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ON EXISTENCE OF GLOBAL SOLUTIONS OF THE

ONE-DIMENSIONAL CUBIC NLS FOR INITIAL DATA IN THE

MODULATION SPACE Mp,q(R).

L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

Abstract. We prove global existence for the one-dimensional cubic non-linear Schrödinger
equation in modulation spaces Mp,p′ for p sufficiently close to 2. In contrast to known
results, [9] and [14], our result requires no smallness condition on initial data. The
proof adapts a splitting method inspired by work of Vargas-Vega, Hyakuna-Tsutsumi
and Grünrock to the modulation space setting and exploits polynomial growth of the free
Schödinger group on modulation spaces.

1. introduction and main result

In this paper we are going to investigate the global wellposedness theory for the one-
dimensional cubic non-linear Schrödinger equation

(1)

{
iut + uxx ± |u|2u = 0 , (t, x) ∈ R2

u(0, x) = u0(x) , x ∈ R

where u0 lies in a modulation space Mp,q. Local wellposedness in modulation space Mp,q

has been studied in [1] for q = 1 and in [5] for p = 2. In addition, there are some global
existence results under smallness conditions on the initial value in [9] and [14] (see also [11]
and [15]). However, in dimension one the cubic nonlinearity is not covered by these results.
On the other hand, it is well known that if u0 ∈ L2 then the initial value problem (1) is
globally well posed and that the L2 norm is conserved. This was proved in [12]. In [13] it
was proved that under some weaker assumptions on u0 we can still obtain global existence
results even if the L2 norm of u0 is infinite. The idea is to split the initial data u0 between
two suitable function spaces and solve in each of them a different NLS and then combine
the solutions to get a function that solves problem (1). This idea was exploited further in

[4] and in [7] for û0 ∈ Lp
′

with p close to 2. The method of splitting itself goes back to [2]
at least.

Before we state our result and the proper definition of Mp,q let us denote by S(R) the
set of all Schwartz functions and by S′(R) its dual space. Fix s ∈ R and 0 < p, q ≤ ∞.
Then
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(2) M s
p,q =

{
f ∈ S′(R) : ‖f‖Ms

p,q
<∞

}
where the quantity ‖f‖Ms

p,q
is defined as

(3) ‖f‖Ms
p,q

=
∥∥∥ξ 7→ (1 + |ξ|)s‖(Vgf)(·, ξ)‖p

∥∥∥
q

and Vgf is the short time Fourier transform of the function f with window g ∈ S(R) \ {0},
that is

(4) Vgf(x, ξ) =

ˆ
R
e−iξyg(y − x)f(y) dy.

It can be shown that different choices of the window function g lead to equivalent norms
on M s

p,q. These spaces were first introduced in [3] and many of their properties such as
embeddings in other known function spaces and equivalent expressions for their norm can
be found in [14] where it is also proved that for s1 ≥ s2, 0 < p1 ≤ p2 and 0 < q1 ≤ q2
we have the relation M s1

p1,q1 ⊂ M s2
p2,q2 . Since their introduction, modulation spaces have

become canonical for both time-frequency and phase-space analysis. They provide an
excellent substitute in estimates that are known to fail on Lebesgue spaces.

Every time we write ‖f‖p or ‖f‖Lp we mean the usual p-norms in the Lebesgue spaces
Lp(R). In addition, for a given interval I ⊂ R we use the notation ‖f‖LpI for the Lp norm

of f over I. We also denote by Mp,q the modulation space M0
p,q.

To state our main result we need to define the following set of functions.

Definition 1. For a given r > 1, 0 < α < 1 and c0 > 0 we define the set Srα,c0 to be

the collection of all u ∈ L2 + Mr, r
r−1

such that for every N ∈ R+ there are functions

φN ∈ L2 and ψN ∈ Mr, r
r−1

with the properties u = φN + ψN and ‖φN‖2 ≤ c0N
α and

‖ψN‖Mr, r
r−1
≤ c0

N .

