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Abstract
Within the framework of this investigation, convection-permitting (CP) ensemble forecasts were generated
for West Africa by combining different initial and lateral boundary conditions (IBCs) with perturbations
that address the uncertainty of land-surface atmosphere interactions (land-surface perturbations). For a multi-
analysis setup, IBCs were taken from model analyses of different global models; for a single-model setup,
they were selected from the ensemble system of the European Centre for Medium-range Weather Forecasts
(ECMWF). The different ensemble setups were assessed using common probabilistic scores as well as by
spatial forecast verification of precipitation generated mainly by convective systems during the West African
monsoon season. Additionally, it was investigated whether the CP ensemble forecasts were superior to the
ECMWF ensemble forecasts.

Probabilistic scores were higher for the single-model ensemble than for the multi-analysis setup, but the
latter displayed a larger dispersion and more extreme scenarios. From this, it is concluded that the different
model analyses can differ strongly from each other. The land-surface perturbations were able to generate
sufficient complementary spread. While the CP simulations showed a stronger negative precipitation bias in
the southernmost region near the Guinean coast, the ECMWF simulations exhibited a negative bias further
north in the Sahel region, where larger convective systems occur less frequently. Not in all cases did the CP
ensemble versions produce better probabilistic scores than the global ensemble forecasts, but they yielded
larger spread and less underdispersion. Rank histograms, though, were also influenced by the different
structure of the precipitation patterns of the global and CP forecasts. Scores improved when using a later
version of the CP model as well as with the skill of the global ensemble forecasts used as IBCs. Altogether,
the proposed realization of CP ensemble forecasts is found to be suited for the prediction of convective
precipitation in West Africa.

Keywords: Sahel, COSMO model, ECMWF EPS, soil moisture, land-surface perturbations, soil-moisture
ensemble

1 Introduction

In tropical regions like West Africa, which are domi-
nated by a monsoon, precipitation is mainly generated
by convective systems (Houze, 1981; Le Barbé and
Lebel, 1997; Mathon et al., 2002; Frappart et al.,
2009). Forecast of convective precipitation is only partly
understood and its forecast by models still is a great
challenge (Lebel et al., 2000; Guichard et al., 2010).
Therefore, it is reasonable that model simulations for
West Africa during the monsoon season have signifi-
cantly improved with increasing horizontal resolution
of the forecast models and especially with the step
towards convection-permitting (CP) model resolutions
(e.g. Beucher et al., 2014; Pearson et al., 2014; Birch
et al., 2014). On the other hand, West Africa is a region
of very sparse observations (Parker et al., 2008) and it

∗Corresponding author: Vera Maurer, Institut für Meteorologie und Kli-
maforschung (IMK-TRO), Karlsruher Institut für Technologie (KIT), Post-
fach 3640, 76021 Karlsruhe, Germany, e-mail: vera.maurer@kit.edu

was demonstrated that assimilation of additional infor-
mation may result in distinct improvements of forecasts
(Tompkins et al., 2005; Karbou et al., 2010; Agustí–
Panareda et al., 2010). Convection-permitting ensem-
ble simulations for West Africa can incorporate this
analysis uncertainty by using different global model
analyses as initial and boundary conditions (IBCs).

Over the last years, limited-area and also CP en-
semble systems were developed for operational pur-
poses (e.g. Bowler et al., 2008; Gebhardt et al.,
2011; Montani et al., 2011; Vié et al., 2011). How-
ever, high-resolution (very) short-range ensemble sim-
ulations (Iversen, 2011) for regions where precipi-
tation is mainly generated by convective systems are
not very widespread yet. For selected convective cases
in the United States, such ensemble simulations have
been made by e.g. Schumacher et al. (2013). Luo and
Chen (2015) investigated the ensemble prediction of
a heavy-rain producing mesoscale convective system
(MCS) in eastern China. Keil et al. (2014) used an ob-
jective method to select, from available forecast days of
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the operational convection-permitting ensemble system
for Germany (COSMO-DE-EPS), days not dominated
by larger-scale forcing. They found that the predictabil-
ity of precipitation was lower for these days than for all
others.

As far as we know, the only study for which regional
or mesoscale ensemble forecasts for West Africa were
performed was published by Torn (2010). He used an
ensemble Kalman filter to produce different model anal-
yses and analyzed the forecast sensitivity with a focus
on the development of African Easterly Waves (AEWs).
The forecast was sensitive to meridional wind in the
lower to middle troposphere as well as to the verti-
cal distribution of equivalent potential temperature. The
present paper focuses on the short-range forecast of con-
vective precipitation rather than on the forecast sensitiv-
ity of AEWs.

Moist convection in the Sahel region is triggered
with higher probability in regions where the sensible
heat flux and turbulent mixing are strong (Taylor et al.,
2012). This relationship was also confirmed by model
case studies (Gantner and Kalthoff, 2010; Klüpfel
et al., 2012). Land-surface perturbations, e.g. by vary-
ing initial fields of soil moisture, can be used to gen-
erate ensemble variability; they influence forecasts by
the partitioning of available energy at the Earth’s sur-
face into the turbulent fluxes of sensible and latent heat
(Kohler et al., 2010). Maurer et al. (2015) found that
land-surface perturbations, i.e. variations of initial soil
moisture as well as of the static field of soil type, could
generate as much ensemble spread as atmospheric per-
turbations and that CP simulations can provide suitable
short-range precipitation forecasts for the Sahel region.
Tennant and Beare (2014) showed that perturbations
of the soil moisture content could also have benefits
for ensemble systems at mid-latitudes. Thus, for this
investigation, the land-surface perturbations described
by Maurer et al. (2015) are considered an appropri-
ate method to generate ensemble spread. They are com-
bined with the atmospheric perturbations to form differ-
ent configurations.

The aim of this study is the assessment of the skill of
ensemble forecasts of convective precipitation for West
Africa using different ensemble setups; in particular,
CP ensemble simulations using a multi-analysis and a
single-model setup as well as global ensemble simula-
tions for a short forecast range:

(1) By comparing the different setups of CP en-
semble versions, it is examined whether the use of a
higher number of IBCs can further increase the ensem-
ble spread, as was discussed for example by Marsigli
et al. (2014). They found that a single-model limited-
area ensemble using a large number of global simula-
tions performs better than a multi-model ensemble us-
ing deterministic forecasts from three different global
models.

(2) The CP and the global ensemble forecasts will be
compared to analyze the expected gain of ensemble sim-
ulations at a CP resolution. The reason is that for West

Africa, it can be assumed that shortcomings of convec-
tion parameterizations as described by Bechtold et al.
(2004), e.g., strongly affect the precipitation forecast by
global models. Marsham et al. (2013) showed that sim-
ulations performed better in this region when using no
convection parameterization, even at horizontal resolu-
tions that were substantially coarser than 4 km; Weis-
man et al. (1997) gave 4 km as the upper limit of hori-
zontal resolution, at which the “mesoscale structure and
evolution” of convective systems are reproduced in an
adequate way.

The verification of precipitation forecasts is an is-
sue that recently was addressed by many authors; espe-
cially for high-resolution forecasts, spatial verification
methods have been developed for example by Casati
et al. (2004), Roberts and Lean (2008), Wernli et al.
(2008), or Keil et al. (2014). These are advantageous in
comparison to classical scores. On the other hand, they
are not designed specially for probabilistic verification.
Hamill et al. (2000) proposed a minimum of metrics
that should be used for the evaluation of ensemble sys-
tems: Rank histograms, ROC diagrams, and reliability
diagrams, containing the relevant attributes. The differ-
ent ensemble versions will thus be compared by these
scores, using gridded observations for the computations.
Schwartz et al. (2010) proposed a neighborhood ap-
proach to combine the fuzzy verification applied in the
fractional skill score (FSS) according to Roberts and
Lean (2008) with the classical verification of probabil-
ity forecasts. This approach was used for the computa-
tion of ROC and reliability diagrams. Additionally, an
object-based verification method from the set of spatial
verification methods will be applied, which is indepen-
dent of the single grid points.

