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In-port radiation cross-talks

Example 1: Tritium and Deposition Monitor (TDM) &
CIXS in Local model of EPP #17
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Total neutron flux for EPP17 with CIXS only
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Total neutron flux for EPP17 with CIXS and TD-monitor
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Neutron and gamma loads on the TD-monitor mirrors

Neutron loads on mirrors

Bellows
envelop

Neutron flux|Neutron flux Total
E<0.1 MeV, | E>0.1 MeV, [neutron flux,
n/cm2/s n/cm2/s n/cm2/s
M1 1.26E+12 | 1.88E+12 | 3.14E+12
M2 1.36E+11 | 1.86E+11 | 3.22E+11
M3 1.77E+12 | 1.75E+12 | 3.51E+12
M4 9.52E+09 | 1.57E+10 | 2.52E+10
M5 2.23E+09 | 3.62E+09 | 5.85E+09
M6 8.48E+07 | 1.62E+08 | 2.47E+08
M7 2.66E+07 | 3.41E+07 | 6.07E+07

Fast neutrons (E>0.1 MeV), except of M3,

Mirror
Optical path BLUILIE

Pipe feedthrough is closed by
shutter

Tt T T dominate in total neutron fluxes on the mirrors.
Gamma deposition defines the total heat.
A All the results are averaged over the mirror
4 volumes.

Summary table of the neutronic loads on mirrors — fluxes and nuclear heat averaged over the mirror volumes

MCNP cell Mirror . Volume, |Total neutron|Total gamma flux, Neut.ron Gam.ma Total (n + gamma)

number number Material cm3 flux, n/cm2/s| gamma/ cm2/s heating, Al heating, W/cm3
' W/cm3 W/cm3 !

Cell 18554 M1 Molybdenum (Mo) 2640.81 3.14E+12 1.29E+12 3.11E-02 | 7.42E-01 7.73E-01

Cell 18555 M2 St. steel (SS316L(N)-IG) | 1485.23 | 3.22E+11 1.48E+11 2.98E-03 | 3.87E-02 4.17E-02

Cell 18618 M3 St. steel (S§S316L(N)-1G) | 1360.83 | 3.51E+12 8.54E+11 2.21E-02 | 2.88E-01 3.10E-01

Cell 18556 M4 St. steel (S§S316L(N)-IG) | 601.99 2.52E+10 1.39E+10 3.48E-04 | 3.99E-03 4.34E-03

Cell 18559 M5 St. steel (S§S316L(N)-IG) | 567.48 5.85E+09 5.31E+09 8.50E-05 | 1.63E-03 1.71E-03

Cell 18557 M6 St. steel (S§S316L(N)-1G) 85.49 2.47E+08 9.25E+07 4.24E-06 | 4.18E-05 4.60E-05

Cell 18558 M7 St. steel (S5316L(N)-1G) 50.33 6.07E+07 1.44E+07 8.97E-07 | 4.75E-06 5.65E-06

For all the presented results in mirrors, the statistical uncertainty expressed in Monte Carlo MCNP relative errors
are less then 1% for the mirrors M1-M5, and around 10% for the mirrors M6-M7 behind the Closure Plate.
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Distribution of decay gamma sources for SDDR
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SDDR (Sv/h) map thresholded between 300 microSv/h (at contact with flange) and 50 microSv/h
(dose level of maintenance access) — radial extent (X-axis) for CIXS without shield
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SDDR for EPP17 with 2 diagnostics systems integrated: TD-monitor and CIXS
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Comparison of the SDDR distributions in MCNP fine mesh

SDDR in CIXS-only model VvS. SDDR in TD-monitor & CIXS model
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SDDR comparison in spherical detectors in Pl of EPP17
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SDDR horizontal distributions and effect of TD-monitor on SDDR

Horizontal SDDR (microSv/h) distributions in spherical detectors of TD-monitor & CIXS model