Remark 2. For any r > 2 and α > 0 define the number p = p(r, α) = 2r+2rα
r+2α ∈ (2, r). Then,

we have the relation Mp,p′ ⊂
⋃
c0∈R+

Srα,c0 which implies that the sets Srα,c0 are non empty.

To see this we use Theorem 6.1 D from [3] which shows that Mp,p′ can be obtained as
the complex interpolation space between L2 = M2,2 and Mr,r′ , that is Mp,p′ = [L2,Mr,r′ ]θ
for θ = α

α+1 . Next, we use Proposition 2.10 from [10] which states that Mp,p′ can be

continuously embedded in the real interpolation space (L2,Mr,r′)θ,∞ and then we take a
look at the K functional which induces a norm to (L2,Mr,r′)θ,∞ by the formula

‖u‖θ,∞ = sup
t>0

(
t−θ inf

u=φ+ψ

[
‖φ‖2 + t‖ψ‖Mr,r′

])
.

It is easy to see that for a given N ∈ R+, we must have N−α = t−θ and N = t1−θ or
equivalently t = Nα+1 and θ = α

α+1 .
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Our main theorem is as follows:

Theorem 3. Suppose that u0 ∈ Srα,c0 where we have r ∈ (3, 4], c0 > 0 and α ∈ (0, 6r−r2
22r2−38r+12

).

Then, the Cauchy problem (1) has a unique global solution u that can be written as a sum
of two functions v, w that lie in the spaces

v ∈ L
4r
r−2

loc (R : Lr(R)) ∩ L∞loc(R : L2(R))

and

w ∈ LQloc(R : Mr, r
r−1

(R)),

for any sufficiently large Q.

Remark 4. In the literature the only global existence results for NLS (1) with initial data
in a modulation space require the modulation norm to be small. See [9] and [14] (also [11]
and [15]) for more details. As we shall see our approach works with no restrictions on the
modulation norm of the initial condition.

Remark 5. An easy computation shows that the maximum of the function p(r, α), defined

in Remark 2, over the domain {(r, α) ∈ R2 : 3 ≤ r ≤ 4, 0 < α ≤ 6r−r2
22r2−38r+12

} is attained

at the corner (3, 3
32) and gives the maximum value of p = p(3, 3

32) = 35
17 . Of course, in

Theorem 3, r lies in the interval (3, 4] which means that the space M 35
17
, 35
18

is not covered

by our main Theorem.

Remark 6. Let us make some comments about the key ingredients of the proof of Theorem
3. We follow closely the calculations presented in [7] by Hyakuna-Tsutsumi where the initial
data u0 was split as a sum of a good function φ ∈ L2 and a bad function ψ depending on a
(large) parameter N . One has a global solution for the NLS with initial value φ and a global
solution for the linear evolution with initial value ψ. The nonlinear interaction is shown
to exist for a small time δN and takes values in L2. This step can be repeated sufficiently
many times (depending on N). In [7], many of the quantities were conserved from one step
to the next, in particular, the norm for the linear evolution of ψ. This is not the case here
since we deal with the Mr,r′ norm and have polynomial growth. Consequently, we have to

consider in each step k + 1 a smaller time existence interval δ
(k+1)
N < δ

(k)
N , and these have

to be chosen in such a way that the (finite) series
∑

k δ
(k)
N diverges to infinity as N →∞.

This turns out to be possible and is crucial for our global existence result. The restriction
on α (depending on r ∈ (3, 4]) in Theorem 3 comes precisely from the divergence condition

on
∑

k δ
(k)
N for N →∞.

