

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission

Institute for Neutron Physics and Reactor Technology (INR)

Neutronics assessment of different quench tank **location options in IFMIF-DONES**

Yuefeng Qiu, Frederik Arbeiter, Ulrich Fischer, Friedrich Gröschel, Kuo Tian

Introduction

- IFMIF-DONES is a DEMO Oriented NEutron Source based on the IFMIF engineering design (IFMIF/EVEDA). The Quench Tank (QT) is a caching container for buffering the high-speed Li-flow from the target assembly.
- Due to large size and important hydraulics function of QT, its location has strong impact on the test cell (TC) design. The hands-on maintenance must be allowed for the Li loop room after shutdown.

Model and methodologies Option-1: QT located below the TC floor and connecting to the target with a long chute. Option-2: QT embedded in TC floor. Option-2 Option-1 wall. nsulation (10 mm, 50% SS) Heater (10 mm, 50% SS) 1 Year irra Transport calculation: McDeLicious-11 and FENDL-3/SLIB4. me (Days Inventory calculation: FISPACT-07 and EAF-2007 Shutdown dose rate: Rigorous two-step method code R2Smesh-2.1 developed at KIT. **In-operation Analysis** Parameter study of the Li-chute void-thickness (Option-1). 25 mm 20 mm 15 mn 10 mm Neutron flux at TC 5 mm floor and lithium QT location options. loop room [n/cm²/s] different locations. Neutron flux outside QT (Tally-2) Neutron flux inside QT (Tally-1) A quasi-linear relation between void thickness and neutron flux are found inside and outside the QT. Decreasing the void thickness from 25 mm to 15 mm reduces ~50% of neutron flux inside QT, which is not so significant to reduce the QT activation.

Inventory and shut-down dose

- Inventory calculation of QT (Option-1 with 15 mm void in the chute) and Li outlet pipe flange (Option-2).
- Shutdown dose rate calculation of Option-1 and Option-2. Li is drained out, and gamma source covers 0.5 m of the TC

Contact dose rate of QT in Option-1 (left) and Li outlet flange in Option-2 (right)

Dose rate with (left) and without (right) in-TC components in Option-1

Dose rate with (left) and without (right) in-TC components

The contact dose rate at critical positions and shutdown dose after one day cooling exceeds the hands-on limits (10 µSv/hr), thus hands-on maintenance is not possible in both

Conclusions

- Neutronics analysis have been carried out on IFMIF-DONES to evaluate the neutronics influence of QT in
- The relation between void thickness in the chute and neutron flux inside and outside the QT is quasi-linear.
- The results indicate that the Li room area is not possible for hands-on maintenance in both QT location options.