,k of two adjacent switching states is

always -60◦: In is shown in [11], that by measuring only the

two current gradient vectors of the adjacent switching states,

all six current gradient vectors can be obtained. That means,

that only one pulse period is enough to completely identify

the stator current response to all possible switching states and

therefore the current control loop system dynamics.

3) Selection of Switching States & Calculation of duty-
cycles: In contrary to conventional SVM the segment, and

with that the set of two adjacent switching state vectors, can

not be changed every 60◦ anymore because of the time-variant

Δia,n,k of magnetic anisotropic synchronous machines. It has

to be decided in every single switching cycle, which of the

possible six pairs of adjacent active switching states leads to

the desired current change ia,k+1. This can be done by simply

calculating the duty-cycles for all six pairs of adjacent active

switching states. The pair, where both duty cycles are greater

or equal to zero then is to be taken.

For the calculation of the duty-cycles the vector ia,k+1 is

necessary (see Figure 4(b) and 5). It is calculated by vector

addition of the setpoint value ie,k+1 and the vector if,k+1:

ia,k+1 = ie,k+1 − if,k+1 = ie,k+1 − ie,k −Δif,k

The calculation of the duty cycles itself is done with the

known techniques also applied in conventional SVM. Those

duty cycles are input to the space vector modulator, which uses

them to output the gate signals according to the implemented

pulse pattern.

This algorithm measures the current gradient vectors and

uses them to calculate the vector diagram of Figure 4 to get

the duty cycles for the next period. This is done with any

form of hexagon symmetric with respect to the origin at the

tip of vector if,k+1. The current gradient vectors are identified

permanently from switching cycle to switching cycle. Isotropic

synchronous machines and induction machines represent the

special case in which the vectors rn,k = 0 and the irregular

hexagon falls back to the regular hexagon marked by the

vectors mn. This is the reason why the DACC is suitable to

control the currents of all of those described machines.

V. SIMULATION RESULTS

The DACC control scheme has been implemented in a

Matlab/Simulink-simulation to develop and proof the theory.

The simulation parameters have been taken from the hardware

test plant, that was used by [10] to proof the basic SCC for

synchronous machines with Ld = Lq . The main simulation

parameters are listed in table I.

Table I
MAIN SIMULATION PARAMETERS

Parameter anisotropic SM isotropic SM Induction M.
DC-link Voltage 400V 400V 400V
Inductance Ld = 2mH Ld = 3mH Lh = 34, 5mH
Inductance Lq = 4mH Lq = 3mH Ls = 0, 6mH
Pulse Period Tp 200μs 200μs 200μs
Sample Rate TAD 0.8μs 0.8μs 0.8μs

The Figures 7(a),7(b) and 7(c) show the stator currents,

controlled by the DACC algorithm in startup and steady state

condition. A closer look at startup and a setpoint step of 5A

in iq is displayed in Figure 7(d),7(e) and 7(f). This setpoint

step is also shown in the rotor-oriented reference frame with

id and iq in Figure 7(g),7(h) and 7(h). The excellent dynamics

and steady state accuracy is obvious and shows that the ESCC

is well suited to control induction motors as well as isotropic

or anisotropic machines without a change in the algorithm.

VI. CONCLUSION

This paper describes that the DACC scheme presented in

[11] is not only capable of controlling synchronous machines,

but also covers induction machines as well. There is no

need to adjust this control algorithm with machine parameters

because it is completely adaptive. The necessary equations

are derived from the system equations of the permanent

magnet synchronous machine and of the induction machine.

The DACC control algorithm is briefly outlined and it is

shown how it can control the different machines types without

changing the algorithm or the need for machine parameters.

The control quality and the dynamics are demonstrated by

simulation results.
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Figure 7. Simulation of startup, steady state operation and setpoint step response with the DACC control scheme for a magnetic anisotropic synchronous
machine (SM) with Ld=2mH and Lq=4mH (Figures 7(a), 7(d)), 7(g)), a magnetic isotropic permanent magnet synchronous machine (SM) with Ld = Lq =
3mH (Figures 7(b), 7(e)), 7(h)) and an induction machine (IM) (Figures 7(c), 7(f)), 7(i)) at n = 400min−1, p=4 , fp=5kHz, id,w=0A.
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