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Abstract—Modern data analysis methods often rely on data
locality. Processing applications are executed directly where data
is stored. Frameworks enabling this require their own specialised
environment and modifications. We propose an alternative ap-
proach using coordinated caching integrated into classic batch
systems. A custom middleware layer provides relevant data locally
on worker nodes. Most importantly no modifications are needed
to add data locality to existing workflows. However, considerably
more factors must be addressed by distributed caches compared
to isolated ones. We investigated our approach with theoretic
modelling, simulations, and a prototype implementation. Our
evaluations show promising results for both applicability and
performance.

Keywords–Cooperative caching; Coordinated caching; Dis-

tributed caching; Batch production systems; Distributed processing.

I. INTRODUCTION

Caching as an enabler for data locality is an important
topic for distributed data processing. As workflows usually
process only a fraction of data frequently. It is thus inefficient
to provide all data locally. In addition, changing workflow re-
quirements in batch systems require a dynamic but coordinated
caching approach.

Motivated by this, our approach enables data locality for
batch systems with minimal requirements. The basis for our
efforts are batch clusters which read data via network from
dedicated fileservers. To make remote data available locally,
a series of caches on worker nodes can be used. We propose
a coordination layer that combines individual caches into a
single pool.

Our approach stands out from existing caches by its scope
and subject: for one, individual caches work on the scale of
single machines. We target the entire batch system as a sin-
gle entity. Also, distributed caches commonly target resource
providers, e.g. web caches. In contrast, our approach targets
the batch system as a resource consumer.

In this paper, we exemplarily consider the High Energy
Physics (HEP) data analysis workflows of groups at the Karl-
sruhe Institute of Technology [1]. In general, HEP experiments
of the Large Hadron Collider [2] are amongst the largest
producers of scientific data in terms of data volume. Handling
this data is performed in iterative workflows at different scopes.
This ranges from reconstruction of raw data at a global
scope [3] to the analysis of subsets of data at the scope of
university groups.

In theory, HEP analyses conform to principles of data
locality based processing. Analysis workflows execute multiple

instances of an analysis application in a distributed environ-
ment. Each instance extracts the same set of variables from
its share of an input data set. All sets of extracted variables
are then merged. This corresponds to the map reduce method
employed by frameworks such as Hadoop.

However, the wide range of HEP workflows and number
of collaborating scientists dictate the use of established appli-
cations and frameworks. This also implies constraints, which
are not satisfied by modern analysis frameworks. For example,
HEP data is commonly stored in the ROOT binary file format.
This format cannot be easily split or read from a stream, as
is common in the Hadoop framework. The largest volume of
data is used infrequently for validation and crosschecking.

We have performed modelling (Section II) and simulations
of the situation (Section III). The estimates on architecture
and scale are motivated by our own working experiences with
the HEP analysis groups. From this, we conclude that classic
batch processing can be considerably improved with cache
based data locality. Our approach for data locality is based
on a concept for coordinated caching (Section IV). To test
our conclusions, we implemented a prototype of a caching
middleware for batch systems (Section V). First experiences
show promising improvements regarding performance and
throughput (Section VI).

A. Related Work
Many individual sub-topics of our work have been focus

of past research. In general, the approaches show considerable
advantages over naive caching. However, no existing work
matches the scope and applicability that is needed for HEP
workflows.

Distributed caching has been studied extensively. For ex-
ample, simulations on distributed caching with centralised
control [4] show considerable improvements in hit ratio and
throughput compared to independent caches. However, re-
search usually focuses on the perspective of data providers,
not consumers. Usage metadata is thus not taken into account,
limiting the granularity required for data locality.

The CernVM File System (CVMFS) uses independent
caches for software provisioning [5]. It is used to make shared
software frameworks available in grid and cloud environments.
The prototypical CacheD service of the HTCondor batch
system caches binaries executed by jobs [6]. This minimises
traffic, considerably speeding up deployment of multiple jobs
on low-throughput networks. Both of these approaches show
that caching is beneficial for batch processing. It improves
throughput and allows deployment on resources without high
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throughput network. However, these approaches target only
items which are the same for all jobs.

