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Abstract The present contribution offers evidence regard-
ing the possibility of obtaining reasonable photovoltaic
power forecasts without using weather data and with sim-
ple data-driven models. The lack of weather data as input
stems from the fact that the constant obtainment of forecast
weather data might become too expensive or that commu-
nication with weather services might fail, but still accurate
planning and scheduling decisions have to be conducted.
Therefore, accurate one-day ahead forecasting models with
only information of past generated power as input for offline
photovoltaic systems or as backup in case of communication
failures are of interest. The results contained in the present
contribution, obtained using a freely available dataset, pro-
vide a baseline with whichmore complex forecastingmodels
can be compared. Additionally, it will also be shown that
the presented weather-free data-driven models provide bet-
ter forecasts than a trivial persistence technique for different
forecast horizons. Themethodology used in the present work
for the data preprocessing and the creation and validation of
forecastingmodels has a generalization capacity and thus can
be used for different types of time series as well as different
data mining techniques.
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1 Introduction

Photovoltaics (PV), the direct conversion of sunlight into
electricity, is a technology that offers a realistic way of pro-
viding electricity without using fossil fuels nor releasing
pollutants into the atmosphere. This is due to the continuous
efficiency increase of the PV cell [5] and the continuous drop
of investment costs for PV installations in the last years [21].
Unfortunately, PV systems have the disadvantage of having
a volatile electrical power generation, due to their complete
dependency on the weather. The intermittent power gener-
ation makes the balancing between demand and supply in
the electrical grid challenging [20]. Thus forecasting models
able to predict the future PV generated electrical power are of
major importance; they simplify the balancing of the future
electrical demand through the mutual adjustment of photo-
voltaic energy sources, energy storage systems, and demand
side management [19].

A type of models capable of delivering reasonable fore-
casts are data-driven models [1]; models created using a
database containing relevant information about the PV sys-
tems (e.g., past generated power) and datamining techniques.
Those models are able to take previously defined input data
(e.g., weather data) to deliver in correspondence a reasonable
PV power forecast. Currently there appears to be a prefer-
ence for the usage of artificial neural networks (ANN), due
to their capacity to describe nonlinear relations [3]. Several
ANNs have been used in literature: Some refer to classi-
cal approaches like the multilayer perceptron (MLP) used
by Mellit and Pavan [8] or Rashkovska et al. [13], while
others use more complex networks like the ANN ensemble
by Chaouachi et al. [2] or the recursive neural network by
Cococcioni et al. [3] and Tao et al. [17]. Considering that
the use of ANNs requires a certain degree of trial and error,
especially to determine the ANN topology, other approaches
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day ahead forecasting models, the technique whose models
provide the best forecasts is utilized to create models with
different forecast horizons. Their results are then compared
to a trivial forecast in order to demonstrate the advantage of
using data-driven models over a trivial forecast, even when
those lack weather information as input.

The present contribution is part of the research project
Energy Lab 2.0 of the Karlsruhe Institute of Technology,
which is funded by the Helmholtz Association, the Ger-
man Federal Ministry of Education and Research (BMBF),
and the Ministry of Science, Research and Art (MWK) of
the State of Baden-Wuerttemberg. The Energy Lab 2.0 is
planned to be a large experimental and simulation field for
energy system facilities [4]. One aim of the Energy Lab 2.0
is the systematic evaluation of various big data and data
mining methods. It consists of several hardware components
(e.g., electrical power grid, natural gas grid, consumers, solar
power storage park) and an information and communication
technologies part called Smart Energy System Simulation
and Control Center (SEnSSiCC) [6] in which different fore-
casting models are going to be implemented.

The rest of the present contribution is organized as follows:
Sect. 2 describes the used data , Sect. 3 depicts the method-
ology for the creation and validation of different data-driven
models, including the data preprocessing and the datamining
process. All methods described in Sect. 3 are implemented
using the open sourceMATLAB toolboxGait-CAD [9]. Sec-
tion 4 shows the results and offers a discussion and lastly
Sect. 5 offers the conclusions and outlook to this work.