In the following section, an overview of all evalu-
ated ensemble versions, of the synoptical conditions of
the forecast periods as well as of the model setup is
given. Thereafter, the methods applied for the verifica-
tion and comparison of the ensemble versions are de-
scribed in Section 3. The main verification results fol-
low in Section 4, structured into the comparison of the
single-model and multi-analysis ensemble version and
of the CP and the global ensemble version. The final sec-
tion provides a summary and conclusions.

2 Overview of evaluated ensemble
simulations and forecast periods

2.1 Ensemble simulations for 2006

The CP ensemble simulations were prepared using two
different setups: A multi-analysis setup as in Mau-
rer et al. (2015) and a single-model setup. For the
multi-analysis setup, three different global analyses
were taken as IBCs: (1) Operational model analyses of
the European Centre for Medium-range Weather Fore-
casts (ECMWF) for the respective simulation period,
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(2) ECMWF re-analyses that were specially prepared
for the African Monsoon Multidisciplinary Analyses
(AMMA) project, which are only available for the mon-
soon season of 2006 (Agustí-Panareda et al., 2010),
and (3) GME analyses (i.e. analyses of the global model
of Deutscher Wetterdienst, DWD). Each of these three
were taken as IBCs for four simulations by combin-
ing them with four different initial conditions for the
soil and the land surface, respectively. These initial con-
ditions were mainly different soil moisture fields for
the three uppermost levels taken from the AMMA re-
analyses, the GME analyses as well as from satellite ob-
servations. For a better consistency with the soil model
as well as to increase the spread, the soil-type dis-
tribution of the integrated forecasting system (IFS) of
the ECMWF was used for initialization with soil mois-
ture from the AMMA re-analyses. Satellite soil mois-
ture was adapted by a technique proposed by Reichle
and Koster (2004), in combination with two versions
of soil heat conductivity used by the soil model. For
more details on these perturbations, see Maurer et al.
(2015). Hereafter, this ensemble setup with a combina-
tion of IBCs taken from different global model ANAly-
ses and the four land-surface perturbations is referred to
as ANA.

For the single-model setup, forecasts from the
ECMWF ensemble prediction system (EPS) were used
for IBCs for the same simulation period. As the ensem-
ble of data assimilation (EDA) improves the forecast
skill of the EPS especially in the tropical regions (Isak-
sen et al., 2010), it was important to use forecasts from
ECMWF that employ this scheme. Due to the avail-
ability of the AMMA re-analyses for 2006 only, the
ANA ensemble as well as the single-model ensemble
had to be set up for this year. However, the EDA has
been operational since June 2010 only, so that the oper-
ational EPS forecasts of 2006 could not be used. As it
is computationally extremely expensive to run the EDA,
it was only possible to set up ensemble forecasts with
the global model of ECMWF (IFS Cycle 38r1, opera-
tional from June 2012 to June 2013) using “climatolog-
ical” EDA perturbations, i.e. perturbations from another
year that were added to the operational model analyses
for the starting dates of the respective simulations. Oper-
ationally, 10 EDA perturbations exist, and 10 ensemble
members were generated with the ECMWF EPS. To ob-
tain 12 IBCs for the single-model setup, the IFS control
forecast was used twice. The land-surface perturbations
were combined randomly with the 12 IBCs. As a result,
each land-surface perturbation was used for three simu-
lations, as for the ANA ensemble. Different land-surface
perturbations were combined with the two members us-
ing the control forecast for IBCs. The ensemble version
generated by this combination of 11 different IBCs pro-
vided by the ECMWF model and four land-surface per-
turbations is referred to as EC.

The 10 + 1 IFS forecasts generated by using the cli-
matological EDA were also verified and compared with
the CP ensemble simulations. This 11-member ensem-

ble was called ECMWF 2006. The horizontal resolution
of the IFS forecasts is T639 (about 0.28 °).

2.2 Ensemble simulations for 2011

To benefit from the whole spread of the ECMWF EPS,
further ensemble simulations were made for a time pe-
riod for which the EDA was already operational. For
detailed information on the ensemble prediction system
of ECMWF, it is referred to Leutbecher and Palmer
(2008), Isaksen et al. (2010), and Shutts et al. (2011).
For the CP ensemble simulations, a time period was se-
lected from the monsoon season of 2011, which was
roughly similar to the one of 2006 in terms of the con-
vective activity in the Sahel region.

As the ECMWF EPS consists of 50 + 1 ensemble
members, a subset of 16 representative members was
selected from these by a clustering method according
to Molteni et al. (2001). This method is operationally
used for the Limited Area Ensemble Prediction Sys-
tem (LEPS; Montani et al., 2011) developed within the
Consortium for Small-scale Modeling (COSMO). It is
a hierarchical clustering in which clusters are defined
by complete linkage (Wilks, 2011, Ch. 15.2): Vectors
consisting of two-dimensional fields of different normal-
ized selected variables at selected time steps and at se-
lected heights are generated for each ensemble member.
These vectors are compared pairwise by computing the
absolute value |d| of their difference. The two ensem-
ble members with the smallest |d| are assigned to the
first group. This procedure is repeated until the desired
number of groups (the “clusters”) is reached, defining |d|
between groups as the largest possible distance between
individual ensemble members of the respective groups.

We adapted the settings of Montani et al. (2011)
to the synoptical conditions in West Africa and chose
four variables (both horizontal wind components, spe-
cific humidity, and geopotential) on three pressure levels
(925 hPa, 700 hPa, and 500 hPa) and the forecast hours
12, 36, and 48 for the clustering. These 16 ensemble
members also were randomly combined with the land-
surface perturbations, as for the EC 2006 version. The
resulting ensemble version was termed EC 2011. The
ensemble forecasts of EC 2011 were compared to the
whole ECMWF EPS for the corresponding time period
(hereafter called ECMWF 2011). An overview of all
five ensemble versions is given in Table 1.

2.3 Forecast periods

For the CP simulations for both years, a 10-day pe-
riod was selected. The selection criterion was that large
convective systems had to occur in the Sahel region,
where land-surface atmosphere interactions are most ef-
fective (e.g. Taylor et al., 2012). This is usually the
case during July and August, when the monsoon rain
belt is at its northernmost position. A short synoptical
overview for the periods from 2006 and 2011 is given
in Figure 1. In West Africa, easterly winds prevail in
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Table 1: Overview of ensemble simulations made with the COSMO model and of evaluated ensemble forecasts from the Integrated
Forecasting System (IFS) at ECMWF.

type of forecasts perturbations members evaluated forecast
period

ANA
(multi-analysis setup)

COSMO 4.18, two nested domains
with grid-point distances of 14 km
and 2.8 km

3 different IBCs (model analyses)
combined with 4 land-surface
perturbations

12 23/07–01/08 2006

EC
(single-model setup)

as ANA 11 different IBCs (ECMWF 2006)
with 4 randomly added
land-surface perturbations

12 23/07–01/08 2006

ECMWF 2006
(global ensemble)

ECMWF EPS (experimental IFS
forecasts) with grid-point distance
of ≈ 30 km (T639)

climatological EDA 10 + 1 23/07–01/08 2006

EC 2011
(single-model setup)