Remark 7. Theorem 3 remains true in higher dimensions and with nonlinearities of the form
|u|p−1u, 1 < p < 1 + 4

d with proper adjustments in the range of r and α. We concentrate
on the one-dimensional cubic NLS for presentation reasons.
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2. preliminaries

From [14] it is known that for any 1 < p ≤ ∞ the space Mp,1 embeds into L∞∩Lp. This
means that M∞,1 ↪→ L∞ and since M2,2 = L2 we obtain by interpolation the embedding
Mp,p′ ↪→ Lp, for 2 ≤ p ≤ ∞. Therefore, in the following we will use the embedding
Mr, r

r−1
↪→ Lr which implies that there is a constant cE > 0 so that the inequality

(5) ‖f‖r ≤ cE‖f‖Mr, r
r−1

holds for all f ∈ Lr. Another fact about modulation spaces that we are going to use is
inequality

(6) ‖eit∂2xf‖Mp,q ≤ c(1 + |t|)
1
2
− 1
p ‖f‖Mp,q

which holds for all f ∈ Mp,q and t ∈ R, where c > 0 is independent of f and the time t.
Since our p = r we have that there is a universal constant cI > 0 such that the following
is true

(7) ‖eit∂2xf‖Mr, r
r−1
≤ cI(1 + |t|)

1
2
− 1
r ‖f‖Mr, r

r−1
.

Before we proceed with the proof of our main Theorem, which is in Section 3, we need to
state and prove some preliminary results. Throughout the paper we will use the notation
G(v, w) = |v+w|2(v+w)−|v|2v and G̃(v, w1, w2) = G(v, w1)−G(v, w2) for v, w,w1, w2 ∈ C.

A pair of numbers (r, q) is called admissible if 2 ≤ r ≤ 6, q > 2 and they satisfy the
equation

1

q
+

1

2r
=

1

4
.

For such pairs the following proposition is true.

Proposition 8. Suppose that v solves the initial value problem (1) with initial data φ ∈ L2

and that (r, q) is an admissible pair. Then there are constants k1, k2 > 0 independent of φ
with the property that

‖v‖LqIδLr
≤ k1‖φ‖2,

for all δ ∈ [0, (k2‖φ‖2)−4], where Iδ = [0, δ].

This can be proved by interpolating between the estimate for the L∞IδL
2 norm, which

is obvious since the solution of NLS (1) has conserved L2 norm, and the estimate for the
L6
Iδ
L6 norm which can be proved by showing that the set{

δ ∈ [0, (k2‖φ‖2)−4] : ‖v‖L6
Iδ
L6 ≤ k1‖φ‖2

}
is a nonempty, open and closed subset of [0, (k2‖φ‖2)−4]. To see this write



Global Existence in Mp,q(R) 5

v = eit∂
2
xφ± i

ˆ t

0
ei(t−τ)∂

2
x [|v|2v] dτ,

and estimate each of the two summands in the L6
Iδ
L6 norm. For the evolution part eit∂

2
xφ the

result is known, see [6] (Theorem 1.4), and for the convolution integral part an application
of Hölder’s inequality implies the desired result. We refer to [6] for more details, where a
similar result was proved for Lorentz type norms.

Next we define the triangles

T̂1 =
{

(x, y) ∈
(

0,
1

2

)2
: y < −x+

1

2

}
∪
{(1

2
, 0
)}

and

T̂2 =
{

(x, y) ∈
(1

2
, 1
)2

: y > −x+
3

2

}
.

Then we have the following proposition which can be found in [7] and [8]:

Proposition 9. Suppose that (1r ,
1
q ) ∈ T̂1 and (1p ,

1
γ ) ∈ T̂2 and

2

γ
+

1

p
= 2 +

2

q
+

1

r
.

Then there is a constant C > 0 that depends on q, r such that the estimate∥∥∥ˆ t

0
ei(t−τ)∂

2
xF (·, τ) dτ

∥∥∥
LqIT

Lr
≤ C‖F‖LγIT Lp

is valid for any T > 0 and F ∈ LγITL
p.

Special cases of the following two propositions can be found again in [7] but since we
need them in a more general setting we present their proofs, too.

Proposition 10. Let q > 3 and max{3, 2q
q−2} < r < min{q, 4q

q−2}. Then there is a constant

C = Cq,r > 0 such that for all T > 0 the quantity∥∥∥ˆ t

0
ei(t−τ)∂

2
xG̃(v, w1, w2) dτ

∥∥∥
LqIT

Lr

is bounded above by

C ·
[
T

1
2 ‖v‖2

L
4r
r−2
IT

Lr
‖w1 − w2‖LqIT Lr

+ T
2rq−2q−4r

2rq (‖w1‖2LqIT Lr
+ ‖w2‖2LqIT Lr

)‖w1 − w2‖LqIT Lr
]
.