2 Data

The data used in the present work comes from the “Ausgrid
Solar Home Electricity Data”, which is freely offered by the
state-owned Australian energy provider Ausgrid.1 It offers
electricity data from 300 different households with installed
rooftop PV systems. The contained measured value which is
relevant for the present work is the generated PV electrical
energy from which the average generated electrical power
time series P [kW] of every household can be obtained (the
PV power generated under standard conditions of each sys-
tem is also provided). All PV power time series extracted
from the dataset, with time samples k = 1, . . . , K , have
a temporal resolution of 30 min and contain measurements
from July 1st, 2010 to June 30th, 2013 (K = 52608). One
of the used time series contains several missing values which
are corrected through a process further described in Sect. 3.
Only the information of 54 of the 300 households is used in
the present contribution, those households are the ones con-

1 http://www.ausgrid.com.au.

have also been used. For example, Shi et al. [15], Silva Fon-
seca et al. [16], and Yang et al. [22] applied the principles of 
support vector regression to create their forecasting models. 
Likewise, time series analysis has also been used for the PV 
power forecast like the autoregressive moving average with 
exogenous input model (ARMAX) used by Li et al. [7].

A shared trait of all the previously mentioned forecast-
ing models is their use of weather data as input, whose 
obtainment and usage might pose several concerns. For 
example, if the models utilize forecast weather data as input, 
historical forecast data is necessary for their creation, infor-
mation which must be purchased from weather services. A 
possibility of circumventing such purchase would be to uti-
lize historical measured weather data as “perfect forecasts”. 
Nonetheless, this approach results in a questionable solution 
since such values do not reflect the uncertainty of using true 
forecasts. Also, after the models’ creation a constant com-
munication with weather services is necessary in order to 
obtain the required inputs. Simple weather forecasts (e.g., 
future average temperature in a region, rain possibility) are 
offered free of charge, but more specific and accurate ones 
(e.g., future solar irradiation at the PV system in a specific 
temporal resolution) have to be purchased. If the communi-
cation with weather services is unwanted in view of security 
reasons, or most importantly if it fails (e.g., failure of internet 
services), models as the ones previously described become 
inoperative. Therefore, data-driven models able to deliver 
accurate forecasts by only using information of past gener-
ated power not only offer a simple low cost offline solution, 
but can also be provided as backup models in case commu-
nication with weather services is lost.

A further problem regarding data-driven forecasting mod-
els is the use of different datasets for the models creation 
(most authors use data of PV systems to which only they 
have access to), which makes the comparisons of models 
presented in literature a challenging task [18]. The dataset 
used in the present contribution is a freely available dataset, 
its preprocessing is thoroughly described, thus allowing a 
future comparison of results. The use of simple data-driven 
models is to show that even such models are able to deliver 
acceptable results when only using information of past gen-
erated PV power and to provide a baseline with which more 
complex forecasting models can be compared.

The present work results are presented as follows: first, 
models with a 24 h forecast horizon are created and validated 
using several data mining techniques and the information of 
past generated power 24 to 48 h prior to the forecast horizon. 
The selection of the 24 h forecast horizon comes from the 
fact that such forecasts play a major role in the scheduling 
of energy systems and that the quality of data-driven models 
without weather data with very short forecast horizons (1 
and 2 h) has already been assessed, for example, in the work 
of Pedro and Coimbra [11]. After the validation of the one-

http://www.ausgrid.com.au
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sidered to be part of the clean dataset defined by Ratnam et
al. [14].

3 Methodology

3.1 Preprocessing

3.1.1 Overview

The following paragraphs describe the preprocessing steps
applied to the raw PV power time series (P) in order to
improve their quality. The preprocessing method is indepen-
dent of the time series used in the present contribution. This
implies that it can be used on different types of time series.
Figure 1 depicts the data preprocessing (outlier detection,
normalization, missing data treatment, and synchronization)
using a PV power time series of the Ausgrid dataset to allow
a better understanding of each step. Worth mentioning is the
fact that negative values which are impossible in PV power
time series are automatically set equal to zero before the
application of the preprocessing method.