COSMO 4.26, two nested domains
as for 2006

16 different IBCs (16 members of
ECMWF 2011) with 4 randomly
added land-surface perturbations

16 12/07–21/07 2011

ECMWF 2011
(global ensemble)

ECMWF EPS (operational
1200-UTC IFS forecasts,
evaluated forecast hours: 24–48)
with grid-point distance of
≈ 30 km (T639)

singular vectors and EDA 50 + 1 12/07 – 21/07 2011

the mid-troposphere due to strong meridional baroclin-
icity between the region of the Saharan heat low and the
cooler monsoon air further south. The wind maximum at
700–600 hPa is the so-called African Easterly Jet (AEJ),
which makes convective systems in the Sahel propagate
westwards as is evident from both zonal Hovmöller di-
agrams of precipitation for this region (Figure 1a and
b for 2006 and 2011, respectively). During both 10-day
periods, about three to four rain bands can be observed.
They alternate with rain-free times at a frequency of
about two to three days. A typical synoptical feature in
West Africa are AEWs (e.g. Reed et al., 1977). These
disturbances of the AEJ are subject to interactions with
the convective systems there (e.g. Thorncroft et al.,
2008). Convection is often observed in front of or near
the axis of an AEW trough, i.e. at locations, where the
wind at 600 hPa has northerly components or changes
from northerly to southerly ones. This is also evident
from the zonal Hovmöller diagrams for both time peri-
ods (Figure 1a and b). On the large scale, it is also the
northward penetration of the moist and cool monsoon
air, which is related to convective activity. The humidity
and zonal wind in the monsoon layer, i.e., the lower part
of the troposphere, are good indicators of the northern
boundary of the monsoon (meridional Hovmöller dia-
grams, Figure 1c and d), as westerly wind dominates in
the monsoon layer and easterly wind further north (e.g.
Janicot et al., 2008). For the two periods, the north-
ern boundary of the south-westerly monsoon flow is
also very similar (between 22 °–24 ° N), as is the tran-
sition region from very moist to drier air masses. The
main difference is that the monsoon layer is by about
0.5–1 g kg−1 more humid for the time period in 2006
than for the one in 2011. From this, it can be concluded
that the two periods are sufficiently similar to say that

the results of the planned ensemble verification will not
be influenced strongly by large-scale differences.

2.4 Model setup

The model setup was the same for all CP ensemble
versions: For a first nest, simulations of a horizontal
resolution of 14 km were conducted on a domain of
2 °–25 ° N/15 ° W–20 ° E and run for a forecast time of
48 h. They were started daily at 1200 UTC, i.e. at a
time when deep convective activity is still weak. For
the 14-km simulations, the COSMO model was used
with its operational convection parameterization accord-
ing to Tiedtke (1989). Into these, the simulations on
the convection-permitting scale of 2.8 km were nested.
They were initialized daily at 0000 UTC using the
12-h forecasts of the 14-km simulations. By initializ-
ing at 0000 UTC, a time of day was chosen when no
boundary-layer mixing occurs. The 2.8-km simulations
were run for 36 h. The simulation domain was from
8 °–22 ° N/8 ° W–12 ° E., i.e. about 1600×2200 km2. The
evaluation domain (Figure 2) was one degree smaller
in each direction to exclude the areas that can be af-
fected by numerical boundary effects. For the time pe-
riod of 2006, the COSMO model version 4.18 was used
and for 2011, the version 4.26. Due to a unification
with the climate version of COSMO, a climatological
albedo could be used in the version for 2011 which is
derived from satellite measurements. In the older ver-
sion, surface albedo only depended on the soil type, soil
moisture, and vegetation. In comparison, the albedo was
much lower in areas with sparse vegetation in the older
version (e.g. 0.26 as compared to 0.4 in the Sahara). This
may influence mean precipitation sums in the respective
area, but it should not affect the probabilistic scores.
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Figure 1: (a) and (b): Zonal Hovmöller diagrams (average 9 °–17 ° N) of precipitation (TMPA; shading) and of the meridional wind
component at 600 hPa (ECMWF AMMA re-analyses for 2006 (a), operational analyses for 2011 (b); gray isolines for southerly wind,
black for northerly, intervals of 2 m s−1 from −5 m s−1 to 5 m s−1). (c) and (d): Meridional Hovmöller diagrams (average 7 ° W–11 ° E) of
24-h running means of specific humidity (shading) and the zonal wind component at 925 hPa (gray isolines for easterly wind, black for
westerly, same intervals as in (a) and (b); both variables were taken from AMMA re-analyses (a) and analyses (b), respectively). Dark red
rectangles denote the zonal-temporal and the meridional-temporal extent of the evaluation domain and period, respectively.

3 Methods

3.1 Data used for forecast verification

Mainly two gridded data sets were used for verifica-
tion: The Tropical Rainfall Measuring Mission (TRMM)

Multi-satellite Precipitation Analysis (TMPA; Huff-
man et al., 2007) and the 10.8 µm brightness tempera-
tures TB as observed by Seviri on Meteosat Second Gen-
eration (MSG-1 for 2006 and MSG-2 for 2011). As pre-
cipitation in West Africa is almost exclusively produced
by convective systems during the monsoon season, pre-
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Figure 2: Example of observed (a) and simulated spatial precipitation distributions for the ANA ensemble (b; sums between 30 July 2006,
1200 UTC and 31 July 2006, 1200 UTC; shading) in the evaluation domain with isolines of 213 K and 233 K of daily minimum brightness
temperature (gray and black, respectively).

cipitation patterns mainly indicate their paths and their
intensities. The TMPA also has the advantage that it is
completely independent of all simulations, because it is
not part of the data assimilation at ECMWF or DWD.
The additional verification of IR temperatures which can
be derived from the model atmosphere against the MSG
brightness temperatures was conducted to account for
possible uncertainties in the TMPA precipitation prod-
uct. All grid-point comparisons were computed on the
grids of these two products. For this, modeled fields

were interpolated to the horizontal grid-point distance of
these two, i.e. to 0.25 ° and 0.05 °, respectively. Station
observations were not used, as they would have been
too sparse. Furthermore, the verification was mainly
carried out for daily values. In Maurer et al. (2015)
it was shown that the diurnal cycle is generally cor-
rectly reproduced by the CP simulations, which is not
the case for the global simulations (Bechtold et al.,
2004). In this way, mainly the daily precipitation loca-
tion as well as the amount of precipitation are verified
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Figure 3: Frequency distributions of observed and simulated precipitation for 2006 (a–c) and 2011 (d–f); values of the Kullback-Leibler
distance are given in parentheses.

and not the exact timing. For the 2.8-km simulations,
only the forecast range from 12–36 h was evaluated so
that the exact verification time periods are 23 July 2006,
1200 UTC to 02 August 2006, 1200 UTC and 12 July
2011, 1200 UTC to 22 July 2006, 1200 UTC. The
“daily” sums below refer to the 1200–1200 UTC sums.
The reason is the diurnal cycle of the convective systems
producing most of the precipitation at about 1800 UTC
and the least from about morning to noon, as shown e.g.
in Maurer et al. (2015). As a measure that is compa-
rable to the daily precipitation sums, the diurnal mini-
mum of TB was determined, which is more meaningful
than daily averages of cloud-top temperatures. The fields
of TB cannot be averaged directly as they contain also
much warmer temperatures at locations where no clouds
are present. By computing the diurnal minimum, all re-
gions that were covered by high clouds on the respective
day can be identified easily without the need to define
a prior threshold of TB corresponding to high clouds.
An example of a comparison of TMPA daily precipi-
tation sum and daily minimum TB is given for 30 July
2006 (Figure 2a). The same quantities can be derived
from the simulations (Figure 2b). The precipitation and
TB patterns on this day indicate the location of an MCS
in the south of Niger and a smaller one northwest of it
in Mali. Subjectively, some of the ensemble members
(1, 2, and 10) also reproduce two MCSs at roughly the
correct location, while other members display larger lo-
cation errors or different patterns. Although the precip-
itation sums seem to be low for some members, all of
them display deep convection on this day.