Proof. Since the pair (1r ,
1
q ) belongs to the triangle T̂1 we use Proposition 9 to estimate the

norm
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∥∥∥ˆ t

0
ei(t−τ)∂

2
xG̃(v, w1, w2) dτ

∥∥∥
LqIT

Lr

by the expression Cq,r · ‖G̃‖LγIT Lp
where the pair (1p ,

1
γ ) ∈ T̂2 satisfies

2

γ
+

1

p
= 2 +

2

q
+

1

r

and Cq,r is a positive constant. Then we bound the function |G̃| pointwise by the expression
(|v|2 + |w1|2 + |w2|2)|w1 − w2| and proceed with Hölder in the space norm first and then
in the time norm and try to identify all the exponents that appear in the procedure as
functions of the variables q, r only.

In the space norm we use the exponent A with conjugate A′ and then in the time variable
we use the exponents B1, B2, B3 to arrive at the upper bound

‖|v|2|w1 − w2|‖LγIT Lp
≤ T

1
γB3 ‖v‖2

L
2γB1
IT

L2pA
‖w1 − w2‖LγB2

IT
LpA′

.

Since we need LγB2

IT
LpA

′
= LqITL

r we require q = γB2, r = pA′. Then the pair (2pA, 2γB1)
has to be admissible which means

1

2γB1
+

1

4pA
=

1

4
,

and since B1, B2, B3 are Hölder exponents we need

1

B1
+

1

B2
+

1

B3
= 1.

Similarly, we have the inequality

‖|w1|2|w1 − w2|‖LγIT Lp
≤ T

1
γβ3 ‖w1‖2

L
2γβ1
IT

L2pα
‖w1 − w2‖Lγβ2IT

Lpα′

where α, α′ are conjugate exponents and since we need all norms to be on the space LqITL
r,

we require the identities 2γβ1 = q, 2pα = r, γβ2 = q, pα′ = r. Again, the numbers
β1, β2, β3 are Hölder exponents and this implies

1

β1
+

1

β2
+

1

β3
= 1.

From pα′ = r = pA′ we get α = A and from 2pα = r = pA′ we get 2α = A′. Thus, A = 3
2

and A′ = 3. From there on it is easy to solve and find the following expressions for all the
exponents in terms of q, r:

p =
r

3

γ =
2qr

2qr + 2r − 2q
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B1 =
2qr + 2r − 2q

q(r − 2)
= 2β1

B2 =
2rq + 2r − 2q

2r
= β2

B3 =
2rq + 2r − 2q

rq

β3 =
2qr + 2r − 2q

2qr − 2q − 4r
.

Substituting we arrive at the desired upper bound. The restrictions on q and r arise from

the fact that the pairs (1r ,
1
q ) ∈ T̂1 and (1p ,

1
γ ) ∈ T̂2 and that the numbers Bi, βi ∈ (1,∞)

for all i = 1, 2, 3.
�

Proposition 11. Let q > 4
3 and 3 < r < 6. Then there is a constant c = cq,r > 0 such that

for all T > 0 the quantity ∥∥∥ˆ t

0
ei(t−τ)∂

2
xG̃(v, w1, w2) dτ

∥∥∥
L∞IT

L2

is bounded above by

c·
[
T

3qr−4r−2q
4qr ‖v‖2

L
4r
r−2
IT

Lr
‖w1−w2‖LqIT Lr

+T
5qr−6q−12r

4rq (‖w1‖2LqIT Lr
+‖w2‖2LqIT Lr

)‖w1−w2‖LqIT Lr
]
.