User communities have made attempts to introduce data lo-
cality and/or caching to their workflows. On the one hand, the
ATLAS collaboration demonstrated analysis speedup by using
a central SSD cache for network attached HDD storage [7].
In this setup, data locality is improved but the cache is still
accessed remotely.

On the other hand, attempts have been made to deploy
HEP workflows on Hadoop [8], [9]. This provides advanced
performance and scalability. However, extensive compromises
have to be made. For example, applications have to be adapted
to the I/O model and jobs may access only single files. The
automatic distribution of data by the infrastructure is severely
limited to ensure data integrity.

II. MODELLING DISTRIBUTED CACHING

The modelling of distributed caches involves more aspects
than using local caches on a single host. It therefore increases
the complexity. Though the data to cache remain the same,
factors such as location, replication, or even splitting, and
grouping need to be considered.

We model caching statistically to estimate the probability
of cache hits, following cache hit rate. Using a factorised
approach, we describe issues individually and combine them
to a single probability. This allows to assess a detailed cost of
naively applying caching to a distributed system.

As shown in Figure 1, a distributed cache can be fun-
damentally viewed as a single entity. This is an ideal case,
where a fraction of the global data volume is replicated on the
cache volume. However, each worker node (WN) is actually
limited to its local scope. In addition, jobs in a batch system
are scheduled without knowledge about cache content. In the
worst case, data and job placement may be perpendicular.

Figure 1. Scopes of distributed caching

To simplify the model, we make two assumptions: First, the
volume of individual caches is large compared to items that are
cached. Second, the volume of all items is large compared to
both the individual and total cache volume. This allows us to
treat volumes as continuous, avoiding quantisation and fringe
effects. These assumptions mainly simplify the mathematical
description. The general conclusions are not changed by this.

A. A Priori Hit Rate
As with regular caches, we employ a general probability

that an item is cached. The choice of this is arbitrary and
mainly serves for expressiveness. Without loss of generality,
we assume a naive caching approach: the cache is filled with
an equal fraction of all data. Thus the probability of an item
being cached P base

cache is the fraction of cache volume Vcache and
data volume Vdata.

P base
cache /

Vcache

Vdata
(1)

B. Item Locality
A distributed cache has no single cache volume but actually

several separate ones. Cached items can only be accessed
efficiently on the host they are located on. We therefore
introduce a second probability for item locality, namely that
an item is cached on the host it is accessed from, the local hit
rate P item

local.
If the batch system is not aware of the contents of indi-

vidual caches, job scheduling is random in relation to item
placement. The probability of executing on the correct host
is inversely proportional to the number of hosts Nhosts. In
contrast, creating a number of replicas Nreplica on multiple hosts
automatically increases the local hit rate. However, replicas
reduce the effective total cache volume and thus the overall
cache hit rate. Both hit rates combine to the expected hit rate
P item

expect.

P item
local /

Nreplica

Nhosts
Nreplica  Nhosts (2a)

P item
cache /

1

Nreplica
(2b)

P item
expect = P item

cache · P item
local /

1

Nhosts
(2c)

For naive caching of individual items and no aligned
scheduling, we thus expect neither positive nor negative effect
from replication. There is no naive approach to mitigate the
penalty from distribution over multiple hosts.

In contrast, if we actively align job scheduling and cache
locality, the local hit rate becomes a constant – the effec-
tiveness of scheduling. In this case, the positive effect of
replication is reduced and ideally eliminated with perfect
scheduling. The negative effect of reducing the effective cache
volume remains, however. Therefore, the penalty from dis-
tributed execution can be mitigated by active scheduling and
avoiding replication.