3.2 Verification metrics

For most verifications, the evaluation domain was
divided into three zonal subdomains of equal size
(9 °–13 ° N, 13 °–17 ° N, and 17 °–21 ° N) that are ap-
proximately located within the three climate zones of the
Guinean coast, the Sahel, and the southern Sahara (from
south to north). The exact spatial specification may
vary in literature (e.g. Fink, 2006; Lafore et al., 2011;
Nicholson, 2013). In the following sections, they are
referred to as the southern, the middle, and the north-
ern subdomain, respectively. The separation into these
three subdomains was done, because they display dif-
ferent mean precipitation characteristics: In the southern
subdomain, largest precipitation sums were observed for
the considered time periods (on spatial and temporal av-
erage 5.6 and 6.6 mm d−1 for the periods of 2006 and
2011, respectively, compared to 3.7/2.8 mm d−1 for the
middle subdomain and 1.2/0.9 mm d−1 for the northern
subdomain). The southern subdomain is the region with
maximum convective activity. The middle subdomain
also is a region with convective activity, but it is less
frequent. No larger MCSs cross the northern subdomain
and in less than 10 % of all cases, observed daily precip-
itation sums are larger than 2 mm d−1. In comparison,
this applies to almost 40 % and 25 % of all cases in the
southern and middle subdomain, respectively.

The frequency distributions of precipitation were
computed for the two time periods separately, using
all members for each ensemble version (Figure 3). For
an objective comparison with the observed frequency
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Figure 4: Mean precipitation sums for the 10 days for all ensemble versions in the three subdomains as well as observed sums, ensemble
spread, and error (standard deviation and root-mean squared error of ensemble mean, respectively) and 95th percentile of the frequency
distributions of precipitation for all ensemble versions.

distributions, the Kullback-Leibler distance KL (Kull-
back and Leibler, 1951) is analyzed, quantifying the
difference between two distributions. It was calculated
according to

KL(p, q) =

N∑

i=1

pi log2(pi/qi). (3.1)

Here, p and q are discrete frequency distributions of
observed and forecast precipitation, respectively, each
consisting of the relative frequencies pi and qi in bin i.
For i = 1, all events with precipitation ≤ 0.1 mm d−1

were counted, i.e. daily sums of zero and very small
values that are different from zero due to numerical
reasons only. The upper edges of all remaining bins were
3(i − 1) mm d−1.

Basic statistics of the different ensemble versions
are then shown on the basis of ensemble mean, spread,
and error (Figure 4). These quantities were computed as
area averages of the three subdomains, using the daily
precipitation sums. The spread corresponds to the en-
semble standard deviation on a grid-point basis and the
error to the root-mean squared error of the ensemble
mean compared to the observation. Additionally, the
95th percentile of the overall sample of daily precipita-
tion data for each ensemble version is given to illustrate
the range of values. The area-averaged observed precip-
itation sums are given, too. The distance between the
ensemble mean and the observed sum is equivalent to
the bias.

Rank histograms as discussed by Hamill (2001),
e.g., were also computed on a grid-point basis for the
diurnal precipitation sums in the three subdomains (Fig-
ure 5). Sums of less than 0.1 mm d−1 were set to zero. As
an independent data set, the MSG data were used. Rank
histograms of daily minimum TB were computed for the
high-resolution ensemble versions for 2006 setting all
values above 233 K to the constant value of 235 K, as
they do not contribute to the distribution of high clouds.
As the relative frequencies are not strictly comparable

for different ensemble sizes, two versions of rank his-
tograms are given for the ensemble version ECMWF
2011: In the first version (Figure 5e), the rank histogram
was computed using the representative members, i.e. the
IBCs for the high-resolution ensemble; in the second
version (Figure 5f), the whole ECMWF EPS was used.
For a clearer presentation, frequencies were aggregated
for every fourth rank.

ROC diagrams (e.g. Mason and Graham, 1999;
Wilks, 2011) were computed for the three subdo-
mains using the precipitation thresholds of 2 mm d−1,
5.5 mm d−1, 10 mm d−1, and 15 mm d−1. As can be seen
in the precipitation fields for the example of 30 July
2006 (Figure 2), 2 mm d−1 is a relatively low precipi-
tation sum which also occurs in the larger vicinity of
MCSs. The threshold of 5.5 mm d−1 is the median of the
overall sample of observed precipitation in the 10-day
period chosen for 2006. The two largest thresholds con-
fine the precipitation patterns generated by MCSs more
closely. Scores for extreme thresholds were not com-
pared as this would be disadvantageous for the global
ensemble versions. The ROC areas (Figure 6a–c) were
calculated as an area under the curve spanned by the in-
dividual points defined by the hit rate and false alarm
rate found for different probability thresholds Pi. Dif-
ferent details of the ROC diagrams will be discussed to
explain the ROC areas, but the individual diagrams are
shown for selected examples only for the sake of brevity
(e.g. Figure 7a, southern subdomain for a precipitation
threshold of 5.5 mm d−1).

ROC diagrams were computed using a neighborhood
approach as proposed by Schwartz et al. (2010): Tra-
ditionally, the forecast probabilities needed for the com-
putation are calculated independently for each grid point
which equals the ratio of ensemble members forecast-
ing the given event. Using the neighborhood approach,
probabilities are computed as the ratio of forecast events
by all members within a given neighborhood around
the considered grid point. Considering the relatively low
predictability of the MCSs, we chose a large neighbor-
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Figure 5: Rank histograms for all ensemble versions for 24-h precipitation sums, for the three subdomains for each ensemble version; in (e),
the ranks are shown for the 16 ensemble members of ECMWF 2011 used as IBCs for EC 2011 and in (f), for the full ECMWF EPS.

Figure 6: ROC area and Brier skill score (BSS) as a function of precipitation threshold for all ensemble versions in the three subdomains.

hood of about ±125 km (i.e., more than a tenth of the
zonal extent) in both x- and y-direction. This also means
that the areas of the three subdomains overlap when us-
ing the neighborhood approach.

Finally, reliability diagrams (Wilks, 2011) were
computed using the same precipitation thresholds as
for the ROC diagrams as well as the neighborhood
approach. The Brier skill scores (BSS, Figure 6d–f)
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Figure 7: ROC curves for the three ensemble versions for 2006 (a) and reliability diagrams for ANA as well as EC (b and c), all for
a precipitation threshold of 5.5 mm d−1 and the southern subdomain; in (a), the points corresponding to Pi > 0.3 are denoted by black
markers; values of Brier score (BS) calculated as described by Murphy (1973) and of BSS as well as frequency distributions of forecast
probabilities (small histograms) are given in (b) and (c).

Figure 8: Reliability diagrams for the two ensemble versions for 2011, for a precipitation threshold of 5.5 mm d−1 and the southern
subdomain.

were calculated using “climatology” as a reference, i.e.
the reference Brier score is defined as the uncertainty
o(1− o), with o being the relative observed frequency of
the considered event. As for the ROC diagrams, mainly
values of BSS are given without showing all reliability
diagrams for all ensemble versions, subdomains and pre-
cipitation thresholds (examples of reliability diagrams
are given in Figs. 7 and 8).