3.1.2 Outlier detection and elimination

The identification and elimination of outliers is carried
out with the help of the Hampel filter2 [10]. This mov-
ing window filter needs two parameters to be applied, the
moving window half width parameter kw and a threshold
value tH . The filter calculates the median P̃ of every sub-
set P[k−kw], . . . , P[k], . . . , P[k+kw] using the following
equation:

P̃[k] = median(P[k − kw], . . . , P[k], . . . , P[k + kw]). (1)

Using the obtained median, the median absolute deviation
(MAD) is calculated by the equation:

MAD[k] = median(|P[k − kw] − P̃[k]|, . . . ,
|P[k] − P̃[k]|, . . . , |P[k + kw] − P̃[k]|). (2)

Using the MAD, the MAD scale estimate S is determined:

S[k] = 1.4826 MAD[k] . (3)

The actual filtering occurs when the absolute difference of
each value in the subset and the corresponding P̃ is compared
to the multiplication of tH and S; if the difference is greater

2 This filter can only be used during offline data analysis, due to its
acausal nature.

Fig. 1 Data preprocessing steps

than tH · S the value is replaced by P̃:

Pf [k] =
{
P[k], if |P[k] − P̃[k]| < tH · S[k]
P̃[k], else

, (4)

Pf is the filtered time series. This filter has the advantage
of only classifying as outliers values which are completely
different to their neighborhood, therefore leaving trends and
seasonal variations unchanged. In the present contribution
kw = 3 and tH = 3 are used. Furthermore, values given as
NaNs3 are not considered outliers and are rather ignored by
this step; those values are corrected later in the missing data
treatment step.

3 NaN: Not a Number.
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3.1.3 Normalization

A normalization is applied in order to allow the comparison
of time series:

Pn[k] = Pf [k] − mink=1,...,K (Pf [k])
maxk=1,...,K (Pf [k]) − mink=1,...,K (Pf [k]) . (5)

The previous equation re-scales all time series values to val-
ues between zero and one. Due to the previous application of
the outlier detection and elimination, this normalization can
be applied even though it is sensitive towards outliers.

3.1.4 Missing data treatment

This step has the goal of filling in missing data in a time
series with plausible values. It can be divided into a process
referred to as automatic merging and a linear interpolation.

(a) Automatic merging

Samples of P have to possess similar values to other time
series recorded at the same time in the same geographical
area. Because the normalizationmakes themagnitude of time
series values independent of system-specific properties (e.g.,
PV power under standard conditions) a merging becomes
feasible. So in order to apply this method to Pn , a reference
normalized time series without missing value areas and with
the same type of values Pn,re f is necessary. The reference
time series are found with the help of labels which define the
geographical location of the different PVsystems (in this case
the zip-code of the different households).4 If a PV system has
the same label as one with time series containing missing
value areas, then its time series can be used as reference (if
several reference time series are found only the first one to be
found is utilized in this step). To determine whether adjacent
missing values form a missing value area, a threshold tmva

has to be defined; if the number of adjacent missing values is
greater than tmva they are considered to be part of a missing
value area. The values inside the missing value area are then
replaced by the values of Pn,re f according to the equation:

Pam[k] = Pn,re f [k] , (6)

Pam is the time series after the automatic merging step. In the
present contribution the number of adjacent missing values
to be considered a missing value area is set equal to tmva = 3
which represents 90 min of missing data. It is important to
mention that the algorithmdoes not stop if it is unable to find a
reference time series for one containing missing value areas.
Rather, the algorithm saves a variable in its currentworkspace

containing which time series could not be corrected, so that
they can be identified later.

(b) Interpolation

The missing values which are not considered as part of a
missing value area are filled in with values obtained using a
linear interpolation.

The linear interpolation is undertaken as follows: if
Pam[k], with k ∈ (k1, k2), is missing and Pam[k1] and
Pam[k2] are the first non-missing values to the left and to the
right correspondingly, then Pam[k] is approximated using the
equation:

Pf mv[k] = Pam[k2] − Pam[k1]
k2 − k1

(k − k1)

+Pam[k1], k ∈ (k1, k2) . (7)

Pf mv is referred to as the time series free of missing values.

3.1.5 Synchronization

The final part of the preprocessing step is called synchroniza-
tion and aims for the standardization of the processed time
series temporal resolution. The idea is to obtain new time
series with a higher or lower temporal resolution through the
linear interpolation or averaging of the subjected time series
values. For example, if the wanted temporal resolution is 15
min but the given time series have one of 30 min (as is the
case in the here used dataset) an interpolation between val-
ues is necessary. The change in resolution is accomplished
using a value referred to as rquo, it describes the factor with
which the resolution is being increased or decreased (in the
present work: rquo = 2 ). The interpolation function that rep-
resents the increase in resolution of a time series is given by
the following equations:5

kr = floor

(
ks − 1

rquo

)
+ 2 , (8)

kl = floor

(
ks − 1

rquo

)
+ 1 , (9)

h = Pf mv[kr ] − Pf mv[kl ]
rquo

· (ks − kl) , (10)

Psync[ks] =
{
Pf mv[k], ∃k: ks = rquo(k−1) + 1

h + Pf mv[kl ], else
.