Proof. We have (12 , 0) ∈ T̂1 and so by Proposition 9, for all pairs (1p̃ ,
1
γ̃ ) ∈ T̂2 that satisfy

2

γ̃
+

1

p̃
=

5

2

we bound the expression ∥∥∥ˆ t

0
ei(t−τ)∂

2
xG̃(v, w1, w2) dτ

∥∥∥
L∞IT

L2

by cq,r · ‖G̃‖Lγ̃IT Lp̃
, where cq,r is a positive constant. Again by estimating |G̃| pointwise and

using Hölder we arrive at exactly the same upper bound as in the previous proof but with
exponents Ã, B̃1, B̃2, . . . In this case they are more easily identified as Ã = 3

2 , Ã
′ = 3, p̃ = r

3

γ̃ =
4r

5r − 6
= 2β̃1

B̃1 =
5r − 6

2(r − 2)
= β̃2
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B̃2 =
q(5r − 6)

4r

B̃3 =
q(5r − 6)

3qr − 4r − 2q

β̃3 =
q(5r − 6)

5qr − 6q − 12r
.

�

3. proof of theorem 3

Proof. Let us fix an r ∈ (3, 4] and we choose Q large enough such that

(8) (6r − r2)Q2 > 2α[(11r2 − 19r + 6)Q2 − 14r2Q− 24r2].

This can be done since α ∈ (0, 6r−r2
22r2−38r+12

) and

lim
Q→∞

(6r − r2)Q2

2[(11r2 − 19r + 6)Q2 − 14r2Q− 24r2]
=

6r − r2

22r2 − 38r + 12
.

For this Q, by Proposition 10 there is a constant CQ,r > 0 and by Proposition 11 a constant
cQ,r > 0. Define cQ = max{CQ,r, cQ,r}. We start by choosing a positive number M0 ≥ k42 ·c40
such that the following four inequalities are true

(9) 12 · cQ · k21 · c20 ≤
√
M0

(10) 27 · cQ · c20 · c2E · c2I ·
(1

4

) 2
Q ≤ M

rQ−Q−2r
rQ

0

(54)1−
2
r

(11) 12 · cQ · k21 · c30 · cE · cI ·
(1

4

) 1
Q ≤ M

3Qr−4r−2Q
4Qr

0

(54)
1
2
− 1
r

(12) 27 · cQ · c30 · c3E · c3I ·
(1

4

) 3
Q ≤ M

5Qr−6Q−12r
4rQ

0

(54)
3
2
− 3
r

.

Furthermore, for each non negative integer k we let

(13) Mk = (5 + k)
6(r−2)Q

5Qr−6Q−12r · M0

5
6(r−2)Q

5Qr−6Q−12r

and
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(14) δ
(k)
N =

M−1k
N4α

> 0.

Since Mk, N are going to be large numbers we can always assume that δ
(k)
N < 1

4 . Note
that for each k, Mk+1 > Mk ≥ M0. Our goal is to start with the initial splitting of the
given function u0 = φN0 +ψN0 and show that there is a solution u of NLS (1) in the interval

[0, δ
(0)
N ] of the form u = v(0) + w(0) where v(0) and w(0) lie in the required spaces and such

that for all t ∈ [0, δ
(0)
N ] we have the estimate

‖w(t)− eit∂2xψN0 ‖L∞I
δ
(0)
N

L2 ≤ 2 · 1

N
1+α·Qr−4r−2Q

Qr

.

Then we extend our solution to the interval [0, δ
(0)
N + δ

(1)
N ] by repeating the same procedure

but for the new initial data defined as the sum of the following two functions

φN1 (x) = v(0)(δ
(0)
N , x)± i

ˆ δ
(0)
N

0
ei(δ

(0)
N −τ)∂

2
xG(v(0), w(0)) dτ ∈ L2

and

ψN1 (x) = eiδ
(0)
N ∂2xψN0 (x) ∈Mr, r

r−1
.