C. Item Grouping
For efficiency, it is common for any single batch job to

process groups of files. In classic batch systems, this grouping
is done externally on job submission.

The benefit for each job is proportional to the number of
processed items cached locally. We can express the expected
efficiency Ejob

local as the fraction of expected local files
⌦
N local

items
↵

to total processed files Nitems. This resolves directly to the local
hit rate without aligned scheduling.

Ejob
local =

D
P job

local

E
/

⌦
N local

items
↵

Nitems
=

1

Nitems

X

items

P item
local (3a)

= P item
local (3b)

For naive caching with unrelated items, this result is trivial.
There are implications if aligned job scheduling is attempted,
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however. Even when directing jobs to cached items, the frac-
tion of locally available items limits the achievable efficiency.
In this context, aligned job scheduling and replication are only
useful if cache content is aligned as well.

D. Access Concurrency
For the scope of our work, a common caching assumption

does not hold true: cache access is not always superior to
remote access. For example, modern SSDs provide throughput
at the same order as a 10Gbit/s network. The difference is
concurrency of accesses: caches are accessed only by local
processes, whereas remote data sources can be accessed by all
processes.

Modelling accesses for a distributed system in general is
beyond the scope of this paper. However, the fact that both
local and shared data sources have limited throughput allow for
some basic statements. Ideally, both local and shared resources
are used to their limit. This automatically implies that perfect
cache hit rates are not desirable: a fraction of accesses should
always make use of the shared resources available.

III. ESTIMATES AND SIMULATION

To estimate the benefit of coordinated caching, we have
simulated multiple circumstances. The scope and estimates
correspond to that of our associated HEP analysis groups.

We model the workflow as a set of application instances,
each reading the same amount of data. We have benchmarked
common HEP analysis applications to assess realistic limi-
tations. The measurements show a maximum throughput of
20MB/s for each instance. This is a technical limit induced
by the software frameworks and data formats in use. The total
input volume is estimated as 640GB. This corresponds to the
volume of a 2 months data taking period.

For the processing environment, we model our current
analysis infrastructure: a set of worker nodes connected to a set
of fileservers via a dedicated network, as shown in Figure 2.
We assume infinite bandwidth for the fileservers, but model
the shared network with its limited throughput of 10Gbit/s.
For processing, we model a number of worker nodes of equal
configuration: 32 execution slots, a 4Gbit/s SSD cache and a
10Gbit/s network connection to the fileservers. For simplicity,
we assume that as many instances as execution slots are
deployed.

Figure 2. Simulated infrastructure

The results of the simulation can be seen in Figure 3.
To rate performance, we have chosen the total processing
time. For this observable, lower values are desirable. The
cache hit rate to the local cache is used as a free parameter
in the simulation. This is motivated by assuming adequate
selection of cache content by existing algorithms. Thus, the
hit rate is only determined by the scheduling of data and

.

Figure 3. Simulation of workflow runtime

jobs. Dashed, vertical lines indicate the expected local hit rate
without coordination.

There are two major results from our simulations (see Fig-
ure 3): on the one hand, caching enables to scale the infras-
tructure horizontally. This is especially important since remote
access is a bottleneck even with few worker nodes. On the
other hand, perfect cache hit rate is actually not desirable.
Instead, there is a range of cache hit rates that give best
performance. This range is defined by the points where either
local or remote throughput is maximized.

Notably, even for perfect caching the expected local hit rate
P item

expect is in this range only for the smallest setup. Therefore,
we must coordinate caches to benefit from data locality.

IV. CONCEPT FOR COORDINATED CACHING

Our approach for coordinated caching distinguishes be-
tween local and global view as known from batch systems. The
local view refers to the individual worker nodes where batch
jobs are running. The global view is given by the managing
layer where queuing and scheduling of batch jobs is performed.