(11)

5 The floor operator rounds a real number to its preceding integer.

4 To search for reference time series, the PV power time series from all 
300 households in the Ausgrid dataset are used.
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As Eq. (11) shows, the resulting time series, Psync, has a
greater number of discrete time steps (in the equation referred
to as ks) than Pf mv; those range from 1 to rquo · (K −1)+1.

To keep the nomenclature simple the discrete time steps
ks are represented further with the letter k. Likewise, the
subscripts used during the present section are not going to be
utilized in the following sections.

3.2 Data mining

3.2.1 Overview

After the preprocessing step the data mining process can be
conducted. A second time series for every household is cre-
ated and added to the used dataset. Such time series is referred
to as ttod and its values (which range from 0 to 1) represent
the time in which every measurement of P was made. The
reason behind its inclusion is to investigate if the incorpora-
tion of data which can help the models learn the periodicity
of the sun improves the forecasting accuracy. An example
in which the inclusion of a time of day time series as input
improved the forecasting results can be found in the work of
Cococcioni et al. [3]. Likewise, an advantage of using past
generated power as input is that it implicitly contains specific
information about the PV systems (e.g., orientation and incli-
nation of PV modules, modules aging) and about systematic
repeating effects (e.g., building shadowing effects). Figure 2
depicts an example of measurements for a single day of both
P and ttod .

The goal of the data mining step is to find a functional
relation between input time series and the estimated future
generated PV power (P̂). The idea is to approximate the
future generated PV power at the forecast horizon H using
all the information contained in the input time series from
time k to time k − H1 (in the present work: H1 = 24 h). An
example of the functional relations sought after in the present
contribution when the PV power as well as the combination

Fig. 2 Example of one daymeasurements for the past generated power
as well as the time of day time series

of PV power and time of day time series are used as input
are shown in the equations below:

P̂[k + H ] = f (P[k], . . . , P[k − H1]), (12)
P̂[k + H ] = f (P[k], . . . , P[k − H1],

ttod [k], . . . , ttod [k − H1]). (13)

In order to simplify the notation the functional relations are
going to be written further as f (P) and f (P, ttod). The fol-
lowing paragraphs describe first the techniques used to create
the models and then the validation process applied to vali-
date their accuracy. All data mining techniques applied in the
present work can also be used with other inputs (e.g., solar
irradiation, ambient temperature, PV module temperature,
etc.).

3.2.2 Data mining techniques

The techniques used in the present contribution to create the
data-driven models are: a so-called persistence technique,
four different polynomials without bi-linear terms, and two
artificial neural networks (ANN).

The first technique is referred to as persistence, it is used
in order to determine whether the other techniques are able
to provide more reasonable forecasts than this trivial one,
which is described by the equation:

P̂[k + H ] = P[k] . (14)

The four different polynomial techniques are polynomials of
degree one to four (Poly1–Poly4). It is important to men-
tion that not all input times series values are used to create
the polynomial models, but rather only the four most rel-
evant ones. For example, in order to create a Poly2 model
with P as input the algorithm takes all values from P[k] to
P[k − H1] and raises them to the power of one and to the
power of two. Afterwards, it chooses the four most relevant
ones, through a stepwise process. Once the values are cho-
sen the algorithm creates a sparse polynomial model whose
parameters are determined by a least squares method.

Both ANNs are multilayer perceptrons (MLP) with one
hidden layer, due to the fact that one hidden layer MLP is
able to approximate a function of any complexity [2]. Fur-
thermore, a hyperbolic tangent function is used in the hidden
neurons and a linear function in the output ones. Regard-
ing the number of hidden neurons, the first one of them
has six (ANN6) and the second ten (ANN10). Both ANN’s
models are created by the Levenberg-Marquardt backpropa-
gation algorithmwith a maximum of twenty training epochs.
Figure 3 depicts the topology of ANN6 if only P is used as
an input.

