

Modelling using MELCOR1.8.6 for fusion

P2.198

Preliminary safety analysis of LOCAs in one_EU DEMO HCPB blanket module

Xue Zhou Jin

Accident scenarios

- Case I in-box LOCA to the breeding blanket (BB): failure of one horizontal plate He as working fluid or noncondensable gas MELCOR1.8.6 for fusion / MELCOR1.8.2 for fusion (ITER)
- Case II in-vessel LOCA: failure of 10 FW channels (~10%)
- Impact of FW break sizes (case IIa: one channel, case IIb: two channels) Case III in-box LOCA to the purge gas system: failure of one CP in the BU

Main design data

	Value			
OB_4			Front wall	0.5
	(MW/m ²)	i the FW	BU to front wall	0.06
			BU to side wall	0.035
	Neutron power (MW)			5.142
	Mass flow rate (kg/	6.323		
	Pressure at inlet (M	8.0		
	Temperature (°C)	Inlet / outlet		300 / 500
		Cross se	ection (mmxmm)	10x15
		No. of ch	nannels	95
PHTS1 for 60 modules	Pressure (MPa) / te	8.0 / 300		
VV	Pressure (MPa) / te	5.0E-04 / 300		
EV	Pressure (MPa) / te	0.09 / 200		

Transient

300 260 220

180 140 100 60 20 -20 -60 femperature (°C)

-100

-140

80 00 1200 400 009 800

Nodalization for case III

Steady state

Parameter		MELCOR1.8.6			MELCOR1.8.2	
		Loop 1	Loop 2	Loop 1	Loop 1	
He	Flow		Working fluid		Noncondensable gas	
	Inventory of PHTS & 60 modules (kg)		1016.7	988.6	1035.0	1035.1
FW	m (kg/s)		3.1805	3.0707	3.2084	3.2096
	p_inlet (MPa)		7.84	7.93	7.85	7.88
	dp (kPa)		149.0	149.0	149.0	149.0
	Не	inlet (°C)	294.2	296.7	294.5	296.8
		outlet (°C)	364.6	371.7	364.1	366.9
	EUROFER (°C)		621.8	818.7	621.1	3721.3
	W (°C)		661.1	862.0	660.4	3765.0
SG/BU	ṁ (kg/s)	HG / BU	1.7143	3.0707	1.7295	1.7301
		VG	0.6642	-	0.6701	0.6706
		Caps	0.8020	-	0.8087	0.8089
	He outlet (°C)		388.1	505.1	387.4	389.2

Conclusion

- FPSS without plasma disruption makes temperature decrease in the fluid and structure.
- Small FW break size decelerates the He loss speed, pressure drop and temperature decrease in the affected module, and He accumulation in the VV.
- The largest He amount accumulated in the VV is 279kg (case II), and 917kg in the EV (case III).
- Pressure increase in the BU (>7MPa) and temperature increase in the VV (>700°C) may have impact on their design.
- MELCOR1.8.6 for fusion provides upgraded results against MELCOR1.8.2 due to the double precision.

He properties produce precise results against He as noncondensable gas.

29th SYMPOSIUM ON FUSION TECHNOLOGY

SEPTEMBER 5 – 9, 2016, PRAGUE, CZECH REPUBLIC

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Case I

- Case II - Case IIa - Case IIb - Case III

do not necessarily reflect those of the European Commission.