Apart from the probabilistic methods, the Struc-
ture, Amplitude and Location (SAL) index (Wernli
et al., 2008) was applied. The SAL index was cho-
sen from different spatial verification methods (Gille-
land et al., 2009), because it is an object-based method
that is well applicable to large precipitation objects
generated by MCSs. The S component gives informa-
tion about the mean intensity of the simulated precip-
itation objects compared to the observed ones. Orig-
inally, S was designed to identify forecast errors of
simulations reproducing stratiform precipitation in con-
vective cases (too large and flat objects; positive S)
or vice versa (negative S). Here, we mainly deal with
convective events in both forecasts and observations.
Still, S helps to determine whether the simulated con-
vective systems were appropriate in size and intensity.
The amplitude A compares the absolute values of simu-

lated sums to the observed ones. The L component de-
scribes how well the location of the simulated precip-
itation patterns agrees with the observed ones. For the
verification of the ensemble versions of this investiga-
tion, mainly the S and L components were used as the
A component corresponds to the mean bias already dis-
cussed in the analysis of ensemble mean, spread and er-
ror.

To compute S and L for the daily precipitation sums,
precipitation objects were identified first. For this, a
threshold value of 1/15 of the 95th percentile of the pre-
cipitation field was chosen, as proposed by Wernli et al.
(2009). In contrast to the probabilistic scores, the com-
ponents were calculated for the whole evaluation do-
main, as the subdomains would have been too small. S is
based on the “scaled volume”, which is defined as the
precipitation sum of an object scaled by its maximum. It
is normalized so that it ranges from −2 to +2. L is equal
to the normalized difference between the centers of mass
of the observed and simulated spatial precipitation dis-
tribution plus the normalized difference of the mean dis-
tance of all precipitation objects from the center of mass
of the respective field. For this reason, the mean location
of the simulated precipitation objects agrees better with
the observed one for smaller values of L.
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4 Verification results

4.1 Single-model vs. multi-analysis ensemble
version

The single-model version (EC) will now be compared
with the multi-analysis version (ANA) for the three sub-
domains.

In the southern subdomain, both ensemble versions
display a negative precipitation bias, which is smaller for
EC than for ANA (−2.1 and −3.3 mm d−1, respectively,
Figure 4a). This is also reflected by the frequency distri-
bution of each ensemble version (Figure 3a): They indi-
cate lower relative frequencies of precipitation than ob-
served throughout the whole range of values larger than
zero, more markedly for ANA than for EC (KL = 0.30
compared to 0.16). In EC, the spread is also higher and
the 95th percentile, i.e. the extreme values, are larger
than in ANA. For both, the spread is clearly lower than
the error. As the mean values, the rank histograms (Fig-
ure 5a and b, blue bars) also indicate a smaller bias for
EC (lower frequency of the highest rank). The ROC area
is higher for EC (Figure 6a), as the hit rate increases
faster with decreasing probability thresholds Pi; for ex-
ample for Pi > 0.3 and the precipitation threshold of
5.5 mm d−1, the hit rate is only 0.09 for ANA, but 0.22
for EC (Figure 7a). For both, the corresponding false
alarm rate is < 0.2. The BSS is negative and slightly
higher for EC for all but the highest precipitation thresh-
old (Figure 6d). The sharpness is better in EC, i.e. high
Pi values occur more often than in ANA (Figure 7b
and c).Yet, both ensemble versions are highly overcon-
fident: The observed frequency in cases with Pi = 0 is
about 0.2, for example, and lower than 0.3 for Pi = 0.5
(Figure 7b and c); i.e., precipitation is observed in 20 %
of all cases when precipitation is forecast by none of the
members, and in less than 30 % when it is forecast by
half of the members. This is attributable to the negative
bias.

In contrast to the southern subdomain, the bias for
both ANA and EC in the middle subdomain is low
(−0.5 and +0.7 mm d−1, respectively, Figure 4b). This is
also reflected by a much smaller difference of the fre-
quency distributions to the observed one (Figure 3b).
Furthermore, the spread is only slightly smaller than
the error. The spread and the extreme values again are
higher in EC than in ANA. Yet, the rank histograms in-
dicate a higher underdispersion of EC than of ANA (Fig-
ure 5a and b, respectively): The mean relative deviation
of all ranks from their mean is 24 % for EC and 18 % for
ANA. At the same time, the highest rank is less frequent
in EC, indicating that precipitation is less often under-
estimated by all ensemble members. This is consistent
with a slightly higher precipitation sum than in the ob-
servations in EC and a slightly smaller sum in ANA. On
the other hand, the lowest ranks are more frequent in EC,
with a mean observed precipitation of zero for the lower
ranks. These two facts together indicate that more often
than in ANA, a high number of members of EC forecasts

precipitation where none was observed. With this, it can
be assumed that the false alarm rate is higher in EC than
in ANA. However, the ROC area is consistently higher
in EC than in ANA (Figure 6b), which is again due to
a faster increasing hit rate. Smaller false alarm rates in
ANA do not influence the ROC area, as they occur in
combination with a very low hit rate. For Pi > 0.8 for
example, both rates are still zero for ANA, while the hit
rate is 0.034 and the false alarm rate is 0.01 for EC. The
BSS is also higher for EC than for ANA (Figure 6e).

To sum up, more members of EC than of ANA repro-
duce precipitation in cases of no precipitation being ob-
served in the middle subdomain, which results in higher
false alarm rates in EC. As the hit rates are higher in
EC, the ROC area nevertheless is higher. As the major-
ity of ranks (about 70 %) corresponds to observed pre-
cipitation sums of zero, however, the false alarms have a
high weight in the rank histogram and it deviates more
strongly from a flat frequency distribution for EC than
for ANA. The underdispersion in EC is, thus, mainly
caused by cases of a large number of members repro-
ducing precipitation at the wrong location.

In turn, there is a positive precipitation bias in
the northern subdomain for both EC and ANA
(+1.0 mm d−1 for both, Figure 4c). The relative fre-
quency of both lower (< 5 mm d−1) and higher precipita-
tion sums (> 10 mm d−1) is clearly higher than observed
for both ensemble versions (Figure 3c). Still, the sums
are lower than in the middle subdomain in both observa-
tions and simulations and, hence, the error is smaller. At
the same time, the spread is large, so that spread and er-
ror are almost equal. The spread is slightly smaller in
EC, which agrees with the distribution of ranks (Fig-
ure 5a and b): The lowest and highest ranks for EC are
more frequent than for ANA, indicating stronger under-
dispersion of EC. Even though a higher frequency of low
ranks in EC than in ANA might also suggest a larger
positive bias, this is not confirmed by the mean sums
(Figure 4c). As in the southern and middle subdomains,
the ROC area is larger for EC (Figure 6c). For both ver-
sions, it is larger than in the other subdomains for the
low thresholds at least. The higher ROC in the north-
ern subdomain is due to a lower false alarm rate there
(not shown). In spite of relatively high ROC areas, the
BSS (Figure 6f) is extremely low for both versions due
to high overconfidence: In cases of high Pi, the observed
frequency is much lower (e.g. about 0.2 for Pi = 0.6 for
the precipitation threshold of 2 mm d−1). Moreover, it is
higher for ANA than for EC. The reason of this opposite
behavior of ROC and BSS is that the false alarm rate
gives the ratio of incorrect forecasts for all cases that
were not observed, while the reliability is based on the
rate of observed events for all cases that were forecast
with a particular Pi. In the northern subdomain, the ratio
of cases not observed is 0.9 for a precipitation thresh-
old of 2 mm d−1 (in 0.9 of all observed cases, precipita-
tion was lower than 2 mm d−1). In contrast, the ratio of
Pi > 0.5, which contributes to about 80 % of the reliabil-
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ity in this case, is 0.11 for EC and 0.10 for ANA. Hence,
while a large part of the data samples contributes to
larger ROC areas, a smaller part contributes to the high
Brier score and, consequently, lower BSS. This means
that in this case, not too much importance should be at-
tached to the low BSS.