Based on this scheme, the functionality of a cache can be
split into three layers, illustrated in Figure 4:

• the data provisioning on local scale,
• the data access on global as well as local scale, and
• the caching algorithm and distribution logic on global

scale.

Figure 4. Layers of the distributed cache concept

A. Provisioning Layer
The provisioning layer handles the actual data on worker

nodes. The worker nodes are the only elements with guaranteed
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access to remote source data. They are therefore the logical
place to retrieve and store both actual data and its metadata.

The provisioning layer implements the data provisioning
associated with caches: remote items are copied to local cache
devices, periodically validated, and potentially removed as
needed. In addition, metadata of items, such as size and
creation time, can only be collected on the worker node.

Since cache content is by design volatile, the layer also
handles content metadata. This ensures that content metadata
is as volatile as the actual content: the provisioning layer is the
first to notice changes and invalidation of items. In the context
of opportunistic resources, worker nodes shutting down neatly
remove their allocation information as well.

Every worker node of the provisioning layer is limited to
its local scope. Thus, major decisions are outsourced to the
global scale. Every worker node exposes information required
for cache decisions. The information are composed of its own
metadata, such as size of caches, and metadata of items. In
return, worker nodes rely on being notified of new items to
cache and their relevance.

B. Coordination Layer

The coordination layer is responsible for decision making.
Since it is not co-located with any active component, there are
no restrictions on resource usage. It can thus fetch, aggregate,
and process metadata without impacting other components.

The most important task of the layer is the selection of
items to cache. This is fundamentally the same as in other
caches. For example, scores can be calculated from access
times. Given that arbitrary processing power can be provided,
algorithms may be more complex than common. Both metadata
and processing resources can be extended as needed.

The additional responsibility of the coordination layer is
item placement. This means the deliberate assignment of
items to elements of the provision layer. Common features
of distributed systems, such as load balancing, must be taken
into account. In addition, item relations must be considered for
this. For example, common input groups should be assigned
together.

C. Access Layer

The benefit of caches depends on low overhead for ac-
cessing items. Obviously, executed applications require local
access to cached items. On the global scale, the batch system
must receive information on item location.

Implementing access to cached items for executed appli-
cations on worker nodes depends on the actual setup of batch
jobs. Primarily, the access protocol is the deciding factor. In
principle, local redirection to cached items is sufficient.

Similarly, details of integrating with a batch system are
setup specific. In any case, information on item location must
be provided to the batch system. This is the responsibility of
thin front ends, which forward information from coordination
and cache layer. Functionally, this is similar to lookup services
in distributed file systems, e.g. the NameNode of Hadoop FS.
However, since all information originates in coordination and
cache layer, our front ends are expendable.

V. HTDA MIDDLEWARE PROTOTYPE

We have implemented a prototype of the coordinated
caching concept: the High Throughput Data Analysis (HTDA)
middleware [10]. The test environment and community are
the HEP analysis groups of our university. We have delib-
erately kept dependencies on HEP software small, however.
The prototype supports the HTCondor batch system [11] and
applications performing POSIX I/O.

Architecturally, we build on a general purpose framework
for a pool of worker nodes. Every instance of our application
represents an individual node. The nodes are loosely coupled.
They form a pool using stateless communication. Every node
hosts component plugins, which collaborate in the abstracted
pool. The component plugins implement the actual layers
described in the previous chapter.

We currently use three node types that directly correspond
to each layer:

• Provisioning nodes represent the provisioning layer.
They stage, maintain, and validate cached files on
worker nodes.

• Coordinator nodes represent the coordination layer.
They aggregate metadata, and select and assign files
for caching.

• Locator nodes provide locality information for the
access layer. They act as proxies to the provisioning
nodes.

In addition, we enforce access with hooks in the batch system
and a redirection layer in each worker node’s virtual file
system.

A. Coordination of Provisioning Nodes
Coordination of provisioning nodes is based on the scoring

mechanism of files. We use a 1-dimensional score to express
the relevance for caching. The score is simple to transmit,
unambiguous to interpret, and simplifies many algorithms with
clear break conditions.