Detectors location in

Layer # horizontal distribution Left Right
Below the TD-monitor,
L1 at 30cm from CP 134 210 209 120
Behind the TD-monitor,
L2 at 66¢cm from CP 2 2 78 69
L3 Far from TD-monitor, 12 56 72 58

100cm from CP

Horizontal SDDR (microSv/h) distributions in detectors of CIXS~only model

Detectors location in

Layer # horizontal distribution Left \Qght
Below the TD-monitor,
L1 e fram D 121 193 194 117\
Behind the TD-monitor, N
L2 at 66 cm from CP 32 66 74 63
L3 Far from TD-monitor, 11 56 67 55

100cm from CP

Effect of TD-monitor on SDDR in spherical detectors. Difference of SDD

Detectors location in

Layer # horizontal distribution Left
Below the TD-monitor,
L1 at 30cm from CP 13 17 15
Behind the TD-monitor,
L2 at 66¢cm from CP & U 4
L3 Far from TD-monitor, 1 0 5

100cm from CP
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Summary and Recommendations

Neutronics analysis was performed in the MCNP Local model of EPP17 included only the apertures of
two Diagnostics: TD-monitor and CIXS.

The results include neutron and gamma fluxes and nuclear heating on 7 mirrors of the TD-monitor,
neutron fluxes and SDDR estimated in spherical detectors and with 3D distributions in EPP17:

 Nuclear heating on mirrors is up to 0.77 W/em? (cooling might be required).

» SDDR in spherical detectors at the bottom of TD-monitor shield box (at 30 cm from Closure Plate)
reaches 210 microSv/h, with a contribution of 17 microSv/h from TD-monitor.

« Shield block behind the TD-monitor contribute to a decrease on 7 microSv/h — gamma shadow effect.

* These are relative SDDR values of Local MCNP model. Final values request inclusion of all the
tenants of EPP17 (TD-monitor, CIXS, Vis/IR system, and Divertor Thermography) — future task of

EPP17 port plug integration, with inclusion of all the sorts of the gaps, radiation cross-talks between
the ports, and environmental effects in global MCNP C-lite model.

Vertical cut of MCNP model

™ Horizontal cut

" Recommendations for TD-monitor design

culated amg] M5 n B - ZEiSCannerrnirrorMG improvement:
[E==2T =0 »
b B P il * Increase vertical shift (M4-M5) of the
AN dog leg inside the port plug - to prevent

of DSM#2

T possible direct neutron streaming.

* Shield block behind the TD-monitor optical box
appears as a ‘““neutronic relevant option™.
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SDDR map in model with both systems: TD-monitor & CIXS

Gamma shadow effect due to the back-side shield of TD-monitor box in model with TD-monitor and CIXS
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SDDR map in the EPP17 model with CIXS system only

No shadow observed in Pl of the MCNP model included only the CIXS system
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Gamma shadow effect due to the shield of TD-monitor box

Thresholded SDDR map (10 microSv/h — 100 microSv/h) to illustrate gamma shadow effect due to the
back-side shield of TD-monitor box in model with TD-monitor and CIXS
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In-port radiation cross-talks

Example 2: Tangential Neutron Spectrometer (TNS)
inside the EPP #8 with 7 Diagnostics in C-lite v.2
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Neutron spectra calculation in detectors of Tangential Neutron Spectrometer (TNS) inside the EPP8 |
with 7 dlagnostlc systems in C-lite v.2
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Filled LAM with the EQ8 shield material (B4C), numerical results are available:

https://user.iter.org/?uid=S36B22 with Excel file with neutron spectra in TNS of the EQ8 without Lost Alpha Monitor (S36B22)

Neutron streaming in FILD (LAM) path:

Peak factor (F_14MeV_per

lethargy/F_sum E>10MeV)= 4.4705E+00

Ratio uncollided/total =

2.0488E-04

If FILD (LAM ) is filled with shield - then peak factor is increased by two times (8.2), but ratio of uncollided flux
to total flux is decreased by two times (1.08e-4). This is due to stronger moderation of neutrons by the shield:

Peak factor (F_14MeV_per
lethargy/F_sum E>10Mev)=

8.1998E+00

Ratio uncollided/total =

1.0779E-04
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MCNP neutron spectra calculations in TNS detectors of EPP #8 in C-lite V2 with
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Investigation was carrying on for the Central TNS detector.
In the original EPP #8 model the distance between TNS and 1st
leg of FILD was 10 cm, in the turned model it is 60 cm.