Here it is important to point out that in order to be able to prove such a claim we must
have that the L2 norm of the new function φN1 is bounded from above by the quantity
2c0N

α. Inductively, at the (k + 1)th step we define the functions φNk+1 and ψNk+1 by the
formulas

(15) φNk+1(x) = v(k)(δ
(k)
N , x)± i

ˆ δ
(k)
N

0
ei(δ

(k)
N −τ)∂

2
xG(v(k), w(k)) dτ ∈ L2

and

(16) ψNk+1(x) = eiδ
(k)
N ∂2xψNk (x) = ei

∑k
i=0 δ

(i)
N ∂2xψN0 (x) ∈Mr, r

r−1
.

Due to the way these functions were chosen, we have the following estimate on the L2 norm
of φNk+1

(17) ‖φNk+1‖2 ≤ ‖φN0 ‖2 + 2(k + 1)N
−1−α·Qr−4r−2Q

Qr ≤ c0Nα + 2(k + 1)N
−1−α·Qr−4r−2Q

Qr .

To make this precise, we will use induction on k. Let us assume that we have made k steps
already and that ‖φNk+1‖2 ≤ 2c0N

α. We want to do the (k + 1) step. That is, we want to

solve the 1-dimensional cubic (NLS) with initial data φNk+1+ψNk+1 in the interval [0, δ
(k+1)
N ].

First we solve the initial value problem
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(18)

{
iv + vxx ± |v|2v = 0 , (t, x) ∈ R2

v(0, x) = φNk+1(x) ∈ L2 , x ∈ R
,

from which we obtain a globally defined function v(k+1) such that ‖v(k+1)(t, ·)‖2 = ‖φNk+1‖2
for all times t and such that ‖v(k+1)‖

L
4r
r−2
I
δ
(k+1)
N

Lr
≤ k1‖φNk+1‖2 ≤ 2c0k1N

α since the pair

(r, 4r
r−2) is admissible. Then we need to solve

(19)

{
iw + wxx ±G(v(k+1), w) = 0 , (t, x) ∈ R2

w(0, x) = ψNk+1(x) ∈Mr, r
r−1

, x ∈ R
.

For this we define the function space

(20) V
(k+1)
N =

{
w ∈ LQI

δ
(k+1)
N

Lr : ‖w‖
LQI
δ
(k+1)
N

Lr
≤

3c0cEcI(
1
4)

1
Q (1 + k+2

4 )
1
2
− 1
r

N

}
and the operator

(21) T (k+1)w = eit∂
2
xψNk+1 ± i

ˆ t

0
ei(t−τ)∂

2
xG(v(k+1), w) dτ.

Our claim is that T (k+1)(V
(k+1)
N ) ⊂ V (k+1)

N . Indeed, let w ∈ V (k+1)
N , then for t ∈ [0, δ

(k+1)
N ]

we have

‖eit∂2xψNk+1‖r ≤ cE‖eit∂
2
xψNk+1‖Mr, r

r−1
= cE‖ei(t+

∑k
i=0 δ

(i)
N )∂2xψN0 ‖Mr, r

r−1
,

which is bounded above by

cEcI

(
1+|t+

k∑
i=0

δ
(i)
N |
) 1

2
− 1
r ‖ψN0 ‖Mr, r

r−1
≤ c0cEcI

N

(
1+

k+1∑
i=0

δ
(i)
N

) 1
2
− 1
r ≤ c0cEcI

N

(
1+

k + 2

4

) 1
2
− 1
r
.

From which it follows that

‖eit∂2xψNk+1‖LQI
δ
(k+1)
N

Lr
≤ c0cEcI

N

(
1 +

k + 2

4

) 1
2
− 1
r
(1

4

) 1
Q
.