The file score caries an implicit command: files rated
higher are assigned with higher priority to provisioning nodes.
If space is required for new files, existing files with low
scores are discarded first. However, relations between files are
not apparent from the score. They are purely handled at the
coordination level.

The score of files is calculated inside the coordinator
node. A factorised approach is used to express multiple per-
spectives. Usage prediction is performed using a Least Re-
cently/Frequently Used (LRFU) algorithm [12]. The algorithm
is staged as a plugin. Other scoring algorithms can be used
if needed. Additionally, we exemplarily model adequacy for
caching: exceptionally small and large files are penalised to
ease allocation and overhead.

Assignment of files to provisioning nodes is performed
separately. Files accessed by the same job are grouped together.
These groups are spread evenly amongst all provisioning
nodes. Since files may belong to multiple groups, approaches
such as distributed hash tables are not adequate. Instead, we
exploit that grouping is deterministic and certain groupings are
more likely to occur. This allows us to use a heuristic approach,
which has proven itself adequate for our target community.
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Groups scored highest are allocated first. If any files of
a group are already allocated, the node with the highest file
count is chosen. Otherwise, a node is chosen at random. This
is performed until all files are allocated or no free space is
left. Finally, the allocated files and their scores are pushed to
each provisioning node individually.

Provisioning nodes only operate on the limited set of
assigned files. Since they perform the actual data access, they
are the final authority for staging files. This requires limited
autonomy for internal allocation and rearranging of files. Thus
provisioning nodes expose their allocation to the coordination
layer. This allows to iteratively adjust local allocation and
global distribution.

B. Application Access
A major motivation for our development is to preserve ex-

isting workflows. Therefore, all accesses must be implemented
in a transparent way. To be generally applicable, we must also
avoid dependencies on HEP specific software.

The HTCondor batch system natively allows to insert
hooks into batch job handling. On batch job submission and
finalisation, various job metadata is extracted: this includes
input files, resource usage, owner and workflow identifiers.
During handling of the batch job, job requirements are updated
to prefer hosts caching required input files. This entire process
is completely transparent to users.

We exploit HTCondor’s rank based scheduling. Users can
provide rating functions for worker nodes, e.g. to prefer faster
machines. We add our own rating, based on file locality. Thus,
locality is preferred in general but can still be overruled by
users if hosts are not interchangeable. In addition, we use
dynamic requirements to avoid jobs waiting indefinitely for
a perfect host. We require worker nodes to satisfy a specific
locality rating, which decreases over time.

Application file access on worker nodes is performed using
POSIX system calls. Therefore, accesses must be redirected in
the virtual file system layer of the operating system. We use
a union file system, specifically AUFS [13], to squash cache
file systems on top of network file systems. This redirects read
access preferably to caches, with write-through to the network
storage.

VI. BENCHMARKING AND EXPERIENCES

We made overall positive experiences with our concept
and prototype. Our test deployment is in operation since 6
months. The integration into infrastructure and workflows is
fully transparent. Applications subject to caching show notable
improvements in runtime.

Our test cluster features four worker nodes (see Table I).
Each has 32 logical cores, 512GB SSD cache and a 10Gbit/s
network interface. A total of 7 fileservers is available on each
worker node. The global services for the middleware and batch
system are on separate machines.