The rank histograms for TB (not shown) mainly con-
firm the smaller negative bias (too few high clouds) for
EC in the south, higher underdispersion in the middle,
and a larger mean deviation from the mean in the north.
However, they also indicate a general overestimation
of high clouds, which is a known bias of the COSMO
model (Böhme et al., 2011; Eikenberg et al., 2015).

The comparison of ANA and EC clearly shows that
both ensemble versions display similar biases: A neg-
ative precipitation bias in the southern subdomain and
a positive bias in the northern one. The spread is, thus,
smaller than the error, but much less in the middle sub-
domain, where the bias is much smaller. The hit rates are
slightly higher for EC. High Pi are more frequent, indi-
cating better sharpness, as o is low. On the other hand,
underdispersion is stronger for EC than for ANA in the
middle; according to a low o, the rank histograms gen-
erally are strongly influenced by large areas where no
precipitation was observed. As less members agree with
the observation in these cases in EC, the lowest ranks are
more frequent than in ANA. Overall, the EC ensemble
displays higher scores than ANA and is more skillful,
with slightly higher spread due to more extreme values
in two of the three subdomains, but also higher under-
dispersion due to more false alarms at low precipitation
thresholds. The findings indicate that the higher num-
ber of IBCs used for EC does not definitely generate a
larger spread than in ANA. The reason may be that the
global ensemble (ECMWF 2006) itself, which provides
the IBCs for EC, displays a small spread only. There-
fore, we conclude that the analyses used for ANA differ
more from each other. As the rank histograms for ANA
do not indicate that the ensemble members are grouped
by their IBCs as shown for a comparable ensemble setup
(COSMO-DE-EPS; Theis and Gebhardt, 2011), we
may additionally conclude that the applied land-surface
perturbations generate sufficient complementary spread
within the ANA ensemble.

4.2 Convection-permitting vs. global ensemble
version for 2006

The comparison of the two different setups of CP en-
semble versions suggested that the global ensemble
ECMWF 2006, which provided initial and boundary
conditions for one of them, exhibits low spread. Thus,
we will now analyze the global ensemble in comparison
to the CP ensemble versions.

In the southern subdomain, the global ensemble
also displays a negative precipitation bias, but it is
smaller than for the CP versions (Figure 4a). The fre-
quency distribution reveals that mainly the higher sums
(> 25 mm d−1) have a lower frequency than observed,

while the lower sums have a higher frequency (Fig-
ure 3a). This distribution implies too broad precipitation
patterns with too weak maxima, which are typical for
models with coarse horizontal resolution. It results in a
much larger value of KL than for the CP version (0.76
compared to 0.16), even if the latter has a strong bias.
The error of the CP versions is, as the negative bias,
slightly higher than for the global ensemble, and the
spread is much higher (Figure 4a). The higher spread
of the CP versions can be attributed partly to higher and
less frequent extreme values. Still, it can be assumed that
the spread is indeed particularly low for the global en-
semble, because there also is a strong underdispersion,
as indicated by the increased frequencies of the outer
ranks (relative frequencies of 0.32 and 0.17 compared to
the average of 0.08, Figure 5c). The mean relative devi-
ation from the mean is 70 %, while it is 53 % and 43 %
for the CP versions. Except for the highest precipitation
threshold, the ROC area is smaller for the CP versions
(Figure 6a), because the hit rates for the medium-high
and low Pi are lower: e.g. at Pi > 0.3 and the precip-
itation threshold of 5.5 mm d−1, the hit rate is smaller
than 0.3 for both CP versions, while it is > 0.4 for
the global version (Figure 7a). With increasing precip-
itation thresholds, the difference between the ROC ar-
eas obtained with the CP and global ensemble versions
becomes smaller. Together with comparably high false
alarm rates in the global ensemble, this may be caused
by the too broad and flat precipitation patterns. Like-
wise, the BSS is lower for the CP versions for the small-
est threshold of 2 mm d−1 (Figure 6d). For a threshold of
10 mm d−1, it is similar for all versions.

In contrast to the CP versions, the global ensem-
ble also displays a negative precipitation bias in the
middle subdomain (Figure 4b). It is even higher than
in the southern subdomain, which is also reflected by
the higher KL (Figure 3b). The error again is slightly
higher for the CP versions than for the global ensem-
ble, while the spread as well as the extreme values are
much higher. Low extreme values in the global ensemble
are in agreement with the negative bias. In the rank his-
togram, though, frequencies of both lowest and highest
ranks are very high (Figure 5c), which generally means
a strong underdispersion. Due to the mean negative bias,
it must be assumed that the overestimated precipitation
sums, which generate the high frequency of the lowest
ranks, are low. If the simulated sums for these cases
were as high as the thresholds considered for calculat-
ing skill scores (Figure 6), this would be reflected by
high false alarm rates and, thus, small ROC areas for the
global ensemble. However, the ROC area is as large as
for the EC ensemble for the lowest precipitation thresh-
old of 2 mm d−1 and the false alarm rate is not very high.
Thus, the majority of false alarms causing the high fre-
quency of the lowest ranks is due to sums lower than
2 mm d−1 in the global ensemble. Still, the ROC area
decreases strongly with increasing precipitation thresh-
olds. For the threshold of 10 mm d−1 for example, the
hit rate for Pi > 0 is only 0.2, which is equivalent to
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a relative frequency of missed hits of 0.8. This means
that in a large number of cases, none of the ensemble
members of the global ensemble reproduces the larger
MCSs observed in the middle subdomain, which again
is in agreement with the negative precipitation bias. Ac-
cordingly, the BSS is clearly higher for the CP versions
(Figure 6e).

In the northern subdomain, the mean precipitation
of the global ensemble is almost zero with the 95th per-
centile of 0.63 mm d−1, while the mean observed pre-
cipitation is 1.2 mm d−1 (Figure 4c). This negative bias
of the global ensemble is also indicated by the fre-
quency distribution displaying a very strong underesti-
mation of relative frequencies of all precipitation sums
> 2.5 mm d−1. The ranks (Figure 5c) indicate that small
sums are still simulated in regions where no precipita-
tion was observed, as was the case in the middle subdo-
main (u-shaped histogram instead of an overestimation
of the lowest ranks only). The ROC area is dominated
by the very large number of missed hits and it is much
larger for the CP versions (Figure 6c). Nevertheless, the
BSS is lower for the CP versions. The reason is that al-
most only Pi = 0 exists for the global versions. For the
CP versions, the BSS is very low, because a small num-
ber of cases with higher Pi contributes strongly, as was
discussed for the northern subdomain in Section 4.1.