For the convolution integral part of the operator T (k+1) we use Proposition 10 with the
functions v = v(k+1), w1 = w and w2 = 0, to estimate the norm∥∥∥ˆ t

0
ei(t−τ)∂

2
xG(v(k+1), w) dτ

∥∥∥
LQI
δ
(k+1)
N

Lr
.
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Thus, we have the upper bound

cQ(δ
(k+1)
N )

1
2 ‖v(k+1)‖2

L
4r
r−2
I
δ
(k+1)
N

Lr
‖w‖

LQI
δ
(k+1)
N

Lr
+ cQ(δ

(k+1)
N )

rQ−Q−2r
rQ ‖w‖3

LQI
δ
(k+1)
N

Lr

and this quantity in its turn is bounded from above by

12cQk
2
1c

3
0cEcI(

1
4)

1
Q (1 + k+2

4 )
1
2
− 1
r√

Mk+1

· 1

N
+

27cQc
3
0c

3
Ec

3
I(

1
4)

3
Q (1 + k+2

4 )
3
2
− 3
r

M
rQ−Q−2r

rQ

k+1

· 1

N
3+4α( rQ−Q−2r

rQ
)
.

From the choice of the Mk+1, see inequality (10), we get that this is less than

2 · c0cEcI
N

(
1 +

k + 2

4

) 1
2
− 1
r
(1

4

) 1
Q

which shows that T (k+1) maps the space V
(k+1)
N into itself.

Our next step is to show that for any w1, w2 ∈ V (k+1)
N we have the contraction property

‖T (k+1)(w1)− T (k+1)(w2)‖LQI
δ
(k+1)
N

Lr
<

2

3
‖w1 − w2‖LQI

δ
(k+1)
N

Lr
.

The calculations are similar to the ones we just presented. They follow from Proposition
10 and from the fact that N can be chosen to be larger than 2. By the Banach contraction

mapping principle we immediately obtain a solution of (19) that lies in the space V
(k+1)
N

and is defined for t ∈ [0, δ
(k+1)
N ].

What remains is to estimate the quantity

‖w(k+1)(t)− eit∂2xψNk+1‖L∞I
δ
(k+1)
N

L2 .

For this we use Proposition 11 and get the upper bound

cQ

[
(δ

(k+1)
N )

3Qr−4r−2Q
4Qr ‖v‖2

L
4r
r−2
I
δ
(k+1)
N

Lr
+ (δ

(k+1)
N )

5Qr−6Q−12r
4Qr ‖w‖3

LQI
δ
(k+1)
N

Lr

]
.

Substituting, we are able to bound this quantity from above by the sum of the following
two expressions

12cQk
2
1c

3
0cEcI(

1
4)

1
Q (1 + k+2

4 )
1
2
− 1
r

M
3Qr−4r−2Q

4Qr

k+1

· 1

N
1+α·Qr−4r−2Q

Qr

27cQc
3
0c

3
Ec

3
I(

1
4)

3
Q (1 + k+2

4 )
3
2
− 3
r

M
5Qr−6Q−12r

4Qr

k+1

· 1

N
3+α· 5Qr−6Q−12r

rQ

.
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By the choice of Mk+1, see inequalities (11) and (12), we get the desired inequality

(22) ‖w(k+1)(t)− eit∂2xψNk+1‖L∞I
δ
(k+1)
N

L2 ≤ 2 ·N−1−α·
Qr−4r−2q

Qr .

Finally, to prove that a global solution exists, it suffices to show that the following sum∑N
1+α· 2Qr−4r−2Q

Qr

k=0 δ
(k)
N diverges as N →∞. In other words

(23) lim
N→∞

1

N4α
·
N

1+α· 2Qr−4r−2Q
Qr∑

k=0

1

(5 + k)
6(r−2)Q

5Qr−6Q−12r

=∞.

By the use of the Euler-Maclaurin summation formula it is easy to see that the sum

n∑
k=0

1

(5 + k)β

is asymptotic to n1−β, for 0 < β < 1. Therefore, if

(24)
[
1 + α · 2Qr − 4r − 2Q

Qr

][
1− 6(r − 2)Q

5Qr − 6Q− 12r

]
− 4α > 0

we are done. But this is equivalent to (6r− r2)Q2 > 2α[(11r2−19r+ 6)Q2−14r2Q−24r2]
which is exactly how Q was chosen from the beginning of the proof.

About the uniqueness assertion of the global solution it suffices to observe that for

large Q the space LQITL
r is a subspace of L

4r
r−2

IT
Lr and a supremum type argument with

Proposition 10 immediately yield the desired result. �
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