No a-priori information, like PV power should be zero at
night, is used during the creation of the models.
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Fig. 3 Example of the ANN6 topology when only P is used as input

3.2.3 Validation

A validation is necessary to assess the performance of the
models obtained with the used techniques on unknown data.
The validation technique chosen in the present contribution is
a fivefold cross-validation; the process consists in separating
the time series to be used into five segments, using four seg-
ments (training data) to create models with the different data
mining techniques, and testing those models on the remain-
ing segment (test data). Afterwards, their performance on the
test data is validated with the values commonly used for the
evaluation of forecasting models, according to [12]. Those
values are the mean absolute error (MAE) and the root mean
square error (RMSE), likewise, the Pearson correlation coef-
ficient between forecast and actual value (rP P̂ ) is also used.

So if P̂ is the forecast time series, the time series of the fore-
casting error (e f ) and all the previously mentioned values
are calculated by the equations:

e f [k] = P̂[k] − P[k] , (15)

MAE = 1

K

K∑
k=1

|e f [k]| , (16)

RMSE =
√√√√ 1

K

K∑
k=1

(e f [k])2 , (17)

rP P̂ =
∑K

k=1(P[k] − P̄) (P̂[k] − ¯̂P)√∑K
k=1(P[k] − P̄)2

√∑K
k=1(P̂[k] − ¯̂P)2

, (18)

4 Results

The average validation results of the one-day ahead fore-
casting models (H = H1 = 24 h) of every household are
presented in Table 1. As it can be seen the past generated
power (P) as well as the combination of power and time
of day (ttod ) time series are used as input. The reason why
ttod is not used without P , is that its usage would result
in a model only able to describe the periodicity of the PV
power, but not its magnitude. The validation results demon-
strate that the inclusion of ttod has an improving effect (from
approx. 0.1 to 1 %) on the overall forecasting accuracy of
all the created models (with the only exceptions being the
MAE values for Poly3 and Poly4). Additionally, the results
show that the more complex techniques ANN6 and ANN10
possess the best results on the test data, with ANN6 using
both P and ttod as input being the best. Interestingly, models
perform in average better than the persistence technique in
regard to their RMSE and rP P̂ values, but only the ANNs
obtain models whose MAE is lower than that of the trivial
persistence technique. This can be attributed to the fact that
most models obtained with the polynomial technique have a
non-disappearing offset at night which increases their mean
absolute error (such an effect can be corrected through the
use of a-priori information during the models creation), but
once larger errors are weighted strongly as is the case with
the RMSE the persistence approach becomes the worst of
them all.

As already mentioned, the ANN with six hidden neurons
and both P and ttod as input creates the models whose fore-
casting accuracy is the highest. Furthermore, the technique
which does not allow any non-linearities (without consider-
ing persistence) Poly1 has the worst results regarding RMSE
and rP P̂ . The models’ errors, when using past generated
power and time of day as input, range from 6.64 to 7.25 %
in the case of the mean absolute error and from 12.47 to
13.3 % for the root mean square error, while when con-
sidering the correlation coefficient the values range from
85.81 to 87.65 %. At first glance the ranges appear com-
pletely acceptable. Additionally, the fact that those ranges
are obtained with the data-driven models can be attributed
to the periodicity of the sun, the lack of drastic weather
changes (weather stability in the dataset’s region), and the
fact that the models do not have to model relations between
input data and system specific properties (like orientation of
PV modules). The latter is already implicitly contained in
the used input data. An example of forecasts obtained using
both, Poly1 and ANN6 (with P and ttod as input) for five
different days is displayed in Fig. 4. It is clear that if the
forecast day has a completely different weather as the pre-
vious two the forecast will be incorrect, because it is not
possible by only using historical data of the past two days
to forecast such changes without further improvements on

with P̄ and P̂̄ being the averages of their corresponding time 
series. The average evaluation results of all households’ mod-
els on their test data provide an idea of how well the different 
data mining techniques are at creating accurate forecasting 
models.
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Table 1 Validation results
obtained from models with
H = H1 = 24 h created using
P as well as the combination of
P and ttod as input

P̂ f (P) f (P, ttod )