In conclusion, the results of the comparison of the CP
and the global ensemble versions for 2006 are strongly
influenced by the fact that the precipitation patterns are
smoother in the global simulations. Smooth precipita-
tion patterns partly cause the strong underdispersion in-
dicated by the rank histograms for the global ensem-
ble: Ensemble members reproduce light precipitation
(0.1–1 mm d−1) in the larger vicinity of MCSs, increas-
ing the frequency of the lower ranks. Simultaneously,
peaks are too flat, which contributes to the high fre-
quency of the higher ranks. Furthermore, skill scores de-
crease for increasing precipitation thresholds when the
maxima are too weak. On the other hand, an under-
dispersion is also found for the global ensemble in the
southern subdomain where precipitation sums are high.
A strong underforecast of MCSs is found in the middle
subdomain. In comparison, the CP ensemble versions
have a strong negative bias in the south so that only for
the higher precipitation thresholds, scores are better than
for the global ensemble. Overall, it can be confirmed that
the spread is low for the global ensemble. For the CP
versions, it is clearly higher, underdispersion is lower
and the scores are mostly higher.

4.3 Convection-permitting vs. global ensemble
version for 2011

As for 2006, the CP and the global ensemble versions
for 2011 (EC and ECMWF 2011) are compared for the
three subdomains.

Again, there is a negative precipitation bias in the
southern subdomain for both the CP and the global

ensemble versions, which is higher for the CP ensem-
ble (−3.1 compared to −2.5 mm d−1, Figure 4a). As for
2006, the frequency distribution of the CP ensemble dis-
plays overall lower frequencies than observed, but with
a much smaller value of KL (Figure 3d). The global en-
semble again overestimates the frequencies of the lower
sums and underestimates them for the higher sums. The
error is similar for both versions, but both extreme val-
ues and spread are higher for the CP than for the global
ensemble. As in 2006, the high frequency of the largest
ranks confirms the negative bias for the CP ensemble
(Figure 5d). Concerning the global ensemble, the rank
histograms for both the subset of 16 members as well as
the full ECMWF EPS 2011 reveal strong underdisper-
sion (Figure 5e and f). The ROC area is smaller for the
CP than for the global ensemble at the lowest precipita-
tion threshold of 2 mm d−1 (Figure 6a). At this thresh-
old, the global ensemble has especially high hit rates
for low Pi, meaning that for all cases when precipitation
was observed, a small number of members mostly re-
produces at least this sum of precipitation. As for 2006,
the ROC area for the global ensemble decreases with the
threshold. For the higher thresholds, it is smaller than for
the CP ensemble. For the CP ensemble, in comparison,
the largest contributions to the ROC area are found for
high Pi, with false alarm rates increasing more slowly
for higher precipitation thresholds. Smoother patterns
for the global simulations and decreasing false alarm
rates with increasing precipitation thresholds for the CP
ensemble explain why the scores are better for the CP
ensemble at higher precipitation thresholds despite the
strong negative bias. The fact that lower Pi (Pi < 0.3) are
more reliable for the global ensemble, while higher Pi
(0.3 < Pi < 0.7) are more reliable for the CP ensemble,
is confirmed by the reliability diagrams (Figure 8). The
BSS for both versions behaves similarly to the ROC area
regarding different precipitation thresholds (Figure 6d).

In the middle subdomain, a small negative precip-
itation bias for the global ensemble is still present, but
no bias for the CP ensemble (Figure 4b). Values of KL
confirm that also the frequency distribution of precipi-
tation matches better the observed one for the CP than
for the global ensemble (0.09 compared to 0.92; Fig-
ure 3e). The error is similar for both versions, and again,
spread and extreme values are much higher for the CP
ensemble. The rank histogram shows underdispersion
of the global ensemble (Figure 5e and f). The CP en-
semble, though, displays an almost flat rank histogram
(Figure 5d), indicating well-distributed probability fore-
casts. The remaining scores (Figure 6b and e) show
consistently higher values for the CP than for the global
ensemble.

Finally, the bias for the CP ensemble is small in the
northern subdomain (Figure 4c). For the global ensem-
ble, it is larger (−78 % compared to the observed sum)
and it is evident from the frequency distribution that the
global ensemble underestimates all frequencies of pre-
cipitation sums of more than 3 mm d−1 (Figure 3f). The
rank histograms (Figure 5d–f) indicate a minor negative
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Figure 9: L and S components for all members and all days of each ensemble version (a–c, e, and f), with gray crosses denoting the mean
values; area-averaged 24-h precipitation sums of TMPA (d) for both 10-day periods.

bias for the CP ensemble and underdispersion for the
global ensemble. The ROC area is large for the CP en-
semble and much smaller for the global ensemble, which
is due to a large amount of missed hits (almost 90 %
for a threshold of 5.5 mm d−1). The BSS is much higher
for the CP than for the global ensemble for the lower
precipitation thresholds, with a decreasing difference to-
wards the higher thresholds (Figure 6f). The increasing
BSS with the precipitation threshold for the global en-
semble is caused by the decreasing frequency of cases
with Pi > 0. For a threshold of 10 mm d−1 for exam-
ple, Pi = 0 in 99.9 % of all cases. For the CP ensemble,
the decrease of frequency of higher Pi is less distinct,
but higher Pi become less reliable, so that the BSS de-
creases with the threshold. On the other hand, the obser-
vation has a frequency of less than 3 % for the thresh-
old of 10 mm d−1, and the statistics are possibly affected
here because of the relatively small sample size.

Altogether, the scores for the global ensemble are
influenced by the fact that the precipitation patterns are
too smooth, as was the case in 2006; at the same time,
the underdispersion in the south is so strong that it
cannot be caused entirely by this effect. In the south,
the CP ensemble has a larger negative precipitation bias

than the global ensemble, but the CP ensemble has not
clearly lower scores there. In the middle subdomain, the
CP ensemble is consistently more skillful than the global
ensemble and it also shows skillful forecasts in the north.
The gain of the CP version is thus evident for 2011. All
of the scores indicate a better skill for ECMWF 2011
than for ECMWF 2006, which may be due to the fact
that ECMWF 2006, as an experimental ensemble, had
no optimal setup.

4.4 Comparison of ensemble versions by
spatial forecast verification

It was shown that the differences of the probabilistic
methods used here partly reflect the different structures
of the precipitation patterns in the global and CP fore-
casts. Additionally, the S and L components of the SAL
index were calculated for each ensemble member and
each daily precipitation sum.

The S component confirms the assumptions concern-
ing the structure of the precipitation patterns (Figure 9):
While values of S are closer to 0 for the CP versions
(Figure 9a, b, and e), they are mostly positive for the
global ones (Figure 9c and f), meaning that the objects
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there are indeed too flat and/or large on the average. This
implies that the negative precipitation bias found for the
global ensemble versions in all three subdomains can
be attributed partly to too small precipitation maxima
and must not necessarily be caused by a large number
of missed MCSs. On the other hand, more negative val-
ues of S exist in ANA than in EC (Figure 9a and b).
The negative values correspond mainly to 31 July (red
triangles). Examination of the individual precipitation
fields reveals that too small and peaked precipitation ob-
jects are simulated by members of the ANA ensemble
(not shown). Members of ANA with lowest values are
those with IBCs from GME, i.e. members that can pro-
vide forecasts that are very different from EC forecasts.
Apart from the S values for this day, they are mostly
positive for ANA and EC – even if closer to 0 than for
ECMWF 2006 and 2011 – indicating too flat precipita-
tion objects, which agrees with the strong negative bias
in the southern subdomain, where most precipitation is
observed. For 2011 (Figure 9e and f), values of S are
lower for both the CP and the global ensemble than for
2006.

