KIT | KIT-Bibliothek | Impressum | Datenschutz

Discrete diffraction managed solitons: threshold phenomena and rapid decay for general nonlinearities

Choi, Mi-Ran; Hundertmark, Dirk; Lee, Young-Ran

Abstract:

We prove a threshold phenomenon for the existence/non-existence of energy minimizing solitary solutions of the diffraction management equation for strictly positive and zero average diffraction. Our methods allow for a large class of nonlinearities, they are, for example, allowed to change sign, and the weakest possible condition, it only has to be locally integrable, on the local diffraction profile. The solutions are found as minimizers of a nonlinear and nonlocal variational problem which is translation invariant. There exists a critical threshold λcr such that minimizers for this variational problem exist if their power is bigger than λcr and no minimizers exist with power less than the critical threshold. We also give simple criteria for the finiteness and strict positivity of the critical threshold. Our proof of existence of minimizers is rather direct and avoids the use of Lions' concentration compactness argument.
Furthermore, we give precise quantitative lower bounds on the exponential decay rate of the diffraction management solitons, which confirm the physical heuristic prediction for the asymptotic decay rate. Moreover, for ground state solutions, these bounds give a quantitative lower bound for the divergence of the exponential decay rate in the limit of vanishing average diffraction. ... mehr


Volltext §
DOI: 10.5445/IR/1000059518
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2016
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-595184
KITopen-ID: 1000059518
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 49 S.
Serie CRC 1173 ; 2016/20
Schlagwörter threshold phenomena, diffraction management, discrete NLS, variational methods, exponential decay of solutions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page