MAE RMSE rP P̂ MAE RMSE rP P̂

Poly1 0.0792 0.1382 0.8455 0.0724 0.1330 0.8581

Poly2 0.0737 0.1361 0.8505 0.0724 0.1325 0.8594

Poly3 0.0713 0.1352 0.8525 0.0725 0.1325 0.8595

Poly4 0.0713 0.1352 0.8525 0.0723 0.1324 0.8596

ANN6 0.0688 0.1262 0.8735 0.0664 0.1247 0.8765

ANN10 0.0685 0.1259 0.8741 0.0668 0.1248 0.8764

Persistence 0.0689 0.1543 0.8220 0.0689 0.1543 0.8220

Fig. 4 Forecasts obtained from Poly1 and ANN6. Red Measured val-
ues, green ANN6 forecast, blue Poly1 forecast (color figure online)

the models (e.g., intra-hour corrections). So it can be con-
cluded that weather stability is required in order to obtain
accurate results with the models of the present contribu-
tion.

Since the ANN with six hidden neurons and both P as
well as ttod as input provides the best one-day ahead fore-
casting models, it is chosen to create forecastingmodels with
different forecast horizons (here: H = 1, 24, 48, 72, and
96 h) using the functional relation described by Eq. (13)
with H1 = 24 h. Its models are then tested on unknown
test data (utilizing the same fivefold cross-validation process
as before). Figures 5, 6, and 7 show a comparison between
the results obtained by ANN6 and the persistence technique.
As it can be seen the models created using ANN6 have bet-
ter results than persistence independently of the considered
forecast horizon, thus demonstrating the advantages of uti-
lizing a data-drivenmodel instead of the trivial forecast, even
when that model only uses information of the past generated
power as input. Evidence regarding the weather stability of
the dataset’s region can be found in the results obtained for
forecasts horizons greater than 24 h, which remainedmore or
less constant for both persistence and ANN6. Such forecast
horizon independence could be used as a way of qualitatively
estimating the future accuracyof theweather-free data-driven
forecasting models for a given dataset.

Fig. 5 Comparison of ANN6 and persistence MAE results over dif-
ferent forecast horizons

Fig. 6 Comparison of ANN6 and persistence RMSE results over dif-
ferent forecast horizons

The fact that in the present contribution data-driven
models seem to have better RMSE values than the trivial
persistence technique, independently of the forecast horizon,
might stem from their usage of two days to conduct their fore-
casts. For example, in a scenario in which the first day used
for the forecast is sunny and the second rainy, but the fore-
cast day is again sunny, the persistence technique is going
to provide a completely inaccurate result (i.e. another rainy
day), while the data-driven models are more-or-less going to
deliver a weighted average of their input days as forecast. For
such reason, the usage of more than one day as input allows
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Fig. 7 Comparison of ANN6 and persistence rP P̂ results over differ-
ent forecast horizons

the data-driven models to obtain an overall lower RMSE.
The averaging of the input days can be discerned from the
functional relations obtained via the polynomial models. For
example, a common obtained Poly1 structure is described by
the equation

P̂[k + H ] = θ0 + θ1P[k] + θ2P[k − H1] + · · · , (19)

offline solutions) or as emergency backup for cases in which
traditional weather dependent forecasting models become
inoperative. Additionally, the results acquired by comparing
the trivial persistence technique and models obtained from
an artificial neural network across several forecast horizons
offer evidence regarding the advantages of using forecasting
data-driven models over a trivial forecast—even when those
data-driven models lack weather data as input.

More complex weather-free forecasting models, like arti-
ficial neural networks with different structures, have to be
further investigated in order to estimate how accurate such
type of models can get. Likewise, a comparison between
models obtained with the present contribution’s data-mining
techniques in regions with more unstable weather is neces-
sary. Such comparison will provide further evidence regard-
ing the possibility of using weather-free data-driven models
as backup, in case of communication failure with weather
services.

Another scenario of interest for future studies, that allow
the usage of weather-free models in regions with more unsta-
ble weather, consists of a regional energy grid comprised of
a central agent and several decentralized ones. The central
agent possesses forecast weather data, as well as an addi-
tional constraint regarding the impossibility to communicate
such data with the other agents (e.g. due to confidential-
ity clauses with weather services). The decentralized agents
lack completely forecast weather data. In such a scenario,
decentralized agents could utilize weather-free forecasting
models as a simple low cost solution, while the centralized
one (who has information regarding the decentralized agents’
forecastingmodels) could estimate forecast deviations utiliz-
ing its knowledge about future weather and act accordingly
to assure the balancing of the electrical load. Specifics about
such possible procedures have to be clarified and studied in
future related works.
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