The L components are below 0.7 in most cases (Fig-
ure 9). The values are generally low, because the pre-
cipitation objects are large compared to the size of the
evaluation domain, which causes the centers of mass to
be mainly located in the middle of the domain. For the
EC version, L is even lower than 0.6 in most cases, but
the mean value of L, L, is 0.32 for both ANA and EC
(Figure 9a and b). The reason is that more maximum
values of L occur for ANA than for EC, indicating that
also better forecasts than in EC must exist to result in the
same mean value. Consequently, even if EC has higher
scores, ANA seems to exhibit a larger spread concerning
the location of convective systems, at the cost of con-
taining ensemble members that reproduce convection at
a wrong location. This is in agreement with very small
hit rates in ANA for the higher Pi as well as a lack of
high Pi and is attributed to the different IBCs of ANA
that can yield larger differences than those of EC, as al-
ready found in Section 4.1.

For the ECMWF 2006 ensemble version (Figure 9c),
L is larger than for the CP ensemble versions (0.42
compared to 0.32), indicating that the location of the
precipitation patterns is better reproduced by the CP
ensemble on the average. This could not be inferred
from the probabilistic scores.

For EC 2011 and ECMWF 2011 (Figure 9e and
f), L is almost similar (0.30 for EC 2011 and 0.31
for ECMWF 2011), whereas probabilistic scores were
mostly better for the CP ensemble in the middle and
northern subdomain. One reason is that these scores
were calculated for the three subdomains separately,
while the whole evaluation domain was used for the
SAL index. The highest precipitation sums were ob-
served in the southern subdomain and the computation
of L is based on the center of mass. Consequently, the
southern subdomain is given the highest weight. As not

all scores were better for the CP ensemble in the south-
ern subdomain, the weighting may be the reason why L
is similar for the whole domain in both ensemble ver-
sions. Apart from that, the mean location of ECMWF
2011 is clearly better than that of the ECMWF 2006.

Comparing S and L for the different members within
the individual ensemble versions, it can be said that they
are roughly grouped by day. This is partly attributable
to the properties of S and L: Very high values of L
for 19 July 2011 (light blue circles in Figure 9e and
f), for example, can be explained by the structure of
the precipitation fields. The main precipitation lies in
the southeastern corner of the evaluation domain. L can
easily become higher when the center of mass of the
observation field is moved towards the border of the
evaluation domain. For the 2006 ensemble versions, for
example, highest values of S and high values of L are
obtained for 26 July (light blue crosses in Figure 9a–c).
On this day, no large convective system was observed
and the precipitation sum was low (Figure 9d), but the
simulations reproduce some precipitation in the northern
subdomain (not shown), which causes the poor values of
S and L. The values for A are close to 0 for this day (not
shown), meaning that the absolute sum is adequate.

This means that the day-to-day variability of S and L
also depends on the observed precipitation pattern and
that the values of the scores are not absolutely compara-
ble for all patterns. This helps understand why the vari-
ability is similar for the CP and the global ensemble ver-
sions.

5 Summary and conclusions

Different ensemble forecasts of convective precipita-
tion for West Africa were assessed and compared:
(1) For a period at the end of July 2006, two ver-
sions of convection-permitting (CP) ensemble simula-
tions were performed using different combinations of
multiple IBCs and specially generated land-surface per-
turbations. It was investigated whether the single-model
ensemble generated larger spread than the multi-analysis
one, as a larger number of IBCs was used. (2) These two
versions were then compared to the global forecasts pro-
viding IBCs for the single-model version. Additionally,
a second ensemble forecast with the single-model setup
was performed for a period of July 2011, when the en-
semble of data assimilations was already operational at
ECMWF. Sixteen members of the ECMWF EPS were
selected by clustering and used as IBCs for the CP en-
semble. This CP ensemble forecast was compared to the
ECMWF EPS.

The result of (1) is that the single-model setup has
higher scores than the multi-analysis ensemble. Both
display a negative precipitation bias in the southern sub-
domain, which is slightly higher for the multi-analysis
version. In the middle, the multi-analysis version has a
higher dispersion. On the other hand, the single-model
version is more reliable and has better sharpness; high
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forecast probabilities occur more frequently than in the
multi-analysis version. Moreover, the single-model ver-
sion has a lower percentage of missed hits. The loca-
tion component L of the SAL index shows that mem-
bers of the multi-analysis ensemble yield the best fore-
casts of the precipitation patterns, while members with
a low skill exist, too. This must be attributed to the
fact that the different model analyses can differ strongly
from each other and agrees with the finding that high
forecast probabilities of the investigated precipitation
events are very rare. In conclusion, the comparison of
the single-model and the multi-analysis CP ensemble
version reveals that a larger number of IBCs (as done
in the single-model ensemble) cannot clearly increase
the ensemble spread, even if this was achieved for a re-
gional ensemble for Europe (Marsigli et al., 2014). The
reason may be that the model analyses comprise larger
uncertainties for West Africa than for Europe. Lower
skill of the multi-analysis ensemble implies at the same
time that the global model analyses occasionally provide
less realistic synoptic fields than the ECMWF forecasts
used as IBCs for the single-model version. On the other
hand, the rank histograms do not imply that ensemble
members of the multi-analysis ensemble are grouped by
the different IBCs. We can thus conclude that the ap-
plied land-surface perturbations generate enough spread
to be useful in such an ensemble setup, which is con-
sistent with the finding of Maurer et al. (2015) that
land-surface perturbations in the multi-analysis ensem-
ble generate as much spread as the IBCs from the three
chosen model analyses. With respect to (2), the global
ensemble versions have a smaller negative bias than the
CP versions in the southern subdomain, but distinct neg-
ative biases in the middle and northern subdomains. The
spread is much smaller in the global than in the CP en-
semble versions, which is not only attributable to lower
extreme values. The rank histograms show a strong un-
derdispersion for the global ensemble versions, too. The
underdispersion is partly caused by the smoothed struc-
ture of patterns in simulations of coarser horizontal res-
olution. The large difference of the patterns between the
CP and the global ensemble versions is confirmed by
the structure component of the SAL index. It is, thus,
notable that the rank histograms for precipitation have
to be interpreted carefully as they are sensitive to differ-
ent frequency distributions. In the southern subdomain,
the considered skill scores are not consistently higher
for global or CP versions, as they also reflect the dif-
ferent structure of the precipitation patterns and behave
differently for changing precipitation thresholds. In the
middle and in the north, the CP versions show better
scores in almost all cases and it could be explained by
the issue of sample size for the cases when this was not
true.

The gain of the CP ensemble compared to the global
ensemble is impaired by the strong negative precipita-
tion bias in the southern subdomain. On the other hand,
the CP simulations compensate the negative bias of the
ECMWF simulations in the middle subdomain (Sahel)

as well as in the northern one (southern Sahara). Apart
from the removed influence of smoothed structures that
were encountered in the coarser-resolution forecasts, the
CP ensemble versions also display larger spread.

For the evaluated period of the full ECMWF EPS (re-
ferred to as ECMWF 2011 in this investigation), bet-
ter scores were found than for the ECMWF version
for 2006. The scores for the CP ensemble for 2011
(EC 2011) were also improved compared to the CP en-
semble versions for 2006, which means that also the
skill of the IBCs had an influence. The overall skill of
EC 2011 is satisfying, except for the negative precipita-
tion bias in the southern subdomain. From all five con-
sidered ensemble versions, it is the only one that gives
objectively a real improvement over “climatology” (as
indicated by the positive Brier skill score), reflecting
that there is still a huge potential to advance short-range
quantitative precipitation forecasts for West Africa. To
conclude, drawing IBCs from the ECMWF EPS and
adding additional perturbations on the land surface is
an appropriate method to generate CP ensemble simu-
lations for West Africa during the peak of the monsoon
season in the Sahel. Furthermore, it was shown that it
is necessary to perform CP simulations to achieve reli-
able probability forecasts of precipitation generated by
MCSs in the Sahel region.
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