A. Middleware and Infrastructure
The overhead from our middleware is well acceptable. On

worker nodes, the software consumes (20± 5)% of a single
CPU. We consider this to be a reliable worst case estimate:
first, the frequency of file validation and allocation is very high
for testing purposes. This is the majority of actions performed

TABLE I. TEST CLUSTER WORKER NODE

OS Scientific Linux 6 (Kernel 2.6.32)
CPU 2x Intel Xeon E5-2650v2 @ 2.66GHz

( 8 cores, 16 threads)
Memory 8x 8GB RAM

SSD 1x Samsung SSD 840 PRO 512GB or
2x Samsung SSD 840 EVO 256GB

HDD 4x WDC WD4000 4TB
Network 1x Intel X540-T1 (10GigE/RJ45)

on worker nodes. A factor 2 to 10 less is reasonable for
production. Second, our prototype is written in python 2.7 and
interpreted with CPython. An optimised implementation in a
compiled language is guaranteed to be faster in production. We
also investigate other interpreters, e.g. pypy, which provide 3
to 5 times better efficiency in our tests.

The metadata is negligible compared to the actual data. A
500GB cache with 7000 cached files has (3.0± 0.5)MB of
persistent metadata. The memory footprint of the application
is of the same magnitude. The metadata aggregated in the
coordination layer is on the order of 250MB. Communication
overhead between nodes is unnoticeable compared to data
transfers.

The experience with the access layer using AUFS is
mixed. There is virtually no overhead on reading performance
compared to direct access. Even during concurrent accesses the
full cache device performance is available. However, we have
repeatedly observed spontaneous performance degradation and
crashes of the union mount service.

We assume the deficiencies to be caused by the old kernel
of the Scientific Linux 6 [14] operating system required by our
target community. To validate this assumption, we performed
tests on the same hardware using CentOS 7 [15] with kernel
4.4.1. The tests revealed none of the deficiencies experienced
with Scientific Linux 6. Still, a redirection layer tailored
to our access pattern may be more suitable for production
deployment.

B. Integration and Performance
Our prototype operates transparently to users. Applications

executed on our worker nodes require no changes. Workflows
need to be adapted in one single point: required input files
have to be reported explicitly to the batch system to benefit
from caching. Since users delegate job submission to tools, we
are able to automatise this.

The number of metrics which can be used to assess
performance are numerous. A simple and illustrative method
is to track individual reference workflows. These are regular
end user analyses, extended to collect lightweight performance
statistics. Figure 5 shows the distribution of execution times
of individual jobs for one workflow. Lower execution times
are better. The blue area represents jobs run with the cache
disabled. The green area represents jobs run with the cache
enabled.

Considerable improvements in execution time indicate ap-
propriate data provisioning and batch job scheduling. Indeed
we observe consistently improved execution times when our
HTDA middleware is enabled. Highly data driven workflows
have been sped up by a factor of 4. Workflows without cached
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data also benefit from this, as cluster and network utilisation
is lower.

Figure 5. Performance of reference analysis

VII. CONCLUSION AND OUTLOOK

Modern science is able to collect vast amounts of data.
Analysing the increasing volumes is a challenge in itself,
however. Solutions exist but are not necessarily applicable.
We have therefore investigated an alternative to transparently
provide data locality, specifically in batch systems.

We propose a dedicated cache on the scope of an entire
batch system. Modelling shows that using individual caches
on worker nodes is not efficient. Simulations reveal that high
cache hit rates do allow for improved throughput. This is only
feasible when actively coordinating individual caches.

Our approach to coordinated caches uses three layers. The
provisioning layer is composed of agents on worker nodes,
handling data directly. The coordination layer acts on a global
scale, coordinating caches based on available metadata. The
access layer wraps around workflows on both scales to provide
an interface to our system.

To test our estimations and concept, we implemented a
prototype of the proposed system – the HTDA middleware.
The current implementation handles several aspects of our
considerations. This system has already proven to speed up
data analysis by a notable factor.

The concept allows room for further research. As our
simulations show, perfect hit rate is not desirable. This may be
considered in the selection or distribution algorithm to increase
effective cache volume. Compared to other cache solutions,
our scope is at magnitudes more of processing resources and
magnitudes less of turnaround time. Data selection algorithms
may therefore be drastically expanded. Furthermore, arbitrary
sources for local and external metadata can be considered.
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