KIT | KIT-Bibliothek | Impressum | Datenschutz

Identifying errors in dust models from data assimilation

Pope, R. J.; Marsham, J. H.; Knippertz, P.; Brooks, M. E.; Roberts, A. J.

Abstract (englisch):
Airborne mineral dust is an important component of the Earth system and is increasingly predicted prognostically in weather and climate models. The recent development of data assimilation for remotely sensed aerosol optical depths (AODs) into models offers a new opportunity to better understand the characteristics and sources of model error. Here we examine assimilation increments from Moderate Resolution Imaging Spectroradiometer AODs over northern Africa in the Met Office global forecast model. The model underpredicts (overpredicts) dust in light (strong) winds, consistent with (submesoscale) mesoscale processes lifting dust in reality but being missed by the model. Dust is overpredicted in the Sahara and underpredicted in the Sahel. Using observations of lighting and rain, we show that haboobs (cold pool outflows from moist convection) are an important dust source in reality but are badly handled by the model's convection scheme. The approach shows promise to serve as a useful framework for future model development.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000059325
DOI: 10.1002/2016GL070621
Zitationen: 18
Zitationen: 18
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Physik (PHYSIK)
Institut für Meteorologie und Klimaforschung - Forschungsbereich Troposphäre (IMK-TRO)
KIT-Zentrum Klima und Umwelt (ZKU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2016
Sprache Englisch
Identifikator ISSN: 0094-8276
KITopen-ID: 1000059325
HGF-Programm 12.01.02 (POF III, LK 01) Proc.res.f.multisc.predictab.of weather
Erschienen in Geophysical research letters
Verlag John Wiley and Sons
Band 43
Heft 17
Seiten 9270-9279
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page