Turning upside-down of the FILD pathway helps to increase the
14-MeV peaking factor in energy resolution of the central TNS
detector.

Turned FILD configuration stops neutron streaming from the
FILD pathway to the Central TNS detector.

For measuring of n-spectrum in Central Det. #2 the turned
FILD option is an equivalent to one of its absence — option
of totally filled FILD (LAM — as FILD called before):
“TNS-no-LAM” case on the spectra plots next slide.
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Neutron spectra, 1em?is per lethargy interval

Eliminating cross-talks between TNS and LAM (FILD)

In Central TNS Detector #2 the neutron spectra are coincided for two cases:
1) Totally removed LAM (FILD)
2) Turned upside-down LAM (FILD) ~._

——Central TNS Det #2 in DSM #2
w. s . |-©-8ide TNS Det#1in DSM#3
Central TNS Det #2, with turned LAM
RNC detector at cryostat (z=82cm y=-27cm)
—7—Uncollided central RNC Det at cryostat
Uncollided Central TNS Det #2

10 ¢ ]
10° | ]
10 | |
10° | | | |
10 1" 12 13 14 15 -
Neutron energy, MeV
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In-port radiation cross-talks

Example 3: Shutter and the main Diagnostic path of
the Charge eXchange Recombination Spectroscopy
(CXRS) in UPP #3
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MCNP model cut through the main optical path and mirrors - UPP with CXRS and GDC

3 Cases of MCNP neutronic models considered MCNP neutronic model
in analysis of Charge eXchange Recombination
Spectroscopy (CXRS) in UPP#3:

* Case #1 of UPP#3 with CXRS and GDC;

* Case #2 of UPP#3 with CXRS only; ] —

100

* Case #3 modified GUPP FDR 2013, with
inclusion of single labyrinth in bottom gap

+ CXRS main path

MCAM code used for CAD-to-MCNP model
CAD geometry conversion

Transmission line GDC

Last 4 mirrors CXRS (M3, M6

M4, M5, M6
Front-end ) A
electrode GDC

First 2 mirrors T
Il cxRs (M1, M2)

|||||||||

-100 0 100 200
Materials of the CXRS mirrors:

M1, M2 — Molybdenum (Mo)

{Main optical path M3 - M6 - Silicon carbide (SiC)

ﬂ(IT Radiation In-Port Cross-Talks for ITER Port Diagnostics, 22nd TOFE, Page 27
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Detailed neutronics results for the CXRS mirrors

Materials of the CXRS mirrors:
M1, M2 — Molybdenum (Mo)
M3 - M6 - Silicon carbide (SiC)

1 4
p e
M Total (n + gamma) heating (W/cc) averaged
M3 over the volumes of CXRS mirrors:
M1 =6.77e-1 W/cc
M2 = 7.96e-1 W/cc
M3 = 4.74e-3 W/cc
M4 =7.43e-4 W/cc
M5 = 3.95e-5 W/cc
M6 = 2.57e-5 W/cc
Mirror X Volume, | Neutron flux,| Gamma flux, Neut_ron Gam_ma Total (n+gamma)
MCNP cell number number Material cm3 n/em2/s gamma/ cm2/s heating, heating, heating, W/cm3
W/cm3 W/cm3 !
Cell 17500 M1 Molybdenum (Mo) | 469.8000 2.50E+13 1.03E+13 1.48E-02 6.62E-01 6.77E-01
Cell 17512 M2 Molybdenum (Mo) | 945.0000 3.04E+13 1.20E+13 1.79E-02 7.78E-01 7.96E-01
Cell 17502 M3 Silicon carbide (SiC) | 907.5000 7.24E+11 2.89E+11 5.89E-04 4,15E-03 4.74E-03
Cell 17530 M4 Silicon carbide (SiC) | 1061.1000 1.40E+11 5.03E+10 5.87E-05 6.84E-04 7.43E-04
Cell 17529 M5 Silicon carbide (SiC) | 2748.0950 7.31E+09 2.91E+09 8.29E-06 3.13E-05 3.95E-05
Cell 17501 M6 Silicon carbide (SiC) | 2150.2000| 4.69E+09 1.47E+09 3.13E-06 2.26E-05 2.57E-05

For the interval of the MCNP statistical uncertainty (5%), the neutron and photon fluxes averaged for the 6 mirrors
are the same for the UPP-CXRS with or without GDC.
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Total neutron flux (n/cm2/s) mapped over UPP with CXRS and GDC

. : 1 — Gaps all-round the UPP
4 neutron streaming pathways in 2 _ CXRS shutter
Case #1 of UPP-CXRS with GDC: 3 — CXRS main optical path

4 — GDC electrode

Port Interspace

(P1) l

Total neutron flux, n/cm?2/s

le+10 le+12
| | \IIHH‘ [ \IH[M

1e+008 le+013
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Impact of CXRS shutter — on neutron flux streaming

Total neutron flux, n/cm2/s
| | \ | \

1e+009 1e+010

MirrorrMS

Strong impact of CXRS shutter
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Case #1:

UPP-CXRS with GDC
4 pathways of neutron
streaming :

1 — Gaps all-round the UPP
2 — CXRS shutter

3 — CXRS main optical path
4 — GDC electrode

Neutron pathway analysis:

Case #1 vs. Case #2:

Case #2:

UPP-CXRS except GDC
3 pathways of neutron
streaming :

1 — Gaps all-round the UPP
2 — CXRS shutter
3 — CXRS main optical path

ﬂ(IT Radiation In-Port Cross-Talks for ITER Port Diagnostics, 22nd TOFE,
Philadelphia, 22 — 25 August 2016

Karlsruhe Institute of Technology
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Case #1

Port Interspace
(PN

Totdl neutron flux, n/fem2/s

Case #2

Port Interspace
(P1)

Total neutron flux, n/fcm2/s

le+013
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Case 1:

UPP-CXRS with GDC
4 pathways of neutron
streaming :

1 — Gaps all-round the UPP Port

2 — CXRS shutter Interspace (Pl)
3 — CXRS main optical path

4 — GDC electrode Total neutron flux, n/cm2/s

1e+008 1e+013

Neutron pathway analysis:
Case #1 vs. Case #3: Case #3

Case 3:

Generic UPP

1 pathway of neutron
streaming :

1 — Gaps all-round the GUPP Port
Interspace (PI)

Total neutron flux, nfecm?2/s

1e+008
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Total neutron & gamma fluxes inside Port Interspace (Pl) volumes F3 & F4 for the 3 cases of UPP-CXRS

PR S S 't

| IS ST S S N S S 'Y

| I

s 2

PR ST S S 1

UPP interspace control volumes F3 & F4

Conclusion: for the range of the MCNP statistical uncertainty (2%), neutron fluxes in Cases 1 & 2 are identical: in PI

Case 1: UPP-CXRS with

Neutron flux,

Gamma flux,

GDC n/cm2/s gamma/cm2/s
F3 9.48E+07 1.35E+07
F4 6.52E+07 9.42E+06

Case 2: UPP-CXRS

Neutron flux,

Gamma flux,

except GDC n/cm2/s gamma/cm2/s
F3 9.65E+07 1.15E+07
F4 6.64E+07 8.64E+06

Neutron flux,

Gamma flux,

Case 3: Generic UPP n/cm2/s gamma/cm2/s
F3 7.61E+07 1.09E+07
F4 5.82E+07 8.54E+06

volume F3: 9.5e7 n/lcm2/s, in Pl volume F4: 6.6e7 n/cm2/s. For the Generic UPP with bulk shield plug, the neutron fluxes

are lower: 7.6e7 n/cm2/s in F3, and 5.8e7 n/cm2/s in F4. That means the GDC system does not affect the SDDR in PI.

For the gamma fluxes the MCNP statistical uncertainty is higher — reaching 10%-15% of relative statistical error, where

gamma fluxes are the following: 1.3e7 gamma/cm2/s in F3 and 9.0e6 gamma/cm2/s in F4.

SKIT

Karlsruhe Institute of Technology

Radiation In-Port Cross-Talks for ITER Port Diagnostics, 22nd TOFE,
Philadelphia, 22 - 25 August 2016

Page 33



SDDR results inside the Pl-control volumes F3 & F4 for the 3 cases of UPP-CXRS configurations

Radioactive Case 1 Pf UPP- Case 1 Pf UPP- Case 2 of UPP-CXRS |Case 2 of UPP-CXRS Casg 3 of Cas¢_e 3 of
isotope C)SRS with _GDC, C)SRS with _GDC, e_zxcept GI?C, t_except GI_:)C, (?enerlc U_PP, (_;enerlc U_PP,
microSv/h in F3 microSv/h in F4 microSv/h in F3 microSv/h in F4 microSv/h in F3 |microSv/h in F4
Cr 51 9.76E-01 6.96E-01 9.18E-01 6.70E-01 7.27E-01 6.00E-01
Mn 53
Mn 54 4.76E+00 4.05E+00 3.53E+00 3.65E+00 2.01E+00 3.22E+00
Fe 55 1.44E+00 1.22E+00 1.21E+00 1.11E+00 6.45E-01 1.14E+00
Fe 59 3.76E+00 2.50E+00 3.67E+00 2.47E+00 3.28E+00 2.07E+00
Co 57
Co 58 1.79E+01 1.21E+01 2.09E+01 1.43E+01 1.44E+01 1.08E+01
Co 60 6.79E+01 5.23E+01 6.62E+01 5.19E+01 5.76E+01 4.90E+01
Ni 58
Ni 59
Ni 63
Zn 64
Zr 93
Nb 92
Nb 92m
Nb 93m
Nb 94 7.84E-04 9.70E-04 7.54E-04 9.10E-04 7.81E-04 8.81E-04
Hf181
Ta179
Ta180m
Ta182 2.71E+01 1.80E+01 2.59E+01 1.78E+01 2.04E+01 1.43E+01
Total dose 1.24E+02 9.09E+01 1.22E+02 9.19E+01 9.90E+01 8.11E+01

Conclusion: for the range of the statistical uncertainty (3%), the SDDR results in Cases 1 & 2 are identical:

in Pl volume F3: 124 microSv/h, in Pl volume F4: 92 microSv/h. That means the GDC system does not affect the SDDR
in PI. Comparison with the GUPP shows the contribution of CXRS system is 25 microSv/h in F3 and 10 microSv/h in F4
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Conclusions

The phenomenon of in-port cross-talk was investigated for the diagnostic systems
deployed in two Equatorial Port Plugs (EPP) #17 and #8, and for the components of
Upper Port Plug (UPP) #3.

The Core-Imaging X-ray Spectrometer (CIXS) inside the Diagnostic Generic EPP is
analysed in EPP#17 local model, while EPP#8 is modelled globally with C-lite v2.
The CXRS-GDC in UPP#3 was modelled using modified B-lite v.3 model.

Multiple sets of diagnostic equipment inserted inside the same Port Plug create
additional pathways for radiation streaming along the diagnostic channels and
labyrinths (e.g. optical pathways) — the reason of in-port radiation cross-talk
between different diagnostic systems.

Demonstrated that in order to take advantage of particular shielding improvements
in full extent, we should also assess the mutual influence of every Diagnostic
system installed inside the same port.

This subject is important for Diagnostics designing at the stage of port
integration to ensure engineering and maintenance solutions for the
Diagnostic tenant